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Abstract

In recent years, with the advance of generative models, DeepFake has become a real risk

to society and introduced potential threats to individual privacy and political security. In re-

sponse to this escalating concern, considerable efforts have been devoted to the development

of defense mechanisms against DeepFake manipulation.

While DeepFake Detection, a passive defense strategy, has been employed as an ex-

post countermeasure, its efficacy in preventing the spreading of misinformation is limited.

To address this problem, researchers have explored proactive defense techniques, such as the

introduction of adversarial noises into source data, aiming to disrupt DeepFake manipulation,

making it impossible to generate realistic images. However, existing studies on DeepFake

Disruption often overlook the critical aspects of the transferability of adversarial attacks and

their resilience against image reconstruction methods.

Unfortunately, most current disruption methods fail to be effective in real-world sce-

narios, where the specific DeepFake model and the targeted attribute for manipulation are

unknown. Consequently, this dissertation seeks to critically examine existing disruption

methods, evaluating their capacity to transfer seamlessly across diverse DeepFake models

and domains. Additionally, this research aims to assess the robustness of these methods

against various image reconstruction techniques, thereby contributing to the development of

more effective and versatile defenses against the growing threat of DeepFake technology.

Keywords— DeepFake Disruption, GANs, Adversarial Attacks, Cross-Modality
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Resumo

Nos últimos anos, com o avanço dos modelos generativos, a técnica DeepFake tornou-se um risco

para a sociedade e introduziu potenciais ameaças à privacidade individual e à segurança política. Em

resposta a esta preocupação crescente, foram dedicados consideráveis esforços ao desenvolvimento

de mecanismos de defesa contra a manipulação de DeepFake.

Enquanto a deteção de DeepFake, uma estratégia de defesa passiva, tem sido utilizada como

uma contramedida ex-post, a sua eficácia em prevenir a propagação de desinformação é limitada.

Para lidar com este problema, estudos atuais têm explorado técnicas de defesa proativas, como

a adição de perturbações adversariais a imagens, com o objetivo de perturbar a manipulação de

DeepFake, tornando impossível a geração de imagens realistas. No entanto, a maioria dos métodos

de Disrupção de DeepFake negligencia aspetos críticos para uma defesa resistente, nomeadamente

a transferibilidade dos ataques adversariais e a sua resistência contra métodos de reconstrução de

imagem.

Infelizmente, a maioria dos métodos atuais de disrupção falha em ser eficaz em cenários do

mundo real, onde o modelo específico de DeepFake e o atributo alvo para manipulação são descon-

hecidos. Posto isto, esta tese tem como objetivo examinar criticamente os métodos de disrupção

existentes, avaliando a sua capacidade de transferência entre modelos e domínios diversos de Deep-

Fake. Para além disso, este estudo visa avaliar a robustez deste tipo de métodos contra várias

técnicas de reconstrução de imagem, contribuindo assim para o desenvolvimento de defesas mais

eficazes e versáteis contra a ameaça crescente da tecnologia DeepFake.

Keywords— Disrupção de DeepFake, GANs, Ataques Adversariais, Cross-Modality
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“The potential benefits of artificial intelligence are huge, so are the

dangers."
Dave Waters
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1 Introduction

1.1 Context and Motivation

The emergence of DeepFake technology, characterized by its ability to create or manipulate

facial appearances through sophisticated generative approaches, has ushered in a new era of digital

manipulation. DeepFake technology allows individuals to alter a person’s identity, expression, and

attributes within an image or video in a remarkably realistic manner. While its applications can

be benign, such as aiding the film industry in recreating appearances for deceased celebrities, the

malicious misuse of DeepFake technology poses significant threats to our digital society [21]. This

introduction delves into the multifaceted landscape of DeepFake technology, addressing its potential

for impersonation, manipulation of political events, creation of explicit content, and its far-reaching

impact on cybersecurity and privacy.

One notable example is the creation of a DeepFake video of Barack Obama by comedian Jordan

Peele in collaboration with BuzzFeed in April 2018. This public service announcement (PSA) aimed

to raise awareness about the technology’s capabilities [21]. However, this technology is not limited

to political impersonations but extends to the creation of DeepFake pornography and fake nude

images, predominantly targeting women. DeepFake pornography has become the most prevalent

form of malicious DeepFake content, negatively impacting the lives of many, including celebrities

and private individuals [22] [21].

Beyond the realm of misinformation and explicit content, DeepFake technology is also reshaping

the landscape of cybersecurity by facilitating fraud and online scams. The increasing accessibility

and realism of DeepFake technology make it a formidable threat to the security and privacy of

individuals. The popular mobile application, FaceApp, widely used for posting Instagram selfies,

exemplifies the accessibility of these technological advancements. All that is required to use this

app is a smartphone and its installation. With a simple click, users can transform their selfies into

younger or older versions, representing a form of deepfake imagery. The creation of deepfakes on

the web is escalating at a rapid pace. To illustrate, around February 2021, approximately 60,000

synthetic videos of this nature were circulating online. Therefore, it becomes imperative to develop

effective countermeasures to combat DeepFake technology.

1



In response to the growing concerns surrounding DeepFake technology, various defense methods

have been proposed, both passively and proactively. Passive DeepFake defense strategies aim to

identify whether an image or video has been generated artificially using AI or captured naturally

by a camera, allowing for the differentiation between genuine and DeepFake data [21]. Proactive

DeepFake defense, on the other hand, involves introducing adversarial perturbations to the source

images, disrupting the DeepFake creation process and producing distorted results [1] [17]. This

technique, known as DeepFake Disruption, distinguishes itself as a promising approach in the fight

against DeepFakes. The difference between these two types of defenses is illustrated in Figure 1.1.

Figure 1.1: Illustration of DeepFake defenses. Adapted from [1].

Although DeepFake Detection has played a vital role in identifying DeepFakes, it serves as an

ex-post countermeasure, offering limited ability to prevent the spread of misinformation. By the

time a DeepFake is detected, the harm has already been inflicted. As such, this dissertation focuses

on studying techniques that prevent attackers from synthesizing DeepFake images, with a particular

emphasis on DeepFake Disruption. This method, being relatively recent, has shown considerable

promise in disrupting DeepFake creation by introducing human-imperceptible perturbations to the

images, resulting in visually noticeable artifacts that fail to deceive the human eye, as illustrated in

Figure 1.2.

Figure 1.2: Illustration of DeepFake disruption. Taken from [2].
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The success of DeepFake Disruption is contingent upon the creation of images that are suf-

ficiently deteriorated to the point where they must be discarded or where the modifications are

perceptually evident [2]. In this dissertation, there will be an exploration of the theoretical foun-

dations, practical applications, and the efficacy of DeepFake Disruption as a potent weapon against

the proliferation of DeepFake technology and its associated threats.

1.2 Challenges and Breakthroughs

Over the last few years, the spotlight has increasingly turned toward the development of Deep-

Fake Disruption methods as a means of safeguarding against the creation of DeepFake. DeepFake,

generated by various Generative Adversarial Networks (GANs), can manipulate a wide array of at-

tributes in face images, ranging from changing hair color to altering gender and age, among others.

The complexity of the task lies in developing a robust defense method that can effectively combat

a broad spectrum of DeepFake models and domains.

Most studies focus on the concept of gray-box adversarial attacks, which implies assuming the

specific DeepFake model that will be used. These approaches train their adversarial attacks with

a predefined model in mind, leading to impressive results when tested on that very model. How-

ever, this methodology falters when confronted with a different model, as each one has its distinct

approach to DeepFake generation. What proves effective for one model may prove ineffective for

another. Further complicating matters, some studies use a white-box adversarial attack, assuming

what domain will be used as well. While effective within their predetermined domain, these ap-

proaches lose efficiency when the situation changes, resulting in reduced practicality due to their

susceptibility to variations. So, without the knowledge of what DeepFake model will be employed

or what conditional variables will be set to tamper with images, these adversarial attacks have great

limitations in practice [9] [18].

In a real-life scenario, the identity of the DeepFake model and the domain employed by attackers

are unknown, making it essential to devise defenses that function seamlessly in any conceivable

scenario. The answer lies in the development of an effective defense that operates under the premise

of a black-box adversarial attack. Such an attack operates without prior knowledge of the model

or domain in use, closely resembling the challenges of real-life situations. The ideal DeepFake

Disruption employing a black-box adversarial attack should effectively disrupt all DeepFake models

and perform consistently across diverse domains. To achieve this, research focuses on training

adversarial attacks across a range of DeepFake models and domains, culminating in cross-model

perturbations. When applied to images, these perturbations prevent attackers from producing

realistic DeepFakes.

As DeepFake Disruption evolves and progresses, attackers simultaneously develop countermea-
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sures to eliminate adversarial attacks and neutralize the disruption. The majority of adversarial

attacks, such as Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD), rely

on gradient-based or optimization-based strategies to generate subtle adversarial perturbations. Un-

fortunately, research indicates that such perturbations can be easily removed or destroyed through

a simple input reconstruction, enabling attackers to erase the perturbation and continue their Deep-

Fake endeavors [12] [17].

1.3 Objectives

This dissertation aims to conduct a comprehensive examination of existing DeepFake disruption

techniques, with a primary emphasis on their adaptability to a diverse range of Deepfake models

and application domains. Simultaneously, it will assess their resilience against image reconstruction

methods. The central objective of this research is to perform a cross-model evaluation, making

comparisons among various adversarial attack types (white-box, grey-box, and black-box) and de-

termining which method holds the most promise for real-world scenarios.

Despite notable advancements in DeepFake disruption, research in this field remains somewhat

limited in terms of cross-model perspectives and the robustness of solutions against image recon-

struction challenges. Consequently, this dissertation seeks to offer a thorough understanding of

the strides made by prior studies while emphasizing the unresolved issues that persist. The goal

is to illuminate the path forward in the ongoing struggle against DeepFake threats and identify

the essential steps necessary for the development of a robust and universally applicable defense

mechanism.

In pursuing these objectives, this dissertation aims to make a substantial contribution to the

preservation of trust and security in an era characterized by the continuously evolving landscape of

technological deception.

1.4 Document Structure

The outline of this dissertation is the following:

• Chapter 2: State-of-the-Art reviews the most relevant works in the literature and provides

a theoretical background about the subject.

• Chapter 3: Background Materials introduces essential methodologies, establishing a contex-

tual foundation for the primary research focus of this work.

• Chapter 4: Methodology describes the implementation and the methodologies used during

the course of this work.
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• Chapter 5: Results and Discussion provides a detailed examination of the experimental

results.

• Chapter 6: Conclusion and Future Work summarises what was concluded from the results

and suggests improvements.
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2 State-of-the-Art

This chapter reviews the pertinent literature contributions related to the field of DeepFake Dis-

ruption, aiming to incorporate the notable advancements within the existing body of literature and

granting an extensive insight into the state-of-the-art practices employed in DeepFake Disruption’s

research.

Initially, in Section 2.1 the discussion initiates with an exploration of DeepFake creation to en-

hance comprehension regarding what constitutes DeepFake and the diverse methodologies employed

for its generation. This foundational understanding sets the stage for a more nuanced examination

of the subsequent sections.

Moving on to Sections 2.2 and 2.3, these segments will introduce various aspects of DeepFake

defenses. In light of the heightened concerns and risks associated with DeepFake technology, coun-

termeasures have been developed. Section 2.2 introduces passive DeepFake Defense, also known as

DeepFake Detection, offering insights into different detection types and their efficacy. Lastly, Sec-

tion 2.3 introduces DeepFake Disruption as a proactive defense strategy, exploring the background

of DeepFake Disruption and elucidating its concept. Additionally, it details the methodologies cur-

rently in use. This comprehensive approach provides a thorough examination of both the passive

and proactive dimensions of countering DeepFake threats.

2.1 DeepFake Creation

In the past years, Generative Adversarial Networks have made remarkable progress in image

synthesis and manipulation. DeepFake, building upon the success of GANs, generates forgery facial

images and videos, presenting potential threats to individual privacy and political security. There

are four common types of DeepFake creation: entire face synthesis, attribute manipulation, identity

swap, and expression swap. Figure 2.1 graphically summarises each facial manipulation group.
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Figure 2.1: Real and fake examples of each facial manipulation group. Taken from [3].

Entire synthesis generates fabricated images without any basis in reality, usually through pow-

erful GANs, like the StyleGAN approach detailed in [23]. These techniques deliver remarkable

results, achieving high-quality facial images characterized by an impressive level of realism. While

this manipulation holds potential for diverse sectors like the video game and 3D-modeling industries,

it also carries the risk of misuse. For instance, it could be exploited to fabricate highly realistic

fake profiles on social networks, facilitating the spread of misinformation. Attribute manipulation

involves faltering specific facial features, modifying both simple attributes (such as hair color or

baldness) and complex ones (like gender or age), typically facilitated by GANs such as the Star-

GAN method outlined in [14] and STGAN proposed in [24]. This technology can be used by

consumers to try on a wide range of products such as makeup, glasses, and hairstyles in a virtual

setting. The identity swap, popularly known as face swap, consists of replacing one person’s face

in a video with another person’s face. This type of manipulation can be beneficially used in the

film industry, but it could also be used for malicious purposes such as the creation of DeepFake

pornography, financial fraud, and others. DeepFaceLab [25] is a popular and available tool for

identity swapping. Similarly, expression swap, also known as face reenactment, involves altering the

facial expression of an individual. GANimation [26] is an example of an available expression swap

tool.
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2.2 DeepFake Detection

Determining the authenticity of facial images by distinguishing between real and fake images

is a simple way of defending against DeepFakes. However, DeepFake detection poses many chal-

lenges, such as generalization to tackle unknown synthetic techniques and vulnerability to evading

adversarial attacks. There are three main types of DeepFake detection: Spatial-based Detection,

Frequency-based Detection, and Biological Signal-based Detection.

2.2.1 Spatial-based Detection

Spacial-based Detection consists of analyzing spatial discrepancies within an image or video

frame to detect potential manipulations. This method examines spatial elements such as features,

textures, and alignments, to identify anomalies that indicate the presence of a DeepFake. Within

Spatial-based Detection, there are five main types of detection:

• Image forensics based detection: This approach uses traditional forensics-based tech-

niques, conducting a thorough examination of images and videos at the pixel level to detect

irregularities. Li et al. [27] stated that the distinctions between computer-generated faces

and authentic ones become apparent in the chrominance components, particularly within the

residual domain. To counter unfamiliar GANs, they suggest training a one-class classifier

using real faces and leveraging these chrominance differences. However, the effectiveness of

this method against image alterations, such as perturbation attacks, remains uncertain. An

alternative study, detailed in [28], utilizes the Photo Response Non-Uniformity (PRNU) pat-

tern to differentiate real from fake. PRNU refers to a noise pattern present in digital images,

originating from the camera’s light sensor.

• DNN-based detection: This method relies entirely on data-driven approaches, using either

established or newly designed Deep Neural Network (DNN) models. These models extract

spatial features to enhance detection’s effectiveness and its ability to generalize across different

scenarios. However, ongoing research is focused on enhancing the resilience of DNN-based

detection methods against adversarial attacks, prompted by recent studies highlighting their

vulnerability to additive noises and lack of robustness. A study made by Liu et al. [29]

proposed a new architecture called Gram-Net. This technique uses comprehensive global

image texture representations to bolster the detection of fake images, and experimental results

showed a strong robustness against downsampling, JPEG compression, blur and noise.

• Obvious artifacts clues: Generated DeepFakes often contain perceptible imperfections

that can be exploited for detection using simple DNN models. These artifacts typically
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manifest within specific local patches. Chai et al.’s study proposed a convolutional method,

as referenced in [30], for training classifiers to concentrate on these image patches. Their

approach demonstrates robustness and generalization across various network architectures,

image datasets, and more.

• Detection and localization: Some studies focus on identifying the manipulated regions,

contributing evidence to forensic practices and sparking further research to develop better

DeepFake Detection capabilities. FakeLocator, referenced in [31], investigated the architec-

ture of existing GANs and observed that upsampling methods exhibit obvious clues for detec-

tion and forgery localization. Using an encoder-decoder network, this method extracted forged

textures while devising a grayscale predictive map, significantly improving detection and lo-

calization accuracy. FakeLocator demonstrated strong adaptability across various GANs and

showed resilience against perturbation attacks such as compression and blur.

• Facial image preprocessing: Certain studies argue in favor of preprocessing facial images

before their submission to binary classifiers, asserting that this step enhances DeepFake De-

tection. The processed DeepFakes may reveal their manipulated textures, enabling straight-

forward identification by simpler classifiers, such as traditional machine learning methods.

Guo et al. conducted a study, as cited in [32], where they designed an adaptive residu-

als network (AREN) to suppress image content by learning prediction residuals through an

adaptive convolution layer. Subsequently, they constructed a fake face detector, ARENnet,

by combining AREN with CNN, specifically to address fake videos afflicted by degradations.

This approach demonstrates robustness against perturbation attacks and displays strong gen-

eralization capabilities across different GANs.

2.2.2 Frequency-based Detection

Frequency-based detection involves examining the frequency domain aspects of images or videos

to spot potential signs of manipulation. This method focuses on analyzing the distribution of

frequencies, such as specific patterns or alterations that might indicate tampering. By detecting

irregularities in the frequency spectrum, algorithms can spot anomalies that suggest the presence

of a DeepFake. An illustration of this technique can be seen in Figure 2.3.

Figure 2.2: The difference between real and fake from the frequency domain. Taken from [4].
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Within Frequency-based Detection, there are two main types of detection:

• GAN-based artifacts: Some researchers have shifted their attention away from examining

visual artifacts and instead are investigating the inherent design flaws present in current

GANs. These imperfections offer distinct cues to differentiate between authentic and synthetic

faces. While their exploration primarily occurs within the frequency domain, they encounter

universal flaws inherent in existing GANs. AutoGAN, referenced in [33], identifies a distinct

artifact inherent in GANs stemming from their common upsampling design. To simulate these

artifacts without accessing pre-trained GANs, the researchers propose a GAN simulator. This

simulator enhances the generalization ability of existing detectors. The identified artifacts

manifest as duplicated spectra in the frequency domain. A classifier is then trained using this

frequency spectrum to discern GAN-generated fake faces. The author, Zhang et al., suggests

that these observed GAN-based artifacts display good generalization across various synthetic

techniques with similar architectures. However, their resilience against perturbation attacks

remains unexplored.

• Frequency domain feature: Discrepancies between genuine and artificially generated faces

can also emerge within the frequency domain. A study made by Frank et al., referenced

in [34], conducted a comprehensive analysis of images generated by various GANs. This

study noted that during the upsampling process, GANs frequently introduced noticeable

irregularities into the images. Experiments demonstrated that a classifier with a simple linear

model and a CNN-based model could both achieve promising results on the frequency domain.

Additionally, the classifier trained on the frequency domain is robust against perturbation

attacks.

2.2.3 Biological Signal-based Detection

Biological Signal-based Detection involves studying the biological signals of an image or video.

These signals exist in both real and synthesized fake videos, and they differ from one another. In

real videos, these signals exhibit natural and realistic characteristics, whereas in synthesized videos,

they often lack quality and most perceptual biological signals vanish. This includes discrepancies

between visual and audio cues, leading to inconsistencies in synthetic videos.
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Figure 2.3: The difference between real and fake from the biological signal domain. Taken from [5].

Within Biological Signal-based Detection, there are three main types of detection:

• Visual-audio inconsistency: Some studies use visual-audio inconsistency in videos to de-

tect DeepFakes. A study made by Mittal et al., referenced in [35], developed a siamese

network for modeling the visual and audio in videos with a combination of two triplets loss

functions for measuring similarity. One of the loss functions computes the similarity between

visual and audio, and the other calculates the effect cues, like perceived emotion. Experiments

show a better performance than conventional DNN-based methods for DeepFake Detection.

• Visual inconsistency: Differences in visual consistency suggest that the generated faces

lack naturalness, particularly in their shape, facial attributes, and distinctive landmarks. A

study, referenced in [36], noted that the synthesized faces are always in fixed sizes due to the

limitation of computation resources and the production time of DeepFake algorithms. This

leaves artifacts in warping to match the source face, which can be leveraged for DeepFake

detection, by training a CNN model to detect these anomalies.

• Biological signal in video: Biological signals are challenging to duplicate in videos. Fake-

Catcher, referenced in [37], leverages six distinct biological signals, extracting them to exploit

the spatial and temporal consistency, thereby verifying the authenticity of real videos taken

by cameras.

2.3 DeepFake Disruption

Adversarial attacks, which initially gained attention for their impact on the vulnerabilities of

deep neural networks (DNNs), have also been studied for their potential effects on DeepFakes. Re-

cent studies delve into using adversarial techniques as a defensive strategy against the potential risks

associated with synthetic media. Researchers have explored various adversarial attack methods, like

the Fast Gradient Sign Method (FGSM) [38], Iterative Fast Gradient Sign Method (I-FGSM) [39],

Projected Gradient Descent (PGD) [40], and Carlini and Wagner Attack (C&W) [41].

11



• Fast Gradient Sign Method (FGSM): Goodfellow et al. [38] introduced the Fast Gradi-

ent Sign Method (FGSM) algorithm, aiming to demonstrate how the presence of adversarial

examples stems from the high-dimensional linearity inherent in deep neural networks. This

algorithm operates on the principle of generating adversarial perturbations based on the max-

imum gradient change direction within the deep learning model [42]. These perturbations

are then added to the image, generating adversarial examples. The equation for FGSM to

generate perturbations is as follows:

δ “ ϵsignp∇xJθpθ, x, yqq, (2.1)

where δ represents the generated perturbation; θ and x are the parameters of the model

and the input to the model, respectively; y denotes the target associated with x; Jθ is the

loss function during model training; and ϵ denotes a constant. This solution is motivated

by linearizing the cost function and solving for the perturbation that maximizes the cost

subject to an L8 constraint. The FGSM algorithm demonstrates rapid attack speed as it

employs a single-step approach. However, this method might encounter lower success rates

when generating adversarial examples due to its single-step nature.

• Iterative Fast Gradient Sign Method (I-FGSM): Kurakin et al. [39] proposed the

Iterative Fast Gradient Sign Method (I-FGSM) which is an extension of the Fast Gradient

Sign Method (FGSM) used in adversarial attacks against deep neural networks. While FGSM

generates adversarial examples in a single step, I-FGSM operates by applying FGSM itera-

tively across multiple steps. Its iterative nature allows for the generation of more impactful

adversarial examples by repeatedly adjusting the input data in the direction that maximizes

the model’s error, while still aiming to maintain the perturbations within specific bounds.

• Projected Gradient Descent (PGD): The Projected Gradient Descent (PGD) [40] is

an iterative gradient-based method that adjusts input data incrementally by following the

direction that maximizes the model’s loss. Its focus is to make small, calculated changes

to input data iteratively, attempting to generate potent adversarial examples while staying

within specific constraints. The PGD attack is essentially the same as I-FGSM attack. The

only difference is that PGD initializes the example to a random point in the ball of interest

(decided by the L8 norm) and does random restarts, while I-FGSM initializes to the original

point.

• Carlini and Wagner Attack (C&W): The Carlini and Wagner Attack (C&W) [41] is

one of the most powerful attacks, which uses three different vector norms: 1) the L2 attack

uses a smoothing of clipped gradient descent approach, displaying low distortion; 2) the L0

attack uses an iterative algorithm that, at each iteration, fixes the pixels that do not have

12



much effect on the classifier and finds the minimum amount of pixels that need to be altered;

and 3) the L8 attack also uses an iterative algorithm with an associated penalty, penalizing

every perturbation that exceeds a predefined value, formally defined as:

min c ¨ fpx ` δq `
ÿ

i

rpδi ´ τq`s, (2.2)

where δ is the perturbation, τ is the penalty threshold (initially 1, decreasing in each iteration),

and c is a constant. The value for c starts as a very low value (e.g., 10´4), and each time

the attack fails, the value for c is doubled. If c exceeds a threshold (e.g., 1010), it aborts the

search.

These attacks can be useful to disrupt DeepFakes, by incorporating adversarial disruptions in

the generation or training stages of DeepFake models and thus diminishing the quality or precision

of the resulting DeepFake. By introducing noise or distortions while creating, it could render the

DeepFake less persuasive or more challenging for the model to generate realistic outcomes.

2.3.1 DeepFake Disruption Methodologies

In recent years, DeepFake Disruption has emerged as a critical area of research, attracting

significant attention. This methodology consists of generating an adversarial perturbation η, which

is subsequently incorporated into an input image:

x̃ “ x ` η, (2.3)

where x̃ is the generated disrupted input image and x is the input image. By feeding the original

image or the disrupted input image to a generator the mappings Gpxq “ y and Gpx̃q “ ỹ are

obtained, respectively, where y and ỹ are the translated output images and G is the generator of the

image translation GAN [2]. A disruption is considered successful when it introduces perceptible

corruptions or modifications onto the output ỹ of the network leading a human observer to notice

that the image has been altered and therefore distrust its source.

Studies in this field can be categorized into three main groups: white-box attack, gray-box

attack, and black-box attack. White-box attacks involve generating perturbations designed for a

particular domain (such as hair color or gender) and a specific DeepFake model. Gray-box attacks

assume the DeepFake model that will be used. Meanwhile, black-box attacks generate perturbations

without assuming any specific domain or method utilized in DeepFake creation.

2.3.1.1 White-Box Attacks

Sun et al. [6] introduced the Landmark Breaker, marking the initial dedicated technique to

disrupt facial landmark extraction, aiming to disrupt the generation of DeepFake videos. Several
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DeepFake methodologies rely on landmark extraction. By integrating adversarial perturbations

intended to disrupt facial landmark extraction, the alignment of the input face is affected, con-

sequently degrading the quality of the resulting DeepFake, as can be seen in Figure 2.4. Facial

landmarks serve as crucial reference points, encompassing key locations such as the tips and mid-

points of the eyes, nose, mouth, eyebrows, and contours. The adversarial attack aims to mislead

DNN-based facial landmark extractors, particularly in predicting landmark heat-maps, a common

initial step in many contemporary DNN-based facial landmark extraction methods. To this end,

a loss function is introduced aiming to enlarge the error between predicted heat-maps and origi-

nal heat-maps, while optimizing it using the gradient MI-FGSM [43]. While highly effective, this

method’s efficacy is limited to DeepFake models that use landmark extraction techniques.

Figure 2.4: Illustration of the Landmark Breaker method. Taken from [6].

Inspired by the Distorting Attack [44], Segalis et al. [7] proposed the Oscillating GAN (OGAN),

which is a novel attack optimized to be training-resistant, which introduces spatial-temporal dis-

tortions to the output of face swapping auto-encoders. In OGAN, a target distortion is applied

to each frame of an image sequence (e.g., a video). Subsequently, each distorted image under-

goes generation through a dedicated adversarial generator. When processed by a face-swapping

autoencoder, these generated images manifest the introduced distortion. This process involves a

simultaneous training of the generator and the face-swapping model through an iterative, alter-

nating optimization technique. The optimization problem is solved by training the generator and

the face-swapping model simultaneously using an iterative process of alternating optimization. An

adapted version of the dfl-h128 autoencoder architecture was used for the adversarial generator,

which is the autoencoder used in FaceSwap. This specific choice was made based on its association

with the training process. A detailed description of the generator network’s architecture is shown

in Figure 2.5. While OGAN demonstrated superior efficiency compared to the Distorting Attack,

its effectiveness remains primarily confined to face-swapping techniques.
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Figure 2.5: OGAN generator architecture. Taken from [7].

2.3.1.2 Gray-Box Attacks

A study made by Luochen Lv [8] proposed a watermark-based adversarial attack model. This

model introduces imperceptible watermarks to images, leading to the generation of blurred images

when processed by DeepFake models. This method comprises two key components: a watermark

module and an attention module. The watermark module is used to embed watermarks to images

so the images can defend against the StarGAN manipulation. Constructed with a fully convolu-

tional network, this module employs a cascading structure of convolution followed by deconvolution.

The convolutional structure extracts facial semantic information from the images, while the decon-

volutional structure utilizes this information to generate watermarks and embed them at specific

positions within the images. The input to the watermark module is the original image, and the

output is the watermarked image. Simultaneously, the attention module is instrumental in guiding

the training of the watermark. Its role is to ensure that the disruption caused by the watermarked

image primarily affects the facial area. This is achieved by utilizing a face-detection network to

identify facial positions and generate attention masks, as depicted by the red bounding box in

Figure 2.6.

This approach proved more efficient and quicker than alternative watermark models. However,

being tailored to a specific model limits its effectiveness in real-world scenarios.
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Figure 2.6: Illustration of the Smart Watermark algorithm. Taken from [8].

Wang et al. [1] proposed a novel framework, called DeepFake Disrupter, to defend against

DeepFake with the help of the DeepFake detector. While existing disruption methods distort Deep-

Fake outputs visually, experiments revealed that these altered samples could still deceive DeepFake

detectors due to differences in decision logic between human perception and neural networks. More-

over, these disruption techniques often rely on time-consuming iteration-based adversarial attack

algorithms like Iterative Fast Gradient Sign Method (I-FGSM) [39] and Projected Gradient Descent

(PGD) [40] to determine perturbations for each data point. The proposed method addresses both

issues encountered by these disruption methods. The pipeline consists of Perturbation Generator,

DeepFake Generator, and DeepFake Detector, as illustrated in Figure 2.7.

The Perturbation Generator uses U-net [45] architectures, which are divided into two sections:

an encoding section and a decoding section. The encoding section applies contraction blocks, which

consists of a convolution and max-pooling layers to encode source inputs. The decoding section

applies expansion blocks, which consists of a transpose convolution as well as normal convolutions.

The DeepFake Generator is the DeepFake manipulation system chosen to disrupt, which can repre-

sent any model, given that this proposed model is designed to function universally across them. For

the DeepFake Detector, backbones of several DeepFake detectors are employed, such as Xception

[46] and ResNet [47], since this work is not focused on testing the effectiveness of the detection

power.

The proposed pipeline can destroy the ability of DeepFake manipulation models both visually by

the human eye and logically by DeepFake detectors. Though highly efficient, its training is specific

to a particular model, limiting its transferability across various DeepFake models and reducing its
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overall effectiveness.

Figure 2.7: Overview of the DeepFake disrupter proposed by [1]. Taken from [1].

2.3.1.3 Black-Box Attacks

A study made by Qiu et al. [9] proposed a framework of an adversarial attack against DeepFakes

called Cross-Domain and Model Adversarial Attack (CDMAA), which can expand the generalization

of the generated adversarial examples in each domain of multiple models of DeepFake. This method

can be applied to any gradient-based adversarial attack algorithms, such as I-FGSM [39], MI-FGSM

[43] and others. Its primary focus is in obtaining a perturbation vector from gradients in multiple

domains and models and then update the adversarial examples to ensure their ability to attack

multiple models and domains.

An example of the CDMAA algorithm is illustrated in Figure 2.8. In this scenario, the I-

FGSM method was used and four distinct DeepFake models contributed to generating a cross-

model perturbation. Following the selection of these models, diverse domains within each model

were leveraged to create a cross-domain perturbation. Afterward, the process involved gradient

regularization and the application of the multiple gradient descent algorithm (MGDA) to derive the

final perturbation.

Results show that the adversarial examples generated by CDMAA have high attack success

rates and can effectively attack multiple DeepFake models at the same time. Since CDMAA needs

to use the gradient-based adversarial attack algorithm, future work can focus on how to extend

this framework to no-gradients-required adversarial attack algorithms, such as AdvGAN [48] or

Boundary Attack [49]. The algorithm of the CDMAA method is illustrated in Figure 2.8.
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Figure 2.8: Illustration of the CDMAA method. Taken from [9].

Another study made by Dong et al. [10] designed the Transferable Cycle Adversary Generative

Adversarial Network (TCA-GAN) to generate powerful adversarial examples against DeepFake sys-

tems. This method was developed to work in black-box settings, so a substitute model S was built

for generalizable adversary generation, in order to simulate a DeepFake model. TCA-GAN employs

a cyclic structure, comprising two generative models: GP for generating transferable perturbations

and GR for removing adversarial perturbations. Illustrated in Figure 2.9, this framework establishes

a cycle-consistent structure enabling both the addition and removal of adversarial perturbations,

further enhancing the generalizability performance of the adversarial examples. Alongside the gener-

ators, two domain discriminators are constructed to distinguish adversarial examples and legitimate

examples, DA and DL respectively. Lastly, to further enhance the transferability of the adversarial

examples, a post-regularization is applied. This regularization can be seen as a distillation to obtain

a second-best adversarial example towards the substitute model for better generalization.
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Figure 2.9: Illustration of the TCA-GAN algorithm. Taken from [10].

2.3.2 Image Reconstruction

As the sophistication of adversarial attack methods continues to progress, there is a concurrent

evolution in defense strategies aiming to counter them. These defensive mechanisms, often termed as

adversarial defenses or image reconstruction techniques, have undergone substantial diversification

and advancement over time, leveraging advances in algorithms, deep learning, and computational

power. Traditionally, adversarial defense research primarily concentrated on strengthening security

in image classification tasks. However, with the rise of DeepFake technology, there has been a

notable redirection. Recent efforts in this field are increasingly focusing on employing these defense

strategies to defend against adversarial attacks targeted at DeepFakes, particularly through methods

involving image reconstruction.

A study conducted by Zhang et al. [11], developed a defense mechanism for image classifica-

tion tasks. This model consists of two components: an image reconstruction network T p¨q and a

feature extraction network φp¨q. The image reconstruction network is a deep residual convolutional

network that transforms an input perturbed imaged xadv into an output reconstructed image x̂

via the mapping x̂ “ T pxadvq. To make the model more effective in defending against adversarial

examples, this method uses a perceptual loss to measure the high-level feature differences between

the reconstructed and clean images. To this end, a pretrained image classification network is used

as a fixed feature extraction network for extracting high-level features from the reconstructed and

clean images to calculate the loss function. An overview of the proposed defense model is shown in

Figure 2.10.

This approach significantly minimizes the effect of adversarial alterations with minimal impact

on prediction accuracy for clean images. Outperforming many existing defense strategies in test-

ing, it exhibits superior generalization abilities. Moreover, this defense technique can seamlessly
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integrate with model-specific methods like adversarially trained models, offering a flexible and com-

plementary enhancement.

Figure 2.10: Defense mechanism proposed by [11]. Taken from [11].

To defend DeepFake against adversarial attacks, a method called Mask-guided Detection and

Reconstruction (MagDR) was proposed by Chen et al. [12]. MagDR starts with defining a few

criteria (e.g., SSIM, PSNR, etc.) that are sensitive to the abnormality of the outputs. Then, a

mask-guided detector is trained to identify if the input image has been synthetically manipulated,

by analyzing the output image. If yes, a reconstruction algorithm follows to eliminate the damage

of the adversarial perturbations and recover the desired output.

This approach maintains multiple masks, leveraging them to offer supplementary insights in both

detection and reconstruction phases. These masks are adaptable, acquired through individualized

training processes, and correspond to specific segments of the human face. Using these masks

as guides, the detector is split into two components: one targeting distortion and other focusing

on inconsistencies, effectively pinpointing potentially compromised areas. For the reconstruction

process, a pipeline is crafted comprising several modules, each equipped with customizable execution

sequences and adjustable parameters. Subsequently, an adaptive optimization strategy is executed

that subdues predefined criteria, ultimately generating the restored output. An illustration of the

proposed defense model is shown in Figure 2.11.

The detection process involves two key components: a distortion detector and a consistency

detector. The distortion detector compares alterations in attribute regions by measuring the vari-

ance between the region masks of the affected input (e.g., an adversarial image) and the affected

output (e.g., a disrupted DeepFake). If this variance exceeds the desired conditional patch distance,

it gets flagged as disrupted. While the distortion detector excels at identifying disruptions outside

the specified attribute regions, it becomes less effective when the corruption spans the entire image.

To address this, the consistency detector employs augmented versions of the affected outputs to

compute a consistency score Scons. If this score surpasses a predefined threshold, the input image

is labeled as disrupted. These two processes are illustrated in Figure 2.11 (b) and (c), respectively.
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Figure 2.11: Illustration of MagDR. Taken from [12].

The reconstruction process aims to restore the accurate DeepFake output by mitigating the

impact of introduced disturbances. In a formal sense, it is represented as the minimization of the

distance between the original output and the reconstructed output:

minDpGpx, cq, T px̂, cqq, (2.4)

where T(·) is an image transformation function. As can be seen in Figure 2.11 (d), this function

has two components, which together form an effective pipeline that is difficult to bypass. First,

the conditional region mask is applied to help obtain specific facial patches. Second, a multi-stage

module Rec-Net is used, shown in Figure 2.11 (e), to enhance the image quality and simultaneously

remove adversarial perturbations.

MagDR has been impressively successful in removing adversarial perturbations and possesses

the capability to transfer seamlessly across diverse scenarios. It showcases its effectiveness in both

white-box and black-box attacks, highlighting its adaptability and resilience.
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3 Background Materials

This chapter aims to offer a comprehensive overview of the background materials crucial for

this dissertation. It delves into essential components and pertinent research necessary to support

and contextualize the study. Through this exploration, this chapter will provide a foundational

understanding that aligns with the dissertation’s scope and objectives.

3.1 Generative Adversarial Networks (GANs)

This section serves as an exploration into the application of GANs for studying and evaluating

diverse methods developed to defend against the generation of DeepFake content. It aims to pro-

vide insight into the specific GAN models employed to assess and understand the efficacy of these

proposed methods in countering the creation of DeepFake content.

To establish a foundational understanding of how GANs operate, a brief description of their ar-

chitecture will be presented. Subsequently, the discussion will delve into the details of the DeepFake

models — StarGAN [14], AttGAN [15], and AGGAN [16] - used to assess the robustness and

applicability of DeepFake Disruption methods. This approach ensures a comprehensive overview,

enabling a better grasp of both the underlying GAN mechanisms and the specific DeepFake models

under consideration.

3.1.1 Architecture of GANs

GANs are an architecture composed of various neural networks, their objective is to replicate a

data distribution in an unsupervised way. To achieve it, they are composed of two neural networks:

a Generator and a Discriminator. The Generator (G) is in charge of creating new data samples

replicating, but not copying, the origin data distribution; while the Discriminator (D) tries to

distinguish real and generated data [13].

From a formal point of view, D estimates ppy|xq, that is, the probability of a label y given the

sample x; while G generates a sample given a latent space z, which can be denoted as Gpzq. An

illustration of the architecture of a GAN model can be seen in Figure 3.1.
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This process consists of both networks competing. While G tries to generate more realistic

results, D improves its accuracy by detecting which samples are real and which are not. In this

process, both competitors are synchronized, if G creates a better output, it will be more difficult

for D to differentiate them. On the other hand, if D is more precise, it will be more difficult for G

to fool D. This process is a minimax game in which D tries to maximize the accuracy and G tries

to minimize it [13]. The formulation of the minimax game loss function can be denoted as:

min
G

max
D

LpD,Gq “ Ex„pr logrDpxqs ` Ez„pz logr1 ´ DpGpxqqs, (3.1)

where x „ pr is the distribution of the real data and z „ pz denotes the probability distribution of

the latent space of G. z „ pz is commonly a Gaussian or uniform noise that G uses to model new

samples of data denoted as Gpzq. D function is to differentiate between the real distribution Dpxq

and the synthesized distribution DpGpxqq.

Figure 3.1: Architecture of a GAN model. Taken from [13].

3.1.2 StarGAN

StarGAN, proposed by Choi et al. [14], is a novel and scalable approach that can perform

image-to-image translations for multiple domains using only a single model. Unlike many other

image-to-image translation models that are designed for specific domains or attributes, StarGAN

allows for seamless translation between various domains (such as different facial attributes like hair

color, age, gender) using a unified architecture.

This model takes in training data of multiple domains, and learns the mappings between all

available domains using only a single generator. Instead of learning a fixed translation (e.g., black-

to-blond hair), the generator takes in as inputs both image and domain information, and learns to

flexibly translate the image into the corresponding domain. To represent domain information, a

label is used (e.g., binary or one-hot vector). During training, a target domain label is randomly

generated and the model is trained to flexibly translate an input image into the target domain.
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By doing so, the domain label can be controlled and the image can be translated into any desired

domain at testing phase.

The goal is to train a single generator G that learns mappings among multiple domains. To

achieve this, G is trained to translate an input image x into an output image y, conditioned on the

target domain label c, Gpx, cq Ñ y. The target domain is randomly generated so that G learns to

flexibly translate the input image. Additionally, the discriminator produces probability distributions

over both sources and domain labels, D : x Ñ tDsrcpxq, Dclspxqu. Figure 3.2 illustrates the training

process of StarGAN.

Figure 3.2: Overview of StarGAN. Taken from [14].

To make the generated images indistinguishable from real images, the following adversarial loss

is adopted:

Ladv “ ExrlogDsrcpxqs ` Ex,crlogp1 ´ DsrcpGpx, cqqqs, (3.2)

where G generated an image Gpx, cq conditioned on both the input image x and the target domain

label c, while D tries to distinguish between real and fake images. The generator G tries to minimize

this objective, while the discrimination D tries to maximize it.

For the domain classification loss the objective is divided into two terms: a domain classification

loss of real images used to optimize D, and a domain classification loss of fake images used to optimize

G. In detail, the former is defined as:

Lr
cls “ Ex,c1r´ logDclspc1|xqs, (3.3)

where the term Dclspc1|xq represents a probability distribution over domain labels computed by D.

By minimizing this objective, D learns to classify a real image x to its corresponding original domain

c1. On the other hand, the loss function for the domain classification of fake images is defined as:

Lf
cls “ Ex,cr´ logDclspc|Gpx, cqqs. (3.4)
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In other words, G tries to minimize this objective to generate images that can be classified as the

target domain c.

By minimizing the adversarial and classification losses, G is trained to generate images that

are realistic and classified to its correct target domain. However, minimizing the losses does not

guarantee that translated images preserve the content of its input images while changing only the

domain-related part of the inputs. To alleviate this problem, a cycle consistency loss to the generator

is applied, defined as:

Lrec “ Ex,c,c1r}x ´ GpGpx, cq, c1q}1s (3.5)

where G takes in the translated image Gpx, cq and the original domain label c1 as input and tries

to reconstruct the original image x. The L1 norm is applied as the reconstruction loss.

Finally, the objective functions to optimize G and D are written, respectively, as:

LD “ ´Ladv ` λclsLr
cls, (3.6)

LG “ Ladv ` λclsLf
cls ` λrecLrec, (3.7)

where λcls and λrec are hyper-parameters that control the relative importance of domain classifica-

tion and reconstruction losses, respectively, compared to the adversarial loss.

3.1.3 AttGAN

He et al. [15] proposed AttGAN, which is a facial attribute editing that relies on encoder-

decoder architecture. Previous research aimed to establish an attribute-independent latent repre-

sentation, but this approach proved to be excessive as it limited the latent representation’s capacity,

potentially causing information loss. Consequently, it resulted in overly smooth and distorted gen-

erations. AttGAN takes a different approach by implementing an attribute classification constraint

to the generated image. This constraint ensures the accurate alteration of desired attributes, essen-

tially allowing users to "change what you want". Additionally, it introduces reconstruction learning

to preserve attribute-excluding details, essentially enabling users to "only change what you want".

Additionally, the adversarial learning is employed for visually realistic editing. These three com-

ponents cooperate with each other forming an effective framework for high-quality facial attribute

editing, as illustrated in Figure 3.3.
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Figure 3.3: Overview of AttGAN. Taken from [15].

Given a face image xa with n binary attributes a “ ra1, ..., ans, the encoder Genc is used to

encode xa into the latent representation, denoted as:

z “ Gencpx
aq. (3.8)

Then the process of editing the attributes of xa to another attributes b “ rb1, ..., bns is achieved

by decoding z conditioned on b, i.e.,

xb̂ “ Gdecpz, bq, (3.9)

where xb̂ is the edited image expected to own the attribute b. Thus the whole editing process is

formulated as:

xb̂ “ GdecpGencpx
aq, bq. (3.10)

3.1.3.1 Attribute Classification Constraint

The editing on the given face image xa is expected to produce a realistic image with attributes

b. For this purpose, an attribute classifier is used to constraint the generated image xb̂ to correctly

own the desired attributes, i.e., Cpxb̂q Ñ b, formulated as follows:

min
Genc,Gdec

Lclsg “ Exa„pdata,b„pattr rlgpxa, bqs, (3.11)

lgpxa, bq “

n
ÿ

i“1

´bi logCipx
b̂q ´ p1 ´ biq logp1 ´ Cipx

b̂qq, (3.12)
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where pdata and pattr indicate the distribution of real images and the distribution of attributes,

Cipx
b̂q indicates the prediction of the ithattribute, and lgpxa, bq is the summation of binary cross

entropy losses of all attributes.

The attribute classifier C is trained on the input images with their original attributes, by the

following objective:

min
C

Lclsc “ Exa„pdatarlrpxa, aqs, (3.13)

lrpxa, aq “

n
ÿ

i“1

´ai logCipx
aq ´ p1 ´ aiq logp1 ´ Cipx

aqq. (3.14)

3.1.3.2 Reconstruction Loss

An eligible attribute editing process should exclusively modify the desired attributes while leav-

ing other details unaffected. For this purpose, reconstruction learning is introduced to make the

latent representation z conserve enough information for the later recovery of the attribute-excluding

details, and to enable the decoder Gdec to restore the attribute-excluding details from z. Specifically,

for the given xa, the generated image conditioned on its won attributes a, i.e.,

xâ “ Gdecpz, aq (3.15)

should approximate xa itself, i.e., xâ Ñ xa.

The learning objective is formulated as follows:

min
Genc,Gdec

Lrec “ Exa„pdatar}xa ´ xâ}1s, (3.16)

where the L2 loss is used, instead of the L1 loss, to suppress the blurriness.

3.1.3.3 Adversarial Loss

Adversarial learning is introduced between the generator (which includes the encoder and de-

coder) and the discriminator. Its purpose is to ensure that the generated image xb̂ appears visually

realistic. Considering the foundations of WGAN [50], the adversarial losses for both the discrimi-

nator and generator are formulated as follows:

min
}D}Lď1

Ladvd “ ´Exa„pdataDpxaq ` Exa„pdata,b„pattrDpxb̂q, (3.17)

min
Genc,Gdec

Ladvg “ ´Exa„pdata,b„pattr rDpxb̂qs, (3.18)

where D is the discriminator.
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3.1.3.4 Overall Objective

By combining the attribute classification, the reconstruction loss, and the adversarial loss, a uni-

fied attribute GAN (AttGAN) is obtained, which can edit the desired attributes with the attribute-

excluding details well preserved. The overall objective for the encoder and decoder is formulated

as:

min
Genc,Gdec

Lenc,dec “ λ1Lrec ` λ2Lclsg ` Ladvg , (3.19)

and the objective for the discriminator and the attribute classifier is formulated as:

min
D,c

Ldis,cls “ λ3Lclsc ` Ladvd , (3.20)

where the discriminator and the attribute classifier share most layers, λ1, λ2, and λ3 are the hyper-

parameters for balancing the losses.

3.1.4 AttentionGAN

Tang et al. [16] proposed a novel Attention-Guided Generative Adversarial Network (Atten-

tionGAN), also referenced as AGGAN, for the unpaired image-to-image translation task. The key

advantage of AGGAN lies in its generator’s ability to concentrate on the foreground of the target

domain while effectively preserving the background from the source domain. Notably, these gen-

erators learn both foreground and background attentions. They employ foreground attention to

choose the foreground regions from the generated output and utilize background attention to retain

background information from the input image. This mechanism enables AttentionGAN to prioritize

the most discriminative foreground elements while disregarding unwanted background aspects.

The devised generators come with an integrated attention module capable of separating discrim-

inative semantic objects from undesired parts by generating an attention mask and a content mask,

as illustrated in Figure 3.4. These masks are combined to derive the ultimate generation. Addi-

tionally, two innovative attention-guided discriminators have been crafted to focus on the attended

foreground regions specifically.

Figure 3.4: Overview of AttentionGAN. Taken from [16].
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Furthermore, the proposed attention-guided generator and discriminator can be flexibly applied

in other GANs to improve the multi-domain image-to-image translation tasks. In this dissertation,

the AGGAN model will be integrated into StarGAN, involving the addition of attention mask and

content mask generation to the StarGAN model.

3.1.4.1 Attention-Guided Generation

Let X and Y denote two different image domains. Generator G maps x from the source domain

to the generated image Gpxq in the target domain Y and tries to fool the discriminator DY , whilst

DY focuses on improving itself to be able to tell whether a sample is a generated sample or a real

data sample.

A mapping is learned between domains X and Y via a generator with built-in attention mecha-

nism, i.e., G : x Ñ rAy, Cys Ñ Gpxq, where Ay and Cy are the attention mask and the content mask

of image y, respectively; Gpxq is the generated image. The attention mask Ay defines a per pixel

intensity specifying the contribution of each pixel of the content mask Cy) in the final rendered

image. The higher intensity in the attention mask means a larger contribution to changing the

expression.

The input of the generator is a three-channel image, and the outputs of the generator are an

attention mask and a content mask. Thus, the final image Gpxq can be formulated as follows:

Gpxq “ Cy ˚ Ay ` x ˚ p1 ´ Ayq, (3.21)

The attention mask Ay enables some specific areas where the domain changed to get more focus

and applying it to the content mask Cy can generate images with clear dynamic area and unclear

static area. The static area should be similar between the generated image and the original real

image. Thus, the static area can be enhanced in the original image x ˚ p1 ´ Ayq and merged into

Cy ˚ Ay to obtain the final result.
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4 Methodology

This chapter aims to provide a comprehensive overview of the experimental work developed

throughout this dissertation.

Section 4.1 will thoroughly explore the disruption methods under evaluation. This section

will delve into the details of their algorithms and strategies, aiming to provide a comprehensive

understanding of each method’s approaches and methodologies.

Following this detailed examination, Section 4.2 will clarify the approach chosen to assess the

resilience of the disruption methods to image reconstruction. This section will provide insights into

the robustness of each disruption technique.

4.1 DeepFake Disruption Methods

In assessing the efficacy of present DeepFake Disruption models, three models were selected that

excel in each category of attack: white-box, gray-box, and black box attacks.

4.1.1 White-Box Attack

For evaluating the ability of white-box attacks, the method proposed by Ruiz et al. [2] will be

used. This approach presented a spread-spectrum adversarial attack that evades blur defenses. In

essence, their method generates adversarial perturbations using blur, which cannot be subsequently

eliminated using blur techniques, such as the median filter or Gaussian filter. To successfully disrupt

a network in this scenario, they proposed a spread-spectrum evasion of blur defenses that transfers

to different types of blur, using a modified I-FGSM update:

x̃t “ clippx̃t´1 ´ αsignr∇x̃LpfkpGpx̃t´1q, rqsq (4.1)

where α is the step size, fk is a blurring convolution operation and the constraint }x̃ ´ x}8 ď ϵ is

enforced by the clip function. A set of K distinct blurring methods, each with varying magnitudes

and types, is employed. In this work, the Average Smoothing filter and the Gaussian Smoothing filter

were incorporated, resulting in K “ 2. Initially, k is set to 1 and incremented with each iteration of

the algorithm until it reaches K, signifying the total number of blur types and magnitudes. Then, k
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is reset to 1. Since an adapted Projected Gradient Descent (PGD) [40] will be used, the disrupted

image x̃0 is initialized randomly inside the ϵ-ball around x and it will be updated using the I-FGSM

update function.

Moreover, it is crucial to emphasize that the adversarial attack for a given sample image is

designed for a specific attribute and a particular model. This implies that for each attribute and

model combination, a distinct adversarially manipulated image will be generated.

4.1.2 Gray-Box Attack

To assess the efficacy of gray-box attacks, the method proposed by Wang et al. [17] will be

used. This approach consists of adding perceptual-aware perturbations using the Lab color space,

rather than operating on the RGB color space.

The Lab color space is a color model designed to approximate human vision and perception.

Unlike the more commonly used RGB (Red, Green, Blue) and CMYK (Cyan, Magenta, Yellow,

Black) color models, Lab represents colors based on perceptual uniformity, meaning that a change

of the same amount in a color value should produce a similar perceptual change in color across

the entire range. The Lab color space consists of three channels: a light channel L, and two color

channels a and b. The L channel ranges from black (0) to white (100) representing the light, the

a channel ranges from green (´128) to red (`127), and the b channels ranges from blue (´128) to

yellow (`127).

Initially, the input image is converted from the RGB color space to the Lab color space to in-

troduce perceptually uniform perturbations within the a and b channels. Then, these perturbations

are refined by targeting the surrogate model M, which represents the DeepFake model, using the

optimization-driven technique implemented in the C&W adversarial attack strategy. To accomplish

this, the Adam optimizer was used with a learning rate set to lr “ 1 ˆ 10´4 and β P r0.9, 0.999s.

For enhanced transferability when targeting various facial attributes, a distinct facial attribute

label c is selected for each iteration. The objective function can be formulated as follows:

min´LpMpxadv, cq, oq (4.2)

where L is the Mean Squared Error, xadv is the adversarial image, and o is a regular translation

image. This method’s process is described in Figure 4.1.
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Figure 4.1: Algorithm description of the proposed method. Taken from [17].

4.1.3 Black-Box Attack

To evaluate the effectiveness of black-box attacks, the approach introduced by Huang et al.

[18] will be employed. They designed a perturbation fusion strategy to alleviate the conflict of

adversarial watermarks generated from different images and models in the attack process. Further,

they analyzed the key problem of cross-model optimization and introduced an automatic step size

tuning algorithm based on Tree-Structured Parzen Estimator (TPE) [51] to determine the overall

optimization direction. To accomplish these, the CMUA-Watermark approach goes through three

main steps:

• Combating One Face Modification Model

In the initial phase, the process involves obtaining an adversarial perturbation for each

DeepFake model. To achieve this, a batch of clean images I1...In is fed into the DeepFake

model G to obtain the original outputs GpI1q...GpInq. Then, an initial adversarial pertur-

bation W is crafted to attack the clean images, resulting in the initial distorted outputs

GpI1 ` W q...GpIn ` W q. Afterward, the Mean Squared Error (MSE) is used to measure the

differences between the original outputs and the distorted outputs, as follows:

max
W

n
ÿ

i“1

MSEpGpIiq, GpIi ` W qq, s.t.}W }8 ď ϵ, (4.3)

where the ϵ is the upper bound magnitude of the adversarial watermark W . Lastly, the PGD

method is used as the base attack method to update the adversarial perturbations at every

attack iteration,

Ir`1
adv “ clipI,ϵtI

r
adv ` asignp∇ILpGpIradvq, GpIqqqu, (4.4)
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where I is the clean facial images, Iradv is the adversarial facial images in the rth iteration, a

is the step size of the base attack, L is the loss function (MSE as formulated in Eq.(4.3), G

is the face modification network under attack, and the operation clip limits the Iadv in the

range rI ´ ϵ, I ` ϵs.

Figure 4.2: Detailed process of attacking one specific DeepFake model. Taken from [18].

• Adversarial Perturbation Fusion

After obtaining the adversarial perturbation for each DeepFake model, the next step is to

employ a two-level perturbation fusion strategy. More precisely, when targeting a particular

DeepFake model, an image-level fusion is implemented to average the signed gradients derived

from a batch of facial images,

Gavg “

řbs
j signp∇IjLpGpIadvj q, GpIjqqq

bs
(4.5)

where bs is the batch size of facial images, and Iadvj is the jth adversarial image of a batch.

This operation will result in Gavg emphasizing common attributes shared among human faces

rather than focusing on the distinctive features of a specific face. Then, PGD is used to

generate the adversarial perturbation Pavg through Gavg as Eq. (4.5).

The model-level fusion consists of iteratively combining the perturbation Pavg of each

DeepFake model to the WCMUA in training. The initial WCMUA is essentially the Pavg

calculated from the first DeepFake model,

W 0
CMUA “ P 0

avg, (4.6)

W t`1
CMUA “ α ¨ W t

CMUA ` p1 ´ αq ¨ P t
avg, (4.7)

where α is a decay factor, P t
avg is the average perturbation generated from the tth DeepFake

model, and W t
CMUA is the trained CMUA-Watermark after the tth attacked DeepFake model.

• Automatic Step Size Tuning based on TPE

The overall optimization direction is greatly influenced by the step sizes a1, ..., am, and se-

lecting them appropriately is a key problem for cross-model attacks. To resolve this, the TPE

[51] algorithm is used for automatically searching the suitable step sizes for each DeepFake
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model. TPE is a hyper-parameter optimization method based on Sequential Model-Based

Optimization (SMBO). In this case, the step sizes a1, ..., am are the input hyperparameters

x and the success rate of the attack is the associated quality score y of TPE. The TPE uses

P px|yq and P pyq to model P py|xq, and ppx|yq is given by:

ppx|yq “

$

’

&

’

%

lpxq, ify ă y˚,

gpxq, ify ě y˚,

(4.8)

where y˚ is determined by the historically best observation, lpxq is the density formed with the

observations txpiqu such that the corresponding loss is lower than y˚, and gpxq is the density

formed with the remaining observations. After modeling the P py|xq, the search iterations

continually seek improved step sizes by optimizing the Expected Improvement (EI) criterion

in every search iteration, which is given by,

EIy˚pxq “
γy˚lpxq ´ lpxq

şy˚

´8
ppyq dy

γlpxq ` p1 ´ γqgpxq
9pγ `

gpxq

lpxq
p1 ´ γqq´1 (4.9)

where γ “ ppy ă y˚q.

The overall pipeline of the CMUA approach is illustrated in Figure 4.3. Additionally, it is

important to note that a pre-trained perturbation was used to evaluate this method, which was

trained with StarGAN, AGGAN, AttGAN, and HiSD DeepFake models.

Figure 4.3: Overall pipeline of the CMUA approach. Taken from [18].

4.2 Disruption Resilience to Image Reconstruction

Assessing the resilience of the examined DeepFake Disruption models involves evaluating their

capability to withstand image reconstruction, a process that removes the adversarial perturbations

incorporated into the image.

To this end, the proposed method by Mustafa et al. [19] will be used, an image super-resolution

(SR) technique, which consists of selectively adding high-frequency components to an image and

removing noisy perturbations added by the adversary. The proposed approach has two components,

34



which together form a non-differentiable pipeline that is difficult to bypass. Initially, wavelet denois-

ing is employed to mitigate any noise patterns. The main component of this approach involves the

super-resolution operation, which augments pixel resolution while concurrently eliminating adver-

sarial patterns. Experiments show that employing image super-resolution alone adequately restores

classifier convictions toward accurate categories. Nonetheless, the second step augments robustness,

as it involves a non-differentiable denoising operation. An illustration of this method can be seen

in Figure 4.4.

Figure 4.4: Super-resolution method proposed by Mustafa et al.. Taken from [19].

4.2.1 Super-resolution Network

As these perturbations typically involve high-frequency details, a super-resolution network is

employed, employing residual learning specifically to target such details. These intricacies are

incorporated into the low-resolution inputs within each residual block, culminating in the production

of a high-quality, super-resolved image. The network considered in this approach is the Enhanced

Deep Super-Resolution (EDSR) [20] network, with the architecture illustrated in Figure 4.5.
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Figure 4.5: The architecture of EDSR network. Taken from [20].

By analyzing the frequency-domain spectrum of the clean, adversarial and recovered images

in Figure 4.6, two primary advantages become evident: firstly, the newly added high-frequency

patterns smooth the frequency response of the image, and secondly, the super-resolution destroys

the adversarial patterns intended to deceive the model.

Figure 4.6: Effect of super-resolution on the frequency distribution of a sample image. Taken from

[19].

4.2.2 Wavelet Denoising

As adversarial attacks uniformly introduce precisely crafted perturbations in the form of noise

to an image, a proficient image denoising technique holds substantial potential in alleviating the

impact of these perturbations, potentially even eliminating them entirely.

Removing noise from images, whether in the spatial or frequency domain, often leads to a loss

of textural details. This loss undermines the objective of achieving denoised images that resem-

ble clean, detailed images. To address this challenge, this method employs the Discrete Wavelet
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Transform (DWT). Unlike traditional image smoothing methods that eliminate higher frequency

components, DWTs of real-world images have large coefficients linked to important image features.

By setting a threshold on smaller coefficients, DWT enables the removal of noise while preserving

significant image characteristics.

The thresholding parameter dictates the effectiveness with which the wavelet coefficients are

reduced, facilitating the removal of adversarial noise from an image. In this method, a soft thresh-

olding technique is employed, as it reduces abrupt sharp changes, and it can be formulated as:

Dpx̂, tq “ maxp0, 1 ´
t

|x̂|
qx̂, (4.10)

where each coefficient x̂ is individually compared to a threshold value t. Selecting the ideal threshold

value t, stands as the fundamental challenge in wavelet denoising. A significantly large threshold

disregards larger wavelets, leading to an excessively smoothed image. In contrast, a small threshold

permits noisy wavelets to persist, thereby failing to generate a denoised image upon reconstruction.

BayesShrink [52] operates as an efficient wavelet shrinkage method that applies distinct thresholds

to individual wavelet sub-bands, taking into account Gaussian noise characteristics. Let x̂adv “

x̂c ` ρ̂ be the wavelet transform of an adversarial image, since x̂c and ρ̂ are mutually independent,

the variances σ2
xadv

, σ2
xc

and σ2
ρ of x̂adv, x̂c, ρ̂, respectively, follow: σ2

xadv
“ σ2

xc
` σ2

ρ. A wavelet

sub-band variance for an adversarial image is estimated as:

σ2
xadv

“
1

M

M
ÿ

m“1

W 2
m, (4.11)

where W 2
m are the sub-band wavelets and M is the total number of wavelet coefficients in a sub-band.

The threshold value for BayesShrink soft-thresholding is given as:

tbs “

$

’

&

’

%

σ2
ρ{σxc if σ2

ρ ă σ2
xadv

maxp|Wm|q otherwise.
(4.12)
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5 Results and Discussion

This chapter is divided into two main parts. The first part, consisting of sections 5.1, 5.2,

5.3, focuses on technical aspects related to the datasets, evaluation metrics and implementation

details. The second part, section 5.4, provides a detailed examination of the experimental results,

by covering the Disruption and Reconstruction results.

5.1 Datasets

All our experiments are conducted on a popular face dataset CelebFaces Attributes (CelebA)

[53]. CelebA is a large-scale face attributes dataset with more than 200K celebrity images, each with

40 attribute annotations. The images in this dataset cover large pose variations and background

clutter. CelebA has been widely used for creating fake faces (e.g., attribute editing, face reenact-

ment, identity swap) via various GANs. In this dissertation, all the facial images were cropped to

256×256.

5.2 Evaluation Metrics

To thoroughly evaluate the methods under analysis, it is crucial to conduct a comparison within

the resulting images of each method. To achieve this, three distinct metrics were employed, each

assessing different aspects of images. These metrics include:

• Mean Squared Error (MSE): this metric takes the squared difference between correspond-

ing pixels for every pixel in the images, sums up these squared differences, and then divides

them by the total number of pixels. The result provides a measure of the average squared

"error" or discrepancy between the pixel values of the two images. Lower MSE values indicate

higher similarity between the images. The formulation is as follows:

MSE “
1

N

N
ÿ

i“1

pxi ´ yiq
2, (5.1)

where N is the number of pixels, and xi and yi represent the ith pixel of the two images being

compared.
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• Structural Similarity Index (SSIM): SSIM evaluates the structural similarities between

two images by considering luminance, contrast, and structure. It offers a comprehensive

measure of perceptual similarity. The formula for SSIM is as follows:

SSIM “
p2µxµy ` c1qp2σxy ` c2q

pµ2
x ` µ2

y ` c1qpσ2
x ` σ2

y ` c2q
(5.2)

where x and y are the compared images; µx and µy are the averages of x and y, respectively;

σx and σy are the standard deviations of x and y; σxy is the covariance of x and y; and

c1 and c2 are constants to avoid instability when the denominator is close to zero. The

SSIM index ranges from -1 to 1, where 1 indicates perfect similarity, 0 indicates no similarity,

and -1 indicates complete dissimilarity. Higher SSIM values correspond to greater perceived

similarity between the images.

• Peak Signal-to-Noise Ratio (PSNR): PSNR quantifies the quality of an image by com-

paring it to a reference image. It measures the ratio of the maximum possible power of a

signal (image) to the power of the noise that affects the fidelity of the image. The formula

for calculating PSNR is as follows:

PSNR “ 10 ¨ log10p
MAX2

MSE
q, (5.3)

where MAX is the maximum possible pixel value of the image (usually 255 for 8-bit images).

A higher PSNR value indicates a lower level of noise or distortion in the reconstructed image,

suggesting better quality. Conversely, a lower PSNR value indicates higher distortion or a

greater mismatch between the original and reconstructed images.

5.3 Implementation Details

To assess the transferability performance of individual DeepFake Disruption methods, the code

was customized for each DeepFake model. With the exception of the CMUA-Watermark method, a

perturbation was trained for each DeepFake model within each DeepFake Disruption method. Then,

the transferability of the acquired perturbations was tested, by generating synthesized images with

each DeepFake model. As an example, a perturbation using the approach detailed in [17] was trained

to target the StarGAN model and subsequently tested the resulting adversarial image on StarGAN

itself, AttGAN, and AGGAN. This analysis helps determine the extent to which the perturbation

can be generalized across various DeepFake models. In the case of the CMUA-Watermark method,

a single perturbation is trained for all DeepFake models, simplifying the testing process as it only

requires evaluating one perturbation on each individual model.

To evaluate the resilience against image reconstruction, the reconstruction technique outlined

in [19] was used, along with additional straightforward image processing methods. This process

39



involved removing the perturbation and subsequently testing robustness by generating synthesized

images for each DeepFake model using the reconstructed images as input.

The evaluation was conducted with 1999 images, and it considered five key attributes: black hair,

blonde hair, brown hair, gender, and age. It is also important to note that pre-trained models were

used for every DeepFake model and a pre-trained perturbation was used for the CMUA-Watermark

method.

5.4 Validation Results

In this section, the outcomes will be categorized into two distinct groups: disruption results

and reconstruction results. The disruption results will assess the effectiveness of the evaluated

disruption methods and their transferability, whereas the reconstruction results will demonstrate

their resilience to image reconstruction methods.

5.4.1 Disruption Results

5.4.1.1 White-Box Attack

To evaluate the effectiveness of the white-box attack methodology discussed in [2], a series of

experiments were conducted to assess the transferability of perturbations across different DeepFake

models. Initially, perturbations were trained for the StarGAN model, and their impact was tested

on various models, including StarGAN itself, AttGAN, and AGGAN. The outcomes of this analysis,

comparing the original and disrupted DeepFake images, are presented in Table 5.1. Subsequently,

the process was replicated, with training conducted on the AttGAN model, and the findings are

presented in Table 5.2. Finally, the training was carried out on the AGGAN model, and the results

from this iteration are documented in Table 5.3. These tables offer a comprehensive comparison

of original and disrupted DeepFake images across different models, illuminating the transferability

aspects of the white-box attack approach.
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StarGAN

StarGAN AttGAN AGGAN

MSE Ò 0.38324 0.00316 0.20852

SSIM Ó 0.52467 0.97265 0.71933

PSNR Ó 10.47293 33.14266 14.88754

Table 5.1: Comparison between authentic DeepFake images and perturbed DeepFake im-

ages achieved through adversarial perturbations trained on StarGAN. Using the disruption

method referenced in [2].

AttGAN

StarGAN AttGAN AGGAN

MSE Ò 0.02753 0.10496 0.02435

SSIM Ó 0.82187 0.81959 0.87842

PSNR Ó 22.31103 17.73479 26.08475

Table 5.2: Comparison between authentic DeepFake images and perturbed DeepFake images

achieved through adversarial perturbations trained on AttGAN. Using the disruption method

referenced in [2].

AGGAN

StarGAN AttGAN AGGAN

MSE Ò 0.84873 0.00077 0.47262

SSIM Ó 0.30009 0.98919 0.66557

PSNR Ó 7.01917 38.95905 0.99850

Table 5.3: Comparison between authentic DeepFake images and perturbed DeepFake images

achieved through adversarial perturbations trained on AGGAN. Using the disruption method

referenced in [2].

The perturbation trained on StarGAN, as seen in Table 5.1, demonstrates commendable perfor-

mance when tested on both StarGAN and AGGAN, despite a slight decline on AGGAN. However,

its effectiveness significantly diminishes when applied to the AttGAN model. In contrast, the per-

turbation trained on AttGAN, highlighted in Table 5.2, excels in testing within the AttGAN model.

Nevertheless, its effectiveness experiences a notable decline when transferred to testing on StarGAN
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and AGGAN. Moving on to the perturbation trained on AGGAN, detailed in Table 5.3, it exhibits

formidable performance during testing on StarGAN, surpassing its efficacy even within the original

AGGAN model. However, a significant drop in performance is observed when this perturbation is

tested within the AttGAN model.

These findings provide insights into the nuanced dynamics of perturbation transferability among

DeepFake models, revealing variations in performance across different architectures. This method’s

transferability is constrained when applied to diverse models. Notably, AttGAN stands out for its

heightened resilience to adversarial perturbations, resulting in reduced overall transferability. When

both trained and tested on AttGAN, the method exhibits a mean squared error (MSE) distance

of 0.10496, while other models show MSE distances exceeding 0.3, suggesting higher resilience to

adversarial attacks.

Additionally, perturbations trained on AttGAN have a slight transferability to other models,

while perturbations from other models lack the same efficacy when tested on AttGAN. This high-

lights a model-specific quality in perturbation transferability, with AttGAN displaying distinctive

resilience to DeepFake Disruption.

5.4.1.2 Gray-Box Attack

In evaluating the gray-box attack approach outlined in [17], the systematic assessment involved

generating perturbations for each DeepFake model and testing them across the entire range of mod-

els. The initial phase involved training the perturbations for StarGAN, and subsequent evaluations

were conducted by generating fake images using StarGAN, AttGAN, and AGGAN. The comparative

analysis between original and disrupted DeepFake images is presented in Table 5.4. Subsequently,

this process was replicated to train perturbations on AttGAN, and the outcomes of this process are

detailed in Table 5.5. Continuing the examination, the perturbations were trained with AGGAN,

and the detailed results of this process are provided in Table 5.6. These tables provide a comprehen-

sive comparison between original and disrupted DeepFake images across different models, shedding

light on the transferability of the gray-box attack approach.
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StarGAN

StarGAN AttGAN AGGAN

MSE Ò 0.99536 6.85176e-06 0.83991

SSIM Ó 0.36214 0.99826 0.62673

PSNR Ó 6.43988 59.76377 10.25829

Table 5.4: Comparison between authentic DeepFake images and perturbed DeepFake im-

ages achieved through adversarial perturbations trained on StarGAN. Using the disruption

method referenced in [17].

AttGAN

StarGAN AttGAN AGGAN

MSE Ò 0.07450 0.29962 0.05970

SSIM Ó 0.66884 0.64576 0.76863

PSNR Ó 17.68660 12.45820 21.86497

Table 5.5: Comparison between authentic DeepFake images and perturbed DeepFake images

achieved through adversarial perturbations trained on AttGAN. Using the disruption method

referenced in [17].

AGGAN

StarGAN AttGAN AGGAN

MSE Ò 0.64538 8.79295e-06 1.36311

SSIM Ó 0.50649 0.99976 0.59761

PSNR Ó 8.47144 58.81185 9.92502

Table 5.6: Comparison between authentic DeepFake images and perturbed DeepFake images

achieved through adversarial perturbations trained on AGGAN. Using the disruption method

referenced in [17].

The results presented in Table 5.4 demonstrate that the perturbation, specifically trained with

the StarGAN model, performs well during testing on both the StarGAN and AGGAN models.

However, its effectiveness significantly diminishes when applied to tests involving the AttGAN

model. Notably, in Table 5.5, the perturbation trained on AttGAN performs well in AttGAN testing,

but its effectiveness diminishes when tested on StarGAN and AGGAN. When the perturbation is
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trained on AGGAN, as seen in Table 5.6, it demonstrates formidable performance during testing on

AGGAN, with a slight decrease observed when tested on StarGAN. However, a substantial decline

in performance becomes apparent when subjecting this perturbation to testing within the AttGAN

model.

Drawing conclusions from these insights, it becomes apparent that the transferability of this

method encounters limitations when applied across a spectrum of models. Once again, the AttGAN

method emerges as noteworthy for its heightened resilience to adversarial perturbations compared to

other models, contributing to an overall reduced level of transferability. It is important to highlight

that although perturbations trained on AttGAN may exhibit slight transferability to other models,

the reverse is not true. Perturbations generated on other models do not exhibit any notable capacity

to transfer to AttGAN.

5.4.1.3 Black-Box Attack

To assess the transferability of the black-box attack approach outlined in [18], a cross-model

perturbation was generated, simultaneously trained on all DeepFake models, and subsequently

tested its impact across the entire spectrum of models. The outcomes of this evaluation, illustrating

the comparison between original and disrupted DeepFake images, are displayed in Table 5.7. The

results will shed light on the effectiveness and transferability of the black-box attack approach in a

cross-model context.

StarGAN AttGAN AGGAN

MSE Ò 0.20119 0.05986 0.12635

SSIM Ó 0.59981 0.74296 0.73689

PSNR Ó 13.20751 18.87833 17.82545

Table 5.7: Comparison between authentic DeepFake images and perturbed DeepFake im-

ages achieved through a cross-model adversarial perturbation. Using the disruption method

referenced in [18].

Analyzing the data presented in Table 5.7, it becomes apparent that the cross-model adversarial

perturbation successfully disrupted both StarGAN and AGGAN. Notably, AttGAN exhibited a

higher degree of resilience to perturbations, showcasing its consistent ability to withstand adversarial

disruptions compared to other models.
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5.4.1.4 Preliminary Conclusions

The white-box and gray-box attacks exhibited limited transferability, experiencing a decrease in

disruption efficacy when applied to a model different from the one on which they were trained. In

contrast, the black-box attack stands out as the only one demonstrating a strong ability to transfer,

as anticipated. Given its nature as a cross-model perturbation crafted for a wide range of DeepFake

models, the black-box attack proves effective across various model scenarios.

Additionally, it is observable that the disruption values of the black-box attack are lower when

compared to disruptions achieved through other methods. This decline is expected, given that the

cross-model perturbation was not tailored for any specific model but instead designed to have a

broad impact across different models.

The visual outcomes of this evaluation are displayed in Appendix A. The results of the white-

box, gray-box, and black-box attacks can be observed in A.1, A.2, and A.3, respectively. Examining

these figures further validates the lack of transferability of the white-box and gray-box attack, and

the ability of the black-box attack to transfer across various DeepFake models.

Moreover, the robustness of the AttGAN model against DeepFake disruption is apparent. This

resilience can be attributed to its architecture, which incorporates an attribute classification con-

straint. This constraint ensures precise modifications exclusively to the targeted attributes, limiting

alterations to those specific areas. As a consequence, adversarial attacks affect only these desig-

nated regions. This distinction becomes evident when contrasting AttGAN with the StarGAN and

AGGAN models. Examining the disrupted images reveals that StarGAN and AGGAN exhibit dis-

ruptions across the entire image, whereas AttGAN restricts disruptions solely to the attribute area.

Additionally, a closer analysis of DeepFake images from StarGAN, particularly those derived from

the original images, exposes slight changes beyond the manipulated attribute. This underscores

the impact of not restricting alterations to the attribute area. Although AGGAN utilizes attention

masks to better confine changes to the attribute region compared to StarGAN, it falls short of

achieving ideal performance.

5.4.2 Reconstruction Results

This section focuses on the reconstruction evaluation of each DeepFake Disruption method.

Alongside the image reconstruction approach referenced in [19], noise mitigation techniques were

incorporated such as the median filter and the concurrent upsampling and downsampling to assess

the robustness of each method.

• Median Filter: The median filter, an image processing method, reduces noise by replacing

each pixel’s value with the median value within a designated neighborhood. This approach

45



excels at preserving edges and intricate details in the image while effectively mitigating un-

wanted distortions.

• Concurrent Upsampling and Downsampling: this is a technique that involves simul-

taneously increasing and then restoring the resolution of an image. This process helps in

reducing noise, especially fine details or high-frequency components, while maintaining the

overall structure and content of the image. The upsampling phase acts as a smoothing step,

suppressing noise, and the subsequent downsampling restores the image to its original size,

resulting in a denoised version.

In the tables that follow, each one presents a comparison between genuine DeepFake images and

reconstructed adversarial DeepFake images. Each table consists of four lines, with the adversarial

line exclusively featuring the original adversarial images. In contrast, the reconstruction line inte-

grates reconstructed adversarial images using the method outlined in [19]. The blur line employs

a median filter to reconstruct adversarial images, while the resize line involves the upsampling and

downsampling technique applied to the adversarial images.

These three distinct techniques collectively provide a comprehensive exploration of various re-

construction methods, offering insights into the robustness of each Disruption approach.

5.4.2.1 White-Box Attack

The reconstruction results of the white-box attack methodology, as discussed in [2], are detailed

in tables 5.8, 5.9, and 5.10. Specifically, table 5.8 displays the results for the adversarial perturbation

trained on StarGAN and evaluated on StarGAN. Likewise, table 5.9 showcases the results for the

adversarial perturbation trained on AttGAN and tested on AttGAN. Finally, table 5.10 illustrates

the outcomes for the adversarial perturbation trained on AGGAN and tested on AGGAN.

StarGAN - StarGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.38328 0.52466 10.47274

Reconstruction 0.07891 0.83332 17.86248

Blur 0.19371 0.68488 13.56543

Resize 0.29532 0.62348 11.66185

Table 5.8: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained and tested on StarGAN. Using

the disruption method referenced in [2].
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AttGAN - AttGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.10495 0.81965 17.73554

Reconstruction 0.07517 0.84870 19.27719

Blur 0.10943 0.80531 17.34337

Resize 0.11054 0.80614 17.26456

Table 5.9: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained and tested on AttGAN. Using

the disruption method referenced in [2].

AGGAN - AGGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.47363 0.66550 12.26478

Reconstruction 0.13215 0.83246 18.36240

Blur 0.11339 0.76236 18.00875

Resize 0.34646 0.71282 13.47985

Table 5.10: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained and tested on AGGAN. Using

the disruption method referenced in [2].

The results outlined in Table 5.8 indicate that the perturbation, exclusively trained on the Star-

GAN model, is easily removable. It shows a heightened sensitivity to the methodology outlined

in [19]. Although still removable with the median filter and the upsampling and downsampling

method, it exhibits a slightly higher level of resilience against these techniques. Moving to Table

5.9, the perturbation trained on AttGAN stands out for its high resilience to image reconstruction

techniques. It shows a marginal decrease in response to the methodology in [19], and notably

intensifies disruption when subjected to the median filter and upsampling and downsampling tech-

niques. In Table 5.10, when the perturbation is trained on AGGAN, similar to the StarGAN model,

it demonstrates ease of removal. It experiences a significant decrease in disruptive efficacy when the

technique outlined in [19] and the median filter are applied. However, it exhibits higher resilience

to the upsampling and downsampling technique. It becomes evident that this method lacks robust-

ness against image reconstruction techniques. In contrast, AttGAN demonstrates notable resilience

to these techniques, attributable to its unique characteristics. Specifically, when subjected to the
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image reconstruction technique detailed in [19] and considering the MSE, both StarGAN and AG-

GAN witnessed significant declines in their disruptive efficacy by 79.41% and 72.10% respectively.

However, AttGAN exhibited a substantially lower decrease of 28.38%, highlighting its heightened

resilience to the disruptive impact of image reconstruction techniques.

Further results can be found in Appendix B.1.1, where the resilience to image reconstruction

was assessed using a DeepFake model different from the one the perturbation was initially trained

on. The data in tables B.1, B.2, B.3, B.4, B.5, and B.6 provide additional confirmation for the

previously discussed insights. The perturbation employed in this approach shows significant sus-

ceptibility to removal, and the constrained transferability of this technique amplifies the decrease

in disruption efficacy, especially when exposed to image reconstruction methods. This highlights

the vital importance of DeepFake Disruption methods having the ability to transfer seamlessly

across various DeepFake models while also demonstrating resilience against image reconstruction

techniques.

5.4.2.2 Gray-Box Attack

The reconstruction results of the gray-box attack methodology, as discussed in [17], are de-

tailed in tables 5.11, 5.12, and 5.13. Specifically, table 5.11 displays the results for the adversarial

perturbation trained on StarGAN and evaluated on StarGAN. Likewise, table 5.12 showcases the

results for the adversarial perturbation trained on AttGAN and tested on AttGAN. Finally, table

5.13 illustrates the outcomes for the adversarial perturbation trained on AGGAN and tested on

AGGAN.

StarGAN - StarGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.99536 0.36215 6.43988

Reconstruction 0.00410 0.96967 30.70151

Blur 0.03183 0.88934 22.25755

Resize 0.04631 0.88925 20.44494

Table 5.11: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained and tested on StarGAN. Using

the disruption method referenced in [17].
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AttGAN - AttGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.29961 0.64570 12.45810

Reconstruction 0.09877 0.81126 18.49833

Blur 0.04942 0.88106 22.36980

Resize 0.08432 0.83701 19.44018

Table 5.12: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained and tested on AttGAN. Using

the disruption method referenced in [17].

AGGAN - AGGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 1.35428 0.59685 9.91585

Reconstruction 0.00348 0.97746 33.36913

Blur 0.02298 0.92216 25.90397

Resize 0.04240 0.93296 24.95990

Table 5.13: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained and tested on AGGAN. Using

the disruption method referenced in [17].

The results outlined in Table 5.11 indicate that the perturbation, exclusively trained on the

StarGAN model, is easily removable. Moving to Table 5.9, the perturbation trained on AttGAN

stands out once again for an higher resilience to image reconstruction techniques compared to other

DeepFake models. However, unlike the white-box attack, this model was sensitive to all image

reconstruction techniques. In Table 5.10, when the perturbation is trained on AGGAN, similar to

the StarGAN model, it demonstrates ease of removal. Although this method demonstrated higher

disruption efficacy, evident from the elevated MSE values, it is apparent that the disruption is easily

mitigated, approximately by 90%.

It becomes evident that this approach lacks robustness against image reconstruction techniques.

In contrast to the white-box attack, AttGAN demonstrated higher sensitivity to image reconstruc-

tion methods, but still maintaining a higher resilience compared to other models. When subjected

to the image reconstruction technique detailed in [19] and considering the MSE, all models ex-

hibited a significant decline in their disruptive efficacy. StarGAN experienced a 99.59% decrease,
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AGGAN 99.74%, and AttGAN 67.03%.

Further results can be found in Appendix B.1.2, the resilience to image reconstruction was

assessed using a DeepFake model different from the one the perturbation was initially trained

on. The data in tables B.7, B.8, B.9, B.10, B.11, and B.12 provide additional confirmation for

the previously discussed insights. The perturbation employed in this approach shows significant

susceptibility to removal, and the constrained transferability of this technique amplifies the decrease

in disruption efficacy, especially when exposed to image reconstruction methods. Once again, this

proves the vital importance of DeepFake Disruption methods having the ability to transfer seamlessly

across various DeepFake models while also demonstrating resilience against image reconstruction

techniques.

5.4.2.3 Black-Box Attack

The reconstruction results of the black-box attack methodology, as discussed in [18], are detailed

in tables 5.14, 5.15, and 5.16. Specifically, table 5.14 displays the results for the cross-model

adversarial perturbation tested on StarGAN. Likewise, table 5.15 showcases the results for the

cross-model adversarial perturbation testes on AttGAN. Finally, table 5.16 illustrates the outcomes

for the cross-model adversarial perturbation tested on AGGAN.

StarGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.20119 0.59981 13.20751

Reconstruction 0.02984 0.86123 22.24719

Blur 0.05800 0.74377 19.06368

Resize 0.02434 0.88035 22.90689

Table 5.14: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. Tested on StarGAN, using the cross-model disruption method referenced

in [18].
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AttGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.05986 0.74296 18.87833

Reconstruction 0.02305 0.88079 23.89917

Blur 0.01133 0.92711 27.24718

Resize 0.02166 0.89400 24.24911

Table 5.15: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. Tested on AttGAN, using the cross-model disruption method referenced

in [18].

AGGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.12635 0.73689 17.82545

Reconstruction 0.08420 0.79885 20.92040

Blur 0.12374 0.70397 18.30965

Resize 0.07887 0.80692 21.19172

Table 5.16: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. Tested on AGGAN, using the cross-model disruption method referenced

in [18].

The observed results in perturbation effectiveness indicate the vulnerability of the CMUA-

Watermark method to image reconstruction techniques across different DeepFake models. Notably,

and considering the MSE, the cross-model perturbation tested on the StarGAN model exhibits

the highest susceptibility, highlighting a significant 85.17% reduction in its impact when subjected

to image reconstruction. AttGAN, while showing some resilience, still experiences a 61.49% de-

crease. AGGAN, although demonstrating more robustness compared to StarGAN and AttGAN,

still registers a considerable 33.63% decrease.

Additionally, it is worth noting that the downsampling and upsampling technique outperforms

the method referenced in [19] when tested on StarGAN and AGGAN, while the median filter

achieves higher results when tested on AttGAN.
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5.4.2.4 Preliminary Conclusions

The evaluation of these attack methods indicates their respective abilities to withstand image

reconstruction techniques. The white-box and black-box attacks demonstrate, on average, a more

resilient nature, with both showing a decrease in their effectiveness by approximately 60% when

subjected to image reconstruction. This suggests that these attacks maintain a relatively higher

level of perturbation impact even after the image undergoes reconstruction. On the other hand, the

gray-box attack exhibits a notably higher average decrease of 88.79%. This implies that the gray-

box attack under evaluation is more susceptible to image reconstruction techniques, experiencing a

more substantial reduction in its effectiveness compared to the white-box and black-box attacks.

The visual outcomes of this evaluation are displayed in Appendix B. The outcomes of the white-

box, gray-box, and black-box attacks are visible in B.2.1, B.2.2, and B.2.3, respectively. A more

thorough analysis of these figures highlights the heightened vulnerability of the gray-box attack to

image reconstruction techniques. Additionally, it is evident that both the white-box and black-box

attacks demonstrate greater resilience to image reconstruction techniques. Specifically, the white-

box attack proves highly efficient in mitigating blur, and upsampling and downsampling techniques.

5.4.3 Observations

While the majority of observations focused on MSE, further confirmation was obtained by

examining additional metrics such as SSIM (Structural Similarity Index) and PSNR (Peak Signal-

to-Noise Ratio). The results align with the observed trends, where higher SSIM and PSNR values

indicate a greater resemblance between images, and as the Mean Squared Error (MSE) decreases,

these metrics proportionally increase. This consistent pattern further validates the observations,

emphasizing that as the distortion or error in the images diminishes (lower MSE), the similarity,

as indicated by higher SSIM and PSNR values, becomes more pronounced. This alignment of

metrics supports the conclusion that the perturbation’s effectiveness diminishes as evidenced by the

decreasing MSE, ultimately resulting in reduced image dissimilarity.
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6 Conclusion

6.1 Conclusion

This dissertation aimed to evaluate the efficacy of various DeepFake disruption methods, focusing

on their adaptability across diverse DeepFake models and their resistance to image reconstruction

techniques. Three distinct approaches were analyzed, each employing different adversarial attack

strategies: white-box attack, gray-box attack, and black-box attack.

The white-box attack showcased significant advantages in terms of image reconstruction, high-

lighting its strength in resilience, but still not reaching an ideal standard. Additionally, its limited

transferability across diverse DeepFake models raised concerns. The need to generate a perturbation

for each attribute and model proves inefficient, particularly considering the unpredictable nature of

real-world scenarios where the attacker’s choice of DeepFake model and attributes are unknown. The

gray-box attack demonstrated exceptional disruptive capabilities but lacked efficient transferability.

Furthermore, it exhibited a notable vulnerability in terms of image reconstruction robustness. In

contrast, the black-box attack emerged as the most effective approach, excelling in both model

transferability and image reconstruction robustness. Its cross-model disruption approach displayed

remarkable adaptability across different DeepFake models, even though it did not achieve disruption

levels as high as methods customizing perturbations for specific models. In terms of resilience to

image reconstruction, the black-box attack demonstrated higher effectiveness compared to other

methods, though it still falls short of the ideal standard.

Of all the evaluated methods, the CMUA-Watermark method (black-box attack), emerges as the

most promising approach based on the observed results. This method exhibits superior suitability

for real-life scenarios and presents the most effective strategy for addressing the threats posed by

DeepFake technology.

In conclusion, the significance of possessing the capability to seamlessly transfer across a variety

of DeepFake models and exhibiting robust resilience against image reconstruction techniques is

undeniable. Creating an effective DeepFake Disruption method requires both transferability and

resilience to image reconstruction techniques. Merely having transferability is insufficient, as a

straightforward image reconstruction technique can diminish its efficacy. Similarly, relying solely on
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resilience to image reconstruction methods leaves the defense vulnerable, as employing an alternative

DeepFake model can easily circumvent such defenses. Therefore, a potent DeepFake Disruption

method needs a balanced combination of both transferability and resilience to image reconstruction

techniques to ensure comprehensive and effective protection against the evolving challenges posed

by DeepFake technology.

6.2 Future Work

Developing an adversarial perturbation that withstands removal attempts poses a considerable

challenge. Unfortunately, the examined approaches fell short in showcasing promising results con-

cerning resilience to image reconstruction. This highlights a notable gap in current methodologies,

signaling the need for future research to delve deeper into enhancing the resilience of adversar-

ial perturbations during image reconstruction processes. Addressing this aspect could contribute

significantly to the development of more robust techniques in tackling DeepFakes.

It is noteworthy that existing defenses primarily focus on disruption efficacy and transferability,

often neglecting the importance of image reconstruction resilience. As adversarial attacks continue

to evolve, so too do the methods devised to counteract them. Thus, there exists an ongoing struggle

to keep pace with the dynamic landscape of adversarial techniques, necessitating continuous research

and innovation to develop effective defense mechanisms.
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Appendix A

Visual Results of Disruption

A.1 White-Box Attack

Figure A.1: Disruption results obtained for the method outlined in [2] using a StarGAN - StarGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.2: Disruption results obtained for the method outlined in [2] using an AttGAN - AttGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.3: Disruption results obtained for the method outlined in [2] using an AGGAN - AGGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.4: Disruption results obtained for the method outlined in [2] using a StarGAN - AttGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.5: Disruption results obtained for the method outlined in [2] using a StarGAN - AGGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.6: Disruption results obtained for the method outlined in [2] using a AttGAN - StarGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.7: Disruption results obtained for the method outlined in [2] using a AttGAN - AGGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.8: Disruption results obtained for the method outlined in [2] using a AGGAN - StarGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.9: Disruption results obtained for the method outlined in [2] using a AGGAN - AttGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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A.2 Gray-Box Attack

Figure A.10: Disruption results obtained for the method outlined in [17] using a StarGAN -

StarGAN configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the

original image - black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of

the original image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.11: Disruption results obtained for the method outlined in [17] using an AttGAN -

AttGAN configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original

image - black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the

original image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.12: Disruption results obtained for the method outlined in [17] using an AGGAN -

AGGAN configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original

image - black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the

original image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.13: Disruption results obtained for the method outlined in [17] using a StarGAN - AttGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.14: Disruption results obtained for the method outlined in [17] using a StarGAN - AGGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.15: Disruption results obtained for the method outlined in [17] using a AttGAN - StarGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.16: Disruption results obtained for the method outlined in [17] using a AttGAN - AGGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

Figure A.17: Disruption results obtained for the method outlined in [17] using a AGGAN - StarGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.
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Figure A.18: Disruption results obtained for the method outlined in [17] using a AGGAN - AttGAN

configuration. (a) - original image; (b) - adversarial image; (c) - DeepFake of the original image

- black hair; (d) - DeepFake of the adversarial image - black hair; (e) - DeepFake of the original

image - blonde hair; (f) - DeepFake of the adversarial image - blonde hair.

A.3 Black-Box Attack

Figure A.19: Disruption results obtained for the method outlined in [18] using the StarGAN model.

(a) - original image; (b) - adversarial image; (c) - DeepFake of the original image - black hair; (d)

- DeepFake of the adversarial image - black hair; (e) - DeepFake of the original image - blonde hair;

(f) - DeepFake of the adversarial image - blonde hair.
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Figure A.20: Disruption results obtained for the method outlined in [18] using the AttGAN model.

(a) - original image; (b) - adversarial image; (c) - DeepFake of the original image - black hair; (d)

- DeepFake of the adversarial image - black hair; (e) - DeepFake of the original image - blonde hair;

(f) - DeepFake of the adversarial image - blonde hair.

Figure A.21: Disruption results obtained for the method outlined in [18] using the AGGAN model.

(a) - original image; (b) - adversarial image; (c) - DeepFake of the original image - black hair; (d)

- DeepFake of the adversarial image - black hair; (e) - DeepFake of the original image - blonde hair;

(f) - DeepFake of the adversarial image - blonde hair.
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Appendix B

Image Reconstruction Results

B.1 Cross-Model Results

B.1.1 White-Box Attack

To further assess the robustness of the white-box attack against image reconstruction techniques,

tests were conducted on the reconstruction efficacy using a DeepFake model distinct from the one

on which the perturbation was originally trained. Table B.1 displays the reconstruction results for

the perturbation trained on StarGAN and tested on AttGAN, table B.2 displays the reconstruction

results for the perturbation trained on StarGAN and tested on AGGAN, table B.3 displays the

reconstruction results for the perturbation trained on AttGAN and tested on StarGAN, table B.4

displays the reconstruction results for the perturbation trained on AttGAN and tested on AGGAN,

table B.5 displays the reconstruction results for the perturbation trained on AGGAN and tested on

StarGAN, and finally, table B.6 displays the reconstruction results for the perturbation trained on

AGGAN and tested on AttGAN.

StarGAN - AttGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.00316 0.97264 33.14200

Reconstruction 0.00308 0.97145 32.56021

Blur 0.00360 0.96668 32.11135

Resize 0.00316 0.97062 32.61585

Table B.1: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on StarGAN and tested on

AttGAN. Using the disruption method referenced in [2].
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StarGAN - AGGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.20848 0.71938 14.88903

Reconstruction 0.05997 0.88886 21.92562

Blur 0.11653 0.81552 18.04553

Resize 0.16342 0.78302 16.17851

Table B.2: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on StarGAN and tested on

AGGAN. Using the disruption method referenced in [2].

AttGAN - StarGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.02739 0.82244 22.33454

Reconstruction 0.00804 0.93807 27.78110

Blur 0.01204 0.90775 25.98808

Resize 0.00641 0.94796 29.05413

Table B.3: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AttGAN and tested on

StarGAN. Using the disruption method referenced in [2].

AttGAN - AGGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.02449 0.87820 26.07579

Reconstruction 0.00948 0.94510 29.92363

Blur 0.01207 0.93021 29.00493

Resize 0.00713 0.95199 31.28893

Table B.4: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AttGAN and tested on

AGGAN. Using the disruption method referenced in [2].
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AGGAN - StarGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.84871 0.30009 7.01928

Reconstruction 0.21317 0.67918 14.20745

Blur 0.22949 0.58445 12.90069

Resize 0.73479 0.35034 7.67565

Table B.5: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AGGAN and tested on

StarGAN. Using the disruption method referenced in [2].

AGGAN - AttGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.00077 0.98919 38.96056

Reconstruction 0.00120 0.98551 36.19237

Blur 0.00116 0.98399 36.68326

Resize 0.00086 0.98775 37.96833

Table B.6: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AGGAN and tested on

AttGAN. Using the disruption method referenced in [2].

B.1.2 Gray-Box Attack

To further assess the robustness of the gray-box attack against image reconstruction techniques,

tests were conducted on the reconstruction efficacy using a DeepFake model distinct from the one

on which the perturbation was originally trained. Table B.1 displays the reconstruction results for

the perturbation trained on StarGAN and tested on AttGAN, table B.2 displays the reconstruction

results for the perturbation trained on StarGAN and tested on AGGAN, table B.3 displays the

reconstruction results for the perturbation trained on AttGAN and tested on StarGAN, table B.4

displays the reconstruction results for the perturbation trained on AttGAN and tested on AGGAN,

table B.5 displays the reconstruction results for the perturbation trained on AGGAN and tested on

StarGAN, and finally, table B.6 displays the reconstruction results for the perturbation trained on

AGGAN and tested on AttGAN.
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StarGAN - AttGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 6.85041e-06 0.99983 59.76404

Reconstruction 0.00096 0.98978 37.00697

Blur 0.00061 0.99208 39.73656

Resize 0.00065 0.99224 39.07334

Table B.7: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on StarGAN and tested on

AttGAN. Using the disruption method referenced in [17].

StarGAN - AGGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.83990 0.62672 10.25817

Reconstruction 0.00340 0.97761 33.37174

Blur 0.02049 0.93673 26.39990

Resize 0.03409 0.93322 24.74426

Table B.8: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on StarGAN and tested on

AGGAN. Using the disruption method referenced in [17].

AttGAN - StarGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.07460 0.66883 17.68668

Reconstruction 0.05279 0.73523 19.42430

Blur 0.02722 0.82411 22.39516

Resize 0.01062 0.91696 26.71500

Table B.9: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AttGAN and tested on

StarGAN. Using the disruption method referenced in [17].
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AttGAN - AGGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.05990 0.76858 21.87429

Reconstruction 0.04218 0.81796 23.38096

Blur 0.02415 0.87651 26.13271

Resize 0.01118 0.93921 29.84214

Table B.10: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AttGAN and tested on

AGGAN. Using the disruption method referenced in [17].

AGGAN - StarGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 0.64544 0.50673 8.47280

Reconstruction 0.00416 0.96949 30.69474

Blur 0.03316 0.87584 22.04795

Resize 0.03649 0.89947 21.44218

Table B.11: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AGGAN and tested on

StarGAN. Using the disruption method referenced in [17].

AGGAN - AttGAN

MSE Ò SSIM Ó PSNR Ó

Adversarial 8.78577e-06 0.99976 58.80888

Reconstruction 0.00096 0.98978 36.99853

Blur 0.00061 0.99203 39.69793

Resize 0.00065 0.99219 39.06546

Table B.12: Comparison between authentic DeepFake images and reconstructed adversarial

DeepFake images. The adversarial perturbations were trained on AGGAN and tested on

AttGAN. Using the disruption method referenced in [17].
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B.2 Visual Results of Image Reconstruction

B.2.1 White-Box Attack

Figure B.1: Reconstruction results obtained for the method outlined in [2] using a StarGAN -

StarGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.2: Reconstruction results obtained for the method outlined in [2] using an AttGAN -

AttGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.3: Reconstruction results obtained for the method outlined in [2] using an AGGAN -

AGGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.4: Reconstruction results obtained for the method outlined in [2] using a StarGAN -

AttGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.5: Reconstruction results obtained for the method outlined in [2] using a StarGAN -

AGGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.6: Reconstruction results obtained for the method outlined in [2] using an AttGAN -

StarGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.7: Reconstruction results obtained for the method outlined in [2] using an AttGAN -

AGGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.8: Reconstruction results obtained for the method outlined in [2] using an AGGAN -

StarGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.9: Reconstruction results obtained for the method outlined in [2] using an AGGAN -

AttGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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B.2.2 Gray-Box Attack

Figure B.10: Reconstruction results obtained for the method outlined in [17] using a StarGAN

- StarGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.11: Reconstruction results obtained for the method outlined in [17] using an AttGAN

- AttGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.12: Reconstruction results obtained for the method outlined in [17] using an AGGAN

- AGGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.13: Reconstruction results obtained for the method outlined in [17] using a StarGAN

- AttGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.14: Reconstruction results obtained for the method outlined in [17] using a StarGAN

- AGGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.15: Reconstruction results obtained for the method outlined in [17] using an AttGAN

- StarGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.16: Reconstruction results obtained for the method outlined in [17] using an AttGAN

- AGGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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Figure B.17: Reconstruction results obtained for the method outlined in [17] using an AGGAN

- StarGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.

Figure B.18: Reconstruction results obtained for the method outlined in [17] using an AGGAN

- AttGAN configuration and a black-hair attribute. (a) - DeepFake of the original image; (b) -

DeepFake of the adversarial image; (c) - DeepFake of the reconstructed image using the technique

outlined in [19]; (d) - DeepFake of the reconstructed image using the median filter; (e) - DeepFake

of the reconstructed image using the upsampling and downsampling technique.
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B.2.3 Black-Box Attack

Figure B.19: Reconstruction results obtained for the method outlined in [18] using the StarGAN

model and a black-hair attribute. (a) - DeepFake of the original image; (b) - DeepFake of the ad-

versarial image; (c) - DeepFake of the reconstructed image using the technique outlined in [19]; (d)

- DeepFake of the reconstructed image using the median filter; (e) - DeepFake of the reconstructed

image using the upsampling and downsampling technique.
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Figure B.20: Reconstruction results obtained for the method outlined in [18] using the AttGAN

model and a black-hair attribute. (a) - DeepFake of the original image; (b) - DeepFake of the ad-

versarial image; (c) - DeepFake of the reconstructed image using the technique outlined in [19]; (d)

- DeepFake of the reconstructed image using the median filter; (e) - DeepFake of the reconstructed

image using the upsampling and downsampling technique.

Figure B.21: Reconstruction results obtained for the method outlined in [18] using the AGGAN

model and a black-hair attribute. (a) - DeepFake of the original image; (b) - DeepFake of the ad-

versarial image; (c) - DeepFake of the reconstructed image using the technique outlined in [19]; (d)

- DeepFake of the reconstructed image using the median filter; (e) - DeepFake of the reconstructed

image using the upsampling and downsampling technique.
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