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Abstract

Seizure prediction aims to anticipate rare events known as epileptic seizures.

State of the art methods are based on electroencephalograms (EEGs) and

present several challenges. Firstly, long-term acquisition leads to several

noisy artefacts, which must be reduced. Due to the large amount of data, this

reduction must be automatically performed. Secondly, seizure risk varies over time.

Seizure prediction models should be able to adjust themselves to adapt to new

data distributions. Lastly, according to the literature, models must be patient-

specific, limiting their optimisation, particularly for deep neural networks (DNNs)

that require many samples to achieve peak performance. Transfer learning emerges

as a solution, enabling the exploration of diverse seizures from multiple patients

while maintaining the patient-specific optimisation requirement.

The thesis aims to advance adaptive seizure prediction models using DNNs. Re-

search focused on denoising EEGs automatically, adapting prediction models over

time, and using transfer learning to optimise DNN-based models. This thesis com-

prises three main contributions.

The first contribution is a dataset with denoised EEGs. To create this dataset, an

artefact removal algorithm that incorporates automatic and manual parts was built.

The automatic part removes experimental errors, while the manual part consists

in decomposing the EEGs using independent component analysis (ICA), visually

inspecting and removing the non-brain related sources. Data were obtained from

patients with epilepsy available in the EPILEPSIAE database. The preprocessed

dataset contains 612.88 hours of data with 77,426 independent components (ICs)

and is publicly available.

The second contribution involves the development of deep learning-based EEG

artefact removal models, comprising an EEG reconstruction model and an IC clas-

sifier. The EEG reconstruction model, based on a deep convolutional neural net-
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work (DCNN), effectively removed noise from nineteen EEG channels, achieving a

root mean squared error (RMSE) of 4.83 µV , a relative root mean squared error

(RRMSE) of 0.52, a Pearson correlation coefficient (PCC) of 0.86, and a signal-to-

noise ratio (SNR) difference of 8.81. Its low computational time (0.29 seconds to

reconstruct 10 minutes of data) makes it possible to use it in quasi-real-time sce-

narios, e.g., in seizure prediction warning systems. The IC classifier incorporates

spectral, spatial, and temporal information of ICs. The dataset prepared in the first

contribution and an external dataset, containing ICs obtained from controlled acqui-

sition environments, were used. Applying both datasets, it was found that temporal

information is crucial. Exclusively using time series yields comparable results to

using both spectral and spatial information. A transfer learning approach further

enhanced performance, increasing the geometric mean between sensitivity and speci-

ficity from 92.98% to 94.18%. Despite the obtained results, real-time deployment

remains challenging due to the computational time required by the ICA.

The third contribution involves tuning seizure prediction models. The impact of

denoising EEGs and adapting models over time to possible concept drifts were stud-

ied. Models using artificial neural networks (ANNs) with handcrafted features and

DNNs using EEG time series as input were developed. Denoising data and retrain-

ing models after each new seizure improved performance, though without statistical

significance. Comparing model complexity, DNNs predicted half the seizures pre-

dicted by the feature-based models while presenting an average false prediction rate

per hour (FPR/h) about three times lower. A transfer learning approach was then

developed, using a deep convolutional autoencoder trained on EEG data from 41

patients from the EPILEPSIAE database. Its weights were transferred to a DNN

used as the basis of the seizure prediction model, and a bidirectional long short-

term memory layer and a classifier layer were added. It was personalised for 24

patients from the Epilepsy Center of the Universitätsklinikum Freiburg. Results

showed that pre-training the convolutional layers significantly reduced false alarms

while maintaining the seizure prediction ability.

The exploration of automatic denoising, temporal retraining, model complexity

and transfer learning using patients from another database evidenced that several

details still need to be improved before obtaining robust seizure prediction mod-

els. Researchers must continue studying to obtain better approaches because the
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breakthrough of seizure prediction models can potentially transform the perception

of epilepsy within society.

Keywords: Epilepsy, Electroencephalogram, Artefact Removal, Seizure Prediction,

Deep Learning
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Resumo

A previsão de crises tem como objetivo antecipar eventos raros conhecidos

como crises epilépticas. O estado da arte é baseado em eletroencefalo-

gramas (EEGs) e apresenta vários desafios. Primeiramente, a aquisição

de longo termo leva a vários artefactos ruidosos, que devem ser reduzidos. Devido

ao vasto conjunto de dados, esta redução deve ser automática. Em segundo lugar, o

risco de crise varia ao longo do tempo. Os modelos de previsão de crises devem ser

capazes de se ajustar a novas distribuições de dados. Por fim, segundo a literatura,

os modelos devem ser específicos a cada doente, limitando a otimização dos mesmos,

particularmente no caso das redes neuronais de aprendizagem profunda (DNNs), que

requerem muitas amostras. Transfer learning surge como uma solução permitindo

a exploração de diversas crises de múltiplos doentes mantendo o requisito do treino

personalizado.

O objetivo da tese é contribuir para o avanço de modelos adaptativos de previsão

de crises usando DNNs. A investigação concentrou-se na redução automática do

ruído em EEGs, na adaptação dos modelos de previsão ao longo do tempo e no

uso de transfer learning para otimizar os modelos baseados em DNNs. Esta tese

compreende três contribuições.

A primeira contribuição é um conjunto de dados com EEGs com ruído reduzido.

Para criar estes dados, foi desenvolvido um algoritmo de remoção de artefactos com

uma parte automática e uma manual. A parte automática remove erros experi-

mentais, enquanto a parte manual consiste em decompor os EEGs usando a análise

independente de componentes (ICA), inspecionar visualmente e remover fontes não

relacionadas com o cérebro. Os dados foram obtidos de doentes com epilepsia da

base de dados EPILEPSIAE. O conjunto de dados pré-processado contém 612,88

horas com 77.426 componentes independentes (ICs) e está disponível publicamente.

A segunda contribuição envolve o desenvolvimento de modelos de remoção de
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artefactos de EEGs baseados em DNNs, compreendendo um modelo de reconstrução

de EEG e um classificador de ICs. O modelo de reconstrução de EEG, baseado em

redes neuronais convolucionais de aprendizagem profunda, remove efetivamente o

ruído de dezanove canais de EEG, alcançando uma raíz do erro médio quadrático

(RMSE) de 4,83 µV , uma RMSE relativa de 0,52, um coeficiente de correlação de

Pearson de 0,86 e uma diferença da relação sinal-ruído de 8,81. O baixo tempo

computacional (0,29 segundos para reconstruir 10 minutos de dados) possibilita o

seu uso em cenários quase em tempo real, como em sistemas de alerta de crises.

O classificador de ICs incorpora informação espetral, espacial e temporal das ICs.

Foram usados os dados preparados na primeira contribuição e um conjunto de dados

externo, contendo ICs adquiridos em ambientes controlados. Ao aplicar ambos os

conjuntos, observou-se que a informação temporal é decisiva. O uso exclusivo das

séries temporais produz resultados comparáveis ao uso de informação espetral e es-

pacial. Uma abordagem de transfer learning melhorou o desempenho, aumentando a

média geométrica entre sensibilidade e especificidade de 92,98% para 94,18%. Ape-

sar dos resultados obtidos, a implementação em tempo real continua desafiadora

devido à complexidade do ICA.

A terceira contribuição envolve o ajuste de modelos de previsão de crises. Foi

estudado o impacto da redução de ruído de EEGs e da adaptação dos modelos ao

longo do tempo para possíveis mudanças de conceito. Foram desenvolvidos modelos

usando redes neuronais artificiais (ANNs) com features extraídas manualmente e

DNNs usando janelas de EEG como input. A redução de ruído e o ajuste dos modelos

após cada nova crise melhoraram o desempenho destes, embora sem significância

estatística. Ao comparar a complexidade do modelo, as DNNs previram metade

das crises previstas pelas ANNs, apresentando um rácio de falsos positivos por hora

(FPR/h) médio cerca de três vezes inferior. Em seguida, foi desenvolvida uma

abordagem de transfer learning, usando um autoencoder convolucional treinado com

dados de EEG de 41 doentes da base de dados EPILEPSIAE. Os pesos aprendidos

foram transferidos para uma DNN utilizada como base do modelo de previsão. A

esta DNN foram adicionadas uma camada long short-term memory bidirecional e um

classificador. Esta DNN foi personalizada para 24 doentes do Centro de Epilepsia

de Universitätsklinikum Freiburg. Os resultados mostraram que o pré-treino das

camadas convolucionais reduziu significativamente a FPR/h mantendo a capacidade

x



da previsão de crises.

A exploração da redução automática de ruído, reaprendizagem temporal, com-

plexidade do modelo e transfer learning usando doentes de outra base de dados

evidenciou que vários detalhes ainda precisam ser aprimorados antes de obter mod-

elos de previsão de crises robustos. Os investigadores devem continuar a pesquisar

para obter melhores abordagens, dado que a inovação dos modelos de previsão pode

potencialmente transformar a perceção da epilepsia.

Palavras-chave: Epilepsia, Eletroencefalograma, Remoção de Artefactos, Previsão

de Crises Epilépticas, Aprendizagem Profunda
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Chapter 1

Introduction

Seizure prediction is a research area related to epilepsy disease, which emerged
about 50 years ago. Since then, several approaches, mostly based on the
electroencephalogram (EEG), have been proposed by different research groups.

However, even after this time, there is still no effective solution to predict any type
of seizure. Different factors affect their performance, such as the amount of data
available, the quality of the EEG or the ability of the algorithms to be sufficiently dy-
namic to adapt to different data distributions over time. This chapter introduces the
main motivations of seizure prediction and the limitations of developing approaches
using EEGs. In addition, the main goals and contributions are also presented.

1.1 Motivation

Epilepsy is one of the most common neurological disorders, affecting people of dif-
ferent ages. Approximately 1% of the population in the world have epilepsy which
represents about 70 million people. Furthermore, nearly 80% of this population live
in low or middle-income countries, meaning they do not have easy access to adequate
treatment [3, 4].

Although epilepsy can be controlled with antiepileptic drugs or other treatments,
only about two-thirds of the patients respond satisfactorily to this procedure. The
other one-third are considered drug-resistant epilepsy (DRE) patients [5–7]. DRE
patients live a seriously limited life because they are not allowed to do daily activities
such as driving a car and often have restrictions in their professional life. Moreover,
beyond the physical injuries (brain and body lesions) experienced by these patients
and the increased risk of sudden unexpected death, they may suffer from discrim-
ination and tend to develop educational problems [8, 9]. These consequences could
lead to psychological diseases as depression or even suicide [10].

The unpredictability of the seizure onset is seen by the patients as the main
disease burden [11]. Seizure prediction approaches emerge as a solution to mitigate
it. These could be achieved by real-time EEG analysis and triggering an alarm if

1
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an upcoming seizure is predicted. One of the outcomes is that these models could
be integrated into closed-loop systems that would automatically be able to perform
neuromodulation to suppress seizures or used by the patients to decide when to take
rescue medication to cancel seizures [12–15]. Therefore, a fully automated seizure
prediction model able to acquire, process, and predict upcoming seizures without
human intervention would allow them to live with fewer restrictions.

1.1.1 Gaps/Needs

Several different seizure prediction approaches based on EEG data have been pub-
lished. However, some gaps still require further effort, such as accurately handling
the noisy artefacts present in EEGs and the limitations on developing seizure pre-
dictors.

1.1.1.1 Noisy artefacts present in long-term non-invasive EEG signals

Researchers are moving towards minimally invasive ultra-long-term EEG recordings
acquired daily to develop seizure prediction approaches [16]. As epileptic seizures
are rare, it is necessary to acquire long-term EEG to capture epileptic brain sig-
nal [17,18]. Therefore, it is impossible to make a controlled acquisition as the patients
must maintain their daily activities, such as eating, talking, moving, and sleeping,
while being monitored. These activities usually produce several noisy artefacts.
EEG artefacts could be responsible for increasing false alarm rate and, therefore,
should be removed before creating the seizure prediction models [19–21]. Generally,
researchers remove EEG data considerably contaminated with noisy artefacts [22].
However, discarding data may lead to a high loss of information and, therefore,
should be avoided whenever possible. Simple digital filtering is often used to denoise
EEGs, e.g., high-pass filters to remove the direct current (DC) component, notch fil-
ters to remove powerline interference, and low-pass filters to diminish the influence
of high-frequency noise. Although being a simple and fast approach to handling
noise, simple digital filtering suppresses whole frequency bands, not being capable
of removing physiological artefacts such as eye and muscle artefacts, which usually
present spectral bands overlapping important brain information [23, 24]. Conse-
quently, other techniques, such as decomposition algorithms [25–29], have been used
to reduce the influence of noisy artefacts on seizure prediction. Nevertheless, these
require visual inspection or are too slow and may not be used in real-time scenarios.
Therefore, developing automatic and fast EEG artefact removal methods may bring
enormous benefits to the seizure prediction field.

1.1.1.2 Limitations on seizure prediction approaches

Patients with epilepsy usually present a great heterogeneity of epilepsy and seizure
types. This heterogeneity makes it almost impossible to create a general solution to
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predict any upcoming seizure. Therefore, seizure prediction models are commonly
developed following a patient-specific approach [20]. Seizures are events that usually
do not happen very often. Therefore, the acquisition of long-term EEGs is necessary
not only to capture seizures but also to study what happens before the onsets [14,
30]. However, even with the acquisition of long-term EEG signals, the number
of seizures per patient is often quite limited, and, therefore, the need to develop
patient-dependent models may reduce the prediction efficacy [18].

Seizure prediction models based on shallow classifiers are built using handcrafted
features extracted using signal processing methods. This feature engineering could
lead to a loss of information if the proper features are not used. Deep learning
architectures have increasingly been used because they can extract meaningful fea-
tures directly from the data [31, 32]. These architectures can automatically extract
features and classify samples without human intervention. Therefore, these are of
great value because they may be easily adapted to handle possible concept drifts
that may appear over extensive data periods [33, 34]. Also, deep neural networks
(DNNs) can easily perform transfer learning. It means deep learning architectures
may be trained with data obtained from several patients and perform fine-tuning
whenever one wants to develop a seizure prediction model for a new patient. There-
fore, it could solve the problem of the limited number of existing seizures per patient
to train effective patient-specific models [35].

1.2 Goals and contributions

In this thesis, it was hypothesised that, by using deep learning-based techniques,
it would be possible to develop adaptive seizure prediction solutions capable of au-
tomatically predicting upcoming seizures. To this end, investigations were made
on important steps of the seizure prediction pipeline, such as removing noisy EEG
artefacts and training classifiers for seizure prediction. The main dataset used in
the development of this thesis was obtained from the European Epilepsy Data-
base (EPILEPSIAE) [13]. In addition, long-term EEGs acquired from patients with
epilepsy at the Epilepsy Center at the Department of Neurosurgery, University Medi-
cal Center Freiburg, Germany, were also used. It is worth noting that both datasets
were obtained under pre-surgical conditions. Additionally, short-term EEGs ac-
quired from software engineers during code comprehension tasks on behalf of the
Biofeedback Augmented Software Engineering (BASE) project [36] were used for
one of the EEG preprocessing tasks. The investigation carried out in this thesis was
divided into three main contributions described in the following sections.
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1.2.1 A curated EEG dataset for artefact handling

The first part of this thesis describes the whole process of EEGs curation. In this
study, the removal of artefacts from the EEGs of patients with epilepsy was per-
formed using several techniques such as frequency filtering, removal of experimental
errors and removal of physiological artefacts through visual inspection of the various
independent sources that originate the multi-channel EEGs. It contributed to the
availability of a dataset containing EEGs before and after removing artefacts, thus
allowing the development of automatic EEG preprocessing techniques. The study
is openly available in [37].

1.2.2 EEG artefact removal using deep learning approaches

The second contribution of this document concerns the development of EEG arte-
fact removal using deep learning approaches. The EEGs used in the various studies
presented in this thesis were acquired over several days in a pre-surgical situation,
where the patients were lying in bed but performing daily routine activities such as
eating, reading, or chatting with neighbours or visitors. Thus, the visual inspection
of these data would be very time-consuming. Furthermore, suppose the artefact
removal is not automatic. In that case, it can not be used in a real-time scenario
where the patient would use a seizure prediction device based on EEGs without
human intervention. Therefore, using the dataset built in the first contribution,
two approaches were developed to automatically simulate the decisions made by the
experts when visually inspecting the EEGs. One approach is based on deep convo-
lutional neural networks (DCNNs) that take as input the noisy EEGs. The other
approach consists of an ensemble of three DNNs, each handling different aspects of
the independent component (IC) data, such as time series, power spectrum density
(PSD), and topographic map. The first approach can remove artefacts from sev-
eral minutes of EEG in less than a second. Thus, it allows quick data preparation
for seizure prediction tasks or may be integrated into a real-time seizure prediction
device. The second approach lasts several minutes because of the independent com-
ponent analysis (ICA) complexity. Nevertheless, it is more interpretable than the
EEG reconstruction approach and may assist researchers while classifying the ICs.
The studies are openly available in [38] and [39], respectively.

1.2.3 Tuning seizure prediction models based on deep neural net-
works

The third contribution of this thesis comprises the tuning of seizure prediction mod-
els based on DNNs. Two different studies were performed. The first one assessed the
impact of removing EEG artefacts and adapting seizure prediction models over time
to possible concept drifts. Two types of neural networks were used, one based on
artificial neural networks (ANNs) with handcrafted features and one based on DNNs
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with EEG segments as input. The first comparison evaluated the difference between
using EEGs, denoised applying the model developed in the second study, with EEGs
that were not denoised. Additionally, the performance of the models trained only
once and tested in the following seizures was compared with models which were
retrained every new seizure. Finally, a comparison was also made between the two
types of used ANNs to verify whether there were differences between models devel-
oped with knowledge-based features and models capable of extracting their features
automatically. The second study concerns developing a deep convolutional autoen-
coder (DCAE), which may be used to improve the performance of patient-specific
approaches. The model was trained using EEGs acquired from forty-one patients.
Afterwards, the obtained weights were used to produce patient-specific seizure pre-
diction models by applying a transfer learning approach. Transfer learning makes
it possible to use information from other patients and reduce training computation
time. Finally, the model was shared with the scientific community to allow other
researchers to use it on novel seizure prediction methods. The first study is openly
available in [40].

1.3 Scientific outcomes

During this thesis, several contributions to the seizure prediction field were made.
These include publications as main author or co-author in international peer-reviewed
journals, presentations at national and international conferences, and co-supervision
of master’s degrees thesis. The ones containing Lopes, F. as first author resulted
from this document. The contributions are listed in the next sections.

1.3.1 Peer-reviewed journal articles

J1 Lopes, F., Leal, A., Medeiros, J., Pinto, M. F., Dourado, A., Dümplemann,
M., and Teixeira, C. A. Automatic Electroencephalogram Artifact Removal
using Deep Convolutional Neural Networks. IEEE Access, 2021, 9, 149955-
149970. (Impact factor = 3.476; Scimago Quartile = Q1 in “Engi-
neering (miscellaneous)”)

J2 Lopes, F., Leal, A., Pinto, M. F., Dourado, A., Dümplemann, M., and Teix-
eira, C. A. Ensemble Deep Neural Network for Automatic Classification of
EEG Independent Components. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 2022, 30, 559-568. (Impact factor = 4.900;
Scimago Quartile = Q1 in “Biomedical Engineering”)

J3 Lopes, F., Leal, A., Medeiros, J., Pinto, M. F., Dourado, A., Dümplemann,
M., and Teixeira, C. A. EPIC: Annotated epileptic EEG independent compo-
nents for artifact reduction. Scientific Data, 2022, 9, 512. (Impact factor =
8.501; Scimago Quartile = Q1 in “Computer Science Applications”)

https://ieeexplore.ieee.org/document/9605576/
https://ieeexplore.ieee.org/document/9605576/
https://ieeexplore.ieee.org/document/9721851/
https://ieeexplore.ieee.org/document/9721851/
https://doi.org/10.1038/s41597-022-01524-x
https://doi.org/10.1038/s41597-022-01524-x
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J4 Lopes, F., Leal, A., Pinto, M. F., Dourado, A., Dümplemann, M., Schulze-
Bonhage, A., and Teixeira, C. A. Removing artefacts and periodically retrain-
ing improve performance of neural network-based seizure prediction models.
Scientific Reports, 2023, 13, 5918. (Impact factor = 4.996; Scimago
Quartile = Q1 in “Multidisciplinary’)

J5 Leal, A., Pinto, M. F.,Lopes, F., Bianchi, A. M., Henriques, J., Ruano, M.
G., Carvalho, P., Dourado, A., and Teixeira, C. A. Heart rate variability
analysis for the identification of the preictal interval in patients with drug-
resistant epilepsy. Scientific Reports, 2021, 11, 5987. (Impact factor =
4.996; Scimago Quartile = Q1 in “Multidisciplinary’)

J6 Pinto, M. F., Leal, A., Lopes, F., Dourado, A., Martins, P., and Teixeira, C.
A. A personalized and evolutionary algorithm for interpretable EEG epilepsy
seizure prediction. Scientific Reports, 2021, 11, 3415. (Impact factor =
4.996; Scimago Quartile = Q1 in “Multidisciplinary’)

J7 Pinto, M. F., Leal, A., Lopes, F., Pais, J., Dourado, A., Sales, F., Martins, P.,
and Teixeira, C. A. Interpretable EEG seizure prediction using a multiobjective
evolutionary algorithm. Scientific Reports, 2022, 12, 4420. (Impact factor
= 4.996; Scimago Quartile = Q1 in “Multidisciplinary’)

J8 Pinto, M. F., Leal, A., Lopes, F., Pais, J., Dourado, A., Sales, F., Martins,
P., and Teixeira, C. A. On the clinical acceptance of black-box systems for
EEG seizure prediction. Epilepsia Open, 2022, 00, 1-13. (Impact factor =
4.026; Scimago Quartile = Q2 in “Neurology’)

J9 Pinto, M. F., Batista, J., Leal, A., Lopes, F., Oliveira, A., Dourado, A.,
Sales, F., Martins, P., and Teixeira, C. A. The goal of explaining black boxes
in EEG seizure prediction is not to explain models’ decisions. Epilepsia Open,
2023, 8, 285-297. (Impact factor = 4.026; Scimago Quartile = Q2 in
“Neurology’)

J10 Leal, A., Curty, J., Lopes, F., Pinto, M. F., Oliveira, A., Sales, F., Bianchi,
A. M., Ruano, M. G., Dourado, A., Henriques, J., and Teixeira, C. A. Un-
supervised EEG preictal interval identification in patients with drug-resistant
epilepsy. Scientific Reports, 2023, 13, 784. (Impact factor = 4.996; Scimago
Quartile = Q1 in “Multidisciplinary’)

1.3.2 Other scientific publications

O1 Presentation in national conference: Lopes, F., Leal, A., Pinto, M. F.,
Dourado, A., Dümpelmann, M., and Teixeira, C. A. “Long-term EEG Ar-
tifact Removal in Real-time”, 33º Encontro Nacional de Epileptologia (ENE)

https://www.nature.com/articles/s41598-023-30864-w/
https://www.nature.com/articles/s41598-023-30864-w/
https://doi.org/10.1038/s41598-021-85350-y
https://doi.org/10.1038/s41598-021-85350-y
https://doi.org/10.1038/s41598-021-85350-y
https://doi.org/10.1038/s41598-021-82828-7
https://doi.org/10.1038/s41598-021-82828-7
https://doi.org/10.1038/s41598-022-08322-w
https://doi.org/10.1038/s41598-022-08322-w
https://doi.org/10.1002/epi4.12597
https://doi.org/10.1002/epi4.12597
https://onlinelibrary.wiley.com/doi/full/10.1002/epi4.12748/
https://onlinelibrary.wiley.com/doi/full/10.1002/epi4.12748/
https://www.nature.com/articles/s41598-022-23902-6
https://www.nature.com/articles/s41598-022-23902-6
https://www.nature.com/articles/s41598-022-23902-6
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– CONGRESSO VIRTUAL DA Liga Portuguesa Contra a Epilepsia (LPCE),
2021

O2 Poster presentation in international conference: Lopes, F., Leal, A., Pinto,
M. F., Dourado, A., Schulze-Bonhage, A., Dümpelmann, M., and Teixeira,
C. A. “Evaluating the Influence of Retraining Seizure Prediction Models over
Time”, International Conference for Technology and Analysis of Seizures (IC-
TALS2022), 2022

O3 Poster in international conference: Leal, A., Pinto, M. F., Lopes, F., Curty,
J., Oliveira, A., Sales, F., Ruano, M. G., Dourado, A., Bianchi, A. M., Hen-
riques, J., and Teixeira, C. A. “Can unsupervised preictal labelling improve
seizure prediction?”, International Conference for Technology and Analysis of
Seizures (ICTALS2022), 2022

O4 Poster in international conference: Pinto, M. F., Leal, A., Lopes, F., Dourado,
A., Martins, P., and Teixeira, C. A. “Can we explain how Machine Learning
Models predict seizures? Towards an appropriate explainability of EEG seizure
prediction models”, International Conference for Technology and Analysis of
Seizures (ICTALS2022), 2022

O5 Poster in international conference: Lopes, F., Leal, A., Pinto, M. F., Dourado,
A., Schulze-Bonhage, A., Dümpelmann, M., and Teixeira, C. A. “Transfer
learning on seizure prediction: Does information from several patients improve
patient-specific approaches?”, 4th International Congress on Mobile Health and
Digital Technology in Epilepsy (MHDTE2023), 2023

O6 Poster in international conference: Zabler, N., Böttcher S., Manzouri, F.,
Lopes, F., Epitashvili, N., Van Paesschen, W., Schulze-Bonhage, A., and
Dümpelmann, M. “ECG artefact detection in low channel EEG systems for
robust multimodal seizure detection”, 4th International Congress on Mobile
Health and Digital Technology in Epilepsy (MHDTE2023), 2023

1.3.3 Master’s degree co-supervision

M1 Paiva, V. “EEG Pre-processing using Deep Learning Networks: An Unichannel
Approach”, Master thesis dissertation, Faculty of Science and Technology of
the University of Coimbra (2022).

M2 Curty, J. “Unsupervised Preictal Estimation Based on Univariate Features and
Dimensionality Reduction”, Master thesis dissertation, Faculty of Science and
Technology of the University of Coimbra (2023).
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1.4 Thesis outline/structure

The remainder of this thesis is structured as follows.
Chapter 2 provides background information related to epilepsy, EEG and arte-

facts, seizure prediction, DNNs, and possible transfer learning approaches.
Chapter 3 presents a literature overview on EEG artefact removal and EEG

seizure prediction.
Chapter 4 refers to the manual artefact removal performed to prepare the dataset

to develop automatic artefact removal approaches.
Chapter 5 presents the development of an automatic EEG artefact reduction

method.
Chapter 6 includes the process of producing an EEG independent component

classifier.
Chapter 7 analyses the impact of EEG artefact reduction and periodic retraining

on seizure prediction approaches.
Chapter 8 presents the effect of using a transfer learning approach based on

the parameters of a DCAE trained using data from a database on improving the
performance of new patient-specific seizure prediction models.

Chapter 9 concludes this thesis by summarising the main findings highlighting
their added value. Additionally, it provides directions for future work.



Chapter 2

Background concepts

This chapter introduces the main concepts required to understand this thesis.
Section 2.1 includes a brief description of the epilepsy disease and the
classification system used for categorising the different types of epilepsy.

Then, electroencephalograms (EEGs) and its artefacts are explained in Section 2.2.
Afterwards, a short explanation about the available epilepsy treatments is introduced
in Section 2.3. After that, the concepts needed to develop seizure prediction models
are covered in Section 2.4. Concept drifts are introduced in Section 2.5. Section 2.6
explains deep neural networks (DNNs) that are going to be used in this thesis.
Afterwards, transfer learning is covered in Section 2.7. Finally, a summary with the
key concepts of this chapter is presented in Section 2.8.

2.1 Epilepsy

Epilepsy is a chronic neurological disease characterised by brief and recurrent episodes
known as seizures [41, 42], which affects 1% of the world population. Epileptic sei-
zures may be characterised, for example, by involving involuntary movements of
the human body, losing consciousness or loss of awareness. These episodes could
also include loss of bowel and bladder functions. These events result from abnor-
mal synchronisation of neuronal activity of the brain [43], which leads to an intense
hypersynchronous state with increased neuron excitability, i.e., the neurons become
excited at the same time in different areas of the brain leading to a high release of
energy [44,45].

2.1.1 Definition of epilepsy and seizures

In 2005, International League Against Epilepsy (ILAE) described epilepsy disease
and epileptic seizures [43]. Definitions are presented in Boxes 1 and 2, respectively.

Later, in 2014, ILAE proposed an operational clinical definition of epilepsy dis-
ease to be applied in clinical diagnosis [42], presented in Box 3. It was suggested to

9
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Box 1 - Conceptual definition of epilepsy (as defined by the Task Force
of the ILAE in 2005 [43])

“Epilepsy is a disorder of the brain characterised by an enduring predisposition to
generate epileptic seizures, and by the neurobiologic, cognitive, psychological, and so-
cial consequences of this condition. The definition of epilepsy requires the occurrence
of at least one epileptic seizure.”

Box 2 - Conceptual definition of seizure (as defined by the Task Force of
the ILAE in 2005 [43])

“An epileptic seizure is a transient occurrence of signs and/or symptoms due to
abnormal excessive or synchronous neuronal activity in the brain.”

Box 3 - Diagnostic criteria for epilepsy (as defined by the Task Force of
the ILAE in 2014 [42])

“Epilepsy is a disease of the brain defined by any of the following conditions:

1. At least two unprovoked (or reflex) seizures occurring >24 h apart.

2. One unprovoked (or reflex) seizure and a probability of further seizures similar
to the general recurrence risk (at least 60%) after two unprovoked seizures,
occurring over the next 10 years.

3. Diagnosis of an epilepsy syndrome.”

emphasise the risk of experiencing new seizures after an unprovoked seizure. It may
lead to an earlier diagnosis and, therefore, to an earlier treatment.

The term “provoked seizure” refers to seizures caused by some provocative factor.
An example of a provoked seizure is one that occurs after a concussion. Around 10%
of the global population suffer at least one seizure during their lifetime without an
epilepsy diagnosis [3]. It is worth noting that epilepsy may not last for the whole
patient’s lifetime as it is considered to be resolved for the ones who either had an
age-dependent epilepsy syndrome but are not that age anymore or by the ones who
did not have any seizures during the last 10 years and did not take any antiseizure
medication over the last 5 years. Although the patient does not experience a seizure
or has a high risk of having a seizure over several years without taking any medicine,
no one can ensure that the patient will not evidence a future seizure event [6].

2.1.2 Classification of seizures and epilepsies

In 2017, ILAE updated the classification of epilepsy types [46] and also the op-
erational classification of seizure types [47]. According to the new classification,
there are three levels for classifying epilepsy disease: seizure type, epilepsy type and
epilepsy syndrome. The classification may also include the aetiology of each level,
such as structural, genetic, infectious, metabolic, and immune; and comorbidities.
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Figure 2.1 summarises this new classification.

Seizure types 

Epilepsy types
 
 

Epilepsy syndromes 

Aetiology

Structural

Genetic

Infectious

Metabolic

Immune

Unknown

Focal Generalised Unknown

Focal Generalised Combined generalised and focal Unknown

C
om

or
bi

di
tie

s

Figure 2.1: Summary of epilepsy categorisation following ILAE classification. Adapted
from [46].

2.1.2.1 Seizure type

Seizure type is the first level for classifying epilepsy. After identifying the seizure
as epileptic, the clinician has to define its type. A seizure may be focal, generalised
or unknown, depending on which part of the brain it is generated. To perform this
classification, the clinician must analyse seizures using video-EEG recordings [6,46].
Figure 2.2 summarises seizure type classification.

Focal seizures can be classified according to the awareness during the event, i.e.,
whether the patient is aware of self and the environment during the seizure. In the
case of awareness, the seizure is classified as focal onset aware (FOA), otherwise focal
onset impaired awareness (FOIA). Seizure onset may also be defined as motor or
nonmotor onset, depending on the symptoms experienced by the patients. Moreover,
there is a special type of focal seizure named “focal to bilateral tonic-clonic”. This
classification occurs when the seizure onset is limited to one hemisphere but quickly
propagates to the other. Tonic (tense body) and clonic (jerking movements) are
symptoms usually evidenced during these seizures [6, 47].

Generalised seizures are generated within the neural connections of both hemi-
spheres. The most feared type of generalised seizure is the tonic-clonic because
it involves the entire body; generally, patients lose their conscience. Furthermore,
Sudden Unexpected Death in Epilepsy (SUDEP) is also frequent in patients with
this type of seizure. Generalised tonic-clonic seizures are also known as grand mal
seizures [48].

The seizure is classified as unknown whenever the clinicians can classify it as
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Is the clinician certain that the event is a seizure but cannot further classify it?
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Figure 2.2: Summary of seizure categorisation following expanded version of ILAE seizure
type classification. Adapted from [47].

motor or non-motor but are not certain of the onset. Unclassified seizures are those
that can not be classified due to a lack of information or not being correctly placed
in one of the other cases [47].

This level may be the final classification of epilepsy when the clinician has no
access to video-EEG and neuroimaging data [46].

2.1.2.2 Epilepsy type

Epilepsy type is the second level of the definition of epilepsy. This level is only
considered when the patient is already diagnosed with epilepsy based on the 2014
ILAE definition [42]. This level comprises three classes: focal epilepsy, generalised
epilepsy and combined generalised and focal epilepsy. Whenever the clinician has
insufficient information for classifying the epilepsy type, it is labelled as unknown.
Also, when the seizure types are unknown, epilepsy is usually classified as unknown.

Focal epilepsy includes both unifocal and multifocal disorders, as well as focal sei-
zures. Patients with focal epilepsy usually experience FOA and FOIA seizures, focal
motor seizures, focal non-motor seizures and focal to bilateral tonic-clonic seizures.
Additionally, the interictal EEG usually exhibits focal epileptiform discharges.

Patients with generalised epilepsy evidence spike-wave activity on EEG and the
most common seizure types are absence, myoclonic, tonic, atonic and tonic-clonic
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seizures.
Combined generalised and focal epilepsy is a new type of epilepsy introduced in

2014 [42]. Patients with this type of epilepsy experience both focal and generalised
epilepsy. The interictal EEG can show generalised spike-wave activity and/or focal
epileptiform discharges.

Considering focal epilepsy types, temporal lobe epilepsy (TLE) is the most com-
mon epilepsy type diagnosed in adults. TLE covers about 60% of all epileptic pa-
tients with focal epilepsy. It is usually diagnosed in childhood and teenage years.
TLE can be divided into mesial, neocortical, or lateral. Mesial temporal lobe epilepsy
(MTLE) is characterised by the involvement of the medial or internal parts of the
temporal lobe. About 80% of all temporal lobe seizures are MTLE. Patients with
MTLE usually do not become seizure-free just by using anti-epileptic drugs (AEDs),
i.e., seizure medicines just lower the number of events. Therefore, these patients are
frequently submitted to resective surgery [49].

2.1.2.3 Epilepsy syndromes

The final level of epilepsy classification is the diagnosis of the epilepsy syndrome.
Epilepsy could be defined with characteristics that usually occur together, e.g., sei-
zure types, EEG and imaging findings, seizure triggers and vigilance states. It is
worth noting that although some syndromes are known, ILAE does not have a formal
classification for epilepsy syndromes [46].

People with epilepsy syndromes usually do not become seizure-free. However, in
the case of early detection and control using antiseizure medication or if the person
has had surgery to remove the seizure focus, it is possible to decrease or even stop
the number of seizures events. Therefore, early identification of epilepsy syndrome
is crucial for its treatment [50].

2.1.3 Seizure clusters

Although there is no clear definition of ILAE, seizure clusters are phenomena that
derive from the occurrence of several seizures over a certain period which can be
minutes or even hours. One of the most adopted definition for seizure cluster is when
a patient with drug-resistant epilepsy (DRE) suffers at least 3 seizures within a 24-
hour interval. Seizure clusters should be treated with seizure-suppression medication
in order to reduce the threat of prolonged seizures and to prevent them from evolving
into status epilepticus [51–53].

2.2 EEG

EEG measures the electrical activity of the brain, i.e., it records the summed en-
ergy activity resulting from several synchronised excitatory and inhibitory synapses
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within brain cells which have similar spatial orientation [54,55]. It is a nonlinear and
nonstationary signal, making it truly complex to analyse [17,24]. It is used for presur-
gical evaluation, epilepsy diagnosis, and long-term continuous monitoring [56, 57].
EEG can be acquired using non-invasive (scalp EEG) or invasive acquisition elec-
trodes (intracranial electroencephalography (iEEG) or electrocorticogram (ECoG)
and subscalp electroencephalogram (ssEEG)).

2.2.1 Scalp EEG

Scalp EEG or simply EEG is the most used method for acquiring neural activity
because it is not invasive and can be more easily accommodated by patients, given
the current technological advances, to monitor their neurological condition even
during their day-to-day routines [58]. Furthermore, it captures information from
the entire scalp being a useful signal for studying neural mechanisms that propagate
in different brain areas.

Scalp EEG comprises mainly three types of spatial setups: the International
10-20 System with at most 21 electrodes; the International 10-10 System, which
usually contains a number of electrodes between 64 and 85 and the high-density
International 10-5 System that is able to use up to over 300 electrodes [59]. The
numbers associated with the acquisition system represent how the electrodes are
placed on the skull, e.g., the electrodes of the International 10-20 System are placed
at 10%, 20%, 20%, 20%, 20% and 10% from inion (Iz) to nasion (Nz) over its length.
Figure 2.3 shows the location of the electrodes used by each international montage.

For measuring EEGs it is necessary to have a reference location. It is used to
obtain the EEG potentials at each electrode location. Thus, the optimal reference
would be a location with no potential, i.e., a zero reference, to not produce any
distortion effect in the desired measures. Considering when the reference is applied,
there are two types of references: the online references also known as physical refer-
ence electrodes such as the left earlobe or any central electrode between Fz and Oz,
and the offline references such as linked mastoids, average reference and reference
electrode standardisation technique (REST) [61–63]. The latter ones are usually
used for re-referencing the EEGs, a reconstruction procedure, performed after EEG
acquisition, used to convert a non-zero reference to an approximate zero reference.
Although average reference and REST present the smallest reconstruction error,
they require a large number of recording electrodes to have a better scalp coverage.
Therefore, they are more suitable for high-density EEG architectures.

2.2.2 Invasive EEG

Brain electrical activity may be also recorded invasively using (i) intracranial elec-
trodes that acquire data directly from the brain or (ii) subscalp electrodes which are
placed between the scalp and the bone.
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contours in the 10±10 system, but also for the newly de®ned

medial-lateral contours. To give an example: the electrode

location between C3 and C5 would be called C5h, the loca-

tion between CP3 and CP5 would be CP5h. The location

halfway between C3h and CP3h would be called CCP3h.

This system for electrode placement and the associated

naming scheme give rise to a doubling of the number of

medial-lateral electrode contours, and to a doubling of the

number of electrodes along these contours. Therefore, the

total number of electrode locations available in the 5%

electrode system is approximately 4 times the number

available in the 10±10 system. The total number of loca-

tions in this system is around 345, depending on how many

electrodes on the most inferior rows (`9' and `10') are

included. Fig. 2 shows the locations of the electrode sites

de®ned according to this system. Black ®lled circles indi-

cate the electrode locations of the 10±20 system. Electrode

sites of the 10±10 system are indicated by grey ®lled

circles. Intermediate electrode sites de®ned by the 5%

system are marked as dots. In this ®gure, a selection of

the 5% electrode locations is indicated by open circles

including their electrode names. This selection of electro-

des, combined with the 10±10 system, leads to a subset of

142 electrodes with a complete and homogenous coverage

of the head; see Figs. 3±5. The combination of the posi-

tions of the 10±10 system with these additional 5% posi-

tions would provide a good starting point for 128 channel

EEG measurements, where possibly some of the lowest

electrodes can be skipped.

Due to the nature of the de®nition of the 10±20 system,

the electrode rows at the most occipital and frontal part of

the head (PO en AF) become very crowded. Probably for

this reason, the representation of the 10±10 system in the

AES Guideline (American Electroencephalographic

Society, 1994) places only one electrode between POz and

PO7 (similar for POz-PO8 and the AF row). Placing three

electrodes between POz and PO7 is hardly feasible in prac-

tice. The pragmatic solution is that two electrodes are placed

in between POz and PO7. In that case, the optimal distribu-

tion of the electrodes (with distances of 33% between elec-

trodes) does not match with the available labels for the three

locations which are de®ned at 25% positions along that row

(PO1, PO3 and PO5). Naming these two electrodes accord-

ing to two of the three available labels for that row in the 10±

20 system is clearly not appropriate. We therefore label

these electrodes according to the locations in the 5% system

R. Oostenveld, P. Praamstra / Clinical Neurophysiology 112 (2001) 713±719716

Fig. 2. Electrode positions in the proposed 10±5 system. Positions additional to the 10±10 system are indicated with dots; a selection of additional positions

useful for a 128 channel EEG system are indicated with open circles.

Figure 2.3: Representation of the three scalp EEG architectures. The International 10-5
System is represented by all the electrodes. The International 10-10 System is constituted
by the grey and black locations. Finally, the International 10-20 System uses the electrodes
represented by the black dots. Extracted from [60].

In iEEG or ECoG, the electrodes are placed directly on the brain surface or in
deep brain structures accessed during surgery, to measure the activity from the brain
cortex [64]. It is usually used as part of the presurgical evaluation in patients, when
non-invasive studies remained non-concordant or inconclusive regarding the irritative
area, the seizure onset zone or the eloquent cortex [65]. Compared to scalp EEG,
this method does not follow an international standardised spatial setup. However, as
presented in Figure 2.4, there are two different methods for acquiring these signals:
subdural or depth electrodes. Subdural electrodes are placed on the surface of the
cortex. Depending on the area the clinicians would like to evaluate, they consist
of a series of electrodes configured as linear strips or square and rectangular grids.
Depth electrodes are intended to capture brain signal from deep brain areas. They
are implanted inside those areas such as amygdala, hippocampus, orbitofrontal, and
medial occipital regions. These electrodes are thin and flexible, embedded in silastic
material, with contact points located on their surface. Depth electrodes are usually
placed through a stereotactic surgery, which uses a three-dimensional coordinate
system to identify a small target inside the skull. Therefore, this aquisition method
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is usually named stereoelectroencephalography [66].

Strip electrodes

Stereotactically implanted 
depth electrodes

Grid electrodes

In
tr

ac
ra

ni
al

 E
EG

Figure 2.4: Different architectures for acquiring iEEG. Adapted from [67]

The iEEG provides better signal-to-noise ratio (SNR), and the presence of arte-
facts is practically null because the number of layers between the signal source and
the sensors is much lower than in scalp EEG. These layers also diminish the mag-
nitude of the brain waves [68]. Therefore, iEEG may be better than scalp EEG for
analysing neural biomarkers. Furthermore, it can acquire signal directly from the
seizure-source region. However, due to its invasive nature, acquiring iEEG has risks
such as intracranial hematomas, haemorrhage, infection or even death [69].

In recent years, researchers have presented EEG acquisition systems based on
electrodes placed under the scalp but outside the skull, i.e., ssEEG [70, 71]. Their
implantation is minimally invasive and carries less risk for the patient than iEEG.
ssEEG presents spectral characteristics similar to scalp EEG. However, as subscalp
electrodes are placed under the scalp, they avoid skin abrasion, reduce electrode
contact problems, and require less electrode maintenance. Therefore, they can be
used to acquire EEG over several months, also known as ultra-long-term EEG [57,
72, 73]. These acquisition devices may revolutionise the diagnosis and treatment of
patients with epilepsy because they allow scientists to investigate the occurrence of
seizures in day-to-day scenarios. Moreover, capturing a higher number of seizures
would increase the chances of developing improved seizure prediction approaches.
However, the number of electrodes used in these is quite limited, leading to a low
spatial resolution. Figure 2.5 shows different devices to acquire ssEEG.

2.2.3 Neural activity and artefacts

Neural signals are mainly composed of two types of potentials: the rhythmic ones
known as oscillations and the transients. The excitability of brain cells generates
rhythmic fluctuations. They are usually divided in frequency bands such as delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (above 30
Hz) [68, 74, 75]. Transient potentials can be divided in normal or abnormal type.
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Figure 2.5: Electrodes to acquire ssEEG.

The first ones are related to sleep potentials while the abnormal ones may represent
seizure or interictal activity in epileptic patients [24,75].

As neural signals propagate throughout the scalp, they require several electrodes
to be acquired with high spatial resolution [59]. However, the large number of
electrodes leads to a high probability of measuring variations that do not come from
the neural connections.

EEG artefacts can be reduced or even avoided when signal acquisition is per-
formed under controlled procedures. However, in epilepsy, seizures are usually very
unpredictable [76, 77] taking some minutes, hours, days, or even months to occur.
Therefore long-term recordings are required. These recordings are acquired through-
out several continuous days and, consequently, it is impossible to not measure noisy
data such as the environmental artefacts, experimental errors and physiological arte-
facts [23].

Environmental artefacts comprehend noisy data related to the acquisition sys-
tem. They could be generated by interferences such as electrical, magnetic, sound
or even the electromagnetic waves such as the ones generated by the communication
devices [24]. Furthermore, these artefacts include the instrumentation disturbances
such as pink noise (small variations of the condensed-matter materials) or poor elec-
trical grounding. These type of artefacts generally does not cause any trouble during
the EEG analysis because they usually present fixed frequencies, e.g., the powerline
noise, generated by the alternated current power, has a fixed frequency of 50 Hz or
60 Hz depending on the country, or they have a spectrum that do not overlap the
desired signal frequencies [23].

Experimental errors are usually related to poor electrode adhesion, incorrect
scalp cleansing and subject motion related to daily life situations. These factors
can change the position of those electrodes and produce high electrical impedance
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causing signal distortion. This kind of artefacts are usually hard to remove even
with artefact removal algorithms because they typically do not follow any pattern,
overlaps the frequencies of interest and occasionally distorts the signal eliminating
any neural information in the signal. Therefore, they definitely should be avoided by
correctly preparing the recording system scalp before placing the electrodes [23,78].

Physiological artefacts are alterations on the desired signals generated from phys-
iological processes such as eye blinks, eye saccades, muscle activity, e.g. chewing and
swallowing, and cardiac activity also known as pulse artefacts. Furthermore, there
are other less common artefacts such as breathing and perspiration.

Eye movements generate electrical activity which are strong enough to be mea-
sured by the EEG electrodes. Although these alterations cause a larger variation in
the frontal electrodes, they propagate throughout the scalp with a magnitude higher
than the EEGs amplitude. Although they cause a larger variation in the frontal elec-
trodes these type of activity propagate throughout the scalp. Furthermore, these
artefacts generally present a spectrum that overlaps brain activity frequencies useful
for the study [79, 80]. Thus, they can not be removed using simple digital filtering
without losing useful neural information.

Muscle activity signals can be generated in any part of the human body including
the head. Thus, they can be produced very closely to any electrode. This activity is
mostly a consequence of chewing, swallowing, talking or even scalp contraction, i.e.,
actions related to each subject daily life. These signals are generally difficult to re-
move because of their transient behaviour and wide spectral distribution overlapping
all the frequencies from 0 to >200 Hz, specially the beta waves [24,78,81].

Among the three major types of physiological artefacts, cardiac activity is the
most regular, having a well-known characteristic and repetitive pattern. Normal
pulse artefacts are nonstationary. Therefore, although they generally have a fre-
quency around 1.2 Hz [23, 82], this frequency it not fixed, changing according to
the subject activities making it difficult to remove from the EEGs. However, its
amplitude depends on the location of the electrodes, i.e., if they are placed over a
scalp artery its amplitude would be high, otherwise it will be practically unnotice-
able [83]. Thus, this type of activity can be reduced by a proper sensor positioning.
Also, as EEG is usually recorded at the same time as electrocardiography (ECG),
researchers could use this latter for detecting the pulse waves [78].

Breathing and perspiration artefacts are also related with physiological activity.
They have a frequency spectrum near 0 Hz and are removed simultaneously with
direct current (DC) component, i.e., using a simple high-pass filter.

Figure 2.6 summarises the activity in EEGs.
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Figure 2.6: Detailed description of the neural signal and artefacts present in EEG signals.

2.3 Epilepsy treatment and therapeutics

The primary form of treatment for patients with epilepsy is the administration
of AEDs. However, this type of treatment is not always efficient. Even if the
patients take AEDs, they do not achieve a seizure-free condition. This state usually
worries them, as they can not perform normal daily tasks. Additionally, treatment
with AEDs often comes along with side effects affecting their behaviour. Therefore,
resective surgery, neurostimulation, dietary therapies, and warning devices emerge
as possible ways to improve patients’ quality of life [6].

2.3.1 Antiepileptic drugs and drug-resistant epilepsy

Epilepsy is defined by hyperexcitatory or hypersynchronous neuronal activity result-
ing from perturbations on the normal balance between excitation and inhibition [84].
The development of AEDs aims to create drugs to control these disturbances. Cur-
rently there are around 30 AEDs. These work by enhancing inhibitory mechanisms
or blocking excitatory mechanisms [85,86].

Currently, about one-third of patients with epilepsy are diagnosed with DRE [5–
7]. According to ILAE, DRE is identified whenever the treatment using two AEDs
do not lead to a seizure freedom condition (see Box 4). Seizure freedom occurs
when the patient does not suffer any seizure over one year or three times the longest
interval between seizures in the previous year before starting the treatment [87].
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Box 4 - Diagnostic criteria for drug-resistant epilepsy (as defined by the
Task Force of the ILAE in 2010 [87]).

“Drug-resistant epilepsy may be defined as failure of adequate trials of two toler-
ated and appropriately chosen and used antiepileptic drugs schedules (whether as
monotherapies or in combination) to achieve sustained seizure freedom.”

This condition is a serious limitation because patients are not allowed to perform
normal daily tasks such as driving and usually have restrictions in professional life.
Additionally, as these patients continue to have seizures, there is a high risk of
getting brain injuries, fractures and, even, sudden unexpected deaths (SUDEP) [5].
These patients experience a mortality rate 5-10 times higher than that of the general
population [88]. Among all types of epilepsies, patients with focal seizures are more
susceptible of being diagnosed with DRE [89]. Specifically, patients with MTLE are
more prone to drug resistance.

Even after several years of AEDs research, the ratio of patients with DRE re-
mained practically unchanged. However, it should be pointed that the side effects
have decreased, which means an improvement for the condition of patients who need
this type of drugs [7, 84].

Diagnosis and treatment of DRE at an earlier stage leads to a greater chance of
seizure control. However, most patients with DRE are not followed up by an expert
epilepsy team. In the United States of America, it is estimated that less than 1% of
patients with DRE are evaluated by an epilepsy center. However, on average, they
begin to be monitored, about 20 years after the first seizure onset, making seizure
control much more difficult [90].

2.3.2 Surgery

One of the solutions for patients with DRE is brain surgery. This procedure consists
of removing the part of the brain causing the seizures also known as the epileptogenic
zone. However, not all patients with DRE can undergo this procedure. A compreen-
sive assessment is required to identify the epileptogenic zone. This evaluation must
be performed within an epilepsy center while presurgical monitoring [91,92].

Figure 2.7 summarises the evaluation procedure performed to decide whether the
patient is able to be undergoing resective surgery. Firstly, clinicians verify whether
the patients are suitable to go through presurgical monitoring. During presurgical
monitoring, patients are subjected to reduced dosages of AEDs and sleep deprivation
to increase the rate of seizures in a short interval of time [6,93]. Clinicians expect to
observe seizures with the same onset characteristics. However, these procedures may
have serious consequences. Medication reduction and sleep deprivation may trigger
tonic-clonic seizures in patients who have never experienced them. In addition,
the patient may experience a seizure cluster. Both procedures should therefore be
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Figure 2.7: Flowchart followed to decide whether the patient with DRE. Blue boxes repre-
sent evaluation processes followed for all patients. Green boxes describe the easiest scenar-
ios in which the patients do not have to perform many exams before undergoing resective
surgery. Yellow boxes consist of the scenarios in which the clinicians were not certain about
the epileptogenic zone at the beginning. Red box details the therapies followed by patients
unable to undergo resective surgery. Adapted from [92].

carried out carefully and always under medical supervision [93].
The patient is evaluated in three ways: long-term video-EEG, high resolution

magnetic resonance imaging (MRI) and neurophysiological evaluation. If the epilep-
togenic zone is detected, the clinical information obtained is consistent, and the
risk-benefit to the patient is acceptable, then the patient will undergo surgery. Oth-
erwise, further evaluations must be carried out before making a final decision. The
new assessments are based on further exams such as positron emission tomography
(PET), single-photon emission computed tomography (SPECT), functional mag-
netic resonance imaging (fMRI), electric source imaging (ESI), and magnetic source
imaging (MSI). A further assessment may also be performed based on the acquisition
of EEG-fMRI and the Wada test. It aims at minimising possible problems caused
by the surgery. After that, the clinicians evaluate the possibility of generating a
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testable hypothesis about the epileptogenic zone. If so, the patient is submitted
to intracranial EEG, cortical stimulation, and mapping. If the epileptogenic zone
is identified and can be removed, the patient undergoes surgery. Otherwise, the
patient receives other types of treatment [6, 92].

A high percentage of patients undergoing resective surgery manage to become
seizure-free. For patients with intractable TLE, the percentage of individuals, who
achieved the seizure freedom condition, varies between studies from two thirds [94]
to about 80% [95]. In any case, it is worth noting that the chance of getting rid of
seizures after surgery is about ten times greater than if they did not [96]. However, it
should be noted that surgeries do not always go well. There are cases where patients
experience a kind of “double hit”, which means that in addition to not getting rid of
seizures, they start to suffer memory decline [97]. This effect should be considered
during decision making and when providing information to the patients.

2.3.3 Neurostimulation

Neurostimulation emerges as an alternative therapeutics for patients with DRE who
cannot undergo resective surgery. However, contrary to the results obtained after
the resective surgery, only a few patients achieve seizure freedom for more than one
year after starting a neurostimulation device.

There are two types of neurostimulation devices: invasive and noninvasive. It
depends on the type of clinical procedure needed. Noninvasive devices are not clini-
cally validated [98]. The invasive devices comprise implanting a device that transmits
electrical pulses to peripheral nerves or specific parts of the brain to impede poten-
tial seizures [4,98,99]. Furthermore, devices can be classified as open or closed-loop
devices. Open-loop devices are based on planned stimulations whereas closed-loop
ones automatically analyse biosignals and trigger an electrical impulse whenever they
detect seizure activity. The most well-known neurostimulation devices include va-
gus nerve stimulation (VNS), responsive neurostimulation system (RNS), and deep
brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) [4, 98, 99].
Figure 2.8 and Table 2.1 summarise the three devices.

VNS was firstly created as an open-loop system that stimulated the left vagus
nerve for 30 seconds every 5 minutes [100]. However, it was later converted into a
closed-loop system. For that, the device analyses the heart rate and, if it detects any
variation associated to a seizure, it starts the stimulation of the vagus nerve [101].
Even though it has been converted into a closed-loop system, it is possible to trigger
a stimulation by placing a specific magnet in front of the device [102]. Of the three
devices presented here, the VNS is the only one implanted completely outside the
brain, thus having a lower risk.

RNS is a closed-loop system comprising intracranial electrodes placed directly on
at most two seizure foci [103]. Therefore, it continuously analyses the brain signals
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and starts the stimulation as soon as it detects seizure activity. The objective of the
electrical stimulation is to block an upcoming seizure or simply avoid seizure related
activity [98,104]. RNS is based on a threshold-based model which uses as features the
amplitude, frequency, and rhythmicity of the brain signals. Physicians can control
the parameters used by the system to decide when to trigger the stimulation [105].

ANT-DBS consists in an open-loop system that uses intracranial electrodes to
deliver scheduled stimulus to the anterior nucleus of the thalamus [106, 107]. This
technology is based on studies reporting that the intervention in this part of the
brain may avoid the spreading of a seizure over the neural networks [108].

Table 2.1 compares the accepted neurostimulation devices. It should be pointed
that there are no studies yet comparing the performance of the three already ac-
cepted neurostimulation devices in a randomised form. Literature evidences that
both RNS and ANT-DBS present a percentage of patients achieving ≥50% reduc-
tion in seizure frequency after 1 year (50% responder rate at 1 year) higher than
the one obtained by VNS. Furthermore, some patients achieved a seizure freedom
condition after 2 years of follow-up using RNS and ANT-DBS. However, it is worth
noting that VNS requires no intracranial surgery and it is typically low-cost making
it a possible solution for patients from lower income countries [98, 99]. There are
concerns regarding the software implemented in the RNS and the closed-loop VNS
devices. These technologies report very high false detection rates, leading to a high
amount of stimulations compared to seizure frequency. Their results may not be
due to the prediction capacity of the models but rather to the long-term neuromod-
ulatory effect provoked by long periods of stimulation [109]. In addition, frequent
stimulation leads to a greater battery drain. Thus, the patient will need to go to
hospital more frequently to replace it.

Figure 2.8: Clinically approved neurostimulation devices. Extracted from [98].
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Table 2.1: Neurostimulation therapies already approved for patients with DRE. Based on
Ryvlin et al. [98].

VNS RNS ANT-DBS

Stimulation
target Left vagus nerve Ictal onset yone

(cortex)
Anterior nucleus
of the thalamus

Stimulation
system

Open-loop; Closed-loop
based on heart rate; On

demand

Closed-loop based
on features

extracted from
ECoG

Open-loop

Age Children ≥ 4 years;
adults Adults Adults

Seizure types Focal and generalised Focal Focal

Epileptogenic
focus

Non-localisable;
Multifocal; Not

resectable

Bitemporal;
Eloquent focus

Multifocal;
Non-localisable

Level of
accessibility Moderate Low Low

Risk of
therapy-

induced brain
lesion

None Low Low

Short-term
infection rate 1% at 3 months 3% at 3 months Not available

Long-term
infection rate Not available 12% at 9 years 13% at 10 years

Material
dysfunction 1% 5% lead damage

or revision
8% lead

replacement

50% responder
rate at 1 year 31% 42% 44%

Seizure free at
2 years of
follow-up

0% 9% 13%

2.3.4 Rescue medication

Rescue medication may help controlling seizures. These could provide three main
advantages: (i) patients may achieve a seizure freedom state when combined with
other AEDs; (ii) reduce the continuous intake of AEDs diminishing their long-term
side effects; and (iii) avoid seizure clusters and prolonged seizures [110].

Benzodiazepines are the most used rescue medication due to their rapid effect
(at most 10 minutes). However, these should not be taken continuously due to their
secondary adverse effects [110]. Diazepam was the first approved acute medica-
tion. Rectal Diazepam was authorised in 1997 by the food and drug administration
(FDA) for patients older than 2 years old for seizure cluster treatment outside the
clinic [111]. As a consequence of its difficult route of administration, it was not well
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accepted by the adult patients and, thus, it was mostly used in children [112]. Di-
azepam nasal spray was approved 2020 by the FDA to be used in patients older than
5 years [113]. Midazolam is a rescue medication for seizure clusters and prolonged
seizures. It can be either taken by via oral or nasal. Oral Midazolam was approved in
2011 by the european union (EU) for prolonged seizures in people until 18 years old
and Midazolam nasal spray was authorised in 2019 by the FDA for seizure clusters
in patients with 12 years old or more [114–116]. Currently, other rescue therapies
are under investigation such as sublingual Diazepam, oral Diazepam, or sublingual
Lorazepam. Table 2.2 summarises the already approved drugs.

Table 2.2: Rescue medication therapies already approved for patients with DRE. Based
on Wolf et al. [110] and Cloyd et al. [115].

Drug Route Waiting
time

Peak
level Adversal effects First

approval

Diazepam Rectal 5-10
min

10-45
min

Somnolence;
diarrhea;
headache

FDA in 1997
for seizure
clusters for

patients older
than 2 years

Midazolam Oral < 5 min 20-30
min

Sedation;
somnolence;

depressed levels of
consciousness;
respiratory
depression;

nausea; vomiting

EU in 2011 for
prolonged
seizures in
patients

younger than
18 years

Midazolam Intranasal < 10
min

15-120
min

Somnolence;
headache; nasal

discomfort; throat
irritation;
rhinorrhea

FDA in 2019
for seizure
clusters for

patients older
than 12 years

Diazepam Intranasal < 5 min > 60
min

Somnolence;
headache; nasal

discomfort

FDA in 2020
for seizure
clusters for

patients older
than 6 years

It should be noted that these drugs may be a life saviour when linked to prediction
devices as patients could take them before an upcoming seizure as long as they are
warned with at least 10 minutes anticipation.

2.3.5 Dietary therapies

Ketogenic diet, modified Atkins diet and the low-glycaemic diet emerge as possible
alternative solutions for patients with DRE [117]. Ketogenic diet is the most used
therapy for epilepsy caused by metabolic disorders such as GLUT1 deficiency syn-
drome. More than half of the patients following a ketogenic diet have a reduction
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of more than half of the seizures. Actually, one-third of them have a reduction of
more than 90% and some achieve seizure freedom condition [6]. However, ketogenic
diet causes long-term complications such as lack of nutrients, growth disorders in
children, abnormal lipid profile, bone disorders, and kidney stones [6].

2.3.6 Warning devices

Warning devices emerge as a further solution to patients with epilepsy. There are two
types of warning devices: the detection devices aiming at detecting and annotating
every seizure and the prediction devices, which are designed to notify the patient
that a seizure will happen [118].

Detection devices would be useful to complete patients’ seizure diaries leading
to a better follow-up of the disease [119]. Although the great potential of EEGs to
detect seizures [120], currently only non-EEG devices such as acelerometry [121],
electromyogram [122], photoplethysmography [123], or electrocardiography [124],
were considered for phase III validation [118].

Prediction devices would notify the patient some minutes before the seizure
onset. Thus, patients would be able to take precaution to minimise consequences.
Patients may also be able to take a rescue medication and block an upcoming seizure.
NeuroVista Seizure Advisory System [125] was one of the most relevant prediction
devices. In a phase I clinical trial, it was validated on 15 patients with DRE over
two years. It comprised ECoG electrodes on the epileptogenic zone connected to a
telemetry unit implanted on the chest which transmited wireless data to a personal
advisory device. The personal advisory device notified the patient about their seizure
susceptibility. This device was a breakthrough to the seizure prediction research area
because it showed that it is possible to correctly predict seizures for some patients
and improve their lives. Seer health developed a prediction software based on seizure
diaries. The app uses information from previous seizures to notify patients about
the seizure probability [126].

Although no EEG-based warning device have been studied beyond phase I clin-
ical trial, this may change in the future. In recent years, several ssEEG acquisi-
tion systems have appeared such as the UNEEG SubQ [72], the EpiMinder Sub-
scalp [127] the Neuroview [128], the Soenia Ultimate EEG [70], the Epios [129],
and the EASEE [130]. These ssEEG acquisition systems have minimal intrusion
compared to ECoG and overcome some of the problems of scalp EEG, thus making
it possible to collect brain signals over several months. It could enable developing
warning devices based on brain signals and improve their performance.
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2.4 Seizure prediction

Seizure prediction is the main topic of this thesis. It is an active research theme
studied since 1970 [131]. Its main goal is developing a system able to anticipate
upcoming seizures.

As shown in Figure 2.9, epileptic EEG may be partitioned into four stages: the
interictal, the preictal, the ictal, and the postictal periods. Despite this division, the
intervals’ location are not well-defined. The ictal stage is the period when the seizure
occurs. It is the only epileptic stage identified by clinicians. It is usually found by
inspecting video-EEG [132]. The interictal corresponds to the normal stage, varying
from hours to days depending on the frequency of seizures. The postictal matches
the period after the seizure until both EEG and behaviour return to the normal
stage. Finally, preictal stage is the most important period in this research area. It
is not clearly defined as it varies from seconds to minutes depending on the patient
and the seizure [18].

Figure 2.9: Representation of the four seizure stages in the epileptic EEG signal. The
interictal matches the interval between the postictal and preictal stages of consecutive sei-
zures. The preictal corresponds to the transition period between the normal and seizure
stages. The ictal stage is when the seizure occurs. Finally, the postictal period matches the
interval after the seizure. Extracted from [133].

Seizure prediction models are developed to find the preictal period, i.e., identify
the transition from interictal to ictal period. It is not a straightforward task because
of the rarity of seizure events. In fact, Cook et al. [125] reported that on average
patients with DRE only experience seizures during less than 0.05% of total acquisi-
tion time. Therefore, a high class imbalance between interictal and preictal periods
makes it harder to develop intelligent models because they use far more interictal
samples than preictal samples to tune the decision boundary. Furthermore, preictal
period is uncertain. Thus, researchers have to estimate it considering the ictal onset.
An ideal seizure prediction model would give the patient the exact time when the
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upcoming seizure happens. However, since the preictal period is not clearly defined,
it is nearly impossible to develop such a method.

2.4.1 Seizure onset

Seizure onset times are crucial to develop seizure prediction solutions. In presur-
gical conditions, these are usually obtained through the inspection of video-EEG.
There are two types of seizure onset: (i) the EEG onset, which corresponds to the
moment in which the first changes relative to the ictal period start in the EEG; and
(ii) the clinical onset, which corresponds to the moment when the patients manifest
symptoms derived from the seizure they are suffering [134, 135]. Not all seizures
present both onsets. In the case of the subclinical seizures, there are only changes in
the EEG and therefore only EEG onset can be found. Furthermore, neurophysiolo-
gists sometimes struggle at finding the clinical onset for seizures classified as FOIA
type [136]. Seizure prediction models generally use the EEG onset as the point of
transition from the preictal to the ictal period [137].

2.4.2 Lead seizure

Seizure prediction models require data from several seizures to be correctly devel-
oped. However, the considered seizures must be independent events with no rela-
tion [138]. Thus, in the case of seizure clusters, only the first seizure, also called
lead seizure, should be considered for developing the seizure prediction approaches
since all the others that occur right after might be triggered by the first one [136].
Therefore, if one can predict and avoid the lead seizure, it is probable that none of
the following would occur. Furthermore, it would not make sense to use the other
seizures as it is difficult to distinguish the four epileptic stages.

There is no consensus on how far apart the seizures should be in time to be
considered lead seizures. One of the most used definition for seizure cluster considers
that a patient with DRE suffers a seizure cluster whenever at least three seizures
occur within a 24-hour interval [51]. However, this definition may lead to a great loss
of data since, on average, a patient in presurgical conditions experience 3.6 seizures
per day [139]. Therefore, researchers have considered lead seizure as consecutive
seizures separated by: (i) 1 hour [140], 1.5 hours [141], 2 hours [32], 4 hours [142],
4.5 hours [143], 5 hours [76], and 8 hours [125].

2.4.3 Seizure prediction vs detection

Seizure detection frameworks aim at detecting the onset of the ictal period. Suppose
seizure detection is possible at an early stage. The detector model may be integrated
into a closed-loop neurostimulation device to cancel seizures before they spread
and begin clinical manifestations. Seizure detection is also very useful to complete
patients’ seizure diaries or to help clinicians to find the seizure onsets, making their
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work simpler because they would no longer need to analyse the whole long EEG, but
only the segments where a seizure was detected [144]. Seizure prediction is based on
a similar concept to seizure detection. However, instead of finding the onset of the
ictal period, it aims to find the preictal period. Therefore, its goal is to inform the
patients that a seizure is about to happen in the next minutes/hours, giving them
more time to take preventive measures in order to minimise the consequences of
possible accidents or to take rescue medication to try to avoid the seizure [137,145].

2.4.4 Seizure prediction vs forecasting

Seizure forecasting has recently appeared as a new concept for seizure prediction.
It aims to model the probability of the patient having a seizure [127]. Thus, there
is no longer the need to find out the transition instant between the interictal and
preictal periods and the objective is to obtain the seizure risk over time [18]. On
days with high seizure risk (proictal state), patients may prepare themselves to
reduce the consequences of seizures. However, unlike traditional seizure prediction,
even if the patient is warned of a high-risk period, it does not mean a seizure will
happen. The high-risk period only means a high probability of suffering a seizure.
As a consequence of the seizure risk modelling, the researchers no longer look at the
signal on a minute scale rather on an hour/day scale since the goal is to find out
periods where there is a high risk and not to find that a seizure is going to happen in
the following minutes. Based on longer periods, seizure forecasting allows clinicians
to understand the relationship between seizures and biological cycles such as the
circadian and multidien cycles [16].

2.4.5 Seizure prediction characteristic

By the early 2000s several seizure prediction approaches had already been presented.
However, how these models were evaluated led to doubts about whether these ap-
proaches could be used in clinical applications. In 2003, Winterhalder et al. [139]
proposed the seizure prediction characteristic. This framework is comparable to an
alarm system which triggers an alarm whenever the system predicts a seizure. In this
way, the authors proposed evaluating the models using seizure sensitivity (SS) and
false prediction rate per hour (FPR/h). In addition, this alarm system needs two
intervals: the seizure prediction horizon (SPH) and the seizure occurrence period
(SOP).

SPH or intervention time is the period between the alarm and the starting of
the SOP. This period consists of an interval where researchers consider that there is
not any risk of seizure occurrence. Therefore, this time is used to diminish seizure’s
consequences or cancel it using for example seizure-suppression drugs. The length of
this period depends on the type of system which researchers are developing. In case
of an implanted device, it could consist of just a few seconds because it will cancel
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the seizure automatically. However, in the case of a warning system, this period
has to be as long as some minutes to give the patient time to prevent dangerous
scenarios, such as driving a car. It should be noted that when authors identify this
period as intervention time, the SOP is named SPH [146]. SOP is when a seizure
is expected to occur. Consequently, high values of SOP could put the patients
under psychological stress and anxiety. Furthermore, systems developed under the
condition of a long SOP could automatically fail the prediction of some seizures, e.g.,
a prediction model designed considering a SOP that lasts 6 hours will not be able to
predict seizures spaced 4 hours apart. Therefore, this period should be minimised.
Only alarms where seizures happen inside SOP are considered true (see Figure 2.10).

45

SPH SOP

(a) An alarm is raised and the
seizure happens after a portion
of time equal to SPH and be-
fore the ending of SOP, thus it
is a true alarm.

46

SPH SOP

(b) An alarm is raised and the
seizure happens after the end-
ing of SOP, thus it is a false
alarm.

47

SPH SOP

(c) The alarm is raised in-
side the SPH, thus it is a false
alarm.

Figure 2.10: Requirements needed to be considered a true alarm.

SOP and SPH are fundamental for the development and performance assessment
of seizure prediction models. As presented in Figure 2.11, the SPH allows the model
to give the patient a certain period to prepare for a seizure, whereas SOP is the
period when the seizure happens. When training the models, the preictal samples
correspond to an interval with the same duration as SOP [137, 146]. The samples
following the training preictal samples and ending at the seizure onset correspond to
the SPH and are discarded from the analysis. In this way, in case of a true alarm, the
patient will have an interval equal to the SPH to prepare for the upcoming seizure
and the SOP when the seizure is expected to occur [58].

Training 
SPHTraining Preictal SamplesTraining Interictal Samples

SOPSPH

TimeInterictal Period Preictal Period

Figure 2.11: Representation of how to train a seizure prediction approach. The training
preictal period has the same duration as the SOP. The training SPH corresponds to the
interval before the seizure. Thus, if an alarm is triggered at the beginning of the preictal
interval, the model will wait a period equal to the training SPH, and the seizure will occur
within the SOP, in this case, at the end.
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2.4.5.1 Performance assessment

Standard classification approaches are evaluated using the confusion matrix pre-
sented in Table 2.3 considering true positive (TP) as a well predicted preictal sam-
ple, true negative (TN) as a well predicted interictal sample, false positive (FP) as a
interictal sample predicted as preictal and false negative (FN) as a preictal sample
predicted as interictal. From confusion matrix, researchers may compute sensitiv-
ity (see Equation 2.1) and specificity (see Equation 2.2). Some authors used those
metrics to compute area under the receiver operating characteristic curve (AUC).
Although these metrics can be used to evaluate classifiers, they are not able to in-
form whether the system is predicting well upcoming seizures. Therefore, they had
to be adapted to correctly evaluate the seizure prediction approaches.

Table 2.3: Confusion matrix for evaluating sample predictions given by seizure prediction
models.

Predicted Labels
Interictal Preictal

True Labels Interictal True Negative False Positive
Preictal False Negative True Positive

Sensitivity = True Positives

True Positives+ False Negatives
(2.1)

Specificity = True Negatives

True Negatives+ False Positives
(2.2)

Sensitivity was replaced by the SS in order to verify how many seizures were
well predicted and specificity was replaced by FPR/h because there was not any
advantage of measuring the number of true negatives, i.e., the number of well pre-
dicted interictal samples. Equations 2.3 and 2.4 present how to calculate the SS and
FPR/h of a seizure prediction model [139]. SS is the ratio between the number of
true alarms (#TrueAlarms) and the number of seizures (#Number of Seizures),
in other words, alarm’s accuracy, whereas the FPR/h is the ratio between the num-
ber of false alarms (# False Alarms) and the time length when false alarms could
be triggered. Whenever an alarm is triggered, there is usually a period with a time
length equals to the duration of SPH plus SOP, also known as refractory period,
when the predictor stops analysing. Therefore, this period should be subtracted
from the FPR/h denominator since it is not possible to fire false alarms during
those periods (InterictalDuration −# False Alarms×RefractoryDuration).

Seizure Sensitivity = # True Alarms

#Number of Seizures
(2.3)

FPR/h = # False Alarms

InterictalDuration −# False Alarms×RefractoryDuration
(2.4)
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Both metrics must always be used together because they complement each other.
A prediction system could achieve a high SS and yet not performing well, e.g., consid-
ering a model with 100% of SS and a FPR/h of 3. Although it predicts all upcoming
seizures, it fires excessive false alarms comparing to true alarms. Therefore, it could
not be implemented in a real-world scenario.

The optimal values for SS and FPR/h would be 100% and 0, respectively. How-
ever, achieving those values is a hard task. Therefore, more tolerant standard results
should be specified. Regarding SS, Schulze-Bonhage et al. [147] presented that the
majority of epileptic patients would only use a seizure prediction device if it has a SS
higher than 90%. Considering FPR/h, Winterhalder et al. [139] suggested a FPR/h
of 0.15 for patients under presurgical conditions and 0.0042 for patients under nor-
mal conditions. These values are based on the number of seizures experienced by
these patients in both conditions, i.e., patients under presurgical circumstances who
experience a reduction of antiepileptic medication suffer an average of 0.15 seizures
per hour comparing to 0.0042 under normal condition, i.e. when they take medicine
regularly and are not under presurgical stress.

2.4.5.2 Statistical validation

Beyond the performance metrics, researchers also use statistical tests to validate
their models. These tests are often used to prove that the models are reliable because
non-zero SS and low FPR/h values can be achieved without having a trustworthy
model [148]. The most used validation tests are the comparison with an unspecific
random predictor and the seizure time surrogate analysis [137].

Unspecific random predictor Unspecific random predictor was firstly proposed
by Winterhalder et al. [139]. It consists in two equations used to calculate the
probability of triggering an alarm without using any information from the EEG.
Equation 2.5 describes the probability p of firing an alarm during a small interictal
interval I. Equation 2.6 calculates the probability P of raising at least an alarm in
a longer interval W .

p = FPR/h× I (2.5)

P = 1− (1− FPR/h× I)W/I ≈ 1− e−FPR/h×W for I �W (2.6)

When consideringW = SOP , P represents the probability of triggering an alarm
inside the SOP, i.e., the SS of a random prediction method. Therefore, not only the
FPR/h but also the SOP increases the performance of a random predictor, i.e., the
chance of a random method to have an equal or better performance than a seizure
prediction model.

The problem of the abovementioned equations is that those only consider one
seizure event. Consequently, Schelter et al. [2] introduced a method that not only



2.4. SEIZURE PREDICTION 33

considers several seizures but also several seizure prediction models. It is based on
a homogeneous Poisson process for false predictions. Accordingly, the probability of
firing an alarm is given by Equation 2.7.

PPoisson = # False Alarms

# Samples
(2.7)

Considering W = SOP and FPR/h × SOP � 1, the probability P from Equa-
tion 2.6 may be approximated to Equation 2.8.

P ≈ FPR/h× SOP ≈ FPR/h× SOP (2.8)

The probability P is the basis for the Equation 2.9. It is based on the cumulative
binomial distribution giving the probability of predicting at least k upcoming sei-
zures using at least one of the d seizure prediction models. Therefore, increasing
the number of models also increase the probability of predicting seizures by chance.
However, in a real-time scenario, warning devices only use one seizure prediction
model (d = 1).

Pbinom,d{k;K;P} = 1− (
∑
j<k

(
K

j

)
P j(1− P )K−j)d (2.9)

The critical value to test statistical significance is given by Equation 2.10. Basically,
it is the ratio between the maximum k to which the probability given by Equation 2.9
is higher than a previously chosen significance level (α) and the total number of
seizure events.

σ = argmaxk{Pbinom{k;K;P} > α}
K

× 100% (2.10)

Unspecific random predictor does not consider the EEG patterns. Furthermore,
this method may not be appropriate whenever a low number of testing seizures is
available, which is often a case, because seizures are rare events and methodologies
tend to be patient-specific (see Figure 2.12).

Surrogate analysis The surrogate analysis [148] uses Monte Carlo simulation to
randomly shuffle the labels while maintaining the input’s order. Then, the new sei-
zure prediction model is tested in this new time series. If the model tested on the
false preictal times gets equal or better than the one tested on the true data it is
considered that the model is not following any pattern (see Figure 2.13). Unlike the
unspecific random predictor, this validation analysis considers the EEG for calcu-
lating the sensitivity and FPR/h. Furthermore, it may be used either with a low or
a high number of testing seizures. Therefore, it is more useful than the unspecific
random predictor when analysing whether the seizure prediction model follows any
pattern.
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Figure 2.12: SS of the unspecific random predictor for different number of seizures and
FPR/h considering a SOP of 30 minutes. Adapted from Schlter et al. [1].
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Figure 2.13: Seizure time surrogate analysis examples. The first schema presents the
original data composed by the original EEG signals and the original labels. The other two
schemas present two different surrogate time series, i.e., the original EEG signal with two
different false labelling vectors. Legend: I: Interictal Window; P: Preictal Window. Adapted
from Schlter et al. [2].

2.4.6 Postprocessing

Seizure prediction models based on machine learning algorithm usually classify EEG
segments independently without considering their temporal relation. This character-
istic makes them highly susceptible to false predictions, e.g., if noise is acquired over
the long-term recording [137]. Therefore, postprocessing methods, such as Kalman
filter [149] and the firing power regularitation [150], should be used to smooth the
classifier’s output.
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2.4.6.1 Kalman filter

Kalman filter consists of the computation of the states sk of a linear dynamic system,
at the instant k, where yk is the output variable, wk and vk are the zero mean
white noise vectors, and Tp is the prediction interval. It is computed following the
system of equations presented in Equation 2.11. This filter was first applied as a
postprocessing method for seizure prediction in Chisci et al. [149]. An alarm was
raised every time the output variable becomes positive [150].


sk+1 =

[
1 Tp

0 1

]
sk + wk

yk =
[
1 0

]
sk + vk

(2.11)

2.4.6.2 Firing power filter

Firing power regularisation [150] consists of applying a moving window to the seizure
prediction classifier’s output, equal to SOP. Therefore, it accumulates the predicted
output of several samples. Equation 2.12 gives the mathematical formulation of this
postprocessing method where fp[n] is the firing power regularisation output, τ is the
number of samples of the moving window, and o[k] is the seizure prediction model
output at time k.

fp[n] =
∑n
k=n−τ o[k]

τ
(2.12)

An alarm is triggered as soon as a ratio of instants inside the moving window,
classified as preictal exceeds a defined threshold. This threshold should be defined
before using it. A high threshold means that an alarm is only triggered when a high
concentration of preictal samples leads to a lower number of false alarms. However,
SS may also be low because many consequent preictal samples are required to trigger
an alarm. Compared with the Kalman filter, the Firing Power produces fewer false
alarms [150].

2.5 Concept drifts

Concept drift occurs when there is a change in the relation between the input vari-
ables and the target, in other words, it occurs when data distribution fluctuates over
time [151]. Common machine learning algorithms assume that data characteristics
keep stationary, i.e., that the learned rules during training can be used to make cor-
rect future predictions. However, as seen in Figure 2.14 there are different types of
concept drift such as sudden, incremental, gradual drifts and reoccurring concepts.
These changes are usually responsible for decreasing the model performance since it
is not prepared to handle them. Thus, intelligent models must be able to adapt to
these fluctuations in the data.
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Figure 2.14: Different types of concept drift. Adapted from [151].

Possible solutions for adapting the models to these changes are: periodically
refitting the model from the scratch; periodically update model weights; weight the
training data according to its importance; create new models able to correct the
old model; training several models for different concepts and detect and choose the
model that handles better the future data concepts.

EEG acquired from patients with epilepsy in presurgical conditions may con-
tain several distribution drifts. These drifts result from alterations on the biological
rhythms and the sleep-wake cycle provoked by modifications in the drug dosage, sleep
deprivation, and stress. Baud et al. [77] reported that the interictal epileptiform
activity, an EEG biomarker observed between seizures changes over time. Further-
more, the number of seizures experienced by a patient diagnosed with epilepsy could
vary from 3.6 per day to 3 per month depending on the dose of AED taken [139].
Therefore, researchers must collect EEG for several weeks or even months in order
to be able to study all kinds of concept drifts existing in the problem under study
and, consequently develop adaptive seizure prediction models able to handle all these
changes while predicting upcoming seizures.

2.5.1 Rhythms in epilepsy

Circadian, multidien, or ultradian rhythms are biological rhythms that may alter
the seizure susceptability [77, 152] (see Box 5). Circadian rhythms comprehend 24-
hour physiological cycles such as heart rate, blood pressure, hormonal production,
body temperature and sleep-wake cycle. Ultradien rhythms include the non-rapid
eye movement (NREM) - rapid eye movement (REM) cycle which, in humans, lasts
approximately 90 minutes. Multidien rhythms comprise cycles that repeat after
several days.
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2.5.2 Sleep-wake cycle

Sleep is a primary brain function important in regeneration and learning. Unhealthy
sleep can lead to disorders such as sleepness, depression, and even death [153]. Sleep
is controlled by the sleep-wake cycle which is directly connected to the human circa-
dian cycle [154]. Sleep-wake cycle comprehends awake and sleep stages. Awake stage
lasts on average two-third of the cycle and is easily distinguished on the EEG due
to the low-amplitude high-frequency waves and the high number of artefacts, such
as electromyogram (EMG) contaminations, which are almost absent during sleep.
Sleep stage comprises NREM and REM stages. During sleep, adults experience four
to six cycles. Each cycle lasts about 90 minutes [155]. According to the American
Academy of Sleep Medicine [153], a health sleep starts with the first substage of
the NREM (N1) that is mainly composed by theta waves. Afterwards, it moves to
substage N2 that manifests K-complexes and sleep splindles. Then, NREM stage
ends with the N3 substage, also called deep sleep, which is easily distinguished by
slow-wave activity and delta rhythms. Finally, the cycle finishes with the REM
stage which comprises theta and beta waves making it similar to the EEG acquired
during the awake stage [156].

Sleep is highly related to seizures. In fact, NREM is a stage with high cerebral
hypersynchrony facilitating seizure onset. Seizures are caused by the transition be-
tween the substages being the N2 the one with higher seizure susceptibility. On the
other hand, REM is a stage of seizure suppression linked to very few seizures [157].
The lack of sleeping is also related to triggering seizures. Sleep deprivation is com-
monly used in presurgical conditions to provoke more seizures in a short period.
It may be explained by the fact that sleep deprivation induces NREM stage which
facilitates seizure onset and the propagation of seizures [158].

Box 5 - Definition of circadian, multidien, and ultradian rhythms (pro-
posed by Khan et al. [152] in 2018).

Circadian rhythm: “A biological rhythm is considered to be a circadian rhythm if
it meets three criteria: the rhythm should have an endogenous free-running (approx-
imately) 24h period, should be entrainable (i.e., be capable of phase reset by envi-
ronmental cues and synchronisation to the 24h day) and should exhibit temperature
compensation.”
Multidien rhythm: “Refers to rhythms with a time period covering several days.”
Ultradien rhythm: “Refers to rhythms with periods of less than 24h; ultradian
rhythm cycles can occur with a frequency of more than once per day.”

2.6 Deep neural networks

DNNs are advanced machine learning models based on artificial neural networks
(ANNs) inspired on the biological processes of the human brain [159, 160]. Figure
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2.15 puts these models into a hierarchy including machine learning and artificial
intelligence.

DNNs have recently become popular as a result of the increase of the amount of
available data, the development of new weight optimisation approaches and also be-
cause of the upgrade of the technology in terms of hardware and software [161]. The
great advantage of these architectures is that unlike the classical machine learning
algorithms, they can automatically learn how to classify data without human expert
knowledge.

There are several different DNNs such as deep convolutional neural network
(DCNN) and deep recurrent neural network (DRNN). They have been used in dif-
ferent domains such as bioinformatics [162,163], speech recognition [164,165], image
classification [166, 167], among others. It should be noted that all DNNs belong to
ANN class. However, to simplify the explanation, in the following sections, ANN
term will not be used as a class but as a feed-forward neural network, which may
also be considered a DNN if it contains several layers.

Artificial
Intelligence 

Example:
Knowledge 

Base

Machine 
Learning 

Example:  
Support Vector  

Machine

Deep 
Learning 

Example:  
Deep Convolutional

Neural Network

Figure 2.15: Venn diagram representing the hierarchy of artificial intelligence, machine
learning and deep learning. Adapted from Figure 1.4 of [161].

2.6.1 Artificial neural networks

ANN is the most simple neural network architecture [161]. It is made of several
artificial neurons connected with each other. As presented in Figure 2.16 an artificial
neuron is inspired in biological neurons.

The different inputs simulate the various signals collected in dendrites. Each
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Figure 2.16: Comparison between biological and artificial neurons. Adapted from [168].

weight represents a different synaptic coupling’ strength received by the neuron.
The sum function symbolises the integration of all received synapses performed at
soma. This sum goes through an activation function, similar to the action potential
of a neuron, and its transmitted to other neurons (synapse). There are two types
of activation functions: the linear function and the nonlinear ones. The nonlinear
functions are usually preferred to develop DNNs because they enable the models to
learn more complex patterns (nonlinear behaviour). Examples of such functions are
logistic function, hyperbolic tangent, softmax, rectified linear unit (ReLU), leaky
ReLU, and swish [169].

A biological neural network is composed by several layers of neurons. To simulate
the brain’s behaviour, an ANN should be composed by an input layer, an output
layer and several hidden layers, as seen in Figure 2.17. The input layer takes and
transmits the input data to the hidden layers. Consequently, these hidden layers
explore the data performing different transformations to find patterns. It should
be pointed out that all the neurons of a certain layer transmit responses to all the
neurons of the following layer. However, the following layer weights modulate the
strength of each response, i.e., there could be some neurons that practically do not
influence the output. Finally, the output layer merges all the responses transmitted
by the last hidden layer to accomplish a certain task. It is worth noting that an
ANN with multiple layers is able to generate abstract features from the input data.
Therefore, it is no longer considered a simple neural network but a DNN [170].
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Figure 2.17: Example of an ANN. The circles represent the artificial neurons and the con-
nections correspond to the different weights attributed to previous layer’s neurons response.

2.6.2 Deep convolutional neural networks

DCNN is a special type of DNN able to automatically extract features from complex
data such as biosignals, audio, images or even three-dimensional (3D) data. It
simulates the behaviour of the visual cortex, i.e., first it divides the data in small
regions, then it analyses this subregions individually and finally it merges these
subareas maintaining the spatial characteristics (see Figure 2.18).
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Figure 2.18: Comparison between visual cortex and DCNN. Adapted from [171].

Contrary to the ANN architecture, DCNN does not connect all the neurons,
which reduces its complexity. Furthermore, this architecture is translation invariant,
enabling it to operate effectively even when the sample is changed from its initial
position (e.g., reflection, rotation, or translation) [172]. As presented in Figure 2.18,
DCNN simulates the processes performed by visual cortex to recognise an image.
For that, it uses convolutional layers, pooling layers and dense layers.
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Figure 2.19: Example of convolutional layer with a 2D input. The filter is convolved with
the image from the upper left to the lower left moving one pixel at a time. Example: Upper
Left Convolution: 0× 1 + 0× 0 + 0× 1 + 0× 1 + 2× 0 + 4× 1 + 0× 0 + 1× 1 + 0× 0 = 5.
It should be noted that zero padding is using for maintaining the spatial information.

The Convolutional layer is composed of several filters, used for extracting fea-
tures from the input data, optimised during the learning process. As observed in
Figure 2.19 each filter performs a moving convolution covering the entire input data
step by step to create a feature map. The number of pixels the filter moves at a
time is named stride. This method is repeated as often as the number of filters used.
Then, every feature map is passed through an activation function and converted to
another set of values. Furthermore, authors usually use batch normalisation layers
to normalise every convolutional layer output [173].

Pooling layer is a downsampling layer with no weights. There are different types
of pooling layers being maximum and average pooling frequently used. Figure 2.20
presents an example for both types of pooling layer using a stride equals to 1.
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Figure 2.20: Example of maximum and average 3x3 pooling layers with a 2D input.
Maximum pooling layer selects the maximum value using a 3x3 window whereas the average
pooling layer performs the average of all 9 values.

Although this layer is specified for downsampling, some researchers prefer to
use convolutional layers with stride higher than one and without padding to reduce
the number of values in the input data. Consequently, the model can automatically
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learn the optimal weights for downsampling instead of simply removing information.
Finally, the dense layers are usually used at the network’s end. Contrary to

the preceding layers, these are only able to analyse 1D data. These layers usually
have three main goals: merging all the information available in the feature maps,
reducing the number of used features to lower the probability of model overfitting,
and classifying the samples. Contrary to convolutional and pooling layers, every
neuron of one layer is connected to every neuron of the preceding and following
ones. Therefore, they are also named fully connected layers. It should be pointed
out that although these layers are the most commonly used to transform the data
from feature maps to a feature vector, they can be replaced with global pooling layers
(layers which output one value per feature map) drastically reducing the number of
parameters while increasing the performance in some scenarios [174].

2.6.3 Deep recurrent neural networks

DRNN is a special type of neural network which has internal memory. As seen in
Figure 2.21, it can keep an internal memory that is maintained over timesteps making
it able to create sequential rules, i.e., exploring current data using information from
the past [175], e.g., text translation and video classification.
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Figure 2.21: Example of simple DRNN architecture. Adapted from [170].

However, simple DRNN architecture suffers from vanishing gradient during its
training with gradient-based learning methods. Besides, it has a long-term depen-
dency problem since the information learned from past sequence samples does not
disappear [176]. In order to overcome such disadvantages, Hochreiter and Schmid-
huber presented long short-term memory (LSTM) [177], a type of DRNN that is
able to control the flow of the information over the timesteps, e.g. over the images
of a video.

As presented in Figure 2.22, this architecture is more sophisticated than the
simple DRNN. The cell state, C, works as a memory, in other words, it keeps the
old information. However, this memory is controlled by the forget gate, f . If the
forget gate outputs a vector of zeros the multiplication with the old cell state will
be zero and consequently the memory will be erased. On the other hand, if the
output of this gate is a vector of ones, all the old information flows through the cell.
Also, the input gate, i, controls how much information goes to the cell state in each
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timestep. Supposing this gate’s result is a vector of numbers near zero, almost no
information is passed to the new cell state. The output gate, o, controls how much
information from the hidden, h, and input states, x, is used to compute the new
hidden state. All the processes being performed inside the LSTM are described by
Equations 2.13, 2.14, 2.15, 2.16, and 2.17. During training, the network optimises
the weight matrixes W . There are two types of matrixes W , the ones that multiply
with the input vectors,Wx, and the ones that multiply with the hidden state vectors
Wh. The model also learns the bias vector, b.
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Figure 2.22: LSTM unit. The forget gate, input gate, output gate and cell states are
represented by ft, it, ot, Ct−1, Ct, respectively. Adapted from [178].

f (t) = σ(Wfx · x(t) +Wfh · h(t−1) + bf ) (2.13)

i(t) = σ(Wix · x(t) +Wih · h(t−1) + bi) (2.14)

o(t) = σ(Wox · x(t) +Woh · h(t−1) + bo) (2.15)

C(t) = f (t) � C(t−1) + i(t) � tanh(WCx · x(t) +WCh · h(t−1) + bc) (2.16)

h(t) = tanh(C(t))� o(t) (2.17)

In summary, the high complexity of the LSTM layer turns the DRNNs able to
learn more complex rules. However, it requires high computational time due to the
many trainable parameters.

Gated recurrent unit (GRU) architecture [179] is a lighter version of LSTM (see
Figure 2.23). Contrary to the LSTM, this architecture does not have cell state
and only uses two gates to control the information flow, the reset gate (rt) and the
update gate (zt). Reset gate controls the past information flow whereas the update
gate decides what new information to add. Consequently, it has a lower number
of parameters than a LSTM layer making its optimisation faster. All the processes
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being performed inside the GRU are described by Equations 2.18, 2.19, and 2.20.
As in the LSTM, during training, the network optimises the weight matrixes W and
the bias vector b.
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Figure 2.23: GRU. The update gate and reset gate are represented by zt and rt, respec-
tively. Adapted from [178].

z(t) = σ(Wzx · x(t) +Wzh · h(t−1) + bz) (2.18)

r(t) = σ(Wrx · x(t) +Wrh · h(t−1) + br) (2.19)

h(t) = (1− z(t))� h(t−1) + z(t) � tanh(Whx · x(t) +Whh · (r(t) � h(t−1))) (2.20)

Beyond the possibility of using past information, all DRNN architectures can
also use information from future timesteps, e.g., analysing an EEG window from the
left to the right and from the right to the left. For that, bidirectional layers must
be used [175].

2.7 Transfer learning

Transfer learning is a method that allows using knowledge acquired from a large
dataset (source domain) to develop a new model in other domain (target domain) [180].
Therefore, it is often used when the training dataset is not large enough to create
a model from scratch, as in the case of seizure prediction where the models must
be trained in a patient-specific way and the number of seizures per patient is quite
limited [181].

Over the last years, with the rapid growth of deep learning methods, researchers
have focused on using transfer learning to develop new DNNs, also known as deep
transfer learning. It can be divided into four categories: instance-based, mapping-
based, network-based, and adversarial-based [182,183].
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Instance-based approach uses some samples from the source domain to train the
model on the target domain (see Figure 2.24). For that, it selects samples from the
source domain similar to the target domain and weights them accordingly.

Source Domain Target Domain Dataset

Deep Neural
Network

Figure 2.24: Instance-based transfer learning. Adapted from [183].

Mapping-based approach converts samples from both source and target domains
into a new data space where both have similar data distributions. Afterwards, they
use this new dataset to train the model (see Figure 2.25).
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Figure 2.25: Mapping-based transfer learning. Adapted from [183].

Network-based consists of reusing a part of the deep learning architecture pre-
viously trained in the source domain and optimising the new layers on the target
domain (see Figure 2.26). DNNs developed using ImageNet dataset [184–187] are
often used in this type of approach [188,189]. This approach is also going to be used
in Chapter 8.

Adversarial-based approach compreehends training a model that can extract
features that follow similar distributions for both source and target domains so that
there are no significant differences between the features extracted in both domains.
Simultaneously, researchers must be able to use those features to perform accurate
classifications on the main task (see Figure 2.27).
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Figure 2.26: Network-based transfer learning. Adapted from [183].
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Figure 2.27: Adversarial-based transfer learning. Adapted from [183].

2.8 Summary

Epilepsy is a chronic neurological disease characterised by brief and recurrent sei-
zures. It comprises three classification levels: seizure type, epilepsy type, and
epilepsy syndrome. However, filling in all these three levels is not always possi-
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ble due to a lack of information leaving the classification incomplete for a subset of
patients. Although there are drugs to control seizures, about one-third of the pa-
tients can not get the seizure freedom condition, also known as patients with DRE.
It is a very severe condition as the patients may randomly suffer a seizure.

Patients with focal seizures are generally prone to have DRE. Specifically, pa-
tients with TLE are more susceptible to drug resistance. There are some treatments
to take care of these patients. For that, patients have to go to an epilepsy center
to be assessed. During the diagnostic, experts decide whether the patient is recom-
mended for resective surgery or referred to palliative treatment. The main source
of acquired data is the EEG. This signal acquires the brain’s electrical activity and
is widely used to study seizures. EEG represents two types of potentials: rhythmic
potentials related to brain waves of various frequencies and transients related to the
activity that appears spontaneously and is easily distinguishable from background
activity. EEG also captures a lot of artefacts from different sources, such as experi-
mental errors, acquisition environment, and physiological errors, which may provoke
false results.

EEG is the most used signal to develop seizure prediction models. Seizure pre-
diction aims to find the period before the seizure (preictal interval) and trigger an
alarm as soon as it happens. Each alarm is associated with an SOP and an SPH.
The SOP is when the seizure is expected to occur, whereas the SPH is the interval
between the alarm and the SOP. The SPH should be long enough to give the patient
time to prepare for the seizure, whereas in the case of the SOP, it should be short
enough to avoid anxiety. Regarding the evaluation, seizure prediction models should
be assessed using SS and FPR/h. Furthermore, statistical tests should be performed
to verify whether the models perform better than a random approach.

Seizure characteristics change a lot from patient to patient, and therefore, models
should be developed following a patient-specific approach. Moreover, being a task
based on nonstationary time series, several concept drifts occur over time, leading
to the need for approaches that adapt to the several shifts.

Researchers have been developing seizure prediction models based on deep learn-
ing architectures. The most used architectures are DCNN and LSTM since they al-
low exploring local and global details within each EEG window. The great advantage
of these architectures is their ability to learn directly from the data. In addition,
it is relatively simple to perform transfer learning using these. Thus, researchers
may, for example, train a general model using data from several patients and then
fine-tune the model for each patient, turning it into a patient-specific approach.





Chapter 3

State of the Art

This chapter reviews the previous and current state of the art related to
electroencephalogram (EEG) artefact removal methods and epileptic sei-
zure prediction. It is divided into three sections. Section 3.1 presents

approaches to remove noise from EEGs preparing them for further analysis. Then,
Section 3.2 describes databases used to study epilepsy and the methods utilised to
prepare the data and develop seizure prediction models. Finally, Section 3.3 presents
a summary of the literature review.

3.1 EEG artefact removal

Seizure prediction studies require long-term EEGs. Therefore, patients must keep
their daily basic tasks such as eating, sleeping, talking and walking while being
monitored. As expected, these tasks negatively affect the acquisition because they
frequently produce patterns unrelated to neural information (artefacts) such as elec-
trode movement or activation of the head and neck muscles. Furthermore, EEG
electrodes usually capture other physiological signals such as eye movements and
cardiac pulse [23, 78]. A possible solution would be to detect and remove those
segments. However, this removal would result in a high loss of information and,
therefore should only be carried out in cases where nothing can be extracted from
the signal (electric flatlines, saturated segments and excessive interference). Thus,
researchers have developed several techniques for removing noisy data from the EEGs
while trying to maintain neural information [190–197].

3.1.1 Simple digital filtering

Simple digital filtering is a highly used technique for removing undesired frequency
bands from the EEGs. This technique comprises simple finite impulse response (FIR)
and infinite impulse response (IIR) filters which could be divided in low-pass, band-
pass, high-pass, band-stop and notch filters. Regarding studies using scalp EEG,
the data are usually filtered using low-pass, high-pass, and notch filters [23, 78].

49
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Low-pass filters reduce the effect of noisy high-frequencies whereas high-pass filters
remove low-frequency components such as the direct current (DC) component and
breathing artefacts. There is no standard cutoff frequency for both types of filters,
depending only on the problem and what the authors choose. The notch filter
removes the powerline component introduced by the alternate current (AC) power
supply. Filtering is usually performed using IIR filters [74, 137]. Compared to
FIR filters, IIR are faster and usually require less coefficients to obtain a similar
performance [198]. Although simple digital filters are highly used to prepare EEG
data, these operate over complete frequency bands and, therefore, can not separate
signals with overlapped frequency spectra. Thus, they may not be used to separate
EEG from other physiological signals [23,24].

3.1.2 Linear regression

Linear regression was the most used method for artefact removal until the 1990s as
a result of its lower computational complexity [78]. It was highly used for removing
ocular activity from the EEGs [190,199,200]. Linear regression computes the filtered
signal ŝ by subtracting noise nmultiplied by a previously optimised coefficient β from
the measured signal x (see Equation 3.1).

ŝk = xk − β × nk (3.1)

Despite its simple formula, it presents two major drawbacks that led to its re-
placement as the state of the art of artefact removal algorithms. First, the linear
behaviour is not able to adapt perfectly to the nonlinearity of physiological pro-
cesses, and the requirement of a reference noise signal to train the models makes
them unsuitable when template signals are not available [24,78].

3.1.3 Advanced filtering

Advanced filters adjust their weights to reduce the difference between the estimated
and desired clean signals. They tend to generate better results than the linear
regression [24,83]. The three main types of advanced filtering methods usually used
to remove artefacts from EEGs are adaptive filtering, Wiener filtering and Bayesian
filtering [23,78].

Adaptive filters assume that both signal and artefacts are not correlated. They
require an artefact reference for generating an approximation signal, very similar to
that template, to subtract it from the input [191, 201–204]. Therefore, they require
extra electrodes to be able to operate [23, 78]. Equation 3.2 presents the adaptive
filter formula using least mean squares (LMS) optimisation algorithm, where the ŝ
is the filtered signal, the x is the measured signal, the w are the filter weights, the
n is the noise signal, and the µ is the adaptation step size.
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ŝk = xk − wTk nk
wk+1 = wk + 2µŝknk

(3.2)

Contrary to adaptive filtering, Wiener filtering is based on the estimation of
the artefacts [192]. The filter uses a statistical procedure to find an approximation
to the artefacts and generate a linear time-invariant filter that produces an output
similar to the pure signal. The power spectrum density (PSD) is an example of
statistical information that may be used to estimate the artefacts [205]. Though
it does not require a reference, overcoming the drawback of the adaptive filters, it
always needs to be calibrated before its usage which may not be possible in real-
time scenarios [23, 78]. Equation 3.3 presents the Wiener filter formula using the
PSDs as statistical information about the signals, where the H(f) is the filter in the
frequency domain, the |X(f)|2 is the PSD of the measured signal, the |N(f)|2 is the
PSD of the noise signal, the ŝ is the filtered signal, the x is the measured signal, and
the h is the filter in the discrete time domain.

H(f) = |X(f)|2−|N(f)|2
|X(f)|2

ŝk = xk ∗ hk
(3.3)

Finally, Bayesian filtering is a method based on Markov dynamics able to work
in real-time without any reference signal overcoming the aforementioned advanced
filtering techniques. However, due to its complexity, it needs to be approximated
using Kalman filters [193,206] or particle filters [207]. As in the case of the Wiener
filters, Bayes filters require calibration before its usage which may lead to some
problems in non-controlled environments [23,78]. Equation 3.4 presents the Kalman
filter formula for noise removal, where the ŝ is the filtered signal, the P is the state
variance variable, the Q is the process variance constant, the K is the Kalman gain,
the xk is the measured signal, and the R is the measurement constant.

ŝk|k−1 = ŝk−1|k−1

Pk−1 = Pk−1|k−1 +Qk

ŝk|k = ŝk|k−1 +Kk(xk − ŝk|k−1)
Kk = Pk|k−1 + (Pk|k−1 +R)−1

Pk|k = (1−Kk)Pk|k−1

(3.4)

3.1.4 Source decomposition

Source decomposition methods, such as wavelets and empirical mode decomposition
(EMD) approaches, aim at separating the neural information from the artefacts by
decomposing each signal channel into different waveforms.

Wavelet decomposition consists of dividing the signal into several components [208].
The most used wavelet technique is the discrete wavelet transform (DWT). It is de-



52 CHAPTER 3. STATE OF THE ART

fined by Equation 3.5.

xa,L =
∑N
k=1 g[k] ∗ xa−1,L[2n− k]

xa,H =
∑N
k=1 h[k] ∗ xa−1,L[2n− k]

(3.5)

It splits the signal into different levels using scaling functions g[n] (low-pass filters)
and wavelet functions h[n] (high-pass filters). The components xa,H generated after
applying the wavelet functions are called detail coefficients whereas the components
xa,L generated by applying the scaling functions are called approximation coeffi-
cients. The approximation coefficients xa,L are downsampled by two and used to
compute another level of coefficients. The process is performed until the required
decomposition level A is reached. To perform the artefact removal, the detail coef-
ficients xa,H below a defined threshold are removed, and then the inverse DWT is
applied to obtain the denoised signal ŝ[n] [194,209–212] (see Equation 3.6).

ŝ[n] =
A∑
a=1

N∑
k=1

g[k] ∗ xa,L[n2 − k] +
A∑
a=1

N∑
k=1

h[k] ∗ xa,H [n2 − k] (3.6)

Similarly to simple digital filtering, wavelets cannot remove artefacts that overlap
frequencies of interest without removing important data [78,82].

EMD is a heuristic algorithm that aims to decompose the signal into different
time series named intrinsic mode functions (IMFs) [213]. It is able to adapt itself to
nonlinear and nonstationary signals, such as EEG. These components are obtained
through an iterative pipeline. This pipeline first identifies the local maxima and
minima and connects them using interpolation, generating two envelopes. After-
wards, the average of both envelopes is computed and subtracted from the original
signal obtaining a residual signal called IMF. This process is performed until no
more extremes are found on the residual signal. After that, the IMFs containing
artefacts are removed whereas the others are summed to form the reconstructed
signal ŝ[n] [82, 195,214–216] (see Equation 3.7).

ŝ[n] =
M∑
m=1

IMFm[n] +ResidueM [n] (3.7)

However, as in the case of the wavelets, the selection of the noisy IMFs is not auto-
matic. Therefore, before the implementation, it is necessary to define an automatic
evaluation to classify the IMFs. Furthermore, EMD is computationally complex and
thus difficult to be used in real-time.

3.1.5 Blind source separation

Blind source separation (BSS) methods aim at the separation of the signals X in
their independent sources S assuming that the measured signals X result from the
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multiplication of a mixing matrix A by the independent sources S plus a noise
component N , as described by equation 3.8.

X = AS +N (3.8)

To compute the unmixing matrix W , BSS methods suppose that the noise and
error values N are contained in the independent sources S and that the combination
of the sources S is linear. Afterwards, the unmixing matrix W = A−1 is used to
obtain an approximation of the independent sources Ŝ. Equation 3.9 presents the
main formula for performing a BSS.

Ŝ = WX (3.9)

It is worth noting that these methods do not find more independent sources
than the number of measured signal channels. Thus, they tend to not perform
satisfactorily when few channels are available [24]. Figure 3.1 presents an example
of how BSS works.

A
Mixing Matrix

W
Unmixing

Matrix

Mixture of SourcesSinusoidal Source

Triangular Source Mixture of Sources

Sinusoidal Source

Triangular Source

Figure 3.1: BSS example.

The unmixing matrix W is calculated using different statistics depending on the
algorithm. There are four classes of BSS algorithms: high-order statistic methods,
second-order statistic methods, second-order statistic methods with nonstationary
properties and methods that use temporal and spectral information to separate the
sources [220]. The most used ones are described below, namely the restricted and ex-
tended Infomax independent component analysis (ICA), adaptive mixture indepen-
dent component analysis (AMICA), FastICA and second-order blind identification
(SOBI) [23,78,221,222].

All the aforementioned BSS algorithms assume temporal and spatial stationarity
throughout the entire recording and that the sources are statistically independent.
Therefore, for using these algorithms the data should be divided into quasi-stationary
segments, and the acquisition setup configuration must be maintained throughout
the recording [78, 223]. For making a more accurate unmixing matrix calculation,
these methods require a preprocessing step where the data is whitened, usually us-
ing principal component analysis (PCA), in order to cancel the correlation between
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the signal’s channels. Then, as stated previously, the unmixing matrix is calculated
depending on the type of algorithm [23, 220]. Infomax ICA is a high-order statistic
method. It searches for the best unmixing matrix using maximum likelihood estima-
tion. There are two different types of Infomax ICA algorithm: the restricted version
which can separate leptokurtic sources, e.g., physiological sources, and the extended
version which is able to distinguish both leptokurtic and platykurtic sources, e.g.,
the electrical artefacts. Therefore, both methods are able to separate brain sig-
nals from the physiological artefacts [224]. AMICA is an improved version of the
Infomax ICA. It calculates both probability density function (PDF) and spatial pro-
jection for every component while the Infomax ICA assume that all the components
follow one or two template PDFs. Furthermore, this method is able to combine
more than one ICA model to achieve a better source separation. Therefore, this
model is able to give a better approximation of each source [217]. FastICA is also
a high-order statistics method based on maximising the negentropy of the source
distributions. However, unlike the Infomax and AMICA algorithms, this method
always converges to the same point. It is faster than the previous ones when the
components are well-defined non-Gaussian sources, i.e., when there are no near-
Gaussian components [225]. Finally, SOBI algorithm is a second-order statistics
algorithm. It calculates the optimal unmixing matrix by reducing the correlation
between time-lagged versions of the source activities. Compared to the high-order
statistics algorithms, this is not only faster but also has a satisfactory performance
turning it a potential algorithm for real-time situations in which computational time
should be minimised [78,217,226].

Although there are different approaches for getting the independent sources of a
signal, all of them share the same purpose: obtaining artefact-free signals. Delorme
et al. [217] presents a large comparison of different BSS algorithms where they report
that AMICA shows the best performance for source separation. However, it presents
results similar to the Infomax-based methods which require less computational power
and present fewer hyperparameters to tune.

BSS methods are considerably used for EEG artefact removal [24, 78, 217] even
in epilepsy studies [25,218,219]. Generally, EEGs are considered to be generated by
independent dipolar sources that mix together following a linear model. Thus, BSS
algorithms tend to perform well for separating brain signals from artefacts [217,220].
Furthermore, these methods do not require any external information about the type
of artefacts before their usage, making them an important solution when artefact
references are unavailable.

3.1.6 Hybrid blind source separation

Hybrid BSS methods combine the advantages of nonlinear and linear algorithms to
better separate the independent sources. Moreover, these can also remove artefacts
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from unichannel signals, making them valuable whenever a few channels are avail-
able, e.g., ultra-long-term EEG acquisition using UNEEG [57]. However, merging
two complex algorithms increase the time required to process the data. Exten-
sive computational time may be a problem in real-time operation [23]. Wavelet-
BSS [227–230] and EMD-BSS [231–234] are examples of hybrid BSS pipelines.

3.1.7 Automatic blind source separation

Despite the satisfactory performance of BSS methods on separating the neural and
artefact components, they are not automatic, i.e., the selection of the neural com-
ponents has to be performed manually. Automatic BSS approaches classify each
independent component (IC) based on features containing temporal, spectral, or
spatial information. These methods receive the ICs, classify them and perform the
signal reconstruction by discarding the artefact components.

Automatic BSS approaches have been created using temporal, spectral and spa-
tial handcrafted features extracted from the time series, PSD and topographic map
of each IC, respectively [218,235–242]. Recently, new approaches based on deep neu-
ral networks (DNNs) were formulated [196, 243, 244]. Croce et al. [243] developed
deep convolutional neural networks (DCNNs) using the PSDs and the topographic
maps. To develop their models, they used 1,067 ICs from EEGs and 4,749 ICs
from magnetoencephalograms (MEGs), labelled by trained experts. They reported
that their approach outperformed classifiers based on manually extracted features.
Lee et al. [244] introduced a Bayesian deep learning model based on convolutional
layers and an attention module using only topographic maps. They used a dataset
comprising 12,020 ICs classified by trained experts. Their results indicate that the
attention module improved the classifier performance. Pion-Tonachini et al. [196]
presented the current state of the art model for automatically preprocessing EEG
data using ICA. They compared three different deep learning architectures to label
ICs: (i) a DCNN; (ii) a DCNN trained with a cross-entropy function that double
weighted brain IC classification errors (weighted DCNN); and (iii) a generative ad-
versarial network (GAN). They trained these architectures using PSDs, topographic
maps, and autocorrelation functions. The authors used EEG recordings from the
Swartz Center for Computational Neuroscience1 database. These recordings were
converted in ICs using ICA. Training and test sets were prepared differently. The
training set comprised 5,937 ICs labelled using a crowd labelling approach whereas
the testing set contained 130 ICs labelled by six trained experts. They reported
that the weighted DCNN outperformed the other two neural network models. Ad-
ditionally, they developed a faster version of the weighted DCNN which does not
use the autocorrelation function. They named the weighted DCNN as ICLabel and
the faster weighted DCNN model as ICLabelLite. Finally, they showed that these

1https://sccn.ucsd.edu

https://sccn.ucsd.edu
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two models outperformed previously developed handcrafted feature methods. Curi-
ously, they reported that the ICLabelLite performed better than the default ICLabel
for the binary classification of ICs. ICLabel and ICLabelLite models are currently
implemented in ICLabel toolbox available in EEGLAB [245].

Automatic BSS approaches should be considered whenever a BSS model is used
because they allow its usage in real-time ambulatory scenarios. Table 3.1 summarises
the automatic BSS methodologies proposed in the referenced scientific articles.

Table 3.1: Summary of the EEG preprocessing models based on automatic BSS.
Authors Method Database Dataset Description Artefacts

Shoker et
al. [246]

SOBI-SVM

London King’s
College

Hospital EEG
Database

200 EEG segments that last 10
seconds each. Each EEG segment

contains 16 channels.
Eye Blinking

LeVan et
al. [218]

FastICA-
Bayesian
Network

Personal
Database

collected at the
Montreal

Neurological
Institute

EEG data from 46 patients.
Number of channels varied from
21 to 39 electrodes. The signals
were converted in 30-second
segments. Each segment was
divided in 2-second epochs

comprising 15 epochs for each IC.

Every type of
artefacts

Nolan et
al. [235]

ICA-
Threshold-
based Model

Personal
Simulated and
Real Databases

The first dataset contains 200
simulated epochs with artefacts in
randomly selected channels. The

second dataset contains 47
healthy patients. All signals from
this second dataset contain 134

channels. Each EEG epoch lasts 2
seconds.

Eye Blinking,
Eye

Movement,
Muscle, Dis-
continuities,
Linear Trends
and White

Noise

Mognon et
al. [237]

Infomax ICA-
Threshold-
based Model

Two Personal
Databases

The first dataset contains EEG
signals from 16 subjects. Each
EEG segment contains 128

channels which were reduced to 63
for performing ICA. Regarding
the second dataset, the EEG

Segments contain 64 channels. On
both datasets, the signals were
segmented in 2.5-second epochs.

Eye Blinking,
Eye Movement
and Generic

Descontinuities

Winkler et
al. [236]

TDSEP-LDA
Personal
Database

23 EEG recordings from 12
subjects with 121 channels

reduced to 30 using PCA. Each
recording lasts 10 minutes.

Every type of
artefacts

SOBI: Second-order Blind Identification; SVM: Support Vector Machines; EEG: Electroencephalogram;
MEG: Magnetoencephalogram; IC: Independent Component; TDSEP: Temporal Decorrelation source Sep-
aration; LDA: Linear Discriminant Analysis; MNR: Multinomial Regression; PCA: Principal Component
Analysis; ANN: Artificial Neural Network; DCNN: Deep Convolutional Neural Network wDCNN: Weighted
Deep Convolutional Neural Network

Continues on next page
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Authors Method Database Dataset Description Artefacts

Frølich et
al. [240]

Infomax
ICA-MNR

Personal
Databases

The first database contains
250-channel EEG signals from 34
subjects lasting between 8 and 88
minutes. The second database

contains 64-channel EEG signals
from 12 subjects lasting between
56 and 66 minutes. In total, the
dataset comprises 8,023 ICs.

Eye Blinking,
Cardiac Pulse,

Eye
Movement,
and Muscle

Chaumon et
al. [238]

Extended
Infomax ICA-
Threshold-
based Model

Personal
Databases

Training dataset with 8 EEG sets
containing between 64 and 128
channels each and test dataset
with 13 EEG sets containing 64

channels each. The EEG
recordings last from about 2
minutes to about 7 minutes.

Eye Blinking,
Eye

Movement,
Muscle, Bad
Channel, Rare
Event and
Non-Dipolar
Component

Radüntz et
al. [239]

ICA-LDA
Personal
Database

The dataset includes 57 subjects.
Each EEG signal contains 25
channels and lasts between 1.5

and 20 minutes.

Eye Blinking,
Eye

Movement,
Cardiac Pulse,
Muscle and
Impedance

Radüntz et
al. [241]

ICA-ANN
Personal
Database

The dataset includes 57 subjects.
Each EEG signal contains 25
channels and lasts between 1.5

and 20 minutes.

Eye Blinking,
Eye

Movement,
Cardiac Pulse,
Muscle and
Impedance

Tamburro et
al. [242]

ICA-Nonlinear
SVM

Personal
Database

The dataset includes 62 subjects.
The dataset contains both dry
and wet EEG signals. The first
ones comprehend 97 channels

whereas the second ones contain
128 channels. Each EEG

recording lasts from 42 seconds to
250 seconds.

Eye Blinking,
Eye

Movement,
Cardiac Pulse
and Muscle

Croce et
al. [243]

FastICA-
DCNN

Personal
Databases

The dataset includes EEG and
MEG signals. EEG signals

contain 128 channels, last between
5 and 22 minutes, and comprise
1,067 ICs. MEG signals contain
153 magnetometers, last between
5 and 15 minutes, and comprise

4,749 ICs.

Eye
Movement,

Cardiac Pulse
and Sensor
Malfunction

Pion-Tonachini
et al. [196]

ICA-wDCNN
Personal
Database

The dataset includes 6352 EEG
recordings with the number of

channels ranging from 32 to 256.
Each recording lasts 5 seconds.
From these 6352 EEGs, there are

only 5937 labelled ICs.

Every type of
artefacts

SOBI: Second-order Blind Identification; SVM: Support Vector Machines; EEG: Electroencephalogram;
MEG: Magnetoencephalogram; IC: Independent Component; TDSEP: Temporal Decorrelation source Sep-
aration; LDA: Linear Discriminant Analysis; MNR: Multinomial Regression; PCA: Principal Component
Analysis; ANN: Artificial Neural Network; DCNN: Deep Convolutional Neural Network wDCNN: Weighted
Deep Convolutional Neural Network

Continues on next page
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Authors Method Database Dataset Description Artefacts

Lee et al. [244]
Infomax

ICA-Bayesian
Deep Learning

Personal
Database

The dataset includes 19-channel
EEG data. Data was converted in

12,020 ICs.

Eye Movement
and Muscle

SOBI: Second-order Blind Identification; SVM: Support Vector Machines; EEG: Electroencephalogram;
MEG: Magnetoencephalogram; IC: Independent Component; TDSEP: Temporal Decorrelation source

Separation; LDA: Linear Discriminant Analysis; MNR: Multinomial Regression; PCA: Principal
Component Analysis; ANN: Artificial Neural Network; DCNN: Deep Convolutional Neural Network

wDCNN: Weighted Deep Convolutional Neural Network

3.1.8 Neural network models

Recently, authors have reported new EEG artefact removal methods, based on deep
learning architectures, that aim at solving the drawbacks of the aforementioned
methods [197, 247–250]. Ghosh et al. [248] and Yang et al. [247] developed au-
toencoders (AEs), based on fully connected layers, to automatically remove ocular
artefacts from EEGs. Later on, Leite et al. [249], Zhang et al. [250] and Sun et
al. [197] proposed models, based on DCNNs, which are able to extract spatiotem-
poral features, and, therefore, are more robust than the traditional fully connected
neural networks. Leite et al. developed a deep convolutional autoencoder (DCAE)
for removing eye blink and jaw clenching artefacts previously added to clean EEG
signals. Zhang et al. [250] proposed a DCNN that gradually increases its width to
remove muscle artefacts from EEG signals. They reported that this architecture
prevents the occurrence of overfitting. Their model was trained using a publicly
available benchmark dataset [251]. Sun et al. [197] presented a DCNN, based on
residual connections, for removing ocular, muscle and cardiac artefacts from noisy
EEGs. These signals were generated from summing clean epileptic EEG segments
from the CHB-MIT Scalp EEG Database, with electromyogram (EMG), electrocar-
diography (ECG) and electrooculogram (EOG) signals from Physionet. To develop
these approaches, authors require large datasets and considerable computational
time. However, compared to the current state of the art BSS methods, these ap-
proaches present some main advantages: minor loss of relevant information; faster
signal reconstruction; no need for several channels to get cleaner signals; and fully
automatic output.

Table 3.2 summarises the EEG artefact removal methods based on deep learning
architectures. In conclusion, researchers are currently exploring the potential of
DNNs to eliminate artefacts from EEGs. They report that these approaches can
learn the complex patterns and the high-dimensional characteristics of the EEGs,
being able to separate these from noisy disturbances. However, despite the high
performances obtained using deep learning methods, studies were evaluated using
either simulated data or data acquired under controlled environments. Therefore,
these studies do not completely simulate artefact removal from realistic long-term
EEG acquisitions.



3.2. SEIZURE PREDICTION 59

Table 3.2: Summary of the EEG preprocessing models based on neural networks.
Authors Method Database Dataset Description Artefacts

Yang et
al. [247]

SAE

“Datasets 1"
for BCI

Competition
IV and
Personal
Database

7 subjects from the first database
and 3 subjects from the second,
each one with 200 trails lasting
more than 6 seconds. The EEG
from the first database contains
59 channels whereas the EEG

from the second only contains 32.

Ocular
Artefacts

Leite et
al. [249]

DCAE

Personal
Database

(Noisy Signals)
and DEAP

EEG Dataset
for Emotion
Analysis
(Noiseless
Signals)

The authors do not report how
many subjects are present in the

first database. The second
database contains 32 subjects.

Only 19 channels from the 10-20
International System are used.

Each EEG segment lasts 1 minute.

Eye Blinking
and Jaw
Clenching

Gandhi et
al. [252]

GAN

Personal
Database

(Noisy Signals)
and US Army

Research
Laboratory

EEG database

The dataset contains 4 patients
with noiseless data and 10

patients with noisy signals. All
signals contain 64 channels. Each
input EEG segment has 1000
samples (about 2 seconds).

Jaw Clenching
and Moving,

Ocular
Artefacts,
raising and
lowering

eyebrows and
rotating the
head for both

sides

Sun et al. [197]
1D Residual

DCNN

CHB-MIT
Database and
Physionet

Noise Dataset
(EMG, ECG
and EOG)

The first dataset contains 20
patients. All signals contain 23
channels. Each input EEG

segment has 6 minutes and 40
seconds. The dataset was divided
into 80% for training and 20% for

testing.

Muscle,
Cardiac and

Ocular
Artefacts

Zhang et
al. [250]

DCNN
EEGDenoiseNet

Dataset

5,598 epochs obtained from
merging 4,514 EEG epochs with

5,598 EMG epochs
Muscle

SAE: Stacked Autoencoder; BCI: Brain-Computer Interface; EEG: Electroencephalogram; DCNN: Deep
Convolutional Neural Network DCAE: Deep Convolutional Autoencoder; GAN: Generative Adversarial

Networks; EMG: Electromyogram; ECG: Electrocardiogram; EOG: Electrooculogram

3.2 Seizure prediction

Seizure prediction models are a possible solution to improve drug-resistant epilepsy
(DRE) patient’s quality of life. Their main goal is to find the transitional brain state
between the normal and the seizure state, i.e., to find the preictal period. These
models may be integrated into warning devices to send alarms before seizures. With
this information, patients can leave an ongoing activity and prevent, for example,
accidents. Seizure prediction models might also allow for the suppression of the
seizure discharge by attempting brain electrical stimulation or administering timely
targeted seizure-suppressive medication.

Figure 3.2 presents the common seizure prediction framework. The seizure pre-
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Figure 3.2: Seizure prediction framework.

diction framework comprises signal acquisition, signal preprocessing, feature extrac-
tion, feature selection, classification, postprocessing, and performance assessment.
The signal acquisition includes retrieving data from databases. Signal preprocess-
ing aims to denoise, segment the data in smaller windows, and define the preictal
period for training the predictors. Feature extraction transforms the data into sets
of biomarkers that can be used to build predictions. Feature selection picks the
biomarkers with high discriminative power and removes the redundant ones. The
classification consists in developing predictive models using supervised learning algo-
rithms. It should be noted that when using deep learning architectures, the feature
extraction, feature selection, and classification steps are often merged into one. After
the classification of the various windows, postprocessing, also known as regularisa-
tion, smooths the classifier output and creates a temporal dependency between the
various windows. Finally, the prediction is evaluated using different performance
metrics.

3.2.1 Epilepsy databases

Data is essential to develop seizure prediction models [253]. Over the years, several
databases have been used such as Children’s Hospital Boston-Massachusetts Insti-
tute of Technology (CHB-MIT) database [254], Universität Bonn database [255],
Universität Freiburg database [139], EPILEPSIAE database [13], NeuroVista data-
base [33,125], American Epilepsy Society (AES) database [256], Epilepsy Ecosystem
database [257], a database from the Zealand University Hospital (ZUH), the Odense
University Hospital (OUH), and the King’s College London (KCL) (ZUH-OUH-KCL
database) [72], SeizeIT2 database [258], and a database from the St.Vincent’s Hos-
pital Melbourne [127]. It is worth noting that the Universität Freiburg database is
discontinued as the EPILEPSIAE database superseded it. Table 3.3 summarises the
aforementioned databases in seizure prediction containing EEG data.

As presented in Table 3.3, the Universität Bonn’s and the Universität Freiburg’s
databases were two of the first databases containing epileptic EEG. These databases
contained intracranial electroencephalography (iEEG) from a small number of pa-
tients in presurgical monitoring. Additionaly, the Universität Bonn’s database also
contained EEGs collected using an external acquisition system (scalp EEG). Af-
terwards, CHB-MIT was created containing epileptic scalp EEG from 23 pediatric
patients under presurgical conditions. CHB-MIT is currently one of the most used
databases because it can be freely accessed on the Physionet website.
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Later on, EPILEPSIAE was set up. This repository is significantly larger than
the remaining ones. It comprises data collected from 275 patients in presurgical
monitoring, using different physiological signals including scalp EEG, iEEG, ECG,
among others. Data was acquired at Universitätsklinikum Freiburg, Centro Hospi-
talar e Universitário de Coimbra and Hôpital de la Pitié-Salpêtrière in Paris. More-
over, it is a standard database as it contains long-term annotated recordings (each
patient’s repository contains on average 165 hours of data making a total of 40,000
hours of signal). 68% of all patients in this database evidence temporal lobe epilepsy
(TLE) being in line with its prevalence in the population with focal epilepsy. Each
patient contains at least three leading seizures [259], i.e., three seizures separated
by 4 hours of interictal data. The patient’s metadata includes vigilance stages at
seizure onset, seizure type, seizure localization, and drug dosage.

In 2013, Cook et al. presented the NeuroVista database. Contrary to the pre-
vious databases, this repository includes iEEG from 10 patients collected over a
maximum of 2 years. This database covers a large period, providing sufficient in-
formation for developing a concept drift study. However, the study would only be a
proof of concept because of the small number of subjects.

Afterwards, two more databases appeared: AES database and Epilepsy Ecosys-
tem repository. AES database included iEEG data from five dogs and two humans
whereas the Epilepsy Ecosystem repository included iEEG data from three patients
from the NeuroVista database. Both databases were used in public seizure predic-
tion competitions proposed by Kaggle. Therefore, these are also known as Kaggle
databases.

Recently, three more databases were created: a database from ZUH, OUH, and
KCL (ZUH-OUH-KCL database), the SeizeIT2 database, and a database from the
St.Vincent’s Hospital Melbourne. SeizeIT2 database contains scalp EEG and EEG
captured with behind-the-ear electrodes acquired in presurgical conditions. The
other two databases contain a new type of EEG. They contain subscalp electroen-
cephalogram (ssEEG) collected over several months inside and outside the hospital.
Therefore, they comprehend a new idea of analysing epileptic EEG data which will
certainly provide better insights about the seizures. Data from the ZUH-OUH-
KCL database were acquired using UNEEG SubQ device [72] whereas data from
the St.Vincent’s Hospital Melbourne were acquired using EpiMinder Subscalp de-
vice [127]. Currently, more data are being collected by KCL [260] in order to increase
the ZUH-OUH-KCL database.

Beyond the aforementioned databases, there are other repositories containing
other types of biosignals such as NeuroPace database [261], a database from the
Children’s Hospital Boston [262], and another database from the St.Vincent’s Hospi-
tal Melbourne [140]. However, as this thesis focuses on developing seizure prediction
models using only EEG data, they are not presented in the Table 3.3.
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Table 3.3: Summary of epileptic EEG databases found in the literature.

Database
(Year)

Epileptic
Subjects

EEG
Type

Number of
Electrodes

Sampling
Rate
(Hz)

Hours of
Signal

Number
of

Seizures
Universität
Bonn [255]
(2001)

5 iEEG 128 173.61 35 5

Universität
Freiburg [139]

(2003)
21 iEEG 128 256 582 88

CHB-
MIT [254]
(2009)

23 Scalp EEG 18 256 844 163

EPILEPSIAE [13]
(2012)

275
Scalp EEG
and iEEG

Scalp EEG: At
least 19;

iEEG: Up to
125

250-2500
More than
40,000

2,662

NeuroVista [125]
(2013)

10 iEEG 16 400
About
140,000

2,817

AES [256]
(2014)

5 Dogs and
2 Humans

iEEG 16
Dogs: 400;

Hu-
mans: 5000

NA NA

Epilepsy
Ecossys-
tem [257]
(2018)

3 iEEG 16 400
About
30,000

633

ZUH-OUH-
KCL [72]
(2019)

9 ssEEG 2 207 11,774 338

SeizeIT2 [258]
(2020)

54

Scalp EEG
and

Behind-
the-ear
EEG

Scalp EEG: 19;
Behind-the-ear

EEG: 4
250 5,284 182

St.Vincent’s
Hospital Mel-
bourne [127]

(2021)

5
Scalp EEG
and ssEEG

Scalp EEG: 23;
ssEEG 2

250

Scalp
EEG: About
336 per
patient;

ssEEG: At
least 5,760
per patient

55 (2 weeks
where both
scalp EEG
and ssEEG

were
acquired)

EEG: Electroencephalogram; iEEG: Intracranial Electroencephalogram; ssEEG: Subscalp
Electroencephalogram; NA: Not Available

3.2.2 Signal preprocessing

The signal preprocessing aims to prepare EEG data for information extraction, anal-
ysis, and development of seizure predictors. It comprehends filtering and artefact
removal and data segmentation [137]. Both tasks must be quick and autonomous
because the main objective of seizure prediction models is to continuously acquire
and process data in real time. Furthermore, researchers also specify the three peri-
ods needed to develop seizure predictors: preictal period, seizure occurrence period
(SOP), and seizure prediction horizon (SPH). These periods may be also determined
while developing the classifiers. However, the definition of the periods must be com-
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pletely independent from the out-of-sample results obtained by the developed mod-
els. Table 3.4 summarises the signal preprocessing settings used to develop seizure
prediction models based on EEG.
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Table 3.4: Summary of signal preprocessing procedures found in the literature.

Study (Year)
Database (# Patients, # Seizures,

Duration, Signal)
Artefact Removal

Methods
Window Length

(Seconds)
SOP/SPH (Minutes)

Mormann et al. [263] (2005) Personal (5, 46, 331 hours, iEEG) Removal of corrupted data 17, 20.5 5, 30, 120, 240 / 0
Le Van Quyen et al. [264] (2005) Personal (5, 52, 305 hours, iEEG) NA 5 Variable / 0

Mirowski et al. [265] (2009) Freiburg (21, NA, NA, iEEG)
Band-pass filter (0.5-49 Hz

and 51-120 Hz)
5 50-120 / 0

Park et al. [266] (2011) Freiburg (18, 80, NA, iEEG)
Removal of corrupted data
and band-stop filter (47-53

Hz, 97-103 Hz)

20 with 50%
overlap

30 / 0

Cook et al. [125] (2013) NeuroVista (10, 477, 8.4 years, iEEG)
Octave-wave digital filters
(8-128 Hz) and notch filters

5 Minutes to hours / 0

Rabbi et al. [267] (2013) EPILEPSIAE (1, 7, 35, iEEG)
Band-pass filter (0.5-100 Hz)

and notch filter (60 Hz)
10 with 50%

overlap
15, 30, 45 / 0

Rasekhi et al. [268] (2013)
EPILEPSIAE (10, 76, 1,388 hours,

iEEG+scalp EEG
Notch filter (50 Hz) 5 10, 20, 30, 40 / 0

Alvarado-Rojas et al. [141] (2014) EPILEPSIAE (53, 558, 531 days, iEEG)
Band-pass filter (0.5-8 Hz,

40-140 Hz)
60 10, 30, 60 / 1

Teixeira et al. [269] (2014)
EPILEPSIAE (278, 2,702, 2,031 days,

iEEG+scalp EEG)
Notch filter (50 Hz) 5 10, 20, 30, 40 / 0.167

Moghim and Corne [270] (2014) Freiburg (21, NA, 24 days, iEEG) Visual inspection 5 5 / 1

Parvez et al. [271] (2015) EPILEPSIAE (21, 87, 509 hours, iEEG)
Differential window and phase

correlation
10 5 / 0

Rasekhi et al. [272] (2015)
EPILEPSIAE (10, 76, 1,388 hours,

iEEG+scalp EEG)
Notch filter (50 Hz) 5 10, 20, 30, 40 / 0

Bandarabadi et al. [74] (2015)
EPILEPSIAE (24, 159, 3,565 hours,

iEEG+scalp EEG)
Notch filter (50 Hz) 5 10, 20, 30, 40 / 0

Assi et al. [273] (2015) AES (5 dogs, 44, NA, iEEG)
Band-pass filter (0.5-180 Hz)

and notch filter (50 Hz)
5 60 / 1/12

Myers et al. [22] (2016) CHB-MIT (10, 30, 61 hours, scalp EEG)
Removal of corrupted data,

band-pass filters
60 / 2-62

EEG: Electroencephalogram; iEEG: Intracranial Electroencephalogram; ssEEG: Subscalp Electroencephalogram; NA: Not Available; ICA: Independent Compo-
nent Analysis; EMD: Empirical Mode Decomposition; FFT: Fast Fourier Transform

Continues on next page
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Study (Year)
Database (# Patients, # Seizures,

Duration, Signal)
Artefact Removal

Methods
Window Length

(Seconds)
SOP/SPH (Minutes)

Liang et al. [274] (2016) AES (5 dogs+2, 50, 512.58 hours, iEEG)

Band-stop filter (47-53 Hz,
97-103 Hz), low-pass filter

(200 Hz), high-pass filter (0.1
Hz)

5 60 / 0

Chu et al. [275] (2017)
CHB-MIT (14, 79, 434.3 hours, scalp EEG)
Personal (3, 17, 148.4 hours, scalp EEG)

Band-stop filter (57-63 Hz,
117-123 Hz)

20 with 50%
overlap

85 / 1/2

Direito et al. [276] (2017)
EPILEPSIAE (216, 1800, NA, iEEG+scalp

EEG)
Notch filter (50 Hz) 5 10, 20, 30, 40 / 1/6

Khan et al. [277] (2017)
Personal (28, 61, NA, scalp EEG)
CHB-MIT (22, 68, NA, scalp EEG)

Low-pass filter (128 Hz) 1 10 / 0

Karoly et al. [76] (2017) NeuroVista (9, 1,383, 10.35 years, iEEG) Band-pass filter (1-140 Hz)
60 with 50%

overlap
30 / 1

Kuhlmann et al. [257] (2018) NeuroVista (3, 633, 3.63 years, iEEG) A different algorithm per team 15-600 60 / 5

Shahbazi et al. [278] (2018) CHB-MIT (14, 49, NA, scalp EEG)
Band-stop filter (57-63 Hz,
117-123 Hz) and notch filter

(0 Hz)

10 with 50%
overlap (interictal)
and 75% (preictal)

30 / 0

Eberlein et al. [279] (2018)
AES (4 dogs, NA, NA, iEEG)
NeuroVista (3, NA, NA, iEEG)

NA 15 60 / 5

Truong et al. [280] (2018)
Freiburg (13, 59, 311.4, iEEG)

CHB-MIT (13, 64, 209 hours, scalp EEG)
AES (5 dogs+2, 48, 627.7 hours, iEEG)

Band-stop filter (47-53 Hz,
97-103 Hz; 57-63 Hz, 117-123
Hz) and notch filter (0 Hz)

30 with custom
overlap (preictal)

30 / 5

Kiral-Kornek et al. [33] (2018) NeuroVista (10, 2,817, 16.29 years, iEEG)
Removal of corrupted data,

band-pass filtering (1-140 Hz),
notch filter (50 Hz)

30 15 / 1

Sun et al. [281] (2018) AES (5 dogs+2, NA, 1,412 hours, iEEG)
Band-pass filter (0.1 Hz-180

Hz)
30 60 / 5

Abdelhameed et al. [282] (2018) CHB-MIT (12, 56, NA, scalp EEG) NA 4 60 / 0
Tsiouris et al. [283] (2018) CHB-MIT (22, 185, 980 hours, scalp EEG) NA 5 15, 30, 60, 120 / 0

EEG: Electroencephalogram; iEEG: Intracranial Electroencephalogram; ssEEG: Subscalp Electroencephalogram; NA: Not Available; ICA: Independent Compo-
nent Analysis; EMD: Empirical Mode Decomposition; FFT: Fast Fourier Transform

Continues on next page
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Study (Year)
Database (# Patients, # Seizures,

Duration, Signal)
Artefact Removal

Methods
Window Length

(Seconds)
SOP/SPH (Minutes)

Truong et al. [284] (2019)

Freiburg (13, 59, 311.4 hours, iEEG)
CHB-MIT (13, 64, 209 hours, scalp EEG)
EPILEPSIAE (30, 261, 2,881.4 hours, scalp

EEG)

Band-stop filter (47-53 Hz,
97-103 Hz; 57-63 Hz, 117-123
Hz) and notch filter (0 Hz)

28 30 / 5

Nejedly et al. [285] (2019) AES (4 dogs, 75, 1,021 hours, iEEG) NA
30 with 50%

overlap
55 / 5

Dauod and Bayoumi [286] (2019) CHB-MIT (8, 43, NA, scalp EEG) NA 5 60 / 0

Wei et al. [219] (2019) Personal (15, 164, 540 hours, scalp EEG)
Removal of corrupted data,
ICA, band-pass filter (1-35

Hz)
10 30 / 0

Zhang et al. [287] (2019) CHB-MIT (23, 182, NA, scalp EEG) Band-pass filter (5-50 Hz) 5 30 / 0

Xu et al. [288] (2020)
CHB-MIT (23, 182, NA, scalp EEG)

AES (5 dogs, 44, NA, iEEG)
NA

20 with 25%
overlap (preictal)

30 / 5

Islam et al. [25] (2020) Freiburg (5, 68, NA, iEEG)
ICA, band-pass filter (0.5-64
Hz) and notch filter (50 Hz)

5 NA / NA

Das et al. [26] (2020) Personal (103, NA, 154.5 hours, scalp EEG)
Wavelet decomposition,

band-pass filter (0.1-70 Hz)
10 NA / NA

Borhade et al. [289] (2020) CHB-MIT (23, NA, NA, scalp EEG)
Preprocessing module capable
of separating artefacts from

the neural activity
NA NA / NA

Usman et al. [290] (2021) CHB-MIT (22, 198, 644 hours, scalp EEG) EMD 29 32 / 0
Chen et al. [34] (2021) AES (4 dogs, 43, 4.42 years, iEEG) Band-pass filter (0.1-180 Hz) 20 240 / 30

Prathaban et al. [28] (2021)
CHB-MIT (22, NA, NA, scalp EEG)
Personal (20, NA, NA, scalp EEG)
Personal (8, NA, NA, scalp EEG)

Sparsity-based algorithm 1 60-66 / 0

Chen et al. [291] (2021) CHB-MIT (22, NA, NA, scalp EEG) NA
4 with 50%
(preictal)

55 / 5

Cheng et al. [292] (2021) CHB-MIT (4, 13, NA, scalp EEG) Band-pass filter (0.5-64 Hz) 4 with 50% overlap 30 / 0

EEG: Electroencephalogram; iEEG: Intracranial Electroencephalogram; ssEEG: Subscalp Electroencephalogram; NA: Not Available; ICA: Independent Compo-
nent Analysis; EMD: Empirical Mode Decomposition; FFT: Fast Fourier Transform

Continues on next page
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Study (Year)
Database (# Patients, # Seizures,

Duration, Signal)
Artefact Removal

Methods
Window Length

(Seconds)
SOP/SPH (Minutes)

Dissanayake et al. [181] (2021) CHB-MIT (23, NA, NA, scalp EEG) NA

10 with 20%
overlap (preictal)
for dataset 1 and 2
with 40% overlap
(preictal) for
dataset 2

60 / 0

Dissanayake et al. [293] (2021)
CHB-MIT (23, NA, NA, scalp EEG)
Personal (15, NA, NA, scalp EEG)

NA
10 with 50%

overlap (preictal)
60 / 0

Hussein et al. [294] (2021)
CHB-MIT (22, 198, NA, scalp EEG)

AES (5 dogs+2, NA, 47.13 days, iEEG)
NeuroVista (3, 633, 1,326 days, iEEG)

Removal of corrupted data 30 60 / 0

Wang et al. [295] (2021) CHB-MIT (7, 27, NA, scalp EEG) NA 5 30 / 5

Zhao et al. [296] (2021)
CHB-MIT (10, NA, NA, scalp EEG)
AES (5 dogs+2, NA, NA, iEEG)
NeuroVista (3, NA, NA, iEEG)

NA Variable 30 and 60 / 5

Usman et al. [27] (2021)
CHB-MIT (22, 198, 644 hours, scalp EEG)
AES (5 dogs+2, 198, 479.3 hours, iEEG)

EMD and band-stop filter
(50-60 Hz)

30 with 50%
overlap

33 (average) / 0

Pal Attia et al. [260] (2022) ZUH-OUH-KCL (6, NA, 409 days, ssEEG) Band-pass filter (0.5-48 Hz) 60 60 / 5

Viana et al. [297] (2022) ZUH-OUH-KCL (6, NA, 594 days, ssEEG)G
Band-pass filter (0.5-48 Hz),

low-pass filter (25 Hz)
60 60 / 5

Müller et al. [298] (2022)
Personal (5, 53, 991 hours, iEEG)

AES (4 dogs, NA, 1,143 hours, iEEG)
NeuroVista (3, NA, 1,159.2 hours, iEEG)

Removal of corrupted data 15 60 / 5

Peng et al. [299] (2022)
Freiburg (20, 82, NA, iEEG)

CHB-MIT (16, 74, NA, scalp EEG)

Band-stop filter (47-53 Hz,
97-103 Hz; 57-63 Hz, 117-123

Hz)
5 30 / 0

EEG: Electroencephalogram; iEEG: Intracranial Electroencephalogram; ssEEG: Subscalp Electroencephalogram; NA: Not Available; ICA: Independent Compo-
nent Analysis; EMD: Empirical Mode Decomposition; FFT: Fast Fourier Transform

Continues on next page
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Study (Year)
Database (# Patients, # Seizures,

Duration, Signal)
Artefact Removal

Methods
Window Length

(Seconds)
SOP/SPH (Minutes)

Affes et al. [300] (2022) CHB-MIT (23, 198, 1,081 hours, scalp EEG)
Band-stop filter (57-63 Hz,
117-123 Hz), notch filter (0

Hz)
30 30 / 5

Liang et al. [301] (2022)
CHB-MIT (13, 64, 209 hours, scalp EEG)
AES (5 dogs+2, NA, 1,333.7 hours, iEEG)

Band-stop (57-63 Hz, 117-123
Hz), notch filter (0 Hz)

30 with overlap
window selected

per patient
(preictal)

30 / 0

Uvaydov et al. [302] (2022) EPILEPSIAE (30, NA, NA, iEEG) NA 4 60 / 0

Jemal et al. [303] (2022) CHB-MIT (23, 163, 940 hours, scalp EEG)
Band-pass filter (0.5-70 Hz)
and notch filter (50 Hz)

5 30 / 0

Assali et al. [304] (2023) CHB-MIT (17, 61, NA, scalp EEG) NA 2 30 and 60 / 0

Li et al. [305] (2023)
CHB-MIT (17, 90, 384 hours, scalp EEG)

AES (4 dogs, 41, 569.1 hours, iEEG)
Learnable filter based on FFTs

30 with T overlap
chosen by patient

(preictal)
30 and 34 / 5 and 1

Xu et al. [306] (2023) CHB-MIT (4, 27, NA, scalp EEG)
Band-stop filter (57-63 Hz,

117-123 Hz)
30 with 50%

overlap
30 / 0

EEG: Electroencephalogram; iEEG: Intracranial Electroencephalogram; ssEEG: Subscalp Electroencephalogram; NA: Not Available; ICA: Independent Component Analysis; EMD:
Empirical Mode Decomposition; FFT: Fast Fourier Transform
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3.2.2.1 Filtering and artefact removal

Currently, seizure prediction models are mainly developed using non-invasive EEG
data [16]. Although they are easier to capture and generally more accepted by the
patients, they present low signal-to-noise ratio (SNR) compared to invasive setups.
EEG artefacts may be responsible for the increase of false alarms and, therefore,
should be reduced before developing seizure prediction models [19–21].

According to Table 3.4, some researchers remove all the data containing arte-
facts [22, 33, 219, 263, 266, 294, 298, 307]. However, it may cause loss of information
and, therefore, should not be the first considered option. Regarding artefact removal
approaches, researchers mainly use digital filters. They focus on using low-pass fil-
ters to remove high-frequency noise and high-pass filters to remove low-frequency
artefacts. Additionally, notch filters are used to remove the powerline interference.
Although there is no consent regarding the cutoff frequencies, the frequencies of in-
terest are generally between 0.5 and around 100 Hz. There are other artefact removal
algorithms used to remove artefacts such as ICA [25, 219], EMD [27, 290], wavelet
decomposition [26], learnable filter based on fast Fourier transforms (FFTs) [305],
differential window and phase correlation [271], preprocessing module capable of sep-
arating artefacts from the neural activity [289], and sparsity-based algorithm [28].

3.2.2.2 Data segmentation

The EEG is usually a multi-channel time series lasting several minutes, hours, or
even days. Therefore, it must be segmented into smaller windows to be analysed.
According to Table 3.4, the window size used in seizure prediction studies usually
varies between 1 and 60 seconds. There are also approaches using windows longer
than 1 minute [257]. However, large windows are not common and are usually not
recommended due to the high nonstationary behaviour of the EEGs [137]. The
data segmentation may also be performed using overlapping. Some authors use it
to perform data augmentation of preictal samples increasing the number of samples
and thus obtaining a dataset with a lower interictal-preictal ratio [181,280,288,291,
293,301,305].

3.2.2.3 Preictal period duration, seizure occurrence period, and seizure
prediction horizon

The preictal period is a transition stage between the interictal and ictal stages.
Although several authors found some evidence of the existence of this stage, there
is no clear clinical definition about how and when it begins, how long it lasts and
whether it is continuous in time [14]. For designing seizure prediction models, SOP
and SPH must be defined. The duration of both periods together is usually equal to
the preictal period. According to Table 3.4, different approaches have been followed
for performing predictions over the years. Some authors considered a fixed SOP
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while others performed a specific search for each patient in order to find the most
optimal SOP duration. Recently, researchers mostly considered a fixed SOP lasting
either 30 or 60 minutes. Regarding the SPH, it was almost always not considered
or lasted at most one minute on seizure prediction studies before 2018. However,
that is impractical because the patients would not have time to prepare for an
upcoming seizure. Therefore, recently several authors start considering it lasting
about 5 minutes.

3.2.3 Computational models

Computational models are typically based on EEG screening as it can record the
elctrical brain activity [17, 64]. Over the years several different methodologies have
been proposed. These range from simple methods such as threshold-based classifiers
to complex methods such as DNNs. Four steps have been common to most of them:
feature extraction, feature selection, classification, and the definition of training
strategies. Table 3.5 summarises the seizure prediction approaches proposed by
several different authors.
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Table 3.5: Summary of seizure prediction approaches found in the literature.

Study Training Strategy Input Data
Classifier

(Postprocessing)
Approach Performance

Statistical
Validation

Mormann et
al. [263] (2005)

No data partition

Univariate linear features,
univariate nonlinear features,

bivariate linear features,
bivariate nonlinear features

Threshold-based Prediction
AUC=0.63-

0.90
Yes (Surrogate

analysis)

Le Van Quyen et
al. [264] (2005)

No data partition
Phase-locking values from 15

frequency bands

Threshold-based using
pre-determined
interictal clusters

Prediction SS=0.70 No

Mirowski et
al. [265] (2009)

For each patient, the earlier ones were
used to train and the last 1-2 were used

to test

Linear bivariate features and
nonlinear bivariate features

(L1-norm)
LR, DCNN and SVM Prediction

SS=52%, 71%
and 38%
FPR/h=0

Yes (Surrogate
analysis)

Park et al. [266]
(2011)

Double CV using N-1 folds to train and
one fold to test. Training set was further
divided using 80/20 ratio to validate the

approach before testing

Relative spectral band powers
and total power

SVM (Kalman filter) Prediction
SS=97.5%

FPR/h=0.27
Yes (Surrogate

analysis)

Cook et al. [125]
(2013)

First 4 months for training and remaining
duration for testing

Average energy, Teager-Kaiser
energy and line-length

(Backward elimination based
on Hilbert-Schmidt

Independence Criterion)

kNN - DT
(Smoothing)

Forecasting
SS=0.61
TiW=0.23

Yes
(Time-matched

predictor)

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation

Continues on next page



72
C

H
A

PT
ER

3.
STAT

E
O

F
T

H
E

A
RT

Study Training Approach
Input Data (Feature

Selection)
Classifier

(Postprocessing)
Approach Performance

Statistical
Validation

Rabbi et al. [267]
(2013)

One seizure for training, one for
validation and five for testing

Dynamical similarity index,
nonlinear interdependence,
and mean phase coherence

ANFIS Prediction
SS=0.80

FPR/h=0.46
No

Rasekhi et al. [268]
(2013)

First three seizures used for training and
the others for testing for each patient.

Univariate linear features SVM (Firing power) Prediction
SS=0.74

FPR/h=0.15
No

Alvarado-Rojas et
al. [141] (2014)

First 2-4 seizures for training and the
others for testing for each patient.

Mean coupling phases between
different frequency bands

Threshold-based
(Kalman filter)

Prediction
SS=0.68

FPR/h=0.33
Yes (Random
predictor)

Teixeira et
al. [269] (2014)

First 2-3 seizures per patient for training
and the others for testing.

Univariate linear features
SVM, ANN (Firing

power)
Prediction

SS=0.74
FPR/h=0.28

Kruskal-Wallis
between
methods

Moghim and
Corne [270] (2014)

10 times K-Fold CV for searching
hyperparameters and 70/30 holdout

validation for evaluation

Univariate linear features and
univariate nonlinear features

(ReliefF)
SVM Prediction S1-score=0.95

Unspecific
predictors

Parvez et al. [271]
(2015)

10-fold CV
Features based on phase

correlation
Least squares SVM

(k-of-n filter)
Prediction

Accuracy=0.92
False

alarms=2.14
No

Rasekhi et al. [272]
(2015)

First three seizures used for training and
the others for testing for each patient

Univariate linear features
(mRMR)

SVM (Firing power) Prediction
SS=0.61

FPR/h=0.11
Random
predictor

Bandarabadi et
al. [74] (2015)

First three seizures used for training and
the others for testing for each patient

Univariate linear features
(Based on ADH)

SVM (Firing power) Prediction
SS=0.76

FPR/h=0.10
Random
predictor

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation

Continues on next page
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Study Training Approach
Input Data (Feature

Selection)
Classifier

(Postprocessing)
Approach Performance

Statistical
Validation

Assi et al. [273]
(2015)

80% segments for training and 20% for
testing

Univariate linear features (GA
and mRMR)

SVM, ANFIS Prediction
SS=0.90
SP=0.89

No

Myers et al. [22]
(2016)

No data partition
Phase locking value (PLV)
and amplitude lock value

(ALV)
Threshold-based Prediction

SS=0.67
FPR/h=0.167

Random
predictor

Liang et al. [274]
(2016)

4-fold CV for dogs and 3-fold CV for
patients

FFT segments
DCNN-SVM with
pretrained weights

Prediction AUC=0.724 No

Chu et al. [275]
(2017)

For each patient, 3 seizures were used for
training and the remaining ones for

testing
Spectral bands ratios Threshold-based Prediction

SS=0.87
FPR/h=0.367

Random
predictor

Direito et al. [276]
(2017)

2-3 seizures for training (3-Fold CV) and
remaining for testing for each patient

Univariate linear features SVM (Firing power) Prediction
SS=0.38

FPR/h=0.20
Random
predictor

Khan et al. [277]
(2017)

Holdout validation and 10-fold CV Wavelet tensors DCNN Prediction
SS=0.88

FPR/h=0.142
Random
predictor

Karoly et al. [76]
(2017)

For each patient, 100 days for training
(average 38 seizures) and 0.5-1 year for
testing (average 116 seizures). Training
was performed using 10-fold CV. Model
was updated over the time using circadian

profile to deal with concept drifts.

Line length and frequency
bands energy

(Kullback-Leibler distance)
LR (Bin width of 1h) Forecasting

SS=0.61
TiW=0.25

Time-matched
predictor

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation
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Kuhlmann et
al. [257] (2018)

Holdout validation
Univariate linear features,

univariate nonlinear features,
multivariate features

Ensemble algorithm
(XGBoost, kNN,
GLM, SVM)

Prediction AUC=0.75 No

Shahbazi et
al. [278] (2018)

70% of interictal files used for training
and 30% for testing. Preictal samples

were selected using leave-one-seizure-out
CV for each patient.

Spectrograms
DCNN-LSTM (k-of-n

filter)
Prediction

SS=0.98
FPR/h=0.13

No

Eberlein et
al. [279] (2018)

Holdout validation Time series DCNN Prediction AUC=0.74 No

Truong et al. [280]
(2018)

Leave-one-seizure-out CV for each patient Spectrograms DCNN (k-of-n filter) Prediction
SS=0.79

FPR/h=0.14
Random
predictor

Kiral-Kornek et
al. [33] (2018)

First 2 months containing at least 1
seizure for training and remaining

duration for testing for each patient.
Retrained the model after a certain
interval to deal with concept drifts.

Spectrograms and time of the
day

DCNN
(Postprocessing layer
included in model)

Prediction
SS=0.69
TiW=0.27

Random
predictor

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation

Continues on next page



3.2.
SEIZU

R
E

PR
ED

IC
T

IO
N

75

Study Training Approach
Input Data (Feature
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(Postprocessing)
Approach Performance

Statistical
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Sun et al. [281]
(2018)

Holdout validation Spectral band features
LDA, LR, DCNN,

RNN
Prediction

AUC (LDA)=
0.802

AUC(LR)=
0.787

AUC(DCNN)=0.797
AUC(DRNN)=0.557

No

Abdelhameed et
al. [282] (2018)

To train the DCAE, the dataset of two
patients is split in training (80%) and test
(20%). To evaluate the model, they used

k-fold CV

Time series
pretrained

DCNN-BiLSTM
Prediction

SS=0.946
FPR/h=0.04

No

Tsiouris et al. [283]
(2018)

For each patient, 10-fold CV
Univariate and multivariate

features
LSTM Prediction

SS=0.99
FPR/h=0.02

No

Truong et al. [284]
(2019)

Leave-one-seizure-out CV for each patient Spectrograms
GAN-NN, DCNN
(k-of-n filter)

Prediction
AUC

(DCNN)=0.81
Hanley-McNeil

AUC test

Nejedly et al. [285]
(2019)

First 2 months used for training, third
month for validation and the remaining
for testing. They retrained every month

to handle concept drifts

Time series DCNN (Median filter) Prediction
SS=0.79
TiW=0.18

Monte-Carlo
simulations

Dauod and
Bayoumi [286]

(2019)
Leave-one-seizure-out CV for each patient Time series DCAE-BiLSTM-CS Prediction

SS=0.997
FPR/h=0.004

No

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation
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Wei et al. [219]
(2019)

10-fold CV for each patient Time series images
DCNN-LSTM (k-of-n

filter)
Prediction

SS=1.00
FPR/h=0.04

No

Zhang et al. [287]
(2019)

Leave-one-seizure-out for each patient
Common spatial pattern from

different spectral bands
DCNN (Kalman filter) Prediction

SS=0.92
FPR/h=0.14

No

Xu et al. [288]
(2020)

80% samples for training and 20%
samples for testing for each patient

Time series DCNN Prediction
SS=0.96

FPR/h=0.07
No

Islam et al. [25]
(2020)

80% of the segments used for training and
20% for testing

Anomalies ratio RF Prediction
SS=0.903
FPR=0.330

No

Das et al. [26]
(2020)

Holdout validation

Current max value, lower
threshold, homogeneity,

neighbour connectivity, and
power and energy

Sequential algorithm
that uses the features

step by step
Prediction

F1
Score=0.949

No

Borhade et
al. [289] (2020)

Holdout and K-fold CV.
Univariate linear and

nonlinear features (fuzzy
information gain)

Search
optimisation-based

(SASO-based) DRNN
Prediction

SS=0.965
SP=0.975
K-Fold

SS=0.965
SP=0.937

No

Usman et al. [290]
(2021)

K-fold CV STFTs GAN-DCNN-LSTM Prediction
SS=0.93
SP=0.92

No

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation
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Chen et al. [34]
(2021)

Initial training performed using 16
interictal segments and 2 preictal

segments. Testing using the following 7
days. Retrained every 7 days to deal with

concept drifts.

Spectral band features
SVM (SVM outputs

histograms)
Prediction

SS=0.84
TiW=0.27

No

Prathaban et
al. [28] (2021)

Holdout validation and 5-fold CV is used
in the training dataset.

2D EEG images
DCNN optimised

using Fletcher-Reeves
Prediction

SS=0.993
FPR/h=0.033

Random
predictor

Chen et al. [291]
(2021)

NA
Wavelet decomposition

features
Graph-DCNN-GRU Prediction

SS=0.986
FPR/h=0.011

No

Cheng et al. [292]
(2021)

Leave-one-seizure-out CV
Wavelet decomposition

features
Bi-LSTM (Moving

average filter)
Prediction

SS=0.993
FPR/h=0.00

No

Dissanayake et
al. [181] (2021)

Leave-one-patient-out (transfer learning)
and 10-fold CV (patient-specific model).

Mel frequency cepstral
coefficients

Multitask DCNN and
Siamese DCNN

Prediction
AUC=0.9273
AUC=0.969

No

Dissanayake et
al. [293] (2021)

Leave-one-patient-out (transfer learning)
and 10-fold CV (patient-specific model).

Mel frequency cepstral
coefficients

Graph neural network
(GNN)-Graph

Synthesizing Network
(GSN)

Prediction
AUC=0.988
AUC=0.992

No

Hussein et al. [294]
(2021)

Leave-one-patient-out CV for first dataset
and holdout validation for the others

Scalogram Prediction

Semi-dilated
convolution
network
(SDCN)

AUC=0.97
AUC=0.93
AUC=0.88

No

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation
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Wang et al. [295]
(2021)

Leave-one-seizure-out CV Single channel time series

Ensemble
DCNN-BiLSTM

(merging output from
all channels)

Prediction
SS=0.827
SP=0.724

No

Zhao et al. [296]
(2021)

Holdout validation Time series DCNN Prediction

SS=0.998
FPR/h=0.005

SS=0.935
FPR/h=0.063

SS=0.852
FPR/h=0.116

No

Usman et al. [27]
(2021)

Holdout validation

Univariate linear features and
features obtained from STFTs

using DCNNs (Pearson
correlation coefficient and

Particle swarm optimisation)

Model agnostic meta
learning that receives
input from SVM,
DCNN and LSTM

Prediction

SS=0.963
SP=0.957
SS=0.942
SP=0.958

No

Pal Attia et
al. [260] (2022)

Leave-one-patient-out CV
Time series, FFT and time of

day
BiLSTM (1h smooth) Forecasting

SS=0.55
TiW=0.34

Surrogate
analysis

Viana et al. [297]
(2022)

Initial 1/3 data for training and
remaining of testing for each patient.

Time series, FFT and time of
day

BiLSTM (1h smooth) Forecasting
SS=0.73
TiW=0.34

Time-matched
predictor

Müller et al. [298]
(2022)

Holdout validation.
Univariate and bivariate
features. Time series

MLP. DCNN Prediction
AUC=0.793
AUC=0.68

Hanley-McNeil
method

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation
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Peng et al. [299]
(2022)

Leave-one-patient-out and 1 seizure from
the testing patient. The remaining
seizures of the patients are used for

testing.

STFT DCNN-DA Prediction

SS=0.76
FPR/h=0.19

SS=0.73
FPR/h=0.24

No

Affes et al. [300]
(2022)

For each patient, dataset was divided
using 75/25 ratio.

Spectrograms
DCNN-GRU (Random

Forest Ranking to
select channels)

Prediction
F1-

score=0.768
No

Liang et al. [301]
(2022)

Leave-one-seizure-out for each patient for
first dataset and holdout validation.

STFT. PCA and FFT
DCNN (k-of-n filter).
Temporal and spectral

DCNN
Prediction

SS=0.883
FPR/h=0.04
AUC=0.86

No

Uvaydov et
al. [302] (2022)

80/10/10 ratio Single-channel time series

DCNN (Majority
voting multiple
single-channel
classifiers)

Prediction AUC=0.82 No

Jemal et al. [303]
(2022)

Holdout validation and then 5-fold CV
(patient-specific model). Holdout

validation (patient-independent model)

Filter bank common spatial
pattern

DCNN Prediction

SS=0.909
FPR/h=0.041

SS=0.672
FPR/h=0.6

No

Assali et al. [304]
(2023)

80/20 ratio for each patient
Relative band powers, sample

entropy, stability index
DCNN Prediction

F1-
Score=0.922

No

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP:
Specificity; LR: Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive
Rate per hour; kNN: k-Nearest Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural
Network; mRMR: minimum Redundancy Maximum Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value;
ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM: Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-
term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network; BiLSTM: Bidirectional Long Short-term Memory; RF: Random
Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search Optimisation; GRU: Gated Recurrent Unit; CS: Channel
Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis; SDCN: Semi-dilated Convolutional Network;
PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation
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Li et al. [305]
(2023)

Leave-one-seizure-out CV Time series
MLP (Moving

average)
Prediction

SS=0.966
FPR/h=0.060

SS=0.929
FPR/h=0.025

Random
predictor

Xu et al. [306]
(2023)

Leave-one-seizure-out CV for each patient Time series

deep residual
shrinkage network -
GRU (DRSN-GRU)

(k-of-n filter)

Prediction
SS=0.905

FPR/h=0.11
No

EMD: Empirical mode decomposition; ICA: Independent component analysis; EEG: Electroencephalogram; AUC: Area Under ROC Curve; SS: Sensitivity; SP: Specificity; LR:
Logistic Regression; DCNN: Deep Convolutional Neural Network; SVM: Support Vector Machine; CV: Cross-validation; FPR/h: False Positive Rate per hour; kNN: k-Nearest

Neighbors; DT: Decition Tree; TiW: Time in Warning; ANFIS: Adaptive Neuro Fuzzy Inference System; ANN: Artificial Neural Network; mRMR: minimum Redundancy Maximum
Relevance; ADH: Amplitude Distribution Histogram; GA: Genetic Algorithm; PLV: Phase Locking Value; ALV: Amplitude Locking Value; FFT: Fast Fourier Transform; GLM:

Generalised Linear Model; XGBoost: Extreme Gradient Boosting; LSTM: Long Short-term Memory; LDA: Linear Discriminant Analysis; DRNN: Deep Recurrent Neural Network;
BiLSTM: Bidirectional Long Short-term Memory; RF: Random Forest; GAN: Generative Adversarial Network; DCAE: Deep Convolutional Autoencoder; SASO: Search

Optimisation; GRU: Gated Recurrent Unit; CS: Channel Selection; GNN: Graph Neural Network; GSN: Graph Synthesizing Network; ICA: Independent Component Analysis;
SDCN: Semi-dilated Convolutional Network; PCA: Principal Component Analysis; MLP: Multilayer Perceptron; DA: Domain Adaptation; PSO: Particle Swarm Optimisation; PCC:

Pearson Correlation Coefficient
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3.2.3.1 Feature extraction

Feature extraction converts the EEG time series into tabular values aiming to cap-
ture valuable information. This step is one of the most important ones for model
development. In the case of extracting features with great separability between dif-
ferent classes, the classification step would be very simple without requiring any
complex approach. Specifically, in seizure prediction, the main goal is to obtain
information to find the pre-seizure state such as a change of the relative spectral
power bands [74].

Features could be extracted from a single channel (univariate) or between two or
more channels (multivariate). Beyond that, those could be categorised as linear or
nonlinear according to the formula used to compute them. Figure 3.3 presents some
examples of features according to each category. Although EEG exhibits a non-

Statistical moments
Hjörth parameters
Decorrelation time

Accumulated energy
Relative spectral power (delta,
theta, alpha, beta, and gamma

Spectral edge power
Energy of wavelet coefficients

Multivariate autoregressive model
Maximum linear cross-correlation
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Correlation dimension
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Mean phase coherence
Mutual information

Dynamical entranment
Directed transfer function
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Figure 3.3: Common feature categorisation in seizure prediction studies with some exam-
ples for each group.

linear behaviour, researchers mostly use univariate linear features as a consequence
of their quick computation making them possible to be used in real-time scenarios.
Furthermore, in the comparison studies that were carried out, it was not possible to
conclude that the more complex features lead to better results [137,263,276]

In deep learning approaches, feature extraction is usually inside the model ar-
chitecture. Therefore, input data are EEG time series [279, 282] or other type of
multidimensional data obtained from the EEGs, e.g., spectrograms [278, 280, 284].
During training, the DNNs optimise the feature extraction layers according to the
outputs to extract the most optimal features for the task being performed. Although
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this data-driven approach allows extracting the most appropriate features for each
dataset, it has the major disadvantage of not giving any information about what
each of the obtained features means, which may be a problem for further explana-
tion. It is worth noting that some authors maintain the feature extraction separated
from the deep learning architecture, only using the DNNs to classify the data [283].

3.2.3.2 Feature selection

During feature extraction, hundreds or even thousands of features may be extracted
from each EEG window. Some features may contain redundant information or con-
found the classification [137]. Furthermore, the high number of values per sample
could lead to overfitting since there will always exist a hyperspace where it is possible
to separate training samples from both classes also known as the curse of dimension-
ality [308]. Therefore, researchers must use feature selection methods to select only
the ones that improve the validation performance reducing the multidimensional
space.

Feature selection may be categorised in filters, wrappers, or embedded methods.
Filters select the most optimal features based on their intrinsic properties. Reli-
efF [270], minimum redudancy maximum relevance (mRMR) [272,273], and Pearson
correlation coefficient (PCC) [27] are examples of filters. Wrappers consist in using
the classifier performance to select the best feature set. Compared to filters, wrap-
pers comprise the advantage of selecting features based not only on the relations
between them but also with the labels. Additionally, they are based on the per-
formance of a classifier that may consider several features simultaneously as input.
However, they are slower since they require more computational power. Backward
elimination [125], genetic algorithm (GA) [273], and particle swarm optimisation
(PSO) [27] are examples of wrappers. Embedded methods are inside the optimisa-
tion function of the classifier and, therefore, assign different weights to the features
according to their generalisation capacity. Compared to the previous methods, these
comprehend the advantage of assigning different importance and possibly maintain-
ing all of them but with higher weights to the most important ones. Furthermore,
the weights are optimised simultaneously as the decision function, obtaining the best
weights for the considered labels. L1-normalisation or LASSO [265] is an example
of embedded methods.

In the case of deep learning models, although generally no specific method is
used to select the most optimal features, one may consider that the architecture can
extract and select those that best fit the task being performed. Therefore, it may
also be considered an embedded method.
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3.2.3.3 Classification

The main objetive of classifiers in seizure prediction is to distinguish between interic-
tal and preictal samples. Over the years several algorithms have been proposed. The
simplest ones are threshold-based classifiers. These are linear classifiers that label
samples using a threshold on a single biomarker (feature) [141, 263, 264]. Machine
learning algorithms such as logistic regression (LR) [76, 281], support vector ma-
chines (SVMs) [74,266,268], and ensemble methods [25,257] label the samples based
on multidimensional spaces. That is an advantage compared to threshold-based ones
since it allows the creation of linear and nonlinear relations between the different
features to perform the classification task. Recently, researchers have been using
deep learning architectures such as DCNN [33, 280] and long short-term memory
(LSTM) [282, 286]. As stated before, these methods are fully data-driven. There-
fore, they can optimise the entire pipeline from feature extraction to classification,
allowing the creation of a model fully specific to each dataset under analysis.

3.2.3.4 Postprocessing

Postprocessing, also known as output regularisation, is an essential step for clas-
sifying samples coming from time series. The main goal is to create a temporal
relationship between the several predictions and attenuate the number of false posi-
tives [137]. The most used postprocessing methods are the Kalman and the moving
average filters. Although the Kalman filter was one of the first postprocessing meth-
ods to be used [141, 266], it requires a more complex calibration and does not have
a clear advantage over moving average methods [150]. Therefore, the authors have
preferred to follow simple approaches by using techniques as smoothing [125], firing
power [74,269,276], or k-of-n filter [271,278].

3.2.3.5 Training approach

The development of seizure prediction models generally requires the creation of three
sets of data: the training set, the validation set and the test set. These sets may
be created using holdout validation [27, 296], cross-validation (CV) [181, 219] or a
mixture of both [303]. In this way, it is possible to train and validate the models
without compromising their evaluation. Holdout validation splits the dataset into
a training and a test set using a ratio defined in advance. The model is developed
using the training set, and the performance is obtained using the test set. In CV, the
dataset is divided into several sets and each set is used to evaluate the performance
at least once. For example, in the case of a k-fold CV, the dataset is divided
into k equal groups of which k-1 are used for training and one for testing and is
conducted until all groups have been tested at least once. It should be pointed
out that if k equals the number of samples in the dataset it is called leave-one-out
CV. Although both data partition techniques are widely used in traditional machine
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learning, they should not be straightly used in seizure prediction as they may give a
wrong notion of the model’s performance. The partition should be by seizure and not
by sample [280, 295]. The separation may occur randomly, not taking into account
the chronology of the seizures or chronologically, similar to what would happen in a
real scenario. That strategy allows the researchers to assess the model’s ability to
predict future events [276].

One of the major problems in the development of seizure prediction models is
class imbalance. The number of interictal samples is usually several times larger
than the number of preictal samples. Therefore, it is necessary to use methods to
attenuate the ratio between interictal and preictal samples such as balancing the data
by removing interictal samples [269,276], increasing the number of preictal samples
using sample generation techniques [284, 287], or giving weights to the different
classes according to a priori probability [266].

Another problem in seizure prediction is the data distribution’s high nonsta-
tionarity, a phenomenon known as concept drift. Concept drifts usually appear
due to changes in medication, vigilance states, sleep deprivation, new seizures that
alter brain dynamics, or stress [57, 77, 142, 143, 342–344]. Concept drifts require
a different approach for training computational models. Several authors proposed
solutions based on simply periodically refitting the models [33, 34, 142, 143, 285].
Kiral-Kornek et al. [33], Nejedly et al. [285], and Chen et al. [34] used EEG data
collected over several months. They retrained their models every month and elimi-
nated past data after a certain amount of months, enabling the models to re-adapt
over time. Pinto et al. [142, 143] used EEG collected under pre-surgical conditions.
Therefore, they did not use data from several months, but only from a few days.
They retrained their models after testing on a new seizure. Although those studies
tried to deal with concept drifts, only Nejedly et al. [285] verified whether there was
an improvement in the prediction performance.

A great advantage of deep learning architectures over classical machine learning
algorithms is the possibility of transferring the weights from one model to another
and re-adapting them to a new dataset known as transfer learning. The researchers
may train models without starting from scratch, e.g., developing patient-specific
models using layers from a DNN already trained with EEGs from other patients.
Thus, the training becomes easier because the model’s weights do not start at a
random point and the model is able to use not only information about the training
data but also from other datasets which may lead to a better performance [274,282,
284,286].

3.2.3.6 Performance assessment

Seizure sensitivity (SS), false prediction rate per hour (FPR/h) and statistical val-
idation are the basis for evaluating the performance of seizure prediction mod-
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els [22,74,139,141,265,266,269,272,275–277,280,305]. However, not all researchers
evaluate their approaches using these metrics. Some prefer to use other metrics
such as area under the receiver operating characteristic curve (AUC), sample sen-
sitivity, or sample specificity [26, 257, 271, 289]. Although these assess the classifier
performance under analysis, they may not be accurately used to evaluate the ap-
proach as a whole where what matters is to understand whether the seizure has
been successfully predicted in a certain period. In recent years, a new approach
appeared in the seizure prediction field, denominated seizure forecasting. To eval-
uate seizure forecasting models the researchers replaced the FPR/h by the time
in warning (TiW) which consists in evaluating how long the seizure is considered
imminent [76,125,260,297].

Several seizure prediction approaches have been proposed. However, it is difficult
to compare all of them because not only authors use different evaluation metrics but
also different databases. CHB-MIT appears to be the one with which the authors
obtained the highest results [278,283]. On the other side, EPILEPSIAE is a database
that shows quite different results from study to study [74,141,269,276]. It may be due
to the large number of patients in this database; therefore, using certain patients
may lead to better results. However, the aforementioned databases result from
the acquisition of signals under pre-surgical conditions, and therefore, the models
developed using them may not be evaluated similarly to a real scenario. Therefore,
more databases containing ultra-long-term data, such as NeuroVista [76, 125] and
ZUH-OUH-KCL [260, 297], are necessary to properly prepare methodologies for a
future prediction device.

3.3 Summary

EEG artefact removal has been performed using different approaches such as simple
digital filtering, linear regression, adavanced filtering, source decomposition algo-
rithms, BSS algorithms and neural networks. Although BSS algorithms and neural
networks are the current state of the art on EEG artefact removal, these algorithms
are usually evaluated using data acquired in controlled environments. Therefore,
researchers should evaluate the performance of these algorithms on long-term data
without any control of the actions performed by the subjects. In addition, researchers
should continue prioritising the development of fast and automatic models as only
these can be used in real-time scenarios.

The majority of epilepsy databases contain data collected under presurgical con-
ditions. It is a serious limitation for developing seizure prediction models which
could be used in real-time conditions because the data does not represent all vari-
ations which happen over the months. Furthermore, the patients under presurgical
conditions have their medication reduced, being more likely to evidence seizures.
Therefore, research developed using presurgical databases should be used to identify
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neural mechanisms that lead to the beginning of seizures and to develop proof of
concept seizure prediction models. Afterwards, to put acquired knowledge into de-
vices designed for daily life operation, more databases such as NeuroVista repository
and ZUH-OUH-KCL database should be created. In this way, the models could be
tested in data acquired over several months to evaluate whether they can handle
different concept drifts present in the data.

Several studies have been performed in the seizure prediction research field. First,
researchers developed threshold-based models that fired alarms whenever a certain
feature crossed a predefined threshold. Afterwards, more robust models were cre-
ated. These were based on machine learning algorithms that analyse data using
linear and nonlinear rules developed considering multiple features. Recently, sei-
zure prediction methods based on deep learning approaches have been developed.
Contrary to traditional machine learning algorithms, these methods may extract
features directly from the data without relying on signal processing techniques to
create them. Also, the automatic data processing makes the models easier to be
retrained without requiring an expert. This advantage may be used for handling
concept drifts over time. Additionally, these methods can easily use the weights
from other already trained architectures. It is a great advantage compared to tradi-
tional machine learning algorithms because researchers do not always have to train
their models from the scratch and may use knowledge from other databases without
being concerned with ethical procedures regarding sharing data.

The development of seizure prediction models using different databases and the
lack of gold standard metrics make comparing different approaches more difficult.
Therefore, researchers must evaluate their approaches with the most used databases
and use gold standard metrics for an easier comparison among approaches. Recently
researchers have shifted to a new way of performing seizure prediction called seizure
forecasting. Unlike traditional seizure prediction, which considers that the brain
goes into a point-of-no-return when it enters the preictal period, seizure forecasting
considers that the brain of a person with epilepsy comprehends different seizure
susceptibility over time. However, since the output is probabilistic, it may not be
clear for the patient when an upcoming seizure happens, i.e., the system informs the
patient that there is a certain probability of having a seizure in the future but does
not provide the exact time. Furthermore, using different metrics makes comparing
the studies with traditional seizure prediction approaches difficult.



Chapter 4

EPIC: Annotated epileptic EEG
independent components for
artefact reduction

This chapter presents the methods performed to build the dataset used
for developing the electroencephalogram (EEG) artefact removal mod-
els. The content of this chapter is based on the journal article published

in Scientific Data [37]. Section 4.1 presents a brief context of this study. Section 4.2
describes the materials and methodology followed to obtain the dataset. Section 4.3
explains how the data records were stored and presents the link where the code used
to develop the study is available. Section 4.4 provides some final reflections about
the study.

4.1 Study context

Developing classifiers to automatically label independent components (ICs) requires
annotated datasets. After a thorough search of the relevant literature it was found
that only Winkler et al. [236] and Pion-Tonachini et al. [196] made their datasets
publicly available. Winkler et al. provided a training set with 690 ICs collected from
23 recordings with 10 minutes of EEG and a test set with 1080 ICs collected from 36
EEG recordings. Data were collected from 12 subjects who had to perform provided
tasks, for approximately 5 hours, avoiding producing artefacts. Experts labelled
both sets using brain and noise classes (binary classification). However, they only
released sets with the best six features instead of the detailed information about the
ICs. Pion-Tonachini et al. provided a dataset containing ICs collected from 5-second
EEG recordings acquired from several studies performed in controlled environments
over the past 15 years. The dataset is divided into training and test sets. The
training set comprises 5,937 ICs classified by several collaborators through a crown
labelling task. The test set includes 130 ICs labelled by seven experts. ICs were
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annotated with seven classes: brain and six types of different artefacts. Each sample
comprises a scalp topographic map, power spectrum density (PSD), autocorrelation
function, equivalent current dipole fits, and hand-crafted features. Although this
dataset provided scalp topographic maps and PSDs, it fails at providing IC time
series. Therefore, new researchers that would like to use the data are restricted to
temporal features contained in the dataset which might limit their approaches.

As a consequence of the aforementioned data restrictions, in this chapter, a
dataset with ICs from 19-channel EEG data collected from patients with epilepsy
(EPIC dataset) available in the EPILEPSIAE database, was created. Despite only
containing data from patients with epilepsy, the EPILEPSIAE database comprises
data collected over several days from patients under pre-surgical monitoring. There-
fore, data contain several artefacts captured while doing day-to-day activities such
as conversation, eating, and sleeping. Every sample in the EPIC dataset includes
the time series, PSD, and topographic map of each IC. Furthermore, these samples
were classified as brain or noise by two experts.

4.2 Materials and methods

Data from the European Epilepsy Database, also known as the EPILEPSIAE data-
base (www.epilepsy-database.eu) and developed by the FP7 EPILEPSIAE project
(www.epilepsiae.eu), were used. EPILEPSIAE database comprises long-term con-
tinuous EEG and electrocardiography (ECG) signals simultaneously acquired from
275 patients with drug-resistant epilepsy (DRE) under pre-surgical monitoring over
several days [13]. It also contains electromyogram (EMG) and electrooculogram
(EOG) signals. However, these are not always available. Data were acquired at Uni-
versitätsklinikum Freiburg (Germany), Centro Hospitalar e Universitário de Coim-
bra (Portugal), and Hôpital de la Pitié-Salpêtrière, Paris (France). Regarding meta-
data, the database contains the seizure characteristics such as clinical and EEG
onsets and offsets, classification, pattern, and vigilance state. It also contains the
disease etiology and medication. It is worth noting that over the following chap-
ters, the seizure onset refers to the EEG onset since the models are based on the
EEGs. The use of these data for research purposes has been authorised by the
Ethical Committee of the three hospitals involved in the EPILEPSIAE database
development (Ethik-Kommission der Albert-Ludwigs-Universität, Freiburg; Comité
consultatif sur le traitement de l’information en matière de recherche dans le do-
maine de la santé, Pitié- Salpêtrière University Hospital; and Comité de Ética do
Centro Hospitalar e Universitário de Coimbra). All studies were performed follow-
ing the relevant guidelines and regulations. Informed written consent was obtained
from the patients and the parents or legal guardians of patients under 18.

The analysed dataset consists of 25 patients (13 males, aged 40±17 years) from
the EPILEPSIAE database. Data were curated in the context of epileptic seizure

www.epilepsy-database.eu
www.epilepsiae.eu
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prediction. To develop the seizure prediction models, it was considered data ranging
from 4.5 hours before the beginning of the leading seizure [259] until its onset. This
selection was performed considering that EEG data within this interval contain both
normal and pre-seizure brain states [142,269]. Data were collected over several days
(accounting for 684 hours of EEG). Typical activities were captured in the signals
such as conversation, eating, drinking, washing, and sleeping. Therefore, it may
contain several experimental errors such as poor electrode connection and adhesion
issues, which must be minimised before performing independent component analysis
(ICA). The next section presents the algorithm used to remove experimental errors.
Subsequently, in Section 4.2.2, it is described how the manual labelling of the ICs
was performed.

4.2.1 Removal of experimental errors

An algorithm to identify and remove data corrupted by experimental errors was
developed. Figure 4.1 provides a diagram explaining it. The methods used in
the algorithm are ordered from the simplest to the most complex. Therefore, it
consists of frequency filtering, identification and removal of flatlines and constant
saturated portions in all channels, identification and removal of abnormal peaks,
EEG segmentation, removal of noisy EEG segments, removal of electrode pops,
interpolation of noisy EEG channels, preparation for ICA, and ICA processing.

Raw EEG
Signals

Identification and
Removal of Flatlines and

Constant Saturated
Portions in All Channels

Identify abnormal peaks
 (< -5 mV and > 5 mV)

Frequency
Filtering
Band-pass

Filtering: 0.5-100
Hz

Notch Filtering: 50
Hz Identification and Removal

of Abnormal Peaks

Removal of Electrode Pops
Split EEG segments in 5-second

windows with 50% overlap

Identify duplicated windows with
an absolute amplitude higher

than 500 uV

5-Hz low-pass filtering of the
duplicated EEG windows

Duplicate EEG windows
Interpolation of Noisy EEG
Channels, Preparation for
ICA, and ICA Processing

Interpolate EEG channels tagged
for interpolation in Removal of
Noisy EEG Segments stage

Average Reference and
Extended Infomax ICA

EEG Segment' ICs

Removal of Noisy EEG
Segments

Identify abnormal peaks in each
EEG channel. If more than 20%

of the EEG channel would be
eliminated because of the peaks,

it is tagged as noisy for further
interpolation

EEG
Segmentation

If the abormal peak is present in
the considered EEG channels,
the algorithm removes every

EEG sample from 10 sec before
to 10 sec after the peak in all

channels
If more than 10% EEG channels
were tagged for interpolation, the

segment is rejected
If at most 10% EEG channels or
the duplicated window contain

artifact, the original EEG window
is interpolated

Figure 4.1: Framework followed to obtain the independent components for each EEG
segment. It covers the following steps: extraction of signals from EPILEPSIAE database;
identification and removal of flatlines, constant saturated portions, and abnormal peaks;
EEG segmentation; removal of noisy EEG segments; removal of electrode pops; and inter-
polation of noisy EEG channels and preparation for ICA.

4.2.1.1 Frequency filtering

The algorithm filtered the data using a 0.5-100 Hz bandpass 4th-order Butterworth
filter and a 50 Hz 2nd-order notch filter with the purpose of removing the direct
current (DC) component, high-frequency noise, and the powerline interference.
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4.2.1.2 Identification and removal of flatlines and constant saturated
portions in all channels

Since the data were collected over several days including day-to-day activities, these
contained several experimental errors. The algorithm identified and removed every
portion of the signal which contained isoelectric flatlines (see Figure 4.2) or constant
saturated segments (see Figure 4.3) as well as the 10 seconds of data before and after
these errors. These errors were removed for all channels simultaneously.

4.2.1.3 Identification and removal of abnormal peaks

After removing flat and constant segments, the algorithm identified portions of the
signal below -5 mV and above 5 mV, named abnormal peaks for easier comprehen-
sion (see Figure 4.4). Then, the algorithm verified whether the peaks happened
simultaneously in the channels Fp1, Fp2, O1, O2, T5, T6, and Cz. These electrodes
were selected according to their geometrical positions, which means that if an abrupt
movement affected the system, all of them should capture it. If abnormal peaks ap-
peared in all the aforementioned electrodes, every sample, from 10 seconds before
the beginning of the peak until 10 seconds after the peak, was removed. It is worth
noting that, to keep the signals’ temporal coherence, the data were not concatenated
after removing artefacts (see Figure 4.5).

Figure 4.2: Example of an EEG signal with a flat segment. The selected portion was
removed over all channels.

4.2.1.4 EEG segmentation

The algorithm divided the remaining data into 10-minute segments (see Figure 4.6).
The segmentation in 10-minute portions was performed to prepare the data for the
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Figure 4.3: Example of an EEG signal containing a saturated segment. The selected
portion was removed over all channels.

Figure 4.4: Example of an EEG signal with several abnormal peaks. As these artefacts
appeared in Fp1, Fp2, T7, T8, O1, O2, and Cz, the selected EEG portion was removed
across all channels.

ICA [241, 243]. As the signals were not concatenated after removing errors, there
might be segments lasting less than 10 minutes. Despite lasting less than 10 minutes,
these segments were kept to obtain the largest possible dataset. The algorithm
removed every segment lasting less than 10 seconds as these did not comprise enough
data to be properly processed by ICA.
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Figure 4.5: Example of a preprocessed EEG signal. The EEG segments were not concate-
nated after removing noisy data.

Figure 4.6: Example of a preprocessed EEG signal divided into 10-minute segments.
Dashed and continuous lines determine the beginning and the end of the 10-minute seg-
ments, respectively. The last segment contains samples from the previous one because the
duration of the subsignal is not divisible by 10.

4.2.1.5 Removal of noisy EEG segments

After the EEG segmentation, the algorithm could still identify abnormal peaks in
the EEG channels. If more than 20% of the EEG channel would be removed due to
abnormal peaks, then the channel was marked to be interpolated. The segment is
rejected if more than two EEG channels were marked for interpolation (>10% of all
EEG channels).
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4.2.1.6 Removal of electrode pops

At this point, the algorithm divided the segments into 5-second windows with a 50%
overlap. After that, the algorithm filtered the windows using a 5 Hz low-pass filter.
It is worth noting that to not alter the values of the windows when filtering, the
original values were saved before performing the analysis. Finally, the algorithm
identified filtered windows with an amplitude higher than 0.5 mV to find electrode
pops that were not previously removed (see Figure 4.7). The original window was
interpolated in the case that at most 10% of channels (two channels) contained
electrode pops. Otherwise, it was maintained. It is worth noting that this method
was not considered at the beginning of the preprocessing methodology. However,
after analysing some ICs, it was noticed that some segments contained one IC only
for the electrode pops. Therefore, this step was added to reduce those outputs.

Figure 4.7: Example of EEG segment with an electrode pop present in channel F7.

4.2.1.7 Interpolation of noisy EEG channels, preparation for ICA, and
ICA processing

Finally, the channels selected to be interpolated in the phase Removal of Noisy EEG
Segments were interpolated using the spherical interpolation method [309], available
in EEGLAB toolbox [245]. Finally, all segments were re-referenced to the average
reference and decomposed by extended infomax ICA algorithm [222].

From the original 648 hours of signal, 35.32 hours (5.45%) were removed by the
algorithm due to experimental errors. Regarding interpolation steps, 18.25 hours of
the preprocessed EEG data (2.98%) contain, at least, one interpolated sample.
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4.2.2 Independent components classification

The 612.68 hours of EEG data comprise 77,426 ICs. These data were randomly
split into training and test sets. The training set contains 61,092 (78.86%) ICs,
from 20 patients, whereas the test set contains 16,334 (21.14%) ICs, from the re-
maining 5 patients. Two experts visually inspected these segments. This analysis
was performed following a semi-supervised approach using the ICLabel toolbox [196]
available in the EEGLAB [245]. The ICs were first automatically classified by the
ICLabel classifier, as brain component or artefact, and then corrected by the experts,
when needed. To make the corrections, they verified the IC time series, PSD, and
topographic map of each IC. If they did not agree with the ICLabel classification,
they would change it according to their analysis. Figure 4.8 presents some examples
of analysed ICs. ICs presented in Figures 4.8a, 4.8b, and 4.8c predominantly present
artefacts. Figure 4.8d shows an IC with brain information manifesting (i) on the
dipole showing in the topoplot and (ii) on the alpha-band peak showing in the PSD
spectrum. Figures 4.8e and 4.8f present ICs containing both brain and noisy data.
Despite the existence of noise, experts classified both components as brain in order
to maintain neural information that could still be useful in further analysis.

Training and test sets were analysed differently. Each IC of the training set
was only inspected by one expert, i.e. if one expert already analysed one IC it
was not examined by the other expert. This analysis method was performed to
have a dataset classified following different opinions, especially on the doubtful ICs.
Training set contains 43,038 (70.44%) brain ICs and 18,054 (29.56%) artefact ICs.
The test set was reviewed by both experts independently and finally, the ICs with
different classifications were discussed by them to assign a final classification. This
approach was made to have a test set validated by both experts with the minimum
possible subjectivity. The test set contains 11,437 (70.02%) brain ICs and 4,897
(29.98%) artefact ICs.

After all the processing methods, the time series, PSDs and topographic maps
of all ICs were extracted. IC time series were obtained from the multiplication of
the ICA weights with the EEG data. Depending on their length, these may contain
2,560 to 153,600 samples. The IC PSDs were obtained using the spectopo function
available in the EEGLAB toolbox. These were restricted to frequencies between 1
and 90 Hz to reject the effects of the 0.5-100 Hz band-pass filter. The IC topographic
maps were obtained using the topoplot function available in the EEGLAB toolbox.
These comprise 67x67 pixels. Both PSD and topographic maps were normalised
using the maximum and minimum values. The IC time series were not normalised
because experts reported that the amplitude of the data was used to decide if the
IC should be removed in doubtful cases.
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(a) IC classified as noise, con-
taining eye blinks.

(b) IC classified as noise, con-
taining eye saccades.

(c) IC classified as noise, con-
taining muscle activity.

(d) IC classified as brain. It
contains mostly brain informa-
tion.

(e) IC classified as brain. It
contains some muscle noise but
also contains brain information
(peak on the alpha band).

(f) IC classified as brain. It
contains some muscle noise but
also contains brain information
(peak on the alpha band).

Figure 4.8: Time series, topographic maps, and power spectrum densities of example
independent components. The presented time series comprises only 5 seconds of the entire
IC time series.

4.3 Data records

The dataset comprises two main directories containing the training and test sets.
Inside each directory, three subdirectories contain artefact samples, not-artefact sam-
ples, and ICA weights. Data is stored in text files. Artefact and not-artefact sub-
directories include the IC time series, the PSD, and the topographic map. The files
comprising the IC time series and the PSD contain one-dimensional arrays, whereas
those comprising topographic maps contain two-dimensional arrays. ICA weights
subdirectory contains the weights used to convert the EEG segments into ICs. These
comprise two-dimensional matrices with the number of rows equal to the number of
ICs and the number of columns equal to the number of EEG channels. Figure 4.9
presents how the data is stored in the files. The dataset and the code used to create
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it are available at https://doi.org/10.5281/zenodo.6620655 [310]. It is worth
noting that the data were verified with the purpose of finding whether there were
corrupted samples. The data is used in Chapters 5 and 6.

Value t0
Value t1

Value tn

...

Value 1 Hz

Value 2 Hz

Value 90 Hz

...

Value 1,1

Value 2,1

Value 67,1

...

Value 1,67

Value 2,67

Value 67,67

...
...

...
...

Time Series Power Spectrum Density Topographic Map

Left Right

Value 1,1

Value 2,1

Value ICs,1

...

Value 1,Chs

Value 2,Chs

Value ICs,Chs

...

...

...
...

ICA Weights

Nasion

Inion

Figure 4.9: Example of text files containing ICA weights, IC time series, PSD, and topo-
graphic map. The values of the ICA weights are stored using the number of ICs as rows
and the number of EEG channels as columns. The values of the time series are stored
chronologically. The values of the PSD begin at 1 Hz and finish at 90 Hz. The values of
the topographic map are stored as a square being the upper-left corner the left-nasion, the
upper-right corner the right-nasion, the lower-left corner the left-inion and the lower-right
corner the right-inion.

4.4 Final reflections

This chapter provides a dataset with ICs from long-term 19-channel EEG collected
from patients with epilepsy under pre-surgical monitoring. Every sample in the
dataset includes the time series, PSD, and topographic map of each IC. They were
also classified as brain or artefact by two experts. The dataset was made publicly
available because it is believed that it could be of a great value for the scientific
community working on this field. Future work should focus on using the data to
develop new IC classifiers or to benchmark the ones that already exist.

https://doi.org/10.5281/zenodo.6620655


Chapter 5

Automatic
electroencephalogram artefact
removal using deep
convolutional neural networks

This chapter concerns the development of the automatic electroencephalo-
gram (EEG) reconstruction method using deep convolutional neural net-
works (DCNNs). The content of this chapter is based on the journal article

published in IEEE Access [38]. Section 5.1 presents the study context. Section 5.2
details the methods used to develop the artefact removal model. It also contains
the considered evaluation metrics. Section 5.3 describes the results and subsequent
analysis using some examples. Section 5.4 discusses the obtained results, presents
the advantages and the limitations of the developed approach, and provides some
final reflections.

5.1 Study context

Brain potentials propagate over the entire scalp. Therefore, several electrodes are
required to capture them with high spatial resolution [59]. Beyond brain information,
these electrodes often capture noise, such as environment interference, experimental
errors, and physiological artefacts [23].

In general, EEG artefacts can be reduced or avoided when the signal is acquired
under controlled conditions. However, in tasks such as epileptic seizure prediction,
EEGs must be continuously acquired over several days [76, 77] being practically
impossible to avoid artefacts. Although a possible solution would be to detect and
remove noisy segments, this removal would result in a high loss of information.
Thus, researchers have developed artefact removal techniques to eliminate, or at least
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attenuate, noisy data from the EEGs while preserving neural information [23,78].
Recently, authors have reported new EEG artefact removal methods, based on

deep learning architectures such as autoencoders (AEs), deep convolutional autoen-
coders (DCAEs), and DCNNs [197,247–250]. These methods are presented to solve
the drawbacks of previously developed methods. They perform quick signal estima-
tion; are able to learn nonlinear relations leading to less loss of relevant information;
are fully automatic; do not depend on the number of channels; and do not require
any calibration before application. However, despite the advantages obtained using
deep learning methods, studies using those methods evaluated them using either
simulated data or data acquired under controlled environments. Therefore, these
analyses do not completely simulate artefact removal from realistic long-term EEG
acquisitions.

This chapter presents an EEG reconstruction model, based on DCNNs, devel-
oped using long-term data acquired from epileptic patients, in pre-surgical mon-
itoring. It was evaluated using root mean squared error (RMSE), relative root
mean squared error (RRMSE), Pearson correlation coefficient (PCC), and signal-to-
noise ratio (SNR) difference. Finally, it was compared with the 1D-ResCNN model
from [197] and with an automatic independent component analysis (ICA) model
based on extended Infomax ICA and MARA classifier [236]. In summary, the main
goal is to develop a model that automatically and quickly removes artefacts from
long-term EEGs without human intervention, making it suitable to be applied in
real-time long-term scenarios such as epileptic seizure prediction.

5.2 Materials and methods

This section presents the methods considered to prepare the dataset used in this
study as well as the procedures followed to develop and evaluate the approach.

5.2.1 Data preparation

The dataset presented in Chapter 4 was used to develop the EEG artefact removal
algorithm presented in this chapter. The dataset was divided in training and test
sets. The first one contains 3,399 segments (486.03 hours), from 20 patients, whereas
the second one includes 910 segments (126.65 hours), from the remaining 5 patients.
As stated in Chapter 4, two experts visually inspected the independent components
(ICs) of the EEG segments of both training and test sets with the purpose of elim-
inating noisy ICs. However, two different procedures were performed for both sets.
EEG segments that were already analysed by one expert, were not analysed by the
other, i.e. each expert analysed different segments from the training set. Test set
was, firstly, analysed by both experts, independently. Then, discordant samples were
inspected by the two experts together with the purpose of producing a set, validated
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by both, to evaluate the approach. After the visual inspection, the segments from
training and test sets were reconstructed using the non-noisy ICs. Finally, there
were a training set and a test set with two different versions for the same EEG
segment: the segment before visual inspection of the ICs (noisy segment), and the
segment after the visual inspection of the ICs (target segment).

5.2.2 EEG artefact removal deep convolutional neural network

The proposed EEG artefact removal method, based on DCNNs, was designed to
automatically remove noise from EEG segments. Although the ICA reconstruction
is linear, the decisions performed by the experts to classify the ICs are nonlinear.
Therefore, a nonlinear model is required to automatically remove noisy artefacts
from the EEG segments.

DCNNs contain convolutional layers and layers with several possible activation
functions. Convolutional layers [170] include several filters, used for extracting fea-
tures from the input data, optimised during learning process. Layers with activation
functions are used for controlling the information which is transferred to the follow-
ing layer. rectified linear unit (ReLU) function is commonly used given its nonlinear
behaviour and fast computation [170]. However, this nonlinear function can pro-
duce dead neurons, which means that some neurons of the network will output a
zero value for different inputs. Leaky ReLU function was introduced in order to
overcome this disadvantage [311]. It solves the problem by outputting a smaller
portion of the negative inputs instead of nullifying them.

As seen in Figure 5.1, the developed architecture is based on three convolutional
blocks, i.e., three sets of three convolutional layers followed by leaky ReLU activation
function. The convolutional layers, used in each block, become wider as DCNN depth
increases. ICA may be viewed as a single convolutional layer with a linear filter that
covers all channels at a time. Therefore, more than one nonlinear convolutional layer
is required to allow the model to better learn such task.
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Figure 5.1: DCNN proposed to automatically remove artefacts from EEG segments. Input
and output data contain 153600x19 samples. This size corresponds to the number of samples
that a 10-minute segment with 19 channels, acquired using a sampling rate of 256 Hz,
contains. Convolutional layers are presented as grey parallelipipeds. The larger the number
of filters in the layer, the larger the width of the parallelipiped. All convolutional filters were
of size 3. Leaky ReLU activation layers are presented green rectangles. All activation layers
uses a α value of 0.2.

Since the various scalp EEG channels are not independent from each other, and
as ICA processing covers all channels at the same time, the model removes artefacts
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from all the channels, simultaneously.
Researchers report that deep learning models improve with the increasing of

depth and width [312,313]. Thus, an architecture that combine both factors taking
into account the available computational resources was developed (4 GPU NVIDIA
Quadro P5000 with 16 GB GDDR5 RAM). The number of filters per layer starts
at 32 and doubles from one block to the next. The last convolutional layer is
used for converting the data back to the initial dimensions. Small filters are useful
for exploring fine details of the data and have less computational cost than large
filters [314]. Filters with size 1 were not considered because these ones are not able
to analyse the values around the unit under analysis. Filters with an even size were
also not used because these ones cannot maintain the symmetry around the unit
under analysis resulting in data distortions across the layers. Finally, grid-search
experiments were performed using filters with size 3 and filters with size 5. It was
verified that the grid search results were similar for both filters’ sizes. Therefore,
all convolutional layers comprise filters with size 3 making the training of the model
faster and less prone to overfit. A stride of 1 was used for every convolutional layer
in order to not reduce the sample size across the layers.

All activation layers use leaky ReLU function. All the used leaky ReLU functions
consider an α of 0.2 as suggested by Xu et al. [315].

5.2.3 Training and validation

The training set was further filtered by the number of eliminated ICs. Therefore, the
EEG segments, with more than half of their ICs classified as noise, were discarded.
This step was performed in order to remove segments with few brain independent
sources, which would not provide enough information for reliable EEG segment
reconstruction. After this filtering step, 2,900 EEG segments remained. It is worth
noting that this filtering step was not performed in the test set.

The training set was further split in training and validation subsets by perform-
ing a random 70/30 holdout partition. Validation aims to prevent overfitting in
training. Therefore, training subset contains 2,030 samples whereas the validation
subset contains 870 samples. Each sample consists of one noisy segment and one
target segment. After that, the samples lasting less than 10 minutes were zero
padded. Thereafter, both subsets were standardised using the average and standard
deviation calculated using all noisy segments belonging to the training subset.

For training the DCNN, adaptive moment estimation (Adam) optimisation func-
tion [316], with an initial learning rate of 3e-4, was used. Regarding the loss function,
the usually used RMSE gives more significance to larger reconstruction errors, thus
leading the algorithm to focus in artefacts with larger amplitude, independently from
the range of values of the target signal (see Equation 5.1). For reducing this bias, the
RMSE was replaced by the RRMSE [78], which normalises the RMSE by dividing
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it by the root mean square (RMS) of the target EEG segment (see Equations 5.2
and 5.3).

RMSE(x, y) =

√√√√ N∑
i=1

(xi − yi)2

N
(5.1)

RMS(x) =

√√√√ N∑
i=1

x2
i

N
(5.2)

RRMSE(x, y) = RMSE(x, y)
RMS(y) (5.3)

where:

xi = i-th Input Value
yi = i-th Target Value
N = Number of Samples

The model was trained for 500 epochs. The model was evaluated, every new
epoch, using the validation subset, with the purpose of saving the one that obtained
the lowest validation loss. The aforementioned procedures were performed ten times.
This was intended to decrease the randomness of the training process. At the end
of each run, the best model was saved with the intention of being tested with the
completely independent test set. Table 5.1 summarises the hyperparameters used
for training the models.

Table 5.1: Hyperparameters used to train the DCNN models.

Hyperparameter Value

Dataset Partition Holdout Validation 70/30
Optimisation Function Adam

Learning Rate 3.0e-4
Loss Function RRMSE

Epochs 500
Number of Runs 10

5.2.4 Evaluation metrics

The model was evaluated using standard statistical metrics. As standard statistical
metrics, RMSE was used for measuring reconstruction error (see Equation 5.1),
RRMSE was used for measuring normalised reconstruction error (see Equation 5.3),
PCC was used for measuring the linear correlation between the denoised and the
target segments (see Equation 5.4), and SNR difference was used for measuring the
noise attenuation [239,317,318].
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RMSE, RRMSE, and PCC were computed for both noisy and denoised segments.
In other words, the noisy segments and the denoised segments were compared with
the target segments. In this way, it was possible to inspect whether the DCNN
model approximates the noisy data to the target data.

SNR difference is the difference between input and output SNRs (see Equa-
tions 5.5 and 5.6). Input SNR was computed under the assumption that noise is
equal to the difference between the noisy and target segments. Output SNR was
performed under the assumption that noise is equal to the difference between the
denoised and target segments.

PCC(x, y) = Covariance(x, y)
σxσy

(5.4)

SNR(x, y) = 10× log10

∑N
i=1 y

2
i∑N

i=1(xi − yi)2
(5.5)

SNRdiff = SNR(ŷ, y)− SNR(x, y) (5.6)

where:

x = Noisy segment

y = Target segment

ŷ = Denoised segment

N = Number of samples

RMSE, RRMSE, PCC, and SNR difference were computed for each EEG channel,
independently. In this way, it could be possible to analyse the alterations that the
model performed in each channel.

It is worth noting that the SNR difference cannot be performed when there
is no difference between noisy and target segments. Thus, for implementing this
evaluation metric, test segments containing only brain ICs were removed.

5.2.5 Comparison with different artefact removal models

The DCNN model was compared with 1D-ResCNN model from [197] and with an
automatic ICA model based on extended Infomax ICA and MARA classifier [236].
As the 1D-ResCNN is not publicly available, it was reimplemented following the
procedures presented by the authors. The MARA model is publicly available in
EEGLAB toolbox. These models were chosen because they are also able to auto-
matically remove several different artefacts from the EEGs.

All models were tested in a computer with an AMD Ryzen 5 2600 CPU 3.4
GHz, 64 GB of RAM, NVIDIA RTX 2060 Super, and Linux Ubuntu 20.04 LTS. The
extended Infomax ICA-MARA was tested in Matlab 2019b whereas the DCNN and
1D-ResCNN models were tested using Tensorflow 2.0 and Keras 2.3 from Python
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3.8. The inference phase of the DCNN models was performed using CPU rather than
GPU with the purpose of comparing it with the extended Infomax-MARA model,
which has to be performed in CPU. Additionally, testing the models on the CPU
allows to approximate the simulation to a real environment where GPUs are usually
less available.

5.3 Results

This section describes the results obtained for the developed approach.

5.3.1 Training and validation learning curves

Figure 5.2 shows the mean and standard deviation of the training and validation
learning curves for all the developed models. Figures 5.2a and 5.2b show that the
validation learning curve followed the training learning curve. This suggests that the
developed models did not overfit the training data. Furthermore, it is seen that the
models started to stabilise around the 300th epoch which means that the number
of epochs was not a limiting factor to the learning procedure. Moreover, the low
standard deviation indicates that all the ten models perform similarly. Therefore,
one of them was randomly select for further analysis.
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(a) Training learning curve.
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(b) Validation learning curve.
Figure 5.2: Mean and standard deviation of training and validation learning curves ob-
tained from averaging all ten developed models.

5.3.2 Examples of EEG segments reconstructed by the developed
approach

In order to demonstrate how the approach performed for the various types of arte-
facts found in segments, some examples of the noisy segments along with the target
and obtained denoised segments are presented. One example for each type of EEG
artefact present in the data is shown. More examples are available in Section A.4 in
the Appendix A for further exploration.

Figure 5.3a shows three types of artefacts: eye blinks, eye movements, and mus-
cle activity. Figures 5.3b, 5.3c, and 5.3d show these artefacts in detail whereas
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Figures 5.3e, 5.3f, and 5.3g present the power spectrum density (PSD) of the time
series in the selected time windows.

As can be observed in Figures 5.3b and 5.3c, the model was able to remove
the ocular artefacts and returned a denoised segment similar to the target segment.
However, Figure 5.3e evidences a loss of information in high frequencies. Eye blinks
are typically artefacts with large amplitude and low frequency. Therefore, as the
used loss function most strongly penalises the larger differences between the denoised
and the target segments, the training of the model tries to find out how to reduce
these artefacts before learning how to correct the small details of the data. As the
EEG amplitude is, in most cases, inversely proportional to its frequency, in the
case of an incomplete training there may be a loss of high frequency information.
Figure 5.3d shows that the model attenuated the presence of the muscle activity,
but did not remove it completely. This behaviour is confirmed by Figure 5.3g, i.e.,
there was only an attenuation of the PSD of the noisy channel. This may happen
as a result of the difficulty of eliminating this artefact even by visual inspection of
the ICs.

Figure 5.4 shows cardiac peaks in channel O1, which were not removed by the
DCNN model. As these artefacts appeared rarely in the training set, the model may
have had difficulty in considering them as noise.

Figure 5.5 shows pulse artefacts in channel C4. These artefacts resulted from
having the EEG electrode on a pulsating vessel on the scalp. It can be observed that
the model was not able to remove this interference from the noisy segment. These
artefacts also did not occur frequently in the training set. Therefore, similarly to
cardiac artefacts, the model may not had learned to consider them as noise.

Figure 5.6 shows electrode movement in all channels. These artefacts usually
appear when there is a disturbance in the electrodes which leads to a change of
impedance. In this case, the model was able to remove this interference from the
noisy segment.

Figure 5.7 evidences that the model was not able to extract brain information
from time intervals when there were electrode connection errors. It was expected that
this type of artefact would be removed in the first stage of the EEG preprocessing
algorithm. The algorithm was designed to remove portions, with an amplitude
greater than 5 mV or lower than -5 mV, when the connection error occurred on
several channels, simultaneously. Therefore, it is possible that some portions, with
connection problems, still remained after the initial EEG preprocessing.

Figure 5.8 shows that the model has learned not to make considerable transfor-
mations when noise is not present in the EEG segments. However, it is seen that
there was an attenuation of the high frequency waves in EEG channels, especially,
where high amplitude artefacts usually appear such as Fp1, Fp2, F7 and F8. This
means that the model focused excessively on removing artefacts on these channels
containing low frequency artefacts, and thus, failed to learn high frequency details.
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Figure 5.9 presents a very important behaviour of the developed model. This
figure shows a portion of a segment, with a connection error, that resulted in re-
moving more than half of the ICs by visual inspection. In this case, the model
learned to analyse small windows of the entire noisy segment and to keep the data
that did not have any noisy artefact. Before developing the models, EEG segment
containing more than 50% noisy ICs were removed. Therefore, the models may
not have learned to remove excessive information in situations as this one. This is
an important advantage comparing to ICA approaches, because it preserved brain
information while attenuating the influence of artefacts.

In summary, one may conclude that the model could attenuate artefacts such
as eye blinks, eye saccades, muscle activity, and channel movements present in Fig-
ures 5.3b, 5.3c, 5.3d, and 5.6, respectively. Furthermore, it could perform reasonable
reconstructions when no artefacts were present on the EEG data (see Figures 5.8
and 5.9). However, the model could not handle rare EEG artefacts such as cardiac
artefacts, pulse artefacts, and saturated segments present in Figures 5.4, 5.5, and
5.7, respectively.

5.3.3 Evaluation metrics

The developed EEG artefact removal model was assessed using the evaluation met-
rics presented in Section 5.2.4. Thus, the metrics for all independent test samples
were computed. The metrics were calculated for each EEG channel, independently.
Therefore, for each EEG channel, 910 values for RMSE, RRMSE, and PCC for noisy
and denoised segments and 875 values for SNR differences were obtained.

When inspecting the results for RMSE, RRMSE, PCC, and SNR difference,
skewed distributions explained by the existence of some outliers in these metrics
were observed. These outliers result from some experimental errors that were not
removed in the initial preprocessing pipeline. Therefore, instead of using the com-
mon central tendency statistics, mean and standard deviation, the median and in-
terquartile range were utilised (see Figure 5.10). Mean and standard deviation are
available in Section A.3.

Figures 5.10a and 5.10b present the median and interquartile range values of
the RMSE and RRMSE, respectively. As stated in Section 5.2.4, RMSE evaluates
the reconstruction error whereas RRMSE measures the normalised reconstruction
error. The lower these metrics are, the closer the obtained denoised data are to the
target one. In general, these values decreased when using the DCNN model, which
suggests that the model learned to approximate the noisy segments to the target
ones.

According to Figures 5.10a and 5.10b, Fp1, Fp2, F7, and F8 were the EEG
channels associated with a larger decrease in RMSE and RRMSE. This occurred as
a result of the removal of ocular artefacts, which typically have an amplitude higher
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(a) Five seconds of all channels of an example EEG segment containing eye blinks (1), eye move-
ments (2) and muscle activity (3).
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(b) EEG time series of the se-
lected portion of the Fp2 chan-
nel of Figure 5.3a.
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(c) EEG time series of the se-
lected portion of the F7 channel
of Figure 5.3a.
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(d) EEG time series of the se-
lected portion of the T7 channel
of Figure 5.3a.
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(e) PSD of the selected por-
tion of the Fp2 channel of Fig-
ure 5.3a.
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(f) PSD of the selected portion
of the F7 channel of Figure 5.3a.
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(g) PSD of the selected portion
of the T7 channel of Figure 5.3a.

Figure 5.3: Example EEG segment from the test set. The noisy segment, target segment
and denoised segment are presented in blue, orange and black, respectively. The selected
portions of Figure 5.3a provide the exact moment of artefact occurrence: in Fp2 channel
there is an eye blink, in F7 channel there is an eye saccade and in T7 channel there is muscle
activity. These portions are zoomed in in Figures 5.3b, 5.3c and 5.3d. The PSD of the EEG
time series, in the selected portions, are provided in Figures 5.3e, 5.3f and 5.3g.
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Figure 5.4: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are presented in blue, orange and black, respectively.
The selected portions provide the exact moments when the cardiac artefacts occur.

Figure 5.5: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are presented in blue, orange and black, respectively.
The selected portion evidences the EEG channel where the pulse artefacts occur.



108 CHAPTER 5. AUTOMATIC EEG ARTEFACT REMOVAL USING DCNN

102 103 104 105 106
Time (s)

Fp1

Fp2

F3

F4

C3

C4

P3

P4

O1

O2

F7

F8

T7

T8

P7

P8

Fz

Cz

Pz

EE
G 

Ch
an

ne
l

 100 V

Time Series - All EEG Channels
Noisy EEG Segment
Target EEG Segment
Denoised EEG Segment

Figure 5.6: Five seconds of all channels of an example EEG segment contaning electrode
movements. The noisy segment, target segment and denoised segment are presented in blue,
orange and black, respectively.
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Figure 5.7: Five seconds of all channels of an example EEG segment containing experi-
mental errors which were not removed in the first step of the EEG preprocessing algorithm.
The noisy segment, target segment and denoised segment are presented in blue, orange and
black, respectively.
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Figure 5.8: Five seconds of all channels of an example EEG segment that does not contain
any noisy artefact. The noisy and target segments are equal as there are no artefacts in
the EEG data. These segments are presented in orange whereas the denoised segment is
presented in black.
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Figure 5.9: Five seconds of all channels of an example EEG segment which had some
brain information removed by visual inspection that was not removed by the EEG artefact
removal model. The noisy segment, target segment and denoised segment are presented in
blue, orange and black, respectively.
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than the brain data. Channels F3, F4, T7, and T8 also evidenced a large reduction
of these metrics. Although all EEG channels contained some muscle activity at a
certain period of time, F3, F4, T7, and T8 were usually contaminated with this
artefact over several segments. Therefore, results suggest that the developed model
was able to reduce the presence of these artefacts, even in highly-corrupted channels.
Comparing RMSE and RRMSE for the denoised segments, it is seen that although
the channels O1, O2, P7, and P8 evidence RMSE values similar to the those obtained
for channels C3, C4, P3, and P4, these channels present RRMSE values among the
lowest of all channels. This means that the expected RMS of channels O1, O2, P7,
and P8 were greater than the expected RMS of the channels C3, C4, P3, and P4.
Therefore, it was concluded that the same error value has a lower relevance for those
channels.

Figure 5.10c shows the median and interquartile range values of the PCC values.
As mentioned in Section 5.2.4, PCC measures the linear correlation between two
time series. Therefore, the higher this metric is, the greater is the linear correla-
tion between the obtained denoised segment and the target one. In general, PCC
increased after using the DCNN model, which suggests that the noisy segments
became more linearly correlated with the target ones after using it. As already ver-
ified in Figures 5.10a and 5.10b, the larger PCC increase can be seen for the EEG
channels containing ocular artefacts (Fp1, Fp2, F7, and F8).

Figure 5.10d shows the median and interquartile range values of the SNR dif-
ference values. As mentioned in Section 5.2.4, SNR difference measures the im-
provement of the SNR after using the DCNN model. Positive values suggest a SNR
increase, after using the model, whereas negative values suggest a SNR decrease
and, therefore, a lower success in denoising the EEG. Although the overall results
evidence the improvement of the SNR for all channels, the Fz channel presents an
interquartile range that contains the zero value. As seen in Figures 5.10b and 5.10c,
the interquartile range of the results for this channel, before using the DCNNs, con-
tains almost optimal values. This indicates that for the test dataset, Fz channel was
less corrupted by artefacts. Therefore, it was practically unchanged by the model.

5.3.4 Comparison with different artefact removal models

For each artefact removal model, the RMSE, RRMSE, PCC, and SNR difference were
computed for all independent test samples. Furthermore, the computation times
were also calculated. Contrary to the previous section, to simplify the comparison,
these metrics were obtained using all channels. Table 5.2 presents the RMSE, the
RRMSE and the PCC for the original data and denoised data reconstructed by the
presented approach, 1D-ResCNN, and extended Infomax ICA-MARA. Furthermore,
it contains the SNR difference and computation times for each artefact removal
model.
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EEG channel, before and after applying
DCNN model.
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Figure 5.10: Performance results using the standard evaluation metrics reported in EEG-
based studies. Each bar corresponds to the median value and the interquartil range.

Table 5.2: Statistical metrics used to compare the EEG artefact removal models. The
values are presented in the format median (first quartile - third quartile).

Noisy Denoised
(Developed Model)

Denoised
(1D-ResCNN)

Denoised
(Extended Infomax

ICA - MARA)
RMSE (Microvolts) 13.88 (4.53 - 19.04) 4.83 (2.92 - 6.90) 9.83 (6.93 - 12.70) 5.28 (3.32 - 7.62)

RRMSE 1.57 (0.50 - 2.29) 0.52 (0.32 - 0.77) 1.03 (0.61 - 1.51) 0.63 (0.38 - 0.81)
PCC 0.54 (0.40 - 0.90) 0.86 (0.70 - 0.95) 0.53 (0.37 - 0.83) 0.78 (0.60 - 0.93)

SNR Difference - 8.81 (4.83 - 10.05) 3.12 (0.11 - 3.78) 7.58 (3.08 - 10.37)
Computation Time (Seconds) - 0.29 (0.29 - 0.30) 3.37 (3.35 - 3.38) 384.52 (375.43 - 391.49)

Pairwise comparisons, using non-parametric tests (Kruskal-Wallis [319] and Dunn-
Šidák [320]), between all approaches, using all statistical metrics, were also per-
formed to study whether there are statistical differences between them. To compare
the performances, a significance level of 0.05 was considered. Figure 5.11 presents
those pairwise comparisons. For RMSE and RRMSE, lower values are related with
lower noise levels whereas for PCC and SNR difference, higher values are preferred.

Results presented in Table 5.2 evidence that the model obtained considerably
lower reconstruction errors and higher PCCs and SNR differences, compared to the
1D-ResCNN. Furthermore, the DCNN model is faster than 1D-ResCNN. Figure 5.11
shows that the differences between both methods were statistical significant (p-value
(RMSE) < 0.001; p-value (RRMSE) < 0.001; p-value (PCC) < 0.001; p-value (SNR
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Figure 5.11: Pairwise comparison plots comparing the statistical metrics of the noisy
data and the denoised data reconstructed by the developed model, by 1D-ResCNN and
by extended Infomax ICA-MARA. The presented values represent the mean ranks and the
standard errors obtained from the statistical test. Overlapping confidence intervals mean
that there are no significant statistical differences between the results under analysis. These
figures were obtained using the multcompare function from MATLAB.

Diff) < 0.001; p-value (Prediction Time) < 0.001).
Comparing the proposed approach with the extended Infomax ICA-MARA, re-

sults provided in Table 5.2 evidence that the DCNN model obtained lower median
reconstruction error and higher median PCCs and SNR differences. Figure 5.11 also
evidences that the DCNN model obtained lower RRMSE, higher PCC and SNR
difference with significant statistical differences (p-value (RRMSE) = 0.015; p-value
(PCC) < 0.001; p-value (SNR Diff) = 0.003). However, it shows that both models
did not obtain significant statistical differences for RMSE (p-value = 0.087). Ad-
ditionally, results demonstrated that the developed approach is considerably faster
than the extended Infomax ICA-MARA which lasted around 6 minutes on average
compared to less than a second (p-value < 0.001) in the developed method.

5.4 Discussion

The automatic EEG artefact removal approach, presented in this chapter, is based
on DCNNs. It was designed to automatically remove several artefacts, commonly
observed in long-term EEGs, such as ocular artefacts, muscle activity, cardiac ac-
tivity, pulse artefacts, and electrode connection issues, in a similar way to that
performed by experts. Studies cited in the literature review, which developed deep
learning models that whether only remove one type of artefact [247, 248] or were
trained with artificially generated noisy EEG data [197, 249], do not fully simulate
real application scenarios such as clinical EEG evaluation. The proposed approach
is a step forward because it was able to remove several artefacts present in long-term
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signals collected from epileptic patients, in pre-surgical monitoring.
The DCNN model was developed using EEG data previously processed using

ICA. ICA is a linear decomposition method. Therefore, the reconstruction of EEG
segments, after removing noisy ICs, is performed using linear equations. However,
the EEG artefact removal model must not only automate the linear reconstruction
of the EEG segments without artefacts but also the nonlinear decisions performed
by experts when classifying the ICs.

The developed approach was able to attenuate the influence of artefacts while
preserving brain information. Additionally, it was able to recognise artefacts within a
segment and minimise information related to these ones keeping the remainder data.
Thus, it could preserve more information than ICA [197, 247]. These results could
be related to the removal of training data with more than half of their ICs classified
as noise, i.e., the model did not learn to excessively remove data. Finally, the model
removed artefacts from signals which were not used in training, which means that
it did not overfit to signals from patients used in training, and, therefore, may be
used in EEGs from new subjects.

It was found out that the model had difficulty in preserving small details of the
EEGs in channels where high amplitude artefacts were common, e.g., Fp1 and Fp2
channels. This behaviour was also noticed by Yang et al. [247]. They reported
that gamma bands (more than 30 Hz) were not perfectly reconstructed when ocular
artefacts were present, which means their model also lost high frequency details when
signals were corrupted with this type of artefacts. Note that loss functions, which
aim at reducing the reconstruction error, firstly find out how to decrease the larger
errors, and secondly learn the smaller details. Therefore, as these channels presented
high amplitude artefacts, the model learned to remove their influence before learning
how to reconstruct low amplitude data. In the EEGs, the frequency is, in most
cases, inversely proportional to the amplitude. Thus, although the DCNN model
could preserve low frequency EEG data, it may require a different training setup,
e.g., increasing the training set, searching for the optimal deep learning architecture,
using longer training times or replacing the utilised loss function by another one, in
order to improve its high frequency detail reconstruction.

Results evidenced that the proposed approach obtained the greatest performance
among the tested artefact removal models. Compared to the 1D-ResCNN, this
could be explained by the fact that the latter was developed using simulated noisy
EEG data which could not precisely mimic real noisy EEG segments. Considering
the extended Infomax ICA-MARA, the DCNN model presented a minor loss of
information because instead of removing the entire source related with the noise, it
focuses on processing just the time interval when the artefact occurs. Furthermore,
the proposed approach is faster than the other evaluated approaches. Therefore, it
may be used to remove artefacts from signals in real-time scenarios. It could be,
for example, deployed into the IBM’s TrueNorth Neurosynaptic System [33, 321],
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which is a power-efficient neuromorphic chip that can be adapted to implement
DCNNs [322], to remove artefacts from EEGs before epileptic seizure prediction.

The proposed approach was developed using EEG data from patients with epilepsy
under pre-surgical monitoring conditions. These data were acquired without condi-
tioning patients’ activities. It means that the data contain several artifacts, which
are likely to be present in EEGs acquired in uncontrolled environments for other
research purposes. Therefore, although it was developed using epileptic EEG data,
it may be used for denoising other types of EEGs.

5.4.1 Study limitations

As the proposed approach was developed with EEG segments acquired using a sam-
pling rate of 256 Hz, it is restricted to acquisition systems using the same number
of samples per second. However, this may not be seen as a strong limitation be-
cause studies often consider scalp EEG that was either obtained using this sampling
rate [275, 283, 323–326] or using higher sampling rates which where subsequently
downsampled for further analysis [327–330]. Moreover, as it was trained using multi-
channel EEG segments, it is also restricted to the same channel placement over scalp.
Furthermore, it is limited to segments lasting up to 10 minutes, i.e., signals with
longer duration must be segmented before being processed.

The model was developed with 19-channel EEG segments previously processed
using ICA. ICA can only find a number of independent sources at most equal to the
number of used channels. Although some authors state that 19 may be considered as
a high number of EEG channels, ICA usually performs more accurately with EEG
data with at least 64 channels [331, 332]. Therefore, the reconstruction capability
of the DCNN model may be limited by the performance of the ICA decomposition.
However, as the main goal of this study was to develop a model that would be able
to work in real long-term scenarios, the pipeline was restricted to low-density EEG
data that were available in the database.

5.4.2 Final reflections

This work demonstrates the potential of deep learning architectures in developing
models that can automatically remove artefacts from EEGs in less than a second.

Removing artefacts present in real long-term EEGs, by visually inspecting the in-
dependent sources of the signals, is a time consuming task since it requires examining
several hours of data. Therefore, deep learning approach which may automatically
and quickly remove artefacts, such as eye blinks, eye movements, muscle activity,
cardiac activity, and electrode connection interferences was developed. In this way,
it could be used later to automatically eliminate noise from EEGs from other pa-
tients, available in the EPILEPSIAE database, or for removing noise in real-time
scenarios.
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Experimental results suggested that the developed model could attenuate the
influence of the artefacts in the EEGs signals. Furthermore, compared to other
approaches, the DCNN model could combine a minor reconstruction error with a
fast computation, making it suitable to preprocess real-time long-term EEGs signals.
It demonstrates that EEG artefact removal models, based on deep neural networks
(DNNs), developed using real EEGs, should be taken into consideration when noisy
artefacts are present in the EEG data.

Future work should tackle the development of DCNNs models using each EEG
channel individually and comparing them with the multi-channel model. In this way,
if the new approaches achieve similar or better performance, they could be used to
remove artefacts from noisy segments acquired with any type of acquisition system,
as long as one provides the same sampling rate.





Chapter 6

Ensemble deep neural network
for automatic classification of
EEG independent components

This chapter presents the development of a novel ensemble deep neural net-
work (DNN) that combines time series, power spectrum densitys (PSDs),
and topoplots to classify independent components (ICs) and the ability

of using it in transfer learning approaches. The content of this chapter is based on
the journal article published in IEEE Transactions on Neural Systems and Reha-
bilitation Engineering [39]. Section 6.1 presents the study context. Section 6.2 de-
scribes the datasets and the methodology followed to develop the study. Section 6.3
describes the results and subsequent analysis. Section 6.4 discusses the obtained
results, presents the advantages and the limitations of the developed approach, and
provides some final reflections.

6.1 Study context

Independent component analysis (ICA) is the blind source separation (BSS) algo-
rithm most widely used to decompose multi-channel electroencephalograms (EEGs)
into their independent sources [78, 217]. After this decomposition, an expert has
to review the ICs and to classify them as brain signals or artefacts. This visual
inspection is performed by examining the time series, the PSD, and the topographic
map of each IC [238, 243]. This procedure is time-consuming and strongly relies on
the expert’s knowledge. Thus, to automate this task, researchers have developed
several models to classify the ICs.

IC classifiers have been created using temporal, spectral, and spatial handcrafted
features extracted from the time series, PSD, and topographic map of each IC, re-
spectively [218, 235–242]. Recently, new approaches based on DNNs were formu-
lated [196,243,244]. Deep learning approaches outperformed the automated models
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developed using manually extracted features. The success of these methods comes
from the ability of the DNNs to automatically extract complex nonlinear features
directly from data [170]. The presented deep learning approaches achieved satis-
factory accuracy performances (around 90%). However, contrary to experts who
analyse the ICs, these models do not consider the temporal information of the ICs
time series in the classification process. Therefore, their performance may be limited
since they cannot fully simulate the visual inspection performed by trained experts.

In this chapter, a novel DNN that fully simulates the labelling of ICs performed
by experts is proposed. It combines the three sources of information obtained from
an IC: the raw time series, the PSD, and the topographic map. In this way, this
study aims at analysing the importance of the temporal information for classify-
ing the ICs. After that, the proposed approach is evaluated in another dataset,
different from the one used to develop it, and compared the performance with pub-
licly available approaches. After a thorough search of the relevant literature it was
found that only ADJUST [237], MARA [236], ICLabel, and ICLabelLite [196] can
be downloaded and used to classify ICs. Therefore, these were used to perform the
comparisons. Furthermore, since obtaining large labelled datasets to train DNNs is
difficult, the capability of using the proposed model for transfer learning approaches
was evaluated. For that, the performance of retraining a previously trained model
was compared with that of a model trained from scratch.

6.2 Material and methods

This section presents the steps followed to develop and evaluate the proposed ap-
proach. Firstly, the datasets used to prepare the approach are introduced (see
Section 6.2.1). Additionally, the preprocessing steps performed to prepare the data
are described. Then, the model’s architecture is detailed (see Section 6.2.2). Finally,
the procedures performed to develop it; to verify whether the time series improve
the performance of the IC classifier; to compare the performance of the presented
architecture with publicly available IC classifiers; and to evaluate the capability
of using the developed classifier in transfer learning approaches are presented (see
Section 6.2.3).

6.2.1 Datasets

The approach was developed and evaluated using two datasets: the EPILEPSIAE
dataset and the BASE dataset..

6.2.1.1 EPILEPSIAE dataset

EPILEPSIAE dataset was used to train and validate the IC classifier architecture.
It corresponds to the EPIC dataset presented in Chapter 4.
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6.2.1.2 BASE dataset

BASE dataset was used to evaluate the obtained architecture and the transfer learn-
ing step. It is composed by 2,340 ICs obtained from EEGs recorded during code
comprehension in a cognitive load assessment study from BASE project [333, 334].
This dataset contains short-term EEGs, acquired from 30 subjects (24 males and
6 females, with ages ranging from 19 to 42 years), with an average duration of
9.45±3.92 minutes. The EEG data were acquired using a sampling rate of 1000 Hz
and 60 electrodes organised according to the 10-10 international system. Contrary
to the EEGs available in EPILEPSIAE database, EEG data from the BASE project
were acquired in a controlled environment, during a few minutes. Therefore, these
data contain less experimental errors. The dataset already contained the ICs and
their labels. Therefore, it was not needed to perform ICA on the EEGs. From the
2,340 ICs, 1,296 ICs were classified as brain (55.4%) and 1,044 (44.6%) were classified
as artefact. The study was conducted according to the guidelines of the Declaration
of Helsinki, and approved by the Ethics Committee of Faculty of Medicine of the
University of Coimbra (protocol code CE Proc.CE-138/2018 and approved on 19
December 2018).

The procedures used to obtain the time series, PSDs, and topographic maps of
each IC from the EPILEPSIAE dataset were also followed to obtain the data of each
IC from the BASE dataset. However, since the EPILEPSIAE dataset contains ICs
with time series with a sampling rate of 256 Hz, it was necessary to downsample the
IC time series from the BASE dataset to 256 Hz.

The proposed approach is able to classify ICs with different duration. Therefore,
it is not mandatory to restrict the duration of these time series to at most 10-minute
length (maximum duration of IC time series present in EPILEPSIAE dataset).

6.2.2 Ensemble deep neural network architecture

As presented in Figure 6.1, the proposed architecture is an ensemble of DNNs (en-
semble DNN). It contains three parallel DNNs: (i) a deep convolutional neural
network (DCNN) combined with bidirectional long short-term memorys (BiLSTMs)
layers (DCNN-BiLSTMs), to extract temporal features from the IC time series; and
(ii) two DCNNs, to extract spectral and spatial features from the PSDs and to-
pographic maps, respectively. For simplicity, the DCNN-BiLSTMs was named as
temporal-features DNN (temporal-features DNN), the DCNN that extracts spec-
tral features as spectral-features DNN (spectral-features DNN) and the DCNN that
extracts spatial features as spatial-features DNN (spatial-features DNN).

This architecture was partially inspired in classifiers presented in Croce et al. [243]
and in ICLabelLite [196] which labelled ICs based on the PSDs and topographic
maps. It is worth noting that the architecture of the ICLabelLite was considered
over the architecture of the default ICLabel because higher performance was re-
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Figure 6.1: Ensemble DNN. It contains three different networks: one DCNN-BiLSTM to
extract temporal features from time series and two DCNNs to extract spectral and spatial
features from PSDs and topoplots, respectively. Convolutional layers contain the number
of filters and the sizes, max pooling layers contain the size of the pooling windows, the
leaky ReLU functions contain the used α value, spatial dropout and dropout layers contain
the dropout percentage, the BiLSTM layer contains the number of LSTM units per LSTM
layer, and the fully connected layer contains the number of output neurons. All convolutional
layers and max pooling layers comprise a stride of 1.
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ported for the former in the binary classification of the ICs [196]. Additionally, since
experts use temporal information to classify the ICs, it was decided to add the time
series to the architecture in order to fully simulate the expert’s analysis. Therefore,
to classify an IC, the model uses information from the corresponding time series,
PSD, and topographic map.

The temporal-features DNN contains convolutional layers, activation functions,
pooling layers, spatial dropout layers, and a BiLSTM layer. Convolutional lay-
ers [172] include several filters used to extract features from the data. Temporal-
features DNN contains six convolutional layers. The number of convolutional layers
were empirically chosen. The number of convolutional filters begins in 4 and goes up
to 128, in powers of two. All filters were of size 3x1 with a stride of 1. The temporal-
features DNN utilises the leaky rectified linear unit (ReLU) activation function after
every convolutional layer. This function is an improved version of the ReLU function
and that can handle the dead neurons problem [311] by taking into consideration a
fraction of the negative values of the features maps. It is described by Equation 6.1
where x is the input vector and α is a small constant.

f(x) =

x if x ≥ 0

αx if x < 0
(6.1)

All the used leaky ReLU functions consider an α of 0.2 as suggested by Xu et al. [315].
There are six max pooling layers in the temporal-features DNN. All pooling windows
were of size 2x1 with a stride of 1. Dropout layers are regularisation layers that
randomly disconnect neurons during the training process. Spatial dropout layers are
a particular case of dropout layers that instead of deactivating neurons, deactivate
feature maps. Temporal-features DNN contains two spatial dropout layers: one after
the third pooling layer and another after the sixth pooling layer. The percentage
of spatial dropout during training process is 20%. The temporal-features DNN
contains a BiLSTM layer which merges two long short-term memory (LSTM) layers
comprising 128 LSTM units, respectively. The two LSTM layers used in the BiLSTM
layer process the data in opposing directions. In this way, the BiLSTM layer is able
to extract temporal features from both directions. The number of LSTM units was
chosen in order to obtain an output with the same size as the other two DNNs.

The spectral-features DNN and the spatial-features DNN contain convolutional
layers, activation functions, pooling layers, spatial dropout layers, and a global pool-
ing layer. There are three convolutional layers in both networks. The number of
layers was chosen considering the number of layers used by Croce et al. [243] and
Pion-Tonachini et al. [196]. The number of convolutional filters are 64, 128, and 256,
respectively. The filters of the spectral-features DNN are of size 3x1 whereas the
filters of the spatial-features DNN are of size 3x3. All convolutional filters slide over
the data with a stride of 1. Both DNNs utilise leaky ReLU functions with an α of
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0.2. Additionally, there are three max pooling layers in both networks. The pooling
windows of the spectral-features DNN are of size 2x1 whereas the windows of the
spatial-features DNN are of size 2x2. All pooling windows slide over the data with a
stride of 1. There is one spatial dropout layer, with a percentage of dropout of 20%,
after the third pooling layer of each DNN. Both networks use global pooling layers
to produce the features utilised in the classification. Comparing to flatten layers,
global pooling layers drastically decrease the number of training parameters, thus
reducing the computational time and also the probability of overfitting the training
data [174,335].

The features extracted in the three networks are concatenated and used to clas-
sify each IC as brain or artefact. For that, a fully connected layer is applied. Fully
connected layers connect all inputs from the previous layer to compute the output
values. Finally, the fully connected layer output was converted in probabilities using
an activation layer with the softmax function [336].

It is worth noting that although the architecture was developed using a fixed
length for the time series, it can classify ICs with different lengths as result of the
non-existence of fully connected layers in the feature extraction networks.

6.2.3 Model development and evaluation

After the definition of the general architecture of the proposed approach, the impor-
tance of the time series to classify the ICs was evaluated. Afterwards, the proposed
architecture was compared with other publicly available IC classifiers, using the
BASE dataset. Finally, the capability of using the developed model in transfer
learning procedures was evaluated.

6.2.3.1 Importance of the time series

In order to verify whether the temporal information present in the IC time series
improves the classification, the ensemble DNN was compared with DNNs that do
not use the time series, PSDs and topoplots at the same time. These DNNs com-
prised (i) only time series and PSDs (temporal-spectral-features DNN); (ii) only time
series and topographic maps (temporal-spatial-features DNN); (iii) only PSDs and
topographic maps (spectral-spatial-features DNN); (iv) only time series (temporal-
features DNN); (v) only PSDs (spectral-features DNN); and (vi) only topographic
maps (spatial-features DNN).

To train the aforementioned DNNs the training set of the EPILEPSIAE dataset
was divided in a training subset and a validation subset using random 70/30 stratified
holdout method. Therefore, 42,764 out of 61,092 ICs were used to train the models,
while the other 18,328 ICs were used to constantly evaluate the performance of
the models during the training phase. The time series of the ICs that did not
contain 10 minutes of duration were zero padded so that it was possible to train the
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models using batches with more than one element. Data from both subsets were
standardised using the average and standard deviation computed from the training
subset.

Training subset includes 30,126 brain ICs and 12,638 artefact ICs. Consequently,
batch balancing was performed in order to have an equal number of ICs from both
classes in each training batch. First, the ICs present in the training subset were
separated according to the labels. A batch size of 128 was considered, made of 64
sequentially chosen ICs classified as brain and 64 ICs classified as artefact. As the
number of ICs labelled as artefact was smaller, after using all these ICs once, the
production of batches continued using already selected artefact ICs. In this way,
it was possible to use all the ICs available in the training subset to develop the
approach. The validation subset was not balanced.

Adaptive moment estimation (Adam) optimisation function with an initial learn-
ing rate of 3e-4 was used to train the models [316]. This function is able to adapt
its learning rate considering the network parameters. Binary cross-entropy function
was the loss function which should be optimised during training. The models were
trained for 200 epochs using model checkpoint, i.e., they were evaluated, every new
epoch, using the validation subset, with the purpose of selecting the ones which did
not overfit on training subset.

Table 6.1 summarises the hyperparameters used to develop the IC classifiers.

Table 6.1: Hyperparameters used to train the IC classifiers.

Hyperparameter Value

Dataset Partition Holdout Validation 70/30
Optimisation Function Adam

Learning Rate 3e-4
Loss Function Binary Cross Entropy

Epochs 200

Testing set from the EPILEPSIAE dataset was used to evaluate the performance
of the developed models. Contrary to the training and validation subsets, the time
series of the testing set were not zero padded. Afterwards, the testing ICs were
standardised using the average and standard deviation from the training subset.
The models were evaluated using the sensitivity, specificity and geometric mean of
sensitivity, and specificity (G-Mean). The G-Mean was used instead of the accuracy
because of the unbalanced ratio of testing ICs. With the purpose of reducing the
randomness of the model development pipeline, the training and evaluation of the
models were repeated 30 times.
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6.2.3.2 Comparison to other independent component classifiers

After assessing the importance of the time series to classify the ICs, the performance
of the proposed approach was compared with other publicly available models, namely
ADJUST [237], MARA [236], ICLabel, and ICLabelLite [196]. BASE dataset was
used to perform the comparisons with other state of the art models because, it was
not labelled with the assistance of any IC classifiers. In this way, it was possible to
compare with other models without having a bias. The BASE dataset was randomly
divided in training subset, validation subset, and testing subset using a stratified
60/20/20 split. Therefore, training subset contains 1,404 ICs whereas the validation
and testing subsets contain 468 ICs each. All the three subsets maintain the original
dataset classes ratio (55.4% of brain ICs and 44.6% of artefact ICs). Then, the
subsets were scaled using the normalisation values of the EPILEPSIAE training
subset. Afterwards, the ensemble DNN was trained using the training and validation
subsets and evaluated using the testing subset. For simplicity, it was named as BASE
model. The optimisation function, learning rate, loss function, and number of epochs
used to train the BASE model were equal to the ones presented in Table 5.1. Again,
with the aim of reducing the stochasticity of the model development pipeline, these
procedures were repeated 30 times.

6.2.3.3 Transfer learning approach

Finally, the capability of using the developed classifier in transfer learning ap-
proaches was evaluated. This evaluation was performed in three different ways:
(i) the ensemble DNN already trained using the EPILEPSIAE dataset was tested
on the BASE testing subset (EPILEPSIAE model); (ii) the already trained BASE
model was tested on the BASE testing subset; and (iii) the weights of the already
trained EPILEPSIAE model were transferred to a new model, the classifier layer
was retrained using the BASE training and validation subsets, and was tested on
the BASE testing subset (transfer learning model). In this way, one can study the
possibility of using the proposed approach to develop future IC classifiers. Again,
to reduce the randomness of the model development pipeline, these procedures were
repeated 30 times.

6.3 Results

This section presents the results of the evaluations presented in Section 6.2.3. Firstly,
the impact of using the time series for the classification of ICs is presented. Then,
the results of the comparison between the performances of the proposed approach
and four state of the art models: ADJUST, MARA, ICLabel, and ICLabelLite,
using BASE dataset are shown. Finally, the improvement of the performance of the
proposed approach when using transfer learning is presented.
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6.3.1 Importance of the time series

Different versions of the approach were developed to evaluate the importance of the
time series in the classification of the ICs. As stated in Section 6.2.3, these versions
differ on the inputs used to classify the ICs. Table 6.2 presents the average results of
the sensitivities, specificities, and geometric means of sensitivities and specificities
(G-Means) computed for each approach for 30 runs.

Table 6.2: Performance of the IC classifiers with different inputs, using testing set of the
EPILEPSIAE dataset. Values are presented in the format median (interquartile range).

Architecture Sensitivity (%) Specificity (%) G-Mean (%)
Ensemble DNN 92.84 (92.25-93.38) 93.82 (93.03-94.18) 93.22 (93.05-93.43)

Temporal-spatial-features DNN 92.79 (91.99-93.65) 93.31 (92.63-93.72) 93.03 (92.78-93.09)
Spectral-spatial-features DNN 86.58 (85.88-87.05) 93.24 (92.82-93.44) 89.76 (89.57-89.92)

Temporal-spectral-features DNN 86.90 (86.39-87.56) 92.51 (91.74-92.94) 89.65 (89.52-89.78)
Temporal-features DNN 85.67 (85.03-86.40) 93.21 (92.76-93.84) 89.31 (89.10-89.44)
Spatial-features DNN 80.83 (78.99-81.52) 91.98 (91.67-92.52) 86.15 (85.66-86.40)
Spectral-features DNN 77.83 (77.38-78.48) 91.33 (90.86-91.74) 84.34 (84.15-84.50)

The median and interquartil ranges were presented instead of the mean and
standard deviation because the results are not normally distributed. The pairwise
comparisons were performed using Kruskal-Wallis [319] and Dunn-Šidák [320] tests.
They were conducted between all architectures, using the G-Mean, in order to study
whether there are statistical differences between the performance of different archi-
tectures. A significance level of 0.05 was considered. Figure 6.2 presents those
pairwise comparisons.

Comparing the single source models, one verifies that the temporal-features DNN
obtained higher performance than the others. However, the difference was only sta-
tistical significant when compared to the spectral-features DNN (p-value (temporal-
features DNN - spatial-features DNN) = 0.264; p-value (temporal-features DNN -
spectral-features DNN) < 0.001). The combination of PSD and topoplot improves
the results of both single models whereas the combination of the time series and
PSD obtained a similar performance to only using the time series. This may in-
dicate that temporal-features DNN were able to extract spectral features from the
time series. This evidence was also verified when comparing the ensemble DNN with
the temporal-spatial-features DNN. The ensemble DNN and the temporal-spatial-
features DNN obtained the highest performances. Although, the ensemble DNN
presents a performance slightly higher than the temporal-spatial-features DNN, this
difference is not statistical significant (p-value = 0.999). Probably this finding is
related to the fact that DNN was able to extract spectral features from the time
series, and, therefore, PSD may be discarded.
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Figure 6.2: Pairwise comparison plot comparing the performances of the different IC clas-
sifier architectures, using the testing set of the EPILEPSIAE dataset. The presented values
represent the mean ranks and the standard errors obtained from the statistical test. The
overlap of the confidence intervals means that the models did not obtain statistical signifi-
cant differences. This figure was obtained using the multcompare function from MATLAB.

6.3.2 Comparison with other independent component classifiers

Table 6.3 presents the average results of the sensitivities, specificities, and G-Means
of the BASE model, ADJUST, MARA, ICLabel, and ICLabelLite computed for 30
runs using BASE dataset.

Table 6.3: Performance of the different IC classifiers, using testing subsets of the BASE
dataset. Values are presented in the format average mean ± standard deviation.

IC Classifier Sensitivity (%) Specificity (%) G-Mean (%)
BASE model 92.39 ± 2.43 93.62 ± 2.42 92.98 ± 1.13

ICLabel 97.65 ± 0.99 85.09 ± 2.72 91.14 ± 1.56
ICLabelLite 98.47 ± 0.86 74.14 ± 3.39 85.42 ± 2.05
MARA 85.66 ± 2.53 91.51 ± 1.66 88.52 ± 1.56
ADJUST 80.66 ± 2.10 82.67 ± 2.04 81.65 ± 1.53

As the results follow a normal distribution, they are presented using mean and
standard deviation. The pairwise comparisons were performed, using parametric
tests (one-way ANOVA and Tukey-HSD tests), between all approaches, using the G-
Mean, to study whether there are statistical differences between them. A significance
level of 0.05 was used. Figure 6.3 presents those pairwise comparisons.

Default ICLabel performed better than handcrafted-features models MARA and
ADJUST (p-value (ICLabel - MARA) < 0.001; p-value (ICLabel - ADJUST) <
0.001). These results are in accordance to the results reported by Pion-Tonachini
et al. [196]. However, contrary to the results reported by them, default ICLabel
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Figure 6.3: Pairwise comparison plot comparing the performances of the BASE model,
ADJUST, MARA, ICLabel, and ICLabelLite, using the testing subsets of the BASE dataset.
The presented values represent the G-Means and the standard errors obtained, for each
model, from the statistical test.

performed better than the ICLabelLite in binary classification (p-value < 0.001).
BASE model obtained the highest G-Mean among all the IC classifiers (p-value
(BASE - ICLabel) < 0.001; p-value (BASE - MARA) < 0.001; p-value (BASE -
ICLabelLite) < 0.001; p-value (BASE - ADJUST) < 0.001). These results indicate
that the time series of the ICs may be important to classify them.

6.3.3 Transfer learning approach

Table 6.4 presents the average results of the sensitivities, specificities, and G-Means
of the EPILEPSIAE model, BASE model, and transfer learning model computed
for 30 runs, using BASE dataset.

Table 6.4: Performance of the different IC classifiers, using testing subsets of the BASE
dataset. Values are presented in the format average mean ± standard deviation.

IC Classifier Sensitivity (%) Specificity (%) G-Mean (%)
Transfer learning model 93.48 ± 1.77 94.91 ± 1.51 94.18 ± 0.99

BASE model 92.39 ± 2.43 93.62 ± 2.42 92.98 ± 1.13
EPILEPSIAE model 74.07 ± 3.40 99.45 ± 0.51 85.80 ± 1.92

The performances follow a normal distribution. Therefore, they are presented
using mean and standard deviation. The pairwise comparisons were performed,
using parametric tests, between all approaches using the G-Mean, to study whether
there are statistical differences between them. Once again, a significance level of
0.05 was used. Figure 6.4 presents those pairwise comparisons.

It was verified that the transfer learning model obtained the highest performance
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Figure 6.4: Pairwise comparison plot comparing the performances of the EPILEPSIAE
model, BASE model, and transfer learning model, using the testing subsets of the BASE
dataset. The plot presents the G-Means and the standard errors obtained, for each model,
from the statistical test.

(p-value (Transfer Learning - BASE) = 0.004; p-value (Transfer Learning - EPILEP-
SIAE) < 0.001). This demonstrates that the IC classifier benefited from pretraining
with a large dataset before being adjusted for a specific dataset.

6.4 Discussion

Different IC classification approaches have been presented in the previous years.
Approaches based on DNNs obtained the highest performances [196,243]. However,
these approaches only used the PSDs and topoplots to classify the ICs. The deci-
sion of discarding the IC time series could be performed in order to obtain models
prepared for any type of sampling rate. Considering that experts classify the ICs
according to the information that is present not only in the PSDs and topoplots but
also in the time series, the impact of using the time series in the performance of
automatic IC classifiers was assessed. Therefore, an ensemble DNN that attempts
to simulate the visual inspection performed by experts was developed. The deep
learning architecture presented in this chapter was inspired in the ICLabelLite archi-
tecture [196]. ICLabelLite was considered over the original ICLabel because higher
performance was reported for the former in the binary classification of the ICs.
ICLabelLite used features extracted from PSDs and topoplots to classify the ICs.
The new contribution of the proposed approach consists in using a DCNN-LSTM
to extract features from the time series. Afterwards, these temporal features are
concatenated with the spectral and spatial features extracted from the PSD and
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topoplot, respectively, and used to classify the IC under analysis. In this way, the
impact of using the temporal information provided by the time series in improving
the performance of the ICs classifiers was assessed.

To evaluate the importance of the time series, three types of models were devel-
oped: models with only one input source, models with two input sources and the
model with the three input sources. Results indicate that using the time series im-
proves the classification of ICs. Additionally, results also suggested that the model
may have been able to extract spectral information from the time series. This was
already expected since the PSDs are directly computed from the time series.

After assessing the relevance of the time series, the proposed approach was com-
pared with other publicly available IC classifiers: ADJUST [237], MARA [236],
ICLabel, and ICLabelLite [196]. Results evidence that the ensemble DNN architec-
ture obtained the highest performance. Once again, this may indicate that the usage
of the time series improves the classification of the ICs. Furthermore, results also
show that classifiers based on DNNs obtained better performance than handcrafted-
features models. This may be explained by the fact that DNNs are able to better
explore every detail present in the data visualised by the experts. Correctly classi-
fying the ICs is mandatory for proper further EEG studies because if the classifiers
label important brain data as noise, significant information could be lost and, there-
fore, not analysed. Also, the wrong classification of noisy ICs could lead to false
results [337]. Therefore, it is crucial to continuously enhance the exactness of these
automatic IC classifiers [25,338].

After comparing the ensemble DNN with other publicly available models, one
verified whether the transfer learning method improves its performance. For that, us-
ing the testing subsets of the BASE dataset, three different models were compared: a
model trained with training set of the EPILEPSIAE dataset (EPILEPSIAE model);
a model trained with the training and validation subsets of the BASE dataset (BASE
model); and a model with all the weights transferred from the EPILEPSIAE model,
but with the classification layer retrained using training and validation subsets of
the BASE dataset (transfer learning model).

EPILEPSIAE model obtained an almost perfect specificity. However, its sensi-
tivity was the lowest among the three evaluated approaches. EPILEPSIAE model
was developed using ICs obtained from long-term 19-channel EEG data acquired
during presurgical monitoring. Long-term data are susceptible to several artefacts.
To remove these artefacts, ICA requires a large number of channels. Since the num-
ber of used EEG channels is not high, there could be some ICs with both brain and
artefact information. With the purpose of not having a high loss of valuable in-
formation, the experts had to preserve these ICs despite containing some artefacts.
BASE dataset contains short-term 60-channel EEG data acquired in a controlled
environment. The high number of channels allows a better separation from brain
ICs and artefact ICs, i.e., generally, the ICs do not contain both brain and artefact



130 CHAPTER 6. AUTOMATIC CLASSIFICATION OF EEG ICS

data. Therefore, the experts that labelled this dataset could be less conservative.
This means that some ICs that would not be removed in EPILEPSIAE dataset,
were removed in BASE dataset, which could explain the lower sensitivity and higher
specificity.

BASE model obtained higher sensitivity than the EPILEPSIAE model, evidenc-
ing higher ability to identify artefact ICs from data acquired in controlled envi-
ronment. This was already expected because BASE model was trained using ICs
obtained from high-density short-term EEG with few artefacts.

The classification of the BASE dataset clearly improved after performing transfer
learning. Transfer learning model was created using the pretrained EPILEPSIAE
model and the training and validation subsets of the BASE dataset. Essentially,
the concept of the classifier layer of the EPILEPSIAE model was changed by opti-
mising it with ICs from the BASE dataset. This indicates that the classifier layer
of the EPILEPSIAE model may have been biased to the type of ICs available in
the EPILEPSIAE dataset and, therefore, not prepared for the ICs provided in the
BASE dataset. However, after the retraining, the transfer learning model was even
better than the model trained from the scratch using exclusively ICs from the BASE
dataset. Consequently, EPILEPSIAE model may be used in transfer learning ap-
proaches. This would make the train of new classifiers severely faster, since it would
not be necessary to develop these ones from the beginning; would make the model
more robust, given that it had already learned several IC details from a large dataset;
and would give the opportunity to researchers with small datasets, to develop their
own IC classifiers with less probability of overfitting [183].

6.4.1 Study limitations

Beyond the already discussed details, some other limitations must be taken into
consideration. The proposed approach does not contain any fully connected layer in
the feature extraction layers. Thus, the model is able to classify ICs with different
duration than the ones used to train it. However, the time series must have the
same sampling rate in order to maintain the temporal order learned from the train
dataset. For that, the time series of the ICs have to be resampled before computing
the PSDs, the topoplots and the IC classification.

BASE dataset contains few samples, which could lead to biased results. Fur-
thermore, the results highly depend on the labels and, therefore, if errors have been
made in the classification of the ICs, these will be reflected in the obtained perfor-
mance. Moreover, it only comprises EEGs from a certain task. Given that, more
datasets should be used to make more robust comparisons, e.g., EEGs collected in
controlled and uncontrolled environments to verify if the obtained conclusions are
still applicable.
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6.4.2 Final reflections

This chapter presents a novel ensemble DNN to classify ICs extracted from EEGs
using ICA. The novelty of this approach lies in the use of the temporal informa-
tion of the time series to improve the classification of the ICs. Results demon-
strated that the use of the time series improved the classification of the ICs and,
therefore, enhanced the automatic removal of artefacts from EEGs. Additionally,
it was verified that the ensemble approach trained using EPILEPSIAE dataset
may be used in transfer learning approaches with the purpose of improving the
classification of ICs from other datasets collected in completely different acquisi-
tion conditions. In this way, the model was made publicly available on GitHub
(https://github.com/fabioacl/DeepICClassifier) so that other researchers can
use it to improve their approaches using the transfer learning method. Future work
should focus on evaluating the proposed approach in larger datasets containing ICs
from EEGs from several different tasks.

https://github.com/fabioacl/DeepICClassifier




Chapter 7

Removing artefacts and
periodically retraining improve
performance of neural
network-based seizure
prediction models

This chapter presents the development of seizure prediction models. The
content of this chapter is based on the journal article published in Scien-
tific Reports [40]. Section 7.1 presents the study context. Section 7.2 de-

scribes the datasets and the methodology followed to develop the study. Section 7.3
describes the results and subsequent analysis. Section 7.4 discusses the obtained
results, compares them with those presented in the state of the art, presents the ad-
vantages and the limitations of the developed approaches, and provides some final
reflections.

7.1 Study context

Seizure prediction has been an active research theme since 1970 [131]. Several
studies have been published in this research area, typically based on electroen-
cephalogram (EEG) [17, 64]. Initially, seizure prediction models were threshold-
based [263, 264]. However, these models were linear and based on a single fea-
ture, which might not be sufficient to perceive the complexity of the pre-seizure
activity [18, 283]. Later, shallow machine learning algorithms were employed with
acceptable results for some patients [64, 137, 146]. In recent years, deep learning
architectures have been increasingly used in multiple research areas [170]. These
architectures are not dependent on the computation of handcrafted features be-
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fore classification, as they can extract information directly from the data. More-
over, as these models are able to automatically extract and select the optimal fea-
tures, less feature engineering and domain knowledge are needed to develop intel-
ligent systems. Although these characteristics turn machine learning models into
black-boxes, they could be advantageous when no solid physiological grounding ex-
ists. Therefore, authors have started to use them to develop seizure prediction
approaches [21,28,29,181,219,260,265,269,274,277–287,289,293,295,297,339,340].

Even though the increasing complexity of seizure prediction algorithms is a sig-
nificant topic, others are equally important. An example is the EEG preprocess-
ing [137,341]. Researchers are moving towards non-invasive EEG to develop seizure
prediction approaches [16]. However, these signals usually present artefacts. EEG
artefacts may be responsible for the increase of false alarms and should be removed
before creating the seizure prediction models [19–21]. Although different methods
handling artefacts have been published, to the best of found knowledge no one com-
pared the prediction performance of models developed using noisy data with models
developed using denoised data [22,25–28,74,271,289].

Typically, researchers train seizure prediction models using the first chronologi-
cal seizures and evaluate them on the following seizures without considering concept
drifts that occur over time. These changes in data distribution may occur as a result
of the seizure events, an alteration of antiepileptic drug type and/or dosage, and bio-
logical cycles (e.g., circadian rhythms), which might alter the dynamics of the brain.
Dealing with concept drifts requires a different approach for training computational
models. The most used technique to deal with this problem is periodically refitting
the models [33,34,285]. The researchers retrain the models with new data adapting
the weights of the approach to new data distributions. In the case of deep learning
approaches, this methodology can be automatically performed because they are able
to automatically extract and select the most important features directly from the
data without the supervision of an expert.

The present chapter addresses some important aspects faced when developing
seizure prediction models. The effect of using a deep convolutional neural network
(DCNN)-based EEG artefact removal model, able to mimic manual preprocessing
made by experts, on the prediction performance was explored. Furthermore, the
influence of retraining the models over time to handle possible concept drifts was
evaluated. Both comparisons were performed using a DCNN connected to a bidirec-
tional long short-term memory (BiLSTM) layer (DCNN-BiLSTM) using EEG time
series as input and a shallow artificial neural network (ANN) trained using estab-
lished handcrafted features. In summary, this chapter comprehensively assesses the
impact of denoising and dealing with the presence of concept drifts in deep learning
models fed with EEG time series and in handcrafted feature-based ones.
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7.2 Materials and methods

This section starts by presenting the dataset used to develop and evaluate the ap-
proaches (see Section 7.2.1). Then, the seizure prediction pipelines for each consid-
ered approach are detailed 7.2.2.

7.2.1 Dataset

A group of 41 patients with temporal lobe epilepsy (TLE) (24 males; age range:
13-67 years; mean age: 41±16 years) was selected from the EPILEPSIAE database
(see 4.2). TLE is the most frequent type of focal epilepsy in adults and thus the
most frequent in the database [269]. All selected data were acquired at the Epilepsy
Center of the Universitätsklinikum Freiburg. Only scalp EEG was considered. It
comprises 19 EEG electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8,
T7, T8, P7, P8, Fz, Cz, Pz), placed according to the 10-20 international system,
and, using a sampling rate of 256 Hz. All patients had at least three leading seizures
[259] separated by no less than 4 hours and 30 minutes. The dataset comprises
approximately 5,600 hours of recording time containing 227 leading seizures from a
total of 338 seizures. More details about the dataset can be found in Tables B.1 and
B.2.

7.2.2 Seizure prediction pipeline

The seizure prediction pipeline begins by preprocessing the EEGs using digital fre-
quency filters and removing experimental errors. Afterwards, the pipeline presents
two branches: one in which the physiological artefacts are removed (denoised EEG
time series), and another where they are not removed (noisy EEG time series).
Then, features were extracted from the resulting datasets (denoised EEG features
and noisy EEG features). EEG time series are used on models based on deep
neural networks (DNNs), whereas EEG features are used to develop shallow ANNs.
Next, each dataset is similarly divided into training and test sets. The datasets are
then used to develop seizure prediction models following two different approaches:
the standard approach, which consists of training only once and testing on the
remaining seizures, and the chronological approach, which involves retraining
after every new test seizure. Subsequently, the test set predictions were postpro-
cessed. Finally, the performance of the approaches were computed and compared.
Figure 7.1 illustrates the pipeline followed in this study. It is worth noting that this
pipeline is performed individually for each patient as every model is patient-specific.

7.2.2.1 Preprocessing

Signal preprocessing was performed using the algorithm presented in Chapter 5,
which mimics the manual preprocessing made by experts. Subsequently, the first
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Figure 7.1: Seizure prediction pipeline comprising EEG preprocessing, feature extraction,
data partition, training approaches, postprocessing, and evaluation procedure. All models
were trained following a patient-specific approach. Therefore, this pipeline was repeated for
each patient, individually.

30 minutes of the signal after each seizure onset were discarded to eliminate the
influence of a possible postictal state [345]. Finally, the EEG segments were di-
vided into 10-second windows. After the preprocessing methods, the data comprise
approximately 4,650 hours of recording time.

7.2.2.2 Feature extraction

After preparing EEG data, established EEG features [137] were extracted using
signal processing methods. Time-domain linear univariate features (mean, variance,
skewness, kurtosis, mean intensity normalised, Hjorth parameters, and decorrelation
time), frequency-domain linear univariate features (absolute and relative band pow-
ers of the following bands: 0.5-4 Hz (delta), 4-8 Hz (theta), 8-13 Hz (alpha), 13-30
Hz (beta), 30-47 Hz (gamma 1), 53-75 Hz (gamma 2), and 75-90 Hz (gamma 3); the
ratio between every spectral band powers, the sum of all absolute band powers, the
alpha peak frequency, and the spectral edge frequency and spectral edge power for
50%, 75%, and 90%), and time-frequency domain linear univariate features (wavelet
coefficients computed using mother-wavelet Daubechies 4 with five levels of decom-
position) were used. These features were computed for every 10-second window and
every channel. Only univariate linear features were considered due to their fast
computation time.
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7.2.2.3 Seizure occurrence period and seizure prediction horizon

Seizure occurrence period (SOP) and seizure prediction horizon (SPH) are funda-
mental for developing and assessing seizure prediction models. As presented in
Figure 2.11, the SPH allows the model to provide the patient with a period of time
to take countermeasures before a seizure, whereas the SOP is the period when the
seizure occurs. During training, preictal samples, which are samples taken before the
seizure, correspond to an interval with the same duration as the SOP. The samples
following the training preictal samples and ending at the seizure’s onset correspond
to the SPH and are not included in the analysis. This ensures that in the case of
a true alarm, the patient will have an interval equal to the SPH to take counter-
measures before the upcoming seizure, which is expected to occur within a period
of time equal to the SOP.

Over the years, there has been no consensus on the most optimal SOP. Exten-
sive research has been conducted to find it, using grid search [74, 142, 143, 269] or
unsupervised procedures [307, 346, 347]. According to the aforementioned papers,
the optimal SOP is typically between 30 and 60 minutes. Recently, researchers have
been using an SOP of 30 minutes not only because it falls within the optimal range
of SOPs observed in previous findings, but also because it is short enough to avoid
causing anxiety in patients [219,278,284,287,340]. As a result, an SOP of 30 minutes
was used in the study. The SPH was set to 10 minutes, allowing patients to take
a seizure-suppression drug to prevent the seizure [348]. Accordingly, all samples
located up to 40 minutes before the seizure onset were labelled as interictal (class
0). The samples corresponding to the training SOP were considered preictal (class
1).

7.2.2.4 Training and test sets

The training set was composed of 60% of the available data, and the remaining 40%
was allocated to the test set. This division was performed chronologically using
the first 60% of the seizures for training. Data preprocessing, as explained above,
involved the removal of some data that could not be used. Therefore, there was
insufficient preictal data for some seizures to be correctly predicted during testing.
As a result, one test seizure from patient 52302 had to be removed, and both sets
from that patient were updated to maintain the 60/40 ratio. Finally, to reduce the
training computation time, only the four hours before each seizure’s onset were used
during the training phase. In the case of the test set, for each seizure, it included
all the data from 30 minutes after the previous seizure onset until the onset of the
seizure under analysis. Ultimately, the training set contained 540 hours of EEG data
and 135 seizures, whereas the test set comprised approximately 1,577 hours of EEG
data and 91 seizures. Details of the training and test sets can be found in Table B.2.
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7.2.2.5 Artificial neural network architectures

As presented in Figure 7.2, two distinct neural networks were used: a DNN, based
on the DCNN-BiLSTM architecture, which is capable of automatically processing
EEG time series (deep classifier), and a shallow ANN based on fully connected
layers with handcrafted features as input (shallow classifier).
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(a) DNN architecture. It includes an input layer (Input Layer), six convolutional layers (Conv
Layer) with a specified stride, a bidirectional LSTM layer (BiLSTM Layer), a fully connected layer
(FC Layer), and an output layer (Output Layer). After each Conv Layer with a stride equal to 2,
there is also a spatial dropout layer (SpDrop), an activation layer with swish function (Swish), and
a batch normalisation layer (BN). After the BiLSTM Layer, there is also a dropout layer (Drop).
To convert the output of the FC Layer into classification probabilities, the architecture uses an
activation layer with the softmax function (Softmax). The output is the class with the highest
probability. The SpDrop and Drop layers contain the dropout ratio. The dimensions of each layer’s
output are indicated at the top of the diagram.

FC Layer Output Layer

2x1 1x1

Drop(0.5) Softmax
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(b) Shallow ANN architecture. It contains an input layer (Input Layer), a fully connected layer (FC
Layer), and an output layer (Output Layer). After the Input Layer, there is a dropout layer (Drop).
The architecture uses an activation layer with softmax function (Softmax) to convert output of the
FC layer into classification probabilities. The output is the class with the higher probability. The
dimensions of each layer’s output are indicated at the top.
Figure 7.2: Neuronal network architectures used to develop seizure prediction models. (a)
DNN, which takes 10-second EEG time series as input. (b) Shallow ANN, which is based
on EEG features.

The architecture presented in Figure 7.2a is a DCNN-BiLSTM model. It consists
of three blocks of convolutional layers and a bidirectional long short-term memory
(LSTM) layer. Each block contains two convolutional layers, one of which has a
stride of 2 and is used as a learnable pooling layer. Additionally, each block contains
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a spatial dropout layer with a 50% rate, an activation layer with the swish function,
and a batch normalisation layer. The swish function is described by Equation 7.1
where x is the input vector.

f(x) = x × sigmoid(x) (7.1)

The number of filters starts at 128 and doubles with every new block. The filter
size for every layer is 3. After the convolutional blocks, the samples are processed
by the bidirectional LSTM layers, each containing 64 units. A dropout layer with a
50% rate is then applied. Finally, the samples are classified using an FC layer with
two neurons and an activation layer with the softmax function, which is described
by Equation 7.2, where x is the input vector.

f(x) = exi∑
j e

xj
(7.2)

The input dimension is 2560x19, which means that each sample consists of 10 sec-
onds of EEG acquired at 256 Hz and 19 channels. All hyperparameter values were
obtained from a grid search process. Specifically, the grid search for the deep clas-
sifier was performed to find the best hyperparameters out of the following ones:

• Number of filters of the first block: [32, 64, 128];

• Filter size: [3, 5, 7];

• LSTM units: [32, 64, 128].

The architecture presented in Figure 7.2b consists of four layers: an input layer, a
dropout layer with a 50% rate, a fully connected layer with two neurons, and an
activation layer with the softmax function. The input dimension is 1083x1, which
means that it comprises 55 features computed over 19 channels. The grid search for
the shallow classifier was conducted to identify the optimal hyperparameters among
the following:

• Number of neurons in the FC layer: [None, 8, 16, 32, 64, 128, 256].

No feature selection was performed before classification to enable the shallow ANN
to determine which features could contribute more to the prediction performance.
Both neural networks comprise dropout layers with a 50% rate, which was selected
to address overfitting caused by the limited number of training samples. Both grid
searches were conducted using the training set of ten randomly selected patients.
To evaluate the hyperparameters, the geometric mean of sensitivity and specificity
was computed using the data of the last seizure from the training set. The grid
search was repeated three times for each combination and each patient training
set, and the results were averaged to compare the performance and select the best
hyperparameters. The selected hyperparameters were used in all patient-specific
models. Detailed results can be found in Tables B.3 and B.4.
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7.2.2.6 Training methodologies

Two methodologies were used to train the patient-specific models: standard and
chronological. In the standard training, seizure prediction models were trained using
a static training set and tested on subsequent seizures. The chronological training
involved training seizure prediction models using the first set of seizures, testing
on the following seizure, concatenating it (EEG and labels) to the previous train-
ing set, and repeating the process until all seizures were tested. Data partitioning
and standardisation were performed each time the training set was updated. Both
methodologies were repeated 31 times, resulting in 31 models that were used to
perform a majority voting ensemble, whereby an odd number of models avoids ties.
Furthermore, in a real-life scenario 31 different performances per patient are unfea-
sible. A majority voting ensemble helped to mitigate the variability of each trained
seizure prediction model and produced a single model for each approach instead of
31 different models.

The neural networks were trained using batches of 64 samples, with each batch
containing 32 interictal samples and 32 preictal samples. To address the imbal-
ance between the classes, the minority class was oversampled by replicating preictal
samples. The number of training epochs were 500. Adaptive moment estimation
(Adam) [316] was defined as the optimisation algorithm, with an initial learning rate
of 3e-4. The loss function was binary cross-entropy. Early stopping regularisation
with a patience of 50 epochs was used to prevent overfitting. It requires a validation
set to constantly verify whether the model is overfitting. Therefore, the training set
was randomly divided into a new training set and a validation set according to an
80/20 ratio. In contrast to the data partition step, which was performed on a seizure
level, the 80/20 division was performed on the samples. Training, validation, and
test sets were normalised using z-score calculated based on the training samples.
Table 7.1 provides a summary of the training settings.

Table 7.1: Hyperparameters used to train the neural networks.

Hyperparameter Value

Dataset Partition Holdout Validation 80/20
Optimisation Function Adam

Learning Rate 3e-4
Loss Function Binary Cross-Entropy

Epochs 500
Patience Epochs (Early Stopping) 50

Runs 31
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7.2.2.7 Postprocessing

Firing power regularisation [150] was used to reduce the number of possible false
alarms. As presented in 2.4.6.2, the method consists of applying a moving window
with a size equal to SOP, which accumulates the predicted output of several samples.
An alarm is triggered as soon as the ratio of preictal instants in the moving window
exceeds a threshold of 0.5 [74, 269]. After each alarm, a refractory period [142, 143]
of 40 minutes, which corresponds to the concatenation of the SPH and SOP inter-
vals, was applied. During this period, the models could not raise any alarm. The
refractory periods were implemented to prevent the patient from being overwhelmed
with successive alarms in a short period of time. It is worth noting that the firing
power implemented in this study is an adaptation of the method proposed by Teix-
eira et al. [150]. The method was adapted to handle temporal gaps resulting from
unconnected windows after preprocessing. Thus, when there is a gap, the firing
power considers it as several windows with a null value, decreasing until reaching
zero when the gap is too long.

7.2.2.8 Performance evaluation

To evaluate the performance of the seizure prediction models, three metrics were
used: seizure sensitivity (SS), false prediction rate per hour (FPR/h), and the num-
ber of patients with performance above chance level through surrogate analysis,
considering a significance level of 0.05.

Pairwise hypothesis testing (with a significance level of 0.05) was performed to
compare the different approaches that were developed. These comparisons include:

• Understanding the effect of removing physiological artefacts on the seizure pre-
diction models;

• Comparing standard training with retraining the models over time;

• Comparing deep neural networks using EEG time series with shallow ANNs using
handcrafted EEG features.

7.2.2.9 System specifications

All calculations were performed on a computer with two Intel Xeon Silver 4214
12-core 2.2 GHz, ten graphics (five NVIDIA Quadro RTX 5000 and five NVIDIA
Quadro P5000), 768 GB of RAM, and Linux Ubuntu 16.04 LTS operating system.
The models were developed using the Tensorflow 2.4.1 and Keras 2.4.3 libraries for
Python 3.8.
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7.3 Results

This section begins by analysing the results for each patient for every approach.
Afterwards, the overall results are analysed and the approaches are compared. To
facilitate readability, the approaches are presented in the following format:
• Denoised EEGStandard: DNN, with denoised EEG time series as input, trained

using the standard procedure;

• Denoised EEGChronological: DNN, with denoised EEG time series as input,
trained using the chronological procedure;

• Denoised FeaturesStandard: Shallow ANN, with handcrafted EEG features,
computed from denoised EEG time series, as input, trained using the standard
procedure;

• Denoised FeaturesChronological: Shallow ANN, with handcrafted EEG features,
computed from denoised EEG time series, as input, trained using the chronolog-
ical procedure;

• Noisy EEGStandard: DNN, with noisy EEG time series as input, trained using
the standard procedure;

• Noisy EEGChronological: DNN, with noisy EEG time series as input, trained
using the chronological procedure;

• Noisy FeaturesStandard: Shallow ANN, with handcrafted EEG features, com-
puted from noisy EEG time series, as input, trained using the standard procedure;

• Noisy FeaturesChronological: Shallow ANN, with handcrafted EEG features,
computed from noisy EEG time series, as input, trained using the chronologi-
cal procedure.

7.3.1 Individual performance of seizure prediction models

Figure 7.3 shows the SSs and the FPR/h values of the patient-specific models eval-
uated on the test seizures of each patient. This figure also shows which models
performed above chance level. Inspection of the results obtained for each patient
leads to the following conclusions:
• For several patient-specific models, all approaches performed similarly. For ex-

ample, performance above chance level was obtained for all approaches for four
patients (9.8%), whereas for twelve (29.3%), no approach performed above chance
level.

• For three patients (7.3%), only models trained with denoised data performed
above chance level.

• The transition from standard to chronological training decreased the number of
false alarms for six patients (14.6%).
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Figure 7.3: Results for each patient for DES (Denoised EEGStandard), DEC (Denoised
EEGChronological), DFS (Denoised FeaturesStandard), DFC (Denoised FeaturesChronological),
NES (Noisy EEGStandard), NEC (Noisy EEGChronological), NFS (Noisy FeaturesStandard),
and NFC (Noisy FeaturesChronological) approaches. The top subfigure presents the SS ob-
tained for each patient-specific model, while the bottom figure shows the FPR/h. The
diamond symbol indicates that the model performed above chance level. The scales of the
colours are on the right side of the subfigures.

• For some patients, only one type of neural network obtained performance above
chance level: Ten patients (24.4%) in the case of shallow ANNs using features
and two patients (4.9%) in the case of DNNs.

• The Noisy FeaturesStandard approach obtained a very high FPR/h for one patient
(2.4%).

Detailed results are presented in Tables B.5 and B.6.

7.3.2 Overall performance of seizure prediction models

Table 7.2 summarises the overall results of all developed approaches. Boxplots with
the overall SSs and FPR/h values for all approaches, as well as the distributions of
the results, are displayed in Figure 7.4. Additionally, it contains a bar chart with the
number of patients with a performance above chance level for each approach. Ta-
ble 7.3 presents the p-values obtained for pairwise statistical comparisons. Compar-
isons were made for SS and FPR/h metrics using one-tail Wilcoxon signed test [349]
considering an α value of 0.05.

Some approaches based on EEG time series result in SSs with null medians
(Figure 7.4), as those approaches scored null SSs for more than half of the patients.

With the exception of the Denoised FeaturesStandard approach, all models devel-
oped with denoised data obtained higher average SSs compared to those using noisy
data. Furthermore, the average FPR/h values were mostly lower in models based
on denoised data. However, these comparisons did not show statistically significant
differences.

Except for the Noisy FeaturesChronological approach, all models developed follow-
ing a chronological methodology performed higher average SSs compared to the ones
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Table 7.2: Average results of the seizure prediction models for all approaches, for all 41
patients.

Approach Seizure Sensitivity FPR/h Above Chance Level (%)
Denoised EEGStandard 0.15±0.24 0.31±0.48 12 (0.29)

Denoised EEGChronological 0.18±0.22 0.24±0.23 17 (0.42)
Denoised FeaturesStandard 0.34±0.35 0.90±0.96 21 (0.51)

Denoised FeaturesChronological 0.37±0.36 0.86±0.77 22 (0.54)
Noisy EEGStandard 0.13±0.24 0.35±0.58 8 (0.20)

Noisy EEGChronological 0.16±0.23 0.25±0.26 14 (0.34)
Noisy FeaturesStandard 0.36±0.38 0.93±1.09 20 (0.49)

Noisy FeaturesChronological 0.33±0.36 0.83±0.65 21 (0.51)
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Figure 7.4: Boxplots with the overall seizure sensitivity and FPR/h for the DES (Denoised
EEGStandard), DEC (Denoised EEGChronological), DFS (Denoised FeaturesStandard), DFC
(Denoised FeaturesChronological), NES (Noisy EEGStandard), NEC (Noisy EEGChronological),
NFS (Noisy FeaturesStandard), and NFC (Noisy FeaturesChronological) approaches. Contin-
uous black lines represent medians, dashed grey lines correspond to the averages, diamonds
symbolise outliers, and the distributions of the results for each patient are presented as blue
circles. Bar charts show the number of patients’ models with performance over chance using
surrogate analysis.

following the standard procedure. The average FPR/h values obtained for models
based on the chronological methodology were lower than those for the standard
training, whereas the medians showed the opposite behaviour. This was due to the
high number of outliers occurring on the approaches based on standard training.
Nevertheless, all comparisons did not yield statistically significant differences.

Models based on DNNs returned lower average SSs than those obtained for the
models based on shallow ANNs. However, these lower SSs were combined with low
FPR/h values, meaning that, on average, deep learning models were more conser-
vative on triggering an alarm. All the comparisons yielded statistically significant
differences for both metrics.

The number of patients with performance above chance level increased when
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Table 7.3: P-values obtained for the statistical comparisons performed between all
developed approaches using SS and FPR/h values. The comparisons were performed using

one-tail Wilcoxon signed test, considering an alpha of 0.05. For SS, the p-values
correspond to the probability of the distribution of group B being greater than the

distribution of group A. For FPR/h, the p-values correspond to the probability of the
distribution of group B being lower than the distribution of group A, except for the

comparison between DNNs (EEG time series) and shallow ANNs (EEG features). In this
particular case, the FPR/h values obtained for group B were higher, so the p-values
correspond to the probability of group B being greater than group A. Bold values

correspond to the statistically significant comparisons.
P-values

Approaches Group A Group B SS FPR/h

Noisy EEG / Denoised EEG

Noisy EEGStandard Denoised EEGStandard 0.165 0.314
Noisy EEGChronological Denoised EEGChronological 0.315 0.433
Noisy FeaturesStandard Denoised FeaturesStandard 0.645 0.983

Noisy FeaturesChronological Denoised FeaturesChronological 0.197 0.781

Standard Training / Chronological Training

Denoised EEGStandard Denoised EEGChronological 0.167 0.684
Noisy EEGStandard Noisy EEGChronological 0.144 0.464

Denoised FeaturesStandard Denoised FeaturesChronological 0.146 0.802
Noisy FeaturesStandard Noisy FeaturesChronological 0.804 0.698

DNNs (EEG Time Series) / Shallow ANNs (EEG Features)

Denoised EEGStandard Denoised FeaturesStandard < 0.001 < 0.001
Denoised EEGChronological Denoised FeaturesChronological < 0.001 < 0.001

Noisy EEGStandard Noisy FeaturesStandard < 0.001 < 0.001
Noisy EEGChronological Noisy FeaturesChronological 0.002 < 0.001

shifting from noisy to denoised data and from the standard to chronological training.
The increase was greater in DNNs using EEG time series compared to the shallow
ANNs using handcrafted features. However, the shallow ANNs obtained a higher
number of patients performing above chance level.

In addition to the machine learning architectures used in this study, the effec-
tiveness of denoising data and chronological training using algorithms presented by
other researchers, including a DCNN using spectrograms proposed by Truong et
al. [280] and a logistic regression using handcrafted features proposed by Karoly et
al. [76], were also evaluated. These architectures were selected to verify whether the
obtained findings were observed in other types of classifiers. The results obtained
using the model proposed by Truong et al. [280] were similar to those obtained in
the performed study. In the case of the model proposed by Karoly et al. [76], it was
found that using denoised data improved the performance. However, transitioning
from standard to chronological training did not result in any improvement. The
implementation details and results are described in Section B.3.5.

7.4 Discussion

The impact of two essential aspects for developing patient-specific seizure prediction
models were analysed: denoising EEGs and retraining the models over time. The
prediction models were developed using DNNs with EEG time series as input and
shallow ANNs using widely used EEG features.

The EEG artefact removal model was already proposed and evaluated in Chap-
ter 5 regarding its capacity to reconstruct EEGs. As a next step, it was wanted to
evaluate how far the artefact removal method can improve the results for seizure
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prediction. For most cases, using the artefact removal model to denoise EEGs be-
fore developing the seizure prediction models resulted in an improvement in SSs,
FPR/h values and the number of patients with performance above chance level. In
the case of DNNs, removing artefacts using the automatic denoising model led to
a small reduction in the number of outliers regarding FPR/h. This was expected
since artefacts can change signal characteristics and mask some patterns that could
be important to assess seizure susceptibility [19–21].

Concerning retraining over time, different behaviours were observed for differ-
ent metrics. SS did not always increase from standard to chronological training.
However, FPR/h and the number of patients with a performance above chance level
improved after retraining. Thus, it was concluded that the models benefited from
chronological training, either by having more training data available or by adapting
to possible concept drifts that occur over time (see Figure B.1). This resulted in a
reduction in the number of false alarms and an increase of the number of patients
with performance above chance level [33,34,285].

Comparing both model types, although deep learning models returned lower SSs,
they also yielded lower FPR/h values by being more conservative in firing alarms.
The number of patients performing above chance level was also lower for the deep
learning models, which is mainly attributed to their lower SS. Models that did not
predict any test seizure could not be validated using surrogate analysis, thus leading
to a lower number of patients with performance above chance level.

It is worth noting that although both neural network types improved after denois-
ing and chronological training, the improvement was more evident for deep learning
models than for shallow ANNs. DNNs are data-driven architectures [170]. Con-
sequently, features are automatically extracted from the EEG time series. On the
other hand, feature-based models are trained using values obtained from established
equations based on research knowledge acquired over the years. For this reason,
each retraining only adapts the model weights used for the classification. Therefore,
deep learning architectures, adapting to the input training data distribution, may be
more affected by the quantity and quality of input data and the temporal proximity
to the next seizure.

7.4.1 Comparison with state of the art studies

After analysing the results, they were compared with other studies that used scalp
EEG data from the EPILEPSIAE database to develop seizure prediction mod-
els [142, 143, 276, 284]. This paragraph is focused on the ones that do not contain
patient identification [276, 284]. Direito et al. [276] applied a simple preprocess-
ing method using digital filtering and developed a seizure prediction model based
on multiclass support vector machines (SVMs) using handcrafted features. They
used firing power regularisation with a threshold of 0.5 to smooth the output of
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the classifiers. They considered a set of SOPs between 10 and 40 minutes and an
SPH of only 10 seconds. They reported an SS of 39% and an average FPR/h of
0.21. The percentage of patients performing above chance level was approximately
10%. Nevertheless, it is worth noting that they validated their models using the
analytical random predictor [1] instead of the surrogate analysis. Although their SS
and FPR/h are better than the ones obtained in this study, it should be noted that
they considered an SPH of just 10 seconds, which may not be sufficient time for a
patient to take countermeasures before an upcoming seizure. Truong et al. [284] also
performed a simple preprocessing method using digital filtering. They developed a
generative adversarial network (GAN) using EEG time series as input and consid-
ered an SOP of 30 minutes and an SPH of 5 minutes. They reported an average area
under the receiver operating characteristic curve (AUC) of 0.65 for 30 patients and
performance above chance level for 23 patients using the Hanley-McNeil AUC Test
to compare AUC scores with an AUC of 0.5. Since the authors did not make these
metrics available, it is not possible to compare their study with this one regarding
SS and FPR/h. In terms of the number of patients with performance above chance
level, they obtained a better result than the one obtained in this study. However, it
should be pointed out that they did not use the same statistical evaluation method,
which precludes fair comparisons.

Concerning the studies with detailed patient information, Pinto et al. [142, 143]
published two papers with seizure prediction models based on evolutionary algo-
rithms, with a different number of patients analysed in each one. In both studies,
the algorithms were trained following a chronological approach. In this chapter, data
from some patients who were also included in both Pinto et al. studies were used.
In both of their experiments, the preprocessing was simple, using only digital filters.
In the first study [142], they used data from 19 patients and obtained an average
SS of 0.38±0.19 and an average FPR/h of 1.03±0.84, using an SOP of 30 minutes
and an SPH of 10 minutes. Performance above chance level was obtained for 32%
of the patients. In the second study [143], they used data from 93 patients and ob-
tained an average SS of 0.16±0.11 and an average FPR/h of 0.21±0.08 using a set
of SOPs between 20 and 50 minutes and an SPH of 10 minutes. 32% of the patients
obtained performance above chance level. Both studies used firing power regularisa-
tion with a threshold of 0.7. When analysing individual patients, it was found that
twelve patients (29.3%) performed above chance in both Pinto et al. studies and
in some of the presented approaches. These patients should be selected to further
explore preictal changes, as different methods performed similarly. The approaches
presented in this chapter and Pinto et al. models did not perform above chance level
for six patients (14.6%). Common failed predictions could mean no preictal changes
at least 10 minutes before the onset of any tested seizures. Pinto et al. obtained
performance above chance for four patients (9.8%) in at least one of their studies,
whereas none of the developed approaches performed above chance level for them.
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Also, there were thirteen patients (31.7%) for whom it was obtained models per-
forming above chance level, whereas none of Pinto et al. studies obtained significant
results. These differences could be related to data preparation details or the type
of algorithm used. In any case, the results of the seizure prediction studies seem to
be coherent regarding the obtained statistics, even if the approaches were different,
which supports the statements reported by Müller et al. [298] about the high number
of false positives generated by different types of seizure prediction models. Detailed
results obtained by Pinto et al. [142,143] are presented in Table B.7.

7.4.2 Study limitations

The study has some limitations that should be highlighted. The first one concerns
the use of EEGs acquired in pre-surgical conditions. Pre-surgical conditions involve
drug type and/or dosage alteration and possible sleep deprivation as part of the
clinical evaluation process, which may cause more concept drifts than expected.
Additionally, if the signals are acquired outside the hospital for months, they may
contain even more artefacts than the ones seen in the analysed data because there
are no technicians to constantly check the equipment. Therefore, pre-surgical data
do not fully simulate the daily behaviour of the patients [18], and care should be
taken before generalising these results to real-life situations.

Another limitation is the number of seizures per patient. The average number
of total seizures per patient was 5.51, whereas the average number of tested seizures
was 2.21. The low number of seizures limited the evaluation of the approaches since
some patients had only one testing seizure restricting the obtained SS to 0.00 or
1.00. This large difference in possible SSs produced large standard deviations which
may have restricted the results of the statistical comparisons. Furthermore, as the
amount of data was low, the improvement obtained by training periodically may
have been due to the increase in available information rather than the change in
concept. Thus, a higher number of seizures would allow for a better evaluation of
the effect of retraining over time or even to test other different approaches to handle
concept drifts [350].

The seizures used in this study were manually annotated by experts. In real-time
scenarios, manual annotation of seizures can be challenging since it is difficult for
physicians to review all the acquired EEGs. The solution to this restriction could
be the one presented by Pal Attia et al. [351], where data would be sent to a cloud
along with the outputs of a seizure prediction model, a seizure detection model, and
annotations sent by the patient. In this way, the technicians could quickly review
only the events that were noted and eliminate all those that were not seizures. Then,
the model could be retrained using data from the new seizure events.

The fixed duration of the SOP for all patients was also a constraint. In this
case, a fixed SOP of 30 minutes was used for all patients, which is in line with
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the SOP duration used in other studies [74, 219, 269, 278, 284, 287, 340]. SOP and
SPH determine the considered preictal samples. Therefore, the considered preictal
interval was also limited. The preictal interval of seizures could last from few minutes
to several hours. Thus, EEG characteristics should be carefully inspected in order to
not consider preictal patterns as interictal data [346, 347]. However, the inspection
of the optimal SOP was not in the focus of this study.

The fifth limitation was the number of hours used to train the prediction models.
In this case, only four hours per seizure were used to train the models. This time
was selected to overcome the high imbalance between interictal and preictal periods
as well as to reduce computation time. However, it could limit the training of the
models because they might not be able to learn critical long-term patterns such
as the circadian cycle [77, 342]. Lastly, the models were trained to trigger alarms
once they detect any preictal changes in the data. Therefore, they can not measure
seizure susceptibility over time and decide if one alarm is more important than
others. Additionally, the brain has its own regulatory system. There may be some
scenarios in which the model predicts a seizure due to the high seizure susceptibility
state, but the brain triggers seizure control mechanisms before reaching the "point of
no return" [352,353]. This new perspective has prompted the change from developing
seizure prediction models to designing seizure forecasting frameworks. The latter
allows researchers to better understand what is happening in the brain because
forecasting approaches output seizure risk instead of just alarms. Furthermore,
forecasting models are generally less penalised during evaluation since their response
is continuous and not based on "all-or-nothing". For example, in the presented
approaches, if an alarm were raised 41 minutes before the seizure onset, it would be
evaluated as a false alarm even if it was essentially a correct prediction [16].

7.4.3 Final reflections

This chapter explores two essential aspects that should be taken into consideration
before developing seizure prediction models: the impact of performing a robust pre-
processing to remove noisy artefacts, such as ocular artefacts, from EEGs; and the
importance of periodically retraining the seizure prediction models to address the
possible presence of concept drifts. The importance of these two variables was inves-
tigated using two models: one based on DNNs with EEG time series as input and
another based on shallow ANNs using handcrafted EEG features computed using
signal processing techniques. The results evidenced that the performance of deep
learning approaches improved after denoising the data and periodically retraining
the models. On shallow ANNs with handcrafted features as input, the effect of
denoising and/or retraining was barely noticeable, which may indicate that hand-
crafted features were more robust to changes in the data. The results also showed
that shallow ANNs using handcrafted features were able to predict twice as many
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seizures as deep learning models. However, the number of false alarms was generally
approximately four times higher as compared to DNNs. Therefore, when comparing
both types of models, it was not possible to conclude which performs better. As
future work, these approaches should be tested with more patients and prospective
data. Furthermore, it would be beneficial to test these approaches with more test
seizures and with data collected over longer periods than just a few days, such as
signals obtained by ultra long-term acquisition systems [57].



Chapter 8

Transfer learning on seizure
prediction: Does information
from several patients improve
patient-specific approaches?

This chapter presents the development of seizure prediction models using
a transfer learning approach. Section 8.1 presents the study context.
Section 8.2 describes the datasets and the methods used in the study.

Section 8.3 presents the results and subsequent analysis. Section 8.4 discusses the
obtained results, presents the advantages and the limitations of the developed ap-
proaches, and provides some final reflections.

8.1 Study context

Deep learning architectures are purely data-driven approaches typically with a large
number of parameters to tune. Therefore, those models require large datasets to find
patterns in the data and, consequently, accurate generalisations. It is undoubtedly
a problem in seizure prediction since models should be trained in a patient-specific
manner. Transfer learning has been used as a solution to address this challenge.
In the case of deep neural networks (DNNs), transfer learning is mainly used to
initialise the weights using large datasets. While these large datasets may not nec-
essarily originate from the same research field as the target dataset, it is expected
that both datasets involve using the same type of extracted features. Otherwise,
fine-tuning using the target dataset may be difficult or even ineffective [354]. In sei-
zure prediction, researchers have presented promising results using different forms of
transfer learning, for example, training a deep convolutional autoencoder (DCAE)
with data from different patients to initialise the weights of patient-specific mod-
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els or using DNN trained using ImageNet dataset to improve seizure prediction
approaches [35,181,189,286,355].

The present study evaluates the possibility of using electroencephalograms (EEGs)
from patients with epilepsy from a large database to improve patient-specific seizure
prediction models. Specifically, the performance of patient-dependent approaches
developed from scratch are compared with approaches in which weights are al-
ready initialised using a DCAE trained with data from other patients (see netword-
based transfer learning approach explained in Section 2.7). Finally, the patient-
independent model is openly provided to be used by other researchers.

8.2 Materials and methods

This section presents the steps followed to develop and evaluate the proposed method-
ology. The datasets used to develop and evaluate the approach are presented in
Section 8.2.1. Then, the model development pipeline is detailed (see Section 8.2.2).

8.2.1 Datasets

In this study, two datasets were used: data from patients present in the EPILEP-
SIAE database described in Section 7.2.1 and data from new patients available in
the Epilepsy Center of the Universitätsklinikum Freiburg. To make the explanation
simpler, the first dataset is named EPILEPSIAE dataset, while the second is named
Personal dataset. The Personal dataset contains scalp EEG from 24 patients with
temporal lobe epilepsy (TLE) (11 males; age range: 15-67 years; mean age: 38±14
years). The signals comprise the same 19 electrodes used in the EPILEPSIAE
dataset, placed according to the 10-20 international system. Data were collected
using a sampling rate of 250 Hz. However, data were converted to 256 Hz before
proceeding to be coherent with the EPILEPSIAE dataset. All patients had at least
three leading seizures separated by no less than 4.5 hours. The dataset comprises
approximately 4418 hours of recording time, containing 152 leading seizures from a
total of 273 seizures. More details about the dataset can be found in Table C.1. It
is worth noting that informed written consent was obtained from the patients and
the parents or legal guardians of patients under 18.

8.2.2 Methodology

The pipeline is similar to the one presented in Section 7.2.2. It begins by prepro-
cessing the EEGs from both datasets using digital frequency filters, removing exper-
imental errors and physiological artefacts. Then, the EEGs from the EPILEPSIAE
dataset were used to optimise a DCAE. Afterwards, the Personal dataset was used to
train two approaches: the standard approach, which consists of training the DNN
from scratch, and the transfer learning approach, which uses the weights from
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the DCAE to initialise the convolutional layers. Subsequently, the test set predic-
tions were postprocessed. Finally, both approaches were evaluated and compared.
Figure 8.1 illustrates the pipeline followed in this study. It should be pointed out
that the seizure prediction models were trained following a patient-specific approach.

EEG Preprocessing
Band-pass
 filtering:

0.5-100 Hz

Raw EEG Signals
(EPILEPSAE Data)

Input

Removal of
experimental errors

Randomly split into training and
validation sets using 80/20 ratio

Standard Approach

Randomly split into training and
validation sets using 80/20 ratio

Transfer Learning Approach

Randomly initiliase the neural network
weights

Train seizure prediction model using
early stopping

Use the pretrained weights from the
autoencoder and add a BiLSTM layer

and a classifier layer

Test model on the test set

Repeat the pipeline 5 times

Postprocessing
Firing power regularisation to reduce

false alarms

Test model on the test set

Train seizure prediction model using
early stopping

Comparison of the approaches
Standard Approach

Transfer Learning Approach

Performance evaluation
Assessing the approaches
Average seizure sensitivity

Average false positive ratio per hour
Surrogate analysis

Remove physiological artefacts
using EEG reconstruction model

Notch
 filtering:

50 Hz

Raw EEG Signals
(Personal Data)

Input

Convolutional BiLSTM Autoencoder
Randomly split into training and validation sets

using 80/20 ratio

Train model using early stopping

Data Partition (Patient-specific)
Training Set
60% of seizures

Only the last 4 hours before
each seizure

Test Set
40% of seizures

All the signal before each
seizure

Repeat the pipeline 5 times

Figure 8.1: Seizure prediction pipeline comprising the EEG preprocessing, the training of
the DCAE using the EPILEPSIAE dataset, the split of the Personal dataset, the standard
and transfer learning approaches, the postprocessing, and the evaluation procedure. The
models were developed following a patient-specific approach.

8.2.2.1 Signal preprocessing

The signal preprocessing was the same presented in Section 7.2.2.1. After the pre-
processing methods, the Personal dataset comprises approximately 3,290 hours of
recording time, whereas the EPILEPSIAE dataset comprises about 4,744 hours.

8.2.2.2 Seizure occurence period and seizure prediction horizon

The main goal of this study was to compare the performance of seizure predic-
tion models developed following a transfer learning approach with models developed
without using pretrained weights similar to the standard methodology presented in
Section 7.2.2. The duration of the seizure occurrence period (SOP) and the seizure
prediction horizon (SPH), used before, were maintained. The SOP lasts 30 minutes,
and the SPH 10 minutes.

8.2.2.3 Transfer learning methodology

The DCAE is an encoder-decoder architecture. The encoder is equal to the deep
convolutional neural network (DCNN) part of the DNN presented in Section 7.2.2.5.
The decoder contains layers responsible for converting the data to the original size.
After optimising the DCAE using the data from all the patients available in the
EPILEPSIAE dataset, the decoder was removed, and the weights of the encoder
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were used to initialise the weights of the convolutional layers of the seizure predic-
tion models. A bidirectional long short-term memory (BiLSTM) and a classifier
layer were added on top of the encoder to include the ability to explore temporal
information and to classify samples either as interictal or preictal. The weights
of the convolutional layers were frozen, meaning that during the training of the
patient-specific approaches, only the weights of the BiLSTM and the classifier layer
were optimised. Both architectures are presented in Figure 8.2. More details are
described in Section C.2.

EEG 
window

DCNN
(Encoder)

DCNN
(Decoder)

EEG 
window

EEG 
window

DCNN BiLSTM Classifier

Transfer
weights

Convolutional Autoencoder

Seizure Prediction Model

Figure 8.2: Transfer learning approach. On top, there is the DCAE. It contains an encoder
with a DCNN that extracts patterns from the data and a decoder with a DCNN that converts
the data to the original size. The output is expected to be equal to the input. The encoder
weights are transferred to the seizure prediction model, and a BiLSTM and a classifier layer
(fully connected layer with a softmax function) are added.

8.2.2.4 Training and test sets

For training the DCAE, the training set contained 80% of the EPILEPSIAE dataset,
and the remaining 20% was allocated to the validation set to control the overfitting
while training. The split was randomly performed. The training set contained about
3,795 hours of EEG data, whereas the validation set comprised approximately 949
hours of EEG data.

For training the seizure prediction models, the training set comprised 60% of the
data for each patient of the Personal dataset, whereas the test set contained 40% of
the signals. The split was chronologically performed, considering the seizures and
not the samples, meaning that the first 60% of the seizures were used for training.
As presented in Section 7.2.2.4, only the four hours before each seizure’s onset were
used during the training phase, whereas the test set, for each seizure, included all
the data from 30 minutes after the previous seizure to the onset of the seizure under
analysis. The training set contained 356 hours of EEG data and 89 seizures. The
test set included approximately 1,123 hours of EEG data and 62 seizures. Details
about the training and test sets can be found in Table C.2.

8.2.2.5 Training methodologies

All sets were standardised using the average and standard deviation from the training
set of the EPILEPSIAE dataset. The models were trained using a batch size of 2,048.
The number of epochs was 2,000. Early stopping regularisation with a patience of
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200 epochs was used to prevent overfitting. Adaptive moment estimation (Adam)
function with a learning rate of 3e-4 was used to optimise the parameters. The loss
function was the mean squared error function.

The patient-specific seizure prediction models were developed following two dif-
ferent approaches: the standard approach and the transfer learning approach. In
the standard approach, the DNNs were trained from scratch, meaning that all the
weights were randomly initialised before the optimisation. Additionally, the stan-
dardisation of the sets was performed using the average and standard deviation from
the training set. In the transfer learning approach, the weights obtained from the
optimisation of the DCAE were used to initialise the parameters of the seizure pre-
diction models. In this case, the standardisation was performed using the statistics
from the training set used to optimise the DCAE. Both methodologies were repeated
five times. It was impossible to perform 31 runs as in Chapter 7 due to computa-
tional power restrictions. The hyperparameters used to train both approaches were
the same that were used in Chapter 7. Holdout validation 80/20 was used to divide
the training set into training and validation subsets. The models were trained using
balanced batches of 64 samples. The number of epochs was 500. Early stopping
regularisation with a patience of 50 epochs was used to prevent overfitting. Adam
was used to optimise the DNNs with a learning rate of 3e-4. The loss function was
the binary cross-entropy function.

8.2.2.6 Postprocessing

The postprocessing was the same presented in Section 7.2.2.7. Thus, it consisted
of the firing power regularisation [356] with a threshold of 0.5 adapted to consider
time instead of the number of samples on the denominator.

8.2.2.7 Performance evaluation

The seizure sensitivity (SS), the false prediction rate per hour (FPR/h), and the
number of patients with performance above chance level obtained through surrogate
analysis, considering a significance level of 0.05, were used to evaluate the seizure
prediction models. It should be noted that the evaluation metrics consist of the
average over the five runs. The majority voting ensemble was not used because as
the number of runs was low, the results could depend on the result of only one run.

Pairwise hypothesis testing (with a significance level of 0.05) was performed to
compare the standard approach with the transfer learning approach.

8.2.2.8 System specifications

The DCAE was developed in a computer with two Intel Xeon Silver 4214 12-core
2.2 GHz, five NVIDIA Quadro RTX 5000, five NVIDIA Quadro P5000, 768 GB of
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RAM, and Linux Ubuntu 16.04 LTS. The used package was Tensorflow 2.4.1 from
Python 3.8.

The seizure prediction models were developed using a computer with one AMD
Ryzen Threadripper 3970X 32-core 3.7 GHz, one NVIDIA GeForce RTX 3060 Ti,
128 GB of RAM, and Windows 10. The used package was Tensorflow 2.6.0 from
Python 3.7.

8.3 Results

This section presents the results obtained for standard and transfer learning ap-
proaches evaluated on the test set of each patient.

8.3.1 Individual performance of seizure prediction models

Figure 8.3 illustrates the SSs and the FPR/h values of the patient-specific models.
It also presents the patients for whom models performed above chance level. The

Figure 8.3: Results for each patient for standard and transfer learning approaches. The
top subfigure presents the SS obtained for each patient-specific model, while the bottom
figure shows the FPR/h. The diamond symbol indicates that the model performed above
chance level. The scales of the colours are on the right side of the subfigures.

figure yields the following conclusions:
• The standard approach presents thirteen patients (54.2%) with an SS higher than

zero, whereas the transfer learning approach obtained twelve patients (50.0%).
Although the standard approach obtained more patients with an SS higher than
zero, only seven (29.2%) achieved a performance above chance level. It was
lower than the ten validated patients (41.7%) obtained using the transfer learning
approach.

• From the eleven validated patients (45.8%), only one, that was validated by the
standard approach, was not validated by the transfer learning approach.

• The usage of transfer learning weights decreased the FPR/h in seventeen patients
(70.8%), especially in patients 15, 18, and 22.

• The standard approach obtained a very high FPR/h for the patient 15. It hap-
pened because the model could not correctly converge (see Figure C.1).
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Detailed results are available in Table C.5.

8.3.2 Overall performance of seizure prediction models

Table 8.1 contains the average results of the standard and transfer learning ap-
proaches. Boxplots with the overall SS and FPR/h values, as well as the distribu-
tions of the performances, are displayed in Figure 8.3. Additionally, it contains the
statistical comparison between both approaches for SS and FPR/h. Comparisons
were made using a one-tail Wilcoxon signed test [349] considering an α value of 0.05.
Furthermore, it contains a bar chart with the number of patients performing above
chance level for each approach.

Table 8.1: Average results of the seizure prediction models for both approches, for all 24
patients.

Approach Seizure Sensitivity FPR/h Above Chance Level (%)
Standard 0.16±0.21 1.51±3.15 7 (0.29)

Transfer Learning 0.16±0.23 0.35±0.61 10 (0.42)
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Figure 8.4: Boxplots with the overall SS and FPR/h for the standard and transfer learning
approaches. Continuous black lines represent medians, dashed grey lines correspond to the
averages, diamonds symbolise outliers, and the distributions of the results for each patient
are presented as blue circles. Statistical significance indicators are placed above the boxplots:
the * means that the p-value is below 0.05, and ns means not significant. Bar charts show
the number of patients’ models with performance over chance using surrogate analysis.

Both approaches obtained a similar average SS. Therefore, the comparison did
not show statistically significant differences (p-value = 0.548). Regarding the FPR/h,
the transfer learning approach produced an average value about four times lower
than the one produced by the standard approach. The comparison showed sta-
tistically significant differences (p-value = 0.008). The transfer learning approach
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obtained more three patients than the standard approach with a performance above
chance level.

8.4 Discussion

Research in seizure prediction has evidenced that models should be trained follow-
ing a patient-specific approach. It causes a high limitation because the seizures are
usually very rare events [125]. The low number of available data may worsen the
performance of deep learning models which only achieve their satisfactory perfor-
mance when the number of samples is high [170]. Therefore, transfer learning may
be a solid way to handle that limitation.

This study analysed the impact of using a transfer learning approach to improve
patient-specific seizure prediction models. A DCAE was trained using EEG data
from 41 patients available in the EPILEPSIAE database. Afterwards, the learned
weights were used to develop patient-specific seizure prediction models for patients
from a Personal dataset. This approach was compared to a standard approach, in
which the weights were optimised from scratch.

Results evidenced that the average SS was similar in both approaches. Regarding
the average FPR/h, the value obtained by the transfer learning approach was about
four times lower than the standard approach. It happened due to a large number
of patients with an FPR/h higher than one in the case of the standard approach,
especially patient 15, whose models could not correctly converge when training from
scratch. The combination of those results led to a higher number of patients with
a performance above chance level in the case of the transfer learning approach.
Although the DCAE was trained with data from patients from a different database
with different acquisition systems, it was concluded that the models benefited from
using pretrained weights.

Different algorithms have been proposed to verify whether the transfer learning
approach improves the seizure prediction results [35,181,286,293,355]. The authors
presenting such approaches reported better performance considering not only the
seizure prediction but also the computational time, being in line with the evidence
obtained in this experiment.

All studies found in the literature used only one database to develop the patient-
specific models considering the leave-one-out cross-validation (CV) approach. They
trained the main model using N-1 patients and optimised it for the remaining one.
Based on the available evidence, this is the first study using an external database to
improve patient-specific seizure prediction models. Therefore, this study is helpful
in demonstrating to the scientific community that it is possible to combine data
from different databases to obtain more robust seizure prediction models.
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8.4.1 Study limitations

The study contains some of the already mentioned limitations presented in Sec-
tion 7.4.2, such as: EEGs acquired in pre-surgical conditions; a low number of test
seizures per patient on patient-specific approaches; fixed duration of the SOP; the
low number of training hours used for optimising the patient-specific models; and
the fixed interval used to consider a seizure correctly predicted.

The DCAE is based on the architecture presented in Chapter 7. Therefore,
compared with other architectures, it is a small one. The architectures used for
transfer learning in the image processing field contain dozens, if not hundreds of
layers that allow a deeper learning of the task [184,186,357]. Thus, a search for the
optimal architecture should be faced in the future.

The number of patients in the EPILEPSIAE dataset could have been larger.
Only 41 patients out of 227, with scalp EEG, were used. It is the difference between
training with only 4,744 hours and training with about 37,000 hours of data [269].
Increasing the number of patients could lead to a broader range of information used
for optimising the model. Consequently, this may enhance the generalisation of the
learned features. However, a substantial increase in available resources would be
necessary to accommodate this expansion.

8.4.2 Final reflections

This chapter presents a transfer learning approach to develop patient-specific seizure
prediction models based on DNNs. Therefore, it explores the ability to use data from
several patients from an external database to improve the optimisation of seizure
prediction models. Results showed that transfer learning allows obtaining about
four times less false alarms while maintaining the same ability to predict seizures as
when trained from scratch. Thus, it was concluded that the information obtained
from other patients external to the database used for seizure prediction improved the
models. Therefore, the DCAE will be available on a public repository so that other
researchers may use it to develop their approaches. Future work should focus on the
limitations presented above. The models should be tested with more seizures and
over a more extended period, e.g., using ultra-long-term acquisition systems [57].
Also, the DCAE should be trained with as many patients as possible, perhaps even
pooling data from other databases to increase the diversity of knowledge, e.g. CHB-
MIT [254] or SeizeIT2 [258].





Chapter 9

Conclusions

This chapter summarises the main contributions of this thesis. It also dis-
cusses future directions that should be considered.

9.1 Summary of the main contributions

The main objective of this thesis is to make contributions to the advancement of
adaptive seizure prediction models. Firstly, automatic electroencephalogram (EEG)
denoising approaches were developed. Subsequently, the most efficient ones were
used to prepare the data for the development of personalised seizure prediction mod-
els based on artificial neural networks (ANNs) and deep neural networks (DNNs).
An important outcome was the consideration of a transfer learning approach to
enhance the optimisation of patient-specific models using DNNs.

In Chapter 4, the dataset used to develop the EEG artefact removal models
was created. EEGs were acquired from 25 patients available in the EPILEPSIAE
database. Then, 20 patients were selected for the training set and 5 for the test set.
The EEGs were converted into independent components (ICs) using the independent
component analysis (ICA) algorithm. Finally, the ICs were visually analysed and
classified as brain or noisy. Finally, a dataset of 612.68 hours of data, corresponding
to 77,426 ICs, was created. Of these, 61,092 belong to the training set, whereas
16,334 are part of the test set.

In Chapter 5, an EEG artefact removal approach was proposed. It was based on
deep convolutional neural networks (DCNNs), which takes as input the noisy EEGs
and reconstructs them without EEG artefacts such as eye blinks. The advantage of
this approach is being able to automatically remove artefacts that mask important
brain information in less than a second for a 10-minute segment. Therefore, it could
be used to prepare the scalp EEGs prior to their analysis, for example, before seizure
prediction. The developed model showed an root mean squared error (RMSE) of 4.83
µV , an relative root mean squared error (RRMSE) of 0.52, a Pearson correlation
coefficient (PCC) of 0.86, and an signal-to-noise ratio (SNR) difference of 8.81.

161
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Compared to other models presented in the state of the art, the developed approach
outperformed in terms of both reconstruction metrics and processing time.

In Chapter 6, ICs were used to develop ICs classifiers. During the visual in-
spection of the ICs, three different information sources were used, the time series
(temporal information), the power spectrum densitys (PSDs) (spectral information),
and the topographic maps (spatial information). Using these three sources, differ-
ent classifiers were developed in order to verify which source was the most impor-
tant. Besides that, transfer learning methods were also explored to verify whether
pretraining with a large dataset improved the classification of ICs from a smaller
database. The results showed that using the three sources of information is neces-
sary to obtain the highest performance. Additionally, using transfer learning further
improved the performance of classifiers for ICs from a smaller database.

In Chapter 7, the main goal was to develop seizure prediction models. Differ-
ent approaches were tested, such as comparing models trained with data denoised
using the model presented in Chapter 5 with noisy data, comparing the standard
training approach, which consists of training the models once and testing on the
following seizures with a chronological approach able to periodically adapting the
models over time, and comparing models using handcrafted features with DNNs able
to automatically extract information from the EEGs. Results indicated that the ef-
fect of denoising and/or retraining was more noticeable in the DNNs. It was also
observed that, while models based on handcrafted features predicted more seizures
than DNNs, they also generated significantly more false alarms. As a result, it was
not possible to definitively determine which approach performed better, as it heavily
depends on the specific application scenario. For some cases, there might be a high
need to avoid missing a seizure prediction, while in other situations, the tolerability
of false alarms becomes a crucial factor.

In Chapter 8, the main goal was to develop seizure prediction models using a
transfer learning approach. Firstly, a deep convolutional autoencoder (DCAE) was
trained using 41 patients from the EPILEPSIAE database. Then, the pretrained
weights were used to initialise the parameters of patient-specific seizure prediction
models developed for patients from the Epilepsy Center of the Universitätsklinikum
Freiburg. Results indicated that using pretrained weights reduced the number of
false alarms about four times, while keeping the seizure sensitivity (SS).

9.2 Added value of contributions and future directions

Data acquisition is a complex and expensive task. Removing artefacts from the
signals is important for reducing false results obtained during the data analysis.
Therefore, it is essential to continue developing more and better ways to remove
artefacts while maintaining useful information [78]. In addition, creating open data-
bases, as the one created on behalf of this thesis, with manually preprocessed data
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would significantly contribute to benchmarking the current and new methodologies.
In the future, seizure prediction may involve using a wearable device that acquires

EEGs in real-time, processes the data, and uses them to detect patterns leading to
an upcoming seizure. This advancement could offer new hope to epilepsy patients,
especially those in middle- or low-income countries, who face challenges in accessing
expensive and specialised medical support. The production of such a device could
go through two types of methodologies: the estimation of the probability of a sei-
zure to happen (seizure forecasting) [140] or the raising of alarms indicating that
the seizure will happen in a fixed and previously determined time horizon (seizure
prediction) [133, 135]. In the case of seizure forecasting, the treatment may involve
adapting the patients’ lifestyle according to the seizure risk reported by the device
or taking small doses of seizure suppression drugs. In the case of seizure prediction,
the patient would have to take countermeasures as soon as the device indicated that
a seizure would occur. The main difference between those is knowing when the sei-
zure will happen. It is certainly an essential detail for the patients. Studies should
be performed to evaluate the impact of the device’s outputs on patients’ lives.

In a seizure prediction device, all the steps from signal acquisition to the output
must be automatic. Therefore, automatic denoising and retraining over time play a
central role in the success of this pipeline. The automatic denoising should be instan-
taneous and robust. Otherwise, it may jeopardise the performance of the pipeline
in real-time scenarios. Furthermore, in daily-life scenarios, the patients would use
the device for long periods. Thus, the system must adapt to every fluctuation
caused by medication intake, stress, daily activities, circadian cycles, or multidian
cycles [77,139]. One way of adaptation could be through periodic retraining. In this
case, the device would adapt its parameters after a certain period or after each new
change of distribution.

It is well known that the number of seizures available per patient is too small
to obtain a good exploration of the complex patterns in the EEG data. Literature
has reported that models should not be developed using data from several patients.
Therefore, the models should be trained following a patient-specific approach. The
use of transfer learning methods appears as an optimal solution. In this way, it is
possible to train models using EEG data from several patients with epilepsy and then
personalise them for every new patient. Such an approach combines the benefit of
using information from other patients with the requirement to follow patient-specific
development.

As future work, researchers should continue working on the three elements men-
tioned above: denoising of EEG, adaptation to new data distributions, and transfer
learning using patients from different databases. The evaluation of new approaches
should involve using metrics that allow the evaluation of the prediction of events
instead of prediction by sample, which does not help in understanding whether the
system works properly. Furthermore, the bet in ultra-long-term signals should be
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made to perform more robust studies of this complex phenomenon. An improvement
in seizure prediction could create a significant revolution in the world of patients with
epilepsy.
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Appendix A

Automatic
electroencephalogram artefact
removal using deep
convolutional neural networks

A.1 Training and validation

Figure A.1 summarises the training and validation procedure presented in the Sec-
tion 5.2.3. First, the training dataset was filtered by removing electroencephalogram
(EEG) segments with little brain information. Then, the dataset was divided into
training and validation subsets. Afterwards, the samples from both subsets were
zero-padded to ensure that all samples had the same size. After that, the data were
standardised and used for training the model. These procedures were repeated ten
times in order to produce ten different models.

Split the training EEG data in training
set and validation set using holdout

validation 70/30

Train DCNN for 500 epochs
Input: Noisy EEG segments

Output: Target EEG segments

Save the best model using model
checkpoint callback with validation

set

Training EEG Data
(3399 Segments)

Training EEG Data with 50% or more
brain ICs

(2900 Segments)

Filter dataset 10
Times

Prepare Training EEG Data Zero padding of the EEG segments
lasting less than 10 minutes

Train EEG Artifact Removal Deep Convolutional Neural Networks

Standardisation using average and
standard deviation of the training

noisy EEG segments

Figure A.1: Framework followed to develop the artefact removal model. It covers the
following steps: preparation of training set and training and validation of the developed
approach.
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A.2 Evaluation procedure

Figure A.2 presents the evaluation procedure performed to assess the developed ap-
proach using the test set. The root mean squared error (RMSE), the relative root
mean squared error (RRMSE), the Pearson correlation coefficient (PCC), and the
signal-to-noise ratio (SNR) difference were used to evaluate the approach. The met-
rics were computed for the ten different models and were averaged. The performance
of the developed approach was also compared with the performance of other artefact
removal models.

Test EEG Data
(910 Segments)

Zero padding EEG segments
lasting less than 10 minutes

Standard Statistical
Metrics 

RMSEnoisy,target 
RMSEdenoised,target

SNR difference

Approach Performance
Analyse some denoised EEG

segments

Analyse results

Compare the performance with
other artifact removal models

Prepare Test EEG
Data

Reverse standardisation and
remove padding samples

Standardise EEG segments
using training mean and

standard deviation

Filter Dataset
Remove EEG segments

with no noisy ICs

RRMSEnoisy,target
RRMSEdenoised,target

PCCnoisy,target
PCCdenoised,targetRemove artifacts using DCNN

models

Figure A.2: Framework followed to evaluate the developed approach. It covers the follow-
ing steps: preparation of the test set, evaluation metrics and performance assessment.

A.3 Results

This section presents the mean, median, standard deviation, first quartile, and third
quartile for all the evaluation metrics used to assess the developed model.

Table A.1: Mean, standard deviation, first quartile, median and third quartile of the
RMSE of the EEG segments, for each EEG channel, before using the DCNN model. SD:

Standard deviation; 1Q: First quartile; 3Q: Third quartile.
EEG Channel

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz
Mean 24.64 23.80 12.85 10.51 10.15 10.62 7.55 7.63 10.83 8.81 17.89 17.27 14.61 14.00 10.79 9.97 7.43 5.33 7.10
SD 19.24 16.10 16.02 10.26 18.64 14.84 10.79 8.79 29.44 12.48 15.38 14.34 15.85 14.24 16.51 11.90 21.36 9.10 11.19
1Q 8.78 8.21 3.00 2.95 2.17 2.12 1.89 2.01 2.35 2.26 6.94 6.79 3.38 3.48 2.32 2.33 1.23 1.35 1.70

Median 26.31 26.80 9.27 8.52 5.49 6.00 6.28 6.33 7.72 7.35 15.78 15.75 10.15 10.56 7.44 7.73 3.31 4.11 5.89
3Q 34.39 35.19 16.60 15.64 9.30 11.75 8.95 9.08 10.78 10.60 25.58 24.22 19.41 19.80 11.35 11.88 6.78 5.69 8.15

Table A.2: Mean, standard deviation, first quartile, median and third quartile of the
RMSE of the EEG segments, for each EEG channel, after using the DCNN model. SD:

Standard deviation; 1Q: First quartile; 3Q: Third quartile.
EEG Channel

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz
Mean 5.43 5.64 5.12 4.98 4.23 5.02 3.68 3.81 4.85 4.83 6.14 5.88 6.90 6.78 5.11 5.11 3.50 2.56 3.17
SD 3.09 3.16 4.00 3.04 4.08 4.46 3.33 3.58 5.29 4.24 4.28 3.46 5.44 5.14 4.65 4.42 2.84 2.20 2.70
1Q 3.32 3.37 2.77 2.67 1.83 2.05 1.64 1.59 1.98 2.05 3.35 3.30 2.79 2.75 2.04 1.97 1.75 1.29 1.62

Median 4.62 4.67 4.30 4.77 3.12 3.54 2.77 2.77 3.39 3.34 5.24 5.25 5.40 5.35 3.78 3.81 2.87 2.06 2.47
3Q 6.50 6.86 6.04 6.49 5.16 6.43 4.29 4.45 5.87 6.33 7.81 7.67 9.20 9.54 6.36 6.77 4.25 2.91 3.72
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Table A.3: Mean, standard deviation, first quartile, median and third quartile of the
RRMSE of the EEG segments, for each EEG channel, before using the DCNN model. SD:

Standard deviation; 1Q: First quartile; 3Q: Third quartile.
EEG Channel

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz
Mean 4.52 4.41 2.09 1.86 2.02 1.91 1.04 1.20 1.09 0.83 2.22 2.33 2.16 2.00 1.44 1.06 1.07 0.96 1.17
SD 4.00 3.95 3.34 2.09 4.12 2.95 2.04 3.15 2.85 1.36 2.76 2.45 3.23 2.78 4.41 1.69 3.00 2.33 2.94
1Q 1.03 1.09 0.38 0.34 0.30 0.30 0.22 0.23 0.19 0.20 0.71 0.71 0.39 0.39 0.25 0.21 0.11 0.15 0.18

Median 4.06 3.94 1.06 1.03 0.80 0.86 0.84 0.80 0.68 0.62 1.84 1.92 0.87 0.96 0.73 0.68 0.39 0.60 0.84
3Q 6.95 6.72 2.81 2.92 1.36 1.91 1.20 1.20 1.08 0.93 2.90 3.26 3.23 2.79 1.03 1.03 1.09 0.93 1.18

Table A.4: Mean, standard deviation, first quartile, median and third quartile of the
RRMSE of the EEG segments, for each EEG channel, after using the DCNN model. SD:

Standard deviation; 1Q: First quartile; 3Q: Third quartile.
EEG Channel

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz
Mean 0.77 0.80 0.74 0.78 0.76 0.85 0.46 0.55 0.47 0.41 0.67 0.70 0.95 0.93 0.57 0.50 0.46 0.41 0.45
SD 0.37 0.40 0.77 0.64 0.97 1.01 0.50 1.13 0.62 0.47 0.56 0.44 1.08 1.10 0.76 0.58 0.41 0.52 0.70
1Q 0.48 0.50 0.32 0.30 0.27 0.28 0.19 0.19 0.17 0.18 0.44 0.45 0.30 0.30 0.21 0.19 0.15 0.15 0.17

Median 0.74 0.78 0.63 0.65 0.45 0.47 0.33 0.34 0.28 0.31 0.59 0.63 0.46 0.45 0.38 0.36 0.37 0.28 0.31
3Q 0.98 1.05 0.89 1.08 0.71 0.94 0.53 0.51 0.48 0.45 0.74 0.82 1.47 1.26 0.53 0.53 0.65 0.45 0.51

Table A.5: Mean, standard deviation, first quartile, median and third quartile of the
PCC of the EEG segments, for each EEG channel, before using the DCNN model. SD:

Standard deviation; 1Q: First quartile; 3Q: Third quartile.
EEG Channel

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz
Mean 0.41 0.41 0.62 0.63 0.71 0.68 0.77 0.76 0.79 0.81 0.55 0.54 0.64 0.65 0.76 0.77 0.82 0.81 0.77
SD 0.33 0.33 0.31 0.31 0.29 0.30 0.21 0.23 0.21 0.20 0.28 0.29 0.32 0.30 0.25 0.23 0.23 0.21 0.22
1Q 0.15 0.15 0.33 0.32 0.59 0.46 0.64 0.64 0.68 0.73 0.33 0.29 0.29 0.34 0.70 0.70 0.68 0.73 0.64

Median 0.24 0.25 0.68 0.70 0.78 0.76 0.76 0.78 0.83 0.85 0.48 0.46 0.75 0.72 0.81 0.82 0.93 0.86 0.76
3Q 0.69 0.68 0.93 0.95 0.96 0.96 0.98 0.97 0.98 0.98 0.81 0.82 0.93 0.93 0.97 0.98 0.99 0.99 0.98

Table A.6: Mean, standard deviation, first quartile, median and third quartile of the
PCC of the EEG segments, for each EEG channel, after using the DCNN model. SD:

Standard deviation; 1Q: First quartile; 3Q: Third quartile.
EEG Channel

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz
Mean 0.65 0.61 0.75 0.74 0.79 0.77 0.88 0.87 0.89 0.91 0.78 0.76 0.74 0.74 0.86 0.87 0.86 0.91 0.90
SD 0.27 0.30 0.22 0.23 0.26 0.27 0.16 0.18 0.17 0.14 0.19 0.20 0.29 0.29 0.21 0.19 0.16 0.15 0.15
1Q 0.47 0.39 0.62 0.57 0.74 0.62 0.85 0.87 0.88 0.90 0.70 0.66 0.43 0.46 0.86 0.86 0.78 0.90 0.87

Median 0.70 0.69 0.80 0.79 0.91 0.89 0.95 0.94 0.96 0.96 0.83 0.80 0.91 0.90 0.93 0.94 0.94 0.96 0.95
3Q 0.88 0.88 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.91 0.90 0.96 0.96 0.98 0.98 0.99 0.99 0.99

Table A.7: Mean, standard deviation, first quartile, median and third quartile of the
SNR difference of the EEG segments, for each EEG channel, for the DCNN model. SD:

Standard deviation; 1Q: First quartile; 3Q: Third quartile.
EEG Channel

Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz
Mean 11.30 10.71 4.57 3.64 4.00 3.50 4.15 4.36 3.84 3.31 6.89 7.13 3.91 3.96 3.71 3.66 0.50 3.55 4.34
SD 9.58 9.69 8.22 7.43 6.20 6.21 6.94 6.32 7.34 7.11 9.20 8.26 6.64 6.55 6.72 6.09 7.81 7.02 7.23
1Q 7.38 7.22 1.24 0.83 2.10 1.54 2.16 2.44 2.04 0.93 4.64 4.85 2.59 2.63 1.86 1.65 -1.56 1.31 2.09

Median 14.24 13.31 6.74 5.90 5.37 5.22 5.71 5.64 4.96 4.88 9.92 9.90 5.70 5.60 5.04 4.86 1.69 5.60 6.39
3Q 17.50 16.84 10.46 8.58 7.15 7.12 7.94 8.12 8.27 7.65 12.21 11.99 7.50 7.43 7.68 7.38 4.68 7.41 8.72
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A.4 Examples of reconstructed EEG segments

This section presents more examples of EEG segments reconstructed by the devel-
oped model.
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Figure A.3: Five seconds of all channels of an example EEG segment containing eye
blinks, eye movements and muscle activity. The noisy segment, target segment and denoised
segment are represented in blue, orange and black, respectively.
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Figure A.4: Five seconds of all channels of an example EEG segment containing eye
blinks, eye movements and muscle activity. The noisy segment, target segment and denoised
segment are represented in blue, orange and black, respectively.
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Figure A.5: Five seconds of all channels of an example EEG segment containing eye
blinks, eye movements, muscle activity and electrode movements. The noisy segment, target
segment and denoised segment are represented in blue, orange and black, respectively.

Figure A.6: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are represented in blue, orange and black, respectively.
The selected portions provide the exact moments when the cardiac artefacts occur.
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Figure A.7: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are represented in blue, orange and black, respectively.
The selected portions provide the exact moments when the cardiac artefacts occur.

Figure A.8: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are represented in blue, orange and black, respectively.
The selected portions provide the exact moments when the cardiac artefacts occur.
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Figure A.9: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are represented in blue, orange and black, respectively.
The selected portion evidences the EEG channel where the pulse artefacts occur.

Figure A.10: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are represented in blue, orange and black, respectively.
The selected portion evidences the EEG channel where the pulse artefacts occur.
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Figure A.11: Five seconds of all channels of an example EEG segment. The noisy segment,
target segment and denoised segment are represented in blue, orange and black, respectively.
The selected portion evidences the EEG channel where the pulse artefacts occur.
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Figure A.12: Five seconds of all channels of an example EEG segment containing exper-
imental errors which were not removed with the initial EEG preprocessing algorithm. The
noisy segment, target segment and denoised segment are represented in blue, orange and
black, respectively.



A.4. EXAMPLES OF RECONSTRUCTED EEG SEGMENTS 209

507 508 509 510 511
Time (s)

Fp1

Fp2

F3

F4

C3

C4

P3

P4

O1

O2

F7

F8

T7

T8

P7

P8

Fz

Cz

Pz

EE
G 

Ch
an

ne
l

 100 V

Time Series - All EEG Channels
Noisy EEG Segment
Target EEG Segment
Denoised EEG Segment

Figure A.13: Five seconds of all channels of an example EEG segment containing exper-
imental errors which were not removed with the EEG preprocessing algorithm. The noisy
segment, target segment and denoised segment are represented in blue, orange and black,
respectively.
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Figure A.14: Five seconds of all channels of an example EEG segment containing exper-
imental errors which were not removed with the EEG preprocessing algorithm. The noisy
segment, target segment and denoised segment are represented in blue, orange and black,
respectively.
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Figure A.15: Five seconds of all channels of an example EEG segment that does not
contain any noisy artefact. The noisy segment, target segment and denoised segment are
represented in blue, orange and black, respectively.
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Figure A.16: Five seconds of all channels of an example EEG segment that does not
contain any noisy artefact. The noisy segment, target segment and denoised segment are
represented in blue, orange and black, respectively.
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Figure A.17: Five seconds of all channels of an example EEG segment that does not
contain any noisy artefact. The noisy segment, target segment and denoised segment are
represented in blue, orange and black, respectively.
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Figure A.18: Five seconds of all channels of an example EEG segment which had some
brain information removed by visual inspection that was not removed by the EEG artefact
removal model. The noisy segment, target segment and denoised segment are represented
in blue, orange and black, respectively.
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Figure A.19: Five seconds of all channels of an example EEG segment which had some
brain information removed by visual inspection that was not removed by the EEG artefact
removal model. The noisy segment, target segment and denoised segment are represented
in blue, orange and black, respectively.
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Figure A.20: Five seconds of all channels of an example EEG segment which had some
brain information removed by visual inspection that was not removed by the EEG artefact
removal model. The noisy segment, target segment and denoised segment are represented
in blue, orange and black, respectively.



Appendix B

Removing artefacts and
periodically retraining improve
performance of neural
network-based seizure
prediction models

B.1 Patient and seizure metadata

Table B.1 contains information regarding the patients analysed in this study. The
table includes information on sex, age at hospital admission and onset age (corre-
sponding to the occurrence of the first epilepsy event), epilepsy foci lateralisation,
the total number of annotated seizures and the number of lead seizures analysed
for each patient, according to the considered minimum inter-seizure interval of 4.5
hours. The duration of the used electroencephalogram (EEG) data regarding train-
ing and testing seizures is also presented. It is worth noting that although it was
considered lead seizures to happen at least 4.5 hours after the previous one, only 4
hours were used for training.

Table B.2 describes data collected for each analysed seizure. It includes infor-
mation about the EEG onset time, used inter-seizure time, vigilance state at the
time of the seizure onset, seizure classification, and seizure activity pattern. Sei-
zures were classified according to the International League Against Epilepsy (ILAE)
classification [47]. The vigilance state corresponds to one of the following states of
alertness and responsiveness: wakefulness, non-rapid eye movement (NREM) sleep,
further subdivided into three sleep stages (N1–3) and rapid eye movement (REM)
sleep [358].

213
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Table B.1: Dataset description regarding each patient.
P ID Sex Onset Age

(years)
Admission Age

(years)
Lat. #Sz #LSz Training time

(dd hh/mm/ss)
Testing time

(dd hh/mm/ss)

1 402 F 10 55 L, R 5 5 00 12:00:00 01 05:43:57
2 8902 F 23 67 L 5 5 00 12:00:00 00 22:33:21
3 11 002 M 21 41 R 8 4 00 08:00:00 00 19:51:27
4 16 202 F 43 46 L, R 8 7 00 16:00:00 00 21:20:11
5 21 902 M 44 47 L 6 4 00 08:00:00 00 17:40:40
6 23 902 M 36 36 L 5 5 00 12:00:00 01 09:59:10
7 26 102 M 15 65 L 8 4 00 08:00:00 01 21:24:37
8 30 802 M 28 28 L, R 9 8 00 20:00:00 01 19:55:36
9 32 702 F 33 62 L, R 6 5 00 12:00:00 00 22:15:49

10 45 402 F 13 41 L, R 5 4 00 08:00:00 01 04:34:30
11 46 702 F 13 15 R 5 5 00 12:00:00 00 12:39:01
12 50 802 M 2 43 L 5 5 00 12:00:00 01 11:39:33
13 52 302 F 13 61 L 7 3 00 08:00:00 00 09:33:47
14 53 402 M 0 39 L, R 8 4 00 08:00:00 02 02:30:52
15 55 202 F 3 17 R, B 9 8 00 20:00:00 01 18:54:12
16 56 402 M 18 47 L, R 7 4 00 08:00:00 06 04:28:44
17 58 602 M 17 32 L 22 6 00 16:00:00 00 10:46:12
18 59 102 M 17 47 R 7 5 00 12:00:00 03 10:15:50
19 60 002 M 47 55 L, R 8 6 00 16:00:00 05 15:37:09
20 64 702 M 3 51 R 6 5 00 12:00:00 01 07:41:43
21 75 202 M 10 13 R 8 7 00 16:00:00 01 07:21:15
22 80 702 F 14 22 B 10 6 00 16:00:00 00 19:26:12
23 81 102 F 14 22 B 13 3 00 08:00:00 00 23:26:03
24 85 202 F 4 54 L 10 5 00 12:00:00 00 20:27:13
25 93 402 M 40 67 L 7 5 00 12:00:00 02 06:06:02
26 93 902 M 43 50 R 9 6 00 16:00:00 00 13:32:53
27 94 402 F 29 37 R 11 7 00 16:00:00 00 23:44:49
28 95 202 F 13 50 L 14 7 00 16:00:00 03 06:16:09
29 96 002 M 21 58 L, R 9 7 00 16:00:00 03 04:32:26
30 98 102 M 2 36 L 5 5 00 12:00:00 01 21:48:06
31 98 202 M 3 39 R 10 8 00 20:00:00 01 07:41:52
32 101 702 M 44 52 L, R 6 5 00 12:00:00 00 23:52:54
33 102 202 M 0 17 L 28 7 00 16:00:00 01 18:32:49
34 104 602 F 8 17 L 5 5 00 12:00:00 00 15:19:10
35 109 502 M 40 50 L, R 10 4 00 08:00:00 01 23:09:24
36 110 602 M 6 56 R 8 5 00 12:00:00 01 01:58:25
37 112 802 M 47 52 L 6 6 00 16:00:00 02 00:46:59
38 113 902 F 16 29 R 25 6 00 16:00:00 00 14:47:58
39 114 702 F 31 22 R 25 8 00 20:00:00 01 00:49:43
40 114 902 F 15 16 L, R 12 7 00 16:00:00 01 16:58:57
41 123 902 F 7 25 L, R 8 5 00 12:00:00 01 06:12:37

ID: patient identifier. Sex: female (F) or male (M). Lateralisation (Lat.): L: left, R: right, B: bilateral. #Sz: total
number of seizures annotated per patient. #LSz: number of leading seizures, obtained as a result of the analysis of 4.5
hours of interseizure data.
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Table B.2: Dataset description regarding data preceding each seizure. The gray rows
were used for training, while the other ones were used for testing.

S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

1 402 22:45:26 00 04:00:00 W FOIA t

2 402 21:27:34 00 04:00:00 W FBTC t

3 402 02:13:30 00 04:00:00 W FOIA t

4 402 08:53:21 00 06:09:51 W FBTC t

5 402 08:57:27 00 23:34:06 W FOIA t

6 8902 23:51:14 00 04:00:00 W UC a

7 8902 23:03:23 00 04:00:00 W FOIA b

8 8902 05:37:05 00 04:00:00 W FOIA a

9 8902 00:35:56 00 18:28:50 W FOIA m

10 8902 05:10:26 00 04:04:30 W FOIA a

11 11 002 00:00:10 00 04:00:00 W UC ?

12 11 002 06:38:01 00 04:00:00 R FOIA s

13 11 002 15:16:42 00 08:08:40 W FOIA a

14 11 002 08:18:49 00 11:42:46 W FOIA t

15 16 202 04:34:07 00 04:00:00 W UC r

16 16 202 06:05:10 00 04:00:00 W FBTC ?

17 16 202 05:07:14 00 04:00:00 W UC r

18 16 202 18:48:33 00 04:00:00 W FOIA r

19 16 202 03:34:35 00 08:16:01 W FOIA r

20 16 202 13:50:31 00 07:57:01 W FOIA ?

21 16 202 19:27:39 00 05:07:08 W FOIA r

22 21 902 16:16:43 00 04:00:00 W UC t

23 21 902 08:40:51 00 04:00:00 W FOIA t

24 21 902 20:32:56 00 07:53:23 W FOIA t

25 21 902 06:50:12 00 09:47:15 R FOIA b

26 23 902 10:18:13 00 04:00:00 W FOA t

27 23 902 20:50:38 00 04:00:00 W FOA t

28 23 902 11:18:12 00 04:00:00 W FOA t

29 23 902 16:48:02 01 04:59:49 W FOA d

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

Continued on next page
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S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

30 23 902 22:17:22 00 04:59:20 W FOA t

31 26 102 15:31:37 00 04:00:00 W FOIA m

32 26 102 08:33:50 00 04:00:00 W FOIA t

33 26 102 07:52:54 00 22:49:04 W FOIA t

34 26 102 11:36:45 00 22:35:32 W FOIA t

35 30 802 04:33:31 00 04:00:00 R FOA t

36 30 802 04:52:24 00 04:00:00 W FOA t

37 30 802 10:58:12 00 04:00:00 N2 FOA t

38 30 802 22:58:11 00 04:00:00 W FOA t

39 30 802 05:49:34 00 04:00:00 W FOA t

40 30 802 02:48:42 00 20:29:08 R FOA t

41 30 802 07:48:06 00 04:29:24 N2 FOA t

42 30 802 03:15:10 00 18:57:04 N2 FOA t

43 32 702 08:25:28 00 04:00:00 W FOIA t

44 32 702 10:22:47 00 04:00:00 W FOIA t

45 32 702 10:13:13 00 04:00:00 W FOIA t

46 32 702 17:03:16 00 06:20:03 W FOIA r

47 32 702 09:29:02 00 15:55:46 W FOIA a

48 45 402 01:48:55 00 04:00:00 W FOIA t

49 45 402 08:11:29 00 04:00:00 W FOIA t

50 45 402 14:56:37 00 06:15:07 W FOA t

51 45 402 15:13:34 00 22:19:21 W FOIA t

52 46 702 15:56:40 00 04:00:00 W FOA a

53 46 702 06:16:40 00 04:00:00 N2 FOIA a

54 46 702 17:06:57 00 04:00:00 W FOIA t

55 46 702 02:02:23 00 08:25:26 N2 FBTC b

56 46 702 06:45:59 00 04:13:35 W FOIA t

57 50 802 02:44:39 00 04:00:00 W FOIA t

58 50 802 06:37:35 00 04:00:00 N2 UC t

59 50 802 12:39:04 00 04:00:00 N2 UC t

60 50 802 22:50:41 00 09:41:37 N2 FOIA t

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

Continued on next page
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S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

61 50 802 01:18:38 01 01:57:56 W FBTC t

62 52 302 06:29:39 00 04:00:00 W UC ?

63 52 302 11:31:13 00 04:00:00 W FOA ?

64 52 302 02:31:34 00 09:33:47 N1 UC d

65 53 402 08:16:32 00 04:00:00 W FOA ?

66 53 402 05:46:33 00 04:00:00 N2 FOA ?

67 53 402 19:02:38 01 12:46:05 W FOA ?

68 53 402 09:17:43 00 13:44:46 W FOIA t

69 55 202 07:02:49 00 04:00:00 W FOIA t

70 55 202 09:55:11 00 04:00:00 W FOIA d

71 55 202 18:15:11 00 04:00:00 W FOA t

72 55 202 08:09:27 00 04:00:00 W UC t

73 55 202 17:47:47 00 04:00:00 W UC t

74 55 202 09:57:39 00 15:39:52 W FOA t

75 55 202 15:34:54 00 05:07:15 W UC r

76 55 202 14:11:59 00 22:07:05 W FOIA r

77 56 402 08:17:30 00 04:00:00 W UC t

78 56 402 21:11:53 00 04:00:00 W UC ?

79 56 402 09:13:46 05 07:13:23 W UC ?

80 56 402 06:29:39 00 20:15:19 W FBTC a

81 58 602 09:11:25 00 04:00:00 W FOIA r

82 58 602 03:29:21 00 04:00:00 R FOIA t

83 58 602 19:52:52 00 04:00:00 W FOIA t

84 58 602 09:01:07 00 04:00:00 W FOIA r

85 58 602 15:41:02 00 04:50:43 W FOIA r

86 58 602 02:31:58 00 05:55:28 N2 FOIA t

87 59 102 08:54:51 00 04:00:00 W FOA ?

88 59 102 15:41:55 00 04:00:00 W FOIA t

89 59 102 09:56:35 00 04:00:00 W FOIA t

90 59 102 19:51:41 00 09:25:05 W FOIA t

91 59 102 21:12:26 03 00:50:44 W FOA t

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.
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S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

92 60 002 02:45:01 00 04:00:00 N1 FOIA d

93 60 002 02:22:55 00 04:00:00 W FOIA c

94 60 002 12:21:36 00 04:00:00 W FOIA t

95 60 002 05:40:53 00 04:00:00 R UC t

96 60 002 00:17:54 00 18:07:01 R FOIA d

97 60 002 22:18:46 04 21:30:51 N1 FOIA d

98 64 702 13:53:39 00 04:00:00 W FOA ?

99 64 702 04:23:21 00 04:00:00 W FBTC m

100 64 702 18:59:43 00 04:00:00 W FBTC t

101 64 702 19:50:01 01 00:20:17 W FBTC t

102 64 702 03:41:27 00 07:21:26 N2 FBTC t

103 75 202 23:37:38 00 04:00:00 N2 FOA t

104 75 202 01:10:45 00 04:00:00 N2 FOA t

105 75 202 21:33:44 00 04:00:00 W UC t

106 75 202 19:27:00 00 04:00:00 W FOA t

107 75 202 09:46:19 00 13:49:19 W FOA t

108 75 202 17:43:46 00 05:20:22 W FOA ?

109 75 202 06:25:19 00 12:11:33 W FOA t

110 80 702 05:03:56 00 04:00:00 W FOIA b

111 80 702 08:43:22 00 04:00:00 W FOIA b

112 80 702 20:43:38 00 04:00:00 W UC ?

113 80 702 07:46:14 00 04:00:00 W FOIA c

114 80 702 17:54:17 00 04:56:33 W FBTC c

115 80 702 08:53:56 00 14:29:38 W FOIA c

116 81 102 20:48:50 00 04:00:00 W FOIA t

117 81 102 10:44:57 00 04:00:00 W FOA t

118 81 102 10:42:15 00 23:26:03 W FOIA t

119 85 202 23:37:05 00 04:00:00 N2 FOIA m

120 85 202 16:51:04 00 04:00:00 W FOIA c

121 85 202 04:24:27 00 04:00:00 W UC m

122 85 202 16:08:00 00 11:13:33 W UC m

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.
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S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

123 85 202 01:51:40 00 09:13:39 W UC m

124 93 402 22:17:50 00 04:00:00 N2 FBTC t

125 93 402 10:21:34 00 04:00:00 N2 FOIA t

126 93 402 23:20:24 00 04:00:00 N2 FOIA t

127 93 402 00:59:09 02 01:08:44 N2 UC t

128 93 402 06:26:26 00 04:57:17 N2 UC t

129 93 902 08:39:52 00 04:00:00 W FOA t

130 93 902 16:02:21 00 04:00:00 W FOIA t

131 93 902 02:31:07 00 04:00:00 N2 FBTC d

132 93 902 18:48:40 00 04:00:00 W FOIA d

133 93 902 04:02:38 00 08:43:58 N2 FOIA d

134 93 902 09:21:33 00 04:48:55 W UC d

135 94 402 15:29:22 00 04:00:00 W FOA ?

136 94 402 11:02:56 00 04:00:00 W UC d

137 94 402 18:05:40 00 04:00:00 W FOIA b

138 94 402 01:36:02 00 04:00:00 N2 UC t

139 94 402 16:10:53 00 08:39:10 W FOA ?

140 94 402 02:48:18 00 10:07:25 N2 UC b

141 94 402 08:16:30 00 04:58:11 W FOA ?

142 95 202 01:28:09 00 04:00:00 N2 FBTC b

143 95 202 15:00:18 00 04:00:00 N2 FOIA b

144 95 202 01:35:24 00 04:00:00 N2 FOIA b

145 95 202 14:13:22 00 04:00:00 N2 FOIA m

146 95 202 23:30:29 00 08:47:06 N2 UC b

147 95 202 23:55:21 00 23:54:52 N2 FOIA b

148 95 202 00:04:20 01 21:34:10 N2 UC t

149 96 002 17:10:35 00 04:00:00 W FOIA t

150 96 002 10:26:53 00 04:00:00 W FOIA t

151 96 002 17:46:44 00 04:00:00 W FOIA t

152 96 002 00:05:44 00 04:00:00 W FOIA d

153 96 002 00:44:10 00 23:56:34 W UC a

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.
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S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

154 96 002 18:57:18 00 17:43:07 W FOIA t

155 96 002 06:20:01 01 10:52:43 W FOIA a

156 98 102 07:17:49 00 04:00:00 W FOA ?

157 98 102 18:49:53 00 04:00:00 W UC ?

158 98 102 05:18:58 00 04:00:00 W UC ?

159 98 102 06:11:33 01 00:22:35 W UC ?

160 98 102 04:07:04 00 21:25:31 W FBTC ?

161 98 202 04:50:27 00 04:00:00 W FOIA t

162 98 202 20:38:46 00 04:00:00 W FOIA a

163 98 202 07:16:40 00 04:00:00 W FOIA t

164 98 202 12:16:11 00 04:00:00 W FBTC t

165 98 202 03:37:11 00 04:00:00 W FOIA t

166 98 202 01:22:11 00 21:15:00 W FOIA t

167 98 202 07:55:06 00 06:02:55 W FOIA t

168 98 202 16:57:19 00 04:23:56 W UC t

169 101 702 07:35:40 00 04:00:00 W FOIA t

170 101 702 12:29:53 00 04:00:00 W FOIA t

171 101 702 19:33:06 00 04:00:00 W FOIA t

172 101 702 07:35:22 00 11:32:16 N2 FOIA r

173 101 702 20:26:01 00 12:20:38 W FOIA r

174 102 202 22:50:21 00 04:00:00 N2 FOA b

175 102 202 15:36:30 00 04:00:00 W UC ?

176 102 202 05:47:03 00 04:00:00 N2 FOIA t

177 102 202 22:14:59 00 04:00:00 W UC ?

178 102 202 14:07:10 00 15:22:10 W FOA t

179 102 202 06:16:20 00 09:47:18 N2 FOIA t

180 102 202 15:54:20 00 17:23:19 W UC t

181 104 602 15:35:45 00 04:00:00 W FOIA t

182 104 602 23:46:07 00 04:00:00 N2 FBTC a

183 104 602 06:24:56 00 04:00:00 N2 FBTC t

184 104 602 12:30:01 00 05:35:04 N2 FBTC t

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

Continued on next page
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S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

185 104 602 22:44:07 00 09:44:06 N2 UC d

186 109 502 10:00:00 00 04:00:00 W FOIA t

187 109 502 19:42:33 00 04:00:00 W FOIA t

188 109 502 07:56:09 00 05:08:49 W UC t

189 109 502 10:17:37 01 18:00:34 W UC t

190 110 602 10:20:41 00 04:00:00 W FOIA t

191 110 602 17:39:56 00 04:00:00 W FOIA t

192 110 602 08:30:09 00 04:00:00 W FOIA t

193 110 602 21:34:00 00 12:33:50 W FOIA t

194 110 602 11:28:35 00 13:24:35 W FOA t

195 112 802 17:05:49 00 04:00:00 W UC t

196 112 802 07:49:43 00 04:00:00 W FOIA t

197 112 802 15:36:04 00 04:00:00 W UC t

198 112 802 06:52:41 00 04:00:00 W FOIA t

199 112 802 11:54:45 00 04:32:04 W FOIA t

200 112 802 08:39:39 01 20:14:54 W UC t

201 113 902 23:32:27 00 04:00:00 W UC t

202 113 902 16:55:50 00 04:00:00 W FOIA d

203 113 902 05:17:05 00 04:00:00 N2 FOIA t

204 113 902 13:46:12 00 04:00:00 W FOIA t

205 113 902 22:40:46 00 08:24:33 N2 UC t

206 113 902 16:53:42 00 06:23:24 W FOIA t

207 114 702 20:52:30 00 04:00:00 W FOIA t

208 114 702 14:45:03 00 04:00:00 W FOIA t

209 114 702 04:09:15 00 04:00:00 W UC t

210 114 702 09:50:10 00 04:00:00 W FOIA t

211 114 702 14:27:45 00 04:00:00 W FOIA d

212 114 702 11:03:08 00 08:11:30 W FOIA t

213 114 702 13:27:36 00 09:30:51 W FOIA d

214 114 702 21:04:57 00 07:07:20 W FOIA t

215 114 902 08:30:29 00 04:00:00 W FOA s

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.
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S ID EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

216 114 902 14:42:32 00 04:00:00 W FOIA b

217 114 902 19:42:40 00 04:00:00 W FOIA s

218 114 902 05:59:33 00 04:00:00 N2 FBTC t

219 114 902 17:18:54 00 07:19:37 W UC r

220 114 902 11:52:26 00 18:03:32 W FOIA a

221 114 902 09:27:30 00 15:35:47 W FOIA t

222 123 902 02:52:47 00 04:00:00 N2 FBTC t

223 123 902 01:38:19 00 04:00:00 N2 FBTC t

224 123 902 02:11:22 00 04:00:00 R FOIA t

225 123 902 18:57:10 00 11:32:53 W FOIA t

226 123 902 15:22:45 00 18:39:43 W FOA t

S: seizure. ID: patient identifier. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), unclassified (UC). Seizure
activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity (c),
rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

B.2 Grid search results

Table B.3 and Table B.4 contain the average geometric mean between sample sen-
sitivity and sample specificity (G-Mean) obtained while searching for the best hy-
perparameters for the deep neural network (DNN) and the shallow artificial neural
network (ANN), respectively. The selected hyperparameters are in bold.



B.2. GRID SEARCH RESULTS 223

B.2.1 Grid search results for deep neural network

Table B.3: Results of the grid search of the optimal hyperparameters for the deep
classifier.

Number of Filters (First layer) Filter Size LSTM Units Average G-Mean

32

3
32 0.291
64 0.292
128 0.278

5
32 0.292
64 0.312
128 0.278

7
32 0.299
64 0.291
128 0.275

64

3
32 0.349
64 0.306
128 0.300

5
32 0.318
64 0.315
128 0.336

7
32 0.295
64 0.308
128 0.292

128

3
32 0.354
64 0.378
128 0.362

5
32 0.349
64 0.346
128 0.353

7
32 0.346
64 0.320
128 0.316

B.2.2 Grid search results for shallow artificial neural network

Table B.4: Results of the grid search of the optimal hyperparameters for the shallow
classifier.

Number of neurons in fully connected layer (FC layer) Average G-Mean
None 0.331

8 0.326
16 0.320
32 0.312
64 0.311
128 0.301
256 0.307
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B.3 Results obtained for all approaches

Table B.1 presents the learning curves obtained for one deep learning model applied
to one patient using the chronological approach. As seen in the figure, the validation
loss curves improve as the training sets become larger, indicating that the model is
able to achieve better generalisation. Table B.5 and Table B.6 contain seizure sen-
sitivitys (SSs) and false prediction rate per hour (FPR/h) values for the approaches
developed using denoised EEG data and noisy EEG data, respectively. Table B.7
contains results obtained by Pinto et al. [142,143].

B.3.1 Learning curves of the chronological approach
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Figure B.1: Example of learning curves obtained for one model of one patient with 3 test
seizures considering the chronological approach. The black lines represent the training and
validation curves using 4 training seizures. The blue lines represent the training and valida-
tion curves using 5 training seizures. The cyan lines represent the training and validation
curves using 6 training seizures.
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B.3.2 Results obtained for approaches using denoised data

Table B.5: Results for each patient using denoised data.
Denoised EEGStandard Denoised EEGChronological Denoised FeaturesStandard Denoised FeaturesChronological

Patient SS FPR/h ACL SS FPR/h ACL SS FPR/h ACL SS FPR/h ACL
402 0.00 1.316 0 0.00 0.331 0 0.00 1.474 0 0.00 0.541 0
8902 0.50 0.105 1 0.50 0.161 1 1.00 0.163 1 0.50 0.220 1
11002 0.50 0.062 1 0.50 0.130 1 0.50 0.370 1 0.50 0.370 1
16202 0.33 0.401 1 0.33 0.496 1 0.00 2.484 0 0.00 2.486 0
21902 0.50 0.068 1 0.50 0.068 1 0.50 0.880 1 0.50 1.230 1
23902 0.00 0.482 0 0.00 0.483 0 0.50 1.321 1 0.50 1.332 0
26102 0.50 1.003 1 0.50 0.828 1 0.50 0.882 1 0.50 0.988 1
30802 0.33 0.137 1 0.33 0.138 1 0.67 0.373 1 0.67 0.373 1
32702 0.00 0.000 0 0.00 0.123 0 0.00 0.192 0 0.00 0.192 0
45402 0.50 1.598 0 0.50 0.503 1 1.00 3.176 1 1.00 2.194 1
46702 0.00 1.145 0 0.00 0.342 0 0.00 3.289 0 0.00 2.588 0
50802 0.00 0.134 0 0.50 0.657 1 0.00 0.134 0 0.00 0.211 0
52302 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0
53402 0.00 0.290 0 0.00 0.232 0 0.00 0.384 0 0.00 0.415 0
55202 0.33 0.202 1 0.33 0.344 1 0.33 1.277 0 0.00 1.701 0
56402 0.00 0.055 0 0.00 0.213 0 0.50 2.812 0 0.50 3.411 0
58602 0.00 0.121 0 0.00 0.121 0 0.00 0.567 0 0.00 0.567 0
59102 1.00 2.227 1 0.50 0.207 1 1.00 3.048 1 1.00 0.997 1
60002 0.00 0.151 0 0.00 0.124 0 0.00 2.556 0 0.50 1.614 1
64702 0.00 0.000 0 0.00 0.000 0 0.00 0.334 0 0.00 0.334 0
75202 0.00 0.417 0 0.00 0.305 0 0.00 0.207 0 0.00 0.304 0
80702 0.00 0.059 0 0.00 0.124 0 1.00 2.109 1 1.00 1.846 1
81102 0.00 0.207 0 0.00 0.207 0 1.00 0.648 1 1.00 0.648 1
85202 0.00 0.000 0 0.00 0.055 0 0.50 0.312 1 1.00 0.316 1
93402 0.00 0.179 0 0.50 0.179 1 0.50 0.256 1 1.00 0.156 1
93902 0.50 0.190 1 0.50 0.734 1 0.50 0.576 1 0.50 0.945 1
94402 0.00 0.372 0 0.00 0.372 0 0.00 1.024 0 0.00 1.069 0
95202 0.33 0.387 1 0.33 0.549 1 0.67 0.524 1 0.67 0.604 1
96002 0.00 0.051 0 0.33 0.204 1 0.67 0.586 1 0.67 0.651 1
98102 0.00 0.000 0 0.00 0.000 0 0.50 0.825 1 0.50 0.822 1
98202 0.00 0.159 0 0.00 0.159 0 0.00 0.732 0 0.00 0.732 0
101702 0.00 0.000 0 0.00 0.000 0 0.50 0.212 1 0.50 0.154 1
102202 0.33 0.311 1 0.33 0.205 1 0.00 1.071 0 0.00 0.996 0
104602 0.00 0.000 0 0.00 0.000 0 0.00 0.079 0 0.00 0.499 0
109502 0.00 0.000 0 0.00 0.213 0 0.00 0.000 0 0.50 1.060 1
110602 0.00 0.000 0 0.00 0.000 0 0.50 0.570 1 0.00 0.431 0
112802 0.50 0.434 1 0.50 0.729 1 0.00 0.868 0 0.50 1.068 1
113902 0.00 0.271 0 0.00 0.172 0 0.50 0.083 1 0.50 0.083 1
114702 0.00 0.047 1 0.33 0.000 1 0.33 0.337 1 0.33 0.746 1
114902 0.00 0.000 0 0.00 0.000 0 0.33 0.084 1 0.33 0.241 1
123902 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0
Total 0.150±0.244 0.307±0.482 12 (0.29) 0.179±0.222 0.237±0.225 17 (0.41) 0.341±0.350 0.898±0.955 21 (0.51) 0.370±0.360 0.857±0.770 22 (0.54)
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B.3.3 Results obtained for approaches using noisy data

Table B.6: Results for each patient using noisy data.
Noisy EEGStandard Noisy EEGChronological Noisy FeaturesStandard Noisy FeaturesChronological

Patient SS FPR/h ACL SS FPR/h ACL SS FPR/h ACLl SS FPR/h ACL
402 0.00 1.655 0 0.00 0.728 0 0.00 1.461 0 0.00 0.709 0
8902 0.50 0.105 1 0.50 0.163 1 1.00 0.164 1 1.00 0.164 1
11002 0.00 0.130 0 0.50 0.130 1 0.00 0.358 0 0.00 0.272 0
16202 0.00 0.311 0 0.00 0.405 0 0.00 1.455 0 0.00 1.553 0
21902 0.00 0.403 0 0.00 0.403 0 0.50 0.866 1 0.50 1.209 1
23902 0.00 0.280 0 0.00 0.381 0 0.00 1.698 0 0.00 1.453 0
26102 0.50 0.939 1 0.50 1.000 1 0.50 0.823 1 0.50 1.200 1
30802 0.33 0.137 1 0.33 0.108 1 0.67 0.335 1 0.67 0.299 1
32702 0.00 0.059 0 0.00 0.123 0 0.00 0.192 0 0.00 0.192 0
45402 0.50 2.459 0 0.50 0.508 1 1.00 2.889 1 1.00 2.037 1
46702 0.00 1.453 0 0.00 0.842 0 0.00 2.725 0 0.00 2.241 0
50802 0.00 0.064 0 0.50 0.484 1 0.00 0.134 0 0.00 0.171 0
52302 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0
53402 0.00 0.229 0 0.00 0.202 0 0.00 0.316 0 0.00 0.319 0
55202 0.33 0.202 1 0.33 0.141 1 1.00 0.976 1 0.67 1.253 1
56402 0.00 0.085 0 0.00 0.249 0 0.00 1.954 0 0.00 2.188 0
58602 0.00 0.121 0 0.00 0.121 0 0.50 0.261 1 0.50 0.619 1
59102 1.00 2.137 1 0.50 0.224 1 1.00 2.719 1 0.50 1.088 0
60002 0.00 0.235 0 0.50 0.151 1 0.50 1.940 0 0.50 1.081 1
64702 0.00 0.000 0 0.00 0.000 0 0.00 0.195 0 0.00 0.195 0
75202 0.00 0.307 0 0.00 0.304 0 0.33 5.549 0 0.00 1.633 0
80702 0.00 0.619 0 0.00 0.422 0 1.00 2.129 1 1.00 1.824 1
81102 0.00 0.268 0 0.00 0.268 0 1.00 0.643 1 1.00 0.643 1
85202 0.00 0.000 0 0.00 0.000 0 0.50 0.315 1 0.50 0.311 1
93402 0.00 0.132 0 0.50 0.156 1 1.00 0.540 1 1.00 0.439 1
93902 0.00 0.183 0 0.50 0.916 1 0.50 0.578 1 0.50 0.757 1
94402 0.00 0.298 0 0.00 0.452 0 0.00 0.709 0 0.00 1.209 0
95202 0.67 0.579 1 0.67 0.526 1 0.67 0.524 1 0.67 0.604 1
96002 0.00 0.000 0 0.00 0.000 0 0.67 0.583 1 0.67 0.782 1
98102 0.00 0.075 0 0.00 0.024 0 0.50 0.670 1 0.50 0.816 1
98202 0.00 0.000 0 0.00 0.000 0 0.00 0.116 0 0.00 0.116 0
101702 0.00 0.000 0 0.00 0.000 0 0.00 0.099 0 0.00 0.154 0
102202 0.33 0.239 1 0.00 0.141 0 0.00 1.070 0 0.33 1.059 1
104602 0.00 0.000 0 0.00 0.169 0 0.00 0.000 0 0.00 0.382 0
109502 0.00 0.000 0 0.00 0.154 0 0.00 0.000 0 0.50 0.997 1
110602 0.00 0.000 0 0.00 0.000 0 0.50 0.570 1 0.00 0.365 0
112802 0.50 0.509 0 0.00 0.148 0 0.00 1.242 0 0.00 1.984 0
113902 0.50 0.082 1 0.50 0.082 1 0.50 0.083 1 0.50 0.083 1
114702 0.00 0.047 0 0.33 0.151 1 0.67 0.828 1 0.33 1.177 1
114902 0.00 0.000 0 0.00 0.000 0 0.33 0.212 1 0.33 0.396 1
123902 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0 0.00 0.000 0
Total 0.126±0.244 0.350±0.575 8 (0.20) 0.163±0.234 0.251±0.261 14 (0.34) 0.362±0.384 0.925±1.090 20 (0.49) 0.333±0.356 0.829±0.647 21 (0.51)
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B.3.4 Results obtained in other studies using EEG data from pa-
tients from EPILEPSIAE database

Table B.7: Results for each patient obtained in studies of Pinto et al. [142,143].
Pinto et al. (2021) [142] Pinto et al. (2022) [143]

Patient SS FPR/h ACL SS FPR/h ACL
402 - - - - - -
8902 - - - 0.20 0.16 0
11002 0.27 1.57 0 0.00 0.27 0
16202 0.30 0.49 0 - - -
21902 - - - 0.00 0.18 0
23902 - - - 0.08 0.22 0
26102 - - - 0.13 0.34 0
30802 0.58 3.77 1 0.19 0.19 0
32702 - - - - - -
45402 - - - - - -
46702 - - - 0.25 0.28 1
50802 - - - 0.03 0.22 0
52302 - - - 0.01 0.24 0
53402 0.63 0.50 1 0.30 0.26 1
55202 0.70 1.21 1 0.18 0.23 0
56402 - - - 0.05 0.14 0
58602 0.38 2.14 0 0.05 0.25 0
59102 - - - - - -
60002 0.48 1.29 0 - - -
64702 0.02 0.92 0 0.08 0.14 0
75202 0.70 0.69 1 0.19 0.14 0
80702 0.31 0.65 0 0.10 0.14 0
81102 - - - - - -
85202 0.47 0.36 1 0.42 0.25 1
93402 - - - 0.11 0.32 0
93902 - - - 0.37 0.23 1
94402 0.38 1.05 0 0.13 0.36 0
95202 0.14 0.66 0 0.09 0.16 0
96002 0.23 0.77 0 0.16 0.22 0
98102 - - - 0.32 0.11 1
98202 0.19 1.72 0 - - -
101702 0.23 0.44 0 0.34 0.24 1
102202 - - - 0.22 0.18 1
104602 - - - 0.33 0.26 1
109502 0.52 1.29 0 0.11 0.14 0
110602 0.47 0.33 1 0.37 0.20 1
112802 - - - - - -
113902 - - - 0.28 0.07 1
114702 - - - 0.16 0.35 1
114902 0.31 0.25 1 0.33 0.10 1
123902 - - - 0.07 0.14 0
Total 0.38±0.19 1.06±0.84 8 (0.37) 0.18±0.12 0.21±0.07 12 (0.38)

B.3.5 Results obtained using other machine learning models

To ensure the robustness of the study, the effectiveness of denoised data and chrono-
logical training were evaluated on other previously proposed seizure prediction mod-
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els. Specifically, a deep learning model proposed by Truong et al. [280] and a shal-
low classifier model with handcrafted features proposed by Karolyet al. [76] were
selected. The deep learning model comprises a deep convolutional neural network
(DCNN) that takes spectrograms obtained from EEG windows using short-term
Fourier transform (STFT). In the case of the shallow model, some features were
firstly extracted by the 19 channels, such as the energy from several frequency bands
(8-16 Hz, 16-32 Hz, 32-64 Hz, 64-90 Hz) and the line length. The Kullback-Leibler
distance method is then used to select the best features, which are subsequently
used to develop the logistic regression.

Table B.8: Average results of the additional seizure prediction models, for all 41 patients.
The models that used EEG time series were developed using a convolutional neural

network with spectrograms as input as performed in Truong et al. [280]. The models that
used features were developed using a logistic regression with the same features extracted

by Karoly et al. [76].
Approach SS FPR/h ACL (%)

Denoised EEGStandard - CNN (Spectrograms) 0.13±0.27 0.18±0.38 9 (0.22)
Denoised EEGChronological - CNN (Spectrograms) 0.14±0.27 0.11±0.16 11 (0.27)

Denoised FeaturesStandard - Logistic regression (Features) 0.44±0.37 1.91±0.96 19 (0.46)
Denoised FeaturesChronological - Logistic regression (Features) 0.42±0.36 1.97±2.51 19 (0.54)

Noisy EEGStandard - CNN (Spectrograms) 0.10±0.22 0.18±0.46 8 (0.20)
Noisy EEGChronological - CNN (Spectrograms) 0.11±0.23 0.09±0.15 9 (0.22)

Noisy FeaturesStandard - Logistic regression (Features) 0.44±0.40 2.58±3.27 16 (0.39)
Noisy FeaturesChronological - Logistic regression (Features) 0.38±0.34 2.32±2.84 13 (0.32)



Appendix C

Transfer learning on seizure
prediction: Does information
from several patients improve
patient-specific approaches?

C.1 Patient and seizure metadata of the Personal dataset

Table C.1 contains information regarding the group of patients from the Epilepsy
Center of the Universitätsklinikum Freiburg. The table includes information on
sex, age at hospital admission and onset age (corresponding to the occurrence of
the first epilepsy event), epilepsy foci lateralisation, the total number of annotated
seizures and the number of lead seizures analysed for each patient, according to the
considered minimum inter-seizure interval of 4.5 hours. The duration of the used
electroencephalogram (EEG) data regarding training seizures and testing seizures is
also presented. It is worth noting that although it was considered lead seizures to
happen at least 4.5 hours after the previous one, only 4 hours were used for training.

Table C.2 describes data collected for each analysed seizure. It includes infor-
mation about the EEG onset time, used inter-seizure time, vigilance state at the
time of the seizure onset, seizure classification, and seizure activity pattern. Sei-
zures were classified according to the International League Against Epilepsy (ILAE)
classification [47]. The vigilance state corresponds to one of the following states of
alertness and responsiveness: wakefulness, non-rapid eye movement (NREM) sleep,
further subdivided into three sleep stages (N1–3) and rapid eye movement (REM)
sleep [358].

229
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Table C.1: Dataset description regarding each patient.
P Sex Onset Age

(years)
Admission Age

(years)
Lat. #Sz #LSz Training time

(dd hh/mm/ss)
Testing time

(dd hh/mm/ss)

1 M 20 23 L 5 3 00 08:00:00 00 18:54:19
2 M 18 18 L 16 9 01 00:00:00 01 11:32:56
3 M 28 50 ? 4 4 00 08:00:00 00 22:53:37
4 F 49 60 ? 14 5 00 12:00:00 00 16:33:05
5 M 18 33 L 4 3 00 08:00:00 05 08:11:32
6 F 32 33 R 11 4 00 08:00:00 00 20:28:49
7 F 8 34 R 3 3 00 08:00:00 01 21:13:14
8 F 28 45 ? 11 4 00 08:00:00 00 10:24:14
9 M 2 40 ? 8 4 00 08:00:00 00 19:58:12

10 M 11 15 L 8 6 00 16:00:00 02 02:20:09
11 F 14 47 ? 28 18 02 04:00:00 02 08:06:51
12 F ? 27 ? 5 5 00 12:00:00 03 14:03:25
13 F 8 23 L 5 5 00 12:00:00 00 23:11:17
14 F 33 38 ? 4 3 00 08:00:00 00 05:58:35
15 F 13 30 R 10 8 00 20:00:00 01 22:51:20
16 M 34 36 L 12 9 00 20:00:00 01 22:33:18
17 F 32 52 ? 21 12 01 08:00:00 06 00:12:31
18 M 52 53 ? 34 10 01 00:00:00 02 05:53:26
19 M 0 19 L 8 5 00 12:00:00 02 00:55:29
20 M 18 45 R 5 4 00 08:00:00 04 22:44:21
21 F 51 56 ? 31 9 01 00:00:00 01 20:41:28
22 F 16 21 ? 18 11 01 04:00:00 01 12:56:59
23 F 63 67 R 3 3 00 08:00:00 00 09:04:24
24 M 7 43 ? 5 4 00 08:00:00 01 10:07:17

P: patient number. Sex: female (F) or male (M). Lateralisation (Lat.): L: left, R: right, B: bilateral. #Sz: total number
of seizures annotated per patient. #LSz: number of leading seizures, obtained as a result of the analysis of 4.5 hours of
interseizure data.
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Table C.2: Dataset description regarding data preceding each seizure. The gray rows
were used for training, while the other ones were used for testing.

S P EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

1 1 16:27:06 00 04:00:00 W FOIA d

2 1 20:11:43 00 04:00:00 W FOIA d

3 1 15:37:14 00 18:54:19 W FOIA d

4 2 04:18:55 00 04:00:00 N2 FOIA t

5 2 16:01:08 00 04:00:00 N2 UC t

6 2 03:16:37 00 04:00:00 N2 UC ?

7 2 03:26:20 00 04:00:00 R UC d

8 2 12:56:07 00 04:00:00 W FOIA d

9 2 05:17:35 00 13:06:24 N2 UC t

10 2 16:00:54 00 08:46:33 W FOA t

11 2 22:37:11 00 05:50:20 W FOA d

12 2 11:51:47 00 07:49:38 N2 FOIA d

13 3 19:03:27 00 04:00:00 W FOIA d

14 3 05:18:49 00 04:00:00 W FOIA d

15 3 12:09:40 00 06:20:44 W UC t

16 3 09:01:32 00 16:32:53 W FOIA t

17 4 02:35:22 00 04:00:00 W S ?

18 4 01:13:00 00 04:00:00 N2 UC a

19 4 00:58:03 00 04:00:00 N2 UC t

20 4 15:58:26 00 08:01:18 W FBTC t

21 4 01:03:09 00 08:31:47 N3 UC a

22 5 14:21:48 00 04:00:00 N2 FOIA d

23 5 23:42:55 00 04:00:00 N2 FOIA d

24 5 23:57:27 05 08:11:32 N2 FBTC t

26 6 13:00:28 00 04:00:00 W FOA ?

27 6 02:43:01 00 04:00:00 N2 FOA t

28 6 22:23:36 00 14:37:21 N2 S b

29 6 07:07:34 00 05:51:27 N2 FOA s

30 7 05:25:10 00 04:00:00 W FOIA ?

S: seizure. P: patient number. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1), NREM
sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA), focal
onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), subclinic (S), unclassified (UC).
Seizure activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity
(c), rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

Continued on next page
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S P EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

31 7 03:30:28 00 04:00:00 N2 FOA ?

32 7 01:14:27 01 21:13:14 N2 FOIA t

33 8 23:07:36 00 04:00:00 W FOIA d

34 8 14:14:36 00 04:00:00 W FOIA s

35 8 00:16:18 00 04:50:05 N2 FOIA t

36 8 06:21:47 00 05:34:09 N2 FOIA t

37 9 20:24:40 00 04:00:00 W UC t

38 9 06:11:12 00 04:00:00 W UC t

39 9 17:56:26 00 11:15:01 W FOA a

40 9 09:35:07 00 08:43:11 W UC t

41 10 06:30:28 00 04:00:00 W UC d

42 10 17:18:03 00 04:00:00 W FOIA d

43 10 08:29:33 00 04:00:00 ? FOIA ?

44 10 09:04:20 00 04:00:00 W FOIA t

45 10 07:31:58 00 21:56:58 W FOIA t

46 10 13:14:02 01 04:23:11 W FOIA t

47 11 20:13:59 00 04:00:00 W UC ?

48 11 09:35:38 00 04:00:00 W FOA d

49 11 12:13:51 00 04:00:00 W FOA a

50 11 22:19:22 00 04:00:00 W FOA ?

51 11 14:23:47 00 04:00:00 W UC t

52 11 19:32:42 00 04:00:00 W FOA b

53 11 06:20:43 00 04:00:00 W UC d

54 11 07:09:52 00 04:00:00 W FOA t

55 11 13:29:50 00 04:00:00 W FOA a

56 11 13:32:36 00 04:00:00 W FOA a

57 11 01:31:32 00 04:00:00 N2 UC d

58 11 14:34:47 00 12:32:36 W FOIA t

59 11 02:26:20 00 07:33:07 N1 UC t

60 11 07:47:03 00 04:49:55 W FOIA t

61 11 15:06:36 00 06:48:42 N2 UC t

S: seizure. P: patient number. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1), NREM
sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA), focal
onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), subclinic (S), unclassified (UC).
Seizure activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity
(c), rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

Continued on next page
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S P EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

62 11 23:19:23 00 07:42:29 N2 S ?

63 11 16:07:49 00 10:49:35 W FOA d

64 11 22:28:40 00 05:50:27 N1 S ?

65 12 06:25:18 00 04:00:00 N2 UC t

66 12 22:03:34 00 04:00:00 W FOIA d

67 12 16:50:07 00 04:00:00 W FOIA ?

68 12 08:15:43 01 14:54:50 W FOIA t

69 12 07:54:59 01 23:08:35 W FOIA d

70 13 23:38:52 00 04:00:00 W FOA t

71 13 13:41:35 00 04:00:00 W FOIA t

72 13 12:35:42 00 04:00:00 W FOIA b

73 13 00:55:47 00 10:34:25 W FOIA d

74 13 14:04:56 00 12:36:52 W FOIA t

75 14 04:56:17 00 04:00:00 N2 UC b

76 14 20:43:22 00 04:00:00 N2 UC t

77 14 03:13:35 00 05:58:35 N2 UC t

78 15 17:59:31 00 04:00:00 W FOIA ?

79 15 03:49:13 00 04:00:00 N1 FOIA t

80 15 19:16:10 00 04:00:00 W FOIA d

81 15 11:11:02 00 04:00:00 W FOIA ?

82 15 22:50:41 00 04:00:00 W FOIA t

83 15 14:57:39 00 15:35:58 W FOIA d

84 15 15:59:11 01 00:30:15 W FOIA d

85 15 23:16:26 00 06:45:07 N1 FOIA t

86 16 17:46:09 00 04:00:00 W FOIA d

87 16 17:16:00 00 04:00:00 W FOA d

88 16 08:51:00 00 04:00:00 W FOA d

89 16 21:58:23 00 04:00:00 W FOA t

90 16 04:48:58 00 04:00:00 W FOA d

91 16 16:33:44 00 07:31:49 W FOA t

92 16 21:46:09 00 04:43:10 ? S ?

S: seizure. P: patient number. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1), NREM
sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA), focal
onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), subclinic (S), unclassified (UC).
Seizure activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity
(c), rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

Continued on next page



234 APPENDIX C. TRANSFER LEARNING

S P EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

93 16 09:00:25 00 07:30:08 W UC d

94 16 12:19:33 01 02:48:11 W FOA t

95 17 14:24:25 00 04:00:00 N2 FOIA t

96 17 14:14:09 00 04:00:00 W FOIA t

97 17 02:21:13 00 04:00:00 N2 FBTC ?

98 17 08:39:21 00 04:00:00 W FOIA t

99 17 01:07:06 00 04:00:00 N2 FOIA t

100 17 22:27:52 00 04:00:00 N2 FOIA ?

101 17 06:25:08 00 04:00:00 N2 FOIA ?

102 17 22:22:27 00 08:03:58 N2 FOIA t

103 17 15:20:41 00 16:26:42 ? S ?

104 17 23:51:11 01 00:47:07 N2 FOIA t

105 17 05:50:28 02 05:28:28 N2 UC t

106 17 23:47:19 01 17:26:13 N2 UC t

107 18 20:13:59 00 04:00:00 W FOA ?

108 18 14:20:06 00 04:00:00 W FOIA t

109 18 09:07:46 00 04:00:00 W FOIA t

110 18 15:42:41 00 04:00:00 W FOA ?

111 18 21:56:42 00 04:00:00 W FOIA t

112 18 14:16:54 00 04:00:00 W FOIA t

113 18 00:35:07 00 09:47:10 W FOIA t

114 18 05:10:22 00 04:03:56 W FOA t

115 18 01:01:43 00 19:20:11 W FOIA t

116 18 01:25:11 00 20:42:09 W FOA t

117 19 06:28:36 00 04:00:00 N1 UC d

118 19 10:43:12 00 04:00:00 N1 UC a

119 19 07:08:48 00 04:00:00 N1 UC t

120 19 14:46:06 01 07:06:22 N1 UC a

121 19 09:06:18 00 17:49:07 W FOIA t

122 20 17:02:48 00 04:00:00 W FOIA t

123 20 10:16:57 00 04:00:00 W FOA ?

S: seizure. P: patient number. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1), NREM
sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA), focal
onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), subclinic (S), unclassified (UC).
Seizure activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal activity
(c), rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp waves (s),
rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.

Continued on next page
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S P EEG onset
time

Used interseizure time
(dd hh/mm/ss)

Vigilance
state

ILAE
Classification

Activity
pattern

124 20 04:02:18 03 16:33:10 N2 UC t

125 20 10:44:14 01 06:11:11 W FOIA s

126 21 23:57:34 00 04:00:00 N2 S b

127 21 15:19:40 00 04:00:00 W FOA ?

128 21 16:41:35 00 04:00:00 W FOA b

129 21 13:56:53 00 04:00:00 W FOA ?

130 21 05:47:22 00 04:00:00 W FOA t

131 21 17:49:40 00 11:31:21 W FOA t

132 21 12:28:32 00 18:06:58 W FOA t

133 21 04:45:53 00 10:58:43 N2 FOA t

134 21 19:25:29 00 04:04:26 W FOA t

135 22 07:38:07 00 04:00:00 W UC b

136 22 14:42:44 00 04:00:00 W FOIA t

137 22 06:36:06 00 04:00:00 W UC t

138 22 13:52:01 00 04:00:00 W UC a

139 22 21:03:39 00 04:00:00 W UC a

140 22 20:27:45 00 04:00:00 W FOIA d

141 22 23:23:55 00 04:00:00 W FOIA a

142 22 04:23:00 00 04:27:41 N2 FOIA d

143 22 08:49:20 00 20:27:14 W FOIA d

144 22 14:28:35 00 05:08:02 W UC t

145 22 05:39:10 00 06:54:02 N2 UC a

146 23 05:35:20 00 04:00:00 W FOIA d

147 23 11:55:09 00 04:00:00 W FOA t

148 23 21:30:45 00 09:04:25 W UC ?

149 24 14:44:25 00 04:00:00 W FOIA ?

150 24 23:24:30 00 04:00:00 W FOIA r

151 24 09:19:17 00 08:56:54 W UC b

152 24 11:00:25 01 01:10:23 W FOIA ?

S: seizure. ID: patient number. Seizure vigilance state: wakefulness (W), NREM sleep stage I (N1),
NREM sleep stage II (N2), REM sleep stage (R). Seizure ILAE classification: focal onset aware (FOA),
focal onset impaired awareness (FOIA), focal to bilateral tonic-clonic (FBTC), subclinic (S), unclassified
(UC). Seizure activity pattern: rhythmic alpha waves (a), rhythmic beta waves (b), cessation of interictal
activity (c), rhythmic delta waves (d), amplitude depression (m), repetitive spiking (r), rhythmic sharp
waves (s), rhythmic theta waves (t), unclear (?). Training seizures are highlighted in grey.
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C.2 Deep neural network architectures

Table C.3 describes the deep convolutional autoencoder (DCAE) used in the study.
It contains the names of the layers, the hyperparameters and the output shape.
Table C.4 contains the deep neural network (DNN) used for developing the seizure
prediction models. The rows present different colours with different meanings: the
ones with no colour are trained from scratch, and the yellow ones are frozen during
the training.

Table C.3: DCAE architecture.
Layer Hyperparameters Output shape
Input - 2560x19

Convolution 1D Filters = 128, Size = 3, Stride = 1, Pad = ’same’ 2560x128
Convolution 1D Filters = 128, Size = 3, Stride = 2, Pad = ’same’ 1280x128
Spatial dropout Rate = 20% 1280x128

Activation Swish function 1280x128
Batch normalisation - 1280x128
Convolution 1D Filters = 256, Size = 3, Stride = 1, Pad = ’same’ 1280x256
Convolution 1D Filters = 256, Size = 3, Stride = 2, Pad = ’same’ 640x256
Spatial dropout Rate = 20% 640x256

Activation Swish function 640x256
Batch normalisation - 640x256
Convolution 1D Filters = 512, Size = 3, Stride = 1, Pad = ’same’ 640x512
Convolution 1D Filters = 512, Size = 3, Stride = 2, Pad = ’same’ 320x512
Spatial dropout Rate = 20% 320x512

Activation Swish function 320x512
Batch normalisation - 320x512
Up sampling 1D Size = 2 640x128
Convolution 1D Filters = 256, Size = 3, Stride = 1, Pad = ’same’ 640x256
Spatial dropout Rate = 20% 640x256

Activation Swish function 640x256
Batch normalisation - 640x256
Up sampling 1D Size = 2 1280x256
Convolution 1D Filters = 128, Size = 3, Stride = 1, Pad = ’same’ 1280x128
Spatial dropout Rate = 20% 1280x128

Activation Swish function 1280x128
Batch normalisation - 1280x128
Up sampling 1D Size = 2 2560x128
Convolution 1D Filters = 19, Size = 3, Stride = 1, Pad = ’same’ 2560x19
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Table C.4: DNN used for seizure prediction.
Layer Hyperparameters Output shape
Input - 2560x19

Convolution 1D Filters = 128, Size = 3, Stride = 1, Pad = ’same’ 2560x128
Convolution 1D Filters = 128, Size = 3, Stride = 2, Pad = ’same’ 1280x128
Spatial dropout Rate = 20% 1280x128

Activation Swish function 1280x128
Batch normalisation - 1280x128
Convolution 1D Filters = 256, Size = 3, Stride = 1, Pad = ’same’ 1280x256
Convolution 1D Filters = 256, Size = 3, Stride = 2, Pad = ’same’ 640x256
Spatial dropout Rate = 20% 640x256

Activation Swish function 640x256
Batch normalisation - 640x256
Convolution 1D Filters = 512, Size = 3, Stride = 1, Pad = ’same’ 640x512
Convolution 1D Filters = 512, Size = 3, Stride = 2, Pad = ’same’ 320x512
Spatial dropout Rate = 20% 320x512

Activation Swish function 320x512
Batch normalisation - 320x512
Bidirectional LSTM Units = 64, Return sequences = False 128x1

Dropout Dropout rate = 20% 128x1
Fully connected Neurons = 2 2x1

Activation Softmax function 2x1
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C.3 Results obtained for all approaches

Figure C.1 presents the learning curves obtained for two deep learning models trained
with data from patient 15: one using the standard approach and another using
the transfer learning approach. As seen in the figure, the model that begins from
scratch can not correctly optimise, i.e., the difference between the training loss and
the validation loss is always large, with the validation loss also very high. Table C.5
contains seizure sensitivitys (SSs), false prediction rate per hour (FPR/h) values,
and the output of the surrogate analysis for every patient for the standard approach
and the transfer learning approach.

C.3.1 Learning curves of the chronological approach
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Figure C.1: Example of learning curves obtained for two models trained with data from
patient 15: one using the standard approach and another following the transfer learning
approach. The black lines represent the training and validation curves using the standard
approach. The blue lines represent the training and validation curves using the transfer
learning approach.
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C.3.2 Results obtained for standard and transfer learning approaches

Table C.5: Results for each patient using standard and transfer learning approaches.
Standard Transfer Learning

Patient SS FPR/h ACL SS FPR/h ACL
1 0.00 0.144 0 0.00 0.000 0
2 0.15 0.226 1 0.10 0.309 0
3 0.00 0.123 0 0.10 0.081 1
4 0.10 0.380 0 0.50 0.339 1
5 0.00 0.000 0 0.60 2.402 1
6 0.00 0.098 0 0.00 0.168 0
7 0.40 0.041 1 0.80 0.051 1
8 0.00 0.000 0 0.50 1.380 1
9 0.20 1.148 0 0.00 0.607 0
10 0.10 0.205 0 0.00 0.014 0
11 0.40 3.224 1 0.40 0.194 1
12 0.00 0.030 0 0.00 0.019 0
13 0.00 0.000 0 0.00 0.032 0
14 0.00 0.043 0 0.00 0.000 0
15 0.40 14.449 0 0.07 0.194 0
16 0.80 1.468 1 0.40 0.456 1
17 0.32 0.407 1 0.12 0.058 1
18 0.25 5.660 0 0.05 0.166 0
19 0.10 0.161 1 0.10 0.153 1
20 0.00 0.000 0 0.00 0.004 0
21 0.15 0.517 1 0.20 0.166 1
22 0.50 4.641 0 0.00 0.020 0
23 0.00 1.189 0 0.00 0.000 0
24 0.00 2.177 0 0.00 1.678 0

Total 0.16±0.21 1.514±3.149 7 (0.29) 0.16±0.23 0.354±0.607 10 (0.42)
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