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Abstract

Artificial Intelligence (AI) techniques have proven to be successful in a variety

of contexts. In particular, Deep Learning techniques have achieved human-

level results in medical imaging tasks, but their use in real-world contexts

has been limited due to their inherent lack of interpretability.

Enclosed in the context of eXplainable AI, interpretability is understood as

a set of techniques or model properties that make the output generation

process of the system explainable and understandable to humans.

Despite several progress developed in the area, there are still many chal-

lenges to be tackled, including the following: (1) lack of standard terminol-

ogy of interpretability AI, (2) increase of complexity of the models for better

performance sacrificing their interpretability, (3) unreliability of some inter-

pretability techniques and variability of results between each other, and (4)

lack of interpretability metrics and ground-truths.

In this thesis, we attempted to address the challenge (1) by developing a

global taxonomy of interpretable AI that could be used by multiple stake-

holders such as developers, physicians, and lawyers.

Concerning challenge (2) we developed an approach to transfer the knowledge

of a complex network to a simpler model maintaining interpretability and

increasing performance; we also studied the effect of regularization of the

quality of explanations and show that overall smaller regularization values

produce better explanations.

With regard to challenge (3) we evaluate different interpretability techniques

based on the robustness to natural noise and found that some techniques were

more robust than others.

As for challenge (4) we developed an evaluation approach and proposed

various interpretability metrics, moreover we propose an approach to obtain

a ground-truth based on interpretability techniques.
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Resumo

As técnicas de Inteligência Artificial (IA) provaram ser bem-sucedidas numa

variedade de contextos. Em particular, as técnicas de aprendizagem pro-

funda alcançaram resultados de ńıvel humano em tarefas de imagens médicas,

mas o seu uso em contextos reais é limitado devido à sua inerente falta de

interpretabilidade.

Inclúıda no contexto de inteligência artificial explicável, interpretabilidade

é entendida como um conjunto de técnicas ou propriedades de modelo que

tornam o processo de geração de sáıda do sistema explicável e compreenśıvel

para humanos.

Apesar do progresso, ainda há muitos desafios a serem enfrentados, incluindo

os seguintes: (1) falta de terminologia padrão em relação à IA interpretável

(2) aumento da complexidade dos modelos para melhor desempenho sac-

rificando a sua interpretabilidade, (3) falta de confiabilidade de algumas

técnicas de interpretabilidade e variabilidade de resultados entre si, e (4)

falta de métricas de interpretabilidade e verdades fundamentais.

Nesta tese, tentamos enfrentar o desafio (1) ao desenvolver uma taxonomia

global de IA interpretável que possa ser usada por múltiplas partes interes-

sados, como desenvolvedores, médicos e advogados.

Relativamente ao desafio (2) desenvolvemos uma abordagem para transferir o

conhecimento de uma rede complexa para um modelo mais simples, aumen-

tando a interpretabilidade e mantendo o desempenho; também estudamos

o efeito da regularização na qualidade das explicações e demonstramos que

valores que menor regularização em geral produzem melhores explicações.

Em relação ao desafio (3) avaliamos diferentes técnicas de interpretabilidade

com base na robustez ao rúıdo natural e descobrimos que algumas técnicas

eram mais robustas do que outras.

Quanto ao desafio (4) desenvolvemos uma abordagem de avaliação e pro-

pusemos várias métricas de interpretabilidade, além disso, propomos uma

abordagem para obter uma verdade fundamental com base em técnicas de

interpretabilidade.
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Chapter 1

Introduction

Deep Learning (DL) has emerged as a prominent technology in recent years, thanks to its

ability to automatically extract and learn complex features from data, reducing the need

for manual feature engineering [132]. However, this also implies that these features may

be poorly understood. Additionally, with the increase in complexity of the models, their

capacity to learn the mappings between input data and output has been greatly enhanced.

The high complexity of DL models has also raised concerns about their interpretability

and safety, which must be addressed to ensure that they can be effectively deployed in

critical real-world scenarios like in healthcare.

In this context, based on the need for interpretability - a set of techniques or model

properties that make the output generation process of the system explainable and un-

derstandable to humans - several challenges arise. Namely, the sacrifice of performance

for interpretability, the variability between the explanations of different interpretability

techniques, and the lack of interpretability metrics and ground-truths. Increasingly, these

problems are not only related to physicians but also to patients who seek more knowledge

about their illness and its treatment.

1.1 Motivation

Artificial Intelligence (AI) has the potential to greatly improve the treatment and diagnosis

of patients as well as assist physicians, reducing their workload and bringing new insights.

Machine learning (ML) is a field of AI that consists in applying typically model-based

approaches capable of finding the underlying relationships among data. Deep Learning,

a subset of ML, is a group of powerful algorithms based on artificial neural networks to

recognize patterns in complex data, such as medical images. The power of their predictions

lies in their capacity to autonomously acquire high-level data representations, where the

parameters of the higher layers are able to express sophisticated representations using the

2



Introduction

simpler representations learned by the lower layers [87].

Convolutional Neural Networks (CNNs) are the cornerstone of most state-of-the-art decision-

making systems in medical imaging. They have reached human-level performance in sev-

eral tasks such as melanoma detection from dermoscopic images [40], or lymph node

metastases detection from histopathological images [32]. The automatic detection of dis-

eases is especially important in the case of Tumor Lymph Node Metastasis (TNM) as it

requires a highly skilled pathologist and is time-consuming and error-prone [170].

The benefits of decision-making systems can be better understood using digital pathology

as an example. With the advent of the digital era, the Whole Slide Image (WSI) format

emerged, which typically exhibits a size of 35.000 x 46.000 pixels or 1.6 gigapixels [22]

and requires a highly skilled pathologist while being extremely time-consuming and error-

prone [170]. Due to that, it is not surprising that between 2014 and 2022 the US Food and

Drug Administration approved 521 Artificial Intelligence and Machine Learning (AI/ML)-

enabled medical devices [76] for clinical purposes encompassing different areas, turning

the application of ML in healthcare context a reality. The rate of approved devices is

accelerating, with 206 machines having been approved since 2021. The majority of these

devices fall in the category of clinical decision-support systems [76], having the role of

assisting physicians in the diagnosis of patients. Nevertheless, due to the impact that

clinical decisions can have on the life of the patient, decision-support systems cannot be

allowed to make decisions independently [78].

In healthcare scenarios, the physician has responsibility in the decision [189] and should

understand the rationale behind the systems’ predictions. The black-box nature of DL sys-

tems does not allow any understanding of the mechanism behind their predictions, which

invalidates their use in a clinical setting. This situation can become more critical due to

new European regulations, not only the physicians but also the patients are entitled to an

explanation [166]. This follows the High-Level Expert Group on AI (AI HLEG) which was

set up by the European Commission that lists explicability as one of the ethical principles

that must be respected in order to ensure that AI systems are developed, deployed, and

used in a trustworthy manner [5]. And while it does not set the requirement for an inter-

pretable representation of a mathematical model it should provide an explanation that the

decision improves the explainee’s understanding of the decision generation process [36].

Interpretability is a difficult concept to define and thus many definitions have emerged in

the literature. The main dividing point is concerning two main concepts: interpretability

and explainability. While several researchers use these two terms interchangeably [1, 20,

146], other works suggest that there is a difference between these terms [135, 154, 193].

These disparities motivated a collaboration with researchers from different fields to propose

an overarching terminology of interpretability of AI systems that can be accepted by ML

researchers but also by the social sciences community which is explored in Chapter 3. In

this thesis work, interpretability will be assumed as a set of techniques or model properties
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that make the output generation process of the system explainable and understandable

to humans. This can be achieved by introducing interpretability by design, which we call

intrinsic interpretability (i.e. before training the model parameters), or by generating post-

hoc explanations that do not affect the training of the model parameters. An AI system

is interpretable if it is possible to translate its working principles and outcomes in human-

understandable language without affecting the validity of the system. Explainability is to

illustrate what features or high-level concepts were used by the ML system to generate

predictions for one or multiple inputs.

While some traditional ML models such as decision trees are simple and small enough

that allows any user to inspect them and understand their rationale, DL models are too

complex to understand without external tools. Due to the increasing computational power

and efficiency of machines, it became possible to train DL models with a higher number

of parameters, materializing in the use of dozens of layers and millions of parameters. For

example, the VGG16 network, a popular CNN, has 16 layers and 134.7 million trainable

parameters [210]. Clearly, if interpretability is a prerequisite for clinical use, DL models

cannot be used in their present condition.

Even though interpretability is essential for healthcare professionals, choosing traditional

ML models based on their interpretability entails a significant sacrifice in accuracy. This

is more noticeable in the medical imaging context where most of the state-of-the-art ap-

proaches are based on DL [136]. However, interpretability is not the only issue in this

context. The relationship between it and the performance of the complexity of the meth-

ods is typically neglected in research studies

Intrinsic interpretability leverages the performance interpretability trade-off by adding

constraints to the model to make it’s behavior more understandable to humans. The idea

is that the complexity of the network is inversely proportional to its interpretability and

reducing the complexity of the network while maintaining performance should be pursued.

Post-hoc explanations avoid this trade-off by allowing the DL model to be opaque and

explaining the decisions after training. However, some concerns have risen in the research

community about the limitations of the existing post-hoc methods in terms of consistency

and reliability [2, 51].

Even though many interpretability methods have been proposed, it is important to care-

fully evaluate and select the most appropriate method for a given task. Additionally, it

is important to consider the intended audience for the explanations - either the physician

or patient - to present the results in a way that is understandable and actionable for that

user. For example, while a healthcare professional may require more detailed and techni-

cal explanations of the reasoning behind an AI system’s decision, a patient may need a

simpler and more intuitive explanation.

The demand for interpretability also arises due to a mismatch between the objectives of
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the model and of the users. Although DL techniques have reached human performance

in many tasks, they were optimized based only on the minimization of classification error

and compared based only on performance metrics such as accuracy. In addition to the

high accuracy of ML algorithms, users have additional desiderata such as fairness, privacy,

reliability/robustness, causality, and trust [70]. The problem is that these objectives are

hard to define, and even harder to evaluate. Evaluation of interpretability is a difficult

task as there is no ground-truth of what it should look like. Three different evaluation ap-

proaches for interpretability have been proposed in the literature: application-grounded,

human-grounded, and functionally-grounded [233]. Application-grounded evaluation in-

volves conducting user studies with an expert within a real application - such as a patholo-

gist detecting tumor cells on a WSI. Human-grounded evaluation involves conducting user

studies with non-domain experts without a specific application in mind. Functionally-

grounded evaluation requires no user study and instead uses a proxy metric following

a formal definition of interpretability. This evaluation approach is by far less time and

cost-consuming.

1.2 Research Questions

Based on the issues previously illustrated, three research questions were identified:

RQ-1: Is there a connection between the complexity of the model and its

interpretability?

RQ-2: Can interpretability methods help understand how deep learning mod-

els produce their decisions?

RQ-3: Do deep learning models rely on relevant clinical information when

classifying medical images?

1.3 Contributions

As part of the progress of this work, the following publications were submitted:

C1. Amorim, J. P., Abreu, P.H., Fernández, A., Reyes, M., Santos, J. &

Abreu, M. H. (2022). Interpreting deep machine learning models: An

easy guide for oncologists. IEEE Reviews in Biomedical Engineering,

16(1), 192-207. [Biomedical Engineering (Q1)].

C2. Graziani, M., Dutkiewicz, L., Calvaresi, D., Amorim, J. P., Yordanova,

K., Vered, M., Nair, R., Abreu, P. H., Blanke, T., Pulignano, V., Prior, J.

O., Lauwaert, L.,Reijers, W.,Depeursinge, A.,Andrearczyk, V. & Müller,
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H. (2022). A global taxonomy of interpretable ai: unifying the ter-

minology for the technical and social sciences. Artificial Intelligence

Review, 56, 3473–3504. [Artificial Intelligence (Q1); Linguistics and

Language (Q1)].

C3. Amorim, J. P., Domingues, I., Abreu, P.H., Reyes, M. & Santos, J.

(2018). Interpreting deep learning models for ordinal problems. In Euro-

pean Symposium on Artificial Neural Networks, Computational Intelli-

gence and Machine Learning (ESANN) (pp. 373–377). i6doc. [CORE2018

Ranking B].

C4. Amorim, J. P., Abreu, P.H., Reyes, M. & Santos, J. (2020). Interpretabil-

ity vs. Complexity: The Friction in Deep Neural Networks. In Interna-

tional Joint Conference on Neural Networks (IJCNN) (pp. 373–377).

IEEE Xplore. [CORE2020 Ranking A].

C5. Amorim, J. P., Abreu, P.H., Santos, J., Cortes M. & Vila, V. (2023).

Evaluating the faithfulness of saliency maps in explaining deep learning

models using realistic perturbations. Information Processing & Manage-

ment, 60(2), 103225. [Computer Science Applications (Q1)].

C6. Amorim, J. P., Abreu, P.H., Santos, J. & Henning, M. (2023). Eval-

uation of similarity between post-hoc and intrinsic interpretability for

histopathological imaging. ArXiv e-prints, Submitted to Decision Sup-

port Systems [Information Systems (Q1)].

In sum, the work developed during the course of this doctoral program resulted in the

following research contributions: 6 research papers: 3 published in Q1 journals,

(plus 1 submitted), 1 conference paper published in an A conference, and 1

paper published in a B conference.

From the literature review, we were able to identify current and future trends in explainable

AI in the context of oncology about what researchers and clinicians focus on in the following

categories:

• Interpretability strategies and explanations;

• Deep learning architectures and techniques;

• Types of cancers and predictive tasks;

• Data modalities and exams.

As a result of our review, we identified three main issues: (1) limitations on the applications

of interpretability methods; (2) lack of reliability of some interpretability methods; and (3)
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lack of evaluation metrics for interpretability methods. While the review showed that the

main interpretability strategy is saliency maps and feature importance, it also uncovered

the reliability issues of those methods and a lack of evaluation metrics to assess their

correctness and faithfulness to the underlying prediction they are trying to explain. These

issues motivated subsequent works (Chapter 4, Chapter 5, and Chapter 6) of evaluating

the reliability of methods.

As detailed in the Research Questions section three research questions were explored during

this work. In the following section, we describe the main contributions of our work with

respect to these research questions individually.

RQ-1: Is there a connection between the complexity of the model and its

interpretability?

Intrinsic interpretable models can be understood by users because the capacity of the

model is reduced by the addition of constraints that reduces the complexity of the model.

While some traditional machine learning models, such as decision trees, are not as predic-

tively powerful as DL models, they are more interpretable.

Chapter 4 proposes an approach to transfer the knowledge of deep neural networks to

intrinsic interpretable models without losing performance. Showing that reducing com-

plexity can have a positive impact on interoperability. Also, we extended our study of

complexity and interpretability to post-hoc interpretability. We conducted an ablation

study where the impact that regularization, a popular way to reduce the complexity and

capacity of the network, has on the quality of post-hoc interpretability.

RQ-2: Can interpretability methods help understand how deep learning mod-

els produce their decisions?

During the experiments in Chapters 4, 5 and 6 different intrinsic interpretability meth-

ods and post-hoc interpretability methods were explored and applied in the context of

oncology.

In Chapter 4 we proposed an approach based on knowledge distillation [108] to transfer

the knowledge obtained by deep learning models to intrinsically interpretable models (e.g.

decision tree). This approach allows the user to understand the basis of the classifications

of the DL model based on the behavior of the interpretable model which mimics it.

In Chapter 6 we adapted Prototypical Part Network for digital pathology which contains

interpretable components, namely the similarity score and attribution map which not only

allow the user to understand how the network makes the decision but also is used by the

model to formulate its decision. Together, the different components give us a complete

understanding of the decision.

RQ-3: Do deep learning models rely on relevant clinical information when

classifying medical images?
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In Chapter 5 we proposed an evaluation approach based on the introduction of realistic

perturbations to evaluate the impact that the introduction of medical evidence, or the

removal of it has on post-hoc explanations, namely saliency map methods. This evaluation

approach solves some problems present in current evaluation approaches where uniform

or random noise is introduced, which can produce unrealistic input images and result in

unreliable evaluation results. It was also proposed new interpretability metrics, based on

saliency models, that can measure the correlation between two saliency maps.

We have proposed an evaluation approach that combines intrinsic interpretability in the

form of a prototypical part network (ProtoPNet) and post-hoc explanation in the form

of saliency maps for the measure of overlap between methods. Overall the overlap found

was substantial but not total. Two methods presented statistically a bigger overlap with

ProtoPNet, SmoothGrad and Occlusion. Deconvolution and Lime have shown consistently

lower overlap.

1.4 Outline

The thesis is structured as follows. Chapter 1 introduces the scope and objectives of

the thesis. In Chapter 2 can be found the main concepts of deep learning, an overview of

interpretability methods, and presents a literature review of interpretability methods in the

context of oncological diseases. Chapter 3 presents a comprehensive and multi-disciplinary

taxonomy of interpretable AI.

Chapter 4 addresses the first research question, which is to determine if there is a rela-

tionship between the complexity of a model and interpretability. It proposes an approach

to transfer the knowledge of complex networks to interpretable networks without losing

performance. We continue our study of complexity and present a study where the purpose

is to evaluate the impact that complexity has on the faithfulness of post-hoc explanations,

namely saliency map methods.

Starting with Chapter 5 we tackled an open problem identified in the literature review

in Chapter 2 concerning the lack of evaluation metrics for interpretability methods. We

propose an approach to evaluate the faithfulness of the saliency maps by introducing nat-

ural perturbations. This entails conducting experiments with an extensive set of saliency

map methods. The following chapter, therefore, proceeds to find alternatives for saliency

maps.

In Chapter 6 we focus on the development of an intrinsical interpretable model and follow-

ing the evaluation metrics developed in the previous Chapter 5 we start to compare the

explanation made by these models and the saliency maps produced by black-box models.

Finally, Chapter 7, which ends the thesis, summarising its main conclusions and presenting

future work directions.
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Interpretable Deep Learning in

Oncology

Today, in healthcare scenarios, we are living in a digital era where physical patient records

are mapped to digital formats. This has opened the possibility to improve the efficiency

and quality of treatment provided to patients by building decision-support systems.

The majority of ML algorithms are supervised which means that in these scenarios, they

need a help of a physician to label the data before the mining process starts. As an

example, in the overall survival prediction of breast cancer patients, it is necessary that

a physician labels the set of patient data that will be used in the training process with

the target variable. When this variable is discrete we are presented with a classification

problem (benign or malignant), or a regression problem in case the variable is continuous

(overall survival - measured in months).

Among different ML paradigms that are used in medical contexts, the Artificial Neural

Network (ANN) is a popular supervised algorithm inspired by biological neurons, and

began to be used in healthcare in the early 90s [175]. The ANN is an analogy used by

computer scientists to emulate the behavior of the human brain and is composed of an

input, an output, and intermediate layers, which are also called hidden layers. Similarly

to biological neurons, each artificial neuron, or perceptron [191], receives a set of inputs,

either from the input layer or other neurons, performs a linear combination based on its

weights and make a non-linear decision whether to activate the neuron and fires it.

Due to the increasing computational power, the complexity of these networks has sub-

stantially grown, materializing in the use of dozens of layers and millions of neurons. In

this context, Deep Learning (DL) techniques - a subset of ANN techniques - emerged as

the state of the art for many real-world problems, surpassing other ML techniques, and

reaching human-level performance in several tasks such as in the classification of melanoma

from dermoscopic images [40], or the detection of lymph node metastases in breast cancers
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from pathology images [32].

Despite its vast potential DL suffers from several disadvantages. First is the dependency

on large amounts of data and computational power. Also, the black-box nature of DL

makes it difficult to interpret their decisions and prevents their dissemination in clinical

practice.

This chapter presents an overview of how DL techniques make decisions and illustrates the

strategies that can be used in the oncological field to explain them, as it is an essential step

towards the integration of DL in the workflow of physicians in the field of oncology. To

better illustrate these strategies to the reader that can include ML researchers, oncologists,

and other healthcare agents we give self-explanatory oncological examples. The reader can

refer to Reyes et al. [184] for a review of more specific areas such as radiology [184], or

Liu et al. [140] for work more related to traditional machine learning techniques.

From the works found in the literature, more than 60% are related to breast, skin, or brain

cancers and the majority focused on explaining the importance of tumor characteristics

(e.g. dimension, shape) in the disease behavior prediction. Among the DL techniques used

in the oncology field which were interpreted, the majority are multilayer perceptrons and

convolutional neural networks. We also have found that the majority of works focus on

medical imaging (e.g. mammogram, histological images, and dermoscopic images) applied

to breast and skin cancer. Existing explanations focus on the most prevalent diseases

as well as well-curated datasets and challenges targeted at those diseases. Overall, most

works focus on the validation of the knowledge acquired by the DL model for the diagnosis

of malignancy or detection of a cancer disease.

Despite being successfully applied in different cancer scenarios, endowing deep learning

techniques with the ability to explain their predictions, while maintaining their excep-

tional performance, will continue to be one of the greatest challenges faced by artificial

intelligence. Future work includes the extension of interpretability methods for debugging

model misbehavior and acquiring new knowledge about the disease, as well as largely

overlooked cancer tasks such as tumor segmentation and image registration. Also, the

evaluation of interpretability methods so that they can be compared and validated.

Throughout the next two overview sections, we will talk about several ANN techniques

illustrating their internal architectures and learning processes using a self-explanatory on-

cological example, that consists of the classification of a breast tumor based on handcrafted

features such as mass density (fat-containing - 0, low - 1, equal - 2, high - 3), shape (round

- 0, oval - 1, irregular - 2) and the breast side that it was found (left - 0 or right - 1) as

well as the raw mammogram. Using such features as an input, the goal of the different

types of ANNs will predict an output related to the malignancy of the tumor (benign - 0

or malignant - 1).
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2.1 Artificial Neural Networks Techniques Overview

Artificial Neural Networks (ANN) are a set of algorithms, inspired by the human brain,

that are sometimes called “universal approximators”, because they can learn to approx-

imate mappings between any input x and an output y, assuming they are correlated.

ANNs are composed of layers of neurons, which combine input from the data with a set

of coefficients, or weights, assigning significance to inputs with regard to the output label.

Perceptron - The Perceptron [194] is the the precursor to the ANN techniques. In

this binary classification algorithm, the linear predictor chooses to “fire” based function

combining a set of weights with the input vector.

Training process - As seen in Figure 2.1, after receiving a set of variables as input (x1,

x2, ..., xn), the perceptron will attribute weights for each variable (w1, w2, ..., wn) and

afterward will use a mathematical function also known as activation function that will use

the weighted sum of the input variables to produce a desired output (y). For each set

of input variables, the output (y) is compared to the label corresponding to the expected

output, also known as the target. During training, the weights are continuously changed

to move the output of the perceptron and the target closer together.

In the example provided in Figure 2.1, the perceptron is given the breast cancer tumor

variables density, shape, and side and given the weights obtained during training (0.8, 0.7,

and 0 respectively), predicting the tumor to be malignant.

0.8

0.7

0
Weighted 

Sum
Activation 
Function

density

shape

side

malignant

3

0

2

Figure 2.1: The Perceptron computes the weighted sum of the breast cancer tumor input
variables, and an activation function turns the output into a binary prediction of malig-
nancy.

Multilayer Perceptron - The Multilayer Perceptron (MLP) [194] is the natural exten-

sion of the perceptron to solve more complex problems. Rather than having a single unit,

or neuron, the MLP has multiple layers with multiple neurons each, as can be seen in Fig-

ure 2.2. Also, the linear activation function of the perceptron is replaced by a non-linear

activation function which helps to solve non-linear problems. Due to its multiple-layered

structure, the MLP can be seen as a deep neural network.
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Training process - After receiving a set of variables as input (x0, x1 ..., xn), each interme-

diate neuron present in the hidden layers acts like a perceptron, performing the weighted

combination of its inputs and applying a non-linear activation function. The output of the

activation function of each neuron, also known as activation, acts as input for the neurons

of the next layer. The combination of activation of the last intermediate layer produces a

desired output (y).

MLPs have been explored on multiple public datasets for breast cancer diagnosis based

on tumor characteristics such as density, shape, and side with high accuracy (>97%).

Figure 2.2 illustrates the approach used in [204] based on the public Wisconsin Breast

Cancer dataset. In the example, given the tumor variables (density, shape, and side) the

model learns optimal weight values during training, to predict the malignancy.

malignant

density

shape

side

3

2

0

Input 
Layer

Hidden
Layers

Output
Layer

Figure 2.2: A Multilayer Perceptron (MLP) is composed of an input layer, an output
layer, and two hidden layers similar to perceptrons that predict malignancy based on
breast cancer tumor variables.

Due to their nature, MLPs do not scale well to images. As an example, for an image with

a width and height of 100 pixels, the MLP would require 10,000 neurons just in the first

layer and this number would grow exponentially with each layer.

Convolutional Neural Networks - Convolutional Neural Networks (CNN) [33, 133]

techniques emerged as a solution to address the previous computational problem.

Training process - CNNs treat the image as a matrix (Figure 2.3), extracting features using

a mathematical operation called convolution which helps preserve the spatial relationship

between neighboring pixels. The convolution slides a small matrix, called a filter, over

the original image, and for every position, it computes the element-wise multiplication

between the two matrices, and the resulting value forms a single element of the output

matrix, called a feature map. The filter is composed of weights (w) that are learned during

training.
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During feature extraction, each convolutional layer is composed of n filters resulting in n

feature maps. The values of the feature maps of the last convolutional layer are concate-

nated into a single vector and used as an input for a MLP which makes the prediction y.

During training, the values of the filter matrices and of the MLP are continuously changed

to move the output closer to the expected targets.
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Figure 2.3: The convolution operation produces a feature map, where each element is the
result of the element-wise multiplication between the region of the image and the filter
(shown in the same shade).
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Figure 2.4: Diagram of Convolutional Neural Network (CNN) used in [32] for the detection
of lymph node metastases of breast cancer in histopathological images. First, each con-
volutional layer produces feature maps using the convolution operator across the previous
layers’ output. The output of the feature extraction is concatenated into a feature vector
which serves as input for the classification MLP which predicts the presence of metastases.

CNNs were used for example in the context of detection of lymph node metastases of breast

cancer based on whole-slide images of digitally scanned tissue sections of over two hundred

patients [32]. Figure 2.4 illustrates the approach which led to performance comparable

with an expert pathologist interpreting the slides. The CNN learns the weights of the

filters, and during the feature extraction is able to extract features which may include
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the color and shape of the nuclei. The features are used to make the classification, which

predicts the tissue to be malignant.

Although CNNs are able to take advantage of the spatial relationships between pixels,

they struggle with large sequence data such as text.

Recurrent Neural Networks - Recurrent Neural Networks (RNN) techniques solve

this issue by having a small network looped for each element of the sequence, allowing

information to persist. A simple RNN contains a hidden state, ht, at time t which depends

on the input of the current step t and the state of the previous step.

Training process - RNNs are usually composed of only a layer of neurons, which takes an

input (xi) and predicts the output (oi) in a recurrent way (Figure 2.5a).

This refers to the fact that its processing unit (P) is looped n times, where n represents

the number of elements of the sequence. During training, the weights of the RNN are

continuously changed to minimize the difference between the target sequenced, and the

predicted one. As represented by the self-arrow in Figure 2.5b, the processing unit shares

information among steps allowing the context and information from each slice to be passed

on until a final diagnosis is given (yt) [105].

In the example provided in Figure 2.5a, the RNN is presented in an unfolded version,

where the processing unit is repeated for each step in the sequence. It corresponds to an

approach for the treatment prognosis of patients with lung cancer based on Computerized

Tomography (CT) of four different stages (pre-treatment, 1-month follow-up, 3-month

follow-up, and 6-month follow-up) [243]. Outcomes such as survival and metastases were

predicted using a RNN based on the set of features extracted from the CT using a CNN.

At each step, and based on the context that is passed from the previous step, it learned to

extract and memorize useful context and pass it to subsequent steps until a final prognosis

was made.

Autoencoder - The autoencoder [26] is an unsupervised algorithm, which means that,

unlike the previous supervised algorithms, it does not require labeled data in the training

process. The goal of autoencoders is to learn a compressed representation (code) of the

input data by reconstructing it as the output of the network. By restricting the size of the

code, the technique can discover the interesting structures of the data, and in the case of

denoising autoencoder, even reconstruct noisy images. Depending on the characteristics

of the input, the encoder and decoder can have different architectures, some based on

multilayer perceptrons and others on convolutional neural networks.

Training process - The denoising autoencoder (Figure 2.6) contains an encoder that re-

ceives the noisy input, compresses into a small representation, called code, and is recon-

structed by a decoder into the original noiseless input. Due to the small size of the code,

the autoencoder learns the distinctive features of the image and learns to ignore random
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Figure 2.5: a) The Recurrent Neural Network (RNN) first extracts a set of visual features
from CT slides from multiple stages using a CNN. The hidden units optimize their weights
to learn useful information from the features and pass stage-specific context sequentially
until a final metastases prediction is made. b) Hidden unit (Ht) shared between steps (t)
and receives the context of previous CT scan (xt) and predicts the prognosis (yt).

noise. During training, the weights of the neurons present in the encoder and decoder are

continuously updated to reduce the difference between the original input and the output,

called reconstruction error, to find useful patterns in the data.

One frequent use of denoising autoencoders is the extraction and compression of relevant

features for the detection of genes correlated with the ER status of patients with breast

cancer [219]. Figure 2.6 illustrates how the autoencoder is given a set of gene expression

data with some noise with the task of compressing the data into an relevant representation

(code).

2.2 Interpretability Concepts Overview: Desiderata, Dimen-

sions and Strategies

The significance of interpretability when developing ML solutions is well-known in academia

and corporations. However, there is no consensus on the definition of interpretability [97].
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Figure 2.6: In a Denoising Autoencoder an encoder transforms a noisy gene expression
data into a compressed representation (code) and the decoder transforms the code back
into a denoised version of the original data.

One of the most used definitions was presented by [70] which defined interpretability as

the “ability to explain or to present in understandable terms to a human”. The definition

used in this work for interpretability is a set of techniques or model properties that make

the output generation process of the system explainable and understandable to humans.

2.2.1 Desiderata of Interpretability

The demand for interpretability arises due to a mismatch between the objectives of the

model and of the users - clinicians and patients. Although DL techniques have reached

human performance in melanoma diagnosis from dermoscopic images [40], or the detec-

tion of lymph node metastases in breast cancers from pathology images [32], the need to

interpret them emerges, especially in healthcare contexts.

In addition to the high accuracy of ML algorithms, users have additional desiderata.

Doshi-Velez and Kim [70] specified five main desiderata for interpretability:

• Fairness: Assure that protected groups (e.g. gender, ethnicity) are not somehow

discriminated against (explicit or implicit);

• Privacy: Assure that sensitive information is protected;

• Reliability/Robustness: Assure high algorithmic performance despite variation of

parameter or input;

• Causality: Assure that the predicted change in output due to a perturbation will

occur in the real system;

• Trust: Allow users to trust a system capable of explaining its decisions rather than

a black box that just outputs the decision itself.
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2.2.2 Dimensions of Interpretability

Interpretability methods can be characterized by a set of dimensions [151]: global and

local interpretability, intrinsic and post-hoc interpretability, and model-specific and model-

agnostic interpretability. These will be described in what follows.

Global and Local Interpretability This dimension reflects the scope of interpretabil-

ity of a model and depicts the portion of predictions that the model can explain. To

perform a classification task an ML algorithm first creates a data-driven model based on

a set of input features (e.g. age and sex) during the training phase. The objective of this

phase is to allow neurons to select important features and learn the relationships between

them and the target output. Global interpretability aims to analyze this model, to under-

stand the common patterns in the overall data that help make decisions, by studying the

model’s parameters (i.e. weights), and the learned relationships. Local interpretability

aims to understand the relationship between the set of input features of a specific case

and the model decision.

In our MLP example (Figure 2.2), based on the instances provided, the network learned

relationships that help predict the tumor malignancy, based on its density, shape, and

breast side. As the breast side (left or right) where the tumor appears is not indicative of

the level of malignancy, the network should have learned to discard this input feature.

Global interpretability could help understand which relationships the network learned,

and the example of breast side confirms that it was not used. Global interpretability

can also help us know if non-random sources of noise which have not been removed have

affected the model’s learning (e.g. artifacts). Local interpretability could help understand

the importance of the input features in the malignancy prediction of a particular patient.

Intrinsic and Post-hoc Interpretability While the increase in complexity of ANNs

(i.e. number of neurons), helps solve complex problems, it increases the difficulty to in-

terpret them. Intrinsic interpretability refers to models which due to their simplicity are

interpretable by themselves, such as decision trees or sparse linear models [151]. Complex

models can increase their intrinsic interpretability by constraining their complexity or sim-

plifying their behavior. Examples of these constraints are sparsity, monotonicity, adding

domain knowledge, or even constraints on the complexity of the network by limiting the

number of neurons or layers.

Post-hoc interpretability refers to the application of interpretability methods after the

model’s training [151]. Post-hoc methods help elucidate how the model works without

constraining it.

In our MLP example, we could instead use a short decision tree or a small sparse MLP
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to achieve intrinsic interpretability or choose to maintain the complexity of the MLP and

use a post-hoc method such as feature importance to understand the importance of the

input features.

Model-specific and Model-agnostic Another way to classify interpretability methods

is based on the dependency the method has on the type of model which it tries to explain.

Model-agnostic methods can be applied to different types of models, while model-specific

methods are only applicable to a specific type of model [151].

In our example, while a model-agnostic method could extract the importance of the density

and shape from a model trained from any ML algorithm, a model-specific method would

only be able to do the same for similar models.

2.2.3 Interpretability Strategies

During the training phase, DL algorithms create data-driven models that can be inter-

preted using different strategies producing different types of explanations. Namely feature

importance, saliency map, model visualization, surrogate model, domain knowledge and

example-based explanations, which will be introduced next.

Feature Importance

One of the more explored explanations is feature importance, which gives the importance

or contribution of an input feature on the prediction of an example. Two main approaches

are used for computing feature importance: sensitivity analysis [25] and decomposition [24,

31].

Sensitivity analysis computes the effects of the variation in the input variables in the

model’s output and help us answer the question “What change would make the instance

more or less like a specific category?”.

Decomposition approaches successively decompose the importance of the output of a layer

into previous layers, until the contribution that the input features have on the output is

found. It helps us answer the question “What was the feature’s influence on the model’s

output?”.

If we extract the feature importance of a decision of our example, it can have different

meanings depending on the type of method used. High sensitivity values for density and

shape mean that their growth would also increase the prediction of malignancy. While

high contribution values of density and shape mean that the prediction of malignancy was

highly influenced by the value of these features.
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Saliency Map

When dealing with images, saliency maps [70] (or heatmaps) can be used to visually

illustrate variations in the importance of different features, using color to convey the

weight of pixels in a given prediction.

Similarly to feature importance, the pixel values of saliency maps can be obtained following

two main approaches: Back-propagation methods compute the relevance of a pixel by

propagating a signal from the output neuron backward through the layers to the input

image in a single pass [24]. Perturbation methods compute pixel relevance by making

small changes in the pixel value of the input image and compute how the changes affect

the prediction [209].

An example of a saliency map, extracted from a CNN trained to predict the malignancy

based on mammogram patches is seen in Figure 2.7. The red and yellow regions correspond

to the most important regions of the image. The method correctly focuses on the mass,

supporting our confidence in the model’s decisions.

Figure 2.7: Example of a saliency map depicting the important pixels for malignancy pre-
diction based on mammograms. Left: ground-truth expert segmentation. Right: saliency
map, where the pixel intensity indicates the importance of the pixel in the classifica-
tion.) [85].

Model Visualization

The ML algorithm receives an example with a set of input features, and in its internal

process creates a combination of its features also called internal features. Some strategies

help to visualize patterns detected in an image [248], whereas others help to visualize the

feature distribution in the dataset [95, 144]. Also, whereas some strategies may choose

real images from the data set that contains a pattern detected by the network [241], others

artificially create images that accentuate the same patterns [160, 167].

In Figure 2.8 we can see regions of mammograms that contain patterns detected by indi-

vidual filters of the CNN trained to diagnose the tumor malignancy.
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Figure 2.8: Illustration of the internal behavior of a network unit by visualizing regions of
mammograms with patterns detected by individual units of the network [241].

Surrogate model

A surrogate model is an interpretable model that is trained to explain predictions of a

black-box model. In the example of oncology, a rule list [186] can be extracted from a net-

work allowing the clinician to understand the knowledge produced by the algorithm. Each

rule specifies a condition that when evaluated as true produces one result (benign/malig-

nant in malignancy diagnosis). One way of doing this is by creating a new dataset where

each example of the dataset used to train the DL model is combined with its prediction

and the task of the surrogate model is to predict these values.

While global surrogate models approximate the model in all the input space, local surro-

gate models approximate single predictions, which makes them more accurate and faithful

to the model explained.

To better understand what a surrogate model is, let’s consider the example in Figure 2.9,

where we can see a rule list extracted from a MLP that demonstrate its decisions. This

surrogate model was built by iterating through the MLP neurons and inspecting the con-

nections between the input features and the output label so that they can be represented by

rules. A decision tree is another appropriate type of surrogate model. This method could

be seen as an unordered rule list where each leaf is a separate rule where the condition is

the label of the path from the root to the leaf.

Domain Knowledge

Although DL algorithms extract internal features (combination of input features) auto-

matically during the training phase, the domain knowledge of the medical field which

physicians have can be used to validate the decision of the network.
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Rule 1: IF (density = 'high' or 'equal') and (shape = 'irregular') 
             THEN malignant

Rule 3: IF (density = 'fat-containing') and (shape = 'irregular')  
             THEN benign

Rule 2: IF (density = 'high') 
             THEN malignant

Rule 4: OTHERWISE benign

Figure 2.9: Rule list extracted from a MLP trained to predict the malignancy of a breast
tumor using a surrogate model strategy.

The introduction of domain knowledge from medical doctors on training can help produce

models that resemble how medical doctors diagnose or focus on the features or areas they

pay particular attention to [242].

In the case of malignancy diagnosis, domain knowledge can be introduced directly as an

input feature, for example, a discrete value indicating the shape of the tumor. Domain

knowledge can also be used as an additional target variable (e.g. shape, density), besides

malignancy, allowing us to evaluate of how well the model predicts both target variables

similarly to how clinicians also take those variables into account.

Example-based explanation

Example-based explanation methods select examples of the dataset that explain the be-

havior of the network [151]. This behavior is usually explained using the internal features

(combination of input features) extracted from the examples by the network.

Similar examples are instances of the dataset that have similar values on the internal

features and produce the same prediction as the example whose prediction we are explain-

ing [47].

Counterfactual explanations can be used to explain predictions of examples by finding

small changes in the example that cause the network to change its prediction.

Usually, examples of a dataset can be grouped together based on existing patterns. A

prototype is a particular example of the dataset representative of its group.

Table 2.1 associates the interpretability strategies previously introduced with the dimen-

sions of interpretability, namely scope and intrinsic vs. post-hoc. The dimensions of model

specificity vs. agnostic were omitted as it depends on the actual algorithms used and not

on the broader interpretability strategy.
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Dimensions

Strategy Scope Intrinsic vs. Post-hoc

Feature Importance Local Post-hoc

Saliency Map Local Post-hoc

Model Visualization Global Post-hoc

Surrogate Model Local/Global Post-hoc

Domain Knowledge Global Intrinsic

Example-based Global Post-hoc

Table 2.1: Association between interpretability strategies and dimensions of interpretabil-
ity.

2.3 Interpreting Deep Learning in Oncology

The use of DL techniques has become widespread in the oncology area, covering different

pathologies, but their interpretation remains an unexplored field [43, 230]. In this section,

an overview of interpretability strategies applied to oncological diseases will be presented.

The section will be divided into different diseases, namely breast cancer, skin cancer,

lung cancer, brain cancer, and others. This division was chosen to promote the best

understanding of the area by the main target audience of this paper - oncologists, clinicians,

and other practitioners.

We conducted a search of papers in the PubMed database published between January

2014 and September 2020 with individual and combination of search terms such as “inter-

pretability”, “deep learning”, “oncology”, “cancer” and “decision support systems”, and

compiled the results in Table 2.2. In total, 44 works were found, where the majority target

breast cancer (30%), skin cancer (23%), lung cancer (9%), and brain cancer (11%). The

most common interpretability strategies were saliency maps (32%) and feature importance

(20%) and among the prediction tasks, most works focused on the diagnosis of malignancy

(45%) and of different pathologies (27%).

Figure 2.10 helps visualize the distribution of papers based on different classifications

present in Table 2.2, namely the target disease and task as well as the interpretability

strategy (explanation) and ANN technique (architecture).

2.3.1 Breast Cancer

Prediction of breast cancer malignancy has been one the most successful applications of

deep learning in oncology, achieving 87% sensitivity and 96% specificity when diagnosing

mammograms [205]. It also is the main task in interpretability work (69% of breast cancer

studies). Due to the availability of well-curated public datasets on breast cancer, mainly

mammograms and hematoxylin and eosin (H&E) stained histological images, research in
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this area has taken a step forward.

When dealing with imaging data, researchers found it important to visualize the patterns

detected by the networks either through model visualization techniques or with saliency

maps, please refer to section 2.2.3. These patterns were then either validated by ex-

perts or correlated with medical concepts. For other types of data (e.g. gene expression,

hand-crafted features), researchers mainly focused on computing feature importance or

extracting surrogate models (i.e. rule lists). In what follows, we analyze in detail some of

the main selected works on the topic.

(a) Disease (b) Task

(c) Interpretability strategy (d) ANN techniques

Figure 2.10: Distribution of papers reviewed based on characteristics of Table 2.2

Graziani et al. [94] visualized the patterns of a metastases detection CNN for WSI H&E

images by synthesizing images that increase the network’s confidence on the prediction

(Activation Maximization [160, 167]) and by extracting saliency maps [202]. They found

that the network detected nuclei-resembling shapes and regions of nuclei with marked vari-

ations in size and irregular shapes. Hsieh et al. [241] used Network Dissection method [30]

to visualize the patterns of individual filters of a malignancy classifier based on mammo-

grams and developed a web-based tool for expert annotation. Figure 2.11 illustrates a

pattern labeled as ‘Calcified Vessels’. Also, other BI-RADS [114] medical concepts (e.g.

mass margin) were found to overlap with patterns detected by the network.
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Table 2.2: Summary of reviewed articles.

Ref Disease Task Modality Explanation Architecture Dataset

[94] Breast Cancer Metastases Detection WSI H&E Model Visualization, Saliency Map CNN Public
[241] Breast Cancer Malignancy Diagnosis Mammogram Model Visualization CNN Public

[90, 93] Breast Cancer Malignancy Diagnosis WSI H&E Feature Importance, Domain Knowledge CNN Public
[120] Breast Cancer Malignancy Diagnosis Mammogram Domain Knowledge, Saliency Map CNN Public
[17] Breast Cancer Malignancy Diagnosis Mammogram, Ultrasound, MRI Domain Knowledge CNN Public
[134] Breast Cancer Malignancy Diagnosis Mammogram Saliency Map, Text CNN + RNN Public
[11] Breast Cancer Malignancy Diagnosis Hand-crafted Feature Importance CNN Public
[13] Breast Cancer Malignancy Diagnosis Hand-crafted from H&E Surrogate MLP Private
[38] Breast Cancer Malignancy Diagnosis Hand-crafted from H&E Surrogate MLP Public
[112] Breast Cancer Survival Prediction Gene expression, Biomarkers Feature Importance MLP Public
[7] Breast Cancer ER+ Prediction Metabolomics Data Feature Importance AE + MLP Public

[139] Breast Cancer Clustering Gene expression, CNA data Model Visualization AE Public

[228] Skin Cancer Malignancy Diagnosis Dermoscopic images Model Visualization CNN Public
[61] Skin Cancer Malignancy Diagnosis WSI H&E Saliency Map CNN Private
[181] Skin Cancer Malignancy Diagnosis Dermoscopic images Saliency Map CNN Public
[72] Skin Cancer Diagnosis of Skin Lesion WSI H&E Saliency Map CNN Public
[86] Skin Cancer Diagnosis of Skin Lesion Dermoscopic images Saliency Map CNN Public
[62] Skin Cancer Malignancy Diagnosis WSI H&E Saliency Map CNN Public
[196] Skin Cancer Diagnosis of Skin Lesion Dermoscopic images Example CNN Public

[207, 208] Skin Cancer Malignancy Diagnosis Dermoscopic images Feature Importance, Example, Surrogate MLP Public
[58] Skin Cancer Diagnosis of Skin Lesion Dermoscopic images Example, Saliency Map CNN Public

[182] Lung Cancer Disease Diagnosis Chest Radiograph Saliency Map CNN Public
[174] Lung Cancer Malignancy Diagnosis CT Domain knowledge CNN Public
[206] Lung Cancer Malignancy Diagnosis CT Domain knowledge CNN Public
[63] Lung Cancer Prognosis Radiation Biomarker, clinical data Domain knowledge AE + MLP Private

[176] Brain Cancer Tumor Grading MRI Saliency Map CNN Public
[177] Brain Cancer Tumor Grading MRI Feature Importance, Saliency Map MLP Public
[101] Brain Cancer Predict Methylation State MRI Model Visualization CNN + RNN Public
[130] Brain Cancer Survival Prediction MRI Feature Importance CNN Public
[150] Brain Cancer Survival Prediction WSI H&E, Biomarkers Saliency Map CNN Public

[4] Other Malignancy Diagnosis Gene expression Feature Importance MLP Public
[249] Other Survival Prediction Gene and protein expression Feature Importance MLP Public
[171] Other Disease Diagnosis RNA-seq expression, SVN data Feature Importance, Surrogate MLP Private
[79] Other Disease Diagnosis Volumetric Laser Endomicroscopy Saliency Map CNN Private
[75] Other Disease Diagnosis Endoscopic images Saliency Map CNN Public
[125] Other Disease Diagnosis WSI H&E Saliency Map CNN Private
[113] Other Disease Diagnosis DESI Cluster AE Private
[253] Other Disease Diagnosis Ophtalmic images Domain Knowledge CNN Private
[254] Other Malignancy Diagnosis Ultrasound Domain knowledge CNN Private
[258] Other Malignancy Diagnosis WSI H&E Text, Saliency Map CNN + RNN Public
[236] Other Disease Diagnosis Chest Radiograph Text, Saliency Map, Text CNN + RNN Public
[259] Other Tumor Grading WSI H&E Text, Saliency Map CNN + RNN Private

Rather than being validated by experts, Graziani et al. [90, 93] introduced Regression

Concept Vectors (an extension of Concept Activation Vectors [118]) which let them detect

the importance of medical concepts (i.e. area, perimeter, and contrast) on the decisions of

a breast cancer malignancy classifier based on WSI H&E network, even though they were

not present in the training dataset. The contrast was found to be positively correlated

with malignancy, while the correlation was negatively correlated. Kim et al. [120] used

medical concepts during training, computing their importance alongside saliency maps to

help explain the malignancy diagnosis of mammograms.

Antropova et al. [17] visualized the values of both deep features and hand-crafted features

from different image modalities (i.e. Mammogram, Ultrasound, DCE-MRI) and found

that their fusion improved malignancy diagnosis performance, most likely due to the low

agreement between deep and handcrafted features.

Lee et al. [134] trained a malignancy diagnosis network able to justify its decisions both

visually and textually. It trained a language model that composes text description [120,

121, 236, 259] from mammograms. Although the descriptions are still not sufficiently good

(i.e. “There are sharp lines on some part of the complexly formed mass.”), they show that

this interpretability strategy has great potential.
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When dealing with hand-crafted features relating to tumor size and shape, researchers

found it important to simplify the network to behave linearly [11] making it easier to

compute the feature importance or extract simpler classifiers that could present physicians

with simple rules (i.e. decision rules [13] and symbolic rules [38]) increasing interpretability.

Figure 2.11: Example of pattern detected by the network and labeled by an expert as
‘Calcified Vessels’ in the web-based labeling tool [241].

Feature importance was the focus of most works dealing with gene expression data. For

example, SALMON [112] predicted the survival risk of patients with breast cancer, and

feature importance of eigengene’s modules and other clinical information, they confirmed

that age, progesterone receptor status, and other five mRNA sequence data co-expression

modules play pivotal roles in patient prognosis. Similar methods, using the H2O [99]

library, were used to detect the important features in the detection of estrogen-receptor-

positive (ER+) patients based on the classification of the Estrogen Receptor Status of

breast cancer patients based on metabolomics data [7]. They found eight commonly

enriched significant metabolomics pathways: isoleucine, putrescine, glycerol, 5’-deoxy-

5’-methylthioadenosine, ornithine, tocopherol beta, phenylalanine, and arachidonic acid.

Finally, Liu et al. [139] used an autoencoder to find clusters of breast cancer patients

based on their gene expression and copy number alteration data and visualized them

using heatmaps. They found that the cluster of patients with ER-negative breast cancer

patients usually has a poor prognosis.

2.3.2 Skin Cancer

Works in skin cancer are almost evenly divided on the malignancy diagnosis and diag-

nosis of multiple skin diseases. The modality used was also divided between two types,

dermoscopic images (70%) and H&E stained histopathological images (30%). Similarly

to breast cancer detection, DL has also achieved great results in skin cancer detection

based on medical imaging [74]. Interpretability methods for these pathologies ranged from

saliency maps, model visualization, rule extraction, text explanations and example-based

explanations.
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A simple visualization method was used to visualize the activation of neurons of a CNN

trained to predict the malignancy of dermoscopic images [228]. Inspection of activations

led to finding neurons related to medical concepts such as borders, lesions, and skin type,

as well as different image artifacts such as hairs.

Cruz-Roa et al. [61] proposed a DL technique for the malignancy diagnosis using histo-

logical images and visualized the most salient patterns in that task which when validated

by pathologists were found to be related to large-dark nuclei. Researchers also tried to

improve the quality of saliency maps by making changes to the architecture of the net-

work when diagnosis malignancy based on dermoscopic images [181] and diagnosis of skin

diseases based on WSI H&E images [72]. PatchNet [181] found a trade-off between

interpretability and performance, as smaller patch sizes provided saliency maps with bet-

ter visual interpretability at the expense of worse generalization capabilities. Paschali et

al. [72] also found that smaller convolutional filters resulted in more fine-grained saliency

maps. Gonzalez-Diaz et al. [86] incorporated segmentation of lesion areas based on high-

level dermoscopic features and used these segmentations to diagnose skin lesions and show

relevant regions.

Example-based explanations are also useful interpretability strategies in skin cancer, as

shown by Sadeghi et al. [196] which conducted a study that revealed that similar examples

provided by DL techniques help users in classifying skin lesions from dermoscopic images.

In the study, accuracy increased from 51% to 61% when the 15 most similar cases were

provided to the users. Silva et al. [207, 208] unified complementary explanations to ex-

plain skin lesion predictions from dermoscopic images. The method extracted rules and

presented them as text sentences alongside positive and counter-factual examples for every

decision. Also on the same task, Codella et al. [58] explained the decision with similar

examples using k-nearest neighbors on the deep features and highlighted the most salient

regions of the image.

2.3.3 Lung Cancer

Interpretability research on the diagnosis of lung cancer focused mainly on two modal-

ities, Chest Radiography (X-Ray) or Computed Tomography (CT). Similarly, to breast

and skin cancer, DT techniques have been shown to be able to reach human-level perfor-

mance. In the diagnosis of 14 different pathologies from chest radiographs, a CNN achieved

radiologist-level performance [182]. Radiologists confirmed, by inspecting saliency maps,

that the network localizes accurately the lung masses [260].

Other works focused on the integration between hand-crafted features related to medi-

cal concepts and deep features. Paul et al. [174] developed a model for the malignancy

diagnosis of lung cancer using CT images and interpreted their correlation with medical

features used by physicians by iteratively replacing deep features and evaluating the drop
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in confidence. Although deep features were not found to be perfectly correlated with

medical features, they could represent 9 of the medical features with the deep features

without losing performance. In the same task, Shen et al. [206] proposed to model that

made high-level predictions for the tumor malignancy, and low-level predictions of medical

features - calcification, subtlety, lobulation, sphericity, internal structure, margin, texture,

and speculation. The approach achieved comparable or better results with state-of-the-art

methods in the public Lung Image Database Consortium (LIDC).

Finally, Cui et al. [63] used a combination of hand-crafted features composed of clinical

features and cancer biomarkers in a non-small cell lung cancer who received radiotherapy to

predict the damage caused by the treatment. The results found that better performance

was achieved by integrating the hand-crafted features with the deep features extracted

from an autoencoder [143].

2.3.4 Brain Cancer

Unlike previous pathologies, brain cancer research deviates from the diagnosis of diseases

and focuses on survival prediction (40%) and tumor grading (40%), almost entirely based

on Magnetic Resonance Imaging (MRI) (83%).

When performing tumor grading - distinguishing lower grade gliomas from high-grade

gliomas from MRI - researchers have focused on producing saliency maps from the 3D

MRI scans or Region of Interest (ROI) annotated by experts. Pereira et al. [176] extended

existing saliency map methods for three-dimensional inputs [202, 214]. The ROI classifier

achieved better performance than the 3D scan 93% and 90% accuracy), but they were both

able to locate the tumor. Pereira et al. [177] also used a feature importance method [185]

to identify MRI sequences that were relevant for features extracted from the network,

and then produce saliency maps. The sequences chosen were consistent with domain

knowledge.

Han et al. [101] train a model to predict the methylation state of the MGMT regulatory

regions using MRI of Glioblastoma Multiforme (GBM) patients, resulting in 62% accuracy.

The MRI scans were extracted from the Cancer Imaging Archive (TCIA) [56] and the

methylation data from the Cancer Genome Atlas (TCGA) [222]. The authors developed

an online visualization tool that allows the user to load an MRI scan and visualize the

activation of different filters. Through this, the model was found to classify lesions with

ring enhancement with negative methylation status and tumors with less clearly defined

borders and heterogeneous texture with positive methylation status.

Lao et al. [130] constructed a model for survival prediction of patients with GBM based

on deep features and hand-crafted features extracted from MRI. To reduce the number of

features used, feature selection was done using feature importance methods to find features

that were robust to tumor segmentation uncertainty, highly predictive and non-redundant.
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Survival prediction was also performed using histological samples and genomic data [150]

with validation of produced saliency maps by expert pathologists.

2.3.5 Other Pathologies

Other oncological pathologies have been shown interested in interpretability using differ-

ent modalities of data (not exclusively images). Researchers that applied DL techniques

on data of multiple pathologies have sought to interpret them using feature importance.

For example, Ahn et al. [4] trained a network for malignancy diagnosis based on gene-

expression data from multiple tissues and by computing the feature importance of in-

dividual genes on the diagnosis found a sub-group suspected to be oncogene-addicted

as an individual gene contribute extensively in the classification. Similarly, Yousefi et

al. [249] proposed a model for the survival prediction based on clinical, gene-expression,

and protein-expression data of multiple tissues and computed the sensitivity of each fea-

ture on the survival risk, identifying that TGF-Beta 1 signaling and epithelialmesenchymal

transition (EMT) gene sets are associated with poor prognosis. Oni et al. [171] diagnosed

eight different cancer types from RNA-seq expression and single nucleotide variation (SNV)

data. To explain its decisions, a linear surrogate model [185] was extracted, where its co-

efficient’s magnitude corresponded to the importance of the genes in the prediction. The

location and variability of explanations were visualized using 2D embeddings of the RNA-

seq input data. They found genes related to cell proliferation and tumor growth were

important for the diagnosis.

In the diagnosis of early Barrett’s Neoplasia using Volumetric Laser Endomicroscopy [79],

saliency maps [260] focused on the glands located around the first layers of the esophagus

in high-grade dysplasia cases, and on homogeneous esophagus layers in non-dysplastic

Barrett’s esophagus cases. Garcia-Peraza-Herrera et al. [75] extended the same saliency

map method to interpret the diagnosis of esophageal cancer based on endoscopic images.

By computing saliency maps of different resolutions they were able to detect unhealthy

patterns and diseased tissue.

Korbar et al. [125] interpreted the diagnosis of colorectal polyps based on histological

images using saliency maps[202, 260] and found that adding a boundary box around them

increased their similarity with pathologists’ segmentations.

Inglese et al. [113] used DL techniques to find a high-level representation of mass spec-

trometry imaging data from colorectal adenocarcinoma biopsies. The features extracted

from the network were visualized in two dimensions using t-SNE [226] unveiling clusters

with different chemical and biological interactions occurring.

Zhang et al. [253] developed a diagnostic system of ophthalmic images that explained the

diagnosis with sub-tasks. In addition to the diagnosis of disease, the network segmented

important anatomical regions and detected other illnesses. The results show an accuracy
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of 93% on the diagnosis, localization accuracy of the foci of 82% in normal lighted images,

and 90% in fluorescein sodium eye drops.

Zhang et al. [254] proposed a system for diagnosing the malignancy of thyroid nodules

on ultrasound with performance comparable with radiologists. The network provides

predictions on medical concepts based on the TI-RADS lexicon.

The automatic generation of text reports based on medical imaging systems is also an

active research area. Zhang et al. [258] presented a network trained on H&E patches

for the malignancy diagnosis of bladder cancer and conditioned an RNN-based language

model to generate text descriptions and visual attention (i.e. saliency maps) highlighting

regions of the image relevant for specific parts of the text (Figure 2.12). MDNet [259]

establishes a relationship between histological images of bladder cancer and diagnostic

reports to generate text descriptions and provide visual attention to specific parts of the

text.

Figure 2.12: Left: H&E stained whole-slide tissue image. Right: saliency map gener-
ated [258]. Bottom: description generated for the image and feature-aware attention
maps.

2.4 Open Issues and Promising Research Directions

As DL grows in popularity, so does the need for interpretability in the dichotomy between

ML and medical practice. From this survey, it becomes clear that are four main issues

that need more attention: (1) limitation on the applications of interpretability methods;

(2) limitation on medical tasks explored; (3) lack of reliability of some interpretability
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methods; and (4) lack of evaluation metrics for interpretability methods. Throughout this

section, we will provide a discussion on the former four issues.

2.4.1 Limitation on the applications of interpretability methods

Du et al. [71] classified three major applications of interpretability strategies: model vali-

dation, model debugging, and knowledge discovery.

Model validation verifies that the model was able to learn useful knowledge and avoid

learning biased information. The majority of works reviewed follow in this category, for

example, works that explored the use of saliency maps mainly focused on verifying that

the region highlighted corresponded to regions segmented by experts.

Other applications for the interpretation of deep learning models, such as model debug-

ging and knowledge discovery, were overlooked by the current literature and constitute

promising directions to further improve the diagnostic capabilities of models and discover

new insights into the biology of different cancer diseases.

Model debugging aims at analyzing what leads to the misbehavior of models and erro-

neous predictions. Interpretability can help to uncover the reason for this misbehavior, by

inspecting the examples that were misclassified by the model, examples that have artifacts

from the data collection (e.g. metal tools in a CT scan, hairs in a dermoscopic image), in

addition to difficult to diagnose cases. Model debugging is also extremely relevant when

generalizing the model for other hospital data or for clinical use where the risk for misbe-

havior is much bigger. This application is still overlooked in current works in the field of

oncology.

Carlini et al. [46] demonstrated that standard models can make perfect predictions in

random training sets while performing poorly on the test set. This proves the model’s

ability to memorize the input data even if it is random which causes low generalization

to unseen data. The lack of generalization of models which can be caused by overfitting

to the training dataset must be an active concern of all ML practitioners, especially deep

learning techniques as the high complexity of the models coupled with a low data size

increases the risk of overfitting.

Another issue related to model debugging is adversarial attacks which consist of inputs

that are intentionally crafted to force the model to make a mistake. Finlayson [77] demon-

strated how an adversarial noise added to a dermoscopic image previously diagnosed as

benign with over 99% confidence by a highly accurate model resulted in the model pre-

dicting malignant with 100% of confidence even though the difference is imperceptible to

the human eye. Finlayson [77] also pointed at insurance claims approvals as a possible

motivation for adversarial attacks.

Another problem with generalizability is discriminatory bias where models learn unin-
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tended associations regarding minority subgroups due to bias in the data used to train

the model [116]. An example is how malignancy diagnosis systems with accuracy similar

to that of board-certified dermatologists under-performed on images of lesions in the skin

of color due to the majority of training examples representing fair-skinned patients [116].

Discriminatory bias is not the only type of bias that can cause problems as there have been

several instances where exceptional results have been obtained from the model learning to

distinguish slides based on the hospital they came from or the clinicians that generated

the ground truth rather than actual evidence in the slide [116]. For example, a system

for the detection of pneumonia on chest x-rays was able to learn to associate the use of a

portable x-ray machine with pneumonia [250].

Knowledge discovery allows physicians and researchers to obtain new insights into the

physiology of the disease by interpreting the deep learning model and its decision process,

such as finding that HER2 receptor over-expression is related to breast cancer. Knowledge

discovery could lead to finding other receptors to help in the characterization of cancer

diseases that are still unknown to this date. While some visualization methods have been

used to discover clusters of patients with specific characteristics [113, 139], this direction

of research is still mostly unexplored.

2.4.2 Limitation on medical tasks explored

Analysis of the results of the review (Figure 2.10) shows that 72% of works focus on

some type of disease classification (45% malignancy diagnosis, 18% disease diagnosis, 9%

diagnosis of skin lesion). This shows a great imbalance as there exists many more medical

tasks in the oncology field with promising results but still lack interpretability. In the

following sub-section relevant work on other medical tasks will be briefly reviewed. Those

medical tasks are:

• Tumor or lesion segmentation: identify the set of voxels which make up the lesions

or tumors present [103, 148];

• Organ and substructure segmentation: identify the set of voxels that make up either

the contour or the interior of the objects of interest [119];

• Cancer prognosis: estimate the likely course and outcome of a disease [243, 263];

• Radiation treatment planning: determine location and dosage to deliver the most

desirable dose distribution of radiotherapy [137];

• Image registration: seeks to determine a transformation that will map two volumes

(source and reference) to the same coordinate system [83];

• Image generation and enhancement: includes many different tasks to improve the

quality of the input from removing obstructing artifacts or noise in images to com-

pleting missing data [52, 244, 255].
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Tumor and lesion segmentation is an important first step for numerous other tasks such

as diagnosis and treatment planning, in order to evaluate the extent of the diseased tissue.

DL techniques have achieved state-of-the-art results in brain tumor segmentation from

MRI scans [103, 148]. The same type of networks have also been used in the segmentation

of different lesions of the skin based on dermoscopic images [3, 129].

Segmentation of organs and substructures is also a critical step before radiotherapy in

order to decide which regions to avoid targeting with radiation. One example of it is the

segmentation of organs from abdominal CT scans [119].

Cancer prognosis is comprised of a large number of sub-tasks such as survival prediction

and prediction of the likelihood of metastases. Zhu et al. [263] for example, reviewed a

large number of studies that applied DL techniques to different cancer prognoses tasks

such as cancer recurrence, progression, and survival prediction [263]. Other studies fo-

cused on sub-tasks that concern the progression of the disease after treatment, from the

prediction of future distant metastases and local-regional recurrence using pre-treatment,

post-treatment, and follow-up medical imaging scans [243].

Radiation treatment planning requires not only the segmentation of diseased tissue but

also the dosage that should be used. A CNN-based model was used to MRI to accurately

transfer contrast into CT images with clearly identified air, brain soft tissue, and bone

highly similar to that of current methods based on CT and used in medical practice [137].

Image registration, also known as image fusion, is commonly used to combine two modal-

ities - for example, PET-CT is obtained by combining two different modalities (PET and

CT), but also multiple images of the same modalities. Fu et al. [83] reviews a large number

of DL techniques proposed for the image registration of different modalities such as T1

and T2 MRIs and MRI and CT.

In addition, DL approaches also have seen success in restoring medical images corrupted

with noise or artifacts, but the interpretation of the reasoning behind this process has also

been pointed out as a challenge [252]. The extensive use of CT in medical analysis has raise

some concerns due to the large dose of radiation that it delivers to the patient. Low-dose

CT is a solution for this problem, but by using lower radiation amounts, noise, and artifacts

become a problem. DL techniques have been proposed to reconstruct low-dose CT images

and recover from noise and streaking artifacts caused by metal objects [52, 244, 255].

Even though DL techniques have helped the numerous problems pointed out above, they

all face the same obstacle which prevents their use in clinical practice, the lack of inter-

pretability. Future research efforts should then be targeted in the exploration of other

applications of interpretability methods other than model validation and different cancer

tasks than disease diagnosis. With the expansion of cancer applications, other inter-

pretability strategies will emerge based on images (the most used modality) and other

modalities that may be more associated with other problems.
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2.4.3 Lack of reliability of some interpretability methods

Some post-hoc interpretability methods can present bias [2, 122] and might not be rep-

resentative of the behavior of the model they are trying to explain [64]. This happens

because although explanations should approximate as much as possible the actual behav-

ior of the model, during the process of optimization (e.g. backpropagation) some inputs

given to the network are outside the distribution of the training data and can trigger

artifacts of the deep learning model.

As different interpretation methods sometimes focus on distinct aspects of the model [255],

a promising direction to improve the reliability of the interpretations is to deploy an en-

semble of complementary interpretability methods. Furthermore, interpretability methods

should also be provided with imperfect data (i.e. noisy) to guarantee robustness to noise.

2.4.4 Lack of evaluation metrics for interpretability methods

To quantitatively evaluate an interpretability method without the validation of an expert

requires a formal definition of interpretability and the use of a proxy metric describing

the quality of the explanation [70]. The lack of ground-truth explanations, for example,

the expert annotated tumor segmentations which indicated what the expected value of a

saliency map should be, makes it difficult to make a quantitative analysis of the results

and generalize the obtained results. One of the possible solutions to solve this issue is to

conduct a comparative study between the interpretation produced by the deep model and

one produced by a set of physicians. However, once again, this solution may not be gener-

alizable, hence most studies conduct the evaluation by letting experts (e.g. pathologists)

compare the explanations of a few selected examples and their domain knowledge.

Future research should help find interpretability metrics able to assess methods based

on three factors. First, evaluate how faithful the explanations are to the actual model’s

behavior. Second, evaluate how easily the explanations are understood by the physician.

Third, evaluate the usefulness of the explanation of its target application (i.e. model val-

idation). Only by evaluating these factors can explanations extracted from deep learning

models be truly trusted and applied in clinical practice.

2.5 Conclusions

Interpretability of deep learning is a growing field with mostly open problems and many

opportunities for the field of medicine and oncology.

The lack of interpretability in deep learning has been pointed out as a major problem by

many researchers that have studied the application of deep learning in various areas of
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medicine and bioinformatics [43, 183, 230].

In this chapter, we presented an overview of various deep learning techniques and illus-

trated how the decisions of these could be interpreted with self-explanatory oncological

cases to better illustrate. We also review the related research on the application of inter-

pretability methods for cancer diseases, summarizing their main conclusions.

Overall, a high number of studies focused on breast, skin, and brain cancers (60%) and

on the explanation of the importance of tumor characteristics like tumor dimensions and

shape, in the prediction of decision systems. The majority of DL techniques interpreted

were multilayer perceptrons and convolutional neural networks, often used to predict based

on raw images or handcrafted features extracted from them.

As discussed in the previous section, three main issues were identified: (1) limitation on

the applications of interpretability methods; (2) lack of reliability of some interpretability

methods; and (3) lack of evaluation metrics for interpretability methods.

Future research should go beyond model validation and apply interpretability to under-

stand how models misbehave, as well as discover new knowledge about different cancer

diseases. Also, although DL has been successful in many cancer tasks (e.g. tumor seg-

mentation, cancer prognosis, and image registration), works aim at interpreting models on

these tasks remain unexplored. Lastly, future research in the design of evaluation metrics

and frameworks is mandatory to assess the reliability of AI systems and for increasing the

trust to be used in clinical practice.

These conclusions motivated the work presented in Chapter 5 and Chapter 6 on the de-

velopment of evaluation metrics and evaluation approaches for interpretability methods.
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A global taxonomy of

interpretable AI

The last decade saw a sharp increase in research articles concerning interpretability for

Artificial Intelligence (AI), also referred to as eXplainable AI (XAI). In 2020, the number

of articles containing “interpretable AI”, “explainable AI”, “XAI”, “explainability”, or

“interpretability” has increased to more than three times that of 2010, following the trend

shown in Figure 3.1.

Figure 3.1: Trends of the publications containing “interpretable AI” or “explainable AI”
as keywords

Being applied to an increasingly large number of applications and domains, AI solutions

mostly divide into the two approaches illustrated in Figure 3.2. On the one side, we

have Symbolic AI, symbolic reasoning on knowledge bases as an important element of

automated intelligent agents, which reflect the humans’ social constructs into the virtual
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world [195]. To communicate intuitions and results, humans (henceforth agents) tend

to construct and share rational explanations, which are means to match intuitive and

analytical cognition [169]. On the other side, Machine Learning (ML) and Deep Learning

(DL) techniques reach high performance by learning from the data and through experience.

The complexity of the tasks in both approaches has increased over time, together with the

complexity of the models being used and their opacity. A rising interest in interpretability

came with the increasing opacity of the systems and with the frequent adoption of ”black-

box” techniques such as DL, as documented by multiple studies [1, 19, 20, 53, 135, 146,

149, 157, 193, 221].

Artificial Intelligence 
(AI)

Symbolic AI
Machine 
Learning

Deep 
Learning

Figure 3.2: Graphical representation of Artificial Intelligence, Machine Learning, and Deep
Learning adapted from https://www.intel.com.

A strong condition to ensure the reliable use of AI is improving the understanding of its

internal mechanics, particularly when complex DL models are deployed. As the previous

studies on interpretability point out, understanding the decision-making of an AI system

is a non-trivial task that spans three areas, namely understanding the task, the perfor-

mance metric used by the model, and the type of experience being used. With the intent

of improving interpretability within these three areas, a large number of requirements,

tools, and techniques have been developed in different application fields, leading to in-

consistent use of the terminology. Interpretability is often confused with more abstract

notions of fairness, privacy, and transparency [238]. These terms do not have a clear

and unique definition and the understanding of these terms may differ depending on the

domain and context. Similarly, the words interpretable and explainable have been used

interchangeably in some articles [135, 146], while others use a strong distinction between

the two terms [193]. Undoubtedly, there is a link between the act of interpreting and

that of explaining, as shown by the etymology of the words themselves (that we report

in Table 3.3). Interpretability has been presented as “explaining or presenting in under-
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standable terms to a human”, “providing explanations” to humans [146] and “assigning

meaning to an explanation” [172]. For [193], however, there is a strong distinction be-

tween interpreting and explaining since models may be developed to directly encompass

the ability to explain their decision-making. In this case, interpretability refers to meeting

the transparency requirement at the task definition level, whereas explanation refers to a

post-hoc (after training) evaluation of the model understandability.

The different perspectives about the technical terminology are discussed in several articles

within the specific context of explainable AI and ML design, finding difficult integration

within the other domains that are driving and shaping AI development. Policies for fund-

ing and regulating AI research also refer to concepts such as transparency, explicability,

reliability, informed consent, accountability, and auditability of the systems [35, 36, 73].

Clarifying what these terms refer to and unifying the social and technical perspectives

on these aspects is fundamental to determining directions for progress and encouraging

cross-disciplinary discussion and interaction on AI developments. Fields that analyzed

the impact of technologies over the centuries such as cognitive sciences, sociology, philos-

ophy, and ethics constitute invaluable resources of knowledge from which it is possible to

evaluate and understand how human trust evolves over time and how it can be built to

motivate the adoption of new technologies. If the use of a global terminology is adopted

by these disciplines, then a broader range of possibilities can open, encouraging the design

of interpretability tools that are not only useful and understandable to ML developers

but to a wider audience ranging from the final decision-maker to anyone affected by this

decision [225].

In this chapter, we present a taxonomy and interdisciplinary definitions for interpretability

and interpretable AI that can be used in multiple contexts which came to fruition from the

collaboration of researchers from 8 disciplines in the social and technical sciences. Also,

we propose the study of a use case in the medical field to demonstrate the relevance of

unifying perspectives and adopting a common terminology.

3.1 Background

Several articles in the literature proposed a taxonomy of interpretable AI. Table 3.1 reviews

in chronological order the numerous definitions that were given in the ML literature for

interpretable, explainable, transparent, decomposable and intelligible. While trying to be

as complete as possible, we clarify that this table is not exhaustive. We excluded from this

review the articles that defined the taxonomy for developing a single technique. Discor-

dance can be noticed on the meaning assigned to the terms by the articles in this collection,

with major dividing points emerging on the words: (i) interpretable and explainable; (ii)

transparency and decomposability ; (iii) intelligible and interpretable;
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The terms interpretable and explainable are equated, for example, by several researchers

[1, 20, 57, 146, 157, 231]. An even broader number of articles describes a clear distinction

between these two terms [19, 37, 53, 135, 149, 154, 172, 193], suggesting that a distinction

between these two terms is more popular among researchers. As for interpretability, multi-

ple definitions exists also within the context of explainability, for which we refer the reader

to the systematic review by [233]. The work by Arrieta et al. [19], for instance, distin-

guishes interpretability from explainability, which is defined as a human-understandable

interface that exists between the user and the system. Transparency is used in multiple ar-

ticles with the meaning described by Lipton in [135] of model decomposability [53, 57, 135].

In other articles, this term is used as a synonym for interpretability [19, 157] or for func-

tional understanding of the model [149]. Rudin et al. [193] define transparency as models

with particular properties such as monotonicity since these models are transparent in the

way their variables are jointly related. Finally, the concept of intelligible model equated to

that of an inherently interpretable model in [20], while it is used meaning the introduction

of interpretability constraints in the model design in [57, 154].

None of the articles in Table 3.1 considers the taxonomy used by policymakers, regulators,

philosophers, and sociologists discussing the impact of AI on society and on the research

community. The perspectives in these articles are discussed by experts in AI development

and familiarity with ML. As a consequence, different definitions are used in social sciences.

We review the existing definitions and gather the perspectives from a multidisciplinary

pool of experts to provide a taxonomy that can be used in multiple domains in a unique

way that adapts to both the social and the technical sciences.

3.2 Methods

A round table public meeting was held online on April 29th, 2021 on “A Global Taxonomy

for Interpretable AI”1. Endorsed by the AI4Media project within the European Union’s

Horizon 2020 for research and innovation plan, this event was organized to bring together

researchers from multidisciplinary backgrounds to collaborate on a global definition of

interpretability that may be used with high versatility in the documentation of social,

cognitive, philosophical, ethical and legal concerns about AI. A total of 18 experts were

invited to participate in the event. The selection of the experts was tailored to obtain

the most representative consortium of the fields dealing with Interpretable AI at the

moment. The final pool of experts involved in this work also depended on the experts’

interests and their availability but the selection was by no means at all made in such a

way to steer the discussion in the direction of a pre-agreed consensus. The experts were

both internal members of the AI4media project and external non-affiliated members. The

external experts were invited so as to obtain a balanced perspective on the topic that

1https://taxonomyinterpretableai.wordpress.com/, as of October 2021.
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Table 3.1: Multiple Taxonomies - Part 1

Interpretable Explainable Transparent Intelligible Ref.
The system operations
can be understood
by a human, either
through introspection
or through a produced
explanation.

To show the rationale
behind each step in the
decision. It is linked
to justification and af-
fects user acceptance
and satisfaction.

Not mentioned. Not mentioned, al-
though they refer to
introspective explana-
tions.

[37]

Ability to explain or to
present in understand-
able terms to a human.

Not mentioned. Not mentioned. Not mentioned. [70]

A non-monolithic con-
cept reflecting several
distinct ideas.

Solely intended as post-
hoc interpretability.
Post-hoc explanations
can be verbal, and
visual.

Understanding the
mechanism by which
the model works. Re-
lated to simulatability
and decomposability.

Understandable models
are sometimes called
transparent.

[135]

A mapping of an ab-
stract concept into a
domain that the human
can make sense of.

Collection of features
[. . . ] that have con-
tributed to producing a
given decision.

Achievable by both in-
terpreting and explain-
ing ML outcomes

Post-hoc interpretabil-
ity should be con-
trasted to incorporate
interpretability into
the structure of the
model.

[154]

Used more frequently
than “explainable” by
the ML community, re-
ferring to a powerful
tool for justifying AI-
based decisions.

Not mentioned. Not mentioned. Understandability is
characterized by no
means of understand-
ing the internal model
functioning. Under-
standable is different
from intelligible.

[1]

The level to which
an agent gains and
can make use of both
the information em-
bedded within explana-
tions given by the sys-
tem and the informa-
tion provided by the
system’s transparency
level.

The level to which a
system can provide
clarification for the
cause of its decision-
s/outputs.

The level to which a
system provides infor-
mation about its inter-
nal workings or struc-
ture and the data it has
been trained with.

Not mentioned. [223]

Equated with “explain-
ability”, it defines the
degree to which an ob-
server can understand
the cause of a decision.”

Establishing an inter-
action between the ex-
plainer and the ex-
plainee (i.e. the subject
on the receiving end of
an explanation), that
is contextual and selec-
tive, based on a small
subset of causes.

Briefly mentioned as in-
terlinked to trust.

Not mentioned. [146]

Acknowledgment of
multifaceted definitions
from earlier studies.

Answering “why” and
“why not” questions to
improve the user’s men-
tal model of the system.
In other cases, equated
to interpretable.

Providing explanations
on how the system
works, clearly describ-
ing the model struc-
ture, equations, param-
eter values, and as-
sumptions.

A system that is
“clear enough to be
understood”. It is chal-
lenging to understand
how an AI system
should be defined in
order to be “intelligi-
ble” since this would
require the clarification
of “complex compu-
tational processes to
various types of users”.

[57]

Broadly defined, refer-
ring to the extraction of
relevant knowledge (vi-
sualization, language,
or equation) about do-
main relationships con-
tained in the data.

Used as a synonym of
interpreting.

A feature engineering
process to enhance the
analysis of model inter-
pretability.

Not mentioned. [157]
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Table 3.2: Multiple Taxonomies - Part 2

Interpretable Explainable Transparent Intelligible Ref.
Used interchangeably
with explainable.

Post-hoc explanations
involve an auxiliary
method after a model is
trained. Self-explaining
models generate local
explanations that
may not be directly
interpretable.

Not mentioned. A “directly inter-
pretable” model,
namely intrinsically
understandable by
most consumers.

[20]

It is a domain-specific
notion that does not al-
low a general-purpose
definition. An inter-
pretable ML model is
constrained in model
form so that it is either
useful to someone, or
obeys structural knowl-
edge of the domain [...]

Possibly unreliable and
misleading, explana-
tions are not faithful to
what the original model
computes. Often, they
do not make sense nor
do they provide enough
detail to understand
what the black box is
doing.

Fully transparent mod-
els are allowed to un-
derstand their variables
and the related correla-
tions.

Not mentioned. [193]

It refers to the degree of
human comprehensibil-
ity of a given black-box
model or decision.

It refers to the numer-
ous ways of exchang-
ing information about a
phenomenon (a model’s
functionality or the ra-
tionale and criteria for
a decision) with multi-
ple stakeholders.

A model is transparent
if its functionality can
be comprehended in its
entirety by a person.

Not mentioned. [149]

It is a passive charac-
teristic of a model re-
ferring to the level at
which it makes sense for
a human observer (also
referred to as trans-
parency).

Any action or proce-
dure to clarify the in-
ternal model functions.

As in Lipton, described
by Simulability, De-
composability and
Algorithmic Trans-
parency.

Not mentioned. Un-
derstandable is differ-
ent from intelligible.

[53]

It encompasses multi-
ple concepts and defi-
nitions. Generally, it
is associated with mod-
els with inherently in-
terpretable behavior.

It is intended as the
generation of post-hoc
explanations for black-
box models.

It is intended as an ex-
planation of how the
system works.

Not mentioned. [19]

Assigning meaning to
an explanation.

Process of describing
one or more facts, facil-
itating the understand-
ing of said facts by a
human consumer.

Not mentioned. Not mentioned. [172]

Assigning a subjective
meaning to a model,
object, or variable that
is possible to be in-
terpreted by the ex-
plainee.

The activity of produc-
ing more interpretable
objects manipulating
symbolic information.

Providing a clear repre-
sentation of the black-
box dynamics.

Concerning the ex-
plainee, it is intended a
successful consumption
of an explanation.

[55]
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went beyond the purpose of the project itself. For each of the discussed disciplines, at

least one external expert was included in the discussion. The selection was done based

on the previous publication records on interpretable AI and on the reported interest and

availability to participate in the study.

The workshop was organized in two sessions, consisting of a round table discussion and a

panel session with a question and answer format. The first session consisted of seven short

talks of 12 minutes followed by 3 minutes for questions. The second session involved a panel

of five experts discussing questions from the audience concerning the role and implications

of AI and transparency. The workshop was streamed on YouTube2 and spectators were

able to interact with the audience through a live chat.

The round table resulted in a solid basis for this work and steered further discussion and

proposed future research directions. We hope that this work may constitute a first solid

step towards finding a global consensus on the taxonomy for interpretable AI for both the

social and the technical sciences.

3.3 Results

3.3.1 Etymology and existing definitions

Table 3.3 analyzes the etymology of frequently used words in the context of interpretable

AI. Looking at the historical formation and the original meaning of a word can shed light

on its roots and history, deepening the understanding of its meaning and the context in

which it should be used. The word clue, for example, gains meaning from its intrinsic

referral to Greek mythology. It originates from the Germanic word clew which indicates

a ball of thread or yarn. Theseus used a clue of thread to find the exit of the Labyrinth.

When people say “give me a clue”, they refer to some helpful information and not the

ball of yarn itself. Understanding the etymology of the words in the AI interpretability

terminology can help in a similar way to better understand the meaning of each term and

why one word is more appropriate than another in specific contexts.

Figure 3.3 illustrates how some of the terms defined in Table 3.3 (such as intelligible,

transparent, explainable, accountable, auditable and reliable) slightly change their mean-

ing depending on the context, acquiring multiple shades and connotations as they interact

with the different domains. This analysis, based on the cross-disciplinary knowledge of

the people participating in the initiative, gives insights into how each domain envisions

these concepts. Some conflicts in the definitions are shown as the words are used in one or

another discipline. The attention towards one or more concepts is mostly heterogeneous,

with some disciplines focusing more on one aspect than others. While heterogeneity in

2https://www.youtube.com/watch?v=aVLCDORsqmo, as of February 2022.
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Table 3.3: Analysis of the etymology of the terms related to interpretability.

ID Word Etymology ML Definition
1 Interpretability, Interpretable From late Latin in-

terpretabilitis from
Latin interprĕtor,
interprĕtāri (to inter-
pret).

To interpret, com-
ment, explain, expose,
illustrate, to trans-
late.

To translate, expose,
and comment on the
generation process of
one or multiple ML
systems outcomes,
making the overall
process understand-
able by a human.

2 Explainability, Explainable From 1600 use of ex-
plain + -able adapted
from Latin explāno,
explānāre

To explain, clarify, ex-
pose, illustrate, state
clearly

To indicate with preci-
sion, to illustrate what
features or high-level
concepts were used by
the ML system to gen-
erate predictions for
one or multiple in-
puts. In intelligent
agent systems: pos-
sibly iterative process
of symbolic knowledge
manipulation to make
it interpretable.

3 Transparency, Transparent Medieval Latin adap-
tation of the words
trans (on the other
side) and pārĕo,
pārēre (to appear, to
show).

To see through. A transparent ML sys-
tem has a non-opaque
output-generation
process where the role
of the individual com-
ponents, the learned
paradigms, and the
overall behavior of the
model are known and
can be simulated by a
human user.

4 Intelligibility, Intelligible From Latin intellegi-
bilis, intellegibilis, II
class adjective.

To understand, com-
prehend, decipher.

An intelligible ML
system is an under-
standable system with
inherent interpretabil-
ity

5 Accountability, Accountable. From 1770 use of
accountable + -ity,
adapted from Old
French acont derived
from Latin compŭto,
compŭtāre, which has
multiple meanings
including to count,
to estimate, to judge
and to believe.

Used from the 1610s
with the sense of “ren-
dering an account”,
meaning providing a
statement answering
for conduct.

An accountable ML
system is expected to
justify its outcomes
and behavior

6 Reliability, Reliable From Scottish of the
1560s “raliabill”, de-
rived from Old French
relier a derivation
of the Latin rĕl̆ıgo,
rĕl̆ıgāre (meaning to
tie, to bind).

From the 1570s used
with the sense of to
depend, to trust, typ-
ically used in the ex-
pression “to rely on
something/someone”.

To be consistently
good and be worthy
of trust

7 Auditability, Auditable From Latin noun au-
ditŭs, auditūs.

The sense of hearing,
the act of hearing, au-
dition. Used in the
sense of official audi-
ence, judicial hearing
or examination.

An “auditable” ML
system should provide
information on how to
perform an official au-
dience of the model.
For example, this can
be done by provid-
ing extra documenta-
tion and functionali-
ties.

8 Liability, liable From Anglo-French
liable, derived from
Latin l̆ıgo, l̆ıgāre (to
tie, to bind).

Legal responsibility
for acts.

Legal liability of a
product implementing
ML, particularly in
the case where some-
thing goes wrong.

9 Robustness, Robust From French robuste,
derived from Latin ro-
bustus, robustum.

The literal meaning is
oaken, made of oak.
Used in the figurative
sense of strong, vigor-
ous and resistant.

Robust ML systems
are resistant, secure
and reliable. Provid-
ing consistent results
also in case of adver-
sarial attacks, varia-
tions in the dataset,
domain shifts, and
outliers.
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the attention to the words is legitimate and given by the intrinsic nature of each disci-

pline, the strong changes in the meaning assigned to the same word by different disciplines

may inhibit understanding and collaboration among different fields. The word transparent

has been interpreted as “providing meaningful information about the underlying logic” in

the EU legislation, whereas by technical developers this is often understood as a certain

degree of understanding of the system mechanics, decomposability and simulability. In

other words, if technicians and legislators were to think of the degrees of transparency of

a vehicle, they would see different aspects. The former would think of pistons, fusible and

the combination of these elements to the final engine. The latter would think of the degree

of information available to the user about the working principles of the vehicle: starting

the engine, stopping it from running, changing the direction and so on.

Figure 3.3: Differences of definitions in other domains than ML development. In this
diagram, interpretable is equated to explainable since most of the social domains equate
the two terms for simplicity.
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3.3.2 A global definition of Interpretable AI

As an important contribution of this work, we derive a multidisciplinary definition of

interpretable AI that may be adopted in both the social and the legal sciences.

In daily language, an instance, or an object of interest, is defined as interpretable if it is

possible to find its interpretation, hence if we can find its meaning [211]. Interpretability

can thus be conceived as the capability to characterize something as interpretable. A

formal definition of interpretability exists in the field of mathematical logic, and it can

be summarized as the possibility of interpreting, or translating, one formal theory into

another while preserving the validity of each theorem in the original theory during the

translation [220]. The translated theory as such assigns meaning to the original theory

and it is an interpretation of it. The translation may be needed, for instance, to move into

a simplified space where the original theory is easier to understand and can be presented

in a different language.

From these explicit definitions, we can derive a multidisciplinary definition of interpretabil-

ity that embraces both technical and social aspects: “Interpretability is the capability of

assigning meaning to an instance by a translation that does not change its original va-

lidity”. The definition of interpretable AI can then be derived by clarifying what should

be translated: “An AI system is interpretable if it is possible to translate its

working principles and outcomes in human-understandable language without

affecting the validity of the system”. This definition represents the shared goal that

several technical approaches aim to obtain when applied to AI. In some cases, as we dis-

cuss in Sec. 4.4, the definition is relaxed to include approximations of the AI system that

maintain its validity as much as possible. Interpretability is needed to make the output

generation process of an AI system explainable and understandable to humans and it is

often obtained as a translation process. Such a process may be introduced directly at the

design stage as an additional task of the system. If not available by design, interpretability

may be obtained by post-hoc explanations that aim at improving the understandability

of how the outcome was generated. Interpretability can thus be sought through iterations

and in multiple forms (e.g. graphical visualizations, natural language, or tabular data)

which can be adapted to the receiver. This fosters the auditability and accountability of

the system.

3.3.3 A global taxonomy

In what follows we present a global taxonomy for interpretable AI, and summarize the

multiple viewpoints and perspectives gathered in this work. Table 3.4 presents the tax-

onomy with further detail on domain-specific definitions used in each of the eight fields

studied in this work, namely law, ethics, cognitive psychology, machine learning, symbolic

AI, sociology, labor rights, and healthcare research. Brackets specify the domain in which
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Table 3.4: Taxonomy of Interpretable AI for the social and technical sciences. Brackets
specify the domain in which each definition applies. Global marks a definition common to
both the social and technical sciences.

Terminology Definition in AI Family of AI systems (technical)

Interpretability

(global) AI interpretability defines those
AI systems for which it is possible
to translate the working principles and
outcomes in human-understandable lan-
guage without affecting the validity of
the system

Three families of AI systems may be
identified by interpretable AI. These
are (i) AI systems with built-in inter-
pretability (ii) AI systems that are in-
herently interpretable (iii) AI systems
that were explained by post-hoc meth-
ods. More details on these families in
Table 3.5

(EU law) AI interpretability defines the
supply of meaningful information about
the underlying logic, significance, and
envisaged consequences of the AI system

-

(symbolic AI) AI interpretability in-
cludes explanations of the symbolic AI
systems in symbolic language

-

(sociology) AI interpretability must de-
fine a social relationship of trust between
the human and the machine

-

Interpretability by design (global) The translation of the system’s
working principles and outcomes into
human-understandable language is pro-
vided directly by the AI-system itself,
interpretability being one of the tasks of
the system

Two families of systems may be identi-
fied, namely (i) systems with a trans-
parent design (e.g. introducing pa-
rameter sparsity, implementing mono-
tonic functions [159]) (ii) systems with a
self-explanatory objective that generate
explanations for the model predictions
(e.g. interpretable decision sets [128]).

Post-hoc interpretability (global) The AI system is neither in-
herently interpretable nor interpretable
by-design, rather additional analyses
are performed to generate explanations
without re-training the model parame-
ters

Six families of post-hoc interpretability
methods can be identified based on the
form of the generated explanations into
(i) feature attribution (ii) feature visual-
ization (iii) concept attribution (iv) sur-
rogate explanations (v) case-based ex-
planations and (vi) textual explanations.
For further details on these categories,
we refer the reader to [19] and [91]

Local interpretability (technical) Local interpretability is pro-
vided when interpretability analysis is
performed on the system’s outcome for
a single input

The family of feature attribution meth-
ods contains several approaches that
provide local interpretability [131, 142,
153, 185, 202, 209, 216, 261]

Global interpretability (technical) Global interpretability is
provided when interpretability analysis
is performed to explain the system be-
havior for a set of inputs corresponding
to an entire class or multiple classes

Post-hoc interpretability methods may
provide global interpretability, such as
distillation techniques [82] and the ex-
traction of rule lists[49]

Explainability (global) Explainable AI, also denoted as
XAI, defines the branch of AI research
that focuses on generating explanations
for complex AI systems

The six families of post-hoc inter-
pretability methods known as feature
attribution, feature visualization, con-
cept attribution, surrogate, case-based
and textual explanations are addressed
as explainable AI.

Transparency (global) Transparency is used in AI to
characterize those systems for which the
role of internal components, paradigms
and overall behavior is known and can
be simulated

The family of linear regression models
and decision trees in low dimension are
transparent and can be simulated
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each definition applies. If a term applies to both social and technical experts it is provided

first and marked by the (global) identifier. Otherwise, it is marked as the domain-specific

identified, i.e. EU law, sociology, etc. This table may be resorted to by practitioners in

any of the above-mentioned fields to obtain a common definition for each term in the tax-

onomy and to inspect all the exceptions and variations of the same term in the literature.

Our objective is not to impose one taxonomy above another, rather to raise awareness on

the multiple definitions of each word in each domain, and to create a common terminology

that researchers may refer to in order to reduce misinterpretations.

The following subsections explain how the proposed taxonomy adapts to the fields with

their respective needs, challenges, and goals in terms of ML interpretability.

3.3.4 Use of the proposed terminology to classify interpretability tech-

niques

In this section, we show how the terminology in Table 3.3 can be used to classify ML

interpretability techniques. To do so, we group popular interpretability techniques into

the families shown in Table 3.5. On the basis of this, Table 3.6 summarizes how each

family of techniques can provide the properties described in Table 3.3. In the following,

we give more insights concerning the classifications provided in Tables 3.5 and 3.6.

Due to their low complexity, models such as decision trees and sparse linear models have

inherent interpretability, meaning they can be interpreted without the use of additional

interpretability techniques [152]. These methods are intelligible, according to the definition

in Table 3.3 ID 4. Black-box models, such as deep learning models, have surpassed the

performance of traditional systems over complex problems such as image classification.

However, due to their high complexity, they require techniques to interpret their decisions

and behavior. These techniques often involve considering a close approximation of the

model behavior that may be true in the locality of an instance (i.e. local interpretability)

or for the entire set of inputs (i.e. global interpretability). They can be grouped according

to the following criteria: (1) scope, (2) model-agnostic, and (3) result of explanation.

The scope of the technique shows the granularity of the decisions that are allowed as ex-

planations, either global or local. Global interpretability techniques explain the behavior

of the system as a whole, answering the question “How does the model make predic-

tions?”, while local interpretability techniques explain an individual or group of predic-

tions, answering the question “How did the model make a certain prediction or a group

of predictions?” [135].

Model-agnostic techniques can be applied to any model class to extract explanations, unlike

model-specific techniques that are restricted to a specific model class. Interpretability

techniques can also be roughly divided by their result or the type of explanation they

produce, creating multiple families of techniques. It is important to note that some types of
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Table 3.5: Definitions of families of interpretability techniques

Scope Family Definition

Inherent
Interpretability

Interpretable Model Models that are considered interpretable due to their low complex-
ity and simple structure.

Black-box Model Models that are considered hard to interpret due to their high com-
plexity and complicated structure.

Global
Interpretability

Feature Visualization [161,
168]

Synthetization of new instances that help visualize features learned
by the model or a specific part of the model.

Prototype, Criticism [117] A prototype is a data instance that is representative of all the data.
A criticism is a data instance that is not well represented by the
set of prototypes.

Influential Instances [123] Data instances of which the removal has a strong effect on the
trained model.

Dependency Plot Depicts the functional relationship between a small number of input
variables and predictions.

Global Surrogate [108] Interpretable model that is trained to approximate the predictions
of a black-box model.

Concept Attribution [92,
118]

Explain the model’s behavior based on user-friendly concepts.

Feature Importance [142] Assigns a score to input features based on how useful they are at
predicting a target variable.

Local
Interpretability

Local Surrogate [185] Local surrogate models are interpretable models that are used to
explain individual predictions of black-box models.

Saliency Map [131, 202] Highlight the pixels that were relevant for a certain image predic-
tion.

Counterfactual Exam-
ple [235]

A counterfactual explanation of a prediction describes the smallest
change to the feature values that changes the prediction to a pre-
defined output.

Adversarial Example [88] An adversarial example is an instance with small, intentional fea-
ture perturbations that cause a ML model to make a false predic-
tion.

explanations are strongly preferred, as half the studies using interpretability techniques in

the oncological field use either saliency maps or feature importance [12]. These techniques

can produce data points that explain the behavior of the model [117, 131], visualizations

of internal features [168] or produce simpler models that approximate the model [128, 142,

185]. It is important to choose the right technique based on its scope and family to reach

the desired objective. Table 3.5 presents the families of techniques, their definitions, and

important references [152].

Based on Tables 3.1, 3.2 and 3.4 we present Table 3.6 where we group families of inter-

pretability techniques based on their scope and classify them based on their suitability to

achieve each of the objectives mentioned in Tables 3.1 and 3.2. To achieve interpretability

as intended in Table 3.3 (ID 1), local techniques are preferable since they allow users to

interpret the outcomes of a system and thus increase its interpretability. Global techniques

can be rather inaccurate at a local level, although they are more adequate to expose the

mechanisms of a system in general. The decision-making process can become more trans-

parent (ID 3) at the local or global level, depending on the scope of the interpretability

techniques. Intelligibility (ID 4) is a characteristic of inherently interpretable models. It

can be achieved for more complex models by approximating the decision function either
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Table 3.6: Classification of families of interpretability techniques
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Inherent Interpretability
Interpretable Models x x x x x x x

Black-box Models - - - - - - -

Global Interpretability

Feature Visualization x - x - x x -

Prototypes and Criticisms x - x - x x x

Influential Instances x x x - x x x

Dependency Plot - x x - x x -

Global Surrogate x x x x x x -

Concept Attribution x x x - x x -

Feature Importance - x x - x x -

Local Interpretability

Local Surrogate - x x x x x -

Saliency Map - x x x - x -

Counterfactual Example - x x - x x -

Adversarial Example - - - - - x x

locally or globally with an inherent interpretable model. It is also important to point

out that even with the model being inherently interpretable, sometimes the features being

used to train the models can be hard to understand, particularly for non-experts in feature

engineering.

As for accountability, systems would need to justify their outcomes and behavior to be

accountable, and thus the techniques that offer any interpretability or explainability can

help to achieve this. Similarly, these techniques can also be used to examine the global

behavior or reasoning of local decisions and provide auditability (ID 7). Finally, Robust-

ness (ID 9) is not achievable by only understanding the behavior of the model. It would

rather require finding or producing instances that make the model misbehave, limitations

of the model, or data points that are outside the training data distribution.

At this point, we remark that interpretability techniques come with inherent risks. A

desired property of interpretability is to help the end-user with creating the right mental

model of an AI system. However, if one considers AI models to be lossy compression of

data, then interpretability outcomes are a lossy compression of the model and are severely

underspecified. In other words, it is possible to generate several different interpretations

for the same observations. If used improperly, interpretability techniques can open new

sources of risk. In some settings, interpretability outcomes can be arbitrarily changed. For

example, [6] demonstrate a case of “fair washing”, where fair rules can be obtained that

represent an underlying unfair model. It is also possible for an AI system that predicts

grades to be gamed if the underlying logic is fully transparent. Model explanations can

demonstrate an AI model criterion to be illegal or provide grounds for appeals [238].
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Finally, transparency also conveys trade-offs involved in decisions in an explicit manner

that may otherwise be hidden [60].

From these considerations, it follows that interpretability requires a context-based scientific

evaluation. Two standard approaches for such evaluations are (a) to establish baselines

based on domain insights to evaluate the quality of explanations, and (b) to leverage end-

user studies to determine effectiveness. For instance, user experiments have been used

for trust calibration (knowing when and when not to trust AI outputs) in joint decision-

making [256]. In another interesting approach, [128] measured the teaching performance of

end-users in establishing how effective explanations are in communicating model behavior

with good teaching performance indicating better model understanding.

Several quantitative measures to assess explanation risks have also been proposed in the

literature. A common measure using surrogates involves approximating a complex model

with a simpler interpretable one. Properties of the simpler model can then help address

questions on the extent of interpretability of the original model. Common measures include

fidelity, the fraction of time the simpler model agrees with the complex one, or complexity,

the number of elements in the simpler model a user needs to parse to understand an

outcome. Faithfulness metrics measure the correlation between feature importance as

deemed by an AI model versus deemed by an explanation. Sensitivity measures [246] the

degree to which explanations are impacted by non-trivial perturbations.

3.3.5 Terminology in the cognitive sciences

From the point of view of the cognitive sciences, interpretability (as defined in line 1

of Table 3.3), is considered part of the social interaction between an AI system and a

user [107]. As the definition underlines, the concept of interpretability is strictly con-

nected to the human ability to understand information. The process of understanding is

defined in cognitive psychology as the ability of the human brain to infer or make pre-

dictions in semantic memory. Semantic memory is wired by connections of neurons that

are created and consolidated by positive enforcement. A high-level model of such neural

connections identifies areas that are specialized for reacting to specific stimuli (e.g. num-

bers, words, shapes, colors, actions, sounds). Depending on what kind of information is

being understood, these areas may be used individually or share functions [237]. The un-

derstandability of something is thus the property of an object, may this be a model or the

outcome of interpretability methods, to be understood by a human. Because the wiring

of the neurons constituting the areas in the semantic memory is a result of individual ex-

periences, understandability incorporates some degree of subjectivity and variability, e.g.

what is understandable to someone may not be understandable to someone else. Users

may vary greatly, so may their background and understanding of explanations. Thus to

be widely applicable and useful to a variety of users, understandability shall not require

any prior training of the addressees concerning the feature extraction, hyper-parameter
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selection and training of AI systems.

Some aspects of human explanation generation (i.e. explainability as in ID 2 Table 3.3)

do not coincide directly with what is intuitively thought about as transparency (ID 3 in

Table 3.3). The first difference is that explanations are selected by humans. The selection

is generally biased to reflect the mental model of the explainee. Even having a complete set

of causal relations, people are more likely to rely on a few causes that may explain certain

key aspects of the event [106]. It may at this point be noted that explainability should

thus be intended differently from transparency, that is rather the unbiased provision of

insights about the internal mechanics of an AI system.

3.3.6 Social and working environment

To develop a social relationship between humans and machines, interpretability needs to

act as a social contract of trust between these two parties. Trust in the system leads to

reliability (as intended in ID 6 of Table 3.3) and this can only be built through sustained

understanding. Using understanding to build trust is a well-understood social science

research problem, complicated by the fact that humans accept explanations first and

foremost in a highly biased manner [141]. The fact that bias is part of every human

understanding, however, should not limit the potential success of explainable AI. For this

reason, AI explainability (ID 2 in Table 3.3) should be seen as a social translation, as

investigated in recent studies in HCI like [115]. If only computer scientists are considered

within the project ideation and development, however, there is the main risk, discussed

by T. Miller in [147], of having the helpless being led by the clueless3, namely having

ML engineers building explainability mostly for other ML engineers. Social scientists and

workers should be introduced in the analyses proposed by ML researchers, as the actual

addressee and users of the algorithms. Collaborations should be built to develop types of

human-computer interactions in ML that are more understandable to non-ML experts. If

interpretability is not developed with the help of the social sciences, the risk of creating AI

systems mainly for other researchers is high and it would undermine the efforts in building

reliable and trustworthy automated systems.

AI may not be developed with the only intent of prioritizing the reduction of human input,

as this may lead to the perception of AI as “inhuman” intelligence [69]. New algorithms

should prioritize the creation of a relationship of trust above the desire to automate and

reduce human input.

Within the realm of employment relations, work, and labor markets, the concept of

”democracy at work” is generating into the discussion of the criteria for AI transparency

(as defined in Table 3.3 ID 3). Of particular importance are the employees’ rights of partic-

ipation and consultation if AI algorithms are employed to make decisions at the workplace.

3In the original article, this problem is formulated as that of “the inmates running the asylum”.
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Employees should be guaranteed the possibility to get involved in management decisions

about the organization of work and of working conditions. Democracy is thus essential

to let the employees create optimal conditions for work and it translates into the need of

transparency if AI systems are used to manage the working personnel. In particular, the

workers’ autonomy (the right of a worker to intervene), skill grading, and the ruling of

organization and production processes should be regulated by transparent AI decisions.

Transparency is thus desired to decide whether an algorithm is performing non-democratic

practices, such as discrimination. It is thus intended in the sense of a means to improve

the worker’s satisfaction and safety at work (see Figure 3.3). Even further, it may help to

identify the workplace conditions enabling discrimination in the first place.

3.3.7 The EU law on interpretability

In law, there is no precise definition of AI explainability. The High-Level Expert Group on

AI (AI HLEG) set up by the European Commission lists explicability4 as one of the ethical

principles that must be respected in order to ensure that AI systems are developed, de-

ployed and used in a trustworthy manner. The principle of explicability encompasses both

the terms of transparency and explainability as defined in Table 3.3. From a legal point of

view, explainability is seen as collecting meaningful insights on how a particular decision

is made [36]. According to [36], it does not set the requirement for an interpretable repre-

sentation of a mathematical model. Most important is that the explanation should assign

meaning to the decision, i.e. so that the decision improves the explainee’s understanding5

of the decision generation process. It follows from the AI HLEG Guidelines that explain-

ability should be adapted to the level of expertise and understanding of the individual

concerned. [35] argue that in private decision-making, the legal requirements relate to the

following four levels of ML explainability concepts: (i) providing the main features used for

a decision, (ii) providing all features used for a decision, (iii) providing explanation on the

way the features are combined to make the decision, and (iv) providing an understandable

representation of the whole model. [234] propose the following categorization of what one

may mean by an explanation of automated decision-making. Two kinds of explanations are

possible, depending on whether one refers to: system functionality, i.e. the logic, signifi-

cance, envisaged consequences, and general functionality of an automated decision-making

system, e.g. the system’s requirements specification, decision trees, pre-defined models,

criteria, and classification structures; or to specific decisions, i.e. the rationale, reasons,

and individual circumstances of a specific automated decision, e.g. the weighting of fea-

tures, machine-defined case-specific decision rules, information about reference or profile

groups. Furthermore, one can also distinguish between an ex-ante explanation (i.e. prior

to the automated decision-making taking place) and an ex-post explanation (i.e. after the

4https://www.europarl.europa.eu/cmsdata/196377/AI%20HLEG_Ethics%20Guidelines%20for%

20Trustworthy%20AI.pdf, as of February 2022.
5Intended in the scientific sense used in cognitive psychology (see Section 3.3.5).
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automated decision has taken place) [234]. The focus of many legal scholars has been on

the meaning of explainability from the data protection law point of view. The core debate

has primarily focused on whether or not the General Data Protection Regulation 2016/679

(GDPR) creates a right to an explanation of an algorithmic decision, as argued by [89] and

further discussed by [234]. The latter, in particular, argue that a non-existing “right to

explanation” of a specific automated decision should not be mistaken with other GDPR

provisions. The actual GDPR rather forms a “right to be informed” by claiming: (i)

the right not to be subject to automated decision-making and safeguards enacted thereof

(Article 22 and Recital 71); (ii) notification duties of data controllers (Articles 13–14 and

Recitals 60–62); and (iii) the right to access (Article 15 and Recital 63). Others, like [201],

point out that whether one uses the phrase “right to explanation” or not, data controllers

need to provide the data subject with the “meaningful information about the logic in-

volved, as well as the significance and the envisaged consequences of such processing for

the data subject” (Article 13(2), 14(2), 15(1) of the GDPR). Such information must be

meaningful to an individual confronted with a decision [201]. The test for whether the

information is meaningful should therefore be functional - explanations are a means to

help a data subject act rather than merely understand the mathematical processes behind

decisions [73]. This is also in line with some of the claims done in the applicative domain

at high-stakes, e.g. clinical decision-making [225].

Some scholars have studied how the legal requirements on explainability could be inter-

preted and applied to ML [36][100] used a COVID-19 use case scenario to assess the

feasibility of legal requirements on algorithmic explanations. They concluded that the use

of complex deep learning models in AI applications makes it hard to reconcile with the

existing EU data protection law requirements, especially with regard to human legibility

of explanations for non-expert data subjects. Similarly, [73] note that the legal concept of

explanations as “meaningful information about the logic of processing” may not be pro-

vided by the kind of ML “explanations” computer scientists have developed. This further

motivates the need to resort to a common ground where the objectives regarding inter-

pretability can be discussed among the disciplines involved, for example on the basis of

the taxonomy provided here. It is possible that in some cases transparency or explanation

rights may be overrated or even irrelevant – the problem that is often referred to as trans-

parency fallacy. In many cases what the data subject wants is not an explanation—but

rather for the disclosure, decision, or action simply not to have occurred [73]. In high-risk

AI systems, however, the recently proposed draft Regulation on AI (the AI Act) envisions

transparency as one of the obligations of the operators. Article 13 of the draft AI Act

requires high-risk AI systems to be “designed and developed in such a way to ensure that

their operation is sufficiently transparent to enable users to interpret the system’s output

and use it appropriately.” The obvious difference here, in comparison with the AI HLEG

Guidelines, is that the transparency is addressed towards the users of the AI systems, that

are not necessarily familiar with ML theory. This aligns with the requirement of person-
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alized explanations discussed in Section 3.3.5 and contrasts with the current definition of

transparency in the ML community where this property is rather intended as an objective

peek inside the AI algorithm.

For AI systems that interact with natural persons, e.g. an emotion recognition system or

a biometric categorization system and AI systems that generate deep fakes, the draft AI

Act prescribes an obligation to inform or disclose the fact that they interact or are exposed

to such systems. It is interesting that even though the draft AI Act does use the very

term transparency, it does not refer to the explainability and the traceability dimension

that were part of the concept according to the AI HLEG Guidelines. This shows the

inconsistency of the terminology from a legal point of view. One obvious solution would

be to amend the text of the regulation; if not, it would be subject to interpretation by the

Court of Justice of the European Union that is likely to rely on other branches of science

to complement the legal gaps, which shows the clear necessity of unified taxonomy.

3.3.8 An ethical point of view

The requirement of interpretability is often made on the basis of an analogy with human

decision-making [59]. We expect bankers to explain why they reject a loan, physicians

to explain why they discontinue treatment, and politicians to explain why they want to

implement a certain policy. This requirement is often based on the idea of transparency:

that seeing how a phenomenon happens generates accountability and the possibility of

change [15]. The interpretation of phenomena in this sense derives from the epistemo-

logical concerns being debated since antiquity in philosophy. In the historical sense (in

Table 3.3), interpreting has to do with understanding a particular course of action or

decision-making and ethical concerns have to do with providing reasons for moral choices.

Even prior to that, interpretation has been primarily a religious issue, namely concerning

the interpretation of the holy scripture, which was supposed to transmit the word of God,

in a way such that the true meaning of the text would be preserved.

Unlike other technologies, interpretation is one of the primary ethical concerns that are

raised with the application of AI. While other technologies are also able to replace hu-

man functions (e.g., a walking stick takes over the function of a leg), AI is arguably the

first technology that has the capacity to make decisions. And this raises both the epis-

temological question of why certain decisions were made by an AI system, as well as the

ethical question of whether good reasons can be given for this decision, in case it is ethical

significance.

What sets the ethical discussion apart from the technical perspective in Section 3.3.4,

is its primary focus on the ethical value of an explanation, rather than in its epistemic

value [189]. That is, a causal chain leading to the damage needs to be provided if an

AI-generated decision may affect a human being.
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As scholars have argued, however, human beings often do not need complete causal chains

of explanation [59]. This opens up some new ethical issues and problems such as the

intentional concealing of information, which may be obtained even by simply providing

explanations of which the understandability is limited by the requirement of prior expert

knowledge [15]. A patient might not be helped by a full causal explanation of a diagnosis

but rather by a trustworthy account of understandable reasons expressed in clear and

simple language.

From this perspective, we may raise three overarching ethical concerns of interpretable AI.

First, there is the concern of “sacrifice”. Because interpretation is always situated between

the system and the user, it generates the inevitable risk of omission during interpretation.

This can be due to either oversimplification (simplifying the model dynamics missing out

on important technical details) or to over complexify (providing too technical explanations

most users cannot grasp) [163]. Interpretation therefore inevitably sacrifices meaning. Sec-

ond, we should be concerned about “hospitality”, here intended as a common ground of

understanding between strangers that aims to remedy the potential of conflict. Interpre-

tation requires building bridges between different world visions, for instance between a

physician and a patient, or a civil servant and a citizen. Third, interpretation raises the

question of professional virtues. It is often part of a particular profession (a notary, a

physician, a school teacher) to uphold certain standards of excellence in providing inter-

pretability, for instance under the heading of the virtue of “fidelity”. Importantly, what

these standards mean in practice can differ significantly between different professional

contexts.

In light of the above three (and other) ethical challenges, researchers have to consider how

the ethical interpretability of AI systems should be realized in practice. Often, this requires

finding ways in which humans and AI systems are able to work together in providing

interpretations that are related to practices, sensitive to context, and provide good reasons

for making ethical choices if required.

3.3.9 Not only humans: XAI in intelligent autonomous systems

Virtual agents are the most common embodiment of symbolic AI [195]. They can operate

singularly, in a cooperative or adversarial fashion (within Multi-Agent Systems – MAS).

The agents composing intelligent autonomous systems (MAS) are hardware/software-

based computer systems characterized by any or all of the following: (i) autonomy (no

direct intervention or human control), (ii) social ability (free to interact with other agents

and humans), (iii) reactivity (perception of their environment and according to reactions),

and (iv) pro-activeness (being goal-directed, they can take the initiative) [81]. MAS have

increasingly become part of modern society and as such incorporated into an increasing

number of everyday tasks [45].
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Beyond their symbolic nature, modern agents can also leverage sub-symbolic algorithms

(i.e., ML and DL), integrating them into their reasoning processes [199]. While symbolic

agents are explainable by design (being mainly rule-based), the behavior of sub-symbolic

or hybrid agents can result in being opaque for both human users and other agents. Such

opacity harms the reputation of the single agents and the trust in the overall intelligent sys-

tem [16, 55]. In the last decades, the majority of the articles in explainable agents focused

on making intelligent systems understandable primarily to humans [16, 98, 192]. Bridg-

ing symbolic and sub-symbolic approaches is called neuro-symbolic integration [198, 215].

For example, [65] proposed to adopt neuro-symbolic and probabilistic approaches, [188] to

adopt neuro-argumentative techniques, and [34] proposed two paths to achieve such inte-

gration. Nevertheless, current research indicates that the forthcoming decades will focus

on the full development of conversational informatics [44, 162]. MAS are modeled after

human societies and within MAS agents communicate with each other, sharing syntax and

ontology. They interact via the Agent Communication Languages (ACL) standard [212]

shaped around Searle’s theory of human communication based on speech acts [200]. There-

fore, multi-agent interpretability and explainability require multi-disciplinary efforts to

capture all the diverse dimensions and nuances of human conversational acts, transposing

such skills to conversational agents [54, 55]. Equipping virtual entities with explanation

capabilities (either directed to humans or other virtual agents) fits into the view of socio-

technical systems, where both humans and artificial components play the role of system

components [239]. Ongoing international projects revolve around these concepts. For

example, they are tackling intra- and inter-agent explainability (EXPECTATION), actu-

alizing explainable assistive robots (COHERENT), countering information manipulation

with knowledge graphs and semantics (CIMPLE), and relating action to effect via causal

models of the environment (CausalXRL) 6. Explainable agents can leverage symbolic AI

techniques to provide a rational and shareable representation of their own specific cognitive

processes and results. Being able to manipulate such a representation allows building one

or more personalized explanations to meet the explainee (human and virtual) background

and boost the success of the explanation process and overall interaction.

3.4 A case study: The medical domain

In this Section, we present a case study in a medical scenario. We show how each of

the perspectives from the multiple domains (i.e. from the legislation, cognitive, social,

ethical, philosophical, rights at work, ML, and symbolic AI) comes into play in a possible

use case. As argued by [28, 225], the application of ML to clinical settings represents a

relevant use case for interpretability, motivated by the high stakes, the complexity of the

modeling task, and the need for reliability. From the legal perspective, clinicians are the

6Projects within the CHIST-ERA pathfinder programme for research on future and emerging informa-
tion and communication technologies https://www.chistera.eu/projects
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sole people legally accountable for any diagnosis and decision-making, hence accepting

ML suggestions is seen as taking an acknowledged risk that may affect the survival and

life quality of the patient. As the cognitive sciences suggest, clinicians should be able

to revise their mental model of the AI system to be able to understand the principles

applied by the systems’ decision-making, ensuring the reliability of the systems. It is only

through time and sustained use that a social relationship of trust between the physician

and the automated system can be installed. Interpretability is to be sought in the medical

application not only for the sake of the philosophical and epistemic value of explanations

per se, but also as an ethical requirement to provide a factual, direct, and clear explanation

of the decision-making process, especially in the event of unwanted consequences” [78, 189].

An AI-generated decision arguably needs to be interpretable if it can affect a human being.

Given the high cost of making a mistake, the ML application cannot be allowed to take

decisions independently, differently from other contexts where ML tools are used lightly,

e.g. recommendation systems. This sets a major requirement to ensure the well-being

of the physicians in the workplace, making sure that their confidence in the tools may

increase over time and provide them with sufficient transparency to take the decisions on

whether to rely or not on the AI system. To satisfy the requirements set by this analysis

from the social sciences, the ML and symbolic-AI tools deployed for clinical use should

interact with the experts for which technical solutions must be developed.

The interaction between humans and ML systems is a non-trivial task. Human reasoning

is mostly based on high-level concepts that interact with each other to form a semantic

representation. These interactions with semantic meaning are not necessarily represented

by ML models that mostly operate on numeric features such as input pixel values, internal

activations and model weights [118]. When the features used by the model are expressed

in clinical terms, the interaction of the clinicians with the system is enhanced and can

lead to successful cooperation. An example is the case described in [48]. Despite its

high performance, the model for pneumonia risk detection had a hidden flaw. Cases of

pneumonia with concurring asthma were assigned a lower risk of death than those without,

despite the presence of this condition being known to worsen the severity of the cases. A

correct prediction would have been the opposite diagnosis given the high risk of death. The

misleading correlation (i.e. presence of asthma thus low risk of death from pneumonia) was

rather a consequence of the effective care given to these patients by healthcare specialists

that were promptly reacting to reduce the risk of death, and as a consequence lowering

the recorded risk for these patients. The misleading feature “presence of asthma” was

captured by the interpretability analysis and it was promptly understood by physicians

since it was expressed as a clinical feature.

It is now worth pointing out that, as described by Asan et al., “maximizing the user’s

trust does not necessarily yield the best decisions from a human-AI collaboration” and

that the optimal trust level can be achieved when the user knows when the model makes

errors. After recalling that the role of humans in the practical applications of AI has
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been overlooked [21], they suggest that achieving such an understanding of both strengths

and weaknesses of the models requires a combination of three main elements: (i) increas-

ing transparency, (ii) ensuring robustness [39] and (iii) encouraging fairness. Concerning

(i), XAI was mentioned as the most promising approach to alleviate the black-box ef-

fects [156, 184]. In addition, we believe that current AI model lifecycles are often too

short for the user to acquire sufficiently high confidence, where novel approaches or even

retrained versions of the same algorithm are constantly released, sometimes with only little

quantitative performance improvement. This can be compared to a situation where drivers

must flawlessly master their vehicle while the latter is continuously changing shape and

characteristics. One must therefore foster patience to achieve an adequate level of trust,

which involves an intimate relationship between the end-user and a particular instance of

the model to seize the situations where the model is working well and where it does not.

This was de facto encouraged by the U.S. Food and Drug Administration (FDA), which as

of June 2021 only approved static algorithms. However, as pointed out by Pianykh et al.

the performance of static AI algorithms tends to degrade over time, owing to the naturally

occurring changes in local data and the environment [178]. Furthermore, the access to a

large collection of well-curated, expert-labeled data from a source that has high relevance

to the studied population and the question asked is also a severe barrier to widespread

adoption in the clinics [240]. We can conclude that an optimal model lifecycle has yet to

be discovered to balance between model performance and robustness as well as adequate

user trust and data access to optimally train AI models.

3.5 Conclusion

This work proposes an in-depth discussion of the terminology in interpretable AI, high-

lighting the risks of misunderstanding that exist if differing definitions are employed in

the technical and social sciences. As noted by the experts, there are important gaps be-

tween how, for example, the legal legislation shows the notion of transparency and the

meaning that is assigned to this word by ML experts and developers. While in the first

case, transparency is intended as a subjective property that is influenced by the receiver’s

understanding and prior knowledge, in the technical sciences transparency is rather seen

as an objective property that is not influenced by the receiver of the information. Simi-

larly, the notion of interpretability is seen as the creation of a social contract of trust by

social sciences, whereas this is yet too often intended as the explanation of the automated

generation process of the AI system by most AI experts.

The taxonomy proposed in this chapter has the objective to harmonize the terminology

used by lawyers, philosophers, developers, physicians, and sociologists, with the goal of

building a solid basis for discussing the future of AI development in a multidisciplinary

setting. We show how the proposed terminology is used in multiple domains and also its
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versatility in social and technical discussions. By discussing these points on the concrete

application of the medical domain we show that the need for a common terminology is real

and that further reflection is needed to define how effective human-machine cooperation

can be established. Without the help of the social sciences, it would not be possible to

obtain a sustainable human-machine partnership and further research needs to be pursued

at the frontier of the social and technical sciences.

58



Chapter 4

Study of the Interpretability

Trade-offs

As previously mentioned DL techniques are a powerful tool for classification tasks such

as image recognition [127], however, due to their black box models, the need for inter-

pretability arose as one of the main topics in this area neglecting the performance and

the complexity of such models. To address these issues, two works will be illustrated in

this chapter. In section 4.1 we present a study of the trade-off between performance and

interpretability by proposing a method for transferring the knowledge acquired by deep

neural networks to interpretable models to produce more accurate interpretable models.

In section 4.2 we study the relationship between the complexity of the network and the

quality of its explanations by changing the regularization parameters of the network and

measuring the impact on the faithfulness of saliency maps.

4.1 Study of the Trade-off between Performance and Inter-

pretability

In spite of machines being powerful at classification tasks such as image recognition [127],

the produced models can at times be complex and hard to interpret. Interpretable mimic

learning [50] has drawn inspiration from model compression [41] to reduce this trade-off.

Model compression consists of approximating a function learned by a slow and complex

model with a faster and simpler model with comparable performance [41].

Ba and Caruana [23] demonstrated, using mimic learning, a variant of model compression,

that shallow neural networks could, in principle, learn as accurate functions as the ones

learned by deep nets. This was generalized by distillation [108], which works by using a

transfer set to train the complex model with cross-entropy and softmax and using these

soft predictions to train the distilled model.

59



Chapter 4

While the motivation of the above model compression approaches was the reduction of the

required storage and computational power at test time, by teaching interpretable models

we can obtain another advantage, interpretability [50].

To this end, an ordinal mimic learning approach was proposed producing interpretable

models which mimic the predictions of complex neural networks. The contribution of the

present work is a new framework for ordinal mimic learning validated on 19 datasets.

4.1.1 Method

Our method, called Ordinal interpretable mimic learning extends interpretable mimic

learning [50], generalizing the two pipelines for binary classification, to problems with

ordinal classes. By combining the two training pipelines from [50] with two ordinal ap-

proaches, Multiclass and Frank&Hall [80], we can obtain interpretable models that mimic

complex models.

We propose four architectures that combine the pipelines in [50] and two ordinal ap-

proaches, Multiclass and Frank&Hall [80]. In Pipeline 1 (Figures 4.1a and 4.2a), we train

the complex model(s) (e.g. feed-forward neural networks) using the training set {X, y},
composed of the original features X and the targets y, obtaining the soft predictions of

the training set, yc. An interpretable model is then trained to mimic the complex model,

using as input {X, yc}.

In Pipeline 2 (Figures 4.1b and 4.2b), the activations of the last hidden layer of the

complex model(s), Xnn, are used in combination with the original targets y, to train

Helper Classifier. We then take the soft predictions of the Helper Classifier, yc, and the

original features, X, and train the interpretable model.

(a) Pipeline 1 (b) Pipeline 2

Figure 4.1: Illustration of the Multiclass Mimic Learning approach

(a) Pipeline 1 (b) Pipeline 2

Figure 4.2: Illustration of the Frank&Hall Mimic Learning approach for a 3-class problem
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In both pipelines, at testing time, the classification of unseen samples is performed using

only the mimic interpretable model(s). In the Multiclass approach (Figure 4.1), only one

K-class classifier is trained and the soft predictions are weighted according with the class

label. By weighting the soft predictions, the K class probabilities are combined into one

numeric using the following equation:

yc =
K∑
k=1

[k ∗ Pr(V = Vk)] (4.1)

In the Frank&Hall architecture (Figure 4.2), the K-class classification problem is divided

into K−1 classification problems. Each classifier i learns to differentiate classes C1, . . . , Ci

from classes Ci+1, . . . , CK . For each binary problem, we train a complex model, a Helper

Classifier (in case of the pipeline 2), and an Interpretable Model. The predictions of each

interpretable model are combined so that, for the case of a 3 class problem, if the two

models agree with value -1 the result is class 1, if they agree with value 1 than the result

is class 3, otherwise the result is class 2.

So far, we have considered as a complex model, a neural network with k neurons on the

output layer. For pipeline 1, this can be generalized to any multi-class classifier capable

of producing class probabilities1. In the case of pipeline 2, the use of the activations of

the last hidden layer of the complex model, Xnn, restricts it to neural networks.

4.1.2 Experimental Setup

The ordinal datasets include the ones used in [84]2, which were used for benchmark differ-

ent ordinal approaches, as well as two heathcare datasets described in [164, 165], where the

use of the ordinal nature of the response to cancer treatment could improve its prediction.

Feature selection was made using Neighborhood Component Analysis [245] or ReliefF [190],

which are filter methods (independent from the classification method) and suitable for

multi-class classification.

We tested three different types of inputs for the mimic model, softmax, double and neigh-

bor. The softmax is the one illustrated in Figures 4.1 and 4.2, where the input is {X, yc}.

In the double, we train the interpretable model with the original dataset concatenated with

the one with soft labels, {XX, yyc}, represented on equation (4.2). For the neighbor, we

discard the samples that the complex model classifies incorrectly, {XX ′, yy′c}, represented
on equation (4.3).

1When using multi-class classifiers with outputs in the range [1,k], the output can be used directly with
no need to apply Equation 4.1.

2available at http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip
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{XX, yyc} =



x11 x12 . . . x1m y1

x21 x22 . . . x2m y2
.
..

.

..
. . .

.

..
.
..

xn1 xn2 . . . xnm yn

x11 x12 . . . x1m yc1
x21 x22 . . . x2m yc2
...

...
. . .

...
...

xn1 xn2 . . . xnm ycn


(4.2)

{XX′, yy′c} =



x11 x12 . . . x1m y1

x21 x22 . . . x2m y2
...

...
. . .

...
...

xn1 xn2 . . . xnm yn

x11 x12 . . . x1m y′c1
x21 x22 . . . x2m y′c2
...

...
. . .

...
...

xn′1 xn′2 . . . xn′m y′
cn′


, n′ ≤ n (4.3)

Three interpretable supervised methods were selected to validate our approaches: Linear

Regression, Regression Tree and Symbolic Regression; and a Feedfoward Neural Network

(FNN) as our complex model.

All the above models were trained using MATLAB’s (v. 9.3.0.713579) default parameters,

excluding the FNN’s hyperparameters which were tuned using grid search by exploring

the number of hidden layers, nH ∈ {1, 2, 3, 4, 5}, and the number of hidden units, nHU ∈
{16, 32, 64, 128, 256, 512}.

4.1.3 Results

The algorithms were ranked by the average MAE, obtained using leave-one-out cross-

fold validation on the healthcare datasets and over 2-folds on the other datasets, and the

datasets were grouped according to the number of features, as shown in Table 4.1.

Table 4.1: Top 10 ranked algorithms for datasets grouped based on number of features
and ordered by approach. FS, Pl, Classif, m and AR stand for feature selection, pipeline,
classifier, number of features and average rank respectively. The top 5 algorithms’ ranks
based on the number of features are highlighted in bold.

Approach Pl Input FS Classif m=1-4 m=5-25 AR

Multiclass 2 Double none RT 5 1 3.0
Multiclass 1 Softmax none RT 6 3 4.5
Multiclass 1 Softmax NCAreg RT 7 4 5.5
Multiclass 1 Neighbor none RT 10 2 6.0
Multiclass 1 Double none RT 9 5 7.0
Multiclass 2 Neighbor none RT 8 6 7.0
Frank&Hall 2 Softmax NCAreg SR 2 7 4.5
Frank&Hall 1 Softmax none SR 3 8 5.5
Frank&Hall 2 Softmax none SR 1 10 5.5
Frank&Hall 2 Softmax none RT 4 9 6.5
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Based on Table 4.1 we observe that both Frank&Hall and Multiclass approaches reach

the top 10 while no interpretable model that does not use the mimic approach did. We

can also see that Frank&Hall methods did better on datasets with fewer features (< 5).

We believe this happens because the models perform worse with fewer features, so by

predicting a mid-class when different classifiers are disagreeing the Frank&Hall method

avoids making bigger mistakes.

Table 4.1 shows that Multiclass with double and neighbor perform better with more than

four features. This is in line with the general observation that “the optimal number

of features increases with increasing sample size”3 [110], since double and neighbor are

trained with augmented datasets.

We also observe in Table 4.1 that every Frank&Hall approach reaching the top 10 is

instantiated with softmax, indicating that, for Frank&Hall, softmax predictions do better

than double and neighbor.

This may be because, by using hard predictions which can only take opposing values 0,1

rather than values in between [0,1], predictions of the different binary classifiers might

disagree more.

Frank&Hall (MAE = 1.3, std = 1.0) algorithms show higher mean MAE and standard

deviation than Multiclass (MAE = 0.6, std = 0.4), which indicates that this simplified

ordinal classification approach may not capture correctly the ordinal nature of the classes.

4.1.4 Conclusions

In this work, an ordinal interpretable mimic learning framework was proposed to study the

performance versus interpretability trade-off in the context of ordinal problems. Results

show that the interpretable models trained to mimic complex models outperform the

models trained directly on the original datasets. These results point to the possibility

of leveraging the complexity of the model to obtain interpretability without sacrificing

performance.

The main focus of our future work focused on the study of complexity as this early work

indicates that while lowering complexity improves complexity when working with inter-

pretable models, the same still cannot be said for DL models. It is also important to

recognize that our conclusions are limited to the scope of the datasets and models used,

therefore further work will help validate our approach to different problems.

3A warning should here be made to the fact that the optimal-feature-size relative to the sample size
depends not only on the classifier but also the feature-label distribution [110].
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4.2 Study of the Trade-off between Complexity and Inter-

pretability

As neural networks grow in complexity [127] their capacity to learn mappings from the

input data to the classification label increases. Explanations are provided to understand

this mapping and the predictions made by the network. One of the proposed explana-

tions is called saliency maps, which produce an estimation of each pixel’s relevance in

the overall prediction of the network for each input image. There are many saliency map

methods [24, 155, 214, 251] which give different estimations of the relevance scores. To

quantitatively evaluate if a given relevance score is suitable, we need to assess if the method

truly discriminates between relevant and irrelevant pixels. Due to the non-existence of

ground-truth relevance scores, the quantitative evaluation of saliency maps poses a de-

manding problem. Fidelity [18] is a concept that determines how well a relevance score

agrees with how the model works.

Only increasing the capacity of the networks results in the overfitting of the model to

the training data, resulting in a low test set performance. For this reason, regularization

approaches are used to decrease the capacity of the network to fit the data and avoid

overfitting. Some of these methods, such as L2 regularization, reduce the complexity of

the network, limiting the values of the network parameters.

However, it is not yet understood what impact certain changes in the network parameters

have on the different saliency map methods and consequently in their interpretation.

4.2.1 Method

The problem which was here presented involves three aspects that will be described in

this section, that includes the regularization of the network, the saliency map methods,

and the interpretability metrics.

Regularization

Regularization is a modification to a learning algorithm intended to reduce its general-

ization error [87]. Many regularization approaches limit the capacity of models, and its

complexity, by adding a parameter norm penalty.

L2 Regularization commonly known as weight decay, it’s a regularization strategy that

drives the weights closer to zero, by adding a regularization term to the objective function:

Components of the weight vector corresponding to directions that do not contribute to

reducing the objective function are decayed away through the use of the regularization
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throughout training [87].

Ω(θ) =
1

2
∥w∥22 (4.4)

Early Stopping When training models with sufficient capacity to overfit the task, it is

common to see that after a constant decrease in the training error and validation error,

the validation error often starts to rise. Early stopping works by keeping a copy of the

model parameters every time the validation error improves, to return the setting when the

validation error was the lowest.

Saliency Map Methods

In our formal description, an input corresponds to an image and is represented by a tensor

x ∈ Rd. A model describes a function f : Rd −→ Rc, which maps the d-dimensional images

to a prediction vector where c corresponds to the number of classes of the classification

problem.

Below, the explanation methods which produce saliency maps and which were used in this

work will be briefly described.

Gradient The gradient quantifies how much a change in each feature would change the

predictions f(x) in a small neighborhood around the input [214].

Grad(x) =
∂f(x)

∂x
(4.5)

DeConvNet The DeConvNet associates the architecture of the model, with a corre-

sponding architecture that reverses the computations and produces an image as the out-

put [251]. To do this, each layer is associated with a corresponding layer that reverses the

computation.

Guided Backpropagation a combination of the previous two methods, guided back-

propagation prevents the backward flow of negative gradients, corresponding to the neu-

rons which decrease the activation of the units we are inspecting [214]. Negative gradients

are set to zero while backpropagating.

Deep Taylor Decomposition DTD is obtained by propagating the model output

through the network using redistribution rules, until the input features are reached [155].
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The propagation rules are derived from a Taylor decomposition performed at each unit of

the network.

Layer-wise Relevance Propagation Similar to DTD, LRP is obtained by propagating

the model output through the network using redistribution rules [24]. LRP finds its

mathematical foundations in Deep Taylor Decomposition [155]. The redistribution rules

proportional decompose the relevance score of upper layers to obtain lower layer relevance

scores, based on the forward mappings between layers.

Interpretability Metrics

Although a large number of saliency map methods have been proposed, relatively few

metrics to evaluate their fidelity have been proposed. Fidelity is a concept that should

capture how well the relevance given to each pixel represents the process of the model. We

will now describe two interpretability metrics that can be considered a proxy for fidelity

and evaluate the quality of the saliency maps.

Confidence drop tracks the decrease of confidence in the model’s classification when re-

moving a percentage of the most relevant pixels given by a saliency map. If the saliency

maps present a high fidelity to the model, the confidence should drop faster than when

the fidelity is low.

Drop(k) = f(x(0))− f(x(k)) (4.6)

In Equation 4.6 we can see that the confidence drop corresponds to the difference in

confidence when perturbating the k higher relevant pixels.

Another interpretability metric is called Area Over the Perturbation Curve (AOPC) [18].

The AOPC tracks the decrease of confidence in the model’s classification when iteratively

removing the most relevant pixels given by a saliency map.

The AOPC equation is described in the following equation:

AOPC =
1

L+ 1
⟨

L∑
k=1

f(x(0))− f(x(k))⟩ (4.7)

In Equation 4.7, L is the number of pixel perturbation steps, f(x) is the output value

of the classifier for input image x (i.e. the confidence assigned to the class), x(0) is the

original image and x(k) is the image after k perturbations.

66



Study of the Interpretability Trade-offs

4.2.2 Experimental Setup

The training set and test set were combined and 10-fold cross-validation was used to train

and evaluate the model. The classifier is trained with different regularization values, To

evaluate the interpretability of a model, we take the test samples and the trained classifier,

and apply the saliency map method to the samples, resulting in saliency maps that are

used to calculate the interpretability metric. These concepts are visually illustrated in

Figure 4.3.

Interpretability
Metrics

Saliency 
Maps

Dataset

Classifier

Training set

Test set

Fold 1

Fold 10

...

Train

Saliency Map
Method

Evaluate

Figure 4.3: Architecture of experimental setup.

Dataset and Models

Experiments were performed on the CIFAR-10 dataset [126] as it is a well-known image

classification dataset with suitable complexity. A description of the dataset is present in

Table 4.2.

Table 4.2: Description of the dataset used in the study

name samples classes width height channels

CIFAR10 60000 10 32 32 3

In this experiment, a standard convolutional neural network (CNN) containing three con-

volutional blocks and two fully-connected layers, was used. Each convolutional block is

composed of two convolutional layers followed by a max-pooling layer. The classification

is done using a softmax layer after the fully-connected layers. A figure representing the

architecture of the network is presented in Figure 4.4.

Input

Conv 2D Flatten

Prediction

Softmax

Max-Pooling

2x

FC

Conv 2D

Max-Pooling

2x

Conv 2D
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A
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Figure 4.4: Architecture of the neural network.
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During the training of the model, different levels of L2 weigh decay were used (0, 0.0001,

0.001, 0.005, 0.01, 0.05) as well as early stopping to prevent overfitting, stopping training

after 10 epochs of no improvement in the loss function. To understand the changes in inter-

pretability that were caused by changing the complexity in different layers of the network,

we separated regularization into different groups of layers. B1, B2, and B3 correspond to

regularization on the first, second, or third convolutional block respectively; D1 and D2

correspond to regularization on the first or second fully-connected layer. Finally, B cor-

responds to regularization on all convolutional blocks, D corresponds to regularization on

all fully-connected layers and A corresponds to regularization on all layers of the network.

Saliency Map Methods

In these experiments, five different saliency map methods were compared. The criteria for

choosing these methods was based on their proven applicability in the literature as well

as their properties. The methods chosen were gradient [214], DeConvNet [251], Guided

Backpropagation [214], Deep Taylor Decomposition [155] and Layer-wise Relevance Prop-

agation [24]. Some methods only estimate positive relevance while other methods estimate

positive and negative relevance. For example, Guided Backpropagation and Deep Taylor

Decomposition, produce only positive relevance. The implementation of the explanation

methods was done using the iNNvestigate Toolbox v1.0.8 [8].

Saliency Metrics

We use two different perturbations, one by deleting the most relevant pixels given the

relevance score provided by the saliency map, and the other by deleting a random pixel. In

the random perturbation method, the value is a gray-scale value sampled from a uniform

distribution in the case of gray-scale images and an RGB value in the case of colored

images. This approach attempts to destroy the information contained in the pixel.

To measure the confidence drop caused by the perturbation, we have segmented different

percentages of the most relevant pixels. We have chosen to group the pixels in the 5%,

10%, 20%, 30%, 40%, 50%, and 75% most relevant pixels.

To calculate the AOPC metric we used perturbation steps corresponding to 10% of the

dataset.

4.2.3 Results

In this study, two experiments were conducted. In the first, regularization was applied in

all layers of the network (convolutional and fully-connected). In the second experiment,

we separated regularization by different groups of layers: regularization on only one layer
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or block of layers (B1, B2, B3, D1, D2) and regularization applied to multiple blocks of

layers (B, D, A).

How does the regularization of the deep neural network affect the quality of

saliency maps?

The first experiment measures the interpretability of models regularized in all layers with

different L2 weight decay values.

Table 4.3: Results comparing interpretability (AOPC) of saliency map methods on models
with different regularization values.

L2 weight decay

Method 0 0.0001 0.001 0.005 0.01 0.05

DeConvNet 0.314 0.293 0.253 0.232 0.134 9.3E-12
Deep Taylor 0.218 0.230 0.229 0.201 0.114 9.3E-12
Gradient 0.419 0.413 0.417 0.356 0.226 9.3E-12

Guided Backprop 0.269 0.281 0.263 0.224 0.132 9.3E-12
LRP 0.423 0.421 0.427 0.362 0.231 9.3E-12

Table 4.3 is composed of the saliency map methods (first column), and the weight decay

values (first row). The values of the table represent the mean AOPC value for the 10 folds.

The highest interpretability values for each method are highlighted in bold.

The results in Table 4.3 show that the methods that display the highest values of inter-

pretability and that produce saliency maps with more fidelity to the model’s decision are

the LRP and Gradient methods.

The results in Table 4.3 show a substantial difference between interpretability and saliency

map methods. In general, the quality of such methods is higher when the network is trained

with smaller regularization values, although the exact value is not consistent between

methods.

To assess the statistical significance of the interpretability metric AOPC when the regu-

larization values in all layers are changed, Friedman’s test was applied with a significance

level of 5%. We considered the different weight decays as well as the different saliency map

methods. It was determined that the regularization does have a statistical significance on

the interpretability metric. Statistical significance was detected between the lower reg-

ularization values (0, 0.0001, and sometimes 0.001) and the higher regularization values

(0.01 and 0.05) consistently in all methods.

The same statistical significance tests were also conducted with the experiments using ran-

dom perturbation which found no statistical difference between either of the regularization

values in all saliency methods.
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How does the layer regularized affect the interpretability of the network?

Another question we had was to learn what layers regularization is more appropriate to

produce the saliency maps with better fidelity to the model. To answer this question

we run an experiment training CNNs with regularization only on specific layers and we

extracted the saliency maps o measure their fidelity using the AOPC metric.

Figure 4.5: Accuracy of the different models based on layer and weight decay of regular-
ization.

In Figure 4.5 it is possible to see the accuracy of the different models based on the layer

which was regularized with the specified weight decay values. The models which were

regularized in all layers have lower performance than the other models, especially with

higher regularization values. From Figure 4.5 we can see that there is a performance

benefit of using regularization on only some layers, and not in all of them.

Table 4.4: Mean AOPC of the DeConvNet method. The first column corresponds to the
layer regularized, and the first row the L2 weight decay. The values represent the mean
AOPC, and the highest values for each regularization value are highlighted in bold.

L2 weight decay

Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.3142 0.3082 0.3004 0.2810 0.2772 0.2292
B2 0.3142 0.3368 0.3065 0.2882 0.2651 0.2328
B3 0.3142 0.3107 0.3135 0.3037 0.2710 0.3228
B 0.3142 0.2878 0.2651 0.2451 0.2603 0.1600
D1 0.3142 0.3253 0.3265 0.3298 0.3425 0.3666
D2 0.3142 0.3247 0.3238 0.3197 0.3249 0.3155
D 0.3142 0.3262 0.3344 0.3298 0.3395 0.3503
A 0.3142 0.2934 0.2526 0.2316 0.1343 0.0000

In Tables 4.4- 4.8 is visible that, for each saliency map method, the interpretability metric

based on the L2 weight decay used to regularize the specific layer of the model.

Regarding the presented results, we can see that interpretability appears to be higher

with lower regularization values. Additionally, interpretability appears to be higher when
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Table 4.5: Mean AOPC of the Deep Taylor method. The first column corresponds to the
layer regularized, and the first row the L2 weight decay. The values represent the mean
AOPC, and the highest values for each regularization value are highlighted in bold.

L2 weight decay

Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.2183 0.2216 0.2252 0.2274 0.2211 0.2188
B2 0.2183 0.2283 0.2232 0.2226 0.2224 0.1988
B3 0.2183 0.2368 0.2310 0.2323 0.2245 0.2416
B 0.2183 0.2269 0.2312 0.2326 0.2236 0.1453
D1 0.2183 0.2279 0.2465 0.2427 0.2499 0.2526
D2 0.2183 0.2267 0.2302 0.2405 0.2235 0.2354
D 0.2183 0.2250 0.2348 0.2452 0.2473 0.2516
A 0.2183 0.2301 0.2292 0.2014 0.1138 0.0000

Table 4.6: Mean AOPC of the Gradient method. The first column corresponds to the
layer regularized, and the first row the L2 weight decay. The values represent the mean
AOPC, and the highest values for each regularization value are highlighted in bold.

L2 weight decay

Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.4192 0.4212 0.4249 0.4167 0.4145 0.4153
B2 0.4192 0.4242 0.4244 0.4101 0.4153 0.3898
B3 0.4192 0.4301 0.4252 0.4295 0.4230 0.4279
B 0.4192 0.4279 0.4272 0.4149 0.3963 0.2309
D1 0.4192 0.4227 0.4252 0.4287 0.4226 0.4358
D2 0.4192 0.4181 0.4291 0.4303 0.4273 0.4341
D 0.4192 0.4211 0.4248 0.4289 0.4266 0.4201
A 0.4192 0.4127 0.4174 0.3564 0.2260 0.0000

Table 4.7: Mean AOPC of the Guided Backprop method. The first column corresponds
to the layer regularized, and the first row the L2 weight decay. The values represent the
mean AOPC, and the highest values for each regularization value are highlighted in bold.

L2 weight decay

Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.2690 0.2722 0.2720 0.2698 0.2563 0.2454
B2 0.2690 0.2884 0.2696 0.2700 0.2561 0.2312
B3 0.2690 0.2860 0.2844 0.2825 0.2615 0.2881
B 0.2690 0.2777 0.2723 0.2611 0.2678 0.1629
D1 0.2690 0.2867 0.2852 0.2912 0.2903 0.2993
D2 0.2690 0.2792 0.2716 0.2922 0.2878 0.2755
D 0.2690 0.2788 0.2919 0.2867 0.2951 0.3022
A 0.2690 0.2813 0.2630 0.2243 0.1324 0.0000

regularization happens in higher convolutional layers or in fully-connected layers.

The methods that display the highest values of interpretability and that produce saliency

maps with more fidelity to the model’s decision are the LRP and Gradient methods.

Following further analysis of these results, we can plot the number of times that regulariza-

tion in a specific layer has produced the best interpretability values for each method. This

plot is presented in Figure 4.6, and as we can see, it once again shows that regularization

is more effective in higher convolutional layers or in fully-connected layers.
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Table 4.8: Mean AOPC of the LRP method. The first column corresponds to the layer
regularized, and the first row the L2 weight decay. The values represent the mean AOPC,
and the highest values for each regularization value are highlighted in bold.

L2 weight decay

Layer 0 0.0001 0.001 0.005 0.01 0.05

B1 0.4226 0.4274 0.4304 0.4202 0.4203 0.4196
B2 0.4226 0.4295 0.4289 0.4154 0.4184 0.3947
B3 0.4226 0.4340 0.4284 0.4344 0.4256 0.4302
B 0.4226 0.4309 0.4312 0.4206 0.4055 0.2336
D1 0.4226 0.4282 0.4278 0.4351 0.4288 0.4439
D2 0.4226 0.4227 0.4333 0.4337 0.4351 0.4387
D 0.4226 0.4273 0.4301 0.4334 0.4317 0.4281
A 0.4226 0.4211 0.4265 0.3622 0.2313 0.0000

Figure 4.6: Plot showing the number of times the regularization in a layer produced the
best interpretability value for each method.

4.2.4 Conclusions

In this work, we studied the relationship between regularization and interpretability in a

CNN context. From the results obtained with the experimental data, the following main

conclusions may be derived:

• The quality of saliency maps is higher when the network is trained with smaller

regularization values;

• LRP and Gradient produce saliency maps with higher fidelity to the model’s decision;

• Overall, to obtain higher interpretability, regularization should be applied on later

convolutional layers or in fully-connected layers;

• Models in which all layers were regularized display lower interpretability than models

in which only the fully-connected layers were regularized.

Future work directions should test other mechanisms of regularization such as dropout, as

well as extend our work to other datasets. Also compare the saliency maps produced by

the different methods to understand differences in their distributions.
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Evaluating the Faithfulness of

Saliency Maps using Realistic

Perturbations

Based on the advent of clinical data digitalization materialized for instance in Electronic

Health Records (EHR), CNNs reached human-level performance in multiple medical fields,

empowering the processing of such data for automatic decision-making. However, their

inherent lack of interpretability due to their black-box nature - it’s not possible to look at

the weights of the model and why the classifier made the prediction - delays their adoption

in clinical practice and minimizes their current usefulness and impact.

Also, following the General Data Protection Regulation 2016/679 (GDPR), data con-

trollers need to provide the user meaningful information about the logic involved in the

automatic decision, as well as the significance and the envisaged consequences of such

processing user [96, 201]. Researchers have proposed different explanations for informa-

tion access systems in different areas such as financial distress prediction [257], movie

recommendation [138] or clinical decision making [173], but quantitative and systematic

evaluation of such explanations is important before their integration in an information

access system, which in the case of the clinical field can be a clinical decision support

system (DSS).

Saliency maps are one of the most popular strategies for explaining convolutional neural

networks. Saliency maps illustrate the importance of individual pixels of the input image

on the overall prediction of a CNN. The color or intensity of each pixel in the saliency map

corresponds to the weight that the same pixel in the input image had on the classification

process.

In the oncological field, it was found that the majority of interpretability strategies em-

ployed fall on the saliency map category [12]. Despite the adhesion to saliency maps for
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explaining deep learning models, the validation is purely qualitative - by inspecting a

few individual cases - and requires domain experts. Due to the lack of tools and evalua-

tion metrics for the systematic evaluation of saliency maps quantitatively [12]. Evaluating

saliency maps remains an open challenge since the task of highlighting the most important

pixels in the classification of an image has an inherent problem, the lack of ground-truths.

Previous attempts at evaluating saliency map methods [2] have chosen to introduce random

or uniform noise [197] to the input images to study their faithfulness to classification or

invariance to input change. However, the resulting images deviate too much from the

distribution of images used to train the CNNs making their behavior possibly erroneous.

To address this issue, in this work, the main goal is to evaluate the robustness of the

saliency maps in the addition of a nature perturbation environment. Specifically, we

investigate the following research questions:

• What is the impact of the different perturbations on the model’s predictions?

• Are saliency map methods sensitive to the introduction of natural noise?

• How are saliency maps methods compared to each other in terms of perturbation

robustness?

• How does the perturbation region’s size impact the saliency maps?

To achieve that, three CNN (VGG16, ResNet50, and InceptionV3) were trained on the

PatchCamelyon dataset. The PatchCamelyon dataset [229] was derived from the Came-

lyon16 dataset[32] and contains patches of H&E stained histopathological images of sen-

tinel lymph node sections. It is a balanced dataset where half the images represent nor-

mal cases (i.e. benign) and the other half represent tumor cases (i.e. malignant). The

histopathological images were perturbed using a natural perturbation strategy based on

the introduction of regions of different sizes (i.e. 8x8 pixels, 16x16 pixels, and 32x32

pixels).

To test the natural perturbation, three scenarios were implemented:

• NN: where a perturbation of normal tissue was added in an image of normal tissue;

• NT: where a perturbation of normal tissue was added in an image of tumor tissue;

• TN: where a perturbation of tumor tissue was added in an image of normal tissue.

By evaluating the impact of these three scenarios on the saliency maps produced by a

method we are able to measure its robustness to perturbation.

Overall, in spite of some differences between methods, it is proven with this work that

saliency maps can be a good strategy to interpret CNN models.
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This chapter follows the following structure: Section 5.1 will briefly review related works

in the literature. In Section 5.2 we present the different components of the framework for

evaluating the faithfulness of saliency maps using realistic perturbations: data selection,

(2) model training, 3) image perturbation, 4) saliency map extraction, and 5) saliency

map evaluation. We present and discuss the results of the experiments in Section 5.3 and

answer each research question in a separate subsection. Finally, in Section 5.5 we conclude

with our final remarks and steps for future work.

5.1 Background

Automatic analysis of whole slide images, such as metastases detection, is an important ap-

plication of artificial intelligence, allowing it to avoid a tedious and time-consuming exami-

nation process as well as helping to detect small metastases that can easily be missed [227].

In the automatic Tumor Lymph Node Metastasis (TNM) detection task, deep learning al-

gorithms achieved better diagnostic performance than a panel of 11 pathologists [27]. This

process requires highly skilled pathologists and is time-consuming and error-prone [170].

The Camelyon16 challenge [32] has the goal of evaluating algorithms on the task of au-

tomatic detection of breast cancer metastases in whole-slide images of hematoxylin and

eosin (H&E) lymph node sections. Convolutional neural networks (CNNs) have been suc-

cessful in this task, with approaches achieving an area under the receiver operating curve

(AUC) of 0.925 and helping increase the pathologist’s AUC to 0.995 when combining the

pathologist diagnosis with the deep learning model’s diagnosis [32]. This represents an

almost 85 percent reduction in the human error rate.

The accomplished performance of these models in the automatic analysis of whole slide

images poses a great opportunity for their integration in the clinical decision support sys-

tem (DSS), however, it is necessary that the model is able to explain the decision to the

patient and be audited when misclassification is made. Similar explanations have already

been explored for clinical DSS so that the model can point to the feature of the clinical

history of the patient that impacted the misclassification [173]. Also, on the prediction

of corporate bankruptcies, not only feature importance but also counterfactual examples

have been explored for explaining financial distress prediction models [257]. In a recom-

mendation system based on movie cover and description of movie images, an explanation

highlighting the important regions of the image and the words in the description has been

developed [138].

5.1.1 Saliency map methods

Saliency map methods, often called feature attribution methods [152], are a popular in-

terpretability strategy when input features of the classification task are pixels [221]. This
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is can be especially seen in the oncological field [12] where half of the interpretability

strategies employed to understand deep learning models are saliency map methods.

Saliency maps highlight individual pixels of the input image which are important for a

given’s models predictions. The pixel values of saliency maps can be obtained following

two main approaches: Back-propagation methods compute the relevance of a pixel by

propagating a signal from the output neuron backward through the layers to the input

image in a single pass [24]. Sensitivity methods compute pixel relevance by making small

changes in the pixel value of the input image and compute how the changes affect the

prediction [209].

5.1.2 Saliency map metrics

Evaluating saliency maps remains an open challenge since the task of highlighting the

most important pixels in the classification of an image has an inherent problem, the lack

of ground-truths. Also, there are many different criteria that can be used when evaluating

saliency maps.

Equally, there are different evaluation approaches for interpretability: application-grounded,

human-grounded, and functionally-grounded [232].

Application-grounded evaluation involves conducting user studies within a real application

- such as pathologist detecting tumor cells. This is by far the most used approach for

saliency maps as most works validate only a small number of examples [12]. However

this evaluation approach has some problems as it requires domain experts, is time and

cost-consuming, and highly specific for the application so it can be generalized for other

applications.

Human-grounded evaluation involves conducting user studies with non-domain experts

without a specific application in mind. This approach includes studies with laypeople to

find which visual type of saliency map is preferred and what confers the biggest trust in

the model [9]. This evaluation approach allows a better generalization for other tasks but

it is still time and cost-consuming.

Functionally-grounded evaluation requires no user study and instead uses a proxy metric

following a formal definition of interpretability. This evaluation approach is by far less time

and cost-consuming and can be reproduced in a larger variety of contexts allowing higher

generalization. It also allows the quantitative evaluation of an interpretability method

without the validation of an expert [232].

One example of a quantitative evaluation of interpretability is the area over the pertur-

bation curve (AOPC), which measured the faithfulness of the saliency map given by the

drop in the model’s prediction when perturbing the most salient pixels given by a saliency

map [197]. Using this image perturbation strategy, it was found that reducing the com-
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plexity of the network had a positive impact on the faithfulness of the saliency maps [14].

A similar measure of faithfulness was proposed by taking into account the pixels individ-

ually during perturbation [10]. Both measures of faithfulness are able to evaluate how the

pixels of a saliency map accurately reflects the classification process of the model. The

main disadvantage of these metrics is that after perturbation the images contain either a

uniform (i.e. black or the pixels’ mean value) or random noise, producing images unfamil-

iar to the model and not well represented in the training set. The values of the metrics

are also dependent on the perturbation method (i.e. uniform or random noise) [224].

In recent work, Adebayo et al. [2] proposed several basic sanity checks for saliency map

methods. The idea of sanity checks is to quantitatively inspect new saliency map methods

to find if they lack sensitivity to the model and the data.

Model randomization evaluated if the saliency map methods were invariant to random-

ization of the model’s parameters (i.e. weights). While label randomization broke the

relationship between the information in the image and the label, forcing the model to

memorize the training labels rather than learning the original relationship of the data.

The saliency map methods were then evaluated on the invariance of what the model has

learned before and after randomization.

Adebayo et al. [2] main finding is that some gradient-based methods in the literature are

invariant under model randomization.

Sanity checks rule out methods that provide compelling images while failing to be sensi-

tive to the model or the data. They inspect how the saliency map methods respond to

random and unnatural data. But, it is also important to inspect how the saliency map

method responds to natural data and to provide a further comparison between saliency

map methods, where saliency metrics are needed. Subsequent work of Yona et al. [247]

also argues through a causal re-framing of their objective of sanity checks, that some of

the conclusions cannot be fully established due to confounding introduced by the custom

tasks.

Several approaches have targeted increasing the realism of perturbed images based on

learning the distribution of the training set and proposing counterfactuals [68, 158, 179].

And while they have shown good results on tabular data or simple image datasets such

as MNIST, they have not yet been validated on complex image datasets such as medical

imaging datasets.

The main problem with using uniform values or random noise to evaluate the saliency

maps is that the noisy images are not representative of the training set and as the per-

turbed images are outside the distribution of expected values we cannot predict how the

classifier will behave. While when adding malignant evidence with a natural perturbation

strategy we can assume that model would drop the confidence of the image being benign,

with the addition of random noise we cannot make such an assumption. ROAR [109]
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is a perturbation strategy that tries to solve this problem by retraining the model with

perturbed training samples and aligning the train and test distributions, but calculating

evaluation metrics this way can be prohibitively expensive to obtain. Rather than using

random values, this work proposes the introduction of natural noise, in the form of regions

of existing training samples and evaluates the saliency map methods on how well they re-

spond to the introduction of the regions of the same class as the original image or regions

from a different class. The advantage of using natural noise is that the regions being used

to perturb are still in the training distribution.

5.2 Method

Having in mind the main goal of this work which consists in quantifying the sensitivity of

saliency map methods attending to the addition of natural noise, a five-stage pipeline was

defined in the experimental setup and is illustrated in Figure 5.1: (1) data selection, (2)

model training, 3) image perturbation, 4) saliency map extraction and 5) saliency map

evaluation.

Figure 5.1: Automatic evaluation of saliency maps perturbation pipeline.
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5.2.1 Dataset Selection

To evaluate the proposed approach, the PatchCamelyon dataset [229] derived from the

Camelyon16 dataset[32] was used. The Camelyon16 dataset contains 400 H&E stained

whole-slide images of sentinel lymph node sections split into 270 slides with pixel-level

annotations for training and 130 unlabeled slides for testing. Based on the pixel-level

annotations on the training set, indicating the location of benign and malignant tissue the

PatchCamelyon dataset was created with a positive/negative balance of 50/50. Patch-

Camelyon dataset contains 327,680 patches with the size of 96 x 96 pixels extracted from

Camelyon16 with a 10x magnification. The PatchCamelyon task is to classify the images

into benign or malignant cases based on expert segmentations of malignant tissue.

PatchCamelyon dataset was chosen first because of the quality of the images which were

curated and segmented by pathologists. Second, it is a large dataset with a high number

of images allowing the training of a highly accurate model without overfitting. Third,

unlike simple image datasets like MNIST, the images in PatchCamelyon are realistic, and

in the task of malignancy detection, the introduction of a region with malignancy features

on a benign image produces realistic counterfactuals.

Pre-processing The original PatchCamelyon dataset contains colored images of patches

of Hematoxylin and Eosin (H&E) stained whole-slide images of sentinel lymph node sec-

tions lesions with a fixed size of 96x96 pixels. The patches were first normalized into a

fixed range between 0 to 1 to improve the optimization process. Also to avoid overfitting,

data augmentation was applied to increase the diversity of the images of the training set.

Images were randomly flipped both vertically and horizontally, and random brightness

augmentation was used.

K-fold cross-validation with 5 folds was used to better evaluate the model and the saliency

map methods.

5.2.2 Model Training

Three CNN architectures were explored: VGG16 [210], ResNet50 [104] and InceptionV3 [218].

These CNN architectures were chosen as they represent state-of-the-art approaches for

many medical imaging tasks and they achieved good results in the specific task of metas-

tasis detection in the Camelyon16 challenge [32].

For the purpose of achieving the best performance on the medical imaging task of tumor

detection of the PatchCamelyon dataset, the three CNNs were pre-trained on the ImageNet

dataset [67] and fine-tuned on the medical dataset with a low learning rate.
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VGG16 The last three fully-connected layers were replaced with a fully-connected layer

with 128 neurons followed by a dropout layer with a 0.3 dropout rate and an output layer.

An Adam optimizer with a 1e-4 learning rate was used.

ResNet50 The last fully-connected layer was removed and replaced with a fully-connected

layer with 64 neurons followed by a dropout layer with a 0.2 dropout rate and an output

layer. An SGD optimizer with a 5e-4 learning rate was used.

InceptionV3 The last fully-connected layer was replaced with two fully-connected layers

with 64 neurons each followed by a dropout layer with a 0.2 dropout rate and an output

layer. All the layers were trained first with an Adam optimizer with a learning rate of

1e-4.

All the models were trained with a batch size of 64 images, for 100 maximum epochs

which were cut short by stooping the training early when the validation accuracy stops

improving. The learning rate also was reduced by a factor of 0.2 when the validation

accuracy also plateaus.

5.2.3 Image Perturbation

The perturbation strategy developed is targeted at evaluating the faithfulness of the

saliency maps. It was developed on the assumption that if the saliency map highlights a

region of the image as being important in the prediction of the tumor, replacing it with a

region from a normal case will change the saliency map.

The PatchCamelyon dataset was produced based on the domain expert’s annotations (i.e.

tumor segmentations), producing positive cases if tumor pixels are present in its inner

32x32 square. Due to this mining schema by perturbing the inner region, we can have an

informative perturbation mechanism. Intuitively, the larger the inner region is, the higher

the difference between the saliency maps should be. We have selected three different

degrees of perturbation, small (8x8 region), medium (16x16 region), and big large (32x32

region) to evaluate the saliency map methods.

By inspecting the correlation between the increase in the degree of perturbation and the

change in the interpretability metrics, a ranking of saliency map methods can be found.

While this perturbation strategy is simple, it tackles a big problem that exists currently in

the evaluation of interpretability methods, Out-of-Distribution perturbations. Common

existing evaluation strategies use Gaussian noise on important pixels (high-valued pixels

on saliency maps) and randomizing input images. The problem with using noise or uniform

values (black or mean) to perturb the image is that the transformed image becomes to

different from the images used to train the model, making its prediction and subsequent

80



Evaluating the Faithfulness of Saliency Maps using Realistic Perturbations

interpretation too erroneous. By using an existing region rather than isolated pixels or

non-natural noise we are making sure that the images remain inside of the distribution

and that the interpretation is more trustworthy.

5.2.4 Saliency Map Extraction

We have selected a vast number of saliency map methods, for two major groups. This

includes back-propagation methods and occlusion or perturbation methods 1.

Saliency Saliency [209], or gradient back-propagation, is a simple method where the

pixel’s sensitivity is given by the gradient of the loss function for the class we are interested

in with respect to the input pixels. Each saliency map pixel’s value represents how much

a tiny change in the pixel would change the classification score for class c. The gradient

method generates a highly noisy saliency map.

Deconvolution Deconvolution [251] provides a way to map the activation of interme-

diate layers back to the input layer. This mapping is performed by a Deconvolutional

Network which attaches to the CNN layers and performs the opposite operation. For

example, the unpooling layer does the inverse of the pooling layer.

Gradient Back-propagation Gradient Back-propagation [209], or VanillaGradient,

also known as gradient back-propagation, is a simple method where the pixel’s sensi-

tivity is given by the gradient of the loss function for the class we are interested in with

respect to the input pixels. Each saliency map pixel’s value represents how much a tiny

change in the pixel would change the classification score for class c. The gradient method

generates a highly noisy saliency map.

GradientsInput GradientsInput is a variation Gradient Back-propagation [209] where

the gradient of the pixel is multiplied by the value of the pixel. While the gradient

indicates the importance of the pixel, the input value tells us how strongly this dimension

is expressed.

SmoothGrad SmoothGrad [213] is a variant of Gradient Back-propagation where the

saliency map is smoothed out by creating noisy copies of the input image and then av-

eraging the gradient saliency maps of these noisy images. The resulting effect is a more

sharp saliency map with less noise on irrelevant regions.

1The implementation of the saliency map methods was done using the tf-explain toolbox [145].
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Grad-CAM Gradient-weighted Class Activation Map [203] Unlike gradient back-propagation,

the gradient is not back-propagated all the way back to the image. Instead, they are back-

propagating from the output neuron to the last convolutional layer to compute the weights

for the feature maps. Resulting in a weight that represents the importance of the feature

map for the prediction of the class.

Guided Grad-CAM Guided Gradient-weighted Class Activation Map [203] is variant

of Grad-CAM with the goal of producing saliency maps with more fine-grained details at

the pixel level. This is done by combining the saliency maps of Grad-CAM and Guided

Back-propagation using element-wise multiplication.

Integraded Gradients Integrated Gradient [217] saliency map is computed by drawing

a straight line in the network feature space from a baseline image and the input image

and accumulating the gradients at all points along the path. The baseline image should

ideally have no signal, so similarly to the original paper, we have also used a zero-based

image (i.e. black image) as our baseline.

Occlusion Sensitivity Occlusion Sensitivity [251] computes the importance of regions

of the image by inspecting if there is a drop in the confidence of the model in the predicted

class when the region is occluded using a mask.

SHAP Shapley Additive explanations (SHAP) [142] requires the training of a distinct

predictive model for each distinct combination of input features. By inspecting the gap

between the predictions of two predictive models when a feature is added/subtracted, we

can infer the importance of the feature in the prediction. Features whose presence or

absence produced a large gap in predictions have large Shapley values and are deemed

important.

LIME Local Interpretable Model-agnostic Explanations (LIME) [185] first produces an

artificial dataset by occluding each feature of the original data points. Weights are assigned

to the generated data points based on the closeness to the original point. Based on the

generated weighted data a linear regression model is trained. The coefficients of the linear

regression correspond to the importance of the input features to the model’s predictions.

The methods explored in this work were Gradient Back-propagation (i.e. VanillaGradi-

ents), GradientsInputs, GradCAM, Guided-GradCAM, IntegratedGradients, Occlusion-

Sensitivity, and SmoothGrad.
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5.2.5 Saliency Map Evaluation

The metrics used to evaluate the saliency models were adapted for evaluating saliency

maps [42] 2. Saliency models have been frequently used in the literature to predict the

position where an individual looks when viewing an image. The heatmap produced by

the saliency model represents the probability of an individual looking at the pixel and is

then compared to a ground-truth fixation map. We use the saliency metrics to compare

the perturbed saliency map with the original saliency map which we have defined to be

the ground-truth.

Following Riche et al. [187] we divided the metrics based on location-based or distribution-

based and similarity or dissimilarity. This classification is summarized in Table 5.1.

Metrics Location-based Distribution-based

Similarity jAUC, bAUC, sAUC, NSS, IG SIM, CC

Dissimilarity MSE, MAE KL

Table 5.1: Saliency metrics divided by type.

Location-based metrics consider saliency map values as discrete locations at different

threshold levels, while distribution-based metrics treat both saliency maps as continuous

distributions.

Similarity metrics measure how similar two saliency maps are, while dissimilar metrics

measure how dissimilar they are. Similarity should have higher values when we expect the

saliency maps to not change (i.e. introduce evidence from the same class) while being lower

when we expect a change (i.e. introduce evidence from a different class). The opposite

should happen with the dissimilarity metrics.

Location-based metrics

Location-based metrics score saliency maps regarding how accurately they predict discrete

pixel locations.

Area under ROC Curve (AUC) The Area under the ROC curve is the most widely

used metric for evaluating saliency maps. When computing the AUC, the saliency map

is treated as a binary classifier at various threshold values and the ROC curve represents

the true and false positive rates for each threshold value.

Different AUC implementations differ in how true and false positives are calculated.

AUC-Judd (jAUC) uses a threshold level as a cut-off value to determine if pixel values in

a saliency map are positive or negative.

2The saliency metrics were implemented based on the code provided in Bylinskii et al. [42].
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AUC-Borji (bAUC) uses a uniform random sample of image pixels as negatives and defines

the saliency map values above the threshold at these pixels as false positives.

Shuffled AUC (sAUC) penalizes center bias by sampling negative samples predominantly

from the image center.

These saliency metrics were adapted by binarizing the ground truth saliency map (pre-

perturbation) by setting a threshold and selecting the most salient pixels.

Normalized Scanpath Saliency (NSS) The Normalized Scanpath Saliency (NSS)

is a similarity metric that measures the average normalized saliency map values of the

locations of the ground truth saliency map.

Given a saliency map P and a binarized ground truth saliency map QB, NSS can be

computed so:

NSS(P,QB) =
1

N

∑
i

Pi ×QB
i (5.1)

where N =
∑
i

QB
i and P =

P − µ(P )

σ(P )
(5.2)

where i indexes the i-th pixel, and N is the total number of fixated pixels.

NSS is sensitive to false positives, as the metric is normalised over all the positive pixels

on the binarized ground truth saliency map.

Similar to the AUC variants, the ground truth saliency map was binarized.

Mean Average Error (MAE) Mean Average Error (MAE) represents the average

difference between the model’s prediction and ground-truth (Equation 5.3) and can be

used in regression problems.

MAE =
1

N

N∑
i=1

(ŷi − yi) (5.3)

Mean Squared Error (MSE) Mean Square Error (MSE) represents the average

squared difference between the model’s prediction and ground-truth (Equation 5.4).

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (5.4)

84



Evaluating the Faithfulness of Saliency Maps using Realistic Perturbations

Information Gain (IG) Information Gain (IG) is a similarity information-theoretic

metric that measures saliency model performance compared to a baseline.

Given a binary map of pixels QB, a saliency map P , and a baseline map B, information

gain is computed as:

IG(P,QB) =
1

N

∑
i

QB
i [log2(e+ Pi)− log2(e+Bi)] (5.5)

where i indexes the i-th pixel, N is the total number of fixated pixels, e is for regularization

and information gain is measured in bits per fixation.

A score above zero indicates the saliency map is better than the baseline at predicting the

fixated locations.

Similar to the AUC variants and Infogain, the ground truth saliency map was binarized.

Distribution-based metrics

Distributed-based metrics treat pixel values and locations of ground truth saliency maps

as possible samples from an underlying distribution.

Similarity (SIM) The similarity metric (SIM) measures the similarity between two

distributions, viewed as histograms. SIM is computed as the sum of the minimum values

at each pixel, after normalizing the input maps. Given a saliency map P and a continuous

fixation map QD:

SIM(P,QD) =
∑
i

min(Pi, Q
D
i ) (5.6)

where
∑
i

Pi =
∑
i

QD
i = 1 (5.7)

iterating over discrete pixel locations i.

A SIM of one indicates the distributions are the same, while a SIM of zero indicates no

overlap.

Pearson’s Correlation Coefficient (CC) Pearson’s Correlation Coefficient (CC) is

a statistical method for measuring how correlated or dependent two variables are. If we

consider the distribution of pixels in the saliency map QD, and the saliency map P as

random variables, we can measure their linear relationship:
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CC(P,QD) =
σ(P,QD)

σ(P )× σ(QD)
(5.8)

where σ(P,QD) is the covariance of P and QD. It is a similarity metric, which means that

high positive CC values occur at locations where both the saliency map and ground truth

saliency map have values of similar magnitudes.

Kullback-Leibler divergence (KL) The Kullback-Leibler divergence (KL) is a dissim-

ilarity metric based on general information theory and it measures the difference between

two probability distributions.

The KL metric takes as input a saliency map P and a ground truth saliency map QD, and

evaluates the loss of information when P is used to approximate QD:

KL(P,QD) =
∑
i

QD
i log(

QD
i

Pi
) (5.9)

where e is a regularization constant.

One characteristic of KL is that it penalizes very sparse saliency maps.

Performance Metrics

One way to measure the impact that the perturbation strategy has on the underlying

model is to measure the change in confidence in predictions when noise is introduced.

We have selected a number of performance metrics for evaluating a classification model,

namely accuracy, precision, recall, and Mean Squared Error (MSE). The metrics are not

only used to compare with actual labels of the dataset but also among predictions before

and after the perturbation.

True positives (TP) and true negatives (TN) represent the instances correctly classified

by the model as being positive and negative, respectively. On the other-hand false posi-

tive (FP) and false negative (FN) represent the instances in which the model incorrectly

classified as being positive and negative, respectively.

Accuracy represents the ratio of examples correctly classified (Equation 5.10).

Accuracy =
TP + TN

TP + TN + FP + FN
(5.10)
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Precision measures which proportion of the samples predicted as positive are actually

positive:

Precision =
TP

TP + FP
(5.11)

Recall on the other-hand measures which proportion of the actual positive samples were

collectively predicted as positive:

Recall =
TP

TP + FN
(5.12)

In this section, we have introduced an approach for the evaluation of saliency maps using

realistic perturbations which avoid the problem of creating out-of-distribution images. We

have also proposed the adaptation of saliency metrics used to evaluate saliency models for

the comparison of saliency maps. The proposed approach was validated by evaluating 7

saliency map methods on a digital pathology dataset called PatchCamelyon.

5.3 Results

We have trained three CNNs on the PatchCamelyon dataset, VGG16, RestNetV3, and

InceptionV3. Table 5.2 shows the classification results of the CNNs averaged across all

folds. As can be seen, all the architectures are able to achieve very high performance with

state-of-the-art results.

model accuracy auc precision recall

InceptionV3 0.965 (0.004) 0.992 (0.001) 0.967 (0.004) 0.964 (0.007)
ResNet50 0.965 (0.003) 0.992 (0.001) 0.97 (0.009) 0.962 (0.006)
VGG16 0.971 (0.001) 0.991 (0.002) 0.974 (0.013) 0.968 (0.014)

Table 5.2: Average performance metrics of the three CNN architectures.

To test the natural perturbation, three scenarios were implemented: NN - where a pertur-

bation of normal tissue was added in an image of normal tissue, NT - where a perturbation

of normal tissue was added in an image of tumor tissue, and TN - where a perturbation

of tumor tissue was added in an area of image tissue.

To qualitatively evaluate the perturbation method and the saliency map methods we have

selected one example for each of the NT and TN scenarios. As can be seen in Figure 5.2,

when introducing a malignant region in a normal sample (i.e. top row) the saliency maps

change to highlight the perturbed region. Likewise, when introducing a normal region in a

malignant sample the perturbed region becomes less highlighted. This shows that our per-

turbation method is effective in changing the evidence present on the image and the model

takes into account the perturbed regions and does not focus on artifacts. There is also
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an apparent distinction between saliency maps produced by GradientInputs, Integrated-

Gradients, SmoothGrad, and VanillaGradients which produce more fine-grained saliency

maps when compared with GradCAM, Guided-GradCAM, and OcclusionSensitivity.

Figure 5.2: Qualitative analysis of saliency map methods before and after perturbation.
Top row corresponds to a benign case perturbed with a malignant region (TN), while the
bottom row corresponds to a malignant case perturbed with a benign region (NT). Yellow
and green pixels represent malignancy evidence while blue pixels represent to normal
pixels.

(a) Original tumor image (b) Saliency map produced
by VanillaGradients

Figure 5.3: Example image with multiple regions depicting evidence of malignancy and
the correspondent saliency map.

Nevertheless, there are a few cases, such as in Figure 5.3, where multiple regions depicting

evidence of malignancy exist in the image. The optimal approach would be to perturb all

of the regions with evidence. In Section 5.5 we propose a future extension of our approach

for such cases.

Below, each of the four research questions stated in the introduction section will be ana-

lyzed separately.
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5.3.1 What is the impact of the different perturbations on the model’s

predictions?

First, we will analyze the impact that perturbations have in the class that the CNN

predicts. It is expected that if the perturbation introduces pixels from the same class as

before, the predicted class should be the same and the accuracy remains high. However,

if the pixels introduced are from a different class then the class predicted by the model

should change and the accuracy should drop.

Table 5.3 compares the impact that the perturbation strategy has on the model’s accuracy

based on the class of the perturbed regions - whether it is from the same or different class

than the original - and based on the level of perturbation - the size of the perturbed region

(i.e. 8x8, 16x16 or 32x32). More specifically the table shows the average change in accuracy

when comparing the predicted class before and after perturbation. Changes between

saliency map methods appear due to the restriction that at least a pixel in the region

should be highlighted. From the results we have validated that the proposed perturbation

strategy is successful at introducing natural noise with evidence from a different class.

There was a large drop in accuracy when comparing the perturbation from different classes

with the same class.

Same Class Different Class

method 8x8 16x16 32x32 8x8 16x16 32x32

GradCAM 0.989 0.974 0.946 0.988 0.927 0.679
GradientsInputs 0.996 0.974 0.963 0.992 0.928 0.699
Guided-GradCAM 0.990 0.974 0.947 0.988 0.925 0.678
IntegratedGradients 0.989 0.972 0.947 0.988 0.925 0.678
OcclusionSensitivity 0.990 0.974 0.948 0.988 0.926 0.676
SmoothGrad 0.988 0.972 0.944 0.988 0.926 0.684
VanillaGradients 0.994 0.981 0.976 0.989 0.922 0.689

Table 5.3: Average accuracy of predicted class before and after different levels of pertur-
bation. Comparison of results after introducing regions from the same class or different
classes.

5.3.2 Are saliency map methods sensitive to the introduction of natural

noise?

We first extracted the saliency metrics for each scenario (NN, NT, TN), comparing the

original and the perturbed saliency map. Then we calculated the change in metrics when

the regions perturbed increased (8x8 to 32x32) and compared the three scenarios based

on these differences.

In scenario NT it is expecting an increase of dissimilarity metrics (↑) and a decrease of

similarity metrics (↓). As can be seen in Table 5.4, although most saliency map methods

are sensitive to the introduction of natural noise. However, OcclusionSensitivity and

89



Chapter 5

SmoothGrad were the exceptions presenting robust behavior.

method ↑ mse ↑ mae ↓ auc judd ↓ auc borji ↓ auc shuff ↓ nss ↓ infogain ↓ sim ↓ cc ↑ kldiv

GradCAM 0.242 0.170 -0.100 -0.097 -0.081 -0.254 0.094 -0.036 -0.236 0.226
GradientsInputs 0.386 0.326 -0.047 -0.046 -0.025 -1.178 0.070 -0.007 -0.895 0.106
Guided-GradCAM 0.420 0.301 -0.046 -0.047 -0.037 -0.122 0.045 -0.016 -0.103 0.064
IntegratedGradients 0.152 0.116 -0.031 -0.029 -0.024 -0.379 0.019 -0.020 -0.368 0.038
OcclusionSensitivity 0.000 -0.083 -0.002 0.000 0.000 0.007 -0.079 -0.060 -0.015 -1.000
SmoothGrad 0.000 0.000 -0.006 -0.007 -0.006 -0.070 0.003 -0.003 -0.058 0.002
VanillaGradients 0.344 0.273 -0.027 -0.033 -0.023 -0.658 0.039 -0.005 -0.575 0.044

Table 5.4: Comparison of the saliency metrics’ change when the perturbed region is in-
creased between the scenarios NN and NT.

method ↑ mse ↑ mae ↓ auc judd ↓ auc borji ↓ auc shuff ↓ nss ↓ infogain ↓ sim ↓ cc ↑ kldiv

GradCAM 0.106 0.092 0.005 -0.011 -0.010 0.033 -0.035 0.010 0.013 -0.336
GradientsInputs -0.017 -0.038 0.108 0.094 0.113 1.496 -0.056 0.037 1.470 -0.097
Guided-GradCAM -0.049 -0.011 0.015 0.066 0.092 0.051 -0.026 0.019 0.052 -0.077
IntegratedGradients 0.076 0.020 0.052 0.047 0.055 0.750 -0.028 0.012 0.615 -0.024
OcclusionSensitivity 0.167 0.000 0.009 0.008 0.000 0.035 -0.094 0.060 -0.014 -0.833
SmoothGrad -0.041 -0.008 0.001 0.002 -0.004 0.041 -0.005 -0.003 -0.004 -0.002
VanillaGradients -0.063 -0.051 0.099 0.084 0.069 1.283 -0.123 0.035 0.974 -0.280

Table 5.5: Comparison of the saliency metrics’ change when the perturbed region is in-
creased between the scenarios NN and TN.

On the other hand, with of the strategy TN (Table 5.5) it is expected a similar behavior

for the saliency metrics, in the consequent increasing of the dissimilarity values and the

decreasing of similarity values. Although the changes in this scenario were not quite as

noticeable.

5.3.3 How are saliency maps methods compared to each other in terms

of perturbation robustness?

To compare saliency map methods to each other in terms of perturbation robustness, we

have extracted the saliency metrics for each saliency map method for the NT scenario at

different levels of perturbation (i.e. 8x8, 16x16, 32x32). A comparison was made using the

Friedman rank test and the mean of the 7 saliency map methods was compared with each

other. The results were divided into three sets for each of the three levels of perturbation.

The obtained ranks for the 8x8, 16x16 and the 32x32 perturbation levels are shown in

Table 5.6, Table 5.7 and Table 5.8, respectively. Following the work of Denšar [66] with

N = 10 (number of metrics) and k = 7 (number of saliency map methods) the 7 methods

were compared among themselves for a 5% significance level using the two-tailed Nemenyi

test [66]. It was possible to obtain CD = 2.849, where CD is the critical value for the

difference of mean ranks between the 7 methods.

Next, we compared the 7 methods, this time without separating the different region sizes,

with a two-tailed Nemenyi test, across the 30 evaluation metrics and a 5% significance

level (Table 5.9). For this setup, we obtained a CD = 1.645. The CD is the critical value
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method mse mae auc judd auc borji auc shuff nss infogain sim cc kldiv average

GradCAM 6.5 5 3 6.5 5 2.5 6.0 2 2.5 6 4.50
GradientsInputs 4 4 3 2 1 4 7 7 4 7 4.30
Guided-GradCAM 3 3 3 4.5 5 2.5 1 1 1 1 2.50
IntegratedGradients 2 2 1 1 2.5 1 3 4 2.5 3 2.20
OcclusionSensitivity 5 6 6 4.5 5 7 5 5 6 5 5.45
SmoothGrad 6.5 7 7 6.5 7 6 4 6 7 4 6.10
VanillaGradients 1 1 5 3 2.5 5 2 3 5 2 2.95

Table 5.6: Ranks of saliency map methods over the 10 saliency metrics with 8x8 region
perturbation.

method mse mae auc judd auc borji auc shuff nss infogain sim cc kldiv average

GradCAM 5 5 1 1 1.5 1 4 2 1 3 2.45
GradientsInputs 2 2 4 4.5 5 5 3 7 4 5 4.15
Guided-GradCAM 4 4 2 3 3.5 2 1 1 2 1 2.35
IntegratedGradients 3 3 3 2 1.5 3 5 3 3 4 3.05
OcclusionSensitivity 6 6 6 7 6.5 7 7 5 6.5 7 6.40
SmoothGrad 7 7 7 6 6.5 6 6 6 6.5 6 6.40
VanillaGradients 1 1 5 4.5 3.5 4 2 4 5 2 3.20

Table 5.7: Ranks of saliency map methods over the 10 saliency metrics with 16x16 region
perturbation.

method mse mae auc judd auc borji auc shuff nss infogain sim cc kldiv average

GradCAM 2.5 4 1 1 1 1 1 1 1 1 1.45
GradientsInputs 4 3 3 3 3 3 4 6.5 3 4 3.65
Guided-GradCAM 1 1 2 2 2 2 2 2 2 2 1.80
IntegratedGradients 5 5 4 4.5 4 5 5 3 5 5 4.55
OcclusionSensitivity 6 6 7 7 7 7 7 4 6 7 6.40
SmoothGrad 7 7 6 6 6 6 6 6 7 6 6.35
VanillaGradients 2.5 2 5 4.5 5 4 3 5 4 3 3.80

Table 5.8: Ranks of saliency map methods over the 10 saliency metrics with 32x32 region
perturbation.

for the difference of mean ranks when taking into between the 7 methods among the 30

saliency metric values.

When taking into account the levels of perturbation separately and together, there is a

significant statistical difference between Occlusion Sensitivity and SmoothGrad and the

other saliency map methods.

5.3.4 How does the perturbation region’s size impact the saliency maps?

Figure 2 shows what is the behaviour of the different saliency map methods when changing

the size of the perturbed region on the TN scenario (based on Table 5.4). Three interesting

patterns emerge when we analyze the plot. First, Grad-CAM and Guided-GradCAM show

an increase in the rate of change between the first two region sizes and the last two. On the

other hand, gradient-based methods such as GradientsInputs, IntegratedGradients, and

VanillaGradients show an almost constant rate of change between region sizes. Lastly, as

previously mentioned OcclusionSensitivity and SmoothGrad appear mostly invariant to

91



Chapter 5

method mean

GradCAM 2.74
GradientsInputs 3.89
Guided-GradCAM 2.31
IntegratedGradients 3.18
OcclusionSensitivity 6.06
SmoothGrad 6.39
VanillaGradients 3.43

Table 5.9: Mean rank of saliency map methods over the 30 saliency metrics.

perturbation.

Figure 5.4: Plot showing metrics measuring the sensitivity of saliency map methods based
on size of region perturbed.
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5.4 Discussion

In this section, we first answer the research questions based on the results of our research.

Then we discuss the theoretical and practical implications that our findings have on current

and future research, proposing new future research directions.

5.4.1 Answering the Research Questions

What is the impact of the different perturbations on the model’s predictions?

The experiments’ results showed a high drop in the model’s confidence in the prediction

when the addition of the noise is related to the opposite class in comparison to the one

that exists in the same area before perturbation.

Are saliency map methods sensitive to the introduction of natural noise? Oc-

clusionSensitivity and SmoothGrad methods have been found to be insensitive to natural

noise when taking into account all the samples of the test set. Albeit for the other saliency

maps methods, the behavior was different, especially in scenario NT. Finally, it is impor-

tant to state that none of the saliency maps methods used present significant differences

in performance.

How are saliency maps methods compared to each other in terms of perturba-

tion robustness? OcclusionSensitivity and SmoothGrad have been shown to be more

robust to perturbation presenting a significant statistical difference compared to the other

methods. Grad-CAM and Guided-GradCAM have the overall best results but no signifi-

cant statistical difference was found in comparison with the other methods.

How does the perturbation region’s size impact the saliency maps? Grad-CAM

and Guided-GradCAM present a specially high sensitivity to perturbations with a larger

region (32x32) when compared with the other methods.

5.4.2 Implications on Saliency Map Evaluation

Typically, a saliency map sanity check [2, 197] has the following procedures:

• Model Randomization: randomize the weights of a model and evaluate the

changes in saliency maps;

• Label Randomization: randomize the labels of the training samples, breaking

the relationship between images and labels and forcing the model to memorize the
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randomized labels without learning the original relationship of the data. The saliency

maps should not be the same when the labels are randomized compared to when

they are not;

• Image Perturbation: introduce Gaussian or uniform noise in regions highlighted

by the saliency map and evaluate the performance loss of the model.

Our proposed approach complements the previous procedures by first introducing a per-

turbation method that is more consistent with data used to train the model - natural noise.

It allows comparing how different saliency map methods’ behavior changes with different

types of regions - same class or different class. It also proposes the use of different saliency

metrics that can further share light on the differences between saliency map methods.

5.5 Conclusions and Future Work

In this work, we have introduced a novel perturbation strategy for evaluating saliency

maps. This strategy is based on the introduction of natural regions from other class cases

and comparing the impact on the saliency maps based on both performance and saliency

metrics - adapted from literature on saliency models.

Overall, in spite of some differences between methods, it is proven with this work that

saliency maps can be a good strategy to interpret CNN models.

It is still uncertain what are the reasons for disparities in results. To move forward in

this direction, the correlation between the characteristics of the saliency maps and the

achieved results must be explored. For example, the sparsity of the salient pixels on the

image, or the distribution of the salient pixel’s values.

While the perturbation method focuses on a single region of the image, some of the saliency

maps produced have in fact highlighted multiple regions of the image as having evidence

of malignancy.

Based on these results future extensions of the current approach have to take into account

the location of the salient regions to propose what regions of the image to perturb. Existing

evaluation strategies [10, 109, 197] select the most salient pixels individually disregarding

whether the pixels belong to the same region or not. Rather than looking at the pixels

separately, we point to an extension of the proposed approach which takes the pixel values

of the saliency map and finds clusters of pixels using the clustering algorithm K-means

to find the optimal centroids to perturb with normal regions. The choice of saliency

map methods can also be focused on the ones that have shown the best results, such as

GradCAM and Guided-GradCAM.

Future work directions also include the validation of the results found in this study on a
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larger set of datasets. More specifically datasets that possess domain expert annotations

(e.g. segmentations of tumor regions) will be explored as these annotations can inform

the perturbation mechanisms to target the correct pixels more deliberately.
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Validating Post-hoc

Interpretability using Intrinsic

Interpretability

Over the last few years, a vast number of interpretability methods [152] have been pro-

posed for explaining CNNs’ predictions, which can be divided in: intrinsic interpretability,

referring to models that can be explained without further methods, usually by restricting

the model’s complexity; and post-hoc interpretability, referring to methods that explain

the model decisions after training.

Saliency maps are one of the most popular post-hoc interpretability methods to explain

CNN in the context of medical imaging [12]. This strategy illustrates the importance

of individual pixels of the input image on the overall prediction of a CNN. The color or

intensity of each pixel corresponds to the weight that the same pixel in the input image had

on the classification process. Even though most methods have been shown continuously to

be able to highlight regions with relevant medical evidence, the saliency maps generated by

different methods exhibit a significant degree of variation, which is evidence of bias specific

to each method that can not be overlooked. The qualitative analysis and evaluation of

saliency map methods remain an open challenge.

A number of intrinsic interpretability strategies have also been adopted in medical imag-

ing [12] with the objective of constraining the behavior of the classification model making

it understandable to humans. Case-based reasoning closely approximates the reasoning

process of physicians, which make decisions based on similar cases. Prototypes are spe-

cial cases of case-based reasoning, where a small number of data points can represent the

entire dataset [152]. To this end, ProtoPNet [51], a deep learning architecture based on

a convolutional neural network, learns automatically the optimal prototypes and makes

predictions based on the similarity of the instance to each prototype.
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This network also generates an attribution map (i.e. heatmap) that highlights the location

in the image which closely resembles the prototypes.

While both saliency map methods and ProtoPNet are capable of highlighting the impor-

tance of a region in the image for the prediction of the network, they do this through

different mechanisms.

As intrinsic interpretability methods are considered to be more faithful to the underlying

model’s behavior [51] as they do not require an external method after training, it can

become a good ground-truth of what regions of the image the saliency maps should fo-

cus. Therefore, we propose in this research work to use the intrinsic interpretable model’s

explanation as ground-truth and measure the overlap between it and the post-hoc expla-

nations to validate them. Therefore, we propose an approach that automatically validates

the results generated by post-hoc methods by comparing their results overlapped with the

results achieved by an intrinsic interpretable method that is used as ground-truth. To this

end, we adapted ProtoPNet for digital pathology and evaluated the overlap between it

and 8 different saliency map methods using 10 saliency metrics.

In our experimental setup, we have trained three CNNs and three ProtoPNets based

on three architectures (ResNet18, ResNet152 and DenseNet101) on the PatchCamelyon

dataset (histopathologic scans of lymph node sections). Following the training of the

networks, 8 different saliency map methods were used to extract saliency maps of the test

set to be compared with attribution maps generated intrinsically by the ProtoPNets. To

evaluate this approach, 10 metrics adapted for evaluating saliency maps [42] were used.

This chapter follows the following structure: Section 6.1 will briefly review related works

in the literature. In Section 6.2 we present the different components of the study for

evaluating the connection between saliency map methods and prototypes activation maps:

1) data selection, 2) model training, 3) prototypical parts extraction 4) saliency map

extraction, and 5) saliency map evaluation. We present and discuss the results of the

experiments in Section 6.3. Finally, in Section 6.4 we conclude with our final remarks and

steps for future work.

6.1 Background

Interpretability is an important prerequisite for the adoption of computer-aided diagnosis

systems. To this end, different computation competitions have emerged, and one of those

is the Camelyon16 challenge [32] has the goal of evaluating algorithms on the task of auto-

matic detection of breast cancer metastases in whole-slide images of hematoxylin and eosin

(H&E) lymph node sections. Convolutional neural networks (CNNs) have been successful

in this task, with approaches achieving area under the receiver operating curve (AUC)

of 0.925, increasing to 0.995 when combined with pathologists’ diagnosis (approximately
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85 percent reduction in human error rate). But, although the potential is shown, with-

out a clear understanding of their reasoning process, their application in clinical practice

remains elusive.

There are two distinct approaches for this problem: intrinsic interpretability and post-hoc

interpretability. Among post-hoc interpretability methods, the most adopted in medical

imaging are saliency map methods. This can be especially seen in the oncological field [12]

where half of the interpretability strategies employed to understand deep learning models

are saliency map methods. These methods can be divided into two major groups: back-

propagation methods and occlusion or sensitivity methods [152].

While not as popular, intrinsic interpretability strategies have also been adopted in medical

imaging [12]. The first is the approximation of the network with an intrinsically inter-

pretable model (i.e. decision rules) of similar performance but easier to understand [13].

Rather than generating saliency maps after training, it is also possible to incorporate in

the network the heatmap generation through an attention mechanism or probability es-

timation (i.e. pixel-wise or patch-wise). The patch-wise heatmap has shown remarkable

results in the diagnosis malignancy-based dermoscopic images [181]. Text explanations

have become a reality with the advent of language models. An example is the training

of a language model alongside the visual model for extracting text explanations while

classifying the malignancy of mammograms Lee et al. [134].

Case-based reasoning is another intrinsic interpretability strategy that closely approxi-

mates the reasoning process of physicians, as they have to extract from their knowledge

acquired from looking at similar cases. In this strategy, the classification of an instance is

based on the classes of similar instances [29]. Prototypes are special cases of case-based

reasoning, where a small number of data points are selected to represent all the data.

Prediction of a data point can then be made by their similarity and dissimilarity with

prototypes of either class. ProtoPNet [51] learns automatically the optimal prototypes

in the data and makes predictions based on the similarity of the features extracted by a

CNN and the features of the prototypes. With this added prototype layer, the network

is capable of explaining the prediction based on a similarity score to each prototype and

a heatmap denoting the location of each prototypical part. While ProtoPNet was not

applied to medical imaging, an extension called IAIA-BL[29] which adds a component of

fine annotation has shown great results in the classification of mammograms.

Although both saliency maps extracted via post-hoc interpretability methods (i.e. back-

propagation) and attribution maps extracted via intrinsic interpretability methods (i.e.

ProtoPNet) both highlight the important regions for the classification, they do this fun-

damentally through different mechanisms. Also, intrinsic interpretability methods are

perceived as more trustworthy and more faithful to the behavior of the underlying model

than post-hoc interpretability methods [51].

98



Validating Post-hoc Interpretability using Intrinsic Interpretability

The evaluation of saliency maps is difficult because there is a lack of ground-truth on how

the ideal saliency map should look. One strategy to evaluate a saliency map is by looking

at the drop in confidence in the prediction when obscuring a region highlighted by the

saliency map [10, 197]. This strategy demonstrated, in the digital pathology context, that

reducing the complexity of the network had a positive impact on how much the saliency

maps produced by the network reflected the model’s reasoning [14].

Due to the fact of the higher trustworthiness of intrinsic interpretability methods, the

attribution maps provided by ProtoPNet can be used as a ground-truth, allowing saliency

map methods that produce saliency maps with a bigger overlap to the ground-truth to be

considered more faithful to the model. Therefore, we developed an approach to evaluate

saliency maps by overlapping the saliency map produced by a post-hoc method and the

attribution map produced by an intrinsic methods

But, as we want to compare the heatmap generated by a saliency map method and pro-

totypical part network, we can select the latter as our ground-truth and measure the

overlap between them. Thus, we can use different metrics used for evaluating saliency

models which produce heatmaps representing the probability of an individual looking at

the pixel.

6.2 Method

Having in mind the main goal of this work which consists in comparing the saliency map

methods and prototypical parts activation maps, a five-stage pipeline was defined in the

experimental setup and is illustrated in Figure 6.1: 1) data selection, 2) model training, 3)

prototypical parts extraction 4) saliency map extraction, and 5) saliency map evaluation.

6.2.1 Data Selection

To evaluate the proposed approach, the PatchCamelyon dataset [229] derived from the

Camelyon16 dataset[32] was used. The Camelyon16 dataset contains 400 H&E stained

whole-slide images of sentinel lymph node sections split into 270 slides with pixel-level an-

notations for training and 130 unlabeled slides for testing. PCam dataset contains 327,680

patches with size of 96 x 96 pixels extracted from Camelyon16 with a 10x magnification.

The PatchCamelyon task is to classify the images into benign or malignant cases based

on expert segmentations of malignant tissue.

PatchCamelyon dataset was chosen because of the quality of the images which were curated

and segmented by pathologists and the large number of images.

The patches were first normalized into fixed range between 0 to 1 to improve the opti-

mization process. Also to avoid overfitting, data augmentation was applied to increase
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Figure 6.1: Automatic evaluation of saliency maps perturbation pipeline.

diversity of the images of the training set. Images were randomly flipped both vertically

and horizontally, and random brightness augmentation was used.

6.2.2 Model Training

Three CNN architectures were explored: Resnet18 [104], Resnet152 [104] and DenseNet101 [111].

These CNN architectures were chosen as they represent state-of-the-art approaches for

many medical imaging tasks and they achieved good results in metastasis detection in the

Camelyon16 challenge [32].

For the purpose of achieving the best performance on the medical imaging task of tumor

detection of the PatchCamelyon dataset, the three CNNs were pre-trained on the ImageNet

dataset [67] and fine-tuned on the medical dataset with a low learning rate.

All the models were trained with a batch size of 64 images, for 100 maximum epochs which

were cut short by stoping the training early when the validation accuracy stops improving.

The learning rate also was reduced by a factor of 0.2 when the validation accuracy also

plateaus.

Hyperparameter optimization through grid search was used to select thee optimal opti-

mization algorithm and initial learning rate.
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6.2.3 Prototypical Part Network

The ProtoPNet network [51] (Figure 6.2) is composed of a convolutional neural network

that extracts features for the classification z = f(x), followed by a prototype layer g, and

a fully connected layer h. The CNN component is based on the three CNN architectures

mentioned previously.

Figure 6.2: Architecture of ProtoPNet.

The prototype layer learns m prototypes which can represent the entire training set.

Each prototype represents a different prototypical part or concept either of the malignant

or benign class. After learning the prototypes, the layer computes the similarity scores

between all patches of the image of the same size as the prototype using the L2 distance

function. The result is an attribution map for each prototype that indicates the regions

of the image where it’s most represented.

On the original ProtoPNet paper [51], the attribution map is created by aggregating the

similarity scores using global max pooling. Rather than using max pooling, top-k average

pooling was used [29] to use top 5% of the most activated convolutional patches that are

closest to each prototype, instead of only the top most activated patch.

Finally, the similarity scores produced by the prototype layer are multiplied by the weight

matrix of the fully connected layer to produce the output logits, which when passed

through the softmax function produce the predicted probabilities for each class.

ProtoPNet training algorithm

Training of ProtoPNet is divided into three phases: (1) stochastic gradient descent (SGD)

of layers before the last layer; (2) projection of prototypes; (3) convex optimization of the

last layer.

In the first training stage, the convolutional layers’ parameters and the prototype layer’s

parameters are optimized while keeping the last layer fixed.
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During this phase, the loss function minimized is composed of the weighted sum of three

losses: cross-entropy loss (CrsEnt), the cluster cost (Clst), and separation cost (Sep)

(Equation 6.1):

minλ1CrsEnt + λ2Clst + λ3Sep (6.1)

The cross-entropy loss (CrsEnt) encourages the predicted classes to be the same as the

target yi in the training set composed of n instances (Equation 6.2):

CrsEnt =
1

n

n∑
i=1

CrsEnt (h ◦ gp ◦ f (xi) , yi) (6.2)

The cluster cost (Clst) encourages each training image to have some latent patch that is

close to at least one prototype (pi ∈ P ) of its own class (Equation 6.3):

Clst =
1

n

n∑
i=1

min
j:pj∈Pyi

min
z∈patches(f(xi))

∥z − pj∥22 (6.3)

The separation cost (Sep) encourages every latent patch of a training image to stay away

from the prototypes not of its own class (Equation 6.4):

Sep = − 1

n

n∑
i=1

min
j:pj /∈Pyi

min
z∈patches(f(xi))

∥z − pj∥22 (6.4)

During the second phase of the projection of prototypes, each prototype is projected onto

the nearest training image patch from the same class as the prototype. This is done so

that when interpreting the predictions made by the network, the prototypes represent

actual patches of images in the training set.

Finally, in the last phase, the last layer is optimized using a convex optimization focusing

on a sparsity property making the model rely more on positive evidence (i.e. predicting

a class by using the prototypes of that class) and rely less on negative evidence (i.e.

prototypes from the negative classes).

To find the optimal hyperparameters for each ProtoPNet architecture, grid search algo-

rithm was used. The hyperparameters that were optimized were the number of prototypes,

dimensions of prototypes, learning rates in each training phase, and weights for the three

components of the loss functions - cross-entropy loss, cluster cost, and separation cost.
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6.2.4 Saliency Map Methods

We have selected 8 popular saliency map methods of the two major groups: back-propagation

methods and occlusion or sensitivity methods 1.

Back-propagation methods compute the relevance of a pixel by propagating a signal from

the output neuron backward through the layers to the input image in a single pass [24].

Sensitivity methods compute pixel relevance by making small changes in the pixel value

of the input image and compute how the changes affect the prediction [209].

Saliency Saliency [209], or gradient back-propagation, is a simple method where the

pixel’s sensitivity is given by the gradient of the loss function for the class we are interested

in with respect to the input pixels. Each saliency map pixel’s value represents how much

a tiny change in the pixel would change the classification score for class c. The gradient

method generates a highly noisy saliency map.

Deconvolution Deconvolution [251] provides a way to map the activation of interme-

diate layers back to the input layer. This mapping is performed by a Deconvolutional

Network which attaches to the CNN layers and performs the opposite operation. For

example, the unpooling layer does the inverse of the pooling layer.

GuidedBackprop GuidedBackprop [214] adds an additional guidance signal from the

higher layers to the usual back-propagation. It combines deconvolution with back-propagation,

by masking out negative values from either method.

SmoothGrad SmoothGrad [213] is a variant of Gradient Back-propagation where the

saliency map is smooth out by creating noisy copies of the input image and then average

the gradient saliency maps of these noisy images. The resulting effect is a more sharp

saliency map with less noisy on irrelevant regions.

Integraded Gradients Integrated Gradient [217] saliency map is computed by drawing

a straight line in the network feature space from a baseline image and the input image

and accumulating the gradients at all points along the path. The baseline image should

ideally have no signal, so similarly to the original paper, we have also used a zero-based

image (i.e. black image) as our baseline.

Occlusion Sensitivity Occlusion Sensitivity [251] computes the importance of regions

of the image by inspecting if there is a drop in the confidence of the model in the predicted

1The implementation of the saliency map methods was done using the pytorch captum toolbox [124].
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class when the region is occluded using a mask.

SHAP Shapley Additive explanations (SHAP) [142] requires the training of a distinct

predictive model for each distinct combination of input features. By inspecting the gap

between the predictions of two predictive models when a feature is added/subtracted, we

can infer the importance of the feature in the prediction. Features whose presence or

absence produced a large gap in predictions have large Shapley values and are deemed

important.

LIME Local Interpretable Model-agnostic Explanations (LIME) [185] first produces an

artificial dataset by occlusing each feature of the original datapoints. Weights are assigned

to the generated datapoints based on the closeness to the original point. Based on the

generated weighted data a linear regression model is trained. The coefficients of the linear

regression correspond to the importance of the input features to the model’s predictions.

6.2.5 Saliency Map Evaluation

The metrics used to evaluate saliency models were adapted for evaluating saliency maps

and attribution maps [42]. The main task of a saliency model is predicting eye movements

made during image viewing. The saliency model produces a heatmap in which the pixel

value represents the probability of an individual looking at the pixel. Evaluation of the

saliency model consists of comparing the heatmaps to the ground-truth fixation map. We

use the saliency metrics to compare the saliency map extracted from the CNNs and the

attribution map of each prototype produced by the ProtoPNet.

Following Riche et al. [187] we divided the metrics based on location-based or distribution-

based and similarity or dissimilarity. This classification is summarized in Table 6.1.

Metrics Location-based Distribution-based

Similarity jAUC, bAUC, sAUC, NSS, IG SIM, CC

Dissimilarity MSE, MAE KL

Table 6.1: Saliency metrics divided by type.

Location-based metrics consider saliency map values as discrete locations at different

threshold levels, while distribution-based metrics treat both saliency maps as continuous

distributions.

Similarity metrics measure how similar two saliency maps, while dissimilar metrics measure

how dissimilar they are. Similarity should have higher values when we expect the saliency

maps to not change (i.e. introduce evidence from the same class) while being lower when

we expect a change (i.e. introduce evidence from a different class). The opposite should

happen with the dissimilarity metrics.
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Location-based metrics

Location-based metrics score saliency maps regarding how accurately they predict discrete

pixel locations.

Area under ROC Curve (AUC) The Area under the ROC curve is the most widely

used metric for evaluating saliency maps. When computing the AUC, the saliency map

is treated as a binary classifier at various threshold values and the ROC curve represents

the true and false positive rates for each threshold value.

Different AUC implementations differ in how true and false positives are calculated.

AUC-Judd (jAUC) use a threshold level as a cut-off value to determine if pixel values in

a saliency map are positives or negative.

AUC-Borji (bAUC) uses uniform random sample of image pixels as negatives and defines

the saliency map values above threshold at these pixels as false positives.

Shuffled AUC (sAUC) penalizes center bias by samplying negative samples predominantly

from the image center.

These saliency metrics were adapted by binarizing the ground truth saliency map by

setting a threshold and selecting the most salient pixels.

Normalized Scanpath Saliency (NSS) The Normalized Scanpath Saliency (NSS)

is a similarity metric which measures the average normalized saliency map values of the

locations of the ground truth saliency map.

Given a saliency map P and a binarized ground truth saliency map QB, NSS can be

computed so:

NSS(P,QB) =
1

N

∑
i

Pi ×QB
i (6.5)

where N =
∑
i

QB
i and P =

P − µ(P )

σ(P )
(6.6)

where i indexes the i-th pixel, and N is the total number of fixated pixels.

NSS is sensitive to false positives, as the metric is normalied over all the positive pixels

on the binarized ground truth saliency map.

Similar to the AUC variants, the ground truth saliency map was binarized.
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Mean Average Error (MAE) Mean Average Error (MAE) represents the average

difference between the model’s prediction and ground-truth (Equation 6.7) and can be

used in regression problems.

MAE =
1

N

N∑
i=1

(ŷi − yi) (6.7)

Mean Squared Error (MSE) Mean Square Error (MSE) represents the average

squared difference between the model’s prediction and ground-truth (Equation 6.8).

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (6.8)

Information Gain (IG) Information Gain (IG) is a similarity information theoretic

metric that measures saliency model performance compared to a baseline.

Given a binary map of pixels QB, a saliency map P , and a baseline map B, information

gain is computed as:

IG(P,QB) =
1

N

∑
i

QB
i [log2(e+ Pi)− log2(e+Bi)] (6.9)

where i indexes the i-th pixel, N is the total number of fixated pixels, e is for regularization,

and information gain is measured in bits per fixation.

A score above zero indicates the saliency map is better than the baseline at predicting the

fixated locations.

Similar to the AUC variants and Infogain, the ground truth saliency map was binarized.

Distribution-based metrics

Distributed-based metrics treats pixel values and locations of ground truth saliency maps

as possible samples from an underlying distribution.

Similarity (SIM) The similarity metric (SIM) measures the similarity between two

distributions, viewed as histograms. SIM is computed as the sum of the minimum values

at each pixel, after normalizing the input maps. Given a saliency map P and a continuous

fixation map QD:
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SIM(P,QD) =
∑
i

min(Pi, Q
D
i ) (6.10)

where
∑
i

Pi =
∑
i

QD
i = 1 (6.11)

iterating over discrete pixel locations i.

A SIM of one indicates the distributions are the same, while a SIM of zero indicates no

overlap.

Pearson’s Correlation Coefficient (CC) The Pearson’s Correlation Coefficient (CC)

is a statistical method for measuring how correlated or dependent two variables are. If

we consider the distribution of pixels in the saliency map QD, and the saliency map P as

random variables, we can measure their linear relationship:

CC(P,QD) =
σ(P,QD)

σ(P )× σ(QD)
(6.12)

where σ(P,QD) is the covariance of P and QD. It is a similarity metric, which means that

high positive CC values occur at locations where both the saliency map and ground truth

saliency map have values of similar magnitudes.

Kullback-Leibler divergence (KL) The Kullback-Leibler divergence (KL) is a dissim-

ilarity metric based on general information theory and it measures the difference between

two probability distributions.

The KL metric takes as input a saliency map P and a ground truth saliency map QD, and

evaluates the loss of information when P is used to approximate QD:

KL(P,QD) =
∑
i

QD
i log(

QD
i

Pi
) (6.13)

where e is a regularization constant.

One characteristic of KL is that it penalizes very sparse saliency maps.

Performance Metrics

One way to compare the predictions of the CNN and ProtoPNet is to measure the difference

in confidence in the class from both models. We have selected a number of performance

metrics for evaluating a classification model, namely AUC, accuracy, precision, recall, and
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Mean Squared Error (MSE). These metrics are not only used to measure the performance

of each model by comparing their predictions with actual labels but also to measure

between predictions of CNNs and ProtoPNet with the same pre-trained base model.

True positives (TP) and true negatives (TN) represent the instances correctly classified

by the model as being positive and negative, respectively. In the other-hand false posi-

tive (FP) and false negative (FN) represent the instances in which the model incorrectly

classified as being positive and negative, respectively.

Accuracy represents the ratio of examples correctly classified (Equation 6.14).

Accuracy =
TP + TN

TP + TN + FP + FN
(6.14)

Precision measures which proportion of the samples predicted as positive are actually

positive:

Precision =
TP

TP + FP
(6.15)

Recall on the other-hand measures which proportion of the actual positive samples were

collectively predicted as positive:

Recall =
TP

TP + FN
(6.16)

In this section, we have introduced an approach for the evaluation of saliency maps using

realistic perturbations which avoids the problem of creating out-of-distribution images.

We have also proposed the adaptation of saliency metrics used to evaluate saliency models

for the comparison of saliency maps. The proposed approach was validated by evaluating

8 saliency map methods on a digital pathology dataset called PatchCamelyon.

6.3 Results

In the experimental setup, three CNNs pre-trained on the ImageNet dataset have been

selected: RestNet18, RestNet152, and DenseNet121. We trained the three CNNs on the

PatchCamelyon dataset and also used them as base models for three ProtoPNets.

Table 6.2 shows the classification results of the models. Overall, both CNNs and Pro-

toPNets were able to achieve very high performance across all architectures. The most

accurate model was the ProtoPNet based on the DenseNet121 architecture with an AUC

of 0.981, the corresponding CNN having achieved an AUC of 0.975.

While the black-box CNNs perform better when using a ResNet18 and ResNet152 base
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model, ProtoPNet with the DenseNet121 was the best model.

From the results, we can conclude that there was no clear trade-off of performance by

adding the interpretability layer (i.e. prototypical layer) to achieve intrinsical interpretabil-

ity.

model base model auc accuracy precision recall

PPNet densenet121 0.9814 0.9814 0.9846 0.9780
CNN densenet121 0.9750 0.9750 0.9869 0.9627
PPNet resnet18 0.9703 0.9702 0.9667 0.9740
CNN resnet18 0.9780 0.9780 0.9792 0.9768
PPNet resnet152 0.9545 0.9545 0.9444 0.9658
CNN resnet152 0.9628 0.9628 0.9647 0.9606

Table 6.2: Performance of models on malignancy detection.

To qualitatively evaluate the saliency map methods we have selected one example of ma-

lignancy and computed the saliency maps for each method for the network that achieved

the best results (DenseNet121). Figure 6.3 presents side by side the result saliency maps

overlapping the original image (A). Some of the methods (D and E) produce a saliency

map with absolute values so the importance of each pixel is depicted by the darkness of

the blue tone. Other methods (B, C, F, G, H, and I) produce both negative importance

which is depicted in red, and positive importance depicted in green. Positive importance

corresponds to evidence of malignancy while negative importance corresponds to evidence

of benignity.

Deconvolution and Lime (B, I) highlight a vast region of the image but are able to some-

what focus on a vast number of nuclei. In comparison, methods such as SmoothGrad,

Occlusion, and GuidedBackprop (C, E, H) appear more sparse in their activations.

To qualitatively evaluate the ProtoPNet’s attribution maps we have selected the same

test image as before and computed the attribution maps for 4 specific prototypes of the

DenseNet121 base network. Figure 6.4 presents in the top row, for each prototype its most

similar region extracted from the images of the training set. Below each image is shown

the attribution map calculated for the original image used before.

When compared with the previous saliency map methods, the attribution maps gener-

ated by the ProtoPNet are very soft and smooth. This can be justified by the fact that

the prototype dimensions that the hyperparameter optimization chose are small which

can become a trade-off between increasing performance while disregarding fine-grained

explanations.

We compared the predictions of the CNNs and ProtoPNets across all three architectures

on the test set to understand if both models correlate with each other. Table 6.3 shows

that AUC is high for the three architectures, suggesting that the CNN and ProtoPNet

versions make similar predictions. DenseNet121, which was the most accurate architecture
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Figure 6.3: Qualitative analysis of saliency map methods for the DenseNet121 network.
At the top left corner, we have the original image. The other images corresponding to the
different saliency maps overlayed on top of the original image. Saliency maps with only
absolute values represent positive evidence with blue tones, whereas darkness represents
importance. Other saliency maps represent positive evidence of malignancy with green
tones and negative evidence with red tones.

in the malignancy prediction task is also the architecture in which the predictions from

the CNN and ProtoPNet versions are most related.

base model auc accuracy precision recall

densenet121 0.9749 0.9747 0.9656 0.9831
resnet18 0.9703 0.9702 0.9654 0.9752
resnet152 0.9540 0.9539 0.9418 0.9672

Table 6.3: Comparing the predictions of CNN and ProtoPNet based on the same archi-
tecture.

To measure the overlap between CNN’s saliency maps methods to ProtoPNet’s attribution
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Figure 6.4: Qualitative analysis of prototypical parts of the ProtoPNet trained with the
DenseNet121 architecture. At the top are the regions of the training images that are the
most similar to each of the four prototypes. At the bottom are the attribution maps
depicting the similarity of the original image to each prototype. The same original image
as in Figure 6.3 was used.

maps we have extracted the explanations for each image in the test set and computed the

saliency metrics (10) comparing each saliency map with the corresponding attribution

map.

A statistical comparison was performed using the mean of each of the 8 saliency map

methods and the Friedman rank test. The results were divided into three tables for each

of the three architectures.

The averaged ranks across all metrics for the DenseNet121, ResNet152 and ResNet18

architectures are shown in Table 6.4. The methods that are shown to have the smallest

overlap with ProtoPNet than other methods are highlighted.

densenet121 resnet152 resnet18
saliency method 1 2 3 4 1 2 3 4 1 2 3 4

Deconvolution 6.2 6.2 6.2 6.2 3.6 4.1 4.1 4.5 4.5 4.5 3.7 4.2
GuidedBackprop 4.6 4.6 4.6 4.6 4.6 5.8 5.8 5.9 4.4 4.4 5.8 5.0
Saliency 3.9 3.9 3.5 3.5 3.3 4.3 4.3 4.4 4.7 4.3 4.7 4.8
GradientShap 5.7 5.7 5.0 5.0 4.3 5.4 5.4 5.5 6.5 6.6 5.6 6.0
IntegratedGradients 4.2 4.2 4.6 4.6 4.7 4.5 4.4 4.0 5.2 5.1 4.8 4.4
Lime 5.6 5.6 6.2 6.2 6.1 7.2 7.2 7.0 4.2 4.7 5.3 5.9
Occlusion 3.9 3.9 3.1 3.1 4.8 1.8 1.8 1.9 3.2 3.1 3.2 2.2
SmoothGrad 2.2 2.2 3.0 3.1 5.0 3.0 3.0 2.9 3.4 3.4 3.0 3.5

Table 6.4: Average rank of similarity between saliency map methods and ProtoPNet over
the 10 saliency metrics.

Following the work of Denšar [66] with N = 10 (number of metrics) and k = 8 (number

of saliency map methods), the 8 methods were compared among themselves for a 5%

significance level using the two-tailed Nemenyi test [66] obtaining a CD (critical value for

the difference of mean ranks between the 8 methods) of 2.949.

In the DenseNet121 architecture, a statistically significant difference was found between
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SmoothGrad and both Deconvolution and Lime on all prototypes. When taking into

account only the last two prototypes, Deconvolution and Lime have been found to have

a smaller overlap than the majority of other methods. By analyzing the results, methods

such as SmoothGrad, Occlusion, and Saliency continuously have a bigger overlap than

methods such as Deconvolution, Lime, and GradientShap.

Figure 6.5 shows the average rank of the saliency map method depending on the proto-

type. Three interesting patterns emerge when we analyze the plot. First, depending on

the architecture chosen the overlap of the methods can vary greatly. Second, despite this

variation, some methods seem to produce saliency maps with a bigger overlap to ProtoP-

Net regardless of the architecture (i.e. SmoothGrad and Occlusion) while others show a

smaller overlap (i.e. Deconvolution and Lime). Lastly, SmoothGrad saliency maps are

less fine-grained than other back-propagation methods, so it makes sense because the at-

tribution maps created by ProtoPnet have a low resolution and are upscaled to the input

image size.

6.4 Conclusions

In this work, we proposed an approach to validate saliency map methods by measuring

their overlap with the attribution maps produced by the intrinsic interpretable model

ProtoPNet. As ProtoPNet does not use an external method to generate the attribution

map it can be used as a ground-truth for the post-hoc methods. In our experimental setup,

we compared 8 different popular post-hoc saliency map methods and the prototypical

attribution maps generated by ProtoPnet. This was performed by looking at the closeness

of predicted labels and measuring the overlap of saliency maps with ProtoPNet, with 10

different saliency metrics adapted from literature on saliency models.

ProtoPNet was not shown to trade-off performance in pursuit of interpretability, having

achieved the most accurate model across all architectures. Also, the predictions of CNNs

and ProtoPNets have been shown to correlate with each other.

While the saliency map methods produced a more fine-grained heatmap, ProtoPNet’s

attribution maps were soft and smooth. One possible justification relies on the prototype

dimensions that the hyperparameter optimization chose, which were small. Also, we did

not use fine annotation, as used in the IAIA-BL extension [29], as they were not available

in the Camelyon16.

Overall, in spite of some differences in results depending on the architecture chosen, two

methods have been found to have statistically a bigger overlap with ProtoPNet: Smooth-

Grad and Occlusion. Deconvolution and Lime have shown consistently lower overlap. One

possible reason for these results is the fact that ProtoPNet produces smooth attribution

maps. While not as smooth as ProtoPNet, SmoothGrad, and Occlusion are more sparse
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Figure 6.5: Plot showing the average rank of saliency map methods based on the four
selected prototypes.

and conservative in the highlighting, while Deconvolution and Lime are more fine-grained

but also more dispersed.

In this work, we focused on the saliency maps produced by the last fully-connected layer

of the network. Further extensions must compare salience maps from intermediate layers.

By doing so we can ascertain if the feature being detected by a filter or neuron of the

network is related to the prototypes.

Future work directions also include the validation of the results on a dataset with fine

annotation. An extension of ProtoPNet, called IAIA-BL[29], is capable of producing more

fine-grained attribution maps by feeding the network fine annotation given by pathologists.

While annotations are not always available, there are many public datasets where they

are.

113



Chapter 7

Conclusions

In this chapter, we summarise our conclusions and insights regarding all of the research

questions presented in Section 1.2. The following sections (Sections 7.1 to 7.3) discuss

each research question individually. Finally, in Section 7.4 we provide our view on the

next steps in Deep Learning interpretability for medical imaging in cancer.

7.1 Is there a connection between the complexity of the

model and its interpretability? (RQ-1)

The experiments in this work (in particular Chapter 4) underline a strive to understand

how the complexity of the model is related to interpretability and if it is possible to re-

duce the trade-off between performance and interpretability. As addressed in Chapter 4, a

choice of an interpretable model would usually result in a substantial loss in performance.

To reach that conclusion, we first developed an algorithm based on mimic learning to

transfer the knowledge learned by complex deep neural networks to simpler interpretable

ML models. The developed approach was validated on a medical dataset and showed

that it was possible to increase the performance of these interpretable models by using

the knowledge of deep neural networks as a teacher. The 10 most accurate interpretable

models were not trained on the original data but on the augmented data from the deep

neural networks. While models such as decision trees are intrinsically interpretable, the

higher number of nodes and levels can turn these models incomprehensible. Knowledge

distillation already has shown great results for training lightweight networks for medical

image segmentation [108, 180], but we found potential in its use to also train intrinsi-

cally interpretable models by constricting the complexity of the network without losing

performance.

Following the same direction, in chapter Chapter 4, we set our aim to look at a popular

way to reduce the complexity and capacity of a network, regularization, and how it af-
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fects the quality of the saliency maps produced by the network. A study was performed

by adding regularization to different layers of the network at different values and mea-

suring its impact on the faithfulness of the saliency maps produced by the regularized

network. The faithfulness was measured with a metric called AOPC which evaluates the

drop in confidence of the model when removing the pixels highlighted by the explanation

as the most important. We were able to determine that regularization has an impact

on interpretability, and networks with smaller regularization values produce more faithful

explanations. However, regularization should not be performed in all layers, focusing only

on later convolutional layers or in the fully-connected layers.

In Chapter 6 we have adapted the intrinsic interpretable model ProtoPNet for digital

pathology. The network contains a prototypical layer that uses real images of the training

set as prototypes representing each class and produces a similarity score as well as an

attribution map (i.e. heatmap) which explains how close is the image being predicted to

each prototype and which regions of the image are similar. This constraint in the network

does not appear to have caused a drop in performance as mentioned in Chapter 6. Similar

to the previous work, good results can be reached when the initial layers of the network,

the feature extractor based on CNN, complexity is maintained while subsequent layers are

constrained.

We can conclude that there is a connection between the complexity of the model and its

interpretability and that generally, higher complexity of the model will result in higher

interpretability as well as more faithful explanations.

7.2 Can interpretability methods help understand how deep

learning models produce their decisions? (RQ-2)

During the experiments in Chapters 4, 5 and 6 different intrinsic interpretability methods

and post-hoc interpretability methods were explored. The advantage of employing intrinsic

interpretable models to make clinical decisions is that the behavior of the model can be

understood without the use of external methods. While the models used in Section 4.1

(e.g. decision tree) are by themselves interpretable, the Prototypical Part Network used in

Chapter 6 contains interpretable components, namely the similarity score and attribution

map which not only allow the user to understand how the network makes the decision but

also is used by the model to formulate its decision.

In Chapters 4, 5 and 6 we also explored the use of post-hoc interpretability methods in

the form of saliency maps. Saliency maps highlight regions of the input image that are

important for the decision made by a model.

Intrinsic interpretable models help understand the behavior of the deep learning models

at a deep level. Models such as decision trees have components such as the nodes which
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are easy to understand, so given an input the user can simulate the model’s output. In-

trinsic interpretable models based on deep learning such as ProtoPNet allows the same

by introducing components such as prototypical layer which provides an explanation. For

example, ProtoPNet presents the representative examples from the dataset, the similarity

of the input image to these examples, and the impact that the presence of these pro-

totypes has on the decision. Together, these different components transmit a complete

understanding of the decision of the network.

Post-hoc interpretability methods on the other hand allowed us to understand how the

model made decisions on a lower level compared to intrinsic interpretable models. The

saliency maps showed what pixels were important in the classification, but the mechanisms

behind that decision are still opaque.

7.3 Do deep learning models rely on relevant clinical infor-

mation when classifying medical images? (RQ-3)

Recently many researchers have been concerned about using post-hoc explanation meth-

ods, especially saliency maps, as results are highly inconsistent, unreliable, and show

invariance to model parameters [2, 51].

In Chapter 5 we proposed an approach to evaluate saliency map methods based on the

introduction of realistic perturbation as opposed to the uniform and random perturbation

which is prevalent in the literature. Doing so we could extract relevant salient metrics

and evaluate quantitatively whether the saliency maps were robust (i.e. invariant) to

the introduction of evidence of malignancy or the subtraction of it. From the results,

we could conclude that while saliency map methods were helpful in understanding DL

model decisions, they exhibit high levels of robustness to perturbation, especially Occlusion

Sensitivity and SmoothGrad, which needs to be further investigated.

In Chapter 6 we introduced the attribution maps generated by ProtoPNet as a ground-

truth for post-hoc interpretability to evaluate what was the overlap between the two maps.

Overall, in spite of some differences in results depending on the CNN architecture chosen,

two methods have been found to be statistically more similar to ProtoPNet: SmoothGrad

and Occlusion, while Deconvolution and Lime were consistently the most dissimilar meth-

ods. Qualitatively it was possible to assess that the saliency maps focused on cell nuclei

and disregarded background, pointing to actual clinical information.
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7.4 Limitations and Further Directions

The interplay between the complexity of the model and the interpretability that can be

achieved is still not fully understood. We studied the relationship between complexity and

interpretability in the particular case of regularization and showed that it was possible to

increase the performance of simpler interpretable models by transferring the knowledge

learned by complex DL models. Future directions include the other techniques for reducing

complexity such as model pruning [102] to reduce the number of connections in the net-

work, or even apply knowledge distillation similar to chapter 4 to transfer the knowledge

to smaller networks.

When investigating post-hoc interpretability we focused on the application and evalua-

tion of saliency maps as they are one of the most popular techniques in the literature

(Section 2.5). But, to get a more complete understanding of the model’s behavior a

combination of post-hoc methods should be used. For example, Olah et al. [168] used a

combination of feature visualization, attribution, and dimensionality reduction to visual-

ize individual neurons, and also the combination of neurons that fire at a given spatial

location. Also, interactive tools can be used to inspect different elements in the network

in real-time.

Innumerable interpretability methods have been proposed but there is a lack of evaluation

metrics capable of comparing and validating them. Most evaluation metrics of post-hoc

explanations such as saliency maps and feature importance depend on the introduction of

random noise. In this thesis, we proposed an evaluation approach based on the introduc-

tion of natural noise and the study of the impact of the perturbation on the explanations.

Also, the overlap between post-hoc interpretability and intrinsic interpretability was mea-

sured.

Evaluation of interpretability methods will remain a difficult task until high-quality ground

truth from the target audience is not available. Collaboration with clinicians to define

clear annotations to establish a ground truth is essential for evaluating interpretability

methods. Similarly, patients will also become the receivers of explanations of DL systems

and also will need to become part of studies to evaluate what are the optimal explanations

for different medical modalities. The collaboration between ML experts, physicians, and

patients is essential for not only the development and testing of new DL systems but also

the maintenance and improvement of already deployed systems.

In chapter 3 we developed a global taxonomy of interpretable AI used by lawyers, philoso-

phers, developers, physicians, and sociologists, with the goal of building a solid basis for

discussing the future of AI. Despite initial efforts to establish a shared vocabulary, its

adoption as a standard practice has yet to be achieved.

Many of the current interpretability methods and evaluation metrics for DL models rely
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on the introduction of random noise of the input image and the study of its impact

on the network output and explanation. Further work should move away from random

modification and towards a natural modification. Rather than targeting specific pixels or

regions of the image, researchers should focus on the introduction of evidence of a specific

pathology or the slight modification of a feature or concept to study the importance of

such concept on the output of the network and explanation. Synthetic datasets can be

curated by physicians and ML experts by creating pairs of images that are only dissimilar

in a specific characteristic that is being studied. Similarly, generative models can be used

to synthesize the synthetic dataset [262].

While post-hoc explanations allow DL systems to not compromise their performance and

predictive capability, they are considered by researchers more unreliable and inconsistent.

Intrinsically interpretable models impose constraints in the model for their behavior to

be more understandable by the user, instilling more trust. Future work should focus on

closing the gap in performance between intrinsically interpretable models and black-box

models.

The datasets and problems in this thesis are limited by the computational power and

time that were available, so most works focused on one pathology, digital pathology.

Nevertheless, they can arguably be applied to deal with other data modalities.
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Appendix A

Saliency metrics for each

perturbation scenario

This appendix provides supporting information to the work developed in Chapter 5.

method level ↓ mse ↓mae ↑ auc judd ↑ auc borji ↑ auc shuff ↑ nss ↑ infogain ↑ sim ↑ cc ↓ kldiv

GradCAM
8x8 0.066 0.141 0.823 0.640 0.606 1.188 -5.806 0.771 0.865 1.056
16x16 0.077 0.169 0.793 0.686 0.643 1.031 -5.336 0.774 0.728 1.549
32x32 0.085 0.191 0.737 0.672 0.633 0.805 -5.017 0.778 0.563 1.568

GradientsInputs
8x8 0.029 0.104 0.599 0.541 0.534 0.104 -4.396 0.611 0.055 1.022
6x16 0.025 0.096 0.548 0.527 0.522 0.090 -3.961 0.590 0.045 0.780
32x32 0.015 0.072 0.547 0.534 0.530 0.146 -3.889 0.545 0.063 0.839

Guided-GradCAM
8x8 0.062 0.125 0.831 0.660 0.642 1.342 -6.471 0.742 0.872 1.679
16x16 0.070 0.147 0.805 0.706 0.657 1.167 -7.118 0.734 0.764 2.434
32x32 0.077 0.171 0.766 0.704 0.638 0.998 -5.226 0.758 0.633 1.867

IntegratedGradients
8x8 0.030 0.113 0.623 0.556 0.550 0.217 -4.124 0.658 0.101 0.861
16x16 0.028 0.110 0.571 0.547 0.538 0.185 -3.681 0.652 0.087 0.542
32x32 0.022 0.099 0.553 0.540 0.533 0.169 -3.593 0.631 0.078 0.514

OcclusionSensitivity
8x8 0.003 0.003 0.560 0.515 0.502 1.581 -2.534 0.121 1.000 0.002
16x16 0.004 0.004 0.567 0.527 0.504 1.403 -2.289 0.134 0.997 0.047
32x32 0.006 0.007 0.581 0.536 0.512 0.856 -8.049 0.332 0.950 0.088

SmoothGrad
8x8 0.018 0.090 0.661 0.586 0.544 0.335 -3.831 0.688 0.184 0.751
16x16 0.015 0.080 0.638 0.606 0.541 0.451 -3.390 0.698 0.184 0.429
32x32 0.014 0.078 0.647 0.622 0.551 0.565 -3.192 0.711 0.240 0.320

VanillaGradients
8x8 0.029 0.109 0.607 0.545 0.534 0.140 -4.177 0.648 0.070 0.889
6x16 0.024 0.096 0.555 0.535 0.534 0.123 -3.833 0.626 0.056 0.649
32x32 0.015 0.073 0.544 0.534 0.535 0.144 -4.055 0.565 0.066 0.917

Table A.1: Average saliency metrics for each saliency map method when perturbing with different
levels fron the NN scenario. ↓ indicates the dissimilarity metrics which should be lower and ↑
indicates similarity metrics which should be higher for better methods.
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method level ↑ mse ↑ mae ↓ auc judd ↓ auc borji ↓ auc shuff ↓ nss ↓ infogain ↓ sim ↓ cc ↑ kldiv

GradCAM
8x8 0.066 0.143 0.820 0.641 0.606 1.172 -5.758 0.767 0.858 1.036
16x16 0.084 0.182 0.768 0.673 0.635 0.936 -5.391 0.765 0.666 1.579
32x32 0.101 0.218 0.652 0.611 0.584 0.496 -5.516 0.746 0.356 1.772

GradientsInputs
8x8 0.031 0.108 0.596 0.539 0.530 0.093 -4.311 0.615 0.048 0.980
16x16 0.036 0.124 0.541 0.522 0.518 0.068 -4.058 0.595 0.034 0.790
32x32 0.028 0.110 0.516 0.507 0.513 0.021 -4.116 0.544 0.012 0.908

Guided-GradCAM
8x8 0.065 0.130 0.828 0.660 0.642 1.326 -6.599 0.735 0.862 1.751
16x16 0.079 0.162 0.794 0.699 0.650 1.114 -7.363 0.724 0.729 2.663
32x32 0.108 0.217 0.725 0.673 0.614 0.824 -5.626 0.739 0.537 2.060

IntegratedGradients
8x8 0.035 0.123 0.619 0.553 0.547 0.200 -4.137 0.656 0.094 0.866
16x16 0.038 0.134 0.561 0.539 0.530 0.145 -3.723 0.646 0.070 0.555
32x32 0.031 0.122 0.530 0.521 0.517 0.080 -3.681 0.616 0.038 0.550

OcclusionSensitivity
8x8 0.004 0.004 0.560 0.515 0.502 1.593 -2.522 0.120 1.000 0.003
16x16 0.004 0.005 0.567 0.528 0.504 1.438 -2.242 0.134 0.998 0.035
32x32 0.008 0.009 0.580 0.536 0.512 0.874 -7.812 0.322 0.935 0.075

SmoothGrad
8x8 0.018 0.090 0.662 0.587 0.545 0.342 -3.831 0.689 0.187 0.753
6x16 0.014 0.079 0.639 0.606 0.541 0.453 -3.381 0.699 0.185 0.428
32x32 0.014 0.078 0.644 0.619 0.549 0.553 -3.202 0.710 0.233 0.322

VanillaGradients
8x8 0.036 0.123 0.606 0.544 0.531 0.135 -4.255 0.645 0.068 0.936
16x16 0.042 0.137 0.550 0.530 0.527 0.091 -3.953 0.622 0.046 0.722
32x32 0.031 0.116 0.527 0.515 0.520 0.050 -4.295 0.559 0.025 1.007

Table A.2: Average saliency metrics for each saliency map method when perturbing with
different levels from NT scenario. ↑ indicates the dissimilarity metrics which should be
higher for better methods and ↓ indicates similarity metrics which should be lower for
better methods.

method level ↑ mse ↑ mae ↓ auc judd ↓ auc borji ↓ auc shuff ↓ nss ↓ infogain ↓ sim ↓ cc ↑ kldiv

GradCAM 8x8 0.061 0.132 0.836 0.664 0.658 1.334 -6.300 0.753 0.878 1.575
GradCAM 16x16 0.073 0.160 0.804 0.697 0.681 1.146 -6.876 0.747 0.749 2.369
GradCAM 32x32 0.085 0.191 0.753 0.690 0.681 0.948 -5.226 0.767 0.583 1.810
GradientsInputs 8x8 0.018 0.084 0.606 0.545 0.533 0.130 -4.186 0.622 0.065 0.949
GradientsInputs 16x16 0.013 0.070 0.570 0.547 0.542 0.173 -3.744 0.609 0.085 0.650
GradientsInputs 32x32 0.009 0.055 0.619 0.589 0.589 0.377 -3.470 0.578 0.170 0.687
Guided-GradCAM 8x8 0.057 0.115 0.845 0.626 0.616 1.283 -6.426 0.768 0.908 1.587
Guided-GradCAM 16x16 0.060 0.130 0.827 0.689 0.657 1.151 -7.035 0.768 0.818 2.298
Guided-GradCAM 32x32 0.068 0.156 0.792 0.709 0.669 1.019 -5.024 0.799 0.706 1.643
IntegratedGradients 8x8 0.021 0.096 0.613 0.548 0.540 0.159 -4.156 0.653 0.080 0.872
IntegratedGradients 16x16 0.019 0.091 0.574 0.550 0.544 0.187 -3.662 0.651 0.090 0.537
IntegratedGradients 32x32 0.017 0.086 0.576 0.558 0.553 0.243 -3.506 0.634 0.111 0.500
OcclusionSensitivity 8x8 0.006 0.006 0.558 0.514 0.502 1.550 -2.559 0.117 0.999 0.006
OcclusionSensitivity 16x16 0.009 0.009 0.568 0.530 0.505 1.378 -2.286 0.150 0.992 0.055
OcclusionSensitivity 32x32 0.013 0.014 0.584 0.539 0.512 0.894 -7.889 0.328 0.935 0.109
SmoothGrad 8x8 0.019 0.092 0.658 0.583 0.543 0.323 -3.861 0.689 0.180 0.754
SmoothGrad 16x16 0.015 0.081 0.635 0.603 0.538 0.442 -3.398 0.698 0.178 0.431
SmoothGrad 32x32 0.014 0.079 0.645 0.620 0.548 0.558 -3.199 0.710 0.234 0.320
VanillaGradients 8x8 0.022 0.097 0.611 0.547 0.536 0.151 -4.148 0.652 0.084 0.868
VanillaGradients 16x16 0.015 0.075 0.580 0.555 0.550 0.206 -3.656 0.639 0.100 0.568
VanillaGradients 32x32 0.010 0.060 0.608 0.582 0.574 0.349 -3.515 0.591 0.161 0.652

Table A.3: Average saliency metrics for each saliency map method when perturbing with
different levels from a TN scenario. ↑ indicates the dissimilarity metrics which should be
higher for better methods and ↓ indicates similarity metrics which should be lower for
better methods.
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