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Abstract

Modular construction has become increasingly popular in recent years due to its various benefits,

including faster construction time, reduced on-site work, automated production, and enhanced design

capabilities. Despite these advantages, there are also several challenges that must be addressed, such

as limited design flexibility, transportation and logistics difficulties, and building code restrictions.

One effective approach to overcome these challenges is to shift the focus from on-site joint execution

to off-site joint production using industrialized or automated methodologies. A potential solution that

has gained traction is the development of plug-and-play joints, which enable modularity, facilitate

steel structure erection, promote reusability, and reduce construction time.

In today’s engineering landscape, the use of computational tools is critical to achieve efficiency in

any field. Therefore, the possibility of modeling these new types of plug-and-play joints in calculation

software is of utmost importance. This enables the incorporation of the joint’s actual behavior into

the structural analysis, as required by practitioners in design offices. Only by providing the necessary

calculation tools to designers can these types of modular constructions and plug-and-play joints be

successful.

This work presents a macro-element formulation for the modeling of the innovative 3D plug-and-

play joints for the structural system developed within the European project INNO3DJOINTS. This

system enables modularity, faster construction, and deconstruction. The modular construction system

is hybrid, combining tubular columns with cold-formed lightweight steel profiles using plug-and-play

connections and cross-laminated timber slabs to provide an efficient structural system.

The macro-element is based on the component method, accounts for the 3D interaction between

the faces of the tubular column, and its components have a clear physical meaning. The conceptual

design of this element is validated through parametric studies against models developed in a higher-

order finite element commercial software, Abaqus. Moreover, the macro-element’s architecture is

implemented in the framework of OpenSees, as a standalone beam-to-column joint finite element.

Simplified procedures, using the Equivalent Frame Models technique, are developed for the closed-

form computation of the stiffness matrix of the macro-element from the geometric and mechanical
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properties of the joint region, thus making the macro-element practical for everyday design purposes.

An analytical definition of the strength criterion is also proposed based on the Equivalent Frame

Models technique. This strength criterion is global as it does not rely on evaluating internal forces in

a specific component. Although it presents a conservative threshold, it guarantees safety across all

considered scenarios.

Additionally, the conceptual framework of nonlinear behavior attributed to the components of the

beam-to-column joint finite element is established. The findings against higher-order finite element

models indicate that while the evaluation of the onset of the nonlinear regime of joints can be conducted

conservatively, further research is necessary with regard to the modeling of the post-yielding behavior

in this context.

In conclusion, the proposed beam-to-column joint finite element can be utilized by design

practitioners to design, analyze, and optimize the outputs of structures under various loading

conditions, especially within the elastic regime.

Keywords: plug-and-play joints, macro-element, joint finite element, OpenSees, modular construction
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Resumo

Presentemente a popularidade da construção modular tem vindo a crescer significativamente devido

às suas vantagens, tais como reduzido tempo de produção, redução do trabalho em obra, produção

automatizável e procedimentos expeditos para análise e dimensionamento. Contudo, apesar destas

vantagens existem ainda vários desafios como a reduzida flexibilidade que oferece aos projectistas,

dificuldades inerentes à logística de construção e transporte e restrições nos códigos de construção que

geralmente não abordam este tipo de solução. Uma abordagem que permite potenciar as vantagens

da construção modular passa por alterar o foco da execução das ligações em obra para a execução

das juntas em ambiente controlado utilizando métodos industriais e automatizados. Uma possível

solução que tem vindo a ganhar popularidade crescente é o desenvolvimento de juntas plug-and-play,

que permitem modularidade, facilidade na montagem de estruturas em aço, promovem a reutilização

da estrutura e reduzem o tempo de construção.

Hoje em dia, no ramo da engenharia, a utilização de ferramentas computacionais é fundamental

para se alcançar elevada produtibilidade e eficiência. Assim sendo, a possibilidade de modelar

este novo tipo de junta plug-and-play através de programas computacionais é crucial. Tal análise

permitiria a incorporação do comportamento real da junta na análise estrutural, tal como requerido

pelos gabinetes de projeto. Esta nova tipologia de junta apenas será bem-sucedida, caso sejam

fornecidas as ferramentas de cálculo necessárias aos projetistas de construção modular.

O presente trabalho apresenta uma formulação de macroelementos para a modelação do sistema

estrutural das juntas 3D plug-and-play, desenvolvida no âmbito do projeto europeu INNO3DJOINTS.

Este sistema permite modularidade, construção e desconstrução mais rápidas. O sistema de construção

modular é híbrido, combinando colunas tubulares com perfis em aço leve enformado a frio com a

utilização de conexões plug-and-play e lajes em madeira por forma a formar um sistema estrutural

leve e eficiente.

O macroelemento é baseado no método das componentes e considera a interação tridimensional

entre as faces da coluna tubular e os seus componentes. Este elemento é validado através de análises

paramétricas em que os resultados da análise das juntas modeladas desta forma é confrontado com
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resultados de modelos de elementos finitos de ordem superior desenvolvidos em um software comercial

Abaqus. Além disso, a arquitetura do macroelemento é implementada na estrutura do OpenSees, como

um elemento finito de junta autónomo e independente do elementos viga e coluna.

Foram desenvolvidos procedimentos simplificados, utilizando modelos de estruturas porticadas

equivalentes (EFMs), para o cálculo de forma fechada da matriz de rigidez do macroelemento a partir

das propriedades geométricas e mecânicas da zona nodal, tornando o macroelemento prático e de fácil

utilização.

Uma definição analítica de critérios de resistência também é proposta com base na técnica EFMs.

Estes critérios de resistência são globais, não dependendo da avaliação de esforços internos de

componentes específicos. Embora apresente um limiar conservador, garante a segurança para todos

os cenários considerados.

Adicionalmente, estabeleceu-se o quadro conceptual para a análise e modelação não linear de

estruturas definindo relações constitutibvas não lineares para as componentes do elemento finito junta

viga-pilar – a capacidade de análise não linear do elemento junta viga-piar foi definida na fase de

desenvolvimento e implementação em regime linear. A partir da confrontação com resultados de

modelos de elementos finitos de ordem superior tambem em regime não linear conclui-se que embora

a avaliação do início do regime não linear das juntas possa ser realizada de forma conservadora com

o elemento junta viga-pilar, são necessários desenvolvimentos adicionais no campo da modelação do

regime pós-cedencia das componentes.

Em suma, o elemento finito proposto para a junta viga-coluna pode ser utilizado por projetistas

profissionais para analisar e otimizar a estrutura sob várias condições de carregamento, especialmente

dentro do regime elástico.

Palavras-chave: juntas plug-and-play, macroelemento, elemento finito de junta, OpenSees, construção

modular
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Chapter 1

Introduction

1.1 Scope and motivation of the research

Modular construction has gained widespread popularity recently due to its numerous benefits,

including faster construction time, automated production and design capabilities, reduced resource

usage and waste, and cost-effectiveness [1], [2]. Despite these advantages, several challenges need to

be addressed, such as limited design flexibility, transportation and logistics difficulties, and building

code restrictions.

To remain competitive in the steel construction industry, new solutions are needed to overcome

new challenges, such as decreasing execution times, costs, and the possibility of reusing structures.

The joint is critical in achieving these goals, as it is vital in determining the costs and ease of

(dis)assembling the structure [3]. To tackle these challenges, joints with improved fabrication and

erection characteristics can be developed based on innovative structural engineering solutions.

One effective approach to overcome these challenges is to shift the focus from on-site joint execution

to off-site joint production utilizing industrialized or automated methods. A solution that has gained

traction is the development of plug-and-play joints, which appeal to modularity, facilitate the erection

of steel structures, and reduce construction time. In addition, a surge has been seen in the use of

plug-and-play joints because they simplify the construction process and make it more efficient, [4].

However, there are still challenges to be addressed, such as structural integrity and analysis of these

structures, costs, compatibility, and maintenance.

These considerations prompted the scope of research within the European project INNO3DJOINTS

[5], where an innovative plug-and-play joint system for hybrid tubular construction connects tubular

columns with cold-formed lightweight steel truss-girders and cross-laminated timber slabs to create a
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highly efficient structural system.

Accurate knowledge of connection behavior is crucial for effective design and construction,

ensuring the overall performance, safety, durability, and sustainability of structures. The motivation for

this research is to understand the behavior of the innovative 3D plug-and-play joint system developed

within the INNO3DJOINTS project through extensive analytical and numerical simulations.

1.2 Objective of the research

The primary objective of this research is to develop a 3D macro-element for the innovative plug-

and-play steel joint system that has been proposed within the INNO3DJOINTS project [5]. This

macro-element is aimed to be used in daily design practices and to simulate the real behavior of joints

in a structural analysis.

In today’s engineering landscape, the use of computational aids is crucial to achieving efficiency

in any field. For this reason, the implementation of the macro-element in calculation software is of

utmost importance. This will enable the incorporation of the joint’s real behavior into the structural

analysis and make the model versatile enough to accommodate different possible joint configurations,

as required by practitioners.

To accomplish the main objective, the following specific objectives have been established:

1. conceptualization of a macro-element for the 3D innovative plug-and-play joint system, which

is :

(a) based on the component method;

(b) accounts for the 3D interaction between the faces of the tubular column;

(c) has components that have a clear physical meaning;

(d) is versatile enough to support any joint configuration and load pattern;

2. extension of the macro-element into a beam-to-column joint finite element;

3. implementation of the beam-to-column joint finite element within a free, open-source, and

powerful general finite element computational tool as a standalone element;

4. definition of appropriate stiffness parameters leading to realistic internal force distributions;

5. establishment of a strength criterion to evaluate the structural safety of the beam-column joint;

6. definition of a post-elastic behavior of the joints components.

2



1.3 Organization of the document

The axiomatic idea behind the study is that by successfully achieving these objectives, the beam-

to-column joint finite element can be utilized by design practitioners to design, analyze, and optimize

the outputs of structures under various loading conditions.

1.3 Organization of the document

The present thesis is organized into 7 chapters, as follows:

Chapter 1: Introduction – describes the purpose and scope of this study, including the research

motivation and objectives. The chapter concludes with a discussion of the organization of the

document.

Chapter 2: Literature review – presents a concise overview of the relevant literature on

beam-to-column connections, establishing the current state of knowledge on which the study is

based. It then describes modular construction systems that utilize tubular steel and lightweight

structures, emphasizing steel joints, particularly plug-and-play joint systems. The chapter also focuses

on modeling beam-to-column joints, employing macro-modeling approaches, and describing the

OpenSees framework and its joint element library. Finally, the chapter outlines the conceptual design

of the innovative hybrid modular system developed within the INNO3DJOINTS project, highlighting

its advantages, and it provides a detailed description of the project’s 3D plug-and-play joint system,

including geometry, layout, assembly, and design process as well as the macro-element developed

within the project.

Chapter 3: Development of the macro-element formulation -– introduces the conceptualization and

validation of the proposed macro-element for modeling the innovative 3D plug-and-play joint system.

The extension of this macro-element to a beam-to-column joint finite element is then outlined. The

section also includes a discussion on the components of the joint, the adopted sign convention, and

the formulation for linear elastic analysis.

Chapter 4: Implementation of the macro-element in OpenSees — explains the implementation of

the proposed beam-to-column joint finite element within the OpenSees framework. The nonlinear

formulation is also discussed. The chapter includes a manual for the Inno3DPnPJoint element,

which contains the element information, command line, and necessary input arguments for creating

the element. Additionally, the node definition requirements are explained in terms of input order,

coplanarity, perpendicularity, collinearity, centrality, and dimensionality. The chapter concludes

with a list of common error messages and an overview of valid output recorders at the element and

component levels.

Chapter 5: Computation of mechanical properties of the macro-element for the linear regime
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– outlines the analytical definition of the mechanical properties of the macro-element for the linear

elastic regime. Specifically, this chapter presents the analytical definition of the stiffness of the macro-

element components, which have been validated against higher-order finite element models developed

in Abaqus. Additionally, the analytical definition of the strength criterion, which ensures the structural

safety of the beam-to-column joint, is also presented and validated against refined finite element

models through various parametric studies that involve varying several parameters. These parametric

studies were conducted to obtain a comprehensive overview of the capabilities and limitations of the

model and to make the definition of it as general as possible.

Chapter 6: Conceptual framework for nonlinear analysis – details the development of a conceptual

framework to analyze the nonlinear behavior of beam-to-column joint finite element. The chapter

emphasizes the need for further research to investigate the post-yielding behavior of the joint. The

behavior of the tubular column within the joint region is analyzed and validated using higher-order finite

element models developed in Abaqus by employing bilinear behavior curves for the tube components.

Additionally, the study investigates the onset of post-yielding behavior.

Chapter 7: Conclusions and future lines of investigation -– the final chapter of this study provides

a comprehensive overview of the work done in this thesis. The analysis results are synthesized to draw

meaningful conclusions regarding the model’s behavior under various loading conditions. In addition,

the chapter identifies areas for future research and development that will enhance the accuracy and

robustness of the model.
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Chapter 2

Literature review

2.1 Introduction to steel structures

Steel is one of the most flexible building materials for structural applications. Aside from its good

load-bearing performance and variety of shapes and sizes, it allows for an off-site fabrication process

that securely assesses the quality and reduces on-site erection time. Moreover, steel can be infinitely

recycled and transformed into new elements without losing its quality or mechanical properties.

Steel structures have evolved in tandem with the rise of modular solutions, which can reduce

construction times and costs by up to 50% compared to traditional methods, potentially saving up to

$22 billion annually, considering only Europe and the United States. Tubular structures and lightweight

steel frames are ideal for modularity, but their increased number of joints presents a challenge for

designers. Developing tools to solve this problem is critical to continued growth and innovation in the

field [6], [7].

2.2 Modular construction

Modular construction involves manufacturing building units off-site, which are then assembled into

large volumetric components or significant building features at the construction site [8], [9]. Modular

construction has grown significantly in recent years for residential, commercial, educational, or office

buildings, warehouses, mixed-use purposes, and healthcare facilities. However, the lack of solid

structural systems and joining techniques and the absence of design guidelines limit the modular

high-rise building sector’s growth. Modular construction has two main concepts: (i) the use of

previously manufactured elements of a frame system and (ii) the use of 3D blocks that include
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all the internal facilities and finishings. Prefabrication is categorized into five types: components,

panelized structures, modular structures, hybrid structures, and entire buildings, based on the degree

of prefabrication, size, and complexity of parts, and the building’s configuration [10], [11]. A

summarized review of the current state of modular construction was carefully detailed by Lacey et al.

[12] and Ferdous et al. [13].

2.2.1 Tubular steel structures

Tubular elements are becoming increasingly popular due to their aesthetic appeal, superior weight-

to-strength ratio, and resistance to global buckling under compressive stresses. Circular and square

shapes with doubly symmetrical cross-sections are the ideal choices for these elements. According to

Packer [14], the smaller exposed areas of tubular elements reduce the costs of coating and maintenance

and minimize the probability of corrosion.

Tubular steel structures are widespread in construction, for example, in large-span roofs, stadiums,

walkways, bridges, offshore structures, and modular buildings. However, there were many limitations

for tubular steel structures in the past, mainly due to difficulties associated with the design and execution

of joints.

Most likely, welding is the preferred method for joining tubular elements due to their complex

geometries, and knowledge in this field is more advanced than bolted joints [15]. However, the scenario

is changing with the rise in modularity, quality fabrication, and the need to reduce construction

times and offer the possibility to disassemble structures. Design recommendations for tubular joint

configurations are available, and additional research is being conducted [16]. Section 2.3 will provide

a summary of popular joint types for steel structures.

2.2.2 Lightweight steel structures

Lightweight steel (LWS) structures are an attractive option for low-rise buildings due to their

low weight, excellent strength-to-weight ratio, and sustainability. LWS framing occupies 39% of

commercial steel applications in construction [17], with a growing interest in the residential and

industrial sectors. Modern industry and fabrication technologies allow for high levels of prefabrication,

resulting in benefits such as modularity, ease of installation, economy in handling, quick construction

times, high-quality control, and flexibility of sectional profiles and shapes [18]–[20].

LWS in cold-formed steel frames differ from traditional steel structures due to their modular

nature, particularly in their connections. Investigations have focused on the robustness of this system,

including the influence of screw connections on stiffness and resistance, as suggested by Henriques et
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al. [21]. However, this work is a small part of the extensive research carried out in recent years, as

shown by Sharafi et al.’s [22] comprehensive review.

LWS seismic design is often conservative and poorly understood, as shown by Schafer et al.

[23]. More recently, the earthquake-resistant design of LWS was revised, and new provisions were

developed for Eurocode 8 Part 1, [24], and guidelines for LWS in medium to high seismicity locations

were suggested by Landolfo et al. [25].

2.3 Steel joints

Frame structures of hot-rolled steel (HRS) composed of columns, beams, and slabs are the most

common steel structural system in modern construction. Beam-to-column moment-resisting joints

in steel frame structures include welded connections, bolted end plate connections, and bolted

connections with angle cleats. These processes require skilled labor and pose inherent risks. However,

steel construction offers the advantage of prefabrication, which can be done either in the workshop or

directly on-site [3], [26].

While forging was the most typical method of joining steel components in the past, welds and

mechanical fasteners such as bolts, pins, or nails are now the most popular solutions. Welded joints

are ubiquitous in steel structures due to their attractive appearance and effective performance at

transferring bending forces. However, welding steel requires highly skilled labor and vigorous quality

control due to its susceptibility to discontinuities and defects. Welds also have an imperfect behavior

when subjected to fatigue actions [27].

Mechanical fasteners, on the other hand, offer excellent simplicity for installation and disassembly

for reuse or repair, with bolts being the preferred solution for steel. Bolted connections can be

categorized by the acting force as shear, tension, or a combination of both [28]. Preloading is

frequently applied to improve fatigue behavior. However, complex node geometries may restrict the

use of bolts.

A typical steel frame consisting of beams and columns is shown in Fig. 2.1. The joints are between

a beam and a column, two beams, two columns, and a column and its foundation.

According to Jaspart and Weynand [3], a connection is a set of physical components that

mechanically fasten connected elements, such as the beam-to-column joint where the connection

is concentrated at the site of the fastening action. The joint is the corresponding zone of interaction

between the connected members, which can be single- or double-sided depending on the number of

in-plane elements connected. Fig. 2.2 provides an illustration of the defined joints and connections in

a 2D frame.
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Figure 2.1: Typical joint types in a building frame [3].

(a) single-sided (b) double-sided

Figure 2.2: Joints and Connections [3].

2.3.1 Hybrid joints

Hybrid construction combines structural elements of different materials with varying mechanical

properties instead of using structural elements of the same material. Unlike composite construction,

where different materials act as one structural unit, hybrid materials can work together or independently,

but they always provide advantages over using a single material [31]. In addition, hybrid construction

allows for more efficient design as materials can have different deformations tailored to their capacity,

unlike composite steel-concrete structures where the compatibility of deformations requires the two

(a) hybrid construction [29] (b) hybrid joint: concrete-timber [30]

Figure 2.3: Hybrid construction systems.
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materials to be in the same range [32]. However, designing hybrid solutions may not be effortless

since each element inherently has a particular stiffness that may decrease the benefits of using hybrid

solutions, and hybrid connections are not recommended by experts in the field [28]. Despite this, some

hybrid constructions are being researched and used, including steel-timber hybrid construction [33].

Hybrid joints between steel and timber have great potential due to their high strength, stiffness, and

ductility [33], [34]. For example, the joint between timber walls and floor components made of steel

frames succeeded in transmitting lateral loads and enhancing the overall performance of the hybrid

building [34]. Fig. 2.3 shows examples of hybrid construction in which concrete, steel, and timber are

combined.

2.3.2 CFS joints

CFS members are typically connected using techniques such as zinc-coated self-drilling or self-tapping

screws, while welding can be used for prefabricated elements to enhance their strength and rigidity

[35]. Joints between beam-to-beam, beam-to-column, and truss connections using CFS members often

experience local instability and elongation of bolt holes, with joint stiffness being strongly influenced

by the thickness and shape of the profiles [36]. Experimental investigations have demonstrated the

possibility of extending the component method to bolted gusset plate joints made of CFS members,

indicating that cyclic loads could reduce joint strength and stiffness [37], [38]. The joints of cold-

formed steel trusses have also shown significantly superior performance compared to well-known

design standards [39]. The pattern of self-drilling screws used in the joints between CFS members

significantly affects joint strength, and it can be captured by numerical modeling when including a

fracture criterion for the steel sheets [40]. To mitigate non-ductile local buckling in CFS beams,

friction-slip connections have been proposed and shown to increase energy dissipation, with bolt slip

acting as a fuse mechanism [41].

2.3.3 Plug-and-play joints

Currently, the steel construction industry must tackle new challenges to remain competitive. One such

challenge is the decrease in execution times, costs, and the possibility of reusing the same structure.

The joint is central here, as it is an essential factor in determining the costs and the capability

for (dis)assembling the same structure again [3]. Therefore, joints with enhanced fabrication and

erection characteristics could be developed based on new innovative structural engineering solutions.

Transcending the concept of joints from a local production technology to an industrialized or automated

one is one suitable method to face the abovementioned challenges.
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This leads to the development of plug-and-play joints, a solution that appeals to modularity,

facilitating the erection of steel structures and reducing construction times. Likewise, one of the main

incentives for developing these innovative joints is to improve fabrication procedures, i.e., to automate

the process of structural assembly and to eliminate erroneous erection practices by reducing human

assistance during construction.

First used in 1984, the term "plug-and-play" referred to a feature in which an operating system

automatically detects and configures peripherals [42]. However, this term has since been utilized in

various domains to indicate the readiness and immediate usability of interconnected parts. In this text,

"plug-and-play" pertains to the joints linking distinct structural elements, for instance, beam-to-column

connections that allow instant use of a structure without auxiliary structures such as scaffolding, props,

or forms. Unlike reinforced concrete or composite structures, this method precludes the need to wait

for material resistance.

A thorough review of the most recent developments concerning plug-and-play joints, sometimes

called inter-module connections, was performed by Cofrar and Tsavdaridis [4]. Up to 60 different

joints were collected from scientific literature and classified into three main groups according to their

key features: (i) locking devices, (ii) post-tensioned joints, and (iii) bolted connections. Also, bolted

connections were subdivided into three more subgroups depending on their application: column-to-

column, beam-to-beam, and fitting-to-fitting. The research also proposed a multi-attribute ranking to

facilitate the evaluation of each one of the 60 proposals.

The corner bracket inter-module connection has recently been studied in detail in Chinese and

Australian universities at a numerical and experimental scale for tension, shear, and bending [43], [44]

and under monotonic and cyclic lateral loads [45]–[47]. The results show that this joint allows easy

installation and disassembly but has limited bending stiffness.

The post-tensioned vertical inter-module connection, featuring post-tensioned rods coupled

through shear keys and accessed by an opening on connecting members, has been extensively studied

for shear actions numerically and experimentally [45], [48], [49]. Additionally, guidelines have been

proposed for its design and implementation [50], [51]. This inter-module connection has high shear

stiffness but depends on the slip factor and bolt preload.

The use of interlocking pin and plate joints in modular construction has been researched Lacey et

al. [52], [53], and satisfactory results were obtained through numerical and experimental analysis of

these joints for shear. Nevertheless, precise bolt alignment during installation is crucial.

A seismic-resistant interlocking joint with intermediate resilient rubber layers was developed by

Sendanayake et al. [54]–[56], which concentrates damage in end plates instead of column elements.

Nevertheless, the ease of installation and repair is a drawback.
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Plug-and-play applications have been widely studied, including the self-locking joint proposed

by Nadeem et al. [57], which employs spring-activated pins to remove gaps between modules and

ease installation and dismantling. Although numerical analysis indicates that the joint can exhibit

semi-rigid behavior, no experimental tests have been carried out.

Energy dissipation devices have also been included in modular joints in the form of haunches, as

shown by Zhang et al. [58], [59]. The joint is composed of an internal plug-like device and secured

through hunched braces that provide superior seismic performance and promises significant damage

reduction. Nonetheless, the configuration of this self-centering connection is complex, and it may be

difficult to maintain and repair due to the permanent state of the components after installation.

A device more closely related to the plug-and-play concept was studied by Lee et al. [60]. The idea

heavily appeals to pre-manufactured components and a short assembly process. In the study by Cofrar

and Tsavdaridis [4], this joint had the highest ranking position, which considered manufacturing,

construction, and structural aspects.

In conclusion, and in agreement with the findings of Cofrar and Tsavdaridis [4], it appears that

most of the existing plug-and-play devices for modular buildings do not fully meet the requirements

for such joints. This suggests that further research is necessary for this area. Furthermore, while

experimental and numerical models have been used to investigate the behavior of these devices, there

is a lack of robust, clear, and simple analytical models that can accurately predict and explain the

behavior of these connections and that are suitable for use in design offices.

2.3.3.1 Desirable features in plug-and-play joints

Lytle et al. [61] and Cofrar and Tsavdaridis [4] identified key features for successful plug-and-

play joints in modular constructions. These include self-alignment, tolerances for misalignment,

easy adjustment, stiffness, strength, and stability for erection loads, resilience in seismic areas using

structural fuse devices, modularity for mass production and flexibility, and disassembly for reuse and

recycling, particularly in seismic areas with energy dissipation devices.

2.3.3.2 Design codes specification

Design codes for traditional joints (bolted or welded) can be applied to plug-and-play joints for

designing similar components since steel joints can be analyzed as a composition of basic components

to calculate their stiffness, strength, and rotation capacity. However, when using non-traditional

components like clamps and hooks, experiments must be conducted, and the results should be

statistically analyzed to obtain reliable design values for the plug-and-play joint’s stiffness, strength,
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and rotation capacity. This enables them to be used in the design of structures, as mentioned by

Bĳlaard and Brekelmans [62].

2.4 Modeling of joints

2.4.1 Introduction

In order to achieve efficiency in the design process of a steel structure, it is necessary to possess

a comprehensive understanding of the behavior of its joints. Generally, a beam-to-column joint is

subjected to axial force, shear force, and bending moment, considering only its in-plane behavior.

However, the deformation caused by axial and shear forces may be insignificant compared to the

bending moment. Therefore most of the in-plane behavior can be represented by a moment-rotation

curve, 𝑀 −Θ𝑟 .

Over the past several decades, extensive experimental campaigns have been conducted to study

the behavior of beam-to-column joints. However, due to the complexity of testing every possible

configuration of actual joints, researchers have sought to develop prediction equations that simulate

the behavior of steel connections. According to Najafi [63], these techniques for predicting the

behavior of beam-to-column joints can be classified into four distinct categories: empirical models,

analytical models, mechanical models, and finite element models. These categories can take various

forms, including linear, bilinear, multilinear, and nonlinear models, depending on the complexity of

the joint and the level of accuracy desired.

The behavior of the above-mentioned categories describing the beam-to-column joints behavior

can be assigned to spring elements (i.e., 0D elements); therefore, the most-relevant work undertaken

on this topic will be summarized in the next sections. Furthermore, a succinct overview will be

provided of the mechanical model (i.e., component method [64]), as well as 3D finite element models

and macro-element models.

2.4.2 0D models

Traditionally, when modeling a structure of any type, the size of joints is often neglected or modeled

through complementary techniques, such as rotational springs attached to the beam ends near the

centerlines of the columns, i.e., 0D elements. This is also because most commercial packages do not

offer a true solution for this issue, e.g., joint finite element. The most commonly used complementary

technique is the calculation of a moment-rotation curve, represented as 𝑀 −Θ𝑟 , which represents
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the joint behavior under specified loads and the assignment of this behavior to a rotational spring

positioned at the beam ends.

The loads acting on the beam-to-column joints are generally classified into static (i.e., monotonic)

and dynamic (i.e., cyclic). Predicting the monotonic behavior of the joints is challenging due to the

nonlinear nature of both the material and geometric properties. The complexity is further compounded

when predicting their cyclic behavior due to additional phenomena, such as loading-unloading cycles

and deterioration of mechanical properties.

Further on, a brief overview of the most renowned models to determine analytically the moment-

rotation curves will be given.

The behavior of the joints under static loading can be defined using the following models [63],

[65]:

• linear – represents the initial stiffness and was mainly used in early studies on semi-rigid

connections to derive the mathematical representation of the moment-rotation curve [66]–[69].

Although it is easy to apply, it overestimates the connection stiffness at finite rotation because

it does not account for the reduced stiffness of the joint at higher moments; therefore, it is

acceptable at very low load levels. Nevertheless, it provides sufficient information for design

purposes in the elastic range, i.e., serviceability limit state;

• bilinear – described by two lines: first, is the secant of the stiffness of a point on the actual

moment-rotation, and second, is either horizontal or has a small slope. It was introduced by

Lionberger and Weaver [70] and Romstad and Subramanian [71], recognizing the decrease in

stiffness at higher loads. This model has seen various modifications and simplifications; for

example, Tarpy and Cardinal [72], Melchers and Kaur [73], Lui and Chen [74], Zandonini and

Zanon [75];

• piecewise multilinear – approximates the nonlinear behavior of the moment-rotation curve

through a series of straight-line segments. The higher the number of segments used, the more

accurate the approximation curve becomes. However, the presence of inaccuracies and jumps

in stiffness at transition points make them less desirable. Several alternative models have

been proposed in the literature, such as the trilinear model by Moncarz and Gerstle [76], the

quadrilinear model by Melchers and Kaur [73], and the multilinear model by Razzaq [77] and

Poggi and Zandonini [78];

• multilinear – obtained from curve fitting techniques, mechanical models, or finite element

methods. The most common curves are itemized below:
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– polynomial – first introduced by Kennedy [79] and Sommer [80], served as the foundation

for the work of Frye and Morris, who were the pioneers in the development of a

mathematical model based on an odd power polynomial factor to evaluate the moment-

rotation curves of beam-to-column joints [81]. Subsequently, several studies have aimed

to improve the Frye and Morris model. For example, Picard et al. [82] and Altman

et al. [83] developed predictive models for strap-angle connections and top- and seat-

angle connections with double web angles, respectively. Additionally, Goverdhan [84]

re-evaluated the size parameters for flush end-plate connections, and Prabha et al. [85]

included the air gap distance as an additional size parameter. Despite these advancements,

the Frye and Morris model remains widely used and is incorporated into the Indian design

code [86];

– exponential – proposed by Lui and Chen [74], presents an exponential moment-rotation

curve that effectively represents the monotonic nonlinear behavior of connections.

However, the model failed to capture sharp changes in the curve’s slope [87]. Therefore,

Kishi and Chen [88] proposed refinements, thus allowing for the incorporation of sharp

changes in slope observed in experimental data. Additionally, other notable models were

also proposed by Yee and Melchers [88];

– power – requires two or three parameters in its functions. The two-parameter model was

first introduced by Batho and Lash [89] and later by Krishnamurthy et al. [90]. On the other

hand, Colson and Louveau [91] proposed a three-parameter power model. Furthermore,

Kishi and Chen [92], [93] proposed similar models, which aimed to address the strain-

hardening stiffness issue in the Richard-Abott model [94]. Other noteworthy models were

developed by Kukreti et al. [95] for a bolted steel end-plate connection and by Benterkia

[96] for unstiffened flush end-plate connections, both of which were based on curve-fitting

of available data;

– bounding line – first proposed by Al-bermani et al. [97] and later by Zhu et al. [98],

requires four parameters. The central concept of this model is the division of the curve

into three segments: the first and third segments represent linear elastic and plastic portions,

respectively, while the second segment represents a smooth transition between the two.

– Ramberg-Osgood – originally proposed for nonlinear stress-strain relationships by

Ramberg and Osgood [99] and then standardized by Ang and Morris [100]. This method

examines experimental data on the moment-rotation behavior of a specific connection

type to assess the influence of various size parameters. An iterative procedure is then
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employed, where successive approximations are made to assumed stiffness characteristics

of all connections in the structure to determine the appropriate connection stiffnesses.

Subsequently, a single linear analysis is performed to determine the correct structural

displacements and internal forces, thus effectively accounting for the nonlinear behavior

of the connections;

– Richard-Abbott Model – represents a four-parameter power model, and it was proposed by

Richard and Abbott [94] for modeling elastic-plastic stress-strain relation.

The behavior of the joints under dynamic loading can be defined using the following models [65]:

• independent hardening – developed by Chen and Saleeb [101] and assumes that material behavior

characteristics remain unchanged after the initial loading and reloading conditions. The relation

between moment and rotation in each loading cycle is independent; therefore, the hardening

effect is not considered;

• kinematic hardening – a modification of the independent hardening taking into account the

influence of hardening;

• bounding surface model with internal variables – developed to overcome the deficiency of the

previous two models for repetitive loading cycles; representative work on this model has been

done by Dafalias and Popov [102], Cook [103] and Goto et al. [104], [105].

2.4.3 Component method

Based on the work of Zoetemeĳer [106] on bolted beam-to-column steel joints, which was further

developed by many other researchers such as Huber and Tschemmernegg [107], Jaspart [108],

Tschemmernegg et al. [109] and Weynand et al. [110]. the originality of the component method is to

consider any joint as a set of individual basic components.

The component method is nowadays widely recognized, particularly by the Eurocode 3 Part 1-8

[28], as a general and convenient procedure to evaluate the mechanical properties of joints subjected

to various loading situations, including static, dynamic, fire, and earthquake. A detailed review was

done by Jaspart and Weynand [3], which concluded that the component method relies on the following

steps:

• identification of the active basic components in the joint being considered (Table 6.1 from [28]);

• evaluation of each basic component’s behavior, a simplified behavior can be considered based

on the initial stiffness, strength, and ductility of the component;
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• assembly of all constituent components and evaluation of the overall joint behavior or specific

characteristics (i.e., initial stiffness, strength, or ductility); the mechanical properties of the

joint are derived from those of all the individual constituent components, in a way that satisfies

equilibrium between the external forces applied on the joint and the internal forces acting on the

components.

2.4.4 3D FEM models

The Finite Element Method (FEM) is a numerical technique used to simulate for solving partial

differential equations that describe physical systems, such as a structure or an element, under various

loading conditions. The basic idea behind FEM is to divide the system into a collection of simpler,

interconnected elements and approximate the system’s behavior by solving equations for each element.

The method then uses these local solutions to construct a global solution for the entire system. FEM

is widely used in various fields, such as mechanical engineering, aerospace engineering, and civil

engineering, to study and predict the behavior of structures and machines under various loading

conditions. It is an efficient and powerful tool for design, optimization, and failure analysis [111].

According to Najafi [63], one of the first documented applications of the FEM in connections was

carried out by Bose et al. [112] for a welded beam-to-column connection, in which the column web

was at the center of the study. The concurrence between the simulated model and experimental data

instigated other researchers to employ this method further. For instance, some of the nonlinear models

previously mentioned by Krishnamurthy [90], Tarpy [72], and Kukreti [95] were derived from finite

element analysis of end-plate connections.

The use of the FEM has seen a significant increase in recent times, particularly with the emergence

of high-performance computing machines and the availability of various finite element software with

intuitive graphical user interfaces. Notable examples include Abaqus [113], ANSYS [114], OpenSees

[115], NASTRAN [116], NEFCAD 3D [117]–[119] and LS-DYNA [120].

Nowadays, the FEM acts as a link between experimental testing and mechanical and analytical

modeling [121]. Many researchers have demonstrated the effectiveness of the FEM in the field of

beam-to-column connections. For example, the efficacy of the FEM was demonstrated for beam-to-

column end-plate bolted connections [122], welded beam-to-column joints with beams of unequal

depth [123], bolted shear connectors and headed studs behavior [124], high-strength steel welded

beam-to-column joints [125], bolted beam-column connections having thick extended end-plates and

multiple bolts per row [126], T-stub joint component at ambient and elevated temperatures [127],

the yield line patterns corresponding to the different collapse mechanisms in T-stubs with four bolts
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per row [128], extended end-plate connection using the T-stub approach [129],, stress concentration

reduction at panel zone under cyclic loading using reduced beam section [130],, characterization

of web panel components in double-extended bolted end-plate steel joints [131], [132], semi-rigid

joint for single-layer reticulated structures [133], novel pin-jointed connection for cold-formed steel

trusses [134], preloaded bolts [135], innovative flush end-plate semi-rigid beam-to-column composite

joint comprising deconstructable post-installed friction-grip bolted shear connectors [136], thermal

loading on four types of beam-to-column joints: bolted end-plate, bolted cover-plate, bolted tee,

and welded cover-plate [137], [138], response of friction joints under different velocity rates [139],

different beam-to-column typologies, under accidental loading scenarios, namely, vehicle collision

[140], [141], cyclic behavior of the collar connection [142], self-centering steel column bases [143],

and plug-and-play joints between RHS columns and CFS trusses [144].

In conclusion, the use of FEM offers a highly advanced and accurate representation of joint

behavior through numerical simulation. However, their implementation in design can be both time-

consuming and challenging due to issues of convergence and calibration. Additionally, the cost of

combining these models with physical testing can be cost-prohibitive [145]. Therefore, a simpler and

more efficient solution is desirable, particularly for use in design offices, such as the utilization of

macro-element modeling.

2.4.5 Macro-element models

Most elements typically available in FEM software used for design and research in structural

engineering are geared toward modeling beams, columns, slabs, and shells. These structural design

FEM packages typically do not include models specifically designed for joints and in the best cases,

may only offer 0D elements.

However, there has been a growing need to model and design joints in recent years, particularly

for use in structures such as buildings, bridges, and offshore structures. The use of macro-elements

to model these joints has gained attention in recent years for two main reasons: (i) the relatively large

size of beam-to-column joints and (ii) the ability to account for interaction using this approach.

Consequently, in the last few years, the macro-modeling approach of steel and steel-concrete

composite joints has been known as a great development. A key aspect of using this technique is that

the joint is treated independently of the rest of the members in a structure. In this way, the behavior

of a connection is not added, as traditionally done by a rotational spring to the end of the beams, but

rather by two connections (i.e., left and right side) and a web panel, which are all treated jointly and

seamlessly in a single joint element. A series of new innovative models were proposed and some
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Figure 2.4: Macro-element of an interior composite connection [7].

which are most relevant to the current work are briefly described henceforth.

A component-based mechanical model for internal and external semi-rigid composite connections

for the global analysis of frames is proposed by Bayo et al. [146], as depicted in Fig. 2.4. The

method proposes a cruciform finite-sized elastic-plastic joint element that considers its deformation

characteristics, including those of the panel zone and the left and right connections. This element is

based on a previously developed model [147], but with a significantly improved component model for

the composite that separates the contribution of the reinforcement and the bolt rows, the consideration

of a double shear panel, and a displacement-based formulation that takes into consideration all the

deformation modes.

For 2D connections of steel structures, Costa et al. [148] proposed a simplified model based on

the component method [64]. This model allows for the characterization of a cruciform configuration

where the left and right connections are modeled by two separate moment-rotation curves and the web

panel by one supplementary moment-rotation curve. Moreover, the macro-element can be applied to

both connections with equal and unequal beam depths, as shown in Fig. 2.5 and Fig. 2.6.

Following the same concept, a 3D model for steel joints is proposed by Gentili et al. [149], which

considers the 3D behavior of the joints. The three plane views of the macro-element are presented in

Figs. 2.7 to 2.9.

A more advanced macro-element for 2D steel joints is presented by Bayo et al. [150], [151]. This

model is suitable for three different cases: (i) single rectangular panels suitable for internal joints with

beams of equal depth at both sides; (ii) trapezoidal panels for joints with beams of different depths at

both sides and inclined stiffeners; and (iii) double rectangular panels for the case of joints with beams

of different depths at both sides and with or without horizontal stiffeners in the panel zone. Moreover,

this joint model is suitable for both rigid and semi-rigid joints.

Extensive research has been carried out by Harada and Simões da Silva [152]–[154] on modeling

beam-to-RHS column joints without diaphragm plates, an extension of the research done by
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Figure 2.5: Macro-element for beam-to-column steel joints in 2D with beams of equal depth (single
shear panel) [148].

  

Figure 2.6: Macro-element for beam-to-column steel joints in 2D with beams of unequal depth (double
shear panel) [148].
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Figure 2.7: Macro-element for beam-to-column steel joints in 3D: X-Z plane [149].

  

Figure 2.8: Macro-element for beam-to-column steel joints in 3D: Y-Z plane [149].
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Figure 2.9: Macro-element for beam-to-column steel joints in 3D: Y-X plane [149].

Neves [155]. The research introduced a new joint component called the cross-section component,

representing the local deformation of the RHS tube’s cross-section in the beam-to-column joints.

The joint’s behavior is complex because the out-of-plane behaviors of the column’s plates are

interdependent, not independent, as previously assumed. The research consists of implementing

and validating the 3D joint macro-element containing the new cross-section component. The macro-

element approach successfully represents the correlation behavior of the four column plates in the

beam-to-RHS column joint, especially in describing the nonlinear joint behavior under various loading

configurations.

The studies discussed above demonstrate that macro-modeling of steel and steel-concrete joints

yield results that are in good agreement with experimental results and complete finite element models.

Based on these findings, it can be inferred that it is crucial to model the joint as an independent entity

and that macro-modeling is a viable option due to its primary benefits of decreased computational

expense and reduced modeling duration.

2.4.6 Code limitations

Presently, the European standards’ design rules and component method are only applicable to basic

joint configurations, predominantly in HRS. Although certain CFS-specific connections are addressed

in Eurocode 3 Part 1-3 [156], the principal challenge remains the inability to implement the component

method for CFS joints.
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Figure 2.10: OpenSees – software framework (console).

2.5 OpenSees

2.5.1 Software framework

OpenSees [115] (opensees.berkeley.edu) is an object-oriented open-source software framework,

initially developed for simulation in earthquake engineering using finite element methods. The

framework of the software is written in C++ [157], and it is based on the Ph.D. Thesis of McKenna

[158]. Due to its open-source nature and object-oriented design, the OpenSees software framework

is the most suitable platform for researchers and practicing engineers to implement, test, and develop

their finite element ideas and use them for their purpose.

These ideas can be written using C++ [157], C [159], or Fortran [160] and make use of the OpenSees

application programming interface (API) to, for example, find nodal coordinates and displacements.

Hitherto, many researchers have enriched this framework with valuable and diverse software

components that enable researchers and practicing engineers to perform complex simulations of the

structures, i.e., earthquake analysis, thermal analysis, multihazard type analysis, etc.

These components include model-building tools, model domain definitions, element formulations,

material models, analysis procedures, numerical solvers, data management tools, and methods to

support reliability analysis.

A summary of some of the key object-oriented concepts and features of OpenSees, as described

in detail by Altoontash [161], are also presented below:
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• Class: Classes are one of the building blocks of object-oriented programming, or in technical

words, classes are basic units of abstraction in C++. A class is used to encapsulate the user-

defined data as well as operators to access and manipulate that data. A class is a prototype that

defines the variables and the methods common to all objects of a certain kind.

• Object: An object is a run-time value that belongs to a class, used to store the class state. The

class defines all the operations for its instances. Since the objects know what class they belong

to, so they automatically know what operations they are capable of. The word "instance" is

another term for "object".

• Message and Method: Object-oriented programming uses "messages" instead of function calls.

Sending a message to an object causes that object to perform an operation. The receiver knows

what operations it can perform because it knows its class. The code corresponding to the

message is known as the "method" for that message. A message is just a string, while the

method is the code in the Stack class which is triggered by the message. The C++ specific term

for method is "member function".

• Constructors: Methods that are automatically called on behalf of the client whenever a new

instance, be it statically or dynamically allocated, comes into scope.

• Model Builder: The first step in generating a finite element analysis model is subdividing the

body being studied into finite element components. A Model Builder object creates the finite

element model in a running program. Each Model Builder object is associated with a single

Domain object. The model builder is responsible for generating nodes, masses, materials,

sections, elements, load patterns, time series, transformations, blocks, and constraints.

• Domain: The domain object is responsible for storing the objects created by the model builder

object and for providing the analysis and recorder objects access to these objects. The domain

holds the state of the model at time 𝑡 and 𝑡 + 𝛿𝑡.

• Domain Component: The domain component class is an abstract class. Its subclasses include

elements, nodes, single point constraints, multipoint constraints, nodal loads, elemental loads,

etc. Each object of these types is a component of an enclosing Domain object. The domain

component class provides methods to set and retrieve a pointer to the enclosing Domain object.

• Analysis: The Analysis object is responsible for performing the analysis. This may vary from

a simple static linear analysis to a transient nonlinear analysis. In OpenSees, each Analysis

object is composed of several component objects, which define how the analysis is performed.
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The component classes consist of constraint handler, DOF number, analysis model, solution

algorithm, integrator, linear system of equation, and the solver. The analysis performs the

calculations and solves the state of the model from the state at time 𝑡 and 𝑡 + 𝛿𝑡.

• Recorders: The recorder object monitors the state of a domain during an Analysis, writes this

state to a file or to a database at selected intervals during the analysis, or plots and monitors

user-defined parameters in the model during the analysis. The user-defined parameter could be

the displacement history at a node in a transient analysis or the entire state of the model at each

step of the solution procedure. Usually, several Recorder objects are created by the analyst to

monitor the analysis.

• Constraint handlers: The constraint handler object is responsible for providing an initial

mapping between the nodal DOFs and equation numbers of the analysis. The Constraint

Handler object does not handle the constraints as its name would suggest, and the handling of

the constraints is performed by the Analysis object, where the constraint equations are enforced

as relationships between DOFs.

• Material models: A general object representing stress-strain relationships or force-deformation

(moment-rotation) at integration points of continuum or element components. Material Models

always belong to an element or a section.

• Uniaxial Materials: A material model object representing single DOF force-deformation (or

stress-strain) relationships.

OpenSees does not have a built-in graphical user interface (GUI), as shown in Fig. 2.10. Instead,

it is a command-line based program, which means that users interact with it by typing commands

into a terminal or command prompt. To create and run finite element models using OpenSees, the

user must first write a script using the Tool Command Language (Tcl) [162]. The Tcl interpreter then

interacts with the OpenSees solver. Alternatively, models can be created using the recently developed

OpenSeesPy [163] Python module [164].

There are also third-party software options that provide a GUI interface for pre- and post-

processing. Examples of these include OpenSees Navigator [165], BuildingTcl/BuildingTclViewer

[166], NextFEM Designer [167], GiD+OpenSees [168], STKO [169], Build-X [170], PileGroupTool

[171], MDOF [172], MSBridge [173], DYANAS [174], FeView [175], eSEES [176], Hyperomet

[177], gmsh2opensees [178], and OpenSeesPyView [179].
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2.5.2 OpenSees joint element library

Unfortunately, the joint library of OpenSees currently has only a limited number of joint models

available. To the author’s best knowledge, there are currently only four joint finite elements available

in the software library [180]. These include three developed in the United States [161], [181], [182]

and one developed in Iran [183]. Each of the following four sections will feature the presentation of

one of these joint models.

2.5.2.1 BeamColumnJoint2D and BeamColumnJoint3D

A joint element for reinforced concrete interior beam-to-column joints is introduced by Lowes et al.

[181], as BeamColumnJoint2D and BeamColumnJoint3D.

The 2D element has four external nodes with 12 external and four internal DOFs, and is shown in

Fig. 2.11. The joint consists of (i) a closed frame bordering the outer limits of the beam-to-column

joint made out of four rigid bi-articulated elements; (ii) a panel inside the frame (a plane stress shear

panel), and (iii) rigid interfaces at beam and column ends. The connection between the closed frame

and the rigid interfaces is realized with three linear springs on each side of the four sides of the joint.

In all the cases, there are two parallel springs and one perpendicular to the beams/columns

centerline. The former simulates the anchorage of the longitudinal rebars of the beams and columns

inside the beam-to-column joint. In contrast, the latter simulates the loss of shear-transfer capacity

at the joint-to-beam and joint-column perimeter under severe joint loading. Additionally, the panel

in the frame’s interior simulates the strength and stiffness loss associated with the shear failure of the

joint core.

For this joint model, an update is proposed and implemented by Mitra and Lowes [184], consisting

of three changes (i) a new element formulation that offers an improved simulation of joint response

mechanism, (ii) a new method which assumes that the joint shear is transferred through a confined

concrete strut and simulates strength loss due to load history and joint damage following yielding of

beam longitudinal steel, and (iii) an improved behavior of the anchorage zone response. With all these

changes, the joint’s response prediction is increased, and its range of applicability is extended.

The inelastic action observed in a reinforced beam-to-column joint is simulated by the joint element

using 13 uniaxial 1D material types taken as input.

The 3D version of the element has four nodes with 24 external DOFs and is a finite area super-

element, a slight variation of the 2D one. Even though it has six DOFs per node, the out-of-plane

nodal DOFs are constrained or fixed, and the in-plane nodal DOFs are activated. As in the 2D model,

the inelastic action is simulated using 13 uniaxial material types.
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Figure 2.11: OpenSees Joint Element Library: BeamColumnJoint [181].

2.5.2.2 Joint2D and Joint3D

A joint element formulated to simulate the nonlinear response of beam-to-column joints in 2D and

3D models under cyclic loading, with the capability of integrating both geometric and material

nonlinearities, is implemented by Altoontash [161], as Joint2D and Joint3D.

The 2D version of the joint element comes in two configurations (i) with member-end rotations

and five springs (Joint2D-SPR5) and (ii) with rigid member-end connections and one shear spring

(Joint2D-1SPR), as shown in Fig. 2.12 and Fig. 2.13, respectively. The element is connected to

four external nodes with three DOFs per node and has one central node with four DOFs (i.e., two

translations and two rotations). The outer limits of the joint element form a parallelogram with axially

rigid sides, where an angle change between the sides allows the shear panel to deform in the shear

mode. The five nodes of Joint2D have 16 DOFs: eight DOFs for Joint2D5-SPR and 12 DOFs for

Joint2D-1SPR are constrained to the central node. The Joint2D-SPR5 hasfourrotational springs at the

midpoints of the parallelogram’s faces to which the beams and columns are connected. These springs

aim to model the relative rotation between the joint faces and the end of the beams and columns.

In the Joint2D model, the shear deformation at the interfaces of the joint-beam and joint-column is

neglected.

The 3D version of the joint element (Joint3D) is constructed as an extension of the 2D with one

central spring model (Joint2D – 1SPR) and is shown in Fig. 2.14. The joint is constructed over six

external nodes with six DOFs each and one central node with nine DOFs (i.e., six for the rigid-body

motion and three for shear deformation) to represent the shear deformation. The displacements of the

external nodes are constrained to the central node by multi-point constraints and move attached to the

shear block; therefore, the central node controls both rigid body motion and shear deformation of the
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Figure 2.12: OpenSees Joint Element Library: Joint2D - 5 SPR [161].

 

 

 

Figure 2.13: OpenSees Joint Element Library: Joint2D - 1 SPR [161].

27



Chapter 2. Literature review

 

 

 

 

 

 

 

 

 

Figure 2.14: OpenSees Joint Element Library: Joint3D [161].

 

 

Figure 2.15: OpenSees Joint Element Library: ElasticTubularJoint [183].

element with its nine DOFs. The adjacent members are rigidly connected to the external nodes, so

the displacement of the external nodes directly determines the global deformations of the connected

beam-to-column members.

2.5.2.3 ElasticTubularJoint

An elastic tubular joint that incorporates the effects of joint flexibility to produce a more realistic

response for offshore structures is developed by Alanjari et al. [183] as ElasticTubularJoint. The

element considers the local flexibilities for TY- and K-type tubular joints (Fig. 2.15) and is suitable

for modeling multi-brace, uni-planar tubular joints.
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Figure 2.16: OpenSees Joint Element Library: LehighJoint2D [185].

2.5.2.4 LehighJoint2D

A 2D planar panel zone element is developed at Lehigh University [182] as LehighJoint2D. The

element is a four-sided planar element with one node at the center point of each side, as shown

in Fig. 2.16, with each node having three DOFs: two translations and one rotation. The element

requires the four nodes to be defined in counter-clockwise order. The panel zone element presents

nine deformation modes and three rigid body modes, each independent of the other. The panel zone

deformations are ensured by defining nine material tags as input.

This element is also implemented in HybridFEM software that is used for dynamic time history

analysis of 2D inelastic framed structures and real-time hybrid simulation [185].

2.5.3 Conclusion

In conclusion, by offering a few joint finite elements to model beam-to-column nodes, the joint library

of OpenSees could be considered rich by comparison with other commercial finite element software

[113], [117], [186], [187], which usually have no finite elements for joint modeling. Accordingly,

there is a need to develop and implement joint macro-elements, especially for steel and steel-concrete

composite joints and for 3D applications.

2.6 An innovative hybrid modular structural system

2.6.1 Introduction

To capitalize on the advantages of modular systems and plug-and-play joints, but mainly to tackle the

existing challenges, an international consortium has initiated the European research project named

INNO3DJOINTS [5], which aimed to develop an innovative structural system for hybrid tubular

construction. The system combines tubular columns with cold-formed lightweight steel truss-girders

and cross-laminated timber slabs to create a highly efficient structural system mainly intended for
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Figure 2.17: INNO3DJOINTS structural system.

residential and office buildings. Furthermore, the project has also developed an innovative 3D plug-

and-play joint system that can be employed in other specific scenarios, such as retrofitting existing

buildings. The performance of the INNO3DJOINTS structural system is detailed by Simões da Silva

et al. [1], [188] and it is shown in Fig. 2.17.

The INNO3DJOINTS project team was composed of representatives from industry, including

universities (University of Coimbra in Portugal, Technical University of Delft in the Netherlands, and

University of Naples Frederico II in Italy), a research institute (CTICM in France), tube producers

(Ferpinta in Portugal and Condessa in Spain), and a steel structures producer (FAMETAL in Portugal).

The research presented in this doctoral thesis began as part of the INNO3DJOINTS project,

in which the author was a member of the team from the University of Coimbra, focusing on the

mathematical formulation, development, and implementation of a macro-element for the analysis and

design of the innovative 3D plug-and-play joint system. However, the work developed for this thesis,

which will be addressed in the upcoming parts of this document, focuses on the creation, development,

implementation, and calibration of an alternative approach for modeling analysis and design of these

joints, which differs from the one considered in the European project but still aims to achieve the

same goal. Nevertheless, both approaches follow a research line that has been ongoing for several

years at the University of Coimbra’s ISISE department, which is focused on using 3D component-

based macro-element modeling of beam-to-column steel joints. The current thesis’s procedure aimed
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to create a flexible, physically meaningful, and more comprehensible approach to designers. This

approach results in a more transparent model that is more likely to be used by designers.

Consequently, this section will briefly overview the INNO3DJOINTS research project and its main

outputs.

2.6.2 Conceptual design

The main components of the INNO3DJOINTS structural system are detailed in Fig. 2.18 and may be

resumed as follows:

• cold-formed tubular columns: circular (CHS), square (SHS), or rectangular (RHS) profiles as

the main vertical structural elements;

• cold-formed steel (CFS) truss-girders: trusses that span up to 6000 mm, formed with light-gauge

cold-formed profiles as the main horizontal structural elements; depending on the span of the

truss-girders additional bracing system may be considered to connect the bottom chord of the

truss-girder to the slab (steel diagonal straps); additionally, for spans without openings, the LSF

walls are stiffened by OSB panels, as structural elements;

• cross-laminated timber (CLT) slab: floor system providing the necessary gravity load-bearing

capacity and in-plane diaphragm effect, provided the connections between adjacent slabs and

slabs to truss-girders are adequately designed;

• innovative 3D plug-and-play joint (P&PJ) system: innovative 3D plug-and-play devices

connecting the CFS truss-girders to the columns.

2.6.3 Main advantages

The INNO3DJOINTS plug-and-play joint system presents several advantages, for example:

• takes advantage of the bidirectional resistance of the tubular members to provide vertical load

resistance and leverages the utilization of CFS truss-girders and CLT slab to provide horizontal

load resistance, concurrently ensuring an efficient rigid diaphragm effect through the use of CLT

slab;

• the "weak axis" problem, a common issue associated with I/H-shaped profiles, is mitigated

when utilizing RHS profiles and eliminated when utilizing CHS or SHS profiles;
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Figure 2.18: Detail of the INNO3DJOINTS structural system’s main components.

• uses cold-formed lightweight steel truss-girders combined with steel diagonal straps and OSB

panels, providing high lateral stiffness with great material economy;

• is a dry construction method that utilizes standardized profiles resulting in a simple and fast

erection stage;

• presents a competitive advantage that is not yet present in the construction market;

• is light and thus very efficient in seismic conditions [189];

• has a plug-and-play joint system that provides an easy assembly and disassembly process on-site,

reducing construction site hazards and increasing offsite prefabrication;

• allows the modular construction to evolve to the mid-rise building range (i.e., 2- to 6-story

buildings);

• proposes simple calculation formulae for the analysis and design of joints based on the

component method [28] for the everyday designer [190];

• develops a consistent design approach between the European design codes [28], [156].

2.6.4 P&PJ system

2.6.4.1 Overall configuration

The P&PJ system proposed within the INNO3DJOINTS project [5] is composed of two parts that help

connect the CFS truss-girder to the tubular column, named socket and plug, as shown in Fig. 2.19.

32



2.6 An innovative hybrid modular structural system

Figure 2.19: Innovative 3D plug-and-play joint (P&PJ) system.

These parts are connected through bolt assemblies.

The socket comprises two separate Z-shaped, cold-bent plates welded symmetrically to the

column’s face. It features predrilled holes that facilitate assembly with the plug, forming a whole unit.

It also serves as a guide for the T-plug, which slides into position between the two parts.

The plug consists of two sub-parts: Y-fork and T-plug, which are welded together, as seen in

Fig. 2.19. The Y-fork comes adjusted to the width of the CFS truss chords, and the T-plug has

predrilled holes to facilitate the assembly with the socket. These are aligned with the top and bottom

chords of the CFS truss.

During the fabrication process in the steel workshop, the T-plug and Y-fork are welded to each
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Figure 2.20: INNO3DJOINTS plug-and-play joint system: load direction.

other, the Y-fork is connected to the CFS truss-girder by a simple bolted lap joint, and the socket is

welded to the column as shown in Fig. 2.19.

The bolt assemblies that connect the Y-fork and the CFS truss-girder are divided into two groups

according to their size and role: the larger bolts distribute the loads into the connection, while the

smaller bolts ensure the transmission of the forces between the truss-girder elements (chord, diagonal

and vertical elements). This method provides a clear idea of the purpose of all parts of the joint and

guarantees that the construction process is easy, fast, and safe.

Since the elements of the CFS truss-girder are subjected mainly to axial forces, the connection is

subjected to large forces acting along the longitudinal axis of the chords, as represented in Fig. 2.20.

The longitudinal axes of the connections and chords are shown in Fig. 2.21.

A comprehensive experimental campaign was carried out at the University of Coimbra to examine

the behavior of P&PJ between RHS columns and CFS trusses. The study comprised of tests on

components (Fig. 2.22(a)), full-scale joint (Fig. 2.22(b)) and full-scale structure (Fig. 2.22(c) and

Fig. 2.22(d)). The results of the experiments were complemented by numerical simulations, which

facilitated the development of guidelines [191] on the geometries for optimizing the performance of

the P&PJ system.

Additionally, experimental tests and finite element simulations aimed to investigate the buckling

response of the cold-formed square and rectangular hollow section columns have been carried out at

the University of Naples Federico II [193]–[195].
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Figure 2.21: INNO3DJOINTS plug-and-play joint system: axis.

 
(a) components

 
(b) full-scale joint

 
(c) full-scale 2D frames

 
(d) full-scale 3D frames

Figure 2.22: Experimental test at various structure levels [192].
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2.6.4.2 Assembly process

The P&PJ’s configuration allows for an easy (dis)assembly operation based on the following steps

(Fig. 2.19):

1. the columns with the sockets previously welded to them are placed in position;

2. the T-plug with the CFS truss-girders attached to it is inserted vertically (i.e., descending

movement) in the existing gap between the two pieces of the socket;

3. the T-plug and socket are bolted;

4. the CLT slab is positioned and fastened to the CFS truss-girders.

Since the two connections are aligned with the top and bottom chords (Fig. 2.21), they are mainly

subjected to axial forces in the form of tension or compression in conjunction with vertical shear

forces. Therefore, depending on the design specifications of the joint, the P&PJ system can behave

as a partial moment-resisting joint or a pinned joint if the joint’s design is flexible enough or if only

the upper chord of the CFS truss-girder is bolted to the socket. However, it is recommended to avoid

bolting only the lower chord, as doing so may result in an unstable configuration.

2.6.4.3 Main geometric constraints

The geometric parameters of the plug and socket are shown in Fig. 2.23. The P&PJ’s geometry is

mainly influenced by the width of the chord of the truss-girder, the width of the column face, the

positioning and dimensions of the bolts, and the thickness of the plates. As the joint’s formulation is

based on the Eurocodes framework, the distance between the bolts and the thickness of the plates are

in accordance with the specifications outlined in Table 3.3 of Eurocode 3 Part 1-8 [28].

The socket’s and plug’s thickness is the principal geometric parameter for the strength of the

joint. An extensive parametric analysis undertaken with the FEM showed that the plates’ bending

significantly influences the strength and deformability of the plug-and-play connection [196]. For this

reason, in some cases, stiffeners were added to the Y-fork and the socket in the bending regions, as

depicted in Fig. 2.23.

2.6.5 Macro-modeling of the P&PJ with a single CFS truss-girder

Generally, the behavior of joints can be characterized by their strength, stiffness, and ductility. In

the past, joints have been considered nominally pinned or rigid to simplify the analysis and design
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Figure 2.23: Geometric parameters of the plug and socket [196].

process. However, these assumptions usually do not correspond to reality, e.g., research on beam-

to-beam, beam-to-column, and truss connections using CFS members revealed that most connections

could be considered semi-rigid and hinged [36]. Therefore, by considering the actual behavior of

beam-to-column joints, it is possible to achieve significant savings in time and cost while avoiding

laborious work.

Recently, the applicability of the component method has been extended to CFS members [37] and

to the P&PJ system in the scope of the INNO3DJOINTS project [197].

2.6.5.1 Components under tension and compression internal forces

The relevant components identified for the INNO3DJOINTS plug-and-play joint system, specifically

for the simplest configuration of the P&PJ, in which a single CFS truss-girder is connected to the

column and where only forces in the direction of the truss-girder chords are applied to the P&PJ (e.g.,

tension or compression internal forces) are depicted in Fig. 2.24.

Moreover, the components are enumerated in Tab. 2.1 which provides the full list of symbols for

strength and stiffness [197] for all the components for tension and compression forces applied by the

CFS truss-girder to the joint.

Components 2, 4, and 10 are split into two sub-components with a layout in series. The

detailed presentation of the models developed for the computation of the strength and stiffness of

each component is given in Appendix A.
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Figure 2.24: Plug-and-play connection decomposition into components for the case of tension or
compression internal forces [197].

Table 2.1: Components under tension/compression internal forces [197].

No. Component name Strength Stiffness

1 Column side wall:

- tension 𝑁𝑡,𝑐𝑠𝑤 𝑘𝑐𝑠𝑤

- compression 𝑁𝑐,𝑐𝑠𝑤 𝑘𝑐𝑠𝑤

2 Tube components (column face):

2a
- bending: tension 𝑁𝑡,𝑐𝑏 𝑘𝑐𝑏

- bending: compression 𝑁𝑐,𝑐𝑏 𝑘𝑐𝑏

2b
- punching shear: tension 𝑁𝑡,𝑐𝑝𝑠 𝑘𝑐𝑝𝑠 = ∞

- punching shear: compression 𝑁𝑐,𝑐𝑝𝑠 𝑘𝑐𝑝𝑠 = ∞

3 Welds (column and socket):

- tension 𝑁𝑡,𝑤 𝑘𝑤 = ∞

- compression 𝑁𝑐,𝑤 𝑘𝑤 = ∞

4 Socket:

4a
- bending: tension 𝑁𝑡,𝑠𝑏 𝑘𝑠𝑏

- bending: compression 𝑁𝑐,𝑠𝑏 𝑘𝑠𝑏

4b
- elongation/contraction: tension 𝑁𝑡,𝑠𝑔, 𝑁𝑡,𝑠𝑢 𝑘𝑠𝑔

- elongation/contraction: compression 𝑁𝑐,𝑠𝑔, 𝑁𝑐,𝑠𝑢 𝑘𝑠𝑔

5 Bolts, bearing in socket:

Continued on next page
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Table 2.1: Components under tension/compression internal forces [197] (cont.).

No. Component name Strength Stiffness

- tension 𝑁𝑡,𝑏𝑏 𝑘𝑏𝑏

- compression 𝑁𝑐,𝑏𝑏 𝑘𝑏𝑏

6 Bolts, shear (T-plug and socket):

- tension 𝑁𝑡,𝑏𝑠 𝑘𝑏𝑠

- compression 𝑁𝑐,𝑏𝑠 𝑘𝑏𝑠

7 Bolts, bearing in T-plug:

- tension 𝑁𝑡,𝑏𝑏 𝑘𝑏𝑏

- compression 𝑁𝑐,𝑏𝑏 𝑘𝑏𝑏

8 T-plug:

- tension 𝑁𝑡,𝑇𝑔, 𝑁𝑡,𝑇𝑢 𝑘𝑇𝑔

- compression 𝑁𝑐,𝑇𝑔, 𝑁𝑐,𝑇𝑢 𝑘𝑇𝑔

9 Weld (T-plug and Y-part):

- tension 𝑁𝑡,𝑤 𝑘𝑤 = ∞

- compression 𝑁𝑐,𝑤 𝑘𝑤 = ∞

10 Y-part:

10a
- bending: tension 𝑁𝑡,𝑌𝑏 𝑘𝑌𝑏

- bending: compression 𝑁𝑐,𝑌𝑏 𝑘𝑌𝑏

10b
- elongation/contraction: tension 𝑁𝑡,𝑌𝑔, 𝑁𝑡,𝑌𝑢 𝑘𝑌𝑔

- elongation/contraction: compression 𝑁𝑐,𝑌𝑔, 𝑁𝑐,𝑌𝑢 𝑘𝑌𝑔

11 Bolts, bearing in Y-part:

- tension 𝑁𝑡,𝑏𝑏 𝑘𝑏𝑏

- compression 𝑁𝑐,𝑏𝑏 𝑘𝑏𝑏

12 Bolts, shear (Y-part and CFS):

- tension 𝑁𝑡,𝑏𝑠 𝑘𝑏𝑠

- compression 𝑁𝑐,𝑏𝑠 𝑘𝑏𝑠

13 Bolts, bearing in CFS:

- tension 𝑁𝑡,𝑏𝑏 𝑘𝑏𝑏

- compression 𝑁𝑐,𝑏𝑏 𝑘𝑏𝑏

14 CFS chord gross and net section:

- tension 𝑁𝑡,𝑐𝑔, 𝑁𝑡,𝑐𝑢 -

Continued on next page
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Table 2.1: Components under tension/compression internal forces [197] (cont.).

No. Component name Strength Stiffness

- compression 𝑁𝑐,𝑐𝑔, 𝑁𝑐,𝑐𝑢 -

Fig. 2.24 shows the component model for a P&PJ under tension/compression internal forces whose

mechanical properties can be found in Tab. 2.1 [197]. The components of this model can be easily

lumped into a single 0D element (i.e., linear spring), giving:

1
𝑘 lumped

=
∑︁ 1

𝑘𝑖
(2.1)

where 𝑘𝑖 is the stiffness of each component listed in Tab. 2.1 [197].

The strength of the lumped 0D element, 𝑓lumped, is the minimum strength of all the components,

thus:

𝑓lumped = min ( 𝑓𝑖) (2.2)

where 𝑓𝑖 is the strength of each component listed in Tab. 2.1 [197].

Due to the T-plug and socket shapes, the P&PJ can transfer axial forces without bolts. This ability

improves safety during the erection phase and provides additional robustness to the connections at the

ultimate stage. However, for specific design purposes considered (i.e., SLS and ULS), the load transfer

between the T-plug and socket relies solely on the bolts’ shear and bearing behavior. Consequently, the

behavior of a P&PJ subjected to tension/compression can be analyzed as an assembly of components

in series. This aspect is illustrated in Fig. 2.24 and described in [197].

The global joint behavior of the CFS truss-girder under bending moment can be easily computed

considering that the P&PJ model of one truss-girder is made of the two identical lumped assemblages

represented in Fig. 2.25.

2.6.5.2 Components under vertical shear force

For moment-resisting plug-and-play joints, the global vertical shear load in the CFS truss-girder is

equally distributed between the two connections. For pinned plug-and-play joints, the global vertical

shear load in the CFS truss-girder is entirely carried by P&PJ system.

Taking into account that the CFS truss-girders transmit to the P&PJ internal forces in a direction

orthogonal to the axis of their chords (i.e., vertical shear forces), the relevant components identified

in the INNO3DJOINTS project are presented in Fig. 2.26.
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Figure 2.25: Tension and compression connections in the joint under bending moment [197].

Figure 2.26: Plug-and-play connection decomposition into components for the case of vertical shear
force.
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The project also revealed that the flexibility of the components involved in the shear-resistant

mechanism is insignificant. Therefore, all of the components identified in Fig. 2.26 can be assumed to

be nominally rigid. As a result, only the strength of these components was considered in the analysis.

The complete list of components under shear load is shown in Tab. 2.2, with symbols for strength

[197]. In addition, the detailed presentation of models developed for the computation of the strength

of each component is given in Appendix B.

According to Fig. 2.26, the vertical shear strength of the joint is also provided by Eq. (2.2) where

𝑓𝑖 is the strength of each component listed in Tab. 2.2.

Table 2.2: Components under vertical shear force [197].

No. Component name Strength

1 Column side wall: 𝑉𝑐𝑠𝑤

2 Tube components (column face):

2a - bending 𝑉𝑐𝑏

2b - punching shear 𝑉𝑐𝑝𝑠

3 Welds (column and socket): 𝑉𝑤

4 Socket:

4a - bending 𝑉𝑠𝑏

4b - elongation/contraction 𝑉𝑠𝑔, 𝑉𝑠𝑢

5 Bolts, bearing in socket 𝑉𝑏𝑏

6 Bolts, shear (T-plug and socket) 𝑉𝑏𝑠

7 Bolts, bearing in T-plug 𝑉𝑏𝑏

8 T-plug 𝑉𝑇𝑔, 𝑉𝑇𝑢

9 Weld (T-plug and Y-part) 𝑉𝑤

10 Y-part:

10a - bending 𝑉𝑌𝑏

10b - elongation/contraction: 𝑉𝑌𝑔, 𝑉𝑌𝑢

11 Bolts, bearing in Y-part 𝑉𝑏𝑏

12 Bolts, shear (Y-part and CFS) 𝑉𝑏𝑠

13 Bolts, bearing in CFS 𝑉𝑏𝑏

14 CFS chord gross and net section 𝑉𝑐𝑔, 𝑉𝑐𝑢
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2.6 An innovative hybrid modular structural system

2.6.5.3 Strength interaction models

The verification of the P&PJ under a combination of an axial force and a vertical shear load can be

performed using component-by-component interpolations as follows [5]:

components: 5, 6, 7 ⇒
(
𝑁𝐸𝑑,𝑖

𝑁𝑅𝑑,𝑖

)2
+

(
𝑉𝐸𝑑,𝑖

𝑉𝑅𝑑,𝑖

)2
≤ 1.0

components: 14 ⇒ no interaction (2.3)

components: others ⇒ 𝑁𝐸𝑑,𝑖

𝑁𝑅𝑑,𝑖
+ 𝑉𝐸𝑑,𝑖

𝑉𝑅𝑑,𝑖
≤ 1.0

To simplify the analysis, a global linear interpolation method may be utilized as an alternative

approach:

𝑁𝐸𝑑

𝑁𝑅𝑑
+ 𝑉𝐸𝑑

𝑉𝑅𝑑
≤ 1.0 (2.4)

2.6.6 Formulation of the P&PJ macro-element

2.6.6.1 Introduction

In every joint configuration, the P&PJ can be regarded as two distinct joints: one that connects the

upper chord and the other that connects the bottom chord of the truss-girder to the column. However,

the conceptual model of the macro-element developed by CTICM [197], [198] for the P&PJ considers

these two joints as a single entity, as illustrated in Fig. 2.27.

Consequently, the following section will provide a comprehensive presentation of the macro-

element created by the author in the context of the INNO3DJOINTS project [5] based on this conceptual

model.

2.6.6.2 General overview

The macro-element developed within the INNO3DJOINTS project [5] for the purpose of designing

an P&PJ system is shown in Fig. 2.28. The element consists of six external nodes with thirty-six

external DOFs, and eight internal DOFs, as shown in Fig. 2.29. The internal DOFs’ deformation

direction is detailed in Tab. 2.3. Notably, the joint model facilitates the creation of all three types of

joint designs, namely central, edge, and corner, while certain nodes may or may not be connected to

any beam-to-column 1D element, contingent upon the preferred configuration.

The proposed joint model consists of thirty-eight components, as shown in Figs. 2.30 to 2.36,
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Figure 2.27: Schematic representation of a P&PJ within the INNO3DJOINTS project [5].

Figure 2.28: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
3D overview.

Table 2.3: Internal DOFs deformation direction.

Internal DOFs Description

1, 2 linear deformation in the Y direction

3, 7, 8 bending deformation after X axis (plane Y-Z)

4 bending deformation after Y axis (plane Z-X)

5, 6 bending deformation after Z axis (plane X-Y)
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2.6 An innovative hybrid modular structural system

Figure 2.29: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
external DOFs.

Table 2.4: Components deformation direction.

Components Description

1, 2, 4, 5, 29, 32 linear deformation in the X direction

8, 10, 35, 36, 37, 38 linear deformation in the Y direction

12, 15, 22, 23, 25, 26 linear deformation in the Z direction

7, 28 shear deformation in planes Y-X and Y-Z

13, 16, 18, 20, 24, 27 bending deformation after X axis (plane Y-Z)

14, 17, 19, 21, 30, 33 bending deformation after Y axis (plane Z-X)

3, 6, 9, 11, 31, 34 bending deformation after Z axis (plane X-Y)
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Table 2.5: Summary of the 0D elements.

Components Description

1, 2, 4, 5, 22, 23, 25, 26 load introduction components in the column web (tension or
compression)

3, 6, 24, 27 connections [28]

7 column web in shear in plane Y-X

28 column web in shear in plane Y-Z

8, 10 column axial deformation, usually sleeping components

9, 11, 18, 20 column bending deformation, usually sleeping components

12 to 21, 29 to 38 sleeping components

and enumerated in Tab. 2.4. These components are characterized by 0D elements and are defined by

uniaxial material objects (i.e., single DOF), with each component capable of exhibiting an independent

load-deformation response history. Notably, the shear-panel components (i.e., 7 and 28 from Fig. 2.33)

are assumed to undergo deformation solely in shear and, therefore, possess a 1D load-deformation

response. Tab. 2.5 provides a comprehensive listing of the components and their interconnections in

the 3D beam-to-column joint finite element.

A 2D representation of the proposed joint model is depicted in Figs. 2.37 to 2.39.

The components are assigned a finite length in all the figures illustrating the joint model to facilitate

the discussion and representation of the model. However, in actual implementation, the interior and

exterior planes are coincident, as demonstrated in Fig. 2.40 to Fig. 2.41.

More detailed information regarding the element formulation and its implementation in OpenSees

can be found in Appendix C. While the proposed model is anticipated to be a useful tool in developing

P&PJ systems for various structural engineering applications, it is important to acknowledge that

certain limitations and drawbacks are associated with its use.

2.6.6.3 Drawbacks and limitations

Upon analyzing the macro-element that was developed as part of the INNO3DJOINTS project [5],

several limitations were identified, for example:

• lumps several components (i.e., 1 to 11 shown in Section 2.6.5) of the P&PJ connection into a

single spring, such as the T-plug, socket, and bolts;

• is incompatible with truss-girders of unequal depths. Specifically, in the current configuration,
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Figure 2.30: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: linear deformation in the X direction.

Figure 2.31: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: linear deformation in the Y direction.
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Figure 2.32: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: linear deformation in the Z direction.

Figure 2.33: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: linear deformation diagonally (in Y-Z and Y-X planes).
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Figure 2.34: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: rotational deformation in the X direction.

Figure 2.35: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: rotational deformation in the Y direction.
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Figure 2.36: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: rotational deformation in the Z direction.

Figure 2.37: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: X-Y plane.
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Figure 2.38: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: Y-Z plane.

all four beams entering the node must have equal heights;

• cannot support inclined members as it is incompatible with truss-girders that are not horizontally

aligned;

• deals mathematically with the 3D interaction of the column face without a solid and intuitive

mechanical model to support it. The out-of-diagonal elements of the constitutive matrix

introduce this interaction in the joint’s formulation;

• incorporates the part of the column between the two connections made by the truss-girders

with the column (i.e., the top and bottom of the chords), making it challenging to compute the

constitutive relations for the related components;

• cannot account for local bending or shear deformation in each connection (top and bottom

chord);

• does not account for the parallel layout of the bolt in shear and the T-plug in tension in each

connection.

These limitations and drawbacks required the development of an alternative method, presented in

this document in the next sections. In the author’s view, this method could enhance the design and

modeling of the beam-to-column P&PJ system using the macro-element presented in Section 3.3.1.
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Figure 2.39: Components of the beam-to-column joint finite element developed within the
INNO3DJOINTS project [5]: Z-X plane.

Figure 2.40: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
schematic representation in 3D view.
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Figure 2.41: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
schematic representation in 2D view.
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Chapter 3

Development of the macro-element

formulation

3.1 Introduction

The present chapter aims to describe the development of the macro-element for the innovative 3D plug-

and-play joint (P&PJ) system in the context of this thesis. This is because, as previously observed,

the macro-element produced in the INNO3DJOINTS project [5] could be improved. A thorough

presentation of the concept, validation, and mathematical formulation of the macro-element will be

presented to achieve this goal.

3.2 P&PJ systematic approach for development

The installation process of the P&PJ, as outlined in Section 2.6.4.2, is straightforward. However,

analyzing and designing it can be somewhat intricate. Therefore, the components method approach

was utilized, following the guidelines of Eurocode 3 Part 1-8 [28]. In an intermediate stage, however,

the joint had to be partitioned into four separate components with a higher level of complexity, as

illustrated in Fig. 3.1 and enumerated below:

• column – socket interface: welded connection, where the main challenge was the behavior of

the welds on the bend parts of the columns;

• socket – T-plug connection: bolted connection, ensuring the transfer of forces through the bolts

in shear and bearing of the plates; the novelty in this part was not the connection itself, but the

modeling of the bend plates;
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• Y-fork – CFS truss-girder connection: bolted connection, ensuring the transfer of shear forces

between the CFS plates of the chord profile and the HRS plates of the plug; as previously

mentioned, these regions contain three bolt arrangements with different purposes:

– vertical: transfer of vertical forces between the horizontal and the vertical element of the

truss-girder;

– horizontal: transfer of horizontal forces between the truss-girder and the joint;

– diagonal: transfer of the diagonal forces between the diagonal and the node of the truss-

girder;

• tubular column: the part of the column in the joint region; the novelty of this part is the need to

account for the integration of multiple CFS truss-girders seamlessly.

The main focus of the INNO3DJOINTS experimental campaign was on the first three parts

[1], [144], [188] (i.e., column – socket interface, socket – T-plug, and Y-fork – CFS truss-girder

connections). Consequently, the behavior and analysis of the tubular column in the joint region were

addressed numerically and analytically.

Accordingly, the present study concentrates on modeling the tubular regions in the beam-to-column

joint area, considering the possibility of having multiple CFS truss-girders connected to the column

in the same region.

Nonetheless, the model developed in this study also encompasses the other parts of the joint.

Therefore, the components of the P&PJ, assuming no integration between CFS truss-girders (i.e., for

a P&PJ with only a single truss-girder, as depicted in Section 2.6.5), are also taken into consideration

in this study because these components are crucial and necessary inputs for this study as well.

However, for a joint configuration with more than one truss-girder, the stiffness and strength of the

tube components depend on the forces acting on each column face with truss-girders attached to it due

to the 3D interaction between the column faces.

In any P&PJ configuration with CFS truss-girders connected to the column at the same level, the

P&PJ can be analyzed as two separate joints: one connecting the upper chord and the other connecting

the bottom chord of the truss-girder to the column, as seen in Fig. 3.2. Further on, these regions

will be referred to as joint(s). Accordingly, in the case of a joint configuration with truss-girders of

different depths or positioned at different heights, the P&PJ will have more than two joints.

Hereinafter, the relevant components of the P&PJ system are classified into two categories, namely

connection components and tube components. The connection components account for the mechanical

behavior of the socket, T-plug, and CFS truss-girder’s ends. In contrast, the tube component describes
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Figure 3.1: INNO3DJOINTS plug-and-play joint system.

Figure 3.2: Schematic representation of a full P&PJ.

the mechanical behavior of the tube faces and their interaction.

3.3 Proof of concept

3.3.1 Formulation

According to experimental evidence and numerical results [153], [154], [199], when multiple loads

are applied simultaneously to multiple tube faces, the out-of-plane deformations will be different

than when each load is applied individually to each face. This difference in displacements suggests

that there is an interaction between the different tube faces. In other words, instead of behaving

independently, the faces interact with each other.
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Accordingly, an appropriate model for the P&PJ must consider not only the components outlined

in Section 2.6.5 (i.e., which are determined for a joint configuration with a single CFS truss-girder

connected to the column in which there is no interaction between the faces of the tube) but also the

interaction between the faces of the tube when multiple truss-girders are attached to it at the same

level.

The approach taken in this study to consider the interaction between column faces uses the

component method but focuses on the development of a straightforward mechanical model that is easily

comprehended and whose components possess a clear physical meaning. These aspects represent the

fundamental principles of the component method, which likely explains its efficacy. Conversely, the

method described in Section 2.6.6 employs a more mathematically-based approach, resulting in a

model that may prove more challenging for users to comprehend with regards to interpreting and

validating the model’s inputs and outputs.

Over the course of this study, following the former principle, it was found that the simplest model

for handling the interaction of column faces is the cross-section level macro-element schematically

represented in Fig. 3.3. The key characteristics of this macro-element are:

• has five nodes, with nodes 1 to 4 serving as edge or face nodes and node 5 functioning as the

center node;

– the edge nodes ensure the connection of the CFS truss-girder chords to the column;

– the center node is utilized to connect with the centerline of the column.

• the edge nodes are allowed to exhibit translational movement in the direction of the centerline

of the corresponding CFS truss-girder;

• the components outlined in Section 2.6.5, with the exception of those corresponding to the

column face, are explicitly considered and are lumped into the single 0D element that is located

adjacent to the edge nodes, as depicted by the green 0D elements in Fig. 3.3;

• it is assumed that only the interaction between adjacent tube faces is significant, e.g., if the

displacements in faces B and D in Fig. 3.3 are blocked, then there will be no interaction between

faces A and C;

• the interaction between the column faces is taken into account through a series of 0D elements,

the physical meaning of which will be explained below (as depicted by the blue and red 0D

elements in Fig. 3.3).
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Figure 3.3: Component-based macro-element of a tubular profile at cross-section level (2D view).
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This model follows the split of the P&PJ in two joints and accounts for the behavior of each joint

separately. This means that the connection of a CFS truss-girder to a column will require the use

of two macro-elements (i.e., one at the level of each chord, as shown in Fig. 3.4(a)) and that the

bending and shear behavior of the tube between these two macro-elements is accounted for using a

traditional 1D element. This approach also deals with cases where the truss-girders have different

depths (Fig. 3.4(b)) or are placed at different heights (Fig. 3.4(c)).

It is important to note that the proposed macro-element disregards the deformation modes illustrated

in Fig. 3.5 that occur from the application of shear force, bending moment, and axial load (i.e., tension

or compression).

A mechanical model referred to as the column macro-element (CME) is considered to facilitate

the validation of the proof of concept of the macro-element. In the CME, the connection components

which are considered lumped are assumed to be rigid and are therefore not taken into account. As a

result of this simplification, the CME comprises only two types of components:

• the face component (denoted as F and represented in red in Fig. 3.3): a 0D element that connects

an edge node with the central node within the CME;

• interaction component (denoted as I and represented in blue in Fig. 3.3): a 0D element that

connects two edge nodes located on adjacent sides of the CME.

The physical meaning of each component type (i.e., F and I) can be comprehended through their

stiffness definition for a generic column face. For instance, for face A in Fig. 3.6, these are:

• face component’s stiffness (𝑘F) – the force that produces a unitary out-of-plane displacement on

face A, when simultaneously unitary out-of-plane displacements are imposed on the adjacent

faces B and D in Fig. 3.6(b);

• interaction component’s stiffness (𝑘I) – the force that keeps null the out-of-plane displacements

on faces B or C in Fig. 3.6(c), while a unitary out-of-plane displacement is imposed on face A

in Fig. 3.6(c).

It is observed that, in accordance with this definition, all face components within a square cross-

section have the same stiffness, 𝑘F. However, due to the dissimilarity in dimensions between the

faces of a rectangular cross-section, distinct values for the stiffness of face components, 𝑘F.1 and 𝑘F.2,

are obtained for the shorter (i.e., width) and longer (i.e., length) side of the column cross-section,

respectively. Nevertheless, only a single value for the stiffness of the interaction component, 𝑘I, is

obtained for both square and rectangular cross-sections.
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(a) truss-girders with equal depth and with chords at the
same height

(b) truss-girders with unequal depth and with top chords
at the same height

(c) truss-girders with with chords at different heights

Figure 3.4: Modeling strategy of P&PJ with a sectional macro-element.
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(a) shear (b) bending (c) axial

Figure 3.5: Deformation modes disregarded in the macro-element design (top view).

(a) undeformed tube

(b) face component (c) interaction component

Figure 3.6: Definition of the stiffness of the tube components.
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Figure 3.7: Component-based macro-element of a tubular profile in the joint’s region (top view).

3.3.2 Validation

To demonstrate the validity of the macro-element outlined in the preceding section as a reliable

representation of tube behavior, a proof of concept validation was conducted based on the following

steps:

1. compute the stiffness of the tube components using a Refined Finite Element Model (RFEM)

according to the physical meaning described previously;

2. assemble the stiffness matrix of the column macro-element (CME);

3. select a load pattern (LP);

4. compute the out-of-plane displacements of the column faces for the selected LP using the RFEM;

5. compute the out-of-plane displacements of the column faces for the selected LP using the CME;

6. compare the RFEM and CME results; ideally, they should match or be within an acceptable

error range.

Subsequently, the validation procedure of the proof of concept is presented for a rectangular tubular

column. The stiffness of the tube components is obtained from a finite element model, which was

developed using Abaqus [113], with the geometry as illustrated in Fig. 3.7. The material characteristics,

mesh, boundary conditions, and analysis type are described in more detail in Section 5.4.3.

The cross-sectional geometry requires the determination of the stiffness of two face components

(𝑘F1 and 𝑘F2) and an interaction component (𝑘I). Depending on the case, the values for these
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components are obtained by applying either a unitary or a null displacement-based load to the reference

points (RPs) on the socket faces, as shown in Fig. 3.8 and in Fig. 3.9.

In accordance with the notations of the column faces in Fig. 3.6, the stiffness of the face components

for faces A and C, and B and D are represented by 𝑘AC
F1 and 𝑘BD

F2 , respectively.

As mentioned, the interaction component’s stiffness should be the same for all interaction

components, regardless of the tube shape. However, this scenario cannot be achieved numerically

due to small differences in the finite element model. Therefore, the interaction component’s values

𝑘I1 (Fig. 3.8) and 𝑘I2 (Fig. 3.9) have small variations. Since a fundamental criterion of any stiffness

matrix is symmetry, an average of these values is proposed through Eq. (3.1).

𝑘I =
𝑘I1 + 𝑘I2

2
(3.1)

The stiffness of the tube components is assessed for three socket configuration(s) (SC(s)), which

result from adjusting the distance between socket faces, 𝐿SC from Fig. 3.7. However, the same SC is

applied to all column faces. The designated SCs, namely SC01 to SC03, are presented in Tab. 3.1

and are utilized for various computational purposes throughout the document. Therefore, a detailed

discussion on the SC is provided in Section 5.4.1.

The displacement vector of the CME, USC0𝑖
CME, with node 5 fixed to prevent rigid body movements,

is defined as:

USC0𝑖
CME =

[
𝑈I 𝑈II 𝑈III 𝑈IV

]𝑇
(3.2)

Under the same conditions, the stiffness matrix of the CME will be represented as follows:

KSC0𝑖
CME =



𝑘AC
F1 + 2 𝑘I 𝑘I 0 𝑘I

𝑘I 𝑘BD
F2 + 2 𝑘I 𝑘I 0

0 𝑘I 𝑘AC
F1 + 2 𝑘I 𝑘 𝐼

𝑘I 0 𝑘I 𝑘BD
F2 + 2 𝑘 𝐼


(3.3)

Under certain circumstances, the stiffness of tube components may exhibit a negative sign.

Nevertheless, it is noteworthy that within the global stiffness matrix of the beam-to-column joint

finite element, Kcond
j , which will be elaborated upon in Section 3.4.2 via Eq. (3.20), all constituent

elements are positive in value.
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(a) 3D view, 𝑘F1 (b) 3D view, 𝑘I1

(c) 2D view, 𝑘F1: section F-1 (d) 2D view, 𝑘I1: section I-1

Figure 3.8: Tube components for the short face (width).
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(a) 3D view, 𝑘F2 (b) 3D view, 𝑘I2

(c) 2D view, 𝑘F2: section F-2 (d) 2D view, 𝑘I2: section I-2

Figure 3.9: Tube components for the long face (length).
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Table 3.1: Tube components stiffness raw values [kN/m].

SC 𝐿SC [mm] 𝑘F1 𝑘F2 𝑘I1 𝑘I2

01 20 62.33 10.87 12.52 12.65

02 40 78.74 9.97 15.87 16.04

03 90 187.32 0.75 34.08 34.46

Table 3.2: Tube components stiffness: final values [kN/m].

SC 𝑘F1 𝑘F2 𝑘I

01 62.33 10.87 12.58

02 78.74 9.97 15.96

03 187.32 0.75 34.27

Additionally, for an arbitrary LP, the applied forces vector, PSC0𝑖
CME, will be expressed as:

PSC0𝑖
CME =

[
𝑃I 𝑃II 𝑃III 𝑃IV

]𝑇
(3.4)

According to the classical displacement method [200], the out-of-plane displacements of the

column faces, USC0𝑖
CME, are determined as:

USC0𝑖
CME =

(
KSC0𝑖

CME

)−1
PSC0𝑖

CME (3.5)

The raw values of the stiffness of the tube components for each SC, calculated using the RFEMs,

are presented in Tab. 3.1. The final values (i.e., the mathematical average of 𝑘I1 and 𝑘I1) of the

stiffness of the tube components, utilized to construct the stiffness matrix of the mechanical model,

are presented in Tab. 3.2.

The deformed shapes of the tube cross-section at a mid-height of the column (i.e., section cut W0

from Fig. 5.23) in directions 1 and 2 (i.e., U1 and U2) obtained from Abaqus are shown in Fig. 3.10.

A set of three LPs is defined to validate the proof of concept of the CME. They are schematically

represented in Fig. 3.11, with a dummy load 𝑃 = 1000kN.

The out-of-plane displacement values for the RFEM and CME, as well as the relative error, 𝜀1,

defined by Eq. (3.6), are shown in Tab. 3.3. The relative error values fall within a range of plus or

minus 3%, which is considered acceptable, thereby demonstrating the ability of the CME to accurately

account for the 3D interaction between the faces of the tube. However, it should be noted that the
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(a) 𝑘F1 - U1 (b) 𝑘F1 - U2 (c) 𝑘I1 - U1 (d) 𝑘I1 - U2

(e) 𝑘F2 - U1 (f) 𝑘F2 - U2 (g) 𝑘I2 - U1 (h) 𝑘I2 - U2

Figure 3.10: Cross-section’s deformed shape for tube components on U1 and U2 for SC02.

(a) LP01 (b) LP02 (c) LP03

Figure 3.11: Load patterns (LP) used to validate the CME proof of concept.

error may be high in cases with very small displacement values, as exemplified by LP01 with SC03 in

direction IV (or on face D).

𝜀1 =
𝑈RFEM − 𝑈CME

𝑈RFEM
100 (3.6)

3.4 Extension to beam-to-column joint finite element

The usability of the macro-element from Fig. 3.3 was extended and integrated into a beam-to-column

joint finite element that considers both tube and connection components. This new joint finite element

allows modeling other types of loads and deformations not accounted for explicitly, e.g., transversal

deformation and rotation in each connection, as detailed in the next sections.
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3.4 Extension to beam-to-column joint finite element
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Chapter 3. Development of the macro-element formulation

Table 3.4: Internal DOFs.

internal DOF description

iDOF 1 & iDOF 3 linear deformation in Z direction

iDOF 2 & iDOF 4 linear deformation in X direction

Therefore, in addition to the macro-element represented in Fig. 3.3, the beam-to-column joint finite

element presents 3D springs with six DOFs corresponding to three linear springs and three rotational

springs, allowing to model connections with any desired behavior. Because these springs are 0D

elements and are placed in the exact location, it is hard to distinguish them graphically. Therefore

a better graphical representation of the joint finite element, in which the connection components are

expended, is shown in Fig. 3.13

The joint finite element consists of five external nodes with six DOFs per node. An additional

four internal DOFs are added to ensure kinematic determinacy, resulting in 34 DOFs in total. The

numbering for the external DOFs ranges from 1 to 30, whereas the internal DOFs are designated as

iDOF1 to iDOF4 (or DOFs 31 to 34). The location and positive direction of the DOFs are presented

in Fig. 3.14. Supplementary information regarding the internal DOFs can be found in Tab. 3.4, where

the X-Y-Z coordinate system is used as the local system for the joint element’s implementation, as

shown in Fig. 3.13.

The concept behind the joint element allows the simulation of all three types of joints (i.e., central,

edge, and corner), with some nodes potentially not connected to any truss-girder or column 1D finite

elements.

The proposed model consists of 32 spring components (i.e., 0D elements) depicted in red in

Figs. 3.15 to 3.24. These components are assigned a finite length in all illustrations to facilitate clear

representation and discussion. Furthermore, the deformation direction of the spring components is

displayed in Tab. 3.5. The behavior of the spring components is described by uniaxial (i.e., single

DOF) material objects and can each have a unique load-deformation response history.

3.4.1 Sign convention

To compute the deformations and internal forces in components, the following sign convention is used:

• axial deformation: elongation (+) and shortening (-);

• shear deformation: positive according to the convention of Strength of Materials [201] assuming

that the element is oriented according to the axis of the local X-Y-Z coordinate system parallel
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3.4 Extension to beam-to-column joint finite element

Table 3.5: Components deformation direction.

Components Description

1, 7, 13, 19, 26, 28 linear deformation in X direction

2, 8, 14, 20 linear deformation in Y direction

3, 9, 15, 21, 25, 27 linear deformation in Z direction

29, 30, 31, 32 linear deformation in Z-X plane (tube components: interaction components)

4, 10, 16, 22 rotational deformation after X axis

5, 11, 17, 23 rotational deformation after Y axis

6, 12, 18, 24 rotational deformation after Z axis
 

Figure 3.12: Positive sign convention of components.

to it;

• bending deformation: positive according to the convention of Strength of Materials [201]

assuming that the element is oriented according to the axis of the local X-Y-Z coordinate system

parallel to it;

• torsion deformation: positive if, according to the right-hand rule, the rotation vector points

outward from the component and negative if it points inward.

The sign convention for each main plane is presented in Fig. 3.12. The forces and bending

moments are represented in the in-plane view by single- and double-headed arrows, while in the

plane perpendicular to the viewing plane by a single or double circle. If the single (or double) circle

is crossed, the arrow points inward toward the plane, i.e., indicating the direction of entering the

represented plane. If the circle is not crossed, the direction of the arrow points outward from the

plane, i.e., indicating the direction of exiting the represented plane.
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Chapter 3. Development of the macro-element formulation
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3.4 Extension to beam-to-column joint finite element
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Chapter 3. Development of the macro-element formulation
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3.4 Extension to beam-to-column joint finite element
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Chapter 3. Development of the macro-element formulation
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3.4 Extension to beam-to-column joint finite element
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Chapter 3. Development of the macro-element formulation
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3.4 Extension to beam-to-column joint finite element
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Chapter 3. Development of the macro-element formulation
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3.4 Extension to beam-to-column joint finite element
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Chapter 3. Development of the macro-element formulation
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3.4 Extension to beam-to-column joint finite element
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Chapter 3. Development of the macro-element formulation

3.4.2 Linear formulation

In the case of a first-order analysis with linear elastic behavior assigned to the beam-to-column joint

components, the equilibrium relation between nodal forces and internal forces in the components can

be expressed as:

f = B P (3.7)

where f (32×1), B(32×34), and P(34×1) are the vector of internal forces in components, equilibrium

matrix, and vector of nodal forces, respectively. Accordingly,

f =

[
𝑓1 . . . 𝑓32

]𝑇
(3.8)

where 𝑓𝑖 is the internal force in component 𝑖, with

P =

[
𝑃ext.1 . . . 𝑃ext.30 𝑃int.1 . . . 𝑃int.4

]𝑇
(3.9)

where 𝑃ext.𝑖 and 𝑃int. 𝑗 are the nodal force in external DOF 𝑖 and nodal force in internal DOF 𝑗 ,

respectively.

The linearized compatibility relation between the deformations in the components and the nodal

displacements can be expressed as:

𝚫 = A U (3.10)

where𝚫(32×1), A(32×34), and U(34×1) are the vector of deformation in components, compatibility

matrix and vector of nodal displacements, respectively. Accordingly,

𝚫 =

[
Δ1 . . . Δ32

]𝑇
(3.11)

U =

[
𝑈ext.1 . . . 𝑈ext.30 𝑈int.1 . . . 𝑈int.4

]𝑇
(3.12)

where Δ𝑘 is the deformation in component 𝑘 , and𝑈ext.𝑖 and𝑈int. 𝑗 are the generalised displacement in

external DOF 𝑖, and the displacement in internal DOF 𝑗 , respectively.

The elements, 𝑎𝑖, 𝑗 , of the compatibility matrix, A, are obtained using the procedure presented in

Section 3.4.3.

To ease the reading and writing process of the present document, the elements, 𝑎𝑖, 𝑗 , of the

compatibility matrix, A, are shown in a tabular form where only the non-zero elements are presented,
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3.4 Extension to beam-to-column joint finite element

Table 3.6: The non-zero elements of the compatibility matrix A.

Color Value Stiffness Coefficient

1

𝑎1,1; 𝑎2,2; 𝑎3,3; 𝑎5,5; 𝑎6,6; 𝑎7,7; 𝑎9,9; 𝑎10,10; 𝑎11,11; 𝑎12,12; 𝑎16,16; 𝑎20,20;
𝑎8,26; 𝑎13,25; 𝑎14,26; 𝑎16,28; 𝑎17,29; 𝑎18,30; 𝑎21,27; 𝑎22,28; 𝑎23,29; 𝑎24,30;
𝑎15,33; 𝑎19,34; 𝑎25,31; 𝑎26,32; 𝑎27,27; 𝑎28,25; 𝑎29,25; 𝑎31,25; 𝑎31,27; 𝑎32,27;
𝑎29,31; 𝑎32,32

-1

𝑎4,4; 𝑎8,8; 𝑎13,13; 𝑎14,14; 𝑎15,15; 𝑎17,17; 𝑎18,18; 𝑎19,19; 𝑎21,21; 𝑎22,22;
𝑎23,23; 𝑎24,24; 𝑎1,25; 𝑎2,26; 𝑎4,28; 𝑎5,29; 𝑎6,30; 𝑎9,27; 𝑎10,28; 𝑎11,29; 𝑎12,30;
𝑎20,26; 𝑎25,27; 𝑎26,25; 𝑎3,31; 𝑎7,32; 𝑎29,27; 𝑎30,25; 𝑎30,27; 𝑎32,25; 𝑎27,33;
𝑎28,34; 𝑎29,34; 𝑎31,33; 𝑎31,34; 𝑎32,33

0.5 𝑑𝑐𝑋 𝑎8,30; 𝑎9,29; 𝑎20,30; 𝑎21,29

0.5 𝑑𝑐𝑍 𝑎2,28; 𝑎14,28

− 0.5 𝑑𝑐𝑍 𝑎1,29; 𝑎13,29

as seen in Tab. 3.6. Moreover, each non-zero value is assigned a distinct color to enhance visibility.

A color map illustrating the assignment of colors within the compatibility matrix is presented in

Fig. 3.25.

Finally, the internal forces in the components can be expressed by Eq. (3.13):

f = kj 𝚫 (3.13)

where kj(32× 32) is a diagonal matrix, and its elements represent the stiffness of the components,

𝑘𝑖,𝑖 = 𝑘comp. 𝑗 .

In the scope of small deformations, the dual relation between compatibility and equilibrium leads

to the following:

P = A𝑇 f (3.14)

By introducing Eq. (3.10) and Eq. (3.13) into Eq. (3.14), the vector of external forces can be

expressed as:

P = A𝑇 kj A U = Kj U (3.15)

from which the stiffness matrix of the beam-to-column joint finite element, Kj(34×34), is obtained:

Kj = A𝑇 k A (3.16)

Knowing that no external forces will be considered in the internal DOFs, the stiffness matrix Kj

can be statically condensed to be expressed explicitly in terms of external DOFs. Thus, the vector of
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3.4 Extension to beam-to-column joint finite element

Table 3.7: Steps to calculate elements 𝑎𝑖, 𝑗 of A.

Step no. Step description

1 select a DOF for which to calculate the deformation in the springs: 𝑖;

2 impose a unit displacement on the selected DOF, while the other DOFs are
blocked: 𝑈𝑖 = 1 with𝑈 𝑗 = 0;

3 determine the deformations in components: Δ𝑖;

4 assign that deformation to the corresponding row and column in the
compatibility matrix: 𝑎𝑖, 𝑗 = Δ𝑖.

nodal forces (Eq. (3.9)) and the vector of nodal displacements (Eq. (3.12)) are split into 2 sub-vectors,

as follows:

P =

[
Pext Pint

]𝑇
(3.17)

U =

[
Uext Uint

]𝑇
(3.18)

where Pext and Uext are (30×1), while Pint and Uint are (4×1).

Thus, Eq. (3.15) yields into:

Kj U =


Kext Kie

Kei Kint



Uext

Uint


(3.19)

where Kext is (30×30), Kint is (4×4), Kie is (30×4) and Kei is (4×30), from which the condensed

stiffness matrix, Kcond
j (30×30), is derived:

Kcond
j = Kext − Kie (Kint)−1 Kei (3.20)

3.4.3 Compatibility matrix’s elements computation

The determination of the correct compatibility matrix, A, is both a fundamental step and starting point

in the implementation of the new joint element presented in this document. Although at first look, it

might seem like a tedious process, in fact, it is a straightforward process that requires the application

of the four steps mentioned in Tab. 3.7.

An exemplification of the computation of component deformation caused by a unit load in DOF 2

is provided in Tab. 3.8, while Fig. 3.26 visually represents the resulting deformed components.

87
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3.4 Extension to beam-to-column joint finite element

Table 3.8: Worked example for DOF 2.

Step no. Step description

1 select a DOF: 𝑖 = 2;

2 impose a unit displacement on the selected DOF, while the other DOFs are
blocked: 𝑈2 = 1 with𝑈1 = 𝑈3 = 𝑈4 = . . . = 𝑈34 = 0

3 determine the deformations in components: Δ2 = 1;

4 assign that deformation to the corresponding row and column in the
compatibility matrix: 𝑎2,2 = Δ2 = 1;
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Chapter 4

Implementation of the macro-element in

OpenSees

4.1 Inno3DPnPJoint Class

The proposed beam-to-column joint finite element’s formulation is introduced in the framework of

OpenSees as the Inno3DPnPJoint Class, which is a child of the base abstract Element class, as shown

in Fig. 4.1. The Element Class consists of several virtual methods defined by the children of the class.

These methods dynamically allocate and deallocate memory for an instance of the class, initialize an

instance of the class, perform inquiry and access tasks, and generate and return an element tangent

matrix and residual vector.

The proposed beam-to-column joint finite element requires an internal solution to determine

the internal nodal displacements that satisfy the internal equilibrium of the element. The methods

comprising the Inno3DPnPJoint Class are listed in Tab. 4.1 and are adapted from [181]

The order in which the methods are executed for a linear elastic analysis is presented in Fig. 4.2.

The flowchart expands both vertically and horizontally. The former represents the move to a new

step (i.e., execution of a new method), while the latter implies that in the current step, a method calls

another method (i.e., function in function call).

The programming language used to code the proposed beam-to-column joint is C++ [157].

The integrated development environment used to compile the OpenSees source code is Microsoft

VisualStudio 2019 ([202]).

For the development of the beam-to-column joint finite element, two files were coded, namely the

header file (*.h) and the main (implementation) file (*.cpp). The former defines the interface and
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Chapter 4. Implementation of the macro-element in OpenSees

variables for the new class that should be a subclass of the Element class, while the latter explains in

detail what the constructors, destructor, and the other methods do.

The presence of the internal DOFs in the proposed model and the nonlinear behavior of the

components enforce an internal iteration scheme that needs to be implemented at compilation time

(i.e., not at run time).

Table 4.1: Methods Comprising the Inno3DPnPJoint Class.

Method Name Description

Constructor

Public: Inno3DPnPJoint(. . . ) Initializes an object of the class.

Destructor

Public: Inno3DPnPJoint() Performs dynamic storage deallocation.

Inquiry and Access Methods

Public: virtual int getNumExternalNodes() Returns the number of external nodes of the

element.

Public: virtual const ID &getExternalNodes() Returns pointers to the specified node tags.

Public: virtual getNodePtrs() Returns pointers to pointers to the specified

node tags.

Public: virtual int getNumDOF() Returns the number of DOFs of the element.

Public: virtual void setDomain() Required for checking the DOFs and

associativity with the node.

Public: virtual const Matrix &getTangentStiff() Returns the local stiffness matrix of the

element at the global assembly stage for all

the elements.

Public: virtual getInitialStiff() Returns the local stiffness matrix of the

element at the global assembly stage for all

the elements.

Public: virtual const Vector &getResistingForce() Returns the local residual force vector at the

stage of global assembly.

Public: virtual int getResponse(. . . ) Returns element-specific responses.

Public: virtual setResponse(...) Contains the valid output(s) for the element.

Continued on next page
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4.1 Inno3DPnPJoint Class

Table 4.1: Methods Comprising the Inno3DPnPJoint Class (continued).

Method Name Description

Public: virtual void Print(...) Prints out element data.

Public: virtual int displaySelf() Displays element graphically.

Element Solution Methods

Private: void getGlobalDispls(. . . ) Returns a set of converged displacements for

the five nodes of the element.

Private: void getBCJoint() Returns the compatibility matrix.

Private: void getdDef_du() Extracts from the compatibility matrix the

rows and columns related to internal DOFs.

Private: void getdg_df() Transposes the dDef_du matrix.

Private: void matDiag(...) Takes as input the vector containing the

stiffness of the components and converts it

to a diagonal matrix of components.

Private: void getMatResponse(. . . ) Takes as input the displacements and returns

the tangent and residual forces based on the

material specified by the user.

Private: void formR(. . . ) Forms the local residual force vector of the

element.

Private: void formK(. . . ) Forms the local stiffness matrix of the element.

Private: void formTransfMat() Forms the transformation matrix used to

transform from global to local coordinates.

Private: double getStepSize(. . . ) Improves the robustness of the element by

determining the step size for line search in

case of convergence issues with the internal

equilibrium

Public: virtual int commitState() Commits displacement at each node after

meeting the internal equilibrium criterion for

the element.

Public: virtual int revertToLastCommit() Returns to the last committed state if the

analysis fails.

Continued on next page
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Table 4.1: Methods Comprising the Inno3DPnPJoint Class (continued).

Method Name Description

Public: virtual int revertToStart() Returns to the start if the analysis fails.

Public: virtual int update() Updates the displacements at the external

nodes of the element.

TaggedObject MoveableObject

Domain

Element

ElasticTubularJoint

BeamColumnJoint2D

BeamColumnJoint3D

Joint2D

Joint3D

Inno3DPnPJoint

. . .

Figure 4.1: Class diagram of the beam-to-column joint finite elements library of OpenSees.

4.2 Transformation matrix

The Inno3DPnPJoint element, although a 3D element, has coordinates that form a 2D plane in 3D

space. The requirements for the node coordinates of the finite element are outlined in Section 4.4.4.

Additionally, the joint element adheres to the local sign convention presented in Section 3.4.1.

The Inno3DPnPJoint element is intended to facilitate the everyday design of 3D structures rather

than serving as a tool exclusively for research purposes. Accordingly, any limitations on the definition

of the joint element’s coordinates were eliminated by the incorporation of a transformation matrix into
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the code via the formTransfMat() method (Tab. 4.1). This method removes any restrictions related to

coordinates or signs, enabling the user to specify the joint element’s position in 3D space as desired.

The transformation matrix, Transf (30×30), is derived from the vectors containing the coordinates

for nodes 1 and 2 (Fig. 3.13), and the coordinates of their cross-product. First, verification is conducted

to ensure that the norms of these three vectors are non-zero. Then, a transformation sub-matrix,

Tran(3×3), is constructed by dividing the coordinates of the three vectors by their norms. Finally, the

transformation matrix, Transf, is obtained by assembling the sub-matrix, Tran, diagonally ten times.

The transformation matrix, Transf, is utilized in the following methods:

• getGlobalDispls(. . . ) – in the OpenSees input file (i.e., *.tcl or *.py), the joint element is defined

in the global coordinate system, therefore the coordinates of the five nodes defining the joint

element are transformed into the local coordinate system;

• formR(. . . ) – the local residual force vector, R (34× 1), of the element, contains the values

related to both the external and internal DOFs, thus, the ones associated with the external DOFs

are transformed back, from the local to the global coordinate system;

• formK(. . . ) – the condensed local stiffness matrix, K, of the element, is transformed from the

local to the global coordinate system;

• getResponse(. . . ) – the committed displacements associated with the external DOFs are

transformed back from the local to the global coordinate system.

4.3 Nonlinear formulation

For the nonlinear analysis, due to the internal DOFs, the proposed beam-to-column joint finite element

requires a procedure to determine the internal nodal displacement that satisfies the internal equilibrium

of the element for each iteration of the global solution algorithm.

The approach followed by the proposed joint model is a classical Newton-Raphson iteration

scheme, which is found in other joint elements of the software’s library, such as the BeamColumJoint

[181].

According to this scheme, the internal node displacements, u𝑖𝑛𝑡,𝑡 , at iteration 𝑡 associated with the

imposed external node displacements, u𝑒𝑥𝑡,𝑡 , is computed starting from the internal node displacements

at iteration 𝑡 −1 and the material responses of the components according to the following procedure:
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1. computation of the first initial trial value of the deformation of each component:

𝚫 = A

[
uext.𝑡 uint.𝑡−1

]𝑇
(4.1)

where uext.𝑡 and uint.𝑡−1 represent the vectors of displacements of the external and internal nodes,

respectively, while 𝚫 and A are the vector of deformation in the components and compatibility

matrix;

2. computation of the internal forces. 𝑓𝑖. and the tangent stiffness. 𝑘𝑖. of the components for 𝚫,

where 𝑖 = [1,32];

3. computation of the unbalanced nodal forces in the internal nodes Pint:

Pint = Ã𝑇 f (4.2)

where f and Pint stand for the vectors of internal forces in the components and vectors

of unbalanced forces in the internal nodes, respectively, and Ã𝑇 is the sub-matrix of the

compatibility matrix, A, containing the last four columns (and 32 rows) corresponding to

the internal DOFs;

4. iterative internal cycles until the unbalanced forces are small enough (𝑖-th iteration):

(a) check for convergence:

P𝑖int

( (
P𝑖int

)𝑇
< tolerance → convergence → STOP

)
(4.3)

(b) computation of the internal node displacements making use of the Newton-Raphson

iteration formula:

u𝑖+1
int = u𝑖int −

(
Ã𝑇 k Ã

)−1
P𝑖int (4.4)

with k is a diagonal matrix of the components with 𝑘 ( 𝑗 , 𝑗) = 𝑘comp. 𝑗 ;

(c) computation of the deformations of the components:

𝚫𝑖+1 = A

[
uext.𝑡 u𝑖+1

int

]𝑇
(4.5)

(d) computation of the internal forces and the tangent stiffness of the components for 𝚫𝑖+1;
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(e) computation of the unbalanced nodal forces in the internal nodes:

P𝑖+1
int = Ã𝑇 f (4.6)

(f) move to next iteration 𝑖 = 𝑖 + 1.

To guarantee convergence of the element for any imposed external nodal displacements, the

robustness of the internal solution algorithm was improved. As suggested by Lowes el at. [181], the

following modifications were applied with varying degrees of effectiveness:

• modification of the classical Newton-Raphson solution algorithm to include a line-search [203];

• implementation of the classical Modified Newton-Raphson solution algorithm;

• discretization of the imposed external nodal displacement increment to enable internal solution

at discrete points along the global solution path.

4.4 Inno3DPnPJoint user manual

4.4.1 Element info

The Inno3DPnPJoint element can be viewed as a 2D plate in a 3D space defined by five external nodes

(Fig. 3.14), each having six DOFs. This element configuration is suitable for rectangular and square

cross-sections. Furthermore, it allows for the simulation of all types of joints: central, edge, and

corner, with some nodes potentially not being connected to any truss-girder or column 1D elements.

4.4.2 Element source code

The Inno3DPnPJoint beam-to-column joint element’s C++ source code is available on the OpenSees

GitHub repository [204]. Due to the substantial length and the inherent challenges of reading code on

paper, particularly when it involves significant indentation, the code is not included in this document.

Furthermore, the availability of the code on the GitHub repository allows for modifications to be made

by interested parties.

4.4.3 Command line and input arguments

The Inno3DPnPJoint element can be constructed using the command input lines given below with the

input arguments listed in Tab. 4.2.
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Table 4.2: Input arguments for Inno3DPnPJoint joint finite element.

input $arg Description

$eleTag An integer tag identifying the element in the domain

$Node1 An integer tag indicating the node 1

...

$Node5 An integer tag indicating the node 5

$SprMatTag01 An integer tag indicating the uniaxial materials for component 1

...

$SprMatTag32 An integer tag indicating the uniaxial materials for component 32

• input line for Tcl (*.tcl) files:

element Inno3DPnPJoint $eleTag <$Node1 $Node2 $Node3 $Node4 $Node5>

<$SprMatTag01 . . . $SprMatTag32>

cmd Example:

element Inno3DPnPJoint 99 101 102 103 104 105 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

# constructs an Inno3DPnPJoint joint element with element tag 99, that is connected to

nodes 101, 102, 103, 104 and 105 and uses for the components’ behaviour the uniaxial

material object tags from 1 to 32.

• input line for Python (*.py) files:

element(’Inno3DPnPJoint’, $eleTag, <$eleNode1, $eleNode2, $eleNode3,

$eleNode4>, <$SprMatTag01, . . ., $SprMatTag32>)

4.4.4 Node definition requirements

The nodes of the element must be defined in a specific order and have coordinates that meet

the requirements of coplanarity, perpendicularity, collinearity, centrality, and dimensionality to

successfully create the beam-to-column joint finite element. These requirements ensure that the

coordinates of the five nodes given as input by the user create a 2D plane in 3D space. These checks

can be found in the setDomain method (Tab. 4.1).
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4.4.4.1 Input Order

The nodes should be defined in a counterclockwise direction. For example, if the element is created

in the X-Z plane, the node’s input order should be as follows: 1 / bottom, 2 / right, 3 / top, 4 / left,

and 5 / center, as shown in Fig. 3.13. However, the joint can be defined in any plane if the node order

definition is adapted accordingly.

4.4.4.2 Coplanarity

All nodes should lie in the same plane.

4.4.4.2.1 Verification overview

The equation of the plane passing through nodes 1, 2, and 3 is calculated to ensure that the nodes lie

in the same plane. Then, a check is performed to see if nodes 4 and 5 satisfy this equation. If the

condition is met, all five nodes are coplanar, and the analysis continues. Conversely, the analysis exits

and displays this error message:

ERROR: Inno3DPnPJoint::setDomain – Node 4 does NOT belong to plane created by Node

1, Node 2 and Node 3. Check node coordinate definition.

or

ERROR: Inno3DPnPJoint::setDomain – Node 5 does NOT belong to plane created by Node

1, Node 2 and Node 3. Check node coordinate definition.

4.4.4.2.2 Mathematical description

In a 3D space, a 2D plane can be defined by a point and a vector perpendicular to the plane. The

equation representing the plane is given as follows:

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (4.7)

with 𝑑 = − (𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0), where (𝑥0, 𝑦0, 𝑧0) and (𝑎, 𝑏, 𝑐) represent the coordinates of any point

on the plane and the components of the normal vector, ®𝑛, to the plane, respectively.

In a 3D space, a 2D plane is determined by two linearly independent vectors. The cross-product

of these vectors is an orthogonal vector to the plane, and any vector orthogonal to this cross-product

lies in the plane.
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Given the coordinates 𝑁1 = (𝑥1, 𝑦1, 𝑧1), 𝑁2 = (𝑥2, 𝑦2, 𝑧2) and 𝑁3 = (𝑥3, 𝑦3, 𝑧3) for nodes 1, 2, and

3 respectively, the cross-product of the linearly independent vectors resulting from these nodes is

expressed as:

−−→
𝑁21 = 𝑁2 −𝑁1 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1) = (𝑎1, 𝑏1, 𝑐1)
−−→
𝑁31 = 𝑁3 −𝑁1 = (𝑥3 − 𝑥1, 𝑦3 − 𝑦1, 𝑧3 − 𝑧1) = (𝑎2, 𝑏2, 𝑐2)

(4.8)

Thus, their cross-product, ®𝑛, is expressed as:

®𝑛 =
−−→
𝑁21 × −−→

𝑁31 =

�������������
𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

ı̂ ȷ̂ k̂

�������������
= (𝑏1𝑐2 − 𝑐1𝑏2) ı̂ + (𝑎2𝑐1 − 𝑐2𝑎1)ȷ̂ + (𝑎1𝑏2 − 𝑏1𝑎2)k̂

= 𝑎ı̂ + 𝑏ȷ̂ + 𝑐k̂

(4.9)

To determine if a node with coordinates (𝑥, 𝑦, 𝑧) (such as nodes 4 and 5) lies in the plane defined

by nodes 1, 2, and 3, the components of the normal vector ®𝑛 = (𝑎, 𝑏, 𝑐) (Eq. (4.9)) and the coordinates

of a node on the plane (such as nodes 1, 2 or 3) must be introduced into Eq. (4.7).

Depending on the input values, the equation of the plane (Eq. (4.7)) may not always equal 0. To

prevent software failure, an error variable 𝑒𝑟𝑟𝑜𝑟𝐷𝑜𝑚𝑎𝑖𝑛 = 1𝑒−2 is defined.

4.4.4.3 Perpendicularity

It is mathematically necessary for the vector, represented by the ordered node sequence (1, 5, 3), to be

perpendicular to the vector represented by the ordered node sequence (2, 5, 4).

4.4.4.3.1 Verification overview

If the coplanarity requirement is fulfilled, the dot product of the vectors between nodes 1 and 3 and

nodes 2 and 4 is calculated. If the result is 0, the two vectors are perpendicular, so the condition is

satisfied, and the analysis continues. Conversely, the analysis exits and displays this error message:

ERROR: Inno3DPnPJoint::setDomain – vector of Node 1 & Node 3 not perpendicular to

vector of Node 2 & Node 4. Check node coordinate definition.
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4.4.4.3.2 Mathematical description

In the realm of algebra, the dot product can be defined as the algebraic summation of the product

of corresponding entries of two vector sequences. In this particular case, the vectors in question are

represented by
−−→
𝑁13 and

−−→
𝑁24, which are comprised of sequences of node coordinates as detailed in

Eq. (4.10). The dot product of these vectors is given by Eq. (4.11).

−−→
𝑁13 = 𝑁1 − 𝑁3 = (𝑥1 − 𝑥3, 𝑦1 − 𝑦3, 𝑧1 − 𝑧3)
−−→
𝑁24 = 𝑁2 − 𝑁4 = (𝑥2 − 𝑥4, 𝑦2 − 𝑦4, 𝑧2 − 𝑧4)

(4.10)

−−→
𝑁13 · −−→𝑁24 =

3∑︁
𝑖=1

−−→
𝑁13(𝑖)

−−→
𝑁24(𝑖) = 0 (4.11)

4.4.4.4 Collinearity

The ordered node sequences ((1, 5), (5, 3)) and ((2, 5), (5, 4)) must be collinear to ensure the correct

transmission of forces between the components.

4.4.4.4.1 Verification overview

The ordered node sequences of ((1, 5), (5, 3)) and ((2, 5), (5, 4)) must exhibit collinearity to facilitate

the computation of cross-products between the center node (node 5) and the edge nodes (nodes 1, 2,

3, and 4). If the cross-product result is equal to zero, it can be concluded that the node sequences are

collinear, and the analysis continues. Conversely, the analysis exits and displays this error message:

ERROR: Inno3DPnPJoint::setDomain – Node 1, Node 5 and Node 3 are not collinear.

Check node coordinate definition.

or

ERROR: Inno3DPnPJoint::setDomain – Node 2, Node 5 and Node 4 are not collinear.

Check node coordinate definition.

4.4.4.4.2 Mathematical description

From a mathematical standpoint, if the cross-product of two vectors is equal to zero, the vectors are

either parallel to each other, or the angle between them is equal to 0 degrees or 180 degrees. Based on

previous assessments, it can be deduced that the angle between the vectors in question is 180 degrees,
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thus implying that the nodes are collinear. These vectors are represented by
−−→
𝑁51,

−−→
𝑁52,

−−→
𝑁53, and

−−→
𝑁54,

as detailed in Eq. (4.12).

−−→
𝑁51 = 𝑁5 −𝑁1 = (𝑥5 − 𝑥1, 𝑦5 − 𝑦1, 𝑧5 − 𝑧1)
−−→
𝑁52 = 𝑁5 −𝑁2 = (𝑥5 − 𝑥2, 𝑦5 − 𝑦2, 𝑧5 − 𝑧2)
−−→
𝑁53 = 𝑁5 −𝑁3 = (𝑥5 − 𝑥3, 𝑦5 − 𝑦3, 𝑧5 − 𝑧3)
−−→
𝑁54 = 𝑁5 −𝑁4 = (𝑥5 − 𝑥4, 𝑦5 − 𝑦4, 𝑧5 − 𝑧4)

(4.12)

The cross-product, assumed to be zero to meet the requirement of collinearity, is mathematically

represented by Eq. (4.13).

−−−→
𝑁153 =

−−→
𝑁51 × −−→

𝑁53 = 0
−−−→
𝑁254 =

−−→
𝑁52 × −−→

𝑁54 = 0
(4.13)

4.4.4.5 Centrality and dimensionality

The edge nodes should be positioned at the center of each column face, so that the norms of the four

vectors resulting from the collinearity check can be calculated and compared. There are three potential

outcomes of this comparison: (i) if all norms are equal, it indicates that the tube is square, (ii) if two

pairs of equal norms are obtained, it suggests that the tube is rectangular, and (iii) if neither of these

conditions are met, the analysis exits and displays an error message:

ERROR: Inno3DPnPJoint::setDomain – nodes are not located at the center of the column

face. Check node coordinate definition.

Moreover, to prevent division by zero, the dimensions of the joint must be large enough and the

norms of the four vectors should be greater than a pre-defined value of 1𝑒 − 3. If this criterion is

satisfied, the analysis continues. Conversely, the analysis exits and displays this error message:

ERROR: Inno3DPnPJoint::setDomain – length or width <= 1e-3, division by zero occurs.

Increase joint size.

4.4.5 Common error messages

In addition to the previously mentioned errors, various error messages may arise for different reasons.

However, a summary of the most common ones is presented in Tab. 4.3.
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Table 4.3: Common errors.

Description Displayed error message

number of input arguments is wrong
(i.e., different than 38)

WARNING error insufficient. arguments.
Want: element Inno3DPnPJoint eleTag? Node1?
Node2? Node3? Node4? Node5? Spring01? Spring02?
... Spring32?.

number of external nodes is wrong
(i.e., different than 5)

ERROR: Inno3DPnPJoint::Inno3DPnPJoint() eleTag
failed to create an ID of size 5.

constructor fails to get copy of
material and/or the copy is not valid

ERROR: Inno3DPnPJoint::Constructor failed to get a
copy of material matTag.

constructor fails to set pointer to
external nodes

ERROR: Inno3DPnPJoint::setDomain. Node pointer is
NULL. Node nodeTag does not exit in the domain.

the domain is null ERROR: Inno3DPnPJoint::setDomain – Domain is null.

number of DOFs is wrong (i.e.,
different than 6)

ERROR: Inno3DPnPJoint::setDomain – number of DOF
associated with the nodes is incorrect.

number of spring requested as
output is out of range (1-32)

ERROR: Inno3DPnPJoint::setResponse number of
springs out of range: springNo.
Spring numbers go from 1 to 32.

4.4.6 Output recorders

The simulation results of the Inno3DPnP beam-to-column joint finite element can be analyzed by

defining output records at both the element and component levels.

4.4.6.1 Element level

The outputs at the element level can be requested using the following recorder commands:

• input line for Tcl (*.tcl) files:

recorder Element <-file $fileName> <-time> <-ele $eleTag> $arg

• input line for Python (*.py) files:

recorder(’Element’, ’-file’, ’fileName’, ’-time’, ’-ele’, ’eleTag’, ’$arg’)

The list of valid inputs for the argument, $arg, at the element level, is given by Tab. 4.4.

4.4.6.2 Component level

The outputs at the component level can be requested using the following recorder commands:
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Table 4.4: Valid $arg – at element level.

$arg
C++ Output Variable

Description
Name Size

extDisp
UeprCommit_G 30x1 Returns the displacement for the

external DOFs.extdisp

intDisp
UeprIntCommit 4x1 Returns the displacement for the

internal DOFs.intdisp

Disp UeprCommit_G &
34x1 Returns the displacement for the

external and internal DOFs.disp UeprIntCommit

Reaction
R 34x1 Returns the global residual forces

for all DOFs.reaction

matStress

MaterialPtr->getStress() 32x1 Returns the stress values from the
joint components.

matstress

Stress

stress

matStrain

MaterialPtr->getStrain() 32x1 Returns the strain values from the
joint components.

matstrain

Strain

strain

matStressStrain

64x1 Returns the stress and strain values
from the joint components.

matstressstrain MaterialPtr->getStress()

StressStrain MaterialPtr->getStrain()

stressStrain
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Table 4.5: Valid $arg – at component level.

$arg
C++ Output Variable

Description
Name Size

spring

MaterialPtr[springNo] 1x2 Returns a pair of stress-strain for
each time step.

-spring

material

-material

• input line for Tcl (*.tcl) files:

recorder Element <-file $fileName> <-time> <-ele $eleTag> <$arg $sprNo

stressStrain>

• input line for Python (*.py) files:

recorder(’Element’, ’-file’, ’fileName’, ’-time’, ’-ele’, ’eleTag’, ’$arg’, ’sprNo’,

’stressStrain’)

The list of valid inputs for the argument, $arg, at component level, is given by Tab. 4.5.

The previous Tcl command only displays the results for a single component; therefore, it must

be repeated for each component of interest. A more efficient approach would be to incorporate the

command into a loop statement, as demonstrated by the following code sequence using a for-loop:

1 # The following code constructs an element recorder command at the

component level for the Inno3DPnPJoint element with tag 99. It

is integrated into a for-loop to print the results for multiple

components (i.e., 1, 2, 3, 25). For each component, a separate

output file, designated as "results_Spr_X.out," where X is

replaced by the values in the $listSprOutput variable (e.g., X =

$SprNo), is created.

2

3 # create an output list with the springs of interest [1<->32]

4 set listSprOutput {1 2 3 25}

5

6 # create an empty string

7 set fileNameOutSpr ""
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8

9 # start the iteration process

10 for {set i 0} {$i < [llength $listSprOutput]} {incr i} {

11 # create a variable that takes the value (number of the spring)

of the current iteration

12 set sprNo [lindex $listSprOutput $i]

13

14 # create separate results files with a different name for each

spring (this step is not mandatory, but it is highly recommended

)

15 set fileNameOutSpr [join [concat "results_Spr_" $sprNo ".out"]

""]

16

17 # element recorder command

18 recorder Element -file $Dir/$fileNameOutSpr -time -ele 99

-material $sprNo stressStrain

19 }

107





Chapter 5

Computation of mechanical properties of the

macro-element for linear regime

5.1 Introduction

The proposed beam-to-column joint finite element is intended for practical application in routine

design practice. As such, in line with linear analysis, the following three essential tasks must be

achieved:

1. formulation of the beam-to-column joint model (Chapter 3) and its implementation within

general FEM computational tools (Chapter 4);

2. definition of appropriate stiffness parameters leading to realistic internal force distributions;

3. establishment of a strength criterion to evaluate the structural safety of the beam-to-column

joint.

Task 1 has already been discussed in previous sections of the document. Task 2 and Task 3, covering

the definition of appropriate stiffness parameters and the establishment of a strength criterion, will be

addressed in Sections 5.2 to 5.4 and Section 5.5, respectively.

5.2 Analytical definition of stiffness of the components

5.2.1 Introduction

The stiffness of the components of the proposed beam-to-column joint finite element depicted in

Fig. 3.13 can be computed using different procedures, such as experimental tests, numerical procedures,
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or analytical models. In the current study, given that the beam-to-column joint model is intended for

use in routine design processes, a simplified procedure for the computation of the stiffness of the

components is sought. To this end, Equivalent Frame-Model(s) (EFM(s)), also known in the research

field of tubular structures as ring models [154], [205], are utilized. The EFMs are a favorable method

as they allow for the analytical definition of the stiffness of the components of the beam-to-column

joint element.

The fundamental principle underlying the use of the EFMs is the representation of the behavior of

the tubular column in the beam-to-column joint region through a planar frame-model, whose Euler-

Bernoulli elements represent the faces of the tube. The forces and deformations in the tube faces

caused by their interaction with the beams connected to the column are represented by forces applied

in the frame-elements and mid-span displacements of these elements, respectively. In these EFMs, the

frame-elements are connected at their ends (i.e., at corners) to account for the interaction between the

tube faces. The application of Euler-Bernoulli elements in the EFM concept requires the definition of

the geometry of the frame-model, the boundary conditions of the frame-model, and a bending stiffness

parameter for the linear frame-elements, named equivalent bending stiffness, 𝐸𝐼.

The literature review revealed that the existing EFMs are only suitable for square tubular cross-

sections [152] and do not consider the size of the "loaded region" of the joint or the bent portion of

the tube in the interaction between the column faces. To evaluate the influence of these parameters

and incorporate them, four main novel EFMs are presented and developed as follows:

• Harada frame-model for square cross-sections (HS-EFM, Fig. 5.4): developed by Harada and

Simões da Silva ([153], [154]), and shown here for completeness;

• Harada extended frame-model for rectangular cross-sections (HR-EFM, Fig. 5.5): an extension

of HS-EFM applicable to both square and rectangular cross-sections developed by the author;

• Proposed frame-model for square cross-sections (PS-EFM, Fig. 5.6): based on HS-EFM but

modified to account for the connection’s size, a feature that makes it suitable for a larger variety

of joint dimensions; thus, it is appropriate for the P&PJ beam-to-column connection presented

in Section 2.6.4;

• Proposed frame-model for rectangular cross-sections (PR-EFM, Fig. 5.8): an extension of the

PS-EFM and applies to both square and rectangular cross-sections.

The methodology employed to calculate the bending stiffness parameter for each frame-element

in the EFM accounts for the stiffness of each column face independently. Accordingly, in the case

of rectangular tubular cross-sections, different bending stiffness parameters are computed for the
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(a) relevant DOFs (b) full set of DOFs

Figure 5.1: Degrees of Freedom in the Displacement Method Application.

column faces with varying dimensions. To assess the feasibility of using similar stiffness parameters

in the frame-elements of the same EFM while considering that, in reality, the stiffness of each face is

influenced by the stiffness of the other face (i.e., leading to an equivalent stiffness that falls between

both), two different scenarios related to the mechanical properties of the frame-elements were examined

for rectangular cross-sections, as follows:

• Each column face is assigned its corresponding moment of inertia (IF - inertia full); thus, there

are two moments of inertia 𝐼1 (width) and 𝐼2 (length);

• Each column face is assigned the mathematical average of the moments of inertia of the column

faces (IEq - inertia equivalent); thus, all faces have the same moment of inertia, which is

expressed by Eq. (5.1).

𝐼𝑒𝑞 =
𝐼1 + 𝐼2

2
(5.1)

In conclusion, considering the EFMs discussed and the two distinct scenarios related to the

mechanical properties of the frame-elements for rectangular tubular cross-sections, a total of six

EFMs were examined in the present study.

5.2.2 General procedure to compute the stiffness of the components

The computation of the stiffness of the components for the beam-to-column joints finite element

outlined in Section 2.6.5 using EFMs requires, first, the computation of the stiffness matrix associated

with the out-of-plane displacements at the mid-span of each frame-element, as depicted in Fig. 5.1(a),

hereafter designated with K𝐸𝐹𝑀
c (4×4).

The analytical calculation of the stiffness matrix for the EFMs can be performed using either

classical force or displacement methods [200]. However, the traditional implementation of either
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Chapter 5. Computation of mechanical properties of the macro-element for linear regime

method requires significant computational effort due to the high degree of static and kinematic

indeterminacy present in the EFMs, as exemplified by the EFM represented in Fig. 5.1(b), in which

both the static and kinematic indeterminacy is 12.

Therefore, instead of calculating the full stiffness matrix of the EFM, K𝐸𝐹𝑀 (12 × 12), and

subsequently condensing it to be only expressed in terms of the out-of-plane translation at the frame-

elements’ mid-span, K𝐸𝐹𝑀
c (4 × 4), an alternative procedure that enables the computation of the

condensed stiffness matrix directly has been adopted.

Following the method proposed by Harada and Simões da Silva [154], an alternative procedure

for the computation of the condensed stiffness matrix, K𝐸𝐹𝑀
c (4×4), was developed by selecting four

load pattern(s) (LP(s)) that, through symmetry conditions, allow for efficient computation of the out-

of-plane mid-span displacements of the frame-elements of the EFM. From the equilibrium between

external and internal forces obtained from the displacement method, the condensed stiffness matrix,

K𝐸𝐹𝑀
c , is computed by solving the linear system of equations described by Eq. (5.2). The four LPs

are depicted in Fig. 5.2.[
𝑃𝑆 𝑃𝐸 𝑃𝑁 𝑃𝑊

]𝑇
= K𝐸𝐹𝑀

c

[
𝛿𝑆 𝛿𝐸 𝛿𝑁 𝛿𝑊

]𝑇
(5.2)

As previously mentioned, the computation of the mid-span displacements of frame-elements for

the LPs represented in Fig. 5.2 was achieved by taking advantage of the symmetry conditions. In other

words, the calculation is performed on 1/4 (quadrant) of the EFM, hereafter referred to as Simplified

Equivalent Frame-Model(s) (SEFM(s)).

The utilization of symmetry conditions necessitates the use of distinct terminology for the location

of the calculated displacement. Specifically, the "displacement at the mid-span of the frame-elements

of the EFM" before simplification corresponds to the "displacement at the end of the frame-elements

of the SEFM" after simplification.

For every SEFM, the mid-span displacements of the frame-elements are also calculated using the

classic displacement method, where only the formulae for fixed-fixed and fixed-roller Euler-Bernoulli

elements, as presented in Fig. D.2 and Fig. D.1 in Appendix D, are required. The calculation procedure

is based on the following steps:

1. identification of the boundary conditions of the SEFM;

2. identification of the kinematic DOFs of the SEFM – in all cases, the SEFM has only one DOF

when the fixed-fixed and fixed-roller elements are used: 𝑑1;

112



5.2 Analytical definition of stiffness of the components

(a) LP-EFM.1 (b) LP-EFM.2

(c) LP-EFM.3 (d) LP-EFM.4

Figure 5.2: Load Patterns for the Equivalent Frame-Models.

3. computation of the stiffness corresponding to the DOF: 𝑘11;

4. computation of the displacement at frame-elements’ ends of the SEFM caused by a unit

displacement imposed on the DOF 𝑑1: 𝛿𝑑;

5. computation of the fixation forces in the DOF 𝑑1 caused by the LP-EFM: 𝑓 ;

6. computation of the displacement at the frame-elements’ ends of the SEFM caused by the LP-

EFM when the DOF is restrained: 𝛿𝑃;

7. computation of the displacement in the DOF associated with the LP-EFM: 𝑑;

8. computation of the displacement at the frame-elements’ ends of the SEFM caused by the actual

displacement: 𝛿𝐷 ;

9. computation of the displacement at the frame-elements’ ends of the SEFM using the principle

of superposition of effects: 𝛿.

The calculation described previously outputs the displacements at the ends of two frame-elements

of the SEFM or at the mid-span of the frame-elements of the EFM. The displacements for the
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Chapter 5. Computation of mechanical properties of the macro-element for linear regime

remaining two frame-elements are derived from symmetry conditions, considering the established

sign convention (Section 3.4.1).

Further on, the vectors containing the displacements at the mid-span for each LP-EFM are

concatenated to form the matrix F𝐸𝐹𝑀 . Similarly, the matrix of external forces, P, is obtained,

as outlined in Eq. (5.3). In the conducted calculations, the elements of the vectors are defined in a

counter-clockwise direction starting from the bottom face. Therefore, by designating the faces of the

column in the EFM calculation according to the cardinal directions, the order becomes South-East-

North-West (S-E-N-W).

The condensed stiffness matrix of the EFM, K𝐸𝐹𝑀
c , is obtained by multiplying the matrix of

external forces, P𝐸𝐹𝑀 , with the inverse of the matrix F𝐸𝐹𝑀 . Finally, the stiffnesses of the components

of the beam-to-column joint finite element are derived.

P =

[
pLP-EFM.1 pLP-EFM.2 pLP-EFM.3 pLP-EFM.4

]
=



𝑃 −𝑃 0 −𝑃

𝑃 𝑃 𝑃 0

𝑃 −𝑃 0 𝑃

𝑃 𝑃 −𝑃 0


(5.3)

where

pLP-EFM.𝑖 =

[
𝑝LP-EFM.𝑆 𝑝LP-EFM.𝐸 𝑝LP-EFM.𝑁 𝑝LP-EFM.𝑊

]𝑇
(5.4)

The calculation process is also presented as a flowchart in Fig. 5.3.

5.2.3 Application of the procedure to the EFMs

The calculations for all six EFMs are presented in detail, with each computation following the

procedures outlined in Section 5.2.2. Notwithstanding, since the computation methodology remains

unchanged for each EFM, to avoid redundancy, the subsequent two sections only provide the EFM’s

description and the stiffness formulae for the joint components. The detailed step-by-step calculation

is exclusively presented in Appendix E according to Tab. 5.1
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start

select EFM

𝑝LP-EFM.𝑖 = last? simplify EFM

identify DOFs: 𝑑1

apply unit displacement: 𝑑1 = 1

compute: 𝑘LP-EFM.𝑖
11

compute: 𝛿LP-EFM.𝑖
𝑑

compute: 𝑓 LP-EFM.𝑖

compute: 𝛿LP-EFM.𝑖
𝑃

compute: 𝑑LP-EFM.𝑖

compute: 𝛿LP-EFM.𝑖
𝐷

compute: 𝛿LP-EFM.𝑖

assemble: P𝐸𝐹𝑀

assemble: F𝐸𝐹𝑀

calculate: K𝐸𝐹𝑀
c

calculate: 𝑘𝐸𝐹𝑀
comp 𝑗

stop

no
(𝑖 = 1 → 4)

yes

Figure 5.3: General procedure for calculating stiffness of components in all EFMs.

Table 5.1: Index of tables for stiffness calculation.

EFM name Appendix name EFM name Appendix name

HS-EFM Appendix E.1 PS-EFM Appendix E.4

HR-EFM-IF Appendix E.2 PR-EFM-IF Appendix E.5

HR-EFM-IEq Appendix E.3 PR-EFM-IEq Appendix E.6
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5.2.4 Description of the EFMs

5.2.4.1 HS-EFM

Harada and Simões da Silva developed the HS-EFM [152]–[154] as a solution for the 3D macro-

modeling of beam-to-column joints, particularly under cyclic loading conditions, in which the column

cross-sections are square, and the joint’s behavior is semi-rigid. Their modeling approach is based on

the component method, and its effectiveness has been evaluated through comparison with experimental

results. Since the HS-EFM is considered the starting point or simplified approach for computing the

stiffness of the components for the proposed macro-element, a brief overview is provided below.

The HS-EFM has four frame-elements of equal dimension, 𝐿 (width/length), each representing

a tube face, with bending stiffness 𝐸𝐼, as shown in Fig. 5.4. The thickness of the tube, 𝑡𝑐, is not

illustrated graphically; nevertheless, it is assumed to be uniform across all four sides.

The length, 𝐿, represents the distance between the exterior face of any two parallel faces. In the

case of a tubular member with rounded corners, the length can be reduced to the distance between the

radii of one face.

The HS-EFM has four nodes, 1, 2, 3, and 4, representing the EFM’s corners. These nodes are

restrained in translation to separate the deformations of the EFM from the rigid body motions. It

is worth noting that this model prevents overall distortion of the frame-model; thus, the distortion

deformation mode of the tube in its cross-section is not considered. Additionally, Harada and Simões

da Silva included a roller at the mid-span of each frame-element (i.e., at the center of a column face)

to ensure that the column face can only undergo perpendicular out-of-plane displacement.

Thus, the utilization of tables containing stiffness coefficients for fixed-fixed and fixed-roller Euler-

Bernoulli (Appendix D) elements results in the need to consider only four rotational DOFs, specifically,

𝑑1, 𝑑2, 𝑑3, and 𝑑4, as well as four translational DOFs, specifically, 𝛿𝑆, 𝛿𝐸 , 𝛿𝑁 , and 𝛿𝑊 .

5.2.4.2 HR-EFM-IF

The HR-EFM is an extended version of the HS-EFM, and it offers a more versatile solution because

it can be used for both rectangular and square cross-sections. This EFM is similar to the HS-EFM in

terms of node numbering, DOFs, and mid-span restraints for each frame-element. However, it differs

in the dimensions and bending stiffnesses of the frame-elements, which include two dimensions, 𝐿1

(width) and 𝐿2 (length), as well as two bending stiffnesses, 𝐸𝐼1 and 𝐸𝐼2.

As stated in Section 5.2.1, two scenarios are considered: one in which each column face is treated

with its corresponding stiffness (HR-EFM-IF) and the other in which to all column faces an equivalent
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Figure 5.4: HS-EFM: a general overview.

stiffness (Eq. (5.1)) is assigned (HR-EFM-IEq). The procedure outlined in Section 5.2.2 is applied in

both scenarios to determine the stiffness matrix of the EFMs.

5.2.4.3 HR-EFM-IEq

The HR-EFM-IEq is identical to the HR-EFM-IF, with the exception that it utilizes an equivalent

moment of inertia, 𝐼𝑒𝑞, defined by Eq. (5.1), instead of the individual moments of inertia, 𝐼1 and 𝐼2,

throughout the entire calculation. This methodology results in a uniform bending stiffness across all

four frame-elements.

5.2.4.4 PS-EFM

The PS-EFM is a modified version of HS-EFM that considers the size of the connection. In the scope

of the P&PJ system, which was introduced in Section 2.6.4, the connection size is integrated into

the EFM by considering the two contact regions between the socket and the column as rigid areas as

illustrated in Fig. 5.16. Despite the existence of two contact regions in the P&PJ configuration, the

PS-EFM simplifies the model by considering a single rigid area that accounts for both contact regions

and the distance between them, with a finite length denoted as 𝑏.

The rigid area is always centered on the frame-elements (i.e., on the tube face), and the same length

is assumed for all four faces of the column. This means that truss-girders with identical dimensions

are accounted for in both orientations of the structure and are centrally positioned on the column face.
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Figure 5.5: HR-EFM-IF: general overview.

Although a more general scenario could involve assigning each column, face a distinct rigid area of

varying length, such a scenario would result in impractical analytical solutions and is likely infrequent

in design practice.

Furthermore, roller supports are placed at the ends of the rigid element to impose perpendicular

out-of-plane displacement on the column face. With this EFM configuration, if five points of interest

were assigned to any frame-element (e.g., 1 to 5), the displacement of points 1 and 5, and 2, 3, and 4

would be identical (Fig. 5.7).

5.2.4.5 PR-EFM-IF

The PR-EFM is a more general solution than the PS-EFM since it can be used for both rectangular

and square cross-sections. It shares similarities with the PS-EFM in terms of node numbering, DOFs,

mid-span restraints for each frame-element, and rigid area length, 𝑏. However, it differs in terms of the

dimensions and bending stiffnesses of the frame-elements. Specifically, there are two dimensions, 𝐿1

(width) and 𝐿2 (length), as well as two bending stiffnesses, 𝐸𝐼1 and 𝐸𝐼2. Geometrically, the PR-EFM

is a one-sided stretched version of the PS-EFM. The thickness of the tube, 𝑡𝑐, is not shown graphically

but is assumed to be the same on all sides. For this EFM configuration, if five points of interest were
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Figure 5.6: PS-EFM: a general overview.

(a) width (b) length

Figure 5.7: Frame-elements divided into points of interest.
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assigned to the width (e.g., W1 to W5) or length (e.g., L1 to L5), the displacement of points 1 and 5,

and 2, 3, and 4 would be identical for the analyzed face, as illustrated in Fig. 5.9.

Similar to the HR-EFM, the PR-EFM also has two sub-configurations: the first involves assigning

each column face its corresponding stiffness (PR-EFM-IF), while the second involves assigning an

equivalent stiffness (Eq.(5.1)) to all column faces (PR-EFM-IEq). To determine the out-of-plane

displacement and stiffness matrix for both sub-configurations, the methodology outlined in Fig. 5.3 is

employed.

5.2.4.6 PR-EFM-IEq

The PR-EFM-IEq is identical to the PR-EFM-IF, with the exception that it utilizes an equivalent

moment of inertia, 𝐼𝑒𝑞, defined by Eq. (5.1), instead of the individual moments of inertia, 𝐼1 and

𝐼2, throughout the entire calculation. This methodology results, as in the case of HR-EFM-IEq, in a

uniform bending stiffness across all four frame-elements of the EFM.

5.2.5 Stiffness of the tube components of the EFMs

The stiffness equations for the tube components in the beam-to-column joint finite element of an

EFM, 𝑘𝐸𝐹𝑀comp. 𝑗 , are obtained from the corresponding condensed stiffness matrix, K𝐸𝐹𝑀
c , as computed

and reported in Appendix E. The stiffness formulae of the tube components are presented in the

subsequent sections, along with the reference to the corresponding equation number of the stiffness

matrix that was used to derive them.

5.2.5.1 HS-EFM

From KHS-EFM
c (Eq. (E.30)) the stiffness of the tube components becomes:

𝑘HS-EFM
comp.25 = 𝑘HS-EFM

comp.26 = 𝑘HS-EFM
comp.27 = 𝑘HS-EFM

comp.28 =
48 𝐸 𝐼
𝐿3 (5.5)

𝑘HS-EFM
comp.29 = 𝑘HS-EFM

comp.30 = 𝑘HS-EFM
comp.31 = 𝑘HS-EFM

comp.32 =
36 𝐸 𝐼
𝐿3 (5.6)

5.2.5.2 HR-EFM-IF

From KHR-EFM-IF
c (Eq. (E.60)), the stiffness of the tube components becomes:

𝑘HR-EFM-IF
comp.25 = 𝑘HR-EFM-IF

comp.27 =
48 𝐸 𝐼1

(
− 3 𝐼2 𝐿2

1 + 4 𝐼2 𝐿1 𝐿2 + 𝐼1 𝐿
2
2
)

𝐿3
1 𝐿2 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(5.7)
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Figure 5.8: PR-EFM-IF: general overview.

(a) width (b) length

Figure 5.9: Frame-elements divided into points of interest.
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𝑘HR-EFM-IF
comp.26 = 𝑘HR-EFM-IF

comp.28 =
48 𝐸 𝐼2

(
𝐼2 𝐿

2
1 + 4 𝐼1 𝐿1 𝐿2 − 3 𝐼1 𝐿2

2
)

𝐿1 𝐿
3
2 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(5.8)

𝑘HR-EFM-IF
comp.29 = 𝑘HR-EFM-IF

comp.30 = 𝑘HR-EFM-IF
comp.31 = 𝑘HR-EFM-IF

comp.32 =
72 𝐸 𝐼1 𝐼2

𝐿1 𝐿2 (𝐼1 𝐿2 + 𝐼2 𝐿1)
(5.9)

5.2.5.3 HR-EFM-IEq

From KHR-EFM-IEq
c (Eq. (E.65)), the stiffness of the tube components becomes:

𝑘
HR-EFM-IEq
comp.25 = 𝑘

HR-EFM-IEq
comp.27 =

48 𝐸 𝐼𝑒𝑞
(
− 3 𝐿2

1 + 4 𝐿1 𝐿2 + 𝐿2
2
)

𝐿3
1 𝐿2 (𝐿1 + 𝐿2)

(5.10)

𝑘
HR-EFM-IEq
comp.26 = 𝑘

HR-EFM-IEq
comp.28 =

48 𝐸 𝐼𝑒𝑞
(
𝐿2

1 + 4 𝐿1 𝐿2 − 3 𝐿2
2
)

𝐿1 𝐿
3
2 (𝐿1 + 𝐿2)

(5.11)

𝑘
HR-EFM-IEq
comp.29 = 𝑘

HR-EFM-IEq
comp.30 = 𝑘

HR-EFM-IEq
comp.31 = 𝑘

HR-EFM-IEq
comp.32 =

72 𝐸 𝐼𝑒𝑞
𝐿1 𝐿2 (𝐿1 + 𝐿2)

(5.12)

5.2.5.4 PS-EFM

From KPS-EFM
c (Eq. (E.99)), the stiffness of the tube components becomes:

𝑘PS-EFM
comp.25 = 𝑘PS-EFM

comp.26 = 𝑘PS-EFM
comp.27 = 𝑘PS-EFM

comp.28 =
6 𝐸 𝐼
𝑎3 (5.13)

𝑘PS-EFM
comp.29 = 𝑘PS-EFM

comp.30 = 𝑘PS-EFM
comp.31 = 𝑘PS-EFM

comp.32 =
9 𝐸 𝐼
2 𝑎3 (5.14)

5.2.5.5 PR-EFM-IF

From KPR-EFM-IF
c (Eq. (E.129)), the stiffness of the tube components becomes:

𝑘PR-EFM-IF
comp.25 = 𝑘PR-EFM-IF

comp.27 =
6 𝐸 𝐼1

(
− 3 𝐼2 𝑎2 + 4 𝐼2 𝑎 𝑐 + 𝐼1 𝑐

2)
𝑎3 𝑐 (𝐼2 𝑎 + 𝐼1 𝑐)

(5.15)

𝑘PR-EFM-IF
comp.26 = 𝑘PR-EFM-IF

comp.28 =
6 𝐸 𝐼2

(
𝐼2𝑎

2 + 4 𝐼1 𝑎 𝑐 − 3 𝐼1 𝑐2)
𝑎 𝑐3 (𝐼2 𝑎 + 𝐼1 𝑐)

(5.16)

𝑘PR-EFM-IF
comp.29 = 𝑘PR-EFM-IF

comp.30 = 𝑘PR-EFM-IF
comp.31 = 𝑘PR-EFM-IF

comp.32 =
9 𝐸 𝐼1 𝐼2

𝑎 𝑐 (𝐼2 𝑎 + 𝐼1 𝑐)
(5.17)
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5.2.5.6 PR-EFM-IEq

From KPR-EFM-IEq
c (Eq. (E.134)), the stiffness of the tube components becomes:

𝑘
PR-EFM-IEq
comp.25 = 𝑘

PR-EFM-IEq
comp.27 =

6 𝐸 𝐼𝑒𝑞
(
− 3 𝑎2 + 4 𝑎 𝑐 + 𝑐2)
𝑎3 𝑐 (𝑎 + 𝑐)

(5.18)

𝑘
PR-EFM-IEq
comp.26 = 𝑘

PR-EFM-IEq
comp.28 =

6 𝐸 𝐼𝑒𝑞
(
𝑎2 + 4 𝑎 𝑐 − 3 𝑐2)
𝑎 𝑐3 (𝑎 + 𝑐)

(5.19)

𝑘
PR-EFM-IEq
comp.29 = 𝑘

PR-EFM-IEq
comp.30 = 𝑘

PR-EFM-IEq
comp.31 = 𝑘

PR-EFM-IEq
comp.32 =

9 𝐸 𝐼𝑒𝑞
𝑎 𝑐 (𝑎 + 𝑐) (5.20)

5.3 EFM’s effective bending stiffness

The mechanical properties of the frame-elements of the EFMs are based on the work done by Gomes,

Neves, and Simões da Silva [155], [206]–[208] on the out-of-plane behavior of the column web plate

for beam-to-minor-axis column joints.

5.3.1 Neves-Gomes Model

The work of Neves and Gomes referred to as the Neves-Gomes Model (NGM), is focused on the

out-of-plane force-deformation relation curve for a rectangular plate with two opposite sides fixed and

a central region loaded by a rigid-rectangular plate, as shown in Fig. 5.10.

5.3.1.1 Linear elastic regime

According to the NGM, the initial stiffness, 𝑆𝑖, of the out-of-plane force-deformation relation is:

𝑆𝑖 =
16 𝐸 𝑡3𝑐
𝐿2

𝛼 + (1 − 𝛽) tan𝜃

(1 − 𝛽)3 + 10.4 (𝑘1 − 𝑘2 𝛽)
𝜇2

(5.21)

where:

𝑒 = (𝐿 − 𝑓 ) tan𝜃 (5.22)

𝑙𝑒 𝑓 𝑓 = 𝑢 + (𝐿 − 𝑓 ) tan𝜃 (5.23)
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𝛼 =
𝑢

𝐿
(5.24)

𝛽 =
𝑓

𝐿
(5.25)

𝜇 =
𝐿

𝑡𝑐
(5.26)

𝜃 =


35 − 10 𝛽 , for 𝛽 < 0.7

49 − 30 𝛽 , for 𝛽 = 0.7
(in degrees) (5.27)

𝑘1 = 1.50 (5.28)

𝑘2 = 1.63 (5.29)

with:

𝑓 = width of the rigid area

𝑢 = length of the rigid area

𝑡𝑐 = thickness of the column plate

𝐿 = width of the column plate

𝑙𝑒 𝑓 𝑓 = width of the equivalent strip of the stiffness model

𝑓𝑦 = yield stress of the column plate

𝐸 = elastic modulus of the column plate

𝜃 = angle that defines 𝑙𝑒 𝑓 𝑓

𝑘1, 𝑘2 = coefficients obtained from numerical calibration

𝛼, 𝛽, 𝜇 = non-dimensional parameters

The NGM is valid under the following geometrical conditions:

0.05 ≤ 𝛼 ≤ 0.20 (5.30)

0.08 ≤ 𝛽 ≤ 0.75 (5.31)

10 ≤ 𝜇 ≤ 50 (5.32)
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Figure 5.10: Gomes-Neves Model (adapted from [207]).

Although the NGM focuses on the out-of-plane behavior of a single-column plate, it is used in

the current research due to the absence of other suitable formulations. Therefore, the tube faces are

accounted as four isolated column plates interacting with each other.

5.3.1.1.1 Extension to rectangular cross-sections

The NGM was explicitly developed for the application with single-column plates, such as the web

of an I-beam or H-beam profile. Nevertheless, for usage with rectangular sections, it is necessary to

modify the variable names in the equation of initial stiffness (Eq. (5.21)) to account for the dimensions

of the tube faces, including their width and length. To this end, this document adopts the ensuing

modified notations to describe the initial stiffness of the width and length:

𝑆𝑖.1 =
16 𝐸 𝑡3𝑐
𝐿2

1

𝛼1 + (1 − 𝛽1) tan𝜃1

(1 − 𝛽1)3 + 10.4 (𝑘1 − 𝑘2 𝛽1)
𝜇2

1

(5.33)

𝑆𝑖.2 =
16 𝐸 𝑡3𝑐
𝐿2

2

𝛼2 + (1 − 𝛽2) tan𝜃2

(1 − 𝛽2)3 + 10.4 (𝑘1 − 𝑘2𝛽2)
𝜇2

2

(5.34)
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5.3.1.2 Post-elastic regime

In the NGM, the post-elastic regime can be represented by:

𝐹 =



[
0.9+ ( 𝑓1 + 𝑓2 − 0.9) 𝛿

𝑡𝑐

]
𝐹𝑝𝑙 , if 𝛿 ≤ 𝑡𝑐

(
𝑓1 + 𝑓2

𝛿

𝑡𝑐

)
𝐹𝑝𝑙 , if 𝛿 > 𝑡𝑐

(5.35)

where:

𝑓1 = −0.24 𝛽 − 0.012 𝜇 + 0.72 (5.36)

𝑓2 = 0.55 𝛽 + 1.07 𝛼 + 0.85 (5.37)

𝑚𝑝𝑙 =
𝑡2𝑐
4
𝑓𝑦 (5.38)

𝑘 =


1 , if 𝛼 + 𝛽 ≥ 0.5

0.7 + 0.6 (𝛼 + 𝛽) , if 𝛼 + 𝛽 < 0.5
(5.39)

𝐹𝑙𝑜𝑐𝑎𝑙 = 𝑚𝑝𝑙

4

1 − 𝑓

𝐿

(
𝜋

√︂
1 − 𝑓

𝐿
+ 2

𝑢

𝐿

)
𝑘 = 𝑚𝑝𝑙

4
1 − 𝛽

(
𝜋

√︁
1 − 𝛽 + 2 𝛼

)
𝑘 (5.40)

𝐹𝑄1 = 2 ( 𝑓 + 𝑢) 𝑡𝑐
𝑓𝑦√
3

=
2
√

3
𝐿2 𝑓𝑦

𝛼 + 𝛽

𝜇
(5.41)

𝐹𝑝𝑙 = min
(
𝐹𝑙𝑜𝑐𝑎𝑙 , 𝐹𝑄1

)
(5.42)

with:

𝑘 = non-dimensional parameter

𝐹𝑝𝑙 = out-of-plane full-plastic strength of the column plate
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1

𝑓1

0.9
1

𝐹/𝐹𝑝𝑙 = 0.9+ ( 𝑓1 + 𝑓2 −0.9)𝛿/𝑡𝑐

(1, 𝑓1 + 𝑓2)

𝐹/𝐹𝑝𝑙 = 𝑓1 + 𝑓2𝛿/𝑡𝑐

𝑆𝑖𝑡𝑐/𝐹𝑝𝑙

𝛿/𝑡𝑐

𝐹/𝐹𝑝𝑙

Figure 5.11: Gomes-Neves Model: Out-of-plane force-deformation relation model (adapted from
[207]).

𝐹𝑙𝑜𝑐𝑎𝑙 = plastic flexure strength

𝐹𝑄1 = punching-shear strength

𝑚𝑝𝑙 = unitary plastic moment of a column plate

𝑓1, 𝑓2 = coefficient for membrane model

5.3.2 Effective bending stiffness

The bending stiffness of the frame-elements, 𝐸𝐼, of the EFMs is derived so that the displacement of

the frame-elements coincides with the out-of-plane deformation of the column plate, according to the

model represented in Fig. 5.10. Therefore, the mid-span displacement, 𝛿1, of a frame-element, caused

by a centrally-applied load 𝑃, considering that the frame-element is made of a strip with the second

moment of inertia 𝐼, is computed by assuming both ends fixed (Fig. D.1(c)). Additionally, depending

on the analyzed EFM, a rigid element is incorporated in the center region of the frame-element to

represent the socket. As previously stated, for the EFMs where the size of the socket is to be taken into

account, the joint region is the region corresponding to the width of the socket faces and the distance

between them, as shown in Fig. 5.12.

Under these conditions, if 𝑒 is the non-rigid part of the frame-element the displacement 𝛿1 becomes:

𝛿1 =
𝑃 𝑒3

24 𝐸 𝐼
(5.43)

According to the NGM, for isolated single column plates, the out-of-plane deformation, 𝛿2, of the

column plate in the linear regime caused by a load 𝑃 can be derived using the initial stiffness, 𝑆𝑖,
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(a) NGM (b) P&PJ (c) NGM adapted to P&PJ

Figure 5.12: Gomes-Neves Model adapted to innovative 3D plug-and-play joint system (schematic
representation).

through the following equation:

𝛿2 =
𝑃

𝑆𝑖
(5.44)

By equating the right-hand side of Eq. (5.43) and Eq. (5.44), the bending stiffness of the frame-

elements to be considered in the EFM becomes:

𝛿1 = 𝛿2 → 𝐸𝐼 =
𝑒3

24
𝑆𝑖 (5.45)

Therefore, by applying this procedure to all the frame-elements of the EFMs, the mid-span

displacement of these elements can be calculated for the assumed boundary and load conditions as

follows:

𝛿HS-EFM =
𝑃 𝐿3

192 𝐸 𝐼HS-EFM (5.46)

𝛿PS-EFM =
𝑃 𝑎3

24 𝐸 𝐼PS-EFM (5.47)

𝛿HR-EFM
1 =

𝑃 𝐿3
1

192 𝐸 𝐼HR-EFM
1

(5.48)

𝛿HR-EFM
2 =

𝑃 𝐿3
2

192 𝐸 𝐼HR-EFM
2

(5.49)

𝛿PR-EFM
1 =

𝑃 𝑎3

24 𝐸 𝐼PR-EFM
1

(5.50)
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𝛿PR-EFM
2 =

𝑃 𝑐3

24 𝐸 𝐼PR-EFM
2

(5.51)

Thus, the bending stiffness considered in the EFMs becomes:

𝐸𝐼HS-EFM =
𝐿3

192
𝑆𝑖 (5.52)

𝐸𝐼PS-EFM =
𝑎3

24
𝑆𝑖 (5.53)

𝐸𝐼HR-EFM
1 =

𝐿3
1

192
𝑆𝑖.1 (5.54)

𝐸𝐼HR-EFM
2 =

𝐿3
2

192
𝑆𝑖.2 (5.55)

𝐸𝐼PR-EFM
1 =

𝑎3

24
𝑆𝑖.1 (5.56)

𝐸𝐼PR-EFM
2 =

𝑐3

24
𝑆𝑖.2 (5.57)

5.4 Validation and calibration of EFM’s effective bending

stiffness

As previously stated, the proposed beam-to-column joint finite element is suitable for use with tubular

columns with either square or rectangular cross-sections. To evaluate and validate the accuracy of

the stiffness of the components derived from computations utilizing EFMs and the effective bending

stiffness from NGM, it is necessary to compare the results from the beam-to-column joint finite

element against more precise results. For this purpose, the current study employs high-order finite

element models, also referred to as Refined Finite Element Model(s) (RFEM(s)) developed in the

Abaqus software package [113]. The validation process involves applying prescribed loads to the joint

on one to four faces of the tube to account for their interaction. Then, the results are analyzed and

presented in terms of the out-of-plane displacements of the column faces.

The validation process involved a parametric analysis, which entailed the variation of several

parameters. In OpenSees, five parameters underwent alteration, namely the column cross-section,

LP, socket configuration (SC), EFM, and the impact of rounded corners. Additionally, two scenarios

concerning the effective moment of inertia on the RHS were evaluated as specified in Section 5.4.2.

In contrast, in Abaqus, only three parameters were altered, namely the column cross-section, LP, and

SC, as expounded in Section 5.4.3.
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The evaluation of the out-of-plane displacements of the column faces between OpenSees and

Abaqus models is performed using the approximation error, 𝜀2, and coefficient of determination, 𝑅2,

which are expressed by Eq. (5.58) and Eq. (5.59), respectively.

𝜀2 =

D∑
𝑓 𝑎𝑐𝑒 = A

��� (𝛿Abaqus
𝑓 𝑎𝑐𝑒

− 𝛿
OpenSees
𝑓 𝑎𝑐𝑒

) ���
D∑

𝑓 𝑎𝑐𝑒 = A

��� 𝛿Abaqus
𝑓 𝑎𝑐𝑒

��� (5.58)

𝑅2 = 1− 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
(5.59)

where 𝑆𝑆𝑟𝑒𝑠 and 𝑆𝑆𝑡𝑜𝑡 are the residual sum of squares and the total sum of squares (proportional to the

variance of the data) of the differences between the out-of-plane displacements from the OpenSees

and Abaqus models. The coefficient of determination, 𝑅2, evaluates how well the output of the joint

finite element model compares to the output of the RFEMs. The ideal case is represented by a unitary

value of 𝑅2 = 1, where the regression line fitting the data set is linear and defined by Eq.(5.60) in the

space of
(
𝛿

Abaqus
𝑓 𝑎𝑐𝑒

− 𝛿OpenSees
𝑓 𝑎𝑐𝑒

)
.

𝑦 = 𝑚 𝑥 + 𝑏 , with 𝑚 = 1 and 𝑏 = 0 (5.60)

5.4.1 Load patterns and socket configurations

5.4.1.1 Load patterns

In accordance with the work of Harada and Simões da Silva [154], LPs at the joint level were defined to

simulate internal forces originating from the truss-girders in full structures under vertical and horizontal

loading scenarios at the upper joint of the P&PJ (i.e., "Joint 1" from Fig. 3.2). Consequently, 10 and

17 LPs were considered for the SHS and RHS, as shown in Tab. 5.2 and Tab. 5.3, respectively. For

each LP, the internal forces in a sub-frame bounded by inflection points are depicted in conjunction

with the configuration of internal forces at the joint level.

The LPs are named based on the number of beams connected to the column (m01 to m04) and the

type of loading on the structure, either vertical (e.g., gravity) or horizontal (e.g., earthquake) denoted

as V or H. Corner joints use a preceding letter C (CH or CV). In RHS, LPs are applied considering the

column in both possible positions, denoted as 01 or 02 at the end of their names (e.g., H01, CV02). A

hypothetical LP named VnVp is also analyzed for both hogging and sagging bending moments.
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Table 5.2: LPs considered for the SHS.
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Table 5.3: LPs considered for the RHS.

Continued on next page . . .
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Table 5.3: LPs considered for the RHS (cont.).

Continued on next page . . .
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Table 5.3: LPs considered for the RHS (cont.).

5.4.1.2 Socket configurations

The effect of the distance between the sockets on the out-of-plane deformation of the tube faces was

the focus of the SCs considered. The objective was to investigate SCs that range from the scenario

where the relative width of the socket region is minimal to the scenario where it is maximal. As

a result, four SCs were examined per LP presented in Section 5.4.1.1. However, the socket height

remained constant throughout the analysis. It should also be noted that the adopted SC does not fulfill

the geometrical condition of the NGM from Eq. (5.30), the height of the socket being too large. This

height was selected to replicate the geometry of the experimental specimens [144]. The geometry of

the analyzed SCs can be found in Tab. 5.5 and Tab. 5.6 for the SHS and RHS, respectively.

5.4.1.3 Naming convention of the analyzed models

To enhance the readability of this document and the comprehension of the LPs and SCs naming

convention, a set of naming examples is provided in Tab. 5.4 for clarification.

5.4.2 OpenSees models

The construction of models within OpenSees is straightforward as it requires only the definition of

5 nodes and the creation of an Inno3DPnPJoint element. The nodes are designated as depicted in

Fig. 3.13. The central node (i.e., node 5) is fully fixed, while the edge nodes (i.e., nodes 1 to 4) are

subjected to loading as per the designated LP.

The OpenSees models were built varying the following parameters:

1. column cross-sections: 2, namely SHS and RHS (Fig. 5.15);
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Table 5.4: LPs and SCs naming examples.

Abbreviated Detailed

SHS-m04-V-SC01

in a joint configuration where a square hollow section (SHS) column is
present with four truss-girders connected to it (m04), a vertical force
(V) is applied to the truss-girders. In this scenario, the distance
between the socket faces is 0 mm (SC01).

RHS-m02-CH-SC02

in a joint configuration, a rectangular hollow section (RHS) column is
present with two truss-girders attached to it (m02) and situated in the
corner of a structure (C), a horizontal force (H) is exerted on the
truss-girders. In this scenario, the distance between the socket faces is
20 mm (SC02).

Table 5.5: SCs considered for the SHS.
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Table 5.6: SCs considered for the RHS.
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2. LPs: 10 for SHS (Tab. 5.2) and 17 for RHS (Tab. 5.3);

3. SCs: 4 for both SHS (Tab. 5.5) and RHS (Tab. 5.6);

4. EFMs: 4, namely HS-EFM, PS-EFM, HR-EFM, and PR-EFM;

5. because the rounded corners of the tubular element could lead to uncertainty when it comes

to choosing the correct width of the column plate (i.e., 𝐿 in Fig. 5.10), which is needed in the

computation of 𝑘F and 𝑘I for the EFMs, 2 cases were analyzed (Fig. 5.15):

(a) R0 – when the assumed width of the column face is the distance between the exterior of

any two parallel faces of the column, i.e., the radius is neglected, thus, 𝐿 = 200mm, and

𝐿1 = 200mm and 𝐿2 = 300mm for the SHS and RHS, respectively;

(b) R1 – when the assumed width of the column face is the distance between the radii of a

face, i.e., the radius is considered, thus, 𝐿 = 177mm, and 𝐿1 = 177mm and 𝐿2 = 277mm

for the SHS and RHS, respectively;

6. in the RHS, 2 scenarios are considered based on the effective moment of inertia calculated from

the variation in the length of the column faces:

(a) IF – when to each column face is assigned its corresponding effective moment of inertia

bending stiffness: 𝐼1 and 𝐼2 (obtained from Eqs. (5.54) to Eq. (5.57) depending on the

EFM);

(b) IEq – when to each column face is assigned the average effective moment of inertia

(Eq. (5.1)).

A finite element models network is illustrated in Fig. 5.13 and Fig. 5.14 for the SHS and RHS,

respectively, to facilitate the interpretation of the analyzed models and their modified features. Each

network displays four categories: EFM (which already includes the cross-section type of the column),

radius, LP, and SC, and by combining them, a total of 160 and 544 models are obtained for the SHS

and RHS, respectively. Each network combination is referred to as case. As the primary objective is to

assess the 3D interaction between the tube faces, the connection components are considered infinitely

stiff in all cases.

An example of an OpenSees model written in Tcl is provided in Appendix F for the PR-EFM-IF-R1

case under m01-V01-SC01.
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EFM (2) radius (2) LP (10) SC (4)

HS-EFM

PS-EFM

R0

R1

m01

...

m04 VnVp

SC01

SC02

SC03

SC04

Figure 5.13: OpenSees FEM network for stiffness calculation: SHS (160 cases).

EFM (4) radius (2) LP (17) SC (4)

HR-EFM-IF

HR-EFM-IEq

PR-EFM-IF

PR-EFM-IEq

R0

R1

m01 V01

...

m04 VnVp02

SC01

SC02

SC03

SC04

Figure 5.14: OpenSees FEM network for stiffness calculation: RHS (544 cases).

(a) SHS-R0 (b) SHS-R1

(c) RHS-R0 (d) RHS-R1

Figure 5.15: Influence of rounded corners on column face dimensions.
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(a) socket faces

(b) overall simplification

Figure 5.16: Schematic representation of the RFEMs build in Abaqus.

5.4.3 Refined Finite Element Models

5.4.3.1 Description

To evaluate the effectiveness of the developed beam-to-column joint finite element model, Refined

Finite Element Model(s) (RFEM(s)) of the tubular column and the joint region were developed using

Abaqus [113].

Given the large number of cases considered, the RFEMs were limited to only the tubular column

and the two areas corresponding to the contact regions between the socket and column, which will be

referred to as the socket faces. The graphical representation of the socket faces in the RFEMs can be

seen in Fig. 5.16. Additionally, only one joint was modeled in this study (i.e., "Joint 1" from Fig. 3.2).

The RFEMs were developed based on a series of preliminary parametric studies conducted at the

beginning of the research. These studies are related to mesh size (Section 5.4.3.2) and geometry and

139



Chapter 5. Computation of mechanical properties of the macro-element for linear regime

cross-section (1) LP (10) SC (4)

SHS

m01

...

m04 VnVp

SC01

SC02

SC03

SC04

Figure 5.17: Abaqus FEM network for stiffness calculation: SHS (40 cases).

cross-section (1) LP (17) SC (4)

RHS

m01 V01

...

m04 VnVp02

SC01

SC02

SC03

SC04

Figure 5.18: Abaqus FEM network for stiffness calculation: RHS (68 cases).

boundary conditions (Section 5.4.3.3). The objective of these studies was to obtain mesh-independent

results and make the tube’s local behavior in the joint region independent of boundary conditions and

column height.

The Abaqus models were created by modifying the following specific aspects:

1. cross-sections: 2, namely SHS and RHS (Fig. 5.19);

2. LPs: 10 for SHS (Tab. 5.2) and 17 for RHS (Tab. 5.3);

3. SCs: 4 for both SHS (Tab. 5.5) and RHS (Tab. 5.6);

The finite element models networks built in Abaqus are illustrated in Fig. 5.17 and Fig. 5.18 for

the SHS, and RHS, respectively. A total of 40 and 68 models are obtained for the SHS and RHS,

respectively.

The dimensions of the SHS and RHS columns analyzed in this study are presented in Fig. 5.19.

As depicted in Fig. 5.19, the socket faces are located at the mid-height of the column, and the distance

between them is varied as described in Section 5.4.1.2.

The tubular column was modeled using solid elements with reduced integration (C3D8R –

Fig. 5.20(a)), while the socket faces were modeled using discrete rigid elements (R3D4 – Fig. 5.20(b)).
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Figure 5.19: Tubular columns (SHS and RHS): height and cross-section dimension.

1

1 2

5 6

4 3

8 7

(a) C3D8R: 3D 8-node linear brick, reduced
integration with hourglass control

1 2

4 3

(b) R3D4: 3D 4-node, bilinear quadrilateral
element

Figure 5.20: Finite Element types used in Abaqus [113]

In compliance with the software requirements, a reference point (RP) was defined on the socket faces

to indicate the rigid body reference point; thus, the displacements and internal forces in the socket

faces were determined by the displacements and internal forces in the RP.

The column’s material constitutive relation was assumed to be linear-elastic and thus only required

the definition of Young’s modulus of elasticity, 𝐸 , and Poisson’s coefficient, 𝜈. The values of these

parameters are listed in Tab. 5.7. As the socket faces were defined with discrete rigid finite elements,

no material definition was required for them.

The connection between the tubular column (i.e., solid 3D element) and socket faces (i.e., discrete

rigid 2D elements) was established through a surface-to-surface tie kinematic constraint, ensuring that

Table 5.7: Linear elastic material characteristics of the tubular column.

𝐸 [N/mm2] 𝜈

210000 0.3
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Figure 5.21: Load application: CF on RP.

the faces of the two elements were tied together, with no relative motion between them. As a result,

the translational and rotational displacements were equal for the pair of surfaces. Additionally, this

constraint fuses the two regions even if the mesh assigned to them is dissimilar.

The load was applied using a concentrated force (CF) assigned to the RP, simulating the internal

force transmitted by the T-plug, as depicted in Fig. 5.21.

Although the RFEMs did not consider any nonlinearity to evaluate the results of the beam-to-

column joint finite element model in the elastic regime, a nonlinear analysis using the arc length

method (Riks procedure) as the convergence algorithm was employed in Abaqus [113]. The initial,

minimum, and maximum increments were specified as 1, 0.001, and 1, respectively. Furthermore, a

maximum of 1000 increments per iteration were defined, and the stopping criterion employed was a

maximum load proportionality factor of 1. The use of nonlinear analysis in Abaqus is consistent, in

terms of analysis type, with OpenSees, where it is advisable to perform an analysis with an implicit

algorithm [209]. The analyses were carried out in load control.

The out-of-plane displacements obtained from the RP are presented in Appendix G, with Tab. G.1

and Tab. G.2 showing the results for the SHS and RHS, respectively. The results are presented for all

cases resulting from the combination of each LP and each SC. The deformed shapes of the SHS and

RHS for SC02 can be found in Tab. G.3 and Tab. G.4, which are also included in the aforementioned

appendix.

5.4.3.2 Mesh sensitivity analysis

A sensitivity analysis was conducted on an SHS column utilizing varying mesh sizes to evaluate the

impact of mesh size on the results and determine the lower bound of mesh size that yields accurate

results.

The column was modeled with straight corners, neglecting the tube’s rounded corners. The
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Figure 5.22: BC for mesh sensitivity analysis.

Figure 5.23: Out-of-plane displacement extraction locations for the tubular column face.

considered LP and SC used were m01 and SC04 (Tab. 5.2 and Tab. 5.5). Fully fixed boundary

conditions were applied to the edge nodes of the tube to prevent rigid body movement and cross-

section distortion, as shown in Fig. 5.22. Three mesh sizes were tested: 10 mm, 5 mm, and 2.5 mm

and were referred to as "mesh 10.0", "mesh 5.0", and "mesh 2.5" in their respective RFEMs. Four

elements per thickness were utilized in all RFEMs.

For each RFEM, the out-of-plane displacements of tubular column faces are extracted from sections

H1 (i.e., along the column height from the center of the loaded column face) and W0 (i.e., through the

column cross-section), which are depicted in Fig. 5.23.

The out-of-plane displacements extracted from sections H1 and W0 are presented in Fig. 5.24 and

Fig. 5.25(a), respectively. It can be observed that the mesh size that yields objective results in the joint

region is provided by the model "mesh 5.0" with a mesh size of 5 mm, a value considered as the lower

bound of the mesh size.

Subsequently, the effect of a varying mesh size along the column’s height was examined to assess

the possibility of reducing the number of finite elements in the RFEMs and thus decreasing the

computational time. To accomplish this, a mesh size of 5 mm was used in the joint region, while the

mesh size was increased to a maximum of 50 mm towards the column ends by using local seeds and

biases [113]. The out-of-plane displacements extracted for sections H1 and W0 for the model with a

uniform mesh size of 5 mm ("mesh 5.0") and the model with a variable mesh size ("mesh 5.0 bias")

are plotted in Fig. 5.26 and Fig. 5.25(b), respectively.
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Figure 5.24: Out-of-plane displacements of tube face in section H1 for different mesh sizes.

(a) different mesh sizes (b) different meshing techniques

Figure 5.25: Out-of-plane displacements of tube faces in section W0.

Figure 5.26: Out-of-plane displacements of tube face in section H1 for different meshing techniques.
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1440 1440120
«– single bias (from 5 to 50) «– –» single bias (from 5 to 50) –»5

Figure 5.27: Final mesh configuration for tubular columns.

Table 5.8: Number of finite elements for each mesh configuration.

Element type
RFEM name

mesh 10.0 mesh 5.0 mesh 2.5 mesh 5.0 bias

tubular column 105600 384000 1459200 114872

socket faces 24 96 384 96

The number of finite elements used to build every RFEM presented in this section is shown in

Tab. 5.8.

In conclusion, the results of this study on the column’s behavior in the joint region indicated

that the column height could be reduced from 3000 mm to 2500 mm or 2000 mm to decrease the

computational cost. However, instead of reducing the height, a variable mesh size strategy was

implemented to minimize the number of finite elements required. Specifically, a maximum mesh

size of 5 mm was utilized in the joint region, while the mesh size gradually increased from 5 mm to

50 mm towards the column ends. Therefore, the final mesh configuration employed in this research is

illustrated in Fig. 5.27.

5.4.3.3 Geometry and boundary condition

The effect of modeling the geometry of an SHS column with or without the rounded corners resulting

from the manufacturing process (e.g., cold bending) as well as the influence of boundary condition

placement on the tube’s geometry, were also analyzed. Similar to the previous parametric investigation,

the analysis utilized the LP and SC m01 and SC01, respectively (Tab. 5.2 and Tab. 5.5).

Three RFEMs were developed in this parametric investigation, one with straight corners ("w/o RC

- BC pt"), and two with rounded corners. The transition from straight to rounded corners introduces

ambiguity in the application of boundary conditions; hence, to avoid rigid body movement of the

cross-section and preserve the other deformation modes, fixed boundary conditions were tested on

two different regions: (i) on the rounded corner part ("w/ RC - BC ln"), and (ii) on the nodes found at

the angle bisector of the rounded corner ("w/ RC - BC pt"). The three different boundary conditions
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(a) w/o RC - BC pt (b) w/ RC - BC ln (c) w/ RC - BC pt

Figure 5.28: Points and regions for BC application.

(a) w/o RC - BC pt (b) w/ RC - BC ln (c) w/ RC - BC pt

Figure 5.29: Applied BC.

are illustrated in Fig. 5.28 and Fig. 5.29.

Fig. 5.30 depicts the overall deformation of the cross-sections in section W0, which is measured

by the U magnitude, i.e., the square root of the sum of squares of all components of the U vector [113].

Fig. 5.31(a) presents a comparison between the RFEM without rounded corners and an undeformed

tubular cross-section that also lacks rounded corners ("w/o RC - BC pt" vs. "w/o RC - undef "). This

comparison allows for an evaluation of the impact of rounded corners on the results.

Additionally, Fig. 5.31(b) compares the RFEMs with rounded corners and with BCs applied at

different locations ("w/ RC - BC ln" vs. "w/ RC - BC pt"). This comparison allows for an assessment

of the effect of the location of the boundary conditions on the results.

From Fig. 5.31(b), it can be observed that by constraining the entire rounded corner region ("w/

RC - BC ln"), the interaction between the column faces is impeded, causing the column face to behave

as an independently loaded plate instead of a tubular cross-section. As a result, RFEMs with this type

of boundary condition were not considered further in this work.

A comparison between the remaining two models ("w/o RC - BC pt" vs. "w/ RC - BC pt") is

presented in Fig. 5.32(a). The results of this comparison suggest that the inclusion of rounded corners

has a notable impact on the displacements in the loaded column face and, thus, should be considered

when conducting further analysis. Specifically, it was found that there was a 7.96% increase in

displacement on the loaded face, which also had a ripple effect on the adjacent faces. However,
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(a) w/o RC - BC pt (b) w/ RC - BC ln (c) w/ RC - BC pt

Figure 5.30: Overall deformation of the cross-section of tubes: U Magnitude.

(a) RFEM w/o RC (b) RFEMs w/ RC

Figure 5.31: Out-of-plane displacement of tube faces in section W0 for different BC.

the RFEM with straight corners presents excessive local distortion in the proximity of the corners.

This phenomenon results from using finite elements with a reduced integration scheme (Fig. 5.20(a))

combined with the type and position of the applied boundary condition. As suggested by the software’s

manual [113], a potential solution to this problem is the use of finite elements with hybrid formulation

(i.e., C3D8H). Nevertheless, the model with straight corners is not used beyond this document section.

Furthermore, to ensure that the selected BC ("w/ RC - BC pt") from Fig. 5.29(c) only impedes the

rigid body movement of the cross-section, a new model is derived from it ("w/ RC - BC pt E"). In this

new model, the BCs are applied to the nodes found at the column ends. For naming consistency, the

model with the selected BC is renamed; thus, "w/ RC - BC pt" becomes "w/ RC - BC pt H", as shown

in Fig. 5.33. The deformed shapes of the column in 3D and 2D are shown in Fig. 5.34 and Fig. 5.35,
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(a) influence of the rounded corners (b) BC on end and height

Figure 5.32: Out-of-plane displacements from section W0.

respectively.

To compare the results obtained from the two boundary condition approaches shown in Fig. 5.33,

it is necessary to remove the rigid body movement from the results of the "w/ RC - BC pt E" model.

This is achieved by assuming that the rigid body movement in any cross-section is represented by the

average value of the mean differences calculated at every node of the face between the two models.

After subtracting the rigid body movement, the cross-section deformation can be compared with that

of the "w/ RC - BC pt H" model. The comparison of the cross-section deformation between the two

models is presented in Fig. 5.32(b), which shows good agreement between the models.

In summary, these analyses indicate that modeling the tubular column with rounded corners and

applying a fully fixed boundary condition on the nodes along the angle bisector of the rounded corner

throughout the column height can effectively eliminate rigid body movement. The final configuration

of the BCs applied to the tubular column is illustrated in Fig. 5.36. Furthermore, in addition to these

BCs, the socket faces, through their RP, are restrained against in-plane rotations.

The generation of Abaqus models, such as those illustrated earlier and applied in the current study,

can be readily accomplished using the "abaqTCphd" Abaqus RSG plugin, which was developed by

the author and is publicly accessible on GitHub [210]. In addition, a video tutorial demonstrating the

usage of this plugin is accessible on YouTube [211].
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(a) w/ RC - BC pt E

(b) w/ RC - BC pt H

Figure 5.33: Applied BC.

(a) w/ RC - BC pt E

(b) w/ RC - BC pt H

Figure 5.34: Deformed tube in 3D using different BC: U magnitude.
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(a) w/ RC - BC pt E (b) w/ RC - BC pt H

Figure 5.35: Deformed tube in 2D in section W0 using different BC.

Figure 5.36: Final BC applied to the tubular column.
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Table 5.9: Method for results comparison: case examples.

Abaqus OpenSees

SHS-m01-SC01 (1) vs.

HS-EFM-R0-m01-SC01

(4)HS-EFM-R1-m01-SC01
PS-EFM-R0-m01-SC01
PS-EFM-R1-m01-SC01

RHS-m01-V01-SC01 (1) vs.

HR-EFM-IF-R0-m01-V01-SC01

(8)

HR-EFM-IF-R1-m01-V01-SC01
HR-EFM-IEq-R0-m01-V01-SC01
HR-EFM-IEq-R1-m01-V01-SC01
PR-EFM-IF-R0-m01-V01-SC01
PR-EFM-IF-R1-m01-V01-SC01
PR-EFM-IEq-R0-m01-V01-SC01
PR-EFM-IEq-R1-m01-V01-SC01

5.4.4 Comparison of results

As can be observed from the finite element networks presented in Figs. 5.13, 5.14, 5.17 and

5.18, the models in OpenSees outnumber the models in Abaqus. This phenomenon occurs because

the analytical definition of the beam-to-column joint finite element’s components allows for greater

parameter variation. As a result, four and eight models are developed in OpenSees for each model in

Abaqus for the SHS and RHS, respectively. The method for comparing the results is shown in Tab. 5.9

for a randomly picked LP and SC combination.

The results obtained with Abaqus and OpenSees for cases PS-EFM-R1 and PR-EFM-IF-R1 are

presented in Tab. 5.10 and Tab. 5.12, respectively, in terms of 𝜀2 computed according to Eq. (5.58).

These tables demonstrate that, in most cases, there is an apparent significant difference in the values

of the approximation error between Abaqus and OpenSees. For the SHS case, these differences

range from 0.02 (m04-VnVp-SC02) to 0.97 (m04-H-SC04), while for the RHS case, they range from

0.02 (m02-V02-SC03) to 0.73 (m02-H01-SC04). The primary reason for these differences is likely

the formulation used to define the tube components’ stiffness, specifically the NGM (Section 5.3).

However, to the author’s best knowledge, currently, there is no other more adequate procedure to define

the stiffness of the tube components. The results for the other cases are presented in Appendix H in

Tabs. H.2 to H.11.

An alternative method for comparing the results between the Abaqus and OpenSees models is to

extract the out-of-plane displacements from the RP of each face individually and plot them against each

other. Therefore, these results are plotted for the PS-EFM-R1 and PR-EFM-IF-R1 cases in Fig. 5.37

and Fig. 5.38, respectively, where the names and directions of the column faces are the ones that are
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Table 5.10: Results: PS-EFM-R1.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01 SC01 0.18 m02-H SC03 0.38 m04-H SC01 0.17

m01 SC02 0.14 m02-H SC04 0.67 m04-H SC02 0.22

m01 SC03 0.30 m02-V SC01 0.10 m04-H SC03 0.38

m01 SC04 0.69 m02-V SC02 0.08 m04-H SC04 0.67

m02-CH SC01 0.10 m02-V SC03 0.30 m04-V SC01 0.22

m02-CH SC02 0.11 m02-V SC04 0.69 m04-V SC02 0.25

m02-CH SC03 0.30 m03-H SC01 0.16 m04-V SC03 0.37

m02-CH SC04 0.69 m03-H SC02 0.20 m04-V SC04 0.62

m02-CV SC01 0.17 m03-H SC03 0.53 m04-VnVp SC01 0.10

m02-CV SC02 0.22 m03-H SC04 0.75 m04-VnVp SC02 0.02

m02-CV SC03 0.38 m03-V SC01 0.15 m04-VnVp SC03 0.30

m02-CV SC04 0.67 m03-V SC02 0.17 m04-VnVp SC04 0.69

m02-H SC01 0.17 m03-V SC03 0.35

m02-H SC02 0.22 m03-V SC04 0.66

Table 5.11: 𝑅2 for each column face: RHS.

EFM radius face A face B face C face D

HR-EFM-IF R0 0.73 0.85 0.75 0.85

HR-EFM-IEq R0 0.75 0.83 0.77 0.83

PR-EFM-IF R0 0.74 0.81 0.76 0.81

PR-EFM-IEq R0 0.80 0.75 0.82 0.77

HR-EFM-IF R1 0.95 0.96 0.94 0.96

HR-EFM-IEq R1 0.95 0.93 0.95 0.94

PR-EFM-IF R1 0.94 0.97 0.93 0.97

PR-EFM-IEq R1 0.94 0.96 0.92 0.96
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Table 5.12: Results: PR-EFM-IF-R1.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.29 m02-H01 SC04 0.73 m03-V01 SC03 0.27

m01-V01 SC02 0.25 m02-H02 SC01 0.04 m03-V01 SC04 0.35

m01-V01 SC03 0.18 m02-H02 SC02 0.07 m03-V02 SC01 0.26

m01-V01 SC04 0.52 m02-H02 SC03 0.15 m03-V02 SC02 0.18

m01-V02 SC01 0.26 m02-H02 SC04 0.24 m03-V02 SC03 0.06

m01-V02 SC02 0.16 m02-V01 SC01 0.20 m03-V02 SC04 0.18

m01-V02 SC03 0.10 m02-V01 SC02 0.18 m04-H SC01 0.09

m01-V02 SC04 0.23 m02-V01 SC03 0.18 m04-H SC02 0.13

m02-CH01 SC01 0.24 m02-V01 SC04 0.52 m04-H SC03 0.21

m02-CH01 SC02 0.15 m02-V02 SC01 0.26 m04-H SC04 0.31

m02-CH01 SC03 0.12 m02-V02 SC02 0.16 m04-V SC01 0.23

m02-CH01 SC04 0.30 m02-V02 SC03 0.02 m04-V SC02 0.20

m02-CH02 SC01 0.24 m02-V02 SC04 0.23 m04-V SC03 0.11

m02-CH02 SC02 0.15 m03-H01 SC01 0.20 m04-V SC04 0.11

m02-CH02 SC03 0.12 m03-H01 SC02 0.18 m04-VnVp01 SC01 0.24

m02-CH02 SC04 0.30 m03-H01 SC03 0.20 m04-VnVp01 SC02 0.14

m02-CV SC01 0.17 m03-H01 SC04 0.28 m04-VnVp01 SC03 0.07

m02-CV SC02 0.16 m03-H02 SC01 0.10 m04-VnVp01 SC04 0.30

m02-CV SC03 0.21 m03-H02 SC02 0.10 m04-VnVp02 SC01 0.24

m02-CV SC04 0.28 m03-H02 SC03 0.17 m04-VnVp02 SC02 0.14

m02-H01 SC01 0.21 m03-H02 SC04 0.29 m04-VnVp02 SC03 0.07

m02-H01 SC02 0.26 m03-V01 SC01 0.15 m04-VnVp02 SC04 0.30

m02-H01 SC03 0.43 m03-V01 SC02 0.17

Table 5.13: 𝑅2 for each column face: SHS.

EFM radius face A face B face C face D

HS-EFM R0 0.86 0.88 0.70 0.70

PS-EFM R0 0.86 0.88 0.70 0.70

HS-EFM R1 0.97 0.97 0.92 0.94

PS-EFM R1 0.97 0.97 0.92 0.94
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure 5.37: PS-EFM-R1.

presented in Fig. 3.3 and in Fig. 3.6(a), respectively. In an "ideal" scenario, the two software would

provide identical displacements, and the corresponding dots would be distributed along the line that

passes through the origin and has a unitary gradient, 𝑦 = 𝑥 (i.e., black dashed line: "t/l"). Although

this is not the case, these figures indicate that the displacements obtained from OpenSees using the

Inno3DPnPJoint element are in good agreement with the ones obtained from Abaqus.

The plots for the remaining cases are presented in Appendix H in Fig. H.1 to H.10 and provide

similar conclusions.

The correlation between the displacement data sets and the linear equation of the line is presented

in Tab. 5.13 and Tab. 5.11 for the SHS and RHS, respectively, for every column face individually. The

coefficients of determination from Tab. 5.13 and Tab. 5.11 indicate that a higher correlation degree is

achieved in the R1 case in both SHS and RHS cases. Furthermore, in the SHS case, both HS-EFM and

PS-EFM output the same results. As a result, the joint size (i.e., the socket’s size) does not influence
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure 5.38: PR-EFM-IF-R1.
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cf
0 0.1 0.3 0.5 . . . 10.0

𝑖𝑡𝑒𝑟1 𝑖𝑡𝑒𝑟2 𝑖𝑡𝑒𝑟3 𝑖𝑡𝑒𝑟50

Figure 5.39: Schematic representation of the iterative process for SHS.

the results (Tab. 5.13). Additionally, the RHS cases show a higher correlation degree when using IEq

with R0, and IF with R1 (Tab. 5.11).

Analyzing the results through the coefficient of determination provides a broader and more accurate

understanding of the displacement spectrum. Therefore, the obtained differences are assumed to be

within an acceptable range of error. Although it is not the scope of this research, two analytical

methods aiming to improve the accuracy of the results are presented in the following sections.

5.4.5 Calibration of the effective stiffness

5.4.5.1 Method 1: ideal correction factor based correction

5.4.5.1.1 Ideal correction factor

One method to enhance the accuracy of the results is to adjust the initial stiffness, 𝑆𝑖, obtained from the

NGM, by a correction factor, cf, such that the error is minimized. To achieve this, an iterative process

is implemented in which the stiffnesses defined in OpenSees for the tube components are obtained by

dividing the initial stiffness by a correction factor.

In the iterative procedure, the correction factor, cf, varies from 0.1 to 10 with a step of 0.2. These

values were determined through trial and error. A schematic representation of the iterative processes

employed for the SHS and RHS are shown in Fig. 5.39 and Fig. 5.40, respectively. The approximation

error, 𝜀2 (Eq.(5.58)), is calculated and stored at each iteration, allowing for the determination of the

minimum value at the end of the process. This minimum value is referred to as the ideal approximation

error, 𝜀2.i, and is obtained for an ideal correction factor, cfi. as shown in Eq.(5.61).

𝜀2.i = min
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(5.61)

For the RHS the displacement in OpenSees from Eq. (5.61) is expressed as a function of 𝑆𝑖.1

(Eq. (5.33)) and 𝑆𝑖.2 (Eq. (5.34)), as shown in Eq. (5.62).

𝛿
OpenSees
𝑓 𝑎𝑐𝑒

(
𝑆𝑖.1

cfi.1
,
𝑆𝑖.2

cfi.2

)
(5.62)
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cf2

cf1
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𝑖𝑡𝑒𝑟2500

Figure 5.40: Schematic representation of the iterative process for RHS.

This calculation is performed for all cases, and the results for PS-EFM-R1 and PR-EFM-IF-R1 are

presented in Tab. 5.14 and Tab. 5.15, respectively. The ideal correction factor ranges from 0.1 to 3.1

in the SHS and from 0.1 to 9.9 in the RHS. In conclusion, it spans the entire analyzed domain.

Table 5.14: PS-EFM-R1: cfi and 𝜀2.i.

LP SC cfi 𝜀2.i LP SC cfi 𝜀2.i

m01 01 0.9 0.18 m03-H 01 1.1 0.12

m01 02 1.1 0.14 m03-H 02 1.1 0.13

m01 03 1.5 0.06 m03-H 03 1.1 0.49

m01 04 3.1 0.05 m03-H 04 2.3 0.49

m02-CH 01 0.9 0.13 m03-V 01 1.1 0.14

m02-CH 02 1.1 0.08 m03-V 02 1.1 0.12

m02-CH 03 1.5 0.04 m03-V 03 1.5 0.03

m02-CH 04 3.1 0.03 m03-V 04 9.9 0.67

m02-CV 01 1.3 0.08 m04-H 01 1.3 0.08

m02-CV 02 1.3 0.02 m04-H 02 1.3 0.01

m02-CV 03 1.7 0.06 m04-H 03 9.9 0.38

m02-CV 04 2.9 0.06 m04-H 04 9.9 0.67

m02-H 01 1.3 0.08 m04-V 01 1.3 0.02

m02-H 02 1.3 0.01 m04-V 02 1.3 0.03

m02-H 03 1.7 0.06 m04-V 03 1.5 0.05

Continued on next page . . .
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Table 5.14: PS-EFM-R1: cfi and 𝜀2.i. (cont.).

LP SC cfi 𝜀2.i LP SC cfi 𝜀2.i

m02-H 04 2.9 0.03 m04-V 04 2.7 0.03

m02-V 01 0.9 0.10 m04-VnVp 01 0.9 0.01

m02-V 02 1.1 0.08 m04-VnVp 02 1.1 0.08

m02-V 03 1.5 0.04 m04-VnVp 03 1.5 0.04

m02-V 04 3.1 0.04 m04-VnVp 04 3.1 0.03

Table 5.15: PR-EFM-IF-R1: cfi.1, cfi.2 and 𝜀2.i.

LP SC cfi.1 cfi.2 𝜀2.i LP SC cfi.1 cfi.2 𝜀2.i

m01-V01 01 1.5 0.5 0.11 m02-V02 03 1.3 0.9 0.01

m01-V01 02 1.7 0.5 0.07 m02-V02 04 9.9 0.7 0.04

m01-V01 03 2.5 0.5 0.06 m03-H01 01 1.7 0.7 0.14

m01-V01 04 6.1 0.7 0.05 m03-H01 02 2.1 0.7 0.12

m01-V02 01 0.5 1.1 0.08 m03-H01 03 2.7 0.7 0.07

m01-V02 02 0.7 1.1 0.07 m03-H01 04 6.7 0.7 0.07

m01-V02 03 3.3 0.7 0.06 m03-H02 01 0.5 1.3 0.08

m01-V02 04 2.7 0.9 0.07 m03-H02 02 1.3 0.9 0.08

m02-CH01 01 1.1 0.7 0.13 m03-H02 03 1.9 0.9 0.05

m02-CH01 02 0.7 1.1 0.11 m03-H02 04 5.7 0.7 0.02

m02-CH01 03 1.5 0.9 0.07 m03-V01 01 1.3 1.1 0.07

m02-CH01 04 6.9 0.7 0.05 m03-V01 02 1.5 1.1 0.07

m02-CH02 01 1.1 0.7 0.13 m03-V01 03 2.3 0.9 0.03

m02-CH02 02 0.7 1.1 0.11 m03-V01 04 4.7 0.7 0.04

m02-CH02 03 1.5 0.9 0.07 m03-V02 01 1.9 0.7 0.09

m02-CH02 04 6.9 0.7 0.05 m03-V02 02 2.3 0.7 0.05

m02-CV 01 1.7 0.7 0.10 m03-V02 03 3.5 0.7 0.05

m02-CV 02 1.9 0.7 0.10 m03-V02 04 2.3 0.9 0.03

m02-CV 03 2.5 0.7 0.09 m04-H 01 1.5 0.9 0.01

m02-CV 04 5.7 0.7 0.09 m04-H 02 1.7 0.9 0.02

m02-H01 01 0.9 2.5 0.00 m04-H 03 2.1 0.9 0.02

Continued on next page . . .
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Table 5.15: PR-EFM-IF-R1: cfi.1, cfi.2 and 𝜀2.i (cont.).

LP SC cfi.1 cfi.2 𝜀2.i LP SC cfi.1 cfi.2 𝜀2.i

m02-H01 02 0.7 7.7 0.00 m04-H 04 5.5 0.7 0.01

m02-H01 03 1.1 4.9 0.00 m04-V 01 1.9 0.7 0.09

m02-H01 04 2.5 8.5 0.00 m04-V 02 2.1 0.7 0.10

m02-H02 01 0.9 1.1 0.00 m04-V 03 0.1 1.5 0.08

m02-H02 02 7.5 0.5 0.00 m04-V 04 2.1 0.9 0.02

m02-H02 03 2.1 0.9 0.00 m04-VnVp01 01 0.9 0.7 0.03

m02-H02 04 5.5 0.7 0.00 m04-VnVp01 02 1.3 0.7 0.03

m02-V01 01 1.3 0.5 0.06 m04-VnVp01 03 1.3 0.9 0.03

m02-V01 02 1.5 0.5 0.03 m04-VnVp01 04 8.7 0.7 0.01

m02-V01 03 2.1 0.7 0.05 m04-VnVp02 01 0.9 0.7 0.03

m02-V01 04 6.3 0.7 0.04 m04-VnVp02 02 1.3 0.7 0.03

m02-V02 01 0.5 1.1 0.02 m04-VnVp02 03 1.3 0.9 0.03

m02-V02 02 0.9 0.9 0.05 m04-VnVp02 04 8.7 0.7 0.01

5.4.5.1.2 Global correction factor

Since it is impractical to have a correction factor for each case, an average ideal correction factor,

cfa, is proposed to reduce the dimension of the data set and the high spread of the ideal correction

factors. This factor is obtained by averaging out all cases in terms of LPs. The obtained average ideal

correction factors are presented in Tab. 5.16 and Tab. 5.17 for SHS and RHS, respectively.

At this point, the calculation could be continued for each case separately. However, if a correction

factor as general and independent of the EFM as possible is desired, an additional step is necessary.

A global correction factor, cf𝑝 is calculated by taking the mathematical average of the ideal average

correction factors presented in Tab. 5.16 and Tab. 5.17, respectively. This global correction factor is

defined for each SC and radius combination, as shown in Tab. 5.18 and Tab. 5.19 for the SHS and RHS,

respectively. These factors could be directly obtained from the ideal correction factors, eliminating

the need for the previously described step of calculating the average ideal correction factor. The data

values from Tab. 5.18 and Tab. 5.19 suggest a clear correlation trend between the global correction

factors and the width of the socket.
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Table 5.16: Average ideal correction factor, cfa, for SHS.

EFM radius SC01 SC02 SC03 SC04

HS-EFM R0 0.78 0.80 0.88 1.02

HS-EFM R1 0.78 0.80 0.88 1.02

PS-EFM R0 1.10 1.18 1.52 2.90

PS-EFM R1 1.10 1.18 1.52 2.90

Table 5.17: Average ideal correction factors, cfa.1 and cfa.2, for RHS.

EFM radius
cfa.1 cfa.2

SC01 SC02 SC03 SC04 SC01 SC02 SC03 SC04

HR-EFM-IF R0 0.90 0.77 0.77 1.21 0.91 0.98 1.21 1.23

HR-EFM-IEq R0 1.37 2.29 1.45 2.81 1.88 1.08 2.06 2.38

PR-EFM-IF R0 0.82 0.94 1.19 1.37 0.90 0.96 1.12 0.98

PR-EFM-IEq R0 1.56 1.46 3.95 1.69 1.99 1.92 0.51 4.84

HR-EFM-IF R1 1.46 1.55 1.79 3.19 0.96 1.26 1.10 2.06

HR-EFM-IEq R1 2.43 2.48 2.83 4.51 2.68 2.78 2.97 4.17

PR-EFM-IF R1 1.18 1.76 1.95 5.70 0.92 1.21 1.09 1.19

PR-EFM-IEq R1 1.84 1.35 2.52 3.82 1.48 1.91 2.06 1.36

Table 5.18: Global correction factor, cfp: SHS.

radius SC01 SC02 SC03 SC04

R0 0.78 0.80 0.88 1.02

R1 1.10 1.18 1.52 2.90

Table 5.19: Global correction factor, cfp.1 and cfp.2: RHS.

radius
cfp.1 cfp.2

SC01 SC02 SC03 SC04 SC01 SC02 SC03 SC04

R0 1.16 1.36 1.84 1.77 1.42 1.24 1.23 2.36

R1 1.73 1.78 2.27 4.31 1.51 1.79 1.81 2.20
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5.4.5.1.3 Geometry-related correction factors

Based on the correlation trend observed in Tab. 5.18 and Tab. 5.19 between the global correction

factor and the joint geometry, geometry-related correction factors, cfG, were computed. Therefore, an

attempt was made to introduce the effect of the adjacent column faces on the analyzed column face by

considering the correction factors set by Eq. (5.63) and Eq. (5.64) for the SHS and RHS, respectively.

In these equations, the variables 𝐿, 𝐿1, and 𝐿2 represent the dimensions of the adjacent column faces,

and 𝑏 represents the length of the rigid area, as illustrated in Fig. 5.6 or Fig. 5.8.

cfSHS
G = 𝑣𝑎𝑟1

(
𝑣𝑎𝑟2 + 𝑏

𝐿 − 2 𝑟

)
(5.63)

cfRHS
G.1 = 𝑣𝑎𝑟1

(
𝑣𝑎𝑟2 + 𝑏

𝐿2 − 2 𝑟

)
cfRHS

G.2 = 𝑣𝑎𝑟1

(
𝑣𝑎𝑟2 + 𝑏

𝐿1 − 2 𝑟

) (5.64)

The unknown parameters 𝑣𝑎𝑟1 and 𝑣𝑎𝑟2 are determined through an iterative method, where both

variables range from 0.05 to 2, with a step of 0.05 similar to the procedure described in Section 5.4.5.1.1,

but with the objective of minimizing the difference between the global correction factor, cf𝑝, and the

geometry-related correction factor, cf𝐺 , according to Eq. (5.65) and Eq. (5.66).

𝜀SHS
3 = min

(����� 4∑︁
𝑖 = 1

(
cfp − cfSHS

G

)
SC0𝑖

�����
)

(5.65)

𝜀RHS
3 = min

(����� 4∑︁
𝑖 = 1

(
cfp.1 − cfRHS

G.1 + cfp.2 − cfRHS
G.2

)
SC0𝑖

�����
)

(5.66)

The determined values for the geometry-related correction factors for the SHS and RHS are

presented in Tab. 5.20 and Tab. 5.21, respectively. After analyzing the results, it was concluded that

the values for 𝑣𝑎𝑟1 and 𝑣𝑎𝑟2 should be given by Eq. (5.67). As such, if an improvement in results

is desired using an analytical approximation parameter based on geometry-related correction factors,

the initial stiffness from the NGM could be expressed for the SHS by Eq. (5.68), and for the RHS by

Eq. (5.69) and Eq. (5.70), in conjunction with Eq. (5.67).
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Table 5.20: Geometry-related correction factors: ideal values for 𝑣𝑎𝑟1 and 𝑣𝑎𝑟2 in SHS.

cross-section radius 𝑣𝑎𝑟1 𝑣𝑎𝑟2

SHS R0 1.70 0.15

SHS R1 1.95 0.45

Table 5.21: Geometry-related correction factors: ideal values for 𝑣𝑎𝑟1 and 𝑣𝑎𝑟2 in RHS.

cross-section radius 𝑣𝑎𝑟1 𝑣𝑎𝑟2

RHS R0 0.70 1.90

RHS R1 0.80 1.95

(𝑣𝑎𝑟1; 𝑣𝑎𝑟2) =


(1.85; 0.30) , if

𝐿1

𝐿2
= 1

(0.80; 1.90) , otherwise

(5.67)

𝑆𝑖 =
16 𝐸 𝑡3𝑐
𝐿2

𝛼 + (1 − 𝛽) tan𝜃

(1 − 𝛽)3 + 10.4 (𝑘1 − 𝑘2 𝛽)
𝜇2

1
cfSHS

G
(5.68)

𝑆𝑖.1 =
16 𝐸 𝑡3𝑐
𝐿2

1

𝛼1 + (1 − 𝛽1) tan𝜃1

(1 − 𝛽1)3 + 10.4 (𝑘1 − 𝑘2 𝛽1)
𝜇2

1

1
cfRHS

G.1
(5.69)

𝑆𝑖.2 =
16 𝐸 𝑡3𝑐
𝐿2

2

𝛼2 + (1 − 𝛽2) tan𝜃2

(1 − 𝛽2)3 + 10.4 (𝑘1 − 𝑘2 𝛽2)
𝜇2

2

1
cfRHS

G.2
(5.70)

Finally, to verify the effectiveness of the geometry-related correction factors, calculations were

conducted for all cases, and the out-of-plane displacements for PS-EFM-R1 and PR-EFM-IF-R1 cases

are shown in Fig. 5.41 and Fig. 5.42, respectively. In each graph, two sets of data from OpenSees

are plotted: (i) red dots "res" – using Eq. (5.21) for SHS, and Eq. (5.33) and Eq. (5.34) for the RHS,

respectively; and (ii) green dots "prop" – using Eq. (5.68) for the SHS, and Eq. (5.69) and Eq. (5.70) for

the RHS, respectively. The results indicate that the proposed correction factors improve the accuracy

of the calculations for SHS but not RHS.
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]
(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure 5.41: PS-EFM-R1 - Method 1.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure 5.42: PR-EFM-IF-R1 - Method 1.
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Table 5.22: 𝑅2 for each column face: SHS-R0.

EFM radius face A face B face C face D

HS-EFM R0 0.98 0.98 0.95 0.94

PS-EFM R0 0.98 0.98 0.95 0.94

HS-EFM R1 0.91 0.91 0.76 0.89

PS-EFM R1 0.91 0.91 0.76 0.89

5.4.5.2 Method 2: matching displacements based correction

As the previous section shows, using an ideal correction factor and then introducing a global correction

factor is ineffective. This is likely because the large data set cannot be averaged to provide a single

parameter that works well for all EFMs, radii, and SCs.

Therefore, in this section, a new method is developed where the displacements are corrected

directly without identifying any correction factor. However, the geometry-related correction factor is

still used to adjust the values of the initial stiffnesses (Eq. (5.63) and Eq. (5.64)). Nevertheless, the

values of the two parameters, 𝑣𝑎𝑟1 and 𝑣𝑎𝑟2, are determined differently.

In this method, 𝑣𝑎𝑟1 is assigned a unitary value (i.e., 𝑣𝑎𝑟1 = 1), and 𝑣𝑎𝑟2 is determined through

an iterative process varying 0.1 to 1, with a step of 0.1 similar to the process described in Section

5.4.5.1.1. At each iteration, the coefficient of determination, 𝑅2 (Eq. (5.60)), is calculated. After

analyzing the 10 sets of values resulting from the iteration process, it was found that 𝑣𝑎𝑟2 should be

expressed by Eq. (5.71).

(𝑣𝑎𝑟1; 𝑣𝑎𝑟2) =


(1; 0.6) , for R0

(1; 0.8) , for R1
(5.71)

The results for the correlation factor for R0 are presented in Tab. 5.22 and Tab. 5.23, and for R1

in Tab. 5.24 and Tab. 5.25. The out-of-plane displacements for the PS-EFM-R1 and PR-EFM-IF-R1

cases are shown in Fig. 5.43 and Fig. 5.44, respectively. In each graph, two sets of data from OpenSees

are plotted: (i) red dots "res" – using Eq. (5.21) from SHS, and Eq. (5.33) and Eq. (5.34) for the RHS,

respectively; and (ii) green dots "prop" – using Eq. (5.68) for the SHS, and Eq. (5.69) and Eq. (5.70) for

the RHS, respectively in conjunction with Eq. (5.71). The results indicate that the proposed correction

factors in this method improve the accuracy of the calculations for both SHS and RHS.
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Table 5.23: 𝑅2 for each column face: RHS-R0.

EFM radius face A face B face C face D

HR-EFM-IF R0 0.97 0.98 0.96 0.98

HR-EFM-IEq R0 0.96 0.98 0.95 0.98

PR-EFM-IF R0 0.96 0.96 0.95 0.96

PR-EFM-IEq R0 0.96 0.95 0.95 0.96

HR-EFM-IF R1 0.93 0.93 0.91 0.95

HR-EFM-IEq R1 0.93 0.90 0.91 0.93

PR-EFM-IF R1 0.92 0.96 0.89 0.97

PR-EFM-IEq R1 0.90 0.97 0.87 0.98

Table 5.24: 𝑅2 for each column face: SHS-R1.

EFM radius face A face B face C face D

HS-EFM R0 0.89 0.89 0.77 0.76

PS-EFM R0 0.89 0.89 0.77 0.76

HS-EFM R1 0.98 0.98 0.93 0.95

PS-EFM R1 0.98 0.98 0.93 0.95

Table 5.25: 𝑅2 for each column face: RHS-R1.

EFM radius face A face B face C face D

HR-EFM-IF R0 0.82 0.90 0.83 0.89

HR-EFM-IEq R0 0.82 0.90 0.83 0.90

PR-EFM-IF R0 0.83 0.82 0.84 0.83

PR-EFM-IEq R0 0.87 0.77 0.87 0.80

HR-EFM-IF R1 0.97 0.99 0.95 0.99

HR-EFM-IEq R1 0.97 0.96 0.95 0.97

PR-EFM-IF R1 0.96 0.98 0.94 0.97

PR-EFM-IEq R1 0.95 0.97 0.93 0.97
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure 5.43: PS-EFM-R1 - Method 2.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure 5.44: PR-EFM-IF-R1 - Method 2.
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5.4.5.3 Conclusion

In conclusion, the stiffness definition of the components of the beam-to-column joint finite element

implemented in OpenSees was found to be accurate when compared to RFEMs built with Abaqus. The

out-of-plane displacements obtained from the two software show good agreements. Although it was

not the scope of this research, two analytical methods were presented to improve the accuracy of the

results by adjusting the initial stiffness, 𝑆𝑖, from the NGM. While showing better results for the SHS,

the first method (Section 5.4.5.1) did not yield good results for RHS; thus, it is not recommended. On

the other hand, the second method (Section 5.4.5.2) provided better results for both cross-sections,

SHS and RHS.

5.5 Analytical definition of the strength criterion

5.5.1 Introduction

The strength criterion presented in this section for the proposed beam-to-column joint finite element

depicted in Fig. 3.13 is also based on the Equivalent Frame-Model (EFM) technique. This strength

criterion is a global one because it does not depend on the evaluation of internal forces in a specific

component. In the procedures that will be developed for the nonlinear analysis of structures using

the beam-to-column joint model (Chapter 6), an alternative strength criterion will be developed that

incorporates the traditional approach through the limitation of the internal forces in each component.

5.5.2 General procedure to compute the strength of the components

The strength criterion is established through the definition of equivalent bending strength, 𝑀𝑦, for the

frame-elements of the EFMs so that the tube components of the beam-to-column joint element are

deemed to be structurally safe if the following equation is fulfilled:

|𝑀 | ≤ |𝑀𝑦 | (5.72)

where 𝑀 is the bending moment in any section of the frame-elements of the EFMs, calculated using

analytical expressions that take as input the nodal displacements of the joint model, as described in

Section 5.5.6.

The equivalent bending strength of the frame-elements of the EFMs was defined using the Neves-

Gomes Model (NGM) outlined in Section 5.3.1. This equivalent bending strength was then adjusted
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through a parametric analysis using Refined Finite Element Model(s) (RFEM(s)) developed in Abaqus.

The adjustment process was carried out separately for each EFM and SC combination.

Subsequently, a single adjustment factor, 𝛼𝑚𝑖𝑛, was proposed for all the analyzed cases. This adjustment

factor was calculated by following the procedure presented below and depicted in Fig. 5.45.

1. development of the RFEM in Abaqus suitable for material nonlinear analysis;

2. definition of the LPs in the joint;

3. incremental application of the LP to the RFEM;

4. identification of the increment 𝑦 corresponding to the load proportional factor at the beginning

of the nonlinear behavior in the relations 𝐹𝑖 − 𝛿𝑖, where 𝐹𝑖 and 𝛿𝑖 represent the load applied to

the column face 𝑖 and the out-of-plane displacement of the column face 𝑖, respectively;

5. computation of the forces 𝐹𝑖,𝑦 and out-of-plane displacements 𝛿𝑖,𝑦 corresponding to increment

𝑦;

6. imposition of out-of-plane displacement of the column faces, 𝛿𝑖,𝑦, onto the EFM, as opposed

to nodal forces 𝐹𝑖,𝑦. This approach facilitates the analysis of a specific part of the tube (i.e., a

quadrant) and thus simplifies the strength criterion definition;

7. calculation of the bending moments in the predefined critical sections of the EFM, M𝐸𝐹𝑀
𝑐𝑟𝑖𝑡.𝑠

;

8. determination the maximum absolute values of the bending moments in the critical sections

from all LPs:

M𝐸𝐹𝑀 = max
(��M𝐸𝐹𝑀

𝑐𝑟𝑖𝑡.𝑠

��) (5.73)

9. computation of the equivalent bending strength of the frame-elements of the EFM based on the

NGM for the critical sections:

M𝐸𝐹𝑀
𝑦 =

���M𝐸𝐹𝑀
y.NGM

��� (5.74)

10. computation of the adjustment factor, 𝛼𝐸𝐹𝑀
𝑐𝑟𝑖𝑡.𝑠

, for the critical sections:

𝛼𝐸𝐹𝑀𝑐𝑟𝑖𝑡.𝑠 =
M𝐸𝐹𝑀

M𝐸𝐹𝑀
𝑦

(5.75)

11. computation of a maximum adjustment factor, 𝛼𝐸𝐹𝑀max , of all critical sections for every EFM and

SC combination individually:

𝛼𝐸𝐹𝑀𝑚𝑎𝑥 = max
(
𝛼𝐸𝐹𝑀𝑐𝑟𝑖𝑡.𝑠

)
(5.76)
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With the values of 𝛼𝐸𝐹𝑀𝑚𝑎𝑥 for each EFM and SC combination, a unique minimum adjustment factor,

𝛼𝑚𝑖𝑛, is computed for all analyzed cases:

𝛼𝑚𝑖𝑛 = min
(
𝛼𝐸𝐹𝑀𝑚𝑎𝑥

)
(5.77)

Finally, the strength criterion defined by Eq. (5.72), expressed in a matrix format that contains the

values for all critical sections, becomes:

M ≤ M𝑦 =⇒ M𝐸𝐹𝑀 ≤ 𝛼𝑚𝑖𝑛 M𝐸𝐹𝑀
𝑦 (5.78)

The consideration of the maximum value of the adjustment factor specified in Eq. (5.76) guarantees

that the section yielded is the one that is being considered for each case. On the other hand, the

minimum value of the adjustment factor from Eq. (5.77) provides a conservative limit that ensures

safety in all cases.

5.5.3 Critical sections on SEFMs

The bending moment in any section of the frame-elements of the EFMs can be calculated based on

the out-of-plane displacements of the quadrant (i.e., 1/4 of EFM) in which the section lies due to the

symmetry conditions of the EFMs. For example, the bending moment in section A from Fig. 5.46

can be determined using only the 𝛿N and 𝛿E displacements. Accordingly, the analytical computation

of bending moments in the sections of the EFM can be performed using the Simplified Equivalent

Frame-Models (SEFMs) shown in Fig. 5.47, which only represents a quadrant of the EFMs, where w1

and w2 represent the lengths of the non-rigid parts of the frame-elements of the EFMs discussed in

Section 5.2.4.

On the other hand, to implement the procedure outlined in Section 5.5.2, it is not necessary to

monitor all sections of the SEFM, only the ones where the bending moment may be higher, referred

to as critical sections. Given that bending moment distributions are linear, the critical sections are

located at the ends of the frame-elements elements of the SEFM, as shown in Fig. 5.47. Specifically,

sections CA and CB will always produce identical bending moments. However, two sections are

considered because their equivalent bending strengths may differ according to the procedure described

in Section 5.5.4. Therefore, the vector of bending moments in the critical sections, M𝐸𝐹𝑀 , is:

M𝐸𝐹𝑀 =

[
𝑀𝐸𝐹𝑀

A 𝑀𝐸𝐹𝑀
CA 𝑀𝐸𝐹𝑀

CB 𝑀𝐸𝐹𝑀
B

]𝑇
(5.79)
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start

select EFMs

select LPs

select SCs

EFM = last? compute: 𝛼𝑚𝑖𝑛

stop

calculate: 𝐼𝐸𝐹𝑀

SC = last?

LP = last?

Q = last?

obtain 𝑑RFEM
1 & 𝑑RFEM

2

compute M𝐸𝐹𝑀
𝑐𝑟𝑖𝑡.𝑠

compute: M𝐸𝐹𝑀

compute: 𝛼𝐸𝐹𝑀
𝑐𝑟𝑖𝑡.𝑠

compute 𝛼𝐸𝐹𝑀
𝑚𝑎𝑥

compute: 𝐹𝑝𝑙

compute M𝐸𝐹𝑀
y

YES

NObending moment in
critical sections

equivalent bending strength

NO

NO

NO

YES

YES

YES

Figure 5.45: General procedure for computing the strength criterion.
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(a) HS-EFM (b) PS-EFM

(c) HR-EFM (d) PR-EFM

Figure 5.46: Analyzed Equivalent Frame-Models (EFM).
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Figure 5.47: Critical sections on a generic Simplified Equivalent Frame-Model (SEFM).

Figure 5.48: Element with fixed-fixed end supports subjected to a concentrated load at mid-span.

where 𝑀𝐸𝐹𝑀
A , 𝑀𝐸𝐹𝑀

CA , 𝑀𝐸𝐹𝑀
CB and 𝑀𝐸𝐹𝑀

B are the bending moments in the critical sections depicted in

Fig. 5.47.

5.5.4 Equivalent bending strength

The equivalent bending strength of the frames-elements of the EFMs was computed by modeling a

fictive 1D element that was fully fixed at both ends and subjected to a load applied at its mid-span,

as illustrated in Fig. 5.48. The yielding load of this 1D element was made to match the yielding load

computed according to the NGM, 𝐹𝑝𝑙 (Eq. (5.42)).

In accordance with Fig. 5.48, if the yielding of the fictive 1D element coincides with the yielding

of the plate from the NGM, the equivalent bending strength can be expressed as:

𝑀y.NGM =
𝐹𝑝𝑙 𝑥

4
(5.80)

Given the foregoing, the vector of equivalent bending strengths for the critical sections illustrated

in Fig. 5.47 must be calculated while accounting for the potential variation in 𝐹𝑝𝑙 values between the
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Table 5.26: Bilinear elastic-plastic material characteristics of the tubular column.

𝐸 [N/mm2] 𝜈 𝑓𝑦 [ N/mm2] 𝑓𝑢 [ N/mm2] 𝜀𝑢

210000 0.3 355 490 0.03

two frame-elements of the SEFM. Therefore, the resulting vector can be expressed as follows:

M𝐸𝐹𝑀
y.NGM =

[
𝑀𝐸𝐹𝑀

y.NGM.A 𝑀𝐸𝐹𝑀
y.NGM.CA 𝑀𝐸𝐹𝑀

y.NGM.CB 𝑀𝐸𝐹𝑀
y.NGM.B

]𝑇
(5.81)

with:

𝑀𝐸𝐹𝑀
y.NGM.A = 𝑀𝐸𝐹𝑀

y.NGM.CA =
𝐹𝑝𝑙.1 𝑤1

4
(5.82)

𝑀𝐸𝐹𝑀
y.NGM.CB = 𝑀𝐸𝐹𝑀

y.NGM.B =
𝐹𝑝𝑙.2 𝑤2

4
(5.83)

where 𝐹𝑝𝑙.1 and 𝐹𝑝𝑙.2 are the out-of-plane full-plastic strengths of the column plate from the NGM

(Eq. (5.42)) for the two frame-elemens of the SEFM.

5.5.5 Nonlinear behavior of the beam-to-column joints

The RFEMs utilized in determining the nonlinear behavior of beam-to-column joints were constructed

in accordance with the methodology outlined in Section 5.4.3, supplemented by a nonlinear material

analysis. In particular, a plasticity model featuring a Mises yield surface with associated plastic flow

and isotropic hardening was adopted [212], and the necessary input parameters were supplied as listed

in Tab. 5.26.

The nonlinear material analysis required the use of incremental load application. As such, the

parameters for the initial, minimum, and maximum increments were set to 0.05, 0.001, and 0.1,

respectively. The RFEM’s analysis terminated once a column face had reached a displacement of

50 mm, i.e., min(𝐿1, 𝐿2)/4.

As expected, the yielding of the RFEMs was gradual, making it challenging to determine the

transition from the elastic to the post-elastic regime based on the nonlinear 𝐹 − 𝛿 relationship.

Therefore, an energetic criterion was defined to overcome the challenge of identifying this conventional

transition. Specifically, a bilinear approximation of the 𝐹 − 𝛿 relationship was established, ensuring

that both the nonlinear and the bilinear approximations shared the same initial tangential stiffness,

maximum load and displacement, and potential energy (i.e., the area under the 𝐹 − 𝛿 curve).

Subsequently, the maximum displacement within the elastic range, 𝛿𝑒𝑙 , was computed for each

column face in the RFEMs through the following procedure:
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𝛿

𝐹

out-of-plane displacement

ap
pl

ie
d

fo
rc

e

𝑆𝑖.𝑛𝑙 = 𝑆𝑖.𝑒𝑝𝑝 = 𝑆𝑖.𝑏𝑙

(𝐹ini, 𝛿ini)𝑛𝑙/𝑒𝑝𝑝/𝑏𝑙

(𝐹end, 𝛿end)𝑛𝑙/𝑒𝑝𝑝/𝑏𝑙

(𝐹j, 𝛿j)𝑒𝑙

𝐴𝑏𝑙

𝐴𝑛𝑙 𝐴𝑒𝑝𝑝

Figure 5.49: Schematic representation of the computation of 𝐹𝑒𝑙 and 𝛿𝑒𝑙 .

1. extract the nonlinear force - displacement curve, 𝐹 − 𝛿, from the RFEM (continuous nonlinear

black line in Fig. 5.49);

2. calculate the area under the nonlinear curve: 𝐴𝑛𝑙 ;

3. determine the tangent stiffness, 𝑆𝑖.𝑛𝑙 – assumed as the secant stiffness at 5% of the ultimate load,

𝐹end (red dashed line in Fig. 5.49);

4. construct the elastic-perfect plastic curve using the tangent stiffness, 𝑆𝑖.𝑛𝑙 , and ultimate load,

𝐹end (blue dotted line in Fig. 5.49);

5. calculate the area under the elastic-perfect plastic curve, 𝐴𝑒𝑝𝑝, which is used as a starting point

for an iterative process;

6. initiate an iterative process that starts from the elastic-perfect plastic curve and ends when a

bilinear curve is found (magenta dashed line in Fig. 5.49) so that the area of the bilinear curve

matches the area under the nonlinear curve: 𝐴𝑏𝑙 ≈ 𝐴𝑛𝑙 while ensuring that the initial and final

coordinates of the two curves coincide and have equivalent tangent stiffnesses, 𝑆𝑖.𝑛𝑙 = 𝑆𝑖.𝑏𝑙 .

This process is schematically illustrated in Fig. 5.49, where "nl", "epp", "bl", and "el" stand for

nonlinear (smooth), elastic-perfect plastic, bilinear, and elastic, respectively.

With the (𝐹𝑒𝑙 , 𝛿𝑒𝑙) pairs calculated for all column faces, the vector of limit elastic displacements

of the joint is computed as follows:

1. identify the column face ID that has the lowest load proportional factor associated with 𝐹𝑒𝑙 :

ID𝑚𝑖𝑛;
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2. set the minimum elastic force, 𝐹𝑒𝑙.𝑚𝑖𝑛, and its corresponding minimum elastic displacement,

𝛿𝑒𝑙.𝑚𝑖𝑛, as those corresponding to column face ID𝑚𝑖𝑛 for the increment 𝑦;

3. compute the out-of-plane deformation of the column faces, 𝛿 𝑖
𝑒𝑙.𝑚𝑖𝑛

, for the lowest load

proportional factor, i.e., corresponding to increment 𝑦;

4. assemble the vector of limit displacements, 𝛿RFEM
𝑒𝑙.𝑚𝑖𝑛

:

𝛿RFEM
𝑒𝑙.𝑚𝑖𝑛 =

[
𝛿A
𝑒𝑙.𝑚𝑖𝑛

𝛿B
𝑒𝑙.𝑚𝑖𝑛

𝛿C
𝑒𝑙.𝑚𝑖𝑛

𝛿D
𝑒𝑙.𝑚𝑖𝑛

]𝑇
(5.84)

To facilitate comprehension of this complex methodology, a detailed calculation for the RHS-m03-

H01-SC02 case is presented in Appendix J.

5.5.6 Bending moments in SEFM

The calculation of the bending moments in the critical sections of the SEFMs for the displacements

𝛿RFEM
𝑒𝑙.𝑚𝑖𝑛

was performed utilizing the displacement method. Tables for the stiffness coefficients for

Euler-Bernoulli elements with both ends fully fixed were utilized (Appendix D) to kinetically define

the SEFMs, as illustrated in Fig. 5.47, through the three DOFs, 𝑑1, 𝑑2, and 𝑑3. The vector of nodal

displacements d was established as:

d =

[
𝑑1 𝑑2 𝑑3

]𝑇
(5.85)

Due to the absence of any load applied in 𝑑3, it was made dependent on 𝑑1 and 𝑑2 through

the application of equilibrium conditions (i.e., static condensation). This resulted in the following

equilibrium equation, as determined by the stiffness coefficients from Fig. 5.50:[
− 6 𝐸𝐼1

𝑤2
1

6 𝐸 𝐼2
𝑤2

2

4 𝐸 𝐼1
𝑤1

+ 4 𝐸 𝐼2
𝑤2

] [
𝑑1 𝑑2 𝑑3

]𝑇
= 0 (5.86)

which yields:

𝑑3 =

6 𝐸 𝐼1
𝑤2

1
𝑑1 − 6 𝐸 𝐼2

𝑤2
2

𝑑2

4 𝐸 𝐼1
𝑤1

+ 4 𝐸 𝐼2
𝑤2

(5.87)

The internal forces in the critical sections (Fig. 5.47) were calculated utilizing the principle of
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(a) 𝑑1 = 1 (b) 𝑑2 = 1 (c) 𝑑3 = 1

Figure 5.50: Stiffness coefficients associated with the DOFs.

superposition of the effects of the three DOFs displayed in Fig. 5.51. Hence:

M𝐸𝐹𝑀
d =



𝑀𝐸𝐹𝑀
A

𝑀𝐸𝐹𝑀
CA

𝑀𝐸𝐹𝑀
CB

𝑀𝐸𝐹𝑀
B


=



− 6 𝐸 𝐼1
𝑤2

1
0

2 𝐸 𝐼1
𝑤1

− 6 𝐸 𝐼1
𝑤2

1
0

4 𝐸 𝐼1
𝑤1

0
6 𝐸 𝐼2
𝑤2

2

4 𝐸 𝐼2
𝑤2

0
6 𝐸 𝐼2
𝑤2

2

2 𝐸 𝐼2
𝑤2



(5.88)

Therefore the bending moments in the critical sections (Fig. 5.47) of a generic SEFM are expressed

by:

M𝐸𝐹𝑀 = M𝐸𝐹𝑀
d d (5.89)

with the following values in each critical section:

𝑀𝐸𝐹𝑀
A = −

3 𝐸 𝐼1
(
𝐼2 𝑑2 𝑤

2
1 + 2 𝐼2 𝑑1 𝑤1 𝑤2 + 𝐼1 𝑑1 𝑤

2
2
)

𝑤2
1 𝑤2 (𝐼1 𝑤2 + 𝐼2 𝑤1)

(5.90)

𝑀𝐸𝐹𝑀
CA = − 6 𝐸 𝐼1 𝐼2 (𝑑1 𝑤2 + 𝑑2 𝑤1)

𝑤1 𝑤2 (𝐼1 𝑤2 + 𝐼2 𝑤1)
(5.91)
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(a) 𝑑1 = 1 (b) 𝑑2 = 1 (c) 𝑑3 = 1

Figure 5.51: Bending moments in critical sections caused by unit load on the DOFs.

𝑀𝐸𝐹𝑀
CB =

6 𝐸 𝐼1 𝐼2 (𝑑1 𝑤2 + 𝑑2 𝑤1)
𝑤1 𝑤2 (𝐼1 𝑤2 + 𝐼2 𝑤1)

(5.92)

𝑀𝐸𝐹𝑀
B =

3 𝐸 𝐼2
(
𝐼2 𝑑2 𝑤

2
1 + 2 𝐼1 𝑑2 𝑤1 𝑤2 + 𝐼1 𝑑1 𝑤

2
2
)

𝑤1 𝑤
2
2 (𝐼1 𝑤2 + 𝐼2 𝑤1)

(5.93)

By substituting the values of the lengths 𝑤1 and 𝑤2 in the equations mentioned above with the

lengths of any of the EFMs described in Section 5.2.4, it is possible to directly obtain the bending

moments of that particular EFM.

5.5.7 Application of the procedure to the EFMs

To maintain consistency with the stiffness calculation presented in Section 5.2.3 and to align with the

goal of this document, which is to provide specific and final calculations for each EFM, the exact

values for the dependency of DOF 𝑑3 on DOFs 𝑑1 and 𝑑2 (Eq. (5.87)), the internal forces in the

critical sections (Eqs. (5.88) to (5.93)), and the equivalent bending strength (Eqs. (5.81) to (5.83))

are presented for every EFM in Appendix K according to Tab. 5.27. In cases where an equivalent

moment of inertia is used (Eq. (5.1)), the results are presented directly to avoid redundancy.
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Table 5.27: Index of tables for strength calculation.

EFM name Appendix name EFM name Appendix name

HS-EFM Appendix K.1 PS-EFM Appendix K.4

HR-EFM-IF Appendix K.2 PR-EFM-IF Appendix K.5

HR-EFM-IEq Appendix K.3 PR-EFM-IEq Appendix K.6

Figure 5.52: Displacements association for quadrant calculations for a generic SEFM.

5.5.8 Adjustment factor

5.5.8.1 Cases considered

The adjustment factor for the strength criterion, 𝛼, is determined through a parametric analysis using

the same cases employed for calibrating the effective stiffness. However, as not all load patterns

and cross-sections are double-symmetric, the full assessment of the joint requires the examination

of all four SEFMs at the joint region. To accomplish this, the four displacements from the RFEM

(Eq. (5.84)) are grouped into four sets of two displacements, and the calculation is performed for

each of the four quadrants at every joint (i.e., Q1 to Q4). The quadrants are depicted in Fig. 5.52.

A practical example for RHS-m03-H01-SC02 case, demonstrating the calculation for each quadrant

individually, is provided in Appendix L.

A graphical representation of the network for the considered cases is presented in Fig. 5.53 and

Fig. 5.54 for the SHS and RHS, respectively, to aid in the interpretation of the analyzed models and their

modifications. In addition to the previously mentioned four parameters considered in the evaluation

of stiffness in Section 5.4.2 (EFM, radius, LP, and SC), a fifth parameter, namely the quadrant (Q),
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EFM (4) radius (2) LP (10) SC (4) Q (4)

HS-EFM

PS-EFM

R0

R1

m01 V01

...

m04 VnVp02

SC01

SC02

SC03

SC04

Q1

Q2

Q3

Q4

Figure 5.53: Network for strength calculation: SHS (1280 cases).

EFM (4) radius (2) LP (17) SC (4) Q (4)

HR-EFM-IF

HR-EFM-IEq

PR-EFM-IF

PR-EFM-IEq

R0

R1

m01 V01

...

m04 VnVp02

SC01

SC02

SC03

SC04

Q1

Q2

Q3

Q4

Figure 5.54: Network for strength calculation: RHS (2176 cases).

was added to the network. Combining the five parameters, 1280 and 2176 cases were analyzed and

computed for the SHS and RHS, respectively.

5.5.8.2 Results unadjusted

The results for the strength criterion (Eq.(5.72) are presented for PS-EFM-R1 and PR-EFM-IF-R1, in

Tab. 5.28 and Tab. 5.29, respectively. The remaining cases are presented in Appendix M according to

Tab. M.1

The tables presented herein contain information on the maximum absolute values of the bending

moments in the critical sections, M𝐸𝐹𝑀 (Eq. (5.73)), the equivalent bending strength, M𝐸𝐹𝑀
y

(Eq. (5.74)), in the same sections, the adjustment factor for each critical section, 𝛼𝐸𝐹𝑀
𝑐𝑟𝑖𝑡.𝑠

(Eq.(5.75)),

and the maximum adjustment factor, 𝛼𝐸𝐹𝑀𝑚𝑎𝑥 (Eq. (5.76)). Each EFM is displayed in a separate table,

and within each table, the results for four SCs are presented.

To ensure the optimal display of the table within the margins of the page, the superscript 𝐸𝐹𝑀 ,

which contains the names of the EFMs for the maximum adjustment factor, 𝛼𝐸𝐹𝑀𝑚𝑎𝑥 , is excluded from all

instances throughout the tables. The components of the bending moment, equivalent bending strength,

and adjustment factor vectors are presented in columns, where the name of the critical section (i.e., A,
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Table 5.28: Results: PS-EFM-R1 [kNm] (unadjusted).

SC
MPS-EFM-R1 MPS-EFM-R1

y.NGM 𝛼PS-EFM-R1
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 8.75 8.57 8.57 8.57 3.39 3.39 3.39 3.39 2.6 2.5 2.5 2.5 2.6

02 8.30 8.18 8.18 8.18 3.24 3.24 3.24 3.24 2.6 2.5 2.5 2.5 2.6

03 7.40 7.40 7.40 7.40 2.79 2.79 2.79 2.79 2.6 2.6 2.6 2.6 2.6

04 7.76 7.76 7.76 7.76 2.19 2.19 2.19 2.19 3.5 3.5 3.5 3.5 3.5

Table 5.29: Results: PR-EFM-IF-R1 [kNm] (unadjusted).

SC
MPR-EFM-IF-R1 MPR-EFM-IF-R1

y.NGM 𝛼PR-EFM-IF-R1
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 9.01 8.99 8.99 8.98 3.39 3.39 4.78 4.78 2.7 2.7 1.9 1.9 2.7

02 8.53 8.53 8.53 8.54 3.24 3.24 4.64 4.64 2.6 2.6 1.8 1.8 2.6

03 7.64 7.52 7.52 7.41 2.79 2.79 4.24 4.24 2.7 2.7 1.8 1.7 2.7

04 7.63 6.80 6.80 6.67 2.19 2.19 3.78 3.78 3.5 3.1 1.8 1.8 3.5

CA, CB, and B) is used as the header for each respective column.

Upon analyzing the outcomes in regards to the values of the maximum adjustment factor, 𝛼𝑚𝑎𝑥 , it

is observed that this factor varies between 2.0 and 3.5 for the SHS, while for RHS, it varies between

1.8 and 5.6, and therefore an adjustment factor is needed.

5.5.8.3 Results adjusted

The unique minimum adjustment factor, 𝛼min (Eq. (5.77)) leads to Eq. (5.94). These minimum values

are obtained for the SHS and RHS from the cases HS-EFM-R1-SC01 and HR-EFM-IF-R0-SC04,

respectively.

𝛼𝑚𝑖𝑛 =


2.0 , if

𝐿1

𝐿2
= 1

1.8 , otherwise
(5.94)

The results with the unique minimum adjustment factor, , 𝛼𝑚𝑖𝑛, incorporated in the equivalent

bending strength (Eq.(5.78)) are presented for PS-EFM-R1 and PR-EFM-IF-R1, in Tab. 5.30 and

Tab. 5.31, respectively. The remaining cases are presented in Appendix N in accordance with Tab. N.1.

The adjustment factor for the critical section was recalculated, providing a clearer representation of
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Table 5.30: Results: PS-EFM-R1 [kNm] (adjusted).

SC
MPS-EFM-R1 MPS-EFM-R1

y.NGM 𝛼PS-EFM-R1
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 8.75 8.57 8.57 8.57 6.81 6.81 6.81 6.81 1.3 1.3 1.3 1.3

02 8.30 8.18 8.18 8.18 6.50 6.50 6.50 6.50 1.3 1.3 1.3 1.3

03 7.40 7.40 7.40 7.40 5.62 5.62 5.62 5.62 1.3 1.3 1.3 1.3

04 7.76 7.76 7.76 7.76 4.41 4.41 4.41 4.41 1.8 1.8 1.8 1.8

the critical section’s behavior. Specifically, values at or below unity indicate that the critical section

is in the elastic range, whereas values above unity indicate that the critical section has entered the

post-elastic range.

Table 5.31: Results: PR-EFM-IF-R1 [kNm] (adjusted).

SC
MPR-EFM-IF-R1 MPR-EFM-IF-R1

y.NGM 𝛼PR-EFM-IF-R1
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 9.01 8.99 8.99 8.98 6.24 6.24 8.80 8.80 1.4 1.4 1.0 1.0

02 8.53 8.53 8.53 8.54 5.95 5.95 8.53 8.53 1.4 1.4 1.0 1.0

03 7.64 7.52 7.52 7.41 5.14 5.14 7.80 7.80 1.5 1.5 1.0 0.9

04 7.63 6.80 6.80 6.67 4.04 4.04 6.96 6.96 1.9 1.7 1.0 1.0

5.5.9 Conclusion

In conclusion, a strength criterion based on a unique minimum adjustment factor with global

applicability that does not depend on the evaluation of internal forces in a specific component was

defined for the components of the beam-to-column joint finite element implemented in OpenSees.

Although it presents a conservative threshold, it guarantees safety across all considered scenarios.
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Chapter 6

Conceptual framework for nonlinear analysis

6.1 Introduction

The conventional method to address nonlinear behavior in component-based methods is to consider

the nonlinearity at each 0D element that reflects the actual nonlinear behavior of the component

and assume independent behavior for each component. This typically involves characterizing the

nonlinear behavior of each component through experimental tests or Refined Finite Element Model(s)

(RFEM(s)) of the isolated components, matching each 0D element. Alternatively, a small number of

components can be tested together to characterize individual components when it is possible to assess

the internal forces and deformations in each component and assume no interaction between them.

In the present study, this approach was followed for most components in the context of the

INNO3DJOINTS project, as presented in Section 2.6. However, when dealing with the tube

components considered in the beam-to-column macro-element, this traditional approach cannot be

applied because the components do not have a similar meaning to those assigned to components in the

component method, where a component is typically defined as a part of a joint under an internal force,

e.g., column web in tension. The traditional procedure is also feasible when the component accounts

for internal forces coming from multiple 1D elements but has only one possible deformation mode.

In this case, a single internal force condenses the contributions of the internal forces coming from the

multiple 1D elements connected to the joint, e.g., column web in shear.

However, in the developed macro-element, the joint is subject to four internal forces, with one force

acting on each column face. These internal forces cannot be condensed into a single static variable.

Therefore, to account for the various possible deformation patterns and the interaction between the

column faces, multiple 0D elements are required. Consequently, the stiffness of each 0D element
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in the column macro-element is associated with the global deformation pattern of the entire tube in

the joint region, as opposed to a part of the joint, as in the traditional approach. By applying the

principle of superposition of effects, all relevant deformation and load patterns can be represented.

Therefore, the stiffness of a face component is not exclusively related to a specific face but accounts

for the deformation of the entire tube.

Given these conceptual differences, a different approach was required to account for the nonlinear

behavior of the P&PJ making use of the macro-element developed in the scope of the current work.

6.2 Conceptual framework

The conceptual framework of nonlinearity was investigated by analyzing the behavior of the tubular

column within the joint region using RFEMs developed in Abaqus. The findings demonstrated that

the onset of yielding occurs near the socket faces for all socket configurations (SCs), as depicted in

Fig. 6.1. These observations suggest that the nonlinearity of the tube in the joint region begins as a

local phenomenon.

Based on the previous evidence, it may be stated that the initiation of nonlinear behavior can

be captured by assigning the nonlinear behavior to a component of the beam-to-column joint finite

element that captures the total force applied on each column face, including the force installed in

the face component and the interaction components on each face, e.g., component 03 in Fig. 3.13.

However, despite being simple and straightforward, this approach may yield unsatisfactory results due

to its failure to consider the integration effect of all column faces in the strength analysis.

In order to consider the interaction between the column faces in terms of the strength of each

component and to account for the local onset of nonlinearity, one approach is to define the onset of

yielding in terms of the deformation of the column face, i.e., in terms of the deformation of each face

component.

On the other hand, as defined in Chapter 3, the stiffness of a face component can be set as the force

required to produce a unitary out-of-plane displacement on one column face when unitary out-of-

plane displacements are simultaneously imposed on the adjacent column faces (𝑘F, Fig. 6.2(a)). The

stiffness of an interaction component can be defined as the force required to maintain null out-of-plane

displacements on one column face when a unitary out-of-plane displacement is imposed on an adjacent

column face (𝑘I, Fig. 6.2(b)). Thus, the stiffness of a face component can be considered to have two

contributions: the force required to produce a unitary out-of-plane displacement on one column face

when null out-of-plane displacements are imposed on the adjacent column faces (𝑘A, Fig. 6.2(c)), and

the force required to maintain null out-of-plane displacements on the same column face when unitary
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(a) SC01: AC Yield (b) SC01: PEEQ (c) SC01: von Mises

(d) SC02: AC Yield (e) SC02: PEEQ (f) SC02: von Mises

(g) SC03: AC Yield (h) SC03: PEEQ (i) SC03: von Mises

(j) SC04: AC Yield (k) SC04: PEEQ (l) SC04: von Mises

Figure 6.1: Stress and plasticity related results at the joint region gathered from RFEMs: actively
yielding (AC yield), equivalent plastic strain (PEEQ), and Mises equivalent stress (von Mises).
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out-of-plane displacements are imposed on both adjacent column faces (2 𝑘I, Fig. 6.2(d)). Hence,

𝑘F = 𝑘A − 2𝑘I (6.1)

as previously mentioned.

Based on the above approach, the hypothesis that the onset of the nonlinear behavior can be

defined accurately enough only by a force at each face related to the deformation mode represented

in Fig. 6.2(c) was employed in the current work. The load for the case represented in Fig. 6.2(c) that

would lead to the onset of the linear behavior is defined as 𝐹𝑦. The onset of the nonlinear behavior for

any load configuration occurs when the deformation of a column face reaches the deformation 𝑑𝑦. In

the case of face A, this value is expressed as follows:

𝑑A
𝑦 =

𝐹A
𝑦

𝑘A (6.2)

With regard to the post-yielding behavior, the principle of superposition of effects becomes

invalid. As a result, there is no assurance that the validity of Eq. (6.1) will persist in the post-yielding

regime. However, in order to establish an approximate procedure for defining the nonlinear behavior

of components in the nonlinear regime, assuming a bilinear behavior for the deformation modes

illustrated in Fig. 6.2(b) and Fig. 6.2(c), Eq. (6.1) was considered valid in the post-yielding regime.

Within the confines of this framework, the following hypotheses were considered:

• Hypothesis 1: the nonlinearity is present only in association with the deformation mode shown

in Fig. 6.2(c), where the face component undergoes nonlinear behavior while the interaction

components remain in the elastic regime. This results in the constitutive laws represented in

Fig. 6.3(a);

• Hypothesis 2: the nonlinearity is present in association with both deformation modes shown in

Fig. 6.2(b) and Fig. 6.2(c) simultaneously, where the face component undergoes nonlinear

behavior together with the interaction components. This results in the constitutive laws

represented in Fig. 6.3(b).

• Hypothesis 3: the nonlinearity is present in association with both deformation modes shown

in Fig. 6.2(b) and Fig. 6.2(c), but the nonlinearity associated with the mode represented in

Fig. 6.2(b) manifests itself only after the nonlinearity associated with the mode represented

in Fig. 6.2(c). This means that the face component undergoes nonlinear behavior while the

interaction components remain temporarily in the elastic regime, resulting in the constitutive
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(a) 𝑘F (b) 𝑘I

(c) 𝑘A (d) 2 𝑘I

Figure 6.2: Stiffness of the tube components (generic).
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(a) Hypothesis 1
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(c) Hypothesis 3

Figure 6.3: Constitutive relations for components.

laws represented in Fig. 6.3(a).

where 𝑘′A represents the post-elastic stiffness associated with the deformation mode shown in

Fig. 6.2(c), and 𝑘′I denotes the post-elastic stiffness corresponding to the deformation mode depicted

in Fig. 6.2(b).

To determine which of the three hypotheses accurately describes the behavior of the column tube

in the joint region, the reference case presented in Fig. 6.4 was analyzed.

For the given boundary conditions illustrated in Fig. 6.4, the macro-element has only one DOF, 𝑑,

and the corresponding stiffness can be expressed as:

𝑘 = 𝑘F + 2 𝑘I = 𝑘A − 2 𝑘I + 2 𝑘I = 𝑘A (6.3)
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(a) RFEM (b) macro-element

Figure 6.4: Reference case to set the nonlinear modeling approach.

Consequently, the 𝐹−𝑑 relation is associated with the deformation mode represented in Fig. 6.2(c),

while the 𝑅− 𝑑 relation is related to the deformation mode depicted in Fig. 6.2(d). This enables a

comparison of the plausibility of the three hypotheses. These curves were extracted from an RFEM

build in Abaqus for the reference case shown in Fig. 6.4. The model is as the ones described in

Section 5.5.5. Thus, the two curves are plotted in Fig. 6.5.

Based on the previous findings, hypothesis 2 is the most plausible within the scope of the

approximate approach discussed. This implies that the face component and the interaction component

enter the post-yielding regime simultaneously.

However, the formulation of the beam-to-column joint finite element presented in Chapter 4
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Figure 6.5: Curves for the reference case: 𝐹A − 𝑑A and 𝑅BD − 𝑑A.
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requires the explicit definition of constitutive relations for each component as input and does not allow

for the automatic incorporation of constitutive relations from different components during the analysis.

Consequently, the current implementation of the joint finite element cannot ensure that two distinct

components, which may exhibit different levels of deformation due to the interaction of the column

faces, will enter the nonlinear regime simultaneously. To address this limitation, the interaction

component’s nonlinear behavior needs to be established on a relationship between the deformation of

the interaction component and the deformation of the face component for each iteration of the analysis.

Although the formulation of the beam-to-column joint finite element can be upgraded to incorporate

this feature, it is beyond the scope of the current study. Instead, a simplified approach is adopted

whereby the interaction component enters the post-yielding regime once it reaches the yield regime

designated for the corresponding face components, that is, 𝑑𝑦,I = 𝑑𝑦,F as shown in Fig. 6.3.

6.3 Predictive capability of NGM nonlinear formulation for

P&PJ setup

A parametric analysis was conducted to evaluate the capability of the NGM nonlinear formulation to

predict and characterize the nonlinear behavior of the components of the P&PJ.

The analysis involved comparing the out-of-plane force-displacement curve (Eq. (5.35)) obtained

using the NGM formulation for a rectangular plate with two opposite sides fixed and a central area

loaded by two rigid-rectangular plates (i.e., socket faces) to the results obtained using RFEMs for the

same situation.

The study varied three geometrical parameters, specifically, the width of the column plate, 𝐿, the

width, 𝑓 , and length, 𝑢, of the rigid area, as depicted in Fig. 5.10. It is noteworthy that configurations

with a socket height greater than 40 mm do not satisfy the geometric condition outlined in Eq. (5.30).

The values of these parameters and their corresponding combinations, as well as the case network, are

presented in Fig. 6.6. The thickness of the column plate was held constant at 𝑡𝑐 = 10 mm for all cases.

RFEMs were developed using Abaqus [113] for each column plate, representing one face of

the RHS columns analyzed in Section 5.4.3. As such, Tab. 5.26 and Fig. 5.27 outline the material

properties and mesh configuration used in these models. The models are novel in that they feature

variations in the height of the socket faces and fully fixed boundary conditions applied longitudinally

to the column plate thickness. The stopping criterion for the analysis was set at 20 mm for the out-of-

plane deformation of the plate (i.e., 10%min(𝐿)). The assembly and mesh assignment of an RFEM

are illustrated in Fig. 6.7, while Fig. 6.8 displays the deformed shape in the loaded region.
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width: 𝐿 (2) width: 𝑓 (4) height: 𝑢 (5)

200 (𝐿1)

300 (𝐿2)

20 (SC01)

40 (SC02)

90 (SC03)

140 (SC04)

20

40

80

120

160

Figure 6.6: Network for 𝐹𝑝𝑙 calculation from the NGM (40 cases) [mm].

(a) assembly (b) mesh

Figure 6.7: RFEM of a column plate: assembly and discretization.

(a) deformed shape in 3D (b) deformed shape
in 2D

Figure 6.8: RFEM of a column plate: deformation in the loaded region.
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The nonlinear behavior of the NGM is characterized by two distinct branches that are dependent on

the ratio of displacement-to-plate thickness, 𝛿/𝑡𝑐. The first branch corresponds to the plastic behavior

regime, which is defined by a ratio of less than one. In this regime, the membrane effects are negligible

and can be ignored. The second branch is associated with the plastic regime region where the ratio is

greater than one. In this regime, the membrane effect becomes significant, and this behavior is outside

the scope of the present study.

The end of the elastic range in the
(
𝐹/𝐹𝑝𝑙 − 𝛿/𝑡𝑐

)
space is determined by the intersection of the

initial stiffness line, 𝑆𝑖, with the branch that characterizes the plastic range without of membrane

effects. These three branches are depicted in Fig. 6.9. Additionally, it is evident from the figure that

the force that corresponds to the formation of the full-plastic mechanism of the plate 𝐹𝑝𝑙 is not a precise

representation of the onset of the nonlinear behavior in certain configurations. Consequently, to obtain

a better representation of the transition from the elastic to the post-elastic region, a new parameter,

namely NGM yield force, 𝐹NGM, is introduced, as illustrated in Fig. 6.9. This yield force corresponds

to the intersection of the initial stiffness branch with the plastic branch. The ratio of 𝐹NGM/𝐹𝑝𝑙 ranges

from 0.92 to 1.23, as presented in Tab. 6.1, based on the analyzed cases. When considering only the

cases that satisfy the geometric condition (Eq. (5.30)), the ratio varies from 0.92 to 1.05. Therefore,

in this study, 𝐹NGM is employed to ensure consistency and accuracy. The present document does not

delve into a detailed analysis of the underlying causes that contribute to a ratio exceeding unity.

The force-displacement curves obtained from the NGM and RFEM analyses are presented in

Fig. 6.10 and Fig. 6.11. Each figure corresponds to a specific combination of length and socket

height (𝐿 − 𝑢 pairs), displaying the curves for four socket configurations. In addition, the nonlinear

curve obtained from the RFEM is approximated as a bilinear curve using the equal potential energy

criterion, as explained in Section 5.5.5. The graphs showing the remaining combination are presented

in Appendix O. The ratio between the NGM yield force, 𝐹NGM, and that obtained from the RFEM,

𝐹RFEM
𝑦 , varies from 0.70 to 1.56, as reported in Tab. 6.1. When considering only the cases that satisfy

the geometric condition (Eq. (5.30)), this ratio ranges from 0.76 to 1.24.

In absolute terms, these results lack significant meaning; however, they offer a framework for

evaluating the accuracy of the beam-to-column joint finite element’s results when characterizing

component behavior using the NGM.
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1

𝑓1

0.9
1

line elastic

line plastic

line membrane

𝐹𝑝𝑙

𝐹NGM

𝛿/𝑡𝑐

𝐹/𝐹𝑝𝑙

Figure 6.9: Schematic representation of the yielding force (adapted from [207]).

Table 6.1: Comparing yield strengths obtained by different methods.

𝐿 𝑓 𝑢 𝑆𝑖 𝐹𝑝𝑙 𝐹NGM 𝐹RFEM
𝑦 𝐹NGM

𝐹𝑝𝑙

𝐹NGM

𝐹RFEM
𝑦[mm] [mm] [mm] [kNm] [kN] [kN] [kN]

200 20 20 77763.5 102.9 100.1 101.1 0.97 0.99

200 20 40 88761.7 117.3 115.9 112.2 0.99 1.03

200 20 80 110758.1 149.1 152.4 132.8 1.02 1.15

200 20 120 132754.5 164.9 171.9 152.8 1.04 1.13

200 20 160 154750.9 180.7 192.2 174.4 1.06 1.10

200 40 20 95922.4 117.5 114.1 113.9 0.97 1.00

200 40 40 111405.6 133.9 131.7 126.9 0.98 1.04

200 40 80 142371.9 160.2 160.9 149.9 1.00 1.07

200 40 120 173338.3 177.9 181.3 174.5 1.02 1.04

200 40 160 204304.7 195.7 202.3 198.7 1.03 1.02

200 90 20 191160.0 163.3 156.0 153.2 0.96 1.02

200 90 40 236247.6 176.2 168.4 173.9 0.96 0.97

200 90 80 326422.8 202.0 193.9 213.1 0.96 0.91

200 90 120 416598.0 227.8 219.5 253.5 0.96 0.87

200 90 160 506773.2 253.7 245.8 286.2 0.97 0.86

200 140 20 599963.6 227.3 210.6 225.8 0.93 0.93

200 140 40 831152.0 251.0 231.9 271.6 0.92 0.85

200 140 80 1293528.9 298.3 275.5 362.0 0.92 0.76

Continued on next page . . .
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Table 6.1: Values test (cont.)

𝐿 𝑓 𝑢 𝑆𝑖 𝐹𝑝𝑙 𝐹NGM 𝐹RFEM
𝑦 𝐹NGM

𝐹𝑝𝑙

𝐹NGM

𝐹RFEM
𝑦[mm] [mm] [mm] [kNm] [kN] [kN] [kN]

200 140 120 1755905.7 345.6 319.6 452.6 0.92 0.71

200 140 160 2218282.5 393.0 363.8 517.0 0.93 0.70

300 20 20 31706.0 94.0 96.0 80.3 1.02 1.20

300 20 40 34707.8 103.0 107.8 89.2 1.05 1.21

300 20 80 40711.5 122.2 134.9 99.4 1.10 1.36

300 20 120 46715.3 143.0 167.6 113.1 1.17 1.48

300 20 160 52719.0 156.0 191.5 122.7 1.23 1.56

300 40 20 36108.0 102.7 105.1 89.3 1.02 1.18

300 40 40 39846.3 112.4 117.5 95.5 1.05 1.23

300 40 80 47322.9 133.1 146.0 110.4 1.10 1.32

300 40 120 54799.4 152.6 175.4 122.2 1.15 1.43

300 40 160 62276.0 163.5 194.1 135.2 1.19 1.44

300 90 20 53058.2 128.9 131.1 108.1 1.02 1.21

300 90 40 60075.4 141.0 145.5 117.5 1.03 1.24

300 90 80 74109.8 160.3 169.6 133.5 1.06 1.27

300 90 120 88144.3 173.9 187.1 151.4 1.08 1.24

300 90 160 102178.7 187.4 205.3 166.6 1.10 1.23

300 140 20 88235.9 161.6 160.9 132.7 1.00 1.21

300 140 40 103767.5 170.5 170.1 144.9 1.00 1.17

300 140 80 134830.6 188.2 188.9 168.2 1.00 1.12

300 140 120 165893.7 206.0 208.2 191.3 1.01 1.09

300 140 160 196956.9 223.7 227.9 211.3 1.02 1.08

6.4 Strength reduction factor of the NGM yield force

As previously mentioned, the NGM presents an analytical approach to calculate the yielding force of

a plate with two opposite sides fixed and a central region loaded. However, utilizing this model to

estimate the yielding force of a column face for the deformation mode illustrated in Fig. 6.2(d), within

the scope of the framework presented in Section 6.2, is unsuitable due to the border limitations of the
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L = 200 with u = 120

RFEM - SC01 RFEM - SC01 bl NGM - SC01
RFEM - SC02 RFEM - SC02 bl NGM - SC02
RFEM - SC03 RFEM - SC03 bl NGM - SC03
RFEM - SC04 RFEM - SC04 bl NGM - SC04

Figure 6.10: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿1 = 200 and 𝑢 = 120 and all SCs.
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L = 300 with u = 120
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RFEM - SC03 RFEM - SC03 bl NGM - SC03
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Figure 6.11: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿2 = 300 and 𝑢 = 120 and all SCs.
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(a) 1D element under 𝑃 (b) schematic 1/2 EFM under 𝑃

Figure 6.12: Analogy between a 1D element and 1/2 EFM for the strength reduction factor.

column face. Although the column face borders are not entirely fixed, they are not free to rotate either.

Hence, a smaller yielding force is expected to be observed in the case of the tube face.

Accordingly, a reduction factor for the yielding force associated with the deformation mode

illustrated in Fig. 6.2(d) was computed using an analogy for the EFM depicted in Fig. 6.12. Since the

bending moment generated by a force 𝑃 on the 1D element with fully fixed ends, 𝑀 𝑓 𝑓 , is smaller than

the bending moment obtained by applying the same force to the EFM, 𝑀 𝑗 , a strength reduction factor

(𝑆𝑅𝐹) for the NGM yielding force of the column face is defined as the ratio between the bending

moments using a 1D frame-element that is fully fixed at both ends and the bending moment calculated

on 1/2 of an EFM. This ratio is expressed as follows:

𝑆𝑅𝐹 =
𝑀 𝑓 𝑓

𝑀 𝑗

(6.4)

where 𝑀 𝑓 𝑓 and 𝑀 𝑗 are defined in Fig. 6.12. Consequently, the yielding force associated with the

deformation mode illustrated in Fig. 6.2(d) will be deemed as:

𝐹A
𝑦 = 𝐹SRF

NGM = 𝑆𝑅𝐹 𝐹NGM (6.5)

The computation of the strength reduction factor can be made using a 1/4 of an EFM as represented

in Fig. 6.13 and Fig. 6.14.

The strength reduction factor, 𝑆𝑅𝐹𝑤1, for the width (i.e., shorter column face) of the EFM is

determined by calculating the ratio between bending moments calculated in section A, as shown in

Fig. 6.13(a) and Fig. 6.13(b).

The bending moment in section A for the fully fixed 1D frame-element is:

𝑀
𝑤1
𝑓 𝑓

=
𝑃 𝑤1

4
(6.6)

The stiffness coefficient and fixation force for the DOF 𝑑, as shown in Fig. 6.13(c) and Fig. 6.13(d),
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(a) 1D frame-element (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure 6.13: Strength reduction factor for the shorter column face (𝑤1).

as well as the displacement in the DOF associated with 𝑃, are represented by Eqs. (6.7) through (6.9).

𝑘𝑤1 =
𝐸 𝐼1

𝑤1
+ 4 𝐸 𝐼2

𝑤2
(6.7)

𝑓 𝑤1 =
𝑃 𝑤1

4
(6.8)

𝑑𝑤1 = (𝑘𝑤1)−1 (− 𝑓 𝑤1) (6.9)

Therefore, the bending moment in section A for 1/4 EFM is:

𝑀
𝑤1
𝑗

= 𝑀
𝑤1
𝑓 𝑓

− 𝑑𝑤1
𝐸 𝐼1

𝑤1
(6.10)

Thus, the 𝑆𝑅𝐹 for the shorter column face, 𝑤1, is:

𝑆𝑅𝐹𝑤1 =
𝑀
𝑤1
𝑓 𝑓

𝑀
𝑤1
𝑗

(6.11)

Similarly, the determination of the strength reduction factor for the length of the EFM, 𝑆𝑅𝐹𝑤2,

involves the computation of the ratio between bending moments calculated in section B, as illustrated

in Fig. 6.14(a) and Fig. 6.14(b). Employing a methodology akin to the aforementioned, utilizing

199



Chapter 6. Conceptual framework for nonlinear analysis

(a) 1D frame-element (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure 6.14: Strength reduction factor for the longer column face (𝑤2).

Fig. 6.14(c) and Fig. 6.14(d), and Eqs. (6.12) to (6.16). Thus, the 𝑆𝑅𝐹 for the shorter column face,

𝑤2, is expressed as per Eq. (6.17).

𝑀
𝑤2
𝑓 𝑓

=
𝑃 𝑤2

4
(6.12)

𝑘𝑤2 =
𝐸 𝐼2

𝑤2
+ 4 𝐸 𝐼1

𝑤1
(6.13)

𝑓 𝑤2 =
𝑃 𝑤2

4
(6.14)

𝑑𝑤2 = (𝑘𝑤2)−1 ( 𝑓 𝑤2) (6.15)

𝑀
𝑤2
𝑗

= 𝑀
𝑤2
𝑓 𝑓

+ 𝑑𝑤2
𝐸 𝐼2

𝑤2
(6.16)

𝑆𝑅𝐹𝑤2 =
𝑀
𝑤2
𝑓 𝑓

𝑀
𝑤2
𝑗

(6.17)

To demonstrate the impact of the adjustment, the values of 𝐹NGM, 𝐹SRF
NGM, and 𝑆𝑅𝐹 were solely

computed for the RHS case. The values of 𝐹𝑝𝑙 are tabulated in Tab. 6.2, while the values of 𝐹SRF
NGM and

𝑆𝑅𝐹 for R0 and R1 are presented in Tab. 6.3 and Tab. 6.4, respectively.

200



6.4 Strength reduction factor of the NGM yield force

Table 6.2: Values of 𝐹𝑁𝐺𝑀 for RHS [kN].

radius face dimension SC01 SC02 SC03 SC04

R0 L1 171.92 181.31 219.55 319.57

R0 L2 167.57 175.36 187.13 208.20

R1 L1 175.50 187.64 242.57 433.16

R1 L2 170.75 174.89 189.91 217.71

Table 6.3: Values of 𝑆𝑅𝐹 for RHS-R0.

EFM
𝐹SRF

NGM 𝑆𝑅𝐹

SC01 SC02 SC03 SC04 SC01 SC02 SC03 SC04

HR-EFM-IF-R0-L1 148.02 149.32 144.11 91.82 0.86 0.82 0.66 0.29

HR-EFM-IF-R0-L2 147.90 156.01 173.58 203.84 0.88 0.89 0.93 0.98

HR-EFM-IEq-R0-L1 143.01 145.64 155.45 171.23 0.83 0.80 0.71 0.54

HR-EFM-IEq-R0-L2 151.79 158.19 169.32 195.20 0.91 0.90 0.90 0.94

PR-EFM-IF-R0-L1 139.63 146.26 171.63 227.19 0.81 0.81 0.78 0.71

PR-EFM-IF-R0-L2 143.61 150.77 163.14 187.61 0.86 0.86 0.87 0.90

PR-EFM-IEq-R0-L1 134.22 139.73 159.78 193.14 0.78 0.77 0.73 0.60

PR-EFM-IEq-R0-L2 148.02 155.73 169.43 195.76 0.88 0.89 0.91 0.94

Table 6.4: Values of 𝑆𝑅𝐹 for RHS-R1.

EFM
𝐹SRF

NGM 𝑆𝑅𝐹

SC01 SC02 SC03 SC04 SC01 SC02 SC03 SC04

HR-EFM-IF-R1-L1 156.25 159.76 157.81 82.44 0.89 0.85 0.65 0.19

HR-EFM-IF-R1-L2 151.13 156.21 177.96 215.14 0.89 0.89 0.94 0.99

HR-EFM-IEq-R1-L1 150.89 155.97 178.34 248.95 0.86 0.83 0.74 0.57

HR-EFM-IEq-R1-L2 155.90 158.25 170.19 201.55 0.91 0.90 0.90 0.93

PR-EFM-IF-R1-L1 142.90 151.98 192.13 330.35 0.81 0.81 0.79 0.76

PR-EFM-IF-R1-L2 145.85 149.77 164.29 191.05 0.85 0.86 0.87 0.88

PR-EFM-IEq-R1-L1 136.89 144.53 176.80 264.81 0.78 0.77 0.73 0.61

PR-EFM-IEq-R1-L2 150.78 155.28 171.97 204.77 0.88 0.89 0.91 0.94
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Chapter 6. Conceptual framework for nonlinear analysis

6.5 Validation of the framework for nonlinearity

A series of nonlinear analyses were conducted on the proposed beam-to-column joint finite element

using nonlinear behavior ascribed to the tube components in OpenSees and Abaqus to verify and

validate the assumptions outlined in the preceding sections.

6.5.1 OpenSees models

The OpenSees models are described in Section 5.4.2. An exemplar OpenSees model file can be found

in Appendix F.1, while a joint definition model file for the nonlinear behavior (bilinear) can be found

in Section F.3.

The analysis was conducted for the PR-EFM-IF-R0-SC01 case. In this scenario, the behavior of

the elastic component was determined using Eqs. (5.15) to (5.17).

The nonlinear behavior was achieved by assigning a uniaxialMaterial Steel01 material type to the

tube components, which required the input of the yield strength, the initial elastic tangent, and the

strain-hardening ratio (i.e., the ratio between the post-yield tangent and initial elastic tangent) which

was assumed to be 1 h. Moreover, the analysis was carried out in displacement control.

To determine the yield strength, the maximum elastic displacement was first determined for each

column face using the following method:

𝑑A = 𝑑C =
𝐹SRF

NGM

𝑘PR-EFM-IF
comp.25 + 2 𝑘PR-EFM-IF

comp.29
(6.18)

𝑑B = 𝑑D =
𝐹SRF

NGM

𝑘PR-EFM-IF
comp.26 + 2 𝑘PR-EFM-IF

comp.29
(6.19)

Then the yielding strength of the face components is then derived as follows:

𝐹𝑦.25 = 𝐹𝑦.27 = 𝑘PR-EFM-IF
comp.25 𝑑A (6.20)

𝐹𝑦.26 = 𝐹𝑦.28 = 𝑘PR-EFM-IF
comp.26 𝑑B (6.21)

In reference to the interaction components, according to Hypothesis 2 in Section 6.2, they

should enter the plastic range simultaneously with the first adjacent face component. However,

as previously mentioned, this cannot be achieved with the current beam-to-column joint finite element

implementation. Consequently, two alternative versions are being considered:

• Version 1: The yield strength of the interaction component will be reached at the same

202



6.5 Validation of the framework for nonlinearity

deformation as that of the face component on the shorter column face (i.e., width or face

A/C).

• Version 2: The yield strength of the interaction component will be reached at the same

deformation as that of the face component on the longer column face (i.e., width or face

B/D) in the other.

This aspect leads to the following interaction components definitions:

𝐹v1
𝑦.29 = 𝐹v1

𝑦.30 = 𝐹v1
𝑦.31 = 𝐹v1

𝑦.32 = 𝑘PR-EFM-IF
comp.29

𝐹𝑦.25

𝑘PR-EFM-IF
comp.25

(6.22)

𝐹v2
𝑦.29 = 𝐹v2

𝑦.30 = 𝐹v2
𝑦.31 = 𝐹v2

𝑦.32 = 𝑘PR-EFM-IF
comp.29

𝐹𝑦.26

𝑘PR-EFM-IF
comp.26

(6.23)

Fig. 6.15 shows the nonlinear behavior used as input in OpenSees for the PR-EFM-IF-R0-SC01

case, specifically for the two face components and the interaction component. It is important to note

that the values on the vertical axis for the longer column face, as shown in Fig. 6.15(b), indicate a

lower magnitude based on the performed calculation. In each figure, vertical lines passing through the

displacements that mark the onset of post-elastic behavior are included beside the force-displacement

curves. These vertical lines will be implemented in the plots showcased in Section 6.5.4. The indices

"v1" and "v2" correspond to the previously presented versions.

6.5.2 RFEMs build with Abaqus

The validation of the results is done in comparison with RFEMs developed in Abaqus. The RFEMs

geometry, boundary condition, and mesh assignment are described in Sections 5.4.3 and the material

properties and type of analysis in Section 5.5.5.

6.5.3 Load Patterns

The LPs considered for this section are presented in Fig. 6.16.

6.5.4 Results

The results of the nonlinear analysis are shown in terms of applied force-displacement and applied

force-deformation curves for the column faces and tube components, respectively, for the LPs depicted

in Fig. 6.16. The outcomes are graphically depicted in Figs. 6.17 to 6.24 for the LP0𝑖-L1, with 𝑖 = [1,4].
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Figure 6.15: Force-deformation curves used as input in OpenSees for the PR-EFM-IF-R0-SC01 case.

Figure 6.16: Load Patterns for the nonlinear calculation.
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The figures are generated solely for relevant column faces and tube components in accordance with

the applied LP. The results for LP0𝑖-L2, with 𝑖 = [1,4] are presented in Appendix P.

Regarding the applied force-displacement curves of the column faces, four curves are presented:

(i) the bilinear idealization of the RFEM’s nonlinear curve (black continuous line: "RFEM"), (ii) the

linear elastic curve obtained from OpenSees by assigning linear elastic behavior to the components

(blue continuous curve: "el"), (iii) the curve obtained from OpenSees by deriving the interaction

component from Eq. (6.22) (green continuous line: "pl v1"), and (iv) the curve obtained from

OpenSees by deriving the interaction component from Eq. (6.23) (red dashed line: "pl v2").

In terms of the applied force-deformation curves of the tube components, the figures exhibit the

same curves as previously presented, with the exception of the one obtained from the RFEMs (i.e.,

there are no components in RFEMs). Additionally, the figures contain two vertical lines, 𝑑v1 and 𝑑v2

that were discussed in Section 6.5.1, to help identify the onset of the post-elastic behavior.

6.6 Conclusions

The case analyses presented in the preceding section demonstrate that the elastic behavior of joints

can be accurately evaluated, as evidenced in Section 5.2. Nevertheless, "pl v1" models usually

underestimate the post-yielding behavior, while "pl v2" models overestimate it.

By examining the applied force-deformation relationship of the components, it is observed that

the results for the LP01 case (Fig. 6.18 and Fig. P.2) are consistent with expectations, indicating that

both the face and interaction components enter the post-elastic range simultaneously, thus confirming

the hypothesis presented in the previous sections.

This observation is further validated by the LP04-L1 case (Fig. 6.24), where the interaction

components enter the nonlinear range concurrently with face components 26 and 28. However,

both components reach the nonlinear range earlier than anticipated (Fig. 6.24), suggesting that the

constitutive relation for face component 25 underestimates the yield force.

Accurately determining the initiation of the plastic range of the interaction components is crucial

for obtaining reasonable estimates for joints in the nonlinear range. If the interaction component enters

the plastic range before the face components, the joint’s strength is significantly underestimated (e.g.,

LP02-L1: components 31 and 32 Fig. 6.20).

However, if the boundary condition permits avoiding this situation (e.g., LP01-L1 with "pl v1" and

LP01-L2 with "pl v2"), the accuracy match between Abaqus and OpenSees is similar to the analysis

conducted in Section 6.3. This indicates that improving the definition of the yielding force of the face

components is necessary.
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Therefore, it can be concluded that an alternative procedure is required for defining the interaction

component’s yield strength. Section 7.3 offers suggestions in this regard.

Furthermore, it is evident that an elastic-perfect plastic behavior for components is inadequate,

and further investigation is necessary to model the post-yielding regime.

The presented examples demonstrate that the proposed approach provides a safe strength criterion

when the "pl v1" modeling strategy is employed for interaction components, assuming that the elastic

limit represents the maximum load allowable for the joint. Consequently, the initiation of the nonlinear

behavior of the components serves as an alternative to the strength criteria set forth in Section 5.5.

0 5 10 15 20 25

out-of-plane displacement [mm]

0

50

100

150

200

250

a
p
p
li
ed

fo
rc

e
[k

N
]

face A

RFEM el pl v1 pl v2

Figure 6.17: Force-displacement under LP01-L1.
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Figure 6.18: Force-deformation curves in the tube components under LP01-L1.
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Figure 6.19: Force-displacement under LP02-L1.
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Figure 6.20: Force-deformation curves in the tube components under LP02-L1.
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Figure 6.21: Force-displacement under LP03-L1.
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Figure 6.22: Force-deformation curves in the tube components under LP03-L1.
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Figure 6.23: Force-displacement under LP04-L1.
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Figure 6.24: Force-deformation curves in the tube components under LP04-L1.
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Chapter 7

Conclusions and future lines of investigations

7.1 Summary of the work

Modular construction has become popular due to its benefits, but this type of construction also

faces a few challenges, such as limited design flexibility and building code restrictions. Joints are

critical in achieving modular construction advantages, and plug-and-play joints have become attractive.

However, challenges such as structural integrity and compatibility need to be addressed. To capitalize

on the advantages of modular systems and plug-and-play joints but mainly to tackle the existing

challenges, the INNO3DJOINTS project [5] developed an innovative 3D plug-and-play joint system

for hybrid tubular construction.

The research presented in this manuscript originated as part of the INNO3DJOINTS project. This

system connects tubular columns with cold-formed lightweight steel truss-girders and cross-laminated

timber slabs, yielding a highly efficient structural system. Furthermore, the project involved creating,

formulating, and applying a macro-element to examine and design plug-and-play beam-to-column

joints. The work developed for this Ph.D. thesis offers an alternative macro-element for using 3D

component-based macro-element modeling for beam-to-column steel joints. The procedure utilized

in this thesis aimed to create a flexible, physically meaningful, and comprehensible approach for

designers, resulting in a more transparent model that is highly probable to be embraced by designers.

Accordingly, the current study focused on creating, developing, implementing, and calibrating a

macro-element for an innovative 3D plug-and-play joint (P&PJ) system. The macro-element comprises

three essential aspects: (i) is based on the component method, (ii) accounts for the 3D interaction

between the faces of the tubular column, and (iii) the mechanical characteristics of its components

have a clear physical meaning. The development of the macro-element was based on previous
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research [153], [154], [199], which presented experimental and numerical results demonstrating that

simultaneous loading of the different tube faces results in out-of-plane deformations that differ from

those observed when each load is applied individually to each face. This phenomenon indicates the

presence of an interaction between the tube faces.

The macro-element outlined in this document comprises connection components and tube

components, which are further divided into face and interaction components. The validation of

the macro-element involved a proof of concept validation using Refined Finite Element Model(s)

(RFEM(s)) developed in Abaqus [113]. The results were favorable, and the macro-element was

subsequently implemented in the OpenSees framework [115] as a standalone beam-to-column joint

finite element, referred to as the Inno3DPnPJoint Class [180].

The primary objective of the beam-to-column joint finite element was to simplify the design of 3D

structures, and its development was not exclusively limited to research purposes. To achieve this goal,

the incorporation of a transformation matrix into the code removed any constraints on the definition

of the joint element’s coordinates. The mathematical formulation of the element, both linear and

nonlinear, was presented, and a comprehensive user manual was provided to assist users in utilizing

the element effectively.

This study determined the mechanical properties of the proposed macro-element in the linear

regime regarding stiffness and strength. The beam-to-column joint finite element needed suitable

stiffness parameters for realistic internal force distributions and a strength criterion for evaluating the

joint’s structural safety to meet practical requirements.

The stiffness of the components was analytically defined using Equivalent Frame Models (EFMs),

also referred to as ring models in the field of research on tubular structures [154], [205]. The basic

principle underlying the use of EFMs is to represent the behavior of the tubular column in the beam-to-

column joint region through a planar frame-model, in which the frame-elements (i.e., Euler-Bernoulli

elements) represent the faces of the tube. The forces and deformations in the tube faces caused

by the interaction of the beams connected with the column are represented by forces applied in the

frame-elements and mid-span displacements of these elements, respectively.

Upon conducting a literature review, it was found that existing EFMs only consider square tubular

cross-sections, neglecting the size of the "loaded region" of the joint and the bent portion of the tube

in the interaction between the column faces [152]. To address these limitations, four EFMs were

presented: (i) the Harada frame-model for square cross-sections (HS-EFM) for 3D macro-modeling

of beam-to-column joints under cyclic loading [152]–[154], (ii) the Harada extended frame-model for

rectangular cross-sections (HR-EFM), an extension of the HS-EFM for both square and rectangular

cross-sections, (iii) the Proposed frame-model for square cross-sections (PS-EFM) that considers the
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connection’s size, suitable for the P&PJ system, and (iv) the Proposed frame-model for rectangular

cross-sections (PR-EFM), an extension of the PS-EFM for both square and rectangular cross-sections.

To assess the feasibility of incorporating equivalent stiffness parameters in the EFM while accounting

for the mutual influence of the stiffness of each face, resulting in an equivalent stiffness between both,

two scenarios were tested for rectangular cross-sections: (i) assigning each face its corresponding

moment of inertia (IF), and (ii) assigning each face the mathematical average of the moments of

inertia of the column faces (IEq). Therefore, a total of six EFMs were evaluated.

The stiffness equations for the tube components of the proposed beam-to-column joint element

were calculated in the current investigation, and the mechanical properties of the EFMs’ frame-

elements were derived from the Neves-Gomes Model (NGM) [155], [206]–[208]. Despite the NGM

primarily being focused on the out-of-plane behavior of a single-column plate, it was utilized in the

present study due to a lack of other appropriate formulations. The tube faces were considered as four

separate column plates that interact with each other.

The bending stiffness of the EFMs’ frame-elements was derived such that the frame-element

displacement coincides with the out-of-plane deformation of the column plate. The validation and

calibration of the EFMs’ effective bending stiffness were conducted using RFEMs. The validation

process entailed a parametric analysis that involved varying several parameters. Four parameters

were considered in OpenSees: the column cross-section, load pattern (LP), socket configuration (SC),

EFM type, and the impact of rounded corners (radius). In comparison, only three parameters were

altered in Abaqus: the column cross-section, LP, and SC. While improving the accuracy of the results

by adjusting the initial stiffness from the NGM was not the main focus of this study, two analytical

approaches were proposed to achieve this objective.

The strength criterion developed in this study is based on the EFM technique, and it is a global

criterion as it does not depend on assessing internal forces in any specific component. The criterion

was established by defining the equivalent bending strength for the frame-elements of the EFMs, with

the tube components of the beam-to-column joint finite element being considered structurally safe

if the bending moment in any section of the frame-elements was lower than the equivalent bending

strength. The equivalent bending strength was determined using the NGM and subsequently adjusted

through a parametric analysis using RFEMs.

The conceptual framework for modeling the nonlinear behavior of the beam-to-column joint was

investigated by analyzing the behavior of a tubular column within the joint region using RFEMs. As

tube components do not possess the same physical meaning as components in traditional nonlinear

analysis using the components method, a new strategy was established for using the macro-element’s

multiple 0D elements to account for the various deformation patterns and interactions among the
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column faces in the nonlinear regime focusing on the onset of post-yielding behavior. This involved

the use of bilinear behavior curves for the tube components. Multiple hypotheses were tested, and

the study concluded that the face component exhibited nonlinear behavior in conjunction with the

interaction components, and the onset of their inelastic regime should be simultaneous. Subsequently,

this hypothesis was validated using RFEMs, resulting in safe-sided results for identifying the beginning

of the nonlinear regime. New developments necessary for improved modeling of the nonlinear regime

were also identified.

7.2 Conclusions

The study presented in this document is a natural continuation of prior research conducted by the

author’s research group in the field of macro-modeling of beam-to-column joints. The principal

conclusions of this study may be summarized as follows:

• the proposed macro-element developed for the modeling of the innovative 3D plug-and-play

joint system has been successfully validated against RFEMs. This macro-element has been

integrated to effectively replicate the 3D deformation of tubular columns by considering the

interaction between the faces of the column;

• extending the macro-element to a beam-to-column joint finite element implemented within the

OpenSees framework was a logical progression that provides widespread accessibility to all

users. Moreover, the addition of the source code to the GitHub repository of OpenSees [180]

enables modifications and enhancements from researchers worldwide;

• the stiffness definition of the joint element’s components using the NGM approach yields

satisfactory results and may be utilized in the absence of alternative methods;

• the strength criterion defined makes the tube components of the beam-to-column joint element

deemed structurally safe;

• the nonlinearity behavior definition of the tube components is complex and requires further

research to establish a clear and straightforward procedure.

7.3 Future lines of investigation

The doctoral thesis presents a macro-model that provides significant insights into various lines of

research. Therefore, future studies may explore the following:
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• investigating the behavior of the macro-element using alternative procedures to define the

stiffness of the tube components based on their physical meaning other than EFM and/or the

NGM developed for single-loaded plates;

• conducting extensive parametric studies to examine the impacts of socket height and column

thickness, both within and beyond the bounds of the NGM;

• conducting 3D analysis on full structures with the beam-column joint finite element to assess

improvement needs.

Furthermore, potential improvements to the beam-to-column joint finite element can be achieved

through the following means:

• incorporating the nonlinear behavior of the interaction components dependent on the nonlinear

behavior of the face components by modifying the interaction components to be defined within

the source code rather than relying on user input;

• developing extended versions of the macro-element to account for the possibility of uncoupled

movement of each socket part, particularly in situations where minor bending moments in

truss-girders occur and no slab is present to absorb the minor bending moments;

• designing a user-friendly interface that directly defines the mechanical properties of the

components based on the joint geometry and the mechanical characteristics of the steel,

eliminating the need for post-processing work to compute the mechanical properties of

components;

• utilizing, developing, and comparing various advanced material models for the behavior of the

components.

As the study of beam-to-column joints in structures continues to advance, numerous potential areas

remain for future investigation. These include exploring the ideas suggested previously, as well as other

possible lines of inquiry. Such endeavors could yield more reliable and precise models for simulating

joint behavior, thereby enhancing the comprehension of these critical structural elements. Through the

pursuit of these research paths, scholars can push the limits of the field, promote knowledge growth,

and contribute to the creation of safer and more resilient structures.
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Appendix A: P&PJ’s components under tension and/or

compression

The computation of the strength and stiffness of the components identified for the INNO3DJOINTS

plug-and-play joint system [5], specifically in the simplest configuration of the P&PJ where a single

truss-girder is connected to the column and subjected to tension or compression forces [197], are

thoroughly presented hereinafter.

A.1 Column side wall

A.1.1 Strength

The strengths of the column side wall under tensile and compressive forces are determined according

to [213], as shown in Fig. A.1. This method is planned to be used in the next revision of Eurocode 3

Part 1-8 (see the latest draft [214]).

The design resistance against tensile force, 𝑁𝑡,𝑐𝑠𝑤, for the column side wall is:

𝑁𝑡,𝑐𝑠𝑤 =
2 𝑓𝑦0 𝑡0 𝑏𝑤 𝑄 𝑓

𝛾𝑀0
(A.1)

The effective breadth, 𝑏𝑤, for the side wall failure in tension is:

𝑏𝑤 = ℎ𝑠 + 5 𝑡0 (A.2)

The chord stress factor, 𝑄 𝑓 , for the side wall failure in tension is:

𝑄 𝑓 = (1− |𝑛|)𝐶1 (A.3)

with:

𝑛 =
𝑁0

𝑁𝑝𝑙,0
+ 𝑀0

𝑀𝑝𝑙,0
(A.4)
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Figure A.1: Column side wall under tensile or compressive force.

and

𝐶1 =


0.1 , 0 ≤ 𝑛 (tension)

0.6 − 𝑏𝑠

𝑏0
, 𝑛 < 0 (compression)

(A.5)

where:

𝑁0 = axial force in the column (tension > 0).

𝑁𝑝𝑙,0 = axial plastic strength of the column.

𝑀0 = bending moment in the column.

𝑀𝑝𝑙,0 = bending moment strength of the column.

The design resistance against compressive force, 𝑁𝑐,𝑠𝑤 , for the column side wall is:

𝑁𝑐,𝑐𝑠𝑤 =
2 𝑘𝑐𝑥 𝜒 𝑓𝑦0 𝑡0 𝑏𝑤 𝑄 𝑓

𝛾𝑀1
(A.6)

where:
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𝑘𝑐𝑥 = correction factor equal to 0.8 if a socket is also provided on the column face opposite to

the analyzed socket, and equal to 1.0 if not.

𝜒 = reduction factor in accordance with [215] considering the curve ”𝑐” (𝛼 = 0.49), and the

following relative slenderness:

𝜆̄ = 3.46

ℎ0

𝑡0
− 2

𝜋

√︄
𝐸

𝑓𝑦0

(A.7)

A.1.2 Stiffness

The stiffness of the column side wall under tensile or compressive forces is determined according to

reference [216]. A stiffness factor equal to the component’s stiffness divided by the steel’s elasticity

modulus is used, as in Eurocode 3 Part 1-8 [28].

The stiffness factor, 𝑘𝑐𝑠𝑤 , for the column side wall is:

𝑘𝑐𝑠𝑤 = 2
0.7 𝑏𝑤 𝑡0

ℎ0
(A.8)

A.2 Column face

A.2.1 Strength

The strengths of the column face under tensile and compressive forces are determined according to

reference [213]. This method is planned to be used in the next revision of Eurocode 3 Part 1-8 (see

the last draft [214]). Two failure modes are considered for this component, as presented in Fig. A.2:

(a) face plastification under bending

(b) face failure by punching shear

(a) Face plastification under bending:
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(a) Face plastification under bending (b) Face failure by punching shear

Figure A.2: Column face under tensile or compressive force.

The design resistance against tensile force, 𝑁𝑡,𝑐𝑏, for the column face plastification in bending is:

𝑁𝑡,𝑐𝑏 =
𝑄𝑢 𝑄 𝑓 𝑓𝑦0 𝑡

2
0

𝛾𝑀0
(A.9)

with 𝑄 𝑓 defined by Eq. (A.3).

The mechanism factor, 𝑄𝑢, for the face plastification is:

𝑄𝑢 =

(
2 𝜂

1 − 𝛽
+ 4√︁

1 − 𝛽

)
(A.10)

The design resistance against compressive force, 𝑁𝑐,𝑐𝑏, for the column face plastification in

bending has the same value:

𝑁𝑐,𝑐𝑏 = 𝑁𝑡,𝑐𝑏 (A.11)

(b) Face failure by punching shear:

The design resistance against tensile force, 𝑁𝑡,𝑐𝑝𝑠, for the column face in punching shear is:

𝑁𝑡,𝑐𝑝𝑠 =
𝑓𝑦0√

3 𝛾𝑀0
𝑡0𝑙𝑝,𝑒 𝑓 𝑓 (A.12)

The effective length, 𝑙𝑝,𝑒 𝑓 𝑓 , for the face in punching shear is:

𝑙𝑝,𝑒 𝑓 𝑓 = 2 ℎ𝑠 (A.13)

The design resistance against compressive force, 𝑁𝑐,𝑐𝑝𝑠, for the column face failure in punching

shear has the same value:

𝑁𝑐,𝑐𝑝𝑠 = 𝑁𝑡,𝑐𝑝𝑠 (A.14)
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Figure A.3: Calculation model for tubular section [197].

A.2.2 Stiffness

(a) Face deformation under bending

An approach to macro-modeling of 3D tubular column-to-beam joint has been presented previously

[152], [216]. The cross-section of the SHS column is modeled by a square plane rigid frame with

four identical members (same length and same flexural stiffness). The cross-section is simply

supported at its four corners. It is loaded concentrically at the center of only one column face.

The out-of-plane deformation of the four column faces is then derived.

This strategy is adopted in the current project but for a more general case where the RHS cross-

section is loaded by two symmetrically concentrated forces at each column face due to the geometry

of the socket (Fig. A.3). Each load is applied over a rectangular of dimensions ℎ𝑠 𝑥 𝑡𝑠, where:

ℎ𝑠 and 𝑡𝑠 are the length and thickness of the socket, respectively (Fig. A.6). The center of the

rectangle is located at 𝜉 = (𝑏𝑠 − 𝑡𝑠)/2 from the axis of the column face where: 𝑏𝑠 is the socket

width (Fig. A.7). Since only one type of socket is used for all the column faces, parameters ℎ𝑠, 𝑡𝑠,

𝜉 are the same for all the column faces.

When the cross-section is only loaded at face 1, the out-of-plane displacements of the four column

sides at the load application point (𝑥 = 𝑎/2 and 𝑦 = 𝜉) in Fig. A.4 are determined by:

𝛿1 = 𝑏1 𝑃1

𝛿2 = 𝛿4 = 𝑏2 𝑃1 (A.15)
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Figure A.4: Face of the tubular column [197].

𝛿3 = 𝑏3 𝑃1

where:

𝑏1 =
1
ℎ𝑠 𝑡𝑠

9∑︁
𝑚=1,3,...

{
𝑎𝑚 +

[
𝐴+𝑚 + 𝐴−𝑚,𝑟 +

(
𝐷+
𝑚 + 𝐷−

𝑚,𝑟

)
𝛾𝑚 − 𝛼𝑚 tanh 𝛼𝑚 𝐵(1)

𝑚

]
cosh 𝛾𝑚 + . . .

. . . +
[(
𝐵+
𝑚 + 𝐵−

𝑚,𝑟 + 𝐵
(1)
𝑚

)
𝛾𝑚 + 𝐶+

𝑚 + 𝐶−
𝑚,𝑟

]
sinh 𝛾𝑚

}
sin(0.5 𝑚 𝜋)

𝑏2 =
1
ℎ𝑠 𝑡𝑠

9∑︁
𝑚=1,3,...

[
𝐵
(2)
𝑚 ( 𝛾𝑚 sinh 𝛾𝑚 − 𝛽𝑚 tanh 𝛽𝑚 cosh 𝛾𝑚 )

]
sin(𝑚 𝜋 (0.5 − 𝑑))

𝑏3 =
1
ℎ𝑠 𝑡𝑠

9∑︁
𝑚=1,3,...

[
𝐵
(3)
𝑚 ( −𝛼𝑚 tanh 𝛼𝑚 cosh 𝛾𝑚 + 𝛾𝑚 sinh 𝛾𝑚 )

]
sin(0.5 𝑚 𝜋)

with:

𝛼 = is a length parameter, defined by: 𝑎 = max {5 𝑑 𝑐𝑥;5 𝑑 𝑐𝑧}.

𝑑 = is a length parameter, defined by: 𝑑 = |𝑑 𝑏𝑥 − 𝑑 𝑏𝑧 | /𝑎, but with 𝑑 ≤ 0.5.

𝐴+𝑚 =
𝑎𝑚

4 cosh2 𝛼𝑚

{
cosh 𝛼𝑚

[
−𝛾+𝑚,𝑝 sinh

(
𝛼𝑚 − 𝛾+𝑚,𝑝

)
− 2 cosh

(
𝛼𝑚 − 𝛾+𝑚,𝑝

)
+ . . .

. . . + 𝛾+𝑚,𝑚 sinh
(
𝛼𝑚 + 𝛾+𝑚,𝑚

)
− 2 cosh

(
𝛼𝑚 + 𝛾+𝑚,𝑚

) ]
+ . . .

. . . + 𝛼𝑚

(
sinh 𝛾+𝑚,𝑚 − sinh 𝛾+𝑚,𝑝

)}
𝐵+
𝑚 =

𝑎𝑚

4 cosh 𝛼𝑚

[
cosh

(
𝛼𝑚 − 𝛾+𝑚,𝑝

)
+ cosh

(
𝛼𝑚 + 𝛾+𝑚,𝑚

) ]
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𝐶+
𝑚 =

𝑎𝑚

4 sinh2 𝛼𝑚

{
sinh 𝛼𝑚

[
−𝛾+𝑚,𝑝 sinh

(
𝛼𝑚 − 𝛾+𝑚,𝑝

)
− 2 cosh

(
𝛼𝑚 − 𝛾+𝑚,𝑝

)
− . . .

. . . − 𝛾+𝑚,𝑚 sinh
(
𝛼𝑚 + 𝛾+𝑚,𝑚

)
+ 2 cosh

(
𝛼𝑚 + 𝛾+𝑚,𝑚

) ]
+ . . .

. . . + 𝛼𝑚

(
cosh 𝛾+𝑚,𝑚 − cosh 𝛾+𝑚,𝑝

) }
𝐷+
𝑚 =

𝑎𝑚

4 sinh 𝛼𝑚

[
cosh

(
𝛼𝑚 − 𝛾+𝑚,𝑝

)
− cosh

(
𝛼𝑚 + 𝛾+𝑚,𝑚

) ]

𝐴±𝑚,𝑟 =
𝑎𝑚

4 cosh2 𝛼𝑚

{
cosh 𝛼𝑚

[
−𝛾±𝑚,𝑝 sinh

(
𝛼𝑚 + 𝛾±𝑚,𝑝

)
+ 2 cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑝

)
+ . . .

. . . + 𝛾±𝑚,𝑚 sinh
(
𝛼𝑚 + 𝛾±𝑚,𝑚

)
− 2 cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑚

) ]
+ . . .

. . . + 𝛼𝑚

(
sinh 𝛾±𝑚,𝑚 − sinh 𝛾±𝑚,𝑝

)}
𝐵±
𝑚,𝑟 =

𝑎𝑚

4 cosh 𝛼𝑚

[
−cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑝

)
+ cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑝

)]
𝐶±
𝑚,𝑟 =

𝑎𝑚

4 sinh2 𝛼𝑚

{
sinh 𝛼𝑚

[
𝛾±𝑚,𝑝 sinh

(
𝛼𝑚 + 𝛾±𝑚,𝑝

)
− 2 cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑝

)
− . . .

. . . − 𝛾±𝑚,𝑚 sinh
(
𝛼𝑚 + 𝛾±𝑚,𝑚

)
+ 2 cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑚

) ]
+ . . .

. . . + 𝛼𝑚
(

cosh 𝛾±𝑚,𝑚 − cosh 𝛾±𝑚,𝑚
)}

𝐷±
𝑚,𝑟 =

𝑎𝑚

4 sinh 𝛼𝑚

[
cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑝

)
− cosh

(
𝛼𝑚 + 𝛾±𝑚,𝑚

) ]
with:

𝛼𝑚 =
𝑚 𝜋 𝑑𝑐𝑋

2 𝑎

𝛽𝑚 =
𝑚 𝜋 𝑑𝑐𝑍

2 𝑎

𝛾𝑚 =
𝑚 𝜋 𝜉

𝑎

𝑎𝑚 =
4 𝑎4

𝜋5 𝐷 𝑚5 (−1)
𝑚−1

2 sin
𝑚 𝜋 𝑢

2 𝑎

𝐷 =
𝐸 𝑡3

12
(

1 − 𝑣2 )
𝑣 = 0.3
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𝛾±𝑚,𝑚 =
( ±2 𝜉 − 𝜈) 𝑚 𝜋

2 𝑎

𝛾±𝑚,𝑝 =
( ±2 𝜉 + 𝜈) 𝑚 𝜋

2 𝑎

𝐵
(1)
𝑚 =

𝑑𝑚,11
[
𝑑𝑚,22

(
𝑑𝑚,14 𝑑𝑚,23 + 𝑑𝑚,13 𝑑𝑚,24

)
− 2 𝑑𝑚,23 𝑑𝑚,12 𝑑𝑚,24

]
2

(
𝑑𝑚,13 𝑑𝑚,22 − 𝑑𝑚,23 𝑑𝑚,12

) (
𝑑𝑚,14 𝑑𝑚,22 − 𝑑𝑚,12 𝑑𝑚,24

)
𝐵
(2)
𝑚 =

𝑑𝑚,11 𝑑𝑚,22

2
(
𝑑𝑚,13 𝑑𝑚,22 − 𝑑𝑚,23 𝑑𝑚,12

)
𝐵
(3)
𝑚 =

𝑑𝑚,11 𝑑𝑚,22
(
𝑑𝑚,14 𝑑𝑚,23 − 𝑑𝑚,13 𝑑𝑚,24

)
2

(
𝑑𝑚,13 𝑑𝑚,22 − 𝑑𝑚,23 𝑑𝑚,12

) (
𝑑𝑚,14 𝑑𝑚,22 − 𝑑𝑚,12 𝑑𝑚,24

)
𝐶

(2)
𝑚 =

𝑑𝑚,11 𝑑𝑚,22

2
(
𝑑𝑚,14 𝑑𝑚,22 − 𝑑𝑚,12 𝑑𝑚,24

)
𝑑𝑚,12 = sinh 𝛼𝑚 + 𝛼𝑚

cosh 𝛼𝑚

𝑑𝑚,13 = −sinh 𝛽𝑚 − 𝛽𝑚

cosh 𝛽𝑚

𝑑𝑚,14 =
1

cosh 𝛽𝑚
− sinh 𝛽𝑚

𝛽𝑚

𝑑𝑚,22 = 2 cosh 𝛼𝑚

𝑑𝑚,23 = 2 cosh 𝛽𝑚

𝑑𝑚,24 =
2
𝛽𝑚

sinh2 𝛽𝑚

cosh 𝛽𝑚

When the cross-section is only loaded at face 3, the out-of-plane displacements of the four column

sides at the load application point (𝑥 = 𝑎/2 and 𝑦 = 𝜉) are determined by:

𝛿3 = 𝑏1 𝑃3

𝛿2 = 𝛿4 = 𝑏2 𝑃3 (A.16)

𝛿1 = 𝑏3 𝑃3

When the cross-section is only loaded at face 2, the out-of-plane displacements of the four column
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A.2 Column face

sides at the load application point (𝑥 = 𝑎/2 and 𝑦 = 𝜉) are determined by:

𝛿2 = ℎ1 𝑃2

𝛿1 = 𝛿3 = ℎ2 𝑃2 (A.17)

𝛿4 = ℎ3 𝑃2

where:

𝛼𝑚 =
𝑚 𝜋 𝑑𝑐𝑍

2 𝑎

𝛽𝑚 =
𝑚 𝜋 𝑑𝑐𝑋

2 𝑎

ℎ1 =
1
ℎ𝑠 𝑡𝑠

9∑︁
𝑚=1,3,...

{
𝑎𝑚 +

[
𝐴+𝑚 + 𝐴−𝑚,𝑟 +

(
𝐷+
𝑚 + 𝐷−

𝑚,𝑟

)
𝛾𝑚 − 𝛼𝑚 tanh 𝛼𝑚 𝐵(1)

𝑚

]
cosh 𝛾𝑚 + . . .

. . . +
[(
𝐵+
𝑚 + 𝐵−

𝑚,𝑟 + 𝐵
(1)
𝑚

)
𝛾𝑚 + 𝐶+

𝑚 + 𝐶−
𝑚,𝑟

]
sinh 𝛾𝑚

}
sin(0.5 𝑚 𝜋)

ℎ2 =
1
ℎ𝑠 𝑡𝑠

9∑︁
𝑚=1,3,...

[
𝐵
(2)
𝑚 ( 𝛾𝑚 sinh 𝛾𝑚 − 𝛽𝑚 tanh 𝛽𝑚 cosh 𝛾𝑚 )

]
sin(𝑚 𝜋 (0.5 − 𝑑))

ℎ3 =
1
ℎ𝑠 𝑡𝑠

9∑︁
𝑚=1,3,...

[
𝐵
(3)
𝑚 ( −𝛼𝑚 tanh 𝛼𝑚 cosh 𝛾𝑚 + 𝛾𝑚 sinh 𝛾𝑚 )

]
sin(0.5 𝑚 𝜋)

When the cross-section is only loaded at face 4, the out-of-plane displacements of the four column

sides at the load application point (𝑥 = 𝑎/2 and 𝑦 = 𝜉) are determined by:

𝛿4 = ℎ1 𝑃4

𝛿1 = 𝛿3 = ℎ2 𝑃4 (A.18)

𝛿2 = ℎ3 𝑃4

By superposing the solutions from Eqs. (A.15) to (A.18) for all column faces, we obtain the

following matrix equation that describes the interaction among out-of-plane force-deformation
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Appendix A. P&PJ’s components under tension and/or compression

relationships of four column faces:



𝛿1

𝛿3

𝛿2

𝛿4


=



𝑏1 𝑏3 ℎ2 ℎ2

𝑏3 𝑏1 ℎ2 ℎ2

𝑏2 𝑏2 ℎ1 ℎ3

𝑏2 𝑏2 ℎ3 ℎ1





𝑃1

𝑃3

𝑃2

𝑃4


= D



𝑃1

𝑃3

𝑃2

𝑃4


(A.19)

It can be rewritten as follows:



𝑃1

𝑃3

𝑃2

𝑃4


= K



𝛿1

𝛿3

𝛿2

𝛿4


=



𝑘𝑏1 𝑘𝑏3 𝑘ℎ2 𝑘ℎ2

𝑘𝑏3 𝑘𝑏1 𝑘ℎ2 𝑘ℎ2

𝑘𝑏2 𝑘𝑏2 𝑘ℎ1 𝑘ℎ3

𝑘𝑏2 𝑘𝑏2 𝑘ℎ3 𝑘ℎ1





𝛿1

𝛿3

𝛿2

𝛿4


(A.20)

Where: K = D−1 is the stiffness matrix:

𝑘𝑏1 =
2 𝑏2 ℎ2 − 𝑏1 (ℎ1 + ℎ3 )

(𝑏1 − 𝑏3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]

𝑘𝑏3 =
𝑏3 (ℎ1 + ℎ3) − 2 𝑏2 ℎ2

(𝑏1 − 𝑏3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]

𝑘𝑏2 =
𝑏2

4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)
(A.21)

𝑘ℎ1 =
2 𝑏2 ℎ2 − ℎ1 (𝑏1 + 𝑏3)

(ℎ1 − ℎ3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]

𝑘ℎ3 =
ℎ3 (𝑏1 + 𝑏3) − 2 𝑏2 ℎ2

(ℎ1 − ℎ3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]

𝑘ℎ2 =
ℎ2

4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)

It can be observed that the matrix K is not symmetrical. The interaction between two axes is

represented by the terms 𝐾1,3 and 𝐾3,1. Since 𝐾1,3 ≠ 𝐾3,1, this interaction cannot be modeled

by a spring. However, when multiplying two displacement components 𝛿2 and 𝛿4 with ℎ2/𝑏2 the
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A.2 Column face

matrix equation Eq. (A.19) becomes:



𝛿1

𝛿3

𝛿2 (ℎ2/𝑏2)

𝛿4 (ℎ2/𝑏2)


=



𝛿1

𝛿3

𝛿2

𝛿4


=



𝑏1 𝑏3 ℎ2 ℎ2

𝑏3 𝑏1 ℎ2 ℎ2

ℎ2 ℎ2 ℎ1ℎ2/𝑏2 ℎ3ℎ2/𝑏2

ℎ2 ℎ2 ℎ3ℎ2/𝑏2 ℎ1ℎ2/𝑏2





𝑃1

𝑃3

𝑃2

𝑃4


= D̄



𝑃1

𝑃3

𝑃2

𝑃4


It can be observed that the new flexibility matrix [𝐷̄]] is a symmetrical one. The matrix equation

becomes:



𝑃1

𝑃3

𝑃2

𝑃4


= K̄



𝛿1

𝛿3

𝛿2

𝛿4


=



𝑘̄𝑏1 𝑘̄𝑏3 𝑘̄ℎ2 𝑘̄ℎ2

𝑘̄𝑏3 𝑘̄𝑏1 𝑘̄ℎ2 𝑘̄ℎ2

𝑘̄𝑏2 𝑘̄𝑏2 𝑘̄ℎ1 𝑘̄ℎ3

𝑘̄𝑏2 𝑘̄𝑏2 𝑘̄ℎ3 𝑘̄ℎ1





𝛿1

𝛿3

𝛿2

𝛿4


(A.22)

where:

𝑘̄𝑏1 = 𝑘𝑏1 =
2 𝑏2 ℎ2 − 𝑏1 (ℎ1 + ℎ3)

(𝑏1 − 𝑏3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]

𝑘̄𝑏3 = 𝑘𝑏3 =
𝑏3 (ℎ1 + ℎ3) − 2 𝑏2 ℎ2

(𝑏1 − 𝑏3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]

𝑘̄𝑏2 = 𝑘𝑏2 =
𝑏2

4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)
(A.23)

𝑘̄ℎ1 = 𝑘ℎ1
𝑏2

ℎ2
=

2 𝑏2 ℎ2 − ℎ1 (𝑏1 + 𝑏3)
(ℎ1 − ℎ3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]

𝑏2

ℎ2

𝑘̄ℎ3 = 𝑘ℎ3
𝑏2

ℎ2
=

ℎ3 (𝑏1 + 𝑏3) − 2 𝑏2 ℎ2

(ℎ1 − ℎ3) [4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)]
𝑏2

ℎ2

𝑘̄ℎ2 = 𝑘ℎ2
𝑏2

ℎ2
=

𝑘𝑏2

4 𝑏2 ℎ2 − (𝑏1 + 𝑏3) (ℎ1 + ℎ3)

Finally, the equation may be modeled by a system of springs as presented in Fig. A.5 where the
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Appendix A. P&PJ’s components under tension and/or compression

Figure A.5: Springs model [197].

stiffness of springs is given by:

𝑘𝑥1 = 𝑘̄𝑏1 − 𝑘̄𝑏3 − 2 𝑘𝑥𝑧 (sin𝛼)2

𝑘𝑥3 = 𝑘̄𝑏3 𝑘̄ℎ2 =
𝑘̄𝑏2

sin𝛼 cos𝛼
(A.24)

𝑘𝑥𝑧 =
sin𝛼 cos𝛼

𝑘𝑧1
= 𝑘̄ℎ1 − 𝑘̄ℎ3 − 2 𝑘𝑥𝑧 (cos𝛼)2

𝑘𝑥3 = 𝑘̄ℎ3

where:

(sin𝛼)2 =
𝑏2

𝑏2 + ℎ2

and

(cos𝛼)2 =
ℎ2

𝑏2 + ℎ2

In order to check if the matrix Eq. (A.22) may be obtained from the springs model, a concentrated

force 𝑃𝑖 is applied at the node 𝑖 of the model. The obtained displacement of the node 𝑖 is 𝛿𝑖.

Forces in springs that are connected to node 1 are calculated as follows:
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A.3 Welds between column and socket

Spring 𝑘𝑥1 : 𝑘𝑥1𝛿1

Spring 𝑘𝑥3 : 𝑘𝑥3
(
𝛿1 + 𝛿3

)
Spring 𝑘𝑥𝑧 (top) : 𝑘𝑥𝑧

(
𝛿2 cos𝛼 + 𝛿1 sin𝛼

)
Spring 𝑘𝑥𝑧 (bottom) : 𝑘𝑥𝑧

(
𝛿4 cos𝛼 + 𝛿1 sin𝛼

)

The total horizontal force at node 1 is:

𝑃1 = 𝑘𝑥1 𝛿1 + 𝑘𝑥3
(
𝛿1 + 𝛿3

)
+ 𝑘𝑥𝑧

(
𝛿2 cos𝛼 + 𝛿1 sin𝛼

)
sin𝛼 + 𝑘𝑥𝑧

(
𝛿4 cos𝛼 + 𝛿1 sin𝛼

)
sin𝛼

⇒ 𝑃1 =
[
𝑘̄𝑏1 − 𝑘̄𝑏3 − 2 𝑘𝑥𝑧 (sin𝛼)2] 𝛿1 + 𝑘̄𝑏3

(
𝛿1 + 𝛿3

)
+

[
(𝑘𝑥𝑧 cos𝛼 sin𝛼) 𝛿2 + . . .

. . . 𝑘𝑥𝑧 (sin𝛼)2 𝛿1
]
+

[
(𝑘𝑥𝑧 cos𝛼 sin𝛼) 𝛿4 + 𝑘𝑥𝑧 (sin𝛼)2 𝛿1

]
⇒ 𝑃1 = 𝑘̄𝑏1 𝛿1 + 𝑘̄𝑏3 𝛿3 + 𝑘̄ℎ2 𝛿2 + 𝑘̄ℎ2 𝛿4

The above equation is exactly the first row of the matrix Eq. (A.22). The same equations for the

other nodes can be easily obtained in the same way.

(b) Punching shear The stiffness of the column face in punching shear is taken as infinity:

𝑘𝑐𝑝𝑠 = ∞ (A.25)

A.3 Welds between column and socket

A.3.1 Strength

The strengths of the socket welds on the column under tensile and compressive forces are determined

according to Eurocode 3 Part 1-8 [28], and the latest draft of the revision [214] (simplified method).

The design resistance against tensile or compressive force, 𝑁𝑡,𝑤 or 𝑁𝑐,𝑤, for the welds is:

𝑁𝑡,𝑤 = 𝑁𝑐,𝑤 = 𝐿𝑤 𝑎𝑤
𝑓𝑢√

3 𝛽𝑤 𝛾𝑀2
(A.26)

with:
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Appendix A. P&PJ’s components under tension and/or compression

𝑓𝑢 = ultimate tensile strength in tension of the lower welded steel grade ( 𝑓𝑢0 for the column

or 𝑓𝑢𝑠 for the socket).

𝛽𝑤 = correlation factor depending on the lower welded steel grade (column or socket), see

[28] or [214].

The weld length, 𝐿𝑤, between the socket and the column is:

𝐿𝑤 = 2 (ℎ𝑠 − 2𝑎𝑤) (A.27)

A.3.2 Stiffness

The stiffness factor of the welds is taken as infinity [28] or [214]:

𝑘𝑤 = ∞ (A.28)

A.4 Socket

A.4.1 Strength

(a) Socket in bending

The design resistance of the socket in bending against tensile force, 𝑁𝑡,𝑠𝑏, is:

𝑁𝑡,𝑠𝑏 =
4 𝑀𝑝𝑙,𝑠

𝑚𝑠

=
𝑡2𝑠 ℎ𝑠 𝐶𝑠ℎ,𝑠 𝑓𝑦𝑠

𝑚𝑠 𝛾𝑀0
(A.29)

with:

𝑚𝑠 = socket lever arm in bending, as shown in Fig. A.6

𝑀𝑝𝑙,𝑠 = plastic moment in the socket, defined as follows:

𝑀𝑝𝑙,𝑠 =
𝑡2𝑠 ℎ𝑠𝐶𝑠ℎ,𝑠 𝑓𝑦𝑠

4𝛾𝑀0
(A.30)

with:
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A.4 Socket

Figure A.6: Symbols for the socket’s strength and stiffness [197].

𝐶𝑠ℎ,𝑠 = coefficient accounting of the strain hardening in the socket, according to WP3 results:

𝐶𝑠ℎ,𝑠 = 3

The design resistance against compressive force, 𝑁𝑐,𝑠𝑏, for the socket in bending has the same

value:

𝑁𝑐,𝑠𝑏 = 𝑁𝑡,𝑠𝑏 (A.31)

(b) Socket gross and net section

The design resistance of the socket gross section against tensile force, 𝑁𝑡,𝑠𝑔, is:

𝑁𝑡,𝑠𝑔 =
2 𝑡𝑠 ℎ𝑠 𝑓𝑦𝑠
𝛾𝑀0

(A.32)

The characteristic resistance against compressive force, 𝑁𝑐,𝑠𝑔, for the socket gross section has the

same value:

𝑁𝑐,𝑠𝑔 = 𝑁𝑐,𝑠𝑔 (A.33)

The design resistance of the socket net section against tensile force, 𝑁𝑡,𝑠𝑢, is:

𝑁𝑡,𝑠𝑢 = 2 · 0.9 𝑡𝑠
(
ℎ𝑠 − 𝑛𝑏 𝑑0,𝑠

) 𝑓𝑢𝑠

𝛾𝑀2
(A.34)

with:
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Appendix A. P&PJ’s components under tension and/or compression

𝑑0,𝑠 = hole diameter

This failure mode is not relevant under compressive force:

𝑁𝑐,𝑠𝑢 = ∞ (A.35)

A.4.2 Stiffness

(a) Socket in bending

The stiffness of the socket in bending is defined with a similar formulation as the equivalent T-stub

[214], with a specific correction factor.

The stiffness factor, 𝑘𝑠𝑏, for the socket in bending:

𝑘𝑠𝑏 = 𝐶𝑠𝑏
ℎ𝑠 𝑡𝑠

3

𝑚3
𝑠

(A.36)

with:

𝐶𝑠𝑏 = correction factor for INNO3DJOINTS socket in bending, according to WP3 results:

𝐶𝑠𝑏 = 1

(b) Socket elongation/contraction

The stiffness of the socket gross section in tension or compression is defined with a similar formula

as the equivalent T-stub in [3], with a specific correction factor.

The stiffness factor, 𝑘𝑠𝑔, for the socket gross section:

𝑘𝑠𝑔 = 𝐶𝑠𝑔
ℎ𝑠 𝑡𝑠

𝑑𝑠
(A.37)

with:

𝐶𝑠𝑔 = correction factor for INNO3DJOINTS socket in tension, according to WP3 results:

𝐶𝑠𝑔 = 1

𝑑𝑠 = socket depth from the bolt axis to the weld on the column, as shown in Fig. A.6
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A.5 Bearing in the socket

A.5 Bearing in the socket

A.5.1 Strength

The strengths of the bolt in bearing are determined according to the latest draft of the next revision of

Eurocode 3 Part 1-8 [214].

The design resistance against tensile or compressive force, 𝑁𝑡,𝑏𝑏 or 𝑁𝑐,𝑏𝑏, for the bolt in bearing

is:

𝑁𝑏𝑏 = 2 𝑛𝑏 𝐹𝑏,𝑅𝑑 (A.38)

The design resistance of one bolt in bearing, 𝐹𝑏𝑅𝑑 , is:

𝐹𝑏,𝑅𝑑 =
𝑘𝑚 𝛼𝑏 𝑓𝑢 𝑑 𝑡

𝛾𝑀2
(A.39)

with:

𝑘𝑚 = factor equal to 0.9 for steel grades equal or greater than S460, and equal to 1.0 otherwise.

𝑓𝑢 = nominal ultimate strength in tension of the steel grade ( 𝑓𝑢 = 𝑓𝑢𝑠 in the socket)

𝑡 = thickness of the material (𝑡 = 𝑡𝑠 in the socket)

The 𝛼𝑏 factor is currently defined by the following [214]:

for end bolts ⇒ 𝛼𝑏 = min
{
𝑒1

𝑑0
; 3

𝑓𝑢𝑏

𝑓𝑢
; 3

}
for inner bolts ⇒ 𝛼𝑏 = min

{
𝑝1

𝑑0
− 1

2
; 3

𝑓𝑢𝑏

𝑓𝑢
; 3

}
(A.40)

with:

𝑑0 = hole diameter (𝑑0 = 𝑑0,𝑠 in the socket).

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = ∞ for the socket)

For the bolt bearing in the socket, the edge distance, 𝑒1, in the direction of the force is the distance

shown in Fig. A.7 (𝑒1,𝑠) for tensile force, and 𝑒1 = ∞ for compressive force.
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Appendix A. P&PJ’s components under tension and/or compression

Figure A.7: Edge distance 𝑒1 for the socket under tensile force [197].

A.5.2 Stiffness

The bearing bolt’s stiffness is determined in accordance with the Eurocode 3 Part 1-8 method, using

a stiffness factor that divides the component’s stiffness by the steel’s elasticity modulus [214].

The stiffness factor, 𝑘𝑏𝑏, for the bolts in bearing:

𝑘𝑏𝑏 =
2 𝑆𝑏 𝑛𝑏 𝑡 𝑓𝑢

𝐸
(A.41)

with:

𝑆𝑏 = relative (non-dimensional) bearing stress. For the sake of simplicity, the constant value

𝑆𝑏 = 12 is considered, see [214].

A.6 Bolt between the socket and the T-plug in shear

A.6.1 Strength

The strength of the bolts in shear is determined according to Eurocode 3 Part 1-8 [28], and the last

draft of the next revision [214] (same methods). The design resistance against tensile or compressive

force, 𝑁𝑡,𝑏𝑠 or 𝑁𝑐,𝑏𝑠, for the bolt in shear is:

𝑁𝑏𝑠 = 𝑛𝑏 𝐹𝑣,𝑅𝑑 (A.42)

with:
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A.7 Bearing in the T-plug

𝑛𝑏 = number of bolts

The design resistance of one bolt in shear, 𝐹𝑣,𝑅𝑑 , is:

𝐹𝑣,𝑅𝑑 =
𝛼𝑣 𝑓𝑢𝑏 𝐴𝑠

𝛾𝑀2
(A.43)

with:

𝛼𝑣 = factor equal to 0.6 for property classes 4.6, 5.6, or 8.8, and 0.5 otherwise

𝐴𝑠 = tensile stress area of the bolt

A.6.2 Stiffness

The stiffness of the bolts in shear is determined according to Eurocode 3 Part 1-8 [28], and the last

draft of the next revision [214] (same methods). A stiffness factor equal to the component’s stiffness

divided by the steel’s elasticity modulus is used, as in Eurocode 3 Part 1-8 method [28].

The stiffness factor, 𝑘𝑏𝑠, for the bolts in shear:

𝑘𝑏𝑠 =
16 𝑛𝑏 𝑑2 𝑓𝑢𝑏

𝐸 𝑑𝑀16
(A.44)

with:

𝑑𝑀16 = nominal diameter of an M16 bolt

A.7 Bearing in the T-plug

As in Section A.5, with:

𝑁𝑏𝑏 = 𝑛𝑏 𝐹𝑏,𝑅𝑑 (A.45)

𝑘𝑏𝑏 =
𝑆𝑏 𝑛𝑏 𝑡 𝑓𝑢

𝐸
(A.46)

where:
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Appendix A. P&PJ’s components under tension and/or compression

𝑓𝑢 = nominal ultimate stress in tension of the steel grade ( 𝑓𝑢 = 𝑓𝑢𝑇 in T-plug)

𝑡 = thickness of the material (𝑡 = 𝑡𝑇 in T-plug)

𝑑0 = hole diameter (𝑑0 = 𝑑0,𝑇 in T-plug)

𝑒1 = edge distance of the bolts in the direction of the force (𝑒1 = ∞ for the T-plug, for

tension or compression)

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = ∞ for the T-plug)

A.8 T-plug

A.8.1 Strength

The design resistance of the T-plug gross section against tensile force, 𝑁𝑡,𝑇𝑔, is:

𝑁𝑡,𝑇𝑔 =
𝑡𝑇 ℎ𝑇 𝑓𝑦𝑇

𝛾𝑀0
(A.47)

The design resistance T-plug gross section against compressive force 𝑁𝑐,𝑇𝑔, is:

𝑁𝑐,𝑇𝑔 =
𝜒 𝑡𝑇 ℎ𝑇 𝑓𝑦𝑇

𝛾𝑀1
(A.48)

with:

𝜒 = reduction factor in accordance with [156] considering the curve "c" (𝛼 = 0.49), and

the following relative slenderness:

𝜆̄ = 𝐶𝑇𝑏𝑙

𝑑𝑇

𝑡𝑇 /
√

12
93.9 𝜀

= 𝐶𝑇𝑏𝑙
𝑑𝑇/𝑡𝑇
27.1 𝜀

(A.49)

where:

𝑑𝑇 = T-plug depth, as shown in Fig. A.8

𝐶𝑇𝑏𝑙 = buckling length correction factor for the T-plug, according to WP3 results: 𝐶𝑇𝑏𝑙 = 1
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A.8 T-plug

Figure A.8: Symbols for the T-plug strength and stiffness [197].

The partial factor used to calculate the design resistance for this failure mode is 𝛾𝑀0 under tension

and 𝛾𝑀1 under compression.

The design resistance of the T-plug net section against tensile force, 𝑁𝑡,𝑇𝑢, is:

𝑁𝑡,𝑇𝑢 = 0.9 𝑡𝑇 (ℎ𝑇 − 𝑛𝑏 𝑑0)
𝑓𝑢𝑇

𝛾𝑀2
(A.50)

with:

𝑑0 = hole diameter (𝑑0 = 𝑑0,𝑇 in the T-plug)

This failure mode is not relevant under compressive force:

𝑁𝑐,𝑇𝑢 = ∞ (A.51)

A.8.2 Stiffness

The stiffness of the T-plug gross section in tension is defined with a similar formula as the equivalent

T-stub [214], with a specific correction factor.

The stiffness factor, 𝑘𝑇𝑔, for the T-plug in bending:

𝑘𝑇𝑔 = 𝐶𝑇𝑔
ℎ𝑇 𝑡𝑇

𝑑𝑇
(A.52)

with:

𝐶𝑇𝑔 = correction factor for INNO3DJOINTS T-plug in tension or compression, according to

WP3 results: 𝐶𝑇𝑔 = 1
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Appendix A. P&PJ’s components under tension and/or compression

A.9 Welds between T-plug and clipping part

As in Section A.3, with:

𝑓𝑢 = ultimate stress in the tension of the lower welded steel grade ( 𝑓𝑢𝑇 for the T-plug or 𝑓𝑢𝑌

for the Y-part)

𝛽𝑤 = correlation factor depending on the lower welded steel grade (T-plug or Y-part), see

[28] or [214]

The weld length, 𝐿𝑤, between the T-plug and the clipping part is:

𝐿𝑤 = 2 ℎ𝑇 (A.53)

A.10 Y-part (clip on the CFS)

A.10.1 Strength

(a) Y-part in bending:

The design resistance of the socket in bending against tensile force, 𝑁𝑡,𝑌𝑏, is:

𝑁𝑡,𝑌𝑏 =
4 𝑀𝑝𝑙,𝑌

𝑚𝑌
=
𝑡2
𝑌
𝑙𝑒 𝑓 𝑓 ,𝑌 𝐶𝑠ℎ,𝑌 𝑓𝑦𝑌

𝑚𝑌 𝛾𝑀0
(A.54)

with:

𝑚𝑌 = Y-part lever arm in bending, as shown in Fig. A.9

𝑀𝑝𝑙,𝑌 = plastic moment resistance in the Y-part, defined as follows:

𝑀𝑝𝑙,1 =
𝑡2
𝑌
𝑙𝑒 𝑓 𝑓 ,𝑌 𝐶𝑠ℎ,𝑌 𝑓𝑦𝑌

4 𝛾𝑀0
(A.55)

where:
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A.10 Y-part (clip on the CFS)

Figure A.9: Symbols for the Y-part strength and stiffness [197].

𝐶𝑠ℎ,𝑌 = coefficient accounting of the strain hardening in the Y-part, according to WP3 results:

𝐶𝑠ℎ,𝑌 = 1

𝑙𝑒 𝑓 𝑓 ,𝑌 = effective length for the Y-part in bending, as follows:

with 0 stiffener: 𝑙𝑒 𝑓 𝑓 ,𝑌 = ℎ𝑌

with 1 stiffener: 𝑙𝑒 𝑓 𝑓 ,𝑌 = ℎ𝑌 + 𝑏𝑌 (A.56)

with 2 stiffener: 𝑙𝑒 𝑓 𝑓 ,𝑌 = ℎ𝑌 + 2 𝑏𝑌

The design resistance against compressive force, 𝑁𝑐,𝑌𝑏, for the Y-part has the same value:

𝑁𝑐,𝑌𝑏 = 𝑁𝑡,𝑌𝑏 (A.57)

(b) Y-part in gross and net section:

The design resistance of the Y-part gross section against tensile force, 𝑁𝑡,𝑌𝑔, is:

𝑁𝑡,𝑌𝑔 =
2 𝑡𝑌 ℎ𝑌,𝑟 𝑓𝑦𝑌

𝛾𝑀0
(A.58)

with:

245



Appendix A. P&PJ’s components under tension and/or compression

ℎ𝑌,𝑟 = reduced Y-part height (measured at the position of the first bolt on the chord, as shown

in Fig. A.9)

The design resistance against compressive force, 𝑁𝑐,𝑌𝑔, for the Y-part gross section has the same

value:

𝑁𝑐,𝑌𝑔 = 𝑁𝑡,𝑌𝑔 (A.59)

The design resistance of the Y-part net section against tensile force, 𝑁𝑡,𝑌𝑢, is:

𝑁𝑡,𝑌𝑢 = 2 ·0.9 𝑡𝑌
𝑓𝑢𝑌

𝛾𝑀2
· min

{
ℎ𝑌 − 𝑛𝑏,𝑝 𝑑0,𝑝; ℎ𝑌,𝑟 − 𝑛𝑏,𝑐 𝑑0,𝑐

}
(A.60)

with:

𝑛𝑏,𝑝 = number of bolts in the in the vertical post

𝑑0,𝑝 = hole diameter, for bolt arrangement in the vertical post

𝑛𝑏,𝑐 = number of bolts crossed by the net section in the chord

𝑑0,𝑐 = hole diameter, for bolt arrangement in the chord

This failure mode is not relevant under compressive force:

𝑁𝑐,𝑌𝑢 = ∞ (A.61)

A.10.2 Stiffness

(a) Y-part in bending:

The stiffness of the Y-part in bending is defined with a similar formula as the equivalent T-stub

[214], with a specific correction factor.

The stiffness factor, 𝑘𝑌𝑏, for the socket in bending:

𝑘𝑌𝑏 = 𝐶𝑌𝑏
ℎ𝑌 𝑡

3
𝑌

𝑚3
𝑌

(A.62)

with:
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A.11 Bearing of the Y-part

𝐶𝑌𝑏 = correction factor for INNO3DJOINTS Y-part in bending, according to WP3 results:

𝐶𝑌𝑏 = 1

(b) Y-part in elongation/contraction:

The stiffness of the Y-part gross section in tension or compression is defined with a similar

formulation to the equivalent T-stub [214], with a specific correction factor.

The stiffness factor, 𝑘𝑌𝑔, for the Y-part gross section:

𝑘𝑌𝑔 = 𝐶𝑌𝑔
ℎ𝑌,𝑟 𝑡𝑌

𝑑𝑌
(A.63)

with:

𝐶𝑌𝑔 = correction factor for INNO3DJOINTS Y-part in tension, according to WP3 results:

𝐶𝑌𝑔 = 1

𝑑𝑌 = Y-part depth from the center of the bolts’ arrangement on the chord, as shown in Fig. A.9

A.11 Bearing of the Y-part

As in Section A.5, with:

𝑓𝑢 = nominal ultimate stress in tension of the steel grade ( 𝑓𝑢𝑌 for the Y-part)

𝑡 = thickness of the material (𝑡𝑌 for the Y-part)

𝑒1 = edge distance of the bolts in the direction of the force (𝑒1 = 𝑒1,𝑐 for the Y-part on the

chord, as shown in Fig. A.10)

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = 𝑝1,𝑐 for the Y-part on

the chord connection, as shown in Fig. A.10)

The vertical pitch, 𝑝2,𝑐, in the case of staggered holes, have to conform to the following

requirements:

𝑝2,𝑐 ≥ 1.2 𝑑0,𝑐 (A.64)
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Appendix A. P&PJ’s components under tension and/or compression

Figure A.10: Edge distance, 𝑒1, and pitch distance, 𝑝1, for the Y-part [197].

Figure A.11: Edge distance, 𝑒1, and pitch distance, 𝑝1, for the CFS chord [197].

A.12 Bolt between the clipping part and the cold-formed

member in shear

As in Section A.6

A.13 Bearing of cold-formed member (chord)

As in Section A.5, with:

𝑓𝑢 = nominal ultimate stress in tension of the steel grade ( 𝑓𝑢𝑐 for the CFS chord)

𝑡 = thickness of the material

𝑒1 = edge distance of the bolts in the direction of the force (𝑒1 = 𝑒1,𝑐 𝑓 𝑠 for the Y-part on the

chord connection, as shown in Fig. A.11)

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = 𝑝1,𝑐 for the Y-part on

the chord connection, as shown in Fig. A.11)
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A.14 Gross and net section of cold-formed member (chord)

A.14 Gross and net section of cold-formed member (chord)

The design resistance of the CFS chord gross section against tensile force, 𝑁𝑡,𝑐𝑔, is:

𝑁𝑡,𝑐𝑔 =
𝐴𝑔,𝑐 𝑓𝑦𝑐

𝛾𝑀0
(A.65)

The design resistance against compressive force, 𝑁𝑐,𝑐𝑔, for the CFS chord gross section has the

same value:

𝑁𝑐,𝑐𝑔 = 𝑁𝑡,𝑐𝑔 (A.66)

The design resistance of the Y-part net section against tensile force, 𝑁𝑡,𝑐𝑢, is:

𝑁𝑡,𝑐𝑢 =
0.9 𝐴𝑛𝑒𝑡,𝑐 𝑓𝑢𝑐

𝛾𝑀2
(A.67)

This failure mode is not relevant under compressive force:

𝑁𝑐,𝑐𝑢 = ∞ (A.68)
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Appendix B: P&PJ’s components under vertical shear

load

The computation of the strength of the components identified for the INNO3DJOINTS plug-and-play

joint system [5], specifically in the simplest configuration of the P&PJ where a single truss-girder is

connected to the column and subjected to vertical shear load [197], are presented in detail hereinafter.

B.1 Column side wall

The design resistance against shear load, 𝑉𝑐𝑠𝑤 , for the column side wall is:

𝑉𝑐𝑠𝑤 = 2
𝑓𝑦0√

3 𝛾𝑀0
𝑡0 𝑏𝑤 (B.1)

with:

𝑏𝑤 = effective breadth in column side wall, see Section A.1.1

B.2 Column face

(a) face plastification under bending

Component not considered in pure shear.

(b) face failure by punching shear

The design resistance against shear load, 𝑉𝑐𝑝𝑠, for the column face in punching shear is:

𝑉𝑐𝑝𝑠 =
𝑓𝑦0√

3 𝛾𝑀0
𝑡0 𝑙𝑝,𝑒 𝑓 𝑓 (B.2)

with:

𝑙𝑝,𝑒 𝑓 𝑓 = effective length for punching shear, see Section A.2.1
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Appendix B. P&PJ’s components under vertical shear load

B.3 Welds between column and socket

The design resistance against shear load, 𝑉𝑤, for the welds is:

𝑉𝑤 = 𝑁𝑡,𝑤 (B.3)

with:

𝑁𝑡,𝑤 = tensile resistance of the weld between the column and the socket, see Section A.3.1

B.4 Socket

(a) Socket in bending

Component not considered in pure shear.

(b) Socket gross and net section

The design resistance of the socket gross section against shear load, 𝑉𝑠𝑔, is:

𝑉𝑠𝑔 = 2 𝑡𝑠 ℎ𝑠
𝑓𝑦𝑠√

3 𝛾𝑀0
(B.4)

The design resistance of the socket net section against tensile force, 𝑉𝑠𝑢, is:

𝑉𝑠𝑢 = 2 ·0.9 𝑡𝑠
(
ℎ𝑠 − 𝑛𝑏 𝑑0,𝑠

) 𝑓𝑢𝑠√
3𝛾𝑀2

(B.5)

with:

𝑑0,𝑠 = hole diameter in the socket

B.5 Bearing in the socket

The strength of the bolt in the bearing is determined according to the last draft of the next revision of

Eurocode 3 Part 1-8 [214]. The design resistance against shear load, 𝑉𝑏𝑏, for the bolt in the bearing

is:

𝑉𝑏𝑏 = 2 𝑛𝑏 𝐹𝑏,𝑅𝑑 (B.6)
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B.6 Bolt between the socket and the T-plug in shear

Figure B.1: Pitch distance, 𝑝1, and edge distance, 𝑒1, for the socket under shear load [197].

with:

𝐹𝑏,𝑅𝑑 = design resistance of one bolt in bearing, see Section A.5.1 and considering the following

pitch and edge distances

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = 𝑝1,𝑠 for the socket, as

shown in Fig. B.1)

𝑒1 = pitch distance between bolts in the direction of the force (𝑒1 = 𝑒1,𝑠 for the socket, as

shown in Fig. B.1)

B.6 Bolt between the socket and the T-plug in shear

The strength of the bolts in shear is determined according to Eurocode 3 Part 1-8 [28], and the last

draft of the next revision [214]. The design resistance against shear load, 𝑉𝑏𝑠, for the bolt in shear is:

𝑉𝑏𝑠 = 𝑛𝑏 𝐹𝑣,𝑅𝑑 (B.7)

with:

𝐹𝑣,𝑅𝑑 = design resistance of one bolt in shear, see Section A.6.1
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Appendix B. P&PJ’s components under vertical shear load

Figure B.2: Pitch distance, 𝑝1, and edge distance, 𝑒1, for the T-plug under shear load [197].

B.7 Bearing in the T-plug

As in Section B.5, with:

𝑉𝑏𝑏 = 𝑛𝑏 𝐹𝑏,𝑅𝑑 (B.8)

where:

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = 𝑝1,𝑇 for the T-plug, as

shown in Fig. B.2)

𝑒1 = pitch distance between bolts in the direction of the force (𝑒1 = 𝑒1,𝑇 for the T-plug, as

shown in Fig. B.2)

B.8 T-plug

(a) T-plug in bending

Component not considered in pure shear

(b) T-plug gross and net section

The design resistance of the T-plug gross section against shear load, 𝑉𝑇𝑔, is:

𝑉𝑇𝑔 = 𝑡𝑇 ℎ𝑇
𝑓𝑦𝑇√

3 𝛾𝑀0
(B.9)

The design resistance of the T-plug net section against shear load, 𝑉𝑇𝑢, is:

𝑉𝑇𝑢 = 0.9 𝑡𝑇 (ℎ𝑇 − 𝑛𝑏 𝑑0)
𝑓𝑢𝑇√

3 𝛾𝑀2
(B.10)
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B.9 Welds between T-plug and Y-part

with:

𝑑0 = hole diameter (𝑑0 = 𝑑0,𝑇 in the T-plug)

B.9 Welds between T-plug and Y-part

As in Section B.3, with:

𝐿𝑤 = weld effective length, as follows:

𝐿𝑤 = 2 ℎ𝑇 (B.11)

B.10 Y-part

The design resistance of the Y-part gross section against shear load, 𝑉𝑌𝑔, is:

𝑉𝑌𝑔 = 2 𝑡𝑌 ℎ𝑌
𝑓𝑦𝑌√
3𝛾𝑀0

(B.12)

The design resistance of the Y-part net section against shear load, 𝑉𝑌𝑢, is:

𝑉𝑌𝑢 = 2 ·0.9 𝑡𝑌
𝑓𝑢𝑌√

3 𝛾𝑀2
min

{
ℎ𝑌 − 𝑛𝑏,𝑝𝑑0,𝑝; ℎ𝑌,𝑟 − 𝑛𝑏,𝑐 𝑑0,𝑐

}
(B.13)

𝑛𝑏,𝑝 = number of bolts in the in the vertical post

𝑑0,𝑝 = hole diameter, for bolt arrangement in the vertical post

𝑛𝑏,𝑐 = number of bolts crossed by the net section in the chord

𝑑0,𝑐 = hole diameter, for bolt arrangement in the chord

B.11 Bearing in the Y-part

As in Section B.5, with:
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Appendix B. P&PJ’s components under vertical shear load

Figure B.3: Pitch distance, 𝑝1, and edge distance, 𝑒1, for the Y-part [197].

𝑒1 = edge distance of the bolts in the direction of the force (𝑒1 = 𝑒1,𝑝 for the Y-part on the

end post, as shown in Fig. B.3)

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = 𝑝1,𝑝 for the Y-part on

the end post, as shown in Fig. B.3)

B.12 Bolt between the Y-part and the cold-formed member in

shear

As in Section B.6

B.13 Bearing of cold-formed member (truss)

As in Section B.5, with:

𝑒1 = edge distance of the bolts in the direction of the force (𝑒1 = 𝑒1,𝑐 𝑓 𝑠 for the Y-part on the

end post, as shown in Fig. B.4)

𝑝1 = pitch distance between bolts in the direction of the force (𝑝1 = 𝑝1,𝑐 𝑓 𝑠 for the Y-part on

the end post, as shown in Fig. B.4)

B.14 Gross and net section of the CFS end post

The design resistance of the CFS end post gross section against vertical shear load, 𝑉𝑐𝑔, is:

𝑉𝑐𝑔 =
𝐴𝑔,𝑝 𝑓𝑦𝑝

𝛾𝑀0
(B.14)
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B.14 Gross and net section of the CFS end post

Figure B.4: Pitch distance, 𝑝1, and edge distance, 𝑒1, for the Y-part [197].

The design resistance of the CFS end post net section against vertical shear load, 𝑉𝑐𝑢, is:

𝑉𝑐𝑢 =
0.9 𝐴𝑛𝑒𝑡,𝑝 𝑓𝑢𝑝

𝛾𝑀2
(B.15)
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Appendix C: Macro-element developed within the

INNO3DJOINTS project

C.1 The element formulation

C.1.1 Sign convention

The deformation and internal forces of the components in the macro-element developed within the

INNO3DJOINTS project [5] adhere to the sign convention expounded in Section 3.4.1.

C.1.2 Linear formulation

In the case of a first-order analysis with linear elastic behavior assigned to the beam-to-column

joint components, the macro-element developed within the INNO3DJOINTS project [5] follows

the methodology presented in Section 3.4.2. However, it should be noted that the dimensions of the

matrices within the analysis are adjusted to suit this particular model. As expected, a new compatibility

matrix, A (38× 44), is employed in the calculation process. The details of the compatibility matrix

will be presented in the next section.

Furthermore, in this case, the constitutive relation matrix, kj, which contains the stiffness of the

beam-to-column joint components listed in Tab. 2.4 and is expressed by Eq. (3.13), is not a diagonal

matrix. Instead, it includes non-zero off-diagonal elements that account for the 3D interaction between

the components. Specifically, the matrix elements adhere to the following conditions:

• 𝑘𝑖, 𝑗 = 0, if 𝑖 ≠ 𝑗 ;

• 𝑘𝑖, 𝑗 = 𝑘𝑖, if 𝑖 = 𝑗 , where 𝑘𝑖 is the stiffness of component 𝑖;

• additional elements are added to the matrix to account for the 3D interaction between the

components.

The additional elements outside of the diagonal are:

𝑘2,5 = 𝑘5,2 = 𝑘1,4 = 𝑘4,1 = 𝑘𝑏3 (C.1)
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Appendix C. Macro-element developed within the INNO3DJOINTS project

𝑘23,26 = 𝑘26,23 = 𝑘22,25 = 𝑘25,22 = 𝑘ℎ3 (C.2)

𝑘2,23 = 𝑘2,26 = 𝑘5,23 = 𝑘5,26 = 𝑘1,22 = 𝑘1,25 = 𝑘4,22 = 𝑘4,25 = 𝑘ℎ2 (C.3)

𝑘23,2 = 𝑘26,2 = 𝑘23,5 = 𝑘26,5 = 𝑘22,1 = 𝑘25,1 = 𝑘22,4 = 𝑘25,4 = 𝑘𝑏2 (C.4)

where 𝑘𝑏3, 𝑘ℎ3, 𝑘ℎ2 and 𝑘𝑏2 are expressed by Eq. (A.21).

C.1.3 Compatibility matrix

The non-zero elements, 𝑎𝑖, 𝑗 , of the compatibility matrix, A, for the macro-element developed in the

context of the INNO3DJOINTS project [5], are presented in Tab. C.1. Furthermore, each non-zero

value is associated with a unique color to enhance the visibility of the color-coded representation of

the compatibility matrix, as illustrated in Fig. C.1.

In Tab. C.1 presents the dimensions of the structural members in the X and Z directions,

denoted by 𝑑𝑏𝑋 , 𝑑𝑏𝑍 , 𝑑𝑐𝑋 , and 𝑑𝑐𝑍 , as well as the angles 𝜃𝑌𝑋 and 𝜃𝑌𝑍 , which are defined

as 𝜃𝑌𝑋 = arctan(𝑑𝑏𝑋/𝑑𝑐𝑋) and 𝜃𝑌𝑍 = arctan(𝑑𝑏𝑍/𝑑𝑐𝑍), respectively. The elements, 𝑎𝑖, 𝑗 , of the

compatibility matrix represent the deformation in component 𝑖 caused by a unit displacement in DOF

𝑗 . The computation of these elements follows the same methodology presented in Section 3.4.3.

C.2 Implementation in OpenSees

C.2.1 Inno3DJointND Class

The proposed beam-to-column joint finite element formulation is introduced in the framework of

OpenSees as the Inno3DJointND Class and is a child of the base abstract Element class.

C.2.2 Nonlinear formulation

In order to conduct nonlinear analysis, the beam-to-column joint finite element suggested in this study

requires a methodology for determining the internal nodal displacement that satisfies the internal

equilibrium of the element for each iteration of the global solution algorithm due to the presence of

internal degrees of freedom. This approach is based on the methodology outlined in Section 4.3.
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C.2 Implementation in OpenSees

Table C.1: The non-zero elements of the compatibility matrix A.

Color Value Stiffness Coefficient

1

𝑎4,1; 𝑎25,3; 𝑎18,4; 𝑎9,6; 𝑎1,7; 𝑎2,7; 𝑎12,9; 𝑎13,10; 𝑎14,11; 𝑎3,12;
𝑎5,13; 𝑎10,14; 𝑎27,15; 𝑎21,17; 𝑎36,20; 𝑎29,25; 𝑎37,26; 𝑎22,27;
𝑎23,27; 𝑎30,29; 𝑎31,30; 𝑎27,34; 𝑎35,37; 𝑎20,39; 𝑎17,40; 𝑎19,40;
𝑎33,40; 𝑎3,41; 𝑎24,43;

− 1

𝑎1,1; 𝑎8,2; 𝑎22,3; 𝑎19,5; 𝑎35,8; 𝑎2,13; 𝑎23,15; 𝑎20,16; 𝑎11,18; 𝑎4,19;
𝑎5,19; 𝑎15,21; 𝑎16,22; 𝑎17,23; 𝑎6,24; 𝑎24,28; 𝑎32,31; 𝑎38,32; 𝑎25,33;
𝑎26,33; 𝑎33,35; 𝑎34,36; 𝑎36,38; 𝑎18,39; 𝑎14,40; 𝑎21,40; 𝑎3040; 𝑎6,42;
𝑎27,44;

0.5 𝑎32,1; 𝑎15,3; 𝑎31,13; 𝑎15,15; 𝑎8,37; 𝑎38,37; 𝑎8,38; 𝑎38,38;

− 0.5 𝑎29,1; 𝑎12,3; 𝑎29,13; 𝑎12,15; 𝑎10,37; 𝑎37,37; 𝑎10,38; 𝑎37,38;

cos(𝜃𝑌𝑋) 𝑎7,13;

− cos(𝜃𝑌𝑋) 𝑎7,1;

cos(𝜃𝑌𝑍 ) 𝑎28,15;

− cos(𝜃𝑌𝑍 ) 𝑎28,3;

1 𝑑𝑏𝑍 𝑎34,1; 𝑎31,13;

− 1 𝑑𝑏𝑍 𝑎31,1; 𝑎34,13;

1 𝑑𝑏𝑋 𝑎13,3; 𝑎16,15;

− 1 𝑑𝑏𝑋 𝑎16,3; 𝑎13,15’

sin(𝜃𝑌𝑋) 𝑎7,37;

− sin(𝜃𝑌𝑋) 𝑎7,38;

1 𝑑𝑐𝑋 𝑎11,37; 𝑎9,38;

− 1 𝑑𝑐𝑋 𝑎9,37; 𝑎11,38;

− 𝑑𝑏𝑍 cos(𝜃𝑌𝑍 ) 𝑎28,39;

0.5 𝑑𝑐𝑋 𝑎12,40; 𝑎15,40;

0.5 𝑑𝑐𝑍 𝑎37,39; 𝑎38,39;

− 0.5 𝑑𝑐𝑍 𝑎29,40; 𝑎32,40;

0.5 𝑑𝑏𝑋 𝑎2,41; 𝑎4,42;

− 0.5 𝑑𝑏𝑋 𝑎1,41; 𝑎5,42;

0.5 𝑑𝑏𝑍 𝑎23,42; 𝑎25,44;

− 0.5 𝑑𝑏𝑍 𝑎22,43; 𝑎26,44;
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C.2 Implementation in OpenSees

Figure C.2: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
Inno3DJointND element’s schematic representation.

C.2.3 Inno3DJointND user manual

C.2.3.1 Element info

The Inno3DJointND joint finite element is defined in a 3D domain with six nodal DOFs. To construct

a rectangular cuboid, which represents the joint, perpendicular planes are drawn to the beam and

column ends, as illustrated in Fig. C.2. All six external nodes need to be defined regardless of the

analyzed types of joints, namely central, edge, and corner, though some of these nodes may or may

not be connected to any beam-to-column 1D element.

C.2.3.2 Element source code

The C++ source code of the Inno3DJointND element has not been made available to the general public

due to legal restrictions imposed by the European project under which it was developed. Nonetheless,

interested parties can request access to this source code by contacting Professor Luís Alberto Proença

Simões da Silva via email at luisss@dec.uc.pt.

C.2.3.3 Command line and input arguments

The Inno3DJointND beam-to-column joint finite element can be constructed using the command input

lines given below with the input arguments listed in Tab. C.2.

• input line for Tcl (*.tcl) files:

element Inno3DJointND $eleTag <$Node1 $Node2 $Node3 $Node4 $Node5$Node6>

<$SprMatTag01 . . . $SprMatTag62>

• input line for Python (*.py) files:
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Appendix C. Macro-element developed within the INNO3DJOINTS project

Table C.2: Input arguments for Inno3DJointND joint finite element.

Input $arg Description

$eleTag An integer tag identifying the element in the domain

$Node1 An integer tag indicating the node 1

...

$Node5 An integer tag indicating the node 5

$SprMatTag01 An integer tag indicating the uniaxial materials for component 1

...

$SprMatTag62 An integer tag indicating the uniaxial materials for component 62

Figure C.3: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
Inno3DJointND element’s node input order.

element(’Inno3DJointND’, $eleTag, <$eleNode1, $eleNode2, $eleNode3, $eleNode4

$eleNode5>, <$SprMatTag01, . . ., $SprMatTag62>)

C.2.3.4 Input requirements

The Inno3DJointND element is a 3D domain defined by six external nodes with six DOFs each. The

nodes need to be defined in a specific order: 1/ bottom, 2/ right, 3 / top, 4/ left, 5 / front, and 6 / back,

as shown in Fig. C.3.

The dimensions of the joint, as illustrated in Fig. C.4, must satisfy the criterion defined by Eq. (C.5)

in all directions, irrespective of the units utilized by the user, given that OpenSees is a unitless software

package. Otherwise, division by 0 occurs.

min (𝑑𝑐𝑋, 𝑑𝑐𝑍, 𝑑𝑏𝑋, 𝑑𝑏𝑍) ≥ 1𝑒−12 (C.5)
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C.2 Implementation in OpenSees

Figure C.4: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
Inno3DJointND element’s dimensions.

Figure C.5: Proposed beam-to-column joint finite element within the INNO3DJOINTS project [5]:
Inno3DJointND element’s dimensions.

To guarantee the formation of a rectangular cuboid through the use of the six external nodes, it is

essential to adhere to the following guidelines when defining the three internal rectangular planes:

• each plane must be parallel to the primary planes - YX, YZ, and ZX - and must include only

four external nodes of the joint, as illustrated in Fig. C.5;

• the mid-planes of the rectangular cuboid must correspond to the defined planes.

In other words, the coordinates of the nodes must satisfy the conditions from Tab. C.3.

C.2.3.5 Common errors messages

If the input requirements outlined in the previous section are not met, the software’s framework console

will exhibit the messages shown in Tab. C.4, and the domain will not be created:
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Table C.3: Conditions for node coordinates.

Plane/Direction Condition

Y-X plane 𝑥4 < 𝑥1 = 𝑥3 = 𝑥5 = 𝑥6 < 𝑥2

Y-Z plane 𝑦1 < 𝑦2 = 𝑦4 = 𝑦5 = 𝑦6 < 𝑦3

Z-X plane 𝑧5 < 𝑧1 = 𝑧2 = 𝑧3 = 𝑧4 < 𝑧6

X direction |𝑥2 − 𝑥1 | = |𝑥1 − 𝑥4 | = 𝑑𝑐𝑋/2

Y direction |𝑦1 − 𝑦2 | = |𝑦2 − 𝑦3 | = 𝑑𝑏𝑋/2

Z direction |𝑧6 − 𝑧1 | = |𝑧1 − 𝑧5 | = 𝑑𝑐𝑍/2

where (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are the (𝑥, 𝑦, 𝑧) coordinate of nodes.

Table C.4: Common errors.

Error source Displayed error message

number of input
arguments is wrong (i.e.,
different than 69)

WARNING error insufficient. arguments.
Want: element Inno3DJointND eleTag? Node1? Node2? Node3?
Node4? Node5? Node6? Spring01? Spring02? ... Spring62?.

number of DOFs/node is
wrong (i.e., different than
6)

ERROR: Inno3DJointND::setDomain – number of DOFs
associated with the node is incorrect.

joint size is too small ERROR: Inno3DJointND::setDomain – height, length or width not
correct, division by zero occurs.
ERROR: Inno3DJointND::setDomain – All dimensions (distances
between nodes) should be greater than 1e-12.

coordinate X (Y-Z plane) ERROR: Inno3DJointND::setDomain – Incorrect X coordinates.
Nodes 1, 3, 5 and 6 must have the same X-coordinate.

coordinate Z (Y-X plane) ERROR: Inno3DJointND::setDomain – Incorrect Z coordinates.
Nodes 1, 2, 3 and 4 must have the same Z-coordinate.

coordinate Y (Z-X plane) ERROR: Inno3DJointND::setDomain – Incorrect Y coordinates.
Nodes 2, 4, 5 and 6 must have the same Y-coordinate.

coordinate X (mid-line) ERROR: Inno3DJointND::setDomain – Incorrect X coordinates.
The absolute distance from node 4 to nodes 1 and 3 must be equal
to the absolute distance from node 2 to nodes 1 and 3.

coordinate Z (mid-line) ERROR: Inno3DJointND::setDomain – Incorrect Z coordinates.
The absolute distance from node 5 to nodes 1 and 3 must be equal
to the absolute distance from node 6 to nodes 1 and 3.

coordinate Y (mid-line) ERROR: Inno3DJointND::setDomain – Incorrect Y coordinates.
The absolute distance from node 1 to nodes 2 and 4 must be equal
to the absolute distance from node 3 to nodes 3 and 2.
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C.2 Implementation in OpenSees

C.2.4 Output recorders

The Inno3DJointND joint finite element simulation outcomes can be analyzed by specifying output

records at the component and element levels. To obtain such output records, input line commands

for either Tcl or Python outputs are presented in Section 4.4.6, for both cases. The list of permissible

inputs for the argument, $arg, at the element level, is provided in Tab. C.5. Similarly, the list of

permissible inputs for the argument, $arg, at the component level is provided in Tab. C.6.

Table C.5: Valid $arg – at element level.

$arg
C++ Output Variable

Description
Name Size

extDisp
UeprCommit

36×1 Returns the displacement in the
external DOFs.extdisp

intDisp
UeprIntCommit

8×1 Returns the displacement in the
internal DOFs.intdisp

Disp UeprCommit
44×1 Returns the displacement in all

DOFs.disp UeprIntCommit

Reaction
R 44×1 Returns the global residual forces

for all DOFs.reaction

matStress

MaterialPtr->getStress() 62×1 Returns the stress values of the
components.

matstress

Stress

stress

matStrain

MaterialPtr->getStrain() 62x1 Returns the strain values of the
components.

matstrain

Strain

strain

matStressStrain

124×1 Returns the stress and strain values
of the components.

matstressstrain MaterialPtr->getStress()

StressStrain MaterialPtr->getStrain()

stressStrain
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Table C.6: Valid $arg – at component level.

$arg
C++ Output Variable

Description
Name Size

spring

MaterialPtr[springNo] 1x2 Returns a pair of stress-strain for
each time step.

-spring

material

-material
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Appendix D: Values of the parameters used in the

calculation for the Euler-Bernoulli elements

The calculation presented in this document utilizes the displacement method to calculate the stiffness

coefficient and restraining forces for various configurations. Therefore, to facilitate the reader’s

comprehension and avoid the necessity of consulting additional resources, the formulae for a 1D

element with fixed-roller and fixed-fixed end supports are presented in Fig. D.1 and Fig. D.2,

respectively.

(a) stiffness coefficients: rotation fixed end (b) displacement: rotation fixed end

(c) restraining forces: concentrated load

Figure D.1: 1D element with fixed-roller end supports.
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(a) stiffness coefficients: rotation (b) displacement: rotation

(c) stiffness coefficients: displacement (d) displacement: displacement

Figure D.2: 1D element with fixed-fixed end supports.

270



Appendix E: Detailed analytical computation of the

condensed stiffness matrix of the EFMs

The analytical computation of the condensed stiffness matrix, K𝐸𝐹𝑀
c (4× 4) for the beam-to-column

joint finite element presented in Section 2.6.5 is presented in detail for all six EFMs in separate

sections. Each calculation follows the steps described in Section 5.2.2.

E.1 HS-EFM

The following four sections present detailed calculations for each LP-EFM shown in Fig. 5.2, as applied

to the HS-EFM. These calculations follow the procedures outlined in Section 5.2.2. A separate section

is dedicated to the condensed stiffness matrix of the HS-EFM, KHS-EFM
c .

E.1.1 LP-EFM.1

The deformation of HS-EFM under LP-EFM.1, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.1(a), Fig. E.1(b)

Fig. E.1(c), and Fig. E.1(d), respectively. Eqs. (E.1) to (E.7) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.1
11 =

𝐸 𝐼

𝐿/2
+ 𝐸 𝐼

𝐿/2
(E.1)

𝛿LP-EFM.1
𝑑 =


𝛿LP-EFM.1.𝑁
𝑑

𝛿LP-EFM.1.𝐸
𝑑


=


𝐿/2

2

−𝐿/2
2


(E.2)

𝑓 LP-EFM.1 =

[
−𝑃 𝐿

8
+ 𝑃 𝐿

8

]
(E.3)
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(a) deformation under LP-EFM.1 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.1: HS-EFM under LP-EFM.1.
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E.1 HS-EFM

𝛿LP-EFM.1
𝑃 =


𝛿LP-EFM.1.𝑁
𝑃

𝛿LP-EFM.1.𝐸
𝑃


=


𝑃 𝐿3

192 𝐸 𝐼

𝑃 𝐿3

192 𝐸 𝐼


(E.4)

𝑑LP-EFM.1 =

(
𝑘LP-EFM.1

11

)−1 (
− 𝑓 LP-EFM.1

)
= 0 (E.5)

𝛿LP-EFM.1
𝐷 = 𝛿LP-EFM.1

𝑑 𝑑LP-EFM.1 =


𝛿LP-EFM.1.𝑁
𝐷

𝛿LP-EFM.1.𝐸
𝐷


=


0

0


(E.6)

𝛿LP-EFM.1 = 𝛿LP-EFM.1
𝐷 + 𝛿LP-EFM.1

𝑃 =


𝛿LP-EFM.1.𝑁

𝛿LP-EFM.1.𝐸


=


𝑃 𝐿3

192 𝐸 𝐼

𝑃 𝐿3

192 𝐸 𝐼


(E.7)

E.1.2 LP-EFM.2

The deformation of HS-EFM under LP-EFM.2, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.2(a), Fig. E.2(b)

Fig. E.2(c), and Fig. E.2(d), respectively. Eqs. (E.8) to (E.14) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.2
11 =

𝐸 𝐼

𝐿/2
+ 𝐸 𝐼

𝐿/2
(E.8)

𝛿LP-EFM.2
𝑑 =


𝛿LP-EFM.2.𝑁
𝑑

𝛿LP-EFM.2.𝐸
𝑑


=


𝐿/2

2

−𝐿/2
2


(E.9)

𝑓 LP-EFM.2 =

[
𝑃 𝐿

8
+ 𝑃 𝐿

8

]
(E.10)
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(a) deformation under LP-EFM.2 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.2: HS-EFM under LP-EFM.2.
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E.1 HS-EFM

𝛿LP-EFM.2
𝑃 =


𝛿LP-EFM.2.𝑁
𝑃

𝛿LP-EFM.2.𝐸
𝑃


=


− 𝑃 𝐿3

192 𝐸 𝐼

𝑃 𝐿3

192 𝐸 𝐼


(E.11)

𝑑LP-EFM.2 =

(
𝑘LP-EFM.2

11

)−1 (
− 𝑓 LP-EFM.2

)
= − 𝑃 𝐿2

16 𝐸 𝐼
(E.12)

𝛿LP-EFM.2
𝐷 = 𝛿LP-EFM.2

𝑑 𝑑LP-EFM.2 =


𝛿LP-EFM.2.𝑁
𝐷

𝛿LP-EFM.2.𝐸
𝐷


=


− 𝑃 𝐿3

64 𝐸 𝐼

𝑃 𝐿3

64 𝐸 𝐼


(E.13)

𝛿LP-EFM.2 = 𝛿LP-EFM.2
𝐷 + 𝛿LP-EFM.2

𝑃 =


𝛿LP-EFM.2.𝑁

𝛿LP-EFM.2.𝐸


=


− 𝑃 𝐿3

48 𝐸 𝐼

𝑃 𝐿3

48 𝐸 𝐼


(E.14)

E.1.3 LP-EFM.3

The deformation of HS-EFM under LP-EFM.3, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.3(a), Fig. E.3(b)

Fig. E.3(c), and Fig. E.3(d), respectively. Eqs. (E.15) to (E.21) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.3
11 =

4 𝐸 𝐼
𝐿/2

+ 𝐸 𝐼

𝐿/2
(E.15)

𝛿LP-EFM.3
𝑑 =


𝛿LP-EFM.3.𝑁
𝑑

𝛿LP-EFM.3.𝐸
𝑑


=


0

−𝐿/2
2


(E.16)

𝑓 LP-EFM.3 =

[
𝑃 𝐿

8

]
(E.17)
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(a) deformation under LP-EFM.3 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.3: HS-EFM under LP-EFM.3.
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E.1 HS-EFM

𝛿LP-EFM.3
𝑃 =


𝛿LP-EFM.3.𝑁
𝑃

𝛿LP-EFM.3.𝐸
𝑃


=


0

𝑃 𝐿3

192 𝐸 𝐼


(E.18)

𝑑LP-EFM.3 =

(
𝑘LP-EFM.3

11

)−1 (
− 𝑓 LP-EFM.3

)
= − 𝑃 𝐿2

80 𝐸 𝐼
(E.19)

𝛿LP-EFM.3
𝐷 = 𝛿LP-EFM.3

𝑑 𝑑LP-EFM.3 =


𝛿LP-EFM.3.𝑁
𝐷

𝛿LP-EFM.3.𝐸
𝐷


=


0

𝑃 𝐿3

320 𝐸 𝐼


(E.20)

𝛿LP-EFM.3 = 𝛿LP-EFM.3
𝑑 + 𝛿LP-EFM.3

𝑃 =


𝛿LP-EFM.3.𝑁

𝛿LP-EFM.3.𝐸


=


0

𝑃 𝐿3

120 𝐸 𝐼


(E.21)

E.1.4 LP-EFM.4

The deformation of HS-EFM under LP-EFM.4, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.4(a), Fig. E.4(b)

Fig. E.4(c), and Fig. E.4(d), respectively. Eqs. (E.22) to (E.28) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.4
11 =

𝐸 𝐼

𝐿/2
+ 4 𝐸 𝐼

𝐿/2
(E.22)

𝛿LP-EFM.4
𝑑 =


𝛿LP-EFM.4.𝑁
𝑑

𝛿LP-EFM.4.𝐸
𝑑


=


𝐿/2

2

0


(E.23)

𝑓 LP-EFM.4 =

[
− 𝑃 𝐿

8

]
(E.24)
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(a) deformation under LP-EFM.4 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.4: HS-EFM under LP-EFM.4.
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E.1 HS-EFM

𝛿LP-EFM.4
𝑃 =


𝛿LP-EFM.4.𝑁
𝑃

𝛿LP-EFM.4.𝐸
𝑃


=


𝑃 𝐿3

192 𝐸 𝐼

0


(E.25)

𝑑LP-EFM.4 =

(
𝑘LP-EFM.4

11

)−1 (
− 𝑓 LP-EFM.4

)
=

𝑃 𝐿2

80 𝐸 𝐼
(E.26)

𝛿LP-EFM.4
𝐷 = 𝛿LP-EFM.4

𝑑 𝑑LP-EFM.4 =


𝛿LP-EFM.4.𝑁
𝐷

𝛿LP-EFM.4.𝐸
𝐷


=


𝑃 𝐿3

320 𝐸 𝐼

0


(E.27)

𝛿LP-EFM.4 = 𝛿LP-EFM.4
𝐷 + 𝛿LP-EFM.4

𝑃 =


𝛿LP-EFM.4.𝑁

𝛿LP-EFM.4.𝐸


=


𝑃 𝐿3

120 𝐸 𝐼

0


(E.28)

E.1.5 Condensed stiffness matrix of HS-EFM

As already mentioned, the matrix FHS-EFM is constructed for the full EFM by concatenating the

displacement vectors of each LP-EFM, 𝛿LP-EFM.𝑖. Eq. (E.7), (E.14), (E.21), and (E.28) provide two

of the four displacements, with the remaining two derived from symmetry conditions with respect to

the sign convention, yielding the results shown in Eq. (E.29).

FHS-EFM =



𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 − 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸

𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 − 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸


(E.29)

The condensed stiffness matrix of the HS-EFM, KHS-EFM
c , is obtained by multiplying the matrix
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of external forces, P (Eq. (5.3)), with the inverse of FHS-EFM (Eq. (E.29)), leading to Eq. (E.30).

KHS-EFM
c = P

(
FHS-EFM

)−1
=



120 𝐸 𝐼
𝐿3

36 𝐸 𝐼
𝐿3 0

36 𝐸 𝐼
𝐿3

36 𝐸 𝐼
𝐿3

120 𝐸 𝐼
𝐿3

36 𝐸 𝐼
𝐿3 0

0
36 𝐸 𝐼
𝐿3

120 𝐸 𝐼
𝐿3

36 𝐸 𝐼
𝐿3

36 𝐸 𝐼
𝐿3 0

36 𝐸 𝐼
𝐿3

120 𝐸 𝐼
𝐿3



(E.30)

E.2 HR-EFM-IF

The subsequent four sections provide detailed calculations for each LP-EFM depicted in Fig. 5.2 when

applied to the HR-EFM-IF, using the procedures outlined in Section 5.2.2. Following these sections,

a final section is designated for the stiffness matrix of the HR-EFM-IF, KHR-EFM-IF
c .

E.2.1 LP-EFM.1

The deformation of HR-EFM under LP-EFM.1, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.5(a), Fig. E.5(b)

Fig. E.5(c), and Fig. E.5(d), respectively. Eqs. (E.31) to (E.37) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.1
11 =

𝐸 𝐼1

𝐿1/2
+ 𝐸 𝐼2

𝐿2/2
(E.31)

𝛿LP-EFM.1
𝑑 =


𝛿LP-EFM.1.𝑁
𝑑

𝛿LP-EFM.1.𝐸
𝑑


=


𝐿1/2

2

−𝐿2/2
2


(E.32)

𝑓 LP-EFM.1 =

[
−𝑃 𝐿1

8
+ 𝑃 𝐿2

8

]
(E.33)
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E.2 HR-EFM-IF

(a) deformation under LP-EFM.1 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.5: HR-EFM under LP-EFM.1.
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𝛿LP-EFM.1
𝑃 =


𝛿LP-EFM.1.𝑁
𝑃

𝛿LP-EFM.1.𝐸
𝑃


=



𝑃 𝐿3
1

192 𝐸 𝐼1

𝑃 𝐿3
2

192 𝐸 𝐼2


(E.34)

𝑑LP-EFM.1 =

(
𝑘LP-EFM.1

11

)−1 (
− 𝑓 LP-EFM.1

)
=

𝐿1 𝐿2 𝑃 (𝐿1 − 𝐿2)
16 𝐸 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(E.35)

𝛿LP-EFM.1
𝐷 = 𝛿LP-EFM.1

𝑑 𝑑LP-EFM.1 =


𝛿LP-EFM.1.𝑁
𝐷

𝛿LP-EFM.1.𝐸
𝐷


=



𝐿2
1 𝐿2 𝑃 (𝐿1 − 𝐿2)

64 𝐸 (𝐼1 𝐿2 + 𝐼2 𝐿1)

−
𝐿1 𝐿

2
2 𝑃 (𝐿1 − 𝐿2)

64 𝐸 (𝐼1 𝐿2 + 𝐼2 𝐿1)


(E.36)

𝛿LP-EFM.1 = 𝛿LP-EFM.1
𝐷 + 𝛿LP-EFM.1

𝑃 =


𝛿LP-EFM.1.𝑁

𝛿LP-EFM.1.𝐸


=



𝐿2
1 𝑃

(
𝐼2 𝐿

2
1 + 4 𝐼1 𝐿1 𝐿2 − 3 𝐼1 𝐿2

2
)

192 𝐸 𝐼1 (𝐼1 𝐿2 + 𝐼2 𝐿1)

𝐿2
2 𝑃

(
− 3 𝐼2 𝐿2

1 + 4 𝐼2 𝐿1 𝐿2 + 𝐼1 𝐿
2
2
)

192 𝐸 𝐼2 (𝐼1 𝐿2 + 𝐼2 𝐿1)



(E.37)

E.2.2 LP-EFM.2

The deformation of HR-EFM under LP-EFM.2, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.6(a), Fig. E.6(b)

Fig. E.6(c), and Fig. E.6(d), respectively. Eqs. (E.38) to (E.44) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.2
11 =

𝐸 𝐼1

𝐿1/2
+ 𝐸 𝐼2

𝐿2/2
(E.38)

𝛿LP-EFM.2
𝑑 =


𝛿LP-EFM.2.𝑁
𝑑

𝛿LP-EFM.2.𝐸
𝑑


=


𝐿1/2

2

−𝐿2/2
2


(E.39)
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E.2 HR-EFM-IF

(a) deformation under LP-EFM.2 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.6: HR-EFM under LP-EFM.2.
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Appendix E. Detailed analytical computation of the condensed stiffness matrix of the EFMs

𝑓 LP-EFM.2 =

[
𝑃 𝐿1

8
+ 𝑃 𝐿2

8

]
(E.40)

𝛿LP-EFM.2
𝑃 =


𝛿LP-EFM.2.𝑁
𝑃

𝛿LP-EFM.2.𝐸
𝑃


=


−

𝑃 𝐿3
1

192 𝐸 𝐼1

𝑃 𝐿3
2

192 𝐸 𝐼2


(E.41)

𝑑LP-EFM.2 =

(
𝑘LP-EFM.2

11

)−1 (
− 𝑓 LP-EFM.2

)
= − 𝐿1 𝐿2 𝑃 (𝐿1 + 𝐿2)

16 𝐸 (𝐼1 𝐿2 + 𝐼2 𝐿1)
(E.42)

𝛿LP-EFM.2
𝐷 = 𝛿LP-EFM.2

𝑑 𝑑LP-EFM.2 =


𝛿LP-EFM.2.𝑁
𝐷

𝛿LP-EFM.2.𝐸
𝐷


=


−

𝐿2
1 𝐿2 𝑃 (𝐿1 + 𝐿2)

64 𝐸 (𝐼1 𝐿2 + 𝐼2 𝐿1)

𝐿1 𝐿
2
2 𝑃 (𝐿1 + 𝐿2)

64 𝐸 (𝐼1 𝐿2 + 𝐼2 𝐿1)


(E.43)

𝛿LP-EFM.2 = 𝛿LP-EFM.2
𝐷 + 𝛿LP-EFM.2

𝑃 =


𝛿LP-EFM.2.𝑁

𝛿LP-EFM.2.𝐸


=


−
𝐿2

1 𝑃
(
𝐼2 𝐿

2
1 + 4 𝐼1 𝐿1 𝐿2 + 3 𝐼1 𝐿2

2
)

192 𝐸 𝐼1 (𝐼1 𝐿2 + 𝐼2 𝐿1)

𝐿2
2 𝑃

(
3 𝐼2 𝐿2

1 + 4 𝐼2 𝐿1 𝐿2 + 𝐼1 𝐿
2
2
)

192 𝐸 𝐼2 (𝐼1 𝐿2 + 𝐼2 𝐿1)



(E.44)

E.2.3 LP-EFM.3

The deformation of HR-EFM under LP-EFM.3, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.7(a), Fig. E.7(b)

Fig. E.7(c), and Fig. E.7(d), respectively. Eqs. (E.45) to (E.51) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.3
11 =

4 𝐸 𝐼1
𝐿1/2

+ 𝐸 𝐼2

𝐿2/2
(E.45)
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E.2 HR-EFM-IF

(a) deformation under LP-EFM.3 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.7: HR-EFM under LP-EFM.3.
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Appendix E. Detailed analytical computation of the condensed stiffness matrix of the EFMs

𝛿LP-EFM.3
𝑑 =


𝛿LP-EFM.3.𝑁
𝑑

𝛿LP-EFM.3.𝐸
𝑑


=


0

−𝐿2/2
2


(E.46)

𝑓 LP-EFM.3 =

[
𝑃 𝐿2

8

]
(E.47)

𝛿LP-EFM.3
𝑃 =


𝛿LP-EFM.3.𝑁
𝑃

𝛿LP-EFM.3.𝐸
𝑃


=


0

𝑃 𝐿3
2

192 𝐸 𝐼2


(E.48)

𝑑LP-EFM.3 =

(
𝑘LP-EFM.3

11

)−1 (
− 𝑓 LP-EFM.3

)
= −

𝐿1 𝐿
2
2 𝑃

16 𝐸 (4 𝐼1 𝐿2 + 𝐼2 𝐿1)
(E.49)

𝛿LP-EFM.3
𝐷 = 𝛿LP-EFM.3

𝑑 𝑑LP-EFM.3 =


𝛿LP-EFM.3.𝑁
𝐷

𝛿LP-EFM.3.𝐸
𝐷


=


0

𝐿1 𝐿
3
2 𝑃

64 𝐸 (4 𝐼1 𝐿2 + 𝐼2 𝐿1)


(E.50)

𝛿LP-EFM.3 = 𝛿LP-EFM.3
𝐷 + 𝛿LP-EFM.3

𝑃 =


𝛿LP-EFM.3.𝑁

𝛿LP-EFM.3.𝐸


=


0

𝐿3
2 𝑃 (𝐼1 𝐿2 + 𝐼2 𝐿1)

48 𝐸 𝐼2 (4 𝐼1 𝐿2 + 𝐼2 𝐿1)


(E.51)

E.2.4 LP-EFM.4

The deformation of HR-EFM under LP-EFM.4, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.8(a), Fig. E.8(b)

Fig. E.8(c), and Fig. E.8(d), respectively. Eqs. (E.52) to (E.58) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.4
11 =

𝐸 𝐼1

𝐿1/2
+ 4 𝐸2 𝐼

𝐿2/2
(E.52)
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E.2 HR-EFM-IF

(a) deformation under LP-EFM.4 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.8: HR-EFM under LP-EFM.4.
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𝛿LP-EFM.4
𝑑 =


𝛿LP-EFM.4.𝑁
𝑑

𝛿LP-EFM.4.𝐸
𝑑


=


𝐿1/2

2

0


(E.53)

𝑓 LP-EFM.4 =

[
− 𝑃 𝐿1

8

]
(E.54)

𝛿LP-EFM.4
𝑃 =


𝛿LP-EFM.4.𝑁
𝑃

𝛿LP-EFM.4.𝐸
𝑃


=



𝑃 𝐿3
1

192 𝐸 𝐼1

0


(E.55)

𝑑LP-EFM.4 =

(
𝑘LP-EFM.4

11

)−1 (
− 𝑓 LP-EFM.4

)
=

𝐿2
1 𝐿2 𝑃

16 𝐸 (𝐼1 𝐿2 + 4 𝐼2 𝐿1)
(E.56)

𝛿LP-EFM.4
𝐷 = 𝛿LP-EFM.4

𝑑 𝑑LP-EFM.4 =


𝛿LP-EFM.4.𝑁
𝐷

𝛿LP-EFM.4.𝐸
𝐷


=



𝐿3
1 𝐿2 𝑃

64 𝐸 (𝐼1 𝐿2 + 4 𝐼2 𝐿1)

0


(E.57)

𝛿LP-EFM.4 = 𝛿LP-EFM.4
𝐷 + 𝛿LP-EFM.4

𝑃 =


𝛿LP-EFM.4.𝑁

𝛿LP-EFM.4.𝐸


=



𝐿3
1 𝑃 (𝐼1 𝐿2 + 𝐼2 𝐿1)

48 𝐸 𝐼1 (𝐼1 𝐿2 + 4 𝐼2 𝐿1)

0


(E.58)

E.2.5 Condensed stiffness matrix of HR-EFM-IF

The matrix FHR-EFM-IF is generated for the full EFM by concatenating the displacement vectors of each

LP-EFM, described by Eqs. (E.37), (E.44), (E.51), and (E.58), and the two additional displacements
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E.2 HR-EFM-IF

obtained from symmetry conditions, resulting in Eq. (E.59).

FHR-EFM-IF =



𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 − 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸

𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 − 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸


(E.59)

The condensed stiffness matrix of the HR-EFM-IF, KHR-EFM-IF
c , is obtained by multiplying the

matrix of external forces, P (Eq. (5.3)), with the inverse of FHR-EFM-IF (Eq. (E.59)), leading to

Eq. (E.60).

KHR-EFM-IF
c = P

(
FHR-EFM-IF

)−1
=



𝑘HR-EFM-IF
11 𝑘HR-EFM-IF

12 𝑘HR-EFM-IF
13 𝑘HR-EFM-IF

14

𝑘HR-EFM-IF
21 𝑘HR-EFM-IF

22 𝑘HR-EFM-IF
23 𝑘HR-EFM-IF

24

𝑘HR-EFM-IF
31 𝑘HR-EFM-IF

32 𝑘HR-EFM-IF
33 𝑘HR-EFM-IF

34

𝑘HR-EFM-IF
41 𝑘HR-EFM-IF

42 𝑘HR-EFM-IF
43 𝑘HR-EFM-IF

44


(E.60)

where:

𝑘HR-EFM-IF
11 = 𝑘HR-EFM-IF

33 =
48 𝐸 𝐼1 (𝐼1 𝐿2 + 4 𝐼2 𝐿1)

𝐿3
1 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(E.61)

𝑘HR-EFM-IF
22 = 𝑘HR-EFM-IF

44 =
48 𝐸 𝐼2 (4 𝐼1 𝐿2 + 𝐼2 𝐿1)

𝐿3
2 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(E.62)

𝑘HR-EFM-IF
12 = 𝑘HR-EFM-IF

14 = 𝑘HR-EFM-IF
21 = 𝑘HR-EFM-IF

23 = 𝑘HR-EFM-IF
32 = 𝑘HR-EFM-IF

34 = . . .

. . . = 𝑘HR-EFM-IF
41 = 𝑘HR-EFM-IF

43 =
72 𝐸 𝐼1 𝐼2

𝐿1 𝐿2 (𝐼1 𝐿2 + 𝐼2 𝐿1)
(E.63)

𝑘HR-EFM-IF
13 = 𝑘HR-EFM-IF

24 = 𝑘HR-EFM-IF
31 = 𝑘HR-EFM-IF

42 = 0 (E.64)
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Appendix E. Detailed analytical computation of the condensed stiffness matrix of the EFMs

E.3 HR-EFM-IEq

As previously noted, the HR-EFM-IEq and HR-EFM-IF are identical, except for the usage of an

equivalent moment of inertia, 𝐼𝑒𝑞, as defined by Eq. (5.1), in place of individual moments of inertia, 𝐼1

and 𝐼2. Consequently, the condensed stiffness matrix, KHR-EFM-IEq
c , is explicitly presented to eliminate

the need for repetitive calculations and figure displays.

E.3.1 Condensed stiffness matrix of HR-EFM-IEq

The stiffness matrix, KHR-EFM-IEq
c , of the HR-EFM-IEq is:

KHR-EFM-IEq
c =



𝑘
HR-EFM-IEq
11 𝑘

HR-EFM-IEq
12 𝑘

HR-EFM-IEq
13 𝑘

HR-EFM-IEq
14

𝑘
HR-EFM-IEq
21 𝑘

HR-EFM-IEq
22 𝑘

HR-EFM-IEq
23 𝑘

HR-EFM-IEq
24

𝑘
HR-EFM-IEq
31 𝑘

HR-EFM-IEq
32 𝑘

HR-EFM-IEq
33 𝑘

HR-EFM-IEq
34

𝑘
HR-EFM-IEq
41 𝑘

HR-EFM-IEq
42 𝑘

HR-EFM-IEq
43 𝑘

HR-EFM-IEq
44


(E.65)

where:

𝑘
HR-EFM-IEq
11 = 𝑘

HR-EFM-IEq
33 =

48 𝐸 𝐼𝑒𝑞 (4 𝐿1 + 𝐿2)
𝐿3

1 (𝐿1 + 𝐿2)
(E.66)

𝑘
HR-EFM-IEq
22 = 𝑘

HR-EFM-IEq
44 =

48 𝐸 𝐼𝑒𝑞 (𝐿1 + 4 𝐿2)
𝐿3

2 (𝐿1 + 𝐿2)
(E.67)

𝑘
HR-EFM-IEq
12 = 𝑘

HR-EFM-IEq
14 = 𝑘

HR-EFM-IEq
21 = 𝑘

HR-EFM-IEq
23 = 𝑘

HR-EFM-IEq
32 = . . .

. . . = 𝑘
HR-EFM-IEq
34 = 𝑘

HR-EFM-IEq
41 = 𝑘

HR-EFM-IEq
43 =

72 𝐸 𝐼𝑒𝑞
𝐿1 𝐿2 (𝐿1 + 𝐿2)

(E.68)

𝑘
HR-EFM-IEq
13 = 𝑘

HR-EFM-IEq
24 = 𝑘

HR-EFM-IEq
31 = 𝑘

HR-EFM-IEq
42 = 0 (E.69)

E.4 PS-EFM

Each of the following four sections provides detailed calculations for each LP-EFM illustrated in

Fig. 5.2, applied to the PS-EFM, following the steps outlined in Section 5.2.2.
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E.4 PS-EFM

E.4.1 LP-EFM.1

The deformation of PS-EFM under LP-EFM.1, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.9(a), Fig. E.9(b)

Fig. E.9(c), and Fig. E.9(d), respectively. Eqs. (E.70) to (E.76) present the results from the application

of the procedure described in Section 5.2.2.

𝑘LP-EFM.1
11 =

𝐸 𝐼

𝑎
+ 𝐸 𝐼

𝑎
(E.70)

𝛿LP-EFM.1
𝑑 =


𝛿LP-EFM.1.𝑁
𝑑

𝛿LP-EFM.1.𝐸
𝑑


=


𝑎

2

−𝑎
2


(E.71)

𝑓 LP-EFM.1 =

[
−𝑃 𝑎

4
+ 𝑃 𝑎

4

]
(E.72)

𝛿LP-EFM.1
𝑃 =


𝛿LP-EFM.1.𝑁
𝑃

𝛿LP-EFM.1.𝐸
𝑃


=


𝑃 𝑎3

24 𝐸 𝐼

𝑃 𝑎3

24 𝐸 𝐼


(E.73)

𝑑LP-EFM.1 =

(
𝑘LP-EFM.1

11

)−1 (
− 𝑓 LP-EFM.1

)
= 0 (E.74)

𝛿LP-EFM.1
𝐷 = 𝛿LP-EFM.1

𝑑 𝑑LP-EFM.1 =


𝛿LP-EFM.1.𝑁
𝐷

𝛿LP-EFM.1.𝐸
𝐷


=


0

0


(E.75)

𝛿LP-EFM.1 = 𝛿LP-EFM.1
𝐷 + 𝛿LP-EFM.1

𝑃 =


𝛿LP-EFM.1.𝑁

𝛿LP-EFM.1.𝐸


=


𝑃 𝑎3

24 𝐸 𝐼

𝑃 𝑎3

24 𝐸 𝐼


(E.76)

E.4.2 LP-EFM.2

The deformation of PS-EFM under LP-EFM.2, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.10(a), Fig. E.10(b)
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Appendix E. Detailed analytical computation of the condensed stiffness matrix of the EFMs

(a) deformation under LP-EFM.1 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.9: PS-EFM under LP-EFM.1.
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E.4 PS-EFM

(a) deformation under LP-EFM.2 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.10: PS-EFM under LP-EFM.2.

Fig. E.10(c), and Fig. E.10(d), respectively. Eqs. (E.77) to (E.83) present the results from the

application of the procedure described in Section 5.2.2.

𝑘LP-EFM.2
11 =

𝐸 𝐼

𝑎
+ 𝐸 𝐼

𝑎
(E.77)

𝛿LP-EFM.2
𝑑 =


𝛿LP-EFM.2.𝑁
𝑑

𝛿LP-EFM.2.𝐸
𝑑


=


𝑎

2

−𝑎
2


(E.78)
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𝑓 LP-EFM.2 =

[
𝑃 𝑎

4
+ 𝑃 𝑎

4

]
(E.79)

𝛿LP-EFM.2
𝑃 =


𝛿LP-EFM.2.𝑁
𝑃

𝛿LP-EFM.2.𝐸
𝑃


=


− 𝑃 𝑎3

24 𝐸 𝐼

𝑃 𝑎3

24 𝐸 𝐼


(E.80)

𝑑LP-EFM.2 =

(
𝑘LP-EFM.2

11

)−1 (
− 𝑓 LP-EFM.2

)
= − 𝑃 𝑎2

4 𝐸 𝐼
(E.81)

𝛿LP-EFM.2
𝐷 = 𝛿LP-EFM.2

𝑑 𝑑LP-EFM.2 =


𝛿LP-EFM.2.𝑁
𝐷

𝛿LP-EFM.2.𝐸
𝐷


=


− 𝑃 𝑎3

8 𝐸 𝐼

𝑃 𝑎3

8 𝐸 𝐼


(E.82)

𝛿LP-EFM.2 = 𝛿LP-EFM.2
𝐷 + 𝛿LP-EFM.2

𝑃 =


𝛿LP-EFM.2.𝑁

𝛿LP-EFM.2.𝐸


=


− 𝑃 𝑎3

6 𝐸 𝐼

𝑃 𝑎3

6 𝐸 𝐼


(E.83)

E.4.3 LP-EFM.3

The deformation of PS-EFM under LP-EFM.3, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.11(a), Fig. E.11(b)

Fig. E.11(c), and Fig. E.11(d), respectively. Eqs. (E.84) to (E.90) present the results from the

application of the procedure described in Section 5.2.2.

𝑘LP-EFM.3
11 =

4 𝐸 𝐼
𝑎

+ 𝐸 𝐼

𝑎
(E.84)

𝛿LP-EFM.3
𝑑 =


𝛿LP-EFM.3.𝑁
𝑑

𝛿LP-EFM.3.𝐸
𝑑


=


0

−𝑎
2


(E.85)

𝑓 LP-EFM.3 =

[
𝑃 𝑎

4

]
(E.86)
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E.4 PS-EFM

(a) deformation under LP-EFM.3 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.11: PS-EFM under LP-EFM.3.
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𝛿LP-EFM.3
𝑃 =


𝛿LP-EFM.3.𝑁
𝑃

𝛿LP-EFM.3.𝐸
𝑃


=


0

𝑃 𝑎3

24 𝐸 𝐼


(E.87)

𝑑LP-EFM.3 =

(
𝑘LP-EFM.3

11

)−1 (
− 𝑓 LP-EFM.3

)
= − 𝑃 𝑎2

20 𝐸 𝐼
(E.88)

𝛿LP-EFM.3
𝐷 = 𝛿LP-EFM.3

𝑑 𝑑LP-EFM.3 =


𝛿LP-EFM.3.𝑁
𝐷

𝛿LP-EFM.3.𝐸
𝐷


=


0

𝑃 𝑎3

40 𝐸 𝐼


(E.89)

𝛿LP-EFM.3 = 𝛿LP-EFM.3
𝐷 + 𝛿LP-EFM.3

𝑃 =


𝛿LP-EFM.3.𝑁

𝛿LP-EFM.3.𝐸


=


0

𝑃 𝑎3

15 𝐸 𝐼


(E.90)

E.4.4 LP-EFM.4

The deformation of PS-EFM under LP-EFM.4, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.12(a), Fig. E.12(b)

Fig. E.12(c), and Fig. E.12(d), respectively. Eqs. (E.91) to (E.97) present the results from the

application of the procedure described in Section 5.2.2.

𝑘LP-EFM.4
11 =

𝐸 𝐼

𝑎
+ 4 𝐸 𝐼

𝑎
(E.91)

𝛿LP-EFM.4
𝑑 =


𝛿LP-EFM.4.𝑁
𝑑

𝛿LP-EFM.4.𝐸
𝑑


=


𝑎

2

0


(E.92)

𝑓 LP-EFM.4 =

[
− 𝑃 𝑎

4

]
(E.93)
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E.4 PS-EFM

(a) deformation under LP-EFM.4 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.12: PS-EFM under LP-EFM.4.
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𝛿LP-EFM.4
𝑃 =


𝛿LP-EFM.4.𝑁
𝑃

𝛿LP-EFM.4.𝐸
𝑃


=


𝑃 𝑎3

24 𝐸 𝐼

0


(E.94)

𝑑LP-EFM.4 =

(
𝑘LP-EFM.4

11

)−1 (
− 𝑓 LP-EFM.4

)
=

𝑃 𝑎2

20 𝐸 𝐼
(E.95)

𝛿LP-EFM.4
𝐷 = 𝛿LP-EFM.4

𝑑 𝑑LP-EFM.4 =


𝛿LP-EFM.4.𝑁
𝐷

𝛿LP-EFM.4.𝐸
𝐷


=


𝑃 𝑎3

40 𝐸 𝐼

0


(E.96)

𝛿LP-EFM.4 = 𝛿LP-EFM.4
𝐷 + 𝛿LP-EFM.4

𝑃 =


𝛿LP-EFM.4.𝑁

𝛿LP-EFM.4.𝐸


=


𝑃 𝑎3

15 𝐸 𝐼

0


(E.97)

E.4.5 Condensed stiffness matrix of PS-EFM

The matrix FPS-EFM is generated for the full EFM by concatenating the displacement vectors of each

LP-EFM, described by Eqs. (E.76), (E.83), (E.90), and (E.97), and the two additional displacements

obtained from symmetry conditions, resulting in Eq. (E.98).

FPS-EFM =



𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 − 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸

𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 − 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸


(E.98)

The condensed stiffness matrix of the PS-EFM, KPS-EFM
c , is obtained by multiplying the matrix of

external forces, P (Eq. (5.3)), with the inverse of FPS-EFM (Eq. (E.98)), leading to Eq. (E.99).
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KPS-EFM
c = P

(
FPS-EFM

)−1
=



15 𝐸 𝐼
𝑎3

9 𝐸 𝐼
2 𝑎3 0

9 𝐸 𝐼
2 𝑎3

9 𝐸 𝐼
2 𝑎3

15 𝐸 𝐼
𝑎3

9 𝐸 𝐼
2 𝑎3 0

0
9 𝐸 𝐼
2 𝑎3

15 𝐸 𝐼
𝑎3

9 𝐸 𝐼
2 𝑎3

9 𝐸 𝐼
2 𝑎3 0

9 𝐸 𝐼
2 𝑎3

15 𝐸 𝐼
𝑎3



(E.99)

E.5 PR-EFM-IF

The next four sections comprise detailed calculations for each LP-EFM shown in Fig. 5.2, applied to

the PR-EFM-IF, according to the procedures outlined in Section 5.2.2. A separate section is dedicated

to presenting the stiffness matrix, KPR-EFM-IF
c .

E.5.1 LP-EFM.1

The deformation of PR-EFM under LP-EFM.1, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.13(a), Fig. E.13(b)

Fig. E.13(c), and Fig. E.13(d), respectively. Eqs. (E.100) to (E.106) present the results from the

application of the procedure described in Section 5.2.2.

𝑘LP-EFM.1
11 =

𝐸 𝐼1

𝑎
+ 𝐸 𝐼2

𝑐
(E.100)

𝛿LP-EFM.1
𝑑 =


𝛿LP-EFM.1.𝑁
𝑑

𝛿LP-EFM.1.𝐸
𝑑


=


𝑎

2

−𝑐
2


(E.101)

𝑓 LP-EFM.1 =

[
−𝑃 𝑎

4
+ 𝑃 𝑐

4

]
(E.102)
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Appendix E. Detailed analytical computation of the condensed stiffness matrix of the EFMs

(a) deformation under LP-EFM.1 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.13: PR-EFM under LP-EFM.1.
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𝛿LP-EFM.1
𝑃 =


𝛿LP-EFM.1.𝑁
𝑃

𝛿LP-EFM.1.𝐸
𝑃


=


𝑃 𝑎3

24 𝐸 𝐼1

𝑃 𝑐3

24 𝐸 𝐼2


(E.103)

𝑑LP-EFM.1 =

(
𝑘LP-EFM.1

11

)−1 (
− 𝑓 LP-EFM.1

)
=

𝑃 𝑎 𝑐 (𝑎 − 𝑐)
4 𝐸 (𝐼2 𝑎 + 𝐼1 𝑐)

(E.104)

𝛿LP-EFM.1
𝐷 = 𝛿LP-EFM.1

𝑑 𝑑LP-EFM.1 =


𝛿LP-EFM.1.𝑁
𝐷

𝛿LP-EFM.1.𝐸
𝐷


=


𝑃 𝑎2 𝑐 (𝑎 − 𝑐)

8 𝐸 (𝐼2 𝑎 + 𝐼1 𝑐)

− 𝑃 𝑎 𝑐2 (𝑎 − 𝑐)
8 𝐸 (𝐼2 𝑎 + 𝐼1 𝑐)


(E.105)

𝛿LP-EFM.1 = 𝛿LP-EFM.1
𝐷 + 𝛿LP-EFM.1

𝑃 =


𝛿LP-EFM.1.𝑁

𝛿LP-EFM.1.𝐸


=



𝑃 𝑎2 (
𝐼2 𝑎

2 + 4 𝐼1 𝑎 𝑐 − 3 𝐼1 𝑐2)
24 𝐸 𝐼1 (𝐼2 𝑎 + 𝐼1 𝑐)

𝑃 𝑐2 (
− 3 𝐼2 𝑎2 + 4 𝐼2 𝑎 𝑐 + 𝐼1 𝑐

2)
24 𝐸 𝐼2 (𝐼2 𝑎 + 𝐼1 𝑐)



(E.106)

E.5.2 LP-EFM.2

The deformation of PR-EFM under LP-EFM.2, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.14(a), Fig. E.14(b)

Fig. E.14(c), and Fig. E.14(d), respectively. Eqs. (E.107) to (E.113) present the results from the

application of the procedure described in Section 5.2.2.

𝑘LP-EFM.2
11 =

𝐸 𝐼1

𝑎
+ 𝐸 𝐼2

𝑐
(E.107)

𝛿LP-EFM.2
𝑑 =


𝛿LP-EFM.2.𝑁
𝑑

𝛿LP-EFM.2.𝐸
𝑑


=


𝑎

2

−𝑐
2


(E.108)
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Appendix E. Detailed analytical computation of the condensed stiffness matrix of the EFMs

(a) deformation under LP-EFM.2 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.14: PR-EFM under LP-EFM.2.
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𝑓 LP-EFM.2 =

[
𝑃 𝑎

4
+ 𝑃 𝑐

4

]
(E.109)

𝛿LP-EFM.2
𝑃 =


𝛿LP-EFM.2.𝑁
𝑃

𝛿LP-EFM.2.𝐸
𝑃


=


− 𝑃 𝑎3

24 𝐸 𝐼1

𝑃 𝑐3

24 𝐸 𝐼2


(E.110)

𝑑LP-EFM.2 =

(
𝑘LP-EFM.2

11

)−1 (
− 𝑓 LP-EFM.2

)
= − 𝑃 𝑎 𝑐 (𝑎 + 𝑐)

4 𝐸 (𝐼2 𝑎 + 𝐼1 𝑐)
(E.111)

𝛿LP-EFM.2
𝐷 = 𝛿LP-EFM.2

𝑑 𝑑LP-EFM.2 =


𝛿LP-EFM.2.𝑁
𝐷

𝛿LP-EFM.2.𝐸
𝐷


=


− 𝑃 𝑎2 𝑐 (𝑎 + 𝑐)

8 𝐸 (𝐼2 𝑎 + 𝐼1 𝑐)

𝑃 𝑎 𝑐2 (𝑎 + 𝑐)
8 𝐸 (𝐼2 𝑎 + 𝐼1 𝑐)


(E.112)

𝛿LP-EFM.2 = 𝛿LP-EFM.2
𝐷 + 𝛿LP-EFM.2

𝑃 =


𝛿LP-EFM.2.𝑁

𝛿LP-EFM.2.𝐸


=


−
𝑃 𝑎2 (

𝐼2 𝑎
2 + 4 𝐼1 𝑎 𝑐 + 3 𝐼1 𝑐2)

24 𝐸 𝐼1 (𝐼2 𝑎 + 𝐼1 𝑐)

𝑃 𝑐2 (
3 𝐼2 𝑎2 + 4 𝐼2 𝑎 𝑐 + 𝐼1 𝑐

2)
24 𝐸 𝐼2 (𝐼2 𝑎 + 𝐼1 𝑐)



(E.113)

E.5.3 LP-EFM.3

The deformation of PR-EFM under LP-EFM.3, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.15(a), Fig. E.15(b)

Fig. E.15(c), and Fig. E.15(d), respectively. Eqs. (E.114) to (E.120) present the results from the

application of the procedure described in Section 5.2.2.

𝑘LP-EFM.3
11 =

4 𝐸 𝐼1
𝑎

+ 𝐸 𝐼2

𝑐
(E.114)
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(a) deformation under LP-EFM.3 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.15: PR-EFM under LP-EFM.3.
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𝛿LP-EFM.3
𝑑 =


𝛿LP-EFM.3.𝑁
𝑑

𝛿LP-EFM.3.𝐸
𝑑


=


0

−𝑐
2


(E.115)

𝑓 LP-EFM.3 =

[
𝑃 𝑐

4

]
(E.116)

𝛿LP-EFM.3
𝑃 =


𝛿LP-EFM.3.𝑁
𝑃

𝛿LP-EFM.3.𝐸
𝑃


=


0

𝑃 𝑐3

24 𝐸 𝐼2


(E.117)

𝑑LP-EFM.3 =

(
𝑘LP-EFM.3

11

)−1 (
− 𝑓 LP-EFM.3

)
= − 𝑃 𝑎 𝑐2

4 𝐸 (𝐼2 𝑎 + 4 𝐼1 𝑐)
(E.118)

𝛿LP-EFM.3
𝐷 = 𝛿LP-EFM.3

𝑑 𝑑LP-EFM.3 =


𝛿LP-EFM.3.𝑁
𝐷

𝛿LP-EFM.3.𝐸
𝐷


=


0

𝑃 𝑎 𝑐3

8 𝐸 (𝐼2 𝑎 +4 𝐼1 𝑐)


(E.119)

𝛿LP-EFM.3 = 𝛿LP-EFM.3
𝐷 + 𝛿LP-EFM.3

𝑃 =


𝛿LP-EFM.3.𝑁

𝛿LP-EFM.3.𝐸


=


0

𝑃 𝑐3 (𝐼2 𝑎 + 𝐼1 𝑐)
6 𝐸 𝐼2 (𝐼2 𝑎 + 4 𝐼1 𝑐)


(E.120)

E.5.4 LP-EFM.4

The deformation of PR-EFM under LP-EFM.4, the SEFM due to symmetry conditions, the stiffness

coefficients, and the corresponding restraining forces are presented in Fig. E.16(a), Fig. E.16(b)

Fig. E.16(c), and Fig. E.16(d), respectively. Eqs. (E.121) to (E.127) present the results from the

application of the procedure described in Section 5.2.2.

𝑘LP-EFM.4
11 =

𝐸 𝐼1

𝑎
+ 4 𝐸2 𝐼

𝑐
(E.121)
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(a) deformation under LP-EFM.4 (b) SEFM

(c) stiffness coefficients (d) restraining forces

Figure E.16: PR-EFM under LP-EFM.4.
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𝛿LP-EFM.4
𝑑 =


𝛿LP-EFM.4.𝑁
𝑑

𝛿LP-EFM.4.𝐸
𝑑


=


𝑎

2

0


(E.122)

𝑓 LP-EFM.4 =

[
− 𝑃 𝑎

4

]
(E.123)

𝛿LP-EFM.4
𝑃 =


𝛿LP-EFM.4.𝑁
𝑃

𝛿LP-EFM.4.𝐸
𝑃


=


𝑃 𝑎3

24 𝐸 𝐼1

0


(E.124)

𝑑LP-EFM.4 =

(
𝑘LP-EFM.4

11

)−1 (
− 𝑓 LP-EFM.4

)
=

𝑃 𝑎2 𝑐

4 𝐸 (4 𝐼2 𝑎 + 𝐼1 𝑐)
(E.125)

𝛿𝐷.𝐷𝑀4 = 𝛿LP-EFM.4
𝑑 𝑑LP-EFM.4 =


𝛿LP-EFM.4.𝑁
𝐷

𝛿LP-EFM.4.𝐸
𝐷


=


𝑃 𝑎3 𝑐

8 𝐸 (4 𝐼2 𝑎 + 𝐼1 𝑐)

0


(E.126)

𝛿LP-EFM.4 = 𝛿LP-EFM.4
𝐷 + 𝛿LP-EFM.4

𝑃 =


𝛿LP-EFM.4.𝑁

𝛿LP-EFM.4.𝐸


=


𝑃 𝑎3 (𝐼2 𝑎 + 𝐼1 𝑐)

6 𝐸 𝐼1 (4 𝐼2 𝑎 + 𝐼1 𝑐)

0


(E.127)

E.5.5 Condensed stiffness matrix of PR-EFM-IF

The matrix FPR-EFM-IF is generated for the full EFM by concatenating the displacement vectors of

each LP-EFM, described by Eqs. (E.106), (E.113), (E.120), and (E.127), and the two additional
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displacements obtained from symmetry conditions, resulting in Eq. (E.128).

FPR-EFM-IF =



𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 − 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸

𝛿LP-EFM.1.𝑁 𝛿LP-EFM.2.𝑁 𝛿LP-EFM.3.𝑁 𝛿LP-EFM.4.𝑁

𝛿LP-EFM.1.𝐸 𝛿LP-EFM.2.𝐸 − 𝛿LP-EFM.3.𝐸 𝛿LP-EFM.4.𝐸


(E.128)

The condensed stiffness matrix of the PR-EFM-IF, KPR-EFM-IF
c , is obtained by multiplying the

matrix of external forces, P (Eq. (5.3)), with the inverse of FPR-EFM-IF (Eq. (E.128)), leading to

Eq. (E.129).

KPR-EFM-IF
c = P

(
FPR-EFM-IF

)−1
=



𝑘PR-EFM-IF
11 𝑘PR-EFM-IF

12 𝑘PR-EFM-IF
13 𝑘PR-EFM-IF

14

𝑘PR-EFM-IF
21 𝑘PR-EFM-IF

22 𝑘PR-EFM-IF
23 𝑘PR-EFM-IF

24

𝑘PR-EFM-IF
31 𝑘PR-EFM-IF

32 𝑘PR-EFM-IF
33 𝑘PR-EFM-IF

34

𝑘PR-EFM-IF
41 𝑘PR-EFM-IF

42 𝑘PR-EFM-IF
43 𝑘PR-EFM-IF

44


(E.129)

where:

𝑘PR-EFM-IF
11 = 𝑘PR-EFM-IF

33 =
6 𝐸 𝐼1 (4 𝐼2 𝑎 + 𝐼1 𝑐)
𝑎3 (𝐼2 𝑎 + 𝐼1 𝑐)

(E.130)

𝑘PR-EFM-IF
22 = 𝑘PR-EFM-IF

44 =
6 𝐸 𝐼2 (𝐼2 𝑎 + 4 𝐼1 𝑐)
𝑐3 (𝐼2 𝑎 + 𝐼1 𝑐)

(E.131)

𝑘PR-EFM-IF
12 = 𝑘PR-EFM-IF

14 = 𝑘PR-EFM-IF
21 = 𝑘PR-EFM-IF

23 = 𝑘PR-EFM-IF
32 = 𝑘PR-EFM-IF

34 = . . .

. . . = 𝑘PR-EFM-IF
41 = 𝑘PR-EFM-IF

43 =
9 𝐸 𝐼1 𝐼2

𝑎 𝑐 (𝐼2 𝑎 + 𝐼1 𝑐)
(E.132)

𝑘PR-EFM-IF
13 = 𝑘PR-EFM-IF

24 = 𝑘PR-EFM-IF
31 = 𝑘PR-EFM-IF

42 = 0 (E.133)
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E.6 PR-EFM-IEq

In the PR-EFM-IEq, the individual moments of inertia 𝐼1 and 𝐼2 from PR-EFM-IF are substituted

with the equivalent moment of inertia 𝐼𝑒𝑞, as defined in Eq. (5.1), throughout the entire calculation.

As a result, the full calculation is omitted to prevent redundancy. However, the stiffness matrix,

KPR-EFM-IEq
c , is presented in the subsequent section.

E.6.1 Condensed stiffness matrix of PR-EFM-IEq

The stiffness matrix, KPR-EFM-IEq
c , of the PR-EFM-IEq is:

KPR-EFM-IEq
c =



𝑘
PR-EFM-IEq
11 𝑘

PR-EFM-IEq
12 𝑘

PR-EFM-IEq
13 𝑘

PR-EFM-IEq
14

𝑘
PR-EFM-IEq
21 𝑘

PR-EFM-IEq
22 𝑘

PR-EFM-IEq
23 𝑘

PR-EFM-IEq
24

𝑘
PR-EFM-IEq
31 𝑘

PR-EFM-IEq
32 𝑘

PR-EFM-IEq
33 𝑘

PR-EFM-IEq
34

𝑘
PR-EFM-IEq
41 𝑘

PR-EFM-IEq
42 𝑘

PR-EFM-IEq
43 𝑘

PR-EFM-IEq
44


(E.134)

where:

𝑘
PR-EFM-IEq
11 = 𝑘

PR-EFM-IEq
33 =

6 𝐸 𝐼𝑒𝑞 (4 𝑎 + 𝑐)
𝑎3 (𝑎 + 𝑐)

(E.135)

𝑘
PR-EFM-IEq
22 = 𝑘

PR-EFM-IEq
44 =

6 𝐸 𝐼𝑒𝑞 (𝑎 + 4 𝑐)
𝑐3 (𝑎 + 𝑐)

(E.136)

𝑘
PR-EFM-IEq
12 = 𝑘

PR-EFM-IEq
14 = 𝑘

PR-EFM-IEq
21 = 𝑘

PR-EFM-IEq
23 = 𝑘

PR-EFM-IEq
32 = . . .

. . . = 𝑘
PR-EFM-IEq
34 = 𝑘

PR-EFM-IEq
41 = 𝑘

PR-EFM-IEq
43 =

9 𝐸 𝐼𝑒𝑞
𝑎 𝑐 (𝑎 + 𝑐)

(E.137)

𝑘
PR-EFM-IEq
13 = 𝑘

PR-EFM-IEq
24 = 𝑘

PR-EFM-IEq
31 = 𝑘

PR-EFM-IEq
42 = 0 (E.138)
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Appendix F: OpenSees model file example for Tcl

This section presents an OpenSees file model coded in the Tool Command Language (Tcl). The

OpenSees model comprises two discrete files, namely the main file and a secondary file dedicated to

defining joint stiffness. A succinct overview of the contents of these files is subsequently provided.

F.1 Main file

The design of the main file is optimized to enable the swift achievement of any desired load pattern.

In order to achieve a specific load pattern, the user only needs to modify the magnitude and orientation

(i.e., sign) of the applied forces in the main file, denoted as jointModel.tcl. As an illustration, the

OpenSees model main file utilized for the validation and calibration of the effective bending stiffness

of EFM in Section 5.4 for the PR-EFM-IF-R1 case under the RHS-m01-V01-SC01 load patterns and

socket configuration is presented below.

jointModel.tcl:

1 # INNO3DJOINT (Linear and Elastic)

2 # Abaqus (RFE): stiffness validation

3 # Units: N, mm, sec

4 # ------------------------------

5 # Analyzed case: PR-EFM-IF-R1

6 # LP: m01 V01

7 # SC: SC01

8 # ------------------------------

9

10 # Remove existing model

11 wipe

12

13 # Display message

14 puts "Analysis: START!"

15

16 # Create data directory:
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17 set Dir "res_PR_EFM_IF_R1_m01_v01_SC01";

18 file mkdir $Dir;

19

20 # INPUTS

21 # ---------------------------------------------------------

22 # Set the forces

23 # Y dir

24 set Fy101 -1000000.

25 set Fy103 0.

26

27 # X dir

28 set Fx102 0.

29 set Fx104 0.

30

31 # Set BC node tag

32 set bcNode 105

33

34 # Set force node tag

35 set forceNode101 101

36 set forceNode102 102

37 set forceNode103 103

38 set forceNode104 104

39

40 # Set column dimmesions

41 set dcX 200.0;

42 set dcZ 300.0;

43

44

45 # BUILD MODEL

46 # ---------------------------------------------------------

47 # Create ModelBuilder (in 3D with 6 DOFs/node):

48 model BasicBuilder -ndm 3 -ndf 6

49

50 # Define nodes coordinates:
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F.1 Main file

51 node 101 0.0 [expr -$dcZ/2] 0.0

52 node 102 [expr $dcX/2] 0.0 0.0

53 node 103 0.0 [expr $dcZ/2] 0.0

54 node 104 [expr -$dcX/2] 0.0 0.0

55 node 105 0.0 0.0 0.0

56

57 # Apply BC

58 fix $bcNode 1 1 1 1 1 1

59

60 # Create joint finite element

61 source src_jDef_PR_EFM_IF_R1_m01_v01_SC01.tcl

62

63 # Create a Linear TimeSeries:

64 timeSeries Linear 1

65

66 # Create a Plain LP with a linear TimeSeries:

67 pattern Plain 1 1 {

68 load $forceNode101 0 $Fy101 0 0 0 0

69 load $forceNode102 $Fx102 0 0 0 0 0

70 load $forceNode103 0 $Fy103 0 0 0 0

71 load $forceNode104 $Fx104 0 0 0 0 0

72 }

73

74

75 # CREATE RECORDERS

76 # ---------------------------------------------------------

77 # element level

78 recorder Element -file $Dir/Element99Disp_ALL.out -time -ele 99

disp

79 recorder Element -file $Dir/Element99React_ALL.out -time -ele 99

reaction

80

81 # element component level

82 recorder Element -file $Dir/springs_stress.out -time -ele 99
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matStress

83 recorder Element -file $Dir/springs_strain.out -time -ele 99

matStrain

84

85

86 # DEFINE ANALYSIS

87 # ---------------------------------------------------------

88 # constraint handler

89 constraints Plain

90

91 # DOF numberer

92 numberer Plain

93

94 # system of equation

95 system FullGeneral

96

97 # morm displacement increment test

98 set tol 1.0e-1;

99 set ite 1000;

100 test NormDispIncr $tol $ite;

101

102 # solution algorithm,

103 algorithm ModifiedNewton

104

105 # integration scheme

106 integrator LoadControl 1

107

108 # analysis object:

109 analysis Static

110

111 # perform the analysis (1 step):

112 analyze 1

113

114
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F.2 Beam-to-column joint element definition file for the elastic case

115 # ---------------------------------------------------------

116 # Print element

117 print -ele; # print all elements

118

119 # Display message

120 puts "Analysis: END!"

121

122 # Remove existing model

123 wipe

F.2 Beam-to-column joint element definition file for the elastic

case

The secondary file, containing the joint definition in the linear elastic regime for the PR-EFM-IF-

R1 case, subjected to the RHS-m01-V01-SC01 load patterns and socket configuration, is provided

hereafter.

src_jDef_PR_EFM_IF_R1_m01_v01_SC01.tcl:

1 # INNO3DJOINT (Linear and Elastic)

2 # Abaqus (RFE): stiffness validation

3 # Units: N, mm, sec

4 # ------------------------------

5 # Analyzed case: PR-EFM-IF-R1

6 # LP: m01 V01

7 # SC: SC01

8 # ------------------------------

9

10 # Define stiffness for components:

11 # define stiffness for tube components: face components

12 set k_25 7.04E+04;

13 set k_26 -6.25E+02;

14 set k_27 7.04E+04;
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15 set k_28 -6.25E+02;

16

17 # define stiffness for tube components: interaction components

18 set k_29 1.91E+04;

19 set k_30 1.91E+04;

20 set k_31 1.91E+04;

21 set k_32 1.91E+04;

22

23 # define stiffness for connection components (infinitely stiff)

24 set kLin 1E+11;

25 set kRot $kLin;

26

27 # assign sitffness to connection components: face A

28 set valK01 $kLin;

29 set valK02 $kLin;

30 set valK03 $kLin;

31

32 set valK04 $kRot;

33 set valK05 $kRot;

34 set valK06 $kRot;

35

36 # assign sitffness to connection components: face B

37 set valK07 $kLin;

38 set valK08 $kLin;

39 set valK09 $kLin;

40

41 set valK10 $kRot;

42 set valK11 $kRot;

43 set valK12 $kRot;

44

45 # assign sitffness to connection components: face C

46 set valK13 $kLin;

47 set valK14 $kLin;

48 set valK15 $kLin;
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49

50 set valK16 $kRot;

51 set valK17 $kRot;

52 set valK18 $kRot;

53

54 # assign sitffness to connection components: face D

55 set valK19 $kLin;

56 set valK20 $kLin;

57 set valK21 $kLin;

58

59 set valK22 $kRot;

60 set valK23 $kRot;

61 set valK24 $kRot;

62

63 # assign sitffness to tube components

64 # face components

65 set valK25 $k_25;

66 set valK26 $k_26;

67 set valK27 $k_27;

68 set valK28 $k_28;

69

70 # interaction components

71 set valK29 $k_29;

72 set valK30 $k_30;

73 set valK31 $k_31;

74 set valK32 $k_32;

75

76 # Define Uniaxial elastic material:

77 uniaxialMaterial Elastic 1 $valK01;

78 uniaxialMaterial Elastic 2 $valK02;

79 uniaxialMaterial Elastic 3 $valK03;

80 uniaxialMaterial Elastic 4 $valK04;

81 uniaxialMaterial Elastic 5 $valK05;

82 uniaxialMaterial Elastic 6 $valK06;
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83 uniaxialMaterial Elastic 7 $valK07;

84 uniaxialMaterial Elastic 8 $valK08;

85 uniaxialMaterial Elastic 9 $valK09;

86 uniaxialMaterial Elastic 10 $valK10;

87 uniaxialMaterial Elastic 11 $valK11;

88 uniaxialMaterial Elastic 12 $valK12;

89 uniaxialMaterial Elastic 13 $valK13;

90 uniaxialMaterial Elastic 14 $valK14;

91 uniaxialMaterial Elastic 15 $valK15;

92 uniaxialMaterial Elastic 16 $valK16;

93 uniaxialMaterial Elastic 17 $valK17;

94 uniaxialMaterial Elastic 18 $valK18;

95 uniaxialMaterial Elastic 19 $valK19;

96 uniaxialMaterial Elastic 20 $valK20;

97 uniaxialMaterial Elastic 21 $valK21;

98 uniaxialMaterial Elastic 22 $valK22;

99 uniaxialMaterial Elastic 23 $valK23;

100 uniaxialMaterial Elastic 24 $valK24;

101 uniaxialMaterial Elastic 25 $valK25;

102 uniaxialMaterial Elastic 26 $valK26;

103 uniaxialMaterial Elastic 27 $valK27;

104 uniaxialMaterial Elastic 28 $valK28;

105 uniaxialMaterial Elastic 29 $valK29;

106 uniaxialMaterial Elastic 30 $valK30;

107 uniaxialMaterial Elastic 31 $valK31;

108 uniaxialMaterial Elastic 32 $valK32;

109

110 # Create Inno3DJointND Element:

111 element Inno3DPnPJoint 99 101 102 103 104 105 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3

2;
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F.3 Beam-to-column joint element definition file for the

elastic-plastic case

The elastic-plastic analysis involves the division of the secondary file that comprises the joint definition

in the linear elastic-plastic regime for the PR-EFM-IF-R0-SC01 case into two distinct files. The first

file includes the tube components’ hard-coded values, while the second file encompasses the joint

element definition. The ensuing files are provided below for reference.

src_defTC_PR_EFM_IF_R0_v1.tcl:

1 ###############################

2 ##### BASED ON F_NGM ##########

3 ###############################

4

5 # face COMPONENTS

6

7 # spring 25:

8 set matTag25 25;

9 set Fy_25 87590.77273;

10 set E0_25 49542.0

11 set b_25 0.001;

12

13 # spring 26:

14 set matTag26 26;

15 set Fy_26 5471.005557;

16 set E0_26 1166.0;

17 set b_26 0.001;

18

19 # spring 27:

20 set matTag27 27;

21 set Fy_27 87590.77273;

22 set E0_27 49542.0;

23 set b_27 0.001;

24

25 # spring 28:
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26 set matTag28 28;

27 set Fy_28 5471.005557;

28 set E0_28 1166.0;

29 set b_28 0.001;

30

31

32 # interaction COMPONENTS

33

34 # spring 29, 30, 31 and 32

35 set disp [expr $Fy_25/$E0_25];

36

37 set matTag29 29;

38 set matTag30 30;

39 set matTag31 31;

40 set matTag32 32;

41

42 set E0_kI 14718;

43 set Fy_kI [expr $disp*$E0_kI];

44 set b_kI 0.001;

src_defJ_PR_EFM_IF_R0_v1.tcl:

1 # SET Stiffness for Springs:

2 source src_defTC_PR_EFM_IF_R0_v1.tcl

3

4 # ## CONNECTION COMPONENTS

5 # #########################

6 set kLin 1E+11;

7 set kRot [expr $kLin*1E+0];

8 puts $kLin

9 puts $kRot

10

11 # # branch 1

12 set valK01 $kLin;

320



F.3 Beam-to-column joint element definition file for the elastic-plastic case

13 set valK02 $kLin;

14 set valK03 $kLin;

15

16 set valK04 $kRot;

17 set valK05 $kRot;

18 set valK06 $kRot;

19

20 # # branch 2

21 set valK07 $kLin;

22 set valK08 $kLin;

23 set valK09 $kLin;

24

25 set valK10 $kRot;

26 set valK11 $kRot;

27 set valK12 $kRot;

28

29 # # branch 3

30 set valK13 $kLin;

31 set valK14 $kLin;

32 set valK15 $kLin;

33

34 set valK16 $kRot;

35 set valK17 $kRot;

36 set valK18 $kRot;

37

38 # # branch 4

39 set valK19 $kLin;

40 set valK20 $kLin;

41 set valK21 $kLin;

42

43 set valK22 $kRot;

44 set valK23 $kRot;

45 set valK24 $kRot;

46
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47

48 # Define UniAxial Elastic Material:

49 uniaxialMaterial Elastic 1 $valK01;

50 uniaxialMaterial Elastic 2 $valK02;

51 uniaxialMaterial Elastic 3 $valK03;

52 uniaxialMaterial Elastic 4 $valK04;

53 uniaxialMaterial Elastic 5 $valK05;

54 uniaxialMaterial Elastic 6 $valK06;

55 uniaxialMaterial Elastic 7 $valK07;

56 uniaxialMaterial Elastic 8 $valK08;

57 uniaxialMaterial Elastic 9 $valK09;

58 uniaxialMaterial Elastic 10 $valK10;

59 uniaxialMaterial Elastic 11 $valK11;

60 uniaxialMaterial Elastic 12 $valK12;

61 uniaxialMaterial Elastic 13 $valK13;

62 uniaxialMaterial Elastic 14 $valK14;

63 uniaxialMaterial Elastic 15 $valK15;

64 uniaxialMaterial Elastic 16 $valK16;

65 uniaxialMaterial Elastic 17 $valK17;

66 uniaxialMaterial Elastic 18 $valK18;

67 uniaxialMaterial Elastic 19 $valK19;

68 uniaxialMaterial Elastic 20 $valK20;

69 uniaxialMaterial Elastic 21 $valK21;

70 uniaxialMaterial Elastic 22 $valK22;

71 uniaxialMaterial Elastic 23 $valK23;

72 uniaxialMaterial Elastic 24 $valK24;

73

74

75 # ## TUBE COMPONENTS

76 # #########################

77

78 # face COMPONENTS (SHORT FACE) -- spring 25 and 27

79

80 # PLASTIC
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81 uniaxialMaterial Steel01 $matTag25 $Fy_25 $E0_25 $b_25;

82 uniaxialMaterial Steel01 $matTag27 $Fy_27 $E0_27 $b_27;

83

84

85 # face COMPONENTS (LONG FACE) -- spring 26 and 28

86

87 # PLASTIC

88 uniaxialMaterial Steel01 $matTag26 $Fy_26 $E0_26 $b_26;

89 uniaxialMaterial Steel01 $matTag28 $Fy_28 $E0_28 $b_28;

90

91

92 # interaction COMPONENTS

93

94 # PLASTIC

95 uniaxialMaterial Steel01 $matTag29 $Fy_kI $E0_kI $b_kI;

96 uniaxialMaterial Steel01 $matTag30 $Fy_kI $E0_kI $b_kI;

97 uniaxialMaterial Steel01 $matTag31 $Fy_kI $E0_kI $b_kI;

98 uniaxialMaterial Steel01 $matTag32 $Fy_kI $E0_kI $b_kI;

99

100

101 # # CREATE Inno3DPnPJoint Element:

102 # #########################

103 element Inno3DPnPJoint 99 101 102 103 104 105 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3

2;
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The results of the out-of-plane displacement from the center of each column face, 𝛿𝑖, where 𝑖 represents

the column faces {A, B, C, D}, obtained from the RFEMs developed in Abaqus, which are described

in Section 5.4.3, are presented for both the SHS and RHS in Tab. G.1 and Tab. G.2, respectively.

Furthermore, the deformed shapes of the SHS and RHS cross-sections under the SC02 configuration

are displayed in Tab. G.3 and Tab. G.4, respectively, for all load pattern(s) (LP(s)).

Table G.1: Values of displacements 𝛿𝑖 for SHS.

LP SC 𝛿A 𝛿B 𝛿C 𝛿D

m01 SC01 -11.90 -3.20 1.43 3.20

m01 SC02 -9.49 -2.73 1.30 2.73

m01 SC03 -4.27 -1.43 0.75 1.43

m01 SC04 -1.20 -0.49 0.28 0.49

m02-CH SC01 -4.63 -15.10 15.10 4.63

m02-CH SC02 -4.03 -12.22 12.22 4.03

m02-CH SC03 -2.18 -5.70 5.70 2.18

m02-CH SC04 -0.76 -1.68 1.68 0.76

m02-CV SC01 1.77 8.70 8.70 1.77

m02-CV SC02 1.43 6.76 6.76 1.43

m02-CV SC03 0.67 2.84 2.84 0.67

m02-CV SC04 0.21 0.71 0.71 0.21

m02-H SC01 10.46 0.00 10.46 0.00

m02-H SC02 8.19 0.00 8.19 0.00

m02-H SC03 3.52 0.00 3.52 0.00

m02-H SC04 0.92 0.00 0.92 0.00

m02-V SC01 -13.33 -6.40 13.33 6.40

m02-V SC02 -10.79 -5.46 10.79 5.46

m02-V SC03 -5.02 -2.85 5.02 2.85

m02-V SC04 -1.47 -0.97 1.47 0.97

m03-H SC01 13.66 11.90 7.26 -1.43

Continued on next page . . .
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Table G.1: Values of displacements 𝛿𝑖 for SHS (cont.).

LP SC 𝛿A 𝛿B 𝛿C 𝛿D

m03-H SC02 10.92 9.49 5.46 -1.30

m03-H SC03 3.52 3.52 3.52 3.52

m03-H SC04 0.92 0.92 0.92 0.92

m03-V SC01 -10.13 5.50 10.13 4.97

m03-V SC02 -8.06 4.03 8.06 4.16

m03-V SC03 -3.60 1.42 3.60 2.10

m03-V SC04 -9.89 2.24 9.89 6.92

m04-H SC01 10.46 10.46 10.46 10.46

m04-H SC02 8.19 8.19 8.19 8.19

m04-H SC03 35.18 35.18 35.18 35.18

m04-H SC04 9.17 9.17 9.17 9.17

m04-V SC01 -6.93 6.93 6.93 -6.93

m04-V SC02 -5.33 5.33 5.33 -5.33

m04-V SC03 -2.17 2.17 2.17 -2.17

m04-V SC04 -0.50 0.50 0.50 -0.50

m04-VnVp SC01 -19.73 -19.73 19.73 19.73

m04-VnVp SC02 -16.25 -16.25 16.25 16.25

m04-VnVp SC03 -7.88 -7.88 7.88 7.88

m04-VnVp SC04 -2.45 -2.45 2.45 2.45

Table G.2: Values of displacements 𝛿𝑖 for RHS.

LP SC 𝛿A 𝛿B 𝛿C 𝛿D

m01-V01 01 -12.87 -4.95 1.29 4.95

m01-V01 02 -10.38 -4.38 1.16 4.38

m01-V01 03 -4.88 -2.63 0.66 2.63

m01-V01 04 -1.52 -1.07 0.22 1.07

m01-V02 01 4.95 31.10 -4.95 -3.46

m01-V02 02 4.40 27.20 -4.40 -3.33

m01-V02 03 2.71 17.30 -2.71 -2.54

Continued on next page . . .
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LP SC 𝛿A 𝛿B 𝛿C 𝛿D

m01-V02 04 1.27 9.24 -1.27 -1.53

m02-CH01 01 -6.24 -36.05 17.82 8.41

m02-CH01 02 -5.56 -31.58 14.78 7.71

m02-CH01 03 -3.37 -19.93 7.59 5.17

m02-CH01 04 -1.49 -10.31 2.80 2.60

m02-CH02 01 6.24 36.05 -17.82 -8.41

m02-CH02 02 5.56 31.58 -14.78 -7.71

m02-CH02 03 3.37 19.93 -7.59 -5.17

m02-CH02 04 1.49 10.31 -2.80 -2.60

m02-CV 01 3.66 26.15 7.91 1.49

m02-CV 02 3.23 22.82 5.99 1.05

m02-CV 03 2.05 14.67 2.18 0.09

m02-CV 04 1.05 8.17 0.25 -0.46

m02-H01 01 11.58 0.00 11.58 0.00

m02-H01 02 9.22 0.00 9.22 0.00

m02-H01 03 4.23 0.00 4.23 0.00

m02-H01 04 1.30 0.00 1.30 0.00

m02-H02 01 0.00 27.65 0.00 27.65

m02-H02 02 0.00 23.87 0.00 23.87

m02-H02 03 0.00 14.76 0.00 14.76

m02-H02 04 0.00 7.71 0.00 7.71

m02-V01 01 -14.16 -9.90 14.16 9.90

m02-V01 02 -11.55 -8.76 11.55 8.76

m02-V01 03 -5.54 -5.26 5.54 5.26

m02-V01 04 -1.75 -2.14 1.75 2.14

m02-V02 01 9.90 34.56 -9.90 -34.56

m02-V02 02 8.79 30.53 -8.79 -30.53

m02-V02 03 5.41 19.84 -5.41 -19.84

m02-V02 04 2.54 10.77 -2.54 -10.77

m03-H01 01 16.53 31.10 6.62 -3.46

Continued on next page . . .
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Table G.2: Values of displacements 𝛿𝑖 for RHS (cont.).

LP SC 𝛿A 𝛿B 𝛿C 𝛿D

m03-H01 02 13.62 27.20 4.82 -3.33

m03-H01 03 6.93 17.30 1.52 -2.54

m03-H01 04 2.57 9.24 0.03 -1.53

m03-H02 01 -1.29 22.70 12.87 32.60

m03-H02 02 -1.16 19.48 10.38 28.25

m03-H02 03 -0.66 12.12 4.88 17.39

m03-H02 04 -0.22 6.64 1.52 8.78

m03-V01 01 -9.20 21.20 9.20 6.45

m03-V01 02 -7.15 18.44 7.15 5.43

m03-V01 03 -2.84 12.04 2.84 2.72

m03-V01 04 -0.47 7.10 0.47 0.61

m03-V02 01 8.61 29.61 2.96 -29.61

m03-V02 02 7.63 26.15 1.59 -26.15

m03-V02 03 4.75 17.21 -0.53 -17.21

m03-V02 04 2.32 9.70 -1.02 -9.70

m04-H 01 11.58 27.65 11.58 27.65

m04-H 02 9.22 23.87 9.22 23.87

m04-H 03 4.23 14.76 4.23 14.76

m04-H 04 1.30 7.71 1.30 7.71

m04-V 01 -4.25 24.66 4.25 -24.66

m04-V 02 -2.75 21.77 2.75 -21.77

m04-V 03 -0.13 14.58 0.13 -14.58

m04-V 04 0.80 8.64 -0.80 -8.64

m04-VnVp01 01 -24.06 -44.46 24.06 44.46

m04-VnVp01 02 -20.34 -39.29 20.34 39.29

m04-VnVp01 03 -10.96 -25.10 10.96 25.10

m04-VnVp01 04 -4.29 -12.91 4.29 12.91

m04-VnVp02 01 24.06 44.46 -24.06 -44.46

m04-VnVp02 02 20.34 39.29 -20.34 -39.29

m04-VnVp02 03 10.96 25.10 -10.96 -25.10

Continued on next page . . .
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Table G.2: Values of displacements 𝛿𝑖 for RHS (cont.).

LP SC 𝛿A 𝛿B 𝛿C 𝛿D

m04-VnVp02 04 4.29 12.91 -4.29 -12.91

Table G.3: Deformed shape for SHS for all LPs with SC02.

m01 m02 V m02-H m02-CV m02-CH

m03-V m03-H m04-V m04-VnVp m04-H

329



Appendix G. Results RFEMs - material elastic

Table G.4: Deformed shape for RHS for all LP with SC02.

m01-V01 m01-V02 m02-V01 m02-V02 m02-H01

m02-H02 m02-CH01 m02-CH02 m02-CV m03-V01

m03-V02 m03-H01 m03-H02 m04-V m04-VnVp01

m04-VnVp02 m04-H

330



Appendix H: Results stiffness

The comparison of the out-of-plane displacements of the column faces between OpenSees and Abaqus

models is presented in two ways: mathematically, using the approximation error parameter, 𝜀2, defined

in Eq. (5.58) as outlined in Section 5.4; and graphically, by plotting the results of the two software

against each other. The results are presented in this section, in accordance with Tab. H.1.

Table H.1: Index of tables for stiffness results.

Case Table no. Figure no.

HS-EFM-R0 Tab. H.2 Fig. H.1

HS-EFM-R1 Tab. H.3 Fig. H.2

PS-EFM-R0 Tab. H.4 Fig. H.3

PS-EFM-R1 Tab. 5.10* Fig. 5.37*

HR-EFM-IF-R0 Tab. H.5 Fig. H.4

HR-EFM-IEq-R0 Tab. H.6 Fig. H.5

HR-EFM-IF-R1 Tab. H.7 Fig. H.6

HR-EFM-IEq-R1 Tab. H.8 Fig. H.7

PR-EFM-IF-R0 Tab. H.9 Fig. H.8

PR-EFM-IEq-R0 Tab. H.10 Fig. H.9

PR-EFM-IF-R1 Tab. 5.12* Fig. 5.38*

PR-EFM-IEq-R1 Tab. H.11 Fig. H.10
* see Section 5.4.4
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Table H.2: Results: HS-EFM-R0.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01 SC01 0.53 m02-H SC03 0.09 m04-H SC01 0.15

m01 SC02 0.42 m02-H SC04 0.01 m04-H SC02 0.13

m01 SC03 0.22 m02-V SC01 0.53 m04-H SC03 0.09

m01 SC04 0.07 m02-V SC02 0.42 m04-H SC04 0.01

m02-CH SC01 0.53 m02-V SC03 0.22 m04-V SC01 0.09

m02-CH SC02 0.42 m02-V SC04 0.07 m04-V SC02 0.08

m02-CH SC03 0.22 m03-H SC01 0.30 m04-V SC03 0.11

m02-CH SC04 0.07 m03-H SC02 0.25 m04-V SC04 0.13

m02-CV SC01 0.15 m03-H SC03 0.68 m04-VnVp SC01 0.53

m02-CV SC02 0.13 m03-H SC04 0.62 m04-VnVp SC02 0.42

m02-CV SC03 0.09 m03-V SC01 0.34 m04-VnVp SC03 0.22

m02-CV SC04 0.07 m03-V SC02 0.28 m04-VnVp SC04 0.07

m02-H SC01 0.15 m03-V SC03 0.16

m02-H SC02 0.13 m03-V SC04 0.07
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Table H.3: Results: HS-EFM-R1.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01 SC01 0.18 m02-H SC03 0.38 m04-H SC01 0.17

m01 SC02 0.14 m02-H SC04 0.67 m04-H SC02 0.22

m01 SC03 0.30 m02-V SC01 0.10 m04-H SC03 0.38

m01 SC04 0.69 m02-V SC02 0.08 m04-H SC04 0.67

m02-CH SC01 0.10 m02-V SC03 0.30 m04-V SC01 0.22

m02-CH SC02 0.11 m02-V SC04 0.69 m04-V SC02 0.25

m02-CH SC03 0.30 m03-H SC01 0.16 m04-V SC03 0.37

m02-CH SC04 0.69 m03-H SC02 0.20 m04-V SC04 0.62

m02-CV SC01 0.17 m03-H SC03 0.53 m04-VnVp SC01 0.10

m02-CV SC02 0.22 m03-H SC04 0.75 m04-VnVp SC02 0.02

m02-CV SC03 0.38 m03-V SC01 0.15 m04-VnVp SC03 0.30

m02-CV SC04 0.67 m03-V SC02 0.17 m04-VnVp SC04 0.69

m02-H SC01 0.17 m03-V SC03 0.35

m02-H SC02 0.22 m03-V SC04 0.66
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Table H.4: Results: PS-EFM-R0.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01 SC01 0.53 m02-H SC03 0.09 m04-H SC01 0.15

m01 SC02 0.42 m02-H SC04 0.01 m04-H SC02 0.13

m01 SC03 0.22 m02-V SC01 0.53 m04-H SC03 0.09

m01 SC04 0.07 m02-V SC02 0.42 m04-H SC04 0.01

m02-CH SC01 0.53 m02-V SC03 0.22 m04-V SC01 0.09

m02-CH SC02 0.42 m02-V SC04 0.07 m04-V SC02 0.08

m02-CH SC03 0.22 m03-H SC01 0.30 m04-V SC03 0.11

m02-CH SC04 0.07 m03-H SC02 0.25 m04-V SC04 0.13

m02-CV SC01 0.15 m03-H SC03 0.68 m04-VnVp SC01 0.53

m02-CV SC02 0.13 m03-H SC04 0.62 m04-VnVp SC02 0.42

m02-CV SC03 0.09 m03-V SC01 0.34 m04-VnVp SC03 0.22

m02-CV SC04 0.07 m03-V SC02 0.28 m04-VnVp SC04 0.07

m02-H SC01 0.15 m03-V SC03 0.16

m02-H SC02 0.13 m03-V SC04 0.07
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Table H.5: Results: HR-EFM-IF-R0.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.62 m02-H01 SC04 0.15 m03-V01 SC03 0.16

m01-V01 SC02 0.53 m02-H02 SC01 0.16 m03-V01 SC04 0.28

m01-V01 SC03 0.35 m02-H02 SC02 0.11 m03-V02 SC01 0.47

m01-V01 SC04 0.07 m02-H02 SC03 0.01 m03-V02 SC02 0.37

m01-V02 SC01 0.55 m02-H02 SC04 0.10 m03-V02 SC03 0.13

m01-V02 SC02 0.43 m02-V01 SC01 0.62 m03-V02 SC04 0.19

m01-V02 SC03 0.17 m02-V01 SC02 0.53 m04-H SC01 0.15

m01-V02 SC04 0.15 m02-V01 SC03 0.35 m04-H SC02 0.11

m02-CH01 SC01 0.57 m02-V01 SC04 0.07 m04-H SC03 0.05

m02-CH01 SC02 0.46 m02-V02 SC01 0.55 m04-H SC04 0.11

m02-CH01 SC03 0.23 m02-V02 SC02 0.43 m04-V SC01 0.32

m02-CH01 SC04 0.10 m02-V02 SC03 0.17 m04-V SC02 0.25

m02-CH02 SC01 0.57 m02-V02 SC04 0.15 m04-V SC03 0.04

m02-CH02 SC02 0.46 m03-H01 SC01 0.42 m04-V SC04 0.23

m02-CH02 SC03 0.23 m03-H01 SC02 0.34 m04-VnVp01 SC01 0.57

m02-CH02 SC04 0.10 m03-H01 SC03 0.16 m04-VnVp01 SC02 0.46

m02-CV SC01 0.24 m03-H01 SC04 0.15 m04-VnVp01 SC03 0.23

m02-CV SC02 0.18 m03-H02 SC01 0.22 m04-VnVp01 SC04 0.10

m02-CV SC03 0.06 m03-H02 SC02 0.18 m04-VnVp02 SC01 0.57

m02-CV SC04 0.22 m03-H02 SC03 0.11 m04-VnVp02 SC02 0.46

m02-H01 SC01 0.12 m03-H02 SC04 0.10 m04-VnVp02 SC03 0.23

m02-H01 SC02 0.11 m03-V01 SC01 0.16 m04-VnVp02 SC04 0.10

m02-H01 SC03 0.15 m03-V01 SC02 0.13
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Table H.6: Results: HR-EFM-IEq-R0.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.57 m02-H01 SC04 0.21 m03-V01 SC03 0.30

m01-V01 SC02 0.51 m02-H02 SC01 0.20 m03-V01 SC04 0.73

m01-V01 SC03 0.43 m02-H02 SC02 0.13 m03-V02 SC01 0.52

m01-V01 SC04 0.22 m02-H02 SC03 0.08 m03-V02 SC02 0.39

m01-V02 SC01 0.57 m02-H02 SC04 0.46 m03-V02 SC03 0.06

m01-V02 SC02 0.44 m02-V01 SC01 0.57 m03-V02 SC04 0.44

m01-V02 SC03 0.13 m02-V01 SC02 0.51 m04-H SC01 0.17

m01-V02 SC04 0.34 m02-V01 SC03 0.43 m04-H SC02 0.12

m02-CH01 SC01 0.57 m02-V01 SC04 0.22 m04-H SC03 0.11

m02-CH01 SC02 0.46 m02-V02 SC01 0.57 m04-H SC04 0.42

m02-CH01 SC03 0.21 m02-V02 SC02 0.44 m04-V SC01 0.40

m02-CH01 SC04 0.27 m02-V02 SC03 0.12 m04-V SC02 0.28

m02-CH02 SC01 0.57 m02-V02 SC04 0.34 m04-V SC03 0.10

m02-CH02 SC02 0.46 m03-H01 SC01 0.44 m04-V SC04 0.58

m02-CH02 SC03 0.21 m03-H01 SC02 0.35 m04-VnVp01 SC01 0.57

m02-CH02 SC04 0.27 m03-H01 SC03 0.12 m04-VnVp01 SC02 0.46

m02-CV SC01 0.29 m03-H01 SC04 0.37 m04-VnVp01 SC03 0.21

m02-CV SC02 0.21 m03-H02 SC01 0.23 m04-VnVp01 SC04 0.27

m02-CV SC03 0.12 m03-H02 SC02 0.18 m04-VnVp02 SC01 0.57

m02-CV SC04 0.55 m03-H02 SC03 0.14 m04-VnVp02 SC02 0.46

m02-H01 SC01 0.08 m03-H02 SC04 0.45 m04-VnVp02 SC03 0.21

m02-H01 SC02 0.10 m03-V01 SC01 0.15 m04-VnVp02 SC04 0.27

m02-H01 SC03 0.21 m03-V01 SC02 0.13

336



Table H.7: Results: HR-EFM-IF-R1.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.28 m02-H01 SC04 0.55 m03-V01 SC03 0.27

m01-V01 SC02 0.22 m02-H02 SC01 0.06 m03-V01 SC04 0.41

m01-V01 SC03 0.17 m02-H02 SC02 0.12 m03-V02 SC01 0.22

m01-V01 SC04 0.61 m02-H02 SC03 0.26 m03-V02 SC02 0.10

m01-V02 SC01 0.23 m02-H02 SC04 0.42 m03-V02 SC03 0.22

m01-V02 SC02 0.14 m02-V01 SC01 0.21 m03-V02 SC04 0.52

m01-V02 SC03 0.19 m02-V01 SC02 0.14 m04-H SC01 0.10

m01-V02 SC04 0.53 m02-V01 SC03 0.17 m04-H SC02 0.15

m02-CH01 SC01 0.22 m02-V01 SC04 0.61 m04-H SC03 0.27

m02-CH01 SC02 0.10 m02-V02 SC01 0.23 m04-H SC04 0.44

m02-CH01 SC03 0.18 m02-V02 SC02 0.11 m04-V SC01 0.18

m02-CH01 SC04 0.55 m02-V02 SC03 0.19 m04-V SC02 0.15

m02-CH02 SC01 0.22 m02-V02 SC04 0.53 m04-V SC03 0.26

m02-CH02 SC02 0.10 m03-H01 SC01 0.18 m04-V SC04 0.50

m02-CH02 SC03 0.18 m03-H01 SC02 0.14 m04-VnVp01 SC01 0.22

m02-CH02 SC04 0.55 m03-H01 SC03 0.23 m04-VnVp01 SC02 0.10

m02-CV SC01 0.15 m03-H01 SC04 0.53 m04-VnVp01 SC03 0.18

m02-CV SC02 0.17 m03-H02 SC01 0.10 m04-VnVp01 SC04 0.55

m02-CV SC03 0.27 m03-H02 SC02 0.13 m04-VnVp02 SC01 0.22

m02-CV SC04 0.48 m03-H02 SC03 0.26 m04-VnVp02 SC02 0.10

m02-H01 SC01 0.18 m03-H02 SC04 0.44 m04-VnVp02 SC03 0.18

m02-H01 SC02 0.21 m03-V01 SC01 0.15 m04-VnVp02 SC04 0.55

m02-H01 SC03 0.30 m03-V01 SC02 0.17
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Table H.8: Results: HR-EFM-IEq-R1.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.28 m02-H01 SC04 0.54 m03-V01 SC03 0.32

m01-V01 SC02 0.22 m02-H02 SC01 0.03 m03-V01 SC04 0.69

m01-V01 SC03 0.14 m02-H02 SC02 0.11 m03-V02 SC01 0.25

m01-V01 SC04 0.52 m02-H02 SC03 0.38 m03-V02 SC02 0.11

m01-V02 SC01 0.25 m02-H02 SC04 0.77 m03-V02 SC03 0.30

m01-V02 SC02 0.13 m02-V01 SC01 0.18 m03-V02 SC04 0.76

m01-V02 SC03 0.25 m02-V01 SC02 0.14 m04-H SC01 0.08

m01-V02 SC04 0.73 m02-V01 SC03 0.10 m04-H SC02 0.14

m02-CH01 SC01 0.22 m02-V01 SC04 0.52 m04-H SC03 0.35

m02-CH01 SC02 0.11 m02-V02 SC01 0.25 m04-H SC04 0.74

m02-CH01 SC03 0.20 m02-V02 SC02 0.11 m04-V SC01 0.24

m02-CH01 SC04 0.68 m02-V02 SC03 0.25 m04-V SC02 0.14

m02-CH02 SC01 0.22 m02-V02 SC04 0.73 m04-V SC03 0.37

m02-CH02 SC02 0.11 m03-H01 SC01 0.20 m04-V SC04 0.81

m02-CH02 SC03 0.20 m03-H01 SC02 0.14 m04-VnVp01 SC01 0.22

m02-CH02 SC04 0.68 m03-H01 SC03 0.28 m04-VnVp01 SC02 0.10

m02-CV SC01 0.17 m03-H01 SC04 0.72 m04-VnVp01 SC03 0.20

m02-CV SC02 0.17 m03-H02 SC01 0.10 m04-VnVp01 SC04 0.68

m02-CV SC03 0.35 m03-H02 SC02 0.13 m04-VnVp02 SC01 0.22

m02-CV SC04 0.77 m03-H02 SC03 0.35 m04-VnVp02 SC02 0.10

m02-H01 SC01 0.21 m03-H02 SC04 0.74 m04-VnVp02 SC03 0.20

m02-H01 SC02 0.22 m03-V01 SC01 0.14 m04-VnVp02 SC04 0.68

m02-H01 SC03 0.26 m03-V01 SC02 0.17
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Table H.9: Results: PR-EFM-IF-R0.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.61 m02-H01 SC04 0.21 m03-V01 SC03 0.13

m01-V01 SC02 0.50 m02-H02 SC01 0.18 m03-V01 SC04 0.21

m01-V01 SC03 0.32 m02-H02 SC02 0.16 m03-V02 SC01 0.51

m01-V01 SC04 0.22 m02-H02 SC03 0.14 m03-V02 SC02 0.46

m01-V02 SC01 0.57 m02-H02 SC04 0.12 m03-V02 SC03 0.35

m01-V02 SC02 0.49 m02-V01 SC01 0.61 m03-V02 SC04 0.22

m01-V02 SC03 0.34 m02-V01 SC02 0.50 m04-H SC01 0.16

m01-V02 SC04 0.20 m02-V01 SC03 0.32 m04-H SC02 0.13

m02-CH01 SC01 0.59 m02-V01 SC04 0.19 m04-H SC03 0.11

m02-CH01 SC02 0.49 m02-V02 SC01 0.57 m04-H SC04 0.13

m02-CH01 SC03 0.34 m02-V02 SC02 0.49 m04-V SC01 0.37

m02-CH01 SC04 0.20 m02-V02 SC03 0.34 m04-V SC02 0.36

m02-CH02 SC01 0.59 m02-V02 SC04 0.20 m04-V SC03 0.36

m02-CH02 SC02 0.49 m03-H01 SC01 0.44 m04-V SC04 0.24

m02-CH02 SC03 0.34 m03-H01 SC02 0.39 m04-VnVp01 SC01 0.59

m02-CH02 SC04 0.20 m03-H01 SC03 0.31 m04-VnVp01 SC02 0.49

m02-CV SC01 0.28 m03-H01 SC04 0.23 m04-VnVp01 SC03 0.34

m02-CV SC02 0.27 m03-H02 SC01 0.23 m04-VnVp01 SC04 0.18

m02-CV SC03 0.28 m03-H02 SC02 0.19 m04-VnVp02 SC01 0.59

m02-CV SC04 0.23 m03-H02 SC03 0.15 m04-VnVp02 SC02 0.49

m02-H01 SC01 0.09 m03-H02 SC04 0.12 m04-VnVp02 SC03 0.34

m02-H01 SC02 0.06 m03-V01 SC01 0.15 m04-VnVp02 SC04 0.18

m02-H01 SC03 0.01 m03-V01 SC02 0.12
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Table H.10: Results: PR-EFM-IEq-R0.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.53 m02-H01 SC04 0.31 m03-V01 SC03 0.24

m01-V01 SC02 0.42 m02-H02 SC01 0.25 m03-V01 SC04 0.41

m01-V01 SC03 0.23 m02-H02 SC02 0.23 m03-V02 SC01 0.58

m01-V01 SC04 0.18 m02-H02 SC03 0.23 m03-V02 SC02 0.53

m01-V02 SC01 0.61 m02-H02 SC04 0.26 m03-V02 SC03 0.42

m01-V02 SC02 0.52 m02-V01 SC01 0.53 m03-V02 SC04 0.30

m01-V02 SC03 0.38 m02-V01 SC02 0.42 m04-H SC01 0.18

m01-V02 SC04 0.26 m02-V01 SC03 0.21 m04-H SC02 0.17

m02-CH01 SC01 0.58 m02-V01 SC04 0.18 m04-H SC03 0.20

m02-CH01 SC02 0.49 m02-V02 SC01 0.61 m04-H SC04 0.27

m02-CH01 SC03 0.33 m02-V02 SC02 0.52 m04-V SC01 0.50

m02-CH01 SC04 0.24 m02-V02 SC03 0.38 m04-V SC02 0.49

m02-CH02 SC01 0.58 m02-V02 SC04 0.26 m04-V SC03 0.49

m02-CH02 SC02 0.49 m03-H01 SC01 0.47 m04-V SC04 0.35

m02-CH02 SC03 0.33 m03-H01 SC02 0.42 m04-VnVp01 SC01 0.58

m02-CH02 SC04 0.24 m03-H01 SC03 0.34 m04-VnVp01 SC02 0.49

m02-CV SC01 0.36 m03-H01 SC04 0.31 m04-VnVp01 SC03 0.33

m02-CV SC02 0.36 m03-H02 SC01 0.26 m04-VnVp01 SC04 0.24

m02-CV SC03 0.38 m03-H02 SC02 0.23 m04-VnVp02 SC01 0.58

m02-CV SC04 0.35 m03-H02 SC03 0.21 m04-VnVp02 SC02 0.49

m02-H01 SC01 0.03 m03-H02 SC04 0.26 m04-VnVp02 SC03 0.33

m02-H01 SC02 0.01 m03-V01 SC01 0.15 m04-VnVp02 SC04 0.24

m02-H01 SC03 0.09 m03-V01 SC02 0.17
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Table H.11: Results: PR-EFM-IEq-R1.

LP SC 𝜀2 LP SC 𝜀2 LP SC 𝜀2

m01-V01 SC01 0.29 m02-H01 SC04 0.79 m03-V01 SC03 0.28

m01-V01 SC02 0.25 m02-H02 SC01 0.02 m03-V01 SC04 0.25

m01-V01 SC03 0.27 m02-H02 SC02 0.01 m03-V02 SC01 0.31

m01-V01 SC04 0.64 m02-H02 SC03 0.06 m03-V02 SC02 0.24

m01-V02 SC01 0.29 m02-H02 SC04 0.10 m03-V02 SC03 0.10

m01-V02 SC02 0.19 m02-V01 SC01 0.21 m03-V02 SC04 0.14

m01-V02 SC03 0.07 m02-V01 SC02 0.20 m04-H SC01 0.09

m01-V02 SC04 0.21 m02-V01 SC03 0.27 m04-H SC02 0.10

m02-CH01 SC01 0.23 m02-V01 SC04 0.64 m04-H SC03 0.16

m02-CH01 SC02 0.18 m02-V02 SC01 0.29 m04-H SC04 0.20

m02-CH01 SC03 0.11 m02-V02 SC02 0.19 m04-V SC01 0.33

m02-CH01 SC04 0.31 m02-V02 SC03 0.06 m04-V SC02 0.30

m02-CH02 SC01 0.23 m02-V02 SC04 0.21 m04-V SC03 0.20

m02-CH02 SC02 0.18 m03-H01 SC01 0.25 m04-V SC04 0.03

m02-CH02 SC03 0.11 m03-H01 SC02 0.23 m04-VnVp01 SC01 0.23

m02-CH02 SC04 0.31 m03-H01 SC03 0.18 m04-VnVp01 SC02 0.13

m02-CV SC01 0.24 m03-H01 SC04 0.25 m04-VnVp01 SC03 0.09

m02-CV SC02 0.22 m03-H02 SC01 0.10 m04-VnVp01 SC04 0.31

m02-CV SC03 0.18 m03-H02 SC02 0.08 m04-VnVp02 SC01 0.23

m02-CV SC04 0.18 m03-H02 SC03 0.12 m04-VnVp02 SC02 0.13

m02-H01 SC01 0.26 m03-H02 SC04 0.17 m04-VnVp02 SC03 0.09

m02-H01 SC02 0.32 m03-V01 SC01 0.14 m04-VnVp02 SC04 0.31

m02-H01 SC03 0.49 m03-V01 SC02 0.19
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Appendix H. Results stiffness

(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.1: HS-EFM-R0.

342



(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.2: HS-EFM-R1.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.3: PS-EFM-R0.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.4: HR-EFM-IF-R0.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.5: HR-EFM-IEq-R0.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.6: HR-EFM-IF-R1.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.7: HR-EFM-IEq-R1.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.8: PR-EFM-IF-R0.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.9: PR-EFM-IEq-R0.
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(a) face A (|𝑈I |) (b) face B (|𝑈II |)

(c) face C (|𝑈III |) (d) face D (|𝑈IV |)

Figure H.10: PR-EFM-IEq-R1.
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Appendix I: Results RFEMs - material elastic-plastic

The values of the elastic displacement, 𝛿𝑖
𝑒𝑙

, and minimum elastic displacement, 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

, where 𝑖

represents the column face {A, B, C, D}, obtained using the methodology presented in Section 5.5.5,

are presented for all cases for the SHS and RHS in Tab. I.1 and Tab. I.2, respectively.

Table I.1: Values of displacements 𝛿𝑖
𝑒𝑙

and 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

for SHS.

LP SC
𝛿𝑒𝑙 𝛿𝑒𝑙.𝑚𝑖𝑛

𝛿A
𝑒𝑙

𝛿B
𝑒𝑙

𝛿C
𝑒𝑙

𝛿D
𝑒𝑙

𝛿A
𝑒𝑙.𝑚𝑖𝑛

𝛿B
𝑒𝑙.𝑚𝑖𝑛

𝛿C
𝑒𝑙.𝑚𝑖𝑛

𝛿D
𝑒𝑙.𝑚𝑖𝑛

m01 01 -2.07 0.00 0.00 0.00 -2.07 -0.56 0.25 0.56

m01 02 -1.88 0.00 0.00 0.00 -1.88 -0.54 0.26 0.54

m01 03 -1.21 0.00 0.00 0.00 -1.21 -0.40 0.21 0.40

m01 04 -0.54 0.00 0.00 0.00 -0.54 -0.22 0.13 0.22

m02-CH 01 0.00 -2.15 2.15 0.00 -0.66 -2.15 2.15 0.66

m02-CH 02 0.00 -1.96 1.96 0.00 -0.65 -1.96 1.96 0.65

m02-CH 03 0.00 -1.26 1.26 0.00 -0.48 -1.26 1.26 0.48

m02-CH 04 0.00 -0.55 0.55 0.00 -0.25 -0.55 0.55 0.25

m02-CV 01 0.00 1.55 1.55 0.00 0.31 1.55 1.55 0.31

m02-CV 02 0.00 1.37 1.37 0.00 0.29 1.37 1.37 0.29

m02-CV 03 0.00 0.82 0.82 0.00 0.20 0.82 0.82 0.20

m02-CV 04 0.00 0.33 0.33 0.00 0.10 0.33 0.33 0.10

m02-H 01 1.84 0.00 1.84 0.00 1.84 0.00 1.84 0.00

m02-H 02 1.64 0.00 1.64 0.00 1.64 0.00 1.64 0.00

m02-H 03 1.01 0.00 1.01 0.00 1.01 0.00 1.01 0.00

m02-H 04 0.42 0.00 0.42 0.00 0.42 0.00 0.42 0.00

m02-V 01 -2.25 0.00 2.25 0.00 -2.25 -1.08 2.25 1.08

m02-V 02 -2.06 0.00 2.06 0.00 -2.06 -1.04 2.06 1.04

m02-V 03 -1.32 0.00 1.32 0.00 -1.32 -0.75 1.32 0.75

m02-V 04 -0.57 0.00 0.57 0.00 -0.57 -0.37 0.57 0.37

m03-H 01 2.33 2.03 1.33 0.00 2.33 2.03 1.24 -0.24

m03-H 02 2.11 1.83 1.14 0.00 2.11 1.83 1.05 -0.25

Continued on next page . . .
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Table I.1: Values of displacements 𝛿𝑖
𝑒𝑙

and 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

for SHS (cont.).

LP SC
𝛿𝑒𝑙 𝛿𝑒𝑙.𝑚𝑖𝑛

𝛿A
𝑒𝑙

𝛿B
𝑒𝑙

𝛿C
𝑒𝑙

𝛿D
𝑒𝑙

𝛿A
𝑒𝑙.𝑚𝑖𝑛

𝛿B
𝑒𝑙.𝑚𝑖𝑛

𝛿C
𝑒𝑙.𝑚𝑖𝑛

𝛿D
𝑒𝑙.𝑚𝑖𝑛

m03-H 03 1.35 1.16 0.63 0.00 1.16 1.16 1.16 1.16

m03-H 04 0.54 0.46 0.18 0.00 0.46 0.46 0.46 0.46

m03-V 01 -1.77 0.96 1.77 0.00 -1.77 0.96 1.77 0.87

m03-V 02 -1.60 0.80 1.60 0.00 -1.60 0.80 1.60 0.83

m03-V 03 -1.00 0.39 1.00 0.00 -1.00 0.39 1.00 0.58

m03-V 04 -0.42 0.09 0.42 0.00 -0.42 0.10 0.42 0.29

m04-H 01 1.53 1.53 1.53 1.53 1.53 1.53 1.53 1.53

m04-H 02 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35

m04-H 03 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

m04-H 04 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

m04-V 01 -1.26 1.26 1.26 -1.26 -1.26 1.26 1.26 -1.26

m04-V 02 -1.11 1.11 1.11 -1.11 -1.11 1.11 1.11 -1.11

m04-V 03 -0.64 0.64 0.64 -0.64 -0.64 0.64 0.64 -0.64

m04-V 04 -0.24 0.24 0.24 -0.24 -0.24 0.24 0.24 -0.24

m04-VnVp 01 -2.21 -2.21 2.21 2.21 -2.21 -2.21 2.21 2.21

m04-VnVp 02 -2.01 -2.01 2.01 2.01 -2.01 -2.01 2.01 2.01

m04-VnVp 03 -1.29 -1.29 1.29 1.29 -1.29 -1.29 1.29 1.29

m04-VnVp 04 -0.55 -0.55 0.55 0.55 -0.55 -0.55 0.55 0.55

Table I.2: Values of displacements 𝛿𝑖
𝑒𝑙

and 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

for RHS.

LP SC
𝛿𝑒𝑙 𝛿𝑒𝑙.𝑚𝑖𝑛

𝛿A
𝑒𝑙

𝛿B
𝑒𝑙

𝛿C
𝑒𝑙

𝛿D
𝑒𝑙

𝛿A
𝑒𝑙.𝑚𝑖𝑛

𝛿B
𝑒𝑙.𝑚𝑖𝑛

𝛿C
𝑒𝑙.𝑚𝑖𝑛

𝛿D
𝑒𝑙.𝑚𝑖𝑛

m01-V01 01 -2.20 0.00 0.00 0.00 -2.20 -0.85 0.22 0.85

m01-V01 02 -2.01 0.00 0.00 0.00 -2.01 -0.85 0.23 0.85

m01-V01 03 -1.34 0.00 0.00 0.00 -1.34 -0.72 0.18 0.72

m01-V01 04 -0.63 0.00 0.00 0.00 -0.63 -0.44 0.09 0.44

m01-V02 01 0.00 4.07 0.00 0.00 0.65 4.07 -0.65 -0.45

m01-V02 02 0.00 3.88 0.00 0.00 0.63 3.88 -0.63 -0.47

Continued on next page . . .
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Table I.2: Values of displacements 𝛿𝑖
𝑒𝑙

and 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

for RHS (cont.).

LP SC
𝛿𝑒𝑙 𝛿𝑒𝑙.𝑚𝑖𝑛

𝛿A
𝑒𝑙

𝛿B
𝑒𝑙

𝛿C
𝑒𝑙

𝛿D
𝑒𝑙

𝛿A
𝑒𝑙.𝑚𝑖𝑛

𝛿B
𝑒𝑙.𝑚𝑖𝑛

𝛿C
𝑒𝑙.𝑚𝑖𝑛

𝛿D
𝑒𝑙.𝑚𝑖𝑛

m01-V02 03 0.00 2.99 0.00 0.00 0.47 2.99 -0.47 -0.44

m01-V02 04 0.00 1.97 0.00 0.00 0.27 1.97 -0.27 -0.33

m02-CH01 01 0.00 -4.28 2.10 0.00 -0.74 -4.28 2.11 1.00

m02-CH01 02 0.00 -4.06 1.89 0.00 -0.71 -4.06 1.90 0.99

m02-CH01 03 0.00 -3.21 1.17 0.00 -0.52 -3.07 1.17 0.80

m02-CH01 04 0.00 -2.09 0.46 0.00 -0.25 -1.71 0.46 0.43

m02-CH02 01 0.00 4.28 -2.10 0.00 0.74 4.28 -2.11 -1.00

m02-CH02 02 0.00 4.06 -1.89 0.00 0.71 4.06 -1.90 -0.99

m02-CH02 03 0.00 3.21 -1.17 0.00 0.52 3.07 -1.17 -0.80

m02-CH02 04 0.00 2.09 -0.46 0.00 0.25 1.71 -0.46 -0.43

m02-CV 01 0.00 3.44 0.98 0.00 0.45 3.24 0.98 0.19

m02-CV 02 0.00 3.25 0.76 0.00 0.41 2.90 0.76 0.13

m02-CV 03 0.00 2.56 0.28 0.00 0.26 1.87 0.28 0.01

m02-CV 04 0.00 1.75 0.00 0.00 0.22 1.75 0.05 -0.10

m02-H01 01 2.01 0.00 2.01 0.00 2.01 0.00 2.01 0.00

m02-H01 02 1.81 0.00 1.81 0.00 1.81 0.00 1.81 0.00

m02-H01 03 1.17 0.00 1.17 0.00 1.17 0.00 1.17 0.00

m02-H01 04 0.54 0.00 0.54 0.00 0.54 0.00 0.54 0.00

m02-H02 01 0.00 3.66 0.00 3.66 0.00 3.66 0.00 3.66

m02-H02 02 0.00 3.40 0.00 3.40 0.00 3.40 0.00 3.40

m02-H02 03 0.00 2.57 0.00 2.57 0.00 2.57 0.00 2.57

m02-H02 04 0.00 1.65 0.00 1.65 0.00 1.65 0.00 1.65

m02-V01 01 -2.37 0.00 2.37 0.00 -2.37 -1.66 2.37 1.66

m02-V01 02 -2.19 0.00 2.19 0.00 -2.19 -1.66 2.19 1.66

m02-V01 03 -1.46 0.00 1.46 0.00 -1.46 -1.38 1.46 1.38

m02-V01 04 -0.68 0.00 0.68 0.00 -0.68 -0.83 0.68 0.83

m02-V02 01 0.00 4.43 0.00 -4.43 1.27 4.43 -1.27 -4.43

m02-V02 02 0.00 4.23 0.00 -4.23 1.22 4.23 -1.22 -4.23

m02-V02 03 0.00 3.30 0.00 -3.30 0.90 3.30 -0.90 -3.30
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Appendix I. Results RFEMs - material elastic-plastic

Table I.2: Values of displacements 𝛿𝑖
𝑒𝑙

and 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

for RHS (cont.).

LP SC
𝛿𝑒𝑙 𝛿𝑒𝑙.𝑚𝑖𝑛

𝛿A
𝑒𝑙

𝛿B
𝑒𝑙

𝛿C
𝑒𝑙

𝛿D
𝑒𝑙

𝛿A
𝑒𝑙.𝑚𝑖𝑛

𝛿B
𝑒𝑙.𝑚𝑖𝑛

𝛿C
𝑒𝑙.𝑚𝑖𝑛

𝛿D
𝑒𝑙.𝑚𝑖𝑛

m02-V02 04 0.00 2.14 0.00 -2.14 0.50 2.14 -0.50 -2.14

m03-H01 01 1.97 3.70 0.72 0.00 1.80 3.39 0.72 -0.38

m03-H01 02 1.76 3.52 0.53 0.00 1.50 3.00 0.53 -0.37

m03-H01 03 1.08 2.80 0.15 0.00 0.69 1.73 0.15 -0.25

m03-H01 04 0.43 1.89 0.00 0.00 0.16 0.58 0.00 -0.10

m03-H02 01 0.00 3.03 1.71 4.36 -0.17 3.01 1.71 4.32

m03-H02 02 0.00 2.81 1.49 4.10 -0.17 2.80 1.49 4.05

m03-H02 03 0.00 2.14 0.83 3.09 -0.11 2.06 0.83 2.95

m03-H02 04 0.00 1.43 0.27 1.90 -0.04 1.18 0.27 1.56

m03-V01 01 -1.13 2.80 1.13 0.00 -1.13 2.61 1.13 0.79

m03-V01 02 -0.92 2.64 0.92 0.00 -0.92 2.37 0.92 0.70

m03-V01 03 -0.39 2.10 0.39 0.00 -0.39 1.67 0.39 0.38

m03-V01 04 -0.05 1.52 0.05 0.00 -0.05 0.80 0.05 0.07

m03-V02 01 0.00 3.83 0.37 -3.83 1.09 3.73 0.37 -3.73

m03-V02 02 0.00 3.68 0.19 -3.68 0.90 3.08 0.19 -3.08

m03-V02 03 0.00 2.92 0.13 -2.92 0.81 2.92 -0.09 -2.92

m03-V02 04 0.00 1.99 0.20 -1.99 0.48 1.99 -0.21 -1.99

m04-H 01 1.40 3.32 1.40 3.32 1.39 3.32 1.39 3.32

m04-H 02 1.20 3.12 1.20 3.12 1.21 3.12 1.21 3.12

m04-H 03 0.66 2.43 0.66 2.43 0.66 2.31 0.66 2.31

m04-H 04 0.22 1.60 0.22 1.60 0.22 1.30 0.22 1.30

m04-V 01 -0.58 3.24 0.58 -3.24 -0.56 3.24 0.56 -3.24

m04-V 02 -0.39 3.10 0.39 -3.10 -0.39 3.06 0.39 -3.06

m04-V 03 -0.01 2.53 0.01 -2.53 -0.02 2.53 0.02 -2.53

m04-V 04 -0.16 1.84 0.16 -1.84 0.17 1.84 -0.17 -1.84

m04-VnVp01 01 -2.27 -4.21 2.27 4.21 -2.27 -4.19 2.27 4.19

m04-VnVp01 02 -2.08 -4.05 2.08 4.05 -2.08 -4.01 2.08 4.01

m04-VnVp01 03 -1.35 -3.22 1.35 3.22 -1.35 -3.10 1.35 3.10

m04-VnVp01 04 -0.58 -2.10 0.58 2.10 -0.58 -1.75 0.58 1.75
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Table I.2: Values of displacements 𝛿𝑖
𝑒𝑙

and 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

for RHS (cont.).

LP SC
𝛿𝑒𝑙 𝛿𝑒𝑙.𝑚𝑖𝑛

𝛿A
𝑒𝑙

𝛿B
𝑒𝑙

𝛿C
𝑒𝑙

𝛿D
𝑒𝑙

𝛿A
𝑒𝑙.𝑚𝑖𝑛

𝛿B
𝑒𝑙.𝑚𝑖𝑛

𝛿C
𝑒𝑙.𝑚𝑖𝑛

𝛿D
𝑒𝑙.𝑚𝑖𝑛

m04-VnVp02 01 2.32 4.36 -2.32 -4.36 2.32 4.29 -2.32 -4.29

m04-VnVp02 02 2.10 4.10 -2.10 -4.10 2.10 4.05 -2.10 -4.05

m04-VnVp02 03 1.35 3.22 -1.35 -3.22 1.35 3.10 -1.35 -3.10

m04-VnVp02 04 0.58 2.10 -0.58 -2.10 0.58 1.75 -0.58 -1.75
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Appendix J: Attainment of 𝐹𝑒𝑙 − 𝛿𝑒𝑙

The results of 𝛿𝑖
𝑒𝑙

and 𝛿𝑖
𝑒𝑙.𝑚𝑖𝑛

for each case, where 𝑖 represents the column faces {A, B, C, D}, are

shown in Appendix I in Tab. I.1 and Tab. I.2 for the SHS and RHS, respectively.

A worked example for the RHS-m03-H01-SC02 case is provided below:

1. extract the nonlinear force - out-of-plane displacement curve, 𝐹 − 𝛿, from Abaqus from the RP

for all column faces: continuous black lines in Fig. J.1;

2. calculate area under the nonlinear curve, 𝐴𝑛𝑙 ;

3. determine the tangent stiffness, 𝑆𝑖.𝑛𝑙 – secant stiffness at 5% of the ultimate load, 𝐹end: red

dotted line in Fig. J.1;

4. construct the elastic-perfect plastic curve using the tangent stiffness, 𝑆𝑖.𝑛𝑙 , and ultimate load,

𝐹end; blue dashed line in Fig. J.1;

5. calculate the area under the elastic-perfect plastic curve, 𝐴𝑒𝑝𝑝 which is used as a starting point

for the iterative process;

6. initiate an iterative process that starts from the elastic-perfect plastic curve and ends when a

bilinear curve is found so that the area of the bilinear curve is close to the area under the nonlinear

curve: 𝐴𝑏𝑙 ≈ 𝐴𝑛𝑙 while ensuring that the initial and final coordinates of the two curves coincide

and have equivalent tangent stiffnesses, 𝑆𝑖.𝑛𝑙 = 𝑆𝑖.𝑏𝑙 .

7. construct the bilinear curve maintaining the tangent stiffness, 𝑆𝑖.𝑛𝑙 and ultimate load, 𝐹𝑒𝑛𝑑:

magenta dashed line in Fig. J.1;

8. identify the elastic force, 𝐹𝑒𝑙 , and the elastic displacement, 𝛿𝑒𝑙 , from the bilinear curve: green

"x" markers in Fig. J.1; if the face of the column is not loaded (i.e., 𝐴𝑛𝑙 = 0), then 𝐹𝑒𝑙 = 𝛿𝑒𝑙 = 0;

For the analyzed case, the values of the elastic forces and displacements in absolute values are:

𝐹A
𝑒𝑙 = 129.51kN 𝐹B

𝑒𝑙 = 128.68kN 𝐹C
𝑒𝑙 = 111.27kN 𝐹D

𝑒𝑙 = 0.00kN (J.1)

𝛿A
𝑒𝑙 = 1.76mm 𝛿B

𝑒𝑙 = 3.52mm 𝛿C
𝑒𝑙 = 0.53mm 𝛿D

𝑒𝑙 = 0.00mm (J.2)
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Appendix J. Attainment of 𝐹𝑒𝑙 − 𝛿𝑒𝑙

thus, the minimum elastic force and its corresponding elastic displacements and face ID are:

𝐹𝑒𝑙.𝑚𝑖𝑛 = min
(
𝐹A
𝑒𝑙 , 𝐹

B
𝑒𝑙 , 𝐹

C
𝑒𝑙 , 𝐹

D
𝑒𝑙

)
= 𝐹C

𝑒𝑙 (= 111.27kN) (J.3)

𝛿𝑒𝑙.𝑚𝑖𝑛 = 𝛿C
𝑒𝑙 (= 0.53mm) (J.4)

and the face ID:

ID𝑚𝑖𝑛 = C (J.5)

From the RFEMs developed for the stiffness case, the displacements are (shown in Tab. G.2 in

Appendix G):

𝛿A = 13.62mm 𝛿B = 27.20mm 𝛿C = 4.82mm 𝛿D = −3.33mm (J.6)

Knowing that the computation of the limit elastic displacement for each face of the column is made

using the ratio between the elastic out-of-plane displacements:

𝛿 𝑖𝑒𝑙.𝑚𝑖𝑛 =
𝛿𝑖

𝛿ID𝑚𝑖𝑛

𝛿𝑒𝑙.𝑚𝑖𝑛 , with 𝑖 ∈ {A, B, C, D} (J.7)

where 𝛿𝑖 is the elastic displacement in column face 𝑖 and 𝛿ID𝑚𝑖𝑛
is the elastic displacement in column

face, ID𝑚𝑖𝑛, for the arbitrary load parameter computed using RFEMs.

By applying Eq. (J.7), the minimum elastic of each column face becomes:

𝛿A
𝑒𝑙.𝑚𝑖𝑛 =

𝛿A

𝛿C
𝛿𝑒𝑙.𝑚𝑖𝑛 = 1.50mm (J.8)

𝛿B
𝑒𝑙.𝑚𝑖𝑛 =

𝛿B

𝛿C
𝛿𝑒𝑙.𝑚𝑖𝑛 = 3.00mm (J.9)

𝛿C
𝑒𝑙.𝑚𝑖𝑛 =

𝛿C

𝛿C
𝛿𝑒𝑙.𝑚𝑖𝑛 = 0.53mm (J.10)

𝛿D
𝑒𝑙.𝑚𝑖𝑛 =

𝛿D

𝛿C
𝛿𝑒𝑙.𝑚𝑖𝑛 = −0.37mm (J.11)
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Therefore, the vector containing the minimum elastic displacements, 𝛿𝑒𝑙.𝑚𝑖𝑛, for the RHS-m03-

H01-SC02 case is:

𝛿RFEM
𝑒𝑙.𝑚𝑖𝑛 =

[
1.50 3.00 0.53 −0.37

]𝑇
(J.12)

The values for the remaining cases are presented in Appendix I in Tab. I.1 and Tab. I.2 for the SHS

and RHS, respectively.

(a) north (b) east

(c) south (d) west

Figure J.1: 𝐹𝑒𝑙 − 𝛿𝑒𝑙 (absolute value) curve: for RHS-m03-H01-SC02.
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Appendix K: Detailed analytical computation of the

strength criterion of the EFMs

The analytical computation of the strength criterion for the beam-to-column joint finite element

discussed in Section 2.6.5 is presented in detail in the subsequent sections for all six EFMs separately.

It is worth noting that each computation follows the methodology outlined in Section 5.5.

K.1 HS-EFM

Fig. K.1(a) and Fig. K.1(b) present the HS-EFM and its SEFM with critical sections. Furthermore, the

relationship between the stiffness coefficients associated with DOF 𝑑3 and the dependency on DOFs

𝑑1 and 𝑑2 is depicted in Fig. K.2 and mathematically expressed in Eqs. (K.1) to (K.3).

Additionally, the bending moments in the critical sections caused by a unit load applied to the

DOFs are shown in Fig. K.3 and described by Eqs. (K.4) to (K.9). Finally, Fig. K.4 depicts the

equivalent bending strengths for the critical sections, expressed by Eq. (K.10).

dHS.EFM =

[
𝑑HS.EFM

1 𝑑HS.EFM
2 𝑑HS.EFM

3

]𝑇
(K.1)

0 =

[
− 6 𝐸 𝐼

(𝐿/2)2
6 𝐸 𝐼
(𝐿/2)2

4 𝐸 𝐼
(𝐿/2) + 4 𝐸 𝐼

(𝐿/2)

]
dHS.EFM (K.2)

𝑑HS.EFM
3 =

3 𝑑HS.EFM
1 −3 𝑑HS.EFM

2
2 𝐿

(K.3)
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(a) HS-EFM (b) SEFM

Figure K.1: HS-EFM and its SEFM with the critical sections.

Figure K.2: Stiffness coefficients associated to 𝑑3 for the HS-EFM.
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K.1 HS-EFM

Figure K.3: Bending moments in critical sections under unit load in DOFs for the HS-EFM.

MHS.EFM
d =



𝑀
𝑑1
A 𝑀

𝑑2
A 𝑀

𝑑3
A

𝑀
𝑑1
CA 𝑀

𝑑2
CA 𝑀

𝑑3
CA

𝑀
𝑑1
CB 𝑀

𝑑2
CB 𝑀

𝑑3
CB

𝑀
𝑑1
B 𝑀

𝑑2
B 𝑀

𝑑3
B



=



− 6 𝐸 𝐼
(𝐿/2)2 0

2 𝐸 𝐼
𝐿/2

− 6 𝐸 𝐼
(𝐿/2)2 0

4 𝐸 𝐼
𝐿/2

0
6 𝐸 𝐼
(𝐿/2)2

4 𝐸 𝐼
𝐿/2

0
6 𝐸 𝐼
(𝐿/2)2

2 𝐸 𝐼
𝐿/2



(K.4)

MHS.EFM = MHS.EFM
d dHS.EFM =

[
𝑀HS.EFM

A 𝑀HS.EFM
CA 𝑀HS.EFM

CB 𝑀HS.EFM
B

]𝑇
(K.5)

𝑀HS.EFM
A = −

6 𝐸 𝐼
(
3 𝑑HS.EFM

1 + 𝑑HS.EFM
2

)
𝐿2 (K.6)

𝑀HS.EFM
CA = −

12 𝐸 𝐼
(
𝑑HS.EFM

1 + 𝑑HS.EFM
2

)
𝐿2 (K.7)

𝑀HS.EFM
CB =

12 𝐸 𝐼
(
𝑑HS.EFM

1 + 𝑑HS.EFM
2

)
𝐿2 (K.8)
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Figure K.4: Bending moments in critical sections under unit load in DOFs for the HS-EFM.

𝑀HS.EFM
B =

6 𝐸 𝐼
(
𝑑HS.EFM

1 + 3 𝑑HS.EFM
2

)
𝐿2 (K.9)

MHS.EFM
y.NGM =

[
𝑀HS.EFM

y.NGM.A 𝑀HS.EFM
y.NGM.CA 𝑀HS.EFM

y.NGM.CB 𝑀HS.EFM
y.NGM.B

]𝑇
=

[
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𝐹𝑝𝑙 𝐿
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𝐹𝑝𝑙 𝐿

8
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8

]𝑇 (K.10)

K.2 HR-EFM-IF

Fig. K.5(a) and Fig. K.5(b) present the HR-EFM and its SEFM with critical sections. Furthermore, the

relationship between the stiffness coefficients associated with DOF 𝑑3 and the dependency on DOFs

𝑑1 and 𝑑2 is depicted in Fig. K.6 and mathematically expressed in Eqs. (K.11) to (K.13).

Additionally, the bending moments in the critical sections caused by a unit load applied to the

DOFs are shown in Fig. K.7 and described by Eqs. (K.14) to (K.19). Finally, Fig. K.8 depicts the

equivalent bending strengths for the critical sections, which are expressed by Eq. (K.20).

dHR.EFM.IF =

[
𝑑HR.EFM.IF

1 𝑑HR.EFM.IF
2 𝑑HR.EFM.IF

3

]𝑇
(K.11)

0 =

[
− 6 𝐸 𝐼1

(𝐿1/2)2
6 𝐸 𝐼2
(𝐿2/2)2

4 𝐸 𝐼1
(𝐿1/2) + 4 𝐸 𝐼2

(𝐿2/2)

]
dHR.EFM.IF (K.12)
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K.2 HR-EFM-IF

(a) HR-EFM-IF (b) SEFM

Figure K.5: HR-EFM and its SEFM with the critical sections.

Figure K.6: Stiffness coefficients associated to 𝑑3 for the HR-EFM-IF.
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Figure K.7: Bending moments in critical sections under unit load in DOFs for the HR-EFM-IF.
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(K.14)

MHR.EFM.IF = MHR.EFM.IF
d dHR.EFM.IF

=

[
𝑀HR.EFM.IF

A 𝑀HR.EFM.IF
CA 𝑀HR.EFM.IF

CB 𝑀HR.EFM.IF
B

]𝑇 (K.15)

𝑀HR.EFM.IF
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12 𝐸 𝐼1
(
𝐼2 𝑑

HR.EFM.IF
2 𝐿2

1 + 2 𝐼2 𝑑HR.EFM.IF
1 𝐿1 𝐿2 + 𝐼1 𝑑

HR.EFM.IF
1 𝐿2

2
)

𝐿2
1 𝐿2 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(K.16)
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Figure K.8: Bending moments in critical sections under unit load in DOFs for the HR-EFM-IF.

𝑀HR.EFM.IF
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24 𝐸 𝐼1 𝐼2
(
𝐿1 𝑑

HR.EFM.IF
2 + 𝐿2 𝑑
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1

)
𝐿1 𝐿2 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(K.17)

𝑀HR.EFM.IF
CB =

24 𝐸 𝐼1 𝐼2
(
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HR.EFM.IF
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HR.EFM.IF
1

)
𝐿1 𝐿2 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(K.18)

𝑀HR.EFM.IF
B =

12 𝐸 𝐼2
(
𝐼2 𝑑

HR.EFM.IF
2 𝐿2

1 + 2 𝐼1 𝑑HR.EFM.IF
2 𝐿1 𝐿2 + 𝐼1 𝑑

HR.EFM.IF
1 𝐿2

2
)
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2
2 (𝐼1 𝐿2 + 𝐼2 𝐿1)

(K.19)

MHR.EFM.IF
y.NGM =

[
𝑀HR.EFM.IF

y.NGM.A 𝑀HR.EFM.IF
y.NGM.CA 𝑀HR.EFM.IF

y.NGM.CB 𝑀HR.EFM.IF
y.NGM.B

]𝑇
=

[
−
𝐹𝑝𝑙.1 𝐿1

8
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8
𝐹𝑝𝑙.2 𝐿2

8
𝐹𝑝𝑙.2 𝐿2

8

]𝑇 (K.20)

K.3 HR-EFM-IEq

The relationship between DOF 𝑑3 and DOFs 𝑑1 and 𝑑2 is given by Eq. (K.21). The bending moments

in the critical sections are expressed by Eqs. (K.22) to (K.25). The equivalent bending strengths for

the critical sections is outlined in Eq. (K.26).

𝑑
HR.EFM.IEq
3 = −

12 𝐸 𝐼𝑒𝑞
(
𝑑

HR.EFM.IEq
2 𝐿2

1 + 2 𝑑HR.EFM.IEq
1 𝐿1 𝐿2 + 𝑑

HR.EFM.IEq
1 𝐿2

2

)
𝐿2

1 𝐿2 (𝐿1 + 𝐿2)
(K.21)
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𝑀
HR.EFM.IEq
A = −

12 𝐸 𝐼𝑒𝑞
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2 𝐿2
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2

)
𝐿2

1 𝐿2 (𝐿1 + 𝐿2)
(K.22)

𝑀
HR.EFM.IEq
CA = −

24 𝐸 𝐼𝑒𝑞
(
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2 + 𝐿2 𝑑
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1

)
𝐿1 𝐿2 (𝐿1 + 𝐿2)

(K.23)

𝑀
HR.EFM.IEq
CB =

24 𝐸 𝐼𝑒𝑞
(
𝐿1 𝑑

HR.EFM.IEq
2 + 𝐿2 𝑑

HR.EFM.IEq
1

)
𝐿1 𝐿2 (𝐿1 + 𝐿2)

(K.24)

𝑀
HR.EFM.IEq
B =

12 𝐸 𝐼𝑒𝑞
(
𝑑

HR.EFM.IEq
2 𝐿2

1 + 2 𝑑HR.EFM.IEq
2 𝐿1 𝐿2 + 𝑑

HR.EFM.IEq
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2

)
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2
2 (𝐿1 + 𝐿2)

(K.25)

MHR.EFM.IEq
y.NGM = MHR.EFM.IF

y.NGM (K.26)

K.4 PS-EFM

Fig. K.9(a) and Fig. K.9(b) present the PS-EFM and its SEFM with critical sections. Furthermore, the

relationship between the stiffness coefficients associated with DOF 𝑑3 and the dependency on DOFs

𝑑1 and 𝑑2 is depicted in Fig. K.10 and mathematically expressed in Eqs. (K.27) to (K.29).

Additionally, the bending moments in the critical sections caused by a unit load applied to the

DOFs are shown in Fig. K.11 and described by Eqs. (K.30) to (K.35). Finally, Fig. K.12 depicts the

equivalent bending strengths for the critical sections, which are expressed by Eq. (K.36).

dPS.EFM =

[
𝑑PS.EFM

1 𝑑PS.EFM
2 𝑑PS.EFM

3

]𝑇
(K.27)

0 =

[
− 6 𝐸 𝐼

𝑎2
6 𝐸 𝐼
𝑎2

4 𝐸 𝐼
𝑎

+ 4 𝐸 𝐼
𝑎

]
dPS.EFM (K.28)
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K.4 PS-EFM

(a) PS-EFM (b) SEFM

Figure K.9: PS-EFM and its SEFM with the critical sections.

Figure K.10: Stiffness coefficients associated to 𝑑3 for the PS-EFM.
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Figure K.11: Bending moments in critical sections under unit load in DOFs for the PS-EFM.
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)
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Figure K.12: Bending moments in critical sections under unit load in DOFs for the PS-EFM.
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K.5 PR-EFM-IF

Fig. K.13(a) and Fig. K.13(b) present the PR-EFM and its SEFM with critical sections. Furthermore,

the relationship between the stiffness coefficients associated with DOF 𝑑3 and the dependency on

DOFs 𝑑1 and 𝑑2 is depicted in Fig. K.14 and mathematically expressed in Eqs. (K.37) to (K.39).

Additionally, the bending moments in the critical sections caused by a unit load applied to the

DOFs are shown in Fig. K.15 and described by Eqs. (K.40) to (K.45). Finally, Fig. K.16 depicts the

equivalent bending strengths for the critical sections, which are expressed by Eq. (K.46).

dPR.EFM.IF =

[
𝑑PR.EFM.IF

1 𝑑PR.EFM.IF
2 𝑑PR.EFM.IF

3

]𝑇
(K.37)
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(a) PR-EFM-IF (b) SEFM

Figure K.13: PR-EFM and its SEFM with the critical sections.

Figure K.14: Stiffness coefficients associated to 𝑑3 for the PR-EFM-IF.
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K.5 PR-EFM-IF

Figure K.15: Bending moments in critical sections under unit load in DOFs for the PR-EFM-IF.
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Figure K.16: Bending moments in critical sections under unit load in DOFs for the PR-EFM-IF.
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K.6 PR-EFM-IEq

The relationship between DOF 𝑑3 and DOFs 𝑑1 and 𝑑2 is given by Eq. (K.47). The bending moments

in the critical sections are expressed by Eqs. (K.48) to (K.51). The equivalent bending strengths for
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K.6 PR-EFM-IEq

the critical sections is outlined in Eq. (K.52).
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PR.EFM.IEq
1

)
𝑎 𝑐 (𝑎 + 𝑐) (K.50)

𝑀
PR.EFM.IEq
B =

3 𝐸 𝐼𝑒𝑞
(
𝑑

PR.EFM.IEq
2 𝑎2 + 2 𝑑2 𝑎 𝑐 + 𝑑

PR.EFM.IEq
1 𝑐2

)
𝑎 𝑐2 (𝑎 + 𝑐)

(K.51)

MPR.EFM.IEq
y.NGM = MPR.EFM.IF

y.NGM (K.52)

377





Appendix L: Quadrant Calculation

The cross-section of the tubular column is divided into four quadrants (i.e., Q1 to Q4), and their

behavior is expressed through three DOFs, 𝑑1, 𝑑2, and 𝑑3, as presented in Eq.(5.85). However, as

explained in Section 5.5.6, 𝑑3, it was made dependent on 𝑑1 and 𝑑2 by applying Eq.(5.87). Thus, four

calculations are performed for every EFM.

According to Tab. I.2 from Appendix I, the vector containing the minimum elastic displacements,

𝛿𝑒𝑙.𝑚𝑖𝑛, for the RHS-m03-H01-SC02 case is:

𝛿RFEM
𝑒𝑙.𝑚𝑖𝑛 =

[
1.50 3.00 0.53 −0.37

]𝑇
(L.1)

The EFM is partitioned into four quadrants, as depicted in Fig. 5.52, and the values of 𝑑𝐸𝐹𝑀1 and

𝑑𝐸𝐹𝑀2 are presented in Tab. L.1.

Table L.1: Values of 𝑑𝐸𝐹𝑀1 and 𝑑𝐸𝐹𝑀2 for RHS-m01-V01-SC01.

Displacement Q1 Q2 Q3 Q4

𝑑𝐸𝐹𝑀1 0.53 1.50 1.50 0.53

𝑑𝐸𝐹𝑀2 3.00 3.00 -0.37 -0.37

379





Appendix M: Results strength - unadjusted

The unadjusted results for the strength criterion (Eq.(5.72) are expressed in accordance with Tab. M.1.

Table M.1: Index of tables for unadjusted strength results.

Case name Table no.

HS-EFM-R0 Tab. M.2

HS-EFM-R1 Tab. M.3

PS-EFM-R0 Tab. M.4

PS-EFM-R1 Tab. 5.28*

HR-EFM-IF-R0 Tab. M.5

HR-EFM-IEq-R0 Tab. M.6

HR-EFM-IF-R1 Tab. M.7

HR-EFM-IEq-R1 Tab. M.8

PR-EFM-IF-R0 Tab. M.9

PR-EFM-IEq-R0 Tab. M.10

PR-EFM-IF-R1 Tab. 5.29*

PR-EFM-IEq-R1 Tab. M.11
* see Section 5.5.8.2

Table M.2: Results: HS-EFM-R0 [kNm] (unadjusted).

SC
MHS-EFM-R0 MHS-EFM-R0

y.GNM 𝛼HS-EFM-R0
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 10.67 10.46 10.46 10.46 4.12 4.12 4.12 4.12 2.6 2.5 2.5 2.5 2.6

02 11.06 10.90 10.90 10.90 4.45 4.45 4.45 4.45 2.5 2.5 2.5 2.5 2.5

03 12.78 12.78 12.78 12.78 5.70 5.70 5.70 5.70 2.2 2.2 2.2 2.2 2.2

04 18.56 18.56 18.56 18.56 8.64 8.64 8.64 8.64 2.1 2.1 2.1 2.1 2.1
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Appendix M. Results strength - unadjusted

Table M.3: Results: HS-EFM-R1 [kNm] (unadjusted).

SC
MHS-EFM-R1 MHS-EFM-R1

y.GNM 𝛼HS-EFM-R1
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 7.72 7.57 7.57 7.57 3.82 3.82 3.82 3.82 2.0 2.0 2.0 2.0 2.0

02 8.40 8.28 8.28 8.28 4.18 4.18 4.18 4.18 2.0 2.0 2.0 2.0 2.0

03 11.79 11.79 11.79 11.79 5.69 5.69 5.69 5.69 2.1 2.1 2.1 2.1 2.1

04 29.09 29.09 29.09 29.09 10.49 10.49 10.49 10.49 2.8 2.8 2.8 2.8 2.8

Table M.4: Results: PS-EFM-R0 [kNm] (unadjusted).

SC
MPS-EFM-R0 MPS-EFM-R0

y.GNM 𝛼PS-EFM-R0
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 9.60 9.41 9.41 9.41 3.71 3.71 3.71 3.71 2.6 2.5 2.5 2.5 2.6

02 8.85 8.72 8.72 8.72 3.56 3.56 3.56 3.56 2.5 2.5 2.5 2.5 2.5

03 7.03 7.03 7.03 7.03 3.13 3.13 3.13 3.13 2.2 2.2 2.2 2.2 2.2

04 5.57 5.57 5.57 5.57 2.59 2.59 2.59 2.59 2.1 2.1 2.1 2.1 2.1

Table M.5: Results: HR-EFM-IF-R0 [kNm] (unadjusted).

SC
MHR-EFM-IF-R0 MHR-EFM-IF-R0

y.GNM 𝛼HR-EFM-IF-R0
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 11.09 11.16 11.16 11.22 4.12 4.12 5.36 5.36 2.7 2.7 2.1 2.1 2.7

02 11.36 11.36 11.36 11.36 4.45 4.45 5.72 5.72 2.6 2.6 2.0 2.0 2.6

03 12.77 12.12 12.12 11.75 5.70 5.70 6.52 6.52 2.2 2.1 1.9 1.8 2.2

04 15.92 13.39 13.39 12.92 8.64 8.64 7.72 7.72 1.8 1.6 1.7 1.7 1.8

Table M.6: Results: HR-EFM-IEq-R0 [kNm] (unadjusted).

SC
MHR-EFM-IEq-R0 MHR-EFM-IEq-R0

y.GNM 𝛼
HR-EFM-IEq-R0
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 11.71 11.05 11.05 10.61 4.12 4.12 5.36 5.36 2.8 2.7 2.1 2.0 2.8

02 11.77 11.25 11.25 10.90 4.45 4.45 5.72 5.72 2.6 2.5 2.0 1.9 2.6

03 12.37 12.44 12.44 12.49 5.70 5.70 6.52 6.52 2.2 2.2 1.9 1.9 2.2

04 15.04 18.08 18.08 20.16 8.64 8.64 7.72 7.72 1.7 2.1 2.3 2.6 2.6
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Table M.7: Results: HR-EFM-IF-R1 [kNm] (unadjusted).

SC
MHR-EFM-IF-R1 MHR-EFM-IF-R1

y.GNM 𝛼HR-EFM-IF-R1
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 8.04 8.11 8.11 8.17 3.82 3.82 5.16 5.16 2.1 2.1 1.6 1.6 2.1

02 8.59 8.56 8.56 8.53 4.18 4.18 5.42 5.42 2.1 2.0 1.6 1.6 2.1

03 11.31 10.25 10.25 9.73 5.69 5.69 6.28 6.28 2.0 1.8 1.6 1.6 2.0

04 22.19 13.28 13.28 12.27 10.49 10.49 7.64 7.64 2.1 1.3 1.7 1.6 2.1

Table M.8: Results: HR-EFM-IEq-R1 [kNm] (unadjusted).

SC
MHR-EFM-IEq-R1 MHR-EFM-IEq-R1

y.GNM 𝛼
HR-EFM-IEq-R1
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 8.51 8.03 8.03 7.71 3.82 3.82 5.16 5.16 2.2 2.1 1.6 1.5 2.2

02 8.88 8.48 8.48 8.22 4.18 4.18 5.42 5.42 2.1 2.0 1.6 1.5 2.1

03 10.77 10.83 10.83 10.87 5.69 5.69 6.28 6.28 1.9 1.9 1.7 1.7 1.9

04 20.79 24.98 24.98 27.86 10.49 10.49 7.64 7.64 2.0 2.4 3.3 3.6 3.6

Table M.9: Results: PR-EFM-IF-R0 [kNm] (unadjusted).

SC
MPR-EFM-IF-R0 MPR-EFM-IF-R0

y.GNM 𝛼PR-EFM-IF-R0
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 10.07 10.24 10.24 10.38 3.71 3.71 5.00 5.00 2.7 2.8 2.0 2.1 2.8

02 9.29 9.48 9.48 9.66 3.56 3.56 4.96 4.96 2.6 2.7 1.9 1.9 2.7

03 7.54 7.69 7.69 7.83 3.13 3.13 4.56 4.56 2.4 2.5 1.7 1.7 2.5

04 5.78 5.95 5.95 6.30 2.59 2.59 4.12 4.12 2.2 2.3 1.4 1.5 2.3

Table M.10: Results: PR-EFM-IEq-R0 [kNm] (unadjusted).

SC
MPR-EFM-IEq-R0 MPR-EFM-IEq-R0

y.GNM 𝛼
PR-EFM-IEq-R0
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 11.00 10.14 10.14 9.60 3.71 3.71 5.00 5.00 3.0 2.7 2.0 1.9 3.0

02 10.33 9.40 9.40 8.82 3.56 3.56 4.96 4.96 2.9 2.6 1.9 1.8 2.9

03 8.81 7.59 7.59 6.95 3.13 3.13 4.56 4.56 2.8 2.4 1.7 1.5 2.8

04 7.64 5.74 5.74 5.29 2.59 2.59 4.12 4.12 2.9 2.2 1.4 1.3 2.9
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Appendix M. Results strength - unadjusted

Table M.11: Results: PR-EFM-IEq-R1 [kNm] (unadjusted).

SC
MPR-EFM-IEq-R1 MPR-EFM-IEq-R1

y.GNM 𝛼
PR-EFM-IEq-R1
𝑐𝑟𝑖𝑡.𝑠

𝛼𝑚𝑎𝑥
A CA CB B A CA CB B A CA CB B

01 9.95 8.89 8.89 8.24 3.39 3.39 4.78 4.78 2.9 2.6 1.9 1.7 2.9

02 9.66 8.43 8.43 7.73 3.24 3.24 4.64 4.64 3.0 2.6 1.8 1.7 3.0

03 9.31 7.37 7.37 6.47 2.79 2.79 4.24 4.24 3.3 2.6 1.7 1.5 3.3

04 12.21 6.45 6.45 5.41 2.19 2.19 3.78 3.78 5.6 2.9 1.7 1.4 5.6
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Appendix N: Results strength - adjusted

The results with the unique minimum adjustment factor, 𝛼𝑚𝑖𝑛, incorporated in the equivalent bending

stiffness in the strength criterion (Eq.(5.78) are presented in accordance with Tab. N.1.

Table N.1: Index of tables for adjusted strength results.

Case name Table no.

HS-EFM-R0 Tab. N.2

HS-EFM-R1 Tab. N.3

PS-EFM-R0 Tab. N.4

PS-EFM-R1 Tab. 5.30*

HR-EFM-IF-R0 Tab. N.5

HR-EFM-IEq-R0 Tab. N.6

HR-EFM-IF-R1 Tab. N.7

HR-EFM-IEq-R1 Tab. N.8

PR-EFM-IF-R0 Tab. N.9

PR-EFM-IEq-R0 Tab. N.10

PR-EFM-IF-R1 Tab. 5.31*

PR-EFM-IEq-R1 Tab. N.11
* see Section 5.5.8.3

Table N.2: Results: HS-EFM-R0 [kNm] (adjusted).

SC
MHS-EFM-R0 MHS-EFM-R0

y.GNM 𝛼HS-EFM-R0
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 10.67 10.46 10.46 10.46 8.29 8.29 8.29 8.29 1.3 1.3 1.3 1.3

02 11.06 10.90 10.90 10.90 8.94 8.94 8.94 8.94 1.2 1.2 1.2 1.2

03 12.78 12.78 12.78 12.78 11.45 11.45 11.45 11.45 1.1 1.1 1.1 1.1

04 18.56 18.56 18.56 18.56 17.37 17.37 17.37 17.37 1.1 1.1 1.1 1.1
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Appendix N. Results strength - adjusted

Table N.3: Results: HS-EFM-R1 [kNm] (adjusted).

SC
MHS-EFM-R1 MHS-EFM-R1

y.GNM 𝛼HS-EFM-R1
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 7.72 7.57 7.57 7.57 7.68 7.68 7.68 7.68 1.0 1.0 1.0 1.0

02 8.40 8.28 8.28 8.28 8.40 8.40 8.40 8.40 1.0 1.0 1.0 1.0

03 11.79 11.79 11.79 11.79 11.43 11.43 11.43 11.43 1.0 1.0 1.0 1.0

04 29.09 29.09 29.09 29.09 21.09 21.09 21.09 21.09 1.4 1.4 1.4 1.4

Table N.4: Results: PS-EFM-R0 [kNm] (adjusted).

SC
MPS-EFM-R0 MPS-EFM-R0

y.GNM 𝛼PS-EFM-R0
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 9.60 9.41 9.41 9.41 7.46 7.46 7.46 7.46 1.3 1.3 1.3 1.3

02 8.85 8.72 8.72 8.72 7.15 7.15 7.15 7.15 1.2 1.2 1.2 1.2

03 7.03 7.03 7.03 7.03 6.30 6.30 6.30 6.30 1.1 1.1 1.1 1.1

04 5.57 5.57 5.57 5.57 5.21 5.21 5.21 5.21 1.1 1.1 1.1 1.1

Table N.5: Results: HR-EFM-IF-R0 [kNm] (adjusted).

SC
MHR-EFM-IF-R0 MHR-EFM-IF-R0

y.GNM 𝛼HR-EFM-IF-R0
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 11.09 11.16 11.16 11.22 7.59 7.59 9.86 9.86 1.5 1.5 1.1 1.1

02 11.36 11.36 11.36 11.36 8.19 8.19 10.53 10.53 1.4 1.4 1.1 1.1

03 12.77 12.12 12.12 11.75 10.48 10.48 12.00 12.00 1.2 1.2 1.0 1.0

04 15.92 13.39 13.39 12.92 15.90 15.90 14.21 14.21 1.0 0.8 0.9 0.9

Table N.6: Results: HR-EFM-IEq-R0 [kNm] (adjusted).

SC
MHR-EFM-IEq-R0 MHR-EFM-IEq-R0

y.GNM 𝛼
HR-EFM-IEq-R0
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 11.71 11.05 11.05 10.61 7.59 7.59 9.86 9.86 1.5 1.5 1.1 1.1

02 11.77 11.25 11.25 10.90 8.19 8.19 10.53 10.53 1.4 1.4 1.1 1.0

03 12.37 12.44 12.44 12.49 10.48 10.48 12.00 12.00 1.2 1.2 1.0 1.0

04 15.04 18.08 18.08 20.16 15.90 15.90 14.21 14.21 0.9 1.1 1.3 1.4
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Table N.7: Results: HR-EFM-IF-R1 [kNm] (adjusted).

SC
MHR-EFM-IF-R1 MHR-EFM-IF-R1

y.GNM 𝛼HR-EFM-IF-R1
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 8.04 8.11 8.11 8.17 7.03 7.03 9.49 9.49 1.1 1.2 0.9 0.9

02 8.59 8.56 8.56 8.53 7.69 7.69 9.97 9.97 1.1 1.1 0.9 0.9

03 11.31 10.25 10.25 9.73 10.46 10.46 11.55 11.55 1.1 1.0 0.9 0.8

04 22.19 13.28 13.28 12.27 19.30 19.30 14.07 14.07 1.1 0.7 0.9 0.9

Table N.8: Results: HR-EFM-IEq-R1 [kNm] (adjusted).

SC
MHR-EFM-IEq-R1 MHR-EFM-IEq-R1

y.GNM 𝛼
HR-EFM-IEq-R1
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 8.51 8.03 8.03 7.71 7.03 7.03 9.49 9.49 1.2 1.1 0.8 0.8

02 8.88 8.48 8.48 8.22 7.69 7.69 9.97 9.97 1.2 1.1 0.9 0.8

03 10.77 10.83 10.83 10.87 10.46 10.46 11.55 11.55 1.0 1.0 0.9 0.9

04 20.79 24.98 24.98 27.86 19.30 19.30 14.07 14.07 1.1 1.3 1.8 2.0

Table N.9: Results: PR-EFM-IF-R0 [kNm] (adjusted).

SC
MPR-EFM-IF-R0 MPR-EFM-IF-R0

y.GNM 𝛼PR-EFM-IF-R0
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 10.07 10.24 10.24 10.38 6.83 6.83 9.21 9.21 1.5 1.5 1.1 1.1

02 9.29 9.48 9.48 9.66 6.55 6.55 9.12 9.12 1.4 1.4 1.0 1.1

03 7.54 7.69 7.69 7.83 5.76 5.76 8.40 8.40 1.3 1.3 0.9 0.9

04 5.78 5.95 5.95 6.30 4.77 4.77 7.58 7.58 1.2 1.2 0.8 0.8

Table N.10: Results: PR-EFM-IEq-R0 [kNm] (adjusted).

SC
MPR-EFM-IEq-R0 MPR-EFM-IEq-R0

y.GNM 𝛼
PR-EFM-IEq-R0
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 11.00 10.14 10.14 9.60 6.83 6.83 9.21 9.21 1.6 1.5 1.1 1.0

02 10.33 9.40 9.40 8.82 6.55 6.55 9.12 9.12 1.6 1.4 1.0 1.0

03 8.81 7.59 7.59 6.95 5.76 5.76 8.40 8.40 1.5 1.3 0.9 0.8

04 7.64 5.74 5.74 5.29 4.77 4.77 7.58 7.58 1.6 1.2 0.8 0.7
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Appendix N. Results strength - adjusted

Table N.11: Results: PR-EFM-IEq-R1 [kNm] (adjusted).

SC
MPR-EFM-IEq-R1 MPR-EFM-IEq-R1

y.GNM 𝛼
PR-EFM-IEq-R1
𝑐𝑟𝑖𝑡.𝑠

A CA CB B A CA CB B A CA CB B

01 9.95 8.89 8.89 8.24 6.24 6.24 8.80 8.80 1.6 1.4 1.0 0.9

02 9.66 8.43 8.43 7.73 5.95 5.95 8.53 8.53 1.6 1.4 1.0 0.9

03 9.31 7.37 7.37 6.47 5.14 5.14 7.80 7.80 1.8 1.4 0.9 0.8

04 12.21 6.45 6.45 5.41 4.04 4.04 6.96 6.96 3.0 1.6 0.9 0.8
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Appendix O: Force-displacement curves for a column

plate

The force-displacement curves obtained from the NGM and RFEM analyses are presented in Figs. O.1

to O.8. Each figure corresponds to a specific combination of length and socket height (𝐿 −𝑢 pairs),

displaying the curves for four socket configurations. In addition, the nonlinear curve obtained from

the RFEM is approximated as a bilinear curve using the equal potential energy criterion, as explained

in Section 5.5.5.

0 5 10 15 20 25

out-of-plane displacement [mm]

0

100

200

300

400

a
p
p
li
ed
fo
rc
e
[k

N
]

L = 200 with u = 20

RFEM - SC01 RFEM - SC01 bl NGM - SC01
RFEM - SC02 RFEM - SC02 bl NGM - SC02
RFEM - SC03 RFEM - SC03 bl NGM - SC03
RFEM - SC04 RFEM - SC04 bl NGM - SC04

Figure O.1: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿1 = 200 and 𝑢 = 20 and all SCs.

389



Appendix O. Force-displacement curves for a column plate

0 5 10 15 20 25

out-of-plane displacement [mm]

0

100

200

300

a
p
p
li
ed

fo
rc
e
[k

N
]

L = 300 with u = 20

RFEM - SC01 RFEM - SC01 bl NGM - SC01
RFEM - SC02 RFEM - SC02 bl NGM - SC02
RFEM - SC03 RFEM - SC03 bl NGM - SC03
RFEM - SC04 RFEM - SC04 bl NGM - SC04

Figure O.2: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿2 = 300 and 𝑢 = 20 and all SCs.
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Figure O.3: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿1 = 200 and 𝑢 = 40 and all SCs.
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Figure O.4: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿2 = 300 and 𝑢 = 40 and all SCs.
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Figure O.5: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿1 = 200 and 𝑢 = 80 and all SCs.
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Appendix O. Force-displacement curves for a column plate
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Figure O.6: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿2 = 300 and 𝑢 = 80 and all SCs.
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Figure O.7: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿1 = 200 and 𝑢 = 190 and all SCs.
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Figure O.8: 𝐹 − 𝛿 comparison between RFEM and NGM for 𝐿2 = 300 and 𝑢 = 160 and all SCs.
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Appendix P: Results nonlinearity

The results of the nonlinear analysis introduced in Chapter 6 are presented through applied force-

displacement and applied force-deformation curves for the column faces and tube components,

respectively. The analysis focuses on the load patterns illustrated in Fig. 6.16, particularly on LP0𝑖-L2,

with 𝑖 = [1,4]. These graphical representations are shown in Figs. P.1 to P.8.
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Figure P.1: Force-displacement under LP01-L2.
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Figure P.2: Force-deformation curves in the tube components under LP01-L2.
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Figure P.3: Force-displacement under LP02-L2.
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Figure P.4: Force-deformation curves in the tube components under LP02-L2.
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Figure P.6: Force-deformation curves in the tube components under LP03-L2.
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Figure P.8: Force-deformation curves in the tube components under LP04-L2.
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[36] Ž. Bučmys and G. Šaučiuvėnas, “The Behavior of Cold Formed Steel Structure Connections
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