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Abstract

In nature, animals use the sense of smell to successfully locate sources of food,
danger and mates. This sense may also be used in many other applications,
such as locating victims in disaster scenarios or buried landmines, detect-

ing concealed drugs or tracking the sources of pollutants and diseases. While
currently many of these tasks are tackled with the help of trained dogs, the
dangerous work conditions that are typically involved have been motivating the
research community to propose methods to replace the animals with autonom-
ous robots that can be monitored from safe distances. Yet, most of the existing
approaches are manually designed and, due to the difficulty of the task at hand,
tend to be sub-optimal. A promising approach would be not to hand-design, but
rather to automatically produce those controllers though artificial intelligence
methods.

This thesis devises nature-inspired artificial intelligence methods (i.e., Evolution-
ary Algorithms) to evolve robots which, much like animals, are able to locate
odour sources both individually and as a group. Similarly to most Evolutionary
Robotics (ER) works, this thesis evolves the robotic controllers in simulation, as
it is not only faster, cheaper and safer, but also enables testing scenarios that
would be difficult to test in the real world. As such, one our first contributions
is the development of a fast and realistic simulator for enabling the evolution
of search strategies for odour source localisation. Moreover, due to the lack of
ER works for odour source localisation, a study is conducted to design an ad-
equate evaluation function for this task, i.e., one that provides a reliable fitness
value with a minimum number of evaluations and a minimum amount of prior
knowledge to prevent biasing the evolution.

Four approaches were devised to evolve the robotic controllers. The first ap-
proach relies on Genetic Programming (GP) to produce human-readable search
strategies from bio-inspired perceptions and actions. The ability to visually in-
spect the controllers is of great importance, as it not only enables verifying their
soundness and adjusting their parameters to better suit particular scenarios, but
also enables experimenters to draw insights from the search strategies, which may
be used to further advance the knowledge of the field. However, GP often suffers
from bloat, phenomenon that translates into the uncontrolled growth of the indi-
viduals without a corresponding increase in performance. Bloat will inevitably
decrease the readability of the evolved controllers and increase their compu-
tational requirements. In this thesis, we propose Geometric Syntactic Genetic
Programming (GSynGP), a new GP variant that produces compact syntax trees
with equivalent performance to those evolved by the standard variant.

The second approach is based on Infotaxis, a popular method to estimate the
location of the source by fitting a gas dispersion model to environmental meas-
urements. We propose Evolutionary Infotaxis, an evolutionary approach that
addresses one of the main drawbacks of Infotaxis by using a Genetic Algorithm



to automatically parametrise its gas dispersion model, optimising its perform-
ance in a given environment. The results show that, contrarily to common belief,
the parameters that better approximate the environment are not necessarily the
ones that lead to the best performance.

The third approach relies on GSynGP to evolve tree-based controllers that com-
bine infotactic behaviours with bio-inspired building blocks. The experimental
results show that this approach outperforms both its counterparts and, the ana-
lysis of the evolved solutions shows that Infotaxis is better suited for finding and
reacquiring the odour plume, while bio-inspired behaviours are more efficient for
tracking it to its source.

Finally, a multi-robot evolutionary approach is devised and the influence of the
number of robots and of cooperation is investigated. Furthermore, the multi-
robot approach is compared to the single-robot approaches, showing that using
multiple robots provides better results than even the most complex single-robot
approach.

Preliminary tests of the best evolved controllers are conducted in a wind-tunnel,
qualitatively validating the simulation-based results. One of the advantages of
their white-box nature is also demonstrated by manually adjusting their para-
meters to better cope with the differences between the simulated environment
and the wind tunnel.

Keywords: Odour Source Localisation, Evolutionary Robotics, Evolutionary
Algorithms, Genetic Programming



Resumo

Na natureza, os animais usam o olfato para detectar e localizar fontes
de alimento, perigo e outros membros da sua espécie. O sentido olfat-
ivo pode ser usado em muitas outras aplicações, tais como localizar

pessoas desaparecidas, detectar narcóticos ou encontrar fontes de poluentes e
doenças. Atualmente muitas destas tarefas são realizadas com o auxílio de cães,
mas os riscos inerentes têm motivado a comunidade científica a propor métodos
baseados em robôs autónomos que possam ser monitorizados a partir de distân-
cias seguras. No entanto, a maioria das abordagens existentes são desenhadas
manualmente e, devido à dificuldade desta tarefa, tendem a ser sub-ótimas.
Um caminho promissor seria recorrer a métodos de inteligência artificial para
produzir estratégias de procura.

Esta tese propõe métodos de inteligência artificial inspirados na natureza (i.e.,
Algoritmos Evolucionários (AE)) para evoluir robôs que, tal como os animais,
são capazes de localizar fontes de odor, tanto individualmente, como trabalhando
em equipa. À semelhança da maioria dos trabalhos de Robótica Evolucionária
(RE), os controladores robóticos são evoluídos em simulação, dado ser uma forma
mais rápida, segura e com menores custos, permitindo ainda testar cenários que
seriam difíceis de testar no mundo real. Como tal, uma das nossas contribuições
é o desenvolvimento de um simulador rápido e realista para permitir a evolução
de estratégias de procura de fontes de odor. Além disso, devido à escassez
de trabalhos de RE na procura de fontes de odor, realizou-se um estudo para
desenhar uma função de avaliação adequada para esta tarefa, i.e., uma função
que produz um valor de aptidão confiável com o mínimo de avaliações e con-
tendo uma quantidade mínima de conhecimento prévio para evitar enviesar a
evolução.

Esta tese propões quatro abordagens para evoluir controladores robóticos. A
primeira recorre a Programação Genética (PG) para produzir estratégias de
procura de fontes de odor interpretáveis por humanos, a partir the percepções e
acções bioinspiradas. A capacidade de inspecionar visualmente os controladores
é de extrema relevância, uma vez que permite verificar sua solidez e refinar os
seus parâmetros para cenários específicos. Para além disso, através da análise
dos controladores é possível extrair conhecimento para melhorar as estratégias
de procura desenhadas manualmente, avançando o conhecimento da área. No
entanto, a PG sofre frequentemente de bloat, um fenómeno que se traduz no
crescimento descontrolado dos indivíduos sem um correspondente aumento de
desempenho, que diminui a sua legibilidade e aumenta os seus requisitos com-
putacionais. Nesta tese propomos um novo algoritmo de PG (GSynGP) que
efectua operações de recombinação geométricas no espaço sintático, produzindo
indivíduos compactos com desempenho equivalente aos evoluídos pela PG tradi-
cional.

A segunda abordagem baseia-se na Infotaxis, uma abordagem com grande pop-



ularidade para estimar a localização de fontes de odor com recurso a modelos de
dispersão de gás. A abordagem que propomos, Evolutionary Infotaxis, utiliza
um Algoritmo Genético para parametrizar o modelo de dispersão de gás da In-
fotaxis, optimizando a sua performance num ambiente específico e solucionando
uma das suas principais desvantagens (i.e., a necessidade de parametrizar o mod-
elo de dispersão de gás manualmente). Os resultados experimentais mostram
que, contrariamente ao expectável, os parâmetros que melhor se aproximam do
ambiente não são necessariamente os que levam ao melhor desempenho.

A terceira abordagem proposta recorre ao GSynGP para evoluir controladores
white-box que combinam comportamentos infotáticos com percepções e ações
bioinspiradas. Os resultados experimentais mostram que esta abordagem supera
ambos os métodos que lhe deram origem e, através da análise dos controladores,
é possível verificar que a Infotaxis é mais adequada para (re)encontrar a pluma
de odor, enquanto os comportamentos bioinspirados são mais eficientes para
segui-la até à sua fonte.

Propomos ainda uma abordagem evolucionária multi-robô, estudando a influên-
cia do número de robôs e da cooperação no desempenho da procura. Além disso,
a abordagem multi-robô é comparada com as abordagens que usam um único
robô, mostrando que o uso de vários robôs origina melhores resultados do que
todas as abordagens com um único robô.

Finalmente, realizamos testes preliminares dos controladores num túnel de vento,
validando qualitativamente os resultados obtidos em simulação. Uma das vant-
agens da natureza white-box dos controladores é também demonstrada, per-
mitindo o ajuste manual dos seus parâmetros para lidar melhor com as diferenças
entre o ambiente simulado e o túnel de vento.

Palavras-chave: Procura de Fontes de Odor, Robótica Evolucionária, Al-
goritmos Evolucionários, Programação Genética
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CHAPTER 1. INTRODUCTION

1.1 Motivation

In November of 2014, an outbreak of legionellosis in Portugal caused 12
deaths and 375 injuries. The outbreak affected various cities of the Lisbon
district, before its source being identified as the cooling towers of a fertilizer

plant in Forte da Casa, Vila Franca de Xira. Legionella bacteria grow in water
and can spread in droplets carried by the wind, similarly to other substances
such as airborne pollutants.

Olfaction enables the detection and localisation of distant targets, even if they
are silent and invisible, similarlly to the legionella bacteria. In nature, organisms
use this sense to locate sources of food, danger and mates. In turn, humans may
use this sense in many real world applications, such as locating victims in disaster
scenarios or buried landmines, detecting concealed drugs or tracking the sources
of pollutants and diseases. Currently, due to the limitations of the human nose,
trained dogs are used to assist humans in those tasks. However, this is not a
perfect solution, as the dangerous work conditions endanger the well-being of
both animals and their handlers. Moreover, the search operations may take
a long time, exhausting the searchers and making them more prone to make
mistakes.

In order to reduce the risk to both humans and animals, the robotics com-
munity has been actively working on methods to replace animals with robots
[Jing et al., 2021] that can be monitored from a safe distance. Unfortunately,
the existing approaches only work in controlled environments and do not scale
well for real scenarios. This is mainly due to the difficulty of the task at hand.
Odour sources release molecules at continuous or intermittent rates. The odour
particles, once released, flow with the wind, spreading through molecular diffu-
sion and turbulent dispersion. Turbulence creates an intermittent distribution
of concentration with many local peaks, hampering direct attempts to estim-
ate gradients. Moreover, whilst the transport of odour molecules in a fluid can
be modelled by advection-diffusion equations, the constraints imposed by the
interactions between obstacles and the fluid’s motion, as well as the resulting
turbulent effects, make the inversion of this phenomenon computationally in-
tractable. From a computational perspective, the task at hand can also be seen
as a problem of exploring an unknown environment looking for (odour) cues of
a deceptive trail and following it to its source (i.e., the chemical source), using
robots with imperfect sensors and actuators.

1.2 Working hypothesis
While one approach for locating odour sources could be based on experts teleop-
erating mobile robots, these tasks’ real world scenarios often contain obstacles
and structures that affect wireless communications. Moreover, in many applic-
ations it would be interesting to deploy several robots working cooperatively,
which in a teleoperation setting would imply having one operator per robot,
consequently increasing the operation cost. As a result, the robot must have
a high degree of autonomy, being able to complete their task with no human
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intervention. In order to do it, the robots must have a controller that takes the
place of the operator and uses its perceptions to select proper actions. Even
though the controller could be hand-designed, it would be difficult for the ex-
perimenters to design the optimal controller without having complete knowledge
of the world, specially when considering applications involving dynamic envir-
onmental conditions (e.g., weather) and the strong possibility of loss of agents.
The use of multiple robots working cooperatively provides robustness to the loss
of agents and enables simultaneous distributed sensing of the environment, both
of which are advantageous when attempting to locate chemical sources. How-
ever, these benefits come at the cost of an increased system complexity, often
requiring inter-robot communication and coordination mechanisms, and mak-
ing the task of hand-designing controllers that take advantage of other agents’
perceptions to produce the desired results much more difficult. A promising ap-
proach would be not to hand-design, but rather to automatically produce those
controllers though artificial intelligence methods.

In nature, animals successfully locate odour sources to accomplish various tasks
and thus their behaviours have been the source of inspiration for various ro-
botic search strategies. This thesis proposes to also draw inspiration from
nature to devise artificial intelligence methods to automatically design robotic
search strategies for locating odour sources. Evolutionary Algorithms (EAs)
are stochastic search heuristics loosely inspired by the principles of evolution by
Natural Selection and Mendel’s Genetics. They have been successfully applied
to solve problems with no analytical solution, or when finding such solution
would be computationally intractable. Odour source localisation is one of such
problems, as is the evolution of robotic controllers which, along with the evolu-
tion of robot bodies, yielded the research field of Evolutionary Robotics (ER).
As a result, our working hypothesis is that, much like animals, EAs can be ap-
plied to evolve robotic controllers that are able to locate odour sources, either
individually or as a group.

Genetic Programming is a family of EAs that evolve computer programs in the
form of syntax trees [Koza, 1992]. In this thesis we focus mainly on Genetic Pro-
gramming to evolve white-box robotic controllers that can be visually inspected.
The ability to visually inspect the evolved controllers is of great importance, as
it not only enables the verification of their soundness, as well as enables to draw
insights regarding the search strategies, which may be used to further advance
the knowledge of the experimenters. This choice of resorting to GP is suppor-
ted by a previous study [Svec and Gupta, 2012] which used tree-based Genetic
Programming in place of neural networks, exactly for its ability to produce
human-readable robotic controllers. Moreover, other works have stated that
EAs are promising approaches for designing robotic controllers [Scheper et al.,
2016], particularly in multi-robot scenarios [Waibel et al., 2009]. Throughout
this document, we will often refer to the evolution of robotic controllers or search
strategies. In any case, we are referring to high-level decision making processes
that use the states of the robot, containing its perceptions and, possibly, those
of its team-mates, along with its goals and memories to select the appropriate
actions.
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1.3 Goals
The main goal of this thesis is to study and develop nature-inspired algorithms
that enable one robot or a group of robots to locate odour sources in realistic
environments. In order to do it, the robots must fulfil the three phases of
the odour source localisation (OSL) process i.e., they must: (1) explore the
environment, searching for odour detections; (2) track the chemical plume to
the vicinity of its source; and (3) pinpoint the location of the chemical source.
In the literature, the third phase of the OSL process is typically assumed to be
carried out with additional sensors (such as vision) that are able to detect the
source when in close proximity. In this thesis, we also make this assumption
and focus on solving the first two phases of the OSL process. Moreover, we shall
focus on evolutionary robotics methods to enable each robot to evolve controllers
for performing the task both individually and as a member of a group, leading to
a system that may use multiple agents cooperatively to improve its performance
while remaining robust to the loss of agents.

Research questions
We formulate the main research questions as follows: How can robots evolve to
locate odour sources?

From these research questions other sub-questions emerge, namely:

1. Which type of evolutionary algorithm enables the evolution human-
readable robotic controllers?

2. How can one robot evolve to locate a chemical source?

3. How can a group of robots evolve to locate chemical sources cooperatively?

4. Is it better to use many simple robots or a single, but complex, one?

1.4 Contributions
Throughout the works of this thesis, several original contributions were made,
namely:

1. Development of a fast and realistic simulator for enabling the evolution
of search strategies for the odour source localisation task [Macedo et al.,
2019];

2. Design and study of evaluation functions for odour source localisation
strategies [Macedo et al., 2021a];

3. Development of Geometric Syntactic Genetic Programming (GSynGP), a
new GP variant that produces compact individuals with equivalent per-
formance to those evolved by the standard variant and its aplication to
evolve robotic controllers for odour source localisation [Macedo et al.,
2018, Macedo et al., 2020];
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4. Development of an Evolutionary Infotaxis approach, which automatically
parametrises its inner gas dispersion model to optimise performance in a
given environment [Macedo et al., 2021b];

5. Development of GPInfotaxis, a GSynGP-based algorithm for creating
human-readable hybrid search strategies combining bio-inspired beha-
viours and perceptions with Infotaxis [Macedo et al., 2022];

6. Development of an evolutionary multi-robot approach for odour source
localisation, studying the influence of the number of robots and of the
cooperation in the performance.

1.5 Organisation
This document is organised as follows: Chapter 2 introduces the background
concepts and the state of the art literature on learning and evolutionary robotics
as well as robotic odour source localisation; Chapter 3 describes the developed
Geometric Syntactic Genetic Programming algorithm; Chapter 4 details the
experiments made with a single robot; Chapter 6 presents the experiments made
with groups of robots; and finally, Chapter 7 draws the conclusions from this
work and provides insight into future endeavours.
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Figure 2.1: Smoke plume.

This chapter starts by presenting the background concepts on odour
source localisation, robotics, evolutionary computation and evaluation
functions necessary to understand this thesis. It then carries on to

report the state of the art on evolutionary robotics and odour source localisa-
tion.

2.1 Background concepts

2.1.1 Odour source localisation
The term odour is typically used to refer to scents, including unpleasant ones. It
is deeply related to olfaction, the sense through which animals are able to detect
volatile chemical compounds, which in turn can be emitted by various sources.
In the literature, odour source localisation (OSL) refers to the task of finding
the source that is emitting an airborne or waterborne chemical substance. In
works dealing with airborne chemical compounds, the term gas source localisa-
tion (GSL) is also used to refer to the same task. Throughout this document,
we shall use both terms interchangeably.

The difficulty in locating chemical sources arises from the process of how odour
spreads [Stockie, 2011]. As odour molecules are released from the source, they
spread mainly through turbulent advection and molecular diffusion, creating
intermittent chemical plumes with various local voids and peaks of concentration
(see Figure 2.1).

The task of locating chemical sources has received a lot of attention from the
research community and it is currently accepted that it comprises three well
defined stages:
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1. Plume finding: where the agent has yet to sense odour and must explore
the environment searching for chemical cues;

2. Plume tracking: where the searcher is in contact with the plume and
must follow it to the vicinity of its source;

3. Source declaration: where the searcher has reached the vicinity of the
chemical source and must pinpoint its location. This task is often carried
out with the help of other sensor modalities, such as vision.

Moreover, various methods have been proposed to model both the time-averaged
and instantaneous chemical dispersion, as well as the carrying flow. These mod-
els are not only necessary to estimate the dispersion of pollutants in an envir-
onment, but also to create simulators that enable experimenters to test new
approaches for tackling the odour source localisation task. The following sub-
section describes the models used in the simulator developed in this thesis.

2.1.1.1 Airflow model

A popular model of airflow has been used by Farrell et al. [Farrell et al., 2002] to
efficiently emulate the short time-scale structure of chemical plumes. The airflow
is computed through partial differential equations in a 2D grid of square cells
that extends over the entire environment, but the models could also be extended
to 3D. While the resolution of this grid is adjustable, care should be taken not to
make it too fine, as the model is not meant to emulate the small-scale turbulent
phenomena of the wind, but rather its large-scale advection dynamics that have
a greater impact on gas dispersion. The initial wind velocity is constant and
predefined by the user. This velocity is computed in vectorial form, with u and
v respectively denoting the components aligned with the x-axis and the y-axis.
Over the course of the simulation, the velocity vector of the wind at each vertex
of the grid varies according to the following equations:

∂ū

∂t
= −ū

∂ū

∂x
− v̄

∂ū

∂y
+ Kx

2 ·
∂2ū

∂x2 + Kx

2 ·
∂2ū

∂y2 (2.1)

∂v̄

∂t
= −ū

∂v̄

∂x
− v̄

∂v̄

∂y
+ Kx

2 ·
∂2v̄

∂x2 + Kx

2 ·
∂2v̄

∂y2 (2.2)

where Kx is a diffusivity coefficient. These equations may be approximated
through the Finite Differences method, with each cell of the grid being updated
as follows:

∂ū

∂y
(i, j) = u(i, j + 1)− u(i, j − 1)

2∆g

(2.3)

∂ū

∂x
(i, j) = u(i + 1, j)− u(i− 1, j)

2∆g

(2.4)

∂2ū

∂2y
(i, j) = u(i, j + 1)− 2u(i, j) + u(i, j − 1)

2∆g

(2.5)
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∂ū

∂x
(i, j) = u(i + 1, j)− 2u(i, j) + u(i− 1, j)

2∆g

(2.6)

∂ū

∂t
(i, j) = −ū

∂ū

∂x
(i, j)− v̄

∂ū

∂y
(i, j) + Kx

2 ·
∂2ū

∂x2 (i, j) + Kx

2 ·
∂2ū

∂y2 (i, j) (2.7)

∂v̄

∂t
(i, j) = −ū

∂v̄

∂x
(i, j)− v̄

∂v̄

∂y
(i, j) + Kx

2 ·
∂2v̄

∂x2 (i, j) + Kx

2 ·
∂2v̄

∂y2 (i, j) (2.8)

where ∆g is the grid spacing and u(i, j) and v(i, j) are respectively the u and v
components of the wind velocity in the grid cell (i, j).

The final step of the velocity update consists on adding zero-mean Gaussian
noises to the wind velocity vectors to create meandering, being their standard
deviations adjusted to create the desired wind characteristics. The wind sensed
by a robot is computed as a weighted average of the wind vectors on the four
grid vertexes surrounding it, with the weight of each vertex being the inverse of
the robot’s relative distance to it.

2.1.1.2 Odour dispersion model

Chemical sources may release odour at constant or intermittent rates. Odour
filament model presented in [Farrell et al., 2002] describe chemical dispersion
from pointwise sources as filaments. Each filament has a circular shape and a
given amount of chemical concentration. Thus, two parameters are used for each
chemical source: the average chemical emission rate Q̄ and the filament emission
rate Fr. The relation between both can be computed as follows:

Q = Q̄

Fr

(2.9)

where Q is the amount of odour within each filament. The concentration
provided by each filament (cf ) takes the form of a Gaussian function, as defined
by Equation 2.10:

cf = Q√
8π3R3

· e
(

− d2
2R2

)
(2.10)

where R is the radius of the filament and d is the distance between the centre
of the filament and the sensor. Once released from the source, the filaments
are carried by the wind. As such, on each time step, the motion of each fil-
ament is influenced by the weighted average of its surrounding wind vectors,
with an added Gaussian noise to emulate the random motion relative to the
plume’s centreline. Moreover, the filaments are emitted with an initial radius
R0, which increases over time according to Equation (2.11) to model molecular
diffusion:

∆R = γ

2 ·R ·∆t (2.11)
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where ∆R denotes the change in the filament’s radius, γ controls the growth
rate and ∆t is the time step.

2.1.1.3 Gas sensor model

Each robot senses odour with a simulated gas sensor whose response is modelled
as a low pass filter, according to Equation (2.12):

ct = α · Ct + (1− α) · ct−1 (2.12)

where ct is the odour concentration at the surface of the sensor at time t and α is
the filter bandwidth. Ct is the instantaneous odour concentration encountered
by the robot at that location and it is computed by Equation 2.13:

Ct =
N∑

i=1
cf,i (2.13)

where N is the total number of filaments in the environment and cf,i is the
chemical concentration contributed by the i-th filament, as described in Equation
2.10.

The output of the sensor (yt) is the result of bounding the chemical concentration
at its surface (ct) to its detection and saturation thresholds. The sensor outputs
0 if ct is below its detection threshold. Otherwise, the sensor response is equal
to ct, until reaching the saturation threshold. At that point, the sensor will
continue to output a signal corresponding to the saturation threshold until ct

drops below this value.

2.1.2 Robotics
Throughout history, humans have been attempting to build artificial beings.
The first known attempt is that of Archytas who, at some time between 400 and
350 B.C., built a steam-powered wooden dove that was able to fly [Otfinoski,
2007]. Much later, in circa 1495, Leonardo DaVinci devised a humanoid robot
based on an armoured knight [Moran, 2006]. Currently, many types of robots
exist, ranging from home appliances to manipulators and various types of mobile
robots. Those used for locating chemical sources fall on this later category, being
mobile robots for terrestrial, aquatic and aerial environments [Marques et al.,
2022]. In order to successfully locate chemical sources in any environment the
robots should have three basic abilities: (1) sense the chemical concentration
(and ideally also the flow velocity) at their location; (2) based on a given search
strategy and on the environmental measurements, decide which action to take
(i.e., where to move next); (3) move to that location and continue this cycle.
In the following subsections, we present the concepts related to each of this
abilities.
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Figure 2.2: Robot architecture.

2.1.2.1 Controllers

In order to provide the previously mentioned abilities, the robots are composed
by various modules (Figure 2.2), all of which are linked through two controllers:
(1) a high level controller which decides where to move based on the available
perceptions of the environment and on the robot’s location; and (2) a low-level
controller that takes as input the goal position along with the current pose of the
robot and outputs motion commands. The high level controllers are the focus
of this thesis and shall be described later on. The low-level controller is itself
hierarchical, with a first level being responsible for combining the goal vector
of the high-level controller with the obstacle avoidance behaviour. This beha-
viour is based on an artificial potential field, where the robot is attracted to the
goal provided by the high-level controller, while simultaneously being repelled
from each object detected by its sensors. At the lowest level, a Proportional-
Integral-Derivative controller [Tzafestas, 2013] is responsible for assigning ap-
propriate velocities to each wheel, assuring that the robot performs the desired
motion.

2.1.2.2 Sensors

Nowadays robots are equipped with various types of sensors. In the scope of
the odour source localisation task, the most important ones are those used to
measure the chemical concentration and airflow in the environment, as well as
those used for safely navigating, i.e., range sensors that measure the distance
to nearby obstacles. There are various types of range sensors. Sonar and laser-
based proximity sensors rely on the time-of-flight concept. They compute the
distance to an obstacle by emitting a signal and measuring the time needed to
detect its reflection. In turn, infrared sensors measure distance by emitting a
pulsed infrared beam, which is reflected by nearby objects. The reflection is
caught by an array of detectors and the angle at which the reflection is detected
is used to compute the distance [Bräunl, 2006].

There are currently various types of sensors that may be used for sensing odours.
The most commonly used ones can be arranged into the following categories
[Francis et al., 2022, Marques et al., 2022]:

• Metal oxide semiconductor (MOX) sensors are the most commonly used
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sensors in odour source localisation, due to their reduced cost and dimen-
sions, as well as high sensitivity (in the parts-per-million (ppm) range) and
availability for a wide variety of substances. However, these sensors suffer
from low selectivity, log-term drift and are also influenced by the ambient
air temperature and humidity. Moreover, these sensors have slow recovery
times (1-2s), acting as low-pass filters for the chemical concentration in the
environment and being influenced by previously encountered high chem-
ical concentrations. These sensors are composed by a metal oxide element,
which is heated to a temperature ranging between 150 to 500◦C. In atmo-
spheres with oxidising gases, this element decreases its electric resistance,
which can be measured to provide gas concentration readings.

• Photoionization Detectors (PID) work by ionizing an air sample with ul-
traviolet light, breaking down the existing volatile chemical compounds
(VOCs) into positive or negative ions. The resulting ions produce an elec-
tric current which is related to the chemical concentration. These sensors
are fast, but are larger and more expensive than MOXs, while also having
low selectivity and being influenced by air humidity.

2.1.2.3 Wheeled robots

Wheeled robots are the simplest type of mobile robots [Bräunl, 2006]. They
come in various flavours, such as differential-drive, Ackermann steering and om-
nidirectional. Differential-drive is the most common design and also the simplest.
It contains two drive wheels and possibly a set of caster wheels or pivots to main-
tain balance. Each wheel is controlled individually enabling the robot to rotate
over its axis, move straight or perform curves. Ackermann steering is the design
commonly used in passenger cars. While there may be various configurations of
Ackermann steering robots, a common example is a four wheeled robot, with one
axle containing drive wheels and another containing wheels that turn together to
enable changes in direction. Similarly to passenger cars, these robots are unable
to rotate on the spot, so manoeuvring is more complex. Omni-directional ro-
bots offer the most flexible navigation but at the cost of a more complex design.
They typically have four wheels, which similarly to differential-drive robots do
not turn. However, the wheels have rollers on their surface, enabling the robot
to move straight, perform curves, rotate on the spot and also perform crab-like
motions.

2.1.3 Evolutionary computation
Evolutionary Computation (EC) is a field of Artificial Intelligence that draws
inspiration from nature to solve problems from various domains. It is a family
of stochastic search heuristics loosely inspired by the principles of evolution by
Natural Selection and Mendel’s genetics. Those heuristics, known as Evolution-
ary Algorithms (EA), work by iteratively improving a population of candidate
solutions, as shown in Figure 2.3. Starting with an initial population of ran-
domly generated candidate solutions, EAs work by perturbing those solutions,
creating new ones. The perturbation step starts by selecting the mates, i.e., a
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Figure 2.3: Blocks of an evolutionary algorithm

subset of the current population that shall be used to create new individuals.
This selection depends on the individual’s quality, but other metrics such as their
novelty or size may also be used. Commonly used parent selection mechanisms
are the tournament, roulette wheel and rank selection. After being selected,
the mates are recombined (i.e., undergo crossover) to create offspring. In turn,
the offspring may suffer mutations, introducing new genes into the population.
Traditionally, the crossover and mutation operators are used to, respectively,
perform global and local search. These operations are dependent on the type
of individual representation and, as a result, their description shall be made on
the corresponding sections. Finally, the new population is built by a survivals’
selection operator that selects individuals from the pre-existing population and
from its offspring. Merge, steady state, elitist and generational are examples
of commonly used survival’s selection operators. These steps compose a gener-
ation. The EA iterates over various generations until a termination criteria is
met e.g., a time-limit or quality threshold is reached.

EAs may be categorised depending on whether they evolve the solutions for a
given problem or evolve computer programs that produce those solutions. Ge-
netic Algorithms (GA) [Eiben and Smith, 2015] are part of the first group,
whereas Genetic Programming (GP) [Langdon and Poli, 2013], is part of the
second group. EAs have been successfully applied over the years to solve prob-
lems from the classes of optimisation, learning and design, that have no analytic
solution, or where finding that solution would be computationally intractable.
Odour source localisation is one of such problems, as it is infeasible to completely
and accurately model the entire environment and the interactions taking place
within it, that influence the way odour propagates. Moreover, using robots,
there is a constant presence of noise, both from their sensors and actuators,
that the controllers have to deal with. As a result, the search space of robotic
controllers is huge, making it hard to find an optimal controller. The fact that
the robot moves in continuous space and the signals from its sensors are also
continuous, aids in increasing the size of the search space.

Any EC experiment has a set of design issues. Some, such as the mate and sur-
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vivor selection are common to both GAs and GPs. Other, such as the variation
operators are dependent on the individual representation and thus are specific to
each approach. We shall now describe the most commonly used operators.

2.1.3.1 Selection mechanisms

Selection mechanisms [Luke, 2013] may be split into two categories: parent se-
lection and survivors selection. Parent selection methods choose a subset of
individuals from the existing population to create new individuals. An example
of such operators is tournament selection. Tournament selection starts by ran-
domly sampling a small set of individuals from the population. Then, the best
individual from that subset is selected. The size of the tournament is a way of
controlling the amount of selective pressure of the EA. Typical values for this
parameter are 2 and 3 individuals, which lead to little selective pressure. In
fact, if 1 is used, tournament selection turns into random selection, making it
harder for the EA to converge. Conversely, with the increase of the tournament
size so does the probability of selecting the population’s best individual, leading
to a higher selective pressure. High selective pressure increases the likelihood of
the population quickly converging to a limited region of the search space and
rendering the EA unable to find the global optimum solution, a phenomenon
known as premature convergence.

The selection of the survivals is typically the last operation of each generation.
The mechanisms that do it take as input the existing population and the off-
spring to create a new population that will survive into the next generation.
The simplest survival’s selection method is the generational. It consists on dis-
carding the current population and keeping only the offspring. Elitist selection
may be seen as a variant of generational selection, where the best individuals
from the current population are kept, being the same amount of worst offspring
discarded. As a result, this selection operator prevents the loss of the best in-
dividuals found, creating a new population with individuals of different ages.
The size of the elite is used as a mean to control selective pressure. If it is zero,
elitist selection becomes generational selection, leading to the least amount of
selective pressure. Conversely, if the size of the elite approximates the size of
the population, only a few offspring will be kept, diminishing the search ability
of the EA.

2.1.3.2 Genetic Algorithms

Genetic Algorithms [Eiben and Smith, 2015] are a family of evolutionary al-
gorithms that iteratively improve a population of candidate solutions for a given
problem. The algorithms themselves may be applied to a wide range of problems,
but for each specific problem it is necessary to define the individual represent-
ation, the variation operators and the fitness function. The fitness function is
the most specific design issue and essentially provides a quality value for each
candidate solution. The individual representation refers to the form of the gen-
otypes themselves and may be permutations, binary vectors, vectors of integers
or real numbers. In turn, the variation operators are responsible to create new
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individuals out of the existing ones. They may draw inspiration from sexual
reproduction, where two or more individuals are used to create the offspring
(i.e., crossover); or asexual reproduction, where one individual creates another
one (i.e., mutation).

Arithmetic crossover

The arithmetic crossover is a popular recombination operator for vectors of real
numbers. Taking two individuals as input, it creates one offspring O through a
linear combination of the two parents P1 and P2, according to Equation 2.14.
By adjusting the value of α, the offspring may be created at various distances
from each parent.

O = α · P1 + (1− α) · P2 (2.14)

Gaussian mutation

The Gaussian mutation operator makes a neighbour of the original individual
by probabilistically changing each of its genes gi with a value sampled from a
Gaussian distribution, as described by Equation 2.15.

gi = gi + N(0, σ) (2.15)

where N(0, σ) is a Gaussian distribution with zero mean and standard deviation
σ.

Latin hypercubes

Latin hypercubes are a population initialisation method that promotes the di-
versity of the initial population, being particularly suited for genetic algorithms
representing their individuals as vectors of real numbers. Considering a popula-
tion of N individuals, this method splits the search space into N equally sized
hypercubes (Figure 2.4), i.e., there are as many hypercubes as individuals to
be created. The initial population is then created by randomly sampling each
individual from the respective hypercube.

2.1.3.3 Genetic Programming

Genetic Programming [Langdon and Poli, 2013] is a type of machine learning
that, in its most common form, evolves tree-based individuals composed by ter-
minal (leaves) and non-terminal (inner nodes) symbols, which may be executed
to provide the solutions for a given problem. Common applications are prob-
lems of symbolic regression, classification and decision making, including robotic
controllers. GP differs from other EAs in the representation-specific operators,
namely population initialisation, crossover and mutation. Also, the fitness eval-
uation is different as it requires executing the computed program encoded by
the individual.
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Figure 2.4: In Latin hypercubes, the 2D search space is divided into equally sized
grids and one individual (dot) is sampled from each grid.

Ramped half-and-half

In GP, there are two simple methods for creating a random tree: full and grow.
Both methods start from the root of the tree and recursively select a terminal
(variable, constant, action, etc.) or non-terminal symbol (function, perception,
sequence, etc.). The full method creates complete trees, selecting terminal sym-
bols only when the depth limit is reached. In turn, the grow method may either
choose terminal or non-terminal symbols everywhere with the exception of when
the depth limit is reached. In such case, only terminal symbols may be selected.
The ramped half-and-half is a combination of both approaches, creating half the
population with the grow and the other half with the full method. Moreover,
the individuals are typically created in equal batches of depth, from 2 to a max-
imum allowed depth. Thus, the initial population contains a diverse set of trees,
with various sizes and shapes.

Subtree Crossover

The simplest form of subtree crossover (Figure 2.5) implements no restrictions
on the size of the resulting offspring. It works by randomly selecting a subtree
from each parent and replacing the subtree on a copy of the first parent by a copy
of the subtree from the second parent, producing a single offspring. Variations
to this method include biasing the choice towards inner nodes (increasing the
impact of the crossover) or restricting the size of the chosen subtrees, so that
the offspring does not violate the size constraints.

Node mutation

Mutation is an operator intended to do two things: (1) introduce new genetic
material in the population; and (2) perform local search surrounding an indi-
vidual. While in GAs it may be easier to quantify the impact of mutation, in
GP a small change on the genotype may lead to a large modification on the
phenotype, a phenomenon known as low locality. As a result, a commonly used
type of mutation is the node mutation, which makes a small modification to the
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Figure 2.5: Subtree crossover.

individual by randomly selecting one of its nodes and replacing its value with a
symbol of the same type (i.e., either a function or a terminal).

2.1.3.4 Geometric Operators

In the field of Evolutionary Computation, geometric variation operators are
representation-independent operators based on a distance defined in the search
space interpreted as a metric space [Moraglio, 2008]. A geometric crossover op-
erator produces offspring that are on a shortest path (i.e., line segment) linking
its parents. In turn, a geometric mutation operator produces an individual in
the neighbourhood of the original individual, i.e., within a hypersphere centred
on the original individual, whose radius defines the magnitude of the mutation.
The advantage that arises from their geometry is the ability to better control
the region of the search space being explored. While most crossover operators
for GAs are geometric (e.g., arithmetic, uniform, N-point crossovers), those typ-
ically used in GP are not (e.g., subtree-crossover). Geometric Semantic Genetic
Programming (GSGP) [Moraglio et al., 2012] is a GP variant that proposes
to make geometric crossover and mutation operations. Motivated by the low-
locality of GP, GSGP acts differently from the operators commonly available for
GAs, modifying the parents in a way that guarantees that the distances between
them and the offspring hold in the semantic space (i.e., the space of the indi-
vidual’s outputs given a set of inputs) rather than in syntactic space (i.e., the
space of the individual’s genotypes). Its crossover operator combines two parent
individuals P1 and P2 to create a single offspring O as follows:

O = (P1 · F ) + ((1− F ) · P2) (2.16)

where F is a randomly generated mathematical functions that output real values
contained in the [0,1] interval. In turn, its mutation operator creates a mutated
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individual P ′ from a parent individual P as follows:

P ′ = P + ms · (F −G) (2.17)

where ms is the mutation step i.e., a coefficient controlling the size of the muta-
tion, and F , G are two randomly generated mathematical functions.

The main drawback of GSGP arises from the definition of these operators: its
individuals grow very quickly. An efficient implementation does exist, [Vannes-
chi, 2016] making it feasible to make longer runs of GSGP, but the resulting
solutions are still too large to be human readable.

2.1.4 Evolutionary robotics
One of the main challenges in the field of robotics is the ability to adapt a robot’s
behaviour, to a particular task or environment. Over the years, researchers
have resorted to various Artificial Intelligence and Evolutionary Computation
techniques for providing adaptation [Bongard, 2013]. EAs have been used to
evolve the robot’s bodies [Murata and Kurokawa, 2007] and their controllers
[Nolfi and Floreano, 2000], yielding the field of Evolutionary Robotics (ER).
There are many applications for learning or evolution in robotics. At a lower
level, the sensors (gas, wind, camera, odometry) provide information to the
robot that must be perceived, and knowledge should be extracted from it. For
instance, combining odometry with a laser range finder, the robot can produce a
map of the environment and localise itself in it through simultaneous localisation
and mapping (SLAM). Using memory, gas and wind sensors, a robot may learn
to recognise whether it is within an odour plume, or just waiting for the sensor to
recover from previously encountered odour. At higher levels, the robot may learn
strategies that use the perceptions of the environment, together with the current
and past states of the robot to decide which action is the most advantageous for
achieving its goals.

There are many considerations to be made when devising an evolutionary ro-
botics approach to odour source localisation, such as the type of controller to
evolve, how the evolution is carried out and the number of robots to use. This
section reports existing works, classifying them according to these aspects.

2.1.4.1 Types of controllers

The type of controller to evolve is one of the main design issues of ER. The
choices range from black-box controllers, with typically less design bias, to white-
box controllers that may be human-readable. Moreover, some works propose
end-to-end controllers that take the sensors signals as inputs and output low-
level motion commands, while others prefer to use hierarchical controllers that
separate the high-level decision making from motion control, as presented in
Figure 2.2.
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Artificial Neural Networks

Artificial Neural Networks (ANN) are amongst the most popular types of con-
trollers for mobile robots [Doncieux et al., 2015, Nolfi and Parisi, 1996, de Croon
et al., 2013, Kuwana et al., 1996], specially in the case of robotic swarms [Nolfi
and Floreano, 2000]. The popularity of ANNs to serve as robotic controllers is
due to them being universal function approximators, having a high representa-
tional power which has been used in an attempt to evolve controllers with limited
amount of design bias (i.e., the bias that an experimenter inadvertently intro-
duces into the system and limits the ability of evolution to explore the search
space). The minimization of the design bias is typically done by producing end-
to-end controllers, that take as input the signals from a robot sensors (or low
level perceptions) and output motor commands. That is the case of evostick
[Francesca et al., 2014], which evolves the connection weights of hand-designed
ANNs to serve as robotic controllers.

The high representational power of ANNs also creates one of its main downfalls:
overfitting to the training environment. Overfitting the training environment
occurs when the evolved controllers perform very well in the training settings
but poorly in another settings. This may either be overfitting a particular maze,
environmental (weather) conditions or, considering multiple robots, the number
of other robots in the team. Overfitting is particularly likely in experiments
evolving the controllers in simulation or involving dynamic and uncertain condi-
tions, where the ANN’s representational power may be used by the evolutionary
process to exploit particular details of the training environment that do not gen-
eralise to others. The poor generalisation ability of overfit controllers not only
reduces their ability to cope with new scenarios, but also to cross the reality
gap, i.e., to operate similarly simulation and the real world (see Section 2.1.4.3).
These phenomena are also applicable to swarm robotics contexts, where the
robots must interact to fulfil their task. Thus, the system becomes inherently
dynamic and increases the chances for ANNs to perform poorly due to lack of
generalisation.

One approach to cope with the reality gap would be to hand-tune the evolved
controller when transferring it to the real world. However, due to their black-
box nature, ANNs cannot be easily interpreted by humans and consequently are
harder to be adjusted when moving from simulation to the real world, becoming
more susceptible to the reality gap. That was the case with evostick [Francesca
et al., 2014], where the white-box method proposed was able to transfer better
to the real world, whilst the ANN-based method suffered a considerable loss of
performance. Another approach to reduce the effects of the reality gap consists
on not attempting to evolve end-to-end controllers, but rather ANNs that focus
only on the decision making process. Such networks act as high level controllers
that arbitrate between hand-designed behaviours [Duarte et al., 2012a] or other
ANNs trained for specific tasks [Duarte et al., 2012b]. Whilst in the first case
the behaviours could be designed independently for simulation in the real world,
the second approach requires training the low-level neural networks in both
environments.
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As previously said, the black-box nature of ANNs hinders the experimenters
ability to understand the reasons behind their decisions and also to hand-tune
them to cope with the reality gap. Moreover, their high representational power
may be actually a downfall, as they become more prone to overfit. As a result,
some researchers have focused on using graph-based controllers. Whilst vari-
ous types of graph-based controllers do exist, they all share the disadvantage of
potentially having higher design bias than ANNs, as they often include hand-
designed perception and action blocks rather than using and outputting sensor
and motor signals. However, they all also share the advantage of being poten-
tially more robust to the reality gap, as the EA only combines (and sometimes
parametrises) elementary behaviours and perceptions, which can be carefully
programmed independently for simulation, reality and also for different robots.
The existing graph-based approaches may be categorised into finite-state ma-
chines and tree-based structures, which in turn can be further divided depending
on the type of trees used.

Rule-based systems

Ferrante et al. proposed to use a particular form of Genetic Programming known
as Grammatical Evolution (GE) [Ryan et al., 1998] to evolve rule-based robotic
controllers for a robotic swarm [Ferrante et al., 2013]. GE is an evolutionary
algorithm that represents the individuals as arrays of integers and the genotype-
to-phenotype mapping is based on a context-free grammar. In turn, rule-based
systems are, as the name indicates, sets of rules that may be used to control
agents [Hayes-Roth, 1985]. Each rule is in the if-then form, i.e., they check a
condition to activate an action. Initially, they were proposed to encode hand-
designed controllers and for that reason they are prime candidates to encode
expert knowledge in robotic controllers. The rules in the robotic controllers
evolved by Ferrante et al. use a set of preconditions (i.e., boolean perceptions
extracted from the robot’s observations of the environment) to arbitrate between
individual low-level behaviours (i.e., motion primitives that are executed for a
limited time period using feedback from the sensors), both of which are pre-
defined by the experimenters [Ferrante et al., 2013].

Probabilistic Finite-state machines

Automode [Francesca et al., 2014] is an evolutionary approach to automatically
design robotic controllers for swarms. The controllers take the form of probabil-
istic finite state machines (PFSM), which are created through the combination
of previously hand-designed parametric modules. Automode does undertake the
traditional evolutionary loop to optimize the PSFMs. In its original version
(Vanilla) it uses F-race [Birattari et al., 2002], which randomly samples an ini-
tial set of PFSMs and then iteratively evaluates them to find the best performing
one. However, no improvements are made to the initial individuals. A series of
developments have been made since the first version of Automode. Its second
version (Chocolate) [Francesca et al., 2015] uses Iterated F-race [Balaprakash
et al., 2007] to create the PFSMs. Iterated F-race performs various iterations
of the original F-race. The initial population of PFSMs for the first iteration is
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uniformly sampled from the entire search space. In turn, the populations of the
subsequent executions of F-race are sampled from distributions that prioritize
the neighbourhoods of the promising solutions found so far. Later, the Maple
version of Automode [Kuckling et al., 2018] focuses on studying the impact of the
type of controller, by using Behaviour Trees (BT) built with the same modules
and comparing their performance to PFSMs created with Automode Chocolate.
Their results showed that the performance of the swarms controlled by PFSMs
and BTs was equivalent, supporting the use of tree-based controllers that can
be evolved with Genetic Programming.

Tree-based controllers

Genetic Programming, as proposed by Koza, evolves computer programs in the
form of syntax trees [Koza, 1992]. Since their proposal, these trees have been
used for encoding programs for various tasks, such as symbolic regression, classi-
fication and controllers for both agents [Koza, 1992] and robots [Koza and Rice,
1992]. More recently, Villarreal et al. proposed to evolve tree-based control-
lers for controlling a single mobile robot for locating chemical sources [Villarreal
et al., 2016]. Apart from syntax trees, other tree-based controllers are also
present in the literature:

• Decision trees (DT) [Rokach and Maimon, 2005] are commonly used in
classification problems to provide a class depending on the values of the
features. Their inner nodes typically correspond to comparisons between
feature values and optimized thresholds, whereas each leaf node corres-
ponds to a class. In robotics, the leaf nodes may correspond to actions
and the inner nodes may correspond to conditions based on the current
and past state of the robot and the world, which it perceives through its
sensors. DTs have been used in mobile robot motion control [Dönmez and
Kocamaz, 2020] and navigation [Swere and Mulvaney, 2003, Hamzei et al.,
1999, Hammad et al., 2019], robotic soccer [Huang and Liang, 2002, Sun-
gkono et al., 2016], manipulation [Shah and Gopal, 2010], industrial robots
[Moctezuma et al., 2012], security [Vuong et al., 2015] and safe human-
robot collaboration [Kovincic et al., 2020].

• Behaviour Trees (BT) [Colledanchise and Ögren, 2018] are another type
of Directed Acyclic Graphs that are commonly used for modelling the
behaviours of non-player-characters in video games [Scheper et al., 2016,
Sekhavat, 2017], but that have recently received some interest in the field
of robotics [Jones et al., 2018, Sprague et al., 2018]. BTs are composed
by inner and leaf nodes, all of which share the same interface, i.e., each
node returns a status (e.g., Success, Failure, Running) that dictates how
the tree is traversed. Inner and leaf nodes are also known respectively as
flow control and execution nodes. Four types of flow control nodes are
commonly used: Sequence, Fallback, Parallel and Decorator. Sequence
nodes execute all of their child nodes from the left to the right until one of
them returns Failure, returning Success only if all of its child also return
Success. Fallback nodes execute all their child nodes from the left to
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the right until one of them returns Success. It only returns Failure if
all of its children return Failure as well. Parallel nodes execute all of
their children simultaneously, returning Success if a user-defined amount
of them succeed. Decorator nodes have a single child and are used to
manipulate its return status. As an example, an inverter decorator may
be used, returning Failure if its child succeeds and vice versa. Execution
nodes may either be actions or conditions to be executed or tested.

Similarly to the previously described types of controllers, manually design-
ing BTs can be a cumbersome task, often leading to sub-optimal beha-
viours. Some works, have resorted to Genetic Programming to evolve be-
haviour trees for controlling flying robots [Scheper et al., 2016] and ground
robots that are part of a swarm [Jones et al., 2018]. Others [Perez et al.,
2011], resorted to Grammatical Evolution, where the production rules were
purposefully designed to produce meaningful and compact BTs.

From a macroscopic perspective, BTs are composed by nodes that either
execute a sequence of children or constrain that execution by a set of con-
ditions and by nodes that encode the actions to be executed. As a result,
they may be reduced to the syntax trees evolved by Koza for controlling
simulated agents [Koza, 1992] and robots [Koza and Rice, 1992]. Moreover,
despite their popularity, BTs have rather complex structures, requiring the
introduction of several constraints in the Genetic Programming algorithm
and thus being more suitable to be evolved by Grammatical Evolution.
Nevertheless, BTs have the advantage of enabling experimenters to manu-
ally fine-tune them when crossing from simulation to reality [Scheper et al.,
2016], a feature shared with other white-box controllers that effectively re-
duces the impact of the reality gap.

2.1.4.2 Types of adaptation

Evolutionary Robotics (ER) approaches can also be categorised based on when
the adaptation takes place. Following this criteria, two main categories emerge:
offline and online adaptation. A third category may be adopted as a combination
of the previous two. Eiben et al. [Eiben et al., 2010a] proposed a taxonomy to
classify ER works according to three dimensions: (1) when; (2) where; and (3)
how the evolution takes place.

When does the evolution take place

Regarding the moment when the evolution takes place, the ER works may be
divided into offline and online evolution. In offline evolution, the adaptation
of the individuals (robotic controllers, robotic bodies [Buchanan et al., 2020]
or both) is done prior to their deployment in performing the actual task. This
adaptation is typically carried out in simulation, being the best solution found
validated on the real world without any further changes [Jakobi et al., 1995]
(even though many works end up not performing real world validation [Nolfi
and Parisi, 1996, Ziegler and Banzhaf, 2001, de Croon et al., 2013, Tuci and
Trianni, 2014]). The lack of further adaptation in the real world often leads
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to issues related with the Reality Gap (Section 2.1.4.3), as the individuals may
perform differently in simulation and in the real world. Nevertheless, offline
evolution is the most common approach in the literature, as simulations can
sometimes be made to run orders of magnitude faster than real time [Ziegler and
Banzhaf, 2001]. Simulations are also safer, as there is no danger of damaging
the real robots, cheaper as no consumables are spent and, at times, more fair.
When testing controllers in the real world, the approach often consists in doing
so sequentially, with the next evaluation starting from where the previous one
terminated. This means that the evaluations are not fair, as they are done
under different conditions. In simulation, this problem can be easily solved
by restarting the environment and using the same initial conditions for each
evaluation.

Online adaptation [Haasdijk et al., 2010, Eiben et al., 2010b] refers to works
where the solution to the problem is evolved in real time, and tested on perform-
ing the target task (usually in the real world). In the field of ER, this typically
involves Embodied Evolution (EE) approaches [Watson et al., 2002, Nordin and
Banzhaf, 1997], where the evolution of the robotic controllers and their evalu-
ations are carried out on the physical robot, whilst it is acting on the real world.
While online evolution effectively avoids the reality gap, it is much more time
consuming that offline adaptation and may lead to increased wear and damages
of the robots (caused by poor controllers). There is also the previously men-
tioned issue of unfair evaluations. The evaluation of controllers in the real world
is typically carried out sequentially, where one controller starts being evaluated
from the pose (state) that the previous controller ended. Thus, the fitness value
of an evaluation is not only dependent of the controller, but also of the initial
state that it was dealt, and consequently it is unfair to compare the quality
of controllers simply through their fitness values. A method for preventing the
repetition of poorly performing controllers is the use of a tabu list, as proposed
in odNEAT [Silva et al., 2015].

As previously said, offline and online evolution distinguish themselves based on
the moment when evolution takes place. If the controllers are evolved in simu-
lation, and only the result of evolution is deployed on the EA without further
modification (at least by the EA), we are in the presence of an offline evolu-
tionary system. Conversely, if the evolution, and consequently the evaluation of
candidate solutions, is carried out whilst the robot is performing its task, then
we are faced with an online evolutionary system. The simplest combination of
both is the use of offline evolution to evolve solutions in simulation which serve
as good starting points for online evolution to refine [Eiben et al., 2010a]. Such
approach is particularly beneficial when evolving controllers that need to be ad-
apted to each specific robot or environment, specially when the environment is
not known beforehand [Bredeche et al., 2018]. Online evolution may also be
used to cope with changes to the robot over time (e.g., damages) [Cully et al.,
2015, Allard et al., 2022]
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Where does the evolution take place

The evolution of candidate solutions may be carried out in the robots themselves
(on-board or intrinsically) or in a remote server (off-board or extrinsically). In
the first case, the robots are responsible for the entire evolutionary process,
ranging from individual selection, mating and evaluation. While this adds addi-
tional overhead to the robots, possibly resulting in increased energy consump-
tion, it also enables them to adapt autonomously. In turn, in extrinsic systems
the robots act only as puppets of the remote server, which performs all the steps
of the evolutionary process, provides them with controllers and collects perform-
ance metrics from them. In extrinsic systems the robots are unable to improve
their performance by themselves and thus, in realistic scenarios where the ro-
bots may be unable to communicate with the server, intrinsic systems would
be preferable. Intrinsic and extrinsic evolution has been compared in [Nordin
and Banzhaf, 1997] with the authors claiming that the only small advantage of
intrinsic evolution being the lack of need to have a cable connecting the robot
to the computer, which would interfere with its motions. Nowadays, the use of
wireless communications would solve this issue. Thus, the main disadvantage
of intrinsic systems would be the increased energy consumption, whereas their
main advantage would be the ability to continue adapting even if the robots
became unable to communicate with the server.

How does the evolution take place

Regarding how the evolution takes place, there have been mostly two types
of approaches: distributed and encapsulated. In distributed approaches, each
robot carries a single candidate solution that can only be improved through
interactions with other robots (mating) [Watson et al., 2002]. In turn, encapsu-
lated approaches [Nordin and Banzhaf, 1997, Haasdijk et al., 2010, Eiben et al.,
2010b] resemble island models, with each robot carrying a population of control-
lers that it is able to evolve independently of others. Moreover, each robot in the
community may use a different EA to evolve its population, which is executed in
the traditional manner, being locally centralised. The individuals in the popu-
lation are sequentially evaluated by having control of the robot for a given time
period, leading to the previously mentioned unfair evaluations. Nevertheless,
the combination of distributed and encapsulated approaches may be the most
promising approach, as it enables each robot to evolve its own population of
controllers and share them with others nearby (through mating or migration).
As such, the robots that stray from the community are able to keep evolving
by themselves, whilst those with neighbours may exchange genetic material to
prevent premature convergence. The works of Silva et al. and Usui and Arita
[Silva et al., 2015, Usui and Arita, 2003] are examples of combinations between
encapsulated and distributed approaches.

Embodied Evolution

Bredeche et al. [Bredeche et al., 2018] define Embodied Evolution (EE) as an
evolutionary system that is implemented over a community of at least two robots
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that evolve while performing the target task. However, studies do exist where
one robot is capable of evolving in isolation [Floreano and Keller, 2010, Nordin
and Banzhaf, 1997] (i.e., they are online, encapsulated approaches). We con-
sider that Embodied Evolution consists on distributing the evolutionary process
over one or a community of robots, which evolve and evaluate whilst perform-
ing the target task through distributed, encapsulated or a combination of both
approaches. EE systems exhibit three main characteristics: they are (1) decent-
ralized; (2) online; and (3) parallel. The decentralization of evolution in EE
is achieved by having no central authority that selects the parents for mating,
evaluates the performance of the offspring and selects the survivors for the sub-
sequent generations. Instead, the robots evaluate their performance based on
locally available information and the exchange of genetic material is often con-
strained by their geographical proximity. As a result, the exchange of genetic
material is not only dependent on the relative quality of the individuals and
some predefined heuristics, but also on the behaviours exhibited by the robots
over time, that lead them closer or further apart to other members of the com-
munity. The online nature of EE implies that the robots change their controllers
during execution. As new solutions are evolved, they must be evaluated. That
evaluation is typically carried out by allowing the new individuals to control the
robot while acting on the real world. As such, the performance of the robots
may actually deteriorate, as poor controllers are tested. Nevertheless, this con-
tinuous adaptation mechanism is valuable to improve the robot’s performance,
adapting its controller to the current state of the robot and the environment at
any given moment. Finally, EE systems are parallel as the community of robots
concurrently evolve solutions in an often asynchronous manner, interacting to
exchange genetic material and, possibly, to perform the task.

2.1.4.3 Reality gap

In robotics, simulators are often used to perform experiments as they are a
faster, safer, cheaper and overall more convenient way than performing experi-
ments in the real world. Moreover, simulators enable testing various parameters
configurations and assessing the influence of those parameters in the methods
being proposed, which may be infeasible to do in the real world. However, simu-
lators are only emulations of the real world, often existing mismatches between
their environment and robot models and their physical counterparts. Those mis-
matches lead to the robots performing differently in simulation and in the real
world, a phenomenon know as the reality gap [Collins, 2022]. The existing sim-
ulators have various degrees of fidelity, which is due to a trade-off between the
realism of the simulators and computational efficiency. More realistic simulators
model their components with further detail and consequently becoming slower
and thus less appropriate for works that require many simulations. Evolving
and learning robotic controllers are among such works, with both communit-
ies endowing efforts to tackle the reality gap [Mouret and Chatzilygeroudis,
2017, Salvato et al., 2021] in what are known as sim-to-real methods [Collins,
2022]. The existing approaches may be divided into methods that attempt to
improve the simulations and those that attempt to produce controllers that cope
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better with the reality gap.

Improving the simulations

Improving the simulations typically requires collecting real-world data to update
(or calibrate) the simulator (often by adjusting its parameters) [Mehta et al.,
2020]. An example of techniques that attempt to improve the simulations is the
back-to-reality approach by Zagal et al. [Zagal et al., 2004, Zagal and Ruiz-
Del-Solar, 2007]. This method co-evolves the robot controller and simulator
through a three-stage iterative process: first, a genetic algorithm is applied to
evolve the parameters of the robotic controller in simulation; second, a set of
well-performing controllers are evaluated in the real world and a reinforcement
learning [Sutton and Barto, 2018] algorithm (i.e., a machine learning paradigm
where an agent learns through its interactions with the environment, receiving
a reward for each action made) is applied to improve them; thirdly, a genetic
algorithm is applied to evolve the parameters of the simulator, with the goal
of minimizing the difference between the performance of the robotic controllers
in simulation and in the real world. It is important to note that they tested
this approach in a locomotion task, where the subject of evolution was a set of
parameters for a hand-designed controller. Also, only a set of parameters for
the environment were evolved. Thus, this approach may not yet be applicable
to more complex problems and even where it is applicable, it results in an
increased overhead of having to iterate over simulated and real world evaluations
to improve the simulator.

A different path was suggested by Mouret and Chatzilygeroudis, who claimed
that in the future it is unlikely that simulators will be fast and accurate enough
to enable the evolution of controllers with no reality gap [Mouret and Chatzily-
geroudis, 2017]. Instead, they suggest that the simulators should be able to
provide an estimate of their confidence in the fitness value assigned to each in-
dividual, which may then be used by the individual selection schemes. Such
simulators could be based on Monte Carlo methods (e.g., running many exper-
iments with different simulation parameters and assessing how they transfer),
or through crowd-based methods, where experimenters worldwide would build
a database with their results in transferring evolved robots to the real world,
along with the parameters used.

Creating robust controllers

There are many methods through which the evolved controllers may become
more robust to the reality gap. One of the earliest approaches [Jakobi et al.,
1995] evolved ANNs to work as controllers for a Khepera (a small two-wheeled
differential-drive robot) and studied how the injection of noise into the simula-
tion affects the transferability of those controllers. They started by modelling
the noise of the robot’s sensors and actuators and used those models to create
three types of simulations: (1) zero noise, where no noise is added; (2) normal
noise, where Gaussian noise equivalent to that observed is added to the simu-
lation; and (3) double noise, where the Gaussian noise added to the simulation
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has double the standard deviation of that observed in the real world. They
compared the behaviours of the robots in simulation and in the real world and
concluded that the controllers transferred best when the noise injected into the
simulator was the most similar to that of the real world.

Other researchers have noted that increasing the level of abstraction may in-
crease the ability to cope with the reality gap. Some types of controllers are
more susceptible to the reality gap than others. That is the case of ANNs whose
high representational power may often lead them to overfit details of the simu-
lation that do not translate to the real world [Francesca et al., 2014]. In turn,
graph-based controllers enable experimenters to manually fine-tune them when
crossing from simulation to reality [Scheper et al., 2016], effectively reducing
the impact of the reality gap. Lee at al. [Lee et al., 2018] support these ideas
by showing that by focusing on learning the high-level decision making policy
and delegating the low-level perceptions and control to proven frameworks or
pre-trained models, the policy can be transferred to the real world with no addi-
tional adaptation. Also, graph-based high-level controllers are often applicable
to a diverse variety of robotic platforms, provided that the actions and percep-
tions are devised to each specific robot. The aforementioned abstraction may
also be achieved with ANNs, by evolving them to act solely as higher level con-
trollers that arbitrate between hand-designed behaviours [Duarte et al., 2012a]
or other ANNs specially trained for specific tasks [Duarte et al., 2012b], rather
than ANNs that attempt to fulfil the complete task, including sensor signal
processing, decision making and outputting the motor commands. Similarly,
[Duarte et al., 2014] the ANNs evolved to perform behaviour primitives (e.g.,
move to waypoint, patrol a region, etc) may be combined by a behaviour arbit-
rator, possibly containing multiple layers, which may either be evolved, manually
designed or a blend of both.

A third approach is to evolve initial controllers offline and later refine them online
[Nolfi et al., 1994]. Such approach not only provides faster evolution over online
methods, but also reduces the risk of damaging the robot or poor controllers
leading it to undesirable regions of the environment. The online adaptation is
not only useful for adapting the controller to the intricacies of each robot, but
also enables adapting to the state of the robot over time, accommodating wear,
damages or simply changes to the sensors, actuators or the environment.

In turn, Mouret and Chatzilygeroudis [Mouret and Chatzilygeroudis, 2017],
claimed that techniques such as the transferability approach, MAP-Elites and
novelty search with local competition may be promising paths to coping with
the reality gap, by evolving individuals that are expected to transfer better to
the real world.

MAP-Elites [Mouret and Clune, 2015] is an evolutionary approach which evolves
not one, but a set of diverse and high-performing candidate solutions for a given
problem. In order to do so, the user must define not only a fitness function, but
also a set of phenotypic features that characterize a solution. As an example,
in the case of evolving robot morphologies, those features could be related with
the shape of the robot, amount of wheels or limbs, number of sensors, energy
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efficiency, etc. The user must also define a discretisation for each feature, so
that an N-dimensional grid can be created. MAP-Elites then searches within
each cell for the best performing solution. In [Cully et al., 2015] MAP-elites
is used to evolve not one, but a set of controllers in simulation. Once the
robot is deployed in the real world, it monitors its performance, considering any
performance drops as indications of damages unanticipated in simulation. In
such event, the robot engages in an iterative process, testing the pre-evolved
controllers in its archive, to find one that copes acceptably with its damage. In
this approach no modification is made to the actual controllers, but rather the
archive of pre-evolved controllers is searched to find one that suits the current
state of the robot. As a metaphor, the authors compare this approach to an
animal attempting to find the best way to limp, minimising the pain arising
from an injury.

The transferability approach [Mouret et al., 2013] uses a supervised learning
[Jo, 2021] algorithm (i.e., a machine learning paradigm where a labelled dataset
is used to train a model) to learn the limits, i.e., to learn mappings between
behaviour descriptors and predictions of simulation accuracy. Those mappings
are then used by the EA to select the individuals that not only have good
fitness values in simulation, but also are expected to transfer well to the real
world.

Finally, novelty search [Lehman and Stanley, 2011] is an evolutionary method
that attempts to avoid local optima by explicitly searching for novel behaviours.
It does so by replacing the fitness function with a novelty metric, being the nov-
elty of each individual computed as the difference between the behaviours of the
current individual and those in the current population and in an archive of past
individuals. Local competition is added to novelty search so that only individu-
als with similar behaviour compete with each other through fitness. Through
the combination of novelty search with local competition and the transferability
approach [Cully and Mouret, 2016], the authors were able to evolve a repertoire
of locomotion behaviours that enabled a legged robot to reach every location
within a working space with a limited number of real-world evaluations.

2.1.4.4 Evaluation functions for evolutionary robotics

Learning and evolutionary approaches for automatically designing robotic con-
trollers differ in various ways. Yet, both require evaluation (also called fitness
or reward) functions to guide their search. In Reinforcement Learning, the eval-
uation (reward) function provides a reward for each performed action, enabling
the algorithm to adjust the policy to maximise the reward. In ER, the fitness
function provides a quality value for each candidate solution, enabling comparing
them and ultimately influencing their ability to survive and reproduce.

When faced with a function optimisation problem, the target function itself is
the fitness function. In classification tasks, one may resort to well-established
metrics such as the precision, recall or F1-score. In ER, the evaluation function
should accurately reward the desired behaviours without specifying their low-
level implementation [Nelson et al., 2009], as to prevent restricting the EAs’
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ability to find novel ways to perform the task. Moreover, the fitness function
should be as informative as possible, avoiding plateaus that cannot quantify
small differences between candidate solutions, causing the evolution to stagnate.
The ideal fitness function for OSL should be able to evaluate how well a given
strategy searches for the chemical source, rather than evaluating how well it
finds the source, doing so as quickly as possible and without restricting the
EAs’ ability to find novel ways to fulfil the task.

Designing fitness functions for ER is not an easy task, as there is the possibility of
misaligned goals, unfair and noisy evaluations and, in the case of OSL, dynamic
environments.

Misaligned goals

One of the difficulties in designing fitness functions for ER and specially for OSL
is known as misaligned goals [Zhuang and Hadfield-Menell, 2020]. The goals
expressed in the fitness function may either be an incomplete representation of
the user’s desires, or represent slightly different things. The common result is
that the EA will find candidate solutions that have a good fitness value, but
that do not behave as the user intended.

The phenomenon of misaligned goals often arises when attempting to make a
sparse evaluation function more dense. Evaluation functions may be categorised
into dense and sparse functions. A dense evaluation function provides a non-zero
reward for each action of the agent. In turn, sparse evaluation functions only
provide non-zero feedback on specific events, such as when colliding with an
obstacle. As a result, the agent often performs a variable-length sequence of ac-
tions without any feedback [Sutton and Barto, 2018]. Dense evaluation functions
are more desirable and often used in academic reinforcement learning problems.
In the real world, devising evaluation functions that provide meaningful rewards
to the agent at each time step is a difficult task as often the experimenters are
not able to specify how a task should be made, but only whether it has been
done successfully.

The process of making the evaluation functions more dense is known as reward
shaping and the concept was firstly introduced by Mataric [Mataric, 1994]. This
approach has several disadvantages, such as being a trial-and-error process that
requires human experts. Moreover, it often restricts the learning ability of the
algorithm by introducing bias. Another disadvantage is the aforementioned
alignment problem, where the learning agent finds a way to exploit features of
the evaluation function, achieving high rewards without performing the intended
behaviour and effectively overfitting the evaluation environment.

Unfair evaluations

The evaluations are said to be unfair if two candidate solutions are evaluated un-
der different conditions. Unfair evaluations are common in embodied evolution,
a type of ER where the controllers are evaluated online, while operating in the
real world. In embodied evolution the candidate solutions are typically evalu-
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ated sequentially, with the following controller starting from where the previous
one ended. Thus, the controllers may either be at an advantage or disadvantage
relative to other members of the populations depending on their start conditions,
and consequently it is not fair to directly compare their fitness values.

Noisy evaluations

The evaluations in ER are often noisy, i.e., multiple evaluations of the same
candidate solution produce different results [Jin and Branke, 2005]. The noise
arises not only from slight misalignments in the robot’s initial pose, but also
from the robot itself. Robots are inherently noisy entities. Their sensors provide
uncertain readings and their actuators (e.g., wheels) are subject to changes in
friction, wear, and other environmental conditions that make them behave dif-
ferently from what was intended. As an example, a robot moving on a surface
may encounter different materials or irregularities that cause one wheel to slip
and consequently an alteration to the robot’s trajectory. Even if there is no
slippage, the motion of the wheels is controlled according to the readings of en-
coders with finite resolution and the tolerances in gearboxes and couplings also
contribute to deviations from the intended route.

Dynamic environments

Evaluating OSL search strategies becomes even harder in the presence of dy-
namic environments. While attempting to locate an odour source, a robot must
take into account its state, the state of the environment and, possibly, the states
of its teammates, all of which are continuously changing over time. While
in realistic scenarios the airflow and chemical dispersion patterns are uncon-
trolled (and consequently unrepeatable), in simulation, they are created through
stochastic processes, being possible to create different conditions between evalu-
ations. These dynamics further contribute to the noise of the evaluations, as two
separate evaluations may have quite distinct instantaneous chemical dispersion
and airflow patterns, even if their general characteristics are the same.

Naive approach - multiple evaluations

A common approach to cope with noisy evaluations is to extract quality metrics
from multiple evaluations of each solution [Coppola et al., 2020, Divband Soorati
and Hamann, 2015, Jin and Branke, 2005]. The fitness value is often the sum
or average of the fitness of each evaluation and ten evaluations are often used
[Jones et al., 2018, Ampatzis et al., 2008, Francesca et al., 2014].

Another reason for performing multiple evaluations is the possibility of the EA
overfitting the evaluation scenario. The chances of overfitting are particularly
higher when performing a single evaluation with a simple evaluation function,
which enable poor strategies to attain good fitness by chance. In turn, perform-
ing multiple evaluations with distinct conditions is likely to reduce overfitting
by exposing the controller to various scenarios. As an example, Jones et al.
[Jones et al., 2018] evolve robotic controllers (BTs) for foraging. They perform

— 31 —



CHAPTER 2. BACKGROUND AND STATE OF THE ART

various evaluations with a group of robots starting from the same position but
with different orientations.

In the case of OSL, evaluating a search strategy through the final distance to
the chemical source or the time needed to reach it, evaluates only the strategies’
ability to reach the source and not how well it searches for it. Thus, even a
random walk might attain a satisfying fitness. The aforementioned approach of
performing multiple evaluations also aids in preventing overfitting, as long as
each evaluation is performed under different conditions [Coppola et al., 2020].
In the case of OSL, the robustness of the evolved strategies could be increased by
performing multiple evaluations with the same overall parameters, but differing
on the position of the chemical source, the initial pose of the robot and different
instantaneous airflow and chemical dispersion.

Performing multiple evaluations with simple functions is an easy way to cope
with noisy evaluation and reduce the possibility of overfitting, while introducing
no additional bias into the evolutionary process. Unfortunately, the evaluations
in ER are typically very time consuming [Coppola et al., 2020], rendering ap-
proaches that perform multiple evaluations less desirable, specially considering
online evolution applications.

Other approaches

An alternative to using multiple evaluations was explored by Lehman et al. [Leh-
man et al., 2012], who propose a method to increase the robustness (success rate
in testing) of evolved search strategies from a single evaluation. The method
consists on encouraging the agent to pay attention to the environment through
reactivity. This is done by computing the mutual information (i.e., the mutual
dependence) between the signals from the sensors and the actuators. The higher
the mutual information, the more dependence exists between the sensors and
actuators. This approach was tested with a khepera robot in a maze naviga-
tion task. Hence, only the signals from 6 proximity sensors were used and the
actuators could only perform one of three actions: moving forward, turning left
or right. The authors compared their approach with a baseline method, us-
ing only one evaluation and not rewarding reactivity. They also compared with
three methods that used multiple evaluations, each with a different level of noise
applied to the robots’ sensors and actuators. The results showed that, in the
task at hand, the proposed method often evolved more robust strategies that
repeated noisy evaluations, particularly at lower noise levels.

Another way to increase the robustness of the evaluations is by increasing the
amount of prior knowledge in the fitness function, rewarding other traits exhib-
ited by the candidate solutions. Nelson et al. [Nelson et al., 2009] propose a
taxonomy for the fitness functions in ER, classifying them into seven groups,
sorted by increasing amount of prior knowledge:

• Aggregate fitness functions are the simplest type of fitness functions
enunciated and contain the least amount of prior knowledge. These func-
tions evaluate only the robot’s ability to complete the task, with no regard
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to how it is achieved. As an example, in a foraging task, the fitness value
could simply be the amount of items deposited at the nest location by the
end of the evaluation. These functions are often dismissed in the ER com-
munity as they provide little to no gradient for the EA to evolve, which is
particularly necessary in the initial generations. Nevertheless, they intro-
duce the least amount of bias, allowing for the production of complex and
unexpected behaviours.

• Competitive and co-competitive fitness selection contain low to mod-
erate amounts of prior knowledge. Competitive fitness selection consists of
evaluating multiple individuals from the same population while they op-
erate simultaneously in the same environment, so that the actions of one
may influence the others. As an example, while performing a given task in
the same environment, two robots may collide, lowering their performance
and consequently receiving worse fitness values. Co-competitive fitness
selection methods apply to systems co-evolving at least two populations
of controllers, each for a different task. The controllers of the existing
populations are evaluated simultaneously on the same environment, in-
fluencing each other’s behaviours. Such systems are typically used for
evolving predator-prey controllers and often result in more complex beha-
viours than if the populations evolved in isolation. This is the result of
one population acquiring better performance, pushing the other to evolve
better controllers in an attempt to reach an equilibrium.

• Environmental incremental fitness functions consist of increasing the
complexity of the environment where the robot operates over the course of
evolution. As a result, as the EA is able to evolve controllers to operate on
a simple environment, the environment becomes more complex, gradually
approximating the target. In these approaches, the prior knowledge is in-
troduced through the environments, as the user must define scenarios that
increase in complexity in a way that aids the evolution of the controllers.

• Tailored fitness functions can be seen as an extension to aggregate fitness
functions, encompassing components for measuring both how the robots
behave and how well they achieve the target task. In their paper, the
authors exemplify tailored fitness functions with the evolution of control-
lers for a phototaxis task. In such scenario, the controller could simply be
evaluated by whether it reached the light source i.e., it either succeeds or
fails to reach the goal position. A behavioural component could also be
included to encourage the robot to face the light source. Such behavioural
component may make the evolution faster, but may also lead to control-
lers that perform poorly in more complex environments and may restrict
the EAs ability to evolve novel ways to perform the task. The combina-
tion of these aggregate and behavioural terms constitutes a tailored fitness
function.

• Functional incremental fitness functions are deeply connected to incre-
mental evolution and are meant to evolve complex behaviours, which are
difficult to evolve from scratch. They consist on complexifying the goal
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of the evolution over time, starting with selecting individuals according to
their ability to perform a simple desired ability upon which the intended
complex behaviour can be built. Once an acceptable fitness level has been
achieved, the fitness function is modified to move the evolution towards
a more complex behaviour. This cycle is repeated until the target beha-
viour is achieved. The main disadvantages of functional incremental fitness
functions are the possibility of restricting the EA’s ability to evolve novel
ways to perform the target task and the difficulty inherent to decomposing
complex behaviours into simpler ones, which can be evolved incrementally.

• Behavioural fitness functions have the second highest amount of prior
knowledge introduced. These are task-specific functions, often composed
by various components that evaluate how the robots behave, rather than
how well they fulfil the task. The authors give an example of evolving
controllers for obstacle avoidance, where the experimenter may design an
evaluation function that rewards robots that turn when sensing an obstacle
in front of them. In such situation, the evolution is not seeking controllers
that avoid obstacles, but rather those that exhibit the behaviour designed
by the experimenter (even though it may be sub-optimal in performing
the task).

• Training data fitness functions consist on providing the EA with a data-
set of desired state-action mappings and evaluating how well the evolved
controller matches this dataset. It introduces the most amount of prior
knowledge into the evolution, as the dataset thoroughly describes the in-
tended controller response to each input. These fitness functions are often
used to mimic the behaviour performed by a human controller.

Various authors attempted to devise guides for designing proper fitness func-
tions. Wilkerson and Tauritz [Wilkerson and Tauritz, 2011] proposed a guide
for designing fitness functions for common applications and argue that the prob-
lem requirements should be converted into components of the fitness functions.
They also state that those components should not be binary, but rather provide
smooth and informative gradients to aid evolution, avoiding plateaus that do
not reward small performance changes. More recently, Soorati and Hamann
[Divband Soorati and Hamann, 2015] conducted a study of the influence of dif-
ferent fitness functions in evolutionary robotics (ER). They use the taxonomy
proposed by Nelson et al. [Nelson et al., 2009] to divide the fitness functions
into different classes depending on the amount of prior knowledge included. Fol-
lowing this classification, the evaluation functions typically used in OSL can be
classified as aggregate fitness functions, as they only evaluate what was achieved
(i.e., was the source found) rather than evaluate how well the search was per-
formed. This type of evaluation functions have the advantage of introducing
little prior knowledge, thus reducing the possibility of biasing the evolutionary
process. However, they allow poor strategies (e.g., random search) to receive
good performance values by chance. Examples of aggregate fitness functions are
the distance travelled and the time spent [Lochmatter, 2010], [Liberzon et al.,
2018]. Works such as that of Gongora et al. [Gongora et al., 2017] attempt
to produce more meaningful evaluation functions through combining variables.
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Apart from the success rate, they evaluate the strategies through an accuracy
index (which is based solely on the distance to the odour source) and, more
interestingly, through an efficiency index which combines the final distance to
the odour source and the time spent. Tailored fitness functions introduce some
prior knowledge in the form of how the robot should behave, coupled with met-
rics of task completion. As an example, Croon et al. [de Croon et al., 2013]
used an evaluation function that evaluates: (1) how well a strategy identifies an
odour source; (2) the mean concentration sensed during the trial; and (3) the
final distance to the odour source. The authors evaluate each strategy multiple
times, being its fitness value the average of all evaluations. This poses similar
limitations to the evaluation through success rates (used in [Lochmatter, 2010],
[Gongora et al., 2017]): it slows down the learning process.

Many real world problems require optimising multiple objectives. One of the
simplest ways of doing so, is to combining the multiple objectives into a single
objective functions by assigning weights to them. However, these objectives of-
ten have different magnitudes and assigning weights to them is typically not
trivial. Some works propose to use desirability functions [Mostaghim et al.,
2010, Trautmann and Weihs, 2006] to map each objective into the [0,1] interval
in a non-linear manner. While such transformations solve the problem of differ-
ent magnitudes, they do not solve the issue of proper weight assignment. On the
other end of the spectrum, Multi-Objective Evolutionary Algorithms (MOEA)
[Deb et al., 2002, Emmerich and Deutz, 2018] typically attempt to approximate
the Pareto-front, producing a set of non-dominated solutions. These approaches
have the advantage of requiring less design effort, but they also have the dis-
advantage of assigning equal importance to all objectives. In the middle of the
spectrum sits Lexicographic Parsimony Pressure [Luke and Panait, 2002], which
was proposed with the purpose of optimising the quality and size of GP trees.
This method works by optimising the objectives in sequence. In the original
work, the method was implemented as a modified tournament selection oper-
ator, where if two trees attained the same performance, the smallest one was
chosen. This way, it is possible to optimise various objectives by order of pref-
erence. To cope with problems where there are few individuals with the same
fitness, the authors proposed two bucketing methods. These methods consist of
assigning the individuals from the population into buckets, depending solely on
their fitness. In the modified selection operator, the buckets are used instead of
the actual fitness values, being the individuals from the same bucket considered
equivalent in terms of performance and selected only based on their sizes.

2.1.5 Robotic communities
The works using more than one robot may be divided in two categories: multi-
robot or swarm robotic systems. Multi-robot systems encompass small teams of
highly capable, possibly heterogeneous, robots that despite being able to solve
the task individually, cooperate to increase their performance. They differ from
robotic swarms (RS) in the sense that swarms are composed by many simple
agents that would either be unable to perform the task on their own or their
performance would significantly improve by cooperating. The robots are often
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guided by simple and homogeneous controllers and through their local interac-
tions, complex behaviours emerge that enable them to accomplish their task as a
group [Şahin, 2004, Trianni, 2008]. Despite the aforementioned distinctions, the
line separating multi-robot and swarm approaches is often blurry. As a result,
in this thesis we shall treat them together.

Robotic swarms have various advantages over single-robot approaches [Şahin,
2004, Brambilla et al., 2013, Hamann, 2018, Coppola et al., 2020]:

• Robustness to the loss of agents is among the main advantages of robotic
swarms. It implies that the swarm should be apply to accomplish the task
after loosing part of its agents, even if at the cost of efficiency [Hamann,
2018]. The robustness to the loss of one (or a few) robots is due to the
behaviours emerging from local interactions of the agents and existing no
centralised point of failure. As each robot operates through local interac-
tions and locally obtained information, its loss should only produce local
effects that could be compensated by nearby robots. The robustness to
the loss of agents is also increased by the high levels of redundancy arising
in swarms composed by homogeneous robots, so that the functions of a
broken down robot can be assured by another nearby agent. Moreover, the
typical simplicity of robots applied in swarms when compared to those em-
ployed in single-robot approaches for the same task makes them less prone
to malfunctions and the spatially distributed sensing inherent to having
multiple agents increases the robustness of the readings by increasing the
signal-to-noise ratio. Note that the level of robustness to the loss of agents
is dependent on the size of the swarm as well as on the percentage of lost
agents.

• Another advantage is the ability to employ inexpensive robots, which
are typically less expensive than robots capable of performing the same
task on their own. This may also be seen as a type of robustness, as
reduces the cost of loosing agents. Such robots are typically too limited
to fulfil the task by themselves, but do so by cooperating. Yet, there
are some fundamental functions that each robot must be able to perform
for the swarm to succeed. Autonomous and safe navigation along with
the ability to sense the environment and other robots as well as relative
localisation capabilities are among those basic functions [Coppola et al.,
2020].

• Due to the inexistence of centralised control and each robot interacting
only with its local neighbours and performing its own computations, ro-
botic swarms attain high levels of implicit scalability. As a result, swarms
are able to cope with changes in size, caused by robots straying away, mal-
functioning or new robots being introduced into the environment, without
drastic effects in their performance. Due to the aforementioned reasons,
there may be virtually no limit to the size of a swarm, existing however
the need to maintain an adequate density of robots [Hamann, 2018]. An
example of large swarm is the Kilobot project [Rubenstein et al., 2014],
where 1024 robot autonomously self-assemble into pre-defined 2D forma-
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tions with various shapes.

• Flexibility: Due to the organisation of the robots being based solely on
local interactions, the swarm can reconfigure to cope with the dynamics
of the environment or to tackle different tasks, such as cooperative trans-
portation, moving through tight spaces or even self-assemble to overcome
obstacles. The ability of swarms to adapt to various tasks is heightened
through cooperation, which enables the robots to overcome their limita-
tions in actuating, sensing and communicating [Hamann, 2018].

As previously mentioned, the emergent behaviour of the swarm is a result of the
local interactions between the agents, which in turn is a consequence of their
communication limitations. The robots that compose swarm systems typically
do not possess global communication capabilities. Instead, they may commu-
nicate through one of three means: (1) stimergy, which consists of sensing and
leaving marks on the environment. The most common example of stimergy is the
deposit and sense of pheromones, similarly to ants; (2) using the sensors (e.g.,
cameras, microphones) to sense the environment and nearby robots (which may
communicate through leds, dance like the bees, sound, etc.); and (3) messages
sent through low-range wireless communication. These messages may either be
directed to a specific robot or broadcast to all robots within range. [Nedjah and
Junior, 2019].

Robot formations

In the literature, the works involving robotic communities arrange the robots
in one of three modalities: (1) rigid formations, where the robots are either
physically connected [Baldassarre et al., 2007, Şahin, 2004]) or the position of
each robot is clearly specified [Ristic and Gilliam, 2019]; (2) flexible formations
(e.g., flocking), often created by virtual force fields [Reynolds, 1987]; or (3) use no
formation at all, being the robots free to move independently of others [Bredeche
and Fontbonne, 2022]. Robotic communities have many applications in the real
world [Coppola et al., 2020]. In some instances, such as foraging, it may be more
fortuitous to move with no specific formation, scattering the agents in the en-
vironment. In turn, rigid formations may be useful for collective transportation,
while flexible formations may perform better in complex environments.

2.2 Source seeking approaches
Source seeking approaches attempt to use environmental measurements to se-
lect actions that guide the robot to the location of the chemical source. They
are often inspired by natural behaviours, such as those of the E. coli bacteria,
dung beetle or silkworm moth [Russell et al., 2003]. In order to propose such
approaches, researches have made several efforts to understand how animals be-
have while performing this task. As an example, Duistermars et al. [Duistermars
et al., 2009] investigated how fruit flies responded to stimuli in their antennas to
track odour plumes, while Weissburg and Dusenbery [Weissburg and Dusenbery,
2002] and Dickman et al. [Dickman et al., 2009] experimented with blue crabs
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in controlled environments in order to find a correlation between their behaviour
when tracking a food source and their detection of its scent. While this works
are extremely interesting, in this section we shall focus on literature involving
robots.

2.2.1 Single-robot approaches
Most source seeking approaches employ a single robot, as it tends to be simpler
by not requiring any coordination or communication mechanisms to be imple-
mented over multiple agents. Due to animals’ abilities to locate odour sources,
many plume tracing methods are directly inspired by natural behaviours, such
as those of the male silkworm moth, dung beetle and E. coli [Russell et al., 2003]
or combine traits from different species such as the behaviour of bacteria and
Lévy walks [Nurzaman et al., 2011].

Source seeking methods may be further divided into chemotactic approaches,
which rely solely on the chemical information, and anemotactic approaches,
which also use information of the flow (be it air or water). In the remaining
of this section we shall present some of the most relevant chemotactic and an-
emotactic methods.

Chemotaxis

Chemotactic approaches are among the simplest methods for locating chem-
ical sources. They are designed for environments deprived of a strong airflow,
where the odour spreads mainly through molecular diffusion. In such environ-
ments, the agent relies solely on information regarding chemical concentration
to guide its search. In environments with strong winds, the turbulent effects of
the airflow create intermittent odour plumes, with many voids and local peaks
of concentration, that are likely to deceive a gradient-based approach. Never-
theless, Ishida et al. [Ishida et al., 2012] note that, in regions close to the odour
source, the chemical gradient can be informative enough to be followed and thus,
approaches designed for diffusion-dominated environments may still be able to
successfully locate the odour source.

One of the earliest chemotaxis works was conducted by Rozas et al. [Rozas
et al., 1991]. It consists on a robot equipped with an array of chemical sensors to
measure the concentration in four (ninety degree-spaced) directions and moves
in the direction of highest concentration. If after this motion no gradient is
detected, the robot moves in one of the other three directions. Conversely, if the
gradient lowers, the robot moves back to the previous position and proceeds to
move in one of the other three directions. This method was tested with a real
robot in distances up to three meters from the source.

The chemotactic strategy inspired by the behaviour of the E. coli bacteria
[Marques et al., 2002b] is one of the most popular ones. It owes most of its
popularity is to its simplicity, as it is a biased random walk composed only of
rotations and linear motions. On each time step, the agent measures the local
chemical concentration and compares it to the previous odour measurement. If
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the current concentration is higher, the agent makes a small rotation followed
by a large straight motion, continuing searching in the same approximate direc-
tion. Otherwise, it makes a probabilistically larger rotation followed by a short
straight motion, directing the search to a different direction.

Another simple approach for locating odour sources in diffusion-dominated en-
vironments is inspired by Braitenberg’s Vehicles [Braitenberg, 1986]. This
strategy attempts to estimate the local chemical concentration gradient and
follow it to its source. There have been many different variants of this ap-
proach [Russell et al., 2003], but all have some things in common. Generally,
they rely on a mobile robot carrying two front-mounted chemical sensors, one
on its left and another on its right. The controlling strategy typically consists of
a loop, which makes the robot move forward whilst turning towards the sensor
sensing the highest chemical concentration.

Grasso et al. [Grasso et al., 2000] further developed the gradient approach and
used it to control a purpose-built robot for mimicking a lobster. This robot is
a two-wheeled differential-driven unit, equipped with two front-mounted chem-
ical sensors. They proposed two control strategies. The first only differs from
the traditional gradient approach by including a threshold of concentration,
below which the robot does not turn. The second approach, adds a retreat be-
haviour, designed to move the robot back where it came from, whenever the
chemical concentration sensed drops below a given threshold.

Spiral [Ferri et al., 2009] is another chemotactic method for locating odour
sources in diffusion-dominated environments. It consists of making consecut-
ive spiral motions, restarting every time the robot considers that the gas source
is closer than in the previous step. The robot estimates the distance to the
source by stopping and taking chemical concentration measurements for a pre-
defined time period, which are then used to compute a proximity index (PI).
If the current PI value is higher than the stored PI, the robot considers that it is
currently sensing odour (hit) and restarts the spiral. Otherwise, it considers it
as a non-detection (miss). Finally, the authors also devised an escape movement
that is triggered when a spiral ends without any hit. In such case, the robot
resets the stored PI value, rotates to a random direction and moves straight for a
predefined length, starting to explore a different region of the environment.

Anemotaxis

In environments where there is a strong airflow, animals typically employ
strategies that use information regarding its direction for orienting the search,
i.e., perform anemotaxis. This section describes some of the most popular an-
emotactic methods.

The Silkworm Moth algorithm [Kowadlo and Russell, 2008, Russell et al., 2003]
is inspired by the behaviour of the Male Silkworm Moth while tracking a trail of
Bombykol pheromone released by a female moth. This algorithm assumes that
the robot is equipped with two chemical sensors, mimicking the moth’s anten-
nas. The signals from these sensors are used to compute a concentration gradient
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that the robot uses to select the direction of some of its motions. The beha-
viour created by this approach is based on three basic types of movements: (1)
straight line upwind surges when detecting odour, and (2) upwind-centred zig-
zag and (3) circular motions whenever contact with the plume is lost. A flow
chart of the complete behaviour inspired by the Silkworm Moth is depicted on
the left side of Figure 2.6. The robot starts by waiting for a chemical detection,
upon which it moves straight upwind. At the end of this upwind surge, if the
robot continues to sense odour, it will repeat the same motion. Otherwise, it
will engage in an upwind zigzag in an attempt to re-encounter the plume. If it
manages to re-encounter the plume, the robot will go back to perform upwind
surges. Otherwise, it will perform circular motions, halting as soon as odour
is sensed. At the end of these motions, the robot will go back to waiting for
chemical detections to re-initiate the search behaviour. Liberzon et al. pro-
posed another algorithm inspired by the Silkworm Moth, that differs from the
previous ones by using only a single binary chemical sensor and no stereoscopic
information [Liberzon et al., 2018].

Similarly to the Silkworm Moth, researchers took interest in the behaviour of the
Dung Beetle tracking a cow’s pat [Russell et al., 2003]. However, contrarily to
the Silkworm Moth’s approach, in the Dung Beetle algorithm the robot starts
with a plume finding behaviour, moving crosswind in search for odour cues.
Upon detecting odour, it assumes an odour-centred upwind zig-zag behaviour
for tracking the plume to its source. A flow chart of this behaviour is presented
on the right side of Figure 2.6.

Harvey et al. [Harvey et al., 2008] described a casting behaviour for plume find-
ing inspired by the wasp Cotesia rubecula. It consists of moving back and forth
across the wind, with straight motions of increasing length. In their paper,
each straight motion has double the length of the previous one. The authors
also compared plume-tracking methods inspired by the behaviours of flying in-
sects:

• Surge-Anemotaxis: This behaviour consists of, upon detecting a chem-
ical concentration above the predefined threshold, moving the robot upwind
for a fixed length, whilst continuously readjusting its heading. If the chem-
ical concentration sensed during the upwind surge drops below a predefined
threshold, the robot will resort to a casting behaviour.

• Bounded Search: This behaviour consists on exploring the upwind re-
gion of the location where odour is first detected, in an attempt to find
the chemical source. To do so, upon sensing odour, the searching agent
starts making subsequent crosswind and upwind motions, creating a trian-
gular of parabolic shaped trajectory. The trajectory is reset whenever the
chemical concentration sensed is above a predefined threshold. Conversely,
if a predetermined time limit is exceeded, the agent resorts to a casting
behaviour.

• Counter-turning: The behaviour consists of performing an upwind zig-
zag motion, while sensing odour. The angle and length of each motion is
determined by the chemical concentration sensed. If the concentration is
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Figure 2.6: Flow charts of the modified Silkworm Moth (left) and Dung Beetle
(right) algorithms, adapted from [Russell et al., 2003]. θ and s are
user-defined parameters that, respectively, control the amplitude of
the rotations and the length of the straight motions.
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high, the robot will robot will move for a short distance and with a small
offset to the upwind direction. On the other hand, when the concentration
is low, the robot will move for longer distances and with larger offsets that
may approximate crosswind.

Real-world environments often have dynamic conditions where the wind velocity
varies, existing periods with no airflow and others with strong winds. For coping
with such scenarios, Ishida et al. [Ishida et al., 1995] proposed a method that
combines several bio-inspired behaviours. When the robot is within the plume,
this strategy employs an anemotactic behaviour inspired by the upwind surges
of the Silkworm Moth. Whenever the plume is lost, the robot resorts to a cast-
ing behaviour to attempt to re-encounter it. Casting is particularly important,
as due to the random nature of odour plumes, the robot may lose contact with
it. However, this anemotactic strategy was found to fail in some situations, such
as whenever there are various wind sources. To tackle this problem, the au-
thors added a chemotactic strategy which uses solely the chemical information
to attempt to locate the gas source. The decision to switch between strategies
is based on the chemical concentration measured. Whenever the chemical con-
centration is below a predefined threshold, the robot employs the chemotactic
strategy. Otherwise, it will resort to the anemotactic approach. They also added
a timeout condition that changes between strategies if no progress is made in a
predefined time interval. A flow chart of this behaviour is depicted in Figure 2.7
and comprises five distinct stages:

1. Waiting for chemical detection: The first step of this strategy consists
on waiting for an initial chemical detection.

2. Follow the chemical concentration gradient to the source:
The second stage of this process consists of performing chemotaxis, i.e., us-
ing the chemical concentration gradient to move closer to the odour source.
It is employed when the gas concentration is below a predefined threshold
(Cchemotaxis) which is considered to be caused by unstable wind conditions.

3. Retreat: Once the robot loses contact with the plume, it resorts to the
retreat behaviour, which consists of moving back in the direction from where
it came from. As soon as odour is detected, the robot moves back to stage 2,
unless if in the previous step it has sensed the highest chemical concentration
in its memory. In such case, it considers that the current location is the
most promising for detecting chemical information, and moves to stage 1.

4. Track the chemical plume: If the sensed chemical concentration is higher
than a threshold, the robot resorts to an upwind search behaviour for track-
ing the plume. During this behaviour, the concentration gradient is used to
bias the motion of the robot towards the centre-line of the plume.

5. Crosswind search for plume finding: When the robot loses contact with
the plume during the tracking phase, it resorts to search crosswind. As soon
as the plume is re-encountered, the robot goes back to stage 4, tracking the
plume upwind. If the two crosswind directions have been searched twice
and no gas has been detected, the robot goes back to stage 2.
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Figure 2.7: Flow chart of the Multiphase strategy proposed by
Ishida et al. [Ishida et al., 1995].

2.2.2 Multi-robot and swarm approaches
While most odour source localisation methods employ a single robot, some
methods using multiple robots do exist. As previously said, these approaches
may be divided between multi-robot and swarm approaches which differ, among
other things, by multi-robot approaches often having more complex interactions
between the robots than swarm approaches. As an example, Hayes et al. [Hayes
et al., 2002] proposed a multi-robot approach where the robots communicate by
broadcasting messages. Three types of communication are compared:

• NONE, where the robots do not communicate with each other and effect-
ively search for the source individually;

• KILL, which as soon as one robot senses odour forces all other robots to
stop searching. This type of communication effectively uses all robots to
find the chemical plume and only one for tracking it to its source, thus
reducing the overall energy consumption of the robotic team;

• ATTRACT, which makes the robots not sensing odour move towards those
that are sensing it.

Their experiments showed that the KILL communication method effectively re-
duces the energy consumption of the group and that the ATTRACT strategy
does not produce any performance gains in their scenario, spending more en-
ergy than KILL. Another multi-robot approach was proposed by Majorvi et al.
[Marjovi et al., 2009], who used a group of robots to explore indoor structured
environments and locate the sources of fires. The robots had no prior knowledge
of the environment and cooperated to build a shared topological map of it. The
map is shared in a central server and is the sole mean of communication among
the robots. The robots use a frontier-based approach to explore the environ-
ment. Each robot selects the next frontier to explore based on its cost, which is
proportional to the distance and is computed through the A* algorithm. This
algorithm not only provides the cost of each frontier, but also the path to it.
Fires are detected by a sensor apparatus mounted on each robot, capable of sens-
ing the concentration of various chemicals as well as temperature and humidity.
The navigation of each robot to a target location relies on an artificial potential
field, composed by repulsive forces from the nearby obstacles and an attractive
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force from the goal location. When a robot senses a possible fire, it performs
a sequence of motions attempting to triangulate its source or discarding a false
positive.

Fluxotaxis [Zarzhitsky et al., 2005] is a swarm-based approach for locating odour
sources that resorts to artificial physics to keep the robots in a lattice forma-
tion. The robots share their environmental measurements to compute the de-
rivatives of flow-field variables (i.e., wind velocity and chemical concentration
derivatives) and, by following the gradient of the mass flux (i.e., the product of
chemical density and flow velocity), the robots are able to locate the chemical
source. Another swarm-based approach for locating chemical sources was pro-
posed by Lochmatter et al. [Lochmatter et al., 2013]. Their work focused only
on the tracking stage, and they propose to create loose line formations along
the crosswind direction through a set of attractive and repulsive virtual forces.
The robots track the plume by proceeding upwind while attempting to keep
the formation centred on the plume’s centerline. The authors experiment with
formations of three and five robots in a real wind tunnel, using a laminar airflow
and a stationary source emitting at a constant rate. There are three possible
start conditions, but in all of them, at least one robot is sensing odour. The
results show that three robots are sufficient for successfully finding the source,
with the five robot formation not attaining any significant improvements. The
authors perform a second experiment, where the source moves crosswind, but it
is still successfully found by the three-robot formation.

2.2.2.1 Meta-heuristic approaches

A different strand of work formulated the odour source localisation problem as
an optimisation problem, where the function to be optimised is the chemical
dispersion in the environment. A number of meta-heuristic based methods have
been proposed for this task, be it Particle Swarm Optimisation (PSO) [Marques
et al., 2006, Jatmiko et al., 2007, Cabrita et al., 2013, Feng et al., 2020, Duister-
hof et al., 2021], Genetic Algorithms [Marques et al., 2002a] or Evolutionary
Strategies [Marques et al., 2003].

Regarding the use of EAs, Marques et al.’s approach iteratively evolved a pop-
ulation of candidate locations for the source, which are encoded as vectors of
real-valued coordinates [Marques et al., 2002a]. The evaluation of the candidate
solutions is made by having the robots navigate to them, being the concentration
measured at the target location used as fitness. They only used crossover, as the
assignment of the locations to each robot and their navigation was considered
to introduce enough randomness into the process. This method was able to per-
form well in simulation, in an environment without wind-flow, being the odour
dispersion dictated only by molecular diffusion. They also studied the influence
of the robots’ start position, showing that the algorithm performed better when
the robots start from random positions but that it is slow to converge when
they start clustered in a corner of the working space, which may be considered
to be a more realistic scenario. Later, Marques et al. improved on this work,
introducing a directed mutation operator that biased the search towards upwind
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if odour was detected at the current location or towards crosswind if no odour
was detected [Marques et al., 2003].

Marques et al. proposed one of the first methods based on Particle Swarm Op-
timization (PSO) for locating multiple chemical sources with a group of robots
[Marques et al., 2006]. They tackle the plume search and tracking separately,
being the search sub-problem addressed simply through crosswind motions. In
turn, they propose to treat the tracking process as an optimisation problem,
where the goal is to find the location of maximum odour concentration. The
robots act as particles of the PSO, measuring the local chemical concentration
and sharing them with their neighbours. The algorithm itself does not cope with
locating various sources. Instead, once a source is found, it is disabled, halting
the emission of chemical substances, and the robots implicitly attempt to locate
other sources. The authors compared the performance of the PSO with a gradi-
ent search method and an E. coli inspired biased random walk, showing that the
PSO outperforms the others as the environments become more unstable.

Jatmiko et al. proposed CPSO, a modification to the PSO algorithm for tracking
various sources [Jatmiko et al., 2007]. Once a promising region of the search
space is found, the swarm splits into two groups: neutral and charged robots.
Inspired by Coulomb’s law, repulsive forces are applied to the charged robots,
modifying their velocities and driving them away from the others. As a result,
they escape the local optima and resume exploring the search space. In turn, the
neutral robots are not subject to repulsive forces, performing local search in the
promising region. They compare CPSO with DRPSO, a PSO approach devised
for dynamic environments that considers that the environment has changed if
the global best has not changed for an extended time period. In such case, the
robots are commanded to scatter for a predefined distance, in an attempt to
escape the local optimum. Their simulations showed that CPSO locates the
chemical source faster than DRPSO, whilst the standard PSO method would
often get trapped in local optima.

Another PSO-based method was proposed by Cabrita et al. to locate multiple
chemical sources [Cabrita et al., 2013]. Their approach works by estimating
the distribution model of the chemical emitted by each source and virtually
cancelling it. The robots then proceed to search for other chemical sources
by finding odour filaments that are consider to not have been emitted by the
previously found sources.

More recently, Feng et al. proposed a PSO-based method to locate odour sources
with a group of robots without using wind information [Feng et al., 2020]. They
modify the original PSO algorithm by introducing random variations into the
personal and global best positions at each velocity computation, which aid the
algorithm to escape local optima. Moreover, they employ an initial divergence
search strategy, leading the robots to scatter in different directions until the
first chemical filament is sensed. The authors tested this approach with three
robots in an indoor uncontrolled environment, achieving higher success rates
than the standard PSO, at the cost of longer search times. Duisterhof et al.
also proposed a PSO-based method for locating odour sources, this time with a
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group of nanocopters [Duisterhof et al., 2021].

2.2.3 Automatically designed approaches
Evolutionary Robotics is a field of Artificial Intelligence that focuses on us-
ing Evolutionary Computation techniques for automatically designing the shape
[Murata and Kurokawa, 2007] or the controllers for one or more robots [Nolfi
et al., 2016]. As mentioned in the previous section, EAs have already been for
directly controlling the robots searching for odour source, by estimating way-
point locations [Marques et al., 2002a, Marques et al., 2003]. In this section,
we focus on works that resort to EAs to automatically produce robotic con-
trollers. Most existing works propose to evolve the controllers in the form of
Artificial Neural Networks (ANN) [Beer and Gallagher, 1992, de Croon et al.,
2013, Macedo et al., 2016]. While [Beer and Gallagher, 1992, de Croon et al.,
2013] focused on only evolving the connection weights and time constants of
Continuous-Time Recurrent Neural Networks (CRTNN), [Macedo et al., 2016]
used a direct representation of the individuals to evolve both the connection
weights and topologies of ANNs. Each evolved network combines a set of
attractive-repulsive forces into a potential field that guides a robotic swarm.
The method was tested in simulation, being able to consistently move the swarm
closer to the odour source than the algorithm inspired by the E. coli bacteria.
Izquierdo et al. also evolved the parameters of ANNs to perform Klinotaxis, i.e.,
chemotactic searches in salt gradients [Izquierdo and Lockery, 2010]. However,
they did not use a mobile robot, but rather a worm-like agent which move by
contracting and relaxing neck muscles.

Singh et al. [Singh et al., 2023] trained Recurrent Neural Networks to act as the
controller for a simulated agent searching for a chemical source. The networks
were trained through Proximal Policy Optimization [Schulman et al., 2017],
a Deep Reinforcement Learning algorithm. At each time-step, the controller
receives the egocentric wind velocity and chemical concentration and produces
an angular and linear velocities. They analysed the behaviours exhibited by the
trained controllers and split them into modules that resemble the behaviours of
insects for tracking and reacquiring chemical plumes.

Genetic Programming has also been used for OSL by Villareal et al., who evolved
chemotactic strategies for locating a chemical source in a small indoor envir-
onment with a single robot [Villarreal et al., 2016]. The controllers included
functions with different arities and expecting different types of arguments (i.e.,
real-valued thresholds and variables to reason about chemical concentrations,
motion primitives or more complex subtrees). The terminal symbols consist on
different methods for measuring chemical concentration and motion primitives
that can be programmed differently for various types of robots (e.g., rotate 45º
to the most promising direction depending on the last chemical measurement).
It is an offline evolutionary approach, being the controllers evolved in simulation
and only the best individual tested in the real world.
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2.3 Source estimation approaches
Source estimation approaches attempt to use environmental measurements to
fit a chemical dispersion model, estimating the location of the source without
the need to reach its location.

2.3.1 Single-robot approaches
To the best of our knowledge, Farrell et al. proposed the first method based on
Hidden-Markov Models for source term estimation [Farrell et al., 2003]. Their
method could not only estimate the source probability map, but also determine
which cells are more likely to contain odour; determine the most likely trajectory
of odour between an assumed source location and a target cell; and determine
which path between two locations and with a given length is more likely to result
on odour detections. Their approach works by dividing the environment into
a grid, where each cell stores the probability of the chemical source residing in
that location. This method still requires improvements, as it assumed that the
flow velocity is invariant over the entire search space. Also, it relied solely on
boolean odour detections, discarding information regarding the concentration,
which may aid the estimation of the distance to the chemical source.

Following the work of Farrell et al, Vergassola et al. proposed Infotaxis [Ver-
gassola et al., 2007], which to this date is the most popular source estimation
approach. It is also based on Hidden Markov Models and Bayesian Inference to
compute the probability map for the location of the odour source, but contrarily
to Farrel et al.’s work, it also provides a movement strategy for the robot. On
each control step, the robot is commanded to move in the direction that locally
maximises the expected information gain (i.e., it moves in the direction that is
expected to provide the largest reduction in the entropy of the probability map).
This method also disregards the actual gas concentration values and considers
only detections (hits) and non-detections (misses). Considering an agent moving
in an environment, Tt encodes the sequence of positions and odour hits/misses
of said agent up to time t. The probability map (P (rsrc|Tt)) for the odour source
location (rsrc) is computed through the Bayes’ law:

P (rsrc|Tt) = P (Tt|rsrc)P (rsrc)
P (Tt)

(2.18)

where P (rsrc) is the prior for the position of the source. P (Tt|rsrc) is the like-
lihood for the position of the odour source and, assuming that the misses and
hits are independent, can be computed as:

P (Tt|rsrc) =
∏

t

P (h(rt)|rsrc) (2.19)

where rt is the (hypothetical) location of the robot at time t and h(rt) is 1 if the
robot senses odour at rt and 0 otherwise. The probability of detecting odour at
rt (P (h(rt) = 1|rsrc)) is 1 - P (h(rt) = 0|rsrc) (i.e., 1 minus the probability of not
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detecting), which in turn is computed as:

P (h(rt) = 0|rsrc) = e(−R(rt,rsrc)∆t) (2.20)

where ∆t is the duration of the time step and R(rt, rsrc) is the average detection
rate at position rt, given the source location rsrc. The average detection rate
(Equation 2.21) is computed based on a gas distribution model that takes three
parameters which are not easily measured in real scenarios: the odour source
emission rate R (measured in particles per second), the particle lifetime τ and
the isotropic effective diffusivity Df .

R(rt|rsrc) = aR

|rt − rsrc|
e− |rt−rsrc|

λ e
(xt−xsrc)V

2Df (2.21)

where a is the radius of the searching agent’s sensor, V is the average wind speed
along its mean direction and λ is defined as:

λ =
√√√√ Dfτ

1 + V 2τ
4Df

(2.22)

At each time step the robot may take one of 9 possible actions, i.e., it may
remain still or move to one of the 8 neighbouring cells. The action selected is
the one that maximises the expected entropy reduction in the source probability
map. One of the main drawbacks of Infotaxis is the computational overhead of
computing the required probabilities for each cell of the grid. Another, perhaps
worse, drawback is the need for carefully selecting the parameters of the gas
distribution model, so that it accurately matches the real world. The import-
ance of these parameters has been assessed in previous studies, showing that
inadequate values greatly reduce the performance of Infotaxis [Ruddick et al.,
2018, Rodríguez et al., 2017, Martin Moraud and Martinez, 2010]. As a res-
ult, the majority of Infotaxis’ literature perform the experiments exclusively in
simulation, using the same exact model for mimicking the real world and for
computing the probability of the odour source location. Sampling these models
does not accurately emulate real world experiments, as they provide a distribu-
tion of the average odour concentration, rather than an instantaneous plume.
The realism of those experiments is further reduced by the common assumption
that the odour detections and non-detections are independent events.

Ristic et al. [Ristic et al., 2016] proposed Infotaxis II, which differs from the
original Infotaxis by replacing the grid-based probability map computation by
a particle filter. This modification not only enables reducing the computational
cost, as well as overcoming the limited resolution of the position estimation,
which in original Infotaxis is dictated by the choice of the grid cell size. The au-
thors compare three reward functions: (1) the original one from Infotaxis, which
evaluates the expected entropy reduction from moving to each location through
the probability of finding the source or sensing odour at that location; (2) In-
fotaxis II reward function, which is a modification of the original reward function
consisting of discarding the term relative to the possibility of finding the source
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at the next movement; and (3) a reward function based on Bhattacharyya dis-
tance, which measures the distance between posteriors at the current and next
time step. Their results showed that there is little difference between the per-
formance attained with the three reward functions. Moreover, they concluded
that the ratio between the area of the search space and the area with detect-
able odour is of the utmost importance, with the source estimation strategies
performing worse than systematic search when the area with detectable odour
is very small. In turn, in scenarios where odour is detectable in at least half the
search space, the source estimation strategies become very efficient, with the two
new reward functions providing better results than the original Infotaxis reward
function.

More recently, Hutchinson et al. [Hutchinson et al., 2018] proposed another
variation of Infotaxis termed Entrotaxis. Similarly to Infotaxis II, this method
relies on a particle filter to estimate the source parameters, thus reducing the
computational cost over the original Infotaxis. It differs from Infotaxis II in
the decision to where move next. While Infotaxis II moves in the direction
that minimizes the expected entropy of the posterior distribution, Entrotaxis
moves in the direction of maximum entropy of the predictive distribution of
odour measurements. In short, Infotaxis moves the robot in the direction that
is expected to maximise the information gain, whereas Entrotaxis commands
the robot to move in the direction where least is known regarding the odour
that is to be detected. By not having to compute all hypothetical posteriors
in the decision making process, Entrotaxis manages to be less computationally
expensive than Infotaxis II. Moreover, their results show that Entrotaxis attains
similar success rates to those of Infotaxis II, while doing so with smaller mean
search times.

2.3.2 Multi-robot and swarm approaches
To the best of our knowledge, the few existing multi-robot source estimation ap-
proaches are based on Infotaxis. In 2019, Ristic et al. [Ristic and Gilliam,
2019] proposed a distributed particle filter-based Infotaxis approach. Their
method consists of a community of robots, which form a connected commu-
nication graph. Each each robot estimates the location of the source independ-
ently of the others and all robots are treated equally, making it a completely
decentralised approach that is robust to failures. The robots share their environ-
mental measurements with their neighbours, and use all available information in
their estimates. Each robot selects the action that is expected to maximise the
entropy reduction of its probability map and shares its intention with its neigh-
bours, engaging in a iterative process to reach a consensus on which direction
to move. Reaching a consensual action is a requirement of this approach, as the
shape of the robot formation must be kept unchanged. Thus, this approach is
decentralised, yet synchronous, as the robots must first reach a consensus with
all others before being able to move. If for some reason a robot gets lost from
the others, it might re-encounter the group, but only by chance. The search for
the source is also based on a consensus, with all robots halting their search as
soon as one of their neighbours reaches the termination criteria.
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A similar approach was proposed by Park and Oh [Park and Oh, 2020], who
proposed to distribute Infotaxis II [Ristic et al., 2016] over a community of
agents. This approach requires the robots to form a fully-connected communic-
ation graph and also synchronises when the sampling and moving takes place
across all robots. Similarly to the original Infotaxis, on each control step the
robots may take one of five possible actions: remaining still or moving to the
front, back, left or right. The authors focused on studying the influence of differ-
ent levels of coordination on the performance of the robots: non-coordination,
passive coordination and negotiated coordination (also called cooperation). In
non-coordination, each agent acts independently of the others, sharing no in-
formation. In the passive coordination, each agent computes its best action
using the measurements from all robots. In the negotiated coordination, the
robots engage in a negotiation to reach a consensual group action. Their simu-
lation results showed that using more robots with no cooperation does not lead
to any performance gains. Passive cooperation leads to higher success rates and
faster search times than no coordination, but the negotiated cooperation method
is the overall most successful and fastest of the three.

A different strand of work focuses on how information should be shared among
the robots. Song et al. [Song et al., 2019] proposed Social-Infotaxis, an extension
to the original Infotaxis to a multi-robot setting, where the robots share their
environmental measurements to estimate the position of the chemical source.
Each robot estimates its own probability map and the measurements from the
other robots are weighted before being used to update the probability map. The
weights are assigned in the [0,1] interval, where 0 implies discarding other ro-
bots’ perceptions and searching individualistically, whereas 1 means assigning
the same importance to the neighbours’ measurements as the robot’s own meas-
urements. The authors propose two methods of setting the weights: (1) fixed
homogeneous coupling, where the weights are pre-defined by the experimenter
and kept fixed over the robots and throughout the entire experiment; and (2)
dynamically heterogeneous coupling where the weights vary in time as well as
between each pair of robots. The weights depend on the Kullback-Leibler diver-
gence between the source probability maps of the two robots. The higher the
divergence, the lower the weights, causing the robot to assign less importance (or
even disregard) the neighbour’s measurements. On the other hand, equal prob-
ability maps cause the robot to assign the same importance to the other robot’s
measurements as it does to its own. This approach is particularly interesting
for scenarios with unreliable measurements, preventing the robot’s probability
map to be corrupted by incorrect measurements from its teammates. However,
this approach suffers from a high computational cost, not only due to using
the original Infotaxis approach, but also by requiring the robots to exchange
their entire probability maps to compute the Kullback-Leibler divergence. This
drawback was later addressed in [Song et al., 2020], where a particle-filter was
used to estimate the source probability map and a Gaussian density function
was fitted to the particles, so that only its mean and covariance matrix needs
to be exchanged between robots to compute the weights for social estimation of
the source location.
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2.4 Robotic communities for related tasks
The existing controllers for swarms can be categorised depending on whether
they are manually or automatically designed. [Nedjah and Junior, 2019]

Manually designed controllers

Most existing approaches rely on experimenters to carefully design the individual
behaviour of each robot [Brambilla et al., 2013]. This is typically a cumbersome
trial-and-error process which becomes much more daunting when considering
multiple robots that must interact with each other to fulfil a given task. As a
result, they tend to be sub-optimal but also better understood [Coppola et al.,
2020] and, in some instances, it is possible to guarantee the convergence of the
system to the desired properties [Saulnier et al., 2017]. This implies that hand-
designed controllers tend to be more predictable and thus it is easier to verify if
they meet the safety requirements. For that reason, many real-world implement-
ations of multi-robot systems rely on hand-designed controllers [Chung et al.,
2018], particularly when considering aerial robots. The same concerns have made
their way into the automatic design community, motivating the choice of white-
box controllers that may be visually inspected [Francesca et al., 2014, Francesca
et al., 2015, Kuckling et al., 2018, Jones et al., 2019].

The works proposing hand-designed controllers for robotic communities may fol-
low a bottom-up approach, or a top-down [Mermoud et al., 2014, Coppola et al.,
2020]. Bottom-up (or microscopic) approaches focus on designing individual be-
haviours and interactions, iterating on them until the desired collective beha-
viour is achieved as a consequence of the agents’ interactions. Such approaches
assume that the global state of the system is too hard, costly or even impossible
to obtain, so they make due with the locally accessible information, obtained
by the agent and its neighbours [Crespi et al., 2008]. The main advantage of
bottom-up approaches is its direct correspondence with reality, enabling the pre-
cise design of each individual behaviour and being faced with the limitations of
the robots right from the start. In turn, their main drawback is the difficulty in
analysing the system as a whole, depending heavily on the designer’s intuition
to achieve the desired collective behaviour. On the other hand, top-down (or
macroscopic) approaches start by devising a high-level model for the intended
collective behaviour, being the individual controllers designed a posteriori with
certain guarantees of convergence [Mermoud et al., 2014, Coppola et al., 2020].
These approaches typically start by being designed as centralized methods, as-
suming global knowledge of the system [Crespi et al., 2008]. That assumption
is often relaxed at a later design stage, with the system becoming decentralized
through communication between agents. However, the agents are still expected
to be able to get or estimate the global state of the system within a certain
accuracy and time delay [Crespi et al., 2008]. One of the disadvantages of this
type of design approach is the need for strong assumptions which may not hold
in the real world (e.g., perfect localisation, absence of sensor and actuator noise
and even discrete environments), leading to loss of performance. Another disad-
vantage of top-down approach is their difficulty, due to the experimenter being
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faced with the entire complexity of the swarm system.

The most popular types of hand-designed swarm controllers are finite-state ma-
chines (FSM) and their probabilistic variants (PFSM) along with physics-based
design [Brambilla et al., 2013]. PFSMs are composed by states and transitions.
Each transition between states is associated with a probability, which may either
be fixed during the entire execution or be the result of a mathematical function
dependent on a set of parameters of the system. PFSMs are often applied in
tasks involving aggregation [Soysal and Sahin, 2005], chain formation [Nouyan
et al., 2008], self-assembly [O’Grady et al., 2010], task-allocation [Liu et al.,
2007, Labella et al., 2006] and collective transport [Wilson et al., 2014]. An-
other example is the work of McGuire et al. [McGuire et al., 2019] who designed
a FSM inspired by bug algorithms to guide each agent in a group of six drones
to explore an unknown environment. The devised controller is quite simple,
leading the robots to move away from others, avoid obstacles by adopting a wall
following behaviour and moving randomly otherwise.

In turn, using virtual physics-based controllers, the robots are led by artificial
potential fields, created through the sum of attractive/repulsive forces. In single-
robot approaches, the potential fields typically attract the robot through a goal
whilst repelling it from obstacles. In swarm robotics, the potential fields may
also include forces attracting/repelling the robot to/from its neighbours. The
main advantage of its approach is its simplicity, as once the forces are prop-
erly designed and balanced, a single mathematical function maps each robot’s
sensory inputs to its motion command. Moreover, it also lends itself to theor-
etical analysis through which properties such as robustness and scalability may
be proven. Virtual physics-based approaches are typically employed in tasks re-
quiring robot formations, such as pattern formation [Spears et al., 2004, Shucker
and Bennett, 2007, Shucker et al., 2008], collective exploration [Howard et al.,
2002] and coordinated motion [Maxim et al., 2009, Ferrante et al., 2012].

Some hand-designed methods make the robots move in formations, as they may
be a more robust and predictable way of sampling the environment or may actu-
ally be necessary to perform the target task (e.g., cooperative transportation).
Several formation control algorithms are reviewed in [Chung et al., 2018]. How-
ever, in some scenarios moving in rigid formations may be detrimental. Flocking
methods create flexible formations by attempting to mimic the behaviours of an-
imals. The first attempts to simulate flocking behaviours date back to the 1980’s
[Aoki, 1982, Reynolds, 1987] and were not related with robotics, but rather ab-
stract agents, respectively inspired by fish and birds, but with no particular
sensors or motion restrictions. The formations in flocking methods are kept
through a virtual force field composed by three simple rules:

• Separation is the process through which an agent attempts to move away
from its neighbours, which is ultimately useful for collision avoidance;

• Alignment consists in attempting the match the velocity of nearby agents,
so as to move in the same average direction and at the same speed;

• Cohesion is the rule that keeps the formation together. It leads each
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member of the swarm to move towards the centroid of its neighbours;

Additional rules may be included to enable the swarm to fulfil various tasks.
As an example, collision avoidance may be achieved by including additional
repulsive rules from the obstacles in the environment [Saska, 2015]. Flocking
approaches have been demonstrated in the real world [Hauert et al., 2011] with
10 robots.

Evolutionary design

Given the hurdles of manually designing the swarm controllers, some efforts have
been made to design them automatically, namely through evolutionary methods.
As an example, Genetic Algorithms have been used to evolve the connection
weights of manually designed ANNs to serve as controllers for drones, tasked
with creating a communications network between ground stations [Hauert et al.,
2009] or making formations [Scheper and De Croon, 2017]. In [Hauert et al.,
2009], the authors highlighted the difficulty in hand-designing the controllers
and analysed the behaviour of the evolved controllers to provide insight for
future hand-design attempts. In turn, in [Scheper and De Croon, 2017] two
networks were actually evolved, one performing low-level motion control and
another performing high-level decision making.

White-box controllers have also been evolved for robotic swarms. Szabo [Szabo,
2015] evolved behaviour trees to perform collision avoidance, which showed to be
not only smaller than the author’s hand-designed controller, but also performed
better. Another example is the work of Jones et al. [Jones et al., 2018], who
evolved behaviour trees for a swarm of robots in a foraging task. The robots
have a short communication range and use hop counts to estimate the distance
to the nest and food regions. Despite the robots being able to communicate, it is
left to the evolution to decide what to communicate. Also, each robot may use a
simple form of memory, whose meaning is also left for evolution to define.

Multi-robot and swarm controllers may be evolved offline or through Embod-
ied Evolution (EE, Section 2.1.4.2). Regarding EE, due to the capabilities of
the robots, encapsulated or hybrid approaches are more suitable for multi-robot
systems, whereas fully distributed approaches are more suitable for swarm robot-
ics. In swarm robotics, the controllers are typically homogeneous and the fitness
evaluates the performance of the entire swarm [Waibel et al., 2009]. Being ho-
mogeneous, they are immune to issues inherent to heterogeneous multi robot
systems, such as task allocation and credit assignment [Parker, 2008]. Accord-
ing to Waibel et al. [Waibel et al., 2009], works involving robotic swarms may
be categorised based on two dimensions: (1) how the performance is measured,
i.e., whether the fitness evaluation measures the quality of the entire swarm or
that of a single individual; and (2) whether the swarm is composed by homo-
geneous or heterogeneous agents. As an example, if EE is employed to evolve
swarm controllers, it is likely that the controllers are not homogeneous. Yet,
this may arguably be considered as a more realistic swarm approach, as the ro-
bots not only rely on local interactions to fulfil their task, but also to evolve the
controllers. Other common characteristics of evolutionary swarm robotics works
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include: (1) using a classical, centralised EA; (2) using large populations (in the
scope of ER) with usually 100 individuals; (3) making multiple evaluations of
each controller to cope with fitness noise. Existing works use between 3 and 100
evaluations of each candidate solution, but most of them use 10; (4) most works
rely only on simulations and, those that use real robots, often do not test them
in realistic scenarios [Francesca and Birattari, 2016].

One example of embodied evolution is the work of Bredeche et al. [Bredeche
and Fontbonne, 2022], who proposed to completely evolve controllers for a ro-
botic swarm in the real world, while the robots are performing their task. They
focused on a foraging task, and studied the social learning effects of each robot
sharing the connection weights of its governing perceptron with the other ro-
bots that it encounters while moving in the world. In turn, the receiving robot
chooses to accept the genes depending on the self-assessed fitness of both itself
and the sender. This is yet another difference to common EAs. Here, there
is no centralised controller that assesses the performance of the robot, or the
performance of the team as a whole. Instead, each robot evaluates its own per-
formance, which must contribute as much as possible to the performance of the
team. As there is only local communication, the robot cannot infer the perform-
ance of the whole swarm, and must estimate it from its own performance. The
authors exemplify with a foraging task where the performance of the swarm is
directly proportional to the amount of items collected. As a result, the more
items each robot collects, the better should the performance of the swarm be.
However, if there are too many robots competing for resources in a constrained
region, they end up spending most time avoiding collisions. Thus, they would be
better off exploring other regions than greedily attempting to collect the same
items. In another work [Bredeche, 2014], Bredeche employed mEDEA to evolve
the controllers for a swarm of robots. mEDEA is a fully distributed Embodied
Evolution approach, where the robots are considered to have limited communic-
ation capabilities and thus can only exchange genes with others nearby. Being
fully distributed, the robots are unable to adapt their behaviours individually.
Instead, they broadcast mutated copies of their gene to their neighbourhood.
Nearby robots accept the genes and store them on an archive. As soon as the
evaluation time of the current gene runs out, a new gene is randomly selected
from the archive and all others are removed. Thus, the selective pressure is not
based on the fitness value, but rather on the ability of a gene to drive the robot
to the vicinity of many others.
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The existing crossover operators for Genetic Programming often cause
bloat, i.e., the uncontrolled growth of the size of the candidate solu-
tions without a corresponding increase in performance. Such growth is

not only detrimental for the execution of the candidate solutions, which require
more memory and time resources, but also hinders their readability. The read-
ability of the evolved solutions is of particular importance in the scope of this
thesis, as we aim to evolve robotic controllers than can be inspected by humans
and manually tweaked for specific conditions. Moreover, the efficiency of the
controllers is also highly relevant, as it enables using robots with limited com-
putational capabilities. This chapter presents a geometric crossover operator
that acts on the syntactic space of Genetic Programming, implicitly preventing
bloat.

3.1 Geometric syntactic genetic programming
As described in Section 2.1.3.4, geometric crossover operators produce offspring
that are on a shortest path linking its parents, while geometric mutation oper-
ators produce new individuals in the neighbourhood of the original ones. As a
result, they enable a better control of the exploration/exploitation balance of
the EA.

Geometric Syntactic Genetic Programming (GSynGP) [Macedo et al., 2018]
differs from the other GP algorithms by performing geometric crossover between
two individuals in the syntactic space. The genotype of each individual is a
string that encodes a syntax tree in prefix notation. The crossover operation
uses the Longest Common Subsequence (LCS) to align the genomes of the two
parent individuals. Two modification masks are created, marking the locations
where genes must be added, removed or replaced to make a copy of one parent
more similar to the other. In order to create valid offspring, the proportion of
non-terminal and terminal symbols must be kept. As a result, each iteration
of this crossover consists of performing one of four modifications: (1) removing
one terminal symbol and inserting another of the same type; (2) removing a
non-terminal symbol and inserting another of the same type; (3) removing a
terminal and a non-terminal symbol; and (4) inserting a terminal and a non-
terminal symbol.

The proposed crossover operator starts by computing the LCS through dynamic
programming, to determine the similarity between two parent individuals (A, B)
and stores that information in a matrix C. Afterwards, using C, Algorithm 3.1
computes two modification masks, MA and MB, that contain the common and
non common genetic material. The masks are created by going through matrix
C, aligning the common genetic material and inserting blank spaces or markers
in the positions where symbols must be added or removed from A, to make it
more similar to B. The markers are provided by function get_symbol, which
returns the symbol passed as a parameter along with a prefix to denote whether
it belongs to the terminal (T_) or function set (F_).

The remaining steps of the crossover operator, presented in Algorithm 3.2, con-
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Algorithm 3.1: Modification masks generated from the Longest Com-
mon Subsequence.

1 Function LCS_MASKS(A, B, C):
2 MA, MB ← []
3 i← len(C)− 1
4 j ← len(C[0])− 1
5 while i ≥ 1 or j ≥ 1 do
6 if i > 0 and j > 0 and C[i− 1][j − 1] = C[i][j] then
7 MA ← get_symbol(A[i− 1], function_set)
8 MB ← get_symbol(B[j − 1], function_set)
9 i← i− 1

10 j ← j − 1
11 else if i > 0 and C[i− 1][j] = C[i][j] then
12 MA ← get_symbol(A[i− 1], function_set)
13 MB ←’ ’
14 i← i− 1
15 else if j > 0 and C[i][j − 1] = C[i][j] then
16 MA ← ’ ’
17 MB ← get_symbol(B[j − 1], function_set)
18 j ← j − 1
19 else if i > 0 and j > 0 and C[i− 1][j − 1] = C[i][j]− 1 then
20 MA ← A[i− 1]
21 MB ← B[j − 1]
22 i← i− 1
23 j ← j − 1

24 return reverse(MA), reverse(MB)

Algorithm 3.2: Geometric Syntactic Crossover Operator
1 Function crossover(MA, MB):
2 candidates← []
3 if ’F_’ in MA and ’T_’ in MA then
4 candidates← candidates ∪ delete(MA, MB, function_set)
5 else if not’ F_’ in MA and ’T_’ in MA then
6 candidates← candidates ∪ replaceT (MA, MB, function_set)
7 else if ’F_’ in MB and ’T_’ in MB then
8 candidates← candidates ∪ insert(MA, MB, function_set)
9 else if ’F_’ in MB and ’F_’ in MA then

10 candidates← candidates ∪ replaceF (MA, MB, function_set)
11 return random(candidates)
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Algorithm 3.3: Insertion of a function and a terminal symbol
1 Function insert(MA, MB):
2 combs← all_combinations()
3 while len(combs) > 0 do
4 (f, t)← random(combs)
5 MA[t]←MB[t]
6 MA[f ]←MB[f ]
7 if check_indiv(MA, function_set) then
8 return MA

9 else
10 MA[t]←’ ’
11 MA[f ]←’ ’

12 return MA

sist simply in checking four conditions to select the appropriate operations. The
four possible operations are: inserting a function and a terminal symbol (Al-
gorithm 3.3), removing a function and a terminal symbol (Algorithm 3.4), re-
moving a terminal symbol and inserting another one and removing a function
symbol and inserting another one (Algorithm 3.5). The operation of deleting a
terminal and inserting another one is identical to what is presented in Algorithm
3.5, with the difference that F_ should read T_ and function_set should read
terminal_set. The function all_combinations() returns all pairs of symbols to
be tested in each case, that is, in Algorithm 3.3, the combinations of all function
and terminal symbols that are present in B and absent in A; in Algorithm 3.4,
all pairs of terminal and function symbols that are present in A and absent in B
and; for the operations of deleting and inserting symbols of the same type, all
pairs of symbols of the desired type that are present in one parent and absent
in the other one.

Algorithm 3.4: Deletion of a function and a terminal symbol
1 Function delete(MA, MB):
2 combs← all_combinations()
3 while len(combs) > 0 do
4 (f, t)← random(combs)
5 v ← [MA[f ], MA[t]]
6 MA[t]←’ ’
7 MA[f ]←’ ’
8 if check_indiv(MA, function_set) then
9 return MA

10 else
11 MA[t]← v[1]
12 MA[f ]← v[0]

13 return MA
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Algorithm 3.5: Deletion of a function and insertion of another function
symbol

1 Function replaceF(MA, MB):
2 combs← all_combinations()
3 while len(combs) > 0 do
4 (fb, fa)← random(combs)
5 if MA[fb] =’ ’ then
6 MA[fb]←MB[fb]
7 v ←MA[fa]
8 MA[fa]← ’ ’
9 if check_indiv(MA, function_set) then

10 return MA

11 else
12 MA[fb]←’ ’
13 MA[fa]← v

14 else if ’F_’ in MA[fb] then
15 MA[fb]←MB[fb]
16 else
17 v ←MA[fa]
18 MA[fa]←MB[fb]
19 if check_indiv(MA, function_set) then
20 return MA

21 else
22 MA[fa]← v

23 return MA
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An individual is then selected from the set of valid generated offspring, i.e.,
all offspring whose genomes can be converted into valid syntax trees with no
exceeding genes. These operations create an individual that is one step away
from the first parent. In order to create offspring at different distances from
each parent, Algorithm 3.2 may be iterated multiple times, with the offspring of
one iteration taking the place of A in the following iteration. As an example, if
the operator is applied twice, on the first iteration it will be applied to parents
A and B, outputting an offspring O1. In the second iteration, the offspring O1
will take the place of A in the crossover, creating the individual O2. Generally
speaking, in an iteration where all operations are possible, the offspring created
only has a 25% chance of becoming larger than its parent, and that growth will
be only by 2 nodes.

In the scope of this operator, the distance between two individuals DA,B may
be computed through the number of modifications necessary to make A equal
to B, as follows:

DA,B = i + d + rf + rt (3.1)

where i, d, rf and rt respectively stand for the number of insertions, deletions
and replacements of function and terminal symbols needed to make A equal to
B. Each of these quantities is computed as follows:

i = min(Bf , Bt) (3.2)

d = min(Af , At) (3.3)

rf = Af − d (3.4)

rt = At − d (3.5)

where Af , At are respectively the number of function and terminal symbols of
A which are not in B and Bf , Bt are respectively the number of function and
terminal symbols of B which are not in A.

As an example, consider the Santa Fe Ant trail benchmark problem [Koza,
1992], for which the terminal set is {left, right, move} and the function set is
{IfFoodAhead, Progn}. Two possible individuals are:

IfFoodAhead move Progn leftA: move

Progn Progn move moveB: right

The Longest Common Subsequence between the two individuals is [Progn,
move], and the modification masks created by GSynGP are:
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F_IfFoodAhead T_move Progn T_leftMA: move

Progn F_Progn move T_moveMB: T_right

The modification masks contain three types of symbols: (1) the aligned sym-
bols that constitute the longest common subsequence (i.e., the aligned common
symbols, whose nodes are presented with a grey background); (2) blank spaces,
with those of MA and MB respectively marking where insertions or deletions
must be made in A; and (3) the non-common symbols, marked with a T_ or
F_ depending on whether they belong to the terminal or function sets, and
that should either be deleted or inserted. The crossover operator uses these
masks to make a copy of parent A more similar to parent B. This process can be
repeated for various iterations, generating individuals at different points in the
paths linking the original parents. Two possible offspring for the first iteration
of this crossover operator are:

IfFoodAhead move Progn leftO1: move

Progn left moveO2: Progn move

where O1 results from deleting IfFoodAhead and move, whereas O2 is created by
deleting IfFoodAhead and inserting Progn in its place.

Extended GSynGP
The original version of Geometric Syntactic Genetic Programming considered
syntax trees where each node contains a single symbol. While this is enough for
problems such as the Santa Fe Ant Trail, even the simplest robotic actions (e.g.,
rotate and move) must be parametrised. While the parametrisation could be
done via subtrees of different arities, a simpler approach is to have a behaviour
and its parameters encapsulated in a single node. As a result, an extension to
GSynGP was proposed [Macedo et al., 2020], where the symbols in the function
and terminal sets, called main symbols, take a list of parameters. The proposed
variant of the crossover operator works in the same manner as before when two
nodes (one of each type) are to be removed or inserted. The novelty is when a
node is to be deleted and another of the same type is to be inserted. For the
sake of clarity, the node to be deleted shall be referred to as Nd, whereas the
node to be inserted shall be called Ni. The new crossover operator works as
follows:

1. A new node Nn is created with the main symbol of Ni;

2. The parameters that are present only in Nd are ignored, whereas those
that only exist in Ni are added to the new node.
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3. The parameters that are common to Nd and Ni are merged as follows:
if a parameter takes a numerical value, it takes the mean value from the
parents; otherwise, k randomly chosen parameters take the value from Nd,
while the remaining take the value from Ni. In this work k was set to 1.

As an example consider the following two nodes, whose symbols are contained
in the terminal set used in the experiments of the following chapters:

• Nd: moveUpwind(d = 1.0 )

• Ni: moveTowards(nt = so, d = 1.0, r = 5.0 )

Further consider that during a crossover operation, Nd is to be deleted and Ni

is to be inserted. The creation process of the new node Nn is depicted in Figure
3.1. As before, Nn is created with the symbol moveUpwind. The parameters nt,
and r from Nd are not present in Ni and thus are ignored. The parameter d is
present in both nodes and takes a numerical value, so the mean of the values in
both parents is used in Nn. Nn is then inserted in the appropriate place using the
same method as in the original version of the crossover operator. The proposed
extension to GSynGP enables it to perform smaller, geometric modifications to
the individuals, rather than simply replacing the different nodes as a whole.

moveTowards nt = so d = 1.0 r = 5.0

Nd

moveUpwind d =0.5

Ni

moveUpwind d = 0.75Nn

Figure 3.1: Creation of a new node, merging the parameters of its parent nodes.

3.2 Validation
The proposed genetic programming algorithm (GSynGP) will be compared with
a standard version (SGP) to assess its ability to evolve high quality solutions
(fitness), to maintain population diversity (both at the genotypic and semantic
levels) and to control bloat (measured both through the size of the evolved
individuals), in benchmark problems from two application domains.

3.2.1 Experimental setup

3.2.1.1 Algorithm parameters

The two GP algorithms to be compared share most operators, differing only in
the crossover. As a result, they also share most parameters (Table 3.1), with
GSynGP having an additional one to control the amount of iterations of its cros-
sover operator. Both algorithms create the initial populations with the ramped
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Table 3.1: Common parameters of the evolutionary algorithms

Parameter Value
Population size 500
Generations 1000
Crossover probability 0.7
Mutation probability 0.3
Elite size 3
Tournament size 2
Maximum depth of initial trees 6
Maximum tree depth 17
Number of independent trials 30

half-and-half method. On each generation, a set of mates is chosen through tour-
nament selection and recombined through either GSynGP’s crossover or subtree
crossover.

GSynGP’s crossover was already described. In turn, the subtree crossover starts
by selecting a cut node from the first parent, biasing the selection 90 % towards
inner nodes and 10 % towards leaf nodes. The cut node from the second parent
is chosen using the same bias, but restricting the search to nodes whose rooted
subtree would not cause the offspring to be larger than the predefined limit. A
single offspring is created by replacing the subtree selected from the first parent
by the one chosen from the second parent.

The offspring may then be subjected to node mutation. The mutation operator
starts by randomly selecting a node from the tree, with no regard to whether it
is a function or a terminal. If that node requires parameters, then it is decided,
with equal probability, whether its symbol or its parameters are to be mutated. If
the choice is to replace the symbol, or if the node takes no parameters, its symbol
is replaced by a randomly selected one from the respective set. In such case, the
parameters that become obsolete are discarded and the parameters that were not
required by the previous symbol, but are required by the new one, are initialised
with randomly selected values. Otherwise, if the parameters are to be mutated,
one of the node’s parameters is randomly selected. If the chosen parameter takes
a numerical value, it is equally likely that a new value is sampled uniformly from
the corresponding set or that it is subjected to Gaussian mutation, with each
σ being equal to 10 % of the respective domain width. Otherwise, the value
of the parameter is replaced by another, sampled uniformly from the set of
possible values. A new population is finally built through elitist selection and
the algorithm carries on to a new generation.

In order to assess the influence of the iterations of the GSynGP’s crossover, three
variants are created: (1) using only one iteration (G1); creating individuals mid-
way between both parents (GH); and creating offspring at random distances
ranging from one iteration to half of the distance between both parents (GR).
Also, in preliminary testing, it was concluded that the injection of 35 random
immigrants and 15 elitist immigrants (i.e., respectively 7 % and 3 % of the pop-
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ulation size) into the population at each generation aided both algorithms in
producing better results, and thus the experiments herein use that configura-
tion.

3.2.1.2 Evaluation problems

Selecting proper benchmark problems has been highlighted as an issue of great
importance to enable the reproducibility and comparison of different methods
[McDermott et al., 2012]. In his book, Koza demonstrated the feasibility of
GP through problems of various application domains, namely: optimal control,
path planning, symbolic regression and boolean multiplexer [Koza, 1992]. The
path planning problem used by Koza is the most related to this thesis and thus
we shall use it for testing GSynGP. It consists on evolving the controller for
an artificial ant that must explore an environment and collect food laid in an
irregular trail. Symbolic regression, on the other hand, consists on evolving
mathematical expressions that approximate a set of data and is one of the most
commonly used type of problems for testing GP algorithms [McDermott et al.,
2012].

The selected problems have been considered to be suitable for benchmarking GP
methods in [McDermott et al., 2012]. Later, a community-made survey [White
et al., 2013] included the simplest problems in a set deemed to be too easy, yet
without providing any specific reasons. As such, and considering that they have
continued to be used in more recent works [Boudardara and Gorkemli, 2018],
we opted by including them.

Symbolic Regression

The symbolic regression validation shall be based on four benchmark problems
[McDermott et al., 2012]: (1) Koza1 (K1, Equation 3.6), also known as quartic;
(2) Koza3 (K3, Equation 3.7); (3) Paige1 (P1, Equation 3.8); and (4) Keijzer12
(K12, Equation 3.9). While quartic has been considered to be too easy to provide
meaningful results, it is often used and so we opt by including it as well. In turn,
Paige1 is considered to be quite difficult [White et al., 2013]. These functions
are plotted in Figure 3.2 and their formulas are as follows:

K1(x) = x4 + x3 + x2 + x (3.6)

K3(x) = x6 − 2x4 + x2 (3.7)

P1(x, y) = 1
1 + x−4 + 1

1 + y−4 (3.8)

K12(x, y) = x4 − x3 + y2

2 − y (3.9)
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Figure 3.2: Symbolic regression benchmark problems: koza1 (top-left), koza3
(top-right), keijzer12 (bottom-left) and paige1 (bottom-right).

The original works using functions K1 and K3 create the datasets with 20 points
uniformly drawn from the domain [-1,1], while for K12 20 points are drawn from
[-3,3]. In turn, for P1 it was originally proposed to create a mesh based on
its two input variables, each taking a set of points spaced by 0.4 and ranging
from -5 to 5. However this creates a grid of 676 points, which is much larger
than the datasets used by the previous functions. As such, we opt by also using
20 points in P1, sampled uniformly from the interval [-5,5]. The datasets are
created at the beginning of each trial and used for all evaluations, thus ensuring
fair comparisons between individuals of the same trial and different datasets for
different trials. Using these datasets, the fitness of each individual is measured
by computing the Mean Squared Error (MSE), as follows:

MSE =
∑N

i=1(Yi − Ŷi)2

N
(3.10)

where N is the number of samples, Yi is the ith target value and Ŷi is the ith
predicted value.

To solve these problems, the two algorithms use the same terminal and function
sets, which were selected according to [McDermott et al., 2012]:

• Function set:

– + - adds the values of the two subtrees.
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Figure 3.3: Santa Fe Ant Trail.

– − - subtracts the value of the right subtree to the left subtree.

– ∗ - multiplies the values of the two subtrees.

– % - if the value of the right subtree is 0, this function returns 1.
Otherwise, it returns the division of the left subtree by the right
subtree.

– sin - returns the value of the sine of the left subtree.

– cosine - returns the value of the cosine of the left subtree.

– exp - returns en, where n is the value of the left subtree.

– lnmod - returns ln(|n|), where n is the value of the left subtree.

• Terminal set:

– x1, ..., xn - problem variables

– ephemeral constant - each time this symbol is selected for creating
an individual, a randomly sampled constant from the interval [-1, 1]
takes its place.

Artificial ant

The artificial ant is a path planning benchmark problem that has been tradi-
tionally used to test GP algorithms [Koza, 1992, Koza, 1994]. It consists of a 2D
toroidal grid world where the majority of the cells are empty and some contain
food pellets. The task is to produce the controller for an artificial ant with the
goal of collecting the maximum amount of food pellets within the available time
limit. The ant collects a food pellet simply by visiting the cell containing it.
Three actions are typically used: left, right and move. The first two actions
consist on rotating 90◦ in the respective direction. The third action consists on
moving one cell in the direction that the ant is facing.

The artificial ant problem has been proposed in a number of variants, namely the
Santa Fe Trail (Figure 3.3) and the Los Altos Hills Trail (Figure 3.4), which differ
in the size of the world, amount of food available and overall difficulty.

Both problems are tackled with the same terminal and function sets:
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Figure 3.4: Los Altos Hills Trail.

Table 3.2: Parameters for the artificial ant problems

Parameter Santa Fe Trail Los Altos Hills Trail
Grid size 32x32 100x100
Food pellets 89 157
Time steps 600 3000
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• Function set:

– Progn - executes both subtrees in sequence.

– IfFoodAhead - returns true if there is a food pellet in the cell ahead
and false otherwise.

• Terminal set:

– left - rotates the ant 90◦ to the left.

– right - rotates the ant 90◦ to the right.

– move - moves the ant one cell to the front.

The fitness of the individuals is typically measured by the number of food pellets
eaten, making these maximisation problems. However, to improve readability,
we convert them into minimisation problems by computing the fitness of the
individuals as the number of food pellets left not eaten, as follows:

FA = PI − PE (3.11)

where PI is the initial amount of food pellets and PE is the amount of food
pellets eaten.

3.2.1.3 Statistical analysis: general approach

The results of the experiments in this thesis will be presented through tables
and plots, enabling their visual comparison and discussion. According to the
central limit theorem, a sufficiently high number of independent trials must be
run for each approach. In this work, we use the commonly adopted value of
30 runs. Moreover, to be able to state that two (or more) approaches perform
significantly differently (according to a given metric), we must employ statistical
hypothesis tests. In order to choose an appropriate test, three questions must
be answered:

1. How many data groups are being compared?

2. Do the experiments use the same initial conditions?

3. Can parametric tests be applied?

The first two questions are related to the way the experiments are made. The
number of data groups depends on the analysis being made but, in the scope of
this chapter, it will typically be four (i.e., SGP and the three GSynGP variants).
The second question is concerned with whether the various approaches have the
same start conditions. If possible, the approaches being tested should have
the same initial conditions to remove one source of variability. In this work,
the initial conditions are guaranteed to be matched by setting the seed of the
pseudo random generator for each trial, i.e., thirty seeds are used (one for each
trial) and shared among the various approaches. Finally, to answer the third
question, one must verify that two assumptions for applying parametric tests
are met:
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1. The data of the various approaches follow normal distributions;

2. Their variances are homogeneous;

Thus, the first step consists on assessing the normality of the data of each
approach, which we shall do through the Kolmogorov-Smirnov test, using the
following null (H0) and alternative (H1) hypothesis:

• H0: The data follows a normal distribution;

• H1: The data does not follow a normal distribution;

If the p-value outputted by the test is below the significance value (which in this
work we set at 0.05 to have a 95 % confidence on the conclusions drawn), the
null hypothesis can be rejected and non-parametric tests must be used for the
remaining analysis. Otherwise, the Levene test is used to assess the homogeneity
of the variances, i.e., whether the data from the various approaches can be
considered to have equal variances. This test is applied with the following null
(H0) and alternative (H1) hypothesis:

• H0: The data sets have equal variances;

• H1: The data sets do not have equal variances.

If the p-value resulting from this test is below the significance value, then the null
hypothesis can be rejected and non-parametric test must be used. Otherwise,
parametric tests may be used in the remaining analysis.

The next step depends on the number of approaches (or variants) are being
compared. If there are more than two, than a group test must be applied to
assess whether there are statistically significant differences between the data
of the approaches. Depending on whether the assumptions for using paramet-
ric tests are met, the Dependent Anova (parametric) or the Friedman’s Anova
(non-parametric) is applied with the following null (H0) and alternative (H1)
hypothesis:

• H0: All data samples are drawn from the same population;

• H1: There is at least one sample that is drawn from a different population.

If this test yields a p-value below the significance value, the null hypothesis can
be rejected and we proceed to perform pairwise comparisons to assess which
approaches perform differently. By making multiple comparisons, the chance
of making type I errors increases. As a result, the Bonferroni correction is ap-
plied, consisting of dividing the significance value by the number of comparisons
made. Depending on whether parametric tests may be used, the Dependent
t-test (parametric) or the Wilcoxon test (non-parametric) is applied with the
following null (H0) and alternative (H1) hypothesis:

• H0: The two data samples are drawn from the same population;

• H1: The two data samples are drawn from different populations;

If the test yields a p-value below the adjusted significance value, the null hy-
pothesis may be rejected, i.e., the approaches can be considered to perform
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significantly differently.

3.2.2 Experimental results
This section presents the experimental results attained in the previously de-
scribed benchmark problems. The quality and size of the evolved solutions is
analysed, as well as the algorithms’ abilities to maintain population diversity,
both at the genotypic and behavioural levels.

3.2.2.1 Fitness of the evolved solutions

We start by analysing the fitness of the resulting solutions. Each run of an EA
produces one solution (the best of the final population), yielding 30 solutions
per algorithm (one for each independent trial). We assess the fitness of the
controllers attained during evolution (train) and also in a previously unseen set
of data (test).

Train results

The fitness of the evolved controllers for each benchmark problems are plotted
in Figure 3.5. In the symbolic regression problems, the boxplots indicate that
SGP produces the most fit solutions (lower values), followed by G1. Moreover,
as the number of GSynGP’s iterations increases, the fitness of the evolved solu-
tions tends to worsen. Interestingly, the same trend is not followed in the ant
problems, where SGP produces similar values to G1 but, in the SFT , increasing
the number of iterations leads to better fitness values.

In order to draw statistically supported conclusions, we apply statistical hypo-
thesis tests, following the methodology described in Section 3.2.1.3. We start by
assessing the normality of the data with the Kolmogorov-Smirnov test, whose
results are presented on Table 3.3. With p-values below 0.05, the results of this
test show that none of the data can be considered to follow normal distributions
and thus we must resort to non-parametric tests. As such, we apply the Fried-
man’s Anova, in order to assess whether there are statistically significant differ-
ences in the results of the four approaches. The results of the Friedman’s Anova
(Table 3.4) show that there are statistically significant differences between the
four approaches for all benchmark problems apart from the Los Altos Hills Trail.
As a result, in the cases where statistically significant differences were found, we
must perform pairwise comparisons between the data of the four approaches to
assess which are indeed significantly different. To do so, we apply the Wilcoxon
test and to account for errors of continuity, we apply the Bonferronni correction,
reducing the significance value to 8.33e-03. The results of the Wilcoxon test are
presented on Table 3.5 and show that G1 produces equivalent fitness values to
SGP in K1 and SFT , performing worse than SGP in K3, P1 and K12. The Wil-
coxon test also verifies that increasing the number of GSynGP iterations often
leads to worse fitness values in the symbolic regression problems, particularly in
K1, and K12. Interestingly, when considering the Santa Fe Ant Trail, the results
are reversed. SGP achieves equivalent results to G1 and GR, but is significantly
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Figure 3.5: Fitness of the best individuals at the end of evolution for Koza1
(top-left), Koza3 (top-right), Paige1 (centre-left), Keijzer12 (centre-
right), Santa Fe Trail (bottom-left) and the Los Altos Hills Trail
(bottom-right).
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Table 3.3: P-values of the Kolmogorov-Smirnov test applied to the fitness in
train of the best evolved individuals.

G1 GR GH SGP

K1 2.03e-06 5.52e-06 4.47e-06 1.70e-08
K3 1.48e-05 2.45e-05 1.18e-05 2.81e-11
P1 6.33e-06 1.12e-06 2.01e-06 1.36e-09
K12 5.51e-08 1.19e-10 1.53e-08 2.56e-09
SFT 8.91e-05 6.70e-16 6.17e-12 8.71e-07
LAHT 2.04e-06 1.12e-07 1.00e-10 1.67e-05

Table 3.4: P-values of the Friedman’s Anova applied to the fitness in train of the
best evolved individuals.

K1 K3 P1 K12 SFT LAHT

6.44e-06 5.48e-09 1.20e-08 1.77e-12 1.63e-04 9.97e-01

inferior to GH . Moreover, G1 performs significantly worse than GR and GH , but
there are no significant differences between GR and GH .

Test results

This section analyses the ability of the evolved solutions for SR tasks to general-
ise to unseen data. While for evolving the individuals, the datasets are created
by randomly sampling 20 points from the domain, in testing, a comprehens-
ive dataset is generated for each problem. Such datasets encompass 100 points
equally spaced between the lower and upper bounds of the domain. In case of
multi-dimensional functions (Paige1 and Keijzer12), a mesh is created with each
variable abiding by the previous method.

The boxplots of the fitness values attained by the evolved solutions with these
new datasets are presented on Figure 3.6. Overall, all approaches are plagued by
outliers (left column) and, after removing the outliers (right-column), it seems
that all approaches perform similarly.

Table 3.5: P-values of the Wilcoxon test applied to the fitness in train of the
best evolved individuals.

G1 - SGP GR - SGP GH - SGP G1 - GR G1 - GH GR - GH

K1 4.65e-01 4.20e-04 2.37e-05 5.47e-03 1.04e-04 5.46e-02
K3 5.79e-05 2.16e-05 3.88e-06 1.31e-01 3.16e-02 2.13e-01
P1 6.16e-04 4.73e-06 2.60e-06 1.11e-01 9.27e-03 1.16e-01
K12 1.80e-05 1.02e-05 2.88e-06 6.87e-02 6.16e-04 9.84e-03
SFT 1.94e-01 4.22e-02 2.91e-04 5.33e-03 3.75e-04 1.88e-01
LAHT - - - - - -
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Figure 3.6: From the top to the bottom it is presented the original (left) without
outliers (right) boxplots of the fitness of the best individuals in test-
ing for Koza1, Koza3, Paige1 and Keijzer12.
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Table 3.6: P-values of the Kolmogorov-Smirnov test applied to the fitness in test
of the best evolved individuals.

G1 GR GH SGP

K1 4.92e-22 1.27e-12 2.97e-17 4.92e-22
K3 6.67e-17 1.55e-12 1.23e-14 3.83e-18
P1 4.92e-22 1.85e-07 4.72e-05 3.55e-26
K12 4.92e-22 1.58e-12 2.20e-08 4.92e-22

Table 3.7: P-values of the Friedman’s Anova applied to the fitness in test of the
best evolved individuals.

K1 K3 P1 K12

5.16e-01 2.75e-01 6.15e-01 8.00e-02

Once again, a statistical analysis is carried out to draw statistically supported
conclusions. Starting with the Kolmogorov-Smirnov test (Table 3.6), its results
show that we may reject the null hypothesis that the data follow normal dis-
tributions and resort to non-parametric tests. We then proceed to apply the
Friedman’s Anova (Table 3.7) which shows that there are no statistically signi-
ficant differences between the performance of the four approaches in any of the
benchmark problems, i.e., the solutions produced by the four approaches may
be considered to generalise equally well to previously unseen data.

Best solutions

To conclude the analysis of the fitness of the evolved solutions, we now focus
on the overall best individual evolved by each approach for each benchmark
problem. These individuals are selected as being those which attain the best
fitness value. The validation datasets are once again used to produce their
behaviour, which is plotted along with the target function on Figures 3.7 (K1),
3.8 (K3), 3.9 (P1) and 3.10 (K12). As can be seen, in K1, GR and GH exhibit a
slight mismatch with the target function. In K3, all individuals fail to exactly
match the target function, but are still reasonably close. The same cannot be
said for P1, where all approaches struggle to match the target. In turn, in K12 all
algorithms match the target quite well, with GH exhibiting a slight shift.

3.2.2.2 Size of the evolved solutions

This section analyses the average size (measured in number of nodes) of the
individuals in the last population of each approach, for each benchmark problem.
This is an important characteristic, as smaller controllers are not only more
efficient, but also more interpretable and one of the goals of this thesis is precisely
the evolution of interpretable controllers. The boxplots presented on Figure 3.11
show that SGP produces individuals much larger than those of GSynGP. In
fact, the median size of SGP’s individuals is consistently well over 200 nodes (in
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Figure 3.7: Best evolved individuals for Koza1.
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Figure 3.8: Best evolved individuals for Koza3.
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Figure 3.9: Best evolved individuals for Paige1.
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Figure 3.10: Best evolved individuals for Keijzer12.
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Table 3.8: P-values of the Kolmogorov-Smirnov test applied to the mean size of
the individuals in the final populations of each algorithm.

G1 GR GH SGP

K1 4.48e-06 8.34e-05 3.50e-05 9.30e-06
K3 8.69e-05 7.42e-14 2.45e-04 4.09e-04
P1 1.00e-04 5.54e-09 8.41e-09 8.15e-06
K12 3.39e-04 1.71e-08 3.79e-07 1.90e-05
SFT 2.75e-04 2.21e-07 1.41e-04 8.00e-05
LAHT 3.14e-07 1.96e-05 2.21e-07 4.47e-05

Table 3.9: P-values of the Friedman’s Anova applied to the mean size of the
individuals in the final populations of each algorithm.

K1 K3 P1 K12 SFT LAHT

7.11e-18 3.89e-17 1.30e-16 1.73e-17 2.60e-18 5.29e-18

some cases over 300 nodes), whereas those of G1 are close to 100 nodes. It can
also be seen that increasing the amount of GSynGP iterations leads to smaller
individuals, with GR and GH producing much smaller controllers than G1, with
median sizes below 50 nodes.

Following the aforementioned methodology, the Kolmogorov-Smirnov test is
once again applied to assess the normality of the data (Table 3.8). Its res-
ults show that all instances are below the significance value of 0.05, implying
that none of the data can be considered to follow normal distributions and for-
cing us to resort to non-parametric tests. The Friedman’s Anova is then applied
to assess whether there are differences between the mean sizes of the evolved
individuals for each benchmark problem. As can be seen in Table 3.9, there are
statistically significant differences in all benchmark problems, and thus we pro-
ceed to perform pairwise comparisons with the Wilcoxon test. Once again, the
Bonferroni correction is applied to adjust the significance value to 8.33e-03. The
results of the Wilcoxon test are presented on Table 3.10 and show that almost
all comparisons produce statistically significant differences, meaning that SGP
produces the largest individuals and that increasing GSynGP’s iterations leads
to significantly smaller individuals. The sole exception is when comparing GR

and GH in K1, which produce individuals with equivalent sizes.

3.2.2.3 Number of iterations

In this section we investigate whether the reason for GR and GH seeming to
perform more similarly than G1 and GR is related to their number of iterations
being closer. Figure 3.12 presents boxplots of the mean GSynGP iterations
performed at the final generation. As can be seen, GH makes more iterations
than GR in all benchmark problems, with the gap being larger in K1 and in the
ant problems than in the other three. Also, it is interesting to note that the
median iterations of GR range between two and three, i.e., double and triple of
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Figure 3.11: Mean size of the individuals in the last population for Koza1 (top-
left), Koza3 (top-right), Paige1 (centre-left), Keijzer12 (centre-
right), Santa Fe Trail (bottom-left) and the Los Altos Hills Trail
(bottom-right).

Table 3.10: P-values of the Wilcoxon test applied to the mean size of the indi-
viduals in the final populations of each algorithm.

G1 - SGP GR - SGP GH - SGP G1 - GR G1 - GH GR - GH

K1 1.73e-06 1.73e-06 1.73e-06 1.73e-06 1.73e-06 1.48e-02
K3 1.92e-06 1.73e-06 1.73e-06 2.88e-06 1.73e-06 7.27e-03
P1 1.73e-06 1.73e-06 1.73e-06 2.84e-05 2.13e-06 3.16e-03
K12 1.73e-06 1.73e-06 1.73e-06 5.79e-05 1.73e-06 2.83e-04
SFT 1.73e-06 1.73e-06 1.73e-06 1.73e-06 1.73e-06 1.60e-04
LAHT 1.73e-06 1.73e-06 1.73e-06 1.73e-06 1.73e-06 1.59e-03
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Table 3.11: P-values of the Kolmogorov-Smirnov test applied to the mean norm-
alised genotypic diversity of the final populations of each algorithm.

G1 GR GH SGP

K1 1.98e-04 1.68e-04 2.80e-05 5.89e-06
K3 3.22e-06 2.94e-09 2.78e-06 1.05e-06
P1 1.68e-05 2.06e-05 3.89e-06 2.63e-06
K12 1.74e-04 1.98e-06 1.51e-04 7.39e-05
SFT 2.13e-06 2.27e-06 3.53e-04 7.85e-04
LAHT 2.05e-04 1.65e-04 5.16e-06 1.83e-04

the iterations of G1. In turn, the proportion between the iterations of GH and
GR is always smaller, which may be the reason why these two variants perform
more similar than G1 and GR.

3.2.2.4 Population diversity

We now assess the ability of each algorithm to maintain the population diversity
over the evolution. This is an important feature not only for properly exploring
the search space and maximising the chances of finding the global optima, but
also for quickly re-adapting the population in case of dynamic environments.
We assess the diversity of the algorithms both at the phenotypic and semantic
(behavioural) level. Due to computational constraints, the diversities are meas-
ured by computing the average distance of all individuals to the best of the
population, and we focus solely on the last population. This approach should
still provide a good indicator, as it provides insight into whether the populations
have converged to the best individual or whether they still contain a high degree
of diversity, enabling the algorithm to continue exploring the search space.

Genotypic diversity

The genotypic distance from one individual to another consists on the num-
ber of its genes that are not contained in the Longest Common Subsequence
between both individuals. As a result, the distance between two individuals is
not necessarily symmetrical.

The mean genotypic diversity in the last population of each algorithm for each
benchmark problem are plotted on Figure 3.13. At first glance it would seem
that SGP is much better at maintaining the population diversity. However,
these plots must be taken with a grain of salt, as the individuals evolved by
SGP are much larger, and consequently much more prone to having higher
quantities of differing genes. As a result, we normalize the distance between
two individuals by their size and plot those results on Figure 3.14. As can be
seen from this figure, once the genotypic diversity is normalised, SGP’s ability to
maintain diversity is similar to that of G1, particularly in the symbolic regression
problems. Interestingly, for GSynGP, the population diversity increases with the
amount of iterations performed.
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Figure 3.12: Mean number of GSynGP iterations for Koza1 (top-left), Koza3
(top-right), Paige1 (centre-left), Keijzer12 (centre-right), Santa Fe
Trail (bottom-left) and the Los Altos Hills Trail (bottom-right).

Table 3.12: P-values of the Friedman’s Anova applied to the mean normalised
genotypic diversity of the final populations of each algorithm.

K1 K3 P1 K12 SFT LAHT

1.62e-15 4.35e-15 2.42e-13 1.57e-11 5.34e-07 1.48e-13
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Figure 3.13: Mean genotypic distance for Koza1 (top-left), Koza3 (top-right),
Paige1 (centre-left), Keijzer12 (centre-right), Santa Fe Trail
(bottom-left) and the Los Altos Hills Trail (bottom-right).

Table 3.13: P-values of the Wilcoxon test applied to the mean normalised gen-
otypic diversity of the final populations of each algorithm.

G1 - SGP GR - SGP GH - SGP G1 - GR G1 - GH GR - GH

K1 5.72e-01 1.73e-06 1.73e-06 1.73e-06 1.92e-06 2.96e-03
K3 4.91e-01 2.13e-06 1.73e-06 1.73e-06 1.73e-06 3.71e-01
P1 5.72e-01 3.88e-06 1.73e-06 1.49e-05 1.73e-06 7.52e-02
K12 8.77e-01 5.29e-04 1.73e-06 1.60e-04 2.13e-06 4.39e-03
SFT 1.85e-02 2.07e-02 8.94e-04 3.41e-05 5.75e-06 4.90e-04
LAHT 3.59e-04 5.79e-05 1.36e-05 1.73e-06 1.73e-06 5.45e-02
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Figure 3.14: Mean normalised genotypic diversity for Koza1 (top-left), Koza3
(top-right), Paige1 (centre-left), Keijzer12 (centre-right), Santa Fe
Trail (bottom-left) and the Los Altos Hills Trail (bottom-right).
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Once again, statistical hypothesis tests are performed to draw more robust con-
clusions. Following the aforementioned methodology, the Kolmogorov-Smirnov
test is first applied to assess the normality of the data. Its p-values (Table
3.11) are all below the significance value, implying that none of the data can be
considered to follow normal distributions. As a result, we must resort to non-
parametric tests and we carry on with the Friedman’s Anova to assess whether
there are statistically significant differences between the ability of the four al-
gorithms to maintain population diversity. This test yields p-values (Table 3.12)
below the significance value, indicating the existence of statistically significant
differences between the algorithms. As a result, we proceed to apply the Wil-
coxon test for performing pairwise comparisons. Once again, the Bonferroni
correction is applied to adjust the significance value to 8.33e-03. The results
of this test are presented on Table 3.13 and show that G1 and SGP produce
equivalent levels of genotypic diversity in all problems apart from LAHT. Using
more iterations, GSynGP consistently produces significantly higher genotypic
diversity than SGP. The sole exception is when comparing GR and SGP in the
SFT, where they produce equivalent diversity values. Finally, the results show
that the increasing the iterations of GSynGP leads to significantly higher di-
versity values. The few exceptions ocurr when comparing GR and GH in K3, P1
and LAHT, where their diversity values cannot be considered to be significantly
different.

Behavioural diversity

Finally, the behavioural diversity is assessed. Having analysed the genotypic
diversity, the behavioural diversity analysis is justified by the low locality of GP,
i.e., individuals with similar genotypes may produce quite distinct behaviours.
In case of SR problems, the behaviour of one individual is the output it provides
for a given input vector. In case of the artificial ant problems, the behaviour is
the trajectory taken, represented by the sequence of coordinates of the visited
cells. In both cases, the distance between two behaviours is computed as the
Euclidean distance. Similarly to the genotypic diversity, due to computational
constraints the behavioural diversity of each algorithm is computed simply by
comparing its best individual with all the others.

The behavioural diversity of all algorithms and benchmark problems are plotted
on Figure 3.15. For the symbolic regression problems, the existence of out-
liers with much higher magnitude make the boxplots of little use and so we
present a set of descriptive statistics on Table 3.14. As can be seen, in the
symbolic regression problems, G1 typically produces similar diversity values to
SGP, while GR and GH produce higher values. The exception is K12, where
all GSynGP variants produce much higher behavioural diversity than SGP and
that diversity increases with the amount of iterations performed. Moreover, in
the ant problems the results seem reversed, with G1 and SGP producing more
diverse behaviours than GR and GH .

In order to draw more robust conclusions we proceed to the statistical ana-
lysis following the same methodology as before. Starting with the Kolmogorov-
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Figure 3.15: Mean behavioural distance for Koza1 (top-left), Koza3 (top-
right), Paige1 (centre-left), Keijzer12 (centre-right), Santa Fe Trail
(bottom-left) and the Los Altos Hills Trail (bottom-right).
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Table 3.14: Descriptive statistics of the mean behavioural distance of the indi-
viduals in the last population of each algorithm.

G1 GR GH SGP

K1

Min 8.55e-01 4.10e+00 3.82e+00 6.14e-01
Q1 1.26e+00 4.73e+00 5.32e+00 1.19e+00
Q2 1.90e+00 5.13e+00 5.82e+00 1.46e+00
Q3 2.93e+00 6.52e+00 1.14e+01 3.81e+00
Max 1.52e+03 2.77e+65 9.31e+05 7.61e+16

K3

Min 4.08e-01 6.04e-01 1.25e+00 3.10e-01
Q1 5.51e-01 1.18e+00 1.68e+00 4.35e-01
Q2 8.62e-01 1.37e+00 2.03e+00 6.02e-01
Q3 1.38e+00 1.76e+00 2.23e+00 8.24e-01
Max 9.28e+115 2.08e+01 4.73e+03 8.78e+145

P1

Min 1.85e+00 3.02e+00 4.43e+00 1.41e+00
Q1 3.08e+00 7.87e+00 1.50e+01 2.35e+00
Q2 5.73e+00 1.98e+01 1.94e+06 4.04e+00
Q3 5.10e+01 1.26e+07 2.05e+20 5.65e+01
Max 2.51e+116 4.25e+59 1.07e+65 6.16e+26

K12

Min 1.72e+01 9.36e+01 2.22e+04 9.81e+00
Q1 3.80e+01 1.90e+06 2.16e+08 2.25e+01
Q2 5.97e+04 1.61e+16 9.03e+18 5.03e+01
Q3 2.75e+21 8.21e+37 5.69e+26 2.46e+05
Max 2.61e+54 5.03e+114 1.83e+132 6.55e+22

SFT

Min 4.19e+02 4.26e+02 4.24e+02 4.24e+02
Q1 4.39e+02 4.34e+02 4.33e+02 4.39e+02
Q2 4.45e+02 4.39e+02 4.39e+02 4.47e+02
Q3 4.55e+02 4.44e+02 4.44e+02 4.56e+02
Max 4.66e+02 4.57e+02 4.58e+02 4.68e+02

LAHT

Min 2.89e+03 2.68e+03 2.68e+03 2.95e+03
Q1 3.13e+03 2.93e+03 2.88e+03 3.09e+03
Q2 3.18e+03 3.04e+03 3.04e+03 3.13e+03
Q3 3.22e+03 3.23e+03 3.15e+03 3.15e+03
Max 3.49e+03 3.55e+03 4.21e+03 3.35e+03
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Table 3.15: P-values of the Kolmogorov-Smirnov test applied to the mean beha-
vioural diversity of the final populations of each algorithm.

G1 GR GH SGP

K1 4.79e-19 4.92e-22 5.19e-22 1.47e-25
K3 4.92e-22 1.24e-07 9.28e-19 4.92e-22
P1 4.92e-22 4.92e-22 5.27e-22 4.94e-22
K12 6.18e-22 4.92e-22 4.92e-22 1.13e-19
SFT 1.47e-04 1.80e-06 1.90e-04 6.09e-05
LAHT 6.65e-03 7.92e-05 3.71e-05 1.36e-04

Table 3.16: P-values of the Friedman’s Anova applied to the mean behavioural
diversity of the final populations of each algorithm.

K1 K3 P1 K12 SFT LAHT

1.61e-06 9.29e-09 4.95e-06 8.84e-07 3.04e-02 1.22e-02

Smirnov test (Table 3.15), we verify that none of the data can be considered
to follow normal distributions and thus we must resort to non-parametric tests.
We proceed to apply the Friedman’s Anova (Table 3.16), verifying that there
are statistically significant differences between the algorithms in all benchmark
problems. As a result, we resort to the Wilcoxon test to perform pairwise
comparisons, using the Bonferroni correction to adjust the significance value
to 8.33e-03. The results of this test are presented on Table 3.17 and show that
using the adjusted significance value, none of the comparisons in the ant prob-
lems can be considered to contain statistically significant differences. Regarding
the symbolic regression problems, the Wilcoxon test shows that G1 always pro-
duces equivalent behavioural diversity values to SGP. Also, the three variants
of GSynGP tend to produce equivalent values of behavioural diversity, with the
exceptions being when comparing G1 to GR and GH in K1 and when compar-
ing G1 to GH in P1. In those cases, using more iterations leads to significantly
higher behavioural diversity. Also, the results show that GR produces signific-
antly more diverse behaviours than SGP in K12 and so does GH in K3, P1 and
K12.

Table 3.17: P-values of the Wilcoxon test applied to the mean behavioural di-
versity of the final populations of each algorithm.

G1 - SGP GR - SGP GH - SGP G1 - GR G1 - GH GR - GH

K1 4.65e-01 4.49e-02 1.41e-01 3.16e-03 2.96e-03 1.06e-01
K3 1.47e-01 1.11e-02 3.59e-04 4.28e-02 1.17e-02 9.63e-04
P1 2.21e-01 2.85e-02 1.25e-04 2.45e-01 3.16e-03 7.19e-02
K12 5.45e-02 2.22e-04 5.31e-05 4.95e-02 1.99e-01 8.45e-01
SFT 7.66e-01 1.25e-02 9.27e-03 3.16e-02 1.75e-02 8.45e-01
LAHT 4.07e-02 1.11e-01 4.07e-02 9.84e-03 1.32e-02 6.88e-01
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3.3 Discussion
The results presented in the previous section report a thorough analysis of the
novel geometric crossover method versus the standard GP algorithm, covering
fitness in both train and test, size of the individuals and population diversity
both at the genotypic and behavioural (semantic) levels. The analysis was car-
ried out in popular benchmark problems from the domains of symbolic regression
and path planning. The statistically validated results show that in the symbolic
regression problems, GSynGP tends to produce worse fitness values in train than
SGP. The sole exception occurs in K1, where G1 produces equivalent fitness val-
ues to those of SGP. Also in K1, increasing the amount of GSynGP iterations
leads to worse results, while in the remaining problems it tends to produce no
significant differences. However, when considering the fitness in test, all ap-
proaches produce equivalent results. Regarding the ant problems, there were
no statistically significant differences in LAHT and in SFT, both G1 and GR

produce equivalent fitness values to SGP but GH produced managed to outper-
form the standard algorithm. Regarding the size of the individuals, the results
show that GSynGP always produces significantly smaller solutions than SGP
and that increasing the amount of GSynGP iterations typically leads to further
reduction of the size of the solutions. Focusing on the genotypic diversity, it is
interesting to see that G1 tends to produce equivalent values to SGP and that
the diversity increases with the amount of iterations of GSynGP. However, the
increase in genotypic diversity translates to performance gains in the SFT and
performance losses in the symbolic regression problems. This may be due to
the nature of the problems themselves. As a single operation in GSynGP may
result in a big rearrangement of the tree, this may have devastating impact in
a symbolic regression solution. In turn, considering that the ant problems only
have two functions and three terminal symbols, the effects of these operations
may result in more useful solutions. This is also supported by the behavioural
diversity values. In the ant problems increasing the amount of iterations leads
to slightly lower diversities (but without statistical significance), whereas in the
symbolic regression domain, GH produces significantly more diverse behaviours
than G1 in two benchmark problems, which in turn always produces equivalent
behaviours to SGP .

As a result, a good compromise would be to use G1 in place of SGP, as it can pro-
duce solutions with equivalent performance and much smaller size, whilst main-
taining equivalent levels of population diversity, both at the genotypic and beha-
vioural levels. On the other hand, if one prioritizes small solutions rather than
fitness, GR or GH would be preferred, at a possible cost of performance.
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The existing robotic approaches for odour source localisation may be
divided based on whether they attempt to reach the location of the
source or whether they aim to estimate its position. In this chapter,

we present three novel evolutionary single-robot approaches for odour source
localisation:

• The evolution of tree-based strategies for reaching the odour source, which
is presented together with the process of designing fitness functions for this
task (Section 4.2);

• The automatic parametrisation of Infotaxis, a popular approach for estim-
ating the position of the chemical source (Section 4.3);

• The combination of Infotaxis with elementary behaviours and perceptions
into tree-based controllers, resulting in strategies that both seek and es-
timate the source location (Section 4.4).

Due to the nature of the odour source localisation task, it would not be feasible
to evolve the controllers through Embodied Evolution [Watson et al., 2002,
Bredeche et al., 2018], as it would require releasing a chemical substance in
the laboratory for an extended time period (hours or days), which would make
the environment become saturated and force us to interrupt the experiments.
Moreover, such long operation would also wear out the robots which, to increase
the feasibility, would have to possess self-charging capabilities. Moreover, the
available wind-tunnel is only capable of generating stable chemical plumes, which
would restrict the scope of environments tested. As a result, before presenting
the proposed approaches, we present the developed simulator.

4.1 Simulator
The first step in preparing the experiments consisted in reviewing the existing
simulators in search for one that modelled the airflow and chemical dispersion
phenomena with enough realism while being sufficiently fast to ensure the feas-
ibility of the experiments. Unfortunately, the available simulators either do not
model gas dispersion and air-flow, or do so with such detail that become too
slow for being used in learning or evolutionary robotics experiments. For that
reason, we resorted to implementing a simulator from the ground up following
the guidelines of [Mouret and Chatzilygeroudis, 2017] to meet the aforemen-
tioned requirements.

The developed simulator models the world in 2D and uses simplified kinematics
models for reducing the computational complexity. The focus is on properly
modelling the air flow and chemical dispersion, for which Farrell et al.’s models
[Farrell et al., 2002] are used, as described in Sections 2.1.1.1 and 2.1.1.2. To
speed-up the simulations, the chemical dispersion and air flow are modelled a
priori and played back on each simulation. The resulting simulator is a good
compromise between accurately modelling the real-world and execution speed,
being more than 7500 times faster than real time (averaged over 10000 single-
robot evaluations). This speed-up makes the developed simulator adequate for
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learning and evolutionary robotics experiments, where the evaluations of the
candidate solutions are typically the most time consuming part of the process.
The proposed simulator models the world as rectangular arenas, which may be
empty or contain obstacles. Moreover, each environment may contain one, or
several chemical sources, whose locations are drawn randomly from a specified
region. Moreover, the start location of each robot is also drawn randomly from
a pre-defined region. All of the parameters used in this simulator can be easily
reconfigured to create distinct environments.

The simulated robots are circular-shaped differential-driven units. Each robot is
equipped with the necessary sensors for locating odour sources, i.e., a laser range
finder (LRF) for obstacle avoidance, an anemometer and a gas sensor. The gas
sensor and anemometer were already described, respectively in Sections 2.1.1.2
and 2.1.1.1. The laser range finder is composed by a set of equally spaced beams
centred on the front of the robot that measure the distance to nearby objects.
The number and range of the beams as well as the field-of-view of the sensor are
user-defined parameters. On each simulation step, the robots move with a given
linear and angular velocity. Effects of friction, acceleration and uncertainties of
the actuators are neglected. The robots are modelled with a 8 cm radius and a
maximum velocity of 0.5 m/s.

4.1.1 Environments
Three environments are devised based on a square arena containing no obstacles
and a single odour source. The choice for including no obstacles was made due
to the goal of evolving search strategies for locating chemical sources in large
outdoor spaces, where the influence of a few obstacles is not very significant.
Different airflow and source characteristics were set for each environment, cre-
ating an increasing level of difficulty. The stability of the wind is controlled by
adjusting the resolution of the grid used to compute its velocity over the envir-
onment, as well as by the standard deviation of the Gaussian noise (Wv) used to
emulate turbulence. Thirty instances of each environment are created with the
same parameters (Table 4.1) but with different seeds for the random generator,
creating a different instance for each independent trial with the same underlying
characteristics. The position of the chemical source is sampled from its admiss-
ible region for each environment instance and kept fixed for all evaluations in
the same trial. Unless noted otherwise, a search is considered successful if the
robot reaches a position closer than 0.5 m from the chemical source, within a
600 s time limit. In the following subsection, the specifics of each environment
shall be described.

4.1.1.1 Stable

The first environment (S. Env.) contains a stable plume with no intermittency.
It is depicted on the top-left of Figure 4.1 and is characterised by an initial wind
speed (Ws) of 0.5 m/s, Wv of 0.001 and each wind grid cell measuring 2.8 x
2.8 m2. Also, the filament emission rate is set to 1 Hz.
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Figure 4.1: Time average of air-flow (grey) and gas dispersion (green) of
an instance of the stable (top-left), meandering (top-right) and
intermittent-meandering (bottom) environments. The rectangle sur-
rounding the chemical source (black circle) denotes the region from
which its location is sampled, whereas the rightmost rectangles rep-
resents the start regions for the robot at the odd (bottom) and even
(top) numbered evaluations of the corner scenario.
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Table 4.1: Environmental Parameters

Parameter S. Env. M. Env. I. M. Env.
Filament emission rate(Fr) 1.0 Hz 1.6 Hz 0.05 Hz
Initial filament radius(fr(0)) 0.0316 m
Filament growth rate (γ) 0.02 m2/s 0.02 m2/s 0.05 m2/s
Chemical Emission rate (Q̄) 2.47 mg/s 2.47 mg/s 1.23 mg/s
Detection threshold (Dt) 10 ng/m3

Saturation threshold (St) 500 ng/m3

Initial wind speed (Ws) 0.5 m/s 1.5 m/s 1.0 m/s
Turbulence std. dev. (Wv) 0.001 0.1 0.1
Wind grid spacing 2.8 m 10 m 10 m
Diffusivity constant (Kx) 8
Arena size 40 m x 40 m
Source region x ∼ U(8, 14) m, y ∼ U(19.2, 21.2) m
Simulation step 0.5 s
Simulation time 600 s

4.1.1.2 Meandering

The second environment (M. Env.) is depicted on the top-right of Figure 4.1
and contains a meandering plume with some intermittency. Its filament emission
rate and initial wind speed are increased to respectively 1.6 Hz and 1.5 m/s. The
turbulence is set higher at 0.1 and each cell of the grid measures 10 x 10 m2,
meaning that each wind vector influences the filaments for much longer than in
the stable environment.

4.1.1.3 Intermittent-Meandering

The third environment (I. M. Env.) contains a meandering plume with high
intermittency and is depicted on the bottom of Figure 4.1. It shares all wind-
related parameters with the previous environment apart from the initial wind
speed which is now set at 1.0 m/s. Its filament emission rate is set to 0.05 Hz
and the filament growth rate is set to 0.05 m2/s, meaning that the filaments will
be less frequent and will dissipate faster.

4.1.1.4 Start positions

To study the influence of the robots’ start positions, three scenarios are devised
for each environment, as depicted on Figure 4.2:

• Corner: where the robots depart from one of the downwind corners of the
arena (lower corner on odd numbered evaluations and upper corner on the
even numbered evaluations). This region has a width of 2 m on the x-axis
and 10 m on the y-axis.

• Border: where the robots depart from the downwind border of the arena.
This region has a width of 2 m on the x-axis and 38 m on the y-axis.
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Figure 4.2: Robots’ start regions for the meandering environment: corner (top-
left), border (top-right) and scattered (bottom).
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Table 4.2: Parameters of the EAs

Parameter Value
Number of generations 100
Size of the population 500
Size of the elite 3
Number of elitist immigrants 15
Number of random immigrants 35
Crossover rate 0.7
Size of the tournament 2

• Scattered: where the robots depart from anywhere in the environment.
This region has a width of 38 m on the x-axis and 38 m on the y-axis.

4.2 Evolving tree-based search strategies with Geometric
Syntactic Genetic Programming

In this study, Geometric Syntactic Genetic Programming shall be used to evolve
tree-based robotic search strategies from bio-inspired behaviours and percep-
tions. The choice of evolving tree-based controllers is motivated by the desire of
producing human-readable search strategies which not only enable the experi-
menters to draw insights regarding the robot’s decision making process but also
have an increased robustness to the reality gap by enabling fine-tuning their
parameters. Moreover, the use of Genetic Programming is due to the previously
reported success in evolving robotic controllers for various tasks. Based on the
results of the previous chapter, we shall resort to GSynGP to evolve compact
search strategies with improved efficiency and readability over those that could
be obtained with the standard GP algorithm.

GSynGP iteratively evolves a population of tree-based search strategies, which in
this work are initially generated randomly with a maximum depth of 6 through
the ramped-half-and-half method. On each generation, the parent individuals
are selected through tournament and recombined through crossover with a 70 %
probability. Also, again based on the results from the previous chapter, a single
iteration of the geometric crossover operator is used. The extended version of
GSynGP is used, evolving trees with multiple symbols per node (e.g., a behaviour
and its parameters). As a result, when mutation is applied (30 % probability),
a node is randomly selected and either its main symbol or one of its parameters
may be changed with respectively 25 %, 75 % probability. The parameters may
be mutated in two different manners: if the parameter takes a non-numeric
value, its value is simply replaced. Otherwise, it is equally likely that the value is
replaced or suffers a Gaussian mutation with zero mean and standard deviation
equal to half of the parameters’ value (the minimum value for the standard
deviation is 0.1). Note that there is no clamping, i.e., the mutation is allowed
to drive the values outside of their predefined domain. In order to maintain the
population diversity, 50 (10 % of the population size) immigrants are created on
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each generation, 35 (7 % of the population size) of which are random, being the
remaining 15 (3 % of the population size) elitist. At the end of the generation, a
new population is created through elitist selection. The values chosen for these
parameters were found through preliminary experimentation and are presented
on Table 4.2.

As previously mentioned, GSynGP uses bio-inspired building blocks to evolve
its search strategies, with the function set containing:

• SO - which informs whether the robot is currently sensing odour;

• HSO(t) - which informs whether the robot has sensed odour in the last t
seconds, t ∈ [1, 500] s;

• Progn - which executes both subtrees in sequence;

Apart from Progn, if the symbols in the function set evaluate to true, the
left sub-tree is executed, otherwise the right sub-tree is executed. In turn, the
terminal set is composed by:

• wanderUpwind() - moves the robot 0.5 m in the upwind direction with a
random offset between -45◦ and 45◦;

• wanderCrosswind() - moves the robot 0.5 m in the crosswind direction with
a random offset between -45◦ and 45◦;

• wanderDownwind() - moves the robot 0.5 m in the downwind direction
with a random offset between -45◦ and 45◦;

• moveRandom(d) - moves the robot d m in the direction it is facing with a
random offset between -45◦ and 45◦ and d ∈ {0.25, 0.5, 1.0} m;

• moveUpwind(d) - moves the robot d m upwind, with d ∈ {0.25, 0.5, 1.0} m;

• spiral(disinc, iters, term) - makes a rectilinear spiral, composed by 6 seg-
ments. The first segment measures 0.5 m and the following are increased
by disinc (disinc ∈{0, 0.125, 0.25, 0.5, 0.75} m). The spiral is repeated for
iters iterations (iters ∈ {1,2,3}) and is halted if a termination criteria term
is verified (term ∈ {C, SO(), PL(t), HSO(t)}, where C refers to iteration
completed, i.e., the motion terminates normally, SO returns true if the
robot is currently sensing odour, PL(t) returns true if odour has not been
sensed for longer than t seconds and HSO(t) returns true if odour has been
sensed in the last t seconds, with t ∈ {5, 10, 20, 30});

4.2.1 Designing fitness functions for odour source localisation
Up to now, almost all components of the evolutionary system have been defined,
being only missing the fitness function. Considering that our goal is to evolve
simple and interpretable robotic controllers for locating a chemical source as fast
and as reliably as possible, a first approach could be to evaluate the individuals’
ability to do just that, i.e., to devise an evaluation function (F ) that minimises
both the distance of the robot to the chemical source at the end of the trial (d),
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as well as the duration of the search (t) (Equation 4.1).

F = d + t (4.1)

According to Nelson et al.’s taxonomy (Section 2.1.4.4), this is an aggregate
fitness function, which despite being straightforward, will often lead to undesired
results. Consider the scenario depicted in Figure 4.3, where the robot departs
from the bottom-left corner. A single chemical source (brown circle) is emitting
odour (green dots), which is carried by the wind towards the rightmost border
of the environment. The dotted line represents the trajectory that produces the
optimal fitness according to this function, i.e., the trajectory that leads to the
chemical source in the least amount of time. When evaluating each candidate
solution only once, it is possible (depending also on the function and terminal
sets) that the EA finds a controller that overfits the environment, and simply
moves in the direction of the chemical source by guessing. Such controller would
indeed be useless, as it would not work if the position of the chemical source or
the initial pose of the robot varied.

Figure 4.3: Optimal trajectory according to an aggregate fitness function.

There are some terms to refer to this problem. Perhaps the clearest one is the
AI misalignment, or the misalignment of goals [Koch et al., 2021]. This term
refers to the misalignment between the evaluation function that the experimenter
intended and the one that was actually written. In this case, the experimenter
wanted to evolve a strategy that was able to locate the chemical sources in
various scenarios with equivalent wind and chemical dispersion characteristics
as the evaluation one. However, the EA evolved a strategy that was able to
solve the target problem optimally: i.e., it was able to reach the chemical source
as fast as possible in the given scenario.

A popular approach to cope with the misalignment of objectives caused by
reward functions is to perform various evaluations, each with the robot starting
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at a different pose. However, this causes a serious increase of the evolution time.
A different approach is reward shaping [Grzes, 2017], which consists on adding
additional objectives to increase the density of the evaluation function, assigning
more rewards during the trial. The drawback of this approach is that it may
bias the evolution, i.e., it may restrict the EAs’ ability to discover new ways of
solving the task.

4.2.1.1 Influence of the number of evaluations

As previously said, there are two main ways to cope with noisy evaluations in
ER: either evaluate each individual multiple times or increase the complexity
the evaluation function in an attempt to better analyse the behaviour of the
individual. In this section, we take the first option, studying the influence of the
number of evaluations. We use a variation of the evaluation function presented
earlier to assign the fitness values:

F1,Ne = 1
N
·

N∑
i=1

( d

D
+ t

T
) (4.2)

where N is the number of evaluations performed, and D and T are used to
normalize the two terms of the function and respectively represent the maximum
possible distance to the chemical source and the maximum evaluation time,
which is set to 600 s with a 0.5 s time step. The fitness of an individual is
mean of the values attained on all evaluations. To make the experimentation
feasible, four values were selected for the number of evaluations: one (F1,1e),
three (F1,3e), five (F1,5e) and ten (F1,10e). Thirty independent trials were carried
out for each number of evaluations, in each combination of environment and
start region.

Figure 4.4 presents the boxplots of the success rates attained by the best
strategies produced by each evaluation method in the validation step, which
consists on taking the thirty best strategies produced by each method (one for
each run) and re-evaluating each one of them on the thirty instances of each
environment, as decribed in Section 4.1.1. The results show that generally the
success rate increases with the amount of evaluations performed, with the biggest
gains being made when moving from one to three evaluations.

In order to be able to draw more robust conclusions, we proceed to perform a
more thorough statistical analysis, as described in Section 3.2.1.3. Considering
a 95 % confidence interval, the results of the Kolmogorov-Smirnov test (Table
4.3) are well below the significance value of 0.05, thus not allowing us to use
parametric tests. As a result, the Friedman’s Anova (Table 4.4) is applied,
showing that there are statistically significant differences between the evaluation
methods in all environments.

The Wilcoxon test is then applied to perform pairwise comparisons between the
evaluation methods (Table 4.5). The Bonferroni correction is used to adjust
the significance value to 8.33e-3. As can be seen, increasing the number of
evaluations often leads to significantly higher success rates, with the only case
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Figure 4.4: Boxplots of the success rates attained in validation in the stable (left
column), meandering (centre column) and intermittent-meandering
(right column) environments. The top row shows the results of the
corner scenario, the middle row shows the results of the border scen-
ario and the bottom row shows the results of the scattered scenario.

Table 4.3: Significance values of the Kolmogorov-Smirnov test applied to the
success rates attained in validation.

Start region Environment F1,1e F1,3e F1,5e F1,10e

Corner S. Env. 9.85e-04 1.58e-04 9.77e-05 2.66e-04
Corner M. Env. 4.42e-08 7.18e-07 1.44e-05 1.95e-04
Corner I. M. Env. 2.81e-07 9.43e-07 7.20e-05 1.30e-05
Border S. Env. 1.37e-07 1.45e-05 3.43e-06 2.11e-05
Border M. Env. 1.23e-05 1.10e-05 3.84e-05 7.21e-08
Border I. M. Env. 5.89e-06 4.75e-09 4.39e-07 1.70e-07
Scattered S. Env. 1.79e-06 1.58e-03 3.98e-05 2.37e-06
Scattered M. Env. 2.77e-07 2.55e-06 1.55e-06 2.61e-09
Scattered I. M. Env. 1.25e-05 4.17e-07 3.54e-06 1.31e-04
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Table 4.4: P-values of the Friedman’s Anova applied to the validation success
rates of strategies evolved with various amounts of evaluations

Start region S. Env. M. Env. I. M. Env.
Corner 1.83e-08 4.13e-10 4.91e-10
Border 2.23e-10 7.66e-10 2.54e-05
Scattered 5.77e-04 2.09e-07 2.70e-05

Table 4.5: P-values of the Wilcoxon test applied to the validation success rates
of strategies evolved with various amounts of evaluations

Start region Functions S. Env. M. Env. I. M. Env.
Corner F1,3e - F1,1e 4.84e-05 5.22e-05 2.56e-05
Corner F1,5e - F1,1e 1.12e-05 4.05e-05 2.57e-05
Corner F1,10e-F1,1e 8.71e-06 1.72e-06 1.01e-05
Corner F1,3e - F1,5e 5.91e-02 3.41e-02 1.70e-01
Corner F1,3e - F1,10e 1.41e-03 2.47e-05 4.90e-03
Corner F1,5e-F1,10e 3.97e-02 2.46e-02 1.33e-02
Border F1,3e - F1,1e 9.91e-04 8.28e-04 1.24e-02
Border F1,5e - F1,1e 4.61e-05 1.56e-04 4.90e-05
Border F1,10e-F1,1e 3.49e-06 2.54e-06 2.54e-05
Border F1,3e - F1,5e 3.26e-01 1.74e-01 9.15e-02
Border F1,3e - F1,10e 2.05e-04 3.11e-05 1.62e-02
Border F1,5e-F1,10e 1.18e-02 1.64e-03 1.44e-01
Scattered F1,3e - F1,1e 1.27e-03 1.78e-02 9.73e-02
Scattered F1,5e - F1,1e 8.98e-04 9.37e-05 4.70e-03
Scattered F1,10e-F1,1e 6.72e-04 1.63e-05 7.82e-05
Scattered F1,3e - F1,5e 8.19e-01 7.17e-02 6.41e-02
Scattered F1,3e - F1,10e 1.68e-01 6.29e-04 1.74e-04
Scattered F1,5e-F1,10e 2.74e-01 1.51e-01 2.24e-02
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where there are consistently no significant differences is when comparing five and
three evaluations in all environments and start regions. Also, there is only one
instance (border setting of the meandering environment) where it is significantly
better to use ten evaluations rather than five. There are even two cases (border
start region in the I. M. Env. and scattered start region in the S. Env.) where
there are no statistically significant performance gains in using ten evaluations
rather than only three. Moreover, in three of the most difficult settings (i.e.,
I.M. Env. with the border and scattered start regions and the M. Env. with the
scattered start region) there are also no statistically significant gains in using
three evaluations rather than a single one.

To sum up, making more evaluations often leads to significantly higher success
rates. However, the evolution time increases linearly with the amount of evalu-
ations and most performance gains are made by increasing the evaluations from
one to three. As a result, in the following section, we shall compare the influence
of different fitness functions when making only one and three evaluations of each
candidate solution.

4.2.1.2 Reward Shaping

Having assessed the robustness gains of performing multiple evaluations, in this
section we investigate another simple method of coping with noisy and sparse
reward functions: reward shaping [Macedo et al., 2021a]. Our goal is to produce
an evaluation function that provides a meaningful quality measure from a single
evaluation, leading to significant reductions of the evolution time. Furthermore,
we are interested in including the minimum amount of prior knowledge, in an
attempt to reduce the amount of bias introduced into the evolution.

We start with the simplest evaluation function (Equation 4.2), which was already
used in the previous section and evaluates an individual solely through its ability
to get close to the chemical source and by the time spent during the search.
Intuitively, if the robot spends most of its time in contact with the plume, it
should be able to track it better. As a result, a second evaluation function
is proposed, which encourages the robot to minimise the time spent without
sensing odour:

F2,Ne = 1
N
·

N∑
i=1

( d

D
+ t

T
+ tp

t
) (4.3)

where tp is the time spent without sensing odour. The newly introduced compon-
ent should not only encourage the robot to stay in contact with the plume, but
also to find it as quickly as possible. Note that, while this component introduces
some prior knowledge (the concept that the agent should stay within the plume
to be able to track it) it does not specify how the robot should proceed to find
or keep in touch with the plume. According to the followed taxonomy, F2,Ne can
be considered to be a tailored fitness function. Finally, two additional compon-
ents of prior knowledge are introduced, creating a behavioural fitness function
that should make the evolution easier. The first of these components models the
concept that, in environments with strong airflows, the odour spreads mainly
through advection. As a result, if the robot moves upwind when sensing odour,
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it should move closer to the chemical source. This component is computed as
follows:

u = 1−
Nso∑
i=1

(
di ·max(cos(θu,i), 0)

v ·∆t

)
where Nso is the amount of steps sensing odour, di is the distance travelled in
step i, θu,i is the upwind direction in step i in the robot’s local coordinates,
v is the robot’s linear speed and ∆t is the duration of the control step. The
second component models the concept that when the robot loses contact with
the plume, it is typically because: (1) the robot moved too much crosswind; (2)
the meandering effect of the plume made it move away from the robot; or (3) the
robot moved past the chemical source but without reaching the goal region (i.e.,
a distance close enough to the source so that it can be considered to have been
found). In the presence of chemical plumes with little intermittency, the robot
should be more successful in re-encountering odour if it searches in the crosswind
and downwind directions. Moreover, much like the previous component, such
behaviours are present in OSL strategies inspired by natural behaviours. This
component is computed as follows:

l = 1−
Nnso∑
i=1

(
di · (max(cos(θx,i), 0) + max(cos(θd,i), 0))

2v ·∆t

)

where Nnso is the amount of control steps where the robot does not sense odour
and θx,i and θd,i are respectively the crosswind and downwind directions in step
i in the robot’s local coordinates. The resulting fitness function to be used in
this work is computed by Equation 4.4.

F3,Ne = 1
N
·

N∑
i=1

( d

D
+ t

T
+ tp

t
+ u + l) (4.4)

Two variants are created for each of the designed fitness function, differing
on whether one or three evaluations are used and thirty independent runs of
GSynGP are made for each combination of evaluation function, environment
and start region. For each independent run, a new instance of the environment
is created, differing in the initial pose of the robot, as described in Section 4.1.1.
In order to assess the generalisation ability induced by the evaluation functions,
a validation step is performed, consisting on taking the resulting search strategy
from each run and re-evaluating it in the 30 instances of the corresponding
environment.

Success rates

Figure 4.5 presents the success rates (Sr) attained in validation with each eval-
uation function. When using a single evaluation, increasing the complexity of
the function often leads to higher success rates. However, exceptions do exists,
such as when comparing F2,1e and F3,1e in the stable environment with scattered
start region. Still, the major performance gains seem to come from using the
mean value of three evaluations, where the three functions become more similar
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Figure 4.5: Boxplots of the success rates attained in validation in the stable (left
column), meandering (centre column) and intermittent-meandering
(right column) environments. The top row shows the results of the
corner scenario, the middle row shows the results of the border scen-
ario and the bottom row shows the results of the scattered scenario.

to each other.

In order to draw more robust conclusions, an inferential statistical analysis is
once again conducted, following the methodology described in Section 3.2.1.3.
The Kolmogorov-Smirnov test (Table 4.6) shows that none of the data sets can
be considered to follow normal distributions and, as a result, non-parametric
tests must be applied. For that reason, the Friedman’s Anova was applied for
each combination of start region and environment, as presented on Table 4.7. Its
results show that there are statistically significant differences between the success
rates of the evaluation methods in all environments and thus we must apply the
Wilcoxon test to perform pairwise comparisons. The Bonferroni correction is
used to adjust the significance value to 3.33e-03. As presented on Table 4.8, F2
attains equivalent success rates to F1 in all scenarios, regardless of the number
of evaluations performed. Moreover, F3,1e produces significantly higher success
rates than F2,1e in four scenarios, but only manages to significantly outperform
F1,1e once. When using three evaluations, the performance of the controllers
evolved with F2,3e improves substantially, being surpassed by those evolved with
F3,3e on only two settings. Analysing the influence of the number of evaluations
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Table 4.6: P-values of the Kolmogorov-Smirnov test applied to the success rates

St. region Env. F1,1e F2,1e F3,1e F1,3e F2,3e F3,3e

Corner S. 9.85e-04 2.42e-07 1.44e-05 1.58e-04 3.32e-05 1.88e-06
Corner M. 4.42e-08 7.10e-08 8.98e-07 7.18e-07 1.77e-04 7.70e-05
Corner I. M. 2.81e-07 3.38e-13 5.34e-09 9.43e-07 2.88e-07 5.43e-05
Border S. 1.37e-07 7.03e-04 2.58e-05 1.45e-05 9.44e-04 1.10e-04
Border M. 1.23e-05 1.05e-08 3.43e-07 1.10e-05 1.36e-04 6.93e-06
Border I. M. 5.89e-06 4.00e-04 2.64e-06 4.75e-09 1.25e-05 1.75e-06
Scattered S. 1.79e-06 8.03e-07 1.37e-04 1.58e-03 2.94e-05 4.79e-06
Scattered M. 2.77e-07 1.59e-05 2.85e-05 2.55e-06 3.00e-05 1.51e-05
Scattered I. M. 1.25e-05 5.58e-06 7.76e-04 4.17e-07 1.70e-06 1.93e-05

Table 4.7: P-values of the Friedman’s Anova applied to the success rates

St. region S. Env. M. Env. I. M. Env.
Corner 1.46e-08 7.47e-07 3.31e-15
Border 3.10e-05 1.36e-07 3.79e-04
Scattered 1.73e-05 7.34-08 1.54e-03

on each function, one may conclude that the performance differences reduce as
the complexity of the function increases, as the single evaluation variants of
F1,1e, F2,1e and F3,1e produce significantly worse success rates than their three-
evaluation counterparts in respectively six, four and three scenarios.

Duration of the successful searches

Having assessed the success rates produced with each evaluation method, this
section analyses the influence of the evaluation method in the duration of the
successful runs. Ideally, the evaluation method should maximise the success rate
whilst minimising the duration of the search. Figure 4.6 presents the boxplots
of the mean duration of the successful evaluations in validation. As can be seen,
in the stable environment F2,1e seems to take the longest, followed by F2,3e,
which may be due to the function putting a stronger emphasis than the others
in minimising the time spent without sensing odour, i.e., using F2, the robot is
strongly encouraged to remain in contact with the plume in detriment of the
duration of the search. However, as the environments become more difficult, the
differences between the various approaches become less obvious.

In order to be able to draw more robust conclusions, statistical hypothesis tests
are once again applied. Starting with the Kolmogorov-Smirnov test (Table 4.9)
we can consider that none of the data sets follow normal distributions and, thus,
a non-parametric group test, i.e., the Friedman’s Anova, must be applied. Its
results, presented on Table 4.10, show that there are statistically significant dif-
ferences between the speed of the approaches in all scenarios of the stable and
meandering environments. As a result, the Wilcoxon test is applied to perform
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Table 4.8: P-values of the Wilcoxon Test applied to the success rates

St. region Functions S. Env. M. Env I. M. Env.
Corner F1,1e − F2,1e 1.37e-02 7.80e-01 8.06e-01
Corner F1,1e − F3,1e 1.38e-01 1.52e-01 6.73e-03
Corner F1,1e − F1,3e 4.84e-05 5.22e-05 2.56e-05
Corner F1,1e − F2,3e 5.31e-03 1.29e-05 8.07e-05
Corner F1,1e − F3,3e 4.76e-03 2.92e-04 1.83e-05
Corner F2,1e − F3,1e 2.49e-03 1.21e-01 1.71e-03
Corner F2,1e − F1,3e 6.30e-06 1.57e-03 1.57e-05
Corner F2,1e − F2,3e 1.96e-05 6.59e-05 6.66e-06
Corner F2,1e − F3,3e 1.22e-05 8.09e-05 1.67e-05
Corner F3,1e − F1,3e 6.64e-03 1.14e-02 1.30e-02
Corner F3,1e − F2,3e 6.60e-02 1.15e-03 1.70e-01
Corner F3,1e − F3,3e 1.12e-01 2.02e-03 3.57e-04
Corner F1,3e − F2,3e 3.60e-01 2.26e-01 1.00e-01
Corner F1,3e − F3,3e 1.68e-01 3.60e-01 3.51e-02
Corner F2,3e − F3,3e 5.92e-01 7.51e-01 1.64e-03
Border F1,1e − F2,1e 3.80e-01 6.36e-01 8.40e-01
Border F1,1e − F3,1e 4.25e-03 1.91e-03 1.08e-01
Border F1,1e − F1,3e 9.91e-04 8.28e-04 1.24e-02
Border F1,1e − F2,3e 3.68e-03 4.73e-05 2.78e-02
Border F1,1e − F3,3e 7.93e-04 9.76e-06 1.28e-03
Border F2,1e − F3,1e 1.08e-02 8.57e-04 5.19e-02
Border F2,1e − F1,3e 2.54e-03 2.10e-03 7.41e-03
Border F2,1e − F2,3e 1.95e-02 1.75e-05 9.22e-03
Border F2,1e − F3,3e 1.98e-03 1.75e-04 2.60e-04
Border F3,1e − F1,3e 5.00e-02 3.80e-01 2.33e-01
Border F3,1e − F2,3e 2.59e-01 8.32e-02 6.06e-01
Border F3,1e − F3,3e 6.14e-02 2.23e-02 1.44e-02
Border F1,3e − F2,3e 9.57e-01 1.98e-01 4.03e-01
Border F1,3e − F3,3e 3.25e-01 5.00e-02 1.86e-01
Border F2,3e − F3,3e 9.46e-01 1.21e-01 5.80e-02
Scattered F1,1e − F2,1e 1.48e-02 7.34e-01 6.26e-01
Scattered F1,1e − F3,1e 6.24e-01 1.52e-02 6.70e-03
Scattered F1,1e − F1,3e 1.27e-03 1.78e-02 9.73e-02
Scattered F1,1e − F2,3e 4.21e-04 9.90e-03 3.58e-01
Scattered F1,1e − F3,3e 1.31e-03 2.33e-05 1.78e-03
Scattered F2,1e − F3,1e 2.64e-01 5.64e-03 4.60e-04
Scattered F2,1e − F1,3e 1.25e-01 3.00e-03 6.42e-02
Scattered F2,1e − F2,3e 2.87e-02 1.07e-02 3.07e-01
Scattered F2,1e − F3,3e 9.76e-02 2.10e-05 2.19e-03
Scattered F3,1e − F1,3e 4.37e-04 9.45e-01 4.00e-01
Scattered F3,1e − F2,3e 5.56e-04 9.31e-01 1.11e-01
Scattered F3,1e − F3,3e 2.49e-04 5.04e-03 4.56e-01
Scattered F1,3e − F2,3e 8.12e-01 9.18e-01 5.59e-01
Scattered F1,3e − F3,3e 8.69e-01 3.24e-03 1.96e-01
Scattered F2,3e − F3,3e 8.82e-01 1.01e-03 2.69e-02
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Figure 4.6: Boxplots of the duration of the successful validation runs of the best
strategies in the stable (left column), meandering (centre column)
and intermittent-meandering (right column) environments. The top
row shows the results of the corner scenario, the middle row shows
the results of the border scenario and the bottom row shows the
results of the scattered scenario.

Table 4.9: P-values of the Kolmogorov-Smirnov test applied to the durations of
successful evaluations

St. region Env. F1,1e F2,1e F3,1e F1,3e F2,3e F3,3e

Corner S. 2.80e-08 4.07e-04 3.29e-08 2.05e-07 3.06e-07 3.27e-07
Corner M. 3.69e-05 1.01e-05 2.68e-07 3.10e-04 2.32e-06 2.40e-05
Corner I. M. 1.65e-06 3.92e-05 5.15e-05 2.78e-06 3.15e-05 4.32e-04
Border S. 1.32e-05 2.09e-06 4.68e-04 1.82e-05 9.11e-06 2.35e-05
Border M. 1.13e-07 2.90e-05 5.83e-03 6.08e-06 1.02e-04 5.21e-04
Border I. M. 5.01e-07 2.71e-06 7.67e-05 1.47e-04 5.68e-07 1.05e-04
Scattered S. 5.41e-05 4.77e-04 1.04e-04 1.36e-04 4.71e-07 4.59e-04
Scattered M. 5.27e-04 1.98e-05 3.07e-06 8.66e-05 1.23e-04 2.13e-03
Scattered I. M. 1.98e-03 4.19e-05 1.29e-04 2.81e-05 1.74e-03 2.96e-05
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Table 4.10: P-values of the Friedman’s Anova applied to the durations of suc-
cessful evaluations

St. region S. Env. M. Env. I. M. Env.
Corner 5.55e-16 6.23e-03 1.46e-01
Border 1.38e-11 3.47e-02 9.70e-01
Scattered 2.53e-09 3.79e-03 1.53e-01

pairwise comparisons in those scenarios and the Bonferroni correction is used
to adjust the significance value to 3.33e-03. The results of the Wilcoxon test
(Table 4.11) show that the only statistically significant differences of the mean-
dering environment occur in the scattered scenario, where F3,3e is faster than
F1,3e and F2,3e. In the stable environment, the controllers evolved with F2,1e are
significantly slower than those evolved with F1,1e and F3,1e regardless of the start
region. Moreover, when departing from the border start region, F1,1e produces
faster searchers than F3,1e. Similarly to the success rate, the speed of the con-
trollers evolved with F2 increases with the use of three evaluations, particularly
in the stable environment, where with the corner start region it is significantly
better than F2,1 and with the scattered start region it ceases to be significantly
different from F1,3e. The same trend does not apply to the other fitness functions
as the Wilcoxon test found that increasing the number of evaluations produces
no statistically differences in F1 and that F3,3e is significantly slower than F3,1e

in one scenario.

Behavioural Diversity

The goal of this study is to devise an evaluation function that maximises the
success rate of the search strategies, while minimising the amount of evaluations
needed as well as the bias introduced into the evolutionary process. Due to the
low locality of GP, we measure the amount of bias introduced into the evolution
not through the genotypic diversity, but rather through the behavioural diversity
of the best strategies, which in turn is measured through the diversity in the
trajectories made during the validation. Figure 4.7 presents the boxplots of the
mean behavioural diversity of each search strategy, measured through the euc-
lidean distance between the trajectories performed during validation. Thus, the
higher the euclidean distance, the more diverse are the behaviours. Considering
a single evaluation, F2 often produces the most diverse behaviours, being gener-
ally followed by F1 and finally by F3. This is counterintuive as one would expect
that the function with the least amount of prior knowledge would produce the
most diverse behaviours. However, it is possible that using F1 the evolution
gets drawn to a local optima region of the search space where the behaviours
are all quite similar. When comparing with the three evaluation variants, the
general trend points to a reduction of the behavioural diversity versus the single
evaluation counterparts, which meets our expectations.

In order to draw more robust conclusions, a more thorough statistical analysis
is performed. Table 4.12 presents the results of the Kolmogorov-Smirnov test
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Table 4.11: Wilcoxon Test applied to the durations of successful evaluations

St. region Functions S. Env. M. Env I. M. Env.
Corner F1,1 − F2,1e 8.92e-05 2.67e-02 -
Corner F1,1 − F3,1e 1.02e-01 3.09e-01 -
Corner F1,1 − F1,3e 4.65e-01 1.66e-02 -
Corner F1,1 − F2,3e 8.31e-04 4.49e-02 -
Corner F1,1 − F3,3e 6.44e-01 5.71e-02 -
Corner F2,1 − F3,1e 8.19e-05 2.43e-02 -
Corner F2,1 − F1,3e 1.73e-06 3.15e-01 -
Corner F2,1 − F2,3e 1.38e-03 4.28e-01 -
Corner F2,1 − F3,3e 6.34e-06 3.49e-01 -
Corner F3,1 − F1,3e 3.32e-04 1.78e-01 -
Corner F3,1 − F2,3e 1.04e-03 1.53e-01 -
Corner F3,1 − F3,3e 5.19e-02 3.49e-01 -
Corner F1,3 − F2,3e 1.92e-06 8.29e-01 -
Corner F1,3 − F3,3e 4.99e-03 7.04e-01 -
Corner F2,3 − F3,3e 1.24e-05 9.10e-01 -
Border F1,1 − F2,1e 1.73e-06 1.70e-01 -
Border F1,1 − F3,1e 9.71e-05 5.38e-01 -
Border F1,1 − F1,3e 7.73e-03 4.69e-01 -
Border F1,1 − F2,3e 2.60e-06 1.16e-01 -
Border F1,1 − F3,3e 7.51e-05 6.44e-01 -
Border F2,1 − F3,1e 2.22e-04 4.99e-03 -
Border F2,1 − F1,3e 1.48e-02 9.05e-01 -
Border F2,1 − F2,3e 8.94e-01 1.41e-01 -
Border F2,1 − F3,3e 2.13e-01 5.04e-01 -
Border F3,1 − F1,3e 8.45e-01 7.86e-02 -
Border F3,1 − F2,3e 1.20e-03 3.85e-03 -
Border F3,1 − F3,3e 1.06e-01 3.68e-02 -
Border F1,3 − F2,3e 2.16e-05 6.56e-02 -
Border F1,3 − F3,3e 2.96e-03 8.61e-01 -
Border F2,3 − F3,3e 7.73e-03 5.45e-02 -
Scattered F1,1 − F2,1e 8.31e-04 2.56e-02 -
Scattered F1,1 − F3,1e 2.70e-02 6.00e-01 -
Scattered F1,1 − F1,3e 2.45e-01 5.30e-01 -
Scattered F1,1 − F2,3e 2.77e-03 1.11e-01 -
Scattered F1,1 − F3,3e 3.18e-01 4.78e-01 -
Scattered F2,1 − F3,1e 1.36e-05 3.00e-02 -
Scattered F2,1 − F1,3e 9.37e-02 1.99e-01 -
Scattered F2,1 − F2,3e 7.04e-01 6.58e-01 -
Scattered F2,1 − F3,3e 9.27e-03 8.73e-03 -
Scattered F3,1 − F1,3e 3.72e-05 1.16e-01 -
Scattered F3,1 − F2,3e 2.35e-06 1.11e-02 -
Scattered F3,1 − F3,3e 1.24e-05 7.04e-01 -
Scattered F1,3 − F2,3e 6.42e-03 6.56e-02 -
Scattered F1,3 − F3,3e 2.99e-01 2.26e-03 -
Scattered F2,3 − F3,3e 6.64e-04 7.16e-04 -
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Figure 4.7: Boxplots of the behavioural diversity of the validation runs of
the best strategies in the stable (left column), meandering (centre
column) and intermittent-meandering (right column) environments.
The top row shows the results of the corner scenario, the middle row
shows the results of the border scenario and the bottom row shows
the results of the scattered scenario.
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applied to the various sets of data. As can be seen, at a 95 % confidence inter-
val, none of the data sets can be considered to follow normal distributions and
thus non-parametric tests must be applied. The results of the Friedman’s Anova
(Table 4.13) show that there are statistically significant differences between the
behavioural diversity of the strategies in all environments and start regions. As
a result, the Wilcoxon test is applied to perform pairwise comparisons of the
various evaluation methods. The Bonferroni correction is once again applied
to adjust the significance value to 3.33e-03. The results of the Wilcoxon test
(Table 4.14) show that, using a single evaluation, F2,1e produces significantly
higher levels of behavioural diversity than F1,1e and F3,1e in two scenarios each.
In turn, F1,1e produces significantly more diverse behaviours than F2,1e and F3,1e

in respectively one and three scenarios. F3,1e produces the least amount of beha-
vioural diversity, only being able to outperform F1,1e and F2,1e in the scattered
setting of the stable environment.

Using three evaluations the roles are reversed, with F1,3e and F3,3e producing
significantly more diversity than F2,3e in two scenarios. Overall, F1,3e and F3,3e

can be considered to perform equivalently, as each one of them is able to out-
perform the other in two scenarios. Increasing the number of evaluations leads
to a general loss of diversity in each function, which is more prevalent in F2,3e

and F3,3e than in F1,3e.

Table 4.12: P-values of the Kolmogorov-Smirnov test applied to the behavioural
diversities

St. region Env. F1,3e F1,1e F2,1e F3,1e F2,3e F3,3e

Corner S. 2.25e-06 1.60e-06 2.01e-08 1.35e-09 1.02e-08 5.88e-13
Corner M. 2.29e-06 8.22e-06 2.34e-08 6.09e-07 7.15e-07 1.44e-05
Corner I. M. 6.26e-06 3.16e-06 2.48e-07 5.76e-08 7.02e-07 1.47e-05
Border S. 1.14e-08 4.70e-06 6.75e-07 4.43e-07 1.48e-04 7.29e-07
Border M. 4.87e-07 1.58e-09 4.02e-07 2.69e-06 2.37e-07 3.78e-06
Border I. M. 1.02e-06 1.47e-06 8.67e-07 2.79e-07 1.29e-04 1.05e-06
Scattered S. 1.73e-06 1.91e-07 3.60e-04 4.27e-05 1.78e-06 4.05e-06
Scattered M. 2.07e-06 6.27e-05 3.77e-08 6.48e-06 1.53e-05 1.67e-03
Scattered I. M. 4.23e-04 2.02e-05 4.71e-03 6.13e-04 3.76e-06 4.95e-06

Table 4.13: P-values of the Friedman’s Anova applied to the behavioural di-
versities

St. region S. Env. M. Env. I. M. Env.
Corner 4.23e-20 6.89e-09 3.19e-17
Border 9.42e-07 2.74e-13 1.09e-08
Scattered 1.79e-08 7.21e-05 3.46e-06
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Table 4.14: P-values of the Wilcoxon test applied to the behavioural diversities

St. region Functions S. Env. M. Env I. M. Env.
Corner F1,1e − F2,1e 7.71e-04 9.59e-01 1.11e-03
Corner F1,1e − F3,1e 2.85e-02 9.27e-03 7.51e-05
Corner F1,1e − F1,3e 6.32e-05 1.96e-03 2.35e-06
Corner F1,1e − F2,3e 1.80e-05 6.89e-05 4.29e-06
Corner F1,1e − F3,3e 4.17e-01 1.89e-04 1.92e-06
Corner F2,1e − F3,1e 2.41e-03 6.04e-03 9.84e-03
Corner F2,1e − F1,3e 1.73e-06 9.63e-04 3.88e-06
Corner F2,1e − F2,3e 1.73e-06 1.49e-05 2.37e-05
Corner F2,1e − F3,3e 2.88e-06 1.48e-04 4.29e-06
Corner F3,1e − F1,3e 3.18e-06 5.72e-01 8.84e-04
Corner F3,1e − F2,3e 1.92e-06 1.99e-01 8.31e-04
Corner F3,1e − F3,3e 2.61e-04 1.25e-01 3.88e-04
Corner F1,3e − F2,3e 3.68e-02 4.05e-01 4.53e-01
Corner F1,3e − F3,3e 1.97e-05 4.05e-01 9.59e-01
Corner F2,3e − F3,3e 7.69e-06 9.75e-01 5.86e-01
Border F1,1e − F2,1e 2.22e-04 5.44e-01 6.84e-03
Border F1,1e − F3,1e 6.14e-01 8.94-04 1.71e-03
Border F1,1e − F1,3e 3.85e-03 5.32e-03 2.58e-03
Border F1,1e − F2,3e 5.04e-01 1.02e-05 9.32e-06
Border F1,1e − F3,3e 5.04e-01 1.25e-04 3.38e-03
Border F2,1e − F3,1e 7.16e-04 1.04e-02 2.89e-01
Border F2,1e − F1,3e 1.02e-05 3.38e-03 1.41e-01
Border F2,1e − F2,3e 7.27e-03 3.72e-05 1.96e-03
Border F2,1e − F3,3e 2.58e-03 6.15e-04 4.91e-01
Border F3,1e − F1,3e 2.58e-03 1.92e-01 1.65e-01
Border F3,1e − F2,3e 6.44e-01 5.31e-05 7.27e-03
Border F3,1e − F3,3e 8.77e-01 1.11e-03 5.30e-01
Border F1,3e − F2,3e 1.85e-02 2.26e-03 3.85e-03
Border F1,3e − F3,3e 5.32e-03 3.16e-03 3.18e-01
Border F2,3e − F3,3e 4.41e-01 4.91e-01 7.71e-04
Scattered F1,1e − F2,1e 3.61e-03 6.56e-02 6.58e-01
Scattered F1,1e − F3,1e 3.32e-04 4.78e-01 6.73e-01
Scattered F1,1e − F1,3e 9.78e-02 5.67e-03 1.75e-02
Scattered F1,1e − F2,3e 3.60e-01 6.84-03 2.45e-01
Scattered F1,1e − F3,3e 6.88e-01 4.05e-01 1.48e-02
Scattered F2,1e − F3,1e 3.88e-06 8.22e-03 9.43e-01
Scattered F2,1e − F1,3e 6.84e-03 9.71e-05 2.18e-02
Scattered F2,1e − F2,3e 5.71e-02 2.22e-04 1.59e-01
Scattered F2,1e − F3,3e 7.52e-02 3.68e-02 3.38e-03
Scattered F3,1e − F1,3e 1.04e-02 7.27e-03 8.73e-03
Scattered F3,1e − F2,3e 8.92e-05 1.17e-02 8.97e-02
Scattered F3,1e − F3,3e 8.19e-05 5.86e-01 1.04e-03
Scattered F1,3e − F2,3e 4.49e-02 7.66e-01 1.36e-04
Scattered F1,3e − F3,3e 1.40e-02 2.11e-03 1.92e-06
Scattered F2,3e − F3,3e 4.78e-01 7.27e-03 3.16e-02
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4.2.2 Final remarks
This section focused on devising the evaluation function that shall be used
throughout the remaining of the document. The goal was to design a function
whose output provided a good indication of the quality of the search strategy,
both in terms of success rate and duration of the searches, with the least amount
of evaluations to minimise the computational overhead. We started by using a
simple function to study the influence of the amount of evaluations and con-
cluded that there were little gains past three evaluations. We then proceeded
to investigate whether complexifying the function led to better results. We de-
signed and compared three evaluation functions for odour source localisation,
each having a single-evaluation and a three-evaluation variants. The results were
highly dependent on the scenarios, with no clear patterns, but overall showed
that the three evaluation-functions tend to produce significantly higher success
rates than their single-evaluation counterparts, but at the cost of lower behavi-
oural diversity. In particular, F2 was found to produce equivalent success rates
and, in some scenarios, higher levels of behavioural diversity than F1. However,
it does so at the cost of having longer searches in some settings, which could be
due to the search strategies evolved with F2 making an additional effort to keep
in contact with the chemical plume than those produced by the other fitness
functions. Still, the median search times are well below the time limit (note
that the time limit is 600 s and in all scenarios the median search time is be-
low 500 s) and thus are deemed acceptable. It should also be noted that the
results reported in this chapter are environment-dependent. In a previous work
[Macedo et al., 2021a] we showed that, in an scenario with a meandering plume
with little intermittency that extends to the downwind border of the environ-
ment, F2,1e achieves better success rates that the remaining single-evaluation
functions, being even equivalent to F1,3e.

Throughout the rest of this thesis we shall use F2,3e for three main reasons: (1)
one of the motivations for evolving white-box controllers is to be able to draw
insights from them and so, it is interesting to use the function that creates the
most diverse behaviours with the minimum amount of bias; (2) when using three
evaluations, there are only two settings (out of nine) where F3 attains higher
success rates than F2. Yet, it is a more complex function, with two behavioural
components that introduce more prior knowledge into the system, which may
condition the evolution of cooperative multi-robot behaviours (e.g., the control-
lers would receive better fitness to search the plume crosswind or downwind
than moving towards neighbours sensing odour); and (3) we expect that the
encouragement to keep in touch with the chemical plume will benefit the evol-
ution in more complex scenarios, such as Evolutionary Infotaxis or the swarm
approaches, where we hope that it will respectively reduce Infotaxis’ tendency
to keep exploring the environment after finding the plume and encourage co-
operation between the robots, so that with multiple agents tracking the plume
the chance of loosing it is reduced.
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4.3 Evolutionary Infotaxis
Infotaxis (Section 2.3.1) is a popular method for estimating the location of a
chemical source by fitting a gas distribution model to environmental meas-
urements. Recent studies [Ruddick et al., 2018, Rodríguez et al., 2017, Mar-
tin Moraud and Martinez, 2010] have shown that one of its main drawbacks is
the need for carefully selecting the parameters for its gas distribution model, as
they have a great influence on its performance. As a result, most of Infotaxis’
works perform the experiments exclusively in simulation, using the same ex-
act model for mimicking the real world and for computing the probability of
the odour source location. Such approaches have little realism, as rather than
sampling an instantaneous chemical plume, they sample models that provide a
distribution of the time-averaged odour concentration. To make matters worse,
the realism of those experiments is further reduced by the common assumption
that the odour detections and non-detections are independent events.

In this section we take a different path, where the robots use Infotaxis to track in-
stantaneous chemical plumes with different characteristics. We propose two evol-
utionary approaches for automatically optimizing the parameters of Infotaxis’
gas distribution model (Df , R and τ from Equation 2.21) for each scenario. Both
approaches shall do so with a genetic algorithm, representing each individual by
a vector of three real numbers (i.e., the parameters to be optimised).

The approaches differ mainly in the fitness computation, and consequently on
the purpose of evolution. The first approach, InfotaxisDB (IDB) aims to evolve
the parameters that best emulate the time-averaged chemical dispersion in the
environment. It is data-based i.e., it assumes complete knowledge of the envir-
onment in both time and space, to compute the mean chemical dispersion over
the entire experiment. The mean plume is then used to compute the fitness of
each individual, by comparing the plume produced with its parameters to the
ground-truth through the Root Mean Squared Error (RMSE).

The second approach is named Evolutionary Infotaxis (EI), and aims to evolve
the parameters that maximise the robot’s performance in locating the chemical
source. As such, the fitness of each individual (set of parameters) is computed
by simulating an agent performing the actual search. These simulation-based
experiments are fundamentally different to the existing ones in the literature,
as they consist of using a mobile robot to sample an instantaneous, meandering
plume, where the detections and non-detections of odour are correlated. Based
on the findings of the previous section, F2,3e shall be used to evaluate the indi-
viduals, setting the fitness as the mean value of three evaluations. The goal of
the EAs is to minimise this function, i.e., the lower its value, the better.

At the end of evolution, we shall compare the success rates (Sr) and the duration
of the successful evaluations (Ts) of attained with the parameters of IDB, EI and
by the search strategies evolved with GSynGP, which we will refer to as G.
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4.3.1 Experimental results
As previously said, the individuals evolved by EI are represented by a vector of
three real numbers: Df , R and τ . In order to maximise the diversity of the initial
individuals, the initial population is created using Latin Hypercubes [Eiben and
Smith, 2015]. Each variable is bounded in a pre-determined domain, chosen
by taking into account other works in the literature, being Df ∈ [0.01, 10],
R ∈ [0.1, 500] and τ ∈ [0.5, 1000]. The individuals are recombined through
arithmetical crossover, with αcross = 0.5, and mutated with a Gaussian operator,
that is applied with a probability of 1 % and with each σ being one tenth of the
variable’s domain width. The remaining parameters are shared with GSynGP
and have already been presented on Table 4.2.

Thirty independent trials were conducted for each environment and, in the case
of EI, also for each start region. This section reports the experimental results,
starting by presenting the models produced by the best individuals for each en-
vironment and moving on to compare their performance in locating the chemical
source.

4.3.1.1 Environmental models

We start by presenting the mean chemical plumes (ground-truth) for each envir-
onment (top row of Figure 4.8). In Section 4.1.1 we stated that each independent
trial has a different instance of the assigned environment. For the sake of brevity,
we shall only present here the first of the thirty instances. As you can see, most
of the environment has no detectable odour. However, both Infotaxis and the
source seeking approaches that we propose do not use the exact chemical con-
centrations, but rather binary detections. For that reason, we chose to compute
the mean binary chemical plume for each environment (bottom row of Figure
4.8)), i.e., the time-average of the plumes that may be detected by our sensors,
and use that as the target for IDB.

The best parameters found by IDB (lowest RMSE) and by EI (overall best in
validation, see next section) are presented on Table 4.15 and the corresponding
models are plotted on Figure 4.9. As you can see, IDB makes better approx-
imations of the ground-truth, as is to be expected. Still, its models contain
detectable odour up to the downwind border of the arena, which may mislead
the robot. In turn, EI creates models where the plume dissipates very quickly in
the stable and meandering environment, which is likely to lead the robot to move
faster towards the source once odour is found. Interestingly, in the corner and
border settings of the intermittent-meandering environment, EI created models
that resemble that of IDB, but with broader plumes.

4.3.1.2 Performance analysis

This section analysis the performance of IDB and EI, comparing it to that of
tree-based controllers evolved with GSynGP through F2,3e. The results presen-
ted are the results of the validation step, where the 30 resulting solutions from
each approach are re-evaluated on the thirty instances of each environment and
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Figure 4.8: Mean chemical plumes (top) and mean binary chemical plumes (bot-
tom) of the first instance of the stable (left), meandering (centre) and
intermittent-meandering (right).

start-region combination. The success rates are plotted on Figure 4.10. As
can be seen, IDB typically attains much lower success rates than the other ap-
proaches. The sole exception is in the stable environment with the scattered
start region, where it attains a higher median success rate than the other ap-
proaches. Moreover, it is interesting that the tree-based controllers often attain
similar success rates to EI. In order to be able to draw robust conclusions, we
proceed to perform a statistical analysis. The Kolmogorov-Smirnov test (Table
4.16) shows that none of the data can be considered to follow normal distribu-
tions. As a result, the Friedman’s Anova is applied (Table 4.17), showing that
there are statistically significant differences between in all scenarios.

The Wilcoxon test is then applied to perform pairwise comparisons (Table 4.18),
with the Bonferroni correction being used to adjust the significance value to
1.67e-02. This test shows that there are statistical significant differences in most
comparisons. When departing from the corner start region, IDB is found to be
consistently outperformed by EI and GSynGP. EI significantly outperforms G
in the I. M. environment, while attaining equivalent success rates in the S. and
M. environments. Using the border start region, IDB is outperformed by EI in
all environments and by G in the M. environment. Furthermore, EI performs
equivalently to G in the S. environment and outperforms it in the two other
environments. Finally, when using the scattered start regions, IDB significantly
outperforms G in the S. environment, while being outperformed by G in the two
other environments. IDB is also outperformed by EI in the M. and I. M. environ-
ments, while performing equivalently to it in the S. environment. Furthermore,
EI outperforms G in the M. environment, while performing equivalently to it in
the two others.

Moving on to analyse the duration of successful evaluations (Figure 4.11), it
is interesting to see that EI is typically the fastest approach, followed by G.
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Figure 4.9: Gas distribution models parametrised with the best values found for
IDB (top), EI for the corner scenario (second row) EI for the border
scenario (third row) and EI for the scattered scenario (bottom row),
for the first instance of the stable (left), meandering (centre) and
intermittent-meandering (right).
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Figure 4.10: Success rates in validation for the S. (left column) M. (centre
column) and I. M. environments, with the corner (top row), border
(centre) and scattered (bottom) start regions.
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Figure 4.11: Duration of successful runs in validation for the S. (left column) M.
(centre column) and I. M. environments, with the corner (top row),
border (centre) and scattered (bottom) start regions.
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Table 4.15: Best parameters for Infotaxis

Approach Env. Start region Df R τ

IDB S. - 6.563e-02 2.847e+01 5.002e+02
IDB M. - 5.577e-01 8.085e-00 6.180e+01
IDB I. M. - 1.054e-00 7.171e-01 2.376e+03
EI S. Corner 2.832e-01 9.115e+01 3.833e-00
EI M. Corner 6.089e-01 3.325e+02 5.180e-01
EI I. M. Corner 2.3404-00 2.195e-01 6.179e+02
EI S. Border 2.030e-02 1.552e-01 3.764e+01
EI M. Border 1.400e-01 2.151e+02 9.527e-00
EI I. M. Border 2.500e-00 1.286e-01 9.608e+02
EI S. Scattered 2.213e-02 1.0e-01 2.637e+01
EI M. Scattered 2.805e-01 3.281e+02 5.326e-01
EI I. M. Scattered 3.932e-02 1.884e+01 4.988e+01

Table 4.16: P-values of the Kolmogorov-Smirnov test applied to the success rates

St. region Env. IDB EI G
Corner S. 1.02e-20 2.67e-06 3.32e-05
Corner M. 1.44e-20 1.61e-05 1.77e-04
Corner I. M. 1.28e-08 8.16e-05 2.88e-07
Border S. 7.68e-05 2.38e-06 9.44e-04
Border M. 1.23e-05 6.49e-07 1.36e-04
Border I. M. 1.42e-07 2.23e-07 1.25e-05
Scattered S. 1.73e-06 1.30e-05 2.94e-05
Scattered M. 8.16e-10 2.01e-05 3.00e-05
Scattered I. M. 1.80e-03 2.46e-05 1.70e-06

However, in the I. M. environment, there is little difference between EI and G.
Applying the Kolmogorov-Smirnov test (Table 4.19) it can be seen that none
of the data can be considered to follow normal distributions. As a result, the
Friedman’s Anova is applied (Table 4.20), showing that there are statistically
significant differences in all scenarios. As a result, the Wilcoxon test is applied
to perform pairwise comparisons (Table 4.21), with the Bonferroni correction
being used to adjust the significance value to 1.67e-02. Its results show that
most comparisons contain statistically significant differences. The exceptions are
when comparing EI and G in the I. M. Env. with the corner and scattered start
regions, and also in the S. environment with the scattered start region.

To assess the reason behind the different performances, we plot the trajectories
made by the best individual of each approach in the first validation run (Figure
4.12). As can be seen, G tends to either perform zigzag or spiral motions to find
or reacquire the plume, proceeding to move straight upwind when in the presence

— 119 —



CHAPTER 4. SINGLE-ROBOT APPROACHES FOR ODOUR SOURCE
LOCALISATION

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
S. Env. - corner

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
M. Env. - corner

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
I. M. Env. - corner

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
S. Env. - border

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
M. Env. - border

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
I. M. Env. - border

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
S. Env. - scattered

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
M. Env. - scattered

G
EI
IDB

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40
I. M. Env. - scattered

G
EI
IDB

Figure 4.12: Trajectories of successful runs in validation for the S. (left column)
M. (centre column) and I. M. environments, with the corner (top
row), border (centre) and scattered (bottom) start regions.
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Table 4.17: P-values of the Friedman’s Anova applied to the success rates

St. region S. Env. M. Env. I. M. Env.
Corner 1.10e-05 1.51e-10 1.45e-04
Border 3.37e-02 6.64e-12 3.76e-07
Scattered 2.21e-04 3.86e-08 3.13e-06

Table 4.18: P-values of the Wilcoxon test applied to the success rates

St. region Functions S. Env. M. Env I. M. Env.
Corner IDB - EI 4.97e-05 1.68e-06 3.85e-04
Corner IDB - G 8.81e-06 2.53e-06 9.84e-03
Corner EI - G 3.93e-01 3.61e-01 4.55e-03
Border IDB - EI 4.71e-03 1.69e-06 1.11e-05
Border IDB - G 1.33e-01 2.95e-06 7.81e-02
Border EI - G 6.40e-02 6.07e-04 5.50e-05
Scattered IDB - EI 5.83e-02 1.71e-06 4.35e-05
Scattered IDB - G 2.79e-06 9.36e-05 9.70e-05
Scattered EI - G 1.78e-01 1.19e-03 8.02e-01

of odour. In turn, EI tends to make long straight motions, covering large portions
of the environment and typically also moving upwind when sensing odour. Still,
there are scenarios (S. Env. with the corner start region and M. Env. with the
scattered start region) where the robot makes extra motions in other directions
to refine its probability map. Finally, IDB tends to make a more thorough search
of the environment, with less spacing between passes, which often causes it to
run out of time quite far from the location of the source.

This results partially support the existing literature, in stating that Infotaxis’
is very dependent of its parameters. However, EI shows that the parameters
that better match the environment are often not the ones that lead to the best
performance in locating the source. On the other hand, the controllers evolved
by G attain significantly lower success rates than EI in four out of nine scenarios,
and are also slower (in terms of control steps) than EI in six scenarios. However,
the success rates of their controllers are often on par with each other, with the
best individual of G performing better than the one of EI in some instances.
Moreover, the tree-based controllers have much less computational overhead
than those of Infotaxis, with each control step running approximately 7 times
faster.

4.4 Genetic Programming Infotaxis
Having used EAs to evolve source seeking strategies from the ground-up (Section
4.2) and also for optimising the parameters of a probabilistic approach (Section
4.3) we hypothesised that the combination of both methods could produce bet-
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Table 4.19: P-values of the Kolmogorov-Smirnov test applied to the duration of
successful runs

St. region Env. IDB EI G
Corner S. 8.57e-04 1.78e-05 3.06e-07
Corner M. 7.81e-19 2.13e-04 2.32e-06
Corner I. M. 5.06e-06 4.17e-04 3.15e-05
Border S. 8.00e-05 4.20e-04 9.11e-06
Border M. 2.17e-06 2.49e-05 1.02e-04
Border I. M. 1.17e-12 2.24e-05 5.68e-07
Scattered S. 8.40e-05 6.49e-06 4.71e-07
Scattered M. 1.93e-06 1.09e-04 1.23e-04
Scattered I. M. 9.01e-05 1.16e-04 1.74e-03

Table 4.20: P-values of the Friedman’s Anova applied to the duration of success-
ful runs

St. region S. Env. M. Env. I. M. Env.
Corner 9.36e-14 3.00e-12 1.09e-06
Border 2.53e-11 3.07e-09 2.50e-05
Scattered 1.67e-06 2.42e-07 5.39e-07

ter results, i.e., that evolution could find a tree-based controller which made use
of Infotaxis only under specific conditions, combining the strengths of both ap-
proaches. The motivation for this experiment is three-fold: (1) producing search
strategies with overall better performance (success rate); (2) produce more effi-
cient strategies by only using Infotaxis when it is needed; and (3) by analysing
the evolved controllers, understanding in which situations it is more beneficial to
use Infotaxis or simpler behaviours. As a result, in this section we propose GPIn-
fotaxis (GPI), a method based on Geometric Syntactic Genetic Programming to
evolve search strategies that combines bio-inspired building blocks (i.e., percep-
tions and behaviours) with Infotaxis. This is done by including an additional
symbol Infotaxis into the terminal set of GSynGP, which commands the robot
to make a single infotactic movement. In order for the infotactic behaviour to
work, the probability map for the location of the odour source must be updated
in the background during the robot’s operation. In Infotaxis, the probability
map is required to select each movement and thus must be constantly updated,
leading to a high computational cost. Conversely, as GPInfotaxis only requires
the probability map for the infotactic behaviour, it can be updated periodically.
The update frequency is an adjustable parameter, leading to a trade-off between
computational expense and performance. In this work, it is set to 0.5 Hz, i.e.,
every four simulation steps. Based on the findings of the previous section, the
parameters of Infotaxis’ gas parameter model are optimised by EI. It is import-
ant to note that all Infotaxis nodes use the same parameters. While it would
be interesting to allow evolution to parametrise each Infotaxis node whithin a
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Table 4.21: P-values of the Wilcoxon test applied to the duration of successful
runs

St. region Functions S. Env. M. Env I. M. Env.
Corner IDB - EI 1.73e-06 1.73e-06 6.98e-06
Corner IDB - G 1.73e-06 1.73e-06 2.83e-04
Corner EI - G 1.73e-06 9.32e-06 1.75e-02
Border IDB - EI 1.73e-06 1.73e-06 8.47e-06
Border IDB - G 1.15e-04 6.98e-06 8.61e-03
Border EI - G 2.60e-06 1.89e-04 1.32e-02
Scattered IDB - EI 6.32e-05 2.60e-05 5.22e-06
Scattered IDB - G 2.84e-05 7.69e-06 8.19e-05
Scattered EI - G 2.21e-01 1.47e-01 3.49e-01

GPInfotaxis individual, that would imply that each Infotaxis node would have
its own probability map. As a result, the computational cost (both time and
memory) would grow linearly with the amount of Infotaxis nodes included in
each tree, making the approach infeasible.

4.4.1 Experimental results
Similarly to previous sections, thirty independent trials were made for each
algorithm and each possible combination of environment and start region. The
parameters presented in Section 4.2 were also used for these experiments, with
the addition of the Infotaxis node to the terminal set. For each scenario, the
Infotaxis nodes were parametrised with the corresponding best values found by
EI, as presented on Table 4.15. Afterwards, a validation step took place where
the resulting solutions were re-evaluated on the thirty instances of each scenario.
The success rates attained in validation are plotted in Figure 4.13. As can be
seen, GPI attains higher success rates than its counterparts in all settings, with
its best individuals reaching at least 80 % in all scenarios except the most difficult
one (I. M. Env.-Scattered).

To be able to draw more robust conclusions, we proceed to the statistical ana-
lysis, where the Kolmogorov test (Table 4.22) shows that none of the data can
be considered to follow normal distributions. As a result, the Friedman’s Anova
is applied (Table 4.23), showing that there are statistically significant differences
in all scenarios except the meandering environment with the scattered start re-
gion. We thus apply Wilcoxon (Table 4.24) test to perform pairwise comparisons
in all scenarios where the Friedman’s Anova found significant differences, being
the Bonferroni correction used to adjust the significance value to 1.67e-02. Its
results show that GPI produces significantly higher success rates than G in all
scenarios, existing a single case (stable environment with the border start re-
gion) where it does not significantly outperform EI, producing equivalent success
rates. Furthermore, the Wilcoxon test shows that EI significantly outperforms
G in five scenarios, performing equivalently in the remaining ones.
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Figure 4.13: Boxplots of the success rates in validation for the S. (left column)
M. (centre column) and I. M. environments, with the corner (top
row), border (centre) and scattered (bottom) start regions.
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Figure 4.14: Boxplots of the durations of successful runs in validation for the
S. (left column) M. (centre column) and I. M. environments, with
the corner (top row), border (centre) and scattered (bottom) start
regions.
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Table 4.22: P-values of the Kolmogorov-Smirnov test applied to the validation
success rates

St. region Env. G EI GPI
Corner S. 3.32e-05 2.67e-06 2.23e-09
Corner M. 1.77e-04 1.61e-05 8.53e-10
Corner I. M. 2.88e-07 8.16e-05 1.62e-07
Border S. 9.44e-04 2.38e-06 8.83e-05
Border M. 1.36e-04 6.49e-07 2.96e-05
Border I. M. 1.25e-05 2.23e-07 3.01e-06
Scattered S. 2.94e-05 1.30e-05 1.02e-09
Scattered M. 3.00e-05 2.01e-05 3.80e-06
Scattered I. M. 1.70e-06 2.46e-05 7.24e-07

Table 4.23: P-values of the Friedman’s Anova applied to the validation success
rates

St. region S. Env. M. Env. I. M. Env.
Corner 1.77e-08 7.14e-10 6.39e-05
Border 1.97e-04 2.67e-10 2.41e-11
Scattered 1.26e-07 5.34e-02 4.07e-03

Having assessed the success rates of each approach, we now focus on the time
needed to locate the chemical source in the successful evaluations, which are
plotted in Figure 4.14. As can be seen, EI produces the fastest searches in
the S. and M. environments with the corner start region. However, other scen-
arios, the approaches seem to take more similar amounts of time. Once again, a
statistical analysis is conducted to draw robust conclusions. The Kolmogorov-
Smirnov test is first applied (Table 4.25) showing that none of the data can be
considered to follow normal distributions. As a result, the Friedman’s Anova is
applied (Table 4.26), showing that there are statistically significant differences
between the three approaches in six scenarios. The Wilcoxon test is then ap-
plied to perform pairwise comparisons in the scenarios identified (Table 4.27),
being the Bonferroni correction used to adjust the significance value to 1.67e-02.
Its results show that GPI consistently produces faster searches than G in the
six remaining scenarios. However, EI is significantly faster than GPI in three
scenarios, performing equivalently in the remaining ones. In turn, EI is faster
than G in four scenarios, requiring equivalent amounts of time in the remaining
ones to locate the chemical source.

4.4.2 Analysis of the best search strategies
In order to gain insight regarding when Infotaxis is more useful, this section
analyses the best evolved controller by GPI for each scenario (Algorithms 4.1
to 4.9). Note that for the sake of clarity, some controllers had introns removed.
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Table 4.24: P-values of the Wilcoxon test applied to the validation success rates

St. region Functions S. Env. M. Env I. M. Env.
Corner G - EI 3.93e-01 3.61e-01 4.55e-03
Corner G - GPI 5.51e-06 2.01e-06 1.40e-05
Corner EI - GPI 4.42e-06 2.52e-06 1.67e-02
Border G - EI 6.40e-02 6.07e-04 5.50e-05
Border G - GPI 2.06e-05 1.89e-06 1.70e-06
Border EI - GPI 6.87e-02 4.77e-06 2.37e-05
Scattered G - EI 1.78e-01 - 8.02e-01
Scattered G - GPI 1.72e-06 - 1.52e-03
Scattered EI - GPI 5.47e-05 - 2.20e-03

Table 4.25: P-values of the Kolmogorov-Smirnov test applied to the duration of
successful runs

St. region Env. G EI GPI
Corner S. 3.06e-07 1.78e-05 5.78e-05
Corner M. 2.32e-06 2.13e-04 1.05e-04
Corner I. M. 3.15e-05 4.17e-04 1.71e-05
Border S. 9.11e-06 4.20e-04 1.89e-05
Border M. 1.02e-04 2.49e-05 1.44e-04
Border I. M. 5.68e-07 2.24e-05 1.01e-04
Scattered S. 4.71e-07 6.49e-06 1.76e-04
Scattered M. 1.23e-04 1.09e-04 4.52e-04
Scattered I. M. 1.74e-03 1.16e-04 1.01e-03

Still, the property of GSynGP holds for GPI controllers, as they original had a
mean size of approximately 13.2 nodes, and after simplified their mean size is
approximately of 8.56 nodes. Moreover, some controllers had no introns to start
with.

At a glance, it is interesting to note that all controllers include at least one
Infotaxis node. Moreover, the infotactic behaviours tend be applied to find or
reacquire the chemical plume. The controller evolved for the stable environment
with the corner start region (Algorithm 4.1) starts by checking if the robot is
currently sensing odour (line 1) and, if so, moves twice upwind (respectively by
0.5 m in line 2 and by 0.237 m in line 3) followed by moving randomly for 0.65 m
(line 4). If the robot is not currently sensing odour, it resorts to Infotaxis to
either find or reacquire the plume (line 6).

The strategy evolved for the stable environment with the border start region
(Algorithm 4.2) is the most complex of all. Still, it starts by checking if odour
is currently being sensed (line 1) and, if so, moves upwind for 0.234 m (line
2). After this motion, if the robot has sensed odour in the past 5 s, it moves
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Algorithm 4.1: Best strategy evolved by GPInfotaxis in the stable en-
vironment with the corner start region.

1 if SO() then
2 moveUpwind(d = 0.5)
3 moveUpwind(d = 0.237)
4 moveRandom(d = 0.65)
5 else
6 Infotaxis()

Algorithm 4.2: Best strategy evolved by GPInfotaxis in the stable en-
vironment with the border start region.

1 if SO() then
2 moveUpwind(d = 0.234)
3 if HSO(t = 5) then
4 moveUpwind(d = −0.105)
5 else
6 wanderUpwind()
7 if SO() then
8 spiral(disinc = 0.125, iters = 4, term = PL(t = 30))
9 else

10 spiral(disinc = 0.102, iters = 3, term = HSO(t = 30))

11 else
12 if HSO(t = 31) then
13 moveUpwind(d = 0.25)
14 else
15 moveUpwind(d = 0.837)

16 if HSO(t = 1) then
17 wanderUpwind()
18 else
19 Infotaxis()
20 if SO() then
21 wanderDownwind()
22 else
23 Infotaxis()
24 Infotaxis()
25 moveUpwind(d=0.5)

26 Infotaxis()
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Table 4.26: P-values of the Friedman’s Anova applied to the duration of success-
ful runs

St. region S. Env. M. Env. I. M. Env.
Corner 1.09e-09 1.79e-06 5.53e-04
Border 9.87e-09 1.23e-03 1.07e-01
Scattered 1.19e-02 5.31e-01 1.07e-01

Table 4.27: P-values of the Wilcoxon test applied to the duration of successful
runs

St. region Functions S. Env. M. Env I. M. Env.
Corner G - EI 1.73e-06 9.32e-06 1.75e-02
Corner G - GPI 1.49e-05 4.73e-06 1.06e-04
Corner EI - GPI 8.94e-04 1.31e-01 1.25e-01
Border G - EI 2.60e-06 1.89e-04 -
Border G - GPI 3.72e-05 1.06e-01 -
Border EI - GPI 3.88e-04 2.16e-05 -
Scattered G - EI 2.21e-01 - -
Scattered G - GPI 1.29e-03 - -
Scattered EI - GPI 5.04e-01 - -

downwind (note the minus sign in the step length) for 0.105 m (line 4). If not,
the robot wanders upwind (line 6) and, depending on the detection of odour,
either spirals four times halting if it has lost the plume for longer than 30 s (line
8) or three times until considering that it has sensed odour in the past 30 s (line
10). If the first check for odour detections returns false, the robot moves upwind
(with the step length depending on whether odour was sensed in the past 31 s
lines 12 to 15). Afterwards, the robot checks if it has sensed odour in the past
second and, if so, wanders upwind (lines 16 and 17). Otherwise, it makes an
infotactic motion and checks if that leads it to sense odour, in which case it
wanders downwind (lines 19 to 21). If not, it makes two infotactic movements
followed by moving straight upwind for 0.5 m (lines 23 to 25). Note that due
to the size of the simulation grid cell size being 1 m, this may result in moving
2 m according to Infotaxis and 0.5 m upwind. Finally, regardless of the choices
made, an infotactic motion is made (line 26).

The strategy evolved for the scattered start region (Algorithm 4.3) is much
simpler than the previous one. The robot starts by checking for current odour
detections (line 1). If it is sensing odour, it wanders downwind (for the predefined
step length of 0.5 m) followed by an infotactic motion (lines 2 and 3), which may
lead the robot 1 m in any direction. If no odour is detected, the robot performs
an infotactic motion and checks if it has sensed odour in the past second (lines
5 and 6). If so, it moves randomly (line 7), otherwise, it performs Infotaxis once
again (line 9). Interestingly, this strategy performs no explicit upwind motions
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Algorithm 4.3: Best strategy evolved by GPInfotaxis in the stable en-
vironment with the scattered start region.

1 if SO() then
2 wanderDownwind()
3 Infotaxis()
4 else
5 Infotaxis()
6 if HSO(t = 1) then
7 moveRandom(d = 0.5)
8 else
9 Infotaxis()

when sensing odour, resorting to Infotaxis or the random movements to move the
robot closer to the source when in contact with the plume. This may simply be
due to insufficient evolution time, as replacing the wanderDownwind motion by
moveUpwind is bound to lead to better results. Thankfully, due to the white-box
nature of the controllers, such modification could easily be made.

Algorithm 4.4: Best strategy evolved by GPInfotaxis in the meandering
environment with the corner start region.

1 if SO() then
2 wanderUpwind()
3 else
4 Infotaxis()

Algorithm 4.5: Best strategy evolved by GPInfotaxis in the meandering
environment with the border start region.

1 if SO() then
2 wanderUpwind()
3 moveUpwind(d = 1.0)
4 else
5 Infotaxis()

The strategies evolved for the meandering environment with the corner and
border start regions (Algorithms 4.4 and 4.5) are quite similar. They both start
by checking if the robot is currently sensing odour and, if so, wander upwind
(lines 1 and 2), with the border controller also making a moveUpwind motion
of 1 m (line 3). Otherwise, they both resort to Infotaxis (respectively line 4
and 5). In turn, the controller evolved for the meandering environment with
the scattered start region (Algorithm 4.6) starts by checking if the robot has
ever sensed odour (note the time threshold in line 1 which is larger than the
total evaluation time) and, if so, makes a wanderCrosswind motion followed by
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Algorithm 4.6: Best strategy evolved by GPInfotaxis in the meandering
environment with the scattered start region.

1 if HSO(t = 619) then
2 wanderCrosswind()
3 Infotaxis()
4 else
5 Infotaxis()

Infotaxis (lines 2 and 3). Otherwise, it performs simply Infotaxis (line 5). This
is an odd strategy, introducing further exploration crosswind exploration after
sensing odour, but it may help to prevent premature convergence of Infotaxis’
probability map, caused by odour detections far from the plume’s centreline.
Also, it is worth remembering that this controller attains the highest success
rate of all in this scenario.

Algorithm 4.7: Best strategy evolved by GPInfotaxis in the
intermittent-meandering environment with the corner start region.

1 if HSO(t = 644.5) then
2 if SO() then
3 wanderUpwind()
4 else
5 moveUpwind(d = 2.215)

6 else
7 Infotaxis()
8 if HSO(t = 300) then
9 if SO() then

10 wanderUpwind()
11 else
12 moveUpwind(d = 0.25)

13 else
14 Infotaxis()

Finally, the controllers evolved for the I. M. environment (Algorithms 4.7 to
4.9) tend to employ the HSO perception rather than the SO, to test if odour has
been sensed within a period of time rather than in the current instant. This can
be seen as an adaptation to the intermittency of the chemical plume, as the SO
perception is likely to return false in most instances. In fact, only the strategy
evolved for the corner scenario (Algorithm 4.7) uses the SO perception, but it
is used to arbitrate between similar behaviours. Using this search strategy, the
robot starts by checking if it has ever sensed odour (note that the time threshold
in line 1 is higher than the total evaluation time) and, if so, checks if it is currently
sensing odour (line 2). If it is, it wanders upwind (line 3), if it is not, it moves
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Algorithm 4.8: Best strategy evolved by GPInfotaxis in the
intermittent-meandering environment with the border start region.

1 if HSO(t = 5) then
2 wanderUpwind()
3 else
4 spiral(disinc = 0.75, iters = 3, term = PL(t = 10))
5 if HSO(t = 30) then
6 spiral(disinc = 0.75, iters = 5, term = HSO(t = 30))
7 else
8 Infotaxis()

Algorithm 4.9: Best strategy evolved by GPInfotaxis in the
intermittent-meandering environment with the scattered start region.

1 if HSO(t = 34) then
2 moveUpwind(d = 3.229)
3 else
4 Infotaxis()

straight upwind for 2.215 m (line 5). If the robot has yet to sense odour, it makes
an infotactic motion and checks again for recent odour detections (lines 7 and 8).
If it is currently sensing odour, it wanders upwind (lines 9 and 10). Otherwise,
if it has sensed odour in the past 300 s, it moves upwind for 0.25 m (line 12). If
it has not sensed odour in the past 300 s, it performs another infotactic motion
(line 14). It should be noted that the upwind motions once the robot has sensed
odour (lines 2 to 5) may enable it to cope better with the intermittency of the
plume, but may also cause it to be mislead by its meandering and move past
the location of the chemical source, failing to locate it. One possible fix would
be to reduce the threshold of the HSO perception in line 1, to enable the robot
to resort back to Infotaxis if odour is not sensed for a long time.

The controller evolved for the border scenario 4.8 starts by checking if odour
has been sensed in the last 5 s and, if so, commands the robot to move upwind
(lines 1 and 2). Otherwise, it performs a spiral motion, halting if the plume has
not been sensed for longer than 10 s (line 4). It then checks if odour has been
sensed in the past 30 s and, if so, commands the robot to remain still (note that
the termination condition of the spiral in line 6 is the same as the If clause in
line 5), which may cause it to sense odour again, provided that it is close to the
plume’s centerline. Otherwise, it performs Infotaxis (line 8).

Finally, the controller evolved for scattered start region 4.9 simply checks if odour
has been sensed in the past 34 s and, if so, moves upwind for 3.229 m (lines 1
and 2). Otherwise, it performs Infotaxis (line 4). This controller makes the
robot make large upwind motions when sensing odour, which are bound to help
it cope with the plume’s intermittency. By simultaneously updating Infotaxis’
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probability map in the background, the robot is also able to resort back to
infotactic behaviours when the upwind strides fail to locate the chemical source
and make it lose the chemical plume for longer than 34 s.

4.4.3 Final remarks
To sum up, the evolution of tree based controllers with infotactic behaviours,
GPI, produces higher success rates than EI and G, while being at least as fast
as G (equivalent amounts of control steps). However, it still has some of the
computational overhead of Infotaxis, which despite being reduced by scarcer
updates, it still makes it unfeasible to be applied in low-power microcontrollers.
Analysing the best evolved controller for each scenario, it can be seen that
Infotaxis is particularly useful for finding and reacquiring the chemical plume,
with the bio-inspired behaviours being preferred to track it to its source.
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In the previous chapter we proposed different evolutionary approaches, with
increasing degrees of complexity, to produce robotic controllers for single-
robot applications which culminated into the ability to solve the task with

success rates ranging from 50% (in the hardest scenario) to 100% (in the easiest
one). This chapter attempts to improve the performance by using multiple
robots, controlled by simple tree-based controllers. Such approaches have clear
advantages, such as robustness to the failure of some robots and also the ability
to employ low cost robots. We aim to provide answers for the two last research
questions, specifically, in Section 5.1 we investigate the effects of using many
individual robots and, in Section 5.2 we assess the gains attained by cooperating.
Finally, in Section 5.3 we compare the performance of the approaches evolved
by GSynGP for one and many cooperative robots to those of the most complex
single robot approach (GPI), to answer the question of whether is it better to
have many simple robots or a single but complex one.

5.1 Influence of the number of robots
The first approach is a naive one. We simply take the best controllers evolved by
GSynGP with F2,3 for a single robot (G1) and deploy them on groups of three
(G1to3), five (G1to5) and ten (G1to10) robots, to assess whether having many
agents operating individually is enough to increase the performance. As before,
the evolved controllers undergo a validation step where each is evaluated in
thirty instances of the corresponding scenario. The success rates attained in
validation are plotted in Figure 5.1. As can be seen, increasing the number
of robots consistently leads to an increase of the success rates in all scenarios.
However, even in the simplest scenario, there is a controller that using ten robots
only manages a 60% success rate, so there is room for improvement. In order
to draw more robust conclusions, we proceed to the statistical analysis. The
Kolmogorov-Smirnov test is first applied (Table 5.1) with its results showing that
none of the data can be considered to follow normal distributions. As a result,
the Friedman’s Anova is applied (Table 5.2), which in turn shows that there are
statistically significant differences between the success rates of the approaches in
all scenarios. As such, we proceed to apply the Wilcoxon test (Table 5.3), with
the Bonferroni correction being used to adjust the significance value to 8.33e-03.
Its results show that all comparisons are significantly different, verifying that
increasing the number of robots leads to significantly higher success rates in all
scenarios.

Having analysed the success rates, we now turn to the duration of the successful
evaluations, which are plotted in Figure 5.2. As can be seen, the approaches
do not perform very differently, but, in most scenarios, there is a slight re-
duction of the search times with the increase of the number of robots, that is
more emphasized in the stable and meandering environments with the scattered
start region. In order to be able to draw more robust conclusions, we proceed
to the statistical analysis, starting with the Kolmogorovs-Smirnov test (Table
5.4). Its results show that none of the data can be considered to follow nor-
mal distributions and, as a result, we apply the Friedman’s Anova to assess the
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Figure 5.1: Boxplots of the success rates in validation for the S. (left column) M.
(centre column) and I. M. environments, with the corner (top row),
border (centre) and scattered (bottom) start regions.

Table 5.1: P-values of the Kolmogorov-Smirnov test applied to the success rates

St. region Env. G1 G1to3 G1to5 G1to10

Corner S. 3.32e-05 4.61e-07 1.11e-08 2.23e-16
Corner M. 1.77e-04 3.78e-06 1.42e-06 3.27e-08
Corner I. M. 2.88e-07 1.15e-04 1.52e-04 1.65e-06
Border S. 9.44e-04 6.34e-06 3.05e-10 7.99e-13
Border M. 1.36e-04 9.44e-05 8.57e-07 9.36e-05
Border I. M. 1.25e-05 1.32e-04 1.11e-06 1.05e-04
Scattered S. 2.94e-05 2.20e-07 6.91e-06 3.53e-15
Scattered M. 3.00e-05 1.04e-06 3.72e-08 1.59e-09
Scattered I. M. 1.70e-06 2.46e-06 9.36e-05 5.09e-05
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Table 5.2: P-values of the Friedman’s Anova applied to the success rates

St. region S. Env. M. Env. I. M. Env.
Corner 1.40e-17 1.65e-17 3.56e-18
Border 1.68e-17 1.00e-17 1.78e-17
Scattered 4.50e-18 1.29e-18 1.84e-18

Table 5.3: P-values of the Wilcoxon test applied to the success rates

St. region Functions S. Env. M. Env I. M. Env.
Corner G1 - G1to3 1.70e-06 1.72e-06 4.92e-06
Corner G1 - G1to5 1.72e-06 1.72e-06 1.73e-06
Corner G1 - G1to10 1.72e-06 1.71e-06 1.71e-06
Corner G1to3 - G1to5 8.41e-04 3.18e-05 2.55e-05
Corner G1to3 - G1to10 7.56e-06 5.57e-06 1.72e-06
Corner G1to5 - G1to10 3.71e-05 1.43e-05 5.54e-06
Border G1 - G1to3 1.85e-06 2.82e-06 3.25e-06
Border G1 - G1to5 1.64e-06 1.71e-06 1.70e-06
Border G1 - G1to10 1.71e-06 1.71e-06 1.71e-06
Border G1to3 - G1to5 8.83e-06 1.19e-04 4.54e-03
Border G1to3 - G1to10 3.72e-06 2.53e-06 1.73e-06
Border G1to5 - G1to10 5.54e-05 3.13e-06 2.53e-06
Scattered G1 - G1to3 1.72e-06 1.72e-06 1.72e-06
Scattered G1 - G1to5 1.67e-06 1.70e-06 1.71e-06
Scattered G1 - G1to10 1.69e-06 1.63e-06 1.70e-06
Scattered G1to3 - G1to5 4.13e-05 1.74e-05 1.92e-05
Scattered G1to3 - G1to10 1.64e-06 1.71e-06 1.71e-06
Scattered G1to5 - G1to10 7.80e-06 1.64e-06 1.70e-06
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Figure 5.2: Boxplots of the durations of successful runs in validation for the
S. (left column) M. (centre column) and I. M. environments, with
the corner (top row), border (centre) and scattered (bottom) start
regions.
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existance of statistically significant differences between the search times of the
four approaches in each scenario. Its results (Table 5.5) show that there are
statistically significant differences in all scenarios, except the I.M. environment
with the corner and border start regions. As a result, we apply the Wilcoxon
test in all other scenarios (Table 5.6). Its results show that there are statistically
significant differences in most comparisons, implying that, generally, using more
robots leads to finding the chemical source faster. The exceptions are when
using more than three robots in the meandering environment with the border
start region, or in the intermittent-meandering environment with the scattered
start region. Moreover, using the scattered start region, there are no differences
in using one or three robots in the meandering and intermittent-meandering
environments and there are also no differences when using three or five robots
in the stable and meandering environments. The larger differences in the search
times are to be expected, as with the use of more robots it is more likely that at
least one of them starts from a location close to the plume, and thus only needs
to track it to the source.

In conclusion, using increasing the number of robots used always leads to better
success rates, but may not lead to faster searches in some scenarios. In the fol-
lowing section, we investigate whether enabling the robots to cooperate provides
any improvements in success rates or search times.

Table 5.4: P-values of the Kolmogorov-Smirnov test applied to the duration of
successful runs

St. region Env. G1 G1to3 G1to5 G1to10

Corner S. 3.06e-07 6.44e-07 7.04e-07 1.09e-07
Corner M. 2.32e-06 1.60e-04 2.08e-04 7.79e-05
Corner I. M. 3.15e-05 3.85e-05 4.53e-06 2.95e-04
Border S. 9.11e-06 1.26e-04 1.28e-03 2.69e-03
Border M. 1.02e-04 1.94e-05 9.18e-05 9.21e-05
Border I. M. 5.68e-07 1.98e-04 6.43e-05 1.51e-04
Scattered S. 4.71e-07 3.36e-05 1.14e-04 4.79e-07
Scattered M. 1.23e-04 1.42e-07 4.53e-04 2.28e-06
Scattered I. M. 1.74e-03 3.80e-05 9.72e-05 3.49e-07

Table 5.5: P-values of the Friedman’s Anova applied to the duration of successful
runs

St. region S. Env. M. Env. I. M. Env.
Corner 2.15e-11 8.69e-12 5.37e-02
Border 2.06e-09 2.75e-03 6.87e-01
Scattered 1.40e-13 7.14e-06 2.11e-03
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Table 5.6: P-values of the Wilcoxon test applied to the duration of successful
runs

St. region Functions S. Env. M. Env I. M. Env.
Corner G1 - G1to3 7.52e-02 3.61e-03 -
Corner G1 - G1to5 1.48e-04 1.49e-05 -
Corner G1 - G1to10 5.22e-06 1.92e-06 -
Corner G1to3 - G1to5 3.59e-04 4.11e-03 -
Corner G1to3 - G1to10 3.52e-06 7.69e-06 -
Corner G1to5 - G1to10 1.71e-03 2.83e-04 -
Border G1 - G1to3 1.75e-02 5.67e-03 -
Border G1 - G1to5 1.04e-02 8.94e-04 -
Border G1 - G1to10 2.16e-05 4.86e-05 -
Border G1to3 - G1to5 4.68e-03 6.00e-01 -
Border G1to3 - G1to10 4.29e-06 2.43e-02 -
Border G1to5 - G1to10 2.88e-06 6.56e-02 -
Scattered G1 - G1to3 7.73e-03 9.37e-02 2.29e-01
Scattered G1 - G1to5 4.90e-04 2.26e-03 9.27e-03
Scattered G1 - G1to10 1.73e-06 2.37e-05 1.29e-03
Scattered G1to3 - G1to5 1.04e-02 1.06e-01 4.17e-01
Scattered G1to3 - G1to10 1.73e-06 1.97e-05 5.19e-02
Scattered G1to5 - G1to10 2.88e-06 2.16e-05 4.28e-02

5.2 The role of cooperation
In the previous section we assessed whether using more robots improved the
performance of the search. In this section, we explore the benefits of cooperation.
We enable GSynGP to evolve cooperating strategies by adding a perception and
two behaviours respectively to its function and terminal sets:

Perceptions

• Neighbours(nt, r) - which informs whether there is a neighbour of type nt

(nt ∈ {all, sensing odour (so), not sensing odour (nso)}) within a neigh-
bourhood of radius r (r ∈ [1.5, 40] meters );

Behaviours

• moveTowards(nt, d, r) - moves the robot d meters (d ∈ {0.25, 0.5, 1.0}
meters) towards the centre of mass of the neighbours of type nt (nt ∈ {all,
sensing odour (so), not sensing odour (nso)}) within a neighbourhood of
radius r (r ∈ [1.5, 40] meters). If no robots of the specified type are within
range, the robot is commanded to remain still;

• moveAway(nt, d, r) - moves the robot d meters (d ∈ {0.25, 0.5, 1.0}
meters) away from the centre of mass of the neighbours of type nt (nt ∈
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{all, sensing odour (so), not sensing odour (nso)}) within a neighbourhood
of radius r ( r ∈ [1.5, 40] meters). If no robots of the specified type are
within range, the robot is commanded to remain still;

These three symbols should be able to provide interesting cooperation between
the robots without being too complex. Using the Neighbours perception, the
robots can make decisions based on the existence of neighbours of a given type in
a parametrizable neighbourhood. In turn, using the moveTowards or moveAway
behaviours the robots can respectively move closer or away from neighbours
of a given type (e.g., a robot can move closer to neighbours sensing odour or
robots not sensing odour could scatter in the environment to increase their
odds in sensing the plume). Also, by combining both behaviours along with
a moveUpwind behaviour, the robots could possible track a chemical plume in
formation. We shall refer to these approaches as GN , where N is the number of
robots being used.

In order to further encourage the evolution of cooperation, an evaluation is
now considered to be successful only when all robots reach the chemical source
within the predefined time limit. Note that this only applies for evolution, as we
consider a validation run to be successful as soon as one robot finds the odour
source.

5.2.1 Experimental results

Table 5.7: P-values of the Kolmogorov-Smirnov test applied to the success rates

St. region Env. G3 G1to3 G5 G1to5 G10 G1to10

Corner S. 1.18e-11 4.61e-07 1.69e-13 1.11e-08 1.50e-18 2.23e-16
Corner M. 4.24e-06 3.78e-06 1.83e-06 1.42e-06 6.32e-07 3.27e-08
Corner I. M. 1.69e-06 1.15e-04 2.05e-07 1.52e-04 1.63e-07 1.65e-06
Border S. 1.73e-06 6.34e-06 3.07e-06 3.05e-10 3.57e-07 7.99e-13
Border M. 1.19e-04 9.44e-05 5.04e-07 8.57e-07 1.12e-07 9.36e-05
Border I. M. 5.19e-09 1.32e-04 2.50e-08 1.11e-06 2.82e-04 1.05e-04
Scattered S. 3.64e-06 2.20e-07 6.33e-04 6.91e-06 7.88e-11 3.53e-15
Scattered M. 1.06e-05 1.04e-06 1.80e-06 3.72e-08 3.63e-06 1.59e-09
Scattered I. M. 3.31e-09 2.46e-06 1.21e-08 9.36e-05 2.12e-05 5.09e-05

Table 5.8: P-values of the Friedman’s Anova applied to the success rates

St. region S. Env. M. Env. I. M. Env.
Corner 7.41e-14 3.33e-08 4.80e-11
Border 1.24e-11 2.79e-14 1.85e-18
Scattered 5.49e-19 1.69e-13 3.63e-17

Once again, thirty independent runs are made for each combination of environ-
ment, start region and number of robots, being approaches compared through
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Figure 5.3: Boxplots of the validation success rates for the S. (left column) M.
(centre column) and I. M. environments, with the corner (top row),
border (centre) and scattered (bottom) start regions.

Table 5.9: P-values of the Wilcoxon test applied to the success rates

St. region Functions S. Env. M. Env I. M. Env.
Corner G3 - G1to3 1.91e-03 2.38e-01 3.71e-01
Corner G5 - G1to5 7.48e-04 3.92e-02 2.34e-01
Corner G10 - G1to10 9.18e-01 4.23e-02 9.82e-01
Border G3 - G1to3 5.00e-02 2.74e-01 2.47e-01
Border G5 - G1to5 3.45e-03 4.20e-02 8.10e-01
Border G10 - G1to10 6.21e-04 3.58e-02 6.99e-01
Scattered G3 - G1to3 1.29e-01 1.21e-01 5.00e-01
Scattered G5 - G1to5 2.94e-02 6.73e-01 3.81e-01
Scattered G10 - G1to10 4.55e-01 7.80e-01 1.33e-01
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their success rates and duration of successful searches in validation. Figure 5.3
presents the boxplots of the success rates attained. As can be seen, it seems that
in some scenarios the robots perform better by cooperating, while in others, they
perform better by acting individually. To shed more light into these comparis-
ons, we proceed to the statistical analysis, with the Kolmogorov-Smirnov test
(Table 5.7) showing than none of the data can be considered to follow normal
distributions at the chosen confidence interval. As a result, we apply the Fried-
man’s Anova (Table 5.8), with its results showing that there are statistically
significant differences between the success rates of the approaches in all scen-
arios. Finally, the Wilcoxon test is applied (Table 5.9) to assess the existence
of statistically significant differences between the success rates of the groups of
same size, with the Bonferroni correction being used to adjust the significance
value to 1.67e-02. Its results show that there are only significant differences in
the stable environment, with the corner and border start region. When using
the corner start region, significantly higher success rates can be achieved when
using cooperation in groups of three and five robots. In turn, with the border
start region, significantly higher success rates can be achieved when using groups
of five or ten robots acting individually, while there are no significant differences
when using just three robots. Note that in both scenarios, even when there are
significant differences, the best overall strategies still achieve success rates of
exactly or nearly 100 %.

Table 5.10: P-values of the Kolmogorov-Smirnov test applied to the duration of
successful runs

St. region Env. G3 G1to3 G5 G1to5 G10 G1to10

Corner S. 1.51e-06 6.44e-07 2.29e-03 7.04e-07 5.89e-04 1.09e-07
Corner M. 1.90e-04 1.60e-04 1.10e-04 2.08e-04 2.31e-04 7.79e-05
Corner I. M. 1.16e-04 3.85e-05 1.85e-03 4.53e-06 4.44e-06 2.95e-04
Border S. 1.36e-05 1.26e-04 1.39e-03 1.28e-03 3.84e-05 2.69e-03
Border M. 3.66e-06 1.94e-05 2.41e-05 9.18e-05 2.53e-06 9.21e-05
Border I. M. 7.74e-04 1.98e-04 1.33e-04 6.43e-05 4.40e-04 1.51e-04
Scattered S. 1.01e-04 3.36e-05 6.34e-04 1.14e-04 6.26e-07 4.79e-07
Scattered M. 1.05e-03 1.42e-07 4.35e-06 4.53e-04 3.17e-04 2.28e-06
Scattered I. M. 2.10e-06 3.80e-05 2.05e-06 9.72e-05 1.31e-04 3.49e-07

Table 5.11: P-values of the Friedman’s Anova applied to the duration of success-
ful runs

St. region S. Env. M. Env. I. M. Env.
Corner 6.29e-04 4.38e-03 7.41e-03
Border 6.21e-12 1.65e-08 1.48e-11
Scattered 3.79e-18 3.92e-15 3.06e-13

We now focus on the duration of the successful validation runs, which we plot
in Figure 5.4. As can be seen, using cooperation often leads to faster searches,
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Figure 5.4: Boxplots of the duration of the successful runs in validation for the
S. (left column) M. (centre column) and I. M. environments, with
the corner (top row), border (centre) and scattered (bottom) start
regions.

Table 5.12: P-values of the Wilcoxon test applied to the duration of successful
runs

St. region Functions S. Env. M. Env I. M. Env.
Corner G3 - G1to3 6.44e-01 1.59e-01 8.29e-01
Corner G5 - G1to5 7.66e-01 9.59e-01 8.94e-01
Corner G10 - G1to10 6.88e-01 3.39e-01 5.32e-03
Border G3 - G1to3 2.26e-03 1.66e-02 2.11e-03
Border G5 - G1to5 8.92e-05 4.72e-02 1.29e-03
Border G10 - G1to10 8.31e-04 1.24e-05 4.73e-06
Scattered G3 - G1to3 2.11e-03 6.64e-04 1.48e-03
Scattered G5 - G1to5 1.02e-05 8.92e-05 3.88e-04
Scattered G10 - G1to10 4.20e-04 1.73e-06 1.73e-06
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particularly when using the border and scattered start regions. Moving on to the
statistical analysis, the Kolmogorov-Smirnov test is first applied (Table 5.10),
showing that none of the data can be considered to follow normal distributions.
As a result, the Friedman’s Anova is applied (Table 5.11), showing that there
are statistically significant differences between the search times of the various
strategies in all scenarios. Finally, the Wilcoxon test is applied (Table 5.12) and
the significance value is adjusted to 1.67e-02 through the Bonferroni correction.
The results show that when departing from the corner start region, there are
no significant differences between cooperating or acting individually. The sole
exception is when using ten robots in the I. M. environment, where cooperation
leads to significantly faster searches. When using the border start region, there
is a single instance where there are no statistically significant differences: using
five robots in the meandering environment. In all other scenarios, along with
in all scenarios with the scattered start region, using cooperation consistently
leads to significantly faster searches.

5.2.2 Final remarks
In conclusion, including cooperative perceptions and behaviours into the func-
tion and terminal sets of GSynGP typically does not lead to significant dif-
ferences in the success rates, implying that simply using many individualistic
robots is enough to solve the task. However, the use of cooperation does result
in faster search strategies, often having median search times at least 60 s faster
than their individualistic counter parts. Thus, it is more beneficial to make use
of cooperation.

5.3 Comparison with single-robot approaches
The experiments made in the previous sections culminate into a simple, yet
important question: is it better to use a single robot guided by a complex
search strategy or many robots controlled by a simple search strategy? In this
section, we address this question by comparing the performance of simple tree-
based controllers with one to ten cooperating robots to that of GPI. We start by
analysing the success rates attained in validation, which are plotted in Figure
5.5. As was previously seen, the performance of G increases with the size of the
group of robots. Moreover, while there are a few scenarios where GPI attains
similar success rates to those of G10, and even one where it surpasses the multi-
robot approach, in most scenarios it can only match the performance of smaller
sized groups. In order to be able to draw more robust conclusions, we move on
to the statistical analysis.

We start by applying the Kolmogorov-Smirnov test (Table 5.13), which shows
that none of the data can be considered to follow normal distributions. As a
result, the Friedman’s Anova is applied (Table 5.14), showing that there are stat-
istically significant differences between the various approaches in all scenarios.
The Wilcoxon test is then applied (Table 5.15) to assess which comparisons con-
tain statistically significant differences, with the significance value being adjusted
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Figure 5.5: Boxplots of the validation success rates for the S. (left column) M.
(centre column) and I. M. environments, with the corner (top row),
border (centre) and scattered (bottom) start regions.
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Table 5.13: P-values of the Kolmogorov-Smirnov test applied to the success rates

St. region Env. G1 G3 G5 G10 GPI

Corner S. 3.32e-05 1.18e-11 1.69e-13 1.50e-18 2.23e-09
Corner M. 1.77e-04 4.24e-06 1.83e-06 6.32e-07 8.53e-10
Corner I. M. 2.88e-07 1.69e-06 2.05e-07 1.63e-07 1.62e-07
Border S. 9.44e-04 1.73e-06 3.07e-06 3.57e-07 8.83e-05
Border M. 1.36e-04 1.19e-04 5.04e-07 1.12e-07 2.96e-05
Border I. M. 1.25e-05 5.19e-09 2.50e-08 2.82e-04 3.01e-06
Scattered S. 2.94e-05 3.64e-06 6.33e-04 7.88e-11 1.02e-09
Scattered M. 3.00e-05 1.06e-05 1.80e-06 3.63e-06 3.80e-06
Scattered I. M. 1.70e-06 3.31e-09 1.21e-08 2.12e-05 7.24e-07

Table 5.14: P-values of the Friedman’s Anova applied to the success rates

St. region S. Env. M. Env. I. M. Env.
Corner 1.22e-14 4.42e-07 2.41e-10
Border 6.04e-07 4.96e-16 5.99e-20
Scattered 1.27e-16 1.30e-13 6.17e-17

through the Bonferroni correction to 1.25e-02. Its results show that, regardless of
the start region, GPI consistently attains significantly higher success rates than
G with a single robot. When departing from the corner start region, GPI signi-
ficantly outperforms G3 and G5 in the meandering environment, but performs
significantly worse than G5 and G10 in the intermittent-meandering environment.
When departing from the Border start region, GPi significantly outperforms G3
and G5 in the meandering and intermittent-meandering environments. In turn,
G10 significantly outperforms GPI in the I. M. environment. Finally, when de-
parting from the scattered start region, GPI significantly outperforms G3 and
G5 in the stable environment, but performs significantly worse than G5 and G10
in the meandering and intermittent-meandering environments. In all scenarios
that were not mentioned, GPI performs equivalently to G. The use of multiple
robots seems to be particularly useful in the intermittent-meandering environ-
ment, possibly as it is easier to cope with the intermittency of the chemical
plume by tracking it cooperatively, i.e., it is more likely that at least one robot
is sensing odour. Interestingly, in many scenarios, simply using three robots is
enough to perform equivalently to GPI.

We carry on to assess the duration of the successful searches, which we plot in
Figure 5.6. The plots show that overall, the speed of G increases with the in-
crease of the number of robots. Regarding GPI, the plots show that is produces
the fastest searches when using the corner start region, but when departing from
the other start regions, it may become as slow as G1, if not slower. Moving on to
the statistical analysis, we start by applying the Kolmogorov-Smirnov test (Table
5.16) which shows that none of the data can be considered to follow normal dis-
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Table 5.15: P-values of the Wilcoxon test applied to the success rates

St. region Functions S. Env. M. Env I. M. Env.
Corner G1 - GPI 5.51e-06 2.01e-06 1.40e-05
Corner G3 - GPI 8.78e-01 4.04e-04 4.11e-01
Corner G5 - GPI 2.47e-01 9.70e-03 1.91e-03
Corner G10 - GPI 1.81e-01 9.40e-01 8.52e-05
Border G1 - GPI 2.06e-05 1.89e-06 1.70e-06
Border G3 - GPI 1.65e-01 2.58e-06 2.81e-06
Border G5 - GPI 6.98e-01 8.01e-06 5.38e-04
Border G10 - GPI 5.97e-02 2.18e-02 1.80e-04
Scattered G1 - GPI 1.72e-06 1.53e-03 1.52e-03
Scattered G3 - GPI 3.39e-04 5.02e-01 1.10e-02
Scattered G5 - GPI 1.59e-03 6.86e-05 2.98e-05
Scattered G10 - GPI 9.86e-03 6.12e-06 2.10e-06
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Figure 5.6: Boxplots of the duration of the successful runs for the S. (left column)
M. (centre column) and I. M. environments, with the corner (top
row), border (centre) and scattered (bottom) start regions.
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Table 5.16: P-values of the Kolmogorov-Smirnov test applied to the duration of
successful validation runs

St. region Env. G1 G3 G5 G10 GPI

Corner S. 3.06e-07 1.51e-06 2.29e-03 5.89e-04 5.78e-05
Corner M. 2.32e-06 1.90e-04 1.10e-04 2.31e-04 1.05e-04
Corner I. M. 3.15e-05 1.16e-04 1.85e-03 4.44e-06 1.71e-05
Border S. 9.11e-06 1.36e-05 1.39e-03 3.84e-05 1.89e-05
Border M. 1.02e-04 3.66e-06 2.41e-05 2.53e-06 1.44e-04
Border I. M. 5.68e-07 7.74e-04 1.33e-04 4.40e-04 1.01e-04
Scattered S. 4.71e-07 1.01e-04 6.34e-04 6.26e-07 1.76e-04
Scattered M. 1.23e-04 1.05e-03 4.35e-06 3.17e-04 4.52e-04
Scattered I. M. 1.74e-03 2.10e-06 2.05e-06 1.31e-04 1.01e-03

Table 5.17: P-values of the Friedman’s Anova applied to the duration of success-
ful validation runs

St. region S. Env. M. Env. I. M. Env.
Corner 3.36e-08 7.64e-07 7.99e-05
Border 7.97e-09 2.53e-11 2.90e-09
Scattered 1.28e-18 8.62e-16 1.33e-11

tributions. As a result, we apply the Friedman’s Anova (Table 5.17), which
shows that there are statistically significant differences between the duration of
the searches of the various approaches in all scenarios. Finally, the Wilcoxon
test is applied to perform pairwise comparisons, with the significance value being
reduced through the Bonferroni correction to 1.25e-02. Its results (Table 5.18)
show that using the corner start region, GPI is significantly faster than all other
approaches in all environments, with the sole exceptions being G10 in the I. M.
environment, to which it performs equivalently. The speed of GPI is greatly
reduced when departing from the border start region, performing equivalently
to G1 and significantly worse than G3 and G5 in the meandering environment.
In the stable and intermittent-meandering environments, GPI is significantly
faster than G1, performing equivalently to G3 and G5. Moreover, GPI is sig-
nificantly slower than G10 in all environments with the border and scattered
regions. The relative performance of GPI is even worse with the scattered start
region, only being able to outperform G1 and match the speed of G3 in the stable
environment. In the meandering and intermittent-meandering environments, it
performs equivalently to G1 and is significantly outperformed by G3, G5 and
G10. In fact, using five or ten robots produces significantly faster searches than
GPI in any environment when starting from the scattered start region. It is also
interesting to note that the multi-robot approaches seem to benefit from larger
start regions, as they perform faster with the border and scattered start regions
than with the corner, in any environment.
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Table 5.18: P-values of the Wilcoxon test applied to the duration of successful
validation runs

St. region Functions S. Env. M. Env I. M. Env.
Corner G1 - GPI 1.49e-05 4.73e-06 1.06e-04
Corner G3 - GPI 1.13e-05 2.84e-05 7.51e-05
Corner G5 - GPI 9.71e-05 1.74e-04 4.86e-05
Corner G10 - GPI 5.29e-04 3.59e-04 2.30e-02
Border G1 - GPI 3.72e-05 1.06e-01 8.73e-03
Border G3 - GPI 9.10e-01 6.04e-03 1.85e-01
Border G5 - GPI 1.40e-02 9.27e-03 2.43e-02
Border G10 - GPI 2.96e-03 1.73e-06 4.29e-06
Scattered G1 - GPI 1.29e-03 2.99e-01 2.21e-01
Scattered G3 - GPI 2.56e-02 1.02e-05 2.37e-05
Scattered G5 - GPI 1.73e-06 2.60e-06 1.36e-05
Scattered G10 - GPI 1.73e-06 1.73e-06 1.73e-06

5.3.1 Final remarks
To sum up, using a group of robots with cooperative controllers evolved by
GSynGP produces better results than using a single robot controller by a search
strategy evolved by GPI. The exact results vary with the scenario, but in many
cases using just three robots produces equivalent success rates to those of GPI.
Two examples of this is when using the scattered start region in the meandering
or intermittent-meandering environments. This may be due to the increased
likelihood that a robot senses robot in the multi-robot scenario which, coupled
with cooperation, not only enables the robots to converge to the chemical plume
faster, but also improves their ability to cope with the plume’s intermitency.
Furthermore, the results showed that using groups of robots will also lead to
faster searches and that in some cases a group of three robots is significantly
faster than a single robot with a controller evolved by GPI.
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CHAPTER 6. WIND TUNNEL VALIDATION

Having shown that evolutionary robotics approaches are suitable for
automatically producing interpretable search strategies for odour
source localisation, this chapter aims to go one step further, report-

ing some preliminary experiments in a wind tunnel to validate the best evolved
controllers. Due to the available wind tunnel not being able to generate uniform
airflows, only the controllers evolved for the stable environment will be valid-
ated, using the three start regions. Also, due to time constraints, only ten runs
are made for each controller.

6.1 Experimental setup

6.1.1 Wind Tunnel
The test arena (Figure 6.1) is a 4 by 3 meters rectangular environment with 50
centimetres of height covered by plexiglass to enable viewing the robots. The
walls along its length are made of plywood, whereas its upwind and downwind
walls are made out of honeycomb mesh to reduce wind turbulence. The air-flow
is created by an array of fans mounted on the downwind wall, which are set
to operate at a constant speed, creating a laminar air-flow with a mean speed
of approximately 0.3 m/s. A single odour source consisting of an ultrasonic
atomiser (left side of Figure 6.2) is placed at the middle of the environment’s
width, 0.85 m from its upwind wall, i.e., at position (0.85, 1.5) m. It is set
to release a 90 % ethanol solution vapour at a constant rate of approximately
153.51 µg/s. The arena uses the same coordinate reference as the simulator, with
the origin being at the top-left corner and point (4, 3) m being the bottom-right
corner. Each evaluation ends successfully if a robot gets closer than 0.3 m from
the chemical source or unsuccessfully if the 300 s time limit runs out.

Due to the reduced dimensions of the arena, the start regions defined for simu-
lation must also be adjusted. The corner start region generates positions in the
rectangle defined by points (3.1, 1.9) m and (3.6, 2.7) m in the odd numbered
evaluations and by points (3.1, 0.3) m and (3.6, 1.1) m in the even numbered
evaluations; the border start region generates positions within the rectangle
defined by points (3.1, 0.3) m and (0.3, 2.7) m; and the scattered start positions
in the rectangle defined by points (0.4, 3.6) m and (0.3, 2.7) m.

6.1.2 Robot
The robot used for validating the strategies (right side of Figure 6.2) is an in-
house built two-wheeled differential unit based measuring approximately 16 cm
in diameter. The robot is equipped with a SGX Sensortech MiCS-5524 sensorfor
measuring the gas concentration, along with a LDS-01 LiDAR and two Sharp
2YOA21F57 for measuring the distance to nearby obstacles. The choice of using
a MOX sensor is due to their reduced cost, size and acceptable sensitivity and
response speeds (see Section 2.1.2.2).

The low-level motion control runs on an STM32F411CEU6, whereas the in-
terface with the sensors and the wireless communications are ensured by an
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Figure 6.1: Top-view of the validation arena.

Figure 6.2: Odour source (left) and robot (right).

Espressif ESP32-DevKitC. The robot communicates wirelessly with a remote
server running the Robot Operating System framework [Quigley et al., 2009].
The server receives the sensory information from the robot, executes the active
controller and returns to the robot a motion command. The localisation of the
robots is provided by a Marvelmind beacon system, whose measurements are
fused by an Extended Kalman filter with the odometry information, providing
a better estimate of the robot’s pose.

To reduce costs and improve the robot’s battery life, the robots are not equipped
with anemometers. Instead, the wind velocity is manually set and kept fixed
throughout the experiment.

6.2 Best controllers
We consider the controller with the highest success rate in the simulation-based
validation as being the best for each combination of approach and scenario. In
case of ties, we choose the one that maximises the success rate while minimising
the duration of successful runs. The best individuals for EI and GPI were already
presented in the previous chapter (respectively Table 4.3 and Algorithms 4.1 to
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4.3). The best controllers evolved by GSynGP for one and three robots are
presented on Algorithms 6.1 to 6.6. Note that apart from the removal of introns
for improving readability, no modifications were made to the controllers.

The best strategy evolved by GSynGP for one robot departing from the corner
start region (G∗

1,c
1, Algorithm 6.1) starts by checking if odour has been sensed

in the last 240 s (line 1). If so, the robot checks if it is currently sensing odour
(line 2), in which it remains still for a control step (note the spiral behaviour
in line 3 with the same termination criteria as the If clause of line 2) and then
moves upwind by half a meter (line 4). Otherwise, it performs a spiralling
motion halting if has odour is perceived within the past 10 s of the condition
verification (line 6). If odour has not been sensed in the past 240 s, the robot
wanders crosswind (line 8), and checks if odour has been recently sensed (lines
9 and 10). If so, it moves upwind if the detection was very recent (line 11), or
wanders downwind if it has been longer than 10 s (line 13). The first option is
useful to cope with the intermittency of the plume, enabling the robot to proceed
upwind. In turn, the second option is particularly useful close to the chemical
source, where the plume is narrower and the robot may easily move upwind past
its location without getting close enough to find it. On the other hand, if no
odour was recently sensed, the robot still moves upwind, creating a diagonal
motion that leads it closer to the chemical plume (through the combination of
lines 8 and 15).

Algorithm 6.1: Best strategy evolved by GSynGP for one robot in the
stable environment with the corner start region (G∗

1,c).
1 if HSO(t = 240) then
2 if SO() then
3 spiral(disinc = 0.75, it = 1, term = SO())
4 moveUpwind(d = 0.5)
5 else
6 spiral(disinc = 0.5, iters = 1, term = HSO(t = 10))

7 else
8 wanderCrosswind()
9 if HSO(t = 137) then

10 if HSO(t = 10) then
11 moveUpwind(d = 0.5)
12 else
13 wanderDownwind()

14 else
15 moveUpwind(d = 0.5)

The best strategy evolved by GSynGP for one robot departing from the border
start region (G∗

1,b, Algorithm 6.2) starts by checking if odour has ever been
1In this chapter the following notation will be used: G∗

1,c specifies the best controller produced
by GSynGP with one robot for the corner start region.
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sensed (note that the threshold in line 1 is higher than the maximum evaluation
time) and, if so, it checks if odour has been sensed in the past 400 s (line 2). If
the robot is currently sensing odour, it is commanded to move straight upwind
(line 4). Otherwise, if it has sensed odour in the past 400 s, it is commanded
to wander upwind (line 6). This is the first controller where there may exist
large differences between its performance in validation and in the wind tunnel.
Due to the evaluation time being reduced from 600 s (in simulation) to 300 s (in
the wind tunnel), it is not possible for the controller to enter the Else clause of
line 7. As such, as soon as the robot senses odour, it will only move or wander
upwind. On the other hand, in simulation, if the robot has sensed odour between
500 s and 400 s ago, then it will wander downwind (line 9). This action is likely
to cause it to reencounter the plume, both due to the plume’s stability and to
the robot only having moved, or wandered upwind. If the robot has not sensed
odour for the past 719 s, which considering the maximum evaluation times is
the same to say that it has not sensed odour yet, it is commanded to wander
crosswind (line 13).

Algorithm 6.2: Best strategy evolved by GSynGP for one robot in the
stable environment with the border start region (G∗

1,b).
1 if HSO(T = 719) then
2 if HSO(T = 400) then
3 if SO() then
4 moveUpwind(d = 0.5)
5 else
6 wanderUpwind()

7 else
8 if HSO(T = 500) then
9 wanderDownwind()

10 else
11 wanderUpwind()

12 else
13 wanderCrosswind()

Similarly to the previous two, the best strategy evolved by GSynGP for one
robot departing from the scattered start region (G∗

1,s, Algorithm 6.3) also starts
by checking if the robot is currently sensing odour (lines 1 to 3), making it move
straight upwind if it is (line 4). Otherwise, if the robot has sensed odour within
the past 39 s, it still moves upwind (line 7), but for half the step length, as
a means of cautiously proceed upwind in case of plume discontinuities. If the
robot has sensed odour for longer than 39 s but less than 45 s, it is commanded
to wander crosswind (line 9), but if its last odour detection was between 45 s
and 200 s, than it is commanded to move randomly (line 11). These two latter
behaviours may be considered as plume re-encountering behaviours. If the robot
has not sensed odour for longer than 200 s, it is commanded to wander crosswind,
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followed by moving randomly for 25 cm (lines 13 and 14).

Algorithm 6.3: Best strategy evolved by GSynGP for one robot in the
stable environment with the scattered start region (G∗

1,s).
1 if HSO(t = 200) then
2 if HSO(t = 45) then
3 if SO() then
4 moveUpwind(d = 0.5)
5 else
6 if HSO(t = 39) then
7 moveUpwind(d = 0.25)
8 else
9 wanderCrosswind()

10 else
11 moveRandom(d = 0.8)

12 else
13 wanderCrosswind()
14 moveRandom(d = 0.25)

Similarly to the single-robot strategies, the controllers evolved for robotic swarms
command each robot to move upwind when sensing odour, differing mostly on
what to do in the absence of chemical detections. The strategy evolved for the
corner start region (G∗

3,c, Algorithm 6.4), exhibits no form of explicit coopera-
tion. In the absence of chemical detections, it commands each robot to wander
crosswind (line 4), followed by an upwind surge of 1 m (line 5). This is similar to
what was evolved in the single-robot setting (G∗

1,c), and translates into a diag-
onal motion that enables the robot to search in two directions and find plumes
that dissipate before the downwind border of the environment. The robot then
checks if it has sensed odour in the past 30 s (line 6) and, if so, it either moves
randomly if it is currently sensing odour (line 8) or makes a spiralling motion
halting if odour has been sensed in the past 5 s (line 10). While at a glance the
random motion can be considered to be odd, note that it is in fact a straight
motions centred on the current heading of the robot with randomly drawn offset
from the [-45◦,45◦] interval. As a result, considering that the previous motion
was an upwind surge, this random motion will be equivalent to a wanderUpwind,
but with a step length of 1.105 m, instead of the 0.5 m step, that is predefined
for the wanderUpwind. In turn, the spiralling motion is useful for quickly re-
encountering the plume, as it is in fact a circle (note the 0.0 disinc) and it is
only performed if the robot is not currently sensing odour, but has detected it
in the past 5 s. Moreover, this behaviour is halted as soon as it re-encounters
the plume. Finally, if the robot has not sensed odour in the past 30 s, it is
commanded to wander crosswind in search for the chemical plume.

The strategy evolved for the border start region (G∗
3,b, Algorithm 6.5), starts

by checking if odour is currently being sensed and, if so, makes the robot move
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Algorithm 6.4: Best strategy evolved by GSynGP for three robots in
the stable environment with the corner start region (G∗

3,c).
1 if SO() then
2 moveUpwind(d = 0.675)
3 else
4 wanderCrosswind()
5 moveUpwind(d = 1.0)
6 if HSO(t = 30) then
7 if SO() then
8 moveRandom(d = 1.105)
9 else

10 spiral(disinc = 0.0, iters = 1, term = HSO(t = 5))

11 else
12 wanderCrosswind()

Algorithm 6.5: Best strategy evolved by GSynGP for three robots in
the stable environment with the border start region (G∗

3,b).
1 if SO() then
2 moveUpwind(d = 0.4)
3 else
4 if Neighbours(nt = so, r = 52.217) then
5 moveTowards(nt = so, d = 2.218, r = 30.0)
6 else
7 moveAway(nt = so, d = 0.5, r = 1.5)
8 if HSO(t = 662) then
9 if HSO(t = 240) then

10 moveRandom(d = 0.5)
11 else
12 moveUpwind(d = 2.361)

13 else
14 wanderCrosswind()
15 wanderCrosswind()
16 wanderCrosswind()
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0.4 m upwind (line 2). Otherwise, it checks if there are neighbours sensing odour
within a 52.217 m radius (line 4). If so, the robot is commanded to move 2.218 m
towards the centroid of the neighbours sensing odour within 30 m (line 5). Oth-
erwise, the controller specifies that the robot should move 0.5 m away from all
neighbours sensing odour in a 1.5 m radius (line 7). However, as the previous
condition assured that there are no such neighbours, the robot will remain still
for one control step. It will then check if odour has already been sensed in
this run (note the 662 s time threshold in line 8) and if so, it checks if the last
detection took place within the past 240 s (line 9), in which case it will move
randomly in an attempt to reacquire the plume (line 10). Otherwise, it will
proceed moving upwind (line 12). Again, this point could be subject to further
improvement as if the last detection took place very long ago, it would likely
be better to search a large region towards downwind and crosswind, instead of
keeping searching upwind. In case the plume is yet to be encountered in this
evaluation (line 13) the robot performs three wanderCrosswind motions. This
part of the controller could also be improved by simply removing two wander-
Crosswind motions, as it is possible that the robot senses odour after the first
motion and moves away from the plume by performing the other two. However,
note that all behaviours that do not possess an explicit distance parameter have
a step length of 0.5 m. As a result, the three motions will make the robot move,
at most, 1.5 m crosswind (considering 0◦offsets), which is much smaller than the
40 m arena width.

Algorithm 6.6: Best strategy evolved by GSynGP for three robots in
the stable environment with the scattered start region (G∗

3,s).
1 if HSO(T = 221.4) then
2 if SO() then
3 moveUpwind(d = 0.25)
4 else
5 spiral(disinc = 0.75, iters = 4, term = SO())

6 else
7 if Neighbours(nt = nso, r = 5) then
8 moveTowards(nt = all, d = 0.25, r = 1.5)
9 wanderCrosswind()

10 else
11 moveTowards(nt = all, d = 2.975, r = 40)

Finally, the strategy evolved for the scattered start region (G∗
3,s, Algorithm 6.6),

starts by checking if odour has been sensed within the past 221.4 s and, if so,
either moves the robot 0.25 m upwind (line 3) or makes a spiralling motion (line
5) depending on whether the robot is currently sensing odour. If no odour has
been recently sensed, the controller checks if there are any robots in a 5 m ra-
dius that are not sensing odour (line 7) and, if so, commands the robot to move
0.25 m towards the centre point of all its neighbours within a 1.5 m radius, fol-
lowed by a wanderCrosswind motion (lines 8 and 9). Otherwise, the robot is
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Table 6.1: Success rates of the best controllers

Start region G∗
1 EI∗ GPI∗ G∗

3

Corner 90 % 90 % 100 % 100 %
Border 70 % 100 % 80 % 60 %
Scattered 80 % 100 % 60 % 100 %

simply commanded to move 2.975 m towards the centre point of all neighbours
within a 40 m radius (line 11). This part of the controller could be optimised by
replacing line 8 with a moveAway behaviour from the neighbours that are not
sensing odour, which would result in the robots scattering, followed by searching
crosswind. On another note, the moveTowards behaviour of line 11 is partic-
ularly interesting as it takes advantage of the scattered positions of the robots
to make them search the environment in various directions simultaneously, by
simply commanding them to aggregate.

6.3 Performance comparison
The evolved search strategies are compared through their success rates (i.e., the
percentage of times that the robots got closer than 0.3 m from the chemical
source) and the duration of successful runs.

Analysing the success rates (Table 6.1) the strategies seem to transfer quite well
from simulation to the real world, with most of them succeeding in finding the
source in at least 80 % of the evaluations. The exceptions are G∗

1,b, GPI∗
s and

G∗
3,b, which only managed to attain success rates of respectively 70 %, 60 % and

60 %. The similarity between the results of the various approaches can be seen
as an indication of the simplicity of the wind tunnel when compared to the sim-
ulation scenario, but may also be a consequence of too few evaluations. Still,
the results can be considered to be aligned with the simulations, as EI∗ and G∗

3
outperform G1 in two out of three scenarios. Moreover, GPI∗ attains a higher
success rate than EI∗ in the corner scenario. Another interesting conclusion is
that, in the corner scenario, complexifying the approach always leads to per-
formance gains, with GPI∗ outperforming EI∗, which in turn outperforms G∗

1.
However, this trend does not apply to the other scenarios as with the border
start region EI∗ is the only approach that always succeeds in finding the source
and, in the scattered scenario, it also attains a 100 % success rate on par with
G∗

3. These results are likely due the mismatch between the simulation environ-
ment and wind tunnel rendering the parameters of the tree-based approaches
sub-optimal and consequently reducing their performance.

Figure 6.3 presents the boxplots of the durations of successful runs. As can be
seen, G∗

1 is the slowest approach in the corner scenario, but in the border and
scattered scenarios, GPI∗ has the highest median search times of all. Interest-
ingly, EI attains the fastest and most consistent searches in the corner scenario,
becoming slower in the other two scenarios. An interesting conclusion is that
Infotaxis seems to transfer better than the tree-based controllers, implying that
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Figure 6.3: Duration of the successful runs when departing from the corner (left),
border (centre) and scattered (scenarios).

the overall characteristics of airflow and chemical dispersion are similar in simu-
lation and in the wind-tunnel, but that the reduced dimensions and evaluation
time makes the tree-based controllers struggle.

6.4 Fine tuning
In this section we take advantage of the white-box nature of the tree-based
controllers to make minor adjustments to the lowest performing strategies from
the previous section, in the hope that they become better suited for operating in
the wind tunnel. The main rational is: as the evaluation time is half of the one
from simulation, the time thresholds should be halved as well. However, this
rule cannot be blindly applied, as it may not give enough time to the robots to
perform some behaviours. Moreover, the distance parameters should be adjusted
to better reflect the constraints of the robots as well as the reduced size of the
arena. Even though this is the general rule, there were some occasions where the
parameters were left untouched. The modifications made to the search strategies
are typeset in boldface.

The first strategy to be modified is the one evolved by GSynGP for a single robot,
operating in the stable environment and departing from the corner start region
(Gt

1,b, Algorithm 6.7). Its modifications consist in reducing the time thresholds
in lines 1, 2 and 8, as well as reducing the step length in line 4. Note that in this
instance the time thresholds were not simply halved, as through experimentation
we saw that if the robot moved past the chemical source, it would spend too
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Algorithm 6.7: Manually tweaked strategy evolved by GSynGP for one
robot in the stable environment with the border start region (Gt

1,b).
1 if HSO(t = 120) then
2 if HSO(t = 30) then
3 if SO() then
4 moveUpwind(d = 0.3)
5 else
6 wanderUpwind()

7 else
8 if HSO(t = 70) then
9 wanderDownwind()

10 else
11 wanderUpwind()

12 else
13 wanderCrosswind()

long trying to wander upwind (line 6) and often would not have enough time to
move back downwind (line 9). Also, the step length in line 4 was reduced to try
to prevent the robot from moving past the location of the source.

The second search strategy to suffer modifications is the one evolved by GSynGP
for three robots, operating in the stable environment and departing from the
border start region (Gt

3,b, Algorithm 6.8). The modifications consist on reducing
all distance related parameters to adequate values (lines 4, 5, 10 and 12), as well
as halving all time thresholds (lines 8 and 9). Moreover, the type of neighbours in
the moveAway behaviour was changed to consider only those not sensing odour
(line 7), so that the robots can spread out in the environment to maximise their
chances of detecting the plume, but without moving away from robots already
sensing odour. The modification made to d in line 5 is particularly important,
as it prevents a phenomenon observed during the experimentation, where the
robots would move too much in the direction of their team-mates sensing odour
and would cross the plume without having the chance to start tracking it.

Finally, the third controller to be modified is the one evolved by GPInfotaxis
for operating in the stable environment when departing from the scattered start
region (GPI t

s, Algorithm 6.9). Only two lines of this algorithm are modified, yet
the modifications are substantial. Firstly, line 2 originally commanded the robot
to wander downwind, but now makes it move straight upwind for 0.5 m when
sensing odour, which should drive it closer to the source. A similar rationale is
applied to line 7, where the robot was originally commanded to move randomly.
Considering that the robot is either sensing odour or has sensed it in the past
second, this line is modified to wander upwind, so that the robot moves towards
the likely location of the source while still maintaining some randomness.

Ten runs were made for each of search strategy and the success rates are presen-
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Algorithm 6.8: Manually tweaked strategy evolved by GSynGP for
three robots in the stable environment with the border start region (Gt

3,b).
1 if SO() then
2 moveUpwind(d = 0.3)
3 else
4 if Neighbours(nt = so, r = 5.2) then
5 moveTowards(nt = so, d = 0.3, r = 3)
6 else
7 moveAway(nt = nso, d = 0.5, r = 1.5)
8 if HSO(t = 330) then
9 if HSO(t = 120) then

10 moveRandom(d = 0.3)
11 else
12 moveUpwind(d = 0.3)

13 else
14 wanderCrosswind()
15 wanderCrosswind()
16 wanderCrosswind()

Algorithm 6.9: Manually tweaked strategy evolved by GPInfotaxis in
the stable environment with the scattered start region (GPI t

s).
1 if SO() then
2 moveUpwind(d=0.5)
3 Infotaxis()
4 else
5 Infotaxis()
6 if HSO(t = 1) then
7 wanderUpwind()
8 else
9 Infotaxis()
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Table 6.2: Success rates of the original and manually tweaked controllers

G1,b GPIs G3,b

Original 70 % 60 % 60 %
Tweaked 100 % 100 % 90 %
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Figure 6.4: Duration of the successful runs when controlled by the manually
tweaked search strategies.

ted on Table 6.2. It shows that the modifications made produced good results,
with the biggest improvements being made for GPIs, whose success rate raised
from 60 % to 100 %. The other two strategies also achieved good improvements,
with G1,b and G3,b raising their success rates from respectively 70 % and 60 % to
100 % and 90 %. The multi-robot approach is the only that does fails to always
locate the source, which is likely due to the ratio of size between the robots,
the chemical plume and the arena. While in simulation various robots could
track the plume simultaneously, in the arena the robots would often interfere
with each other. That interference was minimised by adjusting the paramet-
ers of G3,b, but still could not be completely eradicated. The duration of the
successful runs is plotted in Figure 6.4, showing that G1,b becomes more consist-
ent with the modifications made, while GPIs becomes faster and G3,b becomes
slower. The increased search times of G3,b may be due to the reduction of the
step length of line 12, which originally made the robots cross more than half of
the environment with a single motion. In turn, the increased speed of GPIs is
likely related with the modifications made to direct its motions upwind.

These results support the need for evolution, as simply tweaking the evolved
solutions proves to be a hard task. This is particularly true in the multi-robot
setting, where the success rate could be increased but at the cost of the median
search time increasing by roughly 50 %.
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The goal of this thesis was to devise nature-inspired algorithms to auto-
matically produce robotic controllers for locating odour sources. This
goal led to the proposal of two inherently different approaches, which

answer our second research question (i.e., how can one robot evolve to locate an
odour source): (1) EInfotaxis, which uses a Genetic Algorithm to automatically
parametrise the gas distribution model of Infotaxis; and (2) the evolution of
white-box, tree-based controllers with Genetic Programming, which later cul-
minated into GPInfotaxis, a hybrid approach that combines both bio-inspired
building blocks with infotactic behaviours. The desire for the controllers to be
human-readable led us to the proposal of Geometric Syntactic Genetic Program-
ming, a novel GP algorithm which performs geometric crossover operations in
the syntactic space and that showed to evolve much smaller individuals than the
standard GP algorithm with no performance loss. Using GSynGP, the evolution
of multi-robot cooperative controllers was also explored, answering our third re-
search question (i.e., how can a group of robots evolve to locate chemical sources
cooperatively). Finally, to answer the fourth research question, the performance
of the multi-robot approach was compared to the single robot methods, show-
ing that using many simple robots even outperforms GPInfotaxis, i.e., the most
complex single-robot approach.

Two main conclusions can be drawn from this thesis:

1. Regarding general GP experiments, the results showed that GSynGP is
the most suitable approach, producing smaller solutions than SGP with
equivalent performance, which will not only be more interpretable, but also
more efficient. Note that efficiency should not only be seen as a matter
of execution speed, but also energy consumption and memory space, all
of which are primary concerns if the evolved solutions are to be deployed
in resource constrained devices, such as microcontrollers. Moreover, the
successful application of GSynGP to the evolution of robotic controllers
answers our first research question, i.e., GSynGP is a suitable algorithm
to evolve human readable search strategies for odour source localisation.

2. Regarding the methods aimed at odour source localisation, one out of three
approaches can be recommended:

a) If only a single resource-limited robot is available, then GSynGP
should be used to evolve a controller with only simple behaviours and
actions. While this approach will have the least performance when
compared to the others, in the wind tunnel it performed overall quite
well, and the resulting controller will be the least computationally
expensive of all. Also, if more robots become available, the results
showed that simply replicating the individual controller over several
robots will lead to much better performance.

b) If a single robot with sufficient computing capability and battery
range is available, then GPInfotaxis should be used to evolve the
controller. Note however that using a single robot is always riskier
than multiple ones, as there is no redundancy to failures.
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c) Finally, if multiple robots are available, GSynGP should be used to
evolve cooperative strategies, as the resulting controllers can not only
outperform all single-robot approaches, but are also able to cope with
the loss of agents.

The analysis of the evolved solutions also provided insights into future efforts,
namely by showing that the parameters that enable Infotaxis to achieve its best
performance are not necessarily those that make its gas distribution model match
the environment the best. Also, GPInfotaxis’ strategies showed that Infotaxis is
mostly useful for finding the chemical plume, while bio-inspired behaviours are
better suited to track it to its source. A selection of the best evolved controllers
were tested in a controlled wind-tunnel, qualitatively validating the simulation
results.

Future Work
In the future, and as a result of this thesis, various research strands can be
followed:

• Apply the controllers in the real world - This thesis followed a commonly
used methodology in ER, where the controllers are evolved offline, in simu-
lation, and tested in the real world. While we presented some preliminary
experiments of the best evolved controllers in a wind tunnel, it would be
interesting to apply them in the real world, possibly involving different
types of robots (i.e., terrestrial, aerial and aquatic). Such experiments
would not only allow us to understand how they cope with different types
of robotic platforms and, possibly, how could they be improved for each
specific type of robot.

• Online (co-)evolution - Most ER works evolve the controllers in simulation
due to it being easier, cheaper, faster and safer than evolving in the real
world. However, as our preliminary experiments showed, this leads to the
reality gap problem. It would be interesting to enable the robots to evolve
in the real world and, if more than one robot is available, to explore the be-
nefits of co-evolution. This poses some questions that must be addressed,
such as the fitness computation, which should be made through internal
fitness functions, i.e., fitness functions composed by objectives that each
robot can measure without any external help or global knowledge, such as
the distance travelled or the time spent sensing odour. Also, the issue of
unfair evaluations must be dealt with, as in online evolution the evaluation
of each controller starts from the previous evaluation last state. In turn,
the co-evolution goal poses questions such as the capabilities that each
robot should have (should each robot have a single controller and depend
on its encounters with others to reproduce or should each robot be able to
evolve its own population) and also how should they interact (e.g., should
the robots perform crossover together or, rather, share individuals with
their neighbours, i.e., through migration).

• Multi-robot GPInfotaxis - This thesis presented a first step into evolving
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cooperative controllers for odour source localisation, showing that it can
outperform GPInfotaxis, the most complex single-robot approach. How-
ever, it would be interesting to evolve multi-robot cooperative control-
lers with GPInfotaxis, possibly with each robot having different Infotaxis
parameters. This goal poses questions regarding the existence of multiple
Infotaxis parameters, that must be evolved and dealt with efficiently, but
also with how should the cooperation be achieved. A simple way would
be to consider that each robot performs Infotaxis individually, and achieve
cooperation only through the behaviours and perceptions in the terminal
and function sets. However, some researchers have been working on co-
operative Infotaxis methods that should be investigated. Moreover, with
such multi-robot approach would be possible to have a group of heterogen-
eous robots, where some have less resources and thus do not implement
Infotactic behaviours, but others do.

• Improve the perceptions and behaviours - GSynGP evolves the controllers
by combining the perceptions and behaviours that the experimenter in-
cluded in its function and terminal sets. This can be seen as a limitation,
as if necessary symbols are not included, the algorithm will never be able
to evolve the optimal solution. As a result, in the future, further symbols
should be included, based on natural search strategies. As an example,
a flocking behaviour may be particularly useful for tracking a chemical
plume with high intermittency and meandering.

• Explore the use of pheromones - In nature, many animals use pheromones
to communicate. As an extension of this work, it would be interesting
to use pheromones to convert the environment into a mean of indirect
communication, marking regions that have been previously explored to
prevent wasting resources. The pheromones laid could be different based
on the chemical detection rates perceived in a given location, as to convey
the degree of certainty that a region should be avoided.

— 170 —



Bibliography

[Allard et al., 2022] Allard, M., Smith, S. C., Chatzilygeroudis, K., and Cully,
A. (2022). Hierarchical quality-diversity for online damage recovery. arXiv
preprint arXiv:2204.05726.

[Ampatzis et al., 2008] Ampatzis, C., Tuci, E., Trianni, V., and Dorigo, M.
(2008). Evolution of signaling in a multi-robot system: Categorization and
communication. Adaptive Behavior, 16(1):5–26.

[Aoki, 1982] Aoki, I. (1982). A simulation study on the schooling mechanism in
fish. Nippon Suisan Gakkaishi, 48(8):1081–1088.

[Balaprakash et al., 2007] Balaprakash, P., Birattari, M., and Stützle, T.
(2007). Improvement strategies for the f-race algorithm: Sampling design
and iterative refinement. In International workshop on hybrid metaheuristics,
pages 108–122. Springer.

[Baldassarre et al., 2007] Baldassarre, G., Trianni, V., Bonani, M., Mondada,
F., Dorigo, M., and Nolfi, S. (2007). Self-organized coordinated motion in
groups of physically connected robots. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 37(1):224–239.

[Beer and Gallagher, 1992] Beer, R. D. and Gallagher, J. C. (1992). Evolving
dynamical neural networks for adaptive behavior. Adaptive behavior, 1(1):91–
122.

[Birattari et al., 2002] Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.,
et al. (2002). A racing algorithm for configuring metaheuristics. In Gecco,
volume 2.

[Bongard, 2013] Bongard, J. C. (2013). Evolutionary robotics. Communications
of the ACM, 56(8):74–83.

[Boudardara and Gorkemli, 2018] Boudardara, F. and Gorkemli, B. (2018). Ap-
plication of artificial bee colony programming to two trails of the artificial ant
problem. In 2018 2nd International Symposium on Multidisciplinary Studies
and Innovative Technologies (ISMSIT), pages 1–6. IEEE.

[Braitenberg, 1986] Braitenberg, V. (1986). Vehicles: Experiments in synthetic
psychology. MIT press.

[Brambilla et al., 2013] Brambilla, M., Ferrante, E., Birattari, M., and Dorigo,
M. (2013). Swarm robotics: a review from the swarm engineering perspective.
Swarm Intelligence, 7(1):1–41.

— 171 —



Bibliography

[Bredeche, 2014] Bredeche, N. (2014). Embodied evolutionary robotics with
large number of robots. In 14th international conference on the synthesis and
simulation of living systems (ALIFE 14), pages 1–2.

[Bredeche and Fontbonne, 2022] Bredeche, N. and Fontbonne, N. (2022). Social
learning in swarm robotics. Philosophical Transactions of the Royal Society
B, 377(1843):20200309.

[Bredeche et al., 2018] Bredeche, N., Haasdijk, E., and Prieto, A. (2018). Em-
bodied evolution in collective robotics: a review. Frontiers in Robotics and
AI, 5:12.

[Bräunl, 2006] Bräunl, T. (2006). Embedded Robotics: mobie robot design and
applications with embedded systems. Springer.

[Buchanan et al., 2020] Buchanan, E., Le Goff, L. K., Li, W., Hart, E., Eiben,
A. E., De Carlo, M., Winfield, A. F., Hale, M. F., Woolley, R., Angus, M.,
et al. (2020). Bootstrapping artificial evolution to design robots for autonom-
ous fabrication. Robotics, 9(4):106.

[Cabrita et al., 2013] Cabrita, G., Marques, L., and Gazi, V. (2013). Virtual
cancelation plume for multiple odor source localization. In Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages
5552–5558. IEEE.

[Chung et al., 2018] Chung, S.-J., Paranjape, A. A., Dames, P., Shen, S., and
Kumar, V. (2018). A survey on aerial swarm robotics. IEEE Transactions on
Robotics, 34(4):837–855.

[Colledanchise and Ögren, 2018] Colledanchise, M. and Ögren, P. (2018). Be-
havior trees in robotics and AI: An introduction. CRC Press.

[Collins, 2022] Collins, J. T. (2022). Simulation to reality and back: A robot’s
guide to crossing the reality gap. PhD thesis, Queensland University of Tech-
nology.

[Coppola et al., 2020] Coppola, M., McGuire, K. N., De Wagter, C., and
De Croon, G. C. (2020). A survey on swarming with micro air vehicles:
Fundamental challenges and constraints. Frontiers in Robotics and AI, 7:18.

[Crespi et al., 2008] Crespi, V., Galstyan, A., and Lerman, K. (2008). Top-
down vs bottom-up methodologies in multi-agent system design. Autonomous
Robots, 24:303–313.

[Cully et al., 2015] Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015).
Robots that can adapt like animals. Nature, 521(7553):503–507.

[Cully and Mouret, 2016] Cully, A. and Mouret, J.-B. (2016). Evolving a beha-
vioral repertoire for a walking robot. Evolutionary computation, 24(1):59–88.

[de Croon et al., 2013] de Croon, G., O’Connor, L., Nicol, C., and Izzo, D.
(2013). Evolutionary robotics approach to odor source localization. Neuro-
computing, 121:481 – 497. Advances in Artificial Neural Networks and Ma-

— 172 —



Bibliography

chine LearningSelected papers from the 2011 International Work Conference
on Artificial Neural Networks (IWANN 2011).

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions
on Evolutionary Computation, 6(2):182–197.

[Dickman et al., 2009] Dickman, B. D., Webster, D. R., Page, J. L., and Weiss-
burg, M. J. (2009). Three-dimensional odorant concentration measurements
around actively tracking blue crabs. Limnol. Oceanogr. Methods, 7:96–108.

[Divband Soorati and Hamann, 2015] Divband Soorati, M. and Hamann, H.
(2015). The effect of fitness function design on performance in evolution-
ary robotics: The influence of a priori knowledge. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, pages 153–
160.

[Doncieux et al., 2015] Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben,
A. E. (2015). Evolutionary robotics: what, why, and where to. Frontiers in
Robotics and AI, 2:4.

[Dönmez and Kocamaz, 2020] Dönmez, E. and Kocamaz, A. F. (2020). Design
of mobile robot control infrastructure based on decision trees and adaptive
potential area methods. Iranian Journal of Science and Technology, Trans-
actions of Electrical Engineering, 44(1):431–448.

[Duarte et al., 2014] Duarte, M., Oliveira, S., and Christensen, A. (2014). Hy-
brid control for large swarms of aquatic drones. In ALIFE 14: The Fourteenth
International Conference on the Synthesis and Simulation of Living Systems,
pages 785–792. MIT Press.

[Duarte et al., 2012a] Duarte, M., Oliveira, S., and Christensen, A. L. (2012a).
Automatic synthesis of controllers for real robots based on preprogrammed
behaviors. In International Conference on Simulation of Adaptive Behavior,
pages 249–258. Springer.

[Duarte et al., 2012b] Duarte, M., Oliveira, S., and Christensen, A. L. (2012b).
Hierarchical evolution of robotic controllers for complex tasks. In Develop-
ment and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International
Conference on, pages 1–6. IEEE.

[Duisterhof et al., 2021] Duisterhof, B. P., Li, S., Burgués, J., Reddi, V. J., and
de Croon, G. C. (2021). Sniffy bug: A fully autonomous swarm of gas-seeking
nano quadcopters in cluttered environments. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 9099–
9106. IEEE.

[Duistermars et al., 2009] Duistermars, B. J., Chow, D. M., and Frye, M. A.
(2009). Flies require bilateral sensory input to track odor gradients in flight.
Current Biology, 19(15):1301 – 1307.

[Eiben et al., 2010a] Eiben, A. E., Haasdijk, E., and Bredeche, N. (2010a). Em-

— 173 —



Bibliography

bodied, on-line, on-board evolution for autonomous robotics, pages 361–382.
Springer, Berlin, Heidelberg.

[Eiben et al., 2010b] Eiben, A. E., Karafotias, G., and Haasdijk, E. (2010b).
Self-adaptive mutation in on-line, on-board evolutionary robotics. In 2010
Fourth IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshop, pages 147–152. IEEE.

[Eiben and Smith, 2015] Eiben, A. E. and Smith, J. E. (2015). Introduction to
evolutionary computing. Springer.

[Emmerich and Deutz, 2018] Emmerich, M. T. and Deutz, A. H. (2018). A tu-
torial on multiobjective optimization: fundamentals and evolutionary meth-
ods. Natural computing, 17:585–609.

[Farrell et al., 2002] Farrell, J. A., Murlis, J., Long, X., Li, W., and Cardé, R. T.
(2002). Filament-based atmospheric dispersion model to achieve short time-
scale structure of odor plumes. Environmental Fluid Mechanics, 2(1):143–169.

[Farrell et al., 2003] Farrell, J. A., Pang, S., and Li, W. (2003). Plume map-
ping via hidden markov methods. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 33(6):850–863.

[Feng et al., 2020] Feng, Q., Cai, H., Yang, Y., Xu, J., Jiang, M., Li, F., Li, X.,
and Yan, C. (2020). An experimental and numerical study on a multi-robot
source localization method independent of airflow information in dynamic
indoor environments. Sustainable Cities and Society, 53:101897.

[Ferrante et al., 2013] Ferrante, E., Duéñez-Guzmán, E., Turgut, A. E., and
Wenseleers, T. (2013). Geswarm: Grammatical evolution for the automatic
synthesis of collective behaviors in swarm robotics. In Proceedings of the 15th
annual conference on Genetic and evolutionary computation, pages 17–24.

[Ferrante et al., 2012] Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pin-
ciroli, C., and Dorigo, M. (2012). Self-organized flocking with a mobile robot
swarm: a novel motion control method. Adaptive Behavior, 20(6):460–477.

[Ferri et al., 2009] Ferri, G., Caselli, E., Mattoli, V., Mondini, A., Mazzolai,
B., and Dario, P. (2009). Spiral: A novel biologically-inspired algorithm for
gas/odor source localization in an indoor environment with no strong airflow.
Robotics and Autonomous Systems, 57(4):393–402.

[Floreano and Keller, 2010] Floreano, D. and Keller, L. (2010). Evolution of
adaptive behaviour in robots by means of darwinian selection. PLoS biology,
8(1):e1000292.

[Francesca and Birattari, 2016] Francesca, G. and Birattari, M. (2016). Auto-
matic design of robot swarms: achievements and challenges. Frontiers in
Robotics and AI, 3:29.

[Francesca et al., 2015] Francesca, G., Brambilla, M., Brutschy, A., Garattoni,
L., Miletitch, R., Podevijn, G., Reina, A., Soleymani, T., Salvaro, M., Pin-

— 174 —



Bibliography

ciroli, C., et al. (2015). Automode-chocolate: automatic design of control
software for robot swarms. Swarm Intelligence, 9(2):125–152.

[Francesca et al., 2014] Francesca, G., Brambilla, M., Brutschy, A., Trianni, V.,
and Birattari, M. (2014). Automode: A novel approach to the automatic
design of control software for robot swarms. Swarm Intelligence, 8(2):89–112.

[Francis et al., 2022] Francis, A., Li, S., Griffiths, C., and Sienz, J. (2022). Gas
source localization and mapping with mobile robots: A review. Journal of
Field Robotics.

[Gongora et al., 2017] Gongora, A., Monroy, J. G., and Gonzalez-Jimenez,
J. (2017). A robotic experiment toward understanding human gas-source
localization strategies. In Olfaction and Electronic Nose (ISOEN), 2017
ISOCS/IEEE International Symposium on, pages 1–3. IEEE.

[Grasso et al., 2000] Grasso, F. W., Consi, T. R., Mountain, D. C., and Atema,
J. (2000). Biomimetic robot lobster performs chemo-orientation in turbulence
using a pair of spatially separated sensors: Progress and challenges. Robotics
and Autonomous Systems, 30(1-2):115–131.

[Grzes, 2017] Grzes, M. (2017). Reward shaping in episodic reinforcement learn-
ing. In Proceedings of the 16th Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS ’17, page 565–573, Richland, SC. International Found-
ation for Autonomous Agents and Multiagent Systems.

[Haasdijk et al., 2010] Haasdijk, E., Eiben, A., and Karafotias, G. (2010). On-
line evolution of robot controllers by an encapsulated evolution strategy. In
IEEE Congress on Evolutionary Computation, pages 1–7. IEEE.

[Hamann, 2018] Hamann, H. (2018). Swarm robotics: A formal approach,
volume 221. Springer.

[Hammad et al., 2019] Hammad, I., El-Sankary, K., and Gu, J. (2019). A com-
parative study on machine learning algorithms for the control of a wall fol-
lowing robot. In 2019 IEEE International Conference on Robotics and Bio-
mimetics (ROBIO), pages 2995–3000. IEEE.

[Hamzei et al., 1999] Hamzei, G. S., Mulvaney, D. J., and Sillitoe, I. (1999).
Becoming incrementally reactive: on-line learning of an evolving decision tree
array for robot navigation. Robotica, 17(3):325–334.

[Harvey et al., 2008] Harvey, D. J., Lu, T.-F., and Keller, M. A. (2008). Com-
paring insect-inspired chemical plume tracking algorithms using a mobile ro-
bot. IEEE Transactions on Robotics, 24(2):307–317.

[Hauert et al., 2011] Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A.,
Zufferey, J.-C., and Floreano, D. (2011). Reynolds flocking in reality with
fixed-wing robots: communication range vs. maximum turning rate. In 2011
IEEE/RSJ international conference on intelligent robots and systems, pages
5015–5020. IEEE.

[Hauert et al., 2009] Hauert, S., Zufferey, J.-C., and Floreano, D. (2009).

— 175 —



Bibliography

Evolved swarming without positioning information: an application in aerial
communication relay. Autonomous Robots, 26(1):21–32.

[Hayes et al., 2002] Hayes, A. T., Martinoli, A., and Goodman, R. M. (2002).
Distributed odor source localization. IEEE Sensors Journal, 2(3):260–271.

[Hayes-Roth, 1985] Hayes-Roth, F. (1985). Rule-based systems. Communica-
tions of the ACM, 28(9):921–932.

[Howard et al., 2002] Howard, A., Matarić, M. J., and Sukhatme, G. S. (2002).
Mobile sensor network deployment using potential fields: A distributed, scal-
able solution to the area coverage problem. In Distributed autonomous robotic
systems 5, pages 299–308. Springer.

[Huang and Liang, 2002] Huang, H.-P. and Liang, C.-C. (2002). Strategy-based
decision making of a soccer robot system using a real-time self-organizing
fuzzy decision tree. Fuzzy Sets and Systems, 127(1):49–64.

[Hutchinson et al., 2018] Hutchinson, M., Oh, H., and Chen, W. (2018). En-
trotaxis as a strategy for autonomous search and source reconstruction in
turbulent conditions. Information Fusion, 42:179–189.

[Ishida et al., 1995] Ishida, H., Kagawa, Y., Nakamoto, T., and Moriizumi, T.
(1995). Odor-source localization in clean room by autonomous mobile sensing
system. In Proceedings of the International Solid-State Sensors and Actuators
Conference - TRANSDUCERS ’95, volume 1, pages 783–786. IEEE.

[Ishida et al., 2012] Ishida, H., Wada, Y., and Matsukura, H. (2012). Chem-
ical sensing in robotic applications: A review. IEEE Sensors Journal,
12(11):3163–3173.

[Izquierdo and Lockery, 2010] Izquierdo, E. J. and Lockery, S. R. (2010). Evol-
ution and analysis of minimal neural circuits for klinotaxis in caenorhabditis
elegans. Journal of Neuroscience, 30(39):12908–12917.

[Jakobi et al., 1995] Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and
the reality gap: The use of simulation in evolutionary robotics. In European
Conference on Artificial Life, pages 704–720. Springer.

[Jatmiko et al., 2007] Jatmiko, W., Sekiyama, K., and Fukuda, T. (2007). A
pso-based mobile robot for odor source localization in dynamic advection-
diffusion with obstacles environment: theory, simulation and measurement.
IEEE Computational Intelligence Magazine, 2(2):37–51.

[Jin and Branke, 2005] Jin, Y. and Branke, J. (2005). Evolutionary optimiza-
tion in uncertain environments-a survey. IEEE Transactions on Evolutionary
Computation, 9(3):303–317.

[Jing et al., 2021] Jing, T., Meng, Q.-H., and Ishida, H. (2021). Recent progress
and trend of robot odor source localization. IEEJ Transactions on Electrical
and Electronic Engineering.

[Jo, 2021] Jo, T. (2021). Machine Learning Foundations: Supervised, Unsuper-
vised, and Advanced Learning. Springer Cham.

— 176 —



Bibliography

[Jones et al., 2018] Jones, S., Studley, M., Hauert, S., and Winfield, A. (2018).
Evolving behaviour trees for swarm robotics. In Distributed Autonomous Ro-
botic Systems, pages 487–501. Springer.

[Jones et al., 2019] Jones, S., Winfield, A. F., Hauert, S., and Studley, M.
(2019). Onboard evolution of understandable swarm behaviors. Advanced
Intelligent Systems, 1(6):1900031.

[Koch et al., 2021] Koch, J., Langosco, L., Pfau, J., Le, J., and Sharkey, L.
(2021). Objective robustness in deep reinforcement learning. arXiv preprint
arXiv:2105.14111.

[Kovincic et al., 2020] Kovincic, N., Gattringer, H., Müller, A., and Brandstöt-
ter, M. (2020). A boosted decision tree approach for a safe human-robot
collaboration in quasi-static impact situations. In International Conference
on Robotics in Alpe-Adria Danube Region, pages 235–244. Springer.

[Kowadlo and Russell, 2008] Kowadlo, G. and Russell, R. A. (2008). Robot odor
localization: a taxonomy and survey. The International Journal of Robotics
Research, 27(8):869–894.

[Koza, 1992] Koza, J. (1992). Genetic programming: on the programming of
computers by means of natural selection, volume 1. MIT press.

[Koza, 1994] Koza, J. (1994). Genetic programming II: automatic discovery of
reusable programs. MIT press.

[Koza and Rice, 1992] Koza, J. and Rice, J. (1992). Automatic programming
of robots using genetic programming. In AAAI, volume 92, pages 194–207.
Citeseer.

[Kuckling et al., 2018] Kuckling, J., Ligot, A., Bozhinoski, D., and Birattari,
M. (2018). Behavior trees as a control architecture in the automatic modular
design of robot swarms. In Swarm Intelligence: 11th International Confer-
ence, ANTS 2018, Rome, Italy, October 29–31, 2018, Proceedings 11, pages
30–43. Springer.

[Kuwana et al., 1996] Kuwana, Y., Shimoyama, I., Sayama, Y., and Miura, H.
(1996). Synthesis of pheromone-oriented emergent behavior of a silkworm
moth. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS’96, volume 3, pages 1722–1729. IEEE.

[Labella et al., 2006] Labella, T. H., Dorigo, M., and Deneubourg, J.-L. (2006).
Division of labor in a group of robots inspired by ants’ foraging behavior. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 1(1):4–25.

[Langdon and Poli, 2013] Langdon, W. B. and Poli, R. (2013). Foundations of
genetic programming. Springer Science & Business Media.

[Lee et al., 2018] Lee, R., Mou, S., Dasagi, V., Bruce, J., Leitner, J., and
Sünderhauf, N. (2018). Zero-shot sim-to-real transfer with modular priors.
Computing Research Repository (CoRR).

— 177 —



Bibliography

[Lehman et al., 2012] Lehman, J., Risi, S., D’ambrosio, D. B., and Stanley,
K. O. (2012). Rewarding reactivity to evolve robust controllers without mul-
tiple trials or noise. In Artificial Life Conference Proceedings 12, pages 379–
386. MIT Press.

[Lehman and Stanley, 2011] Lehman, J. and Stanley, K. O. (2011). Evolving a
diversity of virtual creatures through novelty search and local competition.
In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pages 211–218.

[Liberzon et al., 2018] Liberzon, A., Harrington, K., Daniel, N., Gurka, R., Har-
ari, A., and Zilman, G. (2018). Moth-inspired navigation algorithm in a tur-
bulent odor plume from a pulsating source. PloS one, 13(6).

[Liu et al., 2007] Liu, W., Winfield, A. F., Sa, J., Chen, J., and Dou, L. (2007).
Towards energy optimization: Emergent task allocation in a swarm of foraging
robots. Adaptive behavior, 15(3):289–305.

[Lochmatter, 2010] Lochmatter, T. (2010). Bio-inspired and probabilistic al-
gorithms for distributed odor source localization using mobile robots. PhD
thesis, EPFL.

[Lochmatter et al., 2013] Lochmatter, T., Aydın Göl, E., Navarro, I., and Mar-
tinoli, A. (2013). A Plume Tracking Algorithm Based on Crosswind Forma-
tions, pages 91–102. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Luke, 2013] Luke, S. (2013). Essentials of metaheuristics, volume 2. Lulu
Raleigh.

[Luke and Panait, 2002] Luke, S. and Panait, L. (2002). Lexicographic parsi-
mony pressure. In Proceedings of the 4th Annual Conference on Genetic and
Evolutionary Computation, pages 829–836.

[Macedo et al., 2018] Macedo, J., Fonseca, C. M., and Costa, E. (2018). Geo-
metric crossover in syntactic space. In European Conference on Genetic Pro-
gramming, pages 237–252. Springer.

[Macedo et al., 2016] Macedo, J., Marques, L., and Costa, E. (2016). Evolving
neural networks for multi-robot odor search. In Autonomous Robot Systems
and Competitions (ICARSC), 2016 International Conference on, pages 288–
293. IEEE.

[Macedo et al., 2019] Macedo, J., Marques, L., and Costa, E. (2019). A com-
parative study of bio-inspired odour source localisation strategies from the
state-action perspective. Sensors, 19(10):2231.

[Macedo et al., 2020] Macedo, J., Marques, L., and Costa, E. (2020). Locating
odour sources with geometric syntactic genetic programming. In European
Conference on the Applications of Evolutionary Computation. Springer.

[Macedo et al., 2021a] Macedo, J., Marques, L., and Costa, E. (2021a). Design-
ing fitness functions for odour source localisation. In Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, pages 103–104.

— 178 —



Bibliography

[Macedo et al., 2021b] Macedo, J., Marques, L., and Costa, E. (2021b).
Evolving infotaxis for meandering environments. In 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 8431–
8436. IEEE.

[Macedo et al., 2022] Macedo, J. a., Marques, L., and Costa, E. (2022). Hy-
bridizing bio-inspired strategies with infotaxis through genetic programming.
In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’22, page 95–103, New York, NY, USA. Association for Comput-
ing Machinery.

[Marjovi et al., 2009] Marjovi, A., Nunes, J. G., Marques, L., and De Almeida,
A. (2009). Multi-robot exploration and fire searching. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1929–1934.
IEEE.

[Marques et al., 2022] Marques, L., Magalhães, H., Baptista, R., and Macedo, J.
(2022). Mobile robot olfaction state-of-the-art and research challenges, pages
97–213. IET.

[Marques et al., 2003] Marques, L., Nunes, U., and De Almeida, A. (2003).
Odour searching with autonomous mobile robots: An evolutionary-based ap-
proach. In Proceedings of the IEEE Int. Conf. on Advanced Robotics, pages
494–500.

[Marques et al., 2002a] Marques, L., Nunes, U., and de Almeida, A. T. (2002a).
Cooperative odour field exploration with genetic algorithms. In Proc. 5th
Portuguese Conf. on Automatic Control (CONTROLO 2002), pages 138–143.
Citeseer.

[Marques et al., 2002b] Marques, L., Nunes, U., and de Almeida, A. T. (2002b).
Olfaction-based mobile robot navigation. Thin solid films, 418(1):51–58.

[Marques et al., 2006] Marques, L., Nunes, U., and de Almeida, A. T. (2006).
Particle swarm-based olfactory guided search. Autonomous Robots, 20(3):277–
287.

[Martin Moraud and Martinez, 2010] Martin Moraud, E. and Martinez, D.
(2010). Effectiveness and robustness of robot infotaxis for searching in di-
lute conditions. Frontiers in neurorobotics, 4:1.

[Mataric, 1994] Mataric, M. J. (1994). Reward functions for accelerated learn-
ing. In Machine learning proceedings 1994, pages 181–189. Elsevier.

[Maxim et al., 2009] Maxim, P. M., Spears, W. M., and Spears, D. F. (2009).
Robotic chain formations. IFAC Proceedings Volumes, 42(22):19–24.

[McDermott et al., 2012] McDermott, J., White, D. R., Luke, S., Manzoni, L.,
Castelli, M., Vanneschi, L., Jaskowski, W., Krawiec, K., Harper, R., De Jong,
K., et al. (2012). Genetic programming needs better benchmarks. In Proceed-
ings of the 14th annual conference on Genetic and evolutionary computation,
pages 791–798.

— 179 —



Bibliography

[McGuire et al., 2019] McGuire, K., De Wagter, C., Tuyls, K., Kappen, H., and
de Croon, G. C. (2019). Minimal navigation solution for a swarm of tiny flying
robots to explore an unknown environment. Science Robotics, 4(35):eaaw9710.

[Mehta et al., 2020] Mehta, B., Handa, A., Fox, D., and Ramos, F.
(2020). A user’s guide to calibrating robotics simulators. arXiv preprint
arXiv:2011.08985.

[Mermoud et al., 2014] Mermoud, G., Upadhyay, U., Evans, W. C., and Mar-
tinoli, A. (2014). Top-down vs. bottom-up model-based methodologies for
distributed control: a comparative experimental study. In Experimental Ro-
botics, pages 615–629. Springer.

[Moctezuma et al., 2012] Moctezuma, L. E. G., Lobov, A., and Lastra, J. L. M.
(2012). Decision making by using tree-like structures on industrial controllers.
In 2012 Tenth International Conference on ICT and Knowledge Engineering,
pages 77–83. IEEE.

[Moraglio, 2008] Moraglio, A. (2008). Towards a geometric unification of evol-
utionary algorithms. PhD thesis, University of Essex.

[Moraglio et al., 2012] Moraglio, A., Krawiec, K., and Johnson, C. G. (2012).
Geometric semantic genetic programming. In International Conference on
Parallel Problem Solving from Nature, pages 21–31. Springer.

[Moran, 2006] Moran, M. E. (2006). The da vinci robot. Journal of endourology,
20(12):986–990.

[Mostaghim et al., 2010] Mostaghim, S., Trautmann, H., and Mersmann, O.
(2010). Preference-based multi-objective particle swarm optimization using
desirabilities. In International Conference on Parallel Problem Solving from
Nature, pages 101–110. Springer.

[Mouret and Chatzilygeroudis, 2017] Mouret, J.-B. and Chatzilygeroudis, K.
(2017). 20 years of reality gap: a few thoughts about simulators in evolution-
ary robotics. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 1121–1124.

[Mouret and Clune, 2015] Mouret, J.-B. and Clune, J. (2015). Illuminating
search spaces by mapping elites. arXiv preprint arXiv:1504.04909.

[Mouret et al., 2013] Mouret, J.-B., Koos, S., and Doncieux, S. (2013). Crossing
the reality gap: a short introduction to the transferability approach. arXiv
preprint arXiv:1307.1870.

[Murata and Kurokawa, 2007] Murata, S. and Kurokawa, H. (2007). Self-
reconfigurable robots. IEEE Robotics & Automation Magazine, 14(1):71–78.

[Nedjah and Junior, 2019] Nedjah, N. and Junior, L. S. (2019). Review of meth-
odologies and tasks in swarm robotics towards standardization. Swarm and
Evolutionary Computation, 50:100565.

[Nelson et al., 2009] Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fit-

— 180 —



Bibliography

ness functions in evolutionary robotics: A survey and analysis. Robotics and
Autonomous Systems, 57(4):345–370.

[Nolfi et al., 2016] Nolfi, S., Bongard, J., Husbands, P., and Floreano, D. (2016).
Evolutionary Robotics, pages 2035–2068. Springer International Publishing,
Cham.

[Nolfi and Floreano, 2000] Nolfi, S. and Floreano, D. (2000). Evolutionary ro-
botics: The biology, intelligence, and technology of self-organizing machines.
MIT press.

[Nolfi et al., 1994] Nolfi, S., Floreano, D., Miglino, O., and Mondada, F. (1994).
How to evolve autonomous robots: Different approaches in evolutionary ro-
botics. In Artificial life iv: Proceedings of the fourth international workshop
on the synthesis and simulation of living systems, pages 190–197. MIT press.

[Nolfi and Parisi, 1996] Nolfi, S. and Parisi, D. (1996). Learning to adapt
to changing environments in evolving neural networks. Adaptive behavior,
5(1):75–98.

[Nordin and Banzhaf, 1997] Nordin, P. and Banzhaf, W. (1997). An on-line
method to evolve behavior and to control a miniature robot in real time with
genetic programming. Adaptive Behavior, 5(2):107–140.

[Nouyan et al., 2008] Nouyan, S., Campo, A., and Dorigo, M. (2008). Path
formation in a robot swarm. Swarm Intelligence, 2(1):1–23.

[Nurzaman et al., 2011] Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Koi-
zumi, S., and Ishiguro, H. (2011). ’yuragi’-based adaptive mobile robot search
with and without gradient sensing: From bacterial chemotaxis to a levy walk.
Advanced Robotics, 25(16):2019–2037.

[Otfinoski, 2007] Otfinoski, S. (2007). Rockets. Great Inventions. Cavendish
Square Publishing.

[O’Grady et al., 2010] O’Grady, R., Groß, R., Christensen, A. L., and Dorigo,
M. (2010). Self-assembly strategies in a group of autonomous mobile robots.
Autonomous Robots, 28(4):439–455.

[Park and Oh, 2020] Park, M. and Oh, H. (2020). Cooperative information-
driven source search and estimation for multiple agents. Information Fusion,
54:72–84.

[Parker, 2008] Parker, L. E. (2008). Multiple Mobile Robot Systems, pages 921–
941. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Perez et al., 2011] Perez, D., Nicolau, M., O’Neill, M., and Brabazon, A.
(2011). Evolving behaviour trees for the mario ai competition using grammat-
ical evolution. In European Conference on the Applications of Evolutionary
Computation, pages 123–132. Springer.

[Quigley et al., 2009] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., and Ng, A. (2009). ROS: an open-source

— 181 —



Bibliography

robot operating system. In Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan.

[Reynolds, 1987] Reynolds, C. W. (1987). Flocks, herds and schools: A dis-
tributed behavioral model. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, pages 25–34.

[Ristic and Gilliam, 2019] Ristic, B. and Gilliam, C. (2019). Decentralised scal-
able search for a hazardous source in turbulent conditions. In Unmanned
Robotic Systems and Applications. IntechOpen.

[Ristic et al., 2016] Ristic, B., Skvortsov, A., and Gunatilaka, A. (2016). A
study of cognitive strategies for an autonomous search. Information Fusion,
28:1–9.

[Rodríguez et al., 2017] Rodríguez, J. D., Gómez-Ullate, D., and Mejía-
Monasterio, C. (2017). On the performance of blind-infotaxis under inac-
curate modeling of the environment. The European Physical Journal Special
Topics, 226(10):2407–2420.

[Rokach and Maimon, 2005] Rokach, L. and Maimon, O. (2005). Decision trees.
In Data mining and knowledge discovery handbook, pages 165–192. Springer.

[Rozas et al., 1991] Rozas, R., Morales, J., and Vega, D. (1991). Artificial
smell detection for robotic navigation. In Fifth International Conference on
Advanced Robotics’ Robots in Unstructured Environments, pages 1730–1733.
IEEE.

[Rubenstein et al., 2014] Rubenstein, M., Cornejo, A., and Nagpal, R.
(2014). Programmable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799.

[Ruddick et al., 2018] Ruddick, J., Marjovi, A., Rahbar, F., and Martinoli,
A. (2018). Design and performance evaluation of an infotaxis-based three-
dimensional algorithm for odor source localization. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 1413–
1420. IEEE.

[Russell et al., 2003] Russell, R. A., Bab-Hadiashar, A., Shepherd, R. L., and
Wallace, G. G. (2003). A comparison of reactive robot chemotaxis algorithms.
Robotics and Autonomous Systems, 45(2):83–97.

[Ryan et al., 1998] Ryan, C., Collins, J. J., and Neill, M. O. (1998). Grammat-
ical evolution: Evolving programs for an arbitrary language. In European
conference on genetic programming, pages 83–96. Springer.

[Şahin, 2004] Şahin, E. (2004). Swarm robotics: From sources of inspiration to
domains of application. In International Workshop on Swarm Robotics, pages
10–20. Springer.

[Salvato et al., 2021] Salvato, E., Fenu, G., Medvet, E., and Pellegrino, F. A.
(2021). Crossing the reality gap: A survey on sim-to-real transferability of
robot controllers in reinforcement learning. IEEE Access, 9:153171–153187.

— 182 —



Bibliography

[Saska, 2015] Saska, M. (2015). Mav-swarms: unmanned aerial vehicles stabil-
ized along a given path using onboard relative localization. In 2015 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), pages 894–903.
IEEE.

[Saulnier et al., 2017] Saulnier, K., Saldana, D., Prorok, A., Pappas, G. J., and
Kumar, V. (2017). Resilient flocking for mobile robot teams. IEEE Robotics
and Automation letters, 2(2):1039–1046.

[Scheper and De Croon, 2017] Scheper, K. Y. and De Croon, G. C. (2017). Ab-
straction, sensory-motor coordination, and the reality gap in evolutionary
robotics. Artificial Life, 23(2):124–141.

[Scheper et al., 2016] Scheper, K. Y., Tijmons, S., de Visser, C. C., and
de Croon, G. C. (2016). Behavior trees for evolutionary robotics. Artificial
life, 22(1):23–48.

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

[Sekhavat, 2017] Sekhavat, Y. A. (2017). Behavior trees for computer games.
International Journal on Artificial Intelligence Tools, 26(02):1730001.

[Shah and Gopal, 2010] Shah, H. and Gopal, M. (2010). A fuzzy decision tree-
based robust markov game controller for robot manipulators. International
Journal of Automation and Control, 4(4):417–439.

[Shucker and Bennett, 2007] Shucker, B. and Bennett, J. K. (2007). Scalable
control of distributed robotic macrosensors. In Distributed Autonomous Ro-
botic Systems 6, pages 379–388. Springer.

[Shucker et al., 2008] Shucker, B., Murphey, T. D., and Bennett, J. K. (2008).
Convergence-preserving switching for topology-dependent decentralized sys-
tems. IEEE Transactions on Robotics, 24(6):1405–1415.

[Silva et al., 2015] Silva, F., Urbano, P., Correia, L., and Christensen, A. L.
(2015). odneat: An algorithm for decentralised online evolution of robotic
controllers. Evolutionary Computation, 23(3):421–449.

[Singh et al., 2023] Singh, S. H., van Breugel, F., Rao, R. P., and Brunton,
B. W. (2023). Emergent behaviour and neural dynamics in artificial agents
tracking odour plumes. Nature Machine Intelligence, 5(1):58–70.

[Song et al., 2020] Song, C., He, Y., Ristic, B., and Lei, X. (2020). Collaborative
infotaxis: Searching for a signal-emitting source based on particle filter and
gaussian fitting. Robotics and Autonomous Systems, 125:103414.

[Song et al., 2019] Song, C., He, Y., Ristic, B., Li, L., and Lei, X. (2019). Multi-
agent collaborative infotaxis search based on cognition difference. Journal of
Physics A: Mathematical and Theoretical, 52(48):485202.

[Soysal and Sahin, 2005] Soysal, O. and Sahin, E. (2005). Probabilistic aggreg-

— 183 —



Bibliography

ation strategies in swarm robotic systems. In Proceedings 2005 IEEE Swarm
Intelligence Symposium, 2005. SIS 2005., pages 325–332. IEEE.

[Spears et al., 2004] Spears, W. M., Spears, D. F., Hamann, J. C., and Heil, R.
(2004). Distributed, physics-based control of swarms of vehicles. Autonomous
Robots, 17(2-3):137–162.

[Sprague et al., 2018] Sprague, C. I., Özkahraman, Ö., Munafo, A., Marlow, R.,
Phillips, A., and Ögren, P. (2018). Improving the modularity of auv control
systems using behaviour trees. In 2018 IEEE/OES Autonomous Underwater
Vehicle Workshop (AUV), pages 1–6. IEEE.

[Stockie, 2011] Stockie, J. M. (2011). The mathematics of atmospheric disper-
sion modeling. SIAM Review, 53(2):349–372.

[Sungkono et al., 2016] Sungkono, S. K., Yohanes, B. W., and Santoso, D.
(2016). Decision tree analysis for humanoid robot soccer goalkeeper algorithm.
In 2016 6th International Annual Engineering Seminar (InAES), pages 46–50.
IEEE.

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

[Svec and Gupta, 2012] Svec, P. and Gupta, S. K. (2012). Automated synthesis
of action selection policies for unmanned vehicles operating in adverse envir-
onments. Autonomous Robots, 32(2):149–164.

[Swere and Mulvaney, 2003] Swere, E. and Mulvaney, D. J. (2003). Robot nav-
igation using decision trees. Electr. Eng, pages 15–17.

[Szabo, 2015] Szabo, T. (2015). Autonomous collision avoidance for swarms of
mavs: based solely on rssi measurements. Master’s thesis, Delft University of
Technology.

[Trautmann and Weihs, 2006] Trautmann, H. and Weihs, C. (2006). On the
distribution of the desirability index using Harrington’s desirability function.
Metrika, 63(2):207–213.

[Trianni, 2008] Trianni, V. (2008). Evolutionary swarm robotics: evolving self-
organising behaviours in groups of autonomous robots. Springer.

[Tuci and Trianni, 2014] Tuci, E. and Trianni, V. (2014). On the evolution of
homogeneous two-robot teams: clonal versus aclonal approaches. Neural Com-
puting and Applications, 25(5):1063–1076.

[Tzafestas, 2013] Tzafestas, S. G. (2013). Introduction to mobile robot control.
Elsevier.

[Usui and Arita, 2003] Usui, Y. and Arita, T. (2003). Situated and embodied
evolution in collective evolutionary robotics. In In Proc. of the 8th Interna-
tional Symposium on Artificial Life and Robotics. Citeseer.

[Vanneschi, 2016] Vanneschi, L. (2016). An introduction to geometric semantic
genetic programming. In NEO 2015: Results of the Numerical and Evolu-

— 184 —



Bibliography

tionary Optimization Workshop NEO 2015 held at September 23-25 2015 in
Tijuana, Mexico, pages 3–42. Springer.

[Vergassola et al., 2007] Vergassola, M., Villermaux, E., and Shraiman, B. I.
(2007). ‘infotaxis’ as a strategy for searching without gradients. Nature,
445(7126):406–409.

[Villarreal et al., 2016] Villarreal, B. L., Olague, G., and Gordillo, J. L. (2016).
Synthesis of odor tracking algorithms with genetic programming. Neurocom-
puting, 175:1019–1032.

[Vuong et al., 2015] Vuong, T. P., Loukas, G., Gan, D., and Bezemskij, A.
(2015). Decision tree-based detection of denial of service and command in-
jection attacks on robotic vehicles. In 2015 IEEE International Workshop on
Information Forensics and Security (WIFS), pages 1–6. IEEE.

[Waibel et al., 2009] Waibel, M., Keller, L., and Floreano, D. (2009). Genetic
team composition and level of selection in the evolution of cooperation. IEEE
Transactions on Evolutionary Computation, 13(3):648–660.

[Watson et al., 2002] Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002).
Embodied evolution: Distributing an evolutionary algorithm in a population
of robots. Robotics and Autonomous Systems, 39(1):1–18.

[Weissburg and Dusenbery, 2002] Weissburg, M. J. and Dusenbery, D. B.
(2002). Behavioral observations and computer simulations of blue crab move-
ment to a chemical source in a controlled turbulent flow. Journal of Experi-
mental Biology, 205(21):3387–3398.

[White et al., 2013] White, D. R., McDermott, J., Castelli, M., Manzoni, L.,
Goldman, B. W., Kronberger, G., Jaśkowski, W., O’Reilly, U.-M., and Luke,
S. (2013). Better gp benchmarks: community survey results and proposals.
Genetic Programming and Evolvable Machines, 14:3–29.

[Wilkerson and Tauritz, 2011] Wilkerson, J. L. and Tauritz, D. R. (2011). A
guide for fitness function design. In Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, pages 123–124.

[Wilson et al., 2014] Wilson, S., Pavlic, T. P., Kumar, G. P., Buffin, A., Pratt,
S. C., and Berman, S. (2014). Design of ant-inspired stochastic control policies
for collective transport by robotic swarms. Swarm Intelligence, 8(4):303–327.

[Zagal and Ruiz-Del-Solar, 2007] Zagal, J. C. and Ruiz-Del-Solar, J. (2007).
Combining simulation and reality in evolutionary robotics. Journal of In-
telligent and Robotic Systems, 50(1):19–39.

[Zagal et al., 2004] Zagal, J. C., Ruiz-del Solar, J., and Vallejos, P. (2004). Back
to reality: Crossing the reality gap in evolutionary robotics. IFAC Proceedings
Volumes, 37(8):834–839.

[Zarzhitsky et al., 2005] Zarzhitsky, D., Spears, D., Thayer, D., and Spears, W.
(2005). Agent-based chemical plume tracing using fluid dynamics. In Formal
Approaches to Agent-Based Systems: Third International Workshop, FAABS

— 185 —



Bibliography

2004, Greenbelt, MD, April 26-27, 2004, Revised Selected Papers 3, pages
146–160. Springer.

[Zhuang and Hadfield-Menell, 2020] Zhuang, S. and Hadfield-Menell, D. (2020).
Consequences of misaligned ai. Advances in Neural Information Processing
Systems, 33:15763–15773.

[Ziegler and Banzhaf, 2001] Ziegler, J. and Banzhaf, W. (2001). Evolving con-
trol metabolisms for a robot. Artificial Life, 7(2):171–190.

— 186 —


	Acknowledgements
	Abstract
	Resumo
	List of Publications
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Motivation
	Working hypothesis
	Goals
	Contributions
	Organisation

	Background and state of the art
	Background concepts
	Odour source localisation
	Robotics
	Evolutionary computation
	Evolutionary robotics
	Robotic communities

	Source seeking approaches
	Single-robot approaches
	Multi-robot and swarm approaches
	Automatically designed approaches

	Source estimation approaches
	Single-robot approaches
	Multi-robot and swarm approaches

	Robotic communities for related tasks

	Geometric Syntactic Genetic Programming
	Geometric syntactic genetic programming
	Validation
	Experimental setup
	Experimental results

	Discussion

	Single-robot approaches for odour source localisation
	Simulator
	Environments

	Evolving tree-based search strategies with Geometric Syntactic Genetic Programming
	Designing fitness functions for odour source localisation
	Final remarks

	Evolutionary Infotaxis
	Experimental results

	Genetic Programming Infotaxis
	Experimental results
	Analysis of the best search strategies
	Final remarks


	Multi-robot and swarm approaches for odour source localisation
	Influence of the number of robots
	The role of cooperation
	Experimental results
	Final remarks

	Comparison with single-robot approaches
	Final remarks


	Wind tunnel validation
	Experimental setup
	Wind Tunnel
	Robot

	Best controllers
	Performance comparison
	Fine tuning

	Conclusions and Future Work
	Bibliography

