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Abstract

In the last few decades many aspects of our lives have been moved online. Banking
and payments, health care, private messaging, or critical infrastructure monitoring are
just a small subset of sensitive activities that are now commonplace on the Internet,
and yet it would be catastrophic if they were not adequately secured.

One core tool for securing both data at rest and communications is cryptography.
Cryptography offers tools for preserving the confidentiality and integrity of data, as
well as for authentication and other more advanced uses like zero-knowledge proofs.

But for cryptography to be useful it needs to be usable. One significant component
of usability is speed: if cryptography is—or is perceived to be—slow, this will slow
down its adoption and incentivize poor alternatives to replace it. This is not theoreti-
cal; there are many such cases in the past where weak or ineffective cryptography
was used because better options were deemed to incur too much overhead. One of
the reasons that cryptographic functions can be slow is that they are not designed
with the hardware in which they are going to run in mind. Hardware which, as
Moore’s law comes closer to its end, is becoming increasingly parallel.

The main focus of this thesis is the development of fast cryptographic primitives
that fit modern hardware—fast enough that there should be no reason to prefer
weaker ones. Our main contribution consists of two primitives with different applica-
tions.

The first one, BLAKE2, is a hash function designed to replace legacy hash functions
such as MD5 and SHA-1 that, despite being long known to be broken, continue to
be used due to their speed and availability. BLAKE2 was derived from the original
BLAKE, one of the NIST SHA-3 competition finalists, and is expected to have a large
security margin while, at the same time, being faster than MD5 and SHA-1. BLAKE2
also supports tree hashing, making it possible to accelerate operations on parallel
hardware at a coarse grained level as well.

The second main contribution is NORX, an authenticated encryption primitive.
While existing authenticated encryption primitives already existed, such as AES-GCM
or EAX, they were based on the AES block cipher. The AES block cipher is widely
believed to be secure. However, AES-based primitives suffer from a drawback: for AES
to be both fast and secure it must be hardware accelerated. As one of the submissions
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ii ABSTRACT

to the CAESAR competition for new authenticated encryption designs, NORX aims
to eliminate this kind of tradeoff: it is fast, parallelizable, and easy to implement in
pretty much every platform. In chips without hardware AES acceleration, such as the
ARM Cortex-A7, NORX can be up to three times faster than AES-GCM.

As a byproduct of the development of the primitives above, we also developed
Tyche, a small nonlinear pseudorandom generator targeted towards massively parallel
simulations. Another byproduct of our research was the cryptanalysis not only of
NORX, but also of other primitives such as the CAESAR candidates McMambo and
Wheesht, as well as the authenticated encryption scheme found in the widespread
Open Smart Grid Protocol standard.

Keywords cryptography, cryptanalysis, pseudorandom generator, hash function,
authenticated encryption.



Resumo

Nas últimas décadas muitos aspectos da nossa vida têm sido migrados para a Internet.
Desde pagamentos online até saúde, comunicações privadas, ou monitorização de
infraestrutura, são imensas as actividades de cariz sensível que não só são actualmente
comuns na Internet, mas seria desastroso se não fossem adequadamente protegidas.

Uma ferramenta fundamental para a protecção de dados é a criptografia. A
criptografia oferece mecanismos para assegurar a confidencialidade e integridade
dos dados, assim como para a sua autenticação e ainda outros usos mais avançados
como provas de conhecimento zero.

Mas para a criptografia ser útil tem de ser usável. Uma componente significativa
da usabilidade é o desempenho: se a criptografia for lenta—ou tiver a percepção
de ser lenta—isto irá impedir a sua adopção ou incentivar o uso de alternativas
inseguras. Isto não é apenas uma preocupação teórica; existem muitos casos em que
funções criptográficas inseguras continuaram a ser usadas devido ao custo imposto
por transitar para alternativas seguras. Uma das razões para uma função criptográfica
ser lenta é por não ser desenhada com o hardware em mente, hardware este que à
medida que a lei de Moore caminha para o seu fim, se torna cada vez mais paralelo.

O foco principal desta tese é o desenvolvimento de funções criptográficas rápidas
que se adaptam ao hardware moderno—rápidas o suficiente de forma a que não haja
razão para preferir soluções inseguras. A minha contribuição consiste principalmente
em duas funções com aplicações diferentes.

A primeira, BLAKE2, é uma função de dispersão desenhada para substituir funções
mais antigas como a MD5 e SHA-1 que, apesar de terem sido quebradas há mais
de uma década, continuam a ser utilizadas porque tipicamente também são as mais
rápidas. A BLAKE2 deriva da função BLAKE, uma das finalistas da competição SHA-3
do NIST, é considerada ter uma grande margem de segurança e, simultaneamente, é
mais rápida que a MD5 e a SHA-1. A BLAKE2 também suporta dispersão em árvore,
o que torna possível aproveitar o paralelismo em maior escala dos processadores
modernos.

A segunda contribuição é a função de cifração autenticada NORX. Apesar de já
existirem funções de cifração autenticada, como a AES-GCM ou a EAX, estas são
baseadas da cifra de bloco AES. Apesar desta cifra ser unanimemente considerada
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iv RESUMO

segura, para ser tanto segura como rápida tem de ser implementada em hardware.
Uma submissão para a competição CAESAR para novas funções de cifração autenti-
cada, a NORX ambiciona eliminar este dilema por ser rápida, paralelizável, e fácil
de implementar na maioria das plataformas. Em processadores sem aceleração de
AES, como o ARM Cortex-A7, a NORX pode ser até três vezes mais rápida do que a
AES-GCM.

Como subproduto do desenvolvimento destas funções, também desenvolvemos o
Tyche, um gerador de números aleatórios destinado a simulações paralelas de grande
escala. Outro subproduto foi a nossa criptanálise da NORX, que também se tornou
útil para a análise de outras funções como a McMambo e Wheesht, ambas submetidas
para a CAESAR, assim como a função de cifração autenticada usada no padrão Open
Smart Grid Protocol.

Palavras-chave criptografia, criptanálise, gerador de números aleatórios, função
de dispersão, cifração autenticada.
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Chapter 1

Introduction

Cryptology is the science of securing communications, melding together cryptography—
the study of secure communication systems design—and cryptanalysis, the search for
flaws in such designs. More art than science for most of its existence, cryptology has
existed for almost as long as the written word. Throughout history, many schemes
to render text undecipherable have been devised, ranging from the famous Caesar
cipher [253] to the more elaborate constructions of the Renaissance, e.g., [388, 442,
472].

It was not until the 20th century, however, that cryptology truly became a science.
It famously played a major part in the second World War, with the break of the
Lorenz, Enigma, and Purple ciphers, and additionally was present at the dawn of
the computing age, as some of the first computers were built to aid in the breaking
of enemy messages [469]. It was also during this period that the fundamentals of
cryptology were being built, such as the seminal work of Shannon [421].

The advent of computers and digital communications, fueled by the decreasing
cost of computers and the Internet, brought with it the need to secure more and
more data. This was the reason for the standardization of the DES block cipher, over
40 years ago [163], and this trend has only accelerated since then. As of 2021, it
is estimated that 5 billion people regularly use the Internet [447], and countless
companies do their business exclusively by digital means. It is therefore of the utmost
importance that cryptographic algorithms not only work as advertised, i.e., are secure,
but also that they are sufficiently efficient to serve the increasing number and variety
of applications that require them.

The increased awareness of pervasive Internet surveillance by major intelligence
agencies [212] has also acted to accelerate the pace and motivation to adopt en-
cryption at all levels. This has been reflected in the success of projects like “Let’s
Encrypt” [1], which aim to make the Web encrypted by default.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Mass adoption of cryptography is not so simple, however, as it involves a number
of social, technical, legal, and political obstacles [2, 3, 40]. At the technical level,
cryptography is often slow, or perceived to be slow [57, 291], and this tends to impact
adoption in multiple ways:

• When cryptography incurs a noticeable overhead there is a tradeoff between
security and usability, leading implementers to be incentivized to make cryp-
tography optional or opt-in, greatly reducing the amount of protected com-
munications. For example, full-disk encryption on Android devices has been a
requirement since Android 6.0, released in 2015; but devices with poor AES
performance, such as the Cortex-A7 used in many low-end phones, were exempt
from it, effectively leaving millions of users unprotected [141, 142].

• Insecure but faster primitives (e.g., RC4 [7, 198, 202, 378, 450], MD5 [194,
267, 431, 433, 434, 466], SHA-1 [296, 432, 465]) are often chosen instead of
safer but slower ones (e.g., AES-GCM without hardware acceleration, SHA-2,
SHA-3).

There is thus a need to design cryptographic primitives that can not only replace
existing weaker ones, but also that can do it without incurring a performance penalty.
This is the core tenet of our work.

1.1.1 Hardware Trends

Before getting into the main topic of this thesis, we will take a short look at the
devices that run most cryptographic algorithms: microprocessors.

Microprocessors have historically doubled in performance every 18 months, fol-
lowing Moore’s law [341, 342]1. This exponential increase was largely possible due
to the so-called Dennard scaling. Dennard et al. [160, 161] devised a formula for
scaling that consisted in reducing transistor size by 30%, while preserving electric
current constant. This worked for decades, until process size shrank so much that
electric leakage became a serious problem. This lead to the so-called “power wall”
around the 4 GHz mark, which marked the beginning of the end of Dennard scaling.

Besides manufacturing process improvements, other techniques to use the avail-
able transistors in microprocessor circuits in a smarter way have been in use for a
long time:

1Strictly speaking, Moore predicted that the number of transistors in integrated circuits would
double every 2 years; this was later adjusted to 18 months, which is now the most common statement
of Moore’s law.
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Figure 1.1: Microprocessor trend data, ranging from 1971 to 2022. Data sourced
from [154, 409].

• Cache memory [301]

• Pipelining [379]

• Out-of-order execution [440, 441]

• Superscalar execution [428]

• Simultaneous multi-threading [445]

• Vector execution units [280]

Most microprocessors running today use many or all of these techniques—most of
which exploiting the instruction-level parallelism present in many applications—to
improve performance. However, all of these were not enough to keep CPU perfor-
mance steadily increasing. In response, manufacturers came up with a coarse but
effective strategy: multi-core processors.

Figure 1.1 displays a graph of microprocessor data ranging from 1971—when
the Intel 4004 was released—to the current year. It is apparent that starting around
2005, the frequency, single-threaded performance and power consumption started
to plateau. This is consistent with the end of Dennard scaling, as noted above.
Meanwhile, it is also evident that the transistor count and number of cores continued
to grow exponentially2 until the current day.

2Note that the graph’s y axis scale is logarithmic.



4 CHAPTER 1. INTRODUCTION

Whether Moore’s law will continue to apply for much longer is still unclear. But
it is clear that increases in software performance are increasingly required to tap
into this increase in transistors within a chip, be it via instruction-level parallelism,
vectorization, or multiple cores.

1.1.2 Simulation

The efficient generation of random-looking numbers for Monte Carlo simulations was
a research problem as early as the 1940s, with such methods as von Neumann’s [461]
middle-square method, Lehmer’s [293] linear congruential generator, or Green, Smith,
and Klem’s [210] additive “Fibonacci” generators being among the first proposed
schemes. In the following decades, theory surrounding pseudorandom sequences,
that is, sequences generated deterministically that share many statistical properties
with truly random sequences, began to develop [275].

The theory of pseudorandom sequences shares many aspects with cryptographic
stream ciphers. Both constructions take a seed (resp. key) and stretch it out to an
arbitrarily long stream of bits which, ideally, cannot be distinguished from random.
Of course, unlike stream ciphers, non-cryptographic pseudorandom generators do
not assume “intelligent” attackers, and have less stringent requirements.

Today some of the most popular generators in use are some variant of linear
congruential generator [275], Mersenne Twister [326], or xorshift [319]. While
those generators aim to be fast, and by and large they are, they suffer from some
drawbacks:

• Linear congruential generators are, as the name implies, linear, and they suffer
from the lattice structure identified early in their history [211, 318]. Fur-
thermore, they force a painful tradeoff between period and speed—doubling
the modulus bit size (resp. squaring the period) will generally quadruple the
number of multiplications necessary per generated number3.

• The Mersenne Twister has a very large state of ≈ 2.4 KB. While this is not, in
general, a large amount of memory by most standards, it makes it difficult to
scale it out on many-core chips such as GPUs, where local on-chip memory
is scarce. Thus the Mersenne Twister also forces a choice between space or
synchronization of a single generator shared among several threads.

• The xorshift generator and its variants solve both problems raised above—they
are very fast, have long periods and small states. However, they are F2-linear by
design and this means that they fail any statistical tests that measure linearity,
most notably the binary matrix rank test [320].

3While the complexity of n-bit integer multiplication is O(n log n) [224], at practical sizes quadratic
multiplication is most efficient.
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Nonlinear generators do exist, such as the quadratic [275, §3.2.2] or inversive
congruential generators [181]. However, they require more costly multiplications
or the computation of modular inverses, which makes them unacceptably slow for
practical purposes. Cryptographic stream ciphers can also double as noncryptographic
random number generators. They are, however, generally deemed to be too slow
for noncryptographic applications, and are rarely used in that capacity. Ultimately,
there is an underexplored region of the design space—fast, nonlinear, small-state
noncryptographic generators.

1.1.3 Security

Cryptography is now a large and maturing field, with many categories of cryptographic
algorithms in use. A common dichotomy is to separate them by how key material is
used:

• Symmetric algorithms require the same key to be shared by all parties privy to
the message;

• Asymmetric algorithms split the key into private and public components, each
allowing different capabilities (e.g., the private key can be used for decryption
and the public key for encryption.)

• Keyless algorithms do not require key material at all.

While most real-world protocols make use of every type of algorithm described above,
we shall focus solely on symmetric and keyless primitives.

Many cryptographic algorithms in use today were designed a long time ago,
when the trends pointed out in Section 1.1.1 were not yet in effect. For example,
several blockciphers in common use, such as DES [163] and AES [4], use S-boxes4

as a core component. While this may have been a reasonable choice at the time,
it has some disadvantages today. Due to the increased disparity between CPU and
memory speed in modern hardware, S-boxes inherently limit the peak speed of
constructions to the maximum throughput of unpredictable memory accesses. Worse
yet, such unpredictable accesses can, in certain attack models, be exploited to recover
information about the key! This was found to be the case with the AES [443] and
other ciphers with similar design [478]. Cache memory is not the only resource that
can be exploited to recover information about the key; other CPU instructions that
may not always run in a fixed amount of time may also be targeted. Examples could
be IDEA’s [286]modular multiplication or data-dependent rotation, as used in several
ciphers [315, 316, 397, 398].

4An S-box, also known as substitution box, is an arbitrary function from n to m bits, usually
implemented as a table lookup.
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To avoid such risks, and to make better use of the CPU, different designs are
required. One particularly successful approach has been the “add-rotate-xor” (ARX)
design—the overlapping of addition modulo 2n, bit rotation, and xor ensures that the
result is highly nonlinear, since addition is nonlinear relatively to xor. Rotation ensures
that bit changes do not only affect more significant bits, but every other bit. Moreover,
this overlapping is known to be able to generate every possible function [261, 481].
Notable ciphers using this sort of design are FEAL [424], TEA [470], Salsa20 [59],
Threefish [192], and others. ARX designs are effectively the current speed leaders in
modern hardware5.

1.2 Contributions

This thesis consists of the design and analysis of ARX-like designs for noncryptographic
pseudorandom generation and cryptographic primitives. My goal was to achieve
primitives that are both secure, simple, and make the most out of the available
hardware today, which includes high instruction-level parallelism, vector units, and
multiple cores. In particular, I present 3 concrete ARX-like designs: Tyche, BLAKE2,
and NORX.

Tyche (Chapter 3) Tyche is a small, high-performance nonlinear pseudorandom
generator designed for noncryptographic usage. It repurposes a building block from
the ChaCha stream cipher [54] to create a fast noncryptographic pseudorandom
generator with a very small internal state: 4 32-bit registers. Additionally, Tyche
supports the creation of independent streams, which coupled with the small state
make Tyche particularly suitable for usage in graphics processing units (GPUs) or other
SIMD hardware. The main results of Chapter 3 were published in PPAM 2011 [357]
and PPAM 2013 [356].

BLAKE2 (Chapter 4) BLAKE2 is a hash function derived from the SHA-3 finalist
BLAKE [28], itself also derived from ChaCha building blocks that is very friendly
towards implementation in processors with SIMD capabilities. BLAKE2 extends
BLAKE’s “mechanical sympathy” by removing some components that revealed to be
unnecessary to its security, and additionally adds explicit support for coarse-grained
parallelism via tree hashing. The work presented in Chapter 4 was the result of a
collaboration with Jean-Philippe Aumasson, Zooko Wilcox-O’Hearn, and Christian
Winnerlein, and was published at ACNS 2013 [32].

5Excluding primitives making use of hardware-accelerated instructions.
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NORX (Chapter 5) NORX was designed as a submission for the CAESAR [114]
competition to identify authenticated encryption schemes suitable for widespread
use. It combines well-understood building blocks: duplex Sponge-like design [71],
a BLAKE2-like permutation that notably replaces the addition in its ARX structure
by exclusively bitwise logic operations, and a coarse-grained parallel structure in-
spired by BLAKE2. Despite replacing addition by boolean logic—which has slower
diffusion—NORX is nevertheless one of the fastest CAESAR candidates that does
not rely on hardware-accelerated cryptographic instructions, such as Intel’s AES-NI
or SHA instructions. It advanced to round 3 of the competition. The contents of
Chapter 5 were the product of a collaborative effort with Jean-Philippe Aumasson
and Philipp Jovanovic, and were published at ESORICS 2014 [30].

Analysis of NORX and other primitives (Chapters 6 and 7) As a byproduct of
the design of Chapter 5’s NORX, I also present some positive cryptanalytic results on
it, and use the techniques therein developed to break 2 other CAESAR candidates,
McMambo [284] and Wheesht [329]. I also analyze the authenticated encryption
scheme used by the Open Smart Grid protocol in Chapter 7 and demonstrate that
it is utterly broken. Sections 6.1, 6.2 and 6.4 were the continuation of Chapter 5’s
collaboration with Jean-Philippe Aumasson and Philipp Jovanovic; this work was
published at LATINCRYPT 2014 [29]. The results of Section 6.5 were published in
Information Processing Letters [355]. The results of Chapter 7 were joint work with
Philipp Jovanovic and published at FSE 2015 [252].

1.3 Publications

The following papers were published during my doctoral work.

1. Samuel Neves and Filipe Araujo. “Fast and Small Nonlinear Pseudoran-
dom Number Generators for Computer Simulation”. In: Parallel Processing
and Applied Mathematics - 9th International Conference, PPAM 2011, Torun,
Poland, September 11-14, 2011. Revised Selected Papers, Part I. Ed. by Roman
Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy Wasniewski.
Vol. 7203. Lecture Notes in Computer Science. Springer, 2011, pp. 92–101.

2. Samuel Neves and Filipe Araujo. “On the performance of GPU public-key
cryptography”. In: 22nd IEEE International Conference on Application-specific
Systems, Architectures and Processors, ASAP 2011, Santa Monica, CA, USA,
Sept. 11-14, 2011. Ed. by Joseph R. Cavallaro, Milos D. Ercegovac, Frank
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Computer Society, 2011, pp. 133–140.
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Chapter 2

Background

2.1 Notation

We use standard notation from the cryptographic literature. Table 2.1 summarizes
the most common notation used throughout this document. Note that individual
chapters may introduce more specific notation if so required.

Table 2.1: Common notation.

Symbol Meaning

{0, 1}n The set of binary strings of n bits
N The set of natural numbers
Z The set of integers
Fq The finite field with exactly q elements
≪ n Bit rotation towards the most significant bits
≫ n Bit rotation towards the least significant bits
∨ Bitwise OR
∧ Bitwise AND
⊕ Bitwise XOR
¬ Bitwise NOT

func(n, m) Set of all functions from {0, 1}n to {0,1}m
perm(n) Set of all permutations of {0,1}n
(n)r The falling factorial n(n− 1) . . . (n− r + 1)

11
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Alice Bob

Mallory

Eve

Figure 2.1: The symmetric cryptography setting. Eve is a passive eavesdropper,
whereas Mallory is the proverbial active “man in the middle” attacker.

2.2 Defining Security

We cannot speak of security without asking the fundamental question “against what?”.
In this section, we are concerned with the simple setting in which two parties—Alice
and Bob—communicate over an open channel, such as the Internet, GSM, or radio,
where messages can be eavesdropped or altered in transit, cf. Figure 2.1. They are
assumed to have somehow agreed on a secret key k ahead of time; the means by
which this happens are out of scope here1. In this setting, we may be trying to achieve
one or more of the following goals:

Secrecy Two parties who share a key k want to communicate in secret over an open
channel.

Authenticity Two parties who share a key k want to ensure that their communications
come from the expected party.

Integrity Two parties who share a key k want to ensure that their communications
are not tampered with.

Shannon [421, 422] first studied secrecy in the information-theoretic setting,
where an attacker has unbounded computational power and is only limited by the
information it is able to collect. In this setting it is possible to define what is, exactly,
a perfect cipher. Definition 2.1 elaborates.

1One may speculate that they agreed on a shared key in person, or that some form of authenticated
Diffie-Hellman key exchange [164, 165] may have occurred.
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Definition 2.1 (Perfect secrecy). Let E = {E, D} be a pair of functions, E : {0,1}k ×
{0,1}n → {0,1}n, D : {0,1}k × {0,1}n → {0,1}n, and D(k, E(k, m)) = m, ∀m ∈
{0, 1}n. E is perfectly secret if for all m0, m1 ∈ {0,1}n and c ∈ {0,1}n,

Pr[E(k, m0) = c] = Pr[E(k, m1) = c]

with the randomness taken over the choice of k.

Shannon further proved that the one-time pad, also known as the Vernam ci-
pher [51, 457], is perfectly secret. The one-time pad is quite simple to describe—given

a key k
$←− {0,1}n of the same length as the message m ∈ {0,1}n to encrypt, obtain

the ciphertext c ∈ {0, 1}n as c = m⊕ k, and recover the message from the ciphertext
as m= c ⊕ k.

Theorem 2.2. The one-time pad E : {· ⊕ k, · ⊕ k} is perfectly secret.

Proof. We prove the required property from Definition 2.1 by showing that for any
pair (m, c) there is precisely 1 key that results in E(k, m) = c. That key is k = m⊕ c,
and is unique. For a key k taken uniformly at random, then, the probability of
Pr[E(k, m0) = c] is exactly the same as Pr[E(k, m1) = c], for any m0, m1: 2−n.

Although the one-time pad is often touted as the perfect cipher—and rightfully
so—it is pretty much never used in the real world. Why? The answer is that the
one-time pad requires a separate key for each message, and this key needs to be
uniformly random for each distinct message. Managing this volume of key material
is a logistical nightmare, and if two parties are able to securely exchange keys with
the same length as their messages, one wonders why they would need to use the
one-time pad in the first place!

When the “one-time” requirement from the one-time pad is ignored, that is,
when the same key is reused for more than one message, secrecy breaks down.
Eavesdroppers learn the xor of the messages—m0 ⊕ k ⊕ m1 ⊕ k = m0 ⊕ m1—and
through basic statistical analysis, may learn the content of the messages. This was
what happened in the Venona project [225], one of the most famous cryptanalytic
successes of modern times. Due to the failure of Soviet agents to ensure unique keys
when using one-time pad encryption, British and American cryptanalysts were able
to decipher some of their messages.

Given that perfect secrecy is not practical, what can we do? A useful notion is
that of computational secrecy.

Definition 2.3 (Computational secrecy). Let E = {E, D} be a pair of functions, E :
{0,1}k × {0,1}n → {0,1}n, D : {0,1}k × {0,1}n → {0,1}n, and D(k, E(k, m)) =
m, ∀m ∈ {0, 1}n. E is computationally secret if for all efficient attackers A,

|Pr[A(m0, m1, c) = 1 | c = E(k, m0)]− Pr[A(m0, m1, c) = 1 | c = E(k, m1)]| ≤ negl(k)
(2.1)
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with the randomness taken over the choice of k. The expression (2.1) is known as the
advantage AdvA(k).

In other words, instead of demanding that the encryption be secure against every
conceivable attacker, we constrain the attackers to those with limited computational
power. In particular, an efficient adversary, in the sense of Definition 2.3, is a proba-
bilistic polynomial time algorithm relatively to the security parameter k. Accordingly,
the advantage negl(k) is a negligible function of the security parameter k.

The observant reader might recognize Definition 2.3 by another name—semantic
security. This notion, originally invented by Goldwasser and Micali [205, 206],
is the standard definition of secrecy in modern practical cryptography. While it
is often stated in its asymptotic form, which is not useful to assess the concrete
security of a construction—where constant factors do matter—it also has concrete
counterparts, so-called practice-oriented provable security [43, 405], under which
both the computational allowance given to the attacker and the advantage are given
by concrete bounds.

2.3 Cryptographic Primitives

2.3.1 Pseudorandom Number Generators

Cryptographic pseudorandom generators can be defined in terms of the distinguishing
advantage of a computationally-constrained attacker, as defined in Definition 2.4.

Definition 2.4 (Pseudorandom generator). A (t,ε)-secure cryptographic pseudoran-
dom generator is a deterministic function G : {0, 1}n→ {0, 1}m, m> n, for which every
distinguisher D, running in time at most t,

Advprg
G (D) =
�

�Prk←${0,1}n[D(G(k)) = 1]− Prr←${0,1}m[D(r) = 1]
�

�≤ ε.
In other words, a pseudorandom number generator is an algorithm that “stretches”

a secret seed of n bits to a possibly much larger size m, with this output remain-
ing indistinguishable from random except with very high computational or data
requirements, i.e., it passes all statistical tests up to a given cost. Cryptographic
pseudorandom generators are rarely constructed from scratch. Instead, they are
commonly built in terms of block ciphers or hash functions.

Non-cryptographic pseudorandom generators

Although there is plenty of overlap between cryptographic and non-cryptographic
generators, they are seldom considered together. Cryptographic generators clearly
are suitable for non-cryptographic purposes, but they are often considered too slow
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for this purpose. The converse is not true, however; non-cryptographic generators
are often completely unsuitable for cryptographic purposes, e.g., [211, 273, 321, 336,
392–394].

In practice, the quality of such generators is often measured by batteries of
statistical tests such as Diehard [317] or TestU01 [283]. Sometimes, Monte Carlo
simulations themselves act as distinguishers for some particularly bad generators [129,
193, 209, 381]!

To make it possible to use the same definitions, we may adopt a more relaxed def-
inition of pseudorandom number generator (cf. Definition 2.4) for non-cryptographic
purposes.

Definition 2.5 (Non-cryptographic pseudorandom number generator). A non-
cryptographic generator is a function G : {0, 1}n→ {0, 1}m which is also a (0.05, 236)-
secure generator by Definition 2.4.

In other words, a non-cryptographic generator passes most cheap statistical tests
with high probability. The concrete parameters were based on TestU01’s “Big Crush”
battery, which looks at 236 pseudorandom values at the most.

2.3.2 Stream Ciphers

Stream ciphers are very much related to pseudorandom number generators. Their
main difference is that, while a generator simply expands secret inputs, a stream
cipher takes in a key and a nonce. Its definition is given in Definition 2.6.

Definition 2.6 (Stream Cipher). A (t,ε)-secure stream cipher is a deterministic function
E : {0, 1}l × {0, 1}n→ {0, 1}m, m> n, for which every distinguisher D, running in time
at most t,

Advstream
G (D) =
�

�Prk←${0,1}l [D(G(k, ·)) = 1]− Prr←${0,1}m[D(r) = 1]
�

�≤ ε.
As with pseudorandom number generators, stream ciphers are not commonly

designed from scratch. The most common stream cipher is, in fact, a block cipher
in the CTR or OFB mode of operation (cf. Section 2.3.3). Stream ciphers that
are not built from other primitives are, for example, RC4 [380], Trivium [158], or
Grain [226].

2.3.3 Block Ciphers

In his famous papers, Shannon [421, 422] described what a perfect n-bit block cipher
ought to be—each key would select one out of (2n)! permutations independently at
random. When a block cipher is modeled this way, one is said to be operating in the
ideal cipher model.
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Figure 2.2: 3-round Feistel network.

Unfortunately, this is a very inefficient way to design block ciphers; a block cipher
with n-bit blocks and k-bit keys requires 2k log2 2n! ≈ n2k+n bits to represent. In
practice, block ciphers use a mixture of confusion and diffusion primitives, iterated over
a sufficient number of rounds, to achieve an approximation of a random permutation.
This leads to the standard definition of a pseudorandom permutation, or PRP for
short.

Definition 2.7 (Block Cipher). A (t,ε)-secure block cipher is a deterministic function
B : {0, 1}k × {0, 1}n→ {0, 1}n for which every distinguisher D, running in time at most
t,

Advprp
B (D) =
�

�Prk←${0,1}k[D(B(k, ·)) = 1]− PrF←$perm(n)[D(F(·)) = 1]
�

�≤ ε.
There are two main approaches to design a block cipher: Feistel networks and

substitution-permutation networks. Recently there has been increased interest in a
third, simpler, construction—Even-Mansour.

Feistel Networks

The first publicly known practical block ciphers were developed by Horst Feistel’s
research group in the 1970s [188–190]. From that work two ciphers resulted:
Lucifer [429] and the Data Encryption Standard (DES) [163]. The Soviet Union’s
GOST 28147-89 [386, 475], alleged to have been developed during the same period,
also follows the same high-level structure, and so does the East German SKS V/1 [139].
That structure is usually called the Feistel network or Luby-Rackoff cipher.

A Feistel network is an iterated permutation that operates over several rounds.
The block is divided into two equally-sized halves L and R, and at each round i, the
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following transformation is applied (cf. Figure 2.2):

L, R= R, fki
(L)⊕ R, (2.2)

where fki
is a function making use of a round key ki.

Luby and Rackoff [305, 306] later abstracted and generalized the Feistel con-
struction to take random and independent functions Fi ∈ func(n, n), where (2.2)
becomes

L, R= R, Fi(L)⊕ R.

With this new abstraction in place, Luby and Rackoff [305, 306]2 showed that 3 rounds
of this construction are indistinguishable from a random function with probability
≤ q2/2n for an adversary that performs q encryption calls and unbounded amount of
computation. The 4-round Luby-Rackoff cipher, on the other hand, is indistinguish-
able from a random function with the same probability, but allowing encryption and
decryption queries. These bounds were shown to be tight by Patarin [370] and Aiello
and Venkatesan [5], who gave matching attacks with the same complexity.

The Luby-Rackoff construction, for varying number of rounds, is now well under-
stood; it is known [350, 369–371, 373, 374] that 5 rounds are sufficient for security
up to approximately 2n encryption/decryption queries.

Several generalizations of the Luby-Rackoff construction have also been proposed
and studied:

• Replace some random round functions by weaker functions [309, 352, 353,
375];

• Require only one random round function [351, 368, 385, 412].

• Unbalanced Feistel networks, where L and R can have differing lengths [352,
353, 413];

• Generalized Feistel networks with more than 2 halves [233, 365, 479, 480];

• Misty, KASUMI, and Lai-Massey schemes [244, 245, 256, 257, 292, 311, 312,
453, 474].

Substitution-Permutation Networks

A different approach to building block ciphers is the so-called substitution-permutation
network (SPN). In this construction there are two separate layers: the substitution
layer and the permutation layer.

2See also [327, 372] for simplified treatments of the same result.
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Figure 2.3: One round of a substitution-permutation network with 4 lanes.

The substitution layer splits the input into a number of lanes, and to each lane ap-
plies a nonlinear bijection S. This bijection may be itself keyed, or key material might
be xored into each lane before applying S. The permutation layer then concatenates
the lanes together again, and applies an arbitrary linear transformation to the state3.
Figure 2.3 depicts one round of a general substitution-permutation network with 4
lanes.

In SPNs each layer serves a purpose. The substitution layer, along with keying,
creates confusion—the input and key are now mixed in a complicated manner. The
permutation layer is there for diffusion—spreading changes quickly throughout the
entire block.

The most famous and successful SPN today is by far the Advanced Encryption
Standard, or AES [150]. The AES was the winner of a cryptographic competition
held by NIST in 1997 where many candidate ciphers, most of which Feistel networks,
were submitted. Its security has held admirably throughout more than 20 years of
scrutiny.

Although very successful, there are relatively few results on the security of SPNs
when abstracted away in the Luby-Rackoff model. Vaudenay and Baignères [35]
showed that replacing the AES S-boxes by random permutation results in a cipher
provably secure against linear and differential cryptanalysis, but not against every
class of attacks. Cogliati et al. [130] recently proved a stronger result, but the
proof is only useful for unrealistically large S-boxes. Dodis et al. [168] get closer to
meaningful results.
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Figure 2.4: The Even-Mansour blockcipher.

Even-Mansour

Even and Mansour [185, 186] considered the simplest way to build a block cipher
from a single randomly chosen permutation.

Let P
$←− perm(n), and K1, K2

$←− {0, 1}n. Then the Even-Mansour pseudorandom
permutation is given by (cf. Figure 2.4)

EK1,K2
(M) = P(M ⊕ K1)⊕ K2. (2.3)

Despite its simplicity, this construction is secure. An attacker that is tasked with
distinguishing E from a uniformly random permutation can do so with probability
at most 2qp/2n, where q is the number of calls to E, and p the number of calls to
P. This bound is tight; Daemen [144] gave a chosen-plaintext attack with matching
complexity, and Dunkelman et al. [172, 173] gave known-plaintext attacks with
matching complexity.

A closely related construction is DESX, which was invented by Rivest to strengthen
DES again bruteforce attacks (cf. Section 2.4):

DESXk,k1,k2
(m) = DESk(m⊕ k1)⊕ k2.

Kilian and Rogaway [264, 265] studied this construction, and suggested k1 = k2

without any meaningful loss of security. The same observation applies to Even-
Mansour [172, §4].

Like Luby-Rackoff, Even-Mansour can be iterated as well to improved its security
against attacks. This is alternatively called key-alternating cipher, and is described as
follows:

KACK0,K1,...,Kt
(m) = Pt−1(P1(P0(m⊕ K0)⊕ K1)⊕ . . . )⊕ Kt .

There has been a recent flurry of research on the security of key-alternating ci-
phers [106, 126, 127, 288], culminating in the following result by Hoang and
Tessaro [234].

3Although originally the permutation layer in substitution-permutation networks did refer to
a permutation of the bits of the block [255], nowadays this layer refers to more general linear
transformation. Only a few designs, such as PRESENT [105] or GIFT [36], do actually use bit
permutations as a linear layer.
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Theorem 2.8. Let KAC be the t-round key-alternating cipher using t public permutations
Pi ∈ perm(n) and t + 1 keys Ki ∈ {0, 1}n. Then any attacker performing q calls to KAC
and pi calls to Pi can be distinguished from a random permutation with probability at

most
4t q
∏t−1

i=0 pi

2nt .

Modes of Operation

So far, we have surveyed how to build a fixed-size block cipher. But this is not
sufficient to encrypt variable-length data, as is necessary in practice.

To make the DES more useful, NBS4 published FIPS 81 [162], which defined
some popular modes that are still in use today:

Electronic Codebook Ci = EK(Mi)

Cipher Block Chaining Ci = EK(Mi ⊕ Ci−1)

Output Feedback Mode Ci = EK(Ci−1)⊕Mi

Counter Mode Ci = EK(i)⊕Mi

The security of these modes was first formally analyzed in [45]. Note that the OFB
and counter modes are a simple way to turn a block cipher into a stream cipher, and
do not require evaluating its inverse.

The usage of the above modes without adequate authentication has been the
source of many issues. The electronic codebook mode is easily distinguished from
random; the counter and output feedback modes are easily malleable—xoring the ci-
phertext propagates the difference to the deciphered plaintext. Cipher block chaining
is also malleable, and given adequate decryption oracles plaintext recovery becomes
quite practical [37, 176, 249, 455].

2.3.4 Message Authentication Codes

Message authentication codes, or MACs, are algorithms used to validate the integrity
of a message.

Definition 2.9 (Message authentication code). A (t,ε)-secure message authentication
code is a deterministic function H : {0, 1}k×{0, 1}∗→ {0, 1}n for which every algorithm
P with blackbox access to H(k, ·), running in time at most t,

Advmac
H (P) = Prk←${0,1}k[P(H(k, m)) = H(k, m)]≤ ε ,

where m is an input that was not queried by P.
4Better known today as NIST.
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That is, an attacker with oracle access to the message authentication code is
unable to produce a tag for a new message5 with significantly better probability than
by guessing.

Most MACs are created by using a pseudorandom function, itself usually built
from a block cipher or a hash function. Any pseudorandom function is a secure MAC,
but the converse is not necessarily the case. The best known and most widely used
MAC is probably HMAC [44], which takes an existing hash function and turns it into
a PRF.

A different class of MACs are the so-called one-time authenticators. These types
of authenticators were pioneered by Carter and Wegman [468] and are generally of
the form

WC(k0, k1, n, m) = H(k0, m) + F(k1, n) ,

where H is a differentially uniform hash function, F is a fixed-length pseudorandom
function, and n is a unique value. The advantage of this type of authenticator
is that the bulk of the processing is done by the cheaper hash function, and the
pseudorandom function can operate in parallel on a much smaller number.

One-time authenticators are the current speed champions in authentication and
include such functions as Poly1305 [58], GMAC [331], UMAC [97], and many others.

Yet another class of authenticators making use of universal hashing is the hash-
then-PRF construction:

HtF(k0,k1,m) = F(k1, H(k0, m)) .

These authenticators do away with the need for a unique nonce, whose uniqueness
may be hard to guarantee in real protocols. In exchange, their security bounds
degrade faster than Wegman-Carter. The protected counter sum [56], PMAC [98,
156], and LightMAC [314] functions belong to this category.

2.3.5 Authenticated Encryption

Historically, messages were encrypted using a block cipher in some secure mode of
operation, cf. Section 2.3.3, and independently authenticated using some message
authentication code, cf. Section 2.3.4. This is the so-called generic composition setting.
There are essentially 3 main ways in which this can be done:

Encrypt-then-MAC First encrypt the message, and then authenticate the resulting
ciphertext.

MAC-then-encrypt First authenticate the message, and then encrypt the message
and the authentication tag.

5Or an existing one, in some attack models.
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MAC-and-encrypt Encrypt and authenticate the message, and output each result
independently of each other.

Bellare and Namprempre [48] analyzed each of these possibilities abstracting away
the details of encryption and authentication. They found out that of these three
options, only the first—encrypt-then-MAC—was generically secure under the most
assumptions.

The problem with this is that most real-world protocols at the time did not apply
generic composition properly, to disastrous effects:

• The SSH protocol used the MAC-and-encrypt order [6, 47];

• SSL and TLS used MAC-then-encrypt, which combined with padding ora-
cles [455] has led to many attacks [117, 376, 377, 455].

Some cryptographers concluded that the abstraction layer of encryption schemes
and MACs was imperfect; what users really needed was authenticated encryption as
an atomic primitive [403].

Authenticated encryption is thus a primitive that combines an encryption algo-
rithm and an authenticator in a single package. Additionally, it has been suggested,
and is now commonplace, to have an associated data input that also authenticates
metadata associated with the message, such as session information [403].

Definition 2.10 (Authenticated encryption with associated data). An authenticated
encryption with associated data scheme is a pair of functions

Enc : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗→ ({0, 1}∗, {0, 1}t)

Dec : {0,1}k × {0,1}n × {0,1}∗ × {0, 1}∗ × {0, 1}t → {0, 1}∗ ∪ {⊥} .

Given a k-bit key K, n-bit nonce N, a message M, and associated data A, Enc(K , N , M , A)
returns a pair (C , T) consisting of a ciphertext and a t-bit authentication tag.
Dec(K , N , C , A) returns the decrypted message M if the tag verification succeeds,
otherwise it returns ⊥.

The security of an authentication scheme is then defined by the indistinguishability
of its ciphertexts and the unforgeability of its tags, as defined in previous sections.

Authenticated encryption is generally the most appropriate tool for message
encryption; without authentication, encryption can often be negated or subverted
by active attackers. While for a long time authenticated encryption was stitched
together via composition of unrelated primitives, e.g., AES-CBC combined with
HMAC-SHA1, there are dedicated authenticated encryption primitives that are more
efficient, namely AES-GCM [331], EAX [50], or OCB [406].
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Figure 2.5: The Merkle-Damgård mode of operation on a 4-block padded message.

2.3.6 Hash Functions

Cryptographic hash functions compress a message m of arbitrary length {0, 1}∗ down
to a fixed-size string {0, 1}n. Historically, they were expected to satisfy the following
properties [407]:

Preimage resistance Given a string h ∈ {0,1}n, it should be computationally
unfeasible—on the order of 2n operations—to obtain a message that hashes to
h.

Second-preimage resistance Given a message m and its respective hash h, it should
be computationally unfeasible to find another message m′ that hashes to the
same value h.

Collision resistance It should be computationally unfeasible—on the order of 2n/2

operations—to find two messages m1, m2 that hash to the same value.

Another notion that hash functions are often expected to satisfy is that of the ran-
dom oracle [49]—a theoretical construct that responds do each new query with a
independent and uniformly random value in the output range. Unfortunately, it has
been shown that there are schemes that are secure with random oracles but insecure
with any concrete instantiation of one [115]. This raised doubts about the validity of
the random oracle methodology. These constructions are quite contrived, however,
and it is arguable that the random oracle model does more good than harm, and
constructions designed to avoid the random oracle model are often worse [277].

But how does one show that a hash function is, or behaves like, a random oracle?
With another layer of indirection it is possible to show that a hash function can safely
be replaced by a random oracle. Suppose one has a hash function H making use of a
fixed-width primitive F, e.g., a compression function or a block cipher. If one assumes
instead that F is ideal, it is possible to show that H is as good as a random oracle. The
idea is roughly the same as with indistinguishability. But indistinguishability relies on
there being secret information the adversary is not privy to, e.g., a key or a random
function. Distinguishing a random oracle from H is trivial—since the adversary has
unfettered access to F, it can cross-check the inputs to H with F and easily tell each
case apart.
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Figure 2.6: The indifferentiability framework. A distinguisher D with either access to
the real world, where it queries a primitive H which calls an ideal component F, or
the ideal world, where it queries an ideal RO and a simulator Sim which may call
RO, must decide which world it is dealing with.

Maurer et al.’s indifferentiability framework [328], specialized to hashing by
Coron et al. [134], adds a simulator to the mix. In particular, a distinguisher can
talk to one of two worlds. The real world comprises the hash function H and its
associated compression function F modeled as an ideal object. The ideal world consists
of a random oracle RO with the same domain and range as H, and a simulator Sim.
This simulator “pretends” to be F based only off of responses from RO and its own
internal bookkeeping. Figure 2.6 depicts this scenario.

The main idea is that if there is a simulator that can pretend to be F well enough
that the distinguisher cannot tell apart which world it is talking to, the availability
of F cannot do much to help the distinguisher, and thus the hash function H can be
treated as random oracle in further analyses. Definition 2.11 formalizes this notion.

Definition 2.11. Let H : {0,1}∗→ {0,1}n be a hash function with oracle access to an
ideal primitive F : {0, 1}m→ {0, 1}n. Let RO be a random oracle with the same domain
and range as H, and Sim a simulator with oracle access to RO. The advantage of H with
respect to differentiability of a distinguisher D making at most q queries is given by

Advindiff
H,RO(q) = |Pr[D(H,F) = 1]− Pr[D(RO,Sim) = 1]| .

This may seem pointless. After all, we are replacing one ideal component, the
hash function, by another ideal component—its compression function. But this has
its advantages: first, it ensures that the way the hash function iterates through its
input is sound and leaves no room for unexpected behavior. Secondly it focuses the
attention on the smaller, simpler, component that can be more easily analyzed by
cryptanalysts.
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Merkle-Damgård

The most notable hash function construction was put forward by Merkle and, indepen-
dently, Damgård [153, 334]6. Given a fixed-size compression function, after suitably
padding the message to a multiple of the block size, one simply chains the output of
one call to the input of the next. Figure 2.5 depicts this process for a 4-block message.
Most classic hash functions, such as MD4 [254, 396], MD5 [395], or SHA-1 [418],
follow this design principle.

Merkle-Damgård is collision resistant if the compression function is also collision
resistant [153, 334]. It is vulnerable to length-extension attacks, however, which
makes it clearly differentiable from a random oracle. Consider Definition 2.11. A
distinguisher D can make three queries:

1. h0 = H(m0);

2. c0 = F(h0, m1);

3. h1 = H(m0, m1);

4. Return 1 if c0 = h1, 0 otherwise.

This distinguisher always returns 1 for the real world. But a simulator that tries to
simulate the query F(h0, m1) does not know what m0 is, and therefore cannot easily
query RO(m0, m1) to keep its story straight. As such, the best it can do is guess either
m0 or RO(m0, m1). This makes the differentiability advantage of this distinguisher
1− 2−min(n,m).

Additionally, finding multicollisions is much easier in Merkle-Damgård than it
would be in a random oracle [12, 13, 248, 259, 260]. To salvage the construction
from the above flaws, several variants have been proposed: chopMD [123], using a
wider block size [307, 308], using a permutation in the last compression function
call [230, 231], or using a counter [81].

Sponges

Sponge functions [66] were initially proposed for hashing as a way to specify a
function behaving very much like a random oracle, but with the inevitable possibility
of internal collisions. However, it quickly became apparent that sponge functions
were actually a practical way to design hash functions, and they became the basis for
Keccak [68], the SHA-3 competition winner.

Sponge functions make use of a single public permutation P : {0,1}b→ {0,1}b,
unlike most designs up to that point which were almost entirely based on block

6Though it would appear that Rabin came up with the same design principle first in [391].
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Figure 2.7: Sponge hashing.

ciphers7. The basic layout for a sponge function is given in Figure 2.7. The permuta-
tion is split into two halves, one of which is “public”—the r-bit rate—and the other
one private—the c-bit capacity. Message blocks are xored into the rate during the
absorption phase, followed by an application of the permutation. The squeezing
phase follows, in which an arbitrary number of output bits are extracted from the
rate, separated by permutation calls if necessary.

The security of sponge functions is tied to two parameters: the size of the permu-
tation b, as well as the capacity c. Bertoni et al. [72] showed that the differentiability
advantage of any distinguisher for the sponge construction using an ideal permutation
is, for q≪ 2c,

Advindiff
sponge,RO(q)≤
�q+1

2

�

2c
−
�q

2

�

2b
. (2.4)

Despite being originally designed for hashing, sponge functions have proved to be
highly versatile, and have found applications in many other areas, such as pseudoran-
dom generation [73], authenticated encryption [65, 71, 332], randomness extractors
and key-derivation functions [203, 238], protocols [220, 411], and more.

2.4 Cryptanalysis

Cryptanalysis is the subfield of cryptology that deals with the analysis of cryptosystems,
confirming or disproving their security claims. Simply put, cryptanalysts try to break
cryptosystems.

7An exception is Merkle’s Snefru [333], built from a fixed-key block cipher, effectively the same as
a public permutation.
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As seen in the previous section, many schemes try to provably reduce to the
security of a smaller core primitive, with concrete bounds [43, 405]. In most cases, this
primitive is a fixed-length block cipher or keyless permutation. Cryptanalytic efforts
and techniques thus mainly focus on these primitives, and most attack techniques
have been developed for the analysis of block ciphers and/or permutations. In the
following sections some of the most useful attacks are presented.

2.4.1 Attack Models

When cryptanalyzing a (symmetric) primitive, it is assumed that the adversary knows
its inner workings in their entirety, except for the key. This is known as Kerckhoffs’s
principle, named after Auguste Kerckhoffs [363]8. Furthermore, a cipher can be
analyzed under different assumptions of what the attacker is able to do:

Ciphertext-only attack The attacker only has access to captured ciphertext and a
reasonable guess of the plaintext distribution (e.g., is it English text?);

Known-plaintext attack The attacker is given corresponding plaintext-ciphertext
pairs, but cannot choose them;

Chosen-plaintext attack The attacker can choose plaintexts and receives back their
corresponding ciphertexts;

Chosen-ciphertext attack The attacker can choose both plaintext and ciphertext,
and receive back their corresponding ciphertext or plaintext.

Attacks can be adaptive or non-adaptive. In adaptive attacks, the attacker chooses
the next input after each query; the non-adaptive attacker is forced to choose all their
inputs ahead of time. The attacker can further be given more than one target (read:
key) to attack, and success is defined as breaking at least one of the targets. This is
commonly named the multi-target or multi-user setting [74, 75, 343].

The goals of the attacker can also vary. Key recovery is the most common—and
devastating—goal, but the attacker may also mount distinguishing or forgery attacks
that break the cryptosystem claims without recovering the key. Distinguishers are
often used as the first step towards key recovery, cf. Section 2.4.3.

Besides the above common models, other more niche models exist for other
scenarios, e.g., related keys [46, 76, 77, 473], known keys [11, 131, 271], chosen
keys [94], etc.

8Kerckhoffs’s principle was in fact the second of six principles delineated in “La Cryptographie
Militaire” [363].
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2.4.2 Generic Attacks

A generic attack is one that does not make use of any internal property of the target,
treating it more or less like a black box. A generic attack on a block cipher, for example,
simply assumes that the block cipher behaves like a random permutation; a generic
attack on a hash function assumes that its internal component, e.g., compression
function, behaves like a random function.

Bruteforce

The better known and rather obvious generic attack is exhaustive search, also known
as bruteforce: simply trying every possibility until one works. Examples of bruteforce
attacks are

• Given a block cipher and one or more known plaintext-ciphertext pairs, recover
the key by trying all possible keys until one matches the pairs;

• Given a hash function output, try many inputs until one of them matches it.

Given a search space of 2k, a bruteforce attack will succeed on average after 2k−1

attempts. Each attempt will usually involve evaluating the primitive in question; for
iterated ciphers, it is generally possible to improve this cost by a marginal constant
factor using more advanced techniques [104, 237, 263].

In some cases it is possible to trade time for memory. In the extreme case, the
attacker precomputes the ciphertext corresponding to a fixed chosen plaintext for
every key; after this upfront cost of 2k evaluations and memory, recovering any key is
a matter of obtaining the ciphertext and a simple hash table lookup. Hellman [228]
came up with a better tradeoff—after a precomputation of 22k/3 cipher evaluations
and memory, a subsequent key recovery costs 22k/3 evaluations. Wiener [471] and
Bernstein [60] dispute the effectiveness of such time-memory tradeoffs compared to
the cost of 2- and 3-dimensional parallel mesh machines, when the full cost of the
computation is considered. In general, because bruteforce is trivially parallelizable,
it is preferable to increase the number of processors whose cost is comparable to
that of the equivalent amount of memory. For example 22k/3 parallel processors will
find a k-bit key in 2k/3 time, much faster than Hellman’s tradeoff and at comparable
cost. One may also look for one out of several keys instead of simply one, with an
improved success rate proportional to the number of keys under attack.

Collision Search

The birthday paradox states that for there to be a colliding birthday among a set of
people with randomly distributed birthdays it suffices to look at approximately 23
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people. Though unintuitive, there are (365)23 distinct sets of birthdays out of 36523

total possibilities. This gives a collision probability of 1− (365)23
36523 ≈ 0.507.

To find collisions in a random {0, 1}m→ {0, 1}n function F(x), m≥ n, the obvious
approach to accomplish this is as follows:

1. Initialize an empty hash table H;

2. For i from 0 to 2n − 1

a) compute y = F(i);

b) if H[y] exists, return (i, H[y]);

c) insert i into H[y];

At iteration i the probability of a collision is given by

1− (2
n)i

2ni

= 1−
∏

j

�

1− j
2n

�

≥ 1− e−
∑i−1

j=1 j

= 1− e
( i2)
2n ,

which approaches 1/2 at 2n/2, and approaches 1 soon after. A more precise estimate
for the expected number of iterations is

p

π2n/2 [448, Appendix A].
The issue with the above algorithm is that it requires as much space (≈ 2n/2 entries)

as computation. With an extra but constant amount of computation, collisions can be
found in negligible space. The so-called rho method uses Floyd’s cycle detection [275,
§3.1, Exercise 6 and 7]:

1. Let x0 = x1 = 0, with 0 being an arbitrary starting point;

2. Repeatedly set x0 = F(x0) and x1 = F(F(x1));

3. If x0 = x1, a collision has occurred at some point in the sequence. That is,
F i(0) = F2i(0).

While a cycle has at this point been detected, it does not immediately yield a collision.
The idea is that the sequence 0, F1(0), . . . , F i(0) has a “tail” and a cycle9 of length

respectively s and l. It is known that F i(0) is inside the cycle of length l and thus
i ≥ s and because F i(0) = F2i(0) then i must be multiple of l.

9Hence the name rho: this trajectory resembles the Greek letter ρ.
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The attack continues: find the first j such that F j(0) = F i+ j(0). Unless j = 0, in
which case there is no tail, this will yield a collision when j = s: F s(0) = F i+s(0). One
of the inputs is at the tail, the other one at the cycle. The complexity of this method
is higher than the above, but is still within O(2n/2) and the memory requirements
make it much more practical for large n.

One drawback of the above method is that, while it improved the memory con-
sumption, it is not amenable to parallelization. This leads us to the state of the
art today in collision finding, the Wiener-Oorschot [448] parallel collision search.
The Wiener-Oorschot method requires introducing the notion of distinguished points,
values of the image of F that have some easily identifiable property. A typical choice
of distinguished point is a value with θ leading bits equal to zero. For a random
function an output of F is distinguished with probability 2−θ .

The method works in a client-server model, and operates as follows:

1. Each client selects a random starting point x1 and iterates x i+1 = F(x i) until a
distinguished point xn is hit. The client sends the tuple (x1, xn, n) to the server,
and repeats the process.

2. The server, upon receiving a triple (x1, x , n), verifies whether it already received
another triple (x ′1, x , n′); if so, and if the sequence generated by (x1, x , n)
does not happen to be a subsequence of (x ′1, x , n′) or vice-versa, within both
sequences generated by x1 and x ′1 lies a collision.

Given p clients, this method runs in expected
p
π2n/p+ 2.5 · 2θ evaluations of F per

client and parallelizes trivially with the number of clients. The amount of necessary
storage in the server is configurable by the parameter θ .

2.4.3 Statistical Attacks

Statistical attacks make up the most powerful class of attacks against iterated ciphers.
We remind that an iterated cipher Ek is formed by the composition of r round functions,
each possibly using distinct round keys:

Ekr−1
◦ Ekr−2

◦ · · · ◦ Ek1
◦ Ek0

.

A statistical attack hinges on the existence of a distinguisher for part of the cipher.
As before, a distinguisher D is an algorithm that, given some inputs, returns 0 or 1
and distinguishes the target from the corresponding ideal object with some success
probability. For a blockcipher see Definition 2.7. A high-probability distinguisher for
the entire cipher immediately breaks it. But full-round distinguishers are relatively
rare.

For block ciphers another popular application of statistical distinguishers is some
variation of a last-round attack. In a last-round attack, one hopes to find an efficient



2.4. CRYPTANALYSIS 31

Algorithm 2.1: A generic chosen-plaintext last-round attack of order d.
Input: Chosen plaintext oracle O, distinguisher D
Result: Set S of candidate last round keys.
S← {};
for k′ ∈ admissible last round keys do

c← 0;
for i← 0 to data requirement do
(x0, . . . , xd−1)← . . . ; // Choose inputs
(y0, . . . , yd−1)← (O(x0), . . . , O(xd−1)); // Obtain ciphertext
(z0, . . . , zd−1)←

�

E−1
k′ (x0), . . . , E−1

k′ (xd−1)
�

; // Undo last round
c← c + D((x0, . . . , xd−1), (z0, . . . , zd−1)); // Test property

end
if c ≥ some threshold then

S← S ∪ {k′};
end

end
return S

distinguisher for Ekr−2
◦· · ·◦Ek1

◦Ek0
, i.e., the cipher minus its last round. It is assumed

that the choice of key does not matter, i.e., that the distinguisher works similarly
regardless of key choice. This is the so-called stochastic equivalence hypothesis [287],
and although it does not necessarily apply [149, 151], it is a useful heuristic.

Having such a distinguisher, an attacker in possession of many plaintext-ciphertext
tuples can try to undo the last round and verify whether the distinguisher succeeds. To
undo the last round requires knowledge of the last round key kr−1; the attacker must
then guess every possible value of kr−1, and wrong key guesses will likely result in the
distinguisher failing—this is the so-called wrong-key randomization hypothesis [222].
Once the last round key is recovered, the attack is either over—the main key can be
recovered from it—or the attack proceeds to recover the second-last round in the
same fashion.

Distinguishers can be parameterized by the number of inputs they take, as per
Vaudenay’s treatment [452]. If a distinguisher purely observes relations between
plaintext and ciphertext, we say it is of order 1; if it observes relationships between
pairs of plaintexts and ciphertexts, it is of order 2; and so on. Algorithm 2.1 lays out
the general framework for a last-round attack using a distinguisher of order d. To
attack a concrete cipher, many more details need to be filled in: the distinguisher
to use, the data requirement, the admissible round key set, the threshold to use for
valid candidate keys, etc.
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Differential Cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir [52, 85–88, 390]10,
but see also [348]. A differential attack is, in the language of the previous section, an
order-2 statistical attack whose distinguisher detects the presence of high-probability
differentials. A differential is defined in Definition 2.12 below.

Definition 2.12. Let f : {0, 1}m→ {0, 1}n be a vectorial boolean function. A differential
for f is a pair (α,β) ∈ {0, 1}m × {0,1}n such that

f (x ⊕α)⊕ f (x) = β

may occur for some x ∈ {0,1}m. The differential (α,β) may also be represented as

α
f−→ β .

In Definition 2.12 we may call α the input difference or ∆x , and β the output
difference. A differential (α,β) may also not occur for any x , in which case we
call (α,β) an impossible differential. The difference need not be with respect to
exclusive-or (⊕): it can be with respect to any group operation, such as addition
modulo 2n [63], multiplication modulo 2n [108], multiplication modulo 2n−1 [152],
multiplication in F2[x]/(xn− 1) [261], etc. In such cases we make explicit the group
operation in question; a differential with respect to the difference operation g will be
named a g-differential.

The most important property of a differential is how likely it is to occur.

Definition 2.13. Let f : {0, 1}m→ {0,1}n be a vectorial boolean function, and (α,β)
a differential for f . The differential probability of (α,β) is given by

Prx←${0,1}m[ f (x ⊕α)⊕ f (x) = β] . (2.5)

If a differential has probability p, we may represent this as α
f−→
p
β . Furthermore, we

call − log2 p the weight of the differential.

If the probability (2.5) is considerably higher than 21−m, the expected probability
for a random function or permutation [149], a differential attack is likely to be
useful to break the cipher. In particular, if the probability of the differential is p, the
number of plaintext-ciphertext pairs to mount a differential attack is proportional to
O(1/p) [101].

In differential cryptanalysis, the first and often main challenge is to identify
differentials with the highest possible probability. The obvious way is to exhaustively

10It turns out that this technique was already known by the designers of the DES as the “tickle
attack” [132, 133, 190].
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generate a table—the differential distribution table—containing the frequencies of
every (α,β) for all possible inputs. This, however, requires O(22m) time and O(m2m+n)
space for an {0,1}m→ {0,1}n function, which makes it impractical except for very
small block sizes.

A more practical solution is to split the cipher into smaller analyzable components,
identify high-probability differentials in those easier to analyze individual components,
and then link them together. This leads to so-called differential trails.

Definition 2.14. Let f0, . . . , fr−1 be vectorial boolean functions from {0, 1}n to {0, 1}n.
The sequence of differentials (α0, . . . ,αr)

α0
f0−→ α1 . . .

fr−1−−→ αr

is called a differential trail (or path, or characteristic) for fr−1 ◦ · · · ◦ f0.

For example, consider a 3-round blockcipher

Ek0,k1,k2
= Ek2

◦ Ek1
◦ Ek0

.

Suppose we find a differential (α0,β0) with probability p0 for Ek0
, (β0,α1) with

probability p1 for Ek1
, and (α1,β2) with probability p2 for Ek2

. Then α0

Ek0−→
p0

β0

Ek1−→
p1

α1

Ek2−→
p2

β2 is a differential trail, path, or characteristic for Ek. Furthermore, if Eki
is a

Markov cipher [287, 367, 454], that is, if

Prki

�

Eki
(x ⊕α)⊕ Eki

(x) = β
�

= Prki ,x

�

Eki
(x ⊕α)⊕ Eki

(x) = β
�

and k0, k1, and k2 are independent subkeys then the probability of the trail is p0p1p2,
the product of the probabilities of each individual differential. If they are not indepen-
dent then the probability might deviate, but it often still is a reasonable approximation.

We also note that in the above example, there might exist more than one dif-

ferential trail for the differential α0

Ek0,k1,k2−−−−→ β2. In fact, there often is. Typically the
probability of such a differential is dominated by one particularly strong trail, but this
need not be the case. When many differential trails add up for the same differential,
making its probability higher than it would be expected, we call this differential
clustering or the differential effect. In some cases the probability gap between the
best trail and its differential probability can be considerable [17, 219].

Besides key-recovery, differential attacks have been very successful in finding hash
function collisions. If a compression function F has a high-probability differential of
the form (α, 0) it immediately yields a collision. This is called a vanishing differential.
Useful vanishing differentials are vanishingly rare, however. A more common strategy
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is to mount multi-block collisions: the first message block is used to introduce a
difference, and the subsequent blocks cancel it. Consider a simple 2-block hash
function

H(x0, x1) := F(x1,F(x0, 0)) ,

where F : {0,1}m × {0,1}n→ {0,1}n is a compression function. Suppose there is a
high-probability differential ((α1,α2), 0)with probability p0 for F. Because the second
argument of the first F call is fixed, this differential cannot be used directly to cause
a collision. However, suppose we have another differential of the form ((α0, 0),α2)
with probability p1. Then (x0, x1) and (x0 ⊕α0, x1 ⊕α1) are likely to collide. To see
this, observe that

F(x0 ⊕α0, 0) = F(x0, 0)⊕α2

will happen with roughly 1/p0 trials. Then

F(x1 ⊕α1,F(x0, 0)⊕α2) = F(x1,F(x0, 0))

with another 1/p1 trials. Heuristically, after 1/p0+1/p1 attempts a collision is found.
The same sort of techniques can also be used against message authentication codes

to create forgeries. Hash functions are unkeyed, however, which allows for further
optimizations. A key observation is that differential probabilities for a particular
differential are taken over random choices of input. But clever choices of the inputs
themselves, i.e., x0 and x1 in the above example, can greatly boost probabilities to
much better than p0 and p1. These are known as message modification techniques
and they were instrumental in bringing MD5 and SHA-1 collisions to fruition [432,
465–467].

Linear Cryptanalysis

Linear cryptanalysis was discovered by Matsui when analyzing the FEAL [338, 339,
424] blockcipher and later the DES [322, 324, 325]. However the basic principle of
linear cryptanalysis was already present in earlier work [419, 437] and, based on
its design principles, known to the SKS V/1 East Germany cipher designers in the
1970s [139, 140]. Linear cryptanalysis only looks at the relationship between an
input and its respective output. Thus it is a distinguisher of order 1.

While differential cryptanalysis made use of differentials, linear cryptanalysis
exploits linear approximations.

Definition 2.15. Let f : {0,1}m → {0,1}n be a vectorial boolean function. A linear
approximation is a pair (α,β) : {0, 1}m→ {0, 1}n such that

α · x ⊕ β · f (x) ,
where · indicates F2 inner product, holds with probability 1

2 + ε, ε ̸= 0.
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The value ε in Definition 2.15 is denoted the bias of the linear approximation. It
is analogous to the concept of differential probability. A cleaner concept, introduced
by Daemen et al. [145], is correlation.

Definition 2.16. Let f : {0, 1}m→ {0, 1}n be a vectorial boolean function, and (α,β)
a linear approximation. The correlation CF of (α,β) is given by

C f (α,β) = 2
�

Prx←${0,1}m[α · x = β · f (x)]
�− 1 .

We denote a linear approximation with correlation p as α
f−→
p
β , and its weight as

− log2 |p|.
Correlation ranges from −1, where α · x is the negation of β · f (x), to 1, where

α · x = β · f (x). Sometimes determining the exact correlation is useful to directly
recover key bits. But more often, when evaluating the resistance of a cipher, only
the magnitude of this value matters. In particular, the squared correlation or linear
potential is particularly useful as a metric, since C(α,β)−2 is a good approximation
of the data requirements to identify a correlation C(α,β).

Daemen et al. [145] and independently Chabaud and Vaudenay [119] related the
correlation to the Walsh-Hadamard transform of the target function. In particular,
for input mask α and output mask β one has

C f (α,β) =
∑

x

−1β · f (x)−1α·x =
∑

x

−1α·x⊕β · f (x) , (2.6)

which is exactly the Walsh-Hadamard transform for the vectorial boolean function
f (x), or alternatively the Fourier-Hadamard transform of the indicator function
1 f (x)=y [118]. Using the Fast Hadamard Transform it is possible to compute the
correlation for every linear mask in O((m+ n)2m+n) space and time, which is faster
than the naïve O(23n) time algorithm. The interpretation of linear cryptanalysis as
exploiting large Fourier coefficients of the cipher also enables its generalization to
other, non-binary, domains [34].

Much like in differential cryptanalysis, finding the specific linear masks with the
highest correlation is nontrivial for a large enough block size, and is most easily done
by breaking up the cipher into simpler components and then stitching them together.

Definition 2.17. Let f0, . . . , fr−1 be vectorial boolean functions from {0, 1}n to {0, 1}n.
The sequence of linear approximations (α0, . . . ,αr)

α0
f0−→ α1 . . .

fr−1−−→ αr

is called a linear trail (or path, or characteristic) for fr−1 ◦ · · · ◦ f0.
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Analogously to the differential case, given a linear trail (α0, . . . ,αr)we call (α0,αr)
a linear hull [366]. And again, under suitable assumptions of independence between
each component (i.e., the Markov assumption [287, 367, 454]), the correlation of the
linear trail is approximately the product of each individual correlation. Note, however,
that because correlations are signed, adding them up may cause cancellation. That
is, if there are multiple trails belonging to the same linear hull, the correlation of the
linear hull as a whole may not be higher than the correlation of the trail. There is
some debate around the power, or even existence, of the linear hull effect [23, 349].

Other Attacks

For completeness here we point out that there are numerous statistical attacks other
than, or derived from, plain differential and linear cryptanalysis. Differential crypt-
analysis itself has many variants:

Truncated differentials [270] Whereas differential cryptanalysis deals with full
block values (α,β), truncated differentials may only cover subsets or equiva-
lence classes of the input or output blocks.

Impossible differentials [78–80, 269] Instead of exploiting high-probability differ-
entials, the attack exploits differentials with probability 0.

Higher-order differentials [270, 285] Higher-order differential attacks reinterpret
a difference f (x +α)− f (x) as a partial derivative at a point α, and naturally
extend it to more points α0, . . . ,αd−1. They are particularly dangerous for
ciphers with low algebraic degree.

Differential-linear attacks [82, 83, 102, 290, 303] combine a truncated (higher-
order) differential with probability p with a linear trail with correlation q to
mount a distinguisher of complexity approximately p−1q−2.

Boomerang [462] and rectangle attacks [84] Adaptive chosen-ciphertext attack
of order 4; distinguishes 4-tuples of plaintexts and ciphertexts with prescribed
differences.

Rotational [261] and rotational-xor cryptanalysis [22] Differential cryptanalysis
with respect to the rotation, or rotation followed by an xor, operations.

Cube [24, 167, 459], Integral [272], Square [146], Saturation [310] attacks
Slightly different ways to exploit higher-order differentials.

Multiple differential and polytopic cryptanalysis [99, 100, 439] When multiple
high-probability differentials are used together in the same distinguisher.
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Likewise, linear cryptanalysis has several variants:

Partitioning [223] and χ2 [451] cryptanalysis Given projection functions ρ,ρ′,
not necessarily linear, from {0,1}n → {0,1}m, distinguish (ρ(x),ρ′(Ek(x)))
from random using a statistical test like the χ2 method.

Zero-correlation [107] When a linear trail has zero correlation; analogous to im-
possible differential cryptanalysis.

Multidimensional linear cryptanalysis [229] Use linear subspaces of multiple lin-
ear approximations.

Given the many similarities between most of these attacks, Wagner [463],
Phan [383, 384], and Vaudenay [452] have independently attempted to unify most
blockcipher cryptanalysis methods into a common framework.

2.4.4 Algebraic Attacks

The basic idea of algebraic attacks goes back to Shannon [422]. Shannon observed
that a block cipher taking n-bit inputs and m-bit keys can be written as a multivariate
polynomial system of the form

y0 = f0(x0, . . . , xn−1, k0, . . . , km−1)
y1 = f1(x0, . . . , xn−1, k0, . . . , km−1)

. . .

yn−2 = fn−2(x0, . . . , xn−1, k0, . . . , km−1)
yn−1 = fn−1(x0, . . . , xn−1, k0, . . . , km−1) ,

over the boolean polynomial ring, i.e., F2[x0, . . . , xn−1, k0, . . . , km−1]/(x2
0 − x0, . . . ,

x2
n−1 − xn−1, k2

0 − k0, . . . , k2
m−1 − km−1). Given some known plaintext-ciphertext pairs,

the x i and yi variables can be replaced by their concrete values, and solving the
resulting m-variable system would find the key. Shannon goes on to say that a good
cipher should be as hard to solve as a random such system of equations, and should
heavily involve the ki variables11.

For relatively small systems of low degree, exhaustive search can be the most
effective way to solve them [109, 110]. Another option is linearization: replace each
variable product by a new variable, resulting in a linear system of

∑d−1
i=0

� m
i+1

�

variables,
d being the algebraic degree of the system. This linear system can be solved in time
�

∑d−1
i=0

� m
i+1

�

�ω ≈ O(mωd), where ω< 2.37286 [9] is the complexity of matrix multi-
plication. More advanced attacks based on this principle are the relinearization [266],
extended linearization [128, 136], and extended sparse linearization attacks [138].

11This heavy involvement of the ki variables is what is commonly called confusion.



38 CHAPTER 2. BACKGROUND

Another way to approach the problem is by computing its Gröbner basis. Faugère’s
F4 [187] and F5 [187] are the best known algorithms for this. The average complexity
of such algorithms is not very well understood, and is dependent on a property of
the system called “degree of regularity,” which is difficult to evaluate for concrete
systems [166, 171]. For a degree of regularity Dr , F5 has a complexity of

�m+Dr
Dr

�ω
;

but for a random system the complexity is worse than exhaustive search [39].
The system may also be converted into a satisfiability (SAT) problem, for which

good off-the-shelf solvers are available [38].
Because it is fairly intuitive that a cipher with a low algebraic degree is not very

strong, few ciphers have been broken by algebraic cryptanalysis. Exceptions exist,
however:

• The Keeloq cipher was broken by algebraic means using a SAT solver [135];

• This Hitag2 stream cipher was also broken by SAT solving [137];

• Collisions on reduced-round SHA-1 were made slightly more efficient by resort-
ing to the solution of multivariate polynomial systems [436].



Chapter 3

Tyche: a fast and small nonlinear
pseudorandom number generator

Pseudorandom numbers are often used for testing, simulation and even aesthetic
purposes. They are an integral part of Monte Carlo methods, genetic and evolutionary
algorithms, and are extensively used in noise generation for computer graphics.

Monte Carlo methods were first used for computing purposes by Ulam and von
Neumann, while attempting to solve hard problems in particle physics [335]. Monte
Carlo methods consist of iterated random sampling of many inputs in some proba-
bility distribution, followed by later processing. Given enough inputs, it is possible
to obtain an approximate solution with a reasonable degree of certainty. This is
particularly useful for problems with many degrees of freedom, where analytical or
exact methods would be far too inefficient. Monte Carlo methods are not, however,
very computationally efficient—typically, to reduce the error margin by half, one has
to quadruple the amount of sampled inputs [204]. Today, Monte Carlo methods are
used in the most various fields, such as particle physics, weather forecasting, financial
analysis, operations research, etc.

Current general-purpose processors typically have 2 or 4 cores. Graphics process-
ing units have tens to hundreds [298]; future architectures are slated to scale up
to hundreds and thousands of cores [449]. This development entails some conse-
quences: silicon real estate is limited, and the increase in processing units decreases
the total fast memory available on-chip. Thus, it becomes an interesting problem to
design a random number generator that can take advantage of massively parallel
architectures and still remain small, fast and of high quality. With these goals in
mind, we introduce Tyche, a fast and small-state pseudorandom number generator
especially suited for current parallel and SIMD architectures. The iteration function
of Tyche, derived from the stream cipher ChaCha’s quarter-round function [54], is
nonlinear and fast; it uses a very small amount of state (4 32-bit registers) and, yet,
has a very large expected period.

39
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In Section 3.1 we review the state of the art in theory and practice of random
number generation. In Section 3.2 we describe the Tyche function. In Section 3.3
we provide an analysis of several important features of the algorithm, such as the
expected period, statistical quality and parallelism. We then introduce several variants
of Tyche with different period-speed-parallelism tradeoffs Section 3.4. In Section 3.5,
we experimentally evaluate and compare Tyche. We conclude with Section 3.6.

3.1 Related Work

There is an enormous body of work in the literature regarding pseudorandom number
generation. One of the first and most popular methods to generate pseudorandom
numbers in digital computers was Lehmer’s linear congruential method, consisting of
a linear recurrence modulo some integer m. Since then, researchers have proposed
numerous other linear algorithms, most notably lagged Fibonacci generators, linear
feedback shift registers, xorshift generators and the Mersenne Twister [275, 319, 326].
The statistical properties of linear generators are well known and widely studied;
several empirical tests are described in [275, Chapter 3]. One of the drawbacks
of such linear generators, in particular linear congruential generators, is their very
regular lattice structure [275, Section 3.3.4]. This causes the usable amount of
numbers in a simulation to be far less than the full period of the generator [381].

Nonlinear pseudorandom generators, like the Inversive congruential generator and
Blum Blum Shub [103, 227], avoid the drawbacks of linearity. However, nonlinear
generators often require more complex arithmetic than linear ones and have smaller
periods, rendering them impractical for simulations.

The generation of pseudorandom numbers in parallel environments is also a well
studied subject [111, 180, 414]. The main problem is to enable multiple concurrent
threads of execution to get random numbers in parallel. Two main solutions exist for
this problem: parametrization and cycle splitting. Parametrization consists in creating
a slightly different full period generator for each instance; this can be done by, for
example, changing the iteration function itself. Cycle splitting takes a full period
sequence and splits it into a number of subsequences, each used within an instance.
Cycle splitting is often used in linear congruential generators, since it is easy to leap to
any arbitrary position in the stream. Other generators, such as the Mersenne Twister,
rely on different initial parameters (i.e., parametrization) to differentiate between
threads.

In the case of GPUs and other vector processors, we face additional restrictions,
because the amount of fast memory per core is quite limited, thus restricting the
internal state we can use. Furthermore, GPUs lack some important instructions, such
as native integer multiplication and/or division, leading to a large slowdown for
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some popular random number generators. Still, linear congruential generators have
been studied in GPUs [289].

There have been some initial attempts to adapt cryptographic functions for fast
GPU random number generation. Tzeng and Wei [446] used the MD5 hash function
and reduced-round versions thereof to generate high-quality random numbers. Zafar
and Olano [477] used the smaller and faster 8-round TEA block cipher to generate
high-quality random numbers for Perlin noise generation.

3.2 Tyche Specification

This section will present Tyche. In the following, all values are assumed to be 32 bits
long, unless otherwise noted, and ⊞ (resp. ⊟) represents addition (resp. subtraction)
modulo 232.

3.2.1 Initialization

The state of Tyche is composed of 4 32-bit words, which we will call a, b, c and
d. Tyche, when initialized, takes as inputs a 64-bit word s and a 32-bit word i.
Algorithm 3.1 describes the operations performed during initialization.

Algorithm 3.1: Tyche’s initialization.

Input: s ∈ {0, 1}64, i ∈ {0,1}32

a← ⌊s/232⌋ ;
b← s mod 232;
c← 2654435769;
d ← 1367130551⊕ i;
for r ← 0 to 19 do
(a, b, c, d) = MIX(a, b, c, d);

end
return (a, b, c, d)

The MIX function called in Algorithm 3.1 is used here to derive the initial state;
it is described further in Algorithm 3.3. The constants used in the initialization,
2654435769 and 1367130551, were chosen to be ⌊232/ϕ⌋ and ⌊232/π⌋, where ϕ is
the golden ratio and π is the well-known constant. Their purpose is to prevent a
starting internal state of (0, 0,0, 0).
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3.2.2 The core algorithm

Once its internal state is initialized, Tyche is quite simple. It calls the MIX function
once and returns the second word of the internal state, b, as shown in Algorithm 3.2
and Figure 3.1.

Algorithm 3.2: Tyche.

Input: (a, b, c, d) ∈ {0, 1}32

(a, b, c, d) = MIX(a, b, c, d);
return b

3.2.3 The MIX function

The MIX function, used both in initialization and state update, is derived directly
from the quarter-round function of the ChaCha stream cipher [54]. As described in
Algorithm 3.3, it works on 4 32-bit words and uses only addition modulo 232, xor
and bitwise rotations.

Algorithm 3.3: MIX
Input: (a, b, c, d) ∈ {0, 1}32

a← a⊞ b;
d ← (d ⊕ a)≪ 16;
c← c ⊞ d;
b← (b⊕ c)≪ 12;
a← a⊞ b;
d ← (d ⊕ a)≪ 8;
c← c ⊞ d;
b← (b⊕ c)≪ 7;
return (a, b, c, d)

This function is clearly invertible, as will be explored further in Section 3.4.1.

3.3 Analysis of Tyche

3.3.1 Design

We can find many different designs for random number generators. The design
we propose here attempts to achieve high period, speed, and very low memory
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Figure 3.1: The Tyche core function MIX. Each Tyche iteration produces a 32-bit
integer, x i+1, extracted directly from the internal state.

consumption. One of the ways in which it achieves this is by using a very simple
recursion:

x i+1 = f (x i) (3.1)

This requires no extra space other than the state’s size and perhaps some overhead
to execute f . One could use, e.g., a counter to ensure certain minimum period—
this would evidently require more registers per state, which goes against our main
objectives. A similar approach to ours has been used in the LEX [89] stream cipher,
using the AES block cipher in Output Feedback mode (OFB) and extracting 4 bytes
of the state per iteration.

Another crucial design choice concerns function f . Should it be linear? Most cur-
rent random number generators are indeed linear: LCG, xorshift, LFSR constructions,
etc. These functions have the advantage of being very simple and easily analyzed.
However, linear random number generators tend to have highly regular outputs:
their outputs lie on simple lattice structures of some dimension. This makes such
generators unsuitable for some types of simulations and considerably reduces their
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useful period [282]. Nonlinear generators generally do not have this problem [204].
Moreover, despite being very simple, linear generators may not be very fast. Linear
congruential generators and their derivatives require multiplications and (possibly
implicit) modular reductions. Unfortunately, these operations are not present in
every instruction set and can be hard to implement otherwise.

One could then simply search for a good nonlinear random number generator.
However, nonlinear generators for simulation purposes are hard to find, and gen-
erally much slower than their linear counterparts. Indeed, one could simply use a
cryptographic stream cipher as a random number generator. That would, however,
be several times slower and would require a much larger state. Indeed, even TEA8 as
described in [477] requires 136 instructions per 64 bits of random output, while MIX
only requires 12 instructions per 32 bits of random output.

In light of these reasons, we chose our function to be nonlinear and to use
exclusively instructions available in almost every chip—addition, xor, bit rotations1.
The overlap of 32-bit addition and xor creates a high amount of nonlinearity and
simultaneously allows for very fast implementations, owing to the simplicity of such
instructions.

3.3.2 Period

The MIX function, used to update the internal state, is trivially invertible. Thus it
is a permutation, with only one possible state before each other state. How does
this affect the expected period? Were the MIX function irreversible, it would behave
like a random mapping—in that case, the period would be about 2n/2 for an n-bit
state [195]. In our case, the expected period is the average cycle length of a random
element in a random permutation: (2n + 1)/2≈ 2n−1 for an n-bit state [274, §1.3.3].

But even random permutations do have short cycles. Indeed, we can trivially find
one cycle of length 1 in the MIX function: MIX (0,0,0,0) = (0,0,0,0). This is in fact its
only fixed point [28]. However, if using the initialization described in Section 3.2.1,
this state will never be reached. It is also extremely unlikely to reach a very short
cycle—the probability of reaching a cycle of length m is 1/2n; the probability of
reaching a cycle of length m or less is

∑m
i 1/2n = m/2n [121]. In our case, the chance

of reaching a state with period less than or equal to 232 is roughly 2−96.

3.3.3 Parallelization

Our algorithm is trivial to use in parallel environments. When initializing a state
(using Algorithm 3.1 or Algorithm 3.4), each computing unit (e.g., thread, vector

1While many chips do not have bit rotations natively, they are trivially achievable with simple
logical instructions such as shifts and xor.



3.3. ANALYSIS OF TYCHE 45

element, core) uses the same 64-bit seed, but its own index in the computation (the
idx argument of Algorithm 3.1). We chose a 64-bit seed to avoid collisions; since
seeds are often chosen at random, it would only require about 216 initializations for a
better than 50% chance to rerun a simulation using the same seed if one used 32-bit
seeds. This would be uncomfortably probable.

What about overlaps? Parallel streams will surely overlap eventually, given that
the function is cyclic and reversible. This is as bad as a small period in a random
number generator. To find out how fast streams overlap, consider a simple case: s
streams outputting a single value each. Given that each stream begins at an arbitrary
state out of n possible states, the probability of an overlap (i.e., a collision) would be
given by the birthday paradox:

1− (n)s
ns

(3.2)

This is, however, a simplified example; what we want to know is the likelihood
that, given s streams and a function f that is a random permutation, no stream will
meet the starting point of any other in fewer than d calls to f . This can be seen as
a generalization of the birthday problem, and was first solved by Naus [354]. The
probability that at least one out of s streams overlaps in less than d steps in a cycle of
length m is given by

1− (m− sd + s− 1)!
(m− sd)!ms−1

(3.3)

It is possible to upper bound the probability of collision with a simpler expression.
The basic idea is that stream i cannot overlap with itself2, but only with any of the
values of the other s− 1 streams. In other words, there can only be overlap among
any of the
�s

2

�

pairs of streams. If each stream has length at most d, we have that the
probability of at least one overlap is at most

d
�s

2

�

m
≤ ds2

m
. (3.4)

In our particular case, m is in average 2127; s should be no more than 216; d
should be a large enough distance to make the generator useful—we choose 264 here
as an example minimum requirement. Thus, 216 parallel streams each producing 264

numbers will overlap with a probability of roughly 2−32. Conversely, when running
216 parallel streams, an overlap is not expected until after about 264/2−32 = 296

iterations.

2Unless it enters a cycle, but that is not assumed to occur here.
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Remark. The above result has been rediscovered, sometimes in a less exact form, many
times. Vigna [460] reported several of these less accurate rediscoveries, and rediscovered
(3.3) himself.

3.4 Variants

3.4.1 Tyche-i

One issue with the construction described in the previous section is that it is com-
pletely sequential. Each instruction of the MIX function directly depends on the
immediately preceding one. This does not take any advantage of modern superscalar
CPU machinery. Thus, we propose a variant of Tyche, which we call Tyche-i, able
to take advantage of pipelined processors. Tyche-i is presented in Algorithm 3.4,
Algorithm 3.5, and Algorithm 3.6.

Algorithm 3.4: Tyche-i initialization.

Input: s ∈ {0,1}64, i ∈ {0,1}32

a← ⌊s/232⌋ ;
b← s mod 232;
c← 2654435769;
d ← 1367130551⊕ i;
for r ← 0 to 19 do
(a, b, c, d) = MIX-i(a, b, c, d);

end
return (a, b, c, d)

Algorithm 3.5: Tyche-i

Input: (a, b, c, d) ∈ {0, 1}32

(a, b, c, d) = MIX-i(a, b, c, d);
return a

The main difference between Tyche and Tyche-i is the MIX-i function. The MIX-i
function is simply the inverse function of Tyche’s MIX. Unlike MIX, MIX-i allows for
2 simultaneous executing operations at any given time, which is a better suit to
superscalar processors than MIX is. The downside, however, is that MIX-i diffuses bits
slower than MIX does: for 1-bit differences in the internal state, 1 MIX call averages
26 bit flipped bits, while MIX-i averages 8.
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Algorithm 3.6: MIX-i
Input: (a, b, c, d) ∈ {0, 1}32

b← (b≫ 7)⊕ c; c← c ⊟ d;
d ← (d≫ 8)⊕ a; a← a⊟ b;
b← (b≫ 12)⊕ c; c← c ⊟ d;
d ← (d≫ 16)⊕ a; a← a⊟ b;
return (a, b, c, d)

3.4.2 Tweaking Tyche with a Counter

Although the Tyche and Tyche-i generators presented in the previous sections show
great performance across many architectures, due to their use of simple 32-bit in-
structions, they have several drawbacks:

No provable period Treating the core permutation MIX as a random permutation
allows us to estimate the expected period of a sequence to be roughly 2127. This,
however, says nothing about the actual cycle structure of Tyche, and unlikely
as it may be, there may be some hidden pitfalls in this generator.

No random access While Tyche provides some higher level parallelism support by
defining different stream starting points, it is impossible to jump ahead inside
a single stream. This may be inconvenient in some situations.

We propose a tweak, named Tyche-CTR-R, that changes the mode of operation of
Tyche. Once the initial state is set up, the least significant 64 bits are used as a counter
incremented by the odd constant 58717810085618958653, while the most significant
64 bits remain constant, serving as identifier (a nonce) of the current stream. Then,
this state is processed R times by the MIX function, and the least significant word is
returned. Algorithm 3.7 describes Tyche-CTR-R.

Algorithm 3.7: Tyche-CTR-R
Input: (a, b, c, d) ∈ {0, 1}32

(b, a)← (a+ 232 b) + 5871781008561895865;
(a′, b′, c′, d ′)← (a, b, c, d);
for i← 0 to R− 1 do
(a′, b′, c′, d ′)← MIX(a′, b′, c′, d ′);

end
return a′

3Counters that add an odd constant different from 1 are often known as Weyl generators.
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Our experiments suggest that 5 rounds, i.e., Tyche-CTR-5, are sufficient to achieve
enough diffusion to pass known statistical tests. It is easy to see that the period of
Tyche-CTR-R is 264 and it is easy to jump ahead arbitrarily within a stream, by adding
an appropriate multiple of the constant used in Algorithm 3.7. One should notice
that Tyche-CTR-5 provides 264 distinct streams with a guaranteed period of 264, and
still enables further tweaks to the lengths of the counter and nonce.

3.4.3 Tyche as a counter-dependent generator

The tweak presented in the previous section was fairly aggressive: instead of one MIX
call per iteration, we now require R ≥ 5 calls to achieve the same effect. This is a
massive slowdown, even though it does enable some desirable properties, and the
higher latency may be hidden by computing several values in parallel.

We propose in this section a compromise: a 232 guaranteed minimum period,
2159 average period, and 160 bits of state. The approach we follow is known as
counter-dependent generators [420], and is pictured in Algorithm 3.8.

Algorithm 3.8: Tyche-CD-32

Input: (a, b, c, d, e) ∈ {0,1}32

e← e⊞ (e2 ∨ 5)mod 232;
(a, b, c, d)← MIX(a, b, c, d);
return b+ e

Since this tweak does not enable random stream access, we opted to use the
T-function x + (x2 ∨ 5) (mod 2n), proved by Klimov and Shamir to be invertible and
single-cycle [268]. This function is executed in parallel with MIX, and is not expected
to significantly slow down the generator. Additionally, the greater complexity of this
function provides some more diffusion than a simpler counter.

3.5 Experimental Evaluation

3.5.1 Performance

We implemented and compared the performance of Tyche and its variants against
two other similarly-sized generators: the XORWOW generator found in the CURAND
library [143], and a 128-bit linear congruential generator optimized for speed. Ta-
ble 3.1 shows the average number of cycles per iteration of the aforementioned
generators for the generation of 216 random integers. The timings were obtained on
an Intel Core-i7 “Sandy Bridge” processor, with both Turbo Boost and hyperthreading
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Table 3.1: Sandy Bridge timings for several Tyche variants, along with other competing
generators.

Generator State bits Cycles/Word Avg. period Min. period Jump ahead

TEA8 [476] 128 49 264 264 Yes
LCG-128 127 32 2127 − 1 2127 − 1 Yes

MT19937 [326] 19968 8 219937 − 1 219937 − 1 Yes
XORWOW [143] 192 7 2192 − 232 2192 − 232 Yes

Tyche [357] 128 12 ≈ 2127 1 No
Tyche-i [357] 128 6 ≈ 2127 1 No
Tyche-CD-32 160 12 ≈ 2159 232 No
Tyche-CTR-5 128 44 264 264 Yes

Table 3.2: Cycles per word on an Intel Skylake CPU for Tyche when running with
various amounts of SIMD lanes.

Lanes Cycles per word

1 12
4 3.93
8 1.97
16 1.21
24 0.98

disabled. As expected (cf. Section 3.4.1), Tyche-i is roughly twice as fast as Tyche on
a processor with high instruction-level parallelism.

We also include a comparison with TEA8, suggested by Zafar and Olano [477] for
GPUs, which reveals to be markedly slower than any of the other choices for random
generation. TEA8 requires at least 136 instructions per 64-bit word, which is much
higher than either Tyche, Tyche-i or XORWOW.

When taking advantage of SIMD, Tyche becomes much faster. Table 3.2 shows
how performance changes when generation is parallelized using more than one
instance, using the index feature, and implemented using AVX2 on an Intel Skylake
CPU. Although AVX2 consists of 8-word vectors, it is possible to obtain an additional
speedup by taking advantage of the roughly 3 independent vector instructions per
cycle possible to execute on this microarchitecture. Ultimately, compared to the
sequential implementation the vector code obtains a speedup of over 12.
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3.5.2 Statistical quality tests

In order to assess the statistical quality of Tyche and its variants, we performed a
rather exhaustive battery of tests. We employed the ENT and DIEHARD suites and
the TestU01 “BigCrush” battery of tests [283, 317, 464]. Every test performed in
both variants showed no statistical weaknesses.

Another aspect of Tyche is that it is based on the ChaCha stream cipher. ChaCha’s
“quarter-round” function is also employed, albeit slightly modified, in the BLAKE
SHA-3 candidate [28] and BLAKE2 [32] (cf. Chapter 4). The “quarter-round” has
been extensively analyzed in the context of these functions, but both functions are
still regarded as secure [25, 26]. This increases our confidence in the quality of Tyche
as a generator.

Finally, note that the XORWOW algorithm fails 3 tests in the “BigCrush” battery:
CollisionOver (t = 7), SimpPoker (r = 27), and LinearComp (r = 29), the latter being
a consequence of its (almost) linear nature.

3.6 Conclusion

In this chapter we presented and analyzed Tyche and several variants thereof, fast
and small nonlinear pseudorandom generators based on ChaCha’s quarter-round.

Tyche and Tyche-i use a very small amount of state that fits entirely into 4 32-bit
registers. Our experiments show that Tyche and Tyche-i are much faster than the also
nonlinear and cryptographic function-derived TEA8, while exhibiting a large enough
period for serious simulations with many parallel threads. On the other hand, when
we compare Tyche and Tyche-i to the slightly faster (but almost linear) XORWOW
algorithm, statistical tests (i.e., Big Crush) suggest that both Tyche and Tyche-i have
better statistical properties.

We have also addressed some of Tyche’s limitations with respect to provable
period, by either transforming them into counter generators, or counter-dependent
generators. These variants achieve guaranteed period at the cost of performance.



Chapter 4

BLAKE2: fast and parallel hashing

Soon after the groundbreaking attacks on MD5 and SHA-1 [465–467], there was
some uncertainty about whether the existent SHA-2 standard would fall to the same
attack strategies, seeing that they shared similar design principles. In response,
the National Institute for Standards and Technology (NIST) held a competition to
select a new hashing standard, that would run from 2008 to 2012. There were
64 initial submissions, and after 3 years there were 5 remaining finalists: BLAKE,
Grøstl, JH, Keccak, and Skein. In late 2012, NIST announced the winner of the
SHA-3 competition—the new hashing standard would be based on the Keccak hash
function [125].

The SHA-3 competition succeeded in selecting a hash function that complements
SHA-2 and is more efficient than SHA-2 in hardware [125]. But in software remained
a demand for fast software hashing for applications such as integrity checking and
deduplication in filesystems and cloud storage, host-based intrusion detection, version
control systems, or secure boot schemes. These applications sometimes hash a few
large messages, but more often a lot of short ones, and the performance of the hash
directly affects the user experience.

Many systems use faster algorithms like MD5, SHA-1, or a custom function to
meet their speed requirements, even though those functions may be insecure. MD5
is famously vulnerable to collision and length-extension attacks [175, 434], but it
is 2.53 times as fast as SHA-256 on an Intel Ivy Bridge and 2.98 times as fast as
SHA-256 on a Qualcomm Krait CPU.

Despite MD5’s significant security flaws, it continues to be among the most widely-
used algorithms for file identification and data integrity. To choose just a handful of
examples, the OpenStack cloud storage system [427], the popular version control
system Perforce, and the recent object storage system used internally in AOL [387] all
rely on MD5 for data integrity. The venerable md5sum Unix tool remains one of the
most widely-used tools for data integrity checking. The Sun/Oracle ZFS filesystem
includes the option of using SHA-256 for data integrity, but the default configuration

51
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is to instead use a non-cryptographic 256-bit checksum, for performance reasons.
Some SHA-3 finalists outperform SHA-2 in software: for example, on Ivy Bridge

BLAKE-512 is 1.41 times as fast as SHA-512, and BLAKE-256 is 1.70 times as fast
as SHA-256. BLAKE-512 reaches 5.76 cycles per byte, or approximately 579 MB per
second, against 411 for SHA-512, on an Ivy Bridge CPU clocked at 3.5 GHz. Some
other non-finalist SHA-3 submissions were competitive in speed with BLAKE and
Skein, but these have been less analyzed and generally inspire less confidence (e.g.,
due to distinguishers on the compression function).

BLAKE thus appears to be a good candidate for fast software hashing. Its security
was evaluated by NIST in the SHA-3 process as having a “very large security margin”,
and the cryptanalysis published on BLAKE was noted as having “a great deal of depth”
(see Section 4.4).

But as observed by Preneel [389], its design “reflects the state of the art in October
2008”; since then, and after extensive cryptanalysis, we have a better understanding
of what contributes to BLAKE’s security and efficiency properties. We therefore
introduce BLAKE2, an improved BLAKE with the following properties:

• Faster than MD5 on most 64-bit x86 and ARM platforms;

• 32% less RAM required than BLAKE;

• Direct support, with no additional overhead, of

– Parallelism for many-times faster hashing on multicore or SIMD CPUs;

– Tree hashing for incremental update or verification of large files;

– Keying to instantiate a PRF or authenticator that is simpler and faster than
HMAC;

– Personalization strings for defining a unique hash function for each appli-
cation;

• Minimal padding, faster and simpler to implement.

The rest of this chapter is structured as follows: Section 4.1 specifies BLAKE2,
Section 4.2 delineates the rationale behind the changes to BLAKE, Section 4.3 dis-
cusses its efficiency on various platforms and reports preliminary benchmarks, and
Section 4.4 discusses its security.

4.1 Specification of BLAKE2

The BLAKE2 family consists of two main algorithms:
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• BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—
and produces digests of any size between 1 and 64 bytes.

• BLAKE2s is optimized for 8- to 32-bit platforms, and produces digests of any
size between 1 and 32 bytes.

Both are designed to offer security similar to that of an ideal function producing
digests of same length. Each one is portable to any CPU, but can be up to twice as
fast when used on the CPU size for which it is optimized; for example, on a Tegra 2
(32-bit ARMv7-based SoC) BLAKE2s is expected to be about twice as fast as BLAKE2b,
whereas on an AMD A10-5800K (64-bit, Piledriver microarchitecture), BLAKE2b is
expected to be more than 1.5 times as fast as BLAKE2s.

4.1.1 BLAKE2b

BLAKE2b operates on 64-bit words and returns a hash value between 1 and 64 bytes.
In the following we specify BLAKE2b’s constants, keyed permutation, compression
function, and iterative hashing mode.

Constants

BLAKE2b uses the following set of constants:

IV0 = 6a09e667f3bcc908 IV1 = bb67ae8584caa73b
IV2 = 3c6ef372fe94f82b IV3 = a54ff53a5f1d36f1
IV4 = 510e527fade682d1 IV5 = 9b05688c2b3e6c1f
IV6 = 1f83d9abfb41bd6b IV7 = 5be0cd19137e2179

These constants are identical to the ones used in BLAKE-512 and SHA-512’s IV. Their
provenance is

IVi =
�

264ppi

�

mod 264 ,

with pi being the ith prime number.
Furthermore, 10 permutations σ0, . . . ,σ9 are used in the keyed permutation and

defined in Table 4.1.

Keyed Permutation

The most complex component of BLAKE2b is its internal keyed permutation, or
blockcipher, E. It operates over a block of 16 64-bit words v0, . . . , v15, and is also
keyed by 16 64-bit words m0, . . . , m15. It performs 12 rounds. At each round, the
operation G is applied in parallel first to each column of v, viewed as a 4× 4 matrix,
and then to each diagonal. Figure 4.1 shows this operation visually, and Algorithm 4.1
specifies its mechanism.
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Table 4.1: Permutations σr of {0, . . . , 15} used by the BLAKE2 functions.

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0
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Figure 4.1: Column and diagonal steps of E.

Algorithm 4.1: BLAKE2b’s E.
Input: m ∈ Z16

264 , v ∈ Z16
264

for r ← 0 to 11 do
G(v0, v4, v8, v12, m, r, 0);
G(v1, v5, v9, v13, m, r, 1);
G(v2, v6, v10, v14, m, r, 2);
G(v3, v7, v11, v15, m, r, 3);
G(v0, v5, v10, v15, m, r, 4);
G(v1, v6, v11, v12, m, r, 5);
G(v2, v7, v8, v13, m, r, 6);
G(v3, v4, v9, v14, m, r, 7);

end
return v
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The G function operates on 4 64-bit words and is keyed by 2 words of m dependent
on the current round (by the σ permutation of Table 4.1) and column or diagonal.
Algorithm 4.2 describes this function.

Algorithm 4.2: BLAKE2b’s G.
Input: a ∈ Z264 , b ∈ Z264 , c ∈ Z264 , d ∈ Z264 , m ∈ Z16

264 , r, i
a← a+ b+mσr mod 10(2i);
d ← (d ⊕ a)≫ 32;
c← c + d;
b← (b⊕ c)≫ 24;
a← a+ b+mσr mod 10(2i+1);
d ← (d ⊕ a)≫ 16;
c← c + d;
b← (b⊕ c)≫ 63;
return a, b, c, d

Compression Function

The compression function F takes as input a chain value h of 8 64-bit words h0, . . . , h7,
a message block m of 16 64-bit words m0, . . . , m15, a 128-bit counter t of 2 64-bit
words t0, t1, and two 64-bit flags f0 and f1.

First, F initializes the 16-word internal block v0, . . . , v15 as






v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15






←







h0 h1 h2 h3

h4 h5 h6 h7

IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7






.

The compression function then simply encrypts v using the message block m as
key, and returns the xor of its two resulting halves, along with the original chaining
value h. This is depicted in Algorithm 4.3.

Iterated Hashing

BLAKE2b can hash data of any byte length 0≤ ℓ < 2128. The input is first padded with
zeros if necessary to form a sequence of N = ⌈ℓ/128⌉ 16-word blocks m0, m1, . . . , mN−1.
The words are parsed from bytes in little endian order.

The initial chaining value h is initialized as the xor of the IV array with the
parameter block PB. The parameter block fields are specified in Section 4.1.3.

For each message block, the block length in bytes, excluding the zero padding, is
added to the counter t. t0 represents the least significant 64 bits of the sum, and t1
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Algorithm 4.3: BLAKE2b’s F.

Input: h ∈ Z8
264 , m ∈ Z16

264 , t ∈ Z2
264 , f ∈ Z2

264






v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15






←







h0 h1 h2 h3

h4 h5 h6 h7

IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7






;

v← E(m, v);
for i← 0 to 7 do

hi ← hi ⊕ vi ⊕ vi+8;
end
return h

the most significant ones. The algorithm then proceeds iteratively, at each message
block obtaining a new chaining value from the existing chaining value, message block,
counter and flags. This is shown in Algorithm 4.4.

Algorithm 4.4: BLAKE2b.
Input: m ∈ {0, 1}8×∗
m0, . . . , mN−1← pad(m);
for i← 0 to 7 do

hi = IVi ⊕PBi;
end
t ← 0;
f0← 0;
f1← 0;
for i← 0 to N − 2 do

t ← t + 128;
h← F(h, mi, t, f );

end
f0← 264 − 1;
t ← t + |mN−1|;
h← F(h, mN−1, t, f );
return h

In the last block, the finalization flags are used: f0 is set to 264−1, while f1 remains
0. The resulting hash is obtained from the last chaining value h by converting each
word to bytes in little endian order.
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4.1.2 BLAKE2s

BLAKE2s operates on 32-bit words and returns a hash value between 1 and 32 bytes.
In the following we specify BLAKE2s’s constants, keyed permutation, compression
function, and iterative hashing mode.

Constants

BLAKE2s uses the following IV:

IV0 = 6a09e667 IV1 = bb67ae85
IV2 = 3c6ef372 IV3 = a54ff53a
IV4 = 510e527f IV5 = 9b05688c
IV6 = 1f83d9ab IV7 = 5be0cd19

These constants are identical to the ones used in BLAKE-256 and SHA-256’s IV. Their
provenance is

IVi =
�

232ppi

�

mod 232 ,

with pi being the ith prime number.
Furthermore, the same 10 permutations σ0, . . . ,σ9 are used in BLAKE2s keyed

permutation and are defined in Table 4.1.

Keyed Permutation

BLAKE2s’s keyed permutation operates over a block of 16 32-bit words v0, . . . , v15,
and is also keyed by 16 32-bit words m0, . . . , m15. It performs 10 rounds. At each
round, the operation G is applied in parallel first to each column of v, viewed as a
4×4 matrix, and then to each diagonal. This is identical to the mechanism described
in Figure 4.1, and is specified in Algorithm 4.5.

The G function operates on 4 32-bit words and is keyed by 2 words of m dependent
on the current round (by the σ permutation of Table 4.1) and column or diagonal.
Algorithm 4.6 describes this function.

Compression Function

The compression function F takes as input a chain value h of 8 32-bit words h0, . . . , h7,
a message block m of 16 32-bit words m0, . . . , m15, a 128-bit counter t of 2 32-bit
words t0, t1, and two 32-bit flags f0 and f1.

Similarly to BLAKE2b F initializes the 16-word internal block v0, . . . , v15 as






v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15






←







h0 h1 h2 h3

h4 h5 h6 h7

IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7






.
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Algorithm 4.5: BLAKE2s’s E.
Input: m ∈ Z16

232 , v ∈ Z16
232

for r ← 0 to 9 do
G(v0, v4, v8, v12, m, r, 0);
G(v1, v5, v9, v13, m, r, 1);
G(v2, v6, v10, v14, m, r, 2);
G(v3, v7, v11, v15, m, r, 3);
G(v0, v5, v10, v15, m, r, 4);
G(v1, v6, v11, v12, m, r, 5);
G(v2, v7, v8, v13, m, r, 6);
G(v3, v4, v9, v14, m, r, 7);

end
return v

Algorithm 4.6: BLAKE2s’s G.
Input: a ∈ Z232 , b ∈ Z232 , c ∈ Z232 , d ∈ Z232 , m ∈ Z16

232 , r, i
a← a+ b+mσr (2i);
d ← (d ⊕ a)≫ 16;
c← c + d;
b← (b⊕ c)≫ 12;
a← a+ b+mσr (2i+1);
d ← (d ⊕ a)≫ 8;
c← c + d;
b← (b⊕ c)≫ 7;
return a, b, c, d

The compression function then simply encrypts v using the message block m as
key, and returns the xor of its two resulting halves, along with the original chaining
value h. This is depicted in Algorithm 4.7.

Iterated Hashing

BLAKE2s can hash data of any byte length 0≤ ℓ < 264. The input is first padded with
zeros if necessary to form a sequence of N = ⌈ℓ/64⌉ 16-word blocks m0, m1, . . . , mN−1.
The words are parsed from bytes in little endian order.

The initial chaining value h is initialized as the xor of the IV array with the
parameter block PB. The parameter block fields are specified in Section 4.1.3.

For each message block, the block length in bytes, excluding the zero padding, is
added to the counter t. t0 represents the least significant 32 bits of the sum, and t1

the most significant ones. The algorithm then proceeds iteratively, at each message
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Algorithm 4.7: BLAKE2s’s F.

Input: h ∈ Z8
232 , m ∈ Z16

232 , t ∈ Z2
232 , f ∈ Z2

232






v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15






←







h0 h1 h2 h3

h4 h5 h6 h7

IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7






;

v← E(m, v);
for i← 0 to 7 do

hi ← hi ⊕ vi ⊕ vi+8;
end
return h

block obtaining a new chaining value from the existing chaining value, message block,
counter and flags. This is shown in Algorithm 4.8.

Algorithm 4.8: BLAKE2s.
Input: m ∈ {0, 1}8×∗
m0, . . . , mN−1← pad(m);
for i← 0 to 7 do

hi = IVi ⊕PBi;
end
t ← 0;
f0← 0;
f1← 0;
for i← 0 to N − 2 do

t ← t + 64;
h← F(h, mi, t, f );

end
f0← 232 − 1;
t ← t + |mN−1|;
h← F(h, mN−1, t, f );
return h

In the last block, the finalization flags are used: f0 is set to 232−1, while f1 remains
0. The resulting hash is obtained from the last chaining value h by converting each
word to bytes in little endian order.
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4.1.3 Parameter block

The parameter block of BLAKE2 is xored with the IV prior to the processing of the
first data block. It encodes parameters for secure tree hashing, as well as key length
(in keyed mode) and digest length.

The parameters are described below, and the block structure is shown in Tables 4.2
and 4.3:

• General parameters:

Digest byte length (1 byte) an integer in [1,64] for BLAKE2b, in [1,32] for
BLAKE2s

Key byte length (1 byte) an integer in [0,64] for BLAKE2b, in [0,32] for
BLAKE2s (set to 0 if no key is used)

Salt (16 or 8 bytes) an arbitrary string of 16 bytes for BLAKE2b, and 8 bytes
for BLAKE2s (set to all-zero by default)

Personalization (16 or 8 bytes) an arbitrary string of 16 bytes for BLAKE2b,
and 8 bytes for BLAKE2s (set to all-zero by default)

• Tree hashing parameters:

Fanout (1 byte) an integer in [0, 255] (set to 0 if unlimited, and to 1 only in
sequential mode)

Maximal depth (1 byte) an integer in [1,255] (set to 255 if unlimited, and
to 1 only in sequential mode)

Leaf maximal byte length (4 bytes) an integer in [0,232 − 1], that is, up to
4 GB (set to 0 if unlimited, or in sequential mode)

Node offset (8 or 6 bytes) an integer in [0,264 − 1] for BLAKE2b, and in
[0,248 − 1] for BLAKE2s (set to 0 for the first, leftmost, leaf, or in se-
quential mode)

Node depth (1 byte) an integer in [0,255] (set to 0 for the leaves, or in
sequential mode)

Inner hash byte length (1 byte) an integer in [0,64] for BLAKE2b, and in
[0, 32] for BLAKE2s (set to 0 in sequential mode)

This is 50 bytes in total for BLAKE2b, and 32 bytes for BLAKE2s. Any bytes left are
reserved for future and/or application-specific use, and are zeroed. Values spanning
more than one byte are written in little-endian. Note that tree hashing may be keyed,
in which case leaf instances hash the key followed by a number of bytes equal to (at
most) the maximal leaf length.
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Table 4.2: BLAKE2b parameter block structure (offsets in bytes).

Offset 0 1 2 3

0 Digest length Key length Fanout Depth
4 Leaf length
8

Node offset
12
16 Node depth Inner length RFU
20
24 RFU
28
32
. . . Salt
44
48
. . . Personalization
60

Table 4.3: BLAKE2s parameter block structure (offsets in bytes).

Offset 0 1 2 3

0 Digest length Key length Fanout Depth
4 Leaf length
8 Node offset

12 Node offset (cont.) Node depth Inner length
16

Salt
20
24

Personalization
28

4.1.4 Keyed hashing (MAC and PRF)

When keyed (that is, when the key length field of the parameter block is non-zero),
BLAKE2 sets the first data block to the key padded with zeros, the second data block
to the first block of the message, the third block to the second block of the message,
etc. Note that the padded key is treated as arbitrary data, therefore:

• The counter t includes the 64 (or 128) bytes of the key block, regardless of the
key length.

• When hashing the empty message with a key, BLAKE2b and BLAKE2s make
only one call to the compression function.

The main application of keyed BLAKE2 is as a message authentication code (MAC):
BLAKE2 can be used securely in prefix-MAC mode due to its indifferentiability, cf.
Section 4.4.4. Prefix-MAC is faster than HMAC, as it saves at least one call to the
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compression function. Keyed BLAKE2 can also be used to instantiate PRFs, for
example within the PBKDF2 password hashing scheme.

4.1.5 Tree hashing

The parameter block supports arbitrary tree hashing modes, be it binary or ternary
trees, arbitrary-depth updatable tree hashing or fixed-depth parallel hashing, etc.
Note that, unlike other functions, BLAKE2 does not restrict the leaf length and the
fanout to be powers of 2.

Basic mechanism Informally, tree hashing processes chunks of data of “leaf length”
bytes independently of each other, then combines the respective hashes using a tree
structure wherein each node takes as input the concatenation of “fanout” hashes.
The “node offset” and “node depth” parameters ensure that each invocation to the
hash function (leaf or internal node) uses a different hash function. The finalization
flag f1 signals when a hash invocation is the last one at a given depth (where “last” is
with respect to the node offset counter, for both leaves and intermediate nodes). The
flag f1 can only be non-zero for the last block compressed within a hash invocation,
and the root node always has f1 set to −1.

The tree hashing mechanism is illustrated on Figures 4.2 and 4.3, which show
layout of trees given different parameters and different input lengths. On those
figures, octagons represent leaves (i.e., instances of the hash function processing
input data), double-lined nodes (including leaves) are the last nodes of a layer, and
thus have the flag f1 set). Labels “i: j” indicate a node’s depth i and offset j.

We refer to [69, 148, 169, 214] for a comprehensive overview of secure tree
hashing constructions.

Message parsing Unless specified otherwise, we recommend that data be parsed as
contiguous blocks: for example, if leaf length is 1024 bytes, then the first 1024-byte
data block is processed by the leaf with offset 0, the subsequent 1024-byte data block
is processed by the leaf with offset 1, etc.

Special cases We highlight some special cases of tree hashing:

Unlimited fanout When the fanout is unlimited (parameter set to 0), then the root
node hashes the concatenation of as many leaves are required to process the
message. That is, the depth of the tree is always 2, regardless of the maximal
depth parameter. Nevertheless, changing the maximal depth parameter changes
the final hash value returned. We thus recommend to set the depth parameter
to 2.
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2:0

1:0 1:1

0:0 0:1 0:2

(a) Hashing 3 blocks: the tree
has depth 3.

3:0

2:0 2:1

1:0 1:1 1:2

0:0 0:1 0:2 0:3 0:4

(b) Hashing 5 blocks: the tree has depth 4.

Figure 4.2: Layouts of tree hashing with fanout 2, and maximal depth at least 4.

1:0

0:0 0:1 0:2 0:3

(a) Hashing 4 blocks: the tree
has depth 2.

2:0

1:0 1:1

0:0 0:1 0:2 0:3 0:4

(b) Hashing 5 blocks: the tree has depth 3.

Figure 4.3: Layouts of tree hashing with fanout 4, and maximal depth at least 3.

Saturated trees If a tree hashing instance has fanout f ≥ 2, maximal depth d ≥ 2,
and leaf maximal length ℓ≥ 1 bytes, then up to f d−1 ·ℓ can be processed within
a single tree. If more bytes have to be hashed, the fanout of the root node is
extended to hash as many digests as necessary to respect the depth limit. This
mechanism is illustrated on Figure 4.4. Note that if the maximal depth is 2,
then the value does not affect the layout of the tree, which is identical to that
of a tree hash with unlimited fanout.

Generic tree parameters Tree parameters supported by the parameter block allow
for a wide range of implementation trade-offs, for example to efficiently support
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2:0

1:0 1:1 1:2

0:0 0:1 0:2 0:3 0:4 0:5

Figure 4.4: Tree hashing with maximal depth 3, fanout 2, but a root with larger
fanout due to the reach of the maximal depth.

updatable hashing, which is typically an advantage when hashing many (small)
chunks of data.

Although optimal performance will be reached by choosing the parameters specific
to one’s application, we specify the following parameters for a generic tree mode:
binary tree (i.e., fanout 2), unlimited depth, and leaves of 4 KB (the typical size of a
memory page).

Example: updatable hashing Assume one has to provide a digest of a 1 TB filesys-
tem disk image that is updated every day. Instead of recomputing the digest by
reading all the 240 bytes, one can use our generic tree mode to implement an updat-
able hashing scheme:

1. Apply the generic tree mode, and store the 240/4096 = 228 hashes from the
leaves as well as the 228 − 2 intermediate hashes

2. When a leaf is changed, update the final digest by recomputing the 28 interme-
diate hashes

If BLAKE2b is used with intermediate hashes of 32 bytes, and that it hashes at a rate
of 500 MB per second, then step 1 takes approximately 35 minutes and generates
about 16 GB of intermediate data, whereas step 2 is instantaneous.

Note however that much less data may be stored: For many applications it is
preferable to only store the intermediate hashes for larger pieces of data (without
increasing the leaf size), which reduces memory requirement by only storing “higher”
intermediate values. For example, storing intermediate values for 4 MB chunks
instead of all 4 KB leaves reduces the storage to only 16 MB. Indeed, using 4 KB leaves
allows applications with different piece sizes (as long as they are powers-of-two of at
least 4 KB) to produce the same root hash, while allowing them to make different
granularity vs. storage trade-offs.



4.2. DESIGN RATIONALE 65

4.1.6 Parallel hashing: BLAKE2sp and BLAKE2bp

We specify 2 parallel hash functions (that is, with depth 2 and unlimited leaf length):

• BLAKE2bp runs 4 instances of BLAKE2b in parallel

• BLAKE2sp runs 8 instances of BLAKE2s in parallel

These functions use a different parsing rule than the default one in Section 4.1.5: The
first instance (node offset 0) hashes the message composed of the concatenation of
all message blocks of index 0 modulo 4; the second instance (node offset 1) hashes
blocks of index 1 modulo 4, and so on. Note that when the leaf length is unlimited,
parsing the input as contiguous blocks would require the knowledge of the input
length before any parallel operation, which is undesirable (e.g., when hashing a
stream of data of undefined length, or a file received over a network).

When hashing one single large file, and when incrementability is not required,
such parallel modes with unlimited leaf length seem appropriate, since

• They are simpler to implement than full fledged tree modes;

• They minimize the computation overhead by doing only one non-leaf call to the
sequential hash function;

• They maximize the usage of the CPU by keeping multiple cores and instruction
pipelines busy simultaneously;

• They require realistic bandwidth and memory.

Within a parallel hash, the same parameter block, except for the node offset, is
used for all 4 or 8 instances of the sequential hash.

4.2 Design Rationale

We now describe the core differences between BLAKE and BLAKE2, along with their
respective reasoning.

4.2.1 Fewer rounds

BLAKE2b and BLAKE2s perform 12 rounds and 10 rounds respectively, in contrast
to 16 and 14 for BLAKE. Based on the security analysis performed so far and on
reasonable assumptions on future progress, it appears unlikely that 16 and 14 rounds
are meaningfully more secure than 12 and 10 rounds (cf. Section 4.4). Recall that
the initial BLAKE submission [27] had 14 and 10 rounds, respectively, and that the
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later increase [28] was motivated by the high speed of BLAKE (i.e., it could afford
a few extra rounds for the sake of conservativeness), rather than by cryptanalytic
results.

This change gives a direct speedup of about 25% and 29%, respectively, on long
inputs. Speed on short inputs also significantly improves, though by a lower ratio,
due to the overhead of initialization and finalization.

4.2.2 Rotations optimized for speed

The core function (G) of BLAKE-512 performs four 64-bit word rotations of respec-
tively 32, 25, 16, and 11 bits. BLAKE2b replaces 25 with 24, and 11 with 63:

• Using a 24-bit rotation allows SSSE3-capable CPUs to perform two rotations
in parallel with a single SIMD instruction (namely, pshufb), whereas two
shifts plus a logical OR are required for a rotation of 25 bits. This reduces
the arithmetic cost of the G function in recent Intel CPUs from 18 single-cycle
instructions to 16 instructions, a 12% decrease.

• A 63-bit rotation can be implemented as an addition (doubling) and a shift
followed by a logical OR. This provides a slight speedup on platforms where
addition and shift can be realized in parallel but not two shifts (i.e., some recent
Intel CPUs). Additionally, since a rotation right by 63 is equal to a rotation left
by 1, this may be slightly faster in some architectures where 1 is treated as a
special case.

No platform that we know of suffers a penalty from these changes. For an in-depth
analysis of optimized implementations of rotations, we refer to previous work on
SIMD implementations of BLAKE [358, 359].

4.2.3 Minimal padding and finalization flags

BLAKE2 zero pads the last data block if and only if necessary. In other words, if the
data length is a multiple of the block length, no padding is added. The padding thus
does not include the message length, as in BLAKE, MD5, or SHA-2.

To ensure the soundness of the hashing mode, BLAKE2 introduces the finalization
flags f0 and f1 as auxiliary inputs to the compression function:

• The security functionality of the padding is transferred to a finalization flag f0,
a word set to −1 if the block processed is the last, and to 0 otherwise. The flag
f0 is 64-bit for BLAKE2b, and 32-bit for BLAKE2s.

• A second finalization flag f1 is used to signal the last node of a layer in tree-
hashing modes (see Section 4.1.5). When processing the last block—that is,



4.2. DESIGN RATIONALE 67

when f0 is −1—the flag f1 is also set to −1 if the node considered is the last,
and to 0 otherwise.

The finalization flags are processed by the compression function as described in
Sections 4.1.1 and 4.1.2.

BLAKE2s thus supports hashing of data of at most 264 − 1 bytes, that is, almost
16 EB (the amount of memory addressable by 64-bit processors). BLAKE2b’s upper
limit of 2128 − 1 bytes ought to be enough for anybody.

4.2.4 Fewer constants

Whereas BLAKE used 8 word constants as IV plus 16 word constants for use in the
compression function, BLAKE2 uses a total of 8 word constants, instead of 24. This
saves 128 ROM bytes and 128 RAM bytes in BLAKE2b implementations, and 64 ROM
bytes and 64 RAM bytes in BLAKE2s implementations.

Omitting the constants in G gives an algorithm similar to the (unattacked) BLAZE
toy version of BLAKE (cf. [26, 246, 458]). Constants in G initially aimed to guarantee
early propagation of carries, but it turned out that the benefits (if any) are not worth
the performance penalty, as observed by a number of cryptanalysts. This change saves
two xors and two loads per G, that is, 192 fewer xors on BLAKE2b and 160 fewer
xors on BLAKE2s, or 16% of the total arithmetic (addition and xor) instructions.

4.2.5 Little-endian

BLAKE, like SHA-1 and SHA-2, parses data blocks in the big-endian byte order. Like
MD5, BLAKE2 is little-endian, because the large majority of target platforms is little-
endian (AMD and Intel processors, most mainstream ARM systems). Switching to
little-endian may provide a slight speedup, and often simplifies implementations.

Note that in BLAKE, the counter t is composed of two words t0 and t1, where t0

holds the least significant bits of the integer encoded. This little-endian convention is
preserved in BLAKE2.

4.2.6 Counter in bytes

The counter t counts bytes rather than bits. This simplifies implementations and
reduces the risk of error, since target applications measure data volumes in bytes
rather than bits.

Note that BLAKE supported messages of arbitrary bit size for the sole purpose of
conforming to NIST’s requirements1. However, as discussed on the SHA-3 mailing

1https://web.archive.org/web/20170220230333/http://csrc.nist.gov/groups/ST/
hash/documents/SHA3-C-API.pdf

https://web.archive.org/web/20170220230333/http://csrc.nist.gov/groups/ST/hash/documents/SHA3-C-API.pdf
https://web.archive.org/web/20170220230333/http://csrc.nist.gov/groups/ST/hash/documents/SHA3-C-API.pdf
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list, there is no evidence of an actual need to support this. As observed during the
first months of the competition, the support of arbitrary bit sizes was the origin of
several bugs in reference implementations—including that of BLAKE [345].

4.2.7 Salt processing

BLAKE’s predecessor LAKE [31] introduced the built-in support for a salt, to simplify
the use of randomized hashing within digital signature schemes (although the RMX
transform [218] can be used with arbitrary hash functions).

In BLAKE2 the salt is processed as a one-time input to the hash function, through
the IV, rather than as an input to each compression function. This both simplifies the
compression function and saves a few instructions as well as a few bytes in RAM,
since the salt does not have to be stored throughout the whole computation.

Randomized hashing was introduced by Halevi and Krawczyk [218] as a counter-
measure against collision attacks. Given the high confidence in BLAKE and BLAKE2’s
collision resistance, cf. Section 4.4, salting every compression function to prevent
attacks did not seem justifiable. But as part of the IV it still may be used to distinguish
between separate uses of the hash function, for example.

4.3 Performance

BLAKE2 is much faster than BLAKE, mainly due to its reduced number of rounds. On
long messages, the BLAKE2b and BLAKE2s versions are expected to be approximately
25% and 29% faster, ignoring any savings from the absence of constants, optimized
rotations, or little-endian conversion. The parallel versions BLAKE2bp and BLAKE2sp
are expected to be 4 and 8 times faster than BLAKE2b and BLAKE2s on long messages,
when implemented in parallel. Parallel hashing also benefits from vector units in
CPUs, as previously observed [359, §5.2].

4.3.1 Why BLAKE2 is fast in software

BLAKE2, along with its parallel variants, can take advantage of the following archi-
tectural features, or combinations thereof:

Instruction-level parallelism Most modern processors are superscalar, that is, able
to run several instructions per cycle through pipelining, out-of-order execution, and
other related techniques. BLAKE2 has a natural instruction parallelism of 4 instruc-
tions within the G function; processors that are able to handle more instruction-level
parallelism can do so in BLAKE2bp or BLAKE2sp, by interleaving independent com-
pression function calls. Examples of processors with notorious amount of instruction
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Table 4.4: Speed, in cycles per byte, of BLAKE2 and MD5 in sequential mode. Mea-
surements are presented for long, 1536, and 64-byte messages.

Microarchitecture
BLAKE2b BLAKE2s MD5

Long 1536 64 Long 1536 64 Long 1536 64

Intel Sandy Bridge 3.32 3.81 9.00 5.34 5.35 5.50 5.38 5.75 14.34
Intel Haswell 3.08 3.14 7.53 5.35 5.38 6.23 4.97 5.27 12.47
Intel Skylake 3.19 3.23 7.36 4.83 4.86 5.66 5.01 5.32 12.61
Intel Icelake 2.99 2.99 6.34 4.53 4.52 4.41 4.78 5.02 10.62

AMD Bulldozer 5.29 5.30 11.95 8.20 8.21 7.91 5.34 5.13 14.67
AMD Zen 1 3.19 3.20 6.88 5.36 5.35 5.23 5.00 5.32 12.55
AMD Zen 3 3.37 3.36 7.02 5.26 5.25 5.05 4.77 5.04 11.45
Apple M1 3.07 3.21 6.25 5.70 5.99 6.25 5.98 6.51 12.50

parallelism are any recent Intel or AMD chip, as well as high-end ARM processors
such as the Cortex-X1 or Apple M1.

SIMD instructions Many modern processors contain vector units, which enable
SIMD processing of data. Again, BLAKE2 can take advantage of vector units not only
in its G function, but also in tree modes (such as the mode proposed in Section 4.1.6),
by running several compression instances within vector registers.

Multiple cores Limits in both semiconductor manufacturing processes, as well as
instruction-level parallelism have driven CPU manufacturers towards yet another kind
of coarse-grained parallelism, where multiple independent CPUs are placed inside
the same die, and enable the programmer to get thread-level parallelism. While
sequential BLAKE2 does not take advantage of this, the parallel mode described in
Section 4.1.6, and other tree modes, can run each intermediate hashing in its own
thread.

4.3.2 64-bit CPUs

We have submitted optimized BLAKE2 implementations to eBACS [62], that take
advantage of the SSSE3, AVX2, and XOP instruction sets. Table 4.4 reports the timings
obtained in several popular microarchitectures, as well as MD5 for comparison.

Compared to the best known timings for BLAKE [358, 359],

• On Sandy Bridge, BLAKE2b is 72% faster than BLAKE-512, and BLAKE2s is
40% faster than BLAKE-256,
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• On Bulldozer, BLAKE2b is 30% faster than BLAKE-512, and BLAKE2s is 44%
faster than BLAKE-256.

Due to the lack of native rotation instructions on SIMD registers, the speedup of
BLAKE2b is greater on the Intel processors, which benefit not only from the round
reduction, but also from the easier-to-implement rotations.

On short messages, the speed advantage of the improved padding on BLAKE2 is
quite noticeable. On Sandy Bridge, no other cryptographic hash function measured in
eBACS [62] (including MD5 and MD4) is faster than BLAKE2s on 64-byte messages,
while BLAKE2b is roughly as fast as MD4. Furthermore, as apparent in Table 4.4,
BLAKE2b handily outperforms MD5 in every 64-bit processor tested, sometimes by
almost a factor of 2.

The speedup for the BLAKE2sp and BLAKE2bp modes is also significant, even
when not using multiple CPU cores. We implemented both using AVX22, and obtained

• 1.37 cycles per byte on Haswell for BLAKE2bp;

• 1.39 cycles per byte on Haswell for BLAKE2sp.

• 1.29 cycles per byte on Skylake for BLAKE2bp;

• 1.30 cycles per byte on Skylake for BLAKE2sp.

Compared to Keccak’s SHA-3 final submission, BLAKE2 does quite well on 64-bit
hardware. On Sandy Bridge, the 512-bit Keccak[r = 576, c = 1024] hashes at 20.46
cycles per byte, while the 256-bit Keccak[r = 1088, c = 512] hashes at 10.87 cycles
per byte.

Keccak is, however, a very versatile design. By lowering the capacity from 4n to
2n, where n is the output bit length, one achieves n/2-bit security for both collisions
and second preimages [72], but also higher speed. We estimate that a 512-bit
Keccak[r = 1088, c = 512] would hash at about 10 cycles per byte on high-end Intel
and AMD CPUs, and a 256-bit Keccak[r = 1344, c = 256] would hash at roughly
8 cycles per byte. This parametrization would put Keccak at a performance level
superior to SHA-2, but at a substantial cost in second-preimage resistance. BLAKE2
does not require such tradeoffs, and still offers much higher speed.

The Keccak variant KangarooTwelve [70] is a more recent member of the Keccak
family, which adopts several of the same ideas that made BLAKE2 faster: reduced
rounds (24 to 12!), lower capacity c = 256, and unlimited fanout tree hashing. Its
performance is very competitive.

2https://github.com/sneves/blake2-avx2

https://github.com/sneves/blake2-avx2
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4.3.3 Low-end platforms

A typical implementation of BLAKE-256 in embedded software stores in RAM at least
the chaining value (32 bytes), the message (64 bytes), the constants (64 bytes), the
permutation internal state (64 bytes), the counter (8 bytes), and the salt, if used
(16 bytes); that is, 232 bytes, and 248 with a salt. BLAKE2s reduces these figures
to 168 bytes—recall that the salt doesn’t have to be stored anymore—that is, a gain
of respectively 28% and 32%. Similarly, BLAKE2b only requires 336 bytes of RAM,
against 464 or 496 for BLAKE-512.

4.3.4 Hardware

Hardware directly benefit from the 29% and 25% speed-up in sequential mode, due
to the round reduction, for any message length. Parallelism is straightforward to
implement by replicating the architecture of the sequential hash. BLAKE2 enjoys
the same degrees of freedom as BLAKE to implement various space-time tradeoffs
(horizontal and vertical folding, pipelining, etc.). In addition, parallel hashing pro-
vides another dimension for trade-offs in hardware architectures: depending on the
system properties (e.g. how many input bits can be read per cycle), one may choose
between, for example, BLAKE2sp based on 8 high-latency compact cores, or BLAKE2s
based on a single low-latency unrolled core.

4.4 Security

BLAKE2 takes advantage of the high confidence built by BLAKE in the SHA-3 com-
petition. Although BLAKE2 performs fewer rounds than BLAKE, this does not imply
lower security (it does imply a lower security margin), as explained below.

4.4.1 Implications of BLAKE2 tweaks

We argue that the reduced number of rounds and the optimized rotations are unlikely
to meaningfully reduce the security of BLAKE2, compared to that of BLAKE. We
summarize the security implications of other tweaks:

Salt-independent compressions

BLAKE2 salts the hash function in the IV, rather than each compression. This preserves
the uniqueness of the hash function for any distinct salt, but facilitates multicollision
attacks relying on offline precomputations (see [81, 248]). However, this leaves
fewer attacker-controlled bits in the initial state of the compression function, which
complicates the finding of fixed points.
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Many valid IVs

Due to the high number of valid parameter blocks, BLAKE2 admits many valid initial
chaining values. For example, if an attacker has an oracle that returns collisions for
random chaining values and messages, they are more likely to succeed in attacking
the hash function because they have many valid targets, rather than a valid one.
However, such a scenario assumes that (free-start) collisions can be found efficiently,
that is, that the hash function is already broken. Note that the best collision-like
results on BLAKE are near-collisions for the compression function with 4 reordered
rounds [216, 435].

Note also that the existence of many valid IVs does not compromise the soundness
of the mode, since the counter and flags ensure that first and last compression function
calls are adequately domain-separated (see also Section 4.4.4).

Simplified padding

The new padding does not include the message length of the message, unlike BLAKE.
However, it is easy to see that the message length is encoded through the counter,
and that this simpler zero padding preserves the unambiguous encoding of the initial
padding. That is, the padding simplification does not affect the security of the hash
function.

4.4.2 BLAKE Legacy

The security of BLAKE2 is closely related to that of BLAKE, since they rely on a similar
core permutation originally used in Bernstein’s ChaCha stream cipher [54] (itself a
variant of Salsa20 [59], co-winner in the eSTREAM project [183]).

Since 2009, at least 16 research papers have described cryptanalysis results
on reduced versions of BLAKE. The most advanced attacks on the BLAKE as hash
function—as opposed to its building blocks—are preimage attacks on 2.5 rounds by Ji
and Liangyu, with respective complexities 2241 and 2481 for BLAKE-256 and BLAKE-
512 [297]. Most research actually considered reduced versions of the compression
function or keyed permutation of BLAKE, regardless of the constraints imposed by
the IV. The most recent results of this type are the following (see also Table 4.5)

• A distinguisher on 6 rounds of the permutation of BLAKE-256, with complexity
2456, by Dunkelman and Khovratovich [174];

• A boomerang distinguisher on 8 rounds of the core permutation of BLAKE-512,
with complexity 2242, by Biryukov, Nikolic, and Roy [95] (recent work questions
the correctness of this result [294, 295]).
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Table 4.5: Summary of cryptanalysis on BLAKE and BLAKE2. Attacks on a keyed
permutation are denoted by “k.p.” and on the compression function by “c.f.”

Primitive Type Rounds Complexity Reference

BLAKE-256 k.p. Boomerang 7 244 [33, 221]
BLAKE-256 k.p. Boomerang 8 2198 [221]
BLAKE-256 k.p. Differential 4 2192 [174]
BLAKE-256 k.p. Differential 6 2456 [174]
BLAKE-256 k.p. Impossible Differential 6.5 – [215]
BLAKE-256 c.f. Boomerang 7 2242 [95]
BLAKE-256 c.f. Near collision (152/256) 4 221 [435]
BLAKE-256 c.f. Near collision (232/256) 4 256 [26]
BLAKE-256 c.f. Preimage 2.5 2241 [297]
BLAKE-256 c.f. Pseudo-preimage 6.75 2253.9 [182]

BLAKE2s k.p. Boomerang 7.5 2184 [221]
BLAKE2s k.p. Impossible Differential 6.5 – [215]
BLAKE2s k.p. Rotational 4 2489 [215, 262]
BLAKE2s c.f. Boomerang 5 ≈ 286 [95, 215]
BLAKE2s c.f. Pseudo-preimage 6.75 2253.8 [182]

The exact attacks as described in research papers may not directly apply to BLAKE2,
due to the changes of initialization and rotation counts. Nevertheless, attacks on
reduced BLAKE with r rounds are expected to adapt to BLAKE2 with r rounds, though
with slightly different complexities.

4.4.3 Third-party Analysis

Ever since its publication [32], BLAKE2 has seen numerous cryptanalytic efforts from
third parties. Table 4.5 lists those efforts and compares them to similar cryptanalytic
efforts on BLAKE.

In particular [215] conclude that, although some of the some of the changes
individually appear to make BLAKE2 weaker in some attack models, taken as a whole
the changes do not seem to weaken it. BLAKE2 still continues to have a very high
security margin against all known attacks.

4.4.4 Indifferentiability

The BLAKE mode of operation was proved to be indifferentiable from a random
oracle by Chang, Nandi, and Yung [124] and, independently, Andreeva, Luykx, and
Mennink [15]. Their proof, however, required the description and analysis of a
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simulator for the keyed permutation that interacted with the whole hash function,
since BLAKE’s compression function can be differentiated from random in 2n/4 queries,
where n is the compression function output size.

BLAKE2 makes the security reduction more modular, by making the compression
function indifferentiable. Given an indifferentiable compression function, any tree
hashing mode (which includes sequential hashing) can be proven indifferentiable
from a random oracle as long as it follows three simple criteria [148, 214] (see
also [69, 169]):

Subtree-freeness No valid tree can be a subtree of another.

Radical-decodability The position of the chaining value and message bits are al-
ways unambiguous. That is, the mode defines for a subtree a set of bits that
corresponds to a chaining value to any tree it is part of.

Message decodability The whole message is processed by the hash. Or in other
words, given all inputs to compression functions, the original message can be
reconstructed.

These three criteria are met by BLAKE2: the parameter block and finalization flags
ensure that no tree can be a subtree of another and there is no ambiguity with respect
to the chaining value location.

Armed with these conditions, the indifferentiability of the hash function can now
be proven in terms of the security of the compression function.

Theorem 4.1 ([148, 214, Theorem 1]). Consider a hashing mode H of a random
arbitrary function F, and assume that it is subtree-free, radical-decodable, and message-
decodable. There exists a simulator Sim such that for any distinguisher D with total
complexity at most q,

Advdiff
HF,Sim(D)≤
�q

2

�

2n
.

The simulator makes at most q queries to RO.

Luykx et al. [313] showed that the compression function is indifferentiable up to
the birthday bound.

Theorem 4.2 ([313, Theorem 1]). Let E←$ Block∗(2n) be a weakly ideal cipher, and
consider the BLAKE2 compression function FE of (4.1.1) that internally uses E. There
exists a simulator Sim such that for any distinguisher D with total complexity q,

Advdiff
FE,Sim(D)≤
�q

2

�

22n
+

�q
2

�

2n
+

q
2n/2

,

where S makes at most q queries to the random oracle.
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Combining Theorem 4.2 with Theorem 4.1 immediately leads to the following
corollary.

Corollary 4.3 (Indifferentiability of BLAKE2 Hashing Mode). Let E←$ Block∗(2n) be
a weakly ideal cipher, and consider the BLAKE2 hash function HE that internally uses E.
There exists a simulator Sim such that for any distinguisher D with total complexity q,

Advdiff
HE,Sim(D)≤
�q

2

�

22n
+

2
�q

2

�

2n
+

q
2n/2

,

where S makes at most q queries to the random oracle.





Chapter 5

NORX: Parallel Authenticated
Encryption

Authenticated encryption [48] (AE) is the standard technology to protect data that
needs to be sent over unsecured communication channels and is deployed in count-
less applications and protocols, such as (D)TLS, SSH and IPSec. In comparison to
regular symmetric encryption schemes, authenticated encryption not only ensures
privacy of the data but also guarantees integrity and authenticity (cf. Section 2.3.5).
Unfortunately, failures in the design and implementation of authenticated encryption
schemes are a common sight and there are numerous examples. To name just a few
(see also [55]):

• Vaudenay’s 2002 CBC padding oracle attack on MAC-then-encrypt authenticated
encryption modes allows an active adversary to decrypt messages without access
to the secret key [455]. This attack stemmed from the authenticity verification
leaking whether the decrypted message was adequately padded. Over the years,
this strategy has been used quite successfully against TLS [8, 117, 176, 340].
Indeed, the TLS failures lead to a situation where the broken RC4 cipher was
the preferred encryption algorithm for a short period of time.

• In 2007, an attack [438] on the Wired Equivalent Privacy (WEP) standard,
used in many 802.11 Wi-Fi networks, allowed to recover the secret key within
minutes from a few thousand intercepted messages. The attack exploited
weaknesses in RC4.

• In 2009, Albrecht, Paterson, and Watson [6] exploited a flaw in the SSH protocol
and its OpenSSH implementation, when coupled with a block cipher in CBC
mode. The attack allowed an adversary to recover 14 plaintext bits with
probability 2−14 or 32 plaintext bits with probability 2−18.

77
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• In 2012, a flaw was uncovered in EAXprime [19], an authenticated encryption
block cipher mode derived from EAX [50], standardized as ANSI C12.22-2008
for Smart Grid applications, and also subject of a forthcoming NIST standard.
The flaw facilitates forgery, distinguishing, and message-recovery attacks [337].

• In 2018, a critical flaw was uncovered in the security proof of the OCB2 authen-
ticated encryption scheme, introduced in 2004 [404] and part of the ISO/IEC
19772:2009 standard. Like the case of EAXprime, the flaw resulted in both the
authenticity and confidentiality of OCB2 being compromised [240, 241].

The Competition for Authenticated Encryption: Security, Applicability, and Robustness
(CAESAR) [114], initiated in 2013, invited cryptographers to submit authenticated
encryption schemes supporting associated data (AEAD) [403], that would offer advan-
tages over the existing state-of-the-art and would be suitable for widespread adoption.
Much like the NIST call leading to the SHA-3 competition was preceded by some
concerning results regarding the state of hash functions, the CAESAR competition
was preceded by some concerning failures in the state of authenticated encryption.

NORX1, our submission to CAESAR, is a novel authenticated encryption scheme
with associated data supporting an arbitrary parallelism degree, based on ARX
primitives—namely ChaCha and BLAKE2—yet not using modular additions.

While modular addition, like xor or rotation, is a single-cycle operation in most
processors, adder circuits have logarithmic depth [279], making ARX circuits larger
and higher latency than equivalent circuits without addition. Furthermore, to protect
against electromagnetic [200] and (differential) power analysis [278] side-channel
attacks, secure implementations often use masking [208]—represent each value as
the sum of one or more “shares”, each of which randomized—but masking bitwise
operations requires different (xor) masking than addition, which requires arithmetic
masking. Converting between xor and arithmetic masking is costly [207], and this
makes additions comparatively more costly in this setting. As such, while ARX
constructions perform very well on software, once again they create a tradeoff
between safety and performance when implemented in other scenarios, as described
above.

NORX has a unique parallel architecture based on the monkeyDuplex con-
struction [65, 71], where the parallelism degree and tag size can be tuned ar-
bitrarily. An original domain separation scheme allows simple processing of
header/payload/trailer data. NORX was optimized for efficiency in both soft-
ware and hardware, with a SIMD-friendly core, almost byte-aligned rotations, no
secret-dependent memory lookups, and only bitwise operations. The NORX core is
inspired by the ARX primitive ChaCha [54], however it replaces integer addition with

1The name stems from “NO(T A)RX” and is pronounced like “norcks”.
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the approximation a⊕ b⊕ (a ∧ b)≪ 12. This simplifies cryptanalysis and improves
hardware efficiency. Furthermore, NORX specifies a dedicated datagram format to
facilitate interoperability and avoid users the trouble of defining custom encoding
and signaling.

NORX traces its heritage back to the following cryptographic algorithms and
constructions:

• The basic layout relies on the duplex construction [71], which allows to con-
struct an efficient and flexible AEAD scheme from a single large permutation.
It supports variable-length authentication tags and an easy realization of trade-
offs between performance and security.

• The core permutation is inspired by ChaCha [54] and BLAKE2 [32], which
both have been intensively analyzed [25, 423] (Section 4.4) and offer excellent
performance.

The remainder of this chapter is organized as follows: Section 5.1 describes our
goals when designing NORX. Section 5.2 specifies the NORX family of authenticated
ciphers, with the rationale for each component being elaborated in Section 5.3.
Finally, Section 5.4 discusses the performance of NORX in various platforms, and
Section 5.5 discusses the security of the NORX mode of operation.

5.1 Design Goals and Characteristics

NORX was designed with end users in mind, provides several features desirable for
practical applications, and offers a number of advantages over AES-GCM [177]. In
the following we list our design goals for NORX, along with a description of how they
are achieved in the final product.

High security NORX supports 128- and 256-bit keys and authentication tags of
arbitrary size, thanks to the duplex construction. The core permutation of
NORX was designed and evaluated to be cryptographically strong. The minimal
number of 8 rounds for initialization / finalization (i.e. 16 steps consisting of 8
column and 8 diagonal steps interleaved with each other) and of 4 rounds (i.e.
8 steps consisting of 4 column and 4 diagonal steps interleaved with each other)
for the data processing part ensure a high security margin against cryptanalytic
attacks. Large internal states of 512 and 1024 bits and the duplex construction
offer protection against generic attacks.

2Derived from the well-known identity a+ b = (a⊕ b) + (a ∧ b)≪ 1 [42, 276], already implicitly
used in the IAS machine for parallel integer addition [113, page 17].
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Efficiency NORX was designed with 64-bit processors in mind, but is also compatible
with smaller architectures like 8- to 32-bit platforms. Software implementations
of NORX are able to take advantage of multi-core processors, due to the parallel
duplex construction, and specialized instruction sets like AVX / AVX2 or NEON.
Moreover, state sizes of 512 and 1024 bits make NORX very cache-friendly.
Hardware implementations benefit from hardware-friendly operations, next to
the arbitrary parallelism degree for payload processing, which results in highly
competitive hardware performance of NORX.

Simplicity The core algorithm iterates a simple round function and can be imple-
mented by translating our pseudocode into a programming language of choice.
NORX requires no S-boxes, no Galois field operations, and no integer arith-
metic; AND, XOR, and shifts are the only instructions required. This simplifies
cryptanalysis and the task of implementing the cipher.

High key agility NORX requires no key expansion when setting up a new key, in
contrast to many blockcipher-based schemes, like AES-GCM. Switching the
secret key is therefore very cheap. As an additional benefit, there are also no
hidden costs of loading precomputed expanded keys from DRAM into L1 cache.

Adjustable tag sizes The NORX family uses a default tag size of 4w bits for our
proposed instances. Thanks to the duplex construction, tag sizes can be easily
adapted to the demands of any given application.

Simple integration NORX can be easily integrated into a protocol stack, as it sup-
ports flexible processing of arbitrary datagrams: any header and trailer are
authenticated (and left in clear) and the payload is both encrypted and authen-
ticated.

Interoperability Dedicated datagrams encode parameters of the cipher and en-
capsulate the protected data. This aims to increase interoperability across
implementations.

Single pass Encryption and decryption of data is done in a single pass of the algo-
rithm.

Online NORX supports encryption of data streams, i.e. the size of processed data
needs not to be known in advance.

High data processing volume NORX allows to process very large data sizes from a
single key-nonce pair. The usage exponent (see Section 5.5) theoretically limits
the number of calls to the core permutation to values of 264 (NORX32) and
2128 (NORX64). This translates to data volumes orders of magnitude beyond
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everything relevant for current real-world applications. In particular, these
values are a lot higher than the maximum of 232 calls to the authenticated en-
cryption function of AES-GCM, which could be easily reached already nowadays
in practical applications.

Minimal overhead Payload encryption is non-expanding, i.e. the ciphertext has the
same length as the plaintext. The authentication tag has a length of 16 or 32
bytes depending on the concrete instance of NORX.

Robustness against side-channel attacks By avoiding data-dependent table look-
ups, like S-boxes, and integer additions, the goal to harden both software and
hardware implementations of NORX against timing and (differential) power
attacks should be comparably easy to achieve.

Moderate misuse resistance NORX retains its security on nonce reuse as long as it
can be guaranteed that header data is unique3. For comparison, nonce reuse in
AES-GCM is a major security issue, allowing an attacker to recover the secret
key [247].

Autonomy NORX is self-contained and requires no external primitive.

Diversity The cipher does not depend on AES instructions, thereby adding to the
diversity among cryptographic algorithms.

Extensibility Thanks to the duplex construction and a simple, yet powerful domain
separation scheme, NORX can be easily extended to support additional features,
like secret message numbers, sessions, or forward secrecy without losing its
security guarantees.

5.2 Specification

This section gives a complete specification of NORX and its proposed instances.

5.2.1 Parameters and Interface

A NORX instance is parameterized by

• a word size of w ∈ {32, 64} bits,

• a round number 1≤ l ≤ 63,

3Nevertheless, the designers discourage this approach, and recommend that nonce freshness
should be ensured by all means.
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• a parallelism degree 0≤ p ≤ 255,

• a tag size of t ≤ 4w bits.

Encryption Mode

NORX encryption takes as input

• a key K of k = 4w bits,

• a nonce N of n= 2w bits,

• a datagram (A, M , Z) where

– A is a header,

– M is a message,

– Z is a trailer/footer,

and where any of A, M , Z can be the empty string (that is, of length 0).

NORX encryption produces as output

• a ciphertext (or encrypted payload) C of the same size as M ,

• an authentication tag T of t bits.

In summary, NORX encryption E is specified as

E : {0,1}k × {0,1}n × {0,1}∗ × {0,1}∗ × {0,1}∗→ {0,1}∗ × {0,1}t

with
E(K , N , A, M , Z) = (C , T )

where |M |= |C |.

Decryption Mode

NORX decryption takes as input

• a key K of k = 4w bits,

• a nonce N of n= 2w bits,

• a datagram (A, C , Z) where,

– A is a header,



5.2. SPECIFICATION 83

Table 5.1: NORX instances

w l p t k n

64 4 1 256 256 128
32 4 1 128 128 64
64 6 1 256 256 128
32 6 1 128 128 64
64 4 4 256 256 128

– C is a ciphertext,

– Z is a trailer,

and where any of A, M , Z can be the empty string (that is, of length 0).

• an authentication tag T of t bits.

NORX decryption either returns a failure ⊥, upon failed verification of the tag, or
produces a plaintext M of the same size as C if the tag verification succeeds.

In summary, NORX decryption D is specified as

D : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ × {0,1}∗ × {0,1}t → {0,1}∗ ∪ {⊥}

with

D(K , N , A, C , Z , T ) =

¨

M if T = T ′

⊥ if T ̸= T ′

where T denotes the received authentication tag, T ′ the one computed on the recipi-
ent’s side and |M |= |C |.

5.2.2 Instances

A NORX instance is a choice of values for the four parameters w, l, p, and t. Table 5.1
proposes five NORX instances for different use cases: 128- or 256-bit security, four
or six rounds, and a version with 4-way parallelism. Table 5.1 also shows the
corresponding nonce and key sizes n and k.

We set the default tag size t for a given word size w to t = 4w, i.e. for w = 32 we
get t = 128 and for w= 64 we get t = 256.

A NORX instance is denoted by NORXw-l-p-t, where w, l, p, and t are the param-
eters of the instance, see Section 5.2.1. If the default tag size is used, i.e. if t = 4w,
the notation for an instance is shortened to NORXw-l-p. So for example, NORX64-6-1
has (w, l, p, t) = (64,6, 1,256).
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init(K , N , w, l, p, t)
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Figure 5.1: Layout of NORX for p = 1

We consider NORX32-4-1 and NORX64-4-1 as the standard instances for the
respective word sizes of 32 and 64 bit. These configurations offer a good balance
between performance and security. We recommend NORX32-4-1 for low resource
applications on 8- to 32-bit platforms and NORX64-4-1 for software implementations
on modern 64-bit CPUs or standard hardware implementations. Applications that
require a higher security margin and where performance has less priority are advised
to use the instances NORX32-6-1 and NORX64-6-1.

For use cases where very high data throughput is necessary, we recommend
NORX64-4-4, which allows payload encryption on four parallel lanes, thus enabling
very high data processing speeds. Finally, we advise hardware implementers not
to realize multiple instances of NORX with different parameter combinations at the
same time. This holds especially for different values of the parallelism degree p. An
implementation should rather be optimized for one set of parameters to gain higher
efficiency.

5.2.3 Layout Overview

NORX is based on the monkeyDuplex construction [65, 71] extended with the ca-
pability to process payloads in parallel. The number i of parallel encryption lanes
Li is controlled by the parameter 0 ≤ p ≤ 255. For the value p = 1, the layout of
NORX corresponds to a standard (sequential) duplex construction, as in Figure 5.1.
For p > 1, the number of lanes Li is bounded by the latter value, e.g. for p = 2 see
Figure 5.2. If p = 0, the number of lanes Li is bounded by the size of the payload. In
that case, the layout of NORX is similar to that of the PPAE construction [92, 93].

The core algorithm F of NORX is a permutation of b = r + c bits, where b is called
the width, r the rate (or block length), and c the capacity. We call F a round and Fl

denotes its l-fold iteration. The organization of the internal state S of NORX is as
follows:

w b r c

32 512 384 128
64 1024 768 256
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Figure 5.2: Layout of NORX for p = 2

The state is viewed as a concatenation of 16 words, i.e. S = s0 ∥ · · · ∥ s15, where
s0, . . . , s11 are called the rate words (where data blocks are injected) s12, . . . , s15 are
called the capacity words (which remain out of attacker control). Conceptually, the
16 state words are arranged in a 4× 4 matrix:

S =













s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15













5.2.4 The Permutation Fl

The complete pseudocode for the NORX core permutation Fl is given in Figure 5.4. A
single NORX round F processes the state S by first transforming its columns with

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

and then transforming its diagonals with

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

Those two operations are called column step and diagonal step, as in BLAKE2, cf.
the similarity with Figure 4.1, and will be denoted by col and diag, respectively. An
illustration of these operations is shown in Figure 5.3.

The G function uses xor, cyclic rotations≫ and a non-linear operation H inter-
changeably to update its four input words a, b, c and d. The rotation offsets r0, r1,
r2, and r3 for the cyclic rotations of 32- and 64-bit NORX are specified in Table 5.2.

5.2.5 The NORX Mode

The NORX mode is divided into a high-level and a low-level API. The high-level
interface consists of only two functions: AEADEnc and AEADDec. These provide
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Figure 5.3: Column step and diagonal step of F

Table 5.2: Rotation offsets for 32- and 64-bit NORX

w r0 r1 r2 r3

32 8 11 16 31
64 8 19 40 63

Algorithm: Fl(S)

for i ∈ {0, . . . , l − 1} do
1 S← diag(col(S));

end
2 return S;

Algorithm: G(a, b, c, d)

1 a← H(a, b);
2 d ← (a⊕ d)≫ r0;
3 c← H(c, d);
4 b← (b⊕ c)≫ r1;
5 a← H(a, b);
6 d ← (a⊕ d)≫ r2;
7 c← H(c, d);
8 b← (b⊕ c)≫ r3;
9 return a, b, c, d;

Algorithm: col(S)
1 s0, s4, s8, s12← G(s0, s4, s8, s12);
2 s1, s5, s9, s13← G(s1, s5, s9, s13);
3 s2, s6, s10, s14← G(s2, s6, s10, s14);
4 s3, s7, s11, s15← G(s3, s7, s11, s15);
5 return S;

Algorithm: diag(S)
1 s0, s5, s10, s15← G(s0, s5, s10, s15);
2 s1, s6, s11, s12← G(s1, s6, s11, s12);
3 s2, s7, s8, s13← G(s2, s7, s8, s13);
4 s3, s4, s9, s14← G(s3, s4, s9, s14);
5 return S;

Algorithm: H(x , y)

1 return (x ⊕ y)⊕ ((x ∧ y)≪ 1);

Figure 5.4: The NORX permutation Fl
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Algorithm: AEADEnc(K , N , A, M , Z)

1 S← initialize(K , N);
2 S← absorb(S, A,01);
3 S← branch(S, |M |,10);
4 S, C ← encrypt(S, M ,02);
5 S←merge(S, |M |,20);
6 S← absorb(S, Z ,04);
7 S, T ← finalize(S,08);
8 return C , T ;

Algorithm: AEADDec(K , N , A, C , Z , T )

1 S← initialize(K , N);
2 S← absorb(S, A,01);
3 S← branch(S, |C |,10);
4 S, M ← decrypt(S, C ,02);
5 S←merge(S, |C |,20);
6 S← absorb(S, Z ,04);
7 S, T ′← finalize(S,08);
8 if T = T ′ then return M else return ⊥;

Figure 5.5: High-level interface functions of the NORX mode

functionality for encryption and authentication of a message on the one hand and
decryption and verification of an encrypted payload on the other. Both functions of
course also support processing of associated data. The low-level interface defines the
concrete implementation of padding, domain separation, absorption or encryption of
data block sequences, tag generation, etc.

High-level Structure

The two high-level interface functions AEADEnc and AEADDec are depicted in Fig-
ure 5.5.

Low-level Structure

The low-level functions of NORX are depicted in Figure 5.6. Before going into the
details of those methods, we first introduce the mechanisms for padding and domain
separation which are required later on.

Padding

NORX adopts the so-called multi-rate padding [71]. This padding rule is defined by
the map

padr : X 7−→ X ∥ 10u1
where X is a bitstring and u = (−|X | − 2)mod r. If r and |X | are divisible by 8 and X
is viewed as a sequence of bytes, then the multi-rate padding can be written as

padr :

¨

X 7−→ X ∥ 01 ∥ 00u ∥ 80 if |X |8 ̸= −1 (mod r/8)
X 7−→ X ∥ 81 otherwise
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Algorithm: initialize(K , N)

1 k0 ∥ k1 ∥ k2 ∥ k3← K , s.t. |ki|= w;
2 n0 ∥ n1 ∥ n2 ∥ n3← N , s.t. |ni|= w;

3 S←







n0 n1 n2 n3
k0 k1 k2 k3
u8 u9 u10 u11
u12 u13 u14 u15






;

4 (s12, s13, s14, s15)← (s12, s13, s14, s15)⊕ (w, l, p, t);
5 S← Fl(S);
6 (s0, s1, s2, s3)← (s0, s1, s2, s3)⊕ (k0, k1, k2, k3);
7 return S;

Algorithm: encrypt(S, M , v)

1 C ← ϵ;
2 M0 ∥ · · · ∥ Mm−1← M , s.t. |Mi|= r, 0≤ |Mm−1|< r;

if |M |> 0 then
for i ∈ {0, . . . , m− 2} do

3 j← i mod |S|b;
4 s j,15← s j,15 ⊕ v;
5 S j ← Fl(S j);
6 Ci ← leftr(S j)⊕Mi;
7 S j ← Ci ∥ rightc(S j);

end
8 j← (m− 1)mod |S|b;
9 s j,15← s j,15 ⊕ v;

10 S j ← Fl(S j);
11 Cm−1← left|Mm−1|(S j)⊕Mm−1;
12 S j ← S j ⊕ (padr(Mm−1) ∥ 0c);
13 C ← C0 ∥ · · · ∥ Cm−1;

end
14 return S, C;

Algorithm: decrypt(S, C , v)

1 M ← ϵ;
2 C0 ∥ · · · ∥ Cm−1← C s.t. |Ci|= r, 0≤ |Cm−1|< r;

if |C |> 0 then
for i ∈ {0, . . . , m− 2} do

3 j← i mod |S|b;
4 s j,15← s j,15 ⊕ v;
5 S j ← Fl(S j);
6 Mi ← leftr(S j)⊕ Ci;
7 S j ← Ci ∥ rightc(S j);

end
8 j← (m− 1)mod |S|b;
9 s j,15← s j,15 ⊕ v;

10 S j ← Fl(S j);
11 Mm−1← left|Cm−1|(S j)⊕ Cm−1;
12 S j ← S j ⊕ (padr(Mm−1) ∥ 0c);
13 M ← M0 ∥ · · · ∥ Mm−1;

end
14 return S, M ;

Algorithm: absorb(S, X , v)

1 X0 ∥ · · · ∥ Xm−1← X , s.t. |X i|= r, 0≤ |Xm−1|<
r;

if |X |> 0 then
for i ∈ {0, . . . , m− 2} do

2 s15← s15 ⊕ v;
3 S← Fl(S);
4 S← S ⊕ (X i ∥ 0c);

end
5 s15← s15 ⊕ v;
6 S← Fl(S);
7 S← S ⊕ (padr(Xm−1) ∥ 0c);

end
8 return S;

Algorithm: branch(S, m, v)

1 S← 0b;
if p ̸= 1 and m> 0 then

2 s← p;
if p = 0 then

3 s← ⌈m/r⌉;
end

4 S = (S0, . . . , Ss−1)← (0b, . . . , 0b);
5 s15← s15 ⊕ v;
6 S← Fl(S);

for i ∈ {0, . . . , s− 1} do
7 S i ← S⊕ (i, i, i, i, i, i, i, i, i, i, i, i, 0, 0, 0, 0);

end
else

8 S← S;
end

9 return S;

Algorithm: merge(S, m, v)

1 S← 0b;
if p ̸= 1 and m> 0 then

for i ∈ {0, . . . , |S|b − 1} do
2 si,15← si,15 ⊕ v;
3 S i ← Fl(S i);
4 S← S ⊕ S i;

end
else

5 S← S;
end

6 return S;

Algorithm: finalize(S, K , v)

1 s15← s15 ⊕ v;
2 S← Fl(S);
3 (s0, s1, s2, s3)← (s0, s1, s2, s3)⊕ (k0, k1, k2, k3);
4 s15← s15 ⊕ v;
5 S← Fl(S);
6 (s0, s1, s2, s3)← (s0, s1, s2, s3)⊕ (k0, k1, k2, k3);
7 T ← leftt(S);
8 return S, T ;

Figure 5.6: Low-level interface functions of the NORX mode
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Table 5.3: Domain separation constants

header payload trailer tag branching merging
01 02 04 08 10 20

Table 5.4: Initialization constants

w 32 64 w 32 64

u0 0454EDAB E4D324772B91DF79 u8 A3D8D930 B15E641748DE5E6B
u1 AC6851CC 3AEC9ABAAEB02CCB u9 3FA8B72C AA95E955E10F8410
u2 B707322F 9DFBA13DB4289311 u10 ED84EB49 28D1034441A9DD40
u3 A0C7C90D EF9EB4BF5A97F2C8 u11 EDCA4787 7F31BBF964E93BF5
u4 99AB09AC 3F466E92C1532034 u12 335463EB B5E9E22493DFFB96
u5 A643466D E6E986626CC405C1 u13 F994220B B980C852479FAFBD
u6 21C22362 ACE40F3B549184E1 u14 BE0BF5C9 DA24516BF55EAFD4
u7 1230C950 D9CFD35762614477 u15 D7C49104 86026AE8536F1501

where u= (−|X |8 − 2)mod (r/8).

Domain Separation

NORX has a very simple and lightweight domain separation mechanism: it is per-
formed by xoring a domain separation constant to the least significant byte of s15 each
time before the state s is transformed by the permutation Fl . Distinct constants are
used for the different algorithm phases, i.e. for the three different message processing
stages, for tag generation, and in case of p ̸= 1, for branching and merging steps.
Table 5.3 gives the specification of those constants and Figures 5.1 and 5.2 illustrate
their integration into the state of NORX. Figures 5.5 and 5.6 show their concrete
usage.

Initialization

The method initialize sets up the 16w-bit internal state S = (s0, . . . , s15) of NORX by
processing a 4w-bit key K = k0 ∥ k1 ∥ k2 ∥ k3, a 2w-bit nonce N = n0 ∥ n1, the
instance parameters w, l, p, and t and some initialization constants. These constants
are given in Table 5.4 and can be derived by

(u0, . . . , u15) = F2(0, . . . , 15)

which allows on-the-fly computation if necessary. Note, however, that only
u2, u3, u8, . . . , u15 are actually used in initialize.
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Data Absorption

The method absorb takes an arbitrary long bitstring X as input and absorbs it in
blocks of r bits into the internal state thereby ensuring authenticity of X . If the last
block is smaller than r bits, it is extended to the block size through padr . For domain
separation the constant v is used. Data absorption is skipped entirely in case the
input has length 0, i.e. if X corresponds to the empty bitstring ϵ.

In NORX the function absorb is used for authenticating associated data in the form
of header data A using domain separation constant v = 01 and/or trailer data Z using
domain separation constant v = 04. Refer to the high-level interface in Figure 5.5 to
see where and how absorb is used concretely in NORX.

Branching

If the parallelism degree p ̸= 1 then branch is used to prepare parallel payload
processing. branch is skipped entirely if either p = 1 or |P| = 0. The state S is
extended to a multi-state vector S having either p elements if p > 1 or ⌈|M |r⌉
elements if p = 0. Note that in order to ensure that each lane produces a unique
bitstream for encryption, a lane number i is integrated into state copy S i (included
into words si,0 to si,11) together with the domain separation constant v = 10.

Data Encryption and Decryption

The method encrypt (decrypt) takes an arbitrary long bitstring P (C) as input and
encrypts (decrypts) it thereby producing the encrypted (decrypted) payload C (P).
Since P is also absorbed into the state S, its authenticity is ensured as well. As in
absorb, data is processed in r-bit blocks and the last block is padded using padr . Note
that in the latter case only a truncated data block of the same size as the unpadded
input block is extracted such that |P| = |C | holds. The constant v = 02 is used for
domain separation.

The different cases for p are handled as follows. For p = 1 the NORX mode
corresponds to a regular sequential sponge construction and no special steps have to
be taken for data encryption or decryption. For p > 1 a fixed number of p parallel
lanes is available for data processing. Data blocks are rotated in a round-robin fashion
across the states by assigning the i-th data block to state i mod p. In the last case, if
p = 0, each data block is processed on its own separate lane.

Merging

The merge function is only executed if p ̸= 1 and |M |> 0. After parallel-processing all
payload data blocks, the states S i are merged back into a single state S. The domain
separation constant for merge is v = 20.
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Finalization

The finalize function generates an authentication tag T by first injecting the domain
separation constant v = 08 then transforming S twice with the permutation Fl and
finally extracting the t leftmost bits from s0 ∥ · · · ∥ s11 which are returned as the tag
T .

Tag Verification

Note that tag verification is not listed explicitly among the low-level interface functions
in Figure 5.6 but rather in Figure 5.5, see the last step of AEADDec.

Tag verification consists of comparing the received tag T to the generated tag T ′.
If T = T ′, tag verification succeeds; otherwise tag verification fails, the decrypted
payload is discarded and an error ⊥ is returned.

Implementations of tag verification should satisfy the following requirements:

• Tag verification should not leak information on the (relative) values of the
strings compared. In particular tag verification should be implemented in
constant time, so that a comparison of identical strings take the same time as a
comparison of distinct strings.

• The decrypted payload should not be returned to the user if tag verification
fails. Ideally, extracted bytes should be securely erased from any temporary
memory if tag verification fails.

5.2.6 Datagrams

Many issues with encryption interoperability are due to ad hoc ways to represent
and transport cryptograms and the associated data. For example IVs are sometimes
prepended to the ciphertext, sometimes appended, or sent separately. We thus specify
datagrams that can be integrated in a protocol stack, encapsulating the ciphertext
as a payload. Using a standardized encoding simplifies the transmission of NORX
cryptograms across different APIs, and reduces the risk of insecure or suboptimal
encodings. We specify two distinct types of datagrams, depending on whether the
NORX parameters are fixed or need to be signaled in the datagram header.

Fixed Parameters

With fixed parameters shared by the parties (for example through the application using
NORX), there is no need to include the parameters in the header of the datagram4.

4The header referred to is that of the datagram specified, not that of the data processed by the
NORX instance.
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The datagram for fixed parameters thus only needs to contain N , A, C , Z , and T , as
well as information to parse those elements.

We encode the byte length of A and Z on 16 bits, allowing for headers and trailers
of up to 64 KiB, a large enough value for most real applications. The byte length of
the encrypted payload is encoded on 32 bits for NORX32 and on 64 bits for NORX64,
which translates to a maximum payload size of 4 GiB and 16 EiB, respectively5.
Similarly to frame check sequences in data link protocols, the tag is added as a
trailer of the datagram specified. The header, encrypted payload, and trailer of the
underlying protocol are viewed as the payload of the datagram. The default tag length
being a constant value of the NORX instance, it needs not be signaled.

Tables 5.5 and 5.6 show the fixed-parameters datagrams for NORX32 and NORX64.
The length of the datagram header is 28 bytes for NORX64 and 16 bytes for NORX32.

Note that the CAESAR API (as per the final call, see [114]) receives the nonce and
the associated data in two separate buffers, but the tag is included in the ciphertext
buffer.

Variable Parameters

With variable parameters, the datagram needs to signal the values of w, l, and p. The
header is thus extended to encode those values, as specified in Tables 5.7 and 5.8.
To minimize bandwidth, w is encoded on one bit, supporting the two choices 32-bit
(w= 0) and 64-bit (w= 1), l on 7 bits (with the MSB fixed at 0, i.e. supporting up
to 63 rounds), and p on 8 bits (supporting parallelization degree up to 255). The
datagram header is thus only 2 bytes longer than the header for fixed parameters.

5.3 Design Rationale

In this section we motivate the design choices made in NORX. We pursue a top-down
approach, starting with the general layout and going into the details of NORX’s
components in the later sections.

5.3.1 The Parallel Duplex Construction

The layout of NORX is based on the monkeyDuplex construction [65, 71], but en-
hanced by the capability of parallel payload processing on multiple lanes (cf. Fig-
ures 5.1 and 5.2). The parallel duplex construction is similar to the tree-hashing mode
for sponge functions [66]. It allows NORX to take advantage of multicore processors
and enables high-throughput hardware implementations. Associated data can be

5Note that NORX is capable of (safely) processing much larger data sizes, those are just the
maximum values when our proposed datagrams are used.
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Table 5.5: NORX32 datagram for fixed parameters (offsets are in bytes)

Offset 0 1 2 3

0
Nonce N

4

8 Header byte length |A| Trailer byte length |Z |
12 Encrypted payload byte length |C |
16

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

authenticated as header and/or trailer data but only on a single lane. We felt that
it is not worth the effort to enable processing of A and Z in parallel, as they are
usually rather short metadata. The number of encryption lanes is controlled by the
parallelism degree 0 ≤ p ≤ 255, which is a fixed instance parameter. Hence two
instances with distinct p values cannot decrypt data from each other. Obviously the
same holds for differing w and l values.

To ensure that the payload blocks on parallel lanes are encrypted with distinct
key streams, we use the branching phase to include an index into each of the parallel
lanes. For NORX this index is a simple counter. Once the parallel payload processing
is finished, the states are merged and NORX advances to the processing of the trailer
(if present) or generation of the authentication tag.

5.3.2 The G Function

The G function of NORX is inspired by the quarter-round function of the stream cipher
ChaCha [54], which itself is a variant of the quarter-round function of the eSTREAM
finalist Salsa20 [59, 183]. Variants of ChaCha’s quarter-round function can be found
for example in the SHA-3 finalist BLAKE [28, 417] and BLAKE2 (Chapter 4).
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Table 5.6: NORX64 datagram for fixed parameters (offsets are in bytes)

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |A| Trailer byte length |Z |
20

Encrypted payload byte length |C |
24

28

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

Overview

One of the main goals for NORX was to design a core primitive that does not rely
on integer addition to introduce nonlinearity. Instead it should use exclusively
more hardware-friendly bitwise logic operations like NOT, AND, OR, or XOR and bit-
shifts. Figure 5.7 shows how the G function of NORX transforms an input (a, b, c, d)
compared to the quarter-round function of ChaCha . The rotation offsets for NORX
are specified in Table 5.2. The offsets of ChaCha are (s0, s1, s2, s3) = (16,12, 8,7) for
32-bit and (s0, s1, s2, s3) = (32,24, 16,63) for 64-bit.6

In NORX integer addition is replaced by the following expression

x ← (x ⊕ y)⊕ ((x ∧ y)≪ 1)

which uses bitwise AND to introduce nonlinearity. It mimics integer addition of two
bit strings x and y with a 1-bit carry propagation and thus provides, in addition
to nonlinearity, also a slight diffusion of bits. In accordance with the main design

6The original ChaCha stream cipher is only defined for 32-bit words. For the 64-bit version we
used the rotation offsets (32, 24,16, 63) from BLAKE2.
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Table 5.7: NORX32 datagram for variable parameters (offsets are in bytes)

Offset 0 1 2 3

0
Nonce N

4

8 Header byte length |A| Trailer byte length |Z |
12 Encrypted payload byte length |C |
16 w(1)||l(7) p
20

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

a ← (a⊕ b)⊕ �(a ∧ b)≪ 1
�

a ← a+ b

d ← (a⊕ d)≫ r0 d ← (a⊕ d)≫ s0

c ← (c ⊕ d)⊕ �(c ∧ d)≪ 1
�

c ← c + d

b ← (b⊕ c)≫ r1 b ← (b⊕ c)≫ s1

a ← (a⊕ b)⊕ �(a ∧ b)≪ 1
�

a ← a+ b

d ← (a⊕ d)≫ r2 d ← (a⊕ d)≫ s2

c ← (c ⊕ d)⊕ �(c ∧ d)≪ 1
�

c ← c + d

b ← (b⊕ c)≫ r3 b ← (b⊕ c)≫ s3

Figure 5.7: Comparison of NORX (left) and ChaCha (right) core functions
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Table 5.8: NORX64 datagram for variable parameters (offsets are in bytes)

Offset 0 1 2 3

0

Nonce N
4

8

12

16 Header byte length |A| Trailer byte length |Z |
20

Encrypted payload byte length |C |
24

28 w(1)||l(7) p
32

. . . Header A
??

??

. . . Encrypted payload C
??

??

. . . Trailer Z
??

??

. . . Tag T
??

a

b

c

d

a

b

c

d

∧ ≪ 1

≫ r0

∧ ≪ 1

≫ r1

∧ ≪ 1

≫ r2

∧ ≪ 1

≫ r3

Figure 5.8: The G circuit

principle of NORX we tried to make the nonlinear operation as simple as possible in
order to ease cryptanalysis and to reduce the risk of overlooking potential security
weaknesses. Moving to simple bitwise logical operations also reduces the latency
of hardware implementations. One way to instantiate G as a circuit is depicted in
Figure 5.8.
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Bijectivity

The only expression in G which is not obviously invertible at a first glance, is the
non-linear operation

z = (x ⊕ y)⊕ ((x ∧ y)≪ 1)

with n-bit words x , y and z. In order to proof bijectivity of the above expression we
show how to invert it, under the assumption that one of its inputs is fixed. Therefore
we write x =
∑n−1

i=0 x i ·2i, y =
∑n−1

i=0 yi ·2i and z =
∑n−1

i=0 zi ·2i with x i, yi and zi ∈ {0, 1}
and assume that y is fixed. Writing down the inverse nonlinear operation at bit level
is straightforward:

x0 = (z0 ⊕ y0)
x1 = (z1 ⊕ y1)⊕ (x0 ∧ y0)

...

x i = (zi ⊕ yi)⊕ (x i−1 ∧ yi−1)
...

xn−1 = (zn−1 ⊕ yn−1)⊕ (xn−2 ∧ yn−2)

This proves that G is indeed a permutation. Further, it is a permutation when either
of its input arguments is fixed, making it also a latin square.

Features

The only operations required to define G are bitwise XOR, AND and logical bit shifts,
which has several advantages: All of the mentioned instructions can be implemented
in constant time regardless of the word size. Especially for hardware implementations
there are no carry propagations to worry about, for example, as there would be for
integer addition mod 2n. This also makes masked implementations simpler and more
efficient.

Moreover no table lookup instructions, like S-boxes, are required, where the
table index is data-dependent. Those operations, if not handled with extreme care,
are often the reason for implementations leaking side-channel information, making
the affected algorithm vulnerable, e.g., to timing-attacks [53]. By avoiding them,
the task of hardening the cipher against side-channel attacks gets obviously much
easier. No specialized implementations are required, e.g., bitsliced S-boxes [213,
258, 330], for table lookups in constant time. Additionally, the absence of more
complex instructions like integer addition, multiplication, Galois field arithmetic or
other constructs based on linear algebra, has the effect that the algorithm is much
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easier to implement (both in soft- and hardware) and thus reduces the threat of
introducing accidental bugs.

5.3.3 The F Function

The layout of the round function F of NORX is the same as used in ChaCha [54].

Overview

Recall that F transforms a state S = s0 ∥ · · · ∥ s15 in two phases. First a column step is
applied

G(s0, s4, s8, s12) G(s1, s5, s9, s13) G(s2, s6, s10, s14) G(s3, s7, s11, s15)

followed by a diagonal step

G(s0, s5, s10, s15) G(s1, s6, s11, s12) G(s2, s7, s8, s13) G(s3, s4, s9, s14)

Bijectivity

As G is a permutation, F is obviously a permutation, too. This means that there exist
no states S and S′, with S ̸= S′, which produce the same result, i.e. Fl(S) = Fl(S′),
after any number of rounds l. This characteristic of F is important for the duplex
construction [65, 71] in order to retain some desirable security properties.

Features

One great advantage of the ChaCha-related layout of F is that the modification of a
single bit in the input has the chance of affecting all 16 output words after only one
application of F. This greatly enhances diffusion. Another benefit of the layout is the
ability to execute the four applications of G in a step completely in parallel, which
improves performance.

5.3.4 Number of Rounds

For a higher protection of the key and authentication tag, e.g. against differential
cryptanalysis, we chose twice the number of rounds for initialization and finalization,
compared to the data processing phases. This measure was already proposed in [65]
and while it has only minor effects on the overall performance, it increases the security
margin of NORX. The minimal value of l = 4 is based on the following observations:

1. The best attacks on Salsa20 and ChaCha [25, 423, 444] break 8 and 7 rounds,
respectively, which roughly corresponds to 4 and 3.5 rounds of the NORX core.
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While the attack models of ChaCha and NORX are not the same, this gives us a
starting point for further analysis.

2. The preliminary cryptanalysis of NORX as presented in Chapter 6. The best
differentials we were able to find, belong to a class of high-probability truncated
differentials over 1.5 rounds and a class of impossible differentials over 3.5
rounds. Despite the fact that those differentials cannot be used to mount an
attack on NORX, it might be possible to find similar differentials, using more
advanced cryptanalytic techniques, which could be used for an attack.

5.3.5 Selection of Constants

Initialization

The initialization constants are listed in Table 5.4 and are derived through

(u0, . . . , u15) = F2(0, . . . , 15)

as already mentioned in Section 5.2.5. This approach allows an on-the-fly compu-
tation, if necessary, and is meant to provide transparency in order to show that the
values belong to the “nothing-up-my-sleeve” category, i.e. that they were selected in
such a way that there is no possibility to hide a backdoor. The main purpose of the
initialization constants is to provide some asymmetry during initialization.

Domain Separation

The NORX algorithm is separated into different data processing phases. Each phase
uses its own domain separation constant to mark the end of certain events like the
absorbing of data blocks or merging and branching steps in case of an instance with
parallelism degree p ̸= 1. A domain separation constant is always added to the least
significant byte of the capacity word s15. The constants are given in Table 5.3. The
separation of the processing phase is important for the soundness of the mode of
operation, preventing ambiguities between different data types. In addition they help
to break the self-similarity of the round function and thus increase the complexity of
certain kind of attacks on NORX, for example, like slide attacks.

Rotation Offsets

The rotation offsets (r0, r1, r2, r3) used by NORX provide a good balance between
security and efficiency. The values ri, with 0≤ i ≤ 3, were selected according to the
following conditions:

1. At least two out of four offsets are multiples of 8.
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2. The remaining offsets are odd and have the form 8n ± 1 or 8n ± 3, with a
preference for the first shape.

The motivation behind those criteria has the following reasons: An offset which
is a multiple of 8 preserves byte alignment and thus is much faster than an unaligned
rotation on many non-64-bit architectures. Many 8-bit microcontrollers have only 1-
bit shifts of bytes, so for example rotations by 5 bits are particularly expensive. Using
aligned rotations, i.e. permutations of bytes, greatly increases the performance of the
entire algorithm. Even 64-bit architectures benefit from such aligned rotations, for
example when an instruction sequence of two shifts followed by OR can be replaced
by SSSE3’s byte shuffling instruction pshufb. Odd offsets break up the byte structure
and therefore increase diffusion.

In order to find good rotation offsets and assess their diffusion properties, we
used an automated search combined with a diffusion test. Therefore let l denote
a round number and let L and Ll be lists. For each offset tuple (r0, r1, r2, r3) with
ri ∈ {1, . . . , w− 1} satisfying the above criteria, the following steps are repeated 106

times, after the offsets have been plugged into G:

1. Choose two b-bit sized states S and S′ uniformly at random, such that hw(S ⊕
S′) = 1.

2. Compute X = Fl(S)⊕ Fl(S′), where F denotes the round function of NORX.

3. Save hw(X ) to Ll .

After the above loop is finished the test computes minimum, maximum, average
and median values of the elements of Ll , saves the latter together with the offsets to
L and resets Ll . Then it proceeds to the analysis of the next rotation tuple. This test
is repeated until all candidate offsets have been processed.

Finally, we chose the offsets (8,19,40,63) for NORX64 and (8,11,16,31) for
NORX32, which belonged to those having very high values for average and median
Hamming weight for l = 1, achieve full diffusion after l = 2, and additionally offer
good performance.

Table 5.9 lists the results of the test for 32- and 64-bit core functions with l ≤ 4
and rotation offsets as specified above. The test results show that the diffusion speed
of NORX’s round function F is almost as high as ChaCha’s and that full diffusion
is reached after two rounds. Unfortunately there seems to be no combination of
rotation values with 3 offsets being a multiple of 8 and one being w−1, like BLAKE2’s
(32,24,16,63), where F achieves a comparably strong diffusion as illustrated in
Table 5.9. The reason for this can be traced back to the replacement of integer
addition by the nonlinear operation of NORX.
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Table 5.9: Diffusion statistics for NORX and ChaCha round functions

NORX32 ChaCha (32-bit)

l min max avg med min max avg med

1 83 280 179.22 181 73 294 182.19 185
2 194 307 256.02 256 199 312 255.99 256
3 198 312 255.99 256 204 313 255.98 256
4 201 307 255.99 256 200 314 255.98 256

NORX64 ChaCha (64-bit)

l min max avg med min max avg med

1 95 429 230.13 222 73 506 248.84 246
2 440 589 511.98 512 430 591 512.01 512
3 434 589 512.00 512 439 589 511.97 512
4 428 589 511.98 512 435 585 512.00 512

5.3.6 The Padding Rule

The sponge (or duplex) construction offers protection against generic attacks if the
padding rule is sponge-compliant, i.e. if it is injective and ensures that the last block
is different from the all-zero block. In [66] it has been proven that the multi-rate
padding satisfies those properties. Moreover it is simple to describe, easy to implement
and very efficient. Thus it was a natural choice to be used in NORX. Additionally,
the multi-rate padding increases the complexity to mount certain kind of attacks on
NORX, like slide attacks.

5.4 Performance

NORX was designed to perform well across both software and hardware. This section
details our implementations and performance results.

5.4.1 Generalities

In this part we analyze some general performance-relevant properties of NORX, like
number of operations in G and Fl , parallelism degree, and upper bounds for the
speed of NORX on different platforms.

Number of Operations

Table 5.10 shows the number of operations required for the NORX core functions.
We omit the overhead of initialization, integration of parameters, domain separation
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constants, padding messages, and so on, as those costs are negligible compared to
that of the core permutation Fl .

Table 5.10: Overview on the number of operations of the NORX functions

function #XOR #AND #shifts #rotations total

G 12 4 4 4 24
F 96 32 32 32 192
F4 384 128 128 128 768
F6 576 192 192 192 1152
F8 768 256 256 256 1536
F12 1152 384 384 384 2304

Memory

NORX32 and NORX64 require at least 16 and 32 bytes to be stored in ROM for the
initialization constants7. To store all initialization constants 40 and 80 bytes of ROM
are necessary.

Processing a message in NORX requires enough RAM to store the internal state,
i.e., 64 bytes in NORX32 and 128 bytes in NORX64. The data being processed need
not be in memory for more than 1 byte at a time. In practice, however, it is preferable
to process blocks of 48 (resp. 96) bytes at a time.

Parallelism

The core permutation F of NORX has a natural parallelism of 4 independent G
applications. Additionally, NORX allows for greater parallelism levels using multiple
lanes. Using the p = 0 mode, see Section 5.2.5, the internal parallelism level of NORX
is effectively unbounded for long enough messages.

5.4.2 Software

NORX is easily implemented for 32-bit and 64-bit processors, as it works on 32- and
64-bit words and uses only word-based operations (XOR, AND, shifts and rotations).
The specification can directly be translated to code and requires no specific technique
such as look-up tables or bitslicing. The core of NORX essentially consists of repeated
usage of the G function, which allows simple and compact implementations (e.g., by
having only one copy of the G code).

7Note that the 10 constants can be generated on-the-fly from 0, . . . , 15, see Section 5.2.5.
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Furthermore, constant-time implementations of NORX are straightforward to
write, due to the absence of secret-dependent instructions or branches.

Bit Interleaving

While NORX’s lack of integer addition avoids dealing with carry chains, the imple-
menter may still have to perform full-word rotations and shifts in words wider than
the natural CPU word size. In 8-bit processors, some of this burden is alleviated by 2
out of 4 rotations being multiples of 8. However, this is only a half-measure.

Instead, the implementer can employ the bit interleaving technique presented in
[67]. This technique consists of splitting an n-bit word w into s = n/m m-bit words
bi, with bi j = wi+ jn/m. A rotation by r in this representation can be performed by
rotating each bi by ⌊r/w⌋+ 1 if i + r mod m< r, ⌊r/w⌋ otherwise, and moving bi to
bi+r mod m. Rotations by 1 or n− 1 are particularly attractive, since they result in a
single m-bit rotation. For example, consider implementing NORX64 on a 32-bit CPU.
Each state word w will be split into the 2 words b0 and b1. To rotate by r:

• If r mod 2= 0, rotate both b0 and b1 by ⌊r/2⌋;
• If r mod 2= 1, rotate b1 by ⌊r/2⌋+ 1, b0 by ⌊r/2⌋, and swap them.

Conversion between representations can be performed in logarithmic time using
bit “zip” and “unzip” operations [21].

Avoiding Latency

One drawback of G is that it has little instruction parallelism. In architectures where
one is limited by the latency of the G function, an implementer can trade a few extra
instructions by reduced latency:

t0 ← a⊕ b
t1 ← a ∧ b
t1 ← t1≪ 1

a ← t0 ⊕ t1

d ← d ⊕ t0

d ← d ⊕ t1

d ← d≫ r0

This tweak saves up to 1 cycle per instruction sequence, of which there are 4 per G, at
the cost of 1 extra instruction (cf. Figure 5.9). In a sufficiently parallel architecture,
this can save at least 4×2× l cycles, which translates to 6.4l/w cycles per byte saved
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overall. In our measurements, this translated to a performance improvement of NORX
from 0.4 to 0.7 cycles per byte, depending on the target architecture, word size, and
number of rounds.

a

b

d

∧ ≪ 1

≫ 8

a

d

(a) Naïve implementation of the G instruction sequence

a

b

d

∧ ≪ 1

≫ 8

a

d

(b) Latency-oriented version of the G instruction sequence

Figure 5.9: Improving the latency of G.

Vectorization

NORX lends itself quite well to implementations taking advantage of SIMD extensions
present in modern processors, such as AVX or NEON.

The typical vectorized implementation of NORX, when p = 1, works in full rows
of the 4× 4 state, and computes whole column and diagonal steps of F in parallel.

Results

We wrote portable C reference implementations for both NORX64 and NORX32, as
well as optimized versions for CPUs supporting AVX and AVX2 and for NEON-enabled
ARMs. Table 5.11 shows speed measurements on various platforms for messages with
varying lengths. The listed CPU frequencies are nominal ones, i.e. without dynamic
overclocking features like Turbo Boost, to improve the accuracy of measurements.
Furthermore we listed only those platform-compiler combinations that achieved the
highest speeds.

The top speed of NORX (for p = 1), in terms of bytes per second, was achieved
by an AVX2 implementation of NORX64-4-1 on a Haswell CPU, listed in Table 5.11.
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It achieves a throughput of about 1.75 GB/s (1.99 cycles per byte at 3.5 GHz). The
overhead for short messages (≤ 64 bytes) is mainly due to the additional initialization
and finalization rounds (see Figure 5.1). However the cost per byte quickly decreases,
and stabilizes for messages larger than about 1 KB.

Note that the speed between reference and optimized implementations differs
by a factor of less than 2, suggesting that straightforward and portable implemen-
tations will provide reasonable performance in most applications. Such consistent
performance reduces development costs and improves interoperability.

5.4.3 Hardware

Hardware architectures of NORX are efficient and easy to design from the specification:
vertical and parallel folding are naturally derived from the iterated and parallel
structure of NORX. The cipher benefits from the hardware-friendliness of the function
G, which requires only bitwise logical AND, XOR, and bit shifts, and the iterated usage
of G inside the core permutation of NORX.

Michael Muehlberghuber and Frank Gürkaynak [347] designed a hardware ar-
chitecture supporting parameters w ∈ {32,64}, l ∈ {2, . . . , 16} and p = 1. It was
synthesized with the Synopsys Design Compiler for an ASIC using 65 nm UMC tech-
nology. The implementation was targeted at high data throughput. The requirements
in area amounted to about 189 kGE. Simulations for NORX64-4-1 report a throughput
of about 124 Gbps (15.5 GB/s), at a maximum frequency of 775 MHz. It achieves a
thoughput per gate equivalent of 845 kbps/GE.

5.5 Security Goals

We expect NORX with l ≥ 4 rounds to provide the target security level for any AEAD
scheme with the same interface (input and output types and lengths). The following
requirements should be satisfied in order to use NORX securely:

Unique nonces Each key and nonce pair should not be used to process more than
one message.

Abort on verification failure If the tag verification fails, only an error is returned.
In particular, the decrypted plaintext and the wrong authentication tag must
not be given as an output and should be erased from memory in a safe way.

We do not make any claim regarding attackers using “related keys”, “known keys”,
“chosen keys”, etc. We also exclude from the claims below models where information
is “leaked” on the internal state or key.
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Table 5.11: Software performance of NORX in cycles per byte

data length [byte] long 4096 1536 576 64 8

Samsung Exynos 4412 Prime (Cortex-A9) at 1.7 GHz

NORX32-4-1
Ref 16.72 18.03 20.52 27.92 109.48 771.88

NEON 9.27 10.20 11.95 16.46 72.30 521.00

NORX64-4-1
Ref 15.60 17.91 22.02 32.42 148.55 1177.12

NEON 7.13 8.40 10.61 16.25 82.12 648.88

BeagleBone Black Rev B (Cortex-A8) at 1.0 GHz

NORX32-4-1
Ref 16.66 17.90 20.28 26.49 102.34 708.00

NEON 9.49 10.52 12.36 17.92 75.62 550.12

NORX64-4-1
Ref 17.24 19.81 24.34 35.73 164.86 1317.50

NEON 7.00 8.35 10.67 16.44 85.66 680.00

Intel Core i7-2630QM (Sandy Bridge) at 2.0 GHz

NORX64-6-1
Ref 6.33 7.02 8.24 13.96 70.62 607.50

AVX 4.02 4.42 5.14 6.90 63.75 204.00

NORX64-4-1
Ref 4.83 5,35 6.30 8.66 50.00 400.62

AVX 2.68 2.96 3.45 4.66 17.18 137.5

Intel Core i7-3667U (Ivy Bridge) at 2.0 GHz

NORX64-6-1
Ref 8.15 9.01 10.49 14.15 53.20 425.62

AVX 5.04 5.56 6.45 8.65 32.19 255.00

NORX64-4-1
Ref 5.58 6,17 7.22 9.82 38.05 303.75

AVX 3.37 3.72 4.35 5.84 22.11 174.38

Intel Core i7-4770K (Haswell) at 3.5 GHz

NORX64-6-1
Ref 5.37 5.94 6.92 9.40 36.44 292.00

AVX2 2.98 3.29 3.84 5.17 19.00 153.00

NORX64-4-1
Ref 3.98 4.39 5.11 6.97 27.19 217.00

AVX2 1.99 2.20 2.58 3.49 12.94 104.50
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The security of NORX is mainly limited by the key length (128 or 256 bits) and by
the tag length (128 or 256 bits). Plaintext confidentiality should thus have the order
of 128 or 256 bits of security. The same level of security should hold for integrity
of the plaintext or of associated data (based on the fact that an attacker trying 2n

tags will succeed with probability 2n−256, n< 256). In particular, recovery of a k-bit
NORX key should require resources (“computations”, energy, etc.) comparable to
those required to recover the key of an ideal k-bit key cipher. Table 5.12 summarizes
the security goals of NORX.

Table 5.12: Overview on the security levels (in bits)

security goal NORX32 NORX64

plaintext confidentiality 128 256

plaintext integrity 128 256

associated data integrity 128 256

public message number integrity 128 256

Note that NORX restricts the number of messages processed with a given key:
in [64] the usage exponent e is defined as the value such that the implementation
imposes an upper limit of 2e uses to a given key. In NORX we set it to e64 = 128 for
64-bit and e32 = 64 for 32-bit, which corresponds in both cases to the size of the
nonce.

5.5.1 Security Bounds for the Mode of Operation

Using the generic bounds for the duplex sponge [71] and the indifferentiability of
the sponge construction [72], one would expect an attacker advantage of roughly
O
�

q2

2c +
q
2k

�

, cf. (2.4), where c is the capacity of the sponge and q is the total number

of calls to either NORX or Fl . The first submission of NORX was guided by this analysis,
and its parameters were slightly more conservative. This analysis is, however, overly
pessimistic; Jovanovic, Luykx, and Mennink [250] showed that the generic security
of the NORX mode can be tightened further. We state their result below.

Let Π= (E,D) denote the NORX mode of operation with encryption function E,
decryption function D, and based on an ideal underlying permutation p. Then the
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following privacy and authenticity security bounds are satisfied:

Advpriv
Π (qp, qE,λE)≤

3(qp +σE)2

2b+1
+
�8eqpσE

2b

�1/2

+
rqp

2c
+

qp +σE

2k

Advauth
Π
(qp, qE,λE, qD,λD)≤

(qp +σE +σD)2

2b
+
�8eqpσE

2b

�1/2

+
rqp

2c

+
qp +σE +σD

2k
+
(qp +σE +σD)σD

2c
+

qD

2t

where r, c, b, k and t are rate, capacity, state, key and tag sizes, e ≈ 2.718 is Euler’s
number, qp are the number of permutation queries, qE are the number of encryption
queries of total length λE and σE is specified as follows:

σE :=
qE
∑

j=1

σE, j ≤






2λE + 4qE, if p = 0

λE + 3qE, if p = 1

λE + (p+ 4)qE, if p > 1

The values qD, λD and σD for decryption D are specified analogously.
In summary, theNORXmode of operation achieves security levels of min{2b/2, 2c, 2k}

assuming an ideal underlying permutation p and, intuitively speaking, offers au-
thenticity as long as it offers privacy and the

(qp+σE+σD)σD
2c term—quadratic on the

number of forgery attempts—is negligible. For more information on NORX and
sponge authenticated encryption security proofs see [14, 147, 250, 251].



Chapter 6

Analysis of NORX

This chapter deals with the analysis of the NORX core permutation from a cryptanalytic
perspective. In particular, we investigate its symmetry properties (Section 6.1), the
propagation of differential and linear trails (Sections 6.2, 6.3 and 6.5), and rotational
properties (Section 6.4).

To assist in identifying good trails, we automate the process of finding them by
reducing the search to a SMT problem, which can then be fed to a SMT solver such
as Z3 [159], Boolector [112, 361, 362], or STP [201]. This was inspired by the
innovative work of Mouha et al. [344, 346]. In Section 6.6 we apply automated
search to other primitives, to great effect.

We refer to Chapter 5 for the background and specification of NORX’s mode and
components.

6.1 Symmetries

The original NORX specification contained a discussion about the all-zero state, which
is mapped to itself by F, and why it is not a problem for the security of the scheme.
However, due to the structure of F, there is another, larger, class of weak states. These
are of the form







a a a a
b b b b
c c c c
d d d d







with a, b, c, and d being arbitrary W -bit sized words. States of this form are preserved
by F. Later, Chaigneau et al. [120] and independently Biryukov, Udovenko, and
Velichkov [96] identified a larger class of symmetries on the F permutation: rotation

109
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of columns. Specifically,

F













a e i m
b f j n
c g k o
d h l p












≪ 1= F













e i m a
f j n b
g k o c
h l p d












,

and more generally

F(S≪ r) = F(S)≪ r ,

where≪ here refers to rotation of columns of the state, not of individual words.
This leads to a set of 28w weak states, namely those of the form







a e a e
b f b f
c g c g
d h d h







that remain invariant under rotation by 2 columns. Chaigneau et al. [120] turned
this property into a forgery and key recovery attack for an earlier version of NORX.
The version of NORX presented in Chapter 5, by adding the key at the finalization
stage, prevents this property from being exploitable.

6.2 Differential Cryptanalysis

This section is dedicated to the differential cryptanalysis of NORX. First, we introduce
the required mathematical formulas to describe differential propagation through
FR of NORX. Then we describe a search framework for automatic differential trail
discovery and apply it to NORX.

6.2.1 Simple Differential Analysis

We started by manually tracking how differentials propagated through G. We noticed
that putting input differences in the most significant bits of each word would result
in such differences bypassing the first H (since a≪ 1 and b≪ 1 would erase such
differences going into the AND), giving them higher probability.
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With this simple strategy and after some effort, we found the following high-
probability differentials for the 64-bit version of G:







8000000000000000
8000000000000000
8000000000000000
0000000000000000







G−→
1







0000000000000000
0000000000000001
8000000000000000
0000000000000000













8000000000000000
8000000000000000
8000000000000000
0000000000000000







G−→
2−1







8000000000000000
0000000001000001
8000000000800000
0000000000800000













0000000000000000
8000000000000000
8000000000000000
8000000000000000







G−→
2−1







8000000000000000
0000000003000001
8000000001800000
0000000000800000







Applying those differentials to F has the effect that the diffusion of the state is
delayed by one step. Note that input differences with other combinations of active
most significant bits lead to similar output differences, but none with a lower or equal
Hamming weight as the above. Using the first of the above differentials, we were
able to easily derive a truncated differential over 3 steps (i.e., F1.5), with probability
1.

Of course, continuing with this strategy, manually tracking such differences into
the whole round, or multiple rounds, does not quite scale and it is immensely laborious.
As such, our efforts focused on automating this process.

6.2.2 Propagation Properties of H
Because H is the only nonlinear operation in the entirety of NORX, this is the only
operation we need to be concerned with. Differences propagate deterministically
through all other operations, namely cyclic rotation and xor.

Let n denote the word size, let x and y denote bit strings of size n and let α, β
and γ denote differences of size n. We identify by αi, βi, γi, x i and yi the individual
bits of α, β , γ, x and y , with 0≤ i ≤ n− 1. We recall the definition of H.

Definition 6.1. The nonlinear operation H of NORX is the vectorial Boolean function
defined by

H : {0,1}n × {0,1}n→ {0, 1}n
(a, b) 7→ (a⊕ b)⊕ ((a ∧ b)≪ 1) .

Since bitwise AND is the only nonlinear operation within H, we begin by investi-
gating its differential propagation.
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Theorem 6.2. Let ∧ : {0, 1}n × {0, 1}n→ {0, 1}n be the bitwise AND operation on n-bit
words. A differential (α,β)

∧−→ γ has nonzero probability if and only if ¬(α∨β)∧γ = 0.
Furthermore, such a differential has probability 2−hw(α∨β).

Proof. We can interpret a bitwise ∧ operation as the parallel application of n indepen-
dent ∧ bit operations. For each individual bit operation, we can exhaustively compute
the differential probability for every possible difference pattern (αi,βi)→ γi, which
follows in the table below.

γi

βi αi 0 1

0 0 20 0
0 1 2−1 2−1

1 0 2−1 2−1

1 1 2−1 2−1

The condition ¬(α∨ β)∧ γ = 0 is the boolean encoding of the above table for the
impossible differential (0, 0)→ 1.

Furthermore we see from the table that a viable differential either has probability
20 when the input difference is all-zero, or probability 2−1 when at least one of the
input differences is 1. Since there are n parallel applications of ∧, all independent,
the overall probability amounts to 2−(α0∨β0+···+αn−1∨βn−1) = 2−hw(α∨β).

Theorem 6.2 gives us an easy way to check how a differential propagates through
bitwise AND. This gives us a way to easily reason about the propagation of differences
through H.

Theorem 6.3. Let H : {0,1}n × {0,1}n → {0,1}n be the operation defined in Defini-

tion 6.1. A differential (α,β)
H−→ γ has nonzero probability if and only if ¬((α∨ β)≪

1)∧ (α⊕ β ⊕ γ) = 0. Furthermore, such a differential has probability 2−hw((α∨β)≪1).

Proof. Differences propagate deterministically through linear operations. In partic-
ular, input differences (α,β) become (α≪ 1,β ≪ 1) after being shifted by 1, and
the output difference of xor is the xor of the input differences. As such, the input
differences to the ∧ operation are (α≪ 1,β ≪ 1). If the output difference of H is γ,
the difference at the output of ∧ must be γ⊕α⊕ β , by the linearity of xor. Applying
Theorem 6.2 to (α≪ 1,β ≪ 1)

∧−→ γ⊕α⊕ β completes the proof.

It is interesting to compare and contrast Theorem 6.3 to Lipmaa and Moriai’s
treatment of the differential probability of integer addition modulo 2n [299].
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Theorem 6.4 ([299]). Let ⊞ : {0,1}n × {0,1}n→ {0,1}n be integer addition modulo
2n. Then (α,β)

⊞−→ γ is a differential with nonzero probability if and only if

eq(α≪ 1,β ≪ 1,γ≪ 1)∧α⊕ β ⊕ γ⊕ (β ≪ 1) = 0 ,

where

eq(α,β ,γ) = (¬α⊕ β)∧ ((¬α)⊕ γ)

Furthermore the probability of such a differential is given by 2−hw((¬eq(α,β ,γ))≪1).

Instead of looking at differences with respect to xor, one could alternatively also
investigate differences with respect to H, which is done in the following. This is
somewhat analogous to the study of the propagation of xor through integer addi-
tions [300].

Definition 6.5. Let f : {0, 1}n × {0, 1}n→ {0, 1}n be a vectorial Boolean function and
let (α,β)→ γ be differences with respect to the f operation. We call (α,β)

⊕−→ γ an
f -differential of xor if there exist n-bit strings x and y such that the following equation
holds:

f (x ,α)⊕ f (y,β) = f (x ⊕ y,γ)

Otherwise, if no such n-bit strings x and y exist, we call (α,β)
⊕−→ γ an impossible

f -differential.

Plugging the nonlinear operation H into the formula of Definition 6.5 we obtain
the following equation

α⊕ β ⊕ γ= ((x ∧ (α⊕ γ))⊕ (y ∧ (β ⊕ γ)))≪ 1 (6.1)

which can be expressed at the bit level as

0= α0 ⊕ β0 ⊕ γ0

0= (αi ⊕ βi ⊕ γi)⊕ (x i−1 ∧ (αi−1 ⊕ γi−1))⊕ (yi−1 ∧ (βi−1 ⊕ γi−1)), i > 0 .

Lemma 6.6. Let H denote the nonlinear operation of NORX. For each H-differential in
terms of Definition 6.5 the following equation is satisfied:

(α⊕ β ⊕ γ)∧ (¬(γ≪ 1)⊕ (α≪ 1))∧ (¬(β ≪ 1)⊕ (γ≪ 1)) = 0 (6.2)

Proof. It is easy to see that the least significant bits (i.e. i = 0) of (6.1) and (6.2)
are the same. Therefore, we will consider them no longer. Looking at the bit level
representation of (6.1) (for i > 0) we consider two cases:
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• αi ⊕ βi ⊕ γi = 0: Here, (6.1) has always the solution x i−1 = yi−1 = 0.

• αi⊕βi⊕γi = 1: In this case, the bit level representation of (6.1) is only solvable
if either αi−1 ≠ γi−1 or βi−1 ̸= γi−1. Furthermore, the bit level representation of
(6.2) is given by

(αi ⊕ βi ⊕ γi)∧ (αi−1 ⊕ γi−1 ⊕ 1)∧ (βi−1 ⊕ γi−1 ⊕ 1) = 0, i > 0

It is evident that the latter equation only holds if (αi ⊕βi ⊕γi) = 0, αi−1 ̸= γi−1,
or βi−1 ≠ γi−1. As seen above, these are the very same conditions that define a
H-differential.

Lemma 6.7. Let H denote the non-linear operation of NORX and let (α,β)
H−→ γ be an

H-differential in terms of Definition 6.5. Its probability is given by 2−hw(((α⊕γ)∨(β⊕γ))≪1).

Proof. The claim can be proven analogously to Theorem 6.3. It follows from the fact
that in the bit level representation of (6.1) the expression

(x i−1 ∧ (αi−1 ⊕ γi−1))⊕ (yi−1 ∧ (βi−1 ⊕ γi−1))

is balanced if αi−1 ⊕ γi−1 = 1 or βi−1 ⊕ γi−1 = 1.

While we exclusively consider differentials with respect to xor in the rest of this
section, H-differentials may yet prove to be of future interest.

6.2.3 Automated Trail Search with Satisfiability

Armed with the results from Section 6.2.2, in particular Theorem 6.3, we can now
begin to automate the process of finding differential trails for NORX’s F. We follow
the blueprint of Mouha and Preneel [344], with some simplifications.

For modeling the differential propagation through a sequence of operations, we
use a technique well-known from algebraic cryptanalysis—for every output of an
operation a new set of variables is introduced. The set of values of those output
variables are then constrained as a function of the input variables. Moreover, the
former are used as input to the next operation. This is repeated until all required
operations have been integrated into the problem description. Before we show how
the differential propagation in FR is modeled concretely, we introduce the required
variables.

Let s denote the number of (column and diagonal) steps to be analysed and let
0 ≤ i ≤ 15 and 0 ≤ j ≤ 2(s− 1). For example, if we analyse F2, we have s = 4. Let
x i, yi, j and zi be w-bit sized variables, which model the input, internal and output
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differences of a differential trail. Recall that w ∈ {32,64} denotes the word size of
NORX. Moreover, let di,k, with 0≤ k ≤ s−1, be w-bit sized helper variables which are
used for differential weight computations or equivalently to determine the probability
of a differential characteristic. We use the common assumption, flawed as it may
be, that the probability of a differential trail is reasonably approximated by the sum
of weights of each non-linear operation H. Furthermore, let d denote a w-bit sized
variable which fixes the total weight of the characteristic we plan to search for. The
description of the search problem is generated through the following steps:

1. Every time the function G applies the nonlinear operation H we add two ex-
pressions to our description:

a) Add the constraint 0 = (α⊕ β ⊕ γ)∧ (¬((α∨ β)≪ 1)) from Theorem 6.3,
with α, β and γ each substituted by one of the variables x i, yi, j or zi. This
ensures that only viable trails are considered.

b) Add the expression di,k = (α ∨ β) ≪ 1 from Theorem 6.3, with α and
β substituted by the same variables x i, yi, j or zi as in step (a). This
expression keeps track of the weight of the trail.

2. Every time the function G applies a rotation we apply the same rotation to the
corresponding xor difference, i.e. we add γ = (α⊕ β)≫ r to the problem
description, with α, β and γ substituted appropriately. Note that the rotation
is a linear operation and thus does not change the differential probability.

3. Add an expression corresponding to the following equation:

d =
s−1
∑

k=0

15
∑

i=0

hw(di,k) (6.3)

This equation ensures that indeed a characteristic of weight d is found. De-
pending on the technique how Hamming weights are computed, additional
variables might be necessary.

4. Constrain the variable d to be equal to the target differential weight and append
it to the problem description.

5. Exclude the trivial characteristic mapping an all-zero input difference to
an all-zero output difference. To do so, it is sufficient to exclude the
all-zero input difference. Therefore, append an expression equivalent to
((x0 ̸= 0)∨ · · · ∨ (x15 ̸= 0)) to the problem description.

Doing this using existing SMT solvers is quite simple. Appendix A.1 demonstrates how
to find the best differential from Section 6.2.1 instantly. We model the problem as
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described above, print it out in the standard SMTLIB [41] format, and then use an off-
the-shelf solver to obtain a solution. For example, using the script from Appendix A.1
and Boolector [112, 360, 362] we instantly obtain

$ python norxex.py | boolector -x -m --output-format=btor | sort -k3 | cut -d' ' -f2-sat8000000000000000 x08000000000000000 x18000000000000000 x20000000000000000 x30000000000000000 y00000000000000000 y10000000000000000 y20000000000000000 y30000000000000000 z00000000000000001 z18000000000000000 z20000000000000000 z3

6.2.4 Applications of Automated Search to NORX

In this part we describe the application of the search framework to the permutation Fl

of NORX. Depending on the concrete attack model, there are different ways an attacker
could inject differences into the NORX state. During initialization an adversary is
allowed to modify either the nonce words s1 and s2 (initN ) or nonce and key words
s1, s2, s4, . . . , s7 (initN ,K). During data processing an attacker can inject differences into
the words of the rate s0, . . . , s9 (rate). Last but not least, we also investigate the case
where an attacker can manipulate the whole state s0, . . . , s15 (full).

While an attacker is not able to influence the entire state at any point directly
due to the duplex construction, the full scenario is nevertheless useful to estimate
the general strength of Fl , because all of the other settings described above are
special cases of the latter. Additionally, it could be useful for the chaining of trails:
For example, an attacker could start with a search in the data processing part (i.e.
under the rate setting) over a couple of steps, say Fl1 , and continue afterwards with
a second search, starting from the full state for another couple of steps, say Fl2 , so
that differentials from the second search connect to those from the first, resulting
in differentials for Fl1+l2 . We will explore this divide and conquer strategy in more
detail below.

We denote a differential trail as a tuple of differences (δ0, . . . ,δn), where δ0 is
the input difference and δn is the output difference. The values δi for 0 < i < n are
called internal differences. The weight of the probability that difference δi results in
the difference δi+1 by the rith iteration of F is denoted by di for 0≤ i ≤ n− 1. Recall
that we assume that the probability of the entire trail is equal to the multiplication
of probabilities of the intermediate differentials, and thus we have d =

∑n−1
i=0 di for

the total weight of the trail. The notation Fl+0.5 describes that we do l full rounds
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followed by one more column step, e.g., F1.5 corresponds to one full round plus one
additional column step.

Experimental Verification of the Search Framework

The goal of the experimental verification is to show that the framework indeed does
what it is supposed to do, namely find differentials of a predetermined weight d in
Fl . Therefore, we generated differentials for F1.5 (full) and verified them against a C
reference implementation of F1.5. Under these prerequisites our framework found
the first differentials at a weight of 12, for both w = 32 and w = 64, which thus
should have a probability of about 2−12. To get a better coverage of our verification
test, we did not use only differentials of that particular weight, but other discovered
differential trails of weights d ∈ {12, . . . , 18}, which are listed in Appendix A.2.1 for
both 32- and 64-bit. Then we applied them to the C implementation of F1.5 for 2d+16

pairs of randomly chosen input states having the input difference of the characteristic.
In each case, we checked if the output difference had the predicted pattern. The
number of pairs matching the trail should be around 216. The results are illustrated
in the first table of Appendix A.2.1 and show that the trails found by the search
framework do have the expected properties.

Lower Bounds for Differential Weights of Fl

We made an extensive analysis on the weight bounds of differential paths in Fl , where
we investigated 1≤ s ≤ 4 steps for our four different scenarios initN , initN ,K , rate and
full. We tried to find the lowest weights where differentials appear for the first time.
These cases are listed in Table 6.1 as entries without brackets. For example, in case of
NORX32 under the setting full, there are no differentials in F1.5 with a weight smaller
than 12. Entries in brackets are the maximal weights we were capable of examining
without finding any differentials. Due to memory constraints, our methods failed for
differential weights higher than those presented in Table 6.1. For example, our search
routine did not find any characteristics of weight smaller than 40 (i.e. of probability
higher than 2−40) for the scenario F1.5, initN ,K and w= 32. The required amount of
RAM, to execute this check, was approximately 49 GiB (using CryptoMiniSat with
16 threads) with a running time of 8 hours. A longer computation using Boolector
found the best trails for F2 in the full setting have both weight 39.

The security of NORX depends heavily on the security of the initialization, which
transforms the initial state by F2l . As initN is the most realistic attack scenario, we
conducted a search over all possible 1- and 2-bit differences in the nonce words.
Our search revealed that the best characteristics have weights of 67 (32-bit) and 76
(64-bit) under those prerequisites. Obviously, these weights are not too far away from
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Table 6.1: Lower bounds for differential trail weights. Parenthesis indicate the
minimal weight was not reached.

NORX32 NORX64

initN initN ,K rate full initN initN ,K rate full

F0.5 6 2 2 0 6 2 2 0
F1.0 (60) 22 10 2 (53) 22 12 2
F1.5 (60) (40) (31) 12 (53) (35) (27) 12
F2.0 (61) (45) (34) 39 (51) (37) (30) 39

the computationally verified values of 60 (32-bit) and 53 (64-bit) from Table 6.1,
showing that the bounds for F (initN ) are quite tight.

Extrapolating the above results to F8 (i.e. l = 4), we get lower weights of
61+3 ·27 = 142 (initN ) or 45+3 ·27 = 126 (initN ,K) for NORX32 and 51+3 ·23 = 132
(initN ) or 37 + 3 · 23 = 106 (initN ,K) for NORX64. However, these are only loose
bounds and we expect the real ones to be considerably higher.

Search for Differential Characteristics in F4

This part shows how we constructed differential characteristics in F4 under the
setting full for both versions of the permutation, i.e. 32- and 64-bit. Unsurprisingly,
a direct approach to find such characteristics turned out to be infeasible, hence we
decomposed the search into multiple parts and constructed the entire path step by
step.

At first we made searches that only stretched over l ≤ 2 rounds. After tens of
thousands of iterations using many different search parameter combinations we
found differentials having internal differences of Hamming weight 1 and 2 after one
application of F. We also used a probability-1 differential in G, which is listed as the
first entry in the table of Appendix A.2.2, as a starting place. We expanded all those
characteristics for both word sizes, in forward and backward direction one column
or diagonal step at a time, until their paths stretched the entire 4 rounds. The best
differential paths we found this way have weights of 584 (32-bit) and 836 (64-bit),
respectively. Both are depicted in Appendix A.2.3.

Iterative Differentials

We also performed extensive searches for iterative differentials in F for the setting
full. Using our framework, we could show that there are no such differentials up to a
weight of 29 (32-bit) and 27 (64-bit), before our methods failed due to computational
constraints. Extrapolating these results to F8 and F12, i.e. the number of initialization
rounds for l = 4 and l = 6, we get lower weight bounds of 232 and 348, for 32-bit,
or of 216 and 324 for 64-bit. The best iterative differentials we could find for F, have



6.3. LINEAR CRYPTANALYSIS 119

weights of 512 (32-bit) and 843 (64-bit) and are depicted in Appendix A.2.4. These
weights are obviously much higher than our guaranteed lower bounds, and hence
we expect that the latter are much better compared to the values we were able to
verify computationally.

Differentials with Equal Columns

The class of weak states from Section 6.1 can be obviously transformed into differen-
tials having four equal columns. The best differentials we could find for F have weight
44 for both 32-bit and 64-bit. They exploit an already well known probability-1 differ-
ential in G, see Appendix A.2.2. The 64-bit variant was also used in the construction
of the characteristics with weight 836 in F4 above. Concrete representations of these
differentials can be found in Appendix A.2.5.

6.3 Linear Cryptanalysis

As noted in Section 2.4.3 linear cryptanalysis is in many ways similar to differential
cryptanalysis. So much so that it is logical to also try and study the propagation
of linear approximations through F. Since much of the background is shared with
Section 6.2, we present only the main results and refer to that section for more
background.

Matsui [323, §3] observed that the propagation of linear approximations and
differentials through linear operations are dual:

• Two input differences α,β going through a xor become the output difference
γ= α⊕ β with probability 1; two linear masks going into a xor can only have
correlation 1 if α= β = γ, 0 otherwise.

• A differential α that is used as input into two separate expressions, say α′ and
α′′, must preserve its value, i.e., α = α′ = α′′; a linear mask α in the same
situation instead must preserve the relation α⊕α′ ⊕α′′ = 0.

As with differential cryptanalysis, we begin with the analysis of the simpler AND
primitive.

Theorem 6.8. Let ∧ : {0,1}n × {0,1}n → {0,1}n be the bitwise AND operation on
n-bit words. A linear approximation (α,β)

∧−→ γ has nonzero correlation if and only if
(α∨β)∧¬γ = 0. Furthermore, such an approximation has correlation (−1)(α∧β)·γ2−hw(γ).

Proof. Like in Theorem 6.2, we observe that a bitwise AND can be treated as the
parallel application of n bit AND operations. The linear correlation table for every
input and output mask is given below.



120 CHAPTER 6. ANALYSIS OF NORX

α

β

∧ ≪ 1 γ

α′′

α′

β ′′

β ′

Figure 6.1: Propagation of linear masks through H

γi

βi αi 0 1

0 0 20 2−1

0 1 0 2−1

1 0 0 2−1

1 1 0 −2−1

We see that a mask is impossible if γi = 0 and αi ∨ βi = 1. The negation of this
condition is given by (α∨ β)∧¬γ= 0, which covers all linear masks with nonzero
correlation.

From the table we also see that the only case that contributes to the weight of the
linear approximation is when the output mask is nonzero. As such, the Hamming
weight of the output mask yields its weight. The sign of the correlation is −1 if
αi ∧ βi ∧ γi = 1 and 1 otherwise. Multiplying every (independent) correlation
together we obtain the final result (−1)(α∧β)·γ.

Theorem 6.9. Let H : {0,1}n × {0,1}n → {0,1}n be the operation defined in Defini-

tion 6.1. A linear approximation (α,β)
H−→ γ has nonzero correlation if and only if

((α⊕ γ) ∨ (β ⊕ γ)) ∧ ¬(γ≫ 1) = 0. Furthermore, such a linear approximation has
correlation (−1)((α⊕γ)∧(β⊕γ))·(γ≫1)2−hw(γ≫1).

Proof. Recall that linear masks going through “three-forked branches” induce a xor
relation, and xor induces equality of the input and output masks. Figure 6.1 can be
used as a visual aid for this process. Supposing the mask at the output of H is γ, then
at the output of ∧ must be γ≫ 1, reversing the shift.

Furthermore, let α′,α′′ be the values of a going into the input of ∧ and the final
xor, respectively β ′,β ′′ for β . The three-forked branch and final xor impose the
following conditions:

• γ= α′′ = β ′′;
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• α′ = α⊕α′′ = α⊕ γ;
• β ′ = β ⊕ β ′′ = β ⊕ γ.

Having the input and output masks into the ∧ operation, and no other nonlinear
operation being present, we can reduce the correlation of H to the correlation of the
masks α⊕ γ, β ⊕ γ, γ≫ 1 going into and out of the ∧. Applying Theorem 6.8 yields
the result.

We may also compare Theorem 6.9 with Schulte-Geers’s analogous result [415]
for integer addition.

Theorem 6.10 ([415, Theorem 4]). Let ⊞ : {0, 1}n×{0, 1}n→ {0, 1}n be integer addi-
tion modulo 2n. Then (α,β)

⊞−→ γ) is a linear approximation with nonzero probability if
and only if

((γ⊕α)∨ (γ⊕ β))∧¬τ= 0 ,

where τ satisfies

τ⊕ (τ≫ 1)⊕ ((α⊕ β ⊕ γ)≫ 1) = 0 .

Furthermore the correlation of such an approximation is given by (−1)(γ⊕α)·(γ⊕β)2−hw(τ≪1).

6.3.1 Application to NORX

As with differential search, we initiated a search for linear trails using Theorem 6.9
to discover the trails with minimum weight. We ignored the sign of the correlations,
since our only interest was in measuring the strength of the correlations, not their
exact value. Using the framework from Section 6.2 and Theorem 6.9 we quickly find
trails with correlation 1 for the 64-bit version of H, for example







0000000000000001
0000000000000001
0000000000000000
0000000000000001







G−→
1







0100000000000000
0000000000000000
0000000000000000
0000000000010000






.

Because finding linear trails is not as useful for the cryptanalysis ofNORX as differential
search, we were concerned only with determining whether the weights of linear trails
grew sufficiently quickly. Table 6.2 contains the weights for the best linear trails
found for NORX. From there, and comparing with Table 6.1 in the full setting, we
can see that the squared correlations are comparable in magnitude with the the best
differential trails.
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Table 6.2: Lower bounds for linear trail weights in the NORX F function.

NORX32 NORX64

F0.5 0 0
F1.0 1 1
F1.5 6 6
F2.0 20 20

6.4 Rotational Cryptanalysis

Definition 6.11. Let f be a vectorial Boolean function f : {0,1}n × {0,1}n→ {0,1}n
and let a, b be n-bit strings. We call (a, b) a rotational pair with respect to f if the
following equation holds:

f (a, b)≫ r = f (a≫ r, b≫ r)

Lemma 6.12. Let H be the nonlinear function of NORX, and let a, b be n-bit strings.
The probability of (a, b) being a rotational pair is:

Pr(H(a, b)≫ r = H(a≫ r, b≫ r)) =
9

16
(≈ 2−0.83)

Proof. After evaluating and simplifying the equation H(a, b)≫ r = H(a≫ r, b≫ r)
we get ((a ∧ b)≪ 1)≫ r = ((a≫ r)∧ (b≫ r))≪ 1. Translating this equation to
bit vectors results in

(ar−1 ∧ br−1, . . . , a0 ∧ b0, 0, an−2 ∧ bn−2, . . . , ar ∧ br)
= (ar−1 ∧ br−1, . . . , a0 ∧ b0, an−1 ∧ bn−1, an−2 ∧ bn−2, . . . , 0)

The probability that those two vectors match is (3/4)2 = 9/16, as a ∧ b = 0 with
probability 3/4 for bits a and b chosen uniformly at random.

Now we can use Lemma 6.12 and Theorem 1 from [261] (under the assumption
that the latter holds for H, too) to compute the probability of Pr(Fl(S)≫ r = Fl(S≫
r)) for a state S and a number of rounds l. It is given by:

Pr(Fl(S)≫ r = Fl(S≫ r) = (9/16)4·4·2·l

Table 6.3 summarizes the (approximate) weights (i.e., the negative logarithms of the
probabilities) for different values of l, which are relevant for NORX.

As a consequence, the permutation F l on a 16W state is indistinguishable from a
random permutation for l ≥ 20 if w= 32 and for l ≥ 39 if w= 64 with probabilities
of ≤ 2−531 and ≤ 2−1035 respectively.
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Table 6.3: Weights for rotational distinguishers of Fl

l 4 6 8 12
w 106 159 212 318

Remark. Khovratovich et al. [262, Appendix B] showed that our estimates were overly
pessimistic, and the assumption of independence does not hold. Because there are some
H operations feeding into each other, the values going into the second H in a chain are
constrained and decrease the rotational probability.

Definition 6.13. Let f be a vectorial Boolean function f : {0,1}n × {0,1}n→ {0,1}n
and let a, b be n-bit strings. We call (a, b) a rotational fixed point with respect to f if
the following equation holds:

f (a, b)≫ r = f (a, b)

Lemma 6.14. Let f be a vectorial Boolean function f : {0,1}n × {0,1}n → {0,1}n,
(a, b) 7→ f (a, b), which is a permutation on {0,1}n, if either a or b is fixed. The
probability that (a, b) is a rotational fixed point is:

Pr[ f (a, b)≫ r = f (a, b)] = 2gcd(r,n)−n

Proof. The first important observation is that the statement of this lemma is inde-
pendent of the function f , as it only makes a claim on the image of f . Thus it is
sufficient to prove the lemma for z≫ r = z, where z = f (a, b) and a or b was fixed.

We identify the indices of an n-bit string by the elements in G := Z/nZ. Let
τ : G → G, i mod n 7→ (i + 1)mod n. Then τ obviously generates the cyclic group
G, i.e. ord(τ) = n. Moreover, for an arbitrary r ∈ Z we have ord(τr) = n/gcd(r, n),
see [425, §6.2]. In other words, the subgroup H := 〈τr〉 of G has order n/gcd(r, n).
By Lagrange’s theorem we have ord(G) = [G : H] ·ord(H) and it follows for the group
index [G : H] = gcd(r, n), which corresponds to the number of (left) cosets of H in
G. These cosets contain the indices of a bit string which are mapped onto each other
by a rotation≫ r. This means that there are 2gcd(r,n) n-bit strings z which satisfy
z≫ r = z. Thus the probability, that an n-bit string z, chosen uniformly at random
among all n-bit strings, satisfies z≫ r = z is 2gcd(r,n)−n. This proves the lemma.

A direct consequence of Lemma 6.14 is that for n even and r = n/2 the probability
that (a, b) is a rotational fixed point is 2−n/2. The rotation r = n/2, which swaps the
two halves of a bit string, is especially interesting for cryptanalysis as it results in the
highest probability among all 0< r < n.

The nonlinear function H of NORX satisfies the requirement of being a permutation
on {0,1}n when either of its inputs is fixed. Therefore we get probabilities of 2−16

(32-bit, r = 16) and 2−32 (64-bit, r = 32), that randomly chosen (a, b) is a rotational
fixed point of H.
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6.5 Truncated Differentials

Given a randomly chosen state S and an input difference δ we define the (truncated)
differential bias of an output state bit bi(S) as

Pr[bi(Fr(S)⊕ Fr(S ⊕δ)) = 0] =
1
2
(1+ εd) ,

where bi indicates the ith bit of S. The quantity εd may also be interpreted as
the correlation between bi(Fr(S)) and bi(Fr(S ⊕ δ)), as in linear cryptanalysis (cf.
Definition 2.16).

Das, Maitra, and Meier [155, §5.1] reported the following truncated differential,
which is injected into the first column of the 4× 4 state of the NORX32 permutation:

00000C00,80000400,80000000,80000000.

They claimed a noticeable bias of > 0.01 on over 20 bits after 227 measurements
on F2. The differential in question is strikingly similar to a column differential also
present in low-weight differentials for NORX32’s F1.5 (cf. Appendix A.2.1). We also
observed that placing the same difference in any other column of the state also yields
similar biases. This suggests a simple semi-automated approach to find truncated
differentials over 4 steps of ChaCha-like permutations:

1. Using automated methods, enumerate low-weight differentials for F1.5;

2. For every 4-word column of the differential trails found in the first step, verify if
differential biases are present for the output bits of F2. If so, save that column.

Using this approach we have found stronger biases than [155], and also other pre-
viously unknown truncated differentials for BLAKE21 and ChaCha20. Additionally,
these differentials are very strong in both directions of the permutation. Table 6.4
lists the truncated differential biases identified for F2 and its inverse. Some facts are
immediately apparent:

• Our differential bias for NORX32 is twice as strong as that of Das et al. [155,
§5.1];

• The 64-bit permutations are somewhat weaker than their 32-bit counterparts
when it comes to resistance to differential cryptanalysis;

• The lack of integer addition in NORX results in slightly stronger biases, but no
significantly higher weaknesses when compared to its ARX counterparts;

1The BLAKE2 core primitive is a blockcipher; the BLAKE2 permutation alluded to here refer to its
blockcipher with a fixed all-zero key.
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Table 6.4: Truncated differential biases for NORX, BLAKE2, and ChaCha. The “Input
δ” column indicates state bits corresponding to the input difference; “max log2 εd”
indicates the logarithm of the largest bias found for the corresponding difference.
Measurements were performed over 232 samples. In the case of ChaCha, the biases
apply to 2 double-rounds.

Permutation Input δ max log2 εd for F2 max log2 εd for F−2

NORX32 [155] 10,11, 138,159, 287,415 −3.46 −0.80
NORX32 10,138, 159,287, 415 −2.46 −0.77
NORX64 63,575, 775,831 −0.00 −0.05
BLAKE2b 63, 575,799, 831 −1.03 −0.04
BLAKE2s 11, 139,159, 287,415 −3.08 −1.58
ChaCha20 19, 147,159, 287,415 −2.59 −0.68

• The inverse permutation is significantly weaker than the forward direction in
all cases. This is in stark contrast with the KECCAK permutation, which has a
stronger inverse.

Most surprisingly, there are 4 probability-1 truncated differentials for NORX64’s F2.
In particular, an input of

8000000000000000,0000000000000000,8000000000000000,8000000000000080
to column i of the state S will result in a difference of 0 at output bit 2 of Si+2 mod 4.

We can extend these biases further by searching for differential trails that end
with the input differentials from Table 6.4. This is accomplished, once again, by the
automated search methods of Section 6.2, with the added constraint that the output
difference is predefined to a specific value. Table 6.5 presents the best practical
truncated differential biases we found. In the case of NORX64, for example, we
are able to connect the input difference shown to the output difference in Table 6.4
over F0.5 with a trail of probability 2−6, yielding a truncated differential for F2.5 with
the same probability. Extending the difference further showed to be implausible for
practical verification—the best connecting trail over F1 has probability 2−48, which
we could not verify due to insufficient computational resources. Similar remarks
apply to the other primitives shown in Table 6.5.

On the reverse direction, we were able to find low-probability trails for one more
round, culminating in very practical differential biases for F−3.5 of NORX64 and
BLAKE2b.
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Table 6.5: Extended truncated differential biases for NORX, BLAKE2, and ChaCha.
Measurements were performed over 232 samples.

Permutation Function Input ∆ max log2 εd

NORX32 F2.5 10, 52, 62, 63, 74, 127, 169, 180, 202,
223, 255, 266, 351, 367, 383, 394,
402, 425, 446, 447, 479, 503

−11.32

NORX32 F−3 84, 224, 229, 230, 245, 260, 261, 287,
420

−2.89

NORX64 F2.5 63, 146, 199, 255, 402, 447, 455, 511,
575, 703, 711, 743, 751, 767, 775,
831, 959, 1007, 1015

−6.00

NORX64 F−3.5 36, 63, 336, 337, 344, 345, 357, 376,
377, 381, 382, 655, 656, 663, 664,
695, 696, 700, 701, 975, 983, 1020

−11.64

BLAKE2b F2.5 63, 151, 223, 255, 407, 447, 479, 511,
575, 703, 719, 735, 751, 767, 799,
831, 959, 975, 1007

−7.03

BLAKE2b F−3.5 7, 63, 328, 336, 337, 352, 353, 368,
369, 376, 377, 655, 656, 671, 672,
687, 688, 695, 696, 975, 1007, 1015

−11.63

BLAKE2s F2.5 11, 38, 62, 75, 127, 178, 190, 203,
223, 255, 267, 351, 359, 383, 395,
411, 422, 434, 479, 503

−13.06

BLAKE2s F−3 83, 228, 229, 236, 248, 267, 268, 287,
427

−4.96

ChaCha F2.5 31, 83, 111, 127, 211, 223, 239, 255,
287, 351, 359, 367, 375, 383, 399,
415, 479, 487, 503

−9.94

ChaCha F−3 27, 31, 162, 170, 171, 174, 175, 182,
183, 190, 191, 323, 324, 327, 328,
335, 336, 343, 344, 483, 487, 503

−11.00
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6.6 Further Applications

6.6.1 Tyche

The initialization step of Tyche (Section 3.2) performs 20 iterations of MIX after
setting the seed and index. Using the techniques of Section 6.2, we found that the
best differential for 4 iterations of MIX has probability 2−32 and is
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.

This upper-bounds the probability of a single 20-iteration differential trail to
�

2−32
�5
= 2−160, well below the targeted security level. Therefore it appears unlikely

that streams with related seeds or indices will appear correlated.
This analysis also strengthens the claim (cf. Section 3.4.2) that Tyche-CTR re-

quires 5 rounds to be statistically indistinguishable —Tyche-CTR-4’s small differences
between adjacent blocks are detectable with TestU01’s 236 outputs generated during
testing.

6.6.2 McMambo

McMambo [284] is an authenticated encryption scheme submitted to CAESAR, which
essentially consists of a Salsa20-based tweakable block cipher in the McOE mode [196]
and, like NORX, only uses bitwise logical operations.

Using the techniques of Section 6.2, we quickly found an iterative differential trail
on the “double-round” D of the block cipher, which invalidates McMambo’s security
claims and allows an attack to easily forge messages:
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D−→
2−2







00000000 00000000 00000000 0000000000000000 00000000 00000000 0000000000000000 00000000 00000000 0000000000000000 00000000 00000000 δ






,

for any 32-bit δ of Hamming weight 1. Seeing that the McMambo tweakable block-
cipher is composed of 12 double-rounds, the probability of this iterated differential
throughout the whole cipher is expected to be 2−24. In reality there appears to be a
strong clustering effect, as experimental results suggest the differential probability is
closer to 2−17.

Such a high probability differential can be exploited many ways; one of them is
to easily forge messages by taking a message block mi and replacing it by mi ⊕δ, δ
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being one of the above input differences. In response to our results, McMambo was
withdrawn from the CAESAR competition2.

6.6.3 Wheesht

Wheesht [329] was another CAESAR candidate submitted by Peter Maxwell. The
authentication portion of Wheesht consists of the application of function θ 3 to each
block of 256-bit ciphertext, as

∑

i

θ 3(ci ⊕ ki)⊕ ki ,

with ci being the ith 256-bit block of ciphertext, ki being a block key, and the sum
being performed word-wise on 64-bit words.

Once again, using automated methods we found the probability-1 iterated differ-
ential







8000000000000000
0000000000000000
8000000000000000
8000000000000000







θ−→
1







8000000000000000
0000000000000000
8000000000000000
8000000000000000






,

which coupled with the word-wise sum modulo 264 of every block value, for which
this differential also has probability 1, results in trivial deterministic forgeries by
using this difference in any even number of blocks of any message. Our observation
was acknowledged by the author3, and Wheesht did not make it past round 1 of the
competition.

6.6.4 Cypress

Cypress is a lightweight block cipher family proposed by Rodinko and Oliynykov in
2017 [16, 400]. Like some of the primitives in the previous chapters, Cypress uses a
ChaCha-inspired core.

Cypress is a Feistel network, as depicted in Figure 6.2, whose round function
P consists of two branches of 4 words each. It uses the ChaCha quarter-round,
iterated twice, as the Feistel function, which is keyed at each round by xoring its
input by a round key, the derivation of which we omit here. Cypress has two variants,
Cypress-256 and Cypress-512, parameterized on the word size:

2https://groups.google.com/g/crypto-competitions/c/ysiDA5Qqfrs/m/
vUnBeBzkctsJ

3https://groups.google.com/g/crypto-competitions/c/16pjT_05NtE/m/
9z9mS6aSb1MJ

https://groups.google.com/g/crypto-competitions/c/ysiDA5Qqfrs/m/vUnBeBzkctsJ
https://groups.google.com/g/crypto-competitions/c/ysiDA5Qqfrs/m/vUnBeBzkctsJ
https://groups.google.com/g/crypto-competitions/c/16pjT_05NtE/m/9z9mS6aSb1MJ
https://groups.google.com/g/crypto-competitions/c/16pjT_05NtE/m/9z9mS6aSb1MJ
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• For 32-bit words, the ChaCha quarter-round is used verbatim;

• For 64-bit words, the ChaCha quarter-round uses rotation constants 32, 24, 16, 15.

Finally, Cypress-256 performs 10 rounds, while Cypress-512 performs 14.
Using automated search we found the following differential for 4 rounds of

Cypress-256:






















81181000
80081000
00000000
01008000
00000220
00000260
e0202020
20002020
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−−→
2−40























81181000
80081000
00000000
01008000
00000220
00000260
e0202020
20002020























.

This differential trail has probability 2−40, and also conveniently happens to be
iterative. However, experimental verification shows that its measured probability after
247 trials is approximately 2−38. This might be due to clustering or data dependencies
between Feistel rounds [116]. Combined with the 2-round differential
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81381000
80081000
00000000
01008000
00000220
00000220
60202020
20002020























,

results in a distinguisher for the full blockcipher with complexity 238+38+22 = 298.
We found similar results for Cypress-512. In Cypress-512 the best differential

trail found for 4 rounds—with probability 2−41—is not iterative. Nevertheless we did
find a good iterative differential






















80013f8001000000
8000008001000000
0000000000000000
0001000080000000
0000000000202000
0000000000202000
e000200020002000
2000000020002000
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80013f8001000000
8000008001000000
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0001000080000000
0000000000202000
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2000000020002000
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Figure 6.2: Round function P of Cypress.

which, again, combined with a 2−21 probability 2-round trail results in a distinguisher
for the full cipher with complexity 2165.

While these distinguishers have relatively impractical complexities, they signifi-
cantly improve the ones in the literature [399, 401, 402] and also show that Cypress
does not live up to its security claims. In particular, distinguishers for fewer rounds
than the full cipher can be used for key recovery, and those will have lower complexity
than the ones presented above. In conclusion, for Cypress-256 and Cypress-512 to
be resistant against differential cryptanalysis up to 2256 (resp 2512) complexity, they
would need at least 28 and 44 rounds, respectively.



Chapter 7

Practical Cryptanalysis of the Open
Smart Grid Protocol

The Open Smart Grid Protocol (OSGP) [184] is an application layer communication
protocol for smart grids built on top of the ISO/IEC 14908-1 protocol stack [242],
developed by the Energy Service Network Association (ESNA), and is a standard
of the European Telecommunications Standards Institute (ETSI) since 2012 [20].
According to estimates, OSGP-based smart meters and devices are deployed in over 4
million devices worldwide as of 2015, making OSGP one of the most widely used
network protocols for smart grid applications.

In this chapter, we investigate the authenticated encryption scheme specified in
OSGP. Its authenticated encryption scheme is described in Section 7.1, with special
focus on the authentication component of the scheme, the OMA digest. In Section 7.2
we present a thorough analysis of the OMA digest. This function has been found to
be extremely weak, and cannot be assumed to provide any authenticity guarantee
whatsoever. We describe multiple attacks having different levels of applicability in
the context of OSGP. The forgery attacks presented in Section 7.2.4 belong to the
most powerful and practical, and allow to retrieve the 96-bit secret key in a mere 144
and 168 chosen-plaintext queries to a tag-verification oracle exploiting the very slow
propagation of additive and xor-differences in the OMA digest. We also describe how
this variant can work as a ciphertext-only attack, making it even more devastating.
For easier verifiability, we implemented the attacks of Section 7.2 in the Python
programming language; the code is listed in Appendix B.

Table 7.1 summarizes our different attacks on the authenticated encryption scheme
of OSGP and also lists their corresponding sections. While the attacks have various
tradeoffs between the number of oracle queries and the computational complexity,
each constitutes a complete break of the OSGP authenticated encryption scheme.

In summary, the work at hand is another entry in the long list of examples of flawed
authenticated encryption schemes, and shows once more how easily a determined
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Table 7.1: Required number of queries and expected complexity for the attacks of
Section 7.2, with varying time-query tradeoff parameter B. The abbreviation KP+
means known-plaintext with common prefix, CP denotes chosen-plaintext, CC stands for
chosen-ciphertext, and TG and TV denote tag-generation and tag-verification oracles,
respectively.

Attack B Queries Complexity Type Oracle

§7.2.1

1 13 23.58

CP TG

2 7 210.58

3 5 218.00

4 4 225.58

5 4 233.58

6 3 241.00

§7.2.2

1 24 / 13 210.58

KP+ / CP TG

2 12 / 7 217.58

3 8 / 5 225.00

4 6 / 4 232.58

5 6 / 4 240.32

6 4 / 3 248.58

§7.2.4 (xor) — ≈ 168 ≈ 168 CP / CC
TV

§7.2.4 (Additive) — ≈ 144 ≈ 144 CP

attacker can break the security of protocols based on weak cryptography.

Related Work

Feiten and Sauer [191] showed that the RC4 encryption key used in the OSGP AE
scheme can be recovered given ≈ 90000 captured messages, thus compromising its
confidentiality. In late 2013, Kursawe and Peters independently analysed OSGP and
identified several security flaws, some of which overlap with our own findings [281].
Their work gives a good overview on the various security flaws and shows how they
can be exploited to mount some basic attacks on OSGP’s cryptographic infrastruc-
ture. We, on the other hand, focus on the digest function in more detail and, as a
consequence, are able to further move the attacks into practicality. We note that our
analysis has been performed solely against the OSGP specification [184] and not
against any deployed devices.
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Figure 7.1: The OSGP AE scheme. Notation: x0 = {81,3F,52,9A,7B,E3,89,BA},
x1 = {72,B0,91,8D,44,05,AA,57}, k = k1 ∥ k0 : Open Media Access Key (OMAK),
m : message, n : sequence number, t : authentication tag, k′ = k′1 ∥ k′0 : Base
Encryption Key (BEK), c : ciphertext.

7.1 Preliminaries

We focus solely on OSGP’s cryptographic infrastructure, and not on the protocol itself.
The high-level structure of OSGP’s authenticated encryption scheme is depicted in
Figure 7.1.

The OSGP scheme is based on three algorithms: the EN 14908 algorithm1, the
stream cipher RC4 and the so-called OMA digest, a message authentication code
(MAC). These three algorithms are combined in a mixture of the generic composi-
tion [48] approaches MAC-and-encrypt and MAC-then-encrypt to form an authenti-
cated encryption scheme, see again Figure 7.1. We note that, while the OMA digest
is described in the OSGP specification [184], public information on the EN 14908
algorithm, specified in ISO/IEC 14908-1 [242], is hard to come by. All information on
the latter was retrieved from the OSGP specification [184] and the related standard
ISO/IEC CD 14543-6-1 [243, p.232] which, like ISO/IEC 14908-1 and a few other
standards [18, 239, 430], is also a direct descendant of LonTalk [179].

The security of OSGP’s AE scheme depends on the 96-bit Open Media Access
Key (OMAK) k = k1 ∥ k0 from which all other key material is derived. The OMAK
is usually unique to a device but not hardcoded and can be changed, often to be

1The OSGP specification describes EN 14908 as an encryption algorithm, but it is clearly nothing
of the sort. We therefore only talk about the EN 14908 algorithm in this work.
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shared with other devices under the same concentrator [184, §7.1]. Two things are
derived from the OMAK: firstly, a so-called Base Encryption Key (BEK) k′ = k′1 ∥ k′0 is
computed [184, §7.3] which is a 128-bit key forming the basis for the RC4 encryption
key. The BEK is constructed2 using the EN 14908 algorithm which appears to have
been the basis for the OMA digest but uses smaller 48-bit keys and processes message
bytes in reversed order. The EN 14908 algorithm is applied to each of the halves k0

and k1 of the OMAK and the two constants x0 = {81,3F,52,9A,7B,E3,89,BA} and
x1 = {72,B0,91,8D,44,05,AA,57}. The two 64-bit results are then concatenated to
form k′, see Figure 7.1. Note that the BEK only depends on the OMAK and is thus
fixed as long as k remains unchanged.

Secondly, an authentication tag t is produced using the OMA digest on the message
m concatenated with a sequence number n and the OMAK k. Let l denote the size of
m ∥ n in bytes. The OMA digest starts with its 8-byte internal state a = (a0, . . . , a7)
set to zero. First, m ∥ n is zero-padded to a multiple of 144 bytes, meaning

m′ = m ∥ n ∥ 0−l mod 144 .

Let m′ = m′0 ∥ · · · ∥ m′143 denote the first, and possibly only, 144-byte block of the
message. The internal state is updated continuously using a nonlinear function fb,c

where b = ki mod 12,7− j is a key bit and c = j is the current position in the state. Its
specification is as follows:

fb,c(x , y, z) =

¨

y + z + (¬(x + c))≪ 1 if b = 1

y + z − (¬(x + c))≫ 1 otherwise.

In order to update state element a j, the function f takes, for 0≤ i ≤ 17 and 7≥ j ≥ 0,
two adjacent state elements a j and a j+1 mod 8 and a message-byte m′8i+7− j as input,
i.e., a j = fki mod 12,7− j , j(a j, a j+1 mod 8, m8i+7− j), and depending on the value of the key
bit ki mod 12,7− j one of the two branches depicted above is evaluated. The next 144-
byte message block is processed similarly, with the initial internal state carried over
from the previous block. The complete pseudocode of the OMA digest is shown in
Algorithm 7.1 and a visualization of its innermost loop, where the message bytes are
processed, is given in Figure 7.2. For the reference implementation we refer to [184,
Annex E].

After the tag generation, t is xored into the lower half of the BEK k′ which
then produces the final 128-bit RC4 encryption key k′′ = k′1 ∥ (k′0 ⊕ t), see again
Figure 7.1. This measure is intended to provide RC4 with ever-changing key material,

2The OSGP specification is rather unclear on how the BEK is derived. The presented description is
based on our investigations also involving other standards [243, p.232]. The key observation here is
that the BEK derived from the OMAK. The concrete realization is not too important, though, and is
only described for the sake of completeness.
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Figure 7.2: Data processing (right-to-left) in the OMA digest, with i = i mod 12.

Algorithm 7.1: The OSGP OMA digest.
Function OMADigest(m,k)

a← (0, 0,0, 0,0,0, 0,0);
m← m ∥ 0−|m|mod 144;
foreach 144-byte block b of m do

for i← 0 to 17 do
for j← 7 to 0 do

if ki mod 12,7− j = 1 then
a j ← a( j+1)mod 8 + b8i+(7− j) + (¬(a j + j))≪ 1;

else
a j ← a( j+1)mod 8 + b8i+(7− j) − (¬(a j + j))≫ 1;

end
end

end
end
return a;

thus producing a fresh keystream with every new message, since, according to the
OSGP specification, the sequence number n, which is appended to m, is continuously
increased.

Sequence numbers are shared between sender and receiver in OSGP. The receiver
of a message verifies that the correct sequence number was appended to the latter.
Messages with sequence numbers in the range {n, . . . , n+ 8} are accepted as valid
requests. If a message with sequence number n−1 is received, then the recipient does
not execute the request but instead re-sends the answer of the (previously executed)
request of number n− 1. Sequence numbers outside of this range trigger an error
and the OSGP device replies with a failure code and the correct sequence number.
More details on the handling of sequence numbers can be found in [184, §9.7].

After the setup phase is finished, k′′ is used to encrypt m ∥ n via RC4 to obtain
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the ciphertext c. Finally, c ∥ t is transmitted. Messages m ∥ n processed in OSGP are
allowed to have a maximum size of 114 bytes [184, §9.2]. This complicates some
attacks that require up to 136-byte messages. Nevertheless, we will also describe
scenarios that respect this message size limit.

7.2 Analysis

OSGP uses RC4 for encryption without discarding any initial bytes. RC4 has known
statistical key- and plaintext-recovery attacks, and these have been shown to be
practical [7, 197, 198, 217, 416, 438, 456]. However, in this work we do not focus
on RC4, but instead on the OMA digest, see Algorithm 7.1.

The OMA digest algorithm presents multiple flaws. Firstly, it uses a simple
zero byte message padding, which results in messages with any number of trailing
zeroes sharing the same tag. Secondly, given a tuple (a, m, k) where a is the OMA
digest’s state or authentication tag, m a message and k the OMAK, the function is
fully reversible (see Algorithm 7.2) which is a very useful property for the attacks
presented in Sections 7.2.1 and 7.2.2. Likewise, it is also possible to take an arbitrary
internal state, and continue to process it as if to resume a partially digested message.
This is depicted in Algorithm 7.3.

Algorithm 7.2: The “backward” OSGP OMA digest, reverting the internal
state back by n message bytes.

Function OMABackward(a,m,k,n)
// Assumes |m| ≤ 144.
m← m ∥ 0−|m|mod 144;
for l ← 0 to n− 1 do

i, j← ⌊l/8⌋, l mod 8;
if k(17−i)mod 12,7− j = 1 then

x ← (a j − a( j+1)mod 8 −m143−8i− j)≫ 1;
else

x ← (a( j+1)mod 8 +m143−8i− j − a j)≪ 1;
end
a j ←¬x − j;

end
return a;
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Algorithm 7.3: The “forward” OSGP OMA digest, starting with a known
initial state and processing message bytes starting at position n.

Function OMAForward(a,m,k,n)
/* Essentially Algorithm 7.1, but start at byte mn with a

known state a, and assume |m| ≤ 144. */
m← m ∥ 0−|m|mod 144;
for l ← n to 143 do

i, j← ⌊l/8⌋, 7− l mod 8;
if ki mod 12,7− j = 1 then

a j ← a( j+1)mod 8 +m8i+7− j + (¬(a j + j))≪ 1;
else

a j ← a( j+1)mod 8 +m8i+7− j − (¬(a j + j))≫ 1;
end

end
return a;

7.2.1 Chosen-Plaintext Key Recovery Attacks

Let a = (a0, . . . , a7) denote the 8-byte internal state of the OMA digest. The attacks
discussed below use chosen 144-byte messages m = m0 ∥ · · · ∥ m143

3, and exploit
differential weaknesses in the OMA digest.

Bitwise Key Recovery

The first attack recovers the key one bit at a time by differential cryptanalysis. Specif-
ically, we exploit the xor-differential (∆mi,∆a j) = (80,80), where ∆mi and ∆a j

denote input and output differences, respectively, for j = 7− i mod 8. The output dif-
ference is obtained immediately after processing message byte mi (see Algorithm 7.1)
and can be written as

fk, j(a j, a j+1 mod 8, mi ⊕ 80)
= a j+1 mod 8 + (mi ⊕ 80)± (FF⊕ (a j + j)≪ r)
= (a j+1 mod 8 +mi ± (FF⊕ (a j + j)≪ r))⊕ 80
= fk, j(a j, a j+1 mod 8, mi)⊕ 80

where the rotation offset r ∈ {1, 7} and the ± operation depend on the value of the
key bit k ∈ {0,1}. This differential has probability 1, by well-known differential
properties of addition modulo 2n [299], and propagates cleanly through the state a

3For simplicity, we use 144-byte messages throughout this section. Note, however, that the
presented attacks use messages which are never longer than 136 bytes.
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for the next 8 iterations, resulting in the following difference over the state:

∆a = (80,80,80,80,80,80,80,80) .

The next iteration reveals one key bit. By xor-linearizing the state update function f ,
the new output difference ∆a′j is of the form

∆a′j = ((a j+1 mod 8 ⊕ 80)⊕mi ⊕ (FF⊕ ((a j ⊕ 80)⊕ j)≪ r)) ⊕
(a j+1 mod 8 ⊕mi ⊕ (FF⊕ (a j ⊕ j)≪ r))

where r ∈ {1, 7}. As a consequence, we have∆a′j = 81, if bit 7− i mod 8 of k⌊i/8⌋mod 12

is 1, and ∆a′j = C0, if the same key bit is 0. While integer addition and xor behave
differently with respect to the propagation of xor-differences, the least significant bit
of integer addition and xor behave identically in this case and can be used to recover
the key bit with probability 1.

The above leak, combined with Algorithm 7.2, can be turned into a chosen-
plaintext key-recovery attack retrieving the OMAK k bitwise in at most 96+1 queries.
Algorithm 7.4 describes this attack in full detail. Looking at Figure 7.1, we see
immediately that the reconstruction of k breaks the complete OSGP AE scheme. In
the following, we will explore how the attack can be further improved.

Algorithm 7.4: Bit-by-bit chosen-plaintext key-recovery attack.
Function RecoverKey(O )

// O is an oracle returning a message’s OMADigest under key k.
k← {0}12;

m
$←− {0..255}144;

a←O (m);
for i← 0 to 11 do

for j← 0 to 7 do
m′← m;
m′136−8i−1− j ← m′136−8i−1− j ⊕ 80;

a′←O (m′);
b← OMABackward(a, m, k, 8i) // Algorithm 7.2;
b′← OMABackward(a′, m′, k, 8i) // Algorithm 7.2;
k(17−i)mod 12,7− j ← (b j,0 ⊕ b′j,0);

end
end
return k;
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Bytewise Key Recovery

Analysing the above attack more thoroughly, we noticed that we can recover one
key byte at a time by injecting the input difference 80 into the message a couple of
steps earlier. This reduces the number of queries and the work load of the attack
drastically. In other words, we will show how to reconstruct the entire OMAK with
only 12+ 1 chosen-plaintext queries.

Let ki mod 12, j denote the jth bit of key byte i mod 12, for i = 17,16, . . . , 6 and
j = 0, . . . , 7. When injecting the message difference ∆m8i−8 = 80 and thereupon
processing 16 message bytes, we obtain an xor-difference of the internal state of
the form ∆a = (∆a0, . . . ,∆a7) = (∆x0, . . . ,∆x7) where ∆x l are arbitrary values for
l = 0, . . . , 7. The evolution of the difference propagation in the internal state can be
visualized as follows:

i = 17, . . . , 6 ∆a0 ∆a1 ∆a2 ∆a3 ∆a4 ∆a5 ∆a6 ∆a7

. . . . . . . . . . . . . . . . . . . . . . . . . . .
m8i−9 00 00 00 00 00 00 00 00
m8i−8 00 00 00 00 00 00 00 80

. . . . . . . . . . . . . . . . . . . . . . . . . . .
m8i−1 80 80 80 80 80 80 80 80
m8i 80 80 80 80 80 80 80 ∆x7

m8i+1 80 80 80 80 80 80 ∆x6 ∆x7
. . . . . . . . . . . . . . . . . . . . . . . . . . .

m8i+7 ∆x0 ∆x1 ∆x2 ∆x3 ∆x4 ∆x5 ∆x6 ∆x7

By analyzing again the xor-linearization of the state update function f , one
realizes that a key byte can be recovered in its entirety by exploiting, as in the case
of the bitwise key recovery attack, the information on the key bits stored in the
least significant bit of the output differences ∆x0, . . . ,∆x7. More precisely, key byte
ki mod 12 can be reconstructed as follows:

1. ki mod 12,0 = lsb(∆x7)⊕ lsb(80) 5. ki mod 12,4 = lsb(∆x3)⊕ lsb(∆x4)
2. ki mod 12,1 = lsb(∆x6)⊕ lsb(∆x7) 6. ki mod 12,5 = lsb(∆x2)⊕ lsb(∆x3)
3. ki mod 12,2 = lsb(∆x5)⊕ lsb(∆x6) 7. ki mod 12,6 = lsb(∆x1)⊕ lsb(∆x2)
4. ki mod 12,3 = lsb(∆x4)⊕ lsb(∆x5) 8. ki mod 12,7 = lsb(∆x0)⊕ lsb(∆x1)

In order to verify that the above key recovery indeed works, consider the following
steps. As we have already seen in the bitwise key recovery attack, the value of
ki mod 12,0 can be read off right away from ∆x7, see step 1 above. The remaining key
bits ki mod 12, j+1, for j = 0, . . . , 6, can be recovered from the xor-linearization of f
which gives us the relation

∆x6− j =∆x7− j ⊕ (∆x ′6− j≪ r) =∆x7− j ⊕ (80≪ r)
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where ∆x7− j and ∆x6− j denote output differences and ∆x ′6− j corresponds to the
difference before a6− j is updated in the jth step. The latter simply has the value 80
as can be seen in the table on the difference propagation. The above equation can be
re-written as

lsb(80≪ r) = lsb(∆x6− j)⊕ lsb(∆x7− j)

and since the rotation offset r ∈ {1,7} depends on ki mod 12, j+1, the formula above
gives us the value of the latter key bit.

Algorithm 7.5: Byte-by-byte chosen-plaintext key-recovery attack.
Function RecoverKey(O )

// O is an oracle returning a message’s OMADigest under key k.
k← {0}12;

m
$←− {0..255}144;

a←O (m);
for i← 0 to 11 do

m′← m;
m′136−8i−8← m′136−8i−8 ⊕ 80;
a′←O (m′);
b← OMABackward(a, m, k, 8i) // Algorithm 7.2;
b′← OMABackward(a′, m′, k, 8i) // Algorithm 7.2;
k(17−i)mod 12← RecoverByte(b, b′);

end
return k;

Function RecoverByte(a, a′)
x ← 0;
x0← a7,0 ⊕ a′7,0;
for i← 0 to 6 do x i+1← a6−i,0 ⊕ a′6−i,0 ⊕ a7−i,0 ⊕ a′7−i,0 ;
return x;

7.2.2 Known-Plaintext Key Recovery Attack

The second attack is not differential in nature and requires a weaker attacker. We
only assume in the following that the attacker is able to capture plaintexts with a
common prefix of various lengths. This may be feasible by, e.g., capturing repeated
messages with different sequence numbers.

This attack relies uniquely on the OMA digest’s invertibility, as seen in Algo-
rithm 7.2. The basic idea here is to have two messages, m and m′ that are equal
except in the last r bytes; partially reversing the final state of m by r iterations,
then using that state to process the final bytes of m′ should only happen when the
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(guessed) key bits used in those iterations are correct. This does not always happen,
but it reduces the keyspace to virtually one or two guesses per key byte. The concrete
realization of the attack is also described in Algorithm 7.6.

However, due to the slow diffusion of differences already described in Sec-
tion 7.2.1, to recover r bits of the key one needs more than r iterations back; this is
not a problem, though, as long as the key bits corresponding to the common prefix
bytes of the message are the same for the forwards and backwards processing of the
message. In practice, we have found that r + 8 iterations suffice to recover the key
with overwhelming probability.

Algorithm 7.6: Byte-by-byte known-plaintext key-recovery attack.
Function RecoverKey(O )

// O is an oracle returning a message’s OMADigest under key k.
k← {0}12;

m
$←− {0..255}144;

a←O (m);
for i← 0 to 11 do

m′← m;

m′128−8i..|m′|−1
$←− {0..255}|m|−128−8i;

a′←O (m′);
for x ← 0 to 255 do

k(17−i)mod 12← x;
b← OMABackward(a, m, k, 8i + 16) // Algorithm 7.2;
b′← OMAForward(b, m′, k, 128− 8i) // Algorithm 7.3;
if a′ = b′ then

break // May be a false positive; handling omitted.
end

end
end
return k;

7.2.3 Optimizing the Attacks

The attacks of Sections 7.2.1 and 7.2.2 have an obvious generalization that trades
queries for computation time. This is also a consequence of the OMA digest’s re-
versibility.

Let B ≥ 1 be the number of key bytes to recover per query; the attack from
Section 7.2.2 generalizes trivially to any B, by guessing B adjacent key bytes per
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query, at an average cost of
�

12
B

�

+ 1 queries and
�

12
B

�

28B−1 operations4.
The method from Section 7.2.1 also generalizes well to any B, by guessing the

last B− 1 bytes and recovering the first one by injecting a difference. Its average cost
is
�

12
B

�

+1 queries and
�

12
B

�

28(B−1)−1 operations. We note that for B ≥ 2 the messages
used in either case need not be longer than 113 bytes, bypassing OSGP’s restriction
on message sizes.

7.2.4 Forgeries and a Third Key-Recovery Attack

Forgeries in the OMA digest are possible by exploiting the differential properties
described in Section 7.2.1. To this end, we first explore xor differentials and afterwards
describe attacks using additive differentials.

Forgeries using xor-Differentials

For this attack, we consider input xor-differences of the shape

(∆m8i+ j,∆m8i+ j+1,∆m8i+ j+8) = (80,80,∆x)

for i = 0, . . . , 17 and j = 0, . . . , 7. After processing message bytes m8i+ j, m8i+ j+1, . . . ,
m8i+ j+7, the xor-differences in the internal state are, up to a rotation, of the form
∆a = (80,00,00,00,00,00,00,00). More precisely, after injecting ∆m8i+ j = 80, the
difference ∆m8i+ j+1 = 80 is used to prevent the difference of ∆m8i+ j from spreading
to the rest of the state. Creating this stationary difference can be achieved with
probability 1. Finally, the difference ∆m8i+ j+8 =∆x is used to cancel the stationary
difference from above thereby creating a forgery. The success of the forgery hinges
on whether the formula

(m8i+ j+8 ⊕∆x)± (FF⊕ ((a j ⊕ 80) + j)≪ r) = m8i+ j+8 ± (FF⊕ (a j + j)≪ r)

is satisfied. Note that the above formula again includes both possible cases which
depend on the value of the key bit k ∈ {0,1}. Using the formulas of Lipmaa and
Moriai [299], we can determine the optimal value for∆x with respect to its probability
p and the value of the key bit ki+1 mod 12, j:

ki+1 mod 12, j 0 1

∆x C0 40 01 03 07 0F 1F 3F 7F FF
− log2 p 1 1 1 2 3 4 5 6 7 7

Thus, choosing ∆x ∈ {C0,40,01} has a probability of about 1/4 of creating a
valid forgery, assuming a uniformly random key bit.

4An “operation” here is taken to mean at most the cost of an OMA digest evaluation over a message.
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Forgeries using Additive Differentials

Injecting additive differences is also useful to get a wider range of possible high-
probability differences, since every operation in the OMA digest, with the exception
of the cyclic rotation, has additive differential probability 15.

Using a similar approach as above, one can inject the additive difference
(∆⊟x ,−∆⊟x ,−∆⊟ y) at (mi, mi+1, mi+8). The success of the forgery here depends on
the quality of the approximations

∆⊟ y = ((−a j − j − 1)≪ 1)− ((−a j −∆⊟x − j − 1)≪ 1)
∆⊟ y = −((−a j − j − 1)≫ 1) + ((−a j −∆⊟x − j − 1)≫ 1)

for a j chosen uniformly at random. Since cyclic rotation is not a deterministic
operation with respect to additive differences, one cannot obtain ∆⊟ y that works
with probability 1. By replacing ((−a j −∆⊟x − j − 1)≪ 1) by ((−a j − j − 1)≪
1) + (−∆⊟x ≪ 1), and taking advantage of Daum’s results on the interaction of
integer addition and rotation [157], we have ∆⊟ y = −((−∆⊟x ≪ 1) − 2α + β),
where (α,β) has, as a function of∆⊟xR = ⌊(−∆⊟x)/2⌋ and∆⊟x L = (−∆⊟x)mod 27,
one of the following values of probability p:

(α,β) p

(0,0) 2−8(27 −∆⊟xR)(2+∆⊟x L)
(0,1) 2−8∆⊟xR(2−∆⊟x L − 1)
(1,0) 2−8(27 −∆⊟xR)∆⊟x L
(1,1) 2−8∆⊟xR(∆⊟x L + 1)

Similar remarks apply to the rotation by 7 case. By choosing ∆⊟x carefully, one
can maximize the probability of ∆⊟ y as well, as also previously exploited by
Daum [157]. For instance, choosing the difference ∆⊟x = 02, one obtains ∆⊟ y ∈
{01,FC,81,FB,FD}, with respective probabilities {127/256, 126/256,1/256,1/256,
1/256}. Therefore, one can expect 2 queries to be sufficient in over ≈ 98% of the
time with this method.

Using Forgeries for Key Recovery

Such a high-probability forgery attack, dependent on the value of key bits, gives us yet
another attack vector for key recovery. This attack is much simpler than the previous
ones, and unlike those it does not need to work “right to left” on the message bytes:
given a known plaintext, inject (02,−02,−∆⊟ y) and query a verification oracle. If
the forged message is validated, recover the key bit corresponding to mi+8 by looking

5Note that ¬x = x ⊕ FF= −x − 1.
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up which ∆⊟ y corresponds to which key bit. This process can be repeated 96 times
to recover the entire key.

Additionally, this attack can work even over ciphertext, by using the xor-differences
(80,80,∆x) with ∆x ∈ {40,C0,01}. The approach here is the same, albeit requiring
a few more queries, but it can be applied over unknown ciphertext encrypted with
RC4, as is the case with OSGP. The attack thus completely breaks not only the OMA
digest, but also the entire cryptographic security of OSGP.

The average number of queries can be reduced by using the following trick:
instead of picking a difference at random from the possible set of differences, pick
C0 and 40 in order. If none of them results in a forgery, the key bit can only be 1;
this results in key recovery in an average of 168 queries. Algorithm 7.7 illustrates
the xor key-recovery attack on OSGP using this trick, only taking as input a valid
ciphertext-tag pair and an oracle that verifies ciphertexts.

Algorithm 7.7: Bit-by-bit chosen-ciphertext key-recovery attack, in the con-
text of the OSGP protocol.

Function RecoverKey(O , c, a)
// O is an oracle that returns 1 if (c, a) is a valid OSGP

ciphertext-tag pair, 0 otherwise.
// c, a is a valid OSGP ciphertext-tag pair, i.e., O (c, a) = 1.
k← {0}12;
for i← 0 to 95 do

c′← c;
c′i ← ci ⊕ 80;
c′i+1← ci+1 ⊕ 80;
c′i+8← ci+8 ⊕ C0;
if O (c′, a) = 1 then

k⌊(i+8)/8⌋mod 12,(i+8)mod 8← 0;
continue;

end
c′i+8← ci+8 ⊕ 40;
k⌊(i+8)/8⌋mod 12,(i+8)mod 8← 1−O (c′, a);

end
return k;

7.2.5 Extension of the OSGP Analysis to Other Standards

The EN 14908 algorithm, used in OSGP for key derivation and quite similar to the
OMA digest, is also used in other LonTalk-derived standards for authentication [18,
179, 239, 242, 243, 430]. We found evidence that the foundations of the technology
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(presumably also including the EN 14908 algorithm) were laid in 1988 [302, p.3].
LonTalk was estimated to be implemented in over 90 million devices as of 2010 [178].
Given that the EN 14908 algorithm has a 48-bit key, it is already broken by design.
That said, the attacks described in the previous sections can be adapted to key recovery
attacks on the EN 14908 algorithm—likely present in every other LonTalk-derived
standard—in much less than 248 work.





Chapter 8

Conclusion

Over the course of this thesis I have presented several related designs, all sharing the
same purpose—to reduce unnecessary choices between performance and safety in
current and upcoming hardware.

The first way I did this was with Tyche. This is a random number generator,
not aimed at cryptographic applications, whose focus is to be fast and keep a very
small state. The small state requirement is important for many-core applications,
where it is not practical to synchronize a single generator, and the combined size
of all generators should not be a significant part of the computation. My goal here
was that users should not have to sacrifice random number quality to accomplish
this, and performance should be good across the board. In particular Tyche does
not use wide integer multiplications, which have varying performance from platform
to platform. Tyche has excellent performance even in desktop machines, especially
when vectorized, and does not suffer from statistical defects to get there.

The second way was with BLAKE2. Interestingly, while most design challenges
are about what to put in a primitive, one of the main challenges with BLAKE2 was
what to take away from its predecessor, BLAKE. While BLAKE was the fastest SHA-3
candidate on desktop processors, it was still quite slower than the ever-present MD5
and SHA-1, which have long resisted their obsolescence. With the introduction of
BLAKE2 that was no longer the case. BLAKE2 improves over MD5 in nearly every way,
so much so that it has been adopted by numerous other cryptographic constructions
as a building block, e.g., [10, 90, 91, 122, 199, 232, 235, 426], and also in various
real-world products, e.g., RFC 7693 [410], the RAR file format [408], Zcash [236],
Noise [382], Wireguard [170], librsync, the Linux kernel’s random number generator,
and many others. Overall I believe that the BLAKE2 design contributed in a tangible,
even if small, way to a more secure Internet.

The third contribution was in the field of authenticated encryption. NORX, my
submitted design, was one of the fastest functions in the CAESAR competition that
did not rely on hardware accelerated AES. While ultimately NORX was not selected
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as a member of the final CAESAR portfolio—with 4 out of the 6 CAESAR winners
relying on AES hardware acceleration to be efficient—it did pave the way for later
designs inspired by it such as Gimli [61]. In view of this I believe that while NORX
may not have been a real-world adoption success like BLAKE2, it did prove to be a
successful research cipher.

The fourth way I contributed was less tangible, and it consisted mainly of crypt-
analysis. First, my cryptanalytic results on NORX solidified the confidence on the
design of the NORX core permutation. Secondly my results on McMambo and Wheesht
directly helped the CAESAR committee to select the candidates for the next round
of the competition. My work on the OSGP authenticated encryption algorithm sped
up the adoption of an adequate replacement in its updated standard, the OSGP-AES-
128-PSK cipher suite. And more indirectly, my OSGP work also demonstrated why
new schemes should not be adopted or standardized without public cryptanalysis;
novel designs, even by experienced cryptographers, often get broken.

I can therefore conclude that security need not come at the cost of performance
or complexity. Indeed, if the design process takes into account the target hardware
and ease of implementation, safer primitives may also be faster and simpler than
existing primitives that do not take implementation aspects into account.
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Appendix to Chapter 6

A.1 Automated Search Sample Code
from z3 import *
W = 64 # word sizeTARGET_D = 0 # target weight
def get_new_variable():if not hasattr(get_new_variable, "counter"):get_new_variable.counter = 0 # it doesn't exist yet, so initialize itt = BitVec("y%u" % get_new_variable.counter, W)get_new_variable.counter += 1return t
def hw(x):return Sum([ ZeroExt(W-1, Extract(i,i,x)) for i in range(W) ])
def valid_and(a, b, c):return (~(a|b) & c) == 0
def prob_and(a, b, c):return hw(a|b)
def make_and(a, b):global Sglobal Dt = get_new_variable()S.add( valid_and(a, b, t) )D += prob_and(a, b, t)return t
def H(a, b):return make_and(a << 1, b << 1) ^ a ^ b;
def ROTR(x, c):return Concat(Extract(c-1,0,x), Extract(W-1, c, x))
def G(a, b, c, d):a = H(a, b); d ^= a; d = ROTR(d, 8)
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c = H(c, d); b ^= c; b = ROTR(b, 19)a = H(a, b); d ^= a; d = ROTR(d, 40)c = H(c, d); b ^= c; b = ROTR(b, 63)return a, b, c, d
S = Solver()D = BitVecVal(0, W)
X = [ BitVec(f'x{i}', W) for i in range(4) ]S.add(Or([ x != 0 for x in X ]))Z = G(*X)S.add([ BitVec(f'z{i}', W) == Z[i] for i in range(4) ])
S.add(ULE(D, TARGET_D))print(S.to_smt2())

A.2 Selected Differentials

A.2.1 Experimental Verification of Automated Search

The first table shows the results from our verification of trails found using automated
search, see Section 6.2.4. Notation is used as follows. we: expected weight, #S:
number of samples, ve: expected value of input/output pairs adhering the differential,
vm: measured value of input/output pairs adhering the differential, wm: measured
weight. After that we list the differentials in 32- and 64-bit F1.5 that we used to
perform the verification.

NORX32 NORX64

we #S ve vm vm − ve wm vm vm − ve wm

12 228 65536 65652 +116 11.997 65627 +91 11.997
13 229 65536 65788 +252 12.994 65584 +48 12.998
14 230 65536 65170 −366 14.008 65476 −60 14.001
15 231 65536 65441 −95 15.002 65515 −21 15.000
16 232 65536 65683 +147 15.996 65563 +27 15.999
17 233 65536 65296 −240 17.005 65608 +72 16.998
18 234 65536 65389 −147 18.003 65565 +29 17.999
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δ0 δ1 w

00000000 00000400 80000080 80000000 00000000 00000000 00000000 80001000
1200000000 80000400 80000080 00000000 00000000 00000000 00000000 21012100

00000000 80000000 80808080 80000000 00000000 00000000 00000000 10808080
00000000 80000000 80800000 80000080 00000000 00000000 00000000 10008080
80000000 00000000 00000400 80000180 80001000 00000000 00000000 00000000

1300000000 00000000 80000400 80000080 21012100 00000000 00000000 00000000
80000000 00000000 80000000 80808080 10808080 00000000 00000000 00000000
80000080 00000000 80000000 80800000 10008080 00000000 00000000 00000000
80000080 80000000 00000000 00000400 00000000 80001000 00000000 00000000

1480000180 00000000 00000000 80000400 00000000 21012100 00000000 00000000
80808080 80000000 00000000 80000000 00000000 10808080 00000000 00000000
80800000 80000080 00000000 80000000 00000000 10008080 00000000 00000000
00000400 80000000 00000400 40100000 00100000 00000000 00000000 00000000

1580000400 80000000 00000000 00100200 00200021 00000000 00000000 00000000
80000000 80018000 00000400 00000000 80000010 00000000 00000000 00000000
80000000 00800000 00040400 40000600 00000010 00000000 00000000 00000000
00000400 80000080 80000000 00000000 00000000 00000000 80003000 00000000

1680000400 80000080 00000000 00000000 00000000 00000000 63016100 00000000
80000000 81808080 80000000 00000000 00000000 00000000 31808080 00000000
80000000 80800000 80000080 00000000 00000000 00000000 30008080 00000000
00000000 00000400 80000080 80000000 00000000 00000000 00000000 80001000

1700000000 80000400 80000080 00000000 00000000 00000000 00000000 21012100
00000000 80000000 80838780 80000000 00000000 00000000 00000000 10808080
00000000 80000000 80800000 80000080 00000000 00000000 00000000 10008080
00000400 00000000 80000000 C0000200 00100000 00000000 00000000 00606001

1880000400 00000000 00000000 00000200 00200021 00000000 00000000 C24242C0
80000000 00000000 80000000 00000000 80000010 00000000 00000000 61010160
80000000 00000000 80000080 C0000000 00000010 00000000 00000000 60010160
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δ0 δ1 w

8000000000000000 0000000000000000 0000000000040000 8000000000000080 8000001000000000 0000000000000000 0000000000000000 0000000000000000
120000000000000000 0000000000000000 8000000000040000 8000000000000080 2100002001010000 0000000000000000 0000000000000000 0000000000000000

8000000000000000 0000000000000000 8000000000000000 8000808000000080 1080000000808000 0000000000000000 0000000000000000 0000000000000000
8000000000000080 0000000000000000 8000000000000000 0080800000000000 1000000000808000 0000000000000000 0000000000000000 0000000000000000
4000001000000000 0000000000040000 8000000000000000 0000000000040000 0000000000000000 0000100000000000 0000000000000000 0000000000000000

130000001000020000 8000000000040000 8000000000000000 0000000000000000 0000000000000000 0000200000000021 0000000000000000 0000000000000000
0000000000000000 8000000000000000 8000008000000000 0000000000040000 0000000000000000 8000000000000010 0000000000000000 0000000000000000
4000000000020000 8000000000000000 0000800000000000 0000000004040000 0000000000000000 0000000000000010 0000000000000000 0000000000000000
0000000000040000 8000000000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000001000000000 0000000000000000

148000000000040000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2100002001010000 0000000000000000
8000000000000000 8003808000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1080000000808000 0000000000000000
8000000000000000 0080800000000000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 1000000000808000 0000000000000000
0000000000000000 00000000000C0000 8000000000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000001000000000

150000000000000000 8000000000040000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 0000000000000000 2300006001010000
0000000000000000 8000000000000000 8000808000000080 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1180000000808000
0000000000000000 8000000000000000 0080800000000000 8000000000000080 0000000000000000 0000000000000000 0000000000000000 1000000000808000
0000000000040000 4000001000080000 0000000000040000 8000000000000000 0000000000000000 0000000000000000 0000100000000000 0000000000000000

160000000000000000 0000001000020000 8000000000040000 8000000000000000 0000000000000000 0000000000000000 0000200000000021 0000000000000000
0000000000040000 0000000000000000 8000000000000000 8000008000000000 0000000000000000 0000000000000000 8000000000000010 0000000000000000
0000000004040000 C0000000000E0000 8000000000000000 0000800000000000 0000000000000000 0000000000000000 0000000000000010 0000000000000000
8000000000000080 8000000000000000 0000000000000000 0000000000040000 0000000000000000 8000007000000000 0000000000000000 0000000000000000

178000000000000080 0000000000000000 0000000000000000 8000000000040000 0000000000000000 E300006001010000 0000000000000000 0000000000000000
8000808000000180 8000000000000000 0000000000000000 8000000000000000 0000000000000000 7180000000808000 0000000000000000 0000000000000000
0080800000000000 8000000000000080 0000000000000000 8000000000000000 0000000000000000 7000000000808000 0000000000000000 0000000000000000
0000000000040000 8000000000000000 0000000000040000 400000F000000000 0000100000000000 0000000000000000 0000000000000000 0000000000000000

188000000000040000 8000000000000000 0000000000000000 0000001000020000 0000200000000021 0000000000000000 0000000000000000 0000000000000000
8000000000000000 8000008000000000 0000000000040000 0000000000000000 8000000000000010 0000000000000000 0000000000000000 0000000000000000
8000000000000000 0000800000000000 000000000C040000 4000000000020000 0000000000000010 0000000000000000 0000000000000000 0000000000000000

A.2.2 Probability-1 Differentials in G
Using automated search we could show that there are exactly 3 probability-1 differ-
entials in both versions (32- and 64-bit) of G.

Differences Differences

δ0 80000000 80000000 80000000 00000000 δ0 8000000000000000 8000000000000000 8000000000000000 0000000000000000
δ1 00000000 00000001 80000000 00000000 δ1 0000000000000000 0000000000000001 8000000000000000 0000000000000000
δ0 80000000 00000000 80000000 80000080 δ0 8000000000000000 0000000000000000 8000000000000000 8000000000000080
δ1 80000000 00000000 00000000 00000000 δ1 8000000000000000 0000000000000000 0000000000000000 0000000000000000
δ0 00000000 80000000 00000000 80000080 δ0 0000000000000000 8000000000000000 0000000000000000 8000000000000080
δ1 80000000 00000001 80000000 00000000 δ1 8000000000000000 0000000000000001 8000000000000000 0000000000000000

A.2.3 Best Differential Characteristics for F4

The following two tables show the best differential trail in F4 that we were able to
find. The values δ0 and δ4 are in- and output difference, respectively, and δ1, δ2, and
δ3 are internal differences. The differences are listed after a single application of F,
respectively, and the values wi, with i ∈ {0, . . . , 3}, are the corresponding differential
weights.
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δ0 w0 δ1 w1

80140100 90024294 84246020 92800154
172

40100000 00000400 80000000 00000400
11

e4548300 52240214 e0202424 d0004054 00100200 80000400 80000000 00000000
c4464046 00a08480 c1008108 90d43134 00000000 80000000 80008000 00000400
e200c684 e2eac480 a4848881 06915342 40000200 80000000 00800000 00040400

δ2 w2 δ3 w3

00000000 00000000 00000000 00000000
44

04042425 00100002 00020000 02100000
357

00000000 00000000 00000000 00000000 04200401 42024200 20042024 20042004
00000000 80000000 00000000 00000000 10001002 80000200 25250504 10021010
00000000 00000000 00000000 00000000 10020010 00001002 00000210 04252504

δ4

c4001963 804da817 0c05b60e 12220503
total weight: 5849072b909 185b792a cc0d56cd 7e0ac646

80116300 100c2800 8f003320 3b270222
01056104 88000041 92002824 04210001

δ0 w0 δ1 w1

00900824010288c5 4000443880011086 224012044220ac43 e004044484049520
349

8000000800050000 8000000000000000 4000000000000000 0000001000020080
27

4080882001010885 4600841880821086 a3c0721444632c43 c224440007849504 8000000800040000 8000000000000000 c000000000040000 8000001000020080
81600850830b0484 840080c080868000 8004449040c14400 8102101840908a80 0000000000000000 8000008000000000 c000004000040000 4000808000020080
6191548c08000581 0200004006038044 8104f01c8702c0e0 60605084938886e3 0000000000010080 0000800000000000 8000400004040000 80808000020000c0

δ2 w2 δ3 w3

8000000000000000 0000000000000000 0000000000000000 0000000000000000
12

0000000000000000 0000000000000000 0000100000000000 0000202000000001
448

8000000000000000 0000000000000000 0000000000000000 0000000000000000 4200404002020040 0000000000000000 0000000000000000 0000200000000021
8000000000000000 0000000000000000 0000000000000000 0000000000000000 8000000000000010 2100000001010020 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000010 2000000001010020 0000000000000000

δ4

321a4500060e4e2e 27404405026e500e 3806422387200a08 8c40f4a0884c0820
total weight: 836

71540fb858cb9902 ee018cc282747980 c714164174ce3eb9 1a49a091101191e1
786680d0e46406cb 14440844013274e6 03a843203f071b7c 09a840c00c0ccc78
4000404a22120005 07220c4202016240 2aa4200a0a041a62 84a468682000601c

A.2.4 Best Iterative Differentials for F

Differences w Differences w

δ
0
=
δ

1 818c959b 00186049 eb5b7984 791c6da1
512

δ
0
=
δ

1 0000000100000000 0000000000000000 f77c78b200000d04 0000000000000000
843677b513d 80000400 00000227 5293655f be7fffeffe0f349f 0000000000000000 6c07fbd200000001 ff1ab5be4e7500be

00809a2b bfa98bff c08b8e89 0000711c 0060c54927018000 0000000000000000 0000000000000000 b603fde900000000
800027c3 f984eb5b 6d81f915 b5aaa99d b6035caf00000000 0000000000000000 0000000000000000 0000000000000000
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A.2.5 Best Differentials having Equal Columns of weight 44 in F

Differences Differences

δ0

80000000 80000000 80000000 80000000
δ0

8000000000000000 8000000000000000 8000000000000000 8000000000000000
80000000 80000000 80000000 80000000 8000000000000000 8000000000000000 8000000000000000 8000000000000000
80000000 80000000 80000000 80000000 8000000000000000 8000000000000000 8000000000000000 8000000000000000
00000000 00000000 00000000 00000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

δ1

00102001 00102001 00102001 00102001
δ1

0000102000000001 0000102000000001 0000102000000001 0000102000000001
42624221 42624221 42624221 42624221 4200604002020021 4200604002020021 4200604002020021 4200604002020021
a1010110 a1010110 a1010110 a1010110 a100000001010010 a100000001010010 a100000001010010 a100000001010010
20010110 20010110 20010110 20010110 2000000001010010 2000000001010010 2000000001010010 2000000001010010
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import os
def ROT8(x, c):return ((x%256 << c%8) | (x%256 >> -c%8)) % 256
def OMADigest(m,k):a = [0] * 8m = m[:] + [0] * (-len(m) % 144)for l in range(0, len(m), 144):b = m[l:l+144]for i in range(18):for j in range(7, -1, -1):if (k[i%12] >> (7 - j)) & 1:a[j] = (a[(j+1)%8] + b[8*i+7-j] + ROT8(~(a[j] + j), 1)) % 256else:a[j] = (a[(j+1)%8] + b[8*i+7-j] - ROT8(~(a[j] + j), -1)) % 256return a
def EN14908(r, m, k):mlen, a = len(m) - 1, r[:]while True:for i in range(6):for j in range(7, -1, -1):b = 0 if mlen < 0 else m[mlen]mlen -= 1if k[i] & (1 << (7 - j)):a[j] = a[(j+1)%8] + b + ROT8(~(a[j] + j), 1)else:a[j] = a[(j+1)%8] + b - ROT8(~(a[j] + j), -1)if mlen < 0:breakreturn a
def RC4Encrypt(X,key):def RC4(key, b):B,S,i,j,l=[],range(256),0,0,len(key)while i < 256:j = (j + S[i] + key[i%l]) & 0xffS[i], S[j] = S[j], S[i]i += 1i, j = 1, 0while b:t = S[i]j = (j + S[i]) & 0xffS[i], S[j] = S[j], S[i]
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B += [S[(S[i]+S[j]) & 0xff]]b -= 1i = (i + 1) & 0xffreturn BS = RC4(key,len(X))for i in xrange(len(X)):X[i] ^= S[i]return X
def OSGPKeyDerive(k):k1 = EN14908([0x81, 0x3f, 0x52, 0x9a, 0x7b, 0xe3, 0x89, 0xba], [], k)k2 = EN14908([0x72, 0xb0, 0x91, 0x8d, 0x44, 0x05, 0xaa, 0x57], [], k)return k1 + k2
def OSGPEncrypt(m, k):k_ = OSGPKeyDerive(k)a = OMADigest(m, k)for i in range(8):k_[i] ^= a[i]return RC4Encrypt(m, k_) + a
def OSGPDecrypt(c, k):assert(len(c) >= 8)k_ = k_ = OSGPKeyDerive(k)a = c[-8:]for i in range(8):k_[i] ^= a[i]m = RC4Encrypt(c[:-8], k_)return OMADigest(m, k) == a, m
# Test vectorm = [0x02,0x02,0x00,0x30,0x00,0x03,0x7f,0x30,0xea,0x6d,0x00,0x00,0x00,0x0d,0x00,0x20,0x98,0x00,0x31,0xc3,0x00,0x08,0x00,0x00,0x00,0x00,0x00,0x11]k = [0xDF] * 12a = [0xdb, 0xe5, 0xcd, 0xe5, 0x07, 0xb1, 0xcb, 0x3d]assert(OMADigest(m, k) == a)
def OMABackward(a,m,k,n):a, m = a[:], m[:] + [0] * (-len(m) % 144)for l in range(n):i, j = l // 8, l % 8if (k[(17-i)%12] >> (7 - j)) & 1:x = ROT8(a[j] - a[(j+1)%8] - m[143-8*i-j], -1)else:x = ROT8(a[(j+1)%8] + m[143-8*i-j] - a[j], 1)a[j] = (~x - j) % 256return a
def OMAForward(a,m,k,n):a, m = a[:], m[:] + [0] * (-len(m) % 144)for l in range(n, 144):i, j = l // 8, 7 - l % 8if (k[i%12] >> (7 - j)) & 1:a[j] = (a[(j+1)%8] + m[8*i+7-j] + ROT8(~(a[j] + j), 1)) % 256else:a[j] = (a[(j+1)%8] + m[8*i+7-j] - ROT8(~(a[j] + j), -1)) % 256return a
m = map(ord, os.urandom(144))k = map(ord, os.urandom(12))a = OMADigest(m, k)
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assert( OMAForward([0]*8, m, k, 0) == OMADigest(m,k) )assert( OMAForward(OMABackward(a,m,k,8),m,k,144-8) == a )
def TagGenOracle(m,init=[True]):if init[0]:print '[ORACLE] k = ' + str(k)init[0] = Falsereturn OMADigest(m,k)
def TagCheckOracle(m,a):return TagGenOracle(m) == a
def OSGPEncryptOracle(m, init=[True]):return OSGPEncrypt(m, k)
def OSGPCheckOracle(c):ok, _ = OSGPDecrypt(c, k);return ok
def Algorithm_74():m = map(ord, os.urandom(144))a = TagGenOracle(m)k = [0] * 12for i in range(12):for j in range(8):m_ = m[:]m_[136-8*i-j-1] ^= 0x80a_ = TagGenOracle(m_)b = OMABackward(a,m,k,8*i)b_ = OMABackward(a_,m_,k,8*i)k[(17-i)%12] |= ((b[j] ^ b_[j])&1) << (7 - j)return k
print 'Algorithm 7.4: ' + str(Algorithm_74())
def Algorithm_75():def RecoverByte(a, b):x = (a[7] ^ b[7]) & 1for i in xrange(0,7):x |= ((a[6-i] ^ b[6-i] ^ a[7-i] ^ b[7-i]) & 1) << (i+1)return xk = [0] * 12m = map(ord, os.urandom(144))a = TagGenOracle(m)for i in range(12):m_ = m[:]m_[136-8*i-8] ^= 0x80a_ = TagGenOracle(m_)b = OMABackward(a,m,k,8*i)b_ = OMABackward(a_,m_,k,8*i)k[(17-i)%12] = RecoverByte(b, b_)return k
print 'Algorithm 7.5: ' + str(Algorithm_75())
def Algorithm_76():def recurse(m,a,k,i=0):if i >= 12:a_ = OMADigest(m,k)return a_ == am_ = m[:]m_[128-8*i:] = map(ord, os.urandom(144-(128-8*i)))a_ = TagGenOracle(m_)for x in range(256):k[(17-i)%12] = x
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b = OMABackward(a, m, k, 8*i + 16)b_ = OMAForward(b, m_, k, 128 - 8*i)if a_ == b_ and recurse(m,a,k,i+1):return Truereturn Falsek = [0] * 12m = map(ord, os.urandom(144))a = TagGenOracle(m)recurse(m,a,k)return k
print 'Algorithm 7.6: ' + str(Algorithm_76())
def Algorithm_77():k = [0] * 12c = OSGPEncryptOracle(map(ord, os.urandom(96+8)))for i in range(96):c_ = c[:]c_[i+0] ^= 0x80c_[i+1] ^= 0x80c_[i+8] ^= 0xC0if OSGPCheckOracle(c_):continuec_[i+8] = c[i+8] ^ 0x40k[((i+8)//8)%12] |= (0 if OSGPCheckOracle(c_) else 1) << ((i+8)%8)return k
print 'Algorithm 7.7: ' + str(Algorithm_77())
# Key-recovery attack from Section 7.2.4, using additive differencesdef Algorithm_78():k = [0] * 12m = map(ord, os.urandom(96+8))a = TagGenOracle(m)for i in range(96):m_ = m[:]m_[i+0] = (m[i+0] + 0x02) % 256m_[i+1] = (m[i+1] - 0x02) % 256m_[i+8] = (m[i+8] - 0x01) % 256if TagCheckOracle(m_, a): continuem_[i+8] = (m[i+8] - 0xfc) % 256if TagCheckOracle(m_, a):k[((i+8)//8)%12] |= 1 << ((i+8)%8)continuem_[i+8] = (m[i+8] - 0x81) % 256k[((i+8)//8)%12] |= (0 if TagCheckOracle(m_, a) else 1) << ((i+8)%8)return k
print 'Algorithm 7.8: ' + str(Algorithm_78())
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