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A B S T R A C T

Data visualization has been shown to be an important tool in knowledge
discovery, being used alongside data analysis to identify and highlight pat-
terns, trends and outliers, aiding users in decision-making. The need for
analyzing unstructured and increasingly larger datasets has led to the con-
tinued emergence of visualization tools that seek to provide methods that
facilitate the exploration and analysis of such datasets. Many fields of study
still face the challenges inherent to the analysis of complex multidimen-
sional datasets, such as the field of computational biology, whose research
of infectious diseases must contend with large protein-protein interaction
networks with thousands of genes that vary in expression values over time.

Throughout this thesis, we explore the visualization of multivariate data
through CroP, a data visualization tool with a coordinated multiple views
framework that allows users to adapt the workspace to different problems
through flexible panels. While CroP is able to process generic relational, tem-
poral and multivariate quantitative data, it also presents methods directed
at the analysis of biological data. This data can be represented through vari-
ous layouts and functionalities that not only highlight relationships between
different variables, but also dig-down into discovered patterns in order to
better understand their sources and their effects. In particular, we can high-
light the exploration of time-series through our dynamic and parameter-
based implementation of layouts that bend timelines to visually represent
how datasets behave over time.

The implemented models and methods are demonstrated through exper-
iments with diverse multivariate datasets, with a focus on gene expression
time-series datasets, and complemented with a discussion on how these con-
tributed to the creation of comprehensible visualizations, facilitated data
analysis, and promoted pattern discovery. We also validate CroP through
model and interface tests performed with participants from both the fields
of information visualization and computational biology.

As we present our research and a discussion of its results, we can high-
light the following contributions: an analysis of the available range of visu-
alization models and tools for multivariate datasets, as well as modern data
analysis methods that can be used cooperatively to explore such datasets;
a coordinated multiple views framework with a modular workspace that
can be adapted to the analysis of varied problems; dynamic visualization
models that explore the representation of complex multivariate datasets,
combined with modern data analysis methods to highlight and analyze
significant events and patterns; a visualization tool that incorporates the
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developed framework, visualization models and data analysis methods into
a platform that can be used by different types of users.
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R E S U M O

A visualização de dados têm sido mostrada como uma ferramenta impor-
tante na descoberta de conhecimento, sendo utilizada ao lado da análise de
dados para identificar e realçar padrões, tendências e outliers, ajudando os
utilizadores na toma de decisões. A necessidade de analisar datasets sem es-
truturas explicitas e cada vez com maiores volumes tem levado à emergência
contínua de ferramentas de visualização que procuram providenciar méto-
dos que facilitam a exploração e análise destes datasets. Muitos campos de
estudo ainda enfrentam os desafios inerentes à análise de datasets multi-
dimensionais complexos, como o campo de biologia computacional, cuja
pesquisa de doenças infeciosas tem de lidar com redes complexas de inter-
ação de proteínas que contém milhares de genes com valores de expressão
que variam com o tempo.

No decorrer desta tese, exploramos a visualização de dados multivaria-
dos através do CroP, uma ferramenta de visualização de dados com uma
framework de múltiplas vistas coordenadas que permite a adaptação do
ambiente de trabalho a diferentes problemas através de painéis flexíveis. En-
quanto que o CroP é capaz de processar datasets relacionais, temporais e
multivariados genéricos, também apresenta métodos direcionados à análise
de dados biológicos. Estes dados podem ser representados através de vários
layouts dinâmicos e funcionalidades que não só realçam relacionamentos
entre variáveis diferentes, mas também aprofundam a procura em padrões
descobertos de modo a melhor compreender as suas causas e efeitos. Em
particular, podemos realçar a exploração de séries temporais através das
nossas implementações dinâmicas e parametrizáveis de layouts que defor-
mam linhas do tempo para representarem visualmente os comportamentos
temporais de datasets.

A validade dos modelos e métodos implementados é demonstrada através
de experiências com datasets multivariados diversos, com um foco em datasets
de expressão temporal de genes, complementado com uma discussão sobre
como estes contribuíram para a criação de visualizações compreensíveis,
como facilitaram a análise de dados, e como promovem a descoberta de
padrões. Adicionalmente, validamos o CroP através de testes de modelo e
interface realizados com participantes dos campos de visualização de infor-
mação e de biologia computacional.

Na apresentação da nossa pesquisa e discussão dos seus resultados, pode-
mos realçar as seguintes contribuições: uma análise dos modelos e ferra-
mentas de visualização disponíveis para datasets multivariados, bem como
métodos de análise de dados modernos que podem ser utilizados cooperati-
vamente para explorar estes datasets; uma framework de múltiplas vistas co-
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ordenadas com um ambiente de trabalho modular que pode ser adaptado à
análise de uma variedade de problemas; modelos de visualização dinâmicos
que exploram a representação de datasets multivariados complexos, combi-
nados com métodos de análise de dados modernos para realçar e analisar
eventos e padrões significativos, uma ferramenta de visualização que incor-
pora a framework desenvolvida, os modelos de visualização e métodos de
análise de dados em uma plataforma que pode ser utilizada por diferentes
tipos de utilizador.
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1I N T R O D U C T I O N

The graphical representation of information has long been used by many
fields of study to record their research, usually through the use of abstract
representations or metaphors that help portray the relationships between
data and the real world. As such, Information Visualization has been and
continues to be applied within these domains to document and organize
large quantities of data, in addition to providing the means to explore, an-
alyze and extract new information from it. Through the proper use of vi-
sual elements it is possible to highlight meaningful points and patterns that
would otherwise not be perceptible across large and complex sets of data.

The field of data visualization has been subjected to continuous and sig-
nificant advancements over the years, and continues to evolve alongside the
current technological advances. The origins of the field can be dated back
as far as the 200 BC [49], when it was used in Egypt for astrology and nav-
igation. However, it was only around the seventeenth century that the rep-
resentation of quantitative information on a two-dimensional plane started
to develop, particularly due to areas such as astronomy, map creation and
navigation. Developments in the field continue through the eighteenth cen-
tury, which was characterized by a focus on abstract graphs and graphs of
functions due to a rising interest in visualizing data from politics and econ-
omy. However, some of the most significant developments were a result of
the fast technological advancements of the twentieth century. The process-
ing speed and memory capacity of computers increased, allowing for larger
amounts of data to be processed faster which led to creation of high-density
visualizations. As computers started becoming a more common tool, data
and development tools became more widely accessible, leading to the devel-
opments in the field of Human-Computer Interaction (HCI) which lead to
new interactive visualization tools.

Such developments in data visualization are promoted by other fields of
research that must also contend with increasingly larger volumes of data
that can now be gathered with the aid of new technologies. Moreover, mul-
tiple disciplines must contend with the study of subjects which contain large
networks of relationships, as well as temporal variables, requiring the anal-
ysis of complex datasets that describe diverse processes changing over time
simultaneously [81, 114]. Such challenges are prominent in the field of Bi-
ology, where data from measuring various biological systems is being gath-
ered increasingly faster [68, 130] due to biological related technologies and
data mining techniques [112]. These datasets include protein-protein inter-
action (PPI) networks, metabolic pathways and regulatory networks, com-

1
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monly represented through graph visualizations. However, these networks
can be considered as complex due to containing hundreds of thousands of
nodes and edges, in addition to integrating processes that present changes
over time, such as the gene expression values of infected cells. Proper anal-
ysis of such data may lead to new knowledge regarding basic molecular
mechanisms in cells and the behaviors of infections, as well as a better un-
derstanding of the underlying biology and therefore to the development of
new treatments [76].

Researchers are faced with the daunting task of exploring increasingly
larger and more complex datasets in order to discover any meaningful rela-
tionships that could lead to the extraction of new information, and so they
turn to visualization tools that allow them to model and study the relation-
ships of various processes [11]. However, the ability to present complete
sets of data to the user in a comprehensive manner still presents a signifi-
cant bottleneck. Many tools are still limited by static visualization models
and outdated methods that are unable to properly handle this increase in
the complexity of datasets, creating noisy visualizations that are difficult
to interpret, characterized by overlapping elements that not only obscure
potentially meaningful patterns but may simply just overwhelm viewers.
Moreover, despite the advancements of the past decades, the representation
and analysis of relational and temporal data continue to be pertinent topics
of research within the field of data visualization, being relevant to various
problems from different fields.

This was our main motivation to explore and develop novel paradigms
and visualization techniques. More specifically, we have focused our re-
search on the development of dynamic visualization models for networks
and time-series data, as well as approaches that can facilitate their explo-
ration, analysis and pattern discovery. To this end we developed CroP, a vi-
sualization tool that utilizes a multiple coordinated views layout, designed
as a platform that can receive external datasets and represent them through
comprehensible visualizations, while providing tools to facilitate their nav-
igation and analysis. Working in an interactive environment enables the
amount of information on screen to be controlled by the users, allowing
them to switch the most appropriate visualization model, navigate between
different levels of detail, and even filter less relevant data points while high-
lighting those that are more significant.

Moreover, such an environment also supports the further exploration of
existing visualization models, such as the integration of dynamic layouts
that promote self-organization between points in network models, reveal-
ing relationships between variables that would otherwise remain hidden. In
particular, we are interested in applying such methods to time-series visual-
ization to represent how the data behaves over time and highlight moments
or periods that denote significant events. For instance, the Time Curves lay-
out [10] is a relevant technique that warrants further exploration as it dis-
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torts timelines to represent temporal behaviors by using multi-dimensional
scaling to position time points relatively to their similarity. As noted before,
challenges related to the representation and analysis of relational and tem-
poral data continue to be pertinent within the field of Biology, mainly due to
the characteristics of such datasets. In this regard, we are also particularly in-
terested in biological datasets that fit our target research objectives, such as
protein-protein interaction (PPI) networks and gene expression time-series
data, whose analysis still represents a challenge in molecular biology [35,
138]. It is through such research that it may be possible to obtain a deeper
understanding of observed behaviors in datasets, identify their sources and
potentially predict future events.

1.1 research questions

Our research hypothesis is that interactive visualization can be a powerful
tool for data analysis, capable of producing comprehensible representations
of complex, high-dimensional datasets and providing the methods to navi-
gate, dig-down, analyze and ultimately discover relationships and patterns
that can be used to extract new knowledge. In this regard, the main goal of
this thesis is the development of a visualization tool that integrates differ-
ent visualization models in a coordinated multiple views (CMV) framework,
through which we explore diverse visual and interactive approaches to rep-
resent and analyze multivariate datasets, mainly those with relational and
temporal attributes, allowing users to identify significant behaviors in the
data as well as their sources and impact. However, as this is a broad subject
that can be applied to a vast array of problems, we give particular focus
to network and time-series datasets from the biological domain, which are
often characterized by their complexity. Considering our goals, we consider
the following to be our most prominent research questions:

• How can we comprehensibly represent both relational data and values chang-
ing over time from datasets that can be characterized as complex? — This
question represents one of our main visualization requirements, which
is the ability of the developed models to present multivariate datasets
accurately and clearly to the viewer. There are several factors that can
contribute to the complexity in these types of datasets, such as the
number of data points, number of edges, number of time points and
diversity of temporal profiles, in addition to the existence of other
variables. Representing such proprieties simultaneously for large vol-
umes of data may not be feasible through a single visualization model,
which is why we must not only consider the employment of CMVs, but
also the implementation of scalable approaches that can facilitate pat-
tern discovery and manage visual complexity.
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• Which visualization and data analysis approaches promote the discovery of
meaningful relationships and patterns in high-dimensional data? — As data
increases in dimensionality, so does the difficulty not just in repre-
senting all of its attributes, but also in the discovery of relationships
between such proprieties, especially through basic visualization mod-
els. Data analysis methods, such as dimensionality reduction and clus-
tering algorithms, can process, categorize and subsequently manage
large quantities of data, allowing its representation to also be sim-
plified. Moreover, visualization layouts and data aggregation can be
used to organize complex relational visualizations, highlighting simi-
larities and differences between groups data points through position
and other visual variable. Thus, it is necessary to understand which
approaches can help process and represent high-dimensional data so
that potentially meaningful relationships and patterns can be more
easily identified. Such research can lead to further questions, such as
how these approaches can be used together to increase their efficacy.

• Can the visual complexity that is inherent to the representation of large vol-
umes of data be managed through visual abstractions? — As we are in-
terested in representing large volumes of multivariate data, it is nec-
essary to consider approaches that can manage the expected visual
complexity. Visual abstractions of data are often created as attempts
to increase the visibility of specific characteristics, but this comes at
the cost of data fidelity. For instance, data aggregation methods may
combine groups of data points that have similar characteristics into
a single visual element that highlights their common traits. This de-
creases the number of elements that must be drawn, which improves
computational speed while reducing visual noise, making the result-
ing visualization easier to read and even more aesthetically pleasing.
However, combining or distorting elements in favor of emphasizing
certain proprieties or portraying general values and trends may result
in the obfuscation of smaller events that could have been relevant to
the problem being solved. Moreover, the less accurate that the rep-
resentations are to the original data, the more likely viewers are to
misinterpret them. As such, we must consider the types of visual ab-
straction approaches that can be applied, in addition to how and when
such approaches should be used.

• Can coordinated interaction between multiple views facilitate the exploration
of multivariate datasets and provide new insights? — By using multiple
views to focus on different proprieties of the same dataset, the visual
variables necessary to represent high-dimensional data can be more
easily managed. This allows for the most appropriate model to be
used for each specific propriety, such as representing relational data
with networks and temporal data with timelines. While this may come
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at the cost of increasing the complexity of interpreting and managing
multiple models, coordinated interaction can be used to more easily
keep track of significant data points and proprieties across multiple
views, even when they feature different visualization models. Thus,
we intend to explore the efficacy of a CMV framework in navigat-
ing multi-dimensional data and how it can be used to dig-down and
discover new information, while keeping in mind the principles of
fluid interaction and how viewers perceive data. Moreover, such meth-
ods may also be applied to explore and compare between multiple
datasets.

• What considerations must be taken to ensure that a tool containing multiple
visualization models and data analysis methods can be used by users with
varying levels of experience? — There are several pertinent challenges
inherent to the development of an interactive visualization tool from
the perspective of its potential users. On one hand, the visualization
models must be encoded with visual variables that appropriately rep-
resent their respective data variables while taking into account a per-
son’s limitations, such as visual overload or colorblindness. On the
other, navigation through the tool itself should be intuitive whenever
possible, and actions that would result in errors should be anticipated
and prevented, usually while providing additional help. This requires
research into both of these areas, as well as user tests throughout the
development of our tool. Furthermore, as we intend to give a particu-
lar focus to the representation of molecular biology datasets, we must
also consider how researchers from this field of study would interact
with the developed tool, as these may include users with a low level
of experience with data visualization tools.

In summary, we intend to explore the visualization and analysis of multi-
variate datasets through the development of a tool with a CMV framework.
This requires the implementation of methods that can receive, parse, filter
and represent data, while providing users with the ability to interact, mine
and refine in order to discover information that could lead to new insights.
Moreover, we must contend with the challenges of representing relational
and time-series data, particularly visual complexity management and the
comprehensible encoding of temporal behaviors exhibited by large groups
of data. Such must preceded by a thorough analysis of the state of the art as
it is necessary to not only understand the available visualization method at
our disposal, but also the limitations of current visualization tools.
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1.2 methodology

For the design and development of the visualization tool, we adopted Ben
Fry’s methodology [51], which consists of several steps that establish a path
from the collection of raw data to its representation and interaction with
users. This is a flexible methodology where various steps can be iterated
through successive refinements and validations as to progressively improve
data mining, visual encoding and user interaction. In regards to visual en-
coding, we followed the principles proposed by Jacques Bertin [18] and Ed-
ward Tufte [152] to help create the initial infrastructure for our visualization
models and ensure a higher standard of efficiency in communication.

Furthermore, to aid in the development of interactive functionalities that
do not hinder the user, we explored the principles of fluid interaction [42]
which center around supporting a user’s immersion and involvement. In
this sense, fluid interaction refers to continuous or smooth experience, un-
interrupted by potential issues originating from uncertainty in their actions
or a lack of feedback. These principles include the implementation of ani-
mated transitions, providing immediate visual feedback when performing
actions, integrating interface components into the visualization, and allow-
ing the user to make changes intuitively. Following the purposed methodol-
ogy, both the models and the user interface are then refined throughout the
development through surveys and usability tests performed with users of
varying levels of experience in data visualization, as to obtain a wide range
of feedback.

1.3 contributions

In this section we will overview our contributions to the representation and
analysis of multivariate datasets, in particular time-series data, through in-
teractive visualizations and CMVs. The cumulative result of our research and
development is CroP, a tool that can receive multiple types of dataset files
and represent them through various visualization models while providing
users with the methods to explore and analyze the data, as to discover and
extract patterns and key data points. From this work we can highlight the
following contributions:

Survey of Visualization Methods and Tools — A survey on the state-of-the-
art of data analysis methods, visualization models and existing tools that
are relevant to the development and design of CroP. In this survey, we
present an overview on the visualization of both relational and temporal
data at different levels of detail, the interactive exploration of the data using
multiple coordinated views to compare and contrast between diverse data
elements, and the discovery of patterns across large quantities of data ele-
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ments through dimensionality reduction, feature extraction and clustering
algorithms. We also present a discussion on current visualization tools ori-
ented towards the analysis of biological datasets. This survey resulted in the
following publication:

• António Cruz, Joel P. Arrais, and Penousal Machado. Interactive and
coordinated visualization approaches for biological data analysis. Brief-
ings in Bioinformatics, v. 20, no. 4, pp. 1513–1523, 2019. [29]

Visualization of Temporal Networks — The initial version of CroP utilized an
interactive network visualization model to represent the behaviors of molec-
ular networks over time. The tool employed various methods to explore and
organize data, including different network layouts, clustering, an integrated
biological database, and a timeline for navigating through time-series data.
To further analyze temporal attributes, the timeline could be distorted into
Time Curve using a force-directed layout where time points are spatially po-
sitioned according to their similarity. The visualization model was validated
with the use of time-series gene expression RNA-Seq data from the HIV-1
infection. This work resulted in the following publication:

• António Cruz, Joel P. Arrais, and Penousal Machado. Interactive Net-
work Visualization of Gene Expression Time-Series Data. In 22nd Inter-
national Conference Information Visualisation (IV), pp. 574-580. IEEE,
2018. [28]

Modular Workspace — In order to expand CroP’s efficacy in analyzing tem-
poral networks and its ability to solve a wider range of problems, its frame-
work and user interface were reworked to be more flexible. We developed a
modular workspace where each visualization model and respective interface
functionalities are contained within a flexible panel that can be resized and
moved, allowing users to adapt the workspace to the current dataset. More-
over, the workspace is divided by a grid and automatically adjusts the size of
panels and prevents overlaps as to help maintain its organization. This mod-
ular framework accommodated the integration of new visualization models
and functionalities, such as the ability to analyze multiple datasets simul-
taneously by loading them into different panels. This work resulted in the
following publication:

• António Cruz, Penousal Machado, and Joel P. Arrais. CroP — Coor-
dinated Panel visualization for biological networks analysis. Bioinfor-
matics, v. 36, no. 4, pp. 1298-1299, 2020. [31]

Multidimensional Analysis — Through the development of CroP’s function-
alities and visualisation models directed at the exploration of temporal data,
we further explored time-series functionally and aesthetically. Firstly, we
complemented the Time Curve model with temporal glyphs, a supporting
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timeline graph and a lens-based approach, directed at aiding in the inter-
active discovery and analysis of temporal patterns across complex datasets.
In this regard, we demonstrated how these methods can be used to analyze
and identify the main agents at the source of significant instances in three
biological datasets. Secondly, we introduced Time Paths, a force-directed
and parameter-based layout that can dynamically transform a Time Curve
model to smoothen the visual elements and transitions between time points,
while also reducing visual noise in favor of overall patterns. This work, its
experimental results and subsequent user tests were disseminated in the
following publications:

• António Cruz, Joel P. Arrais, and Penousal Machado. Exploring Time-
Series Through Force-Directed Timelines. In 24th International Confer-
ence Information Visualisation (IV), pp. 328-335. IEEE, 2020. [30]

• António Cruz, Joel P. Arrais, and Penousal Machado. Force-Directed
Timelines: Visualizing & Exploring Temporal Patterns. Big Data Re-
search, v. 27, pp. 100291, 2022. [33]

Coordinated Panels Visualization Tool — Finally, the previous contributions
culminated in the development of the visualization tool entitled CroP, which
incorporates the modular workspace, the visualization models for multivari-
ate data and multidimensional data analysis methods. The tool was sub-
jected to an iterative validation process of interface and model tests with
participants from different areas of expertise, including Information Visu-
alization and Computational Biology. This work resulted in the following
publication:

• António Cruz, Joel P. Arrais, and Penousal Machado. Multivariate
Data Exploration Through Coordinated Views. IEEE Access, 2022. [cruz2022access]

1.4 structure

The research and development of CroP involved the implementation of di-
verse visualization models and data analysis functionalities. The full scope
of this work and its contributions are described throughout this thesis doc-
ument, which is structured as follows:

In the State of the Art chapter, we present a review of related work, begin-
ning with an overview of relevant data analysis and visualization models
used in the representation of relational and temporal datasets. We explore
the advantages and limitations of multiple views, managing the visual com-
plexity of representing large datasets, and interactive systems. The chapter
concludes on a discussion of existing tools and their functionalities in re-
gards to the growing necessity for more dynamic visualization tools and
methods that can assist in the exploration and analysis of complex datasets.
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In the Overview chapter, we introduce CroP’s functionalities from a user
perspective, providing a general overview of its abilities in the representa-
tion and analysis of different types of datasets. We present the structure of
its user interface, the available data analysis methods for sorting datasets
and highlighting patterns, and a description of each of the visualization
panels, their layouts and coordinated functionalities.

The Analysis Workflow chapter showcases how the implemented models
and methods can be navigated and utilized to explore different types of
data and identify data points or groups exhibiting significant patterns of
values. This chapter focuses on the usability of CroP as a whole, in particular
functionalities that can be coordinated across multiple visualization panels
and their utility in data analysis and pattern discovery.

In the Framework chapter, we describe the implementation of each of the
visualization models, diverse methods and data analysis algorithms into
CroP. While the previous chapters focused on user interaction, this chapter
details the technical aspects of each functionality, as well as the motivation
for their inclusion and additional considerations, such as measures for error
prevention and to improve performance.

In the Experimentation chapter, we present our analysis of various datasets
through CroP, along with the corresponding visualizations created by the
tool. The experiments include simple datasets used as a baseline to test
the models, as well as both biological datasets, such as gene expression
time-series, and non-biological datasets of varying sizes and complexity. The
results of each experiment are complemented with a discussion.

In the Validation chapter, we present all of the model and interface tests
performed by groups of users from different fields of study and levels of
experience, both with visualization tools and data visualization in general.
We describe each of the tests preformed and thoroughly analyze the results,
discussing the performance of the users, their difficulties and how this im-
pacted the development of CroP.

Finally, in the Conclusion chapter, we summarize our work and discuss its
contributions in regard to our research questions, as well as future work in
the research and development of CroP.
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A vast quantity of visualization tools has emerged over the past decade as
a response to the need for analyzing unstructured and increasingly larger
datasets, particularly within the field of Biology [82]. The datasets that are
often the target of modern research in the field of computational biology
are often classified as complex due to possessing multiple characteristics of
what is known as ‘big data’. While the description of big data may vary,
it is typically characterized large volumes of data that include a variety
of different formats, data structures and variable types, as well as other
characteristics that negatively affect the velocity at which data is retrieved,
analyzed, validated and represented [58].

The amount of research data and the speed at which it is gathered have
been increasing along with the technological developments that have taken
place across multiple fields. The representation of large volumes of data may
lead to slow performance, particularly in interactive environments, as well
as a large amount of visual noise and no perceptible structure. Beck et al.
[14] presented a survey, which identifies visual scalability as one of the main
challenges in developing scientific graphs, emphasizing a lack of visualiza-
tion methods that work along with data reduction methods, particularly
when handling time-series data or dynamic structures [7]. Wang et al. [160]
also argues that graphs derived from scientific datasets can be significantly
large and complex, advocating for graph simplification and data mining to
more easily find community structures and track features over time.

The heterogeneity of biological data can be particularly difficult to man-
age as the datasets are often multivariate and contain varied structures with
temporal or spatial attributes [138]. Additionally, these datasets are often
complimented with data integrated from external databases. The challenge
in representing diverse datasets stems from choosing graphical elements
that can properly convey the values, properties and relationships to the user.
This may warrant the exploration of new visualization metaphors that are
able to better integrate different types of biological data, such as integrating
network-based metabolic pathways with gene expression data [127]. Regard-
ing time-series data and multiple experiments performed under different
conditions, the development of techniques for visualizing changes in the
data is an ongoing challenge, particularly between two or more networks
[14].

Due to these characteristics, modern visualization approaches should be
able to not only represent various data structures simultaneously but also
provide exploratory methods that allow the identification of meaningful re-
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lationships that would not be perceptible through data analysis algorithms
alone.

2.1 visualization background

Visualization is a significant step in knowledge discovery, as it can be used in
conjunction with data analysis to highlight and identify patterns, trends and
outliers while engaging users through aesthetic graphical representations
and helping them make decisions [64]. As such, understanding the available
visualization models and how visual elements are perceived is necessary
when choosing those that are most appropriate for representing a dataset.

2.1.1 Data Analysis

Data analysis is an essential part of the process of extracting knowledge
from data, in particular from the large and complex datasets that are char-
acterized as big data. Techniques such as feature selection, dimensionality
reduction and clustering algorithms are used to filter and order data, re-
ducing computational loading times by removing or hiding irrelevant data
groups, highlighting patterns and leading to new information that can sup-
port the user’s navigation and queries.

Exploratory data analysis (EDA) in an approach for data analysis where
both statistical and visual techniques are employed to maximize insight into
a dataset, uncover hidden patterns, detect outliers, and ultimately formulate
new hypotheses [102, 153]. Statistical techniques for EDA include dimen-
sionality reduction and cluster analysis, particularly useful when dealing
with large datasets, where showing all data simultaneously can be both con-
fusing to the user and computationally intensive. These techniques can be
applied during a pre-processing stage in order to restructure the dataset and
only maintain the data that should initially be loaded, rather than keeping
the entire dataset in memory. Reducing the amount of data on screen can be
achieved either by discerning which data is of most significance through the
use of feature selection, through dimensionality reduction techniques or by
partitioning the data through clustering and then aggregating it into simple
elements that represent groups.

— Dimensionality Reduction

Dimensionality reduction methods map data to a lower dimensional space,
reducing the number of variables with minimal loss of information [59].
These methods find and extract linear relationships that explain the correla-
tion between multiple datasets and between variables, as well as highlight
batch effects or outliers. Owing to the high dimensionality in omics datasets,
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they have been used in exploratory analysis to better understand molecular
pathways in cells and their role in diseases [102], as well as in extracting
patterns from gene expression data where there is typically a large amount
of noise [20, 78, 156].

Singular value decomposition (SVD) and principal component analysis
(PCA) are common dimensionality reduction techniques used in the analy-
sis of multivariate data [158], as well as in the projection of data to create
visual representations. SVD can detect weak expression patterns by finding
and extracting small signals from gene expression data where there is typi-
cally a significant amount of noise. PCA searches for a linear projection of
data that preserves the variance in data while minimizing noise and redun-
dancy [78]. As such, it is able to lower dimensional representation of data
with small reconstruction errors. In the analysis of gene expression data,
particularly when it is measured across multiple time points or conditions,
PCA can be used to group together genes with similar behavior patterns
[118].

Other techniques have been applied in the analysis of biological time-
series, such as recurrence quantification analysis, used in the study of non-
linear processes to quantify the number and duration of recurrences in time-
series data [164], and time warping algorithms, used for mapping corre-
sponding expression states across different time-series from RNA or protein
expression data [1].

— Feature Selection and Pattern Recognition

Feature selection is used to identify distinguishing characteristics from a set
of candidates that, ideally, can be used to extract patterns and differentiate
groups of elements while avoiding noise [75, 163]. In bioinformatics, feature
selection has been applied to diverse problems such as the identification of
genes with particular biological annotations through their expression levels
[93]. Similarly, pattern recognition involves finding sets of patterns that oc-
cur frequently in the data, which are also useful in creating distinguishable
groups and classifier construction. It has been is used in bioinformatics to
understand underlying processes in complex biological networks, as well as
identify differentially expressed genes, genotype patterns, and network mo-
tifs [96]. Motifs are common subgraphs or patterns identified in networks
[106] that have been used to predict interaction patterns of proteins in PPI

networks [4] and in analyzing gene regulation networks [151].

— Clustering

Clustering is the unsupervised classification of data, where a finite amount
of unlabeled data is organized into a discrete set of groups. In general, the
objective of clustering is to obtain clearly discernible groups composed of
elements that have a high degree of similarity between each other, with the
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intent of revealing hidden data structures or meaningful patterns. Cluster-
ing methods can be applied to a wide range of problems, and there are
multiple surveys of clustering algorithms directed at the analysis of gene
expression data [17, 77] and PPI networks, as well as for time-series [125]
and big data [47].

K-means is a common clustering approach which outputs a set number
of groups. It achieves this by iteratively calculating group centroids and re-
assigning points to groups based on the minimum distance to each centroid
until stability is achieved. This is useful in determining position-based clus-
ters on visualizations where points have a fixed position, such as scatter
maps and certain networks. However, the user needs to define the number
of clusters and may have to run it multiple times to find the most appropri-
ate setup.

Hierarchical clustering algorithms produce a nested series of partitions by
picking criteria based on similarity to either merge clusters using agglom-
erative methods or split them using divisive methods [74]. This results in a
hierarchical structure than can be represented with a dendrogram, showing
where each cluster merged or split [74]. In the analysis of gene expression,
hierarchical clustering methods are often used to group genes that exhibit
similar expression patterns over time or over diverse experimental condi-
tions [124, 157].

When representing and analyzing various experimental conditions, biclus-
tering algorithms can be used to perform simultaneous clustering on rows
and columns, which can be applied to the analysis of gene expression matri-
ces to identify similar subgroups of genes under specific subset of conditions
[99]. However, biclustering can attributed data to different groups simultane-
ously, resulting in overlapping clusters. The visualization tool BicOverlapper
[134] provides an example of multiple clustering representation, portraying
nodes with symbols that indicate the number of clusters that they belong to.

2.1.2 Visualization Models

In this section we will go over prominent visualization techniques found
in current and past tools and variations, focusing on models and layouts
used in the representation of biological data. Understanding the visualiza-
tion models available and the variety of existing graphical representations
in a necessary step in deciding those which are most appropriate for repre-
senting a dataset.

— Linear Visualization

Linear representations are among the simplest visualization models, being
used to map data points to observe general patterns or trends. These are
often used in biological visualization tools as secondary views that portray
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additional information about sections of the dataset, such as line charts [36,
147], bar charts [38, 94], histograms [124, 139] and scatter plots [8, 67].

— Parallel Coordinates

Parallel coordinates have a similar representation to line charts but are able
to represent a higher number of variables [94, 134], listing each variable
across a separate axis with values ordered based on properties, such as
connectivity, density, centrality or quantitative annotation. However, there
exists the limitation that each axis can only have two other neighboring axis,
with the first and last axis only having one. A notable variation of parallel
coordinate plots is Hive Plots [85], where the axis is arranged in a circle
and the edges are drawn as Bezier curves, resulting in a more compact
visualization that more easily be embedded into other visualization models
or used as small additional views.

— Heatmaps

Heatmaps are prevalent among biological visualization tools [19, 111], typ-
ically used in the representation of time-series gene expression [40]. While
variations to heatmaps are not common, a hexagonal grid layout was pre-
sented by GATE [97]. Clustering algorithms can be used to sort heatmaps
by ordering the rows of genes, so that those with similar temporal patterns
of expression are placed close to each other. If a heatmap is hierarchically
clustered, it can be accompanied by a tree structure that shows where each
cluster either merged or split, known as a dendrogram [56, 67].

— Networks

Networks, or node-link diagrams, are particularly proficient at displaying
multivariate data and its relationships, being used in biology to represent
PPI, gene regulation and biological pathways [118]. Nodes can represent mul-
tiple attributes through basic visual properties like color, shape and size, as
well as by being labeled with additional information [89, 133]. However,
a greater number of variables can be represented simultaneously through
complex representations, known as glyphs. Chernoff faces are an early ex-
ample of glyphs, which were used to represent various aspects of living
conditions in Los Angeles through face symbols with variables mapped to
different eyes, mouths, face shapes and colors [25].

Relationships in networks are usually portrayed with edges, lines that
connect two nodes that can be characterized using visual attributes such as
color, direction and weight. Edges with clear directions are characterized as
directed, while those with a discernible width can be described as ribbons.
Additional correlations can be inferred through the similarity of visual pro-
prieties defined by the attributes of the nodes, such as proximity, style or
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other elements that convey the formation of groups. A prominent problem
with networks is the representation of large quantities of edges, which often
results in unintelligible ‘hairballs’ which may hinder the extraction of infor-
mation or new knowledge [85, 115]. To resolve this, the positions of nodes
can be calculated through clustering algorithms and force-based layouts [50],
with objectives such as edge crossing minimization and grouping similar
elements [133, 154]. Additionally, edge bundling reduces visual clutter by
drawing their paths closer to those with similar directions [140], creating
organic bundles of edges with clear directions that are easier to follow.

The node placement on a network is determined by the chosen layout,
which can extend to three-dimensional environments. The position of a
node can directly reflect its spatial proprieties, such as in maps and car-
tograms, or its position can be determined by its other proprieties or rela-
tionships with other nodes. In the case of rigid layouts like circular or spiral
layouts [34, 86], nodes may have fixed positions. In these cases, the position
would be determined by their order, making these layouts useful for portray-
ing ordered events like time-series data, recurring processes and periodic
behaviors. As an alternative to networks, pathways can be represented or-
derly through path lists [116], but these can be extensive, and nodes present
on multiple paths will be repeated.

The position of data elements can be calculated iteratively through the
use of force-based layouts, where nodes are subjected to attraction and re-
pulsion forces to shift their positions based on their attributes and relation-
ships. This is a nature-inspired method where individual elements are given
simple behaviors in order to promote self-organization, with objectives such
as edge-crossing minimization or clustering similar elements, while reacting
to changes in the environment and user inputs in real time. This is useful
in portraying changes in the data over time through the use of animation,
such as movement and transitions between sizes, colors and shapes, as well
as adapting the visualization in real time to data elements that get added or
removed, merged or split.

— Trees

Trees are networks with a hierarchical structure where nodes belong to
clearly defined, ordered levels. The highest element with no parents is con-
sidered the root node, while those that have no children are called leaves. In
the field of biology, trees are used in phylogenetic analysis [110, 119] and in
the visualization of DNA microarray data [132].

When employing hierarchical clustering techniques, dendrograms are com-
monly portrayed alongside the resulting clustered visualization, often along
with heatmaps, in order to show how each group was formed and how it
is composed. MLCut [157] and BioJS [60] use circular dendrograms, where
each level in the hierarchy extends along the circumference of a circle (Fig-
ure 2.1). In the circular layout, the root node is located at the center of the
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graph, while nodes can be placed in subsequent circles that each represent
a new level. The circular shape also lends itself naturally to the typical tree,
where each level is larger than the previous one.

Figure 2.1: MLCut is an interactive tool for visualizing heterogeneous data sets which has been
used for pattern discovery in time-series gene expression data, providing the user
with the ability to define clustering parameters and dynamically create clusters by
preforming cuts on multiple levels on a circular dendrogram.

Layered visualizations can also be used to order data hierarchically. For
instance, Arena3D [137] presents a three-dimensional approach to a lay-
out comprised of multiple layers, where two-dimensional networks are dis-
played parallel to each other, each comprising one level, interconnected
through edges. Cerebral [12] has a layered layout option that splits a net-
work into well-defined levels, each representing a different class of proteins
(Figure 2.2). Other hierarchical structures include sunburst and icicle visual-
izations, used by Taylor et al. [146] to visualize gene expression experiments
on the developmental mouse.

2.1.3 Encoding and Perception

The perceptual phenomena that occur when visualizing graphical elements
have been the target of studies that seek to better understand the role of
encoding in problem-solving. Choosing the most appropriate visual pro-
prieties to represent specific types of data and how the resulting elements
should be presented to the viewer requires some comprehension about the
limits of human perception, particularly when the amount of information
available is overwhelming. To this end, sets of principles have been estab-
lished with the aim of providing an objective foundation to a largely sub-
jective field. These principles serve as guidelines to design visualizations
that provide a more intuitive experience for the users and relay information
more easily, while avoiding nonexistent relationships to be perceived.
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Figure 2.2: Cerebral is a Cytoscape plugin that provides multiple network layouts, including
a layered network which organizes groups by cellular level and coordinated small
multiples representing different temporal states. Gene expression time-series data
can be clustered, using line charts to represent the average values of each group.

Jacques Bertin [18] helped create the foundation for visual encoding by es-
tablishing the effectiveness of graphical proprieties in representing diverse
variables, such as how a quantitative value should be mapped to an ele-
ment’s position or size but not to its shape. This is complemented by prin-
ciples that describe the perception of elements based on these properties.
For instance, the Gestalt laws explain how elements that are close together
or share graphical proprieties, such as color, shape or direction, tend to be
associated as being a part of the same group [57]. They also defend the use
of uninterrupted, straight or smoothly curved graphical elements to portray
relationships, how closed elements are interpreted as wholes. These guide-
lines are at the base of approaches that group similar elements, such as
clustering and edge bundling. Vehlow et al. [155] presented a comprehen-
sive survey that categorizes the representation of groups on graphs based
on the visualization model, structure and visual attributes.

While we are interested in how to portray more easily perceptible rela-
tionships and patterns, uncertainty should also be minimized. This means
that encoding should prioritize data fidelity while avoiding the creation of
vague or unintelligible elements. In this regard, Tufte [152] established prin-
ciples for ‘graphical excellence’, which favors clarity and precision while
avoiding distorting the data for the purpose of aesthetics. Furthermore, Das-
gupta et al. [37] proposed a taxonomy that comprehensively describes cases
of uncertainty at both an encoding level, which includes handling missing
values and graphical limitations of the screen, and at a decoding level, such
as indiscernible relationships in cluttered graphs or clusters.
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2.2 comparative visualization

A visualization environment that enables the representation of several mul-
tivariate datasets simultaneously can help identify new meaningful relation-
ships, but the number of variables and types of relationships in the data
may not fit any one specific visualization model. In such cases, data vi-
sualization tools often use comparative views, an exploratory visualization
technique that enables the representation of diverse datasets simultaneously
by composing multiple visualization models, which can have user interac-
tions coordinated between them [159]. Comparative views can be effective
in discovering patterns and unforeseen relationships, identifying and under-
standing outliers and gaining insight from comparing multiple datasets, or
the same dataset using different models [128]. In this section, we review the
layouts of visualization models found in across multiple biological visualiza-
tion tools that use comparative views. Additionally, we identify strategies to
explore relationships between large volumes of data, such as their abstrac-
tion into manageable elements that can be compared across views.

2.2.1 Guidelines for Multiple Views

The amount of information that can be displayed on screen is limited by
both the available space and the user’s cognitive limits when interpreting
large amounts of diverse data representations. It is important to consider
how the placement and availability of the views impact the user’s navigation
and cognitive ability to understand the data to extract new knowledge. In
this sense, design decisions benefit from understanding how the workspace
environment is perceived. Baldonado et al. [159] presented guidelines on
the use of multiple views, noting that they should be used when there are
multiple types of attributes, models, user profiles, levels of abstraction or
genres. Additionally, multiple views are effective in the discovery of corre-
lations or disparities in the data as they allow for data to be extracted and
compared on the screen rather than mentally, which is less straining on the
user. While an overview of the data can be helpful, allowing the user to
isolate and visualize a particular section of the data, it may also be cogni-
tively overwhelming. As such, a complex visualization should be divided
into multiple views that provide more detail and easier management. How-
ever, the addition of views should be justified, as every view introduces
additional complexity to both the program and the user.
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2.2.2 Composition and Layout

The composition of the visualization environment determines how diverse
visualization models can be compared and how their relationships will be
perceived. Previous surveys have categorized the composition of graphical
elements or groups of elements into: juxtaposition, superimposition, nesting
and encoding [55, 61].

— Juxtaposition

Juxtaposition is the most common composition mechanism, where elements
are displayed side by side. To compare between views, each can be assigned
a space by either dividing the work space [94, 124] or through individual
windows [52, 67]. The advantage of windows is that each visualization can
be contained even when it is larger than the available space and be navi-
gated through interaction. Additionally, the user can be given control over
windows, such as changing their size and position, as well as either hiding
or removing them from the workspace. Comparison through juxtaposition
can be used to identify patterns and relationships through common graphi-
cal properties, or for contextual information. In an overview + detail layout,
one view provides an overview of the dataset, while other views focus on
specific sections of the visualization with additional details [69, 128]. This
encourages navigation, as users can drill-down on different sections without
having to roll-up in between.

When the same type of visualization models is displayed multiple times
in smaller sizes in a sequence or grid, they are referred to as small multiples
[135]. This layout can be used to create static or dynamic overviews of data
representations that have various states, such as time-series [69, 97] or exper-
iments performed with different parameters [95]. However, new views have
a cognitive impact on users, and smaller changes can go unnoticed, as they
shift their attention between views, particularly between small multiples.

— Superimposition

Superimposition is an approach for highlighting structural similarities and
differences by stacking the same visualization models [27, 44], helping users
identify small changes more effectively than juxtaposition. Additional rela-
tionships can also be shown by superimposing new elements, such as draw-
ing edges on top of matrices [97, 141]. However, considering that the infor-
mation is overlapped, it may be difficult to identify individual elements. As
such, the scalability of this approach is reliant on the existence of proper
interaction techniques to navigate the data [55].
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— Nesting

Nesting views consists of embedding a visualization model into another
one’s structure. Unlike in superimposition, the nested model is treated as
an element of the parent visualization. Some biological tools use linear vi-
sualizations as glyphs, embedding line charts [54, 72] and bar charts [84]
into networks, having been used to represent temporal data associated to
each gene. Basic node graphical properties can still be altered, such as us-
ing different background colors to represent an extra variable [129]. It is also
possible to embed more complex visualizations, such as glyphs, to represent
relationships between multivariate datasets, such as heatmaps or other net-
works with edges drawn between each other [94, 145]. However, glyphs add
a significant amount of visual complexity, so their use should be justified.
Depending on the quantity and type of glyphs, the amount of information
presented simultaneously can be cognitively exhausting to the user and re-
sult in slow processing speeds, particularly in interactive environments.

— Encoding

Differences and similarities can be computed and encoded in a new visu-
alization where regions of interest are explicitly highlighted [55], making
them easily identifiable. Encoding time-series through animation is a natural
way of conveying changes over time, but it is limited by human perception
capabilities [91]. Transitions between successive states can be smoothly ani-
mated by interpolating values of properties like color and size [147], but de-
tails go unnoticed in short transitions, and it is difficult to compare between
time points. Furthermore, the intermediate events between time points may
not be accurately portrayed if values are interpolated. Alternatively, a time-
line is able to simultaneously represent multiple time points through a va-
riety of scales, shapes and layouts [22], but graphical representations are
limited because of space. By using a timeline as a navigation element that
accompanies other data visualizations, the user can switch between states
in other views and focus on key moments. Choosing and observing tem-
poral states as static visualizations makes it easier to identify details, while
differences can be compared by switching between time points.

— Compound

When representing diverse datasets, multiple composition mechanisms can
be used simultaneously to show different relationships and compare data.
For instance, Pathline [103] and MulteeSum [104] represent temporal gene
expression profiles through a curvemap, a visualization composed of a grid
of area plots. To help analyze these data, the final column and row super-
impose their respective plots for an overall comparison. Despite this, the
amount of information shown can be overwhelming, and the user would
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benefit from visual indicators that highlight regions of interest, particularly
in Pathline. However, the curvemap is also used to relate time-series to other
types of data. Pathline uses a pathway visualization that encodes genes and
metabolites, which can be selected to get added to the curvemap (Figure 2.3).
MulteeSum implemented the curvemap alongside a plot visualization to re-
late the time-series gene expression to the spatial location of their respective
cells (Figure 2.4).

Figure 2.3: Pathline uses a grid of small multiples of line charts to show gene expression
time-series data coordinated as a alternative to heatmaps, with a linear pathway
visualization that provides an overview of aggregate similarity scores for genes and
metabolites.

Figure 2.4: Multeesum represents the simultaneous visualization of time-series gene expres-
sion data and spatial location of where genes are expressed using a colored point
map and a grid of small multiples of line charts, creating visual summaries of the
data by aggregating similar measures into groups.
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2.2.3 Managing Visual Complexity

Reducing the apparent size of the information space is a key strategy in
managing complexity in data visualization, particularly in large networks
where visual clutter is a frequent obstacle [113]. For instance, Kiwi [154]
reduces complex interaction networks by isolating significant gene sets, cal-
culating the shortest path length between each pair and drawing only the
best edges.

— Data Aggregation

Managing visual complexity can also be achieved through data aggregation,
where groups of data points are converted into a single one [91]. These
groups are usually formed by clustering algorithms and consist of elements
that have one or multiple similar characteristics. They can then be repre-
sented by visual proprieties associated with the whole, such as using colors,
symbols or size to represent an average of values of a variable. While these
methods are more complex than just filtering data, they maintain the pres-
ence of all the data, providing overviews of large datasets which may be
useful for understanding overall patterns or behaviors.

Several biological visualization tools have used aggregation to represent
clusters of time-series gene expression data [12, 44, 56]. By calculating the
mean of every value over every time point, a cluster can be represented with
a line chart that represent the average variation over time within that cluster.
These tools then list the line charts to the user sequentially as small multiples
that can be selected to either highlight the respective cluster on another view
or open a profile view that superimposes every gene. VisBricks [95] stands
out among other tools by representing time-series gene expression clusters

Figure 2.5: VisBricks can represent multiple datasets of time-series gene expression data, where
clusters of each set are represented as node glyphs in an axis on a parallel coordi-
nates layout, with edges drawn between sets. The representation of clusters can be
switched between a bar-chart, a histogram or a compact view.



24 state of the art

using multiform visualizations, where each cluster can be represented as
either a line chart, a histogram or a colored compact view of the data. These
are displayed as glyphs in a parallel coordinates visualization where each
axis corresponds to a different gene expression dataset, connecting shared
data between clusters in different datasets with ribbon edges (Figure 2.5).
The advantage of this layout is that clusters can be sorted along each axis,
but relationships to other axis can only be directly drawn between with
those one each side.

— Simplifying Networks

In networks, groups can be determined directly from identifiable relation-
ship structures between the data, such as motifs. Dunne and Shneiderman
[39] propose motif simplification, where common network sub-graphs are
identified and then replaced with a simple symbol that is representative of
the layout of each respective motif (Figure 2.6). Maguire et al. [100] also pro-
pose simplifying motifs but through glyphs that can be represented using
three varying levels of detail, which portray not just the structure of the mo-
tif but also attributes of individual nodes. However, the scalability of this
approach is limited, as individual attributes can be hard to discern for large
motifs, but glyphs can also represent the average attributes of the group.

Figure 2.6: Example of motif simplification proposed by Dunne and Shneiderman to improve
network visualization readability.

Analyzing the evolution of a network over time and identifying key mo-
ments by comparing each state sequentially may prove difficult if the changes
are too subtle or if there is a large quantity of states. In this case, aggregation
techniques can be used to abstract networks into simple elements that can
be compared simultaneously in large amounts by reflecting their current
states into graphical proprieties.

Bach et al. presented Time Curves, a visualization model which utilizes
multidimensional scaling to position time points in low-dimensional space
in such a way that their relative distance reflects the similarity between their
attributes [10]. This is achieved by calculating the similarity between time
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points using data-specific metrics and then applying a force-directed layout
on the timeline to attract time points based on their similarity, resulting in a
bent timeline whose shape reflects the behaviors of the data, such as signifi-
cant events, cyclical patterns, regressions and outliers. Elzen et al. presented
a similar concept which further showed how this layout is able to represent
the overall behaviors of complex systems over time [43]. In their work, the
properties of a network at each point in time are abstracted into a point on
a two-dimensional plane to build a Time Curve, which will then portray
the structural changes in the network over time. Through the Time Curve
it is possible to identify the periods in which the network remained with
a specific structure, the moments when this structure changed, the inten-
sity of these changes, and when the network returned to similar, previous
structures.

Visualizing and analyzing changes in network visualizations has addi-
tional challenges involving modifications to the structure in addition to
changes in values. This includes direct modifications to spatial variables,
as well as the addition, removal or transformation of both nodes and edges.
As such, a network may present significant changes between any two states,
and the user may need to identify which changes have taken place, in ad-
dition to the causes and future consequences of these changes. Structural
differences between two networks can be highlighted through colors or la-
bels, or by using animated transitions that draw attention to changes in po-
sition or size through the use of movement. ELICIT [32], a visualization for
evolutionary algorithm data, portrays individuals evolving along an inter-
active timeline which controls two other visualizations. Individuals can be
represented with tree graphs, and changes throughout their evolution are
shown by highlighting the differences between any two subsequent trees,
where new branches and nodes are drawn in different colors. Additionally,
the trees are drawn using a force-based layout that adapts the position of
the nodes as new branches get added or removed, resulting in movements
that draw attention to areas that have been altered.

2.3 coordinated interaction

Interaction and dynamic visualization environments play a major role in an-
alyzing complex datasets, as the user needs to be able to navigate through
diverse datasets, compare data points and identify relationships [123]. In an
environment with CMV, user interactions with a visualization model, such
as selections and filters, can be dynamically applied to similar data points
represented across other views. Coordinating interaction helps users keep
track of data and more quickly identify significant relationships and pat-
terns, particularly between diverse visualization structures [142].



26 state of the art

Ideally, interaction should be fluid, which mean that any set of actions
that the user sets out to perform should be a continuous and smooth pro-
cess, without interruptions. The concept of fluid interaction is based on a
set of general principles, which can be applied to support the user’s immer-
sion and involvement [42], such as: using animated transitions, providing
immediate visual feedback, integrating interface components into the visu-
alization, and allowing the user to make changes intuitively.

Baldonado et al. [159] described additional guidelines for designing co-
ordinated interaction. These highlight the importance of the time costs of
each interaction, such as the computational time necessary to process each
change. Time costs also include the time the user takes to understand and
switch between visualization models, which can be reduced by using con-
sistent graphical elements to represent the same types of variables between
multiple views and different visualization models. Additionally, the user’s
attention can also be diverted to regions of interest through perceptual cues,
such as animation, sounds and highlighting.

2.3.1 Navigation

Interactive visualizations, particularly large-scale graphs and maps, are tra-
ditionally navigated using panning and zooming techniques where the vi-
sualization is moved or transformed. As such, they can be used for position-
based filtering, bringing specific elements into focus while moving others
off the screen or de-emphasizing them.

— Levels of Detail

Given that there is a limited amount of screen space, the size of visual ele-
ments and the amount of details shown must be controlled, such as through
zooming. Zooming is an action that resizes an area or elements of a visu-
alization and it is characterized as geometric when the affected parts are
resized without any changes to their content. Zooming in moves elements
off-screen while increasing the distance between them, which also increases
the amount of empty space. Semantic zooming methods take advantage of
this by adapting the content to the current scale [120], which can involve
the addition of labels with details or contextual information [84]. In some
cases, the structure of the visualization can be drastically changed to add
new points and relationships related to the data in focus which may have
been previously hidden [16].

An early implementation of semantic zooming was included in the zoomable
user interface [15], consisting of a single large information surface where el-
ements can be placed on at any position and scaled to any size through the
use of a graphics engine called Pad++. Rendering is context-sensitive, where
the amount and type of details depends on the zoom level and zooming be-
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tween levels is animated for smooth transitions. This serves as a possible
alternative to multiple views, where all the elements can be placed in a
single area which the user navigates within, although it lacks organization.

Alternatively, focus + context methods expanding an area in focus with-
out pushing elements off the screen [66]. This is commonly achieved by
increasing the size and amount of details on a single element or a group,
distorting the position of the surrounding elements and decreasing their
size in order to maintain every element on screen for context [150]. TreeJux-
taposer [110] presents trees side by side for comparison, allowing the user to
select a rectangular area and then enlarge it freely by dragging the corners,
dynamically adapting the size of the rest of the tree and enlarging the same
area across other trees through coordination (Figure 2.7). Notably, this tool
also implements a draw order where the nodes and branches in focus are
drawn first when rendering changes, which maintains the user’s attention
on regions of interest. Tominski et al. [149] presented a survey on lens-based
focus + context approaches, showing how these can be used as interactive
objects that can filter data.

Figure 2.7: TreeJuxtaposer is a tool designed for the comparison of large biological hierarchical
networks, such as phylogenetic trees, comparing them through color and providing
interactive navigation, such as adjustable and coordinated zooming.

— Interactive Aggregation

In a top-down approach to navigation, big data visualizations can initially
present the user with an overview of the data created through aggregation
and sampling methods, while interactive functions allow the user to drill-
down and access the original data. Hierarchical aggregation results in a
network with clearly defined levels of detail [41], which can be navigated
through recursive expansions or reductions by selecting parent nodes to ei-
ther add or remove child nodes, as used by VisANT [72] and AVOCADO
[144]. iHAT [65] presents a hierarchical table approach that combines the
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visualization of sequence and expression data, in which the user can ag-
gregate rows and columns of a heatmap interactively. However, the visual-
ization can get cluttered, as the user drills down and expands groups. To
prevent this, either a separate view can be created to represent the contents
of an expanded set of aggregated data [38] or multiple views can be defined
to represent a set of number scale levels [105].

Visual aggregation can also be combined with semantic zooming to bal-
ance the number of graphical elements on screen in relation to the scale
level. For instance, as the user zooms in on aggregates, the data groups in
focus are expanded, while the remainder are pushed off-screen.

— Visual Guidance

In general, navigation methods should not just give users freedom to ex-
plore but also guide them. This includes establishing limits to prevent users
from going out of bounds, as well as visual hints that keep users aware
of where information of interest is located, particularly when it is located
off-screen. Schulz et al. [136] present a table-based approach for visualizing
bipartite biological networks, where the scroll bars contain selection mark-
ers that indicate regions of interest, which would otherwise be off-screen
because of the vertical length of the tables.

Additionally, one can also consider the degree of interest of each data
element in their representation. This was proposed by Furnas in 1986 [53],
noting that information items have different levels of importance to different
observers. By identifying the user’s interests or objectives (such as through
their selections) it may be possible to determine which data points are most
relevant and then visually highlight them.

CMV can also be used to guide the user and avoid navigation problems.
For instance, when visualization is zoomed in enough, panning to another
location may require the user to zoom out first before moving and then
zooming in again. This breaks the user’s workflow, as each step may require
a significant amount of time to process in complex visualizations. This can
be avoided by using two views to create an overview + detail layout, where
one visualization presents a constant overview of the dataset that can allow
the user to select a new point which will be viewed in detail in the second
visualization window [60, 161].

— Sorting Multiple Views

Navigation through environments with multiple views is also reliant on
how the views are presented to the user. Several early concepts on window
interaction are present in E. Kandogan and B. Shneiderman’s elastic win-
dows [80]. This method utilizes a hierarchical organization where the role
of each window can be sorted as a nested rectangle tree structure, depicting
an easily identifiable hierarchy between them. Furthermore, any operation
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performed on any level of the hierarchy is propagated to lower level win-
dows inside that group recursively. Organization of the windows is handled
by a space-filling tiled layout, where resizing a window will proportionally
shrink or stretch the remaining windows dynamically, in accordance to the
available space. Instead of overlaying windows and obscuring other views,
this method helps the user organize the work environment while maintain-
ing every current view visible. Cerebral [12] also presents an example of
coordinated navigation, applying panning and zooming across small multi-
ples representing different states of the same biological network (Figure 2.2).
This results in very view focusing on the same region, allowing users to
more easily find differences or patterns in the network across several tem-
poral instances.

In cases where multiple views are not shown simultaneously, the ability
to switch between them quickly is advantageous for either finding the most
fitting model for the same data or comparing patterns between them. This
requires some consideration over which options should be readily available
in a list or though tabs, and which require navigation through menus.

2.3.2 Data Queries

Throughout their session, users may need to perform queries to find and
focus on sections of the data that are specific to their current objectives.
Queries are requests from the user that involve one or multiple constraints,
which can either be categorized as searches, when the objective is to find
and emphasize a specific element or group, or as filters, when the user
seeks to de-emphasize or remove elements from the view and reduce visual
clutter [66]. They are performed through inputs that can be characterized as
indirect or direct.

— Indirect Inputs

Indirect inputs consist of actions usually preformed through separate menus.
Qualitative or discrete data can be listed as options using interface elements
like tables, dropdowns and checkboxes that are used to switch between
what data are visible [36, 134]. Search bars occupy a small amount of space
and are useful for finding elements through partial or full names [88, 89]
but have the disadvantage of requiring previous knowledge from the user.
Numerical input boxes and sliders are more commonly used for handling
queries over continuous data, where the user can pick values to establish
thresholds, such as upper and lower limits [157].
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— Direct Manipulation

Direct inputs involve interacting with the visualization, either by select-
ing the graphical representations of the data or by manipulating elements
through handles or widgets. Handles are sections of graphical elements
that the user can select and drag to either move or resize that element [69],
change the value of a propriety [105] or establish thresholds on the visualiza-
tion [27, 103]. When the user is meant to have control over several properties,
then widgets can be used instead. These consist of small interface elements
embedded into the visualization with multiple handles, buttons or input
fields [95]. There are also other types of complex queries, such as the grid-
based query technique implemented by PivotSlice [165], which subdivides
the visualization into meaningful sections.

— Brushing

Selections on a visualization model are usually performed by using the
mouse as a brush, hence it is known as brushing. If the brush is a point,
then data elements are chosen individually, such as hovering over them to
display labels [79, 148] or clicking them so they are added to another view
[103]. Alternatively, multiple elements can be brushed simultaneously by
using a line or an area, which is commonly drawn either as a rectangle or
with a freehand lasso.

TimeSearcher [69], a time-series visualization tool, presents an area brush-
ing method: timeboxes. These are rectangular regions drawn by the user
on a two-dimensional display of time-series data to perform queries. After
being drawn, timeboxes have handles that allow the user to resize them or
move to a new position. The result set from the queries will only consist of
patterns that are within the constraints of the active timeboxes. The Hier-
archical Clustering Explorer [67] is another visualization tool for exploring
multidimensional data, which implements interactive approaches for profile
queries directly on line charts. This is achieved by drawing a line pattern to
query similar profiles and setting a distance measure to establish how sim-
ilar other profiles need to be to get added to the result set. Additionally,
the user can establish upper and lower thresholds directly on the visualiza-
tion using the mouse. While both these tools are not specifically designed
for exploring biological data, the described methods can be applied in the
identification of time-series gene expression profiles.

More recently, we find also similar methods employed by DEVIS [122],
a tool for visualizing and analyzing the evolution of relaxed functional de-
pendencies over time. This tool utilizes a line plot and a dependency table
that dynamically adapt to continuous discovery processes, allowing users
to interact with the results through queries and filters, including the selec-
tion of an interval of time through a brush to analyze the changes to the
dependencies during that period.
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More complex brushing techniques have also been developed, such as
the compound brushing system developed by Chen [24], where multiple
brushing actions can be combined to include, exclude or reverse selections
through logical operations (OR, AND, XOR). Another compound brushing
technique is presented by Wright and Roberts [162], named click and brush.
This method consists appending brushed elements to a list to then high-
light intersections and correlations, while additional information and new
discoveries is shown in additional views.

— Coordinated Brushing

When brushing is used to concurrently highlight related information across
multiple views, then it is known as linked brushing. This type of coordina-
tion is advantageous for the user, as it maintains consistency through the
use of visual characteristics, such as color, weight and shape [67, 134]. This
allows the user to identify equal or similar elements across diverse views,
find outliers and keep track of changes between groups, such as the addi-
tion or deletion of data elements [92]. enRoute [116], ConTour [117] and
Pathfinder [115] present table-based approaches for pathway analysis coor-
dinated with network visualizations, where path lists can be extracted to the
table through brushing nodes or selected from the table to be highlighted in
the network (Figure 2.8). Owing to the number of possible paths, pathway
analysis through path lists is particularly reliant on queries. As such, these
tools provide sorting methods that bring interesting pathways to the top
and linear representations embedded into the cells for easier comparisons
between attributes.

Figure 2.8: enRoute employs a pathway visualization through a network, using colored shapes
around nodes and edges to show selected paths and a table that has multiple linear
visualizations to represent attributes in each cell.
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2.3.3 Editing

Data analysis algorithms and sorting methods, such as clustering and force-
directed layouts, are essential in the organization and visualization of large
datasets. However, these techniques often do not provide ideal results, and
it may be necessary to introduce human input. As such, the user should be
given the option to fine-tune the visualization, while also being provided
with analytical tools that increase the transparency of the implemented
methods to better understand the problem and more quickly solve it [70].

— Setting Parameters

Regarding tools that provide clustering approaches, these may allow the
manual definition of clustering parameters [72, 140]. In particular, MLCut
[157] uses sliders to identify and refine gene expression clusters (Figure 2.1),
while Furby [145] lets the user to locally or globally adjust the threshold of
the biclusters membership values to create well-defined clusters (Figure 2.9).

Figure 2.9: Furby provides adjustable biclustering of data, where fuzzy clusters can be con-
verted into hard clusters, and visualization through multiple heatmaps displayed
as a network, organized with a force-based layout. To reduce visual clutter, select-
ing a bicluster will fade out edges that are not connected to it.

— Custom Visuals

In regard to editing the visualization itself, some tools allow the selection
of which variable is mapped to the color and size of nodes and edges [89,
134]. The visualization environment developed by Abello et al. [2] stands
out by allowing the user to set multiple thresholds within an attribute and
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mapping each of these intervals to a color. A direct method for manipulating
the position of elements is dragging, which has been used in networks to
rearrange nodes [12, 84], and to move data across multiple views [8, 69].
Further control over biological networks can involve drawing new pathways
and managing their visual properties [52, 87].

— Action History

The ability to undo and redo actions is helpful in allowing users to edit
and explore options and parameters without fear of mistakes. Contour [117]
provides a list of the users’ previous actions, while PivotSlice [165] presents
a user’s history visually by saving a thumbnail of the visualization to a
separate panel whenever the user performs an edit, which can be used to
go back to any of the recorded points. This concept can be explored further
by providing methods to record the actions performed in the current and
previous sessions and share this history with other users to confirm and
extend discoveries.

2.4 discussion

Visualization tools seek to provide users with the means to analyze diverse
datasets to find meaningful relationships that could lead to advances in re-
search. However, these relationships are often complex, and their discovery
is hindered by the characteristics of these datasets, in particular their hetero-
geneity and volume, which are at the base of prominent challenges in data
visualization.

2.4.1 Managing Volume

Modern visualization tools must contend with the representation of large
volumes of data, which is not only computationally demanding, but can also
obscure relationships in the data, particularly in network representations.
For instance, when a user enlarges a section of a tree in TreeJuxtaposer
[110], the remainder of the visualization is dynamically shrunk and kept
on screen, but it is difficult to discern information because of the quantity
and size of the shrunk elements (Figure 2.7). As such, overviews of the data
should avoid overwhelming users with information and instead point them
toward regions of interest, while facilitating comparisons. This is a problem
of scalability, where the number of visual elements should be reduced while
taking into consideration all available data, which may be achieved through
statistical analysis and clustering.

Dunne and Shneiderman [39] and Maguire et al. [100] presented approaches
to network reduction by representing common motifs through symbols and
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glyphs with graphical attributes that represent the motif’s properties. How-
ever, while these methods only aggregate partitions of a larger network,
Bach et al. [10] and Elzen et al. [43] proposed approaches that are able to
translate states of the data into points on a 2D plane, which can portray
behaviors such as outliers and cycles. In the surveyed tools, network aggre-
gation was applied through hierarchy. For instance, VisANT [72] uses inter-
active aggregated nodes to open or close lower levels of the network. How-
ever, the lack of descriptive visual characteristics on the nodes hinders the
user’s navigation, unlike in AVOCADO [144], where nodes are labeled with
symbols and quantities (Figure 2.10). Additionally, semantic approaches are
under-explored, as they could be used in this context to dynamically aggre-
gate elements not in focus and keep them for context when the user drills
down on demand.

Figure 2.10: AVOCADO utilizes a provenance graph visualization that is aggregated based
on the graph’s topology, which can then be interactively expanded by the users
as they drill-down. Aggregated nodes contain values and symbols that describe
group.

2.4.2 Managing Heterogeneity

Many biological visualization tools provide a range of models and layouts
to represent diverse data structures, including annotations from external
databases, but the depiction of relationships between them is still an issue.
The most common solution is CMV, as multiple models can organize and rep-
resent individual datasets, while coordinated interaction is used to highlight
common data points. For instance, ConTour [117] uses coordinated tables,
networks and compound visualizations in the analysis of pathways. Its table-
based approach is capable of organizing diverse attributes through columns
that can be nested, and by using various graphical representation forms
within each cell (Figure 2.11). Alternatively, CMV can be used to navigate
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through different levels of a dataset. Mizbee [105] simultaneously displays
four different interactive scales for comparing two sets of chromosomes (Fig-
ure 2.12).

Figure 2.11: Contour is a visualization tool focused on data discovery that displays data
through tables with nested columns and sorting methods that bring relevant infor-
mation to the top, along with a network visualization for pathways and a view for
compounds. Variables, such as sequences, can be clustered and then represented
with a line chart that uses the median values of the group.

A prevalent challenge in the representation of heterogeneous datasets is
the visual encoding of data, as different variables should be graphically con-
sistent and easily identifiable. In particular, time-series gene expression has
been a target of multiple visualization approaches that seek to represent
relationships between genes that have similar expression patterns. While
heatmaps have been a standard approach in representing time-series, line
charts have risen in popularity in the biological visualization tools devel-
oped during the past decade. Not only are the values of expression profiles
more easily interpreted through a line chart than a row of colors, but they
can also be compared by overlaying multiple charts. Superimposition is use-
ful for detecting trends, but it is also a significant source of uncertainty, as
individual elements may be difficult to distinguish, so it should be used pur-
posefully. For instance, Matse [27] uses superimposition to overview time-
series profiles and allow the user to directly apply thresholds based on the
resulting visualization, while MLCut [157] encodes superimposed profiles
with color to distinguish between the clusters created by the user’s choice
of parameters (Figure 2.1). Alternatively, by calculating the average between
time-series, the profile of a group can be represented with a single linear
visualization. Cerebral [12] makes use of this to list clustered time-series
profiles through small multiples, which can be selected to highlight each
group of genes in a network model (Figure 2.2).
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Figure 2.12: MizBee is a visualization tool for comparing chromosomes at multiple scales
shown simultaneously through coordinated multiple views, which include a cir-
cular network with edge-bundling.

While the temporal attributes from gene expression can be clustered and
compared through compact graphical representations, we must also work
toward new visualization metaphors to analyze relationships between other
attributes and datasets. In this regard, Pathline [103] and MulteeSum [104]
relate a curvemap, a grid of time-series profiles that shows trends using
superimposition, with both pathway and spatial data through interactive
coordination. However, these tools highlight the need for encoded visualiza-
tions that directs users toward patterns that may be of interest, in particular
between views (Figure 2.3, 2.4). As such, this warrants the exploration of
new models that integrate multiple biological datasets, designed with the
purpose of portraying their relationships. For instance, while VisBricks [95]
uses heatmaps to represent multiple gene expression datasets, time-series
can be clustered and represented through small multiform visualizations,
where relationships are drawn between the clusters across datasets (Fig-
ure 2.5). These are integrated in a single visualization with a parallel co-
ordinates layout, but this does present a limitation, as each dataset can only
be compared against those on each side.

In summary, tools for visualizing multidimensional data are becoming
more comprehensive and flexible but still present limitations in their visu-
alization approaches. Ideally, the development of new visualization tools
should focus on user-centered interaction and coordinated environments,
as well as new visualization metaphors capable of showing patterns, key
changes and outliers by enabling the comparison between large multivari-
ate datasets. Data can be aggregated into simple graphical representations
that provide an informative overview of the data, while interactivity pro-
vides users with the ability to navigate through different levels of detail by
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drilling down and access details on demand through brushing. Future de-
veloped visualization environments should automatically support users in
their queries by predicting regions of interest and dynamically adapting the
visualization to the type and amount of information on screen. While most
of the surveyed tools still use static representations, force-based layouts can
be used to react to dynamically changes in the environment and user inputs
in real time using fluid transitions. At the same time, users should have
control to make manual adjustments, both in customizing the visualization
and fine-tuning parameters, as human input may help discover key relation-
ships between elements and groups, which would not be easily discernible
solely through data analysis.
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CroP is a data visualization tool developed in Java using the Processing li-
brary [126], designed to represent and analyze multivariate data, in particu-
lar relational and temporal data. While it is able to process generic datasets,
there is additional support for biological datasets, such as the integration
of an external database for cross-referencing gene proprieties, allowing it
to be used to explore and discover patterns across PPI networks and gene
expression time-series.

Figure 3.1: CroP’s user interface with a loaded temporal dataset, showcasing the options side-
bar (left) and three different panels in its workspace: a network panel (middle), a
data table panel (top right) and a time curve panel (bottom right).

CroP uses a CMV layout, where interactions may be shared between views
to facilitate the navigation between different levels of detail, as well as the
analysis of multivariate data and discovery of meaningful patterns. Loaded
data is represented through visualization models within flexible panels that
can be arranged according to each user’s objectives and queries. Data can
also be sorted, clustered and filtered, which is reflected through its dy-
namic visualization models and flexible environment. Additionally, mul-
tiple datasets can also be loaded and visualized simultaneously, allowing
users to compare them through multiple panels and a differences view.

In this section, we will provide an overview of CroP and its functionalities
from a user perspective. We will present its capabilities for data analysis,
the representation of multiple variables, the layouts provided by each type
of panel, and its ability to handle multiple datasets.

39
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3.1 user interface

CroP’s user interface is divided into an options sidebar and a workspace
(Figure 3.1). In the options sidebar, users can import data files and manage
datasets, while the workspace consists of a modular environment where
panels containing the visualization models are set on a grid-based layout
(Figure 3.2). The size of CroP’s window can be adjusted be dragging the
edges or maximizing it which will adjust the size of the panel grid and its
contents accordingly.

The options within the sidebar are categorized into different groups and
their visibility can be toggled based on the needs of the user (Figure 3.3).
Circular icons with question marks are located next to options with com-
plex functionalities in order to provide users with instructions or context
regarding that function. This information is contained within a text prompt
that appears when the icon is hovered with the mouse.

Figure 3.2: CroP’s user interface when data has not been loaded and a single empty network
panel in its workspace, showing the grid to which panels adjust their size and
position automatically.

3.1.1 Dataset Management

Under "Data Management", users can import relational data, time-series and
multivariate data, whose files can be formatted as either comma-separated
values or tab-separated values: Relational data describes the edges of a net-
work, containing all of the direct relationships between the existing data
points; time-series data contains ordered lists of values, describing how a
propriety of each point varies over time; multivariate data consists of a set
of independent quantitative proprieties, which can be used define general
attributes for each data point without a defined order.
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Figure 3.3: Options sidebar with all of its groups collapsed (1.) and opened (2.).

Loaded files will be parsed and the user will be alerted any detected er-
rors, along with the line numbers in which they occurred so that these can
be more easily located and corrected (Figure 3.4). When multiple files are
loaded, alerts will either allow users to merge data points referenced with
the same name on multiple files into single elements, or immediately filter
existing data points that do not contain certain loaded variables. If any val-
ues in time-series and multivariate files are left blank, the application will
interpret this as nodes being "inactive" at those time points or for those vari-
ables, and they will be represented in the visualization models accordingly.

In support of biological data analysis, the Gene Ontology (GO) databases
were integrated into the application in order to provide additional informa-
tion and the ability to compare biological elements. If any data points are
loaded with names that correspond to the proteins in the database, CroP
will associate them with the biological processes of their corresponding pro-
teins within some of the visualization models. Additionally, there are inte-
grated biological datasets can be selected and loaded from the "Preset Data"
dropdown, which includes a human PPI network.

After a dataset has been loaded, data can be clustered into groups of
nodes with similar proprieties using the options in the sidebar located un-
der "Clustering". Users can select the type of clustering, the attribute being
clustered, and the merging criteria. Data elements can be clustered by their
position in the network panel, by temporal attributes, or by the values of
variables. Data points and clusters selected in the visualization panels can
be removed or copied using the options provided in the sidebar under "Fil-
tering". The first two options will either remove the selected data points
or remove all but those that are selected, while the last option will instead
copy the data points into new dataset, without removing them from the
current one. The simultaneous visualization of multiple datasets is further
explained in the “Managing Multiple Datasets” section.
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Figure 3.4: Examples of alerts when merging data (top), replacing a dataset (middle), and
finding errors in loaded data (bottom).

At any point, users can select the “Save All“ option to generate a file con-
taining the current state of CroP, which includes the entire dataset as parsed
by the application, clustering, panel positions, settings and parameters. This
file can be loaded at any point through the “Load All“ option in order to
restore the workspace to its previously saved state with minimal loading
times, as it bypasses the need to recalculate layouts or clustering.

3.1.2 Data Mapping

Data mapping refers to how colors are mapped to numerical values loaded
from time-series or multivariate data files. Mapping uses normalized val-
ues by default, but they can be unnormalized within the previous options.
Additionally, while values can be mapped between the colors of any of the
available palettes, we’ll be using the "RdYlGn" palette as a reference in this
section, which maps values from red to yellow and then to green, as it
better distinguishes between extreme and middle values. Value mapping
simply maps colors between the minimum and maximum values of each
time-series or variable, from red to green respectively (Figure 3.5). However,
if the values are unnormalized, then the colors will be mapped between the
minimum and maximum values across the entire dataset.

As time-series data describes a list of ordered values, this allows for color
to also be mapped to how the values change over time, using either its
variation or tendency. We define variation as the difference between the cur-
rent value and that of the previous time point, as to represent the variation
of values over time. Color is then mapped to the intensity of the variation
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and whether it is negative or positive, approaching either red and green
respectively (Figure 3.6). When values didn’t change significantly from the
previous time point, points will approach with middle tones, in this case
yellow.

Tendency consists of a simple approach that does not take into account
values, only how the data shifts between the previous and next time points.
Each of the color palette’s extremes corresponds to a shift in variation, where
green represents a peak of values and red represents a valley, while middle
colors represent other behaviors, such as light green representing increasing
values, orange representing decreasing values, and yellow representing val-
ues that didn’t change (Figure 3.7). Tendency mapping is aimed at the anal-
ysis of datasets where shifts between positive and negative variation mark
significant moments in the data, such as gene expression time-series where
peaks of expression represent when proteins have become over-expressed.
The type of data mapping can be switched in the options sidebar, within
"Data Management" and under "Data Mapping".

Figure 3.5: Example of value mapping.

Figure 3.6: Example of variation mapping. Figure 3.7: Example of tendency mapping.

3.1.3 Color Palettes

In order to consistently represent the same types of values across different
visualization models, we established a set of color palettes from which users
are able to choose from in the options sidebar. Different palettes may be
chosen to distinguish between and map general numerical values, temporal
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progression, and differences between multiple datasets. As default, general
values are mapped from light yellow to dark orange, representing minimum
and maximum values respectively, while temporal progression is mapped
from light blue to dark blue, representing time from the first time point to
the last. However, these color palettes can be changed under the "Visuals"
tab in the sidebar, allowing users to switch between ten different palettes to
represent either type of values.

These palettes were referenced from ColorBrewer [62], a work in which
such color schemes have been shown to distinctively represent different
ranges of values while also being appropriate for users with any of the
common types of colorblindness. However, as these palettes were originally
defined for map visualization, they were subjected to minor modifications
that allowed them to be used more effectively within the context of our pro-
gram. In particular, very light colors were either removed or altered to make
nodes without outlines more visible against a white background.

The variety in palettes chosen for CroP were in response to a potential
need to discern between various ranges of values across different types of
datasets (Figure 3.8). The first five color palettes are sequential, representing
low values with light tones and high values with dark tones: "Blues" and
"Greens" vary between brightness within the similar hues, while "RdPu",
"YlOrRd" and "YlGnBl" present variation in both their brightness and hue.
While sequential palettes will generally emphasize higher values, those with
higher variation in hue (in particular "YlGnBl") allow users to differentiate
between values more effectively. The remaining five color palettes are diver-
gent, representing either two very distinct colors at each of their extremes
with light colors in the middle, as is the case for "BrBG", "PiYG", "RdYlGn"
and "RdYlBl", or representing a larger gamut of colors, as does "Spectral". In
general, divergent palettes represent low values with hot colors, such as red,
and high values with cold colors, like green, highlighting values on either
extreme while also distinctly representing different ranges of values.

Furthermore, as CroP is able to receive and process null values as to
explore patterns of inactivity in datasets, we established a color for each
palette that differentiates inactive nodes from others. While each sequential
palette was assigned a bright color that was able to contrast against any
other color mapped between its values, divergent palettes simply represent
inactive nodes with black, as to contrast with their generally large variation
in hue.

3.2 visualization panels

The visualization panels are windows dedicated to analyzing different types
of data, containing multiple visualization models and layouts that represent
loaded datasets. While CroP starts up with a predefined set-up, new panels
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Figure 3.8: List of the color palettes available in CroP. The final color in each palette is used to
represent inactivity.

can be added to the workspace from “New Panel” dropdown in the options
sidebar. Every panel contains some consistent elements that allow users to
organize them: the top bar can be dragged to move the panel, and the corner
of the panel can be dragged to resize it. Additionally, the bar contains a
button to close the panel and a dropdown that selects the dataset being
visualized (when there exist multiple datasets).

When a panel is moved or resized, its corners will always snap to the
closet point on the grid of the workspace. This grid layout ensures that
the organization of the workspace is maintained, as panels can be sorted
and adjusted to make use of the available space. This, for instance, allows
users to easily place panels next to each other and resize them to consistent
sizes when comparing between multiple similar visualizations. Overlapping
panels are handled automatically, where the overlapped panels are resized
or moved to accommodate the new changes.

There are four types of visualization panels: Data Tables, Networks, Time
Curves, and Multivariate Views. In this section, we will primarily utilize the
"YlOrRd" color palette for values and the "Blues" color palette for time.

3.2.1 Data Table

The data table panel shows every data point at its lowest level, listing them
in a sortable table where rows can be selected to access the proprieties of
each individual element (Figure 3.9) or the aggregated proprieties of clusters
(Figure 3.10). Different options will be available depending on the type of
data loaded and options selected: The "General" button will always contain
a list of the dataset’s data points; clustering the data adds the "Clusters"
button to the top of the panel, which opens a table of aggregated time-
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series and multivariate data for each of the created groups, where columns
display the means of each group’s values; loading multivariate data will
add a "Variables" button, which provides access to a table of all the existing
variables and their values across the dataset.

Figure 3.9: Sets of table panels showing an element being selected (top) and various informa-
tion about that element (bottom): a temporal profile (left), a list of its edges (middle),
and a list of its Gene Ontology proprieties (right).

Figure 3.10: Sets of table panels showing a list of clusters with one being selected (top) and
various information about that cluster (bottom): an aggregated temporal profile
(left), a list of its elements (middle), and a list of the Gene Ontology proprieties
within the cluster (right).

— Row Selection

Tables can be scrolled by using the mouse wheel or by using the sliders
on its side, while data points can be selected or deselected by clicking on
their respective rows. Selections are coordinated across visualization models,
highlighting these data points in all network and table visualizations of the
same dataset. The positions of selected elements are also marked in the
scroll bar with colored bars, allowing users to easily discover their positions
on the table.

For each selected data point, a new tab on the top of the table is created.
These contain the existing proprieties of the selected data point, including
a line chart of its temporal profile, a bar chart depicting the values of its



3.2 visualization panels 47

Figure 3.11: Two examples of multivariate data profiles, which utilize bar charts.

variables (Figure 3.11), a list of its edges between other nodes, and a table of
corresponding GO terms (if the loaded data matches that of the integrated
biological database). If the number of tabs exceeds the width of the panel,
tabs can be dragged horizontally to scroll through them. Additionally, se-
lecting a cluster will also create a tab with detailed proprieties of that group,
including aggregated profiles of its data, a list of its nodes and a table of
aggregated GO terms.

Holding the "CTRL" key will allow the selection of multiple rows simul-
taneously, each creating an individual tab for the selected element. Alter-
natively, to select large sections of data points, holding the "SHIFT" key
will toggle start/stop points for row selection, where selecting two separate
rows in this manner will automatically select every row between them. Due
to the high number of rows that could selected simultaneously, this type of
selection does not create individual tabs for each row. Instead, a single tab
called "Highlighted" is created which contains the aggregate data on every
data point selected. Furthermore, to distinguish this type of selection, tabs
selected with the "SHIFT" key are colored differently.

— Column Order

Columns are kept updated with the current data and loading new attributes
will add any new proprieties as columns. Rows can be sorted by any of these
attributes by clicking on the respective column’s title cell, where clicking it
a second time will invert that order. If time-series or multivariate data has
been loaded, columns will be added with a sequence of colored squares that
match the current value mapping of the data points, as described previously
in the "Basic Representation" section. These columns can only be sorted after
data has been clustered as it orders nodes by the similarity calculated by the
algorithm.

3.2.2 Network Panel

The network panel’s main visualization model is a dynamic node-link graph
that represents data points and their relationships in two-dimensional space.
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The position of nodes can be sorted to reflect the relationships between their
attributes through multiple layouts, which allows the network panel to be
used even when visualizing data that does not possess relational attributes.

— Basic Representation

The network visualization utilizes conventional circles and lines to respec-
tively represent nodes and edges, with visualization settings that can be
switched in the options menu on the top left of the panel. The visualization
can be panned by clicking and dragging the mouse, or zoomed in/out on
the current mouse position using the mouse wheel.

If either time-series data or multivariate data have been loaded, nodes
will be colored and sized according to the type of color mapping selected
(as described in the previous "Data Mapping" section). This will also create
a slider at the bottom of the panel that will either display a timeline of the
time-series data, or a list of all the variables. These visual proprieties are
mapped to the selected time point and variable on the slider, creating an
animation when the slider is dragged as each node smoothly transitions
between colors and size.

In regards to edge representation, a common issue with the visualization
of complex networks as graphs is that drawing hundreds of thousands of
edges will often result in a visual "hairball" that provides practically no
perceptible information, while also potentially obscuring others visual ele-
ments. In our approach, edges have their transparency mapped to amount
of edges being drawn, meaning that they fade out as their number increases
until they are no longer drawn. However, transparency mapping can be re-
moved by selecting the "Always Show Edges" button in the options menu,
making it so that every edge will be drawn regardless of their amount (Fig-
ure 3.12).

Figure 3.12: In high amounts, edges are hidden by default (left), but can be shown by selecting
the “Always Show Edges” button (middle). Selecting a node will only highlight
that node’s edges (right).
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— Node Selection

Nodes can be hovered and selected with the mouse. This will highlight
them and draw their names, while also highlighting every node related to
those selected including the edges between them. However, these edges will
also be subjected to transparency mapping, which will be based only on
the amount of edges between the currently selected nodes. Clicking on the
panel outside of a node will reset all selections. Moreover, any selections
will also be coordinated with other network and data table panels that are
showing the same dataset.

Hovering a node with temporal values will also open a small information
section on the bottom-left of the panel that displays the values associated
with its respective data point, including its current, minimum and maxi-
mum values, as well as variation and tendency, and alongside circles that
indicate the colors corresponding to these values (Figure 3.13).

Figure 3.13: Hovering a node will display information on its current value in relation to the
current value mapping and selected time point or variable. The image displays
temporal information shown for the same node when colors are mapped by value
(left), variation (middle) and tendency (right).

— Mouse Lens

If time-series or multivariate data have been loaded, or if the names of bio-
logical nodes correspond with those of the GO database, then an additional
analysis tool will be available: the mouse lens. Right-clicking anywhere on
the network panel will create a circle around the mouse which will act as a
lens, following the mouse and selecting every node inside of it. The aggre-
gated data of every node that is selected in this manner will be displayed in
a small visualization next to the lens (Figure 3.14).

For time-series and multivariate data, the visualization will be of a line
chart that depicts an average of all the values for every node selected. For
biological nodes, the lens will show the percentage of each GO propriety that
exists within the selected group. If there exist multiple types of data that can
be represented within the lens, the preferred type of data can be chosen in
the options menu. The size of the lens can be increased or decreased with
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Figure 3.14: Brushing a network with the mouse lens (top) to view the average temporal profile
(left) or a count of Gene Ontology proprieties of the selected nodes. Selected nodes
are also highlighted in the data table panel (bottom).

the mouse wheel, and the lens can be turned off by right-clicking a second
time. By holding the "CTRL" key, multiple nodes can be selected, either by
clicking them, or by brushing them with the lens.

— Layouts

Nodes are initially displayed in a sunflower spiral layout, which utilizes
the order loaded from the original file. The options menu provides two
additional layouts for the network that can sort nodes based their attributes:
the Yifan Hu layout and the t-SNE layout (Figure 3.15). These layouts are
described in detail in the "Framework" chapter, under "Visualization Models
& Layouts".

The Yifan Hu layout sorts nodes based on their edges, positioning them
so that related nodes will be closer to each other. Several parameters of the
layout are mapped to sliders in the options menu which can be switched to
balance the calculation time of the layout against its accuracy in relatively
positioning nodes.

The t-SNE layout will only be available if time-series data or multivariate
data is available, as it positions nodes based on the similarity between their
values instead of their edges, similarly to clustering but only through posi-
tion mapping. Like in the previous layout, several parameters of the t-SNE

layout can be adjusted through sliders in the options menu where user can
choose whether to prioritize computational time over accuracy, as well as
whether the layout should focus on local structure or preserve the global
structure.



3.2 visualization panels 51

— Node Clusters

Clustering the data will apply a force-directed layout over the nodes, group-
ing them into the selected number of clusters. Each cluster is contained
within its own circular area that can be hovered and selected like a node
by placing the mouse on its border. Nodes are sorted within each cluster
in a sunflower spiral layout where their order is determined by the cluster-
ing algorithm, meaning that neighboring nodes may also be more similar
to each other (Figure 3.15). Additionally, the relative position of the clusters
reflects the relationships between their nodes, as clusters with nodes that
have edges between them will be placed closer to each other.

Figure 3.15: Network panels with different layouts: Sunflower (top-left), Yifan Hu (top-right),
t-SNE (bottom-left), and force-directed clusters (bottom-right).
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3.2.3 Time Curve

The time curve panel focuses primarily on the representation and analysis
of time-series data through a time curve model. This model consists of a
timeline visualization that is bent so that its time points are placed relatively
to each other according to their similarity. As such, time points that are
closer to each other represent moments at which the same data points have
similar values which can portray the general behaviors of a dataset over
time, such as significant changes in values, regressions and cyclical shifts.

— Navigation

Regarding navigation, hovering a node will show the name of its time point
and clicking will select it, changing the current time step depicted in the net-
work panels visualizing the same dataset. The mouse can also be dragged
to pan the visualization, while the mouse wheel is used to zoom in/out of
the current mouse position.

The bottom of the panel contains a timeline slider where all the time
points are displayed in sequence. Dragging the slider will highlight every
time node in the layout in sequence while hiding every edge except those
between the time points that the slider crossed. This results in an animated
transition that follows the sequence of time points that the user brushed.

The top left of the panel contains a list of options that offer control over
visual elements and the layout of the time nodes. Under "Visibility", nodes or
edges can be hidden in order to highlight one or the other. The "Animation"
options available will depend on the layout chosen but they create different
animated flows between time points. The "Layouts" option will change the
position of time points, and are discussed in the following two sections.

Figure 3.16: Time curve panels displaying initial timeline layouts (top) and corresponding time
curves (bottom). The first timeline is sequential due to a low amount of time points
(left), and when transformed into a timeline, time points representing similar states
are pulled together (middle). When the number of time nodes would exceed the
available space for a timeline, they are placed in a spiral layout (right).
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— Bending Time

Each time point is initially converted into a node and displayed sequentially
as a timeline, either in a horizontal line or as a spiral, with the latter being
used when the length of the former surpasses the amount of available space
due to a large quantity of time points, as this would have resulted in nodes
overlapping (Figure 3.16). Through the options menu, the timeline visualiza-
tion can then be distorted using one of two layouts: Forces or t-SNE. These
layouts are described more extensively in the "Framework" chapter, under
"Visualization Models & Layouts".

The force-directed layout utilizes attraction and repulsion forces to pull
similar nodes closer while repelling those that are different based on ad-
justable parameters, which dynamically update the layout. These parame-
ters consist of multiple sliders located in the options menu, under the cho-
sen layout, and they control the strength of the forces, the size of the layout,
and the maximum similarity that is mapped to the distance between nodes.
In other words, the maximum similarity slider defines the maximum per-
centage of similarity between two time points that will be mapped to their
minimum distance from each other. For instance, at a maximum similarity
of 55%, time points placed together will represent states where the dataset
is at least 55% as similar, as illustrated in Figure 3.17.

The t-SNE layout also positions nodes based on the chosen distance metric.
However, unlike the previous layout, it is not dynamical, being calculated
only when the "Update" button is pressed. Additionally, it is also not deter-
ministic, meaning that each recalculation of the layout will yield different
results. The quality of these results can be influenced by the parameters,
which offer a balance between quality and processing time.

Figure 3.17: Time curve visualizations of the HIV-1 virus gene expression time-series dataset
(7589 data points) showing how maximum similarity is mapped to the minimum
distance between time points, reflecting their percentage of similarity.
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— Edge Smoothing

While the time curve layout is able to position time points relatively to their
similarity, visual complexity increases with the number of time points, mak-
ing edge representation particularly important. The Processing library pro-
vides several options to manage the proprieties of the edges, including the
creation of curved edges across multiple points, but these methods offer
limited control over visual attributes. To resolve this, we implemented Time
Paths, a layout that creates segmented edges with adjustable proprieties that
allows us to smoothen time curves by controlling their trajectory and curva-
ture.

The Time Paths layout must be applied over an existing time curve, as it
redraws the visualization to create smoother edges with gradual transitions
between time points. As such, the option for this layout becomes available
in the options menu after either of the previous layouts have been applied to
the visualization. These parameters control the level of detail of a time curve,
either smoothing it to remove minor visual perturbations caused by small
variations in the data, creating visualizations that only portray the main
overall behaviors, or emphasizing the variations by distorting the timeline
further, allowing users to create a different types of visualizations.

Furthermore, the increased control over edge proprieties also allowed for
the addition of two animations that convey the flow and direction of the
time-series more easily: a pulse created from increasing and decreasing the
weight of each segment in sequence, and arrow particles that move inside
the time curve. These animations react to the intensity of the variations,
highlighting stronger shifts in the data through either size or speed.

— Supporting Timeline Graph

As the force-directed layout bends the timeline, the temporal order of the
time points becomes harder to perceive. While interaction or animation can
help users more easily follow the timeline and better perceive its temporal
order, these methods may not be ideal in quickly identifying significant
moments when dealing with large amounts of time points. In order to help
better understand the sequence of events in a time series regardless of the
visual complexity of the resulting time curve, a graph was added to the
bottom slider which portrays the shifts in the data over time, as shown
under each time curve in Figure 3.16.

The waves represent the distance between sequential time points, where
a large wave represents a time point that is located at a significant distance
from its predecessor. As distance is mapped to similarity, large waves por-
tray moments when significant changes in the data occurred. On the other
hand, flat sections without waves represent low changes in the data, which
can be interpreted as periods of stability. As such, while the graph cannot
convey similarity between non-sequential time points, it is capable of high-
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lighting both moments and periods with significant behaviors in the time-
series, allowing users to more easily identify and explore these time points
in the other visualizations.

— Cluster Glyphs

To help better understand how data changes over time, we created glyphs
that represent the dataset at each time point, providing users with a way
to discern between different states of the data without having to solely rely
on other views. As representing every data point through a simple glyph is
unfeasible for significantly large datasets, we instead represent the groups of
similar points created by clustering the dataset. As such, applying clustering
will convert the time nodes in the time curve into glyphs, which can take
the form of either a miniature network or a pie chart (Figure 3.18).

The miniature network glyph is a simplified representation of the visu-
alization in the network panel, converting every cluster into a circle whose
size and position is mapped to that of the cluster and colored based on the
average values of the cluster at that time point. However, this representation
may present a loss of readability at smaller sizes, particularly when there is
a large quantity of clusters. As such, when the glyphs are drawn below a
size threshold, they are represented with a pie chart, whose visual elements
make use of the entire available area.

Each slice of the pie chart glyph represents a cluster, where the width of
its arc represents the number of nodes in the cluster and the color corre-
sponds to the average properties of its data points. The pie chart slices are
sorted relatively to the positions of the clusters on the network visualization,
allowing users to more easily match each slice to its corresponding cluster.
The width and order of the slices is also consistent across every glyph to
facilitate their comparison.

Figure 3.18: Time curve with pie chart glyphs (left) and miniature network glyphs (middle).
The data lens is used to select three time points (right), creating an aggregated
visualization of their average values that depicts the similarity between them.
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— Similarity Lens

To further explore the similarities between time points or multivariate data
utilizing these glyphs, we utilize the mouse lens previously introduced in
the network panel. Right-clicking over a time curve panel or a multivariate
view panel will create a circular area around the mouse, allowing users to
brush over multiple nodes simultaneously.

This will create a larger glyph of the miniature network next to the lens
that represents an aggregate of all the selected glyphs, where the color of
each circle now represents the average values of each cluster between the
highlighted time points (Figure 3.18). More importantly, arcs are also drawn
around every circle, indicating the percentage of similar behaviors exhibited
by data points within that cluster at the selected time points. In other words,
if around half the nodes within a cluster are exhibiting the same behaviors at
the time points hovered by the mouse lens, then the arc around that cluster’s
respective circle would be drawn as a semi-circle.

The network panel will also adapt its visualization to the nodes selected
through the mouse lens, mapping the transparency and saturation of each
node in the network to their similarity between the selected time points.
As such, this will highlight data points with consistent values, allowing
users to more easily identify those responsible for certain temporal patterns.
Furthermore, the previously described arcs drawn around the circles in the
miniature network glyphs are also drawn around the clusters in the network
to represent the percentage of similarity within each cluster.

3.2.4 Multivariate View

The multivariate view panel is used for the discovery and analysis of pat-
terns between quantitative variables that do not necessarily have a set order.
Each variable is displayed is displayed as a point in two-dimensional space,
and their position can be manipulated through the existing layouts in order
to reflect their similarity. The layouts in this panel are used to explore the
relationships between variables similarly to how the time curve panel ex-
plores the relationships between time points. However, as each variable is
expected to be independent, the employed methods only focus on correla-
tions between their values.

— General Navigation

The navigation of the multivariate view panel is very similar to that of the
other panels with node layouts. Dragging the mouse will pan the visualiza-
tion, using the mouse wheel will zoom in/out of the current mouse position
and clicking nodes will select their respective variable. This is coordinated
with other multivariate views, including network panels, where every net-
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work node is mapped to the color and size of the selected variable’s value.
Likewise, selecting a data point in a network panel or data table will map
the proprieties of multivariate nodes to that data point’s values.

— Variable Analysis

In order to represent variables as being independent while visually distin-
guishing the multivariate view panel from others, nodes are initially dis-
played in a grid layout (Figure 3.19). The top left of the panel contains an
options menu where this layout can be changed. Through the t-SNE layout,
nodes are positioned based on their values, being placed together when they
have similar value patterns across different data points. As in other panels,
there are multiple sliders that influence the accuracy of the layout and its
processing time, allowing these to be adjusted to different types of datasets.
The t-SNE parameters are described in the "Framework" chapter, under "Vi-
sualization Models & Layouts".

In addition to changing the layout, variable analysis is also aided by the
cluster glyphs and mouse lens, whose implementation and functionalities
are the same as those described in the previous time curve panel section, ex-
cept applied to variable values rather than temporal. Likewise, right-clicking
will create a mouse lens, allowing users to brush multiple variable nodes to
visualize the miniature network glyph representing their aggregate propri-
eties and similarities (Figure 3.19). These similarities are also mapped to the
transparency of nodes in the network panel, highlighting data points and
clusters that contain a high percentage of variables with similar values be-
tween them. As such, while the analyzed variable may be independent, this
panel seeks to highlight any potential patterns that may exist between them.

Figure 3.19: Visualization of multivariate data in a grid layout (left) and sorted by the t-SNE

layout (middle). Network glyphs and the mouse lens are also available in this
visualization panel when the data is clustered (right).
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3.3 managing multiple datasets

While multiple files can be loaded and merged to combine different sets of
data points and attributes, CroP also allows datasets to be stored, accessed
and managed individually. Multiple panels can then be used to visualize
different datasets simultaneously and compare them side-by-side, or instead
utilize difference views to compare between the variables of datasets with
the same data points.

3.3.1 Dataset Tabs

Individual datasets are stored within tabs, accessed and managed under the
“Datasets” section in the options sidebar. Any number of dataset tabs can
be created and if these exceed the size of the sidebar, they can be scrolled
through by clicking and dragging the mouse through them. Data from
loaded files will be stored in the dataset whose tab is currently selected,
merging with any previously existing data within. Furthermore, options se-
lected in the sidebar will also only affect the currently selected dataset, such
as filtering and clustering.

A selected portion of data from a loaded dataset can also be transferred
onto a new tab, which can be used to visualize and analyze a section of
the dataset considered significant without affecting previous work. This is
achieved by selecting the relevant data points and then using the "Copy to
New Dataset" button under "Filtering". This will create a new dataset tab
with a copy of the selected data.

3.3.2 Differences View

As a visualization panel can only represent one dataset at a time, a drop-
down on the top left of each panel selects which dataset is currently be-
ing visualized, which is added whenever multiple dataset tabs have been
created. Additionally, a "Datasets" button will be added to data table pan-
els under the "General" tab, which opens a table containing a list of every
dataset loaded (Figure 3.20). Selecting two or more datasets will create a
new tab with the name "Datasets".

This tab contains two sub-tabs, where the first depicts information about
the selected datasets and a color matrix visualization that depicts the aver-
age of all the similarities and differences across every common point. The
second sub-tab contains a list of every common data point shared between
them, where a column depicts a color matrix visualization of the time-series
or multivariate data from each data point that represents the difference be-
tween the values across all selected datasets (Figure 3.21). The color differ-
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Figure 3.20: Datasets are selected in the "Datasets" table (left), and their average differences can
be seen in the tab that was created (right).

Figure 3.21: The original data of the two selected datasets is represented in data tables on the
left, while their average differences are depicted in the table in the middle. This
table can be sorted by its differences (right).

ence is represented by a separate palette that can be changed in the options
sidebar. To differentiate between values, we depict similarity by default with
the YlGrBu palette, which emphasizes extreme and middle values, where
dark blue represents high similarity and light yellow represents high differ-
ences. Selecting this column will order all the data points by the sum of their
differences, allowing users to either sort by those that are the most similar
or the most different.

In network panels, the color of every node will also be mapped to their
differences across every dataset, just as in the data table. However, while the
data table’s dataset tab does not show data points that aren’t common be-
tween all datasets, the network will represent uncommon nodes that belong
to the currently selected dataset with transparency.

3.4 discussion

In this chapter, we presented an overview of CroP, describing its user inter-
face, visualization models and data analysis functions, contained within a
CMV framework. We propose CroP as a visualization tool for multivariate
datasets, in particular relational data and time-series, that is able to iden-
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tify patterns, in addition to providing the tools to identify their sources and
impact.

In summary, CroP is comprised of an options sidebar and a workspace
for visualization panels, which are automatically organized within a grid
layout to help users maintain consistent panel sizes and avoid overlapping.
The options available in the sidebar can be used to import and manage
datasets, while also providing general functionalities for their analysis, such
as data mapping, clustering and filtering. The sidebar also allows users to
create visualization panels in the workspace, which will not only represent
their respective types of data from loaded datasets, but also provide tools
for their specific analysis:

• That data table panel employs tables and linear visualizations to simply
list every current data point and their current attributes. While data
points can be sorted by their attributes to quickly identify and select
those with extreme values, the data table panel excels as a support
visualization, being coordinated with other panels to showcase the
proprieties of individual points or groups that have been brushed.

• The network panel is able represent relational data through a dynamic
node-link diagram, employing a layout that positions nodes to reflect
their direct relationships. Moreover, the available layouts can also sort
nodes based on temporal attributes and other quantitative proprieties,
allowing them to represent similarity between data points that do not
have edges.

• The time curve panel represents time-series data through a timeline vi-
sualization that bends to reflect the similarity between the state of the
dataset at each time point, creating visualizations that portray differ-
ent types behaviors through abstraction. While abstracting a visualiza-
tion will often increase its complexity, the panel provides tools to help
explore and understand the resulting artefact, such as a supporting
timeline graph and the time paths layout, which can smoothen the
visualization to reduce visual noise.

• The multivariate view panel, similarly to the time curve panel, also po-
sitions nodes based on their values, reflecting the similarities between
quantitative variables that do not have a set order.

In what regards general analysis tools, groups of data points that were
created through clustering will be sorted in the network panel into cir-
cular groups, whose relative positions reflect the direct relationships be-
tween their nodes. These clusters are then used to create glyphs in the time
curve and multivariate view panels, providing a simple representation of
the whole dataset at each time step and for each variable, respectively. The
mouse lens can then be used on these glyphs to highlight which clusters are



3.4 discussion 61

behaving similarly or differently, providing users with the means to identify
the data points that are responsible for the observed behaviors.

Finally, we also described CroP’s ability to receive and store multiple
datasets, providing the means to compare them by either juxtaposing their
individual visualizations through different panels, or representing their di-
rect similarities through a differences view in the data table panel.
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Through its CMV framework, CroP’s functionalities can be used in conjunc-
tion in order to different types of relationships, such as analyzing potential
patterns between multiple proprieties across large sets of data points, in par-
ticular relational, temporal and certain biological proprieties. As described
previously, some of these functionalities are also common between visualiza-
tion models, although their purpose and outputs may vary according to the
type of data. In this section, we will describe how the implemented models
and functions can be used cooperatively to explore different datasets and
discover meaningful patterns.

4.1 relational data

Datasets that describe direct relationships between data points can be repre-
sented in the network panel. While this panel is also capable of handling sets
of points that do not have edges, the network model will visually represent
these relationships and provide a layout to analyze their distribution.

4.1.1 Analysis by Position

The Yifan Hu layout [71] sorts nodes according to their edges, positioning
them closer to related nodes and taking into consideration their degree (the
amount of relationships they have in total). In smaller networks this will pre-
vent edge-crossings and make the relationships between nodes more percep-
tible, while large networks will be sorted to highlight their overall structure,
bringing nodes with high degrees closer and dispersing those with few re-
lationships. While the latter may help identify the nodes that are central to
complex networks with high amounts of edges, the layout alone may not
be enough to resolve the visual complexity that is characteristic of such net-
works.

To manage some of this visual complexity, the transparency of edges is
mapped to amount of edges being drawn, where edges fade out as their
number increases until they stop being drawn. While edges between spe-
cific nodes may still be viewed either in the data table or when those nodes
are highlighted, this approach to edge representation emphasizes the analy-
sis of relationships between elements through their relative position. In this
respect, nodes can clustered based on the positions determined by the previ-
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ous layout, which categorizes closely related nodes into defined groups, fur-
ther sorting the network visually. Moreover, clusters are positioned relative
to each other based on the edges between their nodes, meaning that clusters
with related nodes will be pulled closer. The general proprieties of these
groups can be analyzed and compared through the data table, which in-
cludes temporal attributes, biological proprieties and other variables, allow-
ing users to identify potential correlations with the relationships between
those nodes.

4.1.2 Attribute Correlations

Grouped nodes positioned by layouts can also be analyzed through the
mouse lens. The lens acts as an brush that can be used to select portions
of the network, creating a dynamic visualization that shows the aggregated
proprieties of the brushed nodes. This will also highlights nodes in the data
table, marking the location of their respective rows along the vertical scroll
bar. These colored markers allow users to quickly identify the selected nodes
on the data table, and can also be used to correlate between the brushed area
and the table’s order. For instance, if the table is ordered by degree in de-
scending order, a concentration of colored marks along the top of the scroll
bar would immediately indicate that the brushed nodes have a high amount
of edges (which can be seen in Figure 3.14, showing the selection of a cluster
created by the Yifan Hu layout), and the same logic can be applied to any
other ordered attribute. In either case, both clustering and area brushing
facilitate partitioning nodes according to their direct relationships, allowing
users to either focus on a specific subset or filter them using the available
tools. Additionally, it is possible to characterize the created clusters based on
their most prevalent biological characteristics by analyzing the distribution
of GO annotations in the data table panel. This allows for the analysis of the
relationships between specific gene expression profiles and other biological
proprieties.

4.2 value profiles

CroP is able to receive two types of data files with numerical values: time-
series files that contain sequential values describing a propriety changing
over time, and multivariate data files that contain lists of values for indepen-
dent attributes.
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4.2.1 Value Normalization

A key difference between how these datasets are processed is value nor-
malization. Time-series values are normalized between the minimum and
maximum temporal values of each data point, so that the variations over
time can be compared relatively to other data points even if their values are
widely different. However, in the case of multivariate data files, the values
are normalized for each variable and not across each data points as these
proprieties are expected to be independent and it is more likely for values
to present significant differences between variables in the same data point
than between data points for the same variable. However, if users intend to
analyze the raw values, this process can be reverted by selecting the "Unnor-
malized Values" switch in the options sidebar. The depiction of each type of
these values is exemplified in Figure 4.1.

Figure 4.1: Data table profile visualizations of time-series (1.) and multivariate (2.) data, nor-
malized and unnormalized: Normalized time-series are mapped between their data
point’s maximum and minimum values, while normalized variables are mapped
between the extremes of that variable; unnormalized are mapped in relation to the
whole dataset.

4.2.2 Value Representation

While CroP processes these data files different, the representation and anal-
ysis of their values is preformed through shared methods. Processed values
are primarily represented through color, being mapped to the chosen palette
between the calculated minimum and maximum values. These colors are
congruent throughout the different visualization panels, allowing users to
more easily identify correlations not just between data points but also across
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their attributes. Additionally, the color palette can be changed to define ei-
ther a smaller or wider range of colors that reveal either more general or
more precise similarities between data points, respectively. For instance, the
spectral palette utilizes a wide range of colors that allow small differences to
become more apparent, but this may also visually overwhelming the viewer.
On the other hand, sequential palettes can clearly depict the difference be-
tween high and low values with a small amount of colors, but middle colors
may be hard to distinguish.

The network panel is also capable of revealing relationships between
points based on their value profiles, even when edge data does not exist.
This is achieved through the t-SNE layout, which positions nodes relatively
to each other based on the similarity between either their time-series profile
or loaded set of variables. Combined with color representation, it is possi-
ble to identify distinct sets of grouped nodes that share specific proprieties,
as well as scattered nodes with little correlation between each other. Fur-
thermore, the size of nodes in the network is mapped using unnormalized
values, allowing users to also distinguish nodes in relation to the whole
dataset. The mouse lens allows for grouped nodes to be easily selected and
their common proprieties quickly visualized, either through visualization
created by the lens, or through the data table’s tabs. Additionally, scattered
nodes that were not selected by the lens can be filtered out through the side-
bar’s options, allowing users to focus their analysis on nodes with stronger
correlations.

4.2.3 Clustering by Value

Data can also be divided by its values into groups of points with similar
profiles through clustering. CroP provides a wide range of clustering op-
tions, each with a set of parameters with varying complexity that can be
adjusted by the user to refine the similitude within the resulting clusters.
For instance, DBSCAN and OPTICS feature sensitive parameters that calculate
cohesive clusters and filter outliers, while k-means clustering only requires
the user to define the number of clusters. On the other hand, hierarchical
clustering only needs to be calculated once before allowing the user to dy-
namically switch between any number of clusters, although it has a higher
computational cost. Depending on the data and the type of relationships
being analyzed, users are able to experiment with the various options and
save the results onto a file through the options in the sidebar, allowing them
to quickly reload the created groups without the clustering execution time.
In addition to value clustering, position clustering can also be applied to
the network layout calculated by the t-SNE, assisting users in the creation of
groups without the need to brush nodes manually.
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When clustered, nodes in the network will be grouped into circular ar-
eas representing each of the calculated clusters. In order to organize nodes
within each cluster and prevent overlapping, these are sorted with a sun-
flower spiral layout which is ordered by the chosen clustering algorithm,
meaning that neighboring nodes may also be more similar. In the network,
the common proprieties of these groups of nodes are more discernable, fa-
cilitating the analysis of discovered patterns. For instance, when scrolling
through the timeline of time-series data, nodes within the same clusters
should present increases and decreases of values at the same points in time,
which is visually represented through changes in size and color. Individual
clusters can be focused by clicking on their borders and analyzing their ag-
gregated attributes on the data table panel. Multiple data tables can be juxta-
posed to compare between multiple individual or aggregated profile charts,
as well as to quickly navigate through attribute information, as panels fo-
cused on attribute tabs will update dynamically with the user’s selections.
Moreover, the similarity order determined by the cluster algorithm can ap-
plied to the data table, sorting its rows by the clustered attribute when the
top of its respective column is clicked.

4.3 pattern analysis

Time-series and multivariate data can also be visualized through their re-
spective panels: the time curve panel and the multivariate view panel. While
the time curve panel features methods that are exclusive to the analysis of
values changing over time, there are visual elements, layouts and function-
alities that are common to both panels. Similarly to the network panel, time
points and variables are represented as nodes in two-dimensional space,
where they can be sorted through the t-SNE layout to visually represent re-
lationships between their proprieties in relation to the whole dataset. For
instance, if two variable nodes are placed together we may surmise that a
significant portion of points in the dataset present similar values between
these two variables. However, relative position alone cannot convey neither
the values nor the data points that are common between these variables.

4.3.1 Aggregating Values

Brushing nodes on either the time curve panel or the multivariate view
panel will update the network panel with the corresponding values, but
this is not an efficient method for comparing the values between these pro-
prieties. As such, CroP can represent each node as a glyph, a simplified
graphical representations of the dataset at each time point or variable which
can be visualized and compared without having to rely on additional views.
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However, as scalability must be considered in a simple representation of a
large amount of data, glyphs only portray clusters and not individual data
points.

By representing the groups of data points calculated through clustering,
we can reduce the number of elements that will be represented in the glyph,
while ensuring that each one represents a concrete group of points pos-
sessing similar proprieties. Furthermore, the nodes filtered as noise by the
clustering algorithms DBSCAN and OPTICS will not be visible in the glyph,
allowing users to focus on nodes with more significant relationships. This
gives users some control over what each glyph represents, including their
visual complexity, due to being able to choose the number of clusters in
certain algorithms.

The time curve panel and the multivariate view panel share the same
type of glyphs: a miniature network and a pie chart. Since the former is
directly based on the network visualization, users can more easily identify
and compare clusters between panels. However, as this glyph consists of
small elements surrounded by white space it may lose readability as its size
is decreased, which can be the case for large quantities of nodes that re-
quire the user to zoom out significantly. In such cases, the glyph is switched
with a pie chart, as it provides a very simple representation for multiple ele-
ments with different sizes and values without requiring white space, which
increases its visibility.

4.3.2 Glyph Similarity

As glyphs provide a snapshot of the dataset for each time point and variable,
their general differences and similarities become more apparent when posi-
tioned by the available layouts. These patterns can then be further explored
through the mouse lens, which creates a larger version of the network glyph
next to the lens for any node that is inside of it. When multiple nodes are
brushed, this network will act as a differences view, drawing an arc around
each of the network glyph’s clusters.

The arc length around each cluster directly represents the similarity of
the clusters between the selected nodes, meaning that similar clusters will
be represented with more complete arcs and appear more prominent than
those with low similarity. Furthermore, the color of each node in the net-
work will represent the average value of the respective cluster for all the
selected time points or variables, meaning that a high similarity percentage
will indicate that value as the most predominant.
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4.3.3 Network Coordination

While glyphs and the data lens provide the means to identify patterns of
values between attributes without relying on additional panels, these func-
tionalities are also coordinated with the network panel to help dig-down
into the discovered patterns. When nodes in the time curve and multivari-
ate view panels are selected through the mouse lens, the arcs drawn around
the clusters on the lens will also be drawn around their respective clusters
on the network panel. Moreover, the transparency and saturation of nodes in
the network will be mapped to their similarity between the selected nodes.
As such, the more consistent each data point’s values are across the selected
time points or variables, the less transparent their corresponding network
nodes will be, highlighting them over data points with inconsistent values.

To help better identify individual nodes with high similarity in each
group, the cluster can be ordered by the similarity of each node, result-
ing in the most similar nodes being ordered from the center to the outside
(Figure 4.2). This allows users to more easily select the most similar nodes
by brushing the center of the cluster with the data lens and isolate them
if needed. However, this requires the order of each cluster to be recalcu-
lated every time that the user changes the nodes brushed by the mouse lens,
which may be visually overwhelming if the user is actively using the lens, as
every affected node must be re-positioned. Due to this, the user can switch
between ordering clusters by similarity, or to maintain their original order
in the network panel’s options menu.

Figure 4.2: Clustered networks where the clusters are ordered by their default order (1.) and
ordered by similarity (2.), where the nodes with the highest similarity between the
current selection are closer to the center.
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4.3.4 Exploring Time-Series

In what concerns the analysis of temporal data, it is important to consider
how values change over time as these behaviors may be significant to the
dataset and help the discover meaningful patterns that can lead to new in-
sights or even help predict future events. When representing time-series
data, color can be mapped either to its values, to its variation over time, or
to tendencies (as described in the Data Mapping section of the Overview
chapter). This allows visualizations to portray different types of temporal
behaviors, such as periods during which values are increasing or decreas-
ing with various intensities, as well as the moments when these tendencies
shift, known as peaks and valleys. Such events are particularly significant
in specific datasets, such as gene expression time-series data where peaks
mark the moments when proteins are over-expressed. In regard to the anal-
ysis of such behaviors, data points can also be clustered by the variation and
tendency in time-series.

Temporal behaviors can also be analyzed through the time curve, a lay-
out that bends the timeline by positioning time points relatively to their
similarity in both values and variation, similarly to previous layouts. As
the resulting time curve maintains the connections between sequential time
points, it is able to represent how the values change over time. For instance,
large distances between two sequential nodes indicates a notable shift in val-
ues, while clusters of sequential nodes portray periods of stagnation, when
the data did not change significantly. Moreover, it can also represent more
complex behaviors such as regressions and cycles, portrayed by the curve
travelling between two or more distinct sets of non-sequential nodes. In ad-
dition to the t-SNE layout, the time curve can also be created through a force-
directed layout. Compared to t-SNE, the force-directed layout is capable of
more quickly discovering positions that best reflect the relative similarity
between time points, but may present issues with sorting large quantities of
nodes, in which cases the t-SNE layout would be more effective.

The complexity of the resulting time curve visualization will depend on
the characteristics of the data, as the layout is prone to visual noise problems
similar to those in network visualizations. To help create more comprehensi-
ble visualizations, users may also apply Time Paths, a force-directed layout
that smoothens time curves based on user-defined parameters, creating vi-
sualizations that can either be more or less sensitive to variations in the data.
While increasing the level of smoothing also increases data abstraction, this
can be used to reduce visual clutter and also promote the representation
of predominant behaviors. Time Paths also allows for additional control
over the visual proprieties of edges, creating smoother transitions between
time-points which can be used to more clearly represent the flow of time.
Through these, users may also employ additional animated transitions that
better convey the direction and intensity of changes in the data. Further-
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more, in parallel to any of the available layouts, the timeline graph por-
trays the variation between each time point, allowing users to more quickly
identify moments of significant changes in the data and periods of stability,
regardless of the complexity of the time curve visualization.

As noted before, relative positions can only represent the general behav-
iors of data points between themselves. As such, two time points placed
close to each other may represent that the majority of the data points are re-
peating their behaviors at these two moments, but this not necessarily mean
that there is only one predominant behavior. To further explore such behav-
iors, the mouse lens and network coordination can help highlight the types
and distribution of values throughout the data at each group of time points.
This is showcased in Figure 4.3 which shows a dataset that appears to al-
ternate between two states of values, evidenced by the two distinct groups
of time points. When each of these two groups are selected by the mouse
lens in a. & b., it highlights the clusters that have the highest percentages
of consistent behaviors throughout these time points. In both instances, it is
possible to observe that the data points alternating between the two states
are mostly contained within the two left-most clusters, making up between
one-third and two-thirds of each cluster, as indicated by the arc surrounding
each cluster.

Figure 4.3: Network (left) and time curve (right) visualizations of the Saccharomyces cerevisiae
dataset, where the data alternates between two states throughout most of its time-
series (a. & b.). The time points corresponding to these two states are selected by the
mouse lens, highlighting the network’s data points that present similar behaviors in
each state.
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4.4 discussion

In this chapter, we described how CroP’s visualization models, layouts and
functionalities that were introduced in the previous chapter can be used
cooperatively between multiple panels to explore different types of datasets,
discover patterns and analyze their characteristics, sources and impact.

In what pertains to the analysis of relational data, the network panel
serves as the main visualization model, managing edge representation by
mapping their volume to transparency in order to prevent visual noise,
while focusing on representing relationships through position. In this re-
spect, the Yifan Hu layout can position nodes to prevent edge crossings
while highlighting those that are central to the overall structure of the net-
work. Nodes that have been grouped by layouts or clustering can then be
brushed with the mouse lens to visualize common proprieties, an analysis
that is supported by the highlighted elements and linear visualizations in
the data table panels, identifying correlations between their direct relation-
ships and their other attributes, including biological proprieties. Moreover,
brushed groups of data points can be quickly filtered out or isolated.

Regarding the visualization of multivariate data, time-series data is mainly
represented through the time curve panel and individual quantitative vari-
ables are portrayed in the multivariate view panel. Users are provided with
options on how values are mapped, and may also choose a color palette that
best suits the range of values being explored. In general, the initial analy-
sis of value profiles can be achieved with similar tools to those described
previously: the t-SNE layout in the network panel can position nodes accord-
ing to the similarity of their attributes, while the layouts of the time curve
and multivariate view panels can position the attributes themselves to re-
veal potential relationships between them, with the analysis of either being
supported by the data table panel.

Clustering also provides several options to partition the dataset into de-
fined groups of data points with similar attributes, providing insight into
the diversity of existing value profiles. Moreover, the overall proprieties of
each cluster will be used to create glyphs in the time curve and multivari-
ate view panels, providing a simple representation of the dataset at each
time step or for every variable. While this serves to more easily compare
between the similarity of theses states through juxtaposition when applying
one of the aforementioned layouts, it may also be used in pattern analysis.
Brushing over glyph nodes with the mouse lens will create a side visualiza-
tion that increases the visibility of the glyph, while multiple brushed nodes
will be combined to show their aggregated proprieties and the percentage
of similarity between the nodes in each cluster. Additionally, while the data
lens portrays the similarity between clusters, the network panel will map
each node to their individual similarity, allowing users to identify and se-
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lect specific nodes in that panel, which is further supported by the ability to
sort clusters by the current similarity of each node. As such, the lens can be
used to brush groups of time points or variables and identify the primary
type of value profiles that they have in common, thus revealing significant
points of data at the source of behaviors being analyzed.

Due to the ordered nature of time-series, such data can also be analyzed
by how it varies over time, which CroP explores visually and functionally.
As described previously, the time curve is capable of portraying behaviors
by showing the flow between time points as their position is changed to
reflect their similarity. This flow is based off not just values but also varia-
tion, separating increasing values from those decreasing, representing cycles
through loops, stagnation through clusters and strong variations through
wide arcs. The analysis of these artefacts is further supported by a timeline
graph, animations and Time Paths, a layout which graphically improves the
initial time curve and provides options to either smoothen the visualization
in favor of representing general behaviors, or highlight minor variations
through exaggeration. In addition to variation, the concept of tendency was
also applied to analyze time-series by its peak values and positive or nega-
tive trends, as to explore patterns in datasets where shifts in variation rep-
resent significant events. Such attributes can be mapped to color, allowing
them to be analyzed through the aforementioned tools, with support from
the network and data table panels.

While it may be unfeasible to devise a set of solutions for every kind
of problem, it is through the combination of the presented visualisation
models and functionalities that CroP is able to provide a wide range options
to tackle the representation and exploration of different types of datasets,
while facilitating the analysis of specific types of biological datasets.
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The development of a multiple coordinated views framework for CroP in-
volved the implementation of diverse methods and visualization models
that could function cooperatively in the exploration and analysis of varied
datasets. Through interaction, it was possible to create an environment that
could be adapted to different types of problems, while also provide various
functionalities to be used in the search of the most apt solutions. However,
as the number of options increases so does the tool’s complexity, not only in
its development but also for its users. As such, it is necessary to ensure that
both the developed visual and interactive elements can be easily understood
and utilized.

In this chapter, we will review CroP’s interface, visualization models, lay-
outs, and various algorithms in further detail, with particular regards to user
interaction. In this sense, we will discuss the implementation and refinement
of methods in consideration of the principles of fluid interaction [42], which
seek to anticipate common usability issues that interrupt the user experi-
ence, such as uncertainty and lack of feedback.

5.1 user interface

In what concerns the user interface, it is necessary to consider the basic
structure and organization of all of CroP’s functionalities in regards to the
user experience and across different contexts. As described previously, the
main interface consists of a grid layout where visualization panels can be
placed and organized, next to sidebar of options involving different aspects
of dataset management.

The grid layout promotes a flexible environment, allowing for multiple
panels to be used simultaneously with different configurations. While its
number of rows and columns is immutable, the grid and its panels will
adapt to any changes to size of CroP’s window. Moreover, the various op-
tions in the sidebar are sorted into different collapsible sections, which al-
lows users to focus on the methods relevant to their specific problem, while
also facilitating the addition of future functions. Any changes made to the
current workspace, including the placement of panels and parameters in the
sidebar, can be can be saved or restored at any point.

In this section we will review these methods further, focusing on the pri-
mary interface elements and internal processes that are consistent through-
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out the analysis of diverse datasets, such as dataset management, visualiza-
tion panel arrangement and visual settings.

5.1.1 Data Processing

CroP supports user-provided dataset files containing network data, time-
series data or multivariate data, formatted as either comma-separated val-
ues or tab-separated values. Network data files consist of a list of pairs of
names, from which data points and edges will be extracted. Time-series data
files contain ordered list of values that correspond to existing or new data
points, as well as names that can be associated to each time point, such as a
date or hour. Multivariate data files consist of lists of numerical values cor-
responding to independent variables, so the structure of the file is identical
to the time-series data file, except each column corresponds to a different
variable.

When loaded, datasets are subjected to multiple validation processes which
start by checking if the file contains the minimum number of expected val-
ues, and then each line is checked for missing values or invalid number
formats. If the file does not contain enough values or if every line has been
found to contain errors, then the user will be notified and the file will not be
loaded. However, if only certain lines are found to contain errors, then the
corresponding line numbers and error types will be logged and displayed
to the user, allowing them to choose to exclude those lines and load the
remainder of the dataset.

After a dataset has been validated, CroP checks for data that has already
been loaded, in which case the new dataset must either replace or merge
with the existing data. For instance, if network data has been loaded previ-
ously, upon loading a time-series or multivariate dataset CroP will verify if
the existing data point names match with those in the new file. If they do,
then data can be merged so that the new data points will contain both net-
work and time-series or multivariate data. However, if there are data points
that do not match, the user will be given the option to immediately filter
these points out of the dataset and keep only those that match both datasets.
Furthermore, datasets of the same type can also be merged, such as load-
ing two network datasets to create a single, larger network, where matching
data points will inherit edges from both datasets. The same would occur
with multivariate data, as data points can inherit the variables from multiple
files. However, in the case of two temporal datasets containing time-series
with different lengths, data cannot be merged and the user will be prompted
that the new dataset will completely replace the other.
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5.1.2 Integrated Biological Database

In addition to an integrated protein-protein network dataset, CroP also in-
tegrates GO databases [26] which allow the tool to identify and annotate
matching biological elements with additional data. The GO project provides
a set of structured, controlled vocabularies for community use in annotat-
ing genes, gene products and sequences [26]. It is a collaboration between
databases to create shared vocabularies that facilitate uniform queries across
all of them. These databases allow the application to identify, classify and
sort protein datasets by utilizing their respective GO terms. These classifica-
tions can then be accessed by the user in the network and data table panels,
where they used to characterize compare between groups of biological ele-
ments.

The integration process consisted of building the network that maps the
GO terms (which act as identifiers) to their respective biological processes.
This is a complex directed network with an inexplicit hierarchy, as there is
a root node from which it is possible to define different levels. Each protein
is associated with several GO terms, ranging from a few to hundreds, and
some of these terms may also have multiple designations. Part of the classi-
fication process consisted of grouping GO terms that referred to the same
biological processes and creating the relationships between the protein data
and the GO databases. Furthermore, while CroP currently only supports
the GO databases, its framework has been prepared to integrate additional
databases that have the same purpose of classifying data points.

5.1.3 Mapping Color Palettes

Each color palette is defined in the program by an array that contains each of
its colors in sequence, which are then used to map values to their respective
colors, which are defined in the HSV (Hue, Saturation, Value) format. Any
value can then be mapped into a color by using these arrays, including
the color transitions between values when scrolling through the network
panel’s timeline, which allows us to guarantee that these transitions are
smooth and only use colors from the chosen palette. Furthermore, the length
of these arrays is variable, meaning that the range of colors available to
any palette can be increased with the addition of more intermediate colors,
or instead simplified by removing them. As such, this also means that the
existing palettes can be easily altered and new additions only require the
establishment of a new color array.

However, the color used in the representation of inactive nodes must
also be manually chosen for each palette. As stated previously, such nodes
should be represented with a color that contrasts with the currently cho-
sen palette, meaning that the hue value on these contrasting colors may be
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very distinct from the remaining. Due to this, we cannot create a smooth
transition by simply mapping each of the HSV values between them as this
would result in a turbulent transition that cycles through every hue between
the two colors. To avoid this, we defined a method that transitions between
such colors: first we map the initial saturation value to zero, at which point
we switch the initial hue value with the target hue value, before mapping the
saturation from zero to its target value. In other words, the color transition
goes from its original color to grey and then to its target color. While this
may not be ideal for every situation, this can be easily applied to any two
distinct colors, while also avoiding transitions through colors that would
clash with the current palette.

5.1.4 Panel Management

Each visualization model is contained within a panel that has a variable size
and position. Through these, the user can place, interact with, and compare
between various visualization models simultaneously, including multiples
of the same model representing different datasets. A panel is characterized
by a surrounding border, ridges on its bottom-right, and a top bar with a
title and buttons. Dragging the ridges with the left mouse button resizes
the panel, while dragging the top bar moves the panel. When changes are
made to the panel’s size and position, the panel is adjusted to a defined grid,
which can be seen in the background when it is not covered. This means that
each corner of the panel will snap to the closet point on the grid.

The grid layout keeps the work environment organized, as the user can
place panels next to each other and easily resize them in relation to other
panels and the available space. To further ease panel management, sev-
eral functions were developed to prevent overlapping and automatically
re-position or resize panels based on the user’s actions. For example, if the
user places a panel over another, the panel that was overlapped will either
be resized or moved to a new location, depending on the area of overlap-
ping panels and the amount of available space in the work environment.
The management of overlapping panels is described in Figure 5.1. If multi-
ple datasets exist, the dropdown located on the left of the top bar of every
panel can be used to change the dataset that is being represented.

5.2 visualization models & layouts

CroP integrates a variety of visualization models and layouts with the ob-
jective of allowing users to visualize, explore and analyze different types
of data. For instance, the data table panel provides simple visualizations of
datasets at a low level, while integrating methods focused on sorting and
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Figure 5.1: Flowchart describing the management of overlapping panels.

brushing data that may be relevant to each dataset. On the other hand, the
network and time curve panels make use of different types of layouts to po-
sition data relatively to their relationships, providing functions to highlight
otherwise hidden patterns. In this section, we will describe the implemen-
tation of these models and the range of parameters of their layouts, as well
as discuss the addition of functionalities necessary to facilitate exploration,
discovery and analysis of diverse datasets.

5.2.1 Data Table

The data table panel may be considered the least complex visualization
panel as it describes data at its lowest levels through lists and linear vi-
sualization models. However, various precautions had to be taken to ensure
that data can be easily explored and analyzed by users through interaction
and while coordinated with other panels. For instance, only data belonging
to currently visible rows is loaded and updated, ensuring that performance
is not affected even when the dataset contains over a hundred thousand
data points. In consideration of large datasets, discovering and accessing
specific points on the table was made easier by marking selected or high-
lighted data points on the scroll bar, which can be focused on instantly by
clicking on that mark.

In what regards brushing, the actions associated with selecting rows were
based on common actions performed on files in current operating systems,
making such interactions more intuitive: holding the CTRL key will allow
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users to select multiple individual rows, while holding the SHIFT can be
used to select every row between the current and previously selected row.
The latter will group every selected data point into its own group rather
than creating individual tabs for each one, providing users with aggregated
information on all the brushed rows. These actions are also coordinated
with other panels which creates tabs for selected data points and updates
currently displayed graphs: if the data table is displaying the time-series
chart of a selected point, then changing the selection to another data point
will update that chart respectively, rather than closing the tab because the
previous point was deselected.

Finally, as data table panels must be able to be resized, table columns
were also made to be flexible and adapt proportionally to the size of the
panel. However, each column was also given a minimum width based on
their contents, to ensure a minimum level of readability in any situation.
If the total width of all the columns surpasses the width of the data table
panel, then vertical scrolling can be used to navigate between the columns.

5.2.2 Initial Layouts

When a visualization with nodes is initialized, these nodes must be at-
tributed starting positions. In the case of networks, nodes could be initially
positioned based on their relationships or values, but calculating such a lay-
out would require parameters that best fit the type of dataset in addition to
significant execution times for large quantities of nodes. A common method
for initializing nodes with a very fast execution time is to simply random-
ize their positions, scattering them throughout the available space. However,
while the initial position of nodes may not be particularly important, they
can still be organized with a simple structure that does not need to take any
of their attributes into consideration. In this regard, we chose to initialize
networks using a Fibonacci sequence layout, also known as a sunflower spi-
ral, which sequentially positions nodes around a center location, creating
a pattern that resembles that of sunflower seeds. This is a space-filling lay-
out that assures that nodes are structured, centered, without overlaps, and
without the implicit sequential order of normal spiral layouts.

In the case of timelines, time points have an intrinsic sequential order
that must be considered in their representation. As such, time nodes in the
time curve panel are initialized with equal spacing in a straight horizontal
line, ordered by time. However, large amounts of time points would result
in either excessively long lines or short lines with overlapping time points.
To prevent this, whenever the number of time points would require a time-
line that surpasses the length of the window, the layout is changed into a
standard spiral. Unlike the previous sunflower spiral, this layout displays
the time nodes with their temporal order clearly represented, from the mid-
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dle outwards, allowing more points to be displayed simultaneously without
overlapping.

Finally, the multivariate view panel needs to display nodes that repre-
sent numerical attributes which may or may not have an implicit order, de-
pending on the dataset’s contents and organization. In this panel, nodes are
initialized using a square grid layout, positioned in sequential rows with
lengths that are based off the total number of nodes. Similarly to the spi-
ral layouts, this is space-filling and keeps nodes organized for datasets in
which their order is pertinent to their analysis. Furthermore, this layout is
distinctive, which helps the multivariate view panel differentiate itself from
the others.

5.2.3 Force-Directed Layout

While the position of each node can be calculated by different layouts to
reflect that node’s attributes and relationships, the visualization may need to
react and adapt to options chosen by the user without having to recalculate
a new layout. As such, we chose to implement force-directed layout which
utilizes attraction and repulsion forces between nodes to dynamically adapt
the visualization to any changes. While repulsion forces generally serve to
separate two nodes by a set distance, attraction forces can be used to both
bring nodes together and pull them towards a set position. We can use these
forces to promote self-organizing behaviors in nodes, making them push
others away to prevent overlapping, as well as direct nodes individually to
their new positions when the layout changes, all through fluid movements
that convey the changes that are happening more clearly to the users.

— Overlap Prevention

Regardless of how the position of nodes is originally mapped, overlapping
may still occur through user interaction. For instance, the radius of nodes
in the network panel is mapped to their current temporal values, meaning
that their size shifts as users switch between time points, which could re-
sult in nodes expanding and overlapping their neighbors. By applying a
constant repulsion force to every node based on their current size, we can
dynamically prevent overlapping in any node visualization regardless of the
changes made to the layout.

However, calculating the distance between every node at every frame can
be significantly computationally intensive, particularly when dealing with
thousands nodes. In order to ease this process, a grid is built based on the
number of nodes in the visualization and it is kept updated as to the po-
sitions of every node in its squares. Through this, each node only needs
to check their distance to nodes located in neighbour squares. As updating
the grid at every frame is significantly less computationally intensive than
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calculating distances, this process has allowed CroP to handle overlap pre-
vention in datasets containing several thousand nodes with minimal slow-
downs. While the repulsion grid does present limitations on particularly
large networks (>20.000 nodes), the importance of overlap prevention is di-
minished in such large datasets where identifying individual nodes within
a network is less important than discerning different groups, their common
proprieties and potential patterns between them. In such cases, we opted
to halt repulsion forces in favor of performance, considering that low-level
exploration can still be conducted through selection, filtering and the data
table panels.

— Network Clusters

When a dataset is clustered, the force-directed layout plays a significant role
in the creation of clusters within the network panel. First, circular cluster
areas are created based on the groups of data points determined by the
clustering algorithm: their size is proportional to the amount of points in
their respective group, and their initial position is centered on the average
network position of every node in their group. Using the average position
assures that the cluster will be created near the majority of its nodes, which
is particularly important when clustering the data by position. After the cir-
cular areas are created, the force-directed layout is applied on them as if
they were nodes, utilizing repulsion forces to ensure that the areas do not
overlap and maintain at least a set distance from each other. Additionally, if
there exists relational data then attraction forces will be applied between the
cluster areas based on the edges that exist across nodes in different clusters,
pulling clusters together which have higher numbers of nodes related be-
tween them. The final positions of the cluster areas are determined through
several hundred iteration of these forces, which are performed immediately
after the clustering algorithm is applied and not frame-by-frame.

In previous iterations of CroP, once the cluster areas have been created
and positioned, we would use attraction forces to pull nodes towards the
center of their respective clusters, allowing them to populate the cluster area
and self-organize through repulsion forces. However, this method resulted
in nodes being messily pulled into each area and requiring a significant
amount of time to spread evenly throughout it, particularly for large clus-
ters. To avoid this, we pre-determine the position of each node within their
cluster through the Fibonacci sequence layout (or sunflower spiral, as de-
scribed in the Initial Layouts section). By utilizing attraction forces to pull
each node towards their individual positions, we can ensure that they are
immediately evenly distributed throughout each cluster, which circumvents
the need for nodes to self-organize for an extended period, but also creates
clusters with clean layouts that reflect the general node order calculated by
the clustering algorithms.
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As such, whenever clustering is applied every node will travel to their
pre-determined positions in their respective clusters. This presents users
with the opportunity to witness how data points are distributed between
clusters, especially when experimenting with different types of clustering
algorithms. For instance, changing the number of clusters in hierarchical
clustering will result in clusters getting dynamically split or merged, which
is visually represented as nodes break apart for their clusters or rejoin ex-
isting ones. In the case of fine-tuning parameters in some of the algorithms,
it is possible to identify even minor changes, as individual nodes travel be-
tween clusters.

— Time Curve Forces

A time curve visualization is a result of the initial timeline being distorted by
a different layout that re-positions the time nodes based on the similarities
between their proprieties. This is achieved through the force-directed layout,
where springs are placed between every node which maintain the distances
between them proportional to their similarities. The formula used to cal-
culate the force applied to each spring is based on Hooke’s law [131] and
each spring’s ideal stretching length is determined using a similarity matrix.
The similarity between any two time points ti and tj is determined through
the function f(i, j), described below, where N is the number of nodes in a
dataset, and P is a node containing the time series t. It is performed by calcu-
lating both the difference of the values of the time points v(i, j) and the dif-
ference of their variation b(i, j), averaged between every point in the dataset.
By using both of these operations in calculating similarity, time points are
positioned based on their current values and in relation to whether these
values are increasing or decreasing similarly over time.

v(i, j) =
N∑

P=0

|Pti − Ptj |

b(i, j) =
N∑

P=0

|(Pti − Pti−1
) − (Ptj − Ptj−1

)|

f(i, j) =

(i, j), if i=0

(i,j)+b(i,j)
2 , else

Values are averaged across every node in the dataset when calculating
similarity, meaning that the distance between time points will reflect the
percentage of nodes that are behaving similarly between them. As such,
closer time points reflect higher amounts of nodes manifesting similar be-
haviors at those moments in time. However, if only a smaller percentage
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of the dataset is manifesting a certain behavior pattern, time points could
be scattered without any perceivable correlation. For such cases, we added
the maximum similarity slider that controls how similarity is mapped to
the distance between time points. For instance, if time points are very close
to each other when the slider is set to 55% maximum similarity, then at
least 55% of all of the data in the dataset should be behaving similarly at
those time points (as illustrated previously in Figure 3.17). By manipulating
this threshold, it is possible to identify patterns occurring between smaller
percentages of large datasets. Additionally, to more quickly identify such
behaviors in any dataset, the highest value of maximum similarity between
any time point in the current dataset is marked on the slider (Figure 5.2).

Figure 5.2: Options menu for the Forces layout in the time curve panel. While the Maximum
Similarity slider is set to 50%, a mark at 70% indicates that there is no pair of time
points whose similarity is superior to that value.

In short, the time curve’s force-directed layout is defined by three param-
eters that can be controlled through sliders in the options menu:

• Spring Strength – Controls the speed at which nodes move into posi-
tions that reflect their similarity, but high values may also cause insta-
bility.

• Maximum Distance – Determines the maximum distance between the
most dissimilar nodes; increasing this value will expand the size of the
visualization.

• Maximum Similarity – Maps the percentage of the dataset that must be
similar between two time points in order for them to be at maximum
proximity.

5.2.4 Yifan Hu Layout

The Yifan Hu layout was integrated into CroP to provide the means to spa-
tially organize nodes based on their edges when exploring relational data,
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meaning that this layout is exclusive to the network panel. It re-positions
nodes over continuous iterations in order to find placements that adequately
reflect their relationships, visually sorting networks to highlight nodes that
are central to the data while also reducing visual noise by preventing edge-
crossings [71]. The layout was implemented using the Gephi library [13],
and it was chosen based on its balance of graph quality and performance
speed on large graphs when compared to other algorithms [73].

While there are various parameters that control the output of the Yifan
Hu layout, we opted to simplify the number options available to the users,
allowing them to manipulate the layout enough to generate a variety of net-
works that represent relationships differently while not overwhelming them
with choices. The three chosen parameters can be changed in the network
panel’s options menu through various sliders, providing a way to balance
the calculation time of the layout against its accuracy in depicting relation-
ships through position:

• Step Ratio – The ratio used to update the step size across each iteration
of the calculation of the layout, in which higher ratios indicate a faster
convergence but lower accuracy.

• Quad Tree Maximum – The maximum value to be used in the quad
tree representation, where greater values increase accuracy at the cost
of execution time.

• Barnes Hut Theta – Theta of the Barnes Hut optimization, where lower
values increase accuracy at the cost of execution time.

5.2.5 t-SNE Layout

The t-SNE (t-Distributed Stochastic Neighbor Embedding) technique is a
non-linear dimensionality reduction algorithm used in the visualization of
high-dimensional datasets, attributing a position on a two-dimensional map
for every data point based on their proprieties and the implicit structure
of the dataset. In the context of CroP, t-SNE is used in both the network
and time curve panels to sort nodes based on either their time-series or
other multivariate values, depending on the type of dataset. For instance,
when handling time-series data, a network layout calculated using t-SNE will
spatially organize nodes based the similarity of their temporal profiles (for
each pair of nodes it compares the values of each time point), while a time
curve layout will position time nodes based on the similarity of every data
point at each temporal step (for each pair of time nodes it compares the
value of the respective time points for every data point).

While t-SNE does not sort data points into specific groups, it is capable of
creating visual clusters of points by placing those that are most similar closer
to each other. However, defined clusters can then be created by clustering
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the data by position, diving groups of nodes into clusters based on their
spatial density. The definition of the original visual groups is dependant on
the parameters of the t-SNE algorithm, which can be adjusted through sliders
in the options of the layout:

• Iterations – Number of iterations performed, where higher values in-
crease accuracy at the cost of execution time.

• Perplexity – Approximate guess on the number of neighbors for each
point, where higher values help preserve global structure, but may
obscure local structure and increase execution time.

• Barnes Hut Theta – Lower values increase accuracy at the cost of exe-
cution time.

5.2.6 Time Paths

Time Paths is a layout that smoothens an existing time curve visualiza-
tion, redrawing it through a brush controlled by parameter-based attraction
forces, creating segments that allow us to create better transitions between
colors, opacity and line weight. The brush consists of a moving point which
is first placed at the initial time node on the original time curve and it is
then pulled towards the following time node using a spring, calculated us-
ing Hooke’s law [131] and a fixed attraction strength. The brush’s route is
mapped by intermediate points that are left behind as it moves, and after
placing a set number of points it is pulled towards the next time node. How-
ever, the new spring does not immediately replace the previous one, as we
apply momentum: a percentage value that defines how quickly the attrac-
tion force from the previous time node is converted into the attraction force
to the next node.

Once the brush reaches the final time node, every edge of the new curve
is defined by the sets of intermediate points that were left in its path. This
provides increased control over the visual representation throughout each
edge as we can define gradual transitions of visual proprieties between any
time node, as well as animate visual elements along the drawn trajectory.
Through time paths, we added two animations that convey the flow of time:
a pulse created from increasing and decreasing the weight of each segment
in sequence and arrow particles that move across the time curve. Both of
these animations convey the intensity of variation between sequential time
points, where the size of pulses and speed of arrows both increase propor-
tionally to the difference of similarity between two time points.

We defined two variables that can be controlled through sliders which
update the layout dynamically:
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• Intermediate Points – Defines the number of points that make up the
edges drawn between time points, controlling the visual definition of
each curve; extreme values will cause distortions.

• Smoothness – Controls the speed of forces converging between time
points, previously described as momentum, where decreasing it will
create sharp turns between points, and increasing it will create wider
loops.

The calculation of a Time Path only needs to be performed once for each
set of parameters, as all of the intermediate points are saved along with their
properties. During this, overlapping intermediate points are removed, clean-
ing the visualization and improving drawing speed. Furthermore, it should
be addressed that time paths naturally distort the position of the time nodes
from the original time curve, in which their position best reflected their sim-
ilarity. To diminish this distortion, after the time path has been calculated,
we move time nodes along the new path to a point that is closest to their
original position on the time curve.

5.2.7 Timeline Graph

The graph on the timeline slider of the time curve panel represents how
data shifts over time, allowing users to identify different behaviors, such as
moments with significant shifts in values and periods of stagnation where
variation is low. This is achieved by mapping the height of each bar in the
graph to the distance between that time point and the previous one, mean-
ing that the size of the bar represents the intensity of the changes in the
data sequentially throughout time. As such, periods of stagnation can easily
be identified by portions of the graph with very low bars. However, if sev-
eral intense shifts happened sequentially then these would be depicted by
multiple concurrent large bars, which could incorrectly be perceived by the
viewer as a sequence of time points with similar high values (Figure 5.3.a).
While these bars do depict large values of variation in this case, we want
to convey that not only are these time points dissimilar, but also that large
shifts in the data occurred at those moments. For this reason, we depict the
bars as spikes, matching the intensity of the shifts in values to their sharp-
ness.

To achieve the spike shape, the height of the point between two sequential
time points is calculated based on their height. The formula to calculate
the middle point h located between time points t1 and t2 (exemplified in
Figure 5.3.b) is described below where T is an array of the average values
of every time point, max(T) and min(T) are the maximum and minimum
values in T, respectively, and avg(t1, t2) is the average value of t1 and t2.
This formula describes how h is calculated by mapping avg(t1, t2) from
the set [min(T),max(T)] into the set [avg(t1, t2),min(T)], meaning that the
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height of both time points increases (which would indicate two sequential
large shifts of data) the middle point’s height decreases.

h = (1−
avg(t1, t2) −min(T)

max(T) −min(T)
)× (avg(t1, t2) −min(T)) +min(t) (5.1)

Additionally, we smoothen the spike shapes to make their points wider
and easier to visualize in compact visualizations, while also creating a graph
that better conveys the flow of time. Through the Processing library, this
could be achieved by turning the graph into a shape formed by vertex
curves, smoothing each of the graph’s edges. However, the shape would
have to be a solid color, meaning it would not be possible to maintain the
temporal color gradient throughout the graph. To resolve this, we instead
created a white shape formed by vertex curves (created by inverting the
spikes calculated previously) and applied it on top of the bar graph, using
it as a mask that creates the intended smoothing effect (Figure 5.3.c,d).

Figure 5.3: Illustration of a segment from timeline graph that represents high variation for the
first three time steps and then a period of minimal changes; First it is drawn as bar
chart (a), then the middle points are calculated to highlight high variation (b); These
points are used to create a shape that masks the initial bar chart (c), smoothing the
spike shapes (d).

While the spike graph is capable of representing hundreds of time points
without compromising its visual representation, as the number of time points
increases, the size of each bar decreases. To improve the scalability of the
graph, we established a minimum pixel width for each bar so that the spikes
will not be drawn whenever the amount of time points or the graph width
would result in the spikes being too small to be perceived properly. While
the previously described visual effect of the spike representations is lost in
such situations, by drawing only bars we can better highlight significant
moments in what would be a complex graph, while also reducing the nec-
essary processing power for its representation, as drawing spikes is more
computationally complex.
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5.2.8 Mouse Lens & Glyphs

The mouse lens is a circular brush for selecting large areas of nodes and an-
alyzing their combined proprieties through small data visualizations. While
this lens can also be used to quickly view information from individual
nodes, such as line graph of their temporal profile or a table of GO pro-
prieties, it is best used to visualize the predominant proprieties of groups of
nodes that have been positioned by the various layouts that seek to identify
and reveal hidden patterns in the data. As to help prevent the small data
visualization from being drawn outside of the panel, if the mouse lens is
currently on the left half of the panel then its respective visualization will
be drawn to the right of the lens, or vice-versa.

In the time curve panel, the distribution of values throughout the data
points at each time step is represented through glyphs, provided that the
dataset has been clustered. This glyph portrays the average values of each
cluster at each time point, allowing users to visualize the states of the dataset
over time without needing use selections or other views, utilizing either a
miniature network or a pie chart. The miniature network glyph utilizes the
force-directed layout to position its cluster nodes so it works even without
clusters having been originally positioned in the network panel, allowing
the time curve panel to be used independently if necessary. Furthermore,
this also allows the glyph to be created without clusters that have been clas-
sified as "noise" by the DBSCAN or OPTICS clustering algorithms, allowing
the remaining clusters to be more visible and easier to analyze. Each clus-
ter node also has a minimum size so that they remain visible even when
they contain very few points relatively to the other clusters. However, the
miniature network becomes more difficult to be read when the glyph is too
zoomed out, mainly due to the white space between cluster nodes, in which
case the pie chart glyphs are used. The ordered and space-filling slices allow
for glyphs to be more visible and easy to compare at smaller sizes.

The Time Curve’s lens will create a larger version of the glyph so it can
be more easily visualized, while also highlighting the similarities and differ-
ences between several time points, allowing users to identify and analyze
the key elements in an observable temporal pattern. When multiple time
nodes are brushed over, the large glyph will display a miniature network
using the average color of the respective cluster nodes across all the selected
time nodes. Moreover, each cluster node will now be drawn with a surround-
ing arc whose diameter is mapped to their similarity, a percentage that is
calculated using the sum of differences of each data point between all the se-
lected time points. As such, if every data point in a cluster was behaving the
exact same way across three brushed time points, then that cluster would
be drawn with an arc that fully surrounds its node. Likewise, if only half
the data points were exhibiting similar behaviors, the cluster node would be
surrounded by a semicircle arc.
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To ensure that all the cluster nodes fit within the glyph we calculate the
circular area that they would need to occupy by comparing the two most
distant points between every pair of cluster nodes: the sum of their radius
and the distance between their centers. The largest measurement obtained
is the diameter necessary for a circle to contain all the cluster nodes, which
is used to calculate the difference with the size of the glyph in order to
discover the ratio necessary to resize all the clusters and their vectors to fit
within the glyph. Moreover, we also organize the clusters inside each glyph
by moving the average centroid of each one to the center of the glyph, to
further prevent them from being drawn outside the glyph’s area.

5.3 clustering algorithms

Clustering is the unsupervised classification of patterns into groups, known
as clusters, consisting of sets of points that present more similarities to other
points within the same cluster than to those in others. However, the ideal
number of clusters depends on the attributes used to determine the sim-
ilarity between each node and on the problem being solved. Furthermore,
different clustering algorithms require different parameters, approach classi-
fication differently and have different processing speeds, meaning that there
isn’t a single clustering algorithm that could be considered ideal for every
problem [83].

Clustering may be an important step in the discovery of new knowledge
through the identification of meaningful data patterns. In order to provide
a range of distinct approaches for discovering patterns in different types of
datasets, five clustering algorithms have been integrated into CroP: Hierar-
chical, K-means, Bisecting K-means, DBSCAN and OPTICS. These clustering
options can be accessed in the main sidebar, along with sliders that can be
used to change their respective parameters. Data points may be clustered
based on any of the attributes available, which depend on the data that has
been loaded. If a dataset is represented in a network panel, points can be
clustered spatially, while if time-series data has been loaded, data points
can be clustered by their values, variation, or tendency. Additionally, if the
time-series contains null values, we consider these as moments or periods
of "inactivity" and the dataset can be respectively clustered in order to po-
tentially discover temporal patterns between points missing values.

5.3.1 Hierarchical Clustering

Hierarchical agglomerative clustering algorithms define every data point as
its own cluster and then applying a bottom-up strategy that successively
groups the closest clusters until only a single cluster remains, which cre-
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ates a hierarchical tree that represents the nested grouping of patterns and
similarity levels at which groupings change [74]. While this algorithm may
be more computationally intensive than others, it is also more versatile, as
the resulting hierarchical tree can be used to sort the dataset between any
number of clusters without any additional calculations.

The implemented algorithm is the generic algorithm based on Michael
Anderberg’s approach [5] described by Daniel Müllner [109]. Before the al-
gorithm is initiated, every node is compared to each other based on the
chosen attribute in order to build a similarity matrix. From this point on-
wards, every data point is treated as a cluster object and any two objects
can be merged in order to create a new cluster that contains the points from
both. The algorithm then iteratively locates the lowest value in the matrix
which corresponds to the currently two closest clusters, combining these
into a single cluster.

In each iteration, the distance matrix is updated with the distance between
the new cluster and every remaining cluster, calculated through the Lance-
Williams formula [90]. This is a flexible formula that contains variable pa-
rameters that define which distance metric will be used. The most appropri-
ate metric may depend on the data and the user’s intentions as it affects how
the nodes are distributed across the clusters, determining their shape, size
and how discernible they are from each other. Through the Lance-Williams
formula, we implemented the seven most common distance metrics, known
as: single-linkage, complete-linkage, average-linkage, weighted-average link-
age, centroid-linkage, median-linkage and Ward’s linkage [46]. Additionally,
in order to speed up the searches in each iteration, the algorithm also main-
tains a list of the candidates for nearest neighbors of the clusters.

Throughout the algorithm’s run, we record how clusters are merged as
an hierarchical tree, which at the end will allow clusters to be combined
and split in the order that was previously calculated, although there is an
upper limit to the number of clusters which was established in order to
conserve memory and prevent the dilution of patterns. As stated previously,
this hierarchical tree allows users to switch between any number of clusters
without running the algorithm additional times, dynamically updating all
the visualization models accordingly. This allows users to quickly adjust
the number of clusters to better suit the dataset being visualized, creating
either large quantities of small clusters with potentially very similar points,
or lower amounts of clusters that are easier to sort and compare but also
contain more diluted patterns.

5.3.2 K-Means & Bisecting K-Means

K-means is considered one of the simplest unsupervised machine learning
algorithms, identifying a user-defined number of clusters by creating the
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same number of random centroids and iteratively identifying the closest
data points which are used to adjust their positions [98]. Once the position
of the centroids stabilizes, the closest data points to each one are assigned
to a cluster. One of the main drawbacks of this algorithm is that the number
of clusters must be pre-assigned, which is cannot naturally be determined
in most problems. However, its execution time is very fast, especially when
compared to hierarchical clustering, making them suitable for discovering
patterns even in time-series datasets [3]. Furthermore, while the algorithm
measures the Euclidean distance between centroids and data points as its
default, other metrics are also available, namely the Correlation, Cosine and
Manhattan distance metrics.

In addition to k-means, CroP also integrates the Bisecting K-means algo-
rithm, a modification of the original that begins by considering the entire
dataset as one cluster and then iteratively performs bisections, splitting one
of the current clusters into two through k-means until the desired number
of clusters is obtained [143]. As such, this algorithm also requires the num-
ber of clusters to be pre-defined, but, unlike k-means, it is able to recognize
clusters of any shape and size. Furthermore, each bisection step can be iter-
ated multiple times while keeping the best discovered result. Increasing the
number of iterations will naturally result in longer processing times, but the
quality and consistency of the results are also superior when compared to
its alternative. While K-means may return different results with each execu-
tion due to the stochastic nature of the initialization of its centroids, running
bisecting k-means with a high number of iterations can yield similarly com-
posed clusters between executions, as it seeks ideal placements.

Both of these algorithms were implemented into CroP through the SPMF
open-source data mining library [48].

5.3.3 DBSCAN & OPTICS

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is
a clustering algorithm that finds clusters of daypoints based on the density,
grouping points that have many neighbors while marking points from ar-
eas with low-density as noise [45]. As such, clusters are determined by the
neighbourhoods of each point, which are defined by two parameters: the
radius of the neighbourhood of a point (epsilon), and the minimum number
of points that need to exist within that neighbourhood in order to consider
that point as part of a cluster. Points that lack enough neighbors are con-
sidered noise, which CroP handles by placing them into their own cluster.
This cluster is classified with the name "Noise" and represented with a grey
background in the network panel, as to distinguish it from other clusters.
This cluster is also excluded from the time curve’s glyphs, allowing the re-



5.4 discussion 93

maining clusters to be more visible and easier to analyze, especially when
there is a large quantity of points classified as noise.

On one hand, DBSCAN requires more knowledge of its parameters and
more exploration in order to find well-defined clusters when compared to
the other integrated algorithms, which otherwise could result in the classi-
fication of hidden patterns as noise. On the other hand, being able to filter
out points that do not adequately fit existing patterns allows for the creation
of clusters with increased similarity between its points, which can be aided
by CroP’s ability to filter groups of points from the dataset in order to focus
on those with higher relevance to the problem. Furthermore, DBSCAN is also
proficient at discovering clusters of various shapes.

CroP also integrates OPTICS (Ordering Points to Identify the Clustering
Structure), a density-based algorithm that follows the principles of DBSCAN

but does not explicitly cluster data, instead producing an augmented or-
dering of the database that represents its clustering structure based on its
density, from which clusters can then be extracted [9]. Similarly to DBSCAN,
OPTICS utilizes two parameters to define the radius of the neighbourhood
of each point (epsilon) and the minimum points required within that neigh-
bourhood to consider it as a core point. However, unlike DBSCAN, sorts data
points based on their neighbors, creating an hierarchical order for each clus-
ter. Furthermore, after the clusters are formed, an additional distance that
represents their density is taken into consideration (epsilon prime), which
is used to further filter noise. While its additional parameter makes it more
complex than DBSCAN, it surpasses it by being able to detect clusters of vary-
ing density, making it better suited for larger datasets.

Both of these algorithms were implemented into CroP through the SPMF
open-source data mining library [48].

5.4 discussion

In this chapter, we reviewed CroP’s user interface, visualization models and
data analysis methods, describing the technical aspects of their implemen-
tation, choice of parameters, and the considerations that were taken in their
addition, such as error prevention measures and methods to improve per-
formance.

Regarding the user interface, interactive aspects were designed with con-
sideration to the principles of fluid interaction, as to aim towards a smooth
experience for the average user that is uninterrupted neither uncertainty
in their actions or a lack of feedback from the tool itself. While it may be
unfeasible to prevent all human error, imported data is parsed and any de-
tected errors are listed and presented to the user in alert messages along
with the respective line numbers in the original file. These alerts also serve
to provide users with options when handling multiple imported files, allow-
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ing them to merge or filter them based on matching or missing attributes.
Moreover, data is automatically matched with integrated databases to ap-
pend additional proprieties, namely the GO database. The same principles
are also applied to panel management, as to facilitate the addition, removal,
and organization of the workspace. With particular regard to the latter, CroP
handles panel arrangements dynamically, resizing and re-positioning over-
lapped accordingly, taking into consideration existing free space and other
panels.

The choice of visualization models and their respective parameters also
aim to provide users with additional options on visualizing and analyzing
different types of datasets. While the data table represents the lowest lev-
els of data through lists and linear visualizations, it is able to consistently
support other panels through coordination. By loading only necessary rows,
these lists are able to contain large datasets with minimal processing cost,
providing tools to order and brush between large sections, creating aggre-
gate data visualizations.

The remaining visualization panels rely primarily on node networks sorted
by layouts that portray the relationships between data points. While the
initial positions are determined by simple space-filling layouts that aim to
display all nodes without overlaps, users are then provided with other lay-
out options specific to each panel with adjustable parameters. For instance,
the Yifan Hu and t-SNE layouts use parameters that balance the quality of
their results and the processing time required for their calculation, allow-
ing users to choose between quality and speed. While the Yifan Hu layout
is specific to sorting networks based on edge data, the t-SNE layout can be
used to both sort data points based on their attributes (network panel) or
sort attributes based on the whole dataset (time curve and multivariate view
panels). Alternatively, there is also a dynamic force-directed layout that is
used to bend timelines through adjustable parameters in the time curve
panel. In comparison to the t-SNE layout, the force-directed layout generally
has more difficulties in dealing with larger datasets, as the convergence of
large quantities of nodes may be very slow. However, it is comparatively
more effective on smaller datasets, displaying consistent results with more
accuracy. The same forces are also used to create clusters and position nodes
within them, placing nodes in a sunflower layout where they can be ordered
by their attributes.

In addition to the visualization models, clustering plays an important role
in the analysis of both simple and complex datasets. With consideration to
the analysis of a wide range of datasets, CroP provides multiple clustering
algorithms with different inputs, outputs and processing speeds. Hierarchi-
cal clustering may result in long processing speeds but allows the user to
select between any number of clusters after being calculated only once. K-
means has a fast execution time, but requires the user to specify the number
of desired clusters beforehand. These proprieties are shared by the bisecting
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k-means algorithm, which is also able to recognize clusters of any shape
and size, iterating over each bisection step multiple times to improve its
results. DBSCAN and OPTICS are also effective at discovering clusters of differ-
ent shapes and sizes, but require very specific search parameters, as points
that do not meet the established requirements are sectioned off as noise.
In particular, OPTICS orders points hierarchically and utilizes an additional
parameter to further filter noise.

As such, hierarchical clustering may be best suited for smaller datasets, al-
lowing users to quickly explore the diversity of existing value profiles based
on how clusters form and divide using just default parameters. Meanwhile,
large datasets may be more quickly clustered through k-means and even
further refined through bisecting k-means if the user is willing to search
for an optimal number of clusters. On the other hand, DBSCAN and OPTICS

are able to quickly determine very cohesive clusters in large and complex
datasets with the correct parameters, but these are also much more sensitive
than those of other algorithms and require more effort to approach desirable
results.

Through this, we show how choice of visualization models and data analy-
sis methods contributed towards the flexibility of the tool, taking advantage
of its multiple coordinated views framework to provide the user with an
environment that they can adapt to a variety of problems, while improving
usability through fluid interaction, which includes dynamic methods and
visual feedback.
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In this section, we present the visualizations created by our models and
discuss their performance in representing behaviors over time in diverse
datasets, in addition to the role they play in the discovery of significant
data points or temporal events. The first experiments are produced from
simple datasets comprised of single time-series that can be easily matched
with their results, and then from biological datasets that contain thousands
of nodes with individual time-series, in addition to a multivariate dataset.
Throughout these experiments, we employ the developed methods to ex-
plore each dataset, identify patterns, and analyze their composition, sources
and impact. Regarding representation, we will primarily utilize the "YlOrRd"
color palette for values and the "Blues" color palette for time, unless speci-
fied otherwise.

6.1 initial tests

While the representation of a single time-series may not offer much insight
that is not already observable in a linear representation of the data, the fol-
lowing datasets allowed us to test the representation abilities of our layouts,
as any of the general data behaviors that could be represented can be easily
compared with a line chart of the time-series.

6.1.1 Sine Waves

Firstly, in order to demonstrate our implementation of the time curve layout,
we conducted tests using a sine wave dataset with 500 time points, which
depicts a simple consistent behavior: a cycle, where values increase and de-
crease repeatedly between a minimum and a maximum. Additionally, we
altered the dataset to depict other predictable behaviors. The resulting visu-
alizations are shown in Figure 6.1. The visualization of the basic sine wave
dataset resulted in an oval consisting of overlapping loops, whose shape rep-
resents the shifts in variation over time, while the number of loops matches
the number of cycles in the dataset (Figure 6.1.a). Regarding the transfor-
mations applied to the dataset, altering the minimum and maximum values
affected the shape’s height, increasing or decreasing the oval to match the
amplitude of each cycle (Figure 6.1.b). The following dataset was changed
to present an overall consistent increase in its values, which resulted in a
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matching gradual position shift for the ovals representing each cycle (Fig-
ure 6.1.c). Finally, increasing frequency resulted in stronger value variations.
These were represented with increases to the width of the cycle’s loops,
making the larger variations also more visually noticeable (Figure 6.1.d). In
these initial experiments, our implementation of the time curves layout was
able to position time points relatively to each other based on their values
and variations, creating visualizations that convey the overall behaviors of
each time-series.

Figure 6.1: Time curve visualization of a sine wave dataset (a), followed by time curves of the
same dataset with different gradual transformations: an increase of its amplitude
(b), an overall increase of values (c), and an increase of its frequency (d). A linear
representation of each dataset is displayed below their respective visualizations.

6.1.2 Individual Time-Series

To further test CroP’s visualization models, we utilized time-series gath-
ered from real events which describe various behaviors and trends. These
datasets were chosen to test our implementation of the Time Curve’s model,
while also demonstrate how the Time Paths layout can utilize different pa-
rameters to smoothen curves, reduce visual clutter and highlight general
trends.

The first dataset is "Wolfer’s Sunspot Numbers", a yearly measurement of
sunspots, small dark areas caused by concentrations of the magnetic field
flux on the sun’s surface, from 1770 to 1869 [23]. This time-series contains
100 time points and presents cycles with similar minimums but varying
peak values, resulting from periodic value increases of different intensities.
The second dataset depicts "Monthly Milk Production", measuring pounds
per cow from January 1962 to December 1975 [107]. The dataset contains
168 time points and is characterized by a yearly production cycle with minor
jumps in variation and a consistent increasing trend until the final five years,
where the production increase stabilizes.

In both cases, the Time Curve depicted each cycle with circular patterns
whose sizes and positions matched the respective variations and trends ob-
servable in the dataset, which is consistent with previous results (Figure 6.1).
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Figure 6.2: Visualizations of the "Wolfer’s Sunspot Numbers" time-series, depicted as a line
chart (1.), a Time Curve (2.), and then transformed through Time Paths with differ-
ent parameters (3.) where the level of smoothing is increased (a to d).

Figure 6.3: Visualizations of the "Monthly Milk Production" time-series, depicted as a line chart
(1.), a Time Curve (2.), and then transformed through Time Paths with different
parameters (3.) where the level of smoothing is increased (a to d).

For instance, the "Monthly Milk Production" dataset is represented with con-
sistently shifted loops, up until the final cycles, when they begin to overlap
as production no longer increases yearly. The Time Path layout was then ap-
plied with four different sets of parameters, increasing the level of smooth-
ing with each one. The results are depicted in Figures 6.2 & 6.3.

The first of each set of results (3.a) represents the default parameters,
which generally smoothed the initial time curve while remaining sensitive
to smaller variations in the values. We can note a small loop in the center that
highlights a slight increase in values within a decreasing trend. In the sec-
ond result set (3.b), the number of intermediate points is reduced while mo-
mentum is increased, which reduces the level of details on the visualization.
This results in the previous loops being reduced into small perturbations
that still indicate moments with significant data shifts, but less prominently.
The third set (3.c) was a result of a higher increase in momentum, removing
almost all visual clutter in favor of representing the overall cycles. In the last
parameter set (3.d), momentum was increased again to create exaggerated
depictions of the previous cycles, particularly large data variations such as
the two largest increases in the sunspots dataset (Figure 6.2.3.d).

In general, the time curves model was generally able to represent how
time-series vary over time, while time paths helped reduce visual noise and
highlight the main tendencies of the time-series. Additionally, while these
cycles and variations in the data may be observed through linear representa-
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tions of these time-series, time path visualizations offer various alternative
representations of otherwise simple datasets.

6.1.3 Autumn Weather

In addition to previous experiments, we also visualized datasets with con-
taining simultaneous time-series. Due to their low-dimensionality, the cre-
ated visualization should not reveal significant insights that are not already
observable in the linear time-series graphs, but this allows us to easily re-
late the results to original datasets. The first of these datasets describes the
changes in temperature, humidity and pressure across two days (between
the 4th and 6th of November in 2013). As these were measured every 4

minutes, the dataset contains 722 time points.
Figure 6.4 depicts each time-series through graphs from the data table

panel (a., b. & c.), as well as a timeline visualization (d.) marking shifts in
the data. In the time curve visualization (1.), we highlighted five time points
(T1 through T5) which stand out in the time-series graphs as moments of
significant changes, in addition to being notable in the time curve visual-
ization as points of transition between groups of time points. For instance,
T1 marks the highest value of humidity in the dataset, preceded by a large
increase of temperature and decrease in pressure. T2 then occurs after both
a steep increase and decrease of humidity, followed by a small spike in tem-
perature.

After T3, the time curve appears to close a loop, as all three sets of vari-
ables return to very similar values as those at the start of each time-series.

Figure 6.4: Line graphs depicting the time-series for temperature (a.), humidity (b.) and pres-
sure (c.), lined with the corresponding timeline graph (d.) and the resulting time
curve visualization (1.) for this dataset.
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Following this, there is a large cluster of time points between T3 and T4,
marking a period of stagnation. This can be explained by the low varia-
tion in values across both temperature and pressure, while humidity shows
small but repetitive increases and decreases until there is a slow and continu-
ous increase in values. One it reaches T4, humidity drops quickly alongside
a overall increase in temperature, causing the time curve to shift. The data
seems to continue to stabilize, with the exception of a notable peak in hu-
midity, marked by T5. In general, we were able to observe that the time
curve visualization reflects the behaviors of all three variables, while also
highlighting some significant moments.

6.1.4 U.S. Economy

Another dataset that allowed us to explore visualizations created from mul-
tiple simultaneous time-series is a United States economic time-series that
lists personal consumption expenditures (in billions of dollars), the personal
savings rate and the number of unemployed (in thousands) from July of 1967

to April of 2015. When observing each of these time-series through the data
table panels, we can note that expenditures have had a consistent increasing
trend, personal savings had an overall decreasing trend with some outliers,
and unemployment numbers are characterized by slow changes with vari-
ous peaks.

Figure 6.5 shows these time-series along with the resulting time curve vi-
sualization, highlighting six time points that signal moments of significant
changes in the data (T1 through T6). Some of these appear to be a result

Figure 6.5: Time-series visualizations of personal consumption expenditures (a.), personal sav-
ings rate (b.) and number of unemployed (c.) in the U.S. between 1967 and 2015,
along with their timeline (d.) and time curve (1.) visualizations. Time points mark-
ing significant changes in the data are highlighted (T1 through T5).
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Figure 6.6: Time-series visualizations U.S. economic time-series (a., b. & c.), and respective
timeline (d.) and time curve (1.) visualizations. Time curve is smoothed by the time
paths layout, and four clusters of data points are highlighted, indicating periods of
low variation in the data.

from outliers in personal savings, although some can be observed to match
events on other time-series. For instance, T1 marks the highest point in the
rate of personal savings as well as one of the initial peaks of unemployment
numbers. More notably, T5 marks the moment where consumption expen-
ditures broke its consistent raising trend, followed by a significant increase
of unemployment. In the time curve, this period of time is represented with
wider distances between time points, indicating stronger shifts in values
and setting it apart from the rest of the visualization. This period matches
the deep recession of 2007 and 2008, caused by the collapse of the housing
bubble.

Additionally, the time curve was also smoothed by time paths in order to
decrease some of its visual noise in favor of portraying the general behav-
iors observed across its time-series, as shown in Figure 6.6. The resulting
visualization presents an overall direction which reflects the main tenden-
cies observed in expenditures and savings, with several loops and clusters
that match the peaks of unemployment number and their stabilization, re-
spectively. In this regard, four clusters of time points have been highlighted,
which match periods of low changes both in unemployment numbers and
rate of savings.

6.2 biological datasets

Biological datasets can be generally characterized as complex, containing
large quantities of data points with multiple variables. Unlike in the previ-
ous datasets, tendencies and significant moments are not easily identified
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without data analysis methods. Proteins that exhibit similar behaviors may
contribute to the condition being tested, such as infections or cancer. Analyz-
ing these behaviors is necessary to build knowledge on the basic molecular
mechanisms in cells, used in the development and testing of new treatments.
Throughout these experiments, we will analyze various datasets through the
visualizations created by CroP in order to discover unique behaviours, while
utilizing the available tools to dig-down and identify the data points at the
source of these patterns.

6.2.1 HIV-1 Virus

The first gene expression time-series dataset that we visualized shows hu-
man proteins reacting to the HIV-1 infection. This dataset was obtained from
Mohammadi et al. [108], which measured gene expression every 2 hours for
24 hours after transfection with HIV-1 in Sup-T1 cell line. Expression was
profiled using SAGE-Seq and normalization was done using DESeq [6]. The
network dataset is comprised of a human PPI network with 7589 proteins,
after being filtered by CroP to exclude proteins that do not contain time-
series data. The dataset was initially clustered by tendency into 6 groups
through bisecting k-means, and its time curve visualization revealed cycli-
cal patterns consisting of the same groups of proteins behaving similarly at
non-sequential points in time (Figure 6.7). Each of these clusters consists of
proteins that at first glance are not related, but in fact may be considered as
co-expressed. We are able to discern at least two cycles through three dis-
tinct groups of non-sequential time points, where at least half of the dataset
presented very similar behaviors (as maximum similarity has been set at
60%).

Figure 6.7: Network (left) and time curve (right) representations of the HIV-1 virus gene ex-
pression time-series dataset. Data has been clustered into 6 groups through the
bisecting k-means clustering algorithm, and the 4H, 10H and 16H time points are
selected with the mouse lens.
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When analyzing this dataset using the mouse lens on the time curve, it
was possible to quickly identify the groups of nodes that were presenting
similar behaviors at the same points in time. For instance, in Figure 6.7 we
show the lens being used on the group of time points representing 4, 10

and 16 hours, allowing us to see that, while there is a significant percentage
of nodes in each cluster presenting similar behaviors across the three time
points, one cluster stands out with full similarity. We can also interpret from
the dark red color of this cluster that its proteins present peaks of expression

Figure 6.8: Visualizations of the HIV-1 virus gene expression time-series dataset clustered us-
ing the DBSCAN algorithm, as shown in the network panel (left). The cluster with
a grey background represents genes classified as noise and it is not represented in
the time curve’s glyphs (right). Each visualization reflects the behaviors across each
group of time points selected with the mouse lens (1, 2 & 3).
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at these points in time, while most others appear to show either increasing
tendencies or valleys of values.

To further analyze these behaviors, we clustered the dataset using DBSCAN,
which resulted in about half the proteins getting filtered as noise, but creat-
ing clusters with more consistent behaviors (Figure 6.8). When comparing
the previous group of time points with the mouse lens again, we can clearly
identify that the resulting clusters have full similarity across all time points,
where 5 are exhibiting peaks of expression and the remaining show valleys
of values (Figure 6.8.1). The other two groups of time points were also exam-
ined using this method, revealing many of the same clusters to also present
consistent behaviors, although more varied between them (Figure 6.8.2,3). In
particular, we can discern 2 clusters with minimum similarity between the
8 and 14 hour time points (Figure 6.8.3). Through such exploration, these
types of clusters can be identified, selected and either isolated to be studied
further or filtered out of the dataset.

6.2.2 Malaria Virus

Following the previous dataset, we analyzed a time-series of the gene ex-
pression for the intraerythrocytic developmental cycle of Plasmodium Falci-
parum, the agent responsible for human malaria. This dataset contains 5080

genes, whose expression values were measured with an hour interval over a
48-hour period. The time curve visualization of this dataset shows that the
dataset has a general continuous behavior throughout, with each time node
sticking close to the one that follows without loops or overlapping, as shown
in Figure 6.9. The time curve visualization was created with near 90% max-
imum similarity, meaning that genes present very similar behaviors overall.
This matches the description of this dataset by an existing study [21] which
refers to the behavior of the genes as a cascade of continuous expression
that lacks sharp transitions. Moreover, near the end, the dataset appears to
return to a state similar to where it began, characteristic of a cycle. By using
the lens, we can compare two time points at the beginning and end of the
timeline (TP1 and TP48) to observe that most of the dataset presents very
similar values and variations at those instances (Figure 6.9.a).

However, while expression values do not appear to shift drastically, we
can observe that the data does not present consistent variations. In the sup-
porting timeline graph, we can easily identify both moments of stable varia-
tion and some larger shifts in the data. We can use the lens to analyze some
of these larger shifts, by identifying the groups of nodes with that present
differences between time points rather than similarities. For instance, when
comparing TP13 and TP14 (Figure 6.9.b), we can quickly identify that the
two clusters of nodes with higher values (dark colors) were responsible for
that spike in the time curve, as they have less consistent values between the
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two selected time points. When comparing their glyph colors, we can also
observe that this was the result of a relatively significant increase in values
across both nodes.

Figure 6.9: Time curve visualization of the Plasmodium Falciparum dataset with supporting
timeline graph below it (left), along with close-ups of an analysis of two sets of time
points (right): TP1 and TP48, which show overall similarities (a.), and TP13 and
TP14, which present two clusters with a higher degree of differences (b.).

6.2.3 Yeast Cells

The next dataset to be visualized contained transcription profiles across a
yeast cell cycle, where alpha factor synchronized cells were followed across
two cell cycles [121]. 4381 cells were sampled every 5 minutes throughout
2 hours, resulting in 25 samples per cell. The dataset was clustered using
the DBSCAN algorithm, which discovered 5 clusters of cells with unique ex-
pression patterns, as depicted in Figure 6.10. To better differentiate between
extreme and middle values, we have chosen the "RdYlGn" color palette. The
time curve visualization presents a loop in its middle, which may be related
to the second cell cycle. Despite maximum similarity being set at 80%, the

Figure 6.10: Network visualization of the yeast cell cycle dataset clustered by the DBSCAN

algorithm (left) with line charts of the average temporal profiles of four clusters (a.
through d.), and a time curve visualization (right).
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Figure 6.11: Network (left) and time curve (right) visualizations of the yeast cell cycle dataset.
The mouse lens is used to select the time points at 45 and 50 minutes (1.), resulting
in the bottom-most cluster presenting almost no similarity between these times.
The lens is also used to select the 100 and 105 minutes, resulting in the two top-
most clusters also presenting very little similarity between those sequential times,
indicating a large shift.

cycles appear to be significantly different from each other, which has been
observed in a previous study of this dataset [121].

During the first cycle, we can observe a spike in the time curve at 45

minutes, which breaks away from the expected tendency (Figure 6.11.1).
Comparing this time point with the following one reveals one cluster with
very high dissimilarity, highlighting it as the cause for this spike. Moreover,
examining this cluster shows that it presents very little activity throughout
the dataset until that point in time, during which the values of all its nodes
increase sharply (Figure 6.10.d). We can also observe that the end of the
second cycle (at 105 minutes) is marked by a very significant shift in values
(Figure 6.11.2), characterized mainly by significant shifts in values in the
cells contained in two clusters. We can identify these as the two top-most
clusters, where one presents a large increase of values (Figure 6.10.a) and
another presents a large decrease (Figure 6.10.b), immediately followed by
the same expression values shifting inversely.
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6.2.4 Saccharomyces Cerevisiae

In addition to the previous dataset, we visualized gene expression data mea-
sured in Saccharomyces cerevisiae cell cultures, another species of yeast.
These cells have been synchronized at different points of the cell cycle through
a temperature-sensitive mutation (CDC15) which arrests cells late in mito-
sis. The dataset contains 4816 cells with expression values measured every
5 minutes for 2 hours.

The dataset was first clustered into 7 groups using the hierarchical cluster-
ing algorithm, while the time curve visualization was created by positioning
time points by tendency, using a maximum similarity of 50% (Figure 4.3).
To better differentiate between extreme values we have chosen the "RdYlBu"
color palette, while time is mapped across the "BrBG" palette. The resulting
time curve shows that most of dataset is initially comprised values increas-
ing or decreasing with little correlation, changing between unique states
during the first four time points. However, this followed by a behavior that
is repeated throughout the remaining time points: the dataset alternates be-
tween two states where two clusters alternate oppositely between peaks and
valleys of expression. Towards the end of this consistent behavior, it is pos-
sible to discern one time point that is located relatively farther from the top
group. This may indicate the occurrence of an event that resulted in a break
of the cycle.

Figure 6.12: Screenshot of CroP visualizing the Saccharomyces cerevisiae dataset. The clusters
created by the DBSCAN algorithm are represented in the network panel and listed
in the data table panel. The time curve panel shows the data alternating between
two states, one being selected with the mouse lens to highlight consistent peaks
and valleys of values across several clusters.

Additionally, we clustered the dataset using the DBSCAN algorithm. While
a significant portion of the dataset was classified as noise, likely due to a
high amount of variation in temporal patterns, the algorithm was capable
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of grouping the primary genes responsible for the previously discussed be-
haviors. This can be observed in Figure 6.12, where using the mouse lens to
select the bottom group of nine time nodes shows that 4 out of the 6 clus-
ters consist almost entirely of nodes with the same behaviors. Furthermore,
the inconsistencies within the remaining two clusters appear to be caused
by genes that stop behaving consistently towards the end of the timeline,
which was also noted previously.

6.2.5 Lung Cancer

To demonstrate CroP’s ability to process larger datasets, we represented a
dataset that explored the human gene expression responses to glucocorti-
coids [101]. This dataset contains 119208 cells of the human lung adenocar-
cinoma exposed the synthetic glucocorticoid dexamethasone, and describes
their changes in gene expression every 2 hours for 6 time points. The time
curve revealed a simple circular pattern with significant similarities between
the data at the 3 hour and 9 hour time points (Figure 6.13.1). To better com-
pare the dataset between these time points, we clustered the data using the
OPTICS clustering algorithm (Figure 6.13.2), as it was one of the fastest avail-
able algorithms for a dataset with these characteristics. Due to the size of
the dataset, the amount of distinct temporal patterns resulted in the creation
of a high number of clusters. However, from these we are able to discern
some particularly large clusters, one characterized by having minimal val-
ues throughout the dataset, while the remainder showed significantly high
values at the 3 hour and 9 hour time points.

Figure 6.13: Lung cancer dataset represented through a time curve visualization (1.), a network
clustered by the OPTICS algorithm (2.), and a network sorted using t-SNE (3.). While
OPTICS discovered a large diversity of temporal patterns, the t-SNE layout divided
most cells into two groups.

To further analyze these potential patterns, the data was spatially sorted
using the t-SNE layout (Figure 6.13.3). Although the layout does not create
cluster objects, it was capable of effectively sorting the points into visually
distinct groups: two large groups in the center, surrounded by some small
groups and a "cloud" of scattered points on the right. It should be noted
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that node repulsion is disabled for datasets beyond a certain size in order
to improve performance, which results in condensed groups of nodes. In
comparison to the clusters created with OPTICS, the t-SNE layout more clearly
divided the data points that contain consistently low values into the left
group and those with significantly high values into the right group, while
also separating data points with temporal patterns that do not fit any par-
ticular group. We were able to conclude that the large group of data points
with high values was primarily responsible for the pattern observed in time
curve: a large increase that led to peaks of values at the 3 hour and 9 hour
time points, followed by a slow decrease. While there is a limited amount of
time points, this may describe a potential cyclical pattern of expression that
would continue happening across this group of points.

6.2.6 Seminavis Robusta

Another large dataset that we analyzed through CroP was a gene expres-
sion time-series dataset of the Seminavis robusta, a benthic species found
in biofilms along shallow coastal regions. The dataset is part of a study of
the effects of associated bacterial spent medium on the gene expression and
metabolic processes of the Seminavis robusta organism, which impacts its
sexual reproduction. The dataset contains 25557 genes and describes the
changes in expression values over 18 time points.

To initially sort the most predominant temporal patterns, the dataset was
clustered using k-means into 5 clusters. These are depicted in Figure 6.14

(labeled C1 through C5), and each presents a unique profile with different
overall tendencies and peaks of values. The time curve visualization created
from this dataset is depicted in Figure 6.15, where we highlight specific

Figure 6.14: Network visualization of the Seminavis robusta dataset, clustered into 5 groups
through the bisecting k-means algorithm. It is represented alongside time-series
graphs of the average values for each cluster (C1 to C5), obtained through the
network’s mouse lens.
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Figure 6.15: Time curve visualization of the Seminavis robusta dataset, whose data was clus-
tered into 5 groups. It is represented alongside glyphs representing four moments
(T1, T4, T5 & T10) and two groups of time points (P1 & P2), obtained through the
time curve’s mouse lens.

moments (T1, T4, T5 and T10) and two groups of time points (P1 and P2)
which help understand how expression values behave. The first major event
occurs at T4, which appears to be caused by an significant drop in expres-
sion values in the genes in C3 and a fast increase in expression in the genes
in C5, which peaks at T5 and then drops again, resulting in another notable
shift. The dataset appears to return to a state similar to that of the start
represented by the group P1. In this group, we take note of the time point
T10, whose larger shift in position appears to be caused by the genes in C4,
which present a significant peak of values. This is followed by a period of
relatively smaller shifts in gene expression, represented as the group P2.

Although these groups of temporal patterns could be further refined
through other clustering options, they are able to help portray how the
dataset generally varies over time, particularly when analyzing the result-
ing time curve visualization. From this overview of the behavior of the gene
expression values, it was already possible to identify significant moments
and narrow down the responsible genes.

6.2.7 Coronavirus Disease

In addition to the previous temporal datasets, we also visualized a multi-
variate dataset detailing the effects of the COVID-19 pandemic on the pop-
ulation of the state of California in the United States of America. This data
was obtained from the California Health and Human Services Open Data
Portal [63] and describes the number of tests, cases and deaths across every
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county in California between February of 2020 and January of 2022. In or-
der to better compare data between counties, we divided the total number
of tests, cases and deaths by the population as to obtain these values per
capita.

We can observe the unnormalized distribution of these values across two
counties in Figure 6.16, which shows a comparison between the general pro-
portion of tests, positive tests, cases and deaths per capita. However, due to
the vast differences in values between these variables, it may be cumbersome
to identify the relative significance of each variable across the whole dataset.

Figure 6.16: Bar charts depicting the unnormalized values of total tests, positive tests, cases
and deaths per capita registered during the COVID-19 pandemic in the counties
of Los Angeles and Imperial.

Figure 6.17: Bar charts depicting the normalized values of total tests, positive tests, cases and
deaths per capita registered during the COVID-19 pandemic for several counties
in the state of California.
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In this regard, we can utilize normalized variables to represent the intensity
of each value in relation to every other county, as shown in Figure 6.17. For
instance, the bars for total tests, positive tests and cases in Lassen are com-
pletely filled, indicating that this county had the highest number of these
per capita in comparison to all other counties.

Similarly as with the previous datasets, we clustered the data into a small
number of groups in order to quickly identify any patterns in the distribu-
tion of values (Figure 6.18). The four clusters, obtained through bisecting k-
means, presented distinct profiles, where middle cluster appears to contain
all the counties with the highest values per capita across the dataset. Addi-
tionally, each variable is depicted as a node in the multivariate view, which

Figure 6.18: Data visualizations of the COVID-19 pandemic dataset, where each county is
represented as a node in the network (left) that has been clustered by its variables,
which are represented as nodes in the multivariate view (right). Using the mouse
lens, multiple variables are compared across all counties: the number of positive
tests and cases (1.); positive tests, cases and deaths (2.); total tests and deaths (3.).
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have been positioned by the t-SNE layout. The two variables with the most
similar distribution of values are "Positive Tests" and "Cases" (Figure 6.18.1),
which is expected as a positive test would be an indication of the COVID-19

infection, unless it was a false positive. There is also a correlation between
"Cases" and "Deaths" (Figure 6.18.2), although it is more inconsistent, pos-
sibly due to the variation in factors related to the ability of each county to
handle the pandemic.

Finally, the largest difference in distribution appears to be between "To-
tal Tests" and "Deaths". The glyphs in the multivariate view show that the
number of total tests per capital is relatively lower than their other vari-
ables, which the exception of the counties in the right-most cluster, where
this trend appears to be inverted. In order to better understand this, we can
look at the graphs in Figure 6.17 where we see that "Total Tests" and "Death"
are more consistently inversely proportional across the selected counties. It
is possible that such a correlation could be attributed to prevention mea-
sures, as a higher number of tests per capita would lead to infections be-
ing detected and treated earlier, potentially lowering death rates (and vice
versa). However, such conclusions would have take into consideration addi-
tional factors throughout the counties such as hospital availability, number
of people with health insurance and other preconditions that may have con-
tributed to these values.

6.3 discussion

Throughout the preformed experiments, we were able to visualize and ex-
plore various types of datasets, starting with low-dimensional datasets used
in testing basic representation features, up to high-dimensional datasets
which exhibited diverse behaviors across thousands of data points.

Due to the inherent complexity in creating comprehensible abstract visu-
alizations, the initial experiments focused on the time curve visualization
as its ability to represent various behaviors results from the distortion of a
timeline. Through simple datasets, we were able to more easily compare the
created time curve visualizations with the original time-series, allowing us
to match its visuals with any observed behaviors, such as periods of stagna-
tion and moments with intense shifts of values, as well as regressions and
cycles. By following these experiments with the visualization of datasets
containing multiple time-series, it was possible to identify that the represen-
tation of similar behaviors was consistent with previous tests. The resulting
visualizations were shown as combinations of the behaviors of all the time-
series in the dataset, with the most common behaviors being represented
more prominently. Furthermore, the time curves also highlight significant
events, such as moments where major shifts in values occurred.
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In relation to our research questions, we may consider that these exper-
iments have already shown that the generated time curve visualizations
are able to promote the discovery of meaningful relationships and patterns.
Moreover, in seeking to answer how visual abstractions can be used to man-
age visual complexity, we developed the time paths layout to reduce visual
noise in favor of representing prominent behaviors, but this comes at the
cost of data fidelity. This was reflected in the preformed experiments, where
manipulating the layout’s parameters showed that increasing the level of
smoothing highlighted overall tendencies by removing smaller variations,
in addition to some outliers that could have marked significant events in
these datasets. Additionally, high parameters resulted in exaggerated defor-
mations of simple behaviors, reinforcing the need for balance between ac-
curacy and abstraction when seeking to achieve readability. However, such
exaggerations could be considered for artistic representations of datasets.

In further regard to managing visual complexity, we can also consider
how time curves are able to represent the overall behaviors across thou-
sands of data points through a single visualization. While this may allow
users to identify moments and periods marking significant events, it is not
possible to determine the data points that are responsible for such behav-
iors through the time curve model alone. It was in analyzing such behaviors
that we sought to answer two other research questions: how to compre-
hensibly represent multivariate datasets and how CMVs can facilitate their
exploration.

Through CroP’s interactive multiple views framework, we are able to use
animated visual elements while giving users varied navigation options such
as panning and zooming and the ability to change the parameters of diverse
layouts with the visualization adapting dynamically. However, in seeking to
create comprehensible visualizations, we had to consider how these repre-
sentations of the data would be visualized in a static environment, such as
when exported as images. Functionalities like selecting consistent palettes
across diverse views, controlling the size of elements, glyphs with differ-
ent levels of detail, directional elements, parameter-based smoothing, juxta-
posed views and coordinated brushing were implemented for the creation
of visualizations that support readability while minimizing loss of informa-
tion.

More importantly, many of the same functionalities are used in support
of the exploration of these visualizations to facilitate their analysis and dis-
covery of patterns of information, in particular the juxtaposed views and co-
ordinated brushing. As shown throughout the performed experiments, the
different types of clustering allowed for varying degrees of precision in the
creation of groups of data points containing similar patterns. Utilizing the
simpler types of clustering (such as hierarchical and k-means, which require
few parameters) was enough to reveal the diversity in patterns across multi-
ple datasets and provide a better understanding of the patterns revealed by
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the time curve visualizations. Alternatively, other algorithms (such as DB-
CANS and OPTICS) were able to define more uniform groups while isolating
independent patterns as noise.

The composition of these groups can be clearly viewed in the data ta-
ble and network panels, while the time curve and multivariate view panels
uses them in glyphs to represent the state of the dataset at different in-
stances so they can be compared. The mouse lens then allows for further
exploration into the patterns revealed by the layouts of these panels, facili-
tating the identification of groups of nodes that are responsible for unique
behaviors and relationships. For instance, while a general cyclical tendency
was identified in the HIV-1 dataset it was only through the time lens that
we identified the nodes that followed this behavior, despite the existence
of multiple groups with different temporal profiles that followed the same
cyclical pattern. Similar analysis was performed for other behaviors, such
as the large shifts of values and regressions identified in the Malaria Virus
and Yeast Cells datasets, whose responsible cells were highlighted by the
differences represented in the data lens.

While the discussion on comprehensible visualization should also be val-
idated through user tests, through the performed experiments it is possible
to conclude that the combination of the functionalities implemented into
CroP facilitated the exploration of varied datasets, while highlighting pat-
terns and providing the tools to analyze them. The identification of signifi-
cant variables and groups of data points can further help understand com-
plex datasets and extract new knowledge that may help solve problems.
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The development of CroP can be characterized as iterative and incremental
as it resulted from multiple periods of testing and validation. In this chap-
ter, we will describe the user tests performed throughout the development
of CroP to evaluate its usability and the effectiveness of the implemented vi-
sualization models. Throughout the development of this visualization tool,
we performed model and interface tests with people of different fields of
study at three separate instances.

Due to the complexity of the time curves model, some preliminary tests
were performed early in the development to determine the viability and
effectiveness of the model in the context of analyzing temporal patterns
and discovering significant moments. Once all the planned visualization
models and functionalities had been implemented into CroP, we were able
to produce a prototype to be used for interface tests. These were initially
performed with a reduced number of participants, after which both the tests
and the prototype were refined for a more comprehensive round of tests.
In addition to testing the tool itself, we also simultaneously asked users
to evaluate the visualization models. We will describe each test and the
conditions in which their were performed, as well as discuss the results and
feedback that was obtained.

7.1 preliminary model survey

Throughout the experiments preformed using our implementation of the
time curve model we were able to observe the creation of visualizations fea-
turing characteristics that described the datasets that were being portrayed,
such as various types of cycles and variation, periods of stagnation and
moments of significant value increases. However, as the time curve depicts
these temporal behaviors through an abstraction of a timeline, one predom-
inant concern is the comprehensibility of the model by different types of
users, in particular those minimal knowledge of data visualizations. To this
end, we performed an early survey that would test how users from different
fields would fare in decoding time curve visualizations and identify patterns
and significant moments.

117
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— Survey Questions

Each participant was given a form that consisted of various multiple-choice
questions whose objectives were twofold: to determine subjects’ ability or
difficulties in perceiving and interpreting the information encoded by each
visualization, and surveying participants’ preferred model for data repre-
sentation in regard to functionality and aesthetics. As such, the survey fea-
tured multiple tasks where participants would need to solve problems using
only static visualizations created by our implementation of the time curves
model, in addition to questions that allowed them to give a rating to visu-
alizations created with different parameters in regard to their legibility and
aesthetics.

While animated and interactive components may aid users in interpreting
the visualization, particularly in identifying edge direction and specific time
points, we chose to exclude them from this survey in order to focus on
determining the ability of the base visual elements to encode information.
In this respect, all the visualizations use consistent color encoding for time
progression, where from black represents the initial time point and orange
represents the final.

To start, participants were only provided with context over the nature of
the data visualization. Given the learning curve that is inherent to the in-
terpretation of data abstractions, we intended the visualization model to be
gradually explained throughout the survey. As such, the survey featured in-
creasingly more complex visualizations across each set of questions, where
we noted their initial impressions, abilities and difficulties in perceiving the
visualizations at each stage. The survey was divided into seven sets of ques-
tions (S1 through S7):

Figure 7.1: Time curve of a sine wave for S1

of the initial model tests, where
users had to identify the general
behavior being depicted.

S1: Matching a visualization with a be-
havior. The first question in the survey
presented the visualization shown in
Figure 7.1 without showing the line
chart which describes the original
dataset. Participants were then asked
to identify the main behavior they
think is being represented out of a
list: whether it shows a continuous in-
crease in values, erratic values, stag-
nated values or cyclical values. After
their answer, the line chart describing
the original dataset was shown and
they were told that the stable cycles
generate overlapping ovals shapes.
On one hand this was meant to verify
if viewers would associate the gener-
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Figure 7.2: Set of three time curves for S2 of the initial model tests, where users had to pick
between four line charts to match each time curve with its corresponding dataset.
The correct answer is circled.

ated circular shapes to cyclical behaviors, while on the other present them
with the most basic input and output for the model.

S2: Matching a visualization with multiple behaviors. This section consisted
of a set of three questions where participants were tasked with match-
ing increasingly complex visualizations drawn using our model with line
charts representing their original datasets. Participants were presented with
the visualizations shown in Figure 7.2 and asked to choose from the four
line charts that showed cycles with different emerging behaviors: variations
in value, amplitude and frequency. Through this, we intended to identify
whether viewers could associate the variations in the circles’ displacement,
shape and size to their correspondent behaviors.

S3: Analyzing real data -– Monthly Milk Production. This section tasked par-
ticipants with deciding the veracity of statements regarding the behaviors
exhibited by the represented cycles represented in the “Yearly Milk Produc-
tion” data visualization, shown in the left side of Figure 7.3. The goal was
to determine if participants could analyze time curves created from noisy
time-series and correctly discern the following behaviors: an overall increas-
ing trend, consistent cycle duration, the absence of a significant decrease in
production before the final cycles, and a stabilization in production during
the final cycles.

S4: Classifying visualizations -– Monthly Milk Production. In this set, partic-
ipants were presented with six visualizations of the previous dataset cre-
ated by the model, each with an increasing level of smoothness (Figure 7.3),
where the initial and final visualizations showed the results of parameters
being pushed to either extreme, while those in the middle showed the re-
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Figure 7.3: Time curve of the "Monthly Milk Production" dataset used for the questions in S3

of the initial model tests (left), and six variations of it utilizing different smoothing
parameters for S4. The line chart that describes this dataset is represented at the
bottom.

sults from near default parameters. Participants were asked to choose the
visualization that they thought most accurately represented the data, the
one they thought was the most visually appealing, and finally the one that
they would overall choose to represent the dataset. These questions served
to primarily to understand the preferences of participants and the role of
smooth continuous lines in the representation of the datasets.

S5: Analyzing real data — Wolfer’s Sunspot Numbers. Here participants were
presented the “Wolfer’s Sunspot Numbers” data visualization, shown on
the left of Figure 7.4, where fluctuations do not have a consistent trend.
Considering the visualization’s characteristics, participants were asked to
indicate at which points in the timeline they could identify two specific
events: the largest value increase and an outlier value peak. These tasks
were meant to test viewer’s abilities to understand the time progression
in a visualization where values do not have a consistent trend and, more
importantly, identify an unusual visual element as an outlier, meaning the
small loop that occurs during the final cycle in the visualization.

S6: Classifying visualizations -– Wolfer’s Sunspot Numbers. This set of ques-
tions mirrors S4, where participants were once again shown six visualiza-
tions generated by the model for the same dataset with increasing levels of
smoothness (Figure 7.4) and ask to choose the most informative, the most
visually appealing and their overall preference.

S7: General feedback. Finally, based on the visualizations that were pre-
sented throughout the survey, participants were asked to grade the model’s
utility (its ability to describe information or highlight the behaviors in the
data) and the resulting visualization’s aesthetics (whether they were con-
sidered visually appealing in comparison to traditional visualization ap-
proaches), from 1 (Very Poor) to 5 (Excellent). Participants were also en-
couraged to provide additional feedback at this point.
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Figure 7.4: Time curve of the "Wolfer’s Sunspot Numbers" dataset used for the questions in S5

of the initial model tests (left), and six variations of it utilizing different smoothing
parameters for S6. The line chart that describes this dataset is represented at the
bottom.

— Results Analysis

The study was conducted in person with university students from various
fields of study: out of the 25 students surveyed, 8 had an Information Vi-
sualization background, 4 had a Computational Creativity background, 6

had a Computer Science background, and 7 had a Biomedical Science back-
ground. Of those without a visualization background, 4 had a high level
of expertise in the visualization field, 8 had a medium level, and 5 had a
low level of knowledge of data visualizations. Our discussion on the results
is structured based on evaluating the performance of our implementation
of the time curve’s model. As such, focuses on the model’s ability to repre-
sent general behaviors, significant moments and events, as well as analyzing
the effects of smoothing a time curve visualization in regards to how it is
perceived.

In the first two sets of questions, we intended to test whether viewers
could identify general temporal behaviors from simple time curves. We con-
sidered the sine wave dataset to be our baseline, as it describes a simple, con-
tinuous cycle without noise, with its corresponding time curve (Figure 7.1)
being an oval created from multiple loops that represent the cycles in the
dataset. Participants were shown this time curve in S1 and, out of the four
behavior options provided, all 25 participants associated the circular shape
to a cyclical behavior.

Continuing with the identification of overall behaviors, S2 presented three
variations of the sine wave time curve and were asked to choose the one out
of four line charts that they thought best corresponded to the data repre-
sented. In S2.1, participants were shown the visualization that depicts an
overall value increase (Figure 7.2.1) and 48% of participants chose the cor-
rect line chart. While participants showed some confusion while trying to
understand this first layout, the corresponding dataset was still the one most



122 validation

chosen. When shown the visualization with constant minimum values and
increasing maximums in S2.2 (Figure 7.2.2), 84% of participants matched
it with the correct chart. This showed a significant increase in correct an-
swers which, based on participant feedback, was a result of a increased un-
derstanding of the model’s mapping of variables. However, in S2.3, where
participants were asked shown a visualization that presented an increase
of values and frequency (Figure 7.2.3), only 64% of them were able to do
so correctly. Relatively to the others, participants generally took longest or
had the most difficulties in identifying this chart, which was relayed as an
inability to match the width of the time curve’s arc to stronger variations in
values, instead associating it to increases in values.

In S3 and S5, we asked participants multiple choice questions regarding
two different datasets that depicted various types of behaviors. S3 featured
the "Monthly Milk Production" dataset (Figure 7.3), which is characterized
by multiple cycles with an overall increasing trend in production over the
years until it stabilizes. Over 90% the participants were capable of correctly
identifying the increasing trend, the moment of significant increase, and the
period of stagnation through the visualization. However, 42% of participants
incorrectly perceived the cycles has not having the same length in duration,
which may have been a result from the time curve’s parameters that resulted
in cycles being drawn with different widths.

S5 featured the "Wolfer’s Sunspot Numbers" dataset (Figure 7.4), which
is characterized by values increasing and decreasing with an inconsistent
frequency, where minimums are consistent but maximum values vary for
each peak. When asked to identify when the first significant increase in
values occurred, 96% of the participants were able to correctly identify that
it occurred at the start of the dataset. When asked to identify a sudden shift
in variation that occurred in the data, only 56% of the participants were able
to identify this outlier as the small loop that was represented at the end of
the time curve. Despite this, three other participants did identify the loop as
an inconsistency in the time-series, but also deemed the other fluctuations
to be of equal importance, and thus could not pinpoint the specific event.
However, this did show that most viewers were able to potentially identify
both trends and significant events.

Although the S3 and S5 utilized time paths to smoothen the original time
curves and emphasize general behaviors, the ideal parameters may vary be-
tween each dataset or even depending on the context of the visualization’s
application. To better understand viewer’s preferences, in S4 and S6 we pre-
sented participants with six visualizations with increasing levels of smooth-
ing from the "Monthly Milk Production" dataset and the "Wolfer’s Sunspot
Numbers" dataset, respectively. Out of these, participants were asked which
one they considered to be the most informative, the most aesthetically ap-
pealing, and their overall choice. From the results, we can discern some
general trends: in both S4 and S6, most participants chose the same visual-
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izations as being both the most informative and their overall choice, with 6

(44% & 46%) and 4 (28% & 24%) being the most popular choices in S4, and
3 (68% & 62%) and 4 (22% & 30%) in S6. Based on these results and feed-
back, we can conclude that these choices were based on readability. However,
regarding aesthetical preference, participants seems to prefer time curves
with round shapes, as the most popular choices in S4 were 6 (52%) and 3

(32%), and the most chosen in S6 were 6 (32%), 5 (26%) and 4 (26%). In gen-
eral, we can infer that participants preferred minimal variation details with
rounder curves, as long as the visualization was still able convey the over-
all behaviors of the original dataset. This is supported by the unpopularity
of visualizations 1 and 2 all around, which in both datasets depict angular
changes between time points, while visualizations comprised primarily of
loops were chosen as the most aesthetically pleasing.

Finally, in S7 we asked participants for feedback regarding our model’s
performance based on the visualizations presented and their experience.
Nine participants commented on the existence of a learning curve, which
was considered as steep by those without a visualization background. How-
ever, the average score given to the model’s ability to represent behaviors
was of 4.08 out of 5, with participants justifying their scores by stating that
the model can be useful for data analysis after the learning curve is sur-
passed. Additionally, participants commented on having been able to iden-
tify behaviors in the Time Path visualizations that were not apparent in the
line graphs, and mentioned the potential of saving space by using the model
to represent large datasets. When reviewing their difficulties in solving the
previous tasks, participants mentioned that it was difficult to identify the
temporal position of each time node. They also commented on the limita-
tions of the model, such as overlapping edges potentially obscuring infor-
mation and a lack of visual highlighting of significant time points. In regard
to the aesthetics of the presented Time Path visualizations, participants gave
an average score of 3.88 out of 5, commenting that they were generally more
visually appealing than traditional visualization models, but that their appli-
cation would be context-sensitive. Some participants considered that there
was a lack of exploration of the visual elements, such as line width and
color, in particular if the visualizations were to be used within an artistic or
computational creativity context.

7.2 interface & model testing

As the visualization models and functionalities within CroP were refined,
interface tests had to be performed in order to determine its accessibility to
our target audience, as well as to detect any usability flaws that should be
fixed. These consisted of a series of short tasks that simulates an average
user’s process of navigating the tool, loading data, exploring it and then uti-
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lizing the provided data analysis functions to potentially identify patterns.
These user tasks had to be created while keeping the complexity of the ap-
plication and some of its models in mind, with particular regard to the level
of experience of the target audience in handling visualization tools, as well
as the available amount of time that could be allotted to each test.

7.2.1 Initial Tests

The initial interface tests were conceived with the purpose of detecting over-
all usability problems and to better understand how users with minimal
knowledge of data visualization would perform in solving their assigned
tasks. Due to the limited availability of participants that would fit within
our expected target audience, the tests were performed with a group com-
prised of 9 college students from a Biochemistry degree.

User tests were performed individually and in person, each beginning
with a short demonstration of CroP using small, randomly-generated net-
work and time-series datasets, followed by a brief explanation of the dataset
that they would be interacting with. For these tests, we chose datasets from
our previous experiments: a human PPI network paired with the gene ex-
pression time-series dataset depicting the HIV-1 infection [108]. We chose
these datasets due to the large number of proteins but small number of
time points, giving users a large dataset to explore with a low temporal
complexity. The time curve resulting from this dataset is also relatively sim-
ple, as it portrays two clear loops, allowing analyze how users decode this
pattern, with minimal training.

After users answered profile questions regarding their field and level of
expertise, they were allowed to interact with a prototype of CroP and asked
to perform six tasks (T1 through T6), followed by two questions regarding
the generated time curve model (Q1 and Q2), and ending with a set of five
general feedback questions (F1 through F5).

— Interface Tasks

As each session was conducted in person, users could ask for help when-
ever they got lost in their navigation or didn’t understand a task or how to
complete it. However, such difficulties were noted down and the solution to
a task was never given until the user had given up, in which case this was
considered as a failure to complete the task. This test was comprised of six
interface tasks and the time to complete each task was noted down and the
sessions were recorded.

To begin, users were asked to navigate the tool and first import a net-
work dataset file, then a time-series dataset file, containing the human PPI

network and gene expression time series of the HIV-1 infection respectively.
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Additionally, they were asked to filter out data that was not present in both
datasets when prompted.

T1: Import the network dataset file.
T2: Import the time-series dataset file and keep only points that match both

datasets.
After the previous tasks loaded the data into the default network, data

table and time curve panels, users were asked to find and select a protein
with a particular characteristic. The objective was to lead them towards the
data table panel, as it is the simplest visualization model of those available,
requiring the user to only sort it by the value attribute and selecting the top
row. T4 then required users to note the tab that was created when selecting
the previous protein so that they could access its proprieties and view its
temporal profile. Task completion times are represented in Figure 7.5.

T3: Select the protein with the highest average value.
T4: Open the temporal profile of that protein in the Data Table.
Here, users were tasked with clustering the data into various groups and

discovering which group contained proteins similar to the previously se-
lected one. It required both the navigation of the tool’s functionalities, and
the users to understand the relation between a cluster and the proteins be-
longing to it.

T5: Use clustering to find and select a cluster of nodes that have the same tempo-
ral pattern as the protein selected in the previous task.

Finally, users were asked to freely use the time curve panel so that we
could determine whether they could apply a layout and interpret the re-
sulting time curve visualization as a temporal pattern. However, this task is
further complimented by the next set of questions.

T6: Use the Time Curve panel search for a potential pattern of behavior.

— Model Questions

Upon applying the layout in the time curve panel on the final task, the users
were asked if they were able to discern a pattern in the created time curve
visualization. Due to the level of abstraction of the time curve visualization,
we provided options with the most common temporal patterns portrayed in
these visualizations, as well as options for the users that were not able to
detect any patterns and those that inferred a pattern that was not listed.

Q1: In the Time Curve visualization, what predominant behavior pattern of ex-
pression can you discern?

a) Stagnant / Continuous behavior
b) Erratic / Unpredictable behavior
c) Cyclical / Repeating behavior
d) Cannot discern any pattern
e) Other
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Figure 7.5: Box plot of the time taken by all participants to complete each of the interface
tasks of the initial tests. T5* and T6* only present partial task completion as to be
compared with similar tasks of the extended tests, where T5* shows the time taken
to cluster the dataset and T6* the time taken to apply the forces layout on the time
curve. Tasks that are similar with those of the extended tests, in Figures 7.7 & 7.8,
have matching colors.

To further understand the level of confidence in the user’s previous an-
swer, we asked them how clearly they were able to perceive the previous
pattern, if any, on a scale from 1 (Confusing) to 7 (Clear).

Q2: If you discerned a pattern, how clearly do you think it was depicted?

— General Feedback

At the end of the test, users were asked to select how much they agreed
with the following affirmations from a 1 (Strongly Disagree) to 5 (Strongly
Agree) scale:

F1: "I thought the tool was easy to use."
F2: "I thought the tool was needlessly complex."
F3: "I think I’d need more time to learn how to use this tool."
F4: "I could see myself using this tool, now or in the future."
To finalize the test, users were provided with the following open ended

question where they could provide a longer answer regarding any of the
difficulties encountered:

F5 - Did you feel any difficulties in navigating the tool, or in understanding any
of the data representations?

— Results Analysis

As these tests featured a small amount of users, of which all had very low ex-
perience with visualization tools, our primary objectives in these tests were
to discern the more prominent problems with the interface so that they may
be corrected before initiating a new round of tests. As such, this analysis
will focus primarily on the main difficulties encountered by the participants,
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but these results will also be taken into consideration in the analysis of the
extended versions of the tests that were performed afterwards.

At this stage of testing, the prototype utilized a single dropdown for load-
ing datasets from which users could choose between all the supported types
of data. During T1 and T2, 3 of the 9 participants selected the wrong type
of loading in one of the two initial tasks. While this could be attributed to
a natural learning curve derived from using a new tool, this was taken into
consideration when updating the user interface. The participants, however,
did not have significant difficulties utilizing the data table panel in T3 and
T4, with the only notable problem being two participants in identifying the
panel as the means to discover the intended proteins.

While T5 and T6 allowed users more freedom to explore the visualization
panels and arrive at their own conclusions, they also proved to be too vague
and therefore confusing, especially for users with minimal experience. For
instance, while all participants were able to use the menus to apply clus-
tering, mostly with little difficulties, the lack of understanding of clustering
resulted in many of them expressing confusion at identifying which clus-
ter contained proteins with similar profiles to the one selected. However, of
those that were able to perform the task, some were able to take advantage
of the hierarchical clustering by increasing the number of clusters in order to
create smaller groups with increasingly similar profiles, and thus discover
which proteins were the closest to the one selected. Moreover, despite the
limited interactions with the time curve model in T6, it was possible to de-
tect usability problems when using the timeline slider to pinpoint specific
time points. We identified this issue as deriving from a lack of visual feed-
back, as the hovered nodes in the timeline slider were not highlighted in the
time curve.

Regarding the model questions, 7 out of the 9 participants were able to
identify the pattern of the time curve as representing multiple cycles, then
rated the clarity of the representation with an average score of 5.6 out of 7.
The remaining two users did not think the visualization represented neither
continuous nor cyclical behaviors.

For the final feedback, users were asked to disagree or agree with state-
ments using scores of 1 to 5, respectively. Distribution of these scores is rep-
resented in Figure 7.6, and the average scores were as follows: participants
generally agreed that CroP was accessible with 3.9, generally disagreed that
the tool was complex with 1.6, generally agreed that they required more
time to use CroP properly with 3.9, and finally generally agreed that they
could see themselves using this tool in the future with 4.1.
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7.2.2 Extended Tests

Following the feedback obtained from the previous tests, we refined both
the interface and the tests themselves, extending them in order to include
additional interface tasks and further model testing. These tests were con-
ducted with 26 college students, where 16 were from the field of computa-
tional biology and 11 from information science, with varying degrees of data
visualization knowledge and experience. Tests were once again performed
individually, either in person or through a conference call, and personal
assistance was provided in the case of significant difficulties, particularly
when a task could not be completed. Sessions were recorded, and the time
taken to perform each task was noted, in addition to any issues and neces-
sary assistance.

Each user was initially introduced to CroP through a video that presented
an overview of its functionalities, with minimal details, as well as a descrip-
tion of the data and how it is represented. Some precautions were taken in
regard to the feedback received from the previous tests, such as the inclusion
of a short explanation on clustering. Users were then asked several profile
questions about their field of study, knowledge of data visualization and
previous experience with visualization tools before performing the interface
test. This test consisted of 16 tasks divided into 5 categories (T1 through T5),
followed by a set of five feedback questions (F1 through F5), and ending
with 10 questions regarding the visualization models, which are divided
into 3 categories (Q1 through Q3).

— Interface Tasks

For these tests we once again used the gene expression time-series dataset of
HIV-1 infection, not only so that these tests could be potentially compared
to those done previously, but also due to the characteristics of this dataset
continuing to be favorable for user testing (being complex but with a simple
temporal dimension, relatively to other similar datasets). Task completion

Figure 7.6: Score total given by participants for each of the affirmations in the feedback section
of the initial tests, from F1 to F4.
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time is represented for those with a biological background in Figure 7.7,
and those without in Figure 7.8.

Similarly to the previous tests, users began by loading the two datasets
into the tool. However, upon the data being loaded into the visualization
panels, users were encouraged to navigate the tool freely for a minute as to
reduce the potential fear of interacting with a new system.

T1 —- Initialization
T1.1: Import the network dataset file.
T1.2: Import the time-series dataset file and ignore proteins that don’t exist in the

previously loaded file.
Users were then directed to the data table panel as it is, once again, the

most potentially familiar environment even to those with minimal experi-
ence with data visualization tools. Through these tasks we intended to test
how users search, sort, and select one or groups of points (T2.1, T2.3 & T2.5),
whether users are able to notice the tabs created for each selected row and
recognize them as ways to dive down (T2.2), and if they were able to fil-
ter unwanted points from the dataset (T2.4). Additionally, through T2.6 we
checked how users deselect previous selections, as this should be a simple
and intuitive action.

T2 —- Data Table
T2.1: In the Data Table panel, find and select the protein with the highest "degree"

value.
T2.2: In the properties of that protein, find the highest expression value of its

time-series.
T2.3: Select the 3 proteins with the highest "degree" values.
T2.4: Filter the proteins that you selected to remove them from the dataset.
T2.5: Select every protein from ID 0 until ID 16.
T2.6: Reset your current selections.
In the next set of tasks, we tested how a new user would perform a simple

data analysis task in order to identify a particular subset of the data. While
T3.1 directly asks users to apply a specific type of clustering, T3.2 simply
provides an objective, requiring users to navigate the tool and first discover
how to change the current time point and then to decode the visualization
to determine the average expression values represented by each cluster. Fol-
lowing this, T3.3 tested users’ intuition in resetting selections.

T3 — Clustering
T3.1: Cluster the data by tendency and create 5 groups.
T3.2: Identify and select the cluster(s) that contain(s) a group of proteins with

the lowest expression values at 16 hours.
T3.3: Reset current selections.
As we first needed to observe how tendency changed over time, users

were then asked to change the "Data Mapping" option before focusing on
the time curve panel. Given the initial complexity of the time curves model
for new users, we encouraged participants explore the time curve panel
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during this time, including changing the color scheme or the sliders that
control the parameters of the layout. T4.3 and T4.4 then tested users ability
to recognize the position of the time points as describing similarity between
them, and whether they were able to apply this knowledge to solve the task.
Additionally, T4.4 could also be solved by looking at the timeline graph,
which would highlight the time points where significant value shifts had
occurred.

T4 –– Time Curve
T4.1: Change "Data Mapping" so that colors are mapped to values by tendency.
T4.2: On the "Time Curve" panel, apply the "Forces" layout.
T4.3: Identify if there are other temporal points at which the network has a similar

tendency shifts to that at 10 hours.
T4.4: Change the distance option to "Values" and identify at which time point(s)

occurred the largest variations in expression values.
To finalize the interface portion of the test, users were asked to interact

with the panels themselves. As CroP allows panels to be moved and resized
within a fixed grid, this task was meant to gauge the difficulties of managing
the workspace, while also detecting potential issues with CroP’s automatic
panel adjustments, such as overlap detection and resolution.

T5 –– Panels
T5.1: Create a new "Data Table" panel and organize the workspace so that both

data table panels are placed next to each other, with the same size.

Figure 7.7: Box plot of the time taken by participants with a biological background to complete
each of the interface tasks of the initial tests. Tasks that are similar with those of the
initial tests, in Figures 7.5, have matching colors.



7.2 interface & model testing 131

— General Feedback

Following the interface tasks, we gathered additional feedback by asking
users to select how much they agreed with the following affirmations from
a 1 (Strongly Disagree) to 5 (Strongly Agree) scale:

F1: "I thought the tool was easy to use."
F2: "I thought the representations of the data were easy to interpret."
F3: "I think I’d need more time to learn how to use this tool."
F4: "If I had to analyze network data or temporal data, I could see myself using

this tool."
The distribution of answers is depicted in Figure 7.9. Participants were

also provided with an open-ended question where they could write down
any difficulties they felt when using the tool:

F5 - Did you feel any difficulties in navigating the tool, or in understanding any
of the data representations?

— Visualization Model Questions

Following our previous study on the efficacy of the time curves model, par-
ticipants were presented with several questions regarding CroP’s time curve
visualizations and cluster glyphs as to obtain feedback on these models.

To ensure that the participants had the same level of knowledge regardless
of their performance within the interface tests, this section was introduced
with a summary of the type of data being handled and how it is represented
within CroP, including how it is clustered and an explanation of the time
curve layout with an example. Before moving to the questions, participants

Figure 7.8: Box plot of the time taken by participants without a biological background to
complete each of the interface tasks of the initial tests. Tasks that are similar with
those of the initial tests, in Figures 7.5, have matching colors.
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Figure 7.9: Score total given by participants for each of the affirmations in the feedback section
of the extended tests, from F1 to F4.

Figure 7.10: Three time curves shown to the participants of the third round of user testing,
where they were asked to choose the behaviors that were represented in each visu-
alization.

were first asked if they felt any difficulties in understanding the previous
explanation from a scale from 1 ("No difficulties") to 5 ("Very difficult to
understand"), and, if so, to note what they considered to be complex.

The first set of questions presented three time curves (Figure 7.10) and,
in parallel to the previous tests, multiple options that contained statements
that could describe the behaviors depicted in each of the visualizations. The
same statements were presented for each of the time curves, from which the
participants could choose those that they thought were fitting:

M1 –– Time Curves
M1.1 - In regard to the order of the time points and their relationships, select the

statement(s) that you think best describe(s), in general, the variation of values over
time:

a) I can identify moments with strong variation between time points
b) I can identify moments with low variation between time points
c) There exists one or multiple cycles in the data (repetition between states)
d) I cannot identify patterns of variation
e) Other
The first time curve showed the cycle of the gene expression time-series

dataset of the HIV-1 infection, the second time curve represented a single
time-series without cycles but with inconsistent variations, and the third
represented the malaria virus cycle. The distribution of statements chosen
by the users for each time curve is depicted in Figure 7.11.



7.2 interface & model testing 133

The second set of questions pertained to the time curve glyphs, which
represented the state of the network at each point in time. As our objective
is to abstract a large quantity of data into a simple comprehensible glyph,
we presented users with three different glyphs representing the same type
of data, first in a large size so it could be properly viewed (Figure 7.12), and
then in a smaller size that better reflected how the glyph would be viewed in
the tool itself (Figure 7.13). The first glyph can be described as a miniature
representation of a clustered network, reducing its elements with minimal
abstraction: every cluster is represented as a circle with its position and color
matching the original cluster, and its color mapped to the average values of
its group. The second glyph abstracts the clustered network into a circular
graph by converting each cluster into a slice, where its color represents the
average values, its size represents the size of the cluster, and its relative
position reflects the position the cluster in the network. The third glyph, the
bar chart, is similar to the former, where each bar represents a cluster in
color and size, while its order reflects the horizontal position of clusters on
the network.

When presented with each of the large glyphs, participants were provided
an explanation of what each visual variable represented, and then they were
shown statements regarding that glyph’s comprehensibility. For the small
glyphs, the statements reflected their legibility and how well they could
be compared to each other. For each statement, participants could choose
whether they agreed or disagreed using a scale from 1 (Strongly Disagree)
to 5 (Strongly Agree), and the totals for the scores given are displayed in
Figure 7.14.

M2 –– Cluster Glyphs
M2.1 - "By solely looking at the glyph I can understand the state of the network

at that point in time (how values are distributed)."
M2.2 - "I think I would need more time to comprehend this type of glyphs."

Figure 7.11: Total behaviors perceived by all participants for each of the time curves (M2.1,
M2.2 & M2.3) in the model questions of the extended tests.
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Figure 7.12: Three glyph representations of a network (1: miniature, 2: circular, 3: bars) at two
different time points (top and bottom) used in the model tests performed during
the third round of user testing.

Figure 7.13: Example of an application of the three types of glyphs (1: miniature, 2: circular, 3:
bars) on a time curve, used in the model tests performed during the third round
of user testing.
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M2.3 - "I think this glyph is legible in a small size."
M2.4 - "I am able to easily distinguish similarities and differences between time

points."
The test is then finalized with another open-ended question concerning

the participant’s preferences:
M3 - "Do you have any comments regarding the visualizations show, or personal

preferences regarding the glyphs in each size?"

Figure 7.14: Sum of score values given by all participants for each of the attributes (from M2.1
to M2.4) of each of the three glyphs (G1, G2 & G3).

— Interface Results Analysis

In analyzing the results, we must take into account the background of the
participants and their level of experience with visualization tools. Among
those who participated, we can compare between the performances between
those with a visualization background and those with a computational bi-
ology background in order to understand how different types of users are
able to interact with and interpret our visualization models.

Similarly to the previous tests, the first set of tasks required users to sim-
ply load the network (T1.1) and time-series (T1.2) datasets. However, un-
like in the previous tests, there were no users that selected the wrong type
of loading in neither T1.1 or T1.2, which may have resulted from separat-
ing the types of loading into different dropdowns. To some extent, we can
also compare the average time that it took users to load these datasets (Fig-
ure 7.5) with the previous tests (Figure 7.7) as the tasks are very similar: in
the previous tests, without considering failed tasks and outliers, users took
an average of 29 seconds to load network data and 25 seconds to load time-
series data; in the current tests, users with a background in computational
biology took an average of 25 seconds to load network data and 17 seconds
to load time-series data.

After loading data, participants were directed to the data table panel to
resolve the next set of tasks, starting with two tasks that were once again
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similar to those performed in the previous tests. Regardless of experience
with visualization tools, participants did not show appear to have significant
problems with T2.1. However, 7 participants did have difficulties in identi-
fying the tabs of selected nodes on the data table as a source of information
for T2.2, likely as it is a system that is not common to interactive tables.

T2.3 and T2.5 required users to utilize keyboard buttons to have multiple
rows selected simultaneously in the table. The former only required three
rows to be selected, which could be achieved by simply holding "CTRL"
while clicking each one. Despite some difficulties from two users, all oth-
ers were eventually able to perform these selections. In T2.5, users were
prompted to select 17 subsequent nodes, which directed them to use "SHIFT"
to select every row between a first and last selection, rather than selecting
each individual row while holding "CTRL". However, many users had diffi-
culties in completing this task, with four users not being able to complete it
without help. This revealed several usability flaws that could be attributed
to two factors: the keyboard shortcuts were a simplified version of the file
selection in the Windows operating system and were missing some actions
that users were used to, and, by being based off this operating system, we
were not taking into account users from other operating systems. To this end,
we resolved the main issues that we identified, such as the "SHIFT" button
no longer needing to be held down between two selections, and mapping
keyboard shortcuts according to the target operating system for each version
of CroP.

In T2.4, participants were asked to erase the nodes they had selected by
filtering them out, requiring them to move out of the data table and use the
options sidebar. While all except one participant were able to discover the
function and finish the task, it is of note that users without a visualization
background took an average of 80% longer to complete this task than the
remaining participants. T2.6 only required users to deselect their previous
selections, which should be achievable with a click outside of the panel’s
area. Once again, participants without a visualization background had more
difficulties in finding where to click, but this allowed us to identify more ar-
eas that users would feel intuitive to clicked to undo selections. For instance,
4 participants clicked the "ESC" key at this point resulting in the application
shutting down due to the default shortcuts of programs made in Processing.
This was then resolved by rebinding the key.

In T3, the participants were asked to cluster the data (T3.1) and discover
a groups of nodes particular temporal pattern (T3.2). In T3.1, none of the
participants presented any issues in clustering the data with the requested
parameters. However, T3.2 can be considered one of the most complex tasks
in the test as it required the participants to change the current time point to
16H, identify the clusters with the lowest expression, and select both. This
originated the largest range of values in task completion time, where 8 par-
ticipants were able be to complete it in less than 30 seconds, while 5 others
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required more than 90 seconds. Despite this, only 4 participants required
any kind of assistance, and only 1 of those was not able to complete the task
due to not being able to change the current time point. In T3.3, similarly
to T2.6, users were asked cancel the selection of the previous clusters. This
time, all users simply clicked outside of the clusters to deselect them, as
intended, with the exception of one participant which instead tried to use
the data table panel.

T4 directed users to perform tasks in the Time Curve panel, but required
them to first change the type of data mapping to "tendency" (T4.1), but no
participants showed any significant difficulties in locating the Data Map-
ping option and changing it. Participants were also able to easily apply the
forces layout in the time curve panel (T4.2), but interpreting the resulting
visualization in T4.3 proved to be more complicated. In total, 5 participants
were unable to identify the relationships between time points in the result-
ing time curve (4 of a computational biology background). The same dif-
ficulties could be observed when analyzing the values time curve in T4.4,
where 3 users were not able to detect any pattern that would indicate when
the largest changes in values occurred. However, despite these difficulties,
most participants were able to complete both of the previous tasks. Of those
who succeeded, the average completion time for both tasks for those with a
visualization background was 53 seconds, and 86 seconds for those with a
computational biology background.

Finally, T5 asked participants to create a new panel and position it next to
another, allowing us to understand how users would interact with the win-
dows to organize the environment within its grid. In general, participants
did not show any significant difficulties in managing the panels, with the
only observed issues being the location of the option to create new panels
and the initial learning curve of manipulating the panels, although both of
these issues were either minor or rare.

Overall, participants with a bioinformatics background took an average of
24% longer to resolve tasks (Figure 7.7) than those with a visualization back-
ground (Figure 7.8), when excluding outliers. However, performing tests
with this diverse group of users helped us detect and correct prominent us-
ability problems, while also considering new options. For instance, when
interacting with a minimized section in the options sidebar, many of the
users first tried to click the title of a section to open it before using the plus
button. As this would allow users to more easily access or hide sections of
the interface due to having a wider clickable area, we changed titles to also
toggle sections open.

Regarding the general feedback section that followed the interface tasks,
where participants rated statements about their experiences from 1 (Strongly
Disagree) to 5 (Strongly Agree), the responses were overall positive and simi-
lar across those from different backgrounds, as seen in Figure 7.9. In general,
participants thought the tool was easy to use with an average score of 4.4,
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while the ease of interpreting the data representations got an average score
of 3.8. These difficulties in interpreting some of the visualization models
was also notable when participants were asked if they needed more time to
learn how to use the tool, which got an average of 3. Based on these scores
and obtained feedback, CroP was considered to be generally intuitive and
easy to pick up, but they also reflected the inherent learning curve to utilize
all of its functions, particularly the time curve panel. Despite this, partici-
pants showed a positive interest in the tool in regards to potentially using it
in the future, giving that statement an average score of 4.4.

— Model Results Analysis

In the model tests, participants were first asked to pick which behaviors
they could interpret from three different time curves without knowledge
of the original dataset (Figure 7.10), and the distribution of these choices is
represented in Figure 7.11. As in the previous test, the first time curve is
that of the HIV-1 Virus dataset, which depicts multiple cycles with strong
variations of values between time points. Over 88% of the participants were
able to associate the circular pattern to a cyclical tendency, and about 73%
interpreted these variations as being strong. However, 50% also discerned
small variations between time points, but this may have been due to the
close proximity of non-sequential time points, according to feedback.

The second time curve depicted a dataset with a constant tendency but
with fluctuating intensities that resulted in both moments of high and low
variation. About 23% of the participants interpreted these shifts in variation
as a cycle, likely due to the time curve going up and down over time, al-
though this does not actually translate to the data regressing to a previous
state. Additionally, only 53% of the participants discerned the existence of
both moments of strong and low variations of values. The third time curve
represents the Malaria Virus dataset, characterized by a single overall cycle
with mostly constant low shifts in variation, and a few stronger shifts. While
96% of participants were able to identify the small shifts in variation, only
about 35% interpreted the overall shape of the time curve as representing a
cycle.

Following this, we surveyed participants on different types of glyphs as
to either validate our glyphs or guide the creation of a new one. Overall,
the reception to the presented glyphs was mixed as the average scores at-
tributed to each statement range between 3 and 4, with the only exception
being M2.1.1 which received an average score of 4.4, as shown in Figure 7.14.
While this shows that the majority of participants agreed that the miniature
network is the most intuitive glyph of those presented, the remaining scores
did not show a clear preference, regardless of whether the glyph was pre-
sented in a small or large size. We can, however, note that the range of
scores was higher for the evaluations of the bar graph glyph in comparison
to the circular graph glyph. Additionally, at the end of the survey about
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54% of the participants expressed a preference for the miniature network as
a large glyph, followed by 23% preferring the circular graph glyph, while
the remaining either preferred the bar chart or had no preference. Regard-
ing the glyphs in smaller size, the support for all three glyphs was once
again balanced, although the bar chart was overall the least favorite among
the participants that provided feedback.

Despite the mixed feedback, we were able to take the following conclu-
sions: while the miniature network was the easiest to comprehend for par-
ticipants, it appeared to be more difficult to comprehend at a smaller size
unless the graphical elements were enhanced; regarding the other glyphs,
the bar chart glyph was considered to be easier to follow and compare
due to its order of elements, while other participants preferred the circu-
lar chart glyph due to its simplicity and circular shape that matches the
original nodes, unlike the former.

7.3 discussion

While in the experimentation chapter we were able to test the ability of
CroP as a tool for representing and analyzing different types of data, it
is only through user validation that we can evaluate its usability and the
comprehensibility of the visualization it creates. It is in this respect that
the surveys and tests that were performed focused particularly on the time
curve model, being the most uncommon visualization model in CroP as it
represents the relationships between time points through the distortion of a
timeline.

Our conclusions regarding the interpretation of the time curves visual-
izations were generally consistent throughout all the tests, where we must
acknowledge the existence of a learning curve that is inherent to a model
that creates abstracted data visualizations. For instance, in the preliminary
survey, nearly half the participants misinterpreted the first time curve (Fig-
ure 7.2.1) despite having correctly identified the cyclical behavior previously.
However, over 80% of participants were able to identify the behavior that
followed it (Figure 7.2.2), and throughout the rest survey most participants
correctly answered all of the questions through the use of time curves, with
half of these problems being answered correctly by over 90% of the partici-
pants.

In the final model tests, some participants also misinterpreted weak vari-
ations in the first time curve (Figure 7.10.1) and the existence of cycles in
the second time curve (Figure 7.10.2), which may have been a result of try-
ing to compare these visualizations to common linear graphs. Additionally,
only a quarter of the participants identified a cycle in the third time curve
(Figure 7.10.3), although a contributing factor may have been that the circle
was not closed. However, despite these difficulties, even participants with
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little experience with data visualization were able to discern prominent be-
haviors, significant events and trends. As these visualizations were created
from datasets containing thousands of data points, these results show that
it is possible for CroP to create visualizations that comprehensibly represent
complex datasets and promote the discovery of meaningful patterns.

In what regards to testing CroP’s usability, the interface tests contributed
towards answering some our research questions, namely how CMVs facilitate
the exploration of multivariate datasets and whether visualization and data
analysis approaches promote the discovery of meaningful relationships and
patterns. As the initial interface tests were performed by a small group of
participants with low experience with visualization tools and data analysis,
there existed exceptional difficulties with concepts such as clustering. How-
ever, despite their inexperience, most users were able to navigate the tool
and perform the indicated tasks, including loading data, brushing nodes,
applying filters and analyzing data from their visual elements.

These tasks were adjusted and expanded in the extended tests, further
testing the ability of users to use CroP to analyze data, now with partici-
pants from various fields of study. While those with low experience with
visualization tools had on average the longest task completion times, all of
them were eventually able to solve all of the data analysis tasks involving
the data panel and only 4 out of the 26 participants presented any significant
difficulties with the tasks involving network clustering and the time curves.
This showed how different types of users were able to utilize the available
tools to identify elements or groups with specific proprieties, as well as ana-
lyze of one dataset across multiple visualization panels to discover different
types of relationships.

Lastly, in what pertains to our final research question, we can overview
the results of the validation tests in relation to the considerations needed to
be taken to accommodate users with varying levels of experience into CroP.
Many of the preemptive measures that were taken with regard to usability
were based on the fluid interaction principles, with particular regard to error
prevention: failing to load a dataset will return an appropriate error message
and list of the lines containing errors when appropriate; buttons and sliders
are clearly labeled, and those that describe uncommon features are accom-
panied a "?" icon that contains a relevant description; actions performed on
either the visualization models or the user interface give immediate visual
feedback. However, it was through validation with a wide variety of indi-
viduals that we were able to obtain new insight into the development of
CroP and resolve issues that were not initially anticipated. In this respect,
we can review several meaningful usability problems that were identified
and resolved:

• In the initial interface tests, CroP utilized a single dropdown for load-
ing datasets from which users could choose between all the supported
types of data. After observing multiple occurrences of users choosing
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the wrong type of loading, the available options were categorized into
different dropdowns, one for each type of data. This revision was per-
formed before the extended interface tests, during which the average
time in loading time-series datasets was reduced and participants did
not present significant issues in resolving the task.

• When navigating the sidebar, users attempted to open and close the
collapsible sections by clicking their title instead of the intended but-
ton. This was not reported as an issue, as users simply utilized the
button afterwards, but we were able to recognize that having a wider
area for executing this action would facilitate navigation. In this re-
gard, the titles were updated with button proprieties as to open and
close their respective sections.

• Some users pressed the "ESC" key with the intent of cancelling node
selections, resulting in CroP shutting down as that is the default action
for programs developed in Processing. While the key was originally
overlooked, its action was changed to reset any current selections.

• Multiple interactions with sliders and visualization models utilize drag-
ging, which was initially considered as a different action from clicking
in order to prevent the unintentional activation of elements dragged
over by the mouse. However, this led to an issue that was only iden-
tified by user testing: users unaccustomed to high mouse sensitivity
would consistently drag the mouse while clicking buttons, cancelling
the action. This was resolved by selecting dragged elements as long as
the mouse did not leave the area of that element.

• Hovering time points in the time slider originally did not highlight
their respective nodes in the time curve as to not interfere with time
point selections, but users were observed having difficulties when uti-
lizing the slider to pinpoint specific time points. To resolve these issues,
visual highlights were added to nodes hovered using the timeline with-
out removing current selections, either when scrolling or when click-
ing on it.

• Originally, values were mapped using a single color palette, from black
to bright blue, representing the lowest values to the highest respec-
tively. Its objective was to highlight high values with bright colors and
represent low values with the darker, less saturated tones. However,
this originated two issues: middling values were difficult to distin-
guish and compare and some users reported interpreting black as rep-
resenting the highest values, due to its contrast. Despite these issues
only being reported by a very low percentage of users, it ultimately
lead to the modification of CroP’s simplest palettes and the addition
of several new options.
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• Another similar issue was brought up by a user, commenting on the
lack of information regarding what the colors represent. While the nu-
merical values can be visualized in the data table panel, such context is
missing from the network panel. This resulted in the addition of a text
box in the bottom-left corner of the network panel containing textual
and numerical information on any hovered node or cluster, including
their current values and respective colors, based on the selected value
mapping.

In conclusion, working with a wide range of participants from different
fields of study served to quickly identify both minor and general usabil-
ity issues with the implemented functionalities, resulting in continuous im-
provements throughout the development of the tool. Moreover, even users
lacking experience in data visualization were able to navigate the tool and
solve tasks, while also generally understand the time curve visualizations
and interpret its patterns, despite the clear existence of a learning curve.
While some participants expressed the need for additional time to get ac-
customed to the tool, overall feedback was consistently positive in regard to
CroP’s usability and the comprehensibility of its models.
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The continuous advancements in the field of Information Visualization, along
with those in HCI and Data Analysis, resulted in the development of new vi-
sualization tools that can process, represent and analyze large and complex
datasets. As we stated in the research hypothesis, interactive visualization
can be a powerful tool for data analysis as it provides the means to rep-
resent high-dimensional datasets comprehensibly. This creates an environ-
ment that helps explore such datasets and gives users the tools needed to
discover new meaningful information and extract new knowledge.

Throughout this thesis, we addressed the research questions that we pro-
posed which entailed various related and relevant subjects: the representa-
tion of complex multivariate data, the discovery of patterns in high-dimensional
data, the management of visual complexity through visual abstractions, the
discovery of new insights through multiple coordinated views, and the user
experience with a data visualization tool. The subjects of these questions
were present throughout this document and served to describe both the
challenges and motivation behind the development of CroP, a visualization
tool with a CMV framework, integrated with dynamic visualization models
and diverse novel visual and interactive approaches. This development fo-
cused on the representation and analysis of temporal and relational data, in
particular those from biological fields of study as they are often character-
ized as complex, due to their volume and high-dimensionality.

In the State of the Art chapter, we discussed the management of hetero-
geneous data through diverse visualization approaches for relational and
multivariate datasets, including reviewing layouts that employ simultane-
ous views and principles for encoding and perception to improve readabil-
ity and data fidelity. Furthermore, in regards to the expected challenges in
representing complex datasets, we also discussed the management of visual
complexity both through data analysis methods, such as dimensionality re-
duction and clustering, and through data aggregation and visual abstrac-
tions. In what concerns the development of interactive visualizations, we
reviewed methods that involve the navigation through multiple levels of de-
tail, querying data, and brushing elements, of different proprieties and also
coordinated between different views. Regarding usability, we also surveyed
interface options for custom parameters, providing users with additional
control over visualizations, as well as error prevention measures.

The developed visualization tool, CroP, was initially presented in the
Overview chapter, where we reviewed all of its main functionalities within its
CMV framework. The user interface is comprised of an options sidebar and
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a modular environment where multiple visualization panels can be placed
and resized within a grid, building a workspace that best suits the dataset
being analyzed. These panels can be used to visualize relational, temporal
and multivariate datasets at different levels of detail, providing users with
several types of layouts and tools to sort data points and variables in order
to discover patterns of relationships.

In what concerns the visualization of time-series in particular, we pre-
sented our implementation of the time curves layout and demonstrated its
ability to represent different types of behaviors in time-series datasets. We
complemented this model with Time Paths, a parameter-based layout that
dynamically transforms time curve visualizations to represent temporal be-
haviors with varying levels of sensitivity to shifts in the data. By increas-
ing the level of smoothing, the layout can reduce visual clutter while also
promoting the representation of predominant behaviors. Additionally, we
can more easily control the visual proprieties of edges, which allows for
smoother transitions between time points that more clearly represent the
flow of time, including the creation of animated edges. The tool also features
supporting visualization elements aimed at facilitating the identification of
specific moments and behaviors in the timeline, particularly when deal-
ing with complex time curve visualizations. Specifically, we implemented
glyphs that represent the dataset at each stage, as well as a lens-based area
brush that can be used to search across groups of nodes and highlight those
with similar proprieties.

The Workflow Analysis chapter followed this introduction to CroP’s func-
tionalities with a description of how they can be used cooperatively to an-
alyze different types of datasets. For relational data, we presented how the
network panel’s layouts can position data points based on their relation-
ships, while the data table can be used in parallel to dig-down, and identify
additional correlations between related nodes and their attributes. While
temporal and non-temporal variables can be analyzed through the layouts
in the time curve and multivariate view panels, respectively, we also showed
how patterns could further explored and studied through the mouse lens
and the network panel. Additionally, while interaction and animation could
also be used to discover and better understand these patterns of behavior,
the timeline graph also supports the exploration of complex time curve visu-
alizations, while also providing a simple visualization of the general shifts
of data in static environments, such as screenshots.

CroP’s functionalities and visualization models were demonstrated in the
Experimentation chapter, where we represented and analyzed datasets with
various levels of complexity. As discussed, the network and data table pan-
els were able to present the datasets with different levels of detail, while
providing the means to create groups of data points with similar propri-
eties and explore the composition of these groups. In this respect, the im-
plemented layouts and clustering algorithms helped in understanding the
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structure of each dataset, highlighting the diversity of patterns of variables
while isolating potential noise. Moreover, the models developed for the time
curve panel were capable of representing different types of behaviors over
time, across both single time-series and large datasets, highlighting periods
of stagnation and cycles, as well as events that mark significant shifts of
values. Using the glyphs, mouse lens and timeline graphs, we were able to
dig-down into these patterns and identify nature of their respective behav-
iors and the nodes at their origin.

While previous chapters presented CroP’s inputs and outputs primarily
from a user perspective, in the Framework chapter we reviewed the develop-
ment of the tool and the implementation of its functionalities, such as error
prevention measures, visual enhancements and optimization. This includes
descriptions of the validation of processed datasets, of panel management
in dynamically adapting the workspace to any changes, and of every layout
that was implemented, including the considerations regarding the chosen
visual variables. Moreover, we reviewed the advantages and disadvantages
of all the integrated clustering algorithms, as well as the motivation for their
inclusion.

Finally, the Validation chapter describes the surveys and usability tests
that were conducted to evaluate the tool, its functionalities and visualization
models, performed by participants from various fields of study with differ-
ent levels of experience with data visualization. The model tests focused
primarily on the time curves, testing their comprehensibility in represent-
ing various temporal behaviors. While these confirmed that the time curve
model possesses a significant learning curve, even users with low knowl-
edge of visualization were able to interpret patterns, both on visualizations
created from simple and complex datasets, as well as use them to solve
tasks.

The usability tests required participants to interact with the tool, navigate
visualizations of a dataset and perform several tasks of varying complexity.
As expected, participants with less experience with visualization tools pre-
sented longer times in completing tasks, particularly with those involving
the identification of patterns in clusters and the time curve visualization.
However, despite their inexperience, most participants were able to com-
plete most tasks without issues, showing the ability to navigate the tool’s
multiple views, identify data points and behaviors, as well as managing the
workspace. In general, the tests showed that a majority of users were able
to use CroP, regardless of their background and in spite of the amount of
time spent with the tool, with feedback being overall positive in regards to
the tool’s usability and models. Moreover, feedback was employed in the
tool’s iterative development and we were able to solve most of the detected
issues, including that of visualization tests served which was used in the
development of glyphs, visual feedback and addition of color palettes.
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Regarding future work, the CMV framework facilitates the implementation
of new visualization models and functionalities that target specific problems,
while allowing for the addition of coordinated actions with existing models
when applicable. As such, CroP can more easily be developed to tackle more
domain-specific problems, particularly within the field of Bioinformatics.
For instance, the development of additional relational visualization models
and edge-based functionalities would contribute towards the representation,
comparison and analysis of biological pathways. Moreover, the integration
of additional databases, similar to the GO, could help provide additional
context and proprieties to various biological elements, which could then be
analyzed through CroP’s existing tools.

In what concerns the general visualization of data, new layouts can also
be integrated to explore datasets in new ways, such as a 3D plots to view net-
works through different angles, or additional methods to improve the repre-
sentation of the relationships between data points, which could involve the
implementation of novel machine learning methods for multidimensional
scaling. Such developments could be employed to help surpass the limita-
tions of the current models, such as managing the complexity caused by
edge overlap in particularly complex time curves.

In closing, we would highlight the dissemination of the contributions pro-
duced throughout this thesis which resulted in publications across inter-
national, peer-reviewed conferences and journals within the fields of both
information science and bioinformatics:

• Conference Articles

– António Cruz, Joel P. Arrais, and Penousal Machado. Interactive
Network Visualization of Gene Expression Time-Series Data. In
22nd International Conference Information Visualisation (IV), pp.
574-580. IEEE, 2018. [28]

– António Cruz, Joel P. Arrais, and Penousal Machado. Exploring
Time-Series Through Force-Directed Timelines. In 24th Interna-
tional Conference Information Visualisation (IV), pp. 328-335. IEEE,
2020. [30]

• Journal Articles

– António Cruz, Joel P. Arrais, and Penousal Machado. Interactive
and coordinated visualization approaches for biological data anal-
ysis. Briefings in Bioinformatics, v. 20, no. 4, pp. 1513–1523, 2019.
[29]

– António Cruz, Penousal Machado, and Joel P. Arrais. CroP —
Coordinated Panel visualization for biological networks analysis.
Bioinformatics, v. 36, no. 4, pp. 1298-1299, 2020. [31]
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– António Cruz, Joel P. Arrais, and Penousal Machado. Force-Directed
Timelines: Visualizing & Exploring Temporal Patterns. Big Data
Research, v. 27, pp. 100291, 2022. [33]

– António Cruz, Joel P. Arrais, and Penousal Machado. Multivariate
Data Exploration Through Coordinated Views. IEEE Access, 2022.
[cruz2022access]

As we continue to develop CroP and make it more accessible, we also aim
creation of a web-based version of the tool. While browser tools may present
more limitations in their ability to process and display data, such a platform
allows for easier access to up-to-date databases. Fundamentally, we will aim
to continue exploring the representation of complex multivariate datasets
with comprehensible visualizations, a wide-range of analysis functionalities
and intuitive navigation.
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