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Abstract

This thesis is concerned with two different aspects of localic maps. First, they are classified and
characterized according to their interaction with zero sublocales. Second, uniform continuity is studied
within the more restricted setting of localic real-valued maps of preuniform locales.

Localic maps are classified according to the properties that their preimages and images of zero
sublocales satisfy. Some of the classes of localic maps defined by their behavior on preimages of
zero sublocales extend the notions of C-, C∗- and z-embedded sublocales to localic maps. These
maps are then used to characterize normality, and weaker forms of normality, in a manner akin to the
characterization of normal locales as the locales in which every closed localic embedding is a C-map.
On the other hand, localic maps defined by conditions on their behavior on images of zero sublocales
are presented, and the relations between them and closed and open localic maps are studied. This
leads to the investigation of three other types of localic maps: w-, n- and wz-maps.

A study of uniform continuity of real-valued functions on a preuniform frame is developed. The
aim is to characterize uniform continuity of such frame homomorphisms, in terms of a farness relation,
and to provide an insertion result for preuniform frames. Separation and extension results for uniform
locales are obtained as easy corollaries. As a byproduct, we identify sufficient conditions under which
a scale in a frame with a preuniformity generates a real-valued uniform map. The proof of the main
theorem relies heavily on (pre)diameters in locales as a substitute for classical pseudometrics. Along
the way, several general properties concerning these (pre)diameters are also shown.





Resumo

Esta dissertação consta de duas partes distintas onde duas facetas das funções locálicas são abordadas.
Na primeira parte, as funções locálicas são classificadas e caracterizadas de acordo com o seu
comportamento sobre os sublocales de zeros. Na segunda, estuda-se a continuidade uniforme no
contexto mais restrito das funções locálicas, em locales pré-uniformes, com valores reais.

As funções locálicas são classificadas de acordo com as propriedades que as suas imagens e pré-
imagens de sublocales de zeros satisfazem. Algumas das classes de funções locálicas definidas pelo
seu comportamento sobre as pré-imagens de sublocales de zeros estendem as noções bem conhecidas
de C-, C∗- e z-imersões de sublocales. Estas funções são usadas para caracterizar a propriedade de
normalidade (e algumas das suas variantes fracas) do locale em questão, de um modo parecido com
a caracterização dos locales normais como os locales nos quais qualquer imersão fechada é uma
C-imersão. Por outro lado, as funções locálicas definidas pelo seu comportamento sobre as imagens de
sublocales de zeros são também apresentadas e as suas relações com as funções fechadas ou abertas
são estudadas. Isto conduz à investigação de três tipos de funções locálicas: as funções w, n e wz.

Um estudo da continuidade uniforme das funções definidas num locale pré-uniforme, com valores
reais, é desenvolvido com o objectivo de caracterizar a continuidade uniforme de tais funções em
termos de uma relação de afastamento entre elementos (e, mais geralmente, sublocales do locale) e
de obter um resultado de inserção para locales pré-uniformes. Resultados de separação e extensão
para locales pré-uniformes são depois obtidos como corolários. Identificam-se ainda condições
suficientes sob as quais uma escala num locale com uma pré-uniformidade permite gerar uma função
uniformemente contínua com valores reais. A prova do teorema principal de inserção baseia-se num
estudo prévio de pré-diâmetros em locales onde alguns resultados da literatura são generalizados;
diversas propriedades gerais destes diâmetros são apresentadas e provadas ao longo da exposição.





Resumen

Esta tesis se centra principalmente en dos aspectos de las funciones locálicas. En primer lugar, se lleva
a cabo una clasificación y caracterización de estas funciones de acuerdo a la interacción que éstas
tienen con los sublocales cero. En segundo lugar, se estudia la continuidad uniforme en el entorno de
las funciones locálicas reales en locales preuniformes.

Las funciones locálicas se clasifican de acuerdo a las propiedades que las imágenes inversas e
imágenes de los sublocales cero satisfacen. Algunas de las clases de las funciones definidas a partir del
comportamiento de las imágenes inversas de sublocales cero, generalizan las nociones de sublocales
C-, C∗- y z-encajados, a funciones locálicas. Éstas se utilizan para caracterizar normalidad (y variantes
débiles de normalidad) de manera similar a como se caracterizan los locales normales, donde todo
encaje cerrado es una C-función locálica. Por otro lado, se definen y estudian aquellas funciones
que son caracterizadas por el comportamiento de las imágenes de los sublocales cero. Se estudian
la relaciones que éstas tienen con otros tipos de funciones, como las funciones locálicas abiertas
y cerradas. Este análisis da origen a la investigación de otras tres clases de funciones: w-, n- y wz-
funciones locálicas.

Se lleva a cabo un estudio sobre la continuidad uniforme de funciones reales en marcos pre-
uniformes. El próposito es caracterizar la continuidad uniforme de dichos morfismos de marcos a
través de la relación de lejanía y proporcionar un teorema de inserción. A partir de este teorema, los
resultados de separación y extensión para marcos uniformes se deducen fácilmente como corolarios.
Debido a que la demostración del teorema principal utiliza, en gran parte, la noción de prediámetro
(que sustituye la idea clásica de pseudométrica), se recordarán y demostrarán algunas propiedades
generales de prediámetros. Derivado de esta investigación, se identifican condiciones suficientes para
que una escala en un marco preuniforme determine, no sólo una función real continua, si no una
uniformemente continua.
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Introduction

Point-free topology is regarded as an algebraic (more specifically, lattice-theoretic) counterpart of
classical topology. Locales and frames, the objects of study of point-free topology, are a generalized
version of topological spaces where one focuses on their lattices of open sets, leaving aside the points.
Replacing the category of topological spaces and continuous maps by the category of locales and
their maps has allowed to approach topology from a different perspective, with advantages over the
classical setting.

For instance, some classical results with non-constructive content (e.g., that require some version
of the axiom of choice) turn out to be provable in the localic setting with constructive arguments,
independently of any form of choice. Furthermore, since the dual of the category of locales (the
category of frames) is an algebraic category, we have at our disposal such familiar constructions from
algebra as free objects and a description of quotients by congruences that provide presentations of
frames by generators and relations. For example, instead of working with the frame of open sets of
the real-line with their Euclidean topology, Banaschewski in [10] defined the frame of reals through
generators and relations.

Therefore, point-free topology is not only a mere translation of classical results to the localic
context, but it also offers a new insight into the way we may conceive and work with spaces.

The main motivation of this thesis was to formulate and obtain the localic version of some clas-
sical notions and results, taking advantage of all the machinery of point-free topology. First, we
were interested on separability characterizations expressed in terms of zero-sets of real functions and
related subspaces. More precisely, the goal was to obtain the localic counterpart of topological results
regarding normality, z-embeddings, and z-open and z-closed maps. Second, our aim was to expand
the theory of insertion theorems on the point-free setting by providing an insertion result for uniform
frames.

In order to give a better perspective of the work developed here, we should trace back our steps
and take a look at the classical notions and results that inspired this thesis. We are mainly interested
in all the theory that has been developed around continuous real-valued functions and the separating
conditions they entail.1 Recall that two subsets Y and Z of a space X are said to be completely
separated if they can be separated by a continuous real-valued function on X (that is, if Y ⊆ f−1[{0}]
and Z ⊆ f−1[{1}] for some continuous f : X → R). Now, a zero-set of a topological space X is a
subset that is equal to the preimage of zero under some continuous real-valued function f : X → R

1A fundamental reference for this is Gillman and Jerison’s book [36].
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2 Introduction

(that is, a set of the form f−1[{0}]). On the other hand, a cozero-set is the complement of a zero-set,
or the preimage of R\{0} under some continuous-real-valued function. Naturally, as a wonderment
of how these sets behave for subspaces, comes the defintion of z-embedding. A subspace S of a space
X is z-embedded if every zero-set of S is equal to the intersection of some zero-set of X with S. There
are other types of important and useful embeddings, namely C and C∗-embeddings. A subspace S of
a space X is C-embedded if any continuous-real valued function on S can be extended to the whole
space X . Similarly, a subspace S of a space X is C∗-embedded if any bounded continuous-real valued
function on S can be extended to X . These three types of embedded sets are related to each other.
More precisely, C-embedded implies C∗-embedded which in turn, implies z-embedded. Furthermore,
there is the famous Urysohn Extension Theorem ([36, 1.17]) that characterizes C∗-embeddings in
terms of complete separation. It states that a subspace S of X is C∗-embedded if and only if every
pair of completely separated sets in S is completely separated in the whole space X . As anticipated,
these notions play a role characterizing separation axioms such as normality. Let us cite, from [2], the
following well-known characterizations of normal spaces.

Theorem A. The following are equivalent for a space X:

(i) X is normal.

(ii) Any two disjoint closed sets are completely separated.

(iii) Every closed set is C-embedded.

(iv) Every closed set is C∗-embedded.

(v) Every closed set is z-embedded.

The equivalence between (i) and (ii) is also known as Urysohn’s Separation Lemma, and the one
between (i) and (iv) is the famous Tietze’s Extension Theorem.

Now, let us shift our attention to the point-free setting. The embedded subsets mentioned before
have been extended to point-free topology using cozero elements (which play the role of cozero-sets)
and frame quotients (which are the counterpart of subspaces in the category of frames). Ball and
Walters-Wayland in [9] do a thorough study of C- and C∗-quotients. They work with these embeddings
and related notions such as coz-codense and almost coz-codense quotients, among others, all of
which have a classical counterpart, but approached in a much more algebraic way. There are two
main results in [9]. The first one is Theorem 7.1.1, and it is a characterization of C∗-quotients that
extends Urysohn’s Extension Theorem. The second result is Theorem 7.2.6 which characterizes C-
quotients. As an application of all this theory, the authors prove in Corollary 8.3.2 and Theorem 8.3.3
a characterization of normal frames using C- and C∗ quotients. That is, the point-free version of
equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) of Theorem A.

Later in [31], Dube and Walters-Wayland do a study of coz-onto frame quotients, the counterpart of
z-embedded sets. In fact, they give a general definition of coz-ontoness for frame homomorphisms, not
necessarily frame quotients. They prove a series of characterizations of these frame homomorphisms,
Proposition 3.3 being one of the most important ones for this thesis. Finally, in Proposition 4.11 they
characterize normal frames in terms of coz-onto quotients, which is the extension of the equivalence
(i) ⇐⇒ (v) of Theorem A.
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There is another way to extend the notions of C-, C∗- and z-embeddings to point-free topology.
Classically, these notions are defined for subspaces of a space. In [9] and [31] the authors use frame
quotients, but we take a different approach. Instead of working in the category of frames and thinking
of quotients as generalized subpaces, we use the category of locales (the dual category of frames)
and the subobjects of this category, sublocales. We then define and explore the notions of C-, C∗ and
z-embedded sublocales. This approach has several advantages. First, one is able to differentiate cozero
and zero sublocales in much the same way as one studies cozero and zero-sets in classical topology.
Second, the notions are more clearly depicted in this language. For instance, complete separation is
very easily described with sublocales, but it is quite hard to use and define for quotients. The notions
like coz-codense and almost coz-codense are related to complete separation, but the relation among
these concepts seems somewhat obscure in the setting of quotients. Third, some results are formulated
and proven in a simpler way. For example, in [31] the proof of the point free version of Urysohn’s
Extension Theorem requires some background results on the localic Yosida representation, complete
separation in Archimedean f-rings and uniformities. The proof that we give uses only basic facts
about localic real functions and sublocale lattices. There is one more example of how concise the
sublocale language can be. Proposition 4.3 in [31] is stated in terms of frame quotients, but a closer
inspection of some of the assertions in this result reveals, when formulated in terms of sublocales, that
they express precisely the same fact.

As it often happens in mathematics, looking at the same object from different perspectives, not
only helps the intuition, but enriches the theory. In this case, the localic language allowed us to present
a different formulation of some known results and extend some notions and results. We extend the
notions of C- C∗- and z-embeddings to general localic maps, what we call C-, C∗- and z-maps. The
same is done for coz-codense and almost coz-codense quotients. By doing this one realizes that all this
reduces to the study of the behaviour of zero and cozero sublocales under preimages of localic maps.

Naturally, one then wonders about the localic maps defined by the behaviour of their images
on zero sublocales. In spaces, these maps have been studied in Weir’s book [79] and Blair and van
Douwen’s article [23] (where the notions such as z-open and z-closed are discussed). The only place
where this has been studied point-freely is in [44], where the authors briefly introduce the notion of
z-open and z-closed localic maps and give one result. In this thesis we continue this line of investi-
gation, and extend the study of these maps. Classically, they are related with three other classes of
continuous maps, namely W -, WZ- and WN-maps. Therefore, we were led to define the counterpart of
these notions for localic maps, using as a guideline Dube’s paper [28] (where he extended the notion
of WN-maps to frame homomorphisms).

Insertion theorems are of the following nature: given a space X and two, not necessarily continuous,
real-valued functions f ,g on the space X , f ≥ g, an insertion result provides necessary and sufficient
conditions for the existence of a continuous real-valued function h in between. Usually, f and g are
inside a more general class of real-valued functions, and h is required to be continuous, continuous
and bounded, etc.

An insertion result usually yields some separation and extension results. Applying the insertion
theorem to adequate (characteristic) functions one obtains a (separation) result where certain types of
sets are separated by a continuous real-valued function. And then the extension result determines the
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subspaces of a space where certain classes of real-valued functions on the subspace can be extended
to the whole space. Most of the classical insertion theorems have been already extended to point-free
topology. For example, in [38, Theorem 8.1] and [66, XIV.7.4.3] the Katětov-Tong Insertion Theorem
for normal spaces ([54, 76]) is extended to normal frames. As corollaries of this result, the point-free
counterparts of Urysohn’s Separation Lemma (which was first proven in [26] and more recent in
[9, 10, 66]) and Tietze’s Extension Theorem [38, Theorem 8.4] (see also [66, XIV.7.6.1]) are obtained.

Another example is in Gutiérrez García and Kubiak’s paper [37] where they prove the point-free
extension of the Topological Insertion Theorem due to Blair [21] and Lane [57, 58]. In that same article,
[37, Theorem 5.2] is the localic version of Mrówka’s Extension Theorem ([63]) for complemented
sublocales. This result is quite important for this thesis and will be discussed and generalized in
Chapter 3. For more relevant insertion results in point-free topology see e.g. [33, 39, 42].

Looking carefully in the literature to the list of point-free insertion results, one realizes and
important gap: an insertion theorem in the uniform setting corresponding to the Preiss-Vilimovský
Insertion Theorem for Uniform Spaces:

Topological Insertion Theorem for Uniform Spaces. Let X be a uniform space and
f ,g : X → R two maps with f ≥ g. Then the following are equivalent:

(i) There is a uniformly continuous h : X → R such that f ≥ h ≥ g.

(ii) For ever δ > 0 there is a uniform cover U of X such that for all n ∈N the subspaces
f−1(−∞,r] and g−1[s,+∞) are Stn(U)-far whenever s− r > (n+1)δ .

Our main goal was to prove this result in the point-free context, but the existing theory regarding
uniform continuity was not enough to even state a result of this nature. Therefore, before proving the
desired result, we do a deep study of uniform continuity for general real-valued functions on a locale
and introduce the farness relation between sublocales of a locale.

Uniform locales have been studied in point-free topology, and there are several ways to define
uniformities. We use the approach via covers introduced by Isbell [47] and Pultr [72, 73]. With this
and the study of general real-valued functions in [38] we were able to do two things. First, we defined
a relation of farness of sublocales inspired by the classical notion of the proximal relation of farness
between sets due to Efremovič and Smirnov [74]. This notion is key for the proof of the insertion
theorem; it plays a similar role as the one played by complete separation in the Topological Insertion
Theorem in [37] (mentioned previously). Second, we extend the definition of uniform continuity to
general, not necessarily continuous, real-valued functions on a frame L. We encounter yet another
problem in the process of proving the insertion theorem: the classical proof relied on points and pseu-
dometrics. This led us to revisit prediameters (which are an extension of pseudometrics in point-free
topology) and extend some of the results of Pultr in [73]. Finally, as expected, this insertion result also
gave rise to an extension and a separation result for uniform frames.

Let us now present a detailed outline of the thesis. In Chapter 1 we recall all the general background
on point-free topology needed along the dissertation. Chapter 2 is also part of the preliminaries material.
Here we focus on the frame of reals and the corresponding real-valued functions. We survey all the
definitions and results regarding this topic.
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In Chapter 3 we do a thorough study of the classes of localic maps defined by the behavior of
their preimages and images on zero sublocales. In the first four sections of this chapter the notions of
C-, C∗-, coz-onto, coz-codense and almost coz-codense quotients are not only revisited, but they are
also formulated in the more general localic language. Most of the results are an extension to localic
maps of results from [9, 31]. One of the most important results in this chapter is Theorem 3.3.6. It is a
generalization of Mrówka’s Extension Theorem to localic maps, and its Corollary 3.3.7 extends [37,
Theorem 5.2] to general sublocales. In the last section of this chapter we do an investigation of z-open,
coz-open and z-closed localic maps, extending most of the the classical results in [79] to point-free
topology. The content of this chapter is mostly based on the author’s published papers [6] and [5], the
first of which is joint work with Picado.

In Chapter 4 we study normality and variants of this separation axiom in terms of z-embeddings.
We first recall the point-free version of the characterization of normality (mentioned above). Then,
inspired by the classical result [2, Theorem 7.15], we add some new characterizing conditions to
this theorem. There are also other variants of normality, so naturally, one wonders if there are
characterizations in terms of z-embeddings for these frames. We identify sufficient conditions under
which the characterizations hold for certain variants of normality. As a consequence of this study, we
obtain a characterization of mildly normal frames via z-embeddings. Finally, in the last section of this
chapter, we collect all the results that characterize certain types of locales in terms of embeddings.
Most of the results in this section are not original, but we decided it was worth to make such a survey
since these results are scattered around the literature and are rarely formulated in the language of
sublocales. The first two sections of this chapter are based on the author’s papers [6] (joint with
Picado) and [5].

In Chapter 5 we define w-, n- and wz-localic maps. We explore the relation of these notions with
some of the classes of localic maps defined in Chapter 3, and provide some examples.

Chapters 6 and 7 are devoted to uniform continuity of real-valued functions on a preuniform
frame and the insertion theorem for uniform frames. The structure and organization of these two
chapters reflects the way in which our research was conducted. In Chapter 6 we work only with
continuous real-valued functions. We define the relation of farness for elements of a frame and
characterize uniform continuity of continuous real-valued functions. In this context, the farness
relation can be defined through Galois adjunctions, which allows us to present a proof of a separation
result for preuniform frames using a purely algebraic (order-theoretic) construction. We also prove a
corresponding Tietze-type extension result for dense sublocales in preuniform frames. All this work
was previously developed on the author’s paper with Jorge Picado [7].

Later on, in Chapter 7 we extend the relation of farness to sublocales and generalize the results
of the previous chapter to general real-valued functions. We define uniform continuity of a general
real-valued function and characterize it in terms of the farness relation. Finally, we prove the desired
insertion theorem and obtain general extension and separation results as corollaries. The content of
this chapter is based on the author’s paper with Igor Arrieta [3].





Chapter 1

Preliminaries I: Frames and Locales

This chapter is a collection of the relevant (for our purposes) background on frames and locales. The
intention is to provide the reader with the basic notions in point-free topology and fix the notation that
will be used throughout the thesis. Our main references are [50] and the more recent [66]. For general
category theory we refer to [1] and [60].

1.1 Galois Adjunctions

A Galois adjunction [32] between posets A and B is a pair ( f ,g) of maps f : A → B and g : B → A
such that

f (a)≤ b ⇐⇒ a ≤ g(b) for all a ∈ A and b ∈ B, (1.1.1)

or, equivalently, a pair of monotone maps f : A → B and g : B → A satisfying

a ≤ g( f (a)) for all a ∈ A and f (g(b))≤ b for all b ∈ B.

The maps f and g uniquely determine each other. We say f is the right adjoint and g the left adjoint,
and write f ⊣ g. Sometimes we will also write f ∗ (resp. f∗) to denote the left (resp. right adjoint) of a
map f . If A and B are complete lattices, a monotone map f : A → B is a left (resp. right) adjoint if and
only if it preserves all suprema (resp. infima). Furthermore, its right adjoint (resp. left) is given by the
formula:

f∗(b) =
∨

{a ∈ A | f (a)≤ b} (resp. f ∗(b) =
∧

{a ∈ A | b ≤ f (a)}). (1.1.2)

Originally, Galois connections were expressed in a contravariant form with maps that reverse order
([18, 64]); these are dual adjunctions between posets A and B, that is, pairs ( f ,g) of maps f : A → B
and g : B → A such that

b ≤ f (a) ⇐⇒ a ≤ g(b) for all a ∈ A and b ∈ B, (1.1.3)

or, equivalently, pairs of order-reversing maps f : A → B and g : B → A satisfying

a ≤ g( f (a)) for all a ∈ A and b ≤ f (g(b)) for all b ∈ B.

7
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If we take the maps f ′ : A → Bop and g′ : Bop → A (Bop being the dual poset of B) given by f and
g respectively, then ( f ,g) is a Galois connection if and only if f ′ ⊣ g′. Similarly, for f ′′ : Aop → B
and g′′ : B → Aop, we have that ( f ,g) is a Galois connection if and only if g′′ ⊣ f ′′. Thus, if A and
B are complete lattices, f is a complete join-homomorphism from A to Bop, while g is a complete
join-homomorphism B → Aop. Clearly, ( f ,g) is a Galois connection if and only if (g, f ) is one. Both
composites of the partners of a Galois connection are closure operators, and their ranges are dually
isomorphic.

1.2 Frames and Locales

Frames and Locales

A frame (or locale) L is a complete lattice in which the following distributive law holds

a∧
∨

S =
∨

{a∧ s | s ∈ S} (1.2.1)

for all a ∈ L and S ⊆ L. A frame homomorphism is a map h : L → M between frames that preserves
arbitrary joins (in particular, the bottom element 0) and finite meets (in particular, the top element 1).
These objects and homomorphisms constitute the category of frames, that we will denote by Frm.

A generalization of the notion of frame, namely σ -frame (introduced in [24]), will appear naturally
when working with cozero elements (see Section 2.3). A σ -frame A is a lattice in which each countable
subset has a join and the distributive law (1.2.1) holds for any a ∈ A and countable S ⊆ A. A σ -frame
homomorphism is a map h : A → B between σ -frames that preserves countable joins and finite meets.
The category of σ -frames and σ -frame homomorphisms is denoted by σFrm.

The Heyting Operator

In any frame L, for any a ∈ L, the mapping (x 7→ (a∧ x)) : L → L preserves arbitrary joins (by (1.2.1)
holds); hence, it has a right Galois adjoint (y 7→ (a → y)) : L → L, satisfying

a∧ x ≤ y ⇐⇒ x ≤ a → y (1.2.2)

and making L a complete Heyting algebra. The formula in (1.1.2) gives an easy way to compute the
Heyting operator:

a → y =
∨

{x ∈ L | a∧ x ≤ y} .

Being a → (−) : L → L a right adjoint, for each x,y ∈ L and {bi}i∈J ⊆ L we have

x ≤ y =⇒ a → x ≤ a → y and a →
(∧

i∈J

bi

)
=

∧
i∈J

(a → bi). (1.2.3)

Moreover, equation (1.2.2) yields

a ≤ b → c ⇐⇒ b ≤ a → c (1.2.4)
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for any a,b,c ∈ L, showing that the map (y 7→ (y → c)) : L → L is a self-dual Galois adjoint. That
is, ((−) → c,(−) → c) is a Galois connection for every c ∈ L. Thus, for every x,y ∈ L and any
{ai}i∈J ⊆ L, one has(∨

i∈I

ai

)
→ c =

∧
i∈I

(ai → c) and x ≤ y =⇒ y → c ≤ x → c. (1.2.5)

Further properties of the Heyting operator:

(H1) 1 → a = a,

(H2) a ≤ b if and only if a → b = 1,

(H3) a ≤ b → a,

(H4) a → b = a → (a∧b),

(H5) a∧ (a → b) = a∧b,

(H6) a∧b = a∧ c if and only if a → b = a → c,

(H7) (a∧b)→ c = a → (b → c) and a → (b → c) = b → (a → c),

(H8) a = (a∨b)∧ (b → a),

(H9) a ≤ (a → b)→ b,

(H10) ((a → b)→ b)→ b = a → b.

The pseudocomplement of a ∈ L is the element

a∗ := a → 0 =
∨

{x ∈ L | x∧a = 0} .

An element a of a frame L is regular if a∗∗ = a, and we denote by L∗ the set of all regular elements of
L. An a ∈ L is complemented if a∨a∗ = 1. Every complemented element is regular, but the converse
is not true. For any a,b ∈ L:

(1) a∧a∗ = 0,

(2) a ≤ a∗∗,

(3) a∗∗∗ = a∗,

(4) a ≤ b implies b∗ ≤ a∗,

(5) (
∨

i∈I ai)
∗ =

∧
i∈I a∗i for any {ai}i∈J ⊆ L.
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Localic maps

The category of locales and localic maps, denoted by Loc, is the dual category of Frm; that is, Loc=
Frmop. Localic maps can be seen as more than reversed arrows. Indeed, since frame homomorphisms
preserve arbitrary meets, a frame homomorphism h : L → M has a unique right adjoint h∗ : M → L.
Then a map between locales f : M → L is a localic map (that is, the unique right adjoint of a frame
homomorphism) if and only if

(1) it preserves arbitrary meets,

(2) f (h(a → b)) = a → f (b) for every a ∈ M and b ∈ L and

(3) f (a) = 1 =⇒ a = 1 (where h is the left adjoint of f ).

Locales and spaces

For any topological space X , the lattice of open sets Ω(X) is a frame. Moreover, if f : X → Y is a
continuous map between topological spaces, the preimage f−1[−] : Ω(Y )→ Ω(X) is a frame homo-
morphism, giving us a functor Ω : Top→ Loc = Frmop from the category of topological spaces to
the category of locales. This functor has a right adjoint Σ : Loc→ Top defined below.
The points of a locale L are the prime (or meet-irreducible) elements, that is, the p ∈ L \{1} such
that p = a∧b implies p = a or p = b (equivalently, a∧b ≤ p implies a ≤ p or b ≤ p). The set of all
prime elements of L is denoted by Pt(L). A special kind of points are the covered prime elements
of L that satisfy the condition

p =
∧

S =⇒ p ∈ S

for any S ⊆ L ([17]). For every a ∈ L, set Σa =
{

p ∈ Pt(L) | a ≰ p
}

. The family {Σa | a ∈ L} is a
topology on Pt(L). We write

Σ(L) = (Pt(L),{Σa | a ∈ L})

to denote the respective topological space (referred to as the spectrum of L). Since localic maps send
prime elements to prime elements, a localic map f : L → M induces a continuous map Σ( f ) : Σ(L)→
Σ(M) defined by the restriction of f to the points of L. One gets a functor Σ : Loc → Top and an
adjunction

Top
Ω

⊥ ,, Frm
Σ

ll . (1.2.6)

The components of the unit η and counit ε of this adjunction are given as follows:

ηX : X → Σ(Ω(X))

x 7→ X −{x}
and

εL : Ω(Σ(L)) → L
Σa 7→

∨
{b | Σb ⊆ Σa}

.

A space X is said to be sober if ηX is an homeomorphism; equivalently if X = ΣL for some frame
L. The map ηX is known as the soberification of a space X . A frame L is spatial if L ∼= Ω(X) for some
space X ; equivalently, if εL is an isomorphism. The right adjoint of εL is known as the spatialization of
a frame L. The adjunction (1.2.6) restricts to an equivalence of categories between the full subcategory
Sob of sober topologial spaces and the subcategory SLoc of spatial locales.
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The category Frm is algebraic

The category Frm is equationally presentable (i.e., its objects are described by a proper class of
operations and equations) and algebraic (that is, the forgetful functor Frm→ Set is monadic). Let us
mention some of the consequences of this fact taken from [50, I.3.8] and [68, 4.3]:

(1) Frm is complete and cocomplete. Thus, Loc is also complete and cocomplete.

(2) Quotients are described by congruences.

(3) One has free frames. The free functor from Frm to Set is built by composing the free functor
Frm→ Slat and the free functor Slat→ Set , where Slat is the category of meet-semilattices with top
(we assume infima of all finite subsets) and their (∧,1)-homomorphisms ([50, 66]). Specifically, what
we have is that given a set G of generators and a set R of relations (equalities given by combinations
of arbitrary joins and finite meets), there is a frame F and a function ηG : G → F with the following
universal property: For every frame L and every map f : G → L that turns the relations R into identities
in L, there is a unique frame homomorphism f : F → L such that the following diagram commutes:

G
ηG //

f
((

F

f
��

L.

(1.2.7)

(4) Monomorphisms in Frm are precisely the one-one frame homomorphisms, and regular epimor-
phisms (which in this case concide with both extremal and strong epimorphisms) are exactly the
onto frame homomorphisms. Dually, epimorphisms in Loc are the onto localic maps, and regular
monomorphisms (that concide with both extremal and strong monomorphsims) are precisely the
one-one localic maps. A frame homomorphism h : L → M can be naturally decomposed as follows

L h //

h "" ""

M

h[M]
- 

k

<< (1.2.8)

where h(x) = h(x) and k is the inclusion. The frame homomorphism h is onto and k is one-one.
This yields a factorization system (E ,M ) in Frm with E the class of all strong (extremal, regular)
epimorphisms and M the class of all monomorphisms. Similarly, in Loc we have the factorization
system (E ,M ) with E the class of epimorphisms and M the class of all strong (extremal, regular)
monomorphisms. A localic map f : M → L then decomposes into:

M
f //

f ## ##

L

f [M]
- 

j

<< (1.2.9)

where f (x) = f (x) and j is the inclusion.
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1.3 Subfit, Regular, Completely Regular and Normal Frames

Subfitness

In point-free topology, the role of the classical T1-axiom is usually taken by the so called subfit axiom
(see [69])1. One speaks of a subfit frame whenever

a ≰ b =⇒ ∃c, a∨ c = 1 ̸= b∨ c.

Regularity

For a,b ∈ L, a is rather below b, and one writes a ≺ b, if a∗∨b = 1 (equivalently, if there is a c ∈ L
such that a∧ c = 0 and c∨b = 1).

Properties 1.3.1. (1) a ≺ b =⇒ a ≤ b.

(2) 0 ≺ a ≺ 1.

(3) x ≤ a ≺ b ≤ y =⇒ x ≺ y.

(4) a ≺ b =⇒ b∗ ≺ a∗.

(5) a ≺ b =⇒ a∗∗ ≺ b.

(6) If ai ≺ bi for i = 1,2, then a1 ∨a2 ≺ b1 ∨b2 and a1 ∧a2 ≺ b1 ∧b2.

(7) If a is complemented, then a ≺ a.

A frame L is said to be regular if a =
∨
{x ∈ L | x ≺ a} for every a ∈ L.

Complete Regularity

For a,b ∈ L, a is completely below b, and one writes a ≺≺ b, if there is a subset

{ar | r ∈Q, 0 ≤ r ≤ 1} ⊆ L

such that a0 = a, a1 = b and ar ≺ as for every r < s. The relation ≺≺ is the largest interpolative
relation2 contained in ≺. Thus Properties 1.3.1 yield:

Properties 1.3.2. (1) a ≺≺ b =⇒ a ≤ b.

(2) 0 ≺≺ a ≺≺ 1.

(3) x ≤ a ≺≺ b ≤ y =⇒ x ≺≺ y.

(4) a ≺≺ b =⇒ b∗ ≺≺ a∗.

(5) a ≺≺ b =⇒ a∗∗ ≺≺ b.

1In spaces, the subfit property is in fact slightly weaker than T1.
2A relation R is interpolative if aRb =⇒ ∃c, aRcRb.
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(6) If ai ≺≺ bi for i = 1,2, then a1 ∨a2 ≺≺ b1 ∨b2 and a1 ∧a2 ≺≺ b1 ∧b2.

(7) If a is complemented, then a ≺≺ a.

A frame L is completely regular if a =
∨
{x ∈ L | x ≺≺ a} for every a ∈ L. Every completely

regular frame is regular, and every regular frame is subfit. Regularity and complete regularity are
conservative notions; that is, a topological space X is regular (resp. completely regular) if and only if
the frame Ω(X) is regular (resp. completely regular).

Normality

A frame L is said to be normal if a∨ b = 1 for a,b ∈ L implies the existence of u,v ∈ L such that
u∧ v = 0 and a∨u = 1 = b∨ v.

Proposition 1.3.3. [66, V.5.9.1] In any normal frame, the relation ≺ is interpolative. Consequently,
in normal frames ≺≺ coincides with ≺, and regularity coincides with complete regularity.

Proposition 1.3.4. [66, V.5.9.2] Normality in conjunction with subfitness implies complete regularity.

Regularity and Normality in σ -Frames

Let A be a σ -frame and a,b ∈ A. One writes a ≺ b if there is a c ∈ A such that a∧ c = 0 and c∨b = 1.
A σ -frame A is regular if every element a can be written as

∨
n∈N an for some an ≺ a. Normality and

the completely below relation for σ -frames are defined exactly like in general frames. Any regular
σ -frame is normal ([13, Corollary 2]), and in particular, the relation ≺ interpolates. Hence, in a regular
σ -frame A,

a =
∨

n∈N
an with an ≺≺ a

for any a ∈ A.

1.4 The Coframe S(L) of Sublocales

Sublocales

A subset S of a locale L is a sublocale if it is a locale in the induced order and the embedding map
j : S ↪→ L is a localic map. Equivalenty, a subset S ⊆ L is a sublocale if it is closed under all meets,
and for every s ∈ S and every x ∈ L, x → s ∈ S. In particular, 1 ∈ S, and the Heyting operation in S
coincides with that in L.

There are alternative ways to describe sublocales (see [50] and [66] for these descriptions): con-
gruences, nuclei and frame quotients. A frame quotient of a frame L is a frame surjection f : L ↠ M.
Since onto frame homomorphisms are left adjoints of injective localic maps, isomorphism classes
of frame surjections with domain L are in bijective correspondence with sublocales of a locale L. If
j : S ↪→ L is a localic embedding, then the left adjoint j∗ : L ↠ S, given by j∗(x) =

∧
{s ∈ S | s ≥ x}, is

a frame quotient. Conversely, if h : L ↠ M is an onto frame homomorphism, then h∗[M] is a sublocale
of L.
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Of course, arbitrary meets and the Heyting operation in a sublocale S of L concide with those in L.
In particular, 1S = 1L. In general, the bottom element in S, given by 0S =

∧
S, differs from the zero in

L. Consequently, pseudocomplements are different too:3

a∗L ≤ a∗S = a → 0S.

Arbitrary joins in S are given by the formula

S∨
{ai | i ∈ J}=

∧{
s ∈ S | s ≥

L∨
i∈J

ai

}
for any {ai}i∈J ⊆ S.

The Coframe of Sublocales

The system S(L) of all sublocales of L, partially ordered by inclusion ⊆, is a coframe; that is, its dual
lattice S(L)op is a frame. The top element in S(L) is L and the bottom is the sublocale {1}, which we
will denote by O. Infima and suprema4 in S(L) are given by

∧
i∈J

Si =
⋂
i∈J

Si and
∨
i∈J

Si =
{∧

M | M ⊆
⋃
i∈J

Si

}
. (1.4.1)

S(L), being a coframe, is a co-Heyting algebra. Thus, there is a co-Heyting operator S∖T in S(L)
given by the formula

⋂
{A ∈ S(L) | S ⊆ T ∨A} and characterized by the condition

S∖T ⊆ A ⇐⇒ S ⊆ T ∨A

for any S,T,A ∈ S(L). We give a list of properties of this operator ([34]):

(1) (
∨

i∈J Si)∖T =
∨

i∈J(Si ∖T ),

(2) S∖T ⊆ A ⇐⇒ S∖A ⊆ T ,

(3) S∖
∧

i∈J Ti ⇐⇒
∨

i∈J(S∖Ti),

(4) S∖S = O and S∖O= S for all S ∈ S(L),

(5) S ⊆ T =⇒ S∖T = O,

(6) S∖T ⊆ S,

(7) S ⊆ T =⇒ S∖A ⊆ T ∖A,

(8) S ⊆ T =⇒ A∖T ⊆ A∖S.

3In general, to avoid confusion, we will use a subscript (or superscript for joins) to refer to the locale in which the
element or operation belongs.

4We will always use the inclusion, the intersection and the join as described above to write the operations between
sublocales, even when working in the frame S(L)op. We will not introduce a new notation to refer to the order, joins and
meets, and top and bottom element in S(L)op.
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In particular, the co-pseudocomplement of S (also called supplement [34]) is the sublocale
S# := L∖S. Then S# ∨S = L and

S∨T = L ⇐⇒ S# ⊆ T and S∩T = O =⇒ S ⊆ T # (1.4.2)

for every S,T ∈ S(L). For any S,T ∈ S(L):

(1) S ⊆ T =⇒ T # ⊆ S#,

(2) S## ⊆ S and S### = S#,

(3) O# = L and S# = O ⇐⇒ S = L,

(4) (
⋂

i∈J Si)
# =

∨
i∈J S#

i for any {Si}i∈J ⊆ S(L).

We refer to [34] for the proof of these properties and for more information about supplements in S(L).
A sublocale S is complemented if S# ∩S = O. In this case one then gets

S∩T = O ⇐⇒ T ⊆ S# (1.4.3)

for any T ∈ S(L). The distributive law

S∩
∨
i∈I

Ti =
∨
i∈I

(S∩Ti) (1.4.4)

holds whenever S is complemented ([66, VI.4.4.1]).

Closed and Open Sublocales

For each a ∈ L, the sublocales

cL(a) = ↑a = {x ∈ L | x ≥ a} and oL(a) = {a → b | b ∈ L}

are the closed and open sublocales of L, respectively5. For each a ∈ L, the sublocales c(a) and o(a)
are complements of each other in S(L) and satisfy the identities

c
(∨

i∈I

ai

)
=

⋂
i∈I

c(ai), c(a∧b) = c(a)∨ c(b), c(0) = L, c(1) = O, (1.4.5)

o
(∨

i∈I

ai

)
=

∨
i∈I

o(ai), o(a∧b) = o(a)∩o(b), o(0) = O and o(1) = L. (1.4.6)

Open sublocales have a further distributivity property:

S∩
∨
i∈I

o(ai) =
∨
i∈I

S∩o(ai) (1.4.7)

for every {ai}i∈I ⊆ L and every S ∈ S(L) (see [70]).

5We shall denote them simply by c(a) and o(a) when there is no danger of confusion.
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For every a ∈ L, ↓a := {x ∈ L | x ≤ a} is a frame, isomorphic in Frm to o(a). The onto frame
homomorphism ra : L ↠ ↓a with ra(x) = a∧ x is the left adjoint of the localic embedding o(a) ↪→ L.

Furthermore, for every sublocale S of L,

S =
⋂
i∈J

c(ai)∧o(bi)

for suitable subsets of L, {ai}i∈J and {bi}i∈J ([66, III.6.5, VI.4]), making S(L)op a zero-dimensional
frame (i.e., a frame where each element is a join of complemented ones). Therefore, S(L)op is
completely regular; in particular, it is also subfit.

We denote by c(L) and o(L) the classes of all closed and open sublocales of L, respectively,
partially ordered by inclusion. The identities (1.4.5) and (1.4.6) make o(L) a subframe of S(L) and
c(L)op a subframe of S(L)op; both frames are isomorphic to L. Furthermore, the cannonical map6

cL : L → S(L)op

a 7→ c(a)
(1.4.8)

is injective, since it is the composition of the isomorphism ι : L → c(L)op and the embedding c(L)op ↪→
S(L)op, and it has a universal property. Namely, if h : L → M is a frame homomorphism such that
the image of every a ∈ L is complemented in M, then there is a unique frame homomorphism
h : S(L)op → M such that the following diagram commutes:

L
cL //

h
!!

S(L)op

h

��
M.

Closure and Interior

The closure S of a sublocale S of L is the smallest closed sublocale containing S, and the interior S◦ is
the largest open sublocale contained in S. That is,

S◦ =
∨

{o(a) | o(a)⊆ S} ,

and for the closure there is a particularly simple formula:

S = c
(∧

S
)
. (1.4.9)

Hence,
o(a) = c(a∗) and c(a)◦ = o(a∗) (1.4.10)

6We shall denote it simply by c when there is no danger of confusion.
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from which it follows that

a ≺ b ⇐⇒ c(b)⊆ c(a)◦ ⇐⇒ o(a)⊆ o(b), (1.4.11)

for any a,b ∈ L. More generally,
(T ◦)# = T # (1.4.12)

for every sublocale S ([34, Equation 4.2]). A sublocale S of L is dense if its closure is equal to L
(S = L); equivalently, by (1.4.9), if 0 ∈ S.

Sublocales of a Sublocale

Let S be a sublocale of L. The following properties regarding S(S) hold:

(1) A sublocale T of S is also a sublocale of L.

(2) S(S) = {T ∩S | T ∈ S(L)} and the lattice operations in S(S) are given by those of S(L). Neverthe-
less, S(S) and S(L) may have different top elements.

(3) For any open (resp. closed) sublocale T of L, T ∩S is an open (resp. closed) sublocale of S. More
precisely, if T = oL(a) (resp. T = cL(a)) and jS : S ↪→ L is the localic embedding of S in L,

T ∩S = oS( j∗S(a)) (resp. T ∩S = cS( j∗S(a)). (1.4.13)

(4) If U is an open (resp. closed) sublocale of S, then U = T ∩S for some open sublocale T = oL(a)
of L (resp. closed sublocale T = cL(a) of L) with a ∈ S. More precisely, if U = oS(a) (resp. U = cS(a))
for some a ∈ L, then U = oS(a) = oL(a)∩S (resp. U = cS(a) = cL(a)∩S).

(5) For any sublocale T of S, its closure in S, denoted by T S, is precisely the intersection of its closure
in L with S. That is, T S

= T ∩S.

(6) From (5), it is clear that every sublocale is dense in its closure.

(7) If S is complemented, the relative pseudocomplement T #S , in S(S), of a sublocale T of S is
computed as

T #S = S∩T #. (1.4.14)

Boolean Sublocales

For each a ∈ L, the boolean sublocale

b(a) := {x → a | x ∈ L}

is the smallest sublocale containing a. The bottom element of a boolean sublocale b(a) is a; hence

b(a) = c
(∧

b(a)
)
= c(a). (1.4.15)
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More generally, for any sublocale S of L, b(
∧

S) is the smallest dense sublocale of S. In particular, any
frame L has a smallest dense sublocale b(0). For any p ∈ Pt(L) and x ∈ L,

p = (x∨ p)∧ (x → p) (1.4.16)

and, therefore, p = x∨ p or p = x → p. Hence b(p) = {1, p} (these are called the one-point sublocales
[66, III.10.1]).

Fσ - and Gδ -Sublocales

A sublocale F of L is an Fσ -sublocale if it is a countable join of closed sublocales. The dual notion is
that of Gδ -sublocale; i.e., a sublocale that is a countable intersection of open sublocales.

Remark 1.4.1. Unlike classical topology, the supplement of an Fσ -sublocale need not be a Gδ -
sublocale. Nevertheless, since S(L) is a coframe, the supplement of a Gδ -sublocale is an Fσ -sublocale.

Subfitness and Normality in Terms of Sublocales

Later we will need the separating axioms of subfitness and normality phrased in terms of sublocales
instead of their first order definitions.

Proposition 1.4.2. [66, V.1.4] The following conditions are equivalent for a frame L:

(i) L is subfit.

(ii) If S ̸= L for a sublocale S ⊆ L, then there is a closed c(x) ̸= O such that S∩ c(x) = O.

It follows from the identities (1.4.5) and (1.4.6) that a frame L is normal if and only if for every
disjoint pair7 of closed sublocales c(a) and c(b) there are disjoint open sublocales o(u) and o(v) such
that c(a)⊆ o(u) and c(b)⊆ o(v).

1.5 Images and Preimages of Localic Maps

Let f : L → M be a localic map. For any sublocale S of L, its set-theoretic image f [S] is a sublocale of
M. On the other hand, the set-theoretic preimage f−1[T ] of a sublocale T of M may not be a sublocale
of L. But, since f is meet preserving, f−1[T ] is closed under meets, and thus, by formula (1.4.1), there
exists the largest sublocale of L contained in f−1[T ], usually denoted as f−1[T ] ([66, III.4]). This is
the localic preimage of T that provides the image/preimage Galois adjunction

S(L)
f [−]

⊥ --
S(M)

f−1[−]

ll

between coframes S(L) and S(M) of sublocales of L and sublocales of M, respectively. This means
that

f [S]⊆ T ⇐⇒ S ⊆ f−1[T ],

7We will say that two sublocales S and T are disjoint whenever S∩T =O.
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and, consequently,
S ⊆ f−1[ f [S]] and f [ f−1[T ]]⊆ T

for every S ∈ S(L) and T ∈ S(M). The right adjoint f−1[−] is a coframe homomorphism that preserves
complements while f [−] is a colocalic map ([66, III.9]).

Being f−1[−] a coframe homomorphism it satisfies the following properties:

(1) f−1[OM] = OL,

(2) f−1[M] = L,

(3) f−1[S∨T ] = f−1[S]∨ f−1[T ],

(4) f−1[
⋂

i∈J Si] =
⋂

i∈J f−1[Si].

Being f [−] a colocalic map the following properties hold:

(1) f [S] = OM =⇒ S = OL (in particular, f [OL] = f [OM]),

(2) f [
∨

i∈J Si] =
∨

i∈J f [Si],

(3) f [S∖ f−1[T ]] = f [S]∖T .

Remark 1.5.1. Let S be a sublocale of L, and let j : S ↪→ L be the localic embedding of S in L. Then
the preimage j−1[−] : S(L) → S(S) is simply given by the intersection: j−1[T ] = T ∩ S for every
T ∈ S(L).

Localic preimages of closed (resp. open) sublocales are closed (resp. open). More specifically,
denoting by f ∗ the frame homomorphism left adjoint to f , we have

f−1[cM(a)] = cL( f ∗(a)) and f−1[oM(a)] = oL( f ∗(a)) (1.5.1)

for any a ∈ M.

Closed and Open Localic Maps

A localic map f : L → M is closed if the image of every closed sublocale is closed. Since c(a) = ↑a,
if f is closed, then f [cL(a)] = cM( f (a)) for any a ∈ L. Furthermore, a localic f : L → M is said to be
open if the image of every open sublocale is open. There is an important characterization of localic
maps due to Joyal and Tierney [52]:

Proposition 1.5.2. A localic map f : L → M is open if and only if f ∗ is a complete Heyting homomor-
phism.

Remark 1.5.3. The fact that f ∗ is a complete Heyting homomorphism implies the existence of a left
adjoint φ (since f ∗ preserves arbitrary meets). Thus, if f is open we have the following situation:

L

φ

⊥
$$

f

77 M
f ∗

⊥
oo . (1.5.2)
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(1) If f is open, then f [o(a)] = o(φ(a)) for every a ∈ L.

(2) A localic map f : L → M is open if and only if f ∗ admits a left adjoint φ that satisfies the identity

φ(a∧ f ∗(b)) = φ(a)∧b for all a ∈ L and b ∈ M. (1.5.3)

(3) A localic map f : L → M is open if and only if f ∗ admits a left adjoint φ that satisfies the identity

f (a → f ∗(b)) = φ(a)→ b for all a ∈ L and b ∈ M. (1.5.4)

In particular, for b = 0, f (a∗) = φ(a)∗.

Other Classes of Localic Maps

A localic map f : L → M is said to be:

(a) proper if it is closed and preserves directed joins ([78]).

(b) dense if f [L] is a dense sublocale of M (or equivalently, if f (0) = 0). The corresponding frame
homomorphism f ∗ : M → L satisfies f ∗(x) = 0 =⇒ x = 0 (and this condition is taken as the definition
of dense frame homomorphism).

(c) codense if for every b ∈ M with b < 1, there is 1 ̸= a ∈ L such that b ≤ f (a). The corresponding
frame homomorphism f ∗ : M → L satisfies f ∗(a) = 1 =⇒ a = 1 (and this condition is taken as the
definition of codense frame homomorphism).



Chapter 2

Preliminaries II: The Frame of Reals and
Real-Valued Functions

This chapter is devoted to the frame of reals due to its important role and countless appearances in the
main body of the thesis. The intention is to provide the necessary background and notation used later
on. Our main references are [10], [66] and [44].

2.1 The Frame of Reals and Continuous Real-Valued Functions

Recall that the frame of reals L(R) (see [44] or [66]) is the frame presented by generators (p,�) and
(�, p) for all rationals p ∈Q, and relations

(r1) (p,�)∧ (�,q) = 0 if q ≤ p,

(r2) (p,�)∨ (�,q) = 1 if p < q,

(r3) (p,�) =
∨

r>p(r,�),

(r4) (�,q) =
∨

s<q(�s),

(r5)
∨

p∈Q(p,�) = 1,

(r6)
∨

q∈Q(�,q) = 1.

It follows easily that (p,�)∗ = (�, p) and (�,q)∗ = (q,�) for every p,q ∈Q. Set (p,q) := (p,�)∧
(�,q) for every pair of rationals with p < q. Then (p,q)∗ = (�, p)∨ (q,�) whenever p < q.

Originally, this frame was defined in [10] as the frame presented by all ordered pairs (p,q) where
p,q ∈Q, and subject to relations

(R1) (p,q)∧ (r,s) = (p∨ r,q∧ s),

(R2) (p,q)∨ (r,s) = (p,s) whenever p ≤ r < q ≤ s,

(R3) (p,q) =
∨
{(r,s) | p < r < s < q},

(R4)
∨
{(p,q) | p,q ∈Q}.

21
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Note that (p,q) =
∨

/0 = 0 whenever p ≥ q. In this presentation (p,�) and (�,q) are recovered as

(p,�) =
∨

{(p,q) | q ∈Q} and (�,q) =
∨

{(p,q) | p ∈Q} .

Both presentations of L(R) are equivalent (see [66]). Furthermore, L(R) is a completely regular frame
([10, Section 1, Corollary 2]).
Also, denoting by R the usual space of reals with the Euclidean topology, L(R) ∼= Ω(R) and
Σ(L(R))∼= R ([10]). From the adjunction between Top and Frm (1.2.6) one knows that

Frm(L,Ω(X))∼= Top(X ,Σ(L)).

In particular, for L(R) we have

Frm(L(R),Ω(X))∼= Top(X ,R)

which motivated Banaschewski [10] to introduce continuous real-valued functions on a frame L as
frame homomorphisms f : L(R)→ L. We shall denote the set of all continuous real-valued functions
on a frame L by R(L). It is partially ordered by:

f ≤ g ≡ f (p,�)≤ g(p,�) for every p ∈Q ⇐⇒ g(�,q)≤ f (�,q) for every q ∈Q. (2.1.1)

Remark 2.1.1. Let f ∈ R(L). Then

f (s,�)≤ f (�,s)∗ ≤ f (s′,�) for any s′ < s, and

f (�,r)≤ f (r,�)∗ ≤ f (�,r′) for any r′ > r.

Examples 2.1.2. Let us consider some examples of real-valued functions on a frame L.

(1) For each p ∈Q the constant function p : L(R)→ L is defined by

p(r,�) =

1 if r < p

0 if r ≥ p
and p(�,r) =

0 if r ≤ p

1 if r > p.

(2) Let a be a complemented element of L. The characteristic function χa ∈ R(L) is defined for each
r ∈Q as follows:

χa(r,�) =


1 if r < 0

a∗ if 0 ≤ r < 1

0 if r ≥ 1

and χa(�,r) =


0 if r ≤ 0

a if 0 ≤ r ≤ 1

1 if r > 1.

A function f ∈R(L) is bounded if there are p,q∈Q (p≤ q) such that and p≤ f ≤ q. Equivalently
(use (2.1.1) and Examples 2.1.2(1)), if and only if

f (�, p)∨ f (q,�) = 0, (2.1.2)
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or if and only if

f (r,�)∧ f (�,s) = 1 for every r,s ∈Q with r < p ≤ q < s. (2.1.3)

If f (p,q) = 1, then p ≤ f ≤ q, but the converse is not true. In [39] the authors introduce the following
notation:

f < g ≡
∨

p∈Q
f (�, p)∧g(p,�) = 1.

Of course, f < g implies f ≤ g as in (2.1.1). Note that the equivalence

f ≤ g ⇐⇒ f = g or f < g

does not hold. For L = Ω(X), f < g if and only if f̃ (x)< g̃(x) for every x ∈ X , where f̃ and g̃ are the
associated real-valued functions on the space X ([39, Remark 5.1]). With this notation, it is clear that
p < f < q if and only if f (p,q) = 1.
Algebraic operations in R(L) are defined as follows ([66, XIV]):

(1) Additive inverse. For f ∈ R(L), the additive inverse − f ∈ R(L) is given by the formulas

− f (r,�) = f (�,−r) and − f (�,r) = (−r,�)

for every r ∈Q.

(2) Product with scalar. For any positive rational λ and any f ∈ R(L), the product λ · f : L(R)→ L
is given by

(λ · f )(r,�) = f ( r
λ
,�) and (λ · f )(�,r) = (�, r

λ
)

for every r ∈Q.

(3) Binary join and meet. Given f and g in R(L), the supremum f ∨g ∈ R(L) is defined for each
r ∈ Q by

( f ∨g)(r,�) = f (r,�)∨g(r,�) and ( f ∨g)(�,r) = f (�,r)∧g(�,r).

The infimum f ∧g ∈ R(L) is given by

( f ∧g)(r,�) = f (r,�)∧g(r,�) and ( f ∧g)(�,r) = f (�,r)∨g(�,r)

for every r ∈Q.

(4) Sum. Let f ,g ∈ R(L). The sum f +g ∈ R(L) is defined for every r ∈ Q as follows:

( f +g)(r,�) =
∨
t∈Q

( f (t,�)∧g(r− t,�)) and ( f +g)(�,r) =
∨
t∈Q

( f (�, t)∧g(�,r− t)) .

(5) Product. The product f ·g of two functions f ,g ∈ R(L) is given by

( f ·g)(p,�) =
∨
{ f (r,s)∧g(t,u) | ⟨r,s⟩ · ⟨t,u⟩ ⊆ ⟨p,�⟩}
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and
( f ·g)(�,q) =

∨
{ f (r,s)∧g(t,u) | ⟨r,s⟩ · ⟨t,u⟩ ⊆ ⟨�,q⟩}

where ⟨·, ·⟩ denotes open intervals in Q, ⟨p,�⟩ and ⟨�,q⟩ stand for

{x ∈Q | p < x} and {x ∈Q | x < q}

respectively, and ⟨r,s⟩ · ⟨t,u⟩= {x · y | x ∈ ⟨r,s⟩,y ∈ ⟨t,u⟩}.

(6) Absolute value. Let f ∈ R(L), set f+ := f ∨ 0 and f− := (− f )∨ 0. Then f+, f− ≥ 0 and
f = f+− f−. The absolute value of f is the sum | f | := f++ f−.

Sum, product, infima and suprema can be defined alternatively with the other set of generators ([10,
Chapter 4]). For ⋄=+, ·,∧,∨,

( f ⋄g)(p,q) =
∨
{ f (r,s)∧g(t,u) | ⟨r,s⟩ ⋄ ⟨t,u⟩ ⊆ ⟨p,q⟩} (2.1.4)

where ⟨·, ·⟩ denotes open intervals in Q and ⟨r,s⟩ ⋄ ⟨t,u⟩= {x⋄ y | x ∈ ⟨r,s⟩,y ∈ ⟨t,u⟩}.

Remark 2.1.3. It may be proved that R(L) is a bounded strong f -ring. This means that it is an
Archimedian commutative lattice-ordered ring with unit (we recall that a lattice-ordered ring A is a ring
with a lattice structure such that (a∧b)+c=(a+c)∧(b+c) for every a,b,c∈A), such that ( f ∧g)h=
( f h)∧ (gh), every f ≥ 1 is invertible, and every f satisfies f ∨ (− f )≤ n for some n ∈ N ([10]).

2.2 Frames of Real Intervals

Let us first recall [9, Lemma 2.1.1]:

Lemma 2.2.1. Let f : L → M be a frame homomorphism.

(1) If f (a) = 1 then there exists a (unique) frame homomorphism f : ↓a → M such that the diagram

L
f //

ra

����

M

↓a

f

>>

(where ra : L →↓a is the onto frame homomorphism given by x 7→ x∧a) commutes.

(2) If f (a) = 0 then there exists a (unique) frame homomorphism f : ↑a → M such that the diagram

L
f //

qa

����

M

↑a

f

>>

(where qa : L →↑a is the onto frame homomorphism given by x 7→ x∨a) commutes.
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There are other frames of importance related to L(R) that one also needs to consider. For each
pair of rationals p < q, L(p,q) denotes the open interval frame

↓(p,q) = {a ∈ L(R) | a ≤ (p,q)} ∼= oL(R) ((p,q)) .

Furthermore, L[p,q] is the closed interval frame defined by

↑((�, p)∨ (q,�)) = {a ∈ L(R) | a ≥ (�, p)∨ (q,�)}= cL(R)((p,q)∗) = oL(R) ((p,q)).

The following result is mentioned in [10] without proof. We provide here a sketch of the proof
since some of its details and notation will be used in Section 3.3.

Proposition 2.2.2. Let p and q be rationals such that p < q. Then

L(p,q)∼= L(R).

Proof. Let p < q in Q. Consider an order isomorphism ψ from the open rational interval ⟨p,q⟩ into
Q and let ϕ = ψ−1. The map ϕ allows to define a frame homomorphism Φ : L(R)→ L(p,q) by

Φ(r,�) = (ϕ(r),q) and Φ(�,r) = (p,ϕ(r)).

With the map ψ one defines a frame homomorphism Ψ0 : L(R)→ L(R) given by:

Ψ0(r,s) =



1 if r ≤ p < q ≤ s,

(�,ψ(s)) if r ≤ p < s < q,

(ψ(r),ψ(s)) if p < r < s < q,

(ψ(r),�) if p < r < q ≤ s

0 if s ≤ p or q ≤ r.

The restriction of Ψ0 to L(p,q) is, by Lemma 2.2.1 (1), a frame homomorphism Ψ : L(p,q)→ L(R).
Furthermore, Ψ and Φ are inverse of each other, and we get the following commutative diagram:

L(R) Ψ0 //

����

L(R)

Φ

vv
L(p,q).

Ψ

66

Remarks 2.2.3. (1) One can show similarly that both L(p,�) = ↓(p,�) and L(�,q) = ↓(�,q) are
isomorphic to L(R) since Q has order isomorphisms into ⟨p,+∞⟩= {x ∈Q | x > p} and ⟨−∞,q⟩=
{x ∈Q | x < q}.
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(2) It can be also proved that L(p,q) is isomorphic to the frame K presented by generators

(r,q), r ∈Q, p ≤ r < q and (p,s), s ∈Q, p < s ≤ q

and relations

(r1’) (r,q)∧ (p,s) = 0 if s ≤ r,

(r2’) (r,q)∨ (p,s) = 1 if r < s,

(r3’) (r′,q) =
∨

r>r′(r,q),

(r4’) (p,s′) =
∨

s<s′(p,s),

(r5’)
∨

r<q,r>p(r,q) = 1,

(r6’)
∨

s<q,s>p(p,s) = 1.

Indeed, the stipulations (r,q) 7→ (r,q) and (p,s) 7→ (p,s) turn the defining relations (r1’)-(r6’) into
identities in L(p,q), yielding an isomorphism F : K → L(p,q).

(3) From (2), it is clear that the frame homomorphism Ψ : L(p,q)→ L
(
R
)
, defined on generators by

Ψ(r,q) = (ψ(r),�) and Ψ(p,r) = (�,ψ(r))

(for p < r < q) is the inverse to the Φ of Proposition 2.2.2 (and provides an alternative proof to
Proposition 2.2.2).

Corollary 2.2.4. Let p and q be rationals such that p < q. For each frame L,

R(L) = Frm(L(R),L)∼= (L(p,q),L).

Corollary 2.2.5. Let p and q be rationals such that p < q. For each frame L,

R(L)∼= Frm(L(p,q),L)∼= { f ∈ R(L) | p < f < q}= { f ∈ R(L) | f (p,q) = 1} .

By dropping (r5) and (r6) in the description of L(R), one gets the extended variant L(R) of L(R)
[16]. The spectrum ΣL(R) is homeomorphic to the extended real line R. It may be worth noting that
L(R) is not isomorphic to the frame presented by generators (p,q) ∈Q×Q and relations (R1), (R2)
and (R3). For more details on L(R) we refer to [16].

The proof of the following result is similar to that of Proposition 2.2.2. All the details can be
found in [16, Remark 2].

Proposition 2.2.6. Let p and q be rationals such that p < q. Then

L[p,q]∼= L(R).

An extended continuous real-valued function on a frame L is a frame homomorphism f : L(R)→ L.
We denote by R(L) the collection of all extended continuous real functions on L.
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Corollary 2.2.7. [16, Lemma 3] Let p and q be rationals such that p < q. For each frame L,

R(L)∼= Frm(L[p,q],L)∼= { f ∈ R(L) | p ≤ f ≤ q}= { f ∈ R(L) | f (�, p)∨ f (q,�) = 0} .

2.3 Cozero Elements

Cozero elements have been studied to a great extent in point-free topology. They are the point-free
counterpart of cozero sets of a topological space. The main references for this topic are [10] and [14].
We refer also to [9], and [66] and [44] where the notation and approach is closer to ours.

A cozero element of L, here denoted by coz( f ), is an element of the form

f (�,0)∨ f (0,�)

for some f ∈ R(L). The set of all cozero elements of L is denoted by Coz L.

Proposition 2.3.1. [66, XIV.6.1.2][44, 5.3] The following properties hold for any f ,g ∈ R(L):

(1) coz(1) = 1.

(2) coz( f ) = 0 if and only if f = 0.

(3) coz( f ) = coz(| f |).

(4) If 0 ≤ f ≤ g then coz( f )≤ coz(g).

(5) coz( f +g)≤ coz( f )∨ coz(g).

(6) coz( f ·g) = coz( f )∧ coz(g) = coz(| f |∧ |g|).

(7) coz( f )∨ coz(g) = coz( f +g) if f ,g ≥ 0.

(8) coz( f −p) = f (�, p)∨ f (p,�) for every p ∈Q.

Remarks 2.3.2. (1) For any f ∈ R(L), coz( f ) = coz(| f |∧1), and | f |∧1 is bounded. Thus, bounded
continuous real-valued functions yield the same cozero elements as the real valued-functions of R(L).

(2) For any g ∈ R(L), (2.1.2) and (2.1.3) yield

g ≥ 0 ⇐⇒ coz(g) = g(0,�) ⇐⇒ g(r,�)∗ = 0 ∀r < 0 ⇐⇒ g(�,0)∗ = 1.

Obviously, frame homomorphisms preserve cozero elements (indeed, if f : L → M is a frame
homomorphism and a = coz(g) ∈ Coz L, then f (a) = f g(�,0)∨ f g(0,�) = coz( f g) ∈ Coz M). So
we have:

Proposition 2.3.3. Let f : L → M be a frame homomorphism. Then f (a)∈ Coz M for every a ∈ Coz L.

The following result regarding multiplicative inverses in R(L) is proven in [9, Proposition 3.3.1]
(a weaker version appears in [10]). Since the notation and presentation of the frame of reals in [9] are
different from ours, we include here a sketch of the proof using our own notation.
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Proposition 2.3.4. A frame homomorphism f : L(R)→ L has a multiplicative inverse if and only if
coz( f ) = 1.

Proof. Clearly, if f has a multiplicative inverse f−1, by Proposition 2.3.1 (6) we get

1 = coz(1) = coz( f · f−1) = coz( f )∧ coz( f−1).

Hence, coz( f ) = 1. The idea for the converse mimicks the classical proof that constructs the multi-
plicative inverse of a function f : X → R by composing it with g : R\{0}→ R (x 7→ 1

x ) provided the
image of f is contained in R\{0}.

Indeed, if coz( f ) = 1 there is, by Lemma 2.2.1(1), a frame homomorphism f such that the diagram

L(R)
f //

����

L

↓((0,�)∨ (�,0))

f
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commutes. We can compose f with

g : L(R)→ L(R\{0}) := ↓((0,�)∨ (�,0)),

the point-free version of the mapping x 7→ 1
x above, given by

g(p,�) =


(0, 1

p) if p > 0

(0,�) if p = 0

(�, 1
p)∨ (0,�) if p < 0

and g(�,q) =


(1

q ,0) if q < 0

(�,0) if q = 0

(�,0)∨ (1
q ,�) if q > 0.

It is easy to check that g turns relations (r1)–(r6) into identities in L(R \ {0}), making g a frame
homomorphism. Furthermore, the composite f g is the multiplicative inverse of f , as can be readily
verified.

Remarks 2.3.5. (1) Classically, when a function does not have a multiplicative inverse, one restricts it
to its cozero set in order to compose it with x 7→ 1

x . Similarly, if f : L(R)→ L is a frame homomor-
phism, by 2.2.1 (1) there exists f such that the diagram

L(R)
f //

����

L
p // // ↓coz( f )

L(R\{0})

f

66

commutes. Then L(R) g−→ L(R\{0}) f−→ L is the multiplicative inverse of p f .

(2) If f ≥ 1 then f (0,�)∨ f (�,0) = 1. Thus, f has a multiplicative inverse.
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The following result is a well-known characterization of cozero elements ([14, Proposition 1]).

Proposition 2.3.6. The following are equivalent for an a ∈ L:

(i) a ∈ Coz L.

(ii) a =
∨

n∈N an where an ≺≺ a for all n ∈ N.

(iii) a =
∨

n∈N an where an ≺≺ an+1 for all n ∈ N.

Remark 2.3.7. We list some consequences of the previous result that appear in [14] and [10]:

(1) Clearly, 0,1 ∈ Coz L. Furthermore, Coz L is a sub-σ -frame of L.

(2) For any a,b ∈ L, a ≺≺ b if and only if there is some c ∈ Coz L such that a ≺≺ c ≺≺ b.

(3) In particular, one gets that for every a ∈ Coz L, a =
∨

n∈N an with an ≺ a and an ∈ Coz L, meaning
that Coz L is a regular σ -frame. Thus, it is normal and ≺=≺≺ in Coz L.

(4) The correspondence L 7→ Coz L is functorial. There is a functor from Frm to the category of
regular σ -frames Coz : Frm→ RσFrm ([10, 61]).

Proposition 2.3.6 yields the following characterization of completely regular frames in terms of
cozero elements (for the proof see [10, Section 5,Corollary 2] or [66, XIV.6.2.5]).

Corollary 2.3.8. A frame L is completely regular if and only if every element of L is a join of cozero
elements.

Proposition 2.3.9. [44, 5.4.3] The following are equivalent for any elements a and b of a frame L:

(i) b ≺≺ a.

(ii) There is an f ∈ R(L) with 0 ≤ f ≤ 1 such that f (0,�)∧b = 0 and f (�,1)≤ a.

(iii) There are c,d ∈ Coz L such that c∗∨a = 1, c∨d = 1 and b∧d = 0.

Corollary 2.3.10. [9, Proposition.5.1.2] Let a,b ∈ Coz L such that a∨b = 1. There is an f ∈ R(L)
with 0 ≤ f ≤ 1 such that a = f (0,�) and b = f (�,1).

2.4 Scales in Frames

A useful way to construct continuous real-valued functions is through scales (also called trails in [10]).
Here we follow the notation used in [38]. A descending scale in a frame L is a family (ap)p∈Q ⊆ L
such that the following conditions hold:

(s1) ap ≺ aq for every q < p.

(s2)
∨

ap = 1 =
∨

a∗p.

Dually, we say (ap)p∈Q ⊆ L is an ascending scale in L if it satisfies (s2) and
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(s1’) ap ≺ aq for every p < q.

Remark 2.4.1. Consider the following weaker version of (s1) and (s1’):

(ws1) ap ≤ aq for every q < p,

(ws1’) ap ≤ aq for every p < q.

If ap is complemented for every p ∈Q, then (ap)p∈Q ⊆ L is a descending scale (resp. ascending scale)
if and only if (ws1) (resp. (ws1’)) and (s2) hold.

Proposition 2.4.2. [38, Lemma 4.3]

(1) Let (ap)p∈Q be a descending scale in L. Then the formulas

f (p,�) =
∨
r>p

ar and f (�,q) =
∨
s<q

a∗s

define a frame homomorphism f : L(R)→ L (and one says that f is generated by the descending
scale (ap)p∈Q).

(2) Let (ap)p∈Q be an ascending scale in L. Then the formulas

g(p,�) =
∨
r>p

a∗r and g(�,q) =
∨
s<q

as

define a frame homomorphism g : L(R)→ L (and one says that f is generated by the ascending
scale (ap)p∈Q).

Conversely, we have:

Proposition 2.4.3. Let L be a frame and f ∈ R(L). Then:

(1) The family ( f (p,�))p∈Q is a descending scale.

(2) The family ( f (�,q))q∈Q is an ascending scale.

2.5 General Real-Valued Functions

A general real-valued function on a frame L is a frame homomorphism f : L(R)→ S(L)op ([38]).
The collection of all general real-valued functions on a frame L is denoted by F(L).1

F(L) is partially order by:

f ≤ g ≡ f (�,r)⊆ g(�,r) for every r ∈Q ⇐⇒ f (r,�)⊇ g(r,�) for every r ∈Q. (2.5.1)

Remark 2.5.1. For any f ∈ F(L), we have

f (s′,�)⊆ f (�,s)# ⊆ f (s,�) for any s′ < s, and

f (�,r′)⊆ f (r,�)# ⊆ f (�,r) for any r′ > r.
1Note that F(L) = R(S(L)op).
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Examples 2.5.2. (1) For each p ∈Q the constant function p ∈ F(L) is given by

p(r,�) =

O if r < p

L if r ≥ p
and p(�,r) =

L if r ≤ p

O if r > p.

(2) For each complemented sublocale S of L, the characteristic function χS ∈ F(L) of S is defined
by

χS(r,�) =


O if r < 0

S# if 0 ≤ r < 1

L if r ≥ 1

and χS(�,r) =


L if r ≤ 0

S if 0 < r ≤ 1

O if r > 1.

Note that 0 ≤ χS ≤ 1.

An f ∈ F(L) is bounded if there are p,q ∈Q with p ≤ q such that p ≤ f ≤ q. By (2.5.1), p ≤ f ≤ q
holds if and only if

f (q,�) = L and f (�, p) = L. (2.5.2)

Or equivalently, if and only if for every r,s ∈Q with r < p and s > q,

f (r,�) = O and f (�,s) = O. (2.5.3)

If f (p,q) = O, then f is bounded and p ≤ f ≤ q. The converse is not true (recall Section 2.1).

A general real-valued function f ∈ F(L) is:

(1) lower semicontinuous if f (r,�) is closed for every r ∈Q,

(2) upper semicontinuous if f (�,r) is closed for every r ∈Q,

(3) continuous if f (�,r) and f (s,�) are closed for every r,s ∈Q.

The collection of all continuous f ∈ F(L) is denoted by C(L), and the collection of all continuous and
bounded f ∈ F(L) is denoted by C∗(L).

Remark 2.5.3. As expected, the notion of continuity of a real-valued function just defined is equivalent
to the one defined in Section 2.1. Indeed, for every f ∈ R(L), the composite c f : L(R)→ S(L)op

is continuous. Conversely, if f ∈ C(L) then take g : L(R)→ L given by g(r,�)) = ι−1 f (r,�) and
g(�,s) = ι−1 f (�,s), where ι is the frame isomorphism form L to c(L)op (recall Section 1.4). Then
cg = f . Consequently, R(L) and C(L) are isomorphic rings.

2.6 Scales in S(L)

In this section we present the application of the definitions and results of Section 2.4 to the frame
S(L)op. Since scales in S(L)op give general real-valued functions in F(L) we recall the conditions that
make a scale in S(L)op give a continuous, and not just general, real valued-function in L. The content
in this section is based on [38] and [42].
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A family (Sp)p∈Q of sublocales of L is a descending scale in S(L)op if

(S1) S#
p ∩Sq = O for every q < p and

(S2)
⋂

p∈Q Sp = O=
⋂

p∈Q S#
p

hold. On the other hand, (Sp)p∈Q is an ascending scale in S(L)op if it satisfies (S2) and

(S1’) S#
p ∩Sq = O for every p < q.

Remark 2.6.1. Similarly, as in Remark 2.4.1, consider the following conditions:

(wS1) Sq ⊆ Sp for every q < p and

(wS1’) Sq ⊆ Sp for every p < q.

Clearly, (S1) (resp. (S1’)) implies (wS1) (resp. (wS1’)). Moreover, if Sp is complemented for every
p ∈Q, the family (Sp)p∈Q ⊆ S(L) is a descending scale (resp. ascending scale) in S(L)op if and only
if (wS1) (resp. (wS1’)) and (S2) hold.

An application of Propositions 2.4.2 and 2.4.3 to the frame S(L)op give the following two results:

Proposition 2.6.2. (1) Let (Sp)p∈Q be a descending scale in S(L)op. Then the formulas

f (p,�) =
⋂
r>p

Sr and f (�,q) =
⋂
s<q

S#
s

define a frame homomorphism f : L(R) → S(L)op (and one says that f is generated by the
descending scale (Sp)p∈Q).

(2) Let (Sp)p∈Q be an ascending scale in S(L)op. Then the formulas

g(p,�) =
⋂
r>p

S#
r and g(�,q) =

⋂
s<q

Ss

define a frame homomorphism g : L(R) → S(L)op (and one says that f is generated by the
ascending scale (Sp)p∈Q).

Proposition 2.6.3. Let L be a frame and f ∈ F(L). Then:

(1) The family ( f (p,�))p∈Q is a descending scale in S(L)op.

(2) The family ( f (�,q))q∈Q is an ascending scale in S(L)op.

Proposition 2.6.4. [38, Lemma 4.4] Let f1, f2 ∈ F(L) be generated by descending scales (Sr)r∈Q and
(Tr)r∈Q respectively. Then:

(1) f1(�,r)# ⊆ Sr ⊆ f1(r,�) for every r ∈Q.

(2) f2 ≤ f1 if and only if Sr ⊆ Ts for every r < s.
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Scales in S(L)op establish general real-valued functions on a frame L, but they may not be
continuous. To understand when do scales in S(L)op generate continuous real-valued functions on L,
consider the following conditions on a family (Sp)p∈Q:

(IC) Sp ⊆ S◦q for every p < q,

(IC’) Sp ⊆ S◦q for every q < p.

In [42, Lemma 2.2] the authors present a proof of a weaker version of the next result. We have not
found in the literature a proof of this stronger version so we include it here.

Proposition 2.6.5. Let (Sp)p∈Q be a descending (resp. ascending) scale in S(L)op. The formulas

f (p,�) =
⋂
r>p

Sr and f (�,q) =
⋂
s<q

S#
s

(resp. f (p,�) =
⋂
r>p

S#
r and f (�,q) =

⋂
s<q

Ss)

define a function f ∈ C(L) if and only if (IC) (resp. (IC’)) holds.

Proof. Let (Sp)p∈Q be a descending scale in S(L)op, and let f ∈ F(L) be the function it defines
(Proposition 2.6.2). Then

f (p,�) =
⋂
r>p

Sr and f (�,q) =
⋂
s<q

S#
s . (2.6.1)

Assume that f : L(R)→ S(L)op is continuous. Then there is a frame homomorphism f : L(R)→ L
such that c f = f . Let p < q, and take r,s ∈ Q such that p < r < s < q. The fact that f ∈ R(L) and
(2.1.1) imply

f (�,r)∗∨ f (s,�)∗ ≥ f (r,�)∨ f (�,s) = 1.

Taking the respective open sublocales and using (1.4.10) we obtain

L = o( f (�,r)∗)∨o( f (s,�)∗) = c( f (�,r))◦∨ c( f (s,�))◦ = f (�,r)◦∨ f (s,�)◦.

Equivalently, by (1.4.2) and (1.4.12), f (�,r)# = ( f (�,r)◦)# ⊆ f (s,�)◦. Take p′ ∈Q with p < p′ < r
so that p < p′ < r < s < q. Using (2.6.1) we get

Sp ⊆ S##
p′ ⊆ f (�,r)# = ( f (�,r)◦)# ⊆ f (s,�)◦ ⊆ S◦q

where the first inclusion holds because (Sp)p∈Q is a descending scale (it satisfies (S1)). Hence, Sp ⊆ S##
p′

for every p < p′.
For the converse suppose (IC) holds. To show that f is continuous we need to prove that f (p,�) and
f (�,q) are closed subocales for every p,q ∈Q. Note that (IC) implies that

f (p,�) =
⋂
r>p

Sr ⊆
⋂
r>p

Sr ⊆
⋂
q>p

S◦q ⊆
⋂
q>p

Sq = f (p,�)
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and
f (�,q) =

⋂
s<q

S#
s ⊆

⋂
s<q

(S◦s )
# ⊆

⋂
r<q

Sr
# ⊆

⋂
r<q

S#
r = f (�,q).

Hence, f (p,�) and f (�,q) are closed; that is, f ∈ C(L).
The dual statement for ascending scales is proven in a similar way.

Condition (IC) (resp. (IC’)) implies (S1) (resp. (S1’)). Indeed, let p < q (resp. q < p). Then
Sp ⊆ S◦q. Equivalently, since S◦q is open (and in particular complemented), Sp ∩ (S◦q)

# = O. Thus,
Sp ∩S#

q ⊆ Sp ∩ (S◦q)
# =O for rationals p < q (resp. q < p). It then follows from Propositions 2.6.2 and

2.6.5 that:

Corollary 2.6.6. Let (Sp)p∈Q ⊆ S(L)op satisfy conditions (IC) (resp. (IC’)) and (S2). The formulas

f (p,�) =
⋂
r>p

Sr and f (�,q) =
⋂
s<q

S#
s

(resp. f (p,�) =
⋂
r>p

S#
r and f (�,q) =

⋂
s<q

Ss)

define a continuous f : L(R)→ S(L)op.

Remark 2.6.7. Recall from (1.4.11) and (1.4.10) that a ≺ b if and only if c(b)⊆ c(a)◦ = o(a∗), if and
only if c(a)∗ = o(a)⊆ o(b). We have:

(1) The family (ar)r∈Q is a descending (resp. ascending) scale in L if and only if (c(ar))r∈Q is a
descending (resp. ascending) scale in S(L)op that satisfies (IC) (resp. (IC’)). Furthermore, the function
f : L(R)→ L defined by (ar)r∈Q as in Proposition 2.4.2 and the function f : L(R)→ S(L)op defined
by (c(ar))r∈Q as in Proposition 2.6.2 are related by the identity c f = f .

(2) The family (ar)r∈Q is a descending (resp. ascending) scale in L if and only if (o(ar))r∈Q is an
ascending (resp. descending) scale in S(L)op that satisfies (IC’) (resp. (IC)). Furthermore, the function
f : L(R)→ L defined by (ar)r∈Q as in Proposition 2.4.2 and the function f : L(R)→ S(L)op defined
by (c(ar))r∈Q as in Proposition 2.6.2 are related by the identity c f = f .

In general, a scale (c(ar))r∈Q (resp. (o(ar))r∈Q) in S(L)op does not give a continuous real-valued
function on L (it may not satisfy (IC) or (IC’)). In fact, it will only define a lower (resp. upper)
semicontinuous function. For a thorough study of this case see [38].

2.7 Cozero Sublocales and Complete Separation

A zero (resp. cozero) sublocale of L is a sublocale S ⊆ L of the form cL(a) (resp. oL(a)) with a ∈ Coz L.
We denote by

CoZS(L) and ZS(L)

the classes of cozero and zero sublocales respectively.

Remarks 2.7.1. (1) It follows from the isomorphism R(L)∼= C(L) that a sublocale S of L is a zero
sublocale if and only if S = f (0,�)∩ f (�,0) for some f ∈ C(L). In fact, S is a zero sublocale if and
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only if S = f (0,�) for some f ∈ C(L) with 0 ≤ f ≤ 1 (recall Remark 2.3.2). Similarly, S is a cozero
sublocale if and only if S = f (0,�)# ∨ f (�,0)# for some f ∈ C(L).

(2) Since Coz L is a regular sub-σ -frame of L, ZS(L)op (resp. CoSZ(L)) is a regular sub-σ -frame of
c(L)op (resp. o(L)), and Coz L ∼= ZS(L)op ∼= CoSZ(L).

Since R(L) and C(L) are isomorphic (recall Remark 2.5.3) and ZS(L) = c(Coz L), one can take
all the results from Section 2.3 and formulate them with zero sublocales and continuous functions in
C(L). We will need the following two formulations:

Proposition 2.7.2. An f ∈ C(L) has a multiplicative inverse if and only if f (�,0)∩ f (0,�) = O.

Proposition 2.7.3. Let Z1 and Z2 be disjoint zero sublocales of a frame L. Then

Z1 = f (0,�) and Z2 = f (�,1)

for some f ∈ C(L) satisfying 0 ≤ f ≤ 1.

Two sublocales S and T of L are completely separated2 in L if there is an f ∈ C(L) with 0 ≤ f ≤ 1
such that

S ⊆ f (0,�) and T ⊆ f (�,1).

Remarks 2.7.4. (1) Sublocales f (p,�) and f (�,q) are zero sublocales for every p,q ∈ Q and
f ∈ C(L).

(2) By Proposition 2.7.3 and the previous (1), two sublocales are completely separated in L if and
only if they are contained in disjoint zero sublocales; i.e., if there are Z1,Z2 ∈ ZS(L) such that

S ⊆ Z1, T ⊆ Z2 and Z1 ∩Z2 = O.

(3) Any two disjoint zero sublocales of L are completely separated in L.

(4) S and T are completely separated if and only if their closures S and T are completely separated.

(5) If S and T are completely separated in L, then there exist Z ∈ ZS(L) and C ∈ CoZS(L) such that
S ⊆ Z ⊆C ⊆ T #. The converse does not hold in general.

Proposition 2.7.5. [44, Lemma.5.4.2.] The following are equivalent for a,b ∈ L:

(i) b ≺≺ a.

(ii) o(b) and c(a) are completely separated in L.

(iii) There exist Z ∈ ZS(L) and C ∈ CoZS(L) such that c(a)⊆ Z◦ ⊆ Z ⊆C ⊆ c(b).

(iv) There exist Z ∈ ZS(L) and C ∈ CoZS(L) such that o(b)⊆ Z ⊆C ⊆C ⊆ o(a).
2When there is no risk of confusion we will avoid specifying the frame in which two sublocales completely separated.

Note that if two sublocales of a sublocale S of L are completely separated in L, then they are completely separated in S.
However, the converse does not hold: two sublocales of S completely separated sublocales in S may not be completely
separated in L.
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Remark 2.7.6. If S and T are completely separated in L there exist a,b ∈ Coz L such that

S ⊆ c(a), T ⊆ c(b) and c(a)∩ c(b) = O.

Then, since Coz L is normal (Remark 2.3.7 (3)) and a∨ b = 1, there exist u,v ∈ Coz L such that
u∧ v = 0, v ≺≺ a and u ≺≺ b. Hence,

S ⊆ c(a)⊆ o(u), T ⊆ c(b)⊆ o(u) and o(u)∩o(v) = O.

Moreover, by Proposition 2.7.5, o(u) and c(b) are completely separated, and so are o(v) and c(a).

Proposition 2.3.8, combined with Proposition 2.7.5, yields immediately the following corollary:

Corollary 2.7.7. [44, 5.5.] The following are equivalent for a frame L:

(i) L is completely regular.

(ii) c(a) =
⋂
{Z ∈ ZS(L) | c(a)⊆ Z} for every a ∈ L.

(iii) o(a) =
∨
{C ∈ CoZS(L) |C ⊆ o(a)} for every a ∈ L.

Proposition 2.7.8. [44, Corollary 5.6.1] Let S be a sublocale of L.

(1) S is a zero sublocale of L if and only if S=
⋂

n∈N c(an) for some an ∈ L, and there exist Zn ∈ZS(L)
and Cn ∈ CoZS(L) such that S ⊆ Z◦

n ⊆ Zn ⊆Cn ⊆ c(an) for every n ∈ N.

(2) S is a cozero sublocale of L if and only if S =
∨

n∈N o(bn) for some bn ∈ L, and there exist
Zn ∈ ZS(L) and Cn ∈ CoZS(L) such that o(bn)⊆ Zn ⊆Cn ⊆Cn ⊆ S for every n ∈ N.

(3) S is both a zero and a cozero sublocale of L if and only if it is both closed and open.

Since every zero sublocale is closed, then it is clearly Fσ . Furthermore, by Proposition 2.7.8 every
zero sublocale is also Gδ . Similiarly, every cozero sublocale is a Gδ - and Fσ -sublocale.

Remark 2.7.9. In (1) of Proposition 2.7.8, the elements an may be taken in Coz L and such that
an ≤ an+1 for every n ∈ N. Similarly, in (2) of Proposition 2.7.8 the bn’s may be taken in Coz L and
such that bn ≤ bn+1 for every n ∈ N.

Proposition 2.7.10. [44, Corollary.5.6.2] Every cozero sublocale of a cozero sublocale of L is a
cozero sublocale of L.

The relation of complete separation between sublocales has been used to prove insertion theorems.
Article [37] gives a point-free extension of the Topological Insertion Theorem due to Blair [21] and
Lane [57, 58]:

Theorem 2.7.11. Let L be a frame and f1, f2 ∈ F(L). The following statements are equivalent.

(i) There exists h ∈ C(L) such that f2 ≤ h ≤ f1.

(ii) The sublocales f2(�,s) and f1(r,�) are completely separated in L for every r < s in Q.
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Theorem 2.7.11 implies the following insertion theorem for normal frames ([38, Theorem 8.1],
[66, XIV.7.4.3]):

Theorem 2.7.12. A frame L is normal if and only if for each upper semicontinuous f ∈ F(L) and
lower semicontinuous g ∈ F(L) with f ≤ g, there is an h ∈ C(L) such that f ≤ h ≤ g.

An insertion theorem usually provides a separation result and an extension result as byproducts.
In the case of Theorem 2.7.12, the separation result is the well-known point-free version of Urysohn’s
Separation Lemma [26] (and more recent [9, 10, 66]). The extension result is the point-free counterpart
of Tietze’s Extension Theorem [38, Theorem 8.4] (see also [66, XIV.7.6.1]). We state below these two
results which will be later revisited in detail in Section 4.1.

Proposition 2.7.13. A frame L is normal if and only if every pair of disjoint closed sublocales is
completely separated in L.

Proposition 2.7.14. A frame L is normal if and only if for each closed sublocale S of L and each
h ∈ C∗(S), there exists a continuous extension h̃ ∈ C∗(L) (i.e., there is an h̃ ∈ C∗(L) such that
j−1[−]h̃ = h where j : S ↪→ L).





Chapter 3

Zero Sublocales and Localic Maps

In this chapter we explore the interaction between zero sublocales and localic maps. That is, we study
the classes of localic maps defined by the behaviour of their images and preimages on zero sublocales.
Recall Section 1.5 and the image/preimage Galois adjunction

S(L)
f [−]

⊥ --
S(M)

f−1[−]

ll

for a localic map f : L → M. A relevant case throughout this chapter is the localic embedding of a
sublocale S of L, that is j : S ↪→ L where the preimage j−1 : S(L)→ S(S) is given by the intersection:
j−1[T ] = S∩T . Most of the definitions and results presented in this chapter applied to this embedding
give the notions and results of [6] and [9]. In this sense the work here generalizes the articles [6, 9].
Our approach focuses on general localic maps.

3.1 Classes of Localic Maps Defined by the Behaviour of Their Preim-
ages on Zero Sublocales

Since frame homomorphisms preserve cozero elements (Proposition 2.3.3), the preimage map
f−1[−] : S(M)→ S(L) restricts to maps

f z
−1[−] : ZS(M)→ ZS(L) and f coz

−1 [−] : CoZS(M)→ CoZS(L).1

The former is a σ -coframe homomorphism and the latter is a σ -frame homomorphism. Whenever
f z
−1[−] is surjective, we say that f is a z-map. These maps are the right adjoints of the coz-onto frame

homomorphisms of [31]. Note that when L is completely regular, a z-map is always injective because
a completely regular frame is join-generated by its cozero σ -frame (recall Proposition 2.3.8).

In the particular case where the embedding j : S ↪→ L of a sublocale S of L is a z-map, one refers
to S as z-embedded in L ([6]) and we have immediately the following result:

1Usually, when applying f z
−1[−] or f coz

−1 [−] we only write f−1[−].

39
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Proposition 3.1.1. [44, Proposition 6.2.1] A sublocale S of L is z-embedded if and only if for each
zero sublocale Z of S there is a zero sublocale T of L such that T ∩ S = Z. Equivalently, for every
cozero sublocale C of S there is a cozero sublocale T of L such that T ∩S =C.

Remarks 3.1.2. (1) If f : L → M is a z-map, then f [L] is a z-embedded sublocale of M. Indeed,
consider the standard factorization in Loc ([66, IV.1.4] and (1.2.9))

L
φ

// //

f

))f [L] �
�

j
// M

with φ onto and j injective localic maps. Since the correspondence L 7→ ZS(L) is functorial (recall
Remark 2.3.7 (4) and Remark 2.7.1 (2)), we get the following commutative diagram in Frm:

ZS(L) ZS( f [L])
φ

z
−1[−]

oo ZS(M)

f z
−1[−]

uu

jz
−1[−]

oo .

Then, for any c(a) ∈ ZS( f [L]), φ
z
−1[c(a)] ∈ ZS(L). Since f is a z-map,

φ
z
−1[c(a)] = f z

−1[c(b)] = φ
z
−1[ j

z
−1[c(b)]]

for some c(b) ∈ ZS(M). This means that c(φ ∗ j∗(b)) = c(φ ∗(a)). Finally, since φ ∗ is injective (being
the left adjoint of an onto localic map), j∗(b) = a and thus c(b)∩ f [L] = j−1[c(b)] = c( j∗(b)) = c(a).

(2) By Proposition 3.1.1, it clearly follows that if T is a z-embedded sublocale of S and S is z-embedded
in L, then T is z-embedded in L.

(3) If S is a sublocale of L and T is sublocale of S such that T is z-embedded in L, then T is z-embedded
in S. Indeed, let Z ∈ ZS(T ). By assumption and Proposition 3.1.1, Z = T ∩Z′ with Z′ ∈ ZS(L). Then
Z = T ∩Z′ = T ∩Z′∩S and Z′∩S ∈ ZS(L). So by Proposition 3.1.1, T is z-embedded in S.

We say that a localic map f : L → M is z-dense if

f z
−1[Z] = O =⇒ Z = O.

Remarks 3.1.3. (1) Equivalently, f is z-dense if the cozero map f coz
−1 [−] is a codense σ -frame homo-

morphism, that is,
f coz
−1 [C] = L =⇒ C = M.

The z-dense localic maps are the right adjoints of the coz-codense frame homomorphisms of [9].

(2) Any codense localic map is z-dense. Indeed, if f : L→M is a codense localic map and f−1[cM(a)]=
O for a ∈ Coz M, then f−1[cM(a)] = cL( f ∗(a)) = cL(1). Since f is codense (i.e., f ∗ is a codense frame
homomorphism) we get a = 1 which means cM(a) = O.

(3) For a sublocale S of L, the embedding j : S ↪→ L is z-dense if and only if Z∩S =O implies Z =O

for every Z ∈ ZS(L).
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Furthermore, we say that an f is almost z-dense if for every Z ∈ ZS(M) such that f z
−1[Z] = O,

there exists a Z′ ∈ ZS(M) such that f z
−1[Z

′] = L and Z ∩Z′ = O.

Remarks 3.1.4. (1) Almost z-dense maps are the right adjoints of the almost coz-codense frame
homomorphisms of [9, 31]. Clearly, any z-dense localic map is almost z-dense.

(2) If f is dense and almost z-dense, then it is z-dense. Indeed, let Z ∈ ZS(L) such that f z
−1[Z] = O.

Then there is Z′ ∈ ZS(L) such that f z
−1[Z

′] = L and Z ∩Z′ = O. Now, since f is dense (i.e., f ∗ is
a dense frame homomorphism) and f z

−1[Z
′] = f−1[cM(a)] = cL( f ∗(a)) = L = cL(0), we have a = 0.

Thus, Z′ = L which implies Z = O.

(3) For each sublocale S of L, the embedding j : S ↪→ L is almost z-dense if and only if for every
Z ∈ ZS(L) such that Z ∩S = O, there exists a Z′ ∈ ZS(L) such that S ⊆ Z′ and Z ∩Z′ = O (i.e., S is
completely separated from every zero sublocale disjoint from it).

The following result characterizes almost z-dense maps. It was proved in [9, 7.2.1] for almost
coz-codense frame homomorphisms.

Proposition 3.1.5. A localic map f : L → M is almost z-dense if and only if for every Z ∈ ZS(M)

such that f−1[Z] = O, there exists a bounded g ∈ C(M) such that Z ⊆ g(0,�) and f−1[g(�,1)] = L.

Proof. The implication ‘ =⇒ ’ follows from Proposition 2.7.3. The converse is clear since g(0,�)
and g(�,1) are disjoint zero sublocales for every bounded g ∈ C(M).

Let f : L → M be a localic map. We say that two sublocales S and T of M are f -separated
whenever there exist Z1,Z2 ∈ ZS(M) such that

S ⊆ Z1, T ⊆ Z2, and f z
−1[Z1]∩ f z

−1[Z2] = O.

In particular, for a localic embedding j : S ↪→ L, the sublocales R and T are j-separated if and only if
there exist Z1,Z2 ∈ ZS(L) such that R ⊆ Z1, T ⊆ Z2 and Z1∩Z2∩S =O. In this case we say that R and
T are S-separated. Note that Definition 3.4 of [31] is the equivalent notion of S-separated sublocales
for frame quotients.

Remarks 3.1.6. (1) If S and T are f -separated sublocales of M and f is z-dense, then S and T are
completely separated in M.

(2) Any two completely separated sublocales of M are f -separated for any localic f : L → M.

3.2 More on z-Maps

This section presents a couple of useful characterizations of z-maps which immediately yield as
corollaries characterizations for z-embedded sublocales.

The next result is a characterization of z-maps that appears in [31, Prop. 3.3] phrased in terms of
coz-onto frame homomorphisms.

Proposition 3.2.1. The following are equivalent for any localic map f : L → M:

(i) f is a z-map.
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(ii) For any C ∈CoZS(L) and Z ∈ZS(L) such that C ⊆ Z, there exist C′ ∈CoZS(M) and Z′ ∈ZS(M)

with C′ ⊆ Z′ such that f−1[C′] =C and f−1[Z′] = Z.

(iii) For any C ∈CoZS(L) and Z ∈ZS(L) such that C ⊆ Z, there exist C′ ∈CoZS(M) and Z′ ∈ZS(M)

with C′ ⊆ Z′ such that C ⊆ f−1[C′]⊆ f−1[Z′]⊆ Z.

Proof. (i) =⇒ (ii): Let f be a z-map. Consider Z ∈ ZS(L) and C ∈ CoZS(L) such that C ⊆ Z. Since f
is a z-map we have

f−1[c(a)] = Z and f−1[o(b)] =C

for some a,b ∈ Coz M. Since c(a) is a zero sublocale of M, we get from Proposition 2.7.8 and
Remark 2.7.9 that c(a) =

⋂
n∈N c(an) for some an ∈ Coz M such that, for every n ∈ N,

c(a)⊆ o(xn)⊆ c(an) and c(an+1)⊆ c(an) (3.2.1)

for some xn ∈ Coz M. Analogously, o(b) =
∨

n∈N o(bn) for some bn ∈ Coz M and

o(bn)⊆ c(yn)⊆ o(b) and o(bn)⊆ o(bn+1) (3.2.2)

for some yn ∈ Coz M. Now, let

Z′ =
⋂

n∈N
(c(an)∨ c(yn)) and C′ =

∨
n∈N

(o(bn)∩o(xn)) .

Clearly, Z′ ∈ ZS(M) and C′ ∈ CoZS M. Fix an m ∈ N. From (3.2.1) and (3.2.2) we know that

o(bm)∩o(xm)⊆ o(bm)⊆ c(yn)⊆ c(yn)∨ c(an) ∀n ≥ m and

o(bm)∩o(xm)⊆ o(xm)⊆ c(an)⊆ c(yn)∨ c(an) ∀n ≤ m.

Hence, o(bm)∨o(xm)⊆ Z′ for every m ∈ N, and C′ ⊆ Z′. Moreover,

c(a) =
⋂

n∈N
c(an)⊆ Z′ ⊆

⋂
n∈N

c(an)∨o(b) = c(a)∨o(b)

and Z = f−1[c(a)]⊆ f−1[Z′]⊆ f−1[c(a)]∨ f−1[o(b)] = Z ∨C = Z. Similarly,

o(b)∩ c(a) =
∨

n∈N
o(bn)∩ c(a)⊆C′ ⊆

∨
n∈N

o(bn) = o(b).

Finally, C =C∩Z = f−1[o(b)]∩ f−1[c(a)]⊆ f−1[C′]⊆ f−1[o(b)] =C as required.

(ii) =⇒ (iii) is trivial.

(iii) =⇒ (i): Let c(a) =
⋂

n∈N c(an) be a zero sublocale with an ∈ Coz L such that for each natural
n there is a cozero sublocale o(xn) satisfying c(a) ⊆ o(xn) ⊆ c(an) (recall Proposition 2.7.8 and
Remark 2.7.9). By hypothesis, there exist zero and cozero sublocales c(bn) and o(dn) in M, such that

o(dn)⊆ c(bn) and o(xn)⊆ f−1[o(dn)]⊆ f−1[c(bn)]⊆ c(an)
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for every n. We claim that c(a) = f−1 [
⋂

n∈N c(bn)]. Indeed,

c(a)⊆
⋂

n∈N
o(xn)⊆

⋂
n∈N

f−1[o(dn)]⊆
⋂

n∈N
f−1[c(bn)]⊆

⋂
n∈N

c(an) = c(a)

and
⋂

n∈N f−1[c(bn)] = f−1 [
⋂

n∈N c(bn)], where
⋂

n∈N c(bn) is clearly a zero sublocale of M.

Remark 3.2.2. Conditions (ii) and (iii) above can be equivalently written as follows:

(ii)’ For any disjoint pair of cozero sublocales C1,C2 ∈ CoZS(L), there exist disjoint C′
1,C

′
2 ∈

CoZS(M) such that f−1[C′
1] =C1 and f−1[C′

2] =C2.

(ii)” For any pair of zero sublocales Z1,Z2 ∈ ZS(L) such that Z1∨Z2 = L, there exist Z′
1,Z

′
2 ∈ ZS(M)

such that Z1 ∨Z2 = M, f−1[Z′
1] = Z1 and f−1[Z′

2] = Z2.

(iii)’ For any disjoint pair of cozero sublocales C1,C2 ∈ CoZS(L), there exist disjoint C′
1,C

′
2 ∈

CoZS(M) such that C1 ⊆ f−1[C′
1] and C2 ⊆ f−1[C′

2].

(iii)” For any pair of zero sublocales Z1,Z2 ∈ ZS(L) such that Z1∨Z2 = L, there exist Z′
1,Z

′
2 ∈ ZS(M)

such that Z′
1 ∨Z′

2 = M, f−1[Z′
1]⊆ Z1 and f−1[Z′

2]⊆ Z2.

Proposition 3.2.1 applied to the case of a sublocale embedding S ↪→ L yields immediately the
following corollary:

Corollary 3.2.3. The following are equivalent for any sublocale S of L:

(i) S is z-embedded.

(ii) For any C ∈ CoZS(S) and Z ∈ ZS(S) such that C ⊆ Z, there exist C′ ∈ CoZS(L) and Z′ ∈ ZS(L)
with C′ ⊆ Z′ such that S∩C′ =C and S∩Z′ = Z.

(iii) For any C ∈ CoZS(S) and Z ∈ ZS(S) such that C ⊆ Z, there exist C′ ∈ CoZS(L) and Z′ ∈ ZS(L)
with C′ ⊆ Z′ such that C ⊆ S∩C′ ⊆ S∩Z′ ⊆ Z.

(iv) For any pair of disjoint cozero sublocales C1,C2 ∈ CoZS(S), there exist disjoint C′
1,C

′
2 ∈

CoZS(L) such that S∩C′
1 =C1 and S∩C′

2 =C2.

(v) For any pair of zero sublocales Z1,Z2 ∈ ZS(S) such that Z1 ∨Z2 = S, there exist Z′
1,Z

′
2 ∈ ZS(L)

such that Z′
1 ∨Z′

2 = L, S∩Z′
1 = Z1 and S∩Z′

2 = Z2.

We have a further characterization of z-maps in terms of complete separation and f -separation:

Proposition 3.2.4. The following are equivalent for any localic map f : L → M:

(i) f is a z-map.

(ii) If S and T are completely separated sublocales of L, then there exists Z ∈ ZS(M) such that
S ⊆ f−1[Z] and T ⊆ f−1[Z#] = f−1[Z]# (equivalently, f [S]⊆ Z and f [T ]⊆ Z#).

(iii) If S and T are completely separated sublocales of L, then f [S] and f [T ] are f -separated.
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Proof. (i) =⇒ (ii): Let S and T be completely separated sublocales of L. There exists a Z ∈ ZS(L)
such that S ⊆ Z and T ⊆ Z#. Then, since f is a z-map, Z = f−1[Z′] where Z′ ∈ ZS(M).

(ii) =⇒ (iii): It suffices to show condition (iii) for disjoint zero sublocales (recall Remark 2.7.4(2)).
Consider Z1,Z2 ∈ ZS(L) such that Z1 ∩Z2 = O. By assumption, there exists Z ∈ ZS(M) such that
Z1 ⊆ f−1[Z] and Z2 ⊆ f−1[Z#]. Then

Z2 ∩ f−1[Z]⊆ f−1[Z#]∩ f−1[Z] = f−1[Z ∩Z#] = f−1[OM] = OL,

and thus Z2 and f−1[Z] are completely separated in L. We apply once again (ii) to obtain Z2 ⊆ f−1[Z′]

and f−1[Z]⊆ f−1[Z′#] for some Z′ ∈ ZS(M). Then

f−1[Z′]∩ f−1[Z]⊆ f−1[Z′]∩ f−1[Z′#] = f−1[Z′∩Z′#] = f−1[OM] = OL.

Finally, by the image/preimage adjunction, we get f [Z1]⊆ Z and f [Z2]⊆ Z′. Hence, f [Z1] and f [Z2]

are f -separated.

(iii) =⇒ (i): In order to show that f is a z-map, let Z ∈ ZS(L). By Proposition 2.7.8, Z =
⋂

n∈N c(an)

where for each n there exist zero and cozero sublocales Zn and Cn such that Z ⊆ Zn ⊆ Cn ⊆ c(an).
In particular, Z and o(an) are completely separated sublocales in L. Then, by assumption, there are
F ′

n,Fn ∈ ZS(M) such that

f [Z]⊆ Fn, f [o(an)]⊆ F ′
n and f−1[Fn]∩ f−1[F ′

n] = O.

Clearly,
⋂

n∈N Fn ∈ ZS(M) and Z ⊆ f−1 [
⋂

n∈N Fn]. For the other inclusion, since o(an)⊆ f−1[F ′
n], we

have
f−1

[ ⋂
n∈N

Fn

]
=

⋂
n∈N

f−1[Fn]⊆
⋂

f−1[F ′
n]

# ⊆
⋂

n∈N
c(an) = Z.

The following corollary (which is Proposition 7.3 of [6]) is the application of Proposition 3.2.4 to
the case of a sublocale embedding S ↪→ L. This result can be found in [31, Proposition 3.5] formulated
in terms of frame quotients. We would like to point out that the formulation in terms of sublocales is
advantageous because it resembles the corresponding result in classical topology in [19] (see also [2,
Theorem 7.2]).

Corollary 3.2.5. The following are equivalent for a sublocale S of L:

(i) S is z-embedded in L.

(ii) If T and R are completely separated sublocales of S, then there exists Z ∈ ZS(L) such that T ⊆ Z
and R ⊆ Z#.

(iii) If T and R are completely separated sublocales of S, then they are S-separated.

3.3 C- and C∗-Maps

Similar to the extension of z-embedded sublocales to z-maps, we can generalize the notions of
C- and C∗-embedded sublocales of [6, 9] to localic maps. We say that a localic map f : L → M
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is a C-map (resp. C∗-map) if for every continuous (resp. bounded and continuous) real-valued
function g : L(R) → S(L)op, there exists a continuous (resp. bounded and continuous) function
g : L(R)→ S(M)op such that the diagram

L(R)
g //

g

""

S(L)op

S(M)op

f−1[−]

OO
(3.3.1)

commutes. That is, f is a C-map precisely when g factors through f−1[−] for every g ∈ C(L). Note
that if p ≤ g ≤ q (i.e., g ∈ C∗(L)) and g ∈ C(L) makes the diagram (3.3.1) commute, then so does
(g∨q)∧p. Thus, f is a C∗-map if and only if g factors through f−1[−] for every g ∈ C∗(L).

Remarks 3.3.1. (1) By the isomorphism C(L)∼=R(L) (Remark 2.5.3) and property (1.5.1), it follows
that f : L → M is a C-map (resp. C∗-map) if and only if for every g ∈ R(L) (resp. bounded g ∈ R(L))
there exists g ∈ R(L) (resp. bounded g ∈ R(L)) such that the diagram

L(R)
g //

g

!!

L

M

f ∗

OO

commutes.

(2) Recall from [6] that a sublocale S is C-embedded (resp. C∗-embedded) if for every continuous
(resp. bounded and continuous) real function g : L(R) → S(S)op there exists a continuous (resp.
bounded and continuous) function such that the diagram

L(R)
g //

g

""

S(S)op

S(L)op

j−1[−]

OO

commutes, where j is the localic embedding of S in L. Because of how preimages of localic embeddings
are computed, the diagram above just means that g(a)∩S = g(a) for every a ∈ L(R). In this case,
we say that g is a continuous extension (resp. continuous and bounded extension) of g. Hence, a
sublocale S of L is C-embedded (resp. C∗-embedded) if and only if the embedding j : S ↪→ L is a
C-map (resp. C∗-map). These localic embeddings are precisely the right adjoints of the C-quotients
(resp. C∗-quotients) of [9].

(3) Every C-map is a C∗-map, and every C∗-map is a z-map. Indeed, if f : L → M is a C-map and
g ∈ C(L) with p ≤ g ≤ q, there exists g ∈ C(M) such that f−1[−]g = g. Nevertheless, g might not be
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bounded so consider h := (p∨g)∧q. Then h is bounded and factors g through f−1[−]. Furthermore,
to show that a C∗-map is a z-map, let f : L → M be a localic C∗-map and take Z ∈ ZS(L). By
Proposition 2.7.3, there is g ∈ C∗(L) such that Z = g(0,�). Since f is a C∗-map, there is g ∈ C∗(M)

such that f−1[−]g = g. Thus, f−1[g(0,�)] = g(0,�) = Z and g(0,�) ∈ ZS(M).

(4) If f : L → M is a C-map (resp. C∗-map), then f [L] is a C-embedded (resp. C∗-embedded) sublocale
of L. Indeed, by (1.2.9), the localic map f can be factorized in Loc as

L
φ // // f [L] �

� j // M .

So if f is a C-map, by (1) above, for every g ∈ R( f [L]) (resp. bounded g ∈ R( f [L])) there exists
g ∈ R(M) (resp. bounded g ∈ R(M)) such that

L(R)
g //

∃g

**

f [L]
φ∗

// L

M

f ∗

OO

commutes. Then
φ
∗g = f ∗g = φ

∗ j∗g,

and, since φ ∗ is injective, g = j∗g, showing that j is a C-map (resp. C∗-map). Equivalently, f [L] is
C-embedded (resp. C∗-embedded).

(5) For the case when f is an injective C-map, L ∼= f [L]. By (4) we get the notion of a C-embedded
sublocale. Let us provide an example of a C-map that is not injective. Consider the frame L given by
the Sierpińkski topology, that is, L = {0 < a < 1}. We claim that the unique localic map f : L →{0,1}
is a C-map. Indeed, the only frame homomorphisms g : L(R)→ L are the constant functions. Hence
there is always a g : L(R)→{0,1} such that

L(R)
g //

g
""

L

{0,1}

f ∗

OO

commutes.

We now present characterizations of C- and C∗-maps that generalize those that appear in [6, 9] for
C- and C∗-embedded sublocales (or quotients), which will naturally come as immediate corollaries.
The fact that these results hold for general localic maps, and not only embeddings, is rather surprising,
since the notions of C and C∗-maps are stronger. Note also that a direct proof of the corollaries in this
section can be produced by mimicking the idea of the proofs of the corresponding general results.

Proposition 3.3.2. Every C-map is almost z-dense.
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Proof. Let f : L → M be a localic C-map and Z ∈ ZS(M) such that f−1[Z] = O. Consider g ∈ C∗(M),
with 0 ≤ g ≤ 1, such that g(0,�) = Z. The composite f−1[−]g is a bounded continuous function and
its zero sublocale is given by

( f−1[−]g)(0,�) = f−1[g(0,�)] = O.

Thus, by Proposition 2.7.2, f−1[−] g has a multiplicative inverse function, say h : L(R)→ S(L)op.
Since f is a C-map there exists a continuous h : L(R)→ S(M)op such that h = f−1[−]h. We claim
that (h ·g)(�,1) is the zero sublocale of M we are looking for. Indeed

f−1[(h ·g)(�,1)] =
⋂
s>0

f−1[(h(�,s)]∨ f−1[g(�, 1
s )] =

⋂
s>0

h(�,s)∨ f−1[g(�, 1
s )] = 1(�,1) = L.

Moreover,
(h ·g)(0,�) =

⋂
s>0

h(s,−)∨g(0,−) = h(0,−)∨Z ⊇ Z.

Finally, this means that (h ·g)(�,1)∩Z = (h ·g)(�,1)∩ (h ·g)(0,�) = O.

Recall Remarks 3.3.1 (2) and 3.1.4 (3). The application of Proposition 3.3.2 to the localic embed-
ding j : S ↪→ L yields immediately:

Corollary 3.3.3. Let S be a sublocale of L. If S is C-embedded then S is completely separated from
every zero sublocale disjoint from it.

In classical topology, it is well known that a subspace is C-embedded if and only if it is C∗-
embedded and it is completely separated from every zero sublocale disjoint from it [36, 1.18]. Next,
not only do we give the equivalent point-free result for sublocales (Corollary 3.3.5), instead of using
quotients like in [9, 7.2.2], but we also generalize the result for localic maps.

Proposition 3.3.4. A localic map f : L → M is a C-map if and only if it is an almost z-dense C∗-map.

Proof. If f : L → M is a C-map it is clearly a C∗-map; furthermore, by Proposition 3.3.2, it is almost
z-dense.
Conversely, let f : L → M be an almost z-dense C∗-map. In order to show that f is a C-map, let
g ∈ C(L). Now recall Proposition 2.2.2 and consider an order isomorphism ψ from the rational
interval ⟨−1,1⟩ into Q. Using the notation from Proposition 2.2.2, we have the commutative diagram

L(R) Ψ0 //

r(−1,1)

"" ""

L(R)

Φ

��
L(−1,1).

∼=
Ψ=Ψ0|L(−1,1)

CC

The composite gΨ0 is a bounded frame homomorphism (since Ψ0(−1,1) = 1). Hence, since f is
C∗-map, there is a g ∈ C∗(M) (with p < g < q) such that the diagram
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L(R)

Ψ0

$$

∃g //

r(−1,1)

����

S(M)op

f−1[−]

��
L(−1,1) ∼=

Ψ

33 L(R)
Φ

rr g // S(L)op

commutes. Note that g may not be an extension of g. Nevertheless, to show that f is a C-map it
suffices to find an h : L(R)→ S(M)op such that h(−1,1) = O and f−1[−]h = gΨ0, because then, by
Lemma 2.2.1, there exists h : L(−1,1)→ S(M)op such that h = h f−1[−].
We have that the following commutative diagram

L(R) ∃h //

Ψ0

$$

r(−1,1)

����

S(M)op

f−1[−]

��
L(−1,1)

∃h

55

∼=
Ψ

33 L(R)
Φ

rr g // S(L)op

.

Further, the composite hΦ is a continuous extension of g. Indeed,

gΨr(−1,1) = gΨ0 = f−1[−]h = f−1[−]hr(−1,1) =⇒ gΨ = f−1[−]h ⇐⇒ g = f−1[−]hΦ.

We conclude the proof by showing how to get such map h.
Let g(−1,1) = cM(a) ∈ ZS(M). Then f−1[cM(a)] = gΨ0(−1,1) = g(1) = O. Since f is almost z-
dense, there exists D ∈ ZS(M) such that f−1[D] = L and cM(a)∩D = O. Any two disjoint zero
sublocales are always completely separated (Remark 2.7.4 (3)), so there exists t : L(R)→ S(M)op

(0 ≤ t ≤ 1) such that g(−1,1) = cM(a)⊆ t(0,�) and D ⊆ t(�,1). We claim that t ·g is the function
h we are searching for. We only need to check that (t ·g)(−1,1) = O and f−1[−](t ·g) = gΨ0. Using
(2.1.4) we get

(t ·g)(−1,1) =
⋂

{t(r,s)∨g(t,u) | ⟨r,s⟩ · ⟨t,u⟩ ⊆ ⟨−1,1⟩} ⊆
⋂{

t(−y,y)∨g(−1
y , 1

y ) | 1 < y
}

(∗)
=

⋂{
g(−1

y , 1
y ) | 1 < y

}
= g(−1,1)

(the equality (∗) follows from the fact that 0 ≤ t ≤ 1). Consequently,

(t ·g)(−1,1) = (t ·g)(−1,1)∩g(−1,1) =
⋂

{t(r,s)∨g(u,v) | ⟨r,s⟩ · ⟨u,v⟩ ⊆ ⟨−1,1⟩}∩g(−1,1)

⊆
⋂{

t(−1
y , 1

y )∨g(−y,y) | y > max{|p|, |q|,1}
}
∩g(−1,1)

(∗)
=

⋂{
t(−1

y , 1
y ) | y > max{|p|, |q|,1}

}
∩g(−1,1)

⊆
⋂{

t(−1
y , 1

y ) | y > max{|p|, |q|,1}
}
∩ t(0,�)
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=
⋂{

t(−1
y , 1

y )∩ t(0,�) | y > max{|p|, |q|,1}
}

=
⋂{

t(−1
y ,�) | y > max{|p|, |q|,1}

} (∗∗)
= O

(where (∗) follows from p < g < q and (∗∗) from t ≥ 0).
Finally, in order to show that f−1[−](t ·g) = gΨ0 note first that, for any (u,v) ∈ L(R), if 1 /∈ ⟨u,v⟩,

then

f−1[−]t(u,v)⊇ f−1[−]t ((1,�)∨ (�,1)) = f−1[(t(1,�)∩ t(�,1))]⊇ f−1[M∩D] = f−1[D] = L

otherwise,

O= f−1[t(1)] = f−1[t ((−,1)∨ (1,−)∨ (u,v))]⊇ f−1[D∩M∩ t(u,v)] = f−1[D]∩ f−1[t(u,v)]

= L∩ f−1[t(u,v)] = f−1[t(u,v)].

Hence,

f−1[−](t ·g)(r,s) =
⋂

{ f−1[t(u,v)]∨ f−1[g(z,w)] | ⟨u,v⟩ · ⟨z,w⟩ ⊆ ⟨r,s⟩}

=
⋂

{ f−1[t(u,v)]∨gΨ0(z,w) | 1 ∈ ⟨u,v⟩,⟨u,v⟩ · ⟨z,w⟩ ⊆ ⟨r,s⟩}

=
⋂

{gΨ0(z,w) | 1 ∈ ⟨u,v⟩,⟨u,v⟩ · ⟨z,w⟩ ⊆ ⟨r,s⟩}

=
⋂

{gΨ0(z,w) | r < z < w < s}= gΨ0(r,s)

as required.

Again we can apply Proposition 3.3.4 to a localic embedding j : S ↪→ L and obtain:

Corollary 3.3.5. A sublocale S of L is C-embedded if and only if it is C∗-embedded and it is completely
separated from every zero sublocale disjoint from it.

The following theorem gives a criteria for when can we factorize a real-valued function through a
localic map.

Theorem 3.3.6. Let f : L → M be a localic map. The following statements about a g ∈ C∗(L) are
equivalent:

(i) There exists g ∈ C∗(M) such that f−1[−]g = g.

(ii) f [g(r,�)] and f [g(�,s)] are completely separated in M for every r < s in Q.

(iii) For every r < s in Q there are disjoint Z1,Z2 ∈ ZS(M) such that g(r,�) ⊆ f−1[Z1] and
g(�,s)⊆ f−1[Z2].

Proof. (ii) ⇐⇒ (iii): f [g(r,�)] and f [g(�,s)] are completely separated in M if and only if there
are disjoint zero sublocales Z1 and Z2 such that f [g(r,�)] ⊆ Z1 and f [g(�,s)] ⊆ Z2. From the im-
age/preimage Galois adjunction, f [g(r,�)]⊆ Z1 and f [g(�,s)]⊆ Z2 is equivalent to g(r,�)⊆ f−1[Z1]

and g(�,s)⊆ f−1[Z2].



50 Zero Sublocales and Localic Maps

(i) =⇒ (iii): By assumption there is g ∈ C∗(M) such that f−1[−]g = g. Then, for every r < s, we have

g(r,�) = f−1[g(r,−)] and Z2 ⊆ g(−,s) = f−1[g(−,s)]

and ḡ(r,�) and ḡ(�,s) are disjoint zero sublocales of M.
(iii) =⇒ (i): Without loss of generality we may assume that 0 ≤ g ≤ 1. For each r ∈Q set

Sr =


O if r < 0⋂
{Z ∈ ZS(M) | g(r,�)⊆ f−1[Z]} if 0 ≤ r < 1

M if r ≥ 1

and

Tr =


O if r ≤ 0∨{

C ∈ CoZS(M) | g(�,r)⊆ f−1[C]#
}

if 0 < r ≤ 1

M if r > 1.

Each Sr is a closed sublocale of M while each Tr is open. For any r < s, we have Sr ⊆ Ss, since
g(r,�)⊆ g(s,�), and Tr ⊆ Ts, since g(�,s)⊆ g(�,r). Note that

T #
r =

⋂
{Z ∈ ZS(M) | g(�,r)⊆ f−1[Z]}

for any 0 < r ≤ 1.
Further,

⋂
r∈Q Sr =O=

⋂
r∈Q Tr. Hence (Sr)r∈Q and (Tr)r∈Q are (descending) scales, with correspond-

ing functions f1, f2 ∈ F(M) defined by (recall Proposition 2.4.2)

f1 : L(R)→ S(M)op

f1(r,�) =
⋂

p>r Sp

f1(�,s) =
⋂

q<s S#
q

f2 : L(R)→ S(M)op

f2(r,�) =
⋂

p>r Tp

f2(�,s) =
⋂

q<s T #
q .

Claim 1: f2 ≤ f1.
We will show this using Proposition 2.6.4, by proving that Sr ⊆ Ts for every r < s. If r < 0 or 1 < s we
clearly have Sr ⊆ Ts. If 0 ≤ r < s ≤ 1, then g(r,�) and g(�,s) are disjoint zero sublocales of L thus,
by assumption, there exist disjoint Z1,Z2 ∈ ZS(M) such that g(r,�)⊆ f−1[Z1] and g(�,s)⊆ f−1[Z2].
Hence Sr ⊆ Z1 and T #

s ⊆ Z2. Consequently,

Sr ⊆ Z1 ⊆ Z#
2 ⊆ T ##

s = Ts.

Claim 2: There exists h ∈ C∗(M) such that f2 ≤ h ≤ f1.
By Theorem 2.7.11 it suffices to show that f1(r,�) and f2(�,s) are completely separated for any
r < s. Again, the cases r < 0 and s > 1 are trivial. If 0 ≤ r < s ≤ 1 consider p,q ∈Q such that 0 ≤
r < p < q < s ≤ 1. By the assumption, there are disjoint Z1,Z2 ∈ ZS(M) such that g(p,−)⊆ f−1[Z1]

and g(−,q)⊆ f−1[Z2]. Then
f1(r,�) =

⋂
p>r

Sp ⊆ Sp ⊆ Z1
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and
f2(�,s) =

⋂
q<s

T #
q ⊆ T #

q ⊆ Z2

Hence f1(r,�) and f2(�,s) are completely separated.

Claim 3: h is a continuous bounded real-valued function that factors g through f−1[−].
We need to show that f−1[h(r,�)] = g(r,�) for every r ∈Q. We have the following three cases:

(Case 1): If r < 0 we have h(r,�) ⊆ f2(r,�) =
⋂

p>r Tp = OM and g(r,�) = OL (because 0 ≤ f ).
Hence f−1[h(r,�)] = OL = g(r,�).

(Case 2): For r ≥ 1 we get M = f1(r,�)⊆ h(r,�) and g(r,�) = L since g ≤ 1. Hence f−1[h(r,�)] =
L = g(r,�).

(Case 3): When 0 ≤ r < 1 we have that for every p > r, g(r,�)⊆ g(p,�)⊆ f−1[Sp]. Hence g(r,�)⊆⋂
p>r f−1[Sp] = f−1[ f1(r,�)]⊆ f−1[h(r,�)]. On the other hand, since f2 ≤ h, then

f−1[h(r,�)]⊆ f−1[ f2(r,�)] = f−1

[ ⋂
p>r

Tp

]
=

⋂
p>r

f−1[Tp].

Moreover,

g(−, p)⊆
⋂

{ f−1[Z] | Z ∈ ZS(M),g(�, p)⊆ f−1[Z]}

= f−1

[⋂
{Z ∈ ZS(M) | g(�, p)⊆ f−1[Z]}

]
= f−1[T #

p ] = f−1[Tp]
#

which means f−1[Tp] ⊆ g(−, p)# ⊆ g(p,−) for every p > r (even for p > 1 because g(p,−) = L).
Thus,

f−1[h(r,�)]⊆
⋂
p>r

f−1[Tp]⊆
⋂
p>r

g(p,�) = g(r,�).

In conclusion, h is a continuous real-valued function that factors g through f−1[−]. It is bounded
because f2(�,0) =

⋂
q<0 T #

q = M and f1(1,�) =
⋂

p>1 Sp = M. Hence,

M = f2(�,0)∩ f1(1,�)⊆ h(�,0)∩h(1,�)

meaning 0 ≤ h ≤ 1.

An immediate consequence of this result (applied to a localic embedding) is the point-free
counterpart of the Mrówka’s Extension Theorem ([63]). A direct proof of the following corollary can
be found in [6, Theorem 4.2]. It generalizes [37, Theorem 5.2] where the authors only show it for
complemented sublocales.

Corollary 3.3.7. Let S be a sublocale of L. The following statements about a g ∈ C∗(S) are equivalent:

(i) There exists a continuous bounded extension of g to L.

(ii) The sublocales g(r,�) and g(�,s) are completely separated in L for every r < s in Q.
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We will use Theorem 3.3.6 to prove the following result. Nevertheless, notice that one can give a
direct proof mimicking the arguments and using the same function as in Theorem 3.3.6.

Theorem 3.3.8. Let f : L → M be a localic map. Then the following are equivalent:

(i) f is a C∗-map.

(ii) For every pair of disjoint zero sublocales Z1,Z2 ∈ ZS(L) there are disjoint sublocales Z′
1,Z

′
2 ∈

ZS(M) such that Z1 ⊆ f−1[Z′
1] and Z2 ⊆ f−1[Z′

2] (equiv. f [Z1]⊆ Z′
1 and f [Z2]⊆ Z′

2).

(iii) If S and T are completely separated sublocales of L, then f [S] and f [T ] are completely separated
in M.

Proof. (i) =⇒ (ii): Let Z1 and Z2 be disjoint zero sublocales of L. By Proposition 2.7.3, there is a
g ∈ C∗(L) such that g(0,�) = Z1 and g(�,1) = Z2. Since f is a C∗-map there is g ∈ C∗(M) such that
f−1[−]g = g. Hence,

Z1 = g(0,�) = f−1[g(0,�)] and Z2 = g(�,1) = f−1[g(�,1)]

where g(0,�) and g(�,1) are disjoint zero sublocales of M.
(ii) =⇒ (i): Let g ∈ C∗(L). We have to show that there is g ∈ C∗(M) such that f−1[−]g = g. For this,
we will use Theorem 3.3.6. Let r < s in Q. Since g(r,�) and g(�,s) are disjoint zero sublocales, by
assumption (ii), there are Z1,Z2 ∈ ZS(M) such that g(r,�)⊆ f−1[Z1] and g(�,s)⊆ f−1[Z2]. Thus we
have shown that Theorem 3.3.6 (iii) holds, so there is an extension g ∈ C∗(M) of g that factors through
f , as required.
(ii) ⇐⇒ (iii): It follows trivially from (2) and the image/preimage Galois adjunction.

Notice that condition (iii) characterizes localic C∗-maps as those that preserve complete separation
under taking images.

Finally, Theorem 3.3.8 applied to a localic embedding, yields the point-free version of Urysohn’s
Extension Theorem [6, Theorem 6.1] (see for example [36, 1.17] or [2, Theorem 6.6] for the result in
classical topology). The following corollary, was proved in terms of frame quotients in [9, Theorem
7.11], but the proof there uses more complex arguments than those used in our formulation. One
should also point out that the complete separation relation is simpler and easier to work with when
using sublocales rather than frame quotients.

Corollary 3.3.9. Let S be a sublocale of a locale L. Then the following are equivalent:

(i) S is C∗-embedded.

(ii) If R and T are completely separated sublocales of S, then R and T are also completely separated
in L.

3.4 Relations Among C-, C∗- and z-Maps

We know that any C-map is a C∗-map hence a z-map too (recall Remark 3.3.1 (3)). In general
the converse does not hold. In this section we investigate conditions that may give the converse
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implications. Inspired by the classical topological results in [19, 22] (see also [2]) we obtain, not only
their counterparts in point-free topology, but also their generalizations to localic maps.

Proposition 3.4.1. The following are equivalent for a localic map f : L → M:

(i) f is a C∗-map.

(ii) f is a z-map and for each T ∈ S(L) and each Z ∈ ZS(M), if f [T ] and f [ f−1[Z]] are f -separated
then they are completely separated in M.

Proof. (i) =⇒ (ii): If f is a C∗-map then it is a z-map (Remark 3.3.1 (3)). Moreover, let T ∈ S(L) and
Z ∈ ZS(M) such that f [T ] and f [ f−1[Z]] are f -separated. That is, there are Z1,Z2 ∈ ZS(M) such that

f [T ]⊆ Z1, f [ f−1[Z]]⊆ Z2 and f−1[Z1]∩ f−1[Z2] = O.

By the image/preimage Galois adjunction we have T ⊆ f−1[Z1] and f−1[Z]⊆ f−1[Z2]. Since f−1[Z1]

and f−1[Z2] are disjoint zero sublocales of L, T and f−1[Z] are completely separated in L. By Theo-
rem 3.3.8, f [T ] and f [ f−1[Z]] are completely separated in M.
(ii) =⇒ (i): We will use Proposition 3.3.8 (ii) to show that f is a C∗-map. Let Z1 and Z2 be disjoint
zero sublocales of L. Since f is a z-map, there are D1,D2 ∈ ZS(M) such that f−1[D1] = Z1 and
f−1[D2] = Z2. Hence,

f [Z1] = f [ f−1[D1]]⊆ D1 f [Z1] = f [ f−1[D1]]⊆ D1 and f−1[D1]∩ f−1[D2] = O.

That is, f [Z1] and f [Z2] are f -separated. By assumption, f [Z1] and f [Z2] are completely separated in
M so there are disjoint sublocales Z′

1,Z
′
2 ∈ ZS(M) such that f [Z1]⊆ Z′

1 and f [Z2]⊆ Z′
2.

In order to obtain the next corollary we apply Proposition 3.4.1 to the localic embeding j : S ↪→ L.
This result is another good example of the advantages of sublocale language in terms of conciseness
and clarity. Indeed, the result is stated in [31, Proposition 4.3] in terms of frame quotients, and a closer
inspection to assertions (2) and (3) there reveals, when formulated in terms of sublocales, that they
express precisely the same fact.

Corollary 3.4.2. The following are equivalent for a sublocale S of L:

(i) S is C∗-embedded.

(ii) S is z-embedded and for each T ∈ S(S) and each Z ∈ ZS(L), if T and Z ∩ S are S-separated
then they are completely separated in L.

Proposition 3.4.3. A localic map f : L → M is a C-map if and only if it is an almost z-dense z-map.

Proof. If f is a C-map it is a z-map, and it is almost z-dense by Proposition 3.3.2. Conversely, assume
f is an almost z-dense z-map. To show that it is a C-map it suffices, by Proposition 3.3.4, to check
that f is a C∗-map. We will do that using Theorem 3.3.8. Consider a pair of disjoint sublocales
Z1,Z2 ∈ ZS(L). Since f is a z-map, f [Z1] and f [Z2] are f -separated (by Proposition 3.2.4), that is,
there exist Z′

1,Z
′
2 ∈ ZS(M) such that f [Z1] ⊆ Z′

1, f [Z2] ⊆ Z′
2 and f−1[Z′

1]∩ f−1[Z′
2] = O. Then by

almost z-density, there exists an F ∈ ZS(M) such that f−1[F ] = L and Z′
1 ∩Z′

2 ∩F = O. Thus, Z′
1 and

Z′
2 ∩F are disjoint zero sublocales of M such that Z1 ⊆ f−1[Z′

1] and Z2 ⊆ f−1[Z′
2 ∩F ].
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The following result was proven in [9, 7.2.3] in terms of C-, coz-onto and almost coz-codense
quotients. Our formulation via sublocales and localic maps comes closer to that in classical topology.

Corollary 3.4.4. A sublocale S of L is C-embedded if and only if it is z-embedded and it is completely
separated from every zero sublocale disjoint from it.

Remark 3.3.1 (3) and Proposition 3.4.3 yield immediately:

Corollary 3.4.5. Let f be an almost z-dense localic map. Then the following are equivalent:

(i) f is a C-map.

(ii) f is a C∗-map.

(iii) f is a z-map.

If Z is a zero sublocale of a locale L the embedding j : Z ↪→ L is always an almost z-dense
sublocale, because every two disjoint zero sublocales are completely separated (Remarks 2.7.4 (2) and
3.1.4 (3)). Hence, we have:

Corollary 3.4.6. Let L be a locale. The following are equivalent for any zero sublocale Z of L:

(i) Z is C-embedded in L.

(ii) Z is C∗-embedded in L.

(iii) Z is z-embedded in L.

The next result gives a class of sublocales where z-embedded implies C-embedded. First, recall
that a sublocale S of L is Gδ -dense if T ̸= O implies T ∩S ̸= O for every Gδ -sublocale T of L.

Proposition 3.4.7. Let S be a Gδ -dense sublocale of L. If S is z-embedded, then it is C-embedded.

Proof. Let S be a z-embedded Gδ -sublocale of L. We use Corollary 3.4.4 to show that S is C-embedded.
If S∩Z = O, then Z = O because Z is Gδ (Proposition 2.7.8 (1)) and S is Gδ -dense. Then S and Z are
clearly completely separated in L.

The following theorem generalizes [9, Theorem 8.3.3] and [31, Proposition 4.11], but when
working with general localic maps one looses the equivalent condition of M being a normal frame.
Trivilally, the equivalent conditions (i),(ii) and (iii) of Theorem 3.4.8 imply that M is normal, but not
the other way around. For example, L(R) is a normal frame, the localic map 1∗ : L(R)→ L(R) is
closed, but it is clearly not a C- and C∗-map.

L(R) id //

̸∃

  

L(R)

L(R).

1

OO
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Theorem 3.4.8. The following assertions are equivalent for a locale M:

(i) Every closed localic map with codomain M is a z-map.

(ii) Every closed localic map with codomain M is a C∗-map.

(iii) Every closed localic map with codomain M is a C-map.

Proof. (iii) =⇒ (ii) =⇒ (i) is trivial because

C-map =⇒ C∗-map =⇒ z-map.

(i) =⇒ (iii): Consider a closed localic map f : L → M. By assumption it is a z-map; we will use
Proposition 3.4.3 in order to prove that it is a C-map. It suffices to show that f is almost z-dense so
consider Z ∈ ZS(M) such that f−1[Z] = O. Since f [L] is a closed sublocale of M we have

f [L]∩Z# (∗)
= f [L]∖Z

(∗∗)
= f [L∖ f−1[Z]] = f [L∖O] = f [L]

((∗) holds because Z and f [L] are closed, hence complemented; in (∗∗) we use the fact that f [−] is a
colocalic map).The equality above shows that f [L] ⊆ Z#, hence f [L]∩Z = O. Consider the closed
sublocale T = f [L]∨Z of M. The localic embedding j : T ↪→ M is closed and, by hypothesis, it is a
z-map. Therefore T is z-embedded in M. Note that T ∩ f [L] = ( f [L]∨Z)∩ f [L] = f [L] and

T ∩Z# = ( f [L]∨Z)∩Z# = f [L]∩Z# = f [L].

This means that f [L] is both closed and open in T . Consequently, by Proposition 2.7.8 (3), f [L] is both
a zero and a cozero sublocale of T . Since T is z-embedded in M, there exists Z′ ∈ ZS(M) such that
T ∩Z′ = f [L]. Then f [L]⊆ Z′, that is, L = f−1[Z′]. Moreover,

Z′∩Z = Z′∩ (Z ∩T ) = (Z′∩T )∩Z = f [L]∩Z = O,

which shows that f is almost z-dense.

Corollary 3.4.9. The following assertions are equivalent for a locale L:

(i) Every closed sublocale of L is z-embedded in L.

(ii) Every closed sublocale of L is C∗-embedded in L.

(iii) Every closed sublocale of L is C-embedded in L.

3.5 Classes of Localic Maps Defined by the Behaviour of Their Images
on Zero Sublocales

So far we have discussed classes of localic maps defined by conditions on the behavior of their
preimages on zero and cozero sublocales. In this section, inspired by [79], we introduce similar classes
of localic maps defined by conditions on the behavior of their images on zero and cozero sublocales.
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Definition 3.5.1. Let f : L → M be a localic map. We say that f is

(a) z-closed if f [Z] is a closed sublocale of M for every Z ∈ ZS(L);

(b) coz-open if f [C] is an open sublocale of M for every C ∈ CoZS(L);

(c) z-open if f [Z]⊆ f [C]◦ for every Z ∈ ZS(L) and every C ∈ CoZS(L) such that Z ⊆C;

(d) z-preserving (resp. coz-preserving) if the image of every zero (resp. cozero) sublocale is a zero
(resp. cozero) sublocale.

Remarks 3.5.2. (1) The σ -coframe homomorphism f z
−1[−] : ZS(M)→ ZS(L) has a left adjoint if and

only if f is z-preserving, and the σ -frame homomorphism f coz
−1 [−] : CoZS(M)→ CoZS(L) has a right

adjoint if and only if f is coz-preserving.

(2) Clearly, any open or any coz-preserving map is coz-open. Similarly, any closed or z-preserving
localic map is z-closed.

(3) If f is z-closed and coz-open, then it is z-open.

(4) Recall (1.4.12). We have

Z ⊆C ⇐⇒ Z ∩C# = O and f [Z]⊆ f [C]◦ ⇐⇒ f [Z]∩ ( f [C]◦)# = f [Z]∩ f [C]# = O

for any Z ∈ ZS(L) and C ∈ CoZS(L). Therefore, f is z-open if and only if for any disjoint Z1,Z2 ∈
ZS(L), the sublocales f [Z1] and f [Z#

2 ]
# are also disjoint.

The following result was proved in [44, 6.3.2].

Proposition 3.5.3. Let f : L → M be a localic map. If L is completely regular and f is coz-open, then
f is open.

We can prove a similar result for z-open maps:

Proposition 3.5.4. Let f : L → M be a localic map. If L is completely regular and f is z-open, then f
is open.

Proof. Let o(a) be an open sublocale of L. By complete regularity, o(a) =
∨
{o(b) | b≺≺ a}. More-

over, by [44, 5.4.2], the sublocales c(a) and o(b) are completely separated, that is, there exist
Zb ∈ ZS(L) and Cb ∈ CoZS(L) such that o(b)⊆ Zb ⊆Cb ⊆ o(a). Hence, by the z-openness of f ,

f [o(b)]⊆ f [Zb]⊆ f [Zb]⊆ f [Cb]
◦ ⊆ f [Cb]⊆ f [o(a)].

Finally, taking joins we obtain

f [o(a)] = f
[∨

{o(b) | b≺≺ a}
]
=

∨
{ f [o(b)] | b≺≺ a} ⊆

∨
{ f [Cb]

◦ | b≺≺ a} ⊆ f [o(a)],

which shows that f [o(a)] is a join of open sublocales of M, hence open.
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Summing up, we have the following diagram depicting the relations among the mentioned classes
of maps

z-open
CR

'/ open
+3
coz-open

CR
ks

+z-closedmu

coz-preserving

2:
CR

/7

(3.5.1)

(where CR indicates that we need to assume complete regularity in the domain of the localic map).

Proposition 3.5.5. Let f : L → M be a localic map. If for any completely separated sublocales S and
T of L, f [S] and f [T #]# are completely separated in M, then f is z-open.

Proof. Let Z1 and Z2 be disjoint zero sublocales of L. By assumption, f [Z1] and f [Z#
2 ]

# are com-
pletely separated in M. In particular, f [Z1] and f [Z#

2 ]
# are disjoint sublocales hence f is z-open by

Remark 3.5.2 (4).

The converse holds under complete regularity:

Theorem 3.5.6. The following are equivalent for a localic map f : L → M with completely regular
domain:

(i) f is z-open.

(ii) If S and T are completely separated sublocales of L, then f [S] and f [T #]# are completely
separated in M.

Proof. Let f be a z-open map. If S and T are completely separated sublocales of L, they are contained
in disjoint zero sublocales Z1 and Z2. Clearly, in order to show that f [S] and f [T #]# are completely
separated, it suffices to show that so are f [Z1] and f [Z#

2 ]
#.

By Proposition 2.7.3, there exists a continuous g′ : L(R) → S(L)op, with 0 ≤ g′ ≤ 1 such that
Z1 = g′(0,�) and Z2 = g′(�,1). From Proposition 3.5.4, we know that f is open. Hence, f ∗ has
a left adjoint φ such that f [o(a)] = o(φ(a)) for any a ∈ L. We have the following diagram

L(R)
g //

g′

$$

L

cL[−]

��

φ

⊥
!!

f

99 M
f ∗

⊥
oo

cM [−]

��
S(L)op

f [−] //
S(M)op

f−1[−]
oo

where the left triangle and the square f−1[−]cM[−] = cL[−] f ∗ commute.
For each r ∈Q let

Cr = g′(−,r)# = oL(g(−,r)) and Fr = g′(r,−) = cL(g(r,�)).
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Clearly, Cr ∈CoZS(L) and Fr ∈ ZS(L). If r < s then g′(r,�)∨g′(�,r) = L and g′(r,�)∩g′(�,s) =O.
Hence, by (1.4.2), Cr ⊆ Fr ⊆Cs, and, since f is z-open,

f [Cr]⊆ f [Fr]⊆ f [Cs]
◦ = f [Cs] (3.5.2)

for every r < s. Consider further the following family of open sublocales of M (r ∈Q):

Ur =


O if r < 0

f [Cr] if 0 ≤ r ≤ 1

M if r > 1.

Since every Ur is complemented and Ur ⊆Us for every r < s, it is easy to see that (Ur)r∈Q is a descend-
ing scale in S(M)op. By Proposition 2.6.5, it generates a frame homomorphism h : L(R)→ S(M)op

given by
h(p,−) =

⋂
r>p

f [Cr] and h(−,q) =
⋂
s<q

f [Cs]
#.

Clearly, h(�,q) is closed for every q ∈Q and, by (3.5.2)

h(p,�) =
⋂

r′>p

f [Cr′ ]⊆
⋂

r′>p

f [Cr′ ]⊆
⋂
r>p

f [Cr] = h(p,�).

So h(p,�) is closed for every p ∈ Q and h is continuous. Note that h is also bounded, since
h(�,0)∩h(1,�) = M. We claim that h completely separates f [Z1] and f [Z#

2 ]
# in M. Indeed:

h(�,1) =
⋂
s<1

f [Cs]
# =

⋂
s<1

f [oL(g(�,s))]# =
⋂
s<1

oM(φ(g(�,s)))#

=
⋂
s<1

cM(φ(g(�,s))) = cM

(
φ

(
g
(∨

s<1

(�,s)
)))

= cM(φ(g(�,1)))

= oM(φ(g(�,1)))# = f [oL(g(�,1))]# = f [g′(�,1)#]# = f [Z#
2 ]

#.

Notice that we are using the fact that φ and g, being left adjoints, preserve arbitrary joins. Moreover,

h(0,�) =
⋂
0<r

f [Cr]
(∗)
⊇

⋂
0<s

f [Cs] =
⋂
0<s

oM(φ(g(�,s))) =
⋂
0<s

cM(φ(g(�,s))∗)

(∗∗)
=

⋂
0<s

cM( f (g(�,s)∗)) = cM

(
f
(∨

0<s

g(�,s)∗
)) (∗∗∗)

⊇ cM( f (g(0,�)))

⊇ f [cL(g(0,�))] = f [g′(0,�)] = f [Z1]

where (∗) follows from (3.5.2), (∗∗) from (1.5.4), and (∗∗∗) holds since g(�,s)∗ ≤ g(0,�) (because
g(0,�)∨g(�,s) = 1) for every s > 0.

We get a similar result by replacing the condition on the domain with normality on the codomain.
For proving it, we need to recall that in normal locales, disjoint closed sublocales are always completely
separated (Proposition 2.7.13).



3.5 Classes of Localic Maps Defined by the Behaviour of Their Images on Zero Sublocales 59

Proposition 3.5.7. The following are equivalent for a localic map f : L → M with normal M:

(i) f is z-open.

(ii) If S and T are completely separated sublocales of L, then f [S] and f [T #]# are completely
separated in M.

Proof. Assume that f is z-open. As in Theorem 3.5.6, it suffices to show (ii) for Z1 and Z2 disjoint
zero sublocales of L. Since Z1 ⊆ Z#

2 , we have, by hypothesis, f [Z1] ⊆ f [Z#
2 ]

◦. Hence f [Z1] and
( f [Z#

2 ]
◦)# = f [Z#

2 ]
# are disjoint closed sublocales and since M is normal, they are completely separated.

In particular, f [Z1] and f [Z#
2 ]

# are completely separated.

Proposition 3.5.8. Let f : L → M be a localic map between subfit locales, with L normal. Then f is
z-open if and only if it is open and closed.

Proof. By (3.5.1), if f is open and closed then it is z-open. Conversely, let f be z-open. Since L is
completely regular, we know by Proposition 3.5.4 that f is open. To prove that it is also closed, let
cL(a) ⊆ L and let cM(b) = f [cL(a)]. It suffices to show that cM(b) ⊆ f [cL(a)]. We will proceed by
contradiction.

If cM(b) ⊈ f [cL(a)], then, by (1.4.2), f [cL(a)]∨ oM(b) ̸= M, and since M is subfit there would
exist some cM(d) ̸= OM in M such that ( f [cL(a)]∨ oM(b))∩ cM(d) = OM (see Proposition 1.4.2).
Then, f [cL(a)]⊆ f [cL(a)]∨oM(b)⊆ oM(d) and, consequently, cL(a)⊆ f−1[oM(d)] = oL( f ∗(d)). This
would mean that cL(a) and cL( f ∗(d)) are disjoint closed sublocales, hence completely separated (by
the normality of L). It then would follow, by Theorem 3.5.6, the existence of Z1,Z2 ∈ ZS(M) such that

f [cL(a)]⊆ Z1, f [oL( f ∗(d))]# ⊆ Z2, and Z1 ∩Z2 = OM. (3.5.3)

Indeed, cM(d)⊆ f [oL( f ∗(d))]# ⊆ Z2 since

cM(d)∩ f [oL( f ∗(d))] = cM(d)∩oM(φ( f ∗(d)))⊆ cM(d)∩oM(d) = OM

(where φ denotes the left adjoint of f ∗ provided by the openness of f ). Moreover, by (3.5.3),

f [cL(a)]⊆ cM(b)⊆ Z1 ⊆ Z#
2 ⊆ oM(d)

Then we would get M = oM(b)∨ cM(b)⊆ oM(d), contradicting the fact that cM(d) is nonempty.





Chapter 4

Forms of Normality and z-Embeddings

Asking for certain classes of sublocales of a locale to be z-embedded gives rise to characterizations of
certain types of locales. For example, a locale L is normal if every closed sublocale is z-embedded. In
Section 4.1 we will add other characterizing conditions of normality in terms of z-embeddings. Next,
in Section 4.2 we analyze for which classes of closed sublocales would a characterization of this type
still hold, and what conditions should be imposed. In particular, we obtain a general result that implies
characterizations for normal and mildly normal locales. Finally, we make a recap of all the frames that
can be characterized via classes of z-embedded sublocales (Section 4.3).

4.1 Normality via z-Embeddings

There are several well-known characterizations of normal locales in terms of complete separation, C-,
C∗- and z-embedded sublocales. These results have been studied as a consequence of the insertion
theorem for normal frames (Theorem 2.7.12 and Propositions 2.7.13 and 2.7.14), or in the context
of frame quotients ([9, Theorem 8.3.3] and [31, Proposition 4.11]). For the sake of completeness,
we gather all of these characterizing conditions of normality into Theorem 4.1.1 and present a proof
which uses only the tools we have discussed so far. Later in this section, we add new equivalent
conditions inspired by those that appear in classical topology (see [2, Theorem 7.15]). This section is
based on the author’s published article with Jorge Picado [6].

Theorem 4.1.1. The following statements are equivalent for a locale L

(i) L is normal.

(ii) Every pair of disjoint closed sublocales is completely separated in L.

(iii) Every closed sublocale of L is C-embedded.

(iv) Every closed sublocale of L is C∗-embedded.

(v) Every closed sublocale of L is z-embedded.

Proof. (iii) ⇐⇒ (iv) ⇐⇒ (v) is precisely Corollary 3.4.9.
(i) =⇒ (ii): Let c(a) and c(b) be disjoint sublocales of L. Then a∨b = 1. By assumption, there are

61
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u,v∈ L such that a∨u= 1= b∨v and u∧v= 0. Hence, u≤ v∗ and v≤ u∗, meaning a∨v∗ = 1= b∨u∗.
Thus, v ≺ a and u ≺ b. In fact, since L is normal, we have v ≺≺ a and u ≺≺ b (Proposition 1.3.3).
Recall that from Remark 2.3.7 (2) there is c ∈ Coz L such that v ≺≺ c ≺≺ a. By Proposition 2.7.5, we
have that o(c) is completely separated from c(a). Now, o(v)⊆ o(c) and c(b)⊆ o(v) because b∨v = 1.
Thus, c(b) is completely separated from c(a) in L, as required.
(ii) =⇒ (i): Let a∨b = 1. Then c(a) and c(b) are disjoint sublocales of L. By assumption, there are
Z1,Z2 ∈ ZS(L) such that Z1 ∩Z2 = O, c(a) ⊆ Z1 and c(b) ⊆ Z2. Since Coz L is a normal σ -frame,
there are u,v ∈ Coz L such that u∧ v = 0, Z1 ⊆ o(u) and Z2 ⊆ o(v). Consequently, a∨u = 1 = b∨ v
as required.
(ii) =⇒ (iv): Let cL(a) be a closed sublocale of L. To show that it is C∗-embedded we will use
Corollary 3.3.9. Let S and T be sublocales of cL(a) completely separated in cL(a). Then there are
Z1,Z2 ∈ ZS(cL(a)) such that Z1 ∩Z2 = O, S ⊆ Z1 and T ⊆ Z2. Since Z1 and Z2 are closed sublocales
of a closed sublocale cL(a), then Z1 and Z2 are disjoint closed sublocales of L. By assumption there
are D1,D2 ∈ ZS(L) such that D1 ∩D2 = O, Z1 ⊆ D1 and Z2 ⊆ D2. In particular, S ⊆ D1 and T ⊆ D2,
which prove that S and T are completely separated in L. With a similar argument one could prove the
implication (ii) =⇒ (v).
(iv) =⇒ (ii): Let a,b ∈ L such that cL(a)∩ cL(b) = O. Consider the closed sublocale M := cL(a)∨
cL(b) = cL(a∧b). Note that cL(a) and cL(b) are zero sublocales of cL(a∧b). Indeed, since cL(a)∩
cL(b) = O,

cL(a) = oL(b)∩ cL(a) = oL(b)∩ (cL(a)∨ cL(b)) = oL(b)∩M, and

cL(b) = oL(a)∩ cL(b) = oL(a)∩ (cL(b)∨ cL(a)) = oL(a)∩M.

Consequently, cL(a) and cL(b) are clopen in cL(a∧b). By Proposition 2.7.8 (3), they are disjoint zero
sublocales of cL(a∧ b). By assumption, cL(a∧ b) is C∗-embedded so from Corollary 3.3.9 we can
conclude that cL(a) and cL(b) are completely separated in L, as required.

Other direct proofs of some of the equivalences in the theorem above can be found in the lit-
erature. For example, (i) ⇐⇒ (ii) is a corollary of Urysohn’s Separation Lemma ([66, XIV.7.5.1]),
and (i) ⇐⇒ (iv) is a consequence of Tietze’s Extension Theorem ([66, XIV.7.6.1]). Instead of the
proof given above, one could show the equivalence between conditions (i) and (ii) and (v) avoiding
conditions (iii) and (iv). This work will be presented in detail in Section 4.2.

Now, we would like to enlarge the list of characterizations of normal frames in Theorem 4.1.1, by
adding conditions in terms of Fσ -sublocales and Fσ -generalized sublocales. We say that a sublocale
S ∈ S(L) is an Fσ -generalized sublocale if whenever S ⊆ oL(a) for some a ∈ L, there is an Fσ -
sublocale F such that S ⊆ F ⊆ oL(a). Clearly, every closed sublocale is Fσ , and every Fσ -sublocale is
Fσ -generalized.

Lemma 4.1.2. In a normal locale, every Fσ -sublocale is z-embedded.

Proof. Let S be an Fσ -sublocale of L, say S =
∨

∞
n=1 cL(an). Consider a zero sublocale Z = g(0,�) in

S for some g ∈ C∗(S) with 0 ≤ g ≤ 1. Let cL(b) be the closure of Z in L. Note that, since cL(b) is the
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closure in L of g(0,�), cL(b)∩S = g(0,�). Furthermore, consider for each n = 1,2, . . .

Tn = cL(an)∨ cL(b) = cL(an ∧b)

and gn : L(R)→ S(Tn)
op defined by

gn(p,�) =


O if p < 0

cL(b)∨ (g(p,�)∩ cL(an)) if 0 ≤ p < 1

cL(b)∨ cL(an) if p ≥ 1

and

gn(�,q) =


cL(b)∨ cL(an) if q ≤ 0

g(�,q)∩ cL(an) if 0 < q ≤ 1

O if q > 1.

Let us confirm that this defines a frame homomorphism, by checking that it turns relations (r1)–(r6)
into identities in the frame S(Tn)

op:

(r1): gn(p,�)∨gn(�,q) = cL(b)∨ cL(an) whenever p ≥ q.
The only nontrivial case is when 0 ≤ p < 1 and 0 < q ≤ 1 where we have

gn(p,�)∨gn(�,q) = (cL(b)∨ (g(p,�)∩ cL(an)))∨ (g(�,q)∩ cL(an))

= cL(b)∨ (cL(an)∩ (g(p,�)∨g(�,q)) = cL(b)∨ (cL(an)∩S)

= cL(b)∨ cL(an).

(r2): gn(p,�)∩gn(�,q) = O whenever p < q.
The only nontrivial case is when 0 ≤ p < 1 and 0 < q ≤ 1 and we have

gn(p,�)∩gn(�,q) = (cL(b)∨ (g(p,�)∩ cL(an)))∩ (g(�,q)∩ cL(an))

= (cL(b)∩g(�,q)∩ cL(an))∨ (g(p,�)∩ cL(an)∩g(�,q))

= (cL(b)∩g(�,q)∩ cL(an)∩S)∨O
= g(0,�)∩g(�,q)∩ cL(an) = O.

(r3):
⋂

r>p gn(r,�) = gn(p,�).
For the only nontrivial case, when 0 ≤ p < 1, we have⋂

r>p
gn(r,�) = cL(b)∨

⋂
1>r>p

(g(r,�)∩ cL(an))

= c(b)∨ (g(p,�)∩ cL(an)) = gn(p,�).

Note that the second equality holds since g is a frame homomorphism and g ≤ 1.
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(r4):
⋂

s<q gn(�,s) = gn(�,q).
For the only nontrivial case 0 < q ≤ 1 we have⋂

s<q
gn(�,s) =

⋂
0<s<q

(g(�,s)∩ cL(an)) = g(�,q)∩ cL(an) = gn(�,q)

(the second equality holds since g is a frame homomorphism and 0 ≤ g).

(r5):
⋂

p∈Q gn(p,�) = O is clear.

(r6):
⋂

q∈Q gn(�,q) = O is also obvious.

In order to see that gn is continuous for every n it suffices to check that g(p,�)∩ cL(an) and g(�,q)∩
cL(an) are closed sublocales in Tn for every 0 ≤ p < 1 and 0 < q ≤ 1. Regarding the former, since g is
continuous, g(p,�) is closed in S and thus there is a d ∈ L such that cL(d)∩S = g(p,�). Hence

(cL(d)∩ cL(an))∩ (cL(an)∨ cL(b)) = (cL(d)∩ cL(an))∨ (cL(d)∩ cL(an)∩ cL(b))

= (g(p,�)∩ cL(an))∨ (g(p,�)∩ cL(an)∩g(0,�))

= (g(p,�)∩ cL(an))∨ (cL(an)∩g(0,�))

= cL(an)∩ (g(p,�)∨g(0,�)) = g(p,�)∩ cL(an).

Similarly, if cL(d)∩S = g(�,q) we have

(cL(d)∩ cL(an))∩ (cL(an)∨ cL(b)) = (cL(d)∩ cL(an))∨ (cL(d)∩ cL(an)∩ cL(b))

= (g(�,q)∩ cL(an))∨ (g(�,q)∩ cL(an)∩g(0,�))

= (g(�,q)∩ cL(an))∨O= g(�,q)∩ cL(an).

By Theorem 4.1.1 we know that Tn is C-embedded in L. Consequently, there are fn ∈C(L) (n= 1,2, . . .)
such that ( jn)−1[−] fn = gn where jn is the localic embedding of Tn in L. Take

F =
∞⋂

n=1

( fn(0,�)∩ fn(�,0)) ∈ ZS(L).

We claim that F ∩S = Z. First note that

gn(0,�)∩gn(�,0) = (cL(b)∨ (g(0,�)∩ cL(an)))∩ (cL(b)∨ cL(an))

= cL(b)∨ ((cL(b)∨ (g(0,�)∩ cL(an)))∩ cL(an))

= cL(b)∨ (cL(b)∩ cL(an))∨ (cL(an)∩g(0,�))

= cL(b)∨ (cL(an)∧g(0,�)) = (cL(b)∨ cL(an))∩ (cL(b)∨g(0,−))

= (cL(b)∨ cL(an))∩ cL(b) = cL(b).

Hence
g(0,�)⊆ cL(b) = gn(0,�)∩gn(�,0)⊆ fn(0,�)∩ fn(�,0)
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for every n. Therefore, g(0,�)⊆ F ∩S. For the converse inclusion we have

F ∩S =
∨

n∈N
F ∩ cL(an)⊆

∨
n∈N

fn(0,�)∩ fn(�,0)∩ cL(an)

=
∨

n∈N
fn(0,�)∩ fn(�,0)∩ cL(an)∩Tn =

∨
n∈N

gn(0,�)∩gn(�,0)∩ cL(an)

=
∨

n∈N
cL(b)∩ cL(an) = cL(b)∩S = g(0,�)

where the first and the last equalities hold by (1.4.4), since F and cL(b) are closed sublocales (hence,
complemented). We have shown that an arbitrary zero sublocale of S is the intersection of S with a
zero sublocale in L. In conclusion, S is z-embedded in L.

Lemma 4.1.3. If S is a sublocale of L with the property that whenever S ⊆ o(a) there is a normal
(resp. normal and z-embedded) sublocale F such that S ⊆ F ⊆ o(a), then S is normal (resp. normal
and z-embedded).

Proof. First we show the statement that does not involve z-embedded sublocales. To prove that S
is normal it suffices to show, by Theorem 4.1.1, that every closed sublocale of S is z-embedded. So
let F := cS(a) be a closed sublocale of S, and A := cF(b) ∈ ZS(F). Since every zero sublocale is Gδ

(recall Proposition 2.7.8(1)), cF(b) =
⋂

n∈N oF(bn) with bn ∈ F for n ∈ N. We have that

S∩ cL(a∨b∨bn) = F ∩ cL(b)∩ cL(bn) = A∩ cF(bn) = O

where the last equality holds because A ⊆ oF(bn). Thus, S ⊆ oL(a∨b∨bn). By assumption, for every
n ∈ N, there is a normal sublocale Tn of L such that S ⊆ Tn ⊆ oL(b∨bn ∨a). Furthermore, cL(b)∩Tn

and cL(a∨bn)∩Tn are disjoint closed sublocales of Tn; indeed,

cL(b)∩Tn ∩ cL(a∨bn)⊆ cL(b∨a∨bn)∩oL(b∨a∨bn) = O.

Since Tn is normal (Theorem 4.1.1 (ii)), cL(b)∩Tn and cL(a∨bn)∩Tn are completely separated in Tn,
so for every n ∈ N there is Zn ∈ ZS(Tn) such that

cL(b)∩Tn ⊆ Zn and Tn ∩ cL(a∨bn)∩Zn = O. (4.1.1)

For every n ∈ N, Zn ∩ S is a zero sublocale in F because S is a sublocale of Tn. Consider the zero
sublocale Z = S∩

⋂
n∈N Zn =

⋂
n∈N(S∩Zn) of S. We claim that A = Z ∩ S, which shows that F is

z-embedded in S. Indeed, since

A ⊆ F ⊆ S and A = cL(b)∩F ⊆ cL(b)∩S ⊆ cL(b)∩Tn ⊆ Zn

for every n ∈ N, we have A ⊆ Z ∩ S. For the other inclusion note that, from (4.1.1), we have that
Tn ∩ cL(a)∩Zn ⊆ oL(bn), then

Zn ∩F = Zn ∩Tn ∩ cL(a)∩F ⊆ oL(bn)∩F = oF(bn)
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where the first equality holds since F ⊆ cL(a) and F ⊆ Tn. Thus,

Z ∩F = F ∩
⋂

n∈N
S∩Zn =

⋂
n∈N

F ∩Zn ⊆
⋂

n∈N
oF(bn) = A.

For the assertion involving z-embedded sublocales (the one inside parenthesis) there is only left to
show that S is z-embedded. Let A = cS(b) be a zero sublocale of S. Then A is a Gδ -sublocale of S,
that is, A =

⋂
n∈N oS(bn) for some bn ∈ S. Consider the open sublocales oL(b∨bn) for n ∈ N. Since

cS(b)⊆ oS(bn) we have

S∩ cL(b∨bn) = S∩ cL(b)∩ cL(bn) = cS(b)∩ cS(bn) = O.

Hence S ⊆ oL(b∨bn). By assumption, for each n ∈ N there is a normal and z-embedded sublocale Tn

such that S ⊆ Tn ⊆ oL(b∨bn). Note that cL(b)∩Tn and cL(bn)∩Tn are disjoint; indeed

cL(b)∩Tn ∩ cL(bn)⊆ cL(b∨bn)∩oL(b∨bn) = O.

By the normality of Tn (Theorem 4.1.1 (ii)), cL(b)∩Tn and cL(bn)∩Tn are then completely separated
in Tn. Consequently, there is a Zn ∈ ZS(Tn) such that

Tn ∩ cL(b)⊆Cn and Tn ∩ cL(bn)∩Cn = O.

On the other hand, by z-embeddedness of Tn, there is a Z′
n ∈ ZS(L) such that Tn ∩Z′

n = Zn. Finally,
consider the zero sublocale

⋂
n∈N Z′

n. We claim that A = S∩
⋂

n∈N Z′
n. The inclusion ‘⊆’ is clear

because
A ⊆ S and A ⊆ cL(b)∩Tn ⊆Cn ⊆C′

n

for every n. Conversely,

S∩
⋂

n∈N
Z′

n = S∩
⋂

n∈N
(Z′

n ∩Tn) = S∩
⋂

n∈N
Zn

(∗)
⊆ S∩

⋂
n∈N

oL(bn) =
⋂

n∈N
oS(bn) = A.

where (∗) holds because Tn ∩ cL(bn)∩Zn = O. Hence Zn = Tn ∩Zn ⊆ oL(bn).

Proposition 4.1.4. Let L be a normal frame. If S is an Fσ -generalized sublocale of L, then it is normal
and z-embedded.

Proof. We will use Lemma 4.1.3 to show that S is normal and z-embedded. Let S ⊆ oL(a). Then there
is an Fσ -sublocale F =

∨
n∈N cL(an) such that S ⊆ F ⊆ oL(a). By Lemma 4.1.2, F is z-embedded. In

order to show that F is normal consider T a closed sublocale of F . Then T = cL(b)∩F for some
b ∈ F . Moreover,

T = cL(b)∩F = cL(b)∩
∨

n∈N
cL(an) =

∨
n∈N

cL(b∨an)

where the third equality holds by (1.4.4). This shows that T is an Fσ -sublocale of L so, by Lemma
4.1.2, it is z-embedded. In particular, T is z-embedded in F . Hence, by Theorem 4.1.1 (v), F is normal.



4.2 Variants of Normality and z-Embeddings 67

This proposition implies immediately Proposition 6.4 of [41]:

Corollary 4.1.5. An Fσ -sublocale of a normal locale is normal.

Theorem 4.1.6. The following statements about a locale L are equivalent:

(i) L is normal.

(ii) Every Fσ -generalized sublocale of L is z-embedded in L.

(iii) Every Fσ -sublocale of L is z-embedded in L.

(iv) For any closed sublocale F of L and any zero sublocale Z of L, F ∨Z is z-embedded in L.

(v) For any closed sublocale F of L and any zero sublocale Z of L such that F ∩Z = O, F ∨Z is
z-embedded in L.

(vi) Every closed sublocale of L is z-embedded in L.

Proof. (i) =⇒ (ii) follows from Proposition 4.1.4.
(ii) =⇒ (iii) is trivial.
(iii) =⇒ (iv): It is clear since F ∨Z, being a closed sublocale, is an Fσ -sublocale.
(iv) =⇒ (v) is obvious.
(v) =⇒ (i): It is simply Theorem 4.1.1 (v).

4.2 Variants of Normality and z-Embeddings

As discussed in Section 4.1, normality can be characterized in terms of C-,C∗- and z-embeddings.
Similar results hold for some weaker forms of normality as e.g. mild normality. We will present now
some general results that cover and unify all such characterizations under a single proof. Besides, the
setting will allow us to identify general conditions under which this kind of characterizations may
hold.

Definition 4.2.1. A selection function on sublocales S is a function which assigns to each locale L a
subset SL of S(L).

In this Section we will only work with closed selection functions on sublocales; that is, a selection
function S given by

SL = {c(a) | a ∈ sL}

where s is a function which assigns to each locale L a subset sL of L. We say that the sublocales in
SL are the S-closed sublocales of L. Accordingly, we say that L is completely separated S-normal
(briefly, c. s. S-normal) if every two disjoint S-closed sublocales of L are completely separated in L.

The standard examples for S are given by selecting respectively all elements, regular elements,
cozero elements, δ -elements and δ -regular elements.1 In the sequel, these classes will be denoted as

S1, Sreg, Scoz, Sδ , Sδ reg (4.2.1)

1An a ∈ L is a δ -element [62] if a =
∨
{x ∈ L | x is regular,x ≤ a}; it is a δ -regular element if a =

∨
∞
n=1 an for some

an ≺ a (we may assume that each an is regular, since an ≺ a implies a∗∗n ≺ a, hence any δ -regular element is a δ -element);
see [43] for more information.
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respectively.
Given a closed selection S, a locale L is called S-normal [43] whenever a∨b = 1 for a,b ∈ sL

implies the existence of u,v ∈ sL such that u∧ v = 0 and a∨ u = 1 = v∨ b. It will be useful to
introduce the following (formally) weaker variant of this notion: we say that a locale L is weakly
S-normal whenever a∨b = 1 for a,b ∈ sL implies the existence of u,v ∈ L such that u∧ v = 0 and
a∨u = 1 = v∨b. Of course, translated to sublocales, a frame is S-normal (resp. weakly S-normal) if
any pair of disjoint S-closed sublocales can be separated by disjoint S-open2 (resp. open) sublocales.
Clearly, since Coz L is a normal σ -frame, any c. s. S-normal locale is weakly S-normal.

Examples 4.2.2. Notice that S1-normality and weak S1-normality are just standard normality, while
weak Sreg-normality is precisely the definition of mild normality ([62]), and it coincides with Sreg-
normality. In fact, when sL contains all regular elements, S-normality is equivalent to weak S-
normality because in any frame (more generally, any distributive pseudocomplemented algebra [43,
Proposition 1.4]), u∧ v = 0 if and only if u∗∗∧ v∗∗ = 0. This is also the case of Sδ .
Moreover, since Coz L is a normal σ -frame, Scoz-normality is a property satisfied by any locale.

The fact that ≺ interpolates in normal locales, and thus ≺ = ≺≺ , plays an important role in
the proof that a locale is normal if and only if every pair of disjoint closed sublocales is completely
separated. Certainly, the following conditions on a locale L might also play some role if we want to
obtain similar results for other variants of normality:

(I) For every a,b ∈ sL, if a ≺ b then there is a c ∈ sL such that a ≺ c ≺ b.

(II) For every a ∈ L and b ∈ sL, if a ≺ b then there is a c ∈ sL such that a ≺ c ≺ b.

(wI) For every a,b ∈ sL, if a ≺ b then a≺≺ b.

(wII) For every a ∈ L and b ∈ sL, if a ≺ b then a≺≺ b.

(wI’) For every a,b ∈ sL, if a ≺ b then there is a c ∈ Coz L such that a ≺ c ≺ b.

(wII’) For every a ∈ L and b ∈ sL, if a ≺ b then there is a c ∈ Coz L such that a ≺ c ≺ b.

Clearly, we have:
(II)

��

+3 (wII)

��

+3 (wII’)

��
(I) +3 (wI) +3 (wI’)

Remark 4.2.3. If L is a S-normal (resp. weakly S-normal) locale and satisfies (wI) (resp. (wII)) then
L is c. s. S-normal. Indeed, if a,b ∈ sL are such that a∨ b = 1 then there are u,v ∈ sL (resp. in L)
such that u∧v = 0 and a∨u = 1 = v∨b. This implies a∨v∗ = 1 meaning v ≺ a. By (wI) (resp. (wII)),
v≺≺ a. Thus, from Proposition 2.7.5, c(a) is completely separated from o(v). Because c(b)⊆ o(v),
then c(a) and c(b) are also completely separated in L.

2A sublocale S of L is S-open if S = o(a) for some a ∈ sL.
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Summing up, we have

weakly S-normal

under (wII)

��

S-normal

.6

under (wI)

)1 c. s. S-normal

KS

Consider now the following further conditions on a selection S:

(s1) If a,b ∈ sL then a∧b ∈ sL.

(s2) If a ∈ sL and b ∈ scL(a), then b ∈ sL.

(s3) If a,b ∈ Coz L are such that a∨ b = 1, then there are u,v ∈ sL such that v ≤ a, u ≤ b and
u∨ v = 1.

When a selection function S satisfies all of them, we say that S is an adequate selection. E.g. S1 and
Sreg are examples of adequate selections.

Proposition 4.2.4. Let S be a selection with property (s2). If L is a weakly S-normal locale, then
cL(a) is weakly S-normal for every a ∈ sL.

Proof. Let S and T be disjoint S-closed sublocales of cL(a) for some a ∈ sL. By (s2), S and T are
S-closed sublocales of L. By assumption, there are open sublocales oL(x) and oL(y) of L such that
S ⊆ oL(x) and T ⊆ oL(y). Thus, S ⊆ oL(x)∩ cL(a) and T ⊆ oL(y)∩ cL(a) where o(x)L ∩ cL(a) and
o(y)L ∩ cL(a) are open sublocales of cL(a).

Proposition 4.2.5. Let S be a selection with properties (s2) and (s3). If L is completely separated
S-normal, then every S-closed sublocale of L is C∗-embedded in L.

Proof. Let cL(a) be a S-closed sublocale of L. We will use Corollary 3.3.9 to show that cL(a) is
C∗-embedded. Let Z1 and Z2 be disjoint zero sublocales of cL(a). By (s3) there are disjoint S-closed
sublocales D1 and D2 of cL(a) such that Z1 ⊆ D1 and Z2 ⊆ D2. Since (s2) holds, D1 and D2 are
S-closed in L. Because L is c. s. S-normal, D1 and D2 are completely separated in L, and so are Z1

and Z2.

Proposition 4.2.6. Let S be a selection with properties (s2) and (s3). Consider the following
statements for a locale L:

(1) For every pair of disjoint S-closed sublocales c(a) and c(b) of L there is a zero sublocale Z
such that c(a)⊆ Z and c(b)⊆ Z#.

(2) Every S-closed sublocale of L is z-embedded in L.

Then (1) =⇒ (2).
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Proof. Let cL(a) be a S-closed sublocale. We will use Corollary 3.2.5 (iii) to prove that cL(a) is
z-embedded. It suffices to take disjoint zero sublocales instead of general completely separated
sublocales (recall Remark 2.7.4(2)). Let Z1 and Z2 be disjoint zero sublocales of cL(a). By (s3) there
are disjoint S-closed sublocales D1 and D2 of c(a) such that Z1 ⊆ D1 and Z2 ⊆ D2. Since (s2) holds,
D1 and D2 are S-closed in L. Finally, by assumption, there is a zero sublocale Z of L such that Z1 ⊆ Z
and Z2 ⊆ Z#.

Corollary 4.2.7. Let S be a selection satisfying (s2) and (s3). If L is completely separated S-normal,
then every S-closed sublocale of L is z-embedded in L.

The following proposition gives a sufficient condition for weak S-normality that only requires
property (s1); hence it covers also the selections Sδ and Sδ reg.

Proposition 4.2.8. Let S be a selection with property (s1). If L is a locale in which every S-closed
sublocale is z-embedded, then L is weakly S-normal.

Proof. Let cL(a) and cL(b) be disjoint S-closed sublocales of L. Consider the sublocale M = cL(a)∨
cL(b) = cL(a∧b). By (s1), M is S-closed in L. Then the sublocales cL(a) and cL(b) are clopen in M;
indeed cL(a) = cL(a)∩M, cL(b) = cL(b)∩M and, since cL(a)∩ cL(b) = O,

cL(a) = oL(b)∩ cL(a) = oL(b)∩ (cL(a)∨ cL(b)) = oL(b)∩M,

cL(b) = oL(a)∩ cL(b) = oL(a)∩ (cL(b)∨ cL(a)) = oL(a)∩M.

Consequently (recall Proposition 2.7.8 (3)), cL(a) and cL(b) are disjoint cozero sublocales of M. By
assumption, M is z-embedded so from Corollary 3.2.3 (iv) we know that there are disjoint cozero
sublocales oL(v) and oL(u) in L such that

oL(u)∩oL(v) = O, cL(a)⊆ oL(u) and cL(b)⊆ oL(v),

as required.

Proposition 4.2.9. Let S be a selection with properties (s2) and (s3). If L is a weakly S-normal
locale and (wII’) holds, then every S-closed sublocale of L is z-embedded.

Proof. To prove that every S-closed sublocale is z-embedded we will show that condition (1) of
Proposition 4.2.6 holds. Let c(a) and c(b) be disjoint S-closed sublocales. Then a∨b = 1. Since L
is weakly S-normal, there are u,v ∈ L such that u∧ v = 0 and a∨u = 1 = b∨ v. This implies v ≺ a.
By (wII’), there is a c ∈ Coz L such that v ≺ c ≺ a. In particular, c ≤ a, which means c(a) ⊆ c(c).
Furthermore, v∗ ∨ c = 1 so v ≤ v∗∗ ≤ c. Hence, 1 = v∨ b ≤ c∨ b, that is, c(b) ⊆ o(c) = c(c)# as
required.

Corollary 4.2.10. Let S be an adequate selection. If (wII’) holds on a locale L, then L is weakly
S-normal if and only if every S-closed sublocale is z-embedded.

Mimicking the proof of Proposition 4.2.9, we can show a similar result for S-normality:
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Proposition 4.2.11. Let S be a selection with properties (s2) and (s3). If L is an S-normal locale
and (wI’) holds, then every S-closed sublocale is z-embedded.

Putting together all the results above we obtain the following theorems:

Theorem 4.2.12. Let S be an adequate selection. Consider the following statements for a locale L:

(1) Any pair of disjoint S-closed sublocales of L are completely separated in L (i.e. L is completely
separated S-normal).

(2) Every S-closed sublocale of L is C∗-embedded.

(3) Every S-closed sublocale of L is z-embedded.

(4) L is weakly S-normal.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4).

Theorem 4.2.13. Let S be an adequate selection. The following statements are equivalent for any
locale L with property (wII):

(i) Any pair of disjoint S-closed sublocales of L are completely separated in L (i.e. L is completely
separated S-normal).

(ii) Every S-closed sublocale of L is C∗-embedded.

(iii) Every S-closed sublocale of L is z-embedded.

(iv) L is weakly S-normal.

Theorem 4.2.14. Let S be an adequate selection. Consider the following statements for a locale L
with property (wI):

(1) L is S-normal.

(2) Any pair of disjoint S-closed sublocales of L are completely separated in L (i.e. L is completely
separated S-normal).

(3) Every S-closed sublocale of L is C∗-embedded.

(4) Every S-closed sublocale of L is z-embedded.

(5) L is weakly S-normal.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5).

In the standard example S=S1, an important fact is that Coz L ⊆ sL. For a general S, we do
not have necessarily Coz L ⊆ sL, but we need cozero elements to behave “normally” with respect to
sL in order to get the converses. For this we consider the following condition on L:

(D) For every a,b ∈ Coz L such that a∨b = 1 there are u,v ∈ sL such that u∧ v = 0 and a∨u = 1 =

b∨ v.
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Note that if (D) holds and L is c. s. S-normal, then L is S-normal. Hence:

Theorem 4.2.15. Let S be an adequate selection. The following statements are equivalent for any
locale L with properties (wII) and (D):

(i) L is S-normal.

(ii) Any pair of disjoint S-closed sublocales of L is completely separated in L (i.e., L is completely
separated S-normal).

(iii) Every S-closed sublocale of L is C∗-embedded.

(iv) Every S-closed sublocale of L is z-embedded.

(v) L is weakly S-normal.

Remarks 4.2.16. (1) If Coz L ⊆ sL, then clearly (D) holds. Furthermore, in this case we can add one
more equivalent statement to Theorem 4.2.15, namely:

(iv) Every S-closed sublocale of L is C-embedded.

Indeed, let c(a) be a S-closed sublocale. If L is c. s. S-normal then c(a) is C∗-embedded. From [6,
6.2] it suffices to show that c(a) is completely separated from every zero sublocale disjoint form it,
but this is immediate since Coz L ⊆ sL and L is c. s. S-normal.
This assertion can also be added to Theorems 4.2.12 (between statements (1) and (2)) and 4.2.13
whenever Coz L ⊆ sL.

(2) On the other hand, the property that sL contains the set L∗ of regular elements is equivalent to the
following condition (by the property that u∧ v = 0 if and only if u∗∗∧ v∗∗ = 0):

(DC) For every a,b ∈ L such that a∧b = 0 there are u,v ∈ sL such that u∧ v = 0, a ≤ u and b ≤ v.

(DC) is stronger than (D): Indeed, let a,b ∈ Coz L with a∨b = 1. Since Coz L is a normal σ -frame,
there are a′,b′ ∈ Coz L such that a′∧b′ = 0 and a′∨a = 1 = b′∨b. By (DC), there are u,v ∈ sL such
that u∧ v = 0, a′ ≤ u and b′ ≤ v. Hence a∨u = 1 = a∨ v, as required.
This means that if L is c. s. S-normal then it is S-normal. Furthermore, if L is S-normal then (I) holds.
Indeed, if a,b ∈ sL are such that a ≺ b then a∗∨b = 1, and since a∗ ∈ L∗ ⊆ sL, there are u,v ∈ sL such
that u∧ v = 0 and a∗∨u = 1 = b∨ v; thus, a ≺ u and u ≺ b, as required. Hence, L is c. s. S-normal.
Together with Examples 4.2.2 this shows that whenever sL contains all regular elements, the notions
of c. s. S-normality, weak S-normality and S-normality are equivalent.

4.3 Frames in Which Special Sublocales are z-Embedded

As its title suggests, this section was inspired by Blair’s paper [20], where the author characterizes
some classes topological spaces in terms of z-embedded sets. In the previous two sections we charac-
terized types of frames where closed (or subclasses of closed) sublocales are z-embedded. Here we
will discuss frames where other type of sublocales are z-embedded. Many of the results presented
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in [20] were already studied point-freely, but they are scattered around in the literature and rarely
formulated in terms of sublocales. Thus, we provide here a survey that gathers most of the results that
characterize frames where certain type of sublocales are z-, C-, or C∗-embedded. Proofs will only be
included when they are missing in the literature.

Following [40], we say that a frame a L is perfect if every open sublocale is an Fσ -sublocale.

Remarks 4.3.1. (1) A space X is perfect if and only if Ω(X) is a perfect frame ([40, Proposition 3.4]).

(2) Notice that, in general, perfectness is not equivalent to the condition that every closed sublocale is
Gδ (Remark 1.4.1). In fact, in [40] the authors discuss in depth these two notions. They call a frame
Fσ -perfect (resp. Gδ -perfect) if every open sublocale is Fσ (resp. if every closed sublocale is Gδ ).
They show that Gδ -perfectness is not a conservative extension of topological perfectness, making
Fσ -perfectness the only convenient way to define perfectness in the point-free setting. Nevertheless,
under normality the two concepts coincide ([40, Proposition 3.7]).

(3) Every perfect locale is subfit (see [40]).

A frame L is perfectly normal if for each a ∈ L there is a subset {bn}n∈N ⊆ L such that a =
∨

n∈N bn

and bn ≺ a for every n ∈ N. An element a of this form is called regular Fσ -element. This definition is
taken from [39] where more details on perfectly normal locales can be found.

Probably more useful then the definition itself is the following characterization of perfect normality
[39, Proposition 4.2]:

Proposition 4.3.2. The following are equivalent for a frame L:

(i) L is perfectly normal.

(ii) L is normal and each closed sublocale is Gδ .

(iii) L is normal and perfect.

(iv) Coz L = L.

Remarks 4.3.3. (1) Every perfectly normal frame is completely regular. This is obvious from Propo-
sition 4.3.2 (iv) and Corollary 2.3.8.

(2) Note that condition (iv) of Proposition 4.3.2 in terms of sublocales asserts that every closed
sublocale of L is a zero sublocale. Equivalently, every open sublocale of L is a cozero sublocale.

(3) The frame L(R) is perfectly normal. This can be easily checked by noticing that every open set
in the real line is a countable union of open intervals. Thus, every open set is a cozero set. This will
provide, by Proposition 4.3.6 below, examples of sublocales of L(R) that are z-embedded but not
C∗-embedded.

Proposition 4.3.4. [39, Proposition 4.3] Any sublocale of a perfectly normal frame is perfectly normal.
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Now we recall that a frame L is completely normal ([33] or [48]) if for every pair of sublocales
S and T of L such that S∩T = O= S∩T , there are open sublocales U and V of L such that S ⊆U ,
T ⊆V and U ∩V = O.

The following characterization [33, Theorem 3.7] will then allow us to compare some of these
notions.

Proposition 4.3.5. The following are equivalent for a frame L:

(i) L is completely normal.

(ii) Every sublocale of L is normal (that is, L is hereditary normal).

(iii) Every open sublocale of L is normal.

One can show that perfect normality implies complete normality (Proposition 4.3.6), but before
showing this let us define the weaker notion of weak perfect normality. By mimicking the clas-
sical notion in [20], we say that a frame L is weakly perfectly normal if every sublocale of L is
z-embedded.

Proposition 4.3.6. Every perfectly normal frame is weakly perfectly normal. Moreover, every weakly
perfectly normal frame is completely normal.

Proof. Let L be a perfectly normal frame. Consider S a sublocale of L and Z ∈ ZS(S). Since Z is
closed in S we have that Z = S∩ cL(a) for some a ∈ L. From Proposition 4.3.2 (iv), cL(a) is a zero
sublocale of L. Thus, S is z-embedded in L.
Now, let L be a weakly perfectly normal frame and S be a sublocale of L. We will show that S is
normal using Theorem 4.1.1 (v). So let and cS(a) be sublocale of S. Since L is weakly perfectly normal,
cS(a) and S are z-embedded in L. By Remark 3.1.2(3), cS(a) is also z-embedded in S, as required.

Remark 4.3.7. Regarding the converse of the first statement in Proposition 4.3.6, even in classical
topology, the situation is not clear. In [20], Blair shows that under the hypothesis of the existence
of measurable cardinals, there is a weakly perfectly normal space (of measurable power) that is not
perfectly normal. As far as we know, without this assumption the question of whether weak perfect
normality is weaker than perfect normality is still open.

Recall that a sublocale S of L is locally closed if it is the intersection of a closed sublocale with an
open sublocale. The following result is the point-free counterpart of [20, Proposition 4.11].

Proposition 4.3.8. The following are equivalent for a frame L:

(i) L is weakly perfectly normal.

(ii) Every locally closed sublocale of L is z-embedded in L.

(iii) Every open sublocale of L is normal and z-embedded in L.

(iv) L is completely normal and every open sublocale of L is z-embedded in L.
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Proof. Clearly (i) implies (ii). For (ii) =⇒ (iii) let o(a) be a sublocale of L. Trivially every open
sublocale is locally closed, so o(a) is z-embedded. To show it is also normal let F be a closed
sublocale of oL(a). It is locally closed in L, so F is z-embedded in L. By Remark 3.1.2 (3), it is also
z-embedded in oL(a). Hence, oL(a) is normal (recall Theorem 4.1.1 (v)). Implication (iii) =⇒ (iv)
follows immediately from Proposition 4.3.5 (iii). Finally, from Lemma 4.1.3, one can easily deduce
(iv) =⇒ (i).

Oz-frames were introduced in [15] (see also [12, 29]). The definition translated to our own
sublocale language says that a frame L is an Oz-frame if every open sublocale is z-embedded in L.
The following result gathers Propositions 2.2 and 2.3 of [12]. Here, we need to recall that a regular
closed (resp. regular open) sublocale (what we called Sreg-closed in Section 4.2) is a sublocale of L
of the form cL(a) (resp. oL(a)) with a ∈ L∗. Equivalently, by (1.4.10), a sublocale S is regular closed
(resp. regular open) if and only if S◦ = S (resp. S◦ = S).

Proposition 4.3.9. The following are equivalent for a frame L:

(i) L is an Oz-frame.

(ii) Every dense open sublocale of L is z-embedded in L.

(iii) Every regular closed sublocale is a zero sublocale.

(iv) Every regular open sublocale is a cozero sublocale.

(v) Every dense sublocale of L is z-embedded in L.

(vi) For every regular element a ∈ L, a∨a∗ is a cozero element.

(vii) For all a,b ∈ L with a∧b = 0, there are c,d ∈ Coz L such that a ≤ c, b ≤ d and c∧d = 0.

(viii) The sub σ -frame of L generated by L∗ is regular.

Remarks 4.3.10. (1) If L is Oz then every open, dense and regular closed sublocale of L is also Oz.
Indeed, one only needs to notice that an open (resp. dense) sublocale of an open (resp. dense) sublocale
of L is open (resp. dense) in L and use the definition of Oz-frame (resp. use Proposition 4.3.9 (v)).
For the regular closed sublocale one uses Proposition 4.3.9 (iii) and the fact that a regular closed
sublocale of a regular closed sublocale is regular closed (recall that in Section 4.2 we mentioned that
Sreg satisfies (s2)).

(2) Clearly, every weakly perfectly normal frame is Oz. Moreover, every Oz-frame is mildly normal
(see [62, Proposition 3.3.7]).

(3) In [40] the authors introduce the notion of a perfectly mildly normal (or pm-normal for short)
frame; that is, a frame where every regular element is regular-Fσ . Most important is the fact that
pm-normal frames are precisely Oz-frames ([40, Proposition 4.4]).

Note that conditions (iii) and (iv) of Proposition 4.3.9 are just saying that every regular element of
L is a cozero element (i.e., L∗ ⊆ Coz L). A weaker version of this is given in [12]: a frame L is weak
Oz if a∗ ∈ Coz L for each a ∈ Coz L (i.e., (Coz L)∗ ⊆ Coz L). In the language of sublocales, this means
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that o(a) ∈ ZS(L) for every o(a) ∈ CoZS(L). Equivalently, c(a)◦ ∈ CoZS(L) for every c(a) ∈ ZS(L).
The next proposition [12, Proposition 5.2] identifies when a weak Oz-frame is actually Oz.

Proposition 4.3.11. A weak Oz-frame L is Oz if and only if every regular element of L is equal to c∗

for some c ∈ Coz L (i.e., L∗ = (Coz L)∗).

Proposition 4.3.12. The following are equivalent for a frame L:

(i) L is a weak Oz-frame.

(ii) For any disjoint a ∈ L and b ∈ Coz L, there exists c ∈ Coz L such that a ≤ c and b∧ c = 0.

(iii) For any open sublocale o(a) of L, if o(a)⊆ Z for some Z ∈ ZS(L), then there is C ∈ CoZS(L)
such that oL(a)⊆C ⊆ Z.

(iv) For any open sublocale o(a) of L, if o(a)∩C =O for some C ∈CoZS(L), then there is Z ∈ZS(L)
such that C ⊆ Z and o(a)∩Z = O.

The previous characterization of weak Oz-frames is Proposition 5.3 in [12], but we added two
more conditions (iii) and (iv) which are only a formulation in terms of sublocales of (ii).

Inspired by a Remark in [20, p. 685], we say that a frame L is regularly normal if it is normal and
every regular closed sublocale is a Gδ -sublocale. We have:

Proposition 4.3.13. A frame L is regularly normal if and only if its open sublocales and its closed
sublocales are z-embedded in L.

Proof. Let L be regularly normal. In particular it is normal, so every closed sublocale is z-embedded
(Theorem 4.1.1 (v)). To show that every open sublocale is z-embedded we use Proposition 4.3.9 (iii).
Let S be a regular closed sublocale of L, that is, S = c(a∗) for some a ∈ L. By assumption, c(a∗) =⋂

n∈N o(an). Then for every n ∈ N we have that o(a) = c(a∗) ⊆ o(an). Thus, c(a∗) and c(an) are
disjoint closed sublocales. Since L is normal (Theorem 4.1.1 (ii)), there are Zn

1 ,Z
n
2 ∈ ZS(L) such that

c(a∗)⊆ Zn
1 , c(an)⊆ Zn

2 and Zn
1 ∩Zn

2 = O.

In particular, c(a∗)⊆ Zn
1 ⊆ (Zn

2)
# ⊆ o(an) for every natural number n. Hence,

c(a∗)⊆
⋂

n∈N
Zn

1 ⊆
⋂

n∈N
o(an) = c(a∗),

showing that c(a∗) is a zero sublocale of L.
The converse is immediate from Theorem 4.1.1 (v) and Proposition 4.3.9, since every zero sublocale
is a Gδ -sublocale.

Remark 4.3.14. Clearly, by Proposition 4.3.13 every weakly perfectly normal frame is regularly
normal, and every regularly normal frame is Oz.

A locale L is extremally disconnected if a∗∨a∗∗ = 1 for every a ∈ L; i.e., every regular element
of L is complemented (see [50, 65]). We put together some of the well-known characterizations of
extremal disconnectedness (see, for example, [69] and [9]) into the following proposition.
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Proposition 4.3.15. The following are equivalent for a frame L:

(i) L is extremally disconnected.

(ii) The interior of a closed sublocale of L is clopen.

(iii) The closure of an open sublocale of L is clopen.

(iv) Every open sublocale is C∗-embedded.

(v) Every dense sublocale is C∗-embedded.

(vi) Every open and dense sublocale is C∗-embedded.

(vii) Every pair of disjoint open sublocales of L is completely separated in L.

Remarks 4.3.16. (1) Note that extremal disconnectedness is a kind of dual notion of normality (more
details can be found in [43]).

(2) From condition (iv) it is clear why every extremally disconnected frame is Oz.

(3) In fact, we have that a frame is extremally disconnected if and only if it is Oz and for every
sublocale S that is a finite union of regular open sublocales, the localic embedding S ↪→ L is almost
z-dense ([12, Proposition 4.2]).

Furthermore, when a frame is extremally disconnected and completely normal we have:

Proposition 4.3.17. [33, Corollary 6.7] The following are equivalent for a frame L:

(i) L is completely normal and extremally disconnected.

(ii) Every sublocale of L is C∗-embedded.

A frame L is basically disconnected if a∗ ∨ a∗∗ = 1 for every a ∈ Coz L (every regular cozero
element is complemented) [9]. Every extremally disconnected frame is basically disconnected.

We have the following result ([9, 8.4.3] and [44, 7.1.1]):

Proposition 4.3.18. The following conditions are equivalent for a frame L:

(i) L is basically disconnected.

(ii) For all a ∈ Coz L and b ∈ L, a∧b = 0 implies a∗∨b∗ = L.

(iii) For every open sublocale o(a) of L and C ∈ CoZS(L), if o(a)∩C = O then they are completely
separated in L.

(iv) The closure of every cozero sublocale of L is open.

(v) The interior of every zero sublocale of L is closed.
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The first appearance of almost P-spaces (referred to as P′-spaces) was in [77] (see also [59]). In
the point-free setting, recall from [9] that a P-frame is a frame L where c∨c∗ = 1 for every c ∈ Coz L;
that is, every cozero element is complemented. Further, L is an almost P-frame if c = c∗∗ for every
c ∈ Coz L; i.e., every cozero element is regular (Coz L ⊆ L∗). Clearly, every P-frame is an almost
P-frame. The following proposition gathers the characterization for P-frames given in [9, Proposition
8.4.7], [44, Proposition 7.1.2] and [31, Proposition 4.9].

Proposition 4.3.19. The following are equivalent for a frame L:

(i) L is a P-frame.

(ii) L is a basically disconnected almost P-frame.

(iii) Every cozero sublocale is closed.

(iv) Every zero sublocale is open.

(v) Every cozero sublocale is C-embedded.

(vi) Every z-embedded sublocale is C-embedded.

(vii) For every sublocale S of L, S is completely separated form every zero sublocale disjoint form it
(i.e., the localic map S ↪→ L is almost z-dense for every S ∈ S(L)).

Remark 4.3.20. Notice that conditions (iii) and (iv) are actually saying that in a P-frame the classes of
zero sublocales and cozero sublocales do concide. Furthermore, from Proposition 2.7.8 (3), we have
that:

CoZS(L) = ZS(L) = {S ∈ S(L) | S is a clopen sublocale } .

For almost P-frames we have the following result ([44, Proposition 7.1.2] and [27, Proposi-
tion 3.3]):

Proposition 4.3.21. The following are equivalent for a frame L:

(i) L is an almost P-frame.

(ii) For every C ∈ CoZS(L), C =C◦, (i.e. every cozero sublocale is regular open).

(iii) For every Z ∈ ZS(L), Z = Z◦ (i.e., every zero sublocale is regular closed).

(iv) For every dense sublocale S of L, the localic embedding S ↪→ L is z-dense.

(v) Every dense z-embedded sublocale of L is C-embedded.

(vi) Every cozero dense sublocale of L is C-embedded.

Remark 4.3.22. By definition, a frame L is almost P and Oz if and only if L∗ = Coz L.

In classical topology the notion of F-spaces and F ′-spaces first appeared in [35] (see also [36]),
and quasi F-spaces were introduced in [25]. In [9] the authors studied the respective notions in point-
free topology: L is an F-frame (a quasi F-frame) if every (dense) cozero sublocale is C∗-embedded.
Further, a frame L is an F ′-frame if a∧b = 0 for a,b ∈ Coz L implies a∗∨b∗ = 1.
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Proposition 4.3.23. [9, Proposition 8.4.10] The following are equivalent for a frame L:

(i) L is an F-frame.

(ii) Disjoint cozero sublocales are completely separated in L.

(iii) For all a,b ∈ Coz L such that a∧b = 0 there exist c,d ∈ Coz L such that a∧ c = 0 = b∧d and
c∨d = 1.

Remarks 4.3.24. (1) It is not hard to see that F ′-frames are precisely those frames where the closure
of two disjoint cozero sublocales is also disjoint (use (1.4.10)).

(2) Clearly, every F-frame is a quasi F-frame and an F ′-frame.

(3) In [62] it is proved that every almost P-frame and every F ′-frame is a quasi F-frame.

(4) Any normal F ′-frame is an F-frame (this is clear using (1) and Theorem 4.1.1 (ii)). In fact, every
mildly normal F ′-frame is an F-frame [62, Proposition 3.3.8].

There are some more interesting facts regarding quasi F-, F- and F ′-frames in [9, Proposition
8.4.12] and [31, Lemma 4.4]. We formulate them here in terms of sublocales.

Proposition 4.3.25. [9, Proposition 8.4.12] Let L be an F-frame. Any C ∈CoZS(L) is also an F-frame.

Proposition 4.3.26. [31, Lemma 4.4] Let L be an F ′-frame, and let S a sublocale of L. If S is
z-embedded in L, then S is also an F ′-frame.

The following proposition puts together the characterizations [31, Proposition 4.8], [31, Propo-
sition 4.6] and [62, Corollary 4.2.22], so that we can see the connection between these types of
frames.

Proposition 4.3.27. Let L be a completely regular frame.

(1) L is an F-frame if and only if every z-embedded sublocale of L is C∗-embedded in L.

(2) L is an F ′-frame if and only if every z-embedded sublocale of L is C∗-embedded in its closure.

(3) L is a quasi F-frame if and only if every z-embedded dense sublocale of L is C∗-embedded in L.

The next two results (Propositions 4.1 and 5.4 in [12]) relate Oz- and weak Oz-frames with quasi
F-, F- and F ′-frames.

Proposition 4.3.28. The following are equivalent for an Oz-frame L:

(i) L is extremally disconnected.

(ii) L is an F-frame.

(iii) L is an F ′-frame.

(iv) L is a quasi F-frame.
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Proposition 4.3.29. The following are equivalent for a weak Oz-frame L:

(i) L is basically disconnected.

(ii) L is an F-frame.

(iii) L is an F ′-frame.

We conclude this chapter with a diagram depicting all the implications among the several types of
frames mentioned along the chapter.

Perfectly
normal

Every closed sublocale

is a zero sublocale.

Weakly perfectly
normal

Every sublocale is z-embedded.

Extremally
disconnected
Every open sublocale

is C∗-embedded.

Completely
normal

Every sublocale

is normal.

Regularly
normal

Every open and every closed

sublocale is z-embedded.

Oz
(pm-normal)
Every open sublocale

is z-embedded.

Basically
disconnected

Normal
Every closed sublocale

is z-embedded.

Mildly
normal

Every reg. closed sublocale

is z-embedded.

P-frames
Every cozero sublocale

is C-embedded.

F-frames
Every cozero sublocale

is C∗-embedded.

Every zero sublocale
is z-embedded.

Almost
P-frames

Every dense cozero sublocale

is C-embedded. F ′-frames

Quasi
F-frames

Every dense cozero sublocale

is C∗-embedded.

Lastly, we should remark that the locales where every zero sublocale is z-embedded have not yet
been characterized (see [4, Problem 10.1]), but this condition is definitely weaker than normality (see
[36, 8.20 and 8J]).



Chapter 5

Localic w-, n- and wz- Maps

Because of their relation with the localic maps studied in Section 3.5, in this chapter we study the
point-free counterpart of what is classically known as WZ-, WN- and N-maps. Continuous WZ-
maps were introduced by Isiwata in [49] (see also [79]). Later on, Woods extended this notion and
defined WN- and N-maps in [80]. Dube in [28] already translated the notion of a WN-map to frame
homomorphisms (he calls them W -maps, and we keep this name and write it in lowercase for the
respective localic maps) and characterized them in a very useful way ([28, Theorem 4.3]). Here we
will use this characterization to extend the classical notions of WZ-, WN- and N-maps to localic maps
that will be called wz-, w- and n-maps respectively. In fact, we will give a general definition which
encompasses all three notions, allowing us to obtain more general results than those found in the
literature. We should point out that classically the maps mentioned before are defined in terms of the
Čech-Stone compactification. We do not take this approach, and it is yet to be studied in the point-free
setting the connection of these maps to compactifications. The content of this Chapter is based on the
author’s published article [5].

5.1 Localic n- and w-Maps

In this section, we present a study for the localic counterpart of continuous N-maps and WN-maps
similar to the one of Woods in [80]. Both notions can be mimicked in the category of locales. The
WN-maps were already studied by Dube [28] in terms of frame homomorphisms, referred to as
W -maps; here we will call them w-maps.

Definition 5.1.1. A localic map f : L → M is

(a) a w-map if whenever an open sublocale oL(a) is completely separated from f−1[Z], for some
Z ∈ ZS(M), then there exists an open sublocale oM(b) such that oL(a)⊆ f−1[oM(b)], and oM(b)
is completely separated from Z.

(b) an n-map if whenever an open sublocale oL(a) is completely separated from f−1[cM(b)], for
some b ∈ M, then there exists an open sublocale oM(d) such that oL(a)⊆ f−1[oM(d)], and oM(d)
is completely separated from cM(b).

Clearly, every n-map is a w-map.

81
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We may unify both notions by defining the concept in terms of a selection function S on sublocales
(recall Definition 4.2.1). We will keep in mind the selections introduced in Section 4.2 (cf. (4.2.1));
they will be our guiding examples for the results and definitions below. But we will not assume our
selection to be closed; we will work with arbitrary selections on sublocales.

Definition 5.1.2. We say that a locale L is S-normally separated when every S ∈SL is completely
separated from every closed sublocale of L disjoint from it.
Accordingly, a localic map f : L → M is an S-map if whenever an open sublocale oL(a) is completely
separated from f−1[T ] for some T ∈SM, there exists an open sublocale oM(d) such that oL(a) ⊆
f−1[oM(d)], and oM(d) is completely separated from T .

Of course, S1-normally separated locales are just normal locales, and S1-maps are precisely the
n-maps.

The definition of a δ -normally separated frame was introduced in [30, 3.13]. Rephrasing it in
terms of sublocales and localic maps we have that a locale L is δ -normally separated if every zero
sublocale is completely separated from every closed sublocale disjoint from it (that is, if the embedding
cL(a) ↪→ L is almost z-dense for every a ∈ L). Hence, Scoz-normally separated locales are precisely
δ -normally separated locales, while Scoz-maps are just the w-maps.

Remark 5.1.3. Note that every P-frame is δ -normally separated (recall Proposition 4.3.19 (vii)).

Our first result shows that in S-normally separated locales M (and only in them), any closed,
z-closed, or proper map (Section 1.5) with codomain M is an S-map.

Theorem 5.1.4. Let S be a selection function on sublocales, and let M be a locale such that every
T ∈SM is complemented. The following are equivalent:

(i) M is S-normally separated.

(ii) Every z-closed localic map f : L → M is an S-map.

(iii) Every closed localic map f : L → M is an S-map.

(iv) Every proper localic map f : L → M is an S-map.

Proof. (i) =⇒ (ii): Let f : L → M be a z-closed localic map and take oL(a) and f−1[S] with S ∈SM
such that they are completely separated in L. Then there exists a zero sublocale cL(d) such that
oL(a)⊆ cL(d) and f−1[S]∩ cL(d) =O (which implies that cL(d)⊆ f−1[S]#). Taking images we obtain

f [oL(a)]⊆ f [cL(d)]⊆ f [ f−1[S]#] = f [ f−1[S#]]⊆ S#.

Note that the equality above holds because preimages preserve complements, and that the last
inclusion holds due to the adjunction between image and preimage. Hence, since S is complemented,
f [cL(d)]∩S=O and f [cL(d)] is closed (because f is z-closed). Then, since M is S-normally separated,
f [cL(d)] and S are completely separated in M and, using the fact that Coz M is a normal σ -frame,
there is a cozero sublocale oM(x), completely separated from S, such that f [cL(d)] ⊆ oM(x) (recall
Remark 2.7.6). In particular, f [oL(a)]⊆ oM(x). Hence oL(a)⊆ f−1[oM(x)], as required.
(ii) =⇒ (iii) =⇒ (iv) are trivial since every closed map is z-closed and every proper map is closed.
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(iv) =⇒ (i): Let cM(a) and S ∈ SM be disjoint sublocales of M. To prove that M is S-normally
separated we will show that cM(a) and S are completely separated in M. Consider the embedding
j : cM(a) ↪→ M. By assumption, since j is a proper map, it is an S-map. Consider cM(a) (which is
open in cM(a)) and j−1[S]; they are completely separated in cM(a) because j−1[S] = S∩ cM(a) = O.
Thus, there exists oM(d) such that cM(a)⊆ j−1[oM(d)] and oM(d) is completely separated from S in
M. In particular, cM(a) is completely separated from S in M, since cM(a) = j[cM(a)]⊆ oM(d).

Hence, we may conclude that any closed, z-closed or proper map is an n-map precisely when the
codomain is normal.

Corollary 5.1.5. The following are equivalent for a locale M:

(i) M is normal.

(ii) Every z-closed localic map f : L → M is an n-map.

(iii) Every closed localic map f : L → M is an n-map.

(iv) Every proper localic map f : L → M is an n-map.

On the other hand, for the selection S=Scoz we get:

Corollary 5.1.6. The following are equivalent for a locale M:

(i) M is δ -normally separated.

(ii) Every z-closed localic map f : L → M is a w-map.

(iii) Every closed localic map f : L → M is a w-map.

(iv) Every proper localic map f : L → M is a w-map.

We present one more unifying result that shows that under some assumptions on L and M, n-maps
f : L → M are S-closed, that is, f [S] is closed for every S ∈SL. Of course, for S=S1, S-closed
maps are the closed localic maps, and for S=Scoz, S-closed maps are the z-closed maps.
This result constitutes a further interesting example of the important role of subfitness in point-free
topology (cf. [69]).

Theorem 5.1.7. Let f : L → M be a localic n-map. If L is S-normally separated and M is subfit, then
f is S-closed.

Proof. Let S ∈SL and consider cM(b) = f [S]. Clearly, f [S]⊆ cM(b). To prove that f is S-closed it
suffices to show that cM(b) ⊆ f [S]. Suppose cM(b) ⊈ f [S]. Then oM(b)∨ f [cL(a)] ̸= M, by (1.4.2),
and, by a well-known characterization of subfit locales (Proposition 1.4.2), there is a closed sublocale
cM(d) ̸= O such that

(oM(b)∨ f [S])∩ cM(d) = O. (5.1.1)

Then f [S]⊆ oM(b)∨ f [S]⊆ oM(d). Taking preimages we obtain

S ⊆ f−1[ f [S]]⊆ f−1[oM(d)] = oL( f ∗(d)),
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from which it follows that S∩ cL( f ∗(d)) = O. Since L is S-normally separated, S and cL( f ∗(d)) are
completely separated in L. Therefore there are Z1,Z2 ∈ ZS(L) such that

S ⊆ Z1, cL( f ∗(d))⊆ Z2 and Z1 ∩Z2 = O.

In fact, since Coz L is a normal σ -frame, there is a cozero sublocale oL(y) such that S ⊆ Z1 ⊆ oL(y),
and oL(y) is completely separated from Z2 (recall Remark 2.7.6). In particular, oL(y) is completely
separated from cL( f ∗(d)) = f−1[cM(d)]. Since f is an n-map, there is oM(z) such that

S ⊆ Z1 ⊆ oL(y)⊆ f−1[oM(z)] (5.1.2)

and oM(z) is completely separated from cM(d) in M. Taking images in (5.1.2)) we deduce that
f [S]⊆ f [ f−1[oM(z)]]⊆ oM(z). So, in fact, f [S] is completely separated from cM(d) in M. In particular,
f [S] is completely separated from cM(d). Thus cM(b) = f [S]⊆ oM(d), and it follows from (5.1.1) that
oM(b) ⊆ oM(b)∨ f [S] ⊆ oM(d). Consequently, M = cM(b)∨ oM(b) ⊆ oM(d), which contradicts the
fact that cM(d) ̸= O. Hence, f [S] = cM(b)⊆ f [S], as required.

In particular, we have:

Corollary 5.1.8. Let f : L → M be a localic n-map with M a subfit locale.

(a) If L is normal, then f is closed.

(b) If L is δ -normally separated, then f is z-closed.

5.2 Localic wz-Maps

In this section we study wz-maps which are the point-free counterparts of continuous WZ-maps ([81]).
This notion in spaces is very much dependent on the points of a space. We extend it to locales by
selecting one-point sublocales in Definition 5.1.2. We will obtain results similar to those that appear
classically, and we will study how this selection interacts with separation axioms such as normality
and complete regularity.

Let Sp denote the sublocale selection given by

SpL = {b(p) | p ∈ Pt(L)} .

Sp-maps will be called wz-maps.
We show now that any completely regular locale is Sp-normally separated. To simplify terminol-

ogy, we say that a point p is completely separated from a sublocale T whenever the sublocales b(p)
and T are completely separated.

Proposition 5.2.1. In a locale L, every point is completely separated from every zero sublocale
disjoint from it.

Proof. Let c(a) ∈ ZS(L) such that b(p)∩ c(a) = O. Then b(p)⊆ o(a). By Proposition 2.7.8 (2) and
Remark 2.7.9,

o(a) =
∨

n∈N
o(bn) =

∨
n∈N

c(cn)
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where o(bn)⊆ c(cn) and cn ∈ Coz L for every n ∈ N. Since b(p)⊆ o(
∨

n∈N bn), we have

p =
( ∨

n∈N
bn

)
→ p =

∧
n∈N

(bn → p) .

Since p is prime, by (1.4.16), bn → p = 1 or bn → p = p, so there is a k ∈ N such that bk → p = p.
Therefore, b(p)⊆ o(bk)⊆ c(ck)⊆ o(a), as required.

In other words,

the localic embedding b(p) ↪→ L is almost z-dense for every p ∈ Pt(L).

Corollary 5.2.2. In a completely regular locale L, every point is completely separated from every
closed sublocale disjoint from it. That is, any completely regular locale is Sp-normally separated.1

Proof. Let c(a) be a sublocale of L such that b(p)∩ c(a) = O. Since L is completely regular, c(a) =⋂
{Z ∈ ZS(L) | c(a)⊆ Z} (Corollary 2.7.7 (ii)). Consequently, since p /∈ c(a), there is a Z ∈ ZS(L)

such that c(a)⊆Z and Z∩b(p)=O. By Proposition 5.2.1, c(a) and b(p) are completely separated.

Remark 5.2.3. Hence, in any completely regular locale L, for each p ∈ Pt(L) and every a ∈ L such that
a ≰ p, there is a continuous real-valued function f : L(R)→ L such that 0 ≤ f ≤ 1, b(p)⊆ f (0,�)
and c(a)⊆ f (�,1).

Recall covered prime elements from Section 1.2. A one-point sublocale b(p) is complemented if
and only if p is a covered prime ([34, Proposition 10.2]). Moreover, in regular locales every prime is
covered ([34, Proposition 10.3]). Hence, Sp satisfies the assumptions of Theorem 5.1.4 whenever the
codomain M is regular and we have:

Corollary 5.2.4. The following assertions are equivalent for a regular locale M:

(i) M is Sp-normally separated.

(ii) Every z-closed localic map f : L → M is a wz-map.

(iii) Every closed localic map f : L → M is a wz-map.

(iv) Every proper localic map f : L → M is a wz-map.

Moreover, applying Theorem 5.1.7 to the selection Sp we obtain:

Corollary 5.2.5. Let f : L → M be a localic n-map with M a subfit locale. If L is Sp-normally
separated, then f is a wz-map.

Let us investigate also the more general (boolean) selection Sb defined by

SbL = {b(x) | x ∈ L}.

Proposition 5.2.6. Each Sb-normally separated locale is normal and subfit.
1The converse does not hold since there are pointless locales that are not completely regular.
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Proof. Let L be a Sb-normally separated locale. If c(a)∩c(b) =O then b(a)∩c(b)⊆ c(a)∩c(b) =O.
By assumption, b(a) and c(b) are completely separated. By (1.4.15),

b(a) = c
(∧

b(a)
)
= c(a).

Hence c(a) and c(b) are also completely separated (recall Remarks 2.7.4 (4)). This means that every
pair of disjoint closed sublocales are completely separated, which characterizes normality.

Regarding subfitness, consider a,b ∈ L such that a ≰ b (equivalently, a → b ̸= 1). Given d = a →
b ≥ b, consider b(d) and c(a). Notice that if x ∈ b(d)∩ c(a), then x ≥ a and x = (x → d)→ d. Hence

a ≤ (x → d)→ d ⇐⇒ (x → d)∧a ≤ d

⇐⇒ x → d ≤ a → d = a → (a → b) = a → b = d

⇐⇒ 1 ≤ (x → d)→ d = x.

Thus, b(d)∩c(a)=O. Then, since L is Sb-normally separated, b(d) and c(a) are completely separated:
there exist x,y ∈ Coz L such that

b(d)⊆ c(x), c(a)⊆ c(y) and c(x)∩ c(y) = O.

This means that c(a)⊆ o(x), that is, a∨ x = 1. Moreover, x ≤ d and b ≤ d, hence x∨b ≤ d ̸= 1 and L
is subfit.

Summing up, since each subfit normal locale is completely regular (Proposition 1.3.4) we have:

Sb-norm. sep. +3 normal + subfit +3 c. regular +3 Sp-norm. sep.

We end this section with an example of z-embedded sublocales that are also C-embedded.

Proposition 5.2.7. Let f : L → M be a z-closed localic map with L and M completely regular locales.
For any p ∈ Pt(M), if f−1[b(p)] is z-embedded, then it is C-embedded.

Proof. Applying Corollary 3.4.4 to the localic embedding f−1[b(p)] ↪→ L, it suffices to show that
f−1[b(p)] is completely separated from every zero sublocale disjoint from it. So consider cL(a)∈ZS(L)
such that f−1[b(p)]∩ cL(a) = O. By the regularity of M, b(p) is complemented, hence f−1[b(p)] is
also complemented (since preimages preserve complements). Then

f−1[b(p)]∩ cL(a) = cL(a)∖ f−1[b(p)]# = cL(a)∖ f−1[b(p)#]

because f−1[−] is a coframe homomorphism. Furthermore, f [−] is a colocalic map hence

O= f [ f−1[b(p)]∩ cL(a)] = f [cL(a)∖ f−1[b(p)#]] = f [cL(a)]∖b(p)#

= f [cL(a)]∩b(p) = cM( f (a))∩b(p)

(where the last equality follows from f being z-closed). By Corollary 5.2.2, b(p) and cM( f (a)) are
completely separated in M. Then f−1[b(p)] and f−1[cM( f (a))] are completely separated in L. Since
cL(a)⊆ f−1[cM( f (a))], this completes the proof.
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5.3 Examples

In this final section we will present a class of examples of w- and n-maps, inspired by an example in
classical topology from [81, Section 2].

We will first build a certain frame Pa. Let L be a frame and a ∈ L. Consider the onto frame
homomorphism pa : L → c(a) given by x 7→ x∨a. Let 2 denote the two-element frame {0,1}. There
is a unique frame homomorphism ι : 2 → c(a). The frame Pa is given by the pullback

Pa
k //

h

��

2

ι

��
L

pa // c(a)

of morphisms ι and pa in the category of frames. Since the pullback is the equalizer of

L×2
pL // L

pa // c(a) and L×2
p2 // 2 ι // c(a)

(where pL and p2 are the product projections), Pa is explicitly the subframe of L×2 given by

Pa = {(x,0) ∈ L×2 | x ≤ a}∪{(x,1) ∈ L×2 | x∨a = 1},

and h = pLi and k = p2i (i being the subframe inclusion Pa ⊆ L×2).

Proposition 5.3.1. The cozero elements of Pa are precisely the (x,0) ∈ Pa with x ∈ Coz L, and the
(w,1) ∈ Pa with w ∈ Coz L such that c(w) is completely separated from c(a) in L.

Proof. Let (x,y) ∈ Coz Pa, then there exists a frame homomorphism f : L(R)→ Pa with 0 ≤ f ≤ 1
such that f (0,�) = (x,y). Consider the composite h f : L(R)→ L, then h f (0,�) = h(x,y) = x. Thus,
x ∈ Coz L. For the case when y = 0, we are done. Now, if y = 1 we have that x∨ a = 1. We claim
that h f (0,�)≤ x and h f (�, p)≤ a for some p > 0 (which implies that c(a) and c(x) are completely
separated in L). For a = 1 this trivially holds, so assume a ̸= 1 and suppose h f (p,�)∗ ≰ a for every
p > 0. Then pah f (p,�) = h f (p,�)∨ a ̸= 1. This implies that pah f (p,�) = h f (p,�) = a, since
pah = ιk. Then

x = h f (0,�) =
∨
p>0

h f (p,�) = a,

which contradicts the fact that x∨a = 1. Thus, there is some p > 0 such that h f (p,�)∗ ≤ a. Take a
rational q such that p > q > 0. Then h f (�,q)≤ h f (p,�)∗ ≤ a.

For the converse we have two cases:

(Case 1): (x,0) ∈ Pa and x ∈ Coz L.
Then x ≤ a, and there exists a frame homomorphism f : L(R)→ L such that f (0,�)∨ f (�,0) = x.
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Consider the constant function 0 : L(R)→ 2 (Example 2.1.2(1)). The following diagram commutes:

L(R) 0 //

f

��

2

ι

��
L

pa // c(a)

Indeed, if p < 0 < q we have 0(p,q) = 1, so ι0(p,q) = ι(1) = 1. Further,

1 = f (p,q)∨ f (0,�)∨ f (�,0) = f (p,q)∨ x

which implies

1 = pa(1) = pa( f (p,q)∨ x) = pa( f (p,q))∨ pa(x) = pa( f (p,q))∨a = pa( f (p,q)).

If p < q ≤ 0 or 0 ≤ p < q, then ι(0(p,q)) = ι(0) = a. Moreover, (p,q)≤ (0,�)∨ (�,0) so

pa f (p,q)≤ pa( f (0,�)∨ f (�,0)) = pa(x) = a.

Thus, by the universal property of the pullback, there exists a frame homomorphism f : L(R)→ Pa

such that the diagram

L(R)

f

��

f

##

0 // 2

Pa

hzz

k

==

L

commutes. Consequently,

h( f (0,�)∨ f (�,0)) = f (0,�)∨ f (�,0) = x and k( f (0,�)∨ f (�,0)) = 0((0,�)∨ (�,0)) = 0.

Thus, f (0,�)∨ f (�,0) = (x,0) meaning (x,0) ∈ Coz Pa.

(Case 2): (x,1) ∈ Pa with x ∈ Coz L such that c(x) is completely separated from c(a) in L.
In particular we have a∨ x = 1. As a consequence of the complete separation there is a frame
homomorphism f : L(R)→ L with 0 ≤ f ≤ 1 such that f (0,�) = x and f (�,1)≤ a. Consider the
diagram

L(R) 1 //

f

��

2

ι

��
L

pa // c(a)

where 1 : L(R) → 2 is the constant function (Example 2.1.2(1)). For p ≤ 1 we have f (�, p) ≤
f (�,1)≤ a so pa f (�, p) = a, and ι1(�, p) = ι(0) = a. For any p > 1, f (�, p) = 1 (because f ≤ 1
and 1(�, p) = 1). Thus, pa f (�, p) = 1 = ι1(�, p). For any p ≥ 1, ι1(p,�) = ι(0) = a. Further, since
f ≤ 1, f (p,�)≤ 1(p,�) = 0. Thus, pa f (p,�) = a. Now, for p < 1, ι1(p,�) = ι(1) = 1. If p ≤ 0,
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then x = f (0,�)≤ f (p,�), meaning 1 = x∨a ≤ pa f (p,�). If 0 < p < 1, consider k ∈Q such that
p < k < 1, then f (p,�)∨ f (�,k) = 1. Consequently,

1 = pa f (p,�)∨ pa f (�,k)≤ pa f (p,�)∨ pa(a) = pa f (p,�)∨a = pa f (p,�)

where the inequality holds because f (�,k)≤ f (�,1)≤ a. Thus, pa f (�, p)= ι1(�, p) and pa f (p,�)=
ι1(p,�) for every p ∈Q, which shows that the diagram above is commutative. Hence, by the universal
property of the pullback, there exists a frame homomorphism f : L(R)→ Pa such that

L(R)

f

��

f

##

1 // 2

Pa

hzz

k

==

L

commutes. We claim f (0,�)∨ f (�,0) = (x,1). Indeed,

k f ((0,�)∨ (�,0)) = 1(0,�)∨1(�,0) = 1∨0 = 1

h f ((0,�)∨ (�,0)) = f (0,�)∨ f (�,0) = x∨0 = x

where f (�,0) = 0, since f ≥ 0. In conclusion, (x,1) ∈ Coz Pa, as required.

Clearly, from Proposition 5.3.1 we know that if c(a) is completely separated from every zero
sublocale disjoint from it, then

Coz Pa = {(x,y) ∈ Pa | x ∈ Coz L}.

Consequently, we have:

Corollary 5.3.2. A frame L is δ -normally separated if and only if Coz Pa = {(x,y) ∈ Pa | x ∈ Coz L}
for every a ∈ L.

Regarding separation properties inherited from L to Pa we have the following results.

Proposition 5.3.3. Let a ∈ L.

(1) If L is subfit then Pa is subfit.

(2) If L is normal then Pa is normal.

Proof. (1): Let (x,y),(w,z) ∈ Pa with (x,y)≰ (w,z).

(Case 1): y = 1, x∨a = 1, z = 0 and w ≤ a.
Take (a,0) ∈ Pa. Clearly (a,0)∨ (x,y) = (1,1) but (a,0)∨ (w,z) = (a,0) ̸= (1,1).

(Case 2): y = z = 1 and x∨a = 1 = w∨a.
Since x ≰ w, there exists v ∈ L such that x∨ v = 1 ̸= w∨ v. Take (v∧a,0) ∈ Pa. Clearly, (x,y)∨ (v∧
a,0) = (1,1), but (w,z)∨ (v∧a,0)≤ (w∨ v,1) ̸= (1,1).
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(Case 3): y = 0, x ≤ a, z = 1 and a∨w = 1.
Since x ≰ w, there exists v ∈ L such that x∨ v = 1 ̸= w∨ v. Then (v,1) ∈ Pa since v∨a ≥ v∨ x = 1.
Clearly, (x,y)∨ (v,1) = (1,1), but (w,z)∨ (v,1) = (w∨ v,1) ̸= (1,1).

(Case 4): y = 0, x ≤ a, z = 0 and w ≤ a.
Since x ≰ w, there exists v ∈ L such that x∨ v = 1 ̸= w∨ v. Then (v,1) ∈ Pa since v∨a ≥ v∨ x = 1.
Clearly, (x,y)∨ (v,1) = (1,1), but (w,z)∨ (v,1) = (w∨ v,1) ̸= (1,1).

(2): Let (x,y),(w,z) ∈ Pa with (x,y)∨ (w,z) = (1,1).

(Case 1): y = 0, x ≤ a, z = 1 and a∨w = 1.
By hypothesis, there exist u,v ∈ L such that x∨u = 1 = w∨ v and u∧ v = 0. Then

(u,1) ∈ Pa and (x,0)∨ (u,1) = (1,1)

(since u∨a ≥ u∨ x = 1), and

(v∧a,0) ∈ Pa and (w,1)∨ (v∧a,0) = (1,1)

(since w∨ (v∧a) = (w∨ v)∧ (w∨a) = 1). Moreover, (u,1)∧ (v∧a,0) = (0,0) since u∧ v = 0.

(Case 2): y = z = 1 and x∨a = 1 = w∨a.
By hypothesis, there exist u,v ∈ L such that x∨u = 1 = w∨ v and u∧ v = 0. Then

(u∧a,0) ∈ Pa and (x,1)∨ (u∧a,0) = (1,1)

(since x∨ (u∧a) = (x∨u)∧ (x∨a) = 1), and

(v∧a,0) ∈ Pa and (w,1)∨ (v∧a,0) = (1,1)

(since w∨(v∧a) = (w∨v)∧(w∨a) = 1). Moreover, (u∧a,0)∧(v∧a,0) = (0,0) since u∧v= 0.

Since subfitness together with normality yield complete regularity (Proposition 1.3.4), we get:

Corollary 5.3.4. If L is normal and subfit, then Pa is completely regular for every a ∈ L.

Proposition 5.3.5. If Pa is completely regular then c(a) is completely separated in L from every closed
sublocale disjoint from it.

Proof. If Pa is completely regular then, for every (x,y) ∈ Pa

(x,y) =
∨

{(u,v) ∈ Coz Pa | (u,v)≤ (x,y)} .

If y = 1 then x∨a = 1. In this case notice that in the join above there must be a cozero element of the
form (z,1). Otherwise,

(x,y) =
∨

{(u,0) ∈ Coz Pa | u ≤ x and u ≤ a} ,
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and so (x,1)≤ (a,0), a contradiction. This means that there is a cozero element in Pa, say (z,1), such
that (z,1)≤ (x,1); in particular, z ≤ x. Furthermore, since (z,1) ∈ Coz Pa we know that c(z) and c(a)
are completely separated in L. Consequently, c(x) is completely separated from c(a) in L.

Proposition 5.3.6. If L is completely regular and c(a) is completely separated from every zero
sublocale of L disjoint from it, then Pa is completely regular.

Proof. Let c(a) be completely separated from every zero sublocale disjoint from it. By Proposi-
tion 5.3.1, we know that Coz Pa = {(x,y) ∈ Pa | x ∈ Coz L}. We will show that Pa is completely
regular by proving that it is join-generated by its cozero elements. Let (x,0) ∈ Pa. Then x ≤ a and
since L is completely regular

x =
∨

{c ∈ Coz L | c ≤ x} .

In particular, c ≤ a for every cozero element in the join above. This means that (c,0) ∈ Pa. Hence,

(x,0) =
∨

{(c,0) ∈ Coz Pa | (c,0)≤ (x,0)} .

Now, consider (x,1) ∈ Pa, that is, x∨a = 1. Since L is completely regular

x =
∨

{c ∈ Coz L | c ≤ x} .

In fact, we have the following

x =
∨

{c ∈ Coz L | c ≤ x} ≤
∨

{c ∈ Coz L | c ≤ x and (c ≤ a or c∨a = 1)} ≤ x

where the first inequality holds because if c(x) and c(a) are completely separated. Indeed, by Re-
mark 2.7.4 (2), there is w,v ∈ Coz L such that c(a) ⊆ c(w), c(x) ⊆ c(v) and c(w)∩ c(v) = O. So if
c ∈ Coz L such that c ≤ x, c∨a ̸= 1 and c ≰ a, we take c∨v ∈ Coz L and we have c∨v ≤ x, c ≤ c∨v,
and c∨ v∨a = 1. Now, since Coz Pa = {(x,y) ∈ Pa | x ∈ Coz L} we get

(x,1) =
∨

{(c,d) ∈ Coz Pa | (c,d)≤ (x,1)} .

Corollary 5.3.7. A completely regular frame L is normal if and only if Pa is completely regular for
every a ∈ L.

Proof. Let L be a completely regular frame. If Pa is completely regular for every a ∈ L, then by
Proposition 5.3.5, any pair of disjoint closed sublocales is completely separated in L. Thus, L is
normal. On the other hand, if L is normal, then every pair of disjoint closed sublocales is completely
separated (Theorem 4.1.1 (ii)). By Proposition 5.3.6, Pa is completely regular for every a ∈ L.

Finally, consider the localic map h∗ : L → Pa, right adjoint to h. To simplifiy notation we denote
h∗ by f .

Proposition 5.3.8. f : L → Pa is always a w-map.
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Proof. Let u ∈ L and (x,y) ∈ Coz Pa such that oL(u) and f−1[cPa(x,y)] are completely separated in L.
Then there exists v ∈ Coz L such that

oL(u)⊆ cL(v) and cL(v)∩ f−1[cPa(x,y)] = O. (5.3.1)

Note that f−1[cPa(x,y)] = cL(h(x,y)) = cL(x), and by Proposition 5.3.1, x ∈ Coz L. By construction of
Pa we have two cases:

(Case 1): y = 0. Thus, x = h(x,y)≤ a.
Furthermore, from (5.3.1), cL(v) and cL(x) are disjoint zero sublocales; thus, they are completely
separated in L. Since cL(a)⊆ cL(x), cL(a) and cL(v) are completely separated in L. By Proposition 5.3.1,
(v,1) ∈ Coz Pa. Moreover, (x,y)∨ (v,1) = (x∨ v,0∨ 1) = (1,1) meaning cPa(x,y) and cPa(v,1) are
completely separated in Pa. By Remark 2.7.6, there is a cozero sublocale oPa(x

′,y′) completely
separated from cPa(x,y) in Pa such that cPa(v,1)⊆ oPa(x

′,y′). Hence,

oL(u)⊆ cL(v) = cL(h(v,1)) = f−1[cPa(v,1)]⊆ f−1[oPa(x
′,y′)]

as required.

(Case 2): y = 1. Thus, x∨a = h(x,y)∨a = 1.
From Proposition 5.3.1, we know that cL(x) and cL(a) are completely separated in L. Hence, there is
z ∈ Coz L such that

cL(a)⊆ cL(z) and cL(z)∩ cL(x) = O. (5.3.2)

Consider the zero sublocale cL(z∧ v) of L. By (5.3.2), z∧ v ≤ a so (z∧ v,0) ∈ Coz L (by Proposi-
tion 5.3.1). Moreover,

(z∧ v,0)∨ (x,y) = ((z∧ v)∨ x,0∨1) = ((z∨ x)∧ (v∨ x),1) = (1,1)

where the last equalitly holds from (5.3.2) and (5.3.1). This means that cPa(z∧ v,0) and cPa(x,y) are
disjoint zero sublocales of Pa. By Remark 2.7.6, there is a cozero sublocale oPa(x

′,y′) of Pa completely
separated from cPa(x,y) such that cPa(z∧ v,0)⊆ oPa(x

′,y′). Finally, taking preimages we get

oL(u)⊆ cL(v)⊆ cL(z∧ v) = cL(h(z∧ v,0)) = f−1[cPa(z∧ v,0)]⊆ f−1[oPa(x
′,y′), ]

as required.

Remark 5.3.9. Note that (a,0) is a prime element of Pa. Indeed, (a,0) ̸= (1,1) and if (x,y)∧ (u,v)≤
(a,0), then y = 0 or v = 0. This means that x ≤ a or u ≤ a. Thus, (x,y)≤ (a,0) or (u,v)≤ (a,0).

Proposition 5.3.10. If Pa is completely regular then f : L → Pa is an n-map.

Proof. Let u ∈ L and (x,y) ∈ Pa such that oL(u) and f−1[cPa(x,y)] are completely separated in L. Then
there exists v,w ∈ Coz L such that

oL(u)⊆ cL(v), f−1[cPa(x,y)]⊆ cL(w) and cL(v)∩ cL(w) = O. (5.3.3)

Note that f−1[cPa(x,y)] = cL(h(x,y)) = cL(x). By definition of Pa we have two cases:
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(Case 1): y = 0. Thus, x = h(x,y)≤ a.
Furthermore, we have that w ≤ x ≤ a so (w,0)∈Coz Pa. From (5.3.3) we know that oL(u) and cL(w) =
cL(h(w,0)) = f−1[cPa(w,0)] are completely separated in L. Since f is a w-map (Proposition 5.3.8)
there is an open sublocale oPa(x

′,y′) completely separated from cPa(w,0) in Pa such that oL(u) ⊆
f−1[oPa(x

′,y′)]. In particular, since (w,0)≤ (x,y), cPa(x,y) is completely separated from oPa(x
′,y′) in

Pa.

(Case 2): y= 1. Thus, x∨a= x∨h(x,y) = 1. Since (a,0) is a prime element of Pa and (x,y) = (x,1)≰
(a,0), the sublocales bPa(a,0) and cPa(x,y) are disjoint. By Corollary 5.2.2, they are completely
separated; thus, there are (c,d),(c′,d′) ∈ Coz Pa such that

cPa(a,0)⊆ cPa(c,d), cPa(x,y)⊆ cPa(c
′,d′) and cPa(c,d)∩ cPa(c

′,d′) = O (5.3.4)

(we are using here Remark 2.7.4 (4) and the fact that bPa(a,0) = cPa(a,0)). This implies that d = 0
and c ≤ a. Therefore d′ = 1, since cPa(c,d) and cPa(c

′,d′) are disjoint. By Proposition 5.3.1, cL(c′)
and cL(a) are completely separated in L. Consider v∧ c,w∨ c′ ∈ L, and note that they are both cozero
elements of L. Since cL(w∨ c′)⊆ cL(w), the sublocale cL(w∨ c′) is also completely separated from
cL(a) in L. Then, by Proposition 5.3.1, (w∨c′,1)∈Coz Pa. Further, v∧c≤ c≤ a so (v∧c,0)∈Coz Pa.
Note that cPa(w∨ c′,1) and cPa(v∧ c,0) are disjoint zero sublocales of Pa; indeed

(v∧ c,0)∨ (w∨ c′,1) = ((v∧ c)∨w∨ c′,1) = ((v∨w∨ c′)∧ (c∨w∨ c′)),1) = (1,1)

because v∨w = 1 and c∨ c′ = 1. Using Remark 2.7.6 we obtain (x′,y′) ∈ Pa such that oPa(x
′,y′) is

completely separated from cPa(w∨ c′,1)in Pa and cPa(v∧ c,0) ⊆ oPa(x
′,y′). By (5.3.3) and (5.3.4)),

we get that (w∨ c′,1)≤ (x,y); thus, oPa(x
′,y′) is also completely separated from cPa(x,y). Finally, we

have
oL(u)⊆ cL(v)⊆ cL(v∧ c) = cL(h(v∧ c,0)) = f−1[cPa(v∧ c,0)]⊆ f−1[oPa(x

′,y′), ]

which concludes the proof.

Finally, putting together Corollary 5.3.4 and Proposition 5.3.10 we have:

Corollary 5.3.11. If L is normal and subfit, then f : L → Pa is an n-map for all a ∈ L.





Chapter 6

Covering Farness and Uniform
Continuity

In this chapter we study uniform continuity of real-valued functions on a preuniform frame. Our aim
is to characterize uniform continuity of such frame homomorphisms in terms of a farness relation
between elements in a frame, and then to derive from it a separation and an extension theorem for
real-valued uniform maps on uniform frames. The approach, purely order-theoretic, uses properties of
the Galois maps associated with the farness relation. As a byproduct, we identify sufficient conditions
under which a (continuous) scale in a frame with a preuniformity generates a real-valued uniform
map.

The content of this chapter is based on the author’s paper with Jorge Picado [7].

6.1 Background: Covers and Uniform Frames

In this section we present the general background needed to work with covering (pre)uniformities.
Our main references are [72] and [66].

Covers

A cover of a frame L is a subset U ⊆ L such that
∨

U = 1. A cover U refines (or is a refinement of) a
cover V , and we write U ≤V , if for every u ∈U there is some v ∈V such that u ≤ v. For covers U,V
we have the largest common refinement U ∧V = {u∧ v | u ∈U,v ∈V} .

For any U ⊆ L and any x ∈ L the star of x in U is the element of L

U · x =
∨

{u ∈U | u∧ x ̸= 0} . (6.1.1)

For any U,V ⊆ L, set
U ·V = {U · v | v ∈V} .

If U and V are covers, then U ·V is also a cover. One usually writes Ux and UV instead of U · x and
U ·V . Since this operator is neither commutative nor associative, we will use parenthesis when needed.

The following proposition lists some of the basic properties of these operators (see [66] or [72]).

95
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Proposition 6.1.1. For any covers U,V ⊆ L and any frame homomorphism h : L → M, we have:

(1) UV is a cover of L,

(2) x ≤Ux,

(3) Ux ≤ y implies x ≺ y,

(4) U ≤UU,

(5) U ≤V and x ≤ y imply Ux ≤V y,

(6) U(V x)≤ (UV )x =U(V (Ux)),

(7) U (
∨

i∈I xi) =
∨

i∈I Uxi,

(8) h[U ]h(x)≤ h(Ux).

For a cover U , define a cover Un for n ≥ 1 inductively by setting

U1 =U and Un+1 =UUn. (6.1.2)

Hence
Un+1 = {Ux | x ∈Un}, n = 1,2, . . . .

Clearly, from Proposition 6.1.1 (5), for any n ≥ 1, U ≤V implies Un ≤V n.
We shall need certain strengthenings of the notion of refinement of covers (see [51]). For covers

U,V we say that

(a) U is a star refinement of V , denoted by U ≤∗ V , if U2 ≤V .

(b) U is a barycentric refinement of V , denoted by U ≤∗
1 V , if there is a cover W of L with UW ≤V .

(c) U is a connected refinement of V , denoted by U ≤∗
2 V , if for all S ⊆U such that a∧b ̸= 0 for

all a,b ∈ S, there is a v ∈V with
∨

S ≤ v.

(d) U is a regular refinement of V , denoted by U ≤∗
3 V , if for all a,b ∈U with a∧b ̸= 0, there is a

v ∈V with a∨b ≤ v.

Clearly, (a) =⇒ (b) and (c) =⇒ (d). Moreover, (a) =⇒ (c). Indeed, if U ≤∗ V and /0 ̸= S ⊆U such that
a∧b ̸= 0 for all a,b ∈ S, then there is v ∈V such that

∨
S ≤

∨
{u ∈U | u∧ s ̸= 0}=Us ≤ v for some

s ∈ S. If S is empty the condition trivially holds; thus U ≤∗
2 V .

Furthermore, (b) =⇒ (d). If UW ≤ V and a,b ∈ U with a∧ b ̸= 0, since W is a cover of L there is
w ∈W such that a∧b∧w ̸= 0. In particular we have a∧w ̸= 0 and b∧w ̸= 0. Hence, a∨b ≤Uw ≤ v
for some v ∈V . Consequently, U ≤∗

3 V .
In conclusion, the star refinement is the strongest relation, and the regular refinement is the weakest
and it trivially implies ordinary refinement. Further, conditions (b) and (c) are generally unrelated,
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even classically, as displayed in the following diagram:

U ≤∗ V

u} !)
U ≤∗

1 V

!)

U ≤∗
2 V

u}
U ≤∗

3 V

��
U ≤V

.

Uniform Frames

Let U be a system of covers of a frame L and a,b ∈ L. The element a is uniformly below b, and we
write a ▹U b, if

∃U ∈ U : Ua ≤ b.

The following proposition lists some basic properties of the uniformly below relation (we refer to [72]
and [66] for the proofs).

Proposition 6.1.2. Let U (resp. V ) be a system of covers on L (resp. M). The following statements
hold:

(1) If h : L → M is a frame homomorphism with the property that for every U ∈ U there is a V ∈ V

such that V ≤ h[U ], then
a ▹U b =⇒ h(a)▹V h(b).

(2) If any pair U1,U2 ∈ U has a common refinement V ∈ U , then

a ▹U b1,b2 =⇒ a ▹U b1 ∧b2 and

a1,a2 ▹U b2 =⇒ a1 ∨a2 ▹U b.

(3) a′ ≤ a ▹U b ≤ b′ =⇒ a′ ▹U b′.

(4) a ▹U b =⇒ a ≺ b.

(5) a ▹U b =⇒ a∗∗ ▹U b.

A (covering) uniformity on a frame L is a nonempty system U of covers of L such that

(U1) U ∈ U and U ≤V implies V ∈ U ,

(U2) U,V ∈ U implies U ∧V ∈ U ,

(U3) for every U ∈ U there is a V ∈ U such that VV ≤U ,

(U4) for every a ∈ L, a =
∨
{b | b ▹U a}.
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Without (U4) one speaks of a preuniformity; without (U1) one speaks of a basis of a (pre)uniformity
(in the latter case one obtains a (pre)uniformity by adding all the V with V ≥U ∈ U ).

A uniform frame (resp. preuniform frame) is a pair (L,U ) where U is a uniformity (resp.
preuniformity) on L. A frame homomorphism h : L → M is a uniform homomorphism (L,U ) →
(M,V ) if h[U ] ∈ V for every U ∈U (if U ,V are bases of (pre)uniformities this condition is replaced
by the existence of some V ∈ V such that h[U ]≥V ).

Remark 6.1.3. (1) If (U3) holds for a system of covers U of a frame L then the uniformly below
relation ▹U is interpolative:

x ▹U y =⇒ ∃z (x ▹U z ▹U y).

Then, together with Proposition 6.1.2 (4), we conclude that

x ▹U y =⇒ x ≺≺ y

for every x,y ∈ L.

(2) Hence, any frame that admits a uniformity is completely regular. The converse is also true, as it is
well-known ([72],[66]).

The Metric Uniformity of L(R)

The frame of reals L(R) carries a natural uniformity, its metric uniformity ([10]), generated by covers

Cn =
{
(p,q) ∈ L(R) | 0 < q− p < 1

n

}
, n = 1,2, . . .

Alternatively, we may consider the covers

Dn =
{
(r,s) ∈ L(R) | s− r = 1

n

}
, n = 1,2, . . . .

Clearly, for each n ≤ m, Dm ≤ Dn and Cm ⊆Cn. Moreover, for every n ∈ N, Cn ≤ Dn and Dn+1 ⊆Cn.
Hence these covers also constitute a basis for the metric uniformity on L(R).

We will consider, more generally, the covers

Dδ =
{
(p,q) ∈ L(R) | q− p = 1

δ

}
, δ ∈Q+

(where Q+ denotes the set of positive rational numbers).
From now on we will be interested in uniformly continuous real-valued functions on a preuniform

frame (L,U ) (with L(R) equipped with its metric uniformity). That is, uniform homomorphisms from
a preuniform frame (L,U ) to L(R) with its metric uniformity. An f : L(R)→ (L,U ) is uniformly
continuous if

∀n ∈ N ∃U ∈ U such that U ≤ f [Dn].

Equivalently, if
∀δ ∈Q+ ∃U ∈ U such that U ≤ f [Dδ .] (6.1.3)
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Proposition 6.1.4. For any γ,δ ∈Q+, Dγ ·Dδ = D γδ

γ+2δ

.

Proof. By definition Dγ ·Dδ =
{

Dγ · (p− 1
2δ
, p+ 1

2δ
) | p ∈Q

}
and

Dγ · (p− 1
2δ
, p+ 1

2δ
) =

∨
{(r,s) | s− r = 1

γ
,(r,s)∧ (p− 1

2δ
, p+ 1

2δ
) ̸= 0}.

From (r,s)∧ (p− 1
2δ
, p+ 1

2δ
) ̸= 0, it follows that

(r,s)≤
(

p− 1
2δ

− 1
γ
, p+ 1

2δ
+ 1

γ

)
=
(

p− γ+2δ

2δγ
, p+ γ+2δ

2δγ

)
.

Hence
Dγ · (p− 1

2δ
, p+ 1

2δ
)≤ (p− γ+2δ

2δγ
, p+ γ+2δ

2δγ
).

Now,

Dγ · (p− 1
2δ
, p+ 1

2δ
)≥

∨
α<

γ+2δ

2δγ

(p−α, p+α) = (p− γ+2δ

2δγ
, p+ γ+2δ

2δγ
).

Hence Dγ · (p− 1
2δ
, p+ 1

2δ
) = (p− γ+2δ

2δγ
, p+ γ+2δ

2δγ
). Therefore

Dγ ·Dδ =
{

Dγ · (p− 1
2δ
, p+ 1

2δ
) | p ∈Q

}
=
{
(p− γ+2δ

2δγ
, p+ γ+2δ

2δγ
) | p ∈Q

}
= D γδ

2δ+γ

.

Proposition 6.1.5. For every n ∈ N and δ ∈Q+, Dn
δ
= D δ

2n−1
.

Proof. Let δ ∈Q+. We show the result by induction over n. The case n = 1 is trivial. Assume it holds
for n. Using Proposition 6.1.4, we get

Dn+1
δ

= Dδ ·Dn
δ
= Dδ ·D δ

2n−1
= D δ2

2δ+δ (2n−1)
= D δ

2n+1
= D δ

2(n+1)−1
.

6.2 Covering Farness

In this section we introduce a key concept, the definition of farness, which should be considered as the
point-free extension of the proximal relation of farness betweeen sets due to Efremovič and Smirnov
[74, 75]. This relation is defined for elements of a frame. Later on, in Section 7.2, we will generalize
it for sublocales. There is an underlying Galois adjunction in the notion of farness between elements.
Such adjunction will be helpful in Section 6.4 to prove the separation theorem.

Farness relation

If U is a cover of a frame L we say that elements a,b ∈ L are U-far if

∀u ∈U u∧a ̸= 0 =⇒ u∧b = 0.

Remark 6.2.1. Note that if a and b are U-far and V ≤U , then a and b are V -far. Further, if a and b are
U-far and a′ ≤ a and b′ ≤ b then a′ and b′ are U-far.



100 Covering Farness and Uniform Continuity

The farness relation can be defined in different ways as the following result shows:

Proposition 6.2.2. Let L be a frame, U a cover of L and a,b ∈ L. The following conditions are
equivalent:

(i) a and b are U-far.

(ii) Ua∧b = 0.

(iii) Ub∧a = 0.

(iv) Ua ≤ b∗ (equivalently, b ≤ (Ua)∗).

(v) Ub ≤ a∗ (equivalently, a ≤ (Ub)∗).

(vi) U ≤ {a∗,b∗}.

(vii) a∗∗ and b∗∗ are U-far.

Proof. (i) ⇐⇒ (ii) holds immediately by the definitions of farness and the star operator: Ua∧b = 0 if
and only if (

∨
{u ∈U | u∧a ̸= 0})∧b = 0 if and only if u∧a ̸= 0 implies u∧b = 0 for every u ∈U .

Since the farness relation is symmetric, the argument for (i) ⇐⇒ (iii) is similar. The equivalences
(ii) ⇐⇒ (iv) and (iii) ⇐⇒ (v) follow immediately from (1.2.2). For (vi) ⇐⇒ (i) note that U ≤ {a∗,b∗}
if and only if for every u ∈U we have u ≤ a∗ or u ≤ b∗. By (1.2.2) this is equivalent to a and b being
U-far. One uses this same argument and the fact that x∗ = x∗∗∗ for any x ∈ L, to show the equivalence
between (vii) and (vi).

Remark 6.2.3. There is an obvious link between the farness relation and the uniformly below relation.
Let U be a system of covers for a frame L, then a and b are U-far for some U ∈ U if and only
if a ▹U b∗ (recall Proposition 6.2.2 (ii)). Since a ▹U b implies a ≺ b (Proposition 6.1.2 (4)). Then
a∗∨b∗ = 1 (compare this with Proposition 6.2.2 (vii)).
Furthermore, if a ▹U b then a ▹U b ≤ b∗∗. Hence, a and b∗ are U-far for some U ∈ U .

Farness and Galois Connections

Given a cover U of L we define the map

SU : L → L
a 7→ SU(a) =Ua =

∨
{u ∈U | u∧a ̸= 0} .

From Proposition 6.1.1 (7) we know that SU preserves arbitrary joins. Hence, SU has a right adjoint:

S̃U : L → L
b 7→ S̃U(b) =

∨
{x ∈ L |Ux ≤ b} .

Moreover, we denote by Sn
U the result of composing SU with itself n times. In general, we have

SUn ̸= Sn
U , but as noted in [53, Fact 2.4], the operators Sn

U and SUn are closely related. We have the
following properties:
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Proposition 6.2.4. Let U be a cover of a frame L and n,m ∈ N. Then:

(1) a ∈Un+1 if and only if there is u ∈U such that a = Sn
U(u),

(2) Un+1 = {Sn
U(x) | x ∈U}= Sn

U [U ],

(3) SUn = S2n−1
U ,

(4) UnU =U2n,

(5) Unm ≤ (Un)m.

Proof. (1): By definition of the star operator, this statement is clear for n = 1. We proceed by induction
on n. Assume it holds for some n > 1. Recall (6.1.2). Then a ∈Un+1 =UUn if and only if a = SU(y)
for some y ∈Un. By inductive hypothesis, y ∈Un if and only if there is u ∈U such that y = Sn−1

U (u).
Hence, a = SU(y) = SU(S

n−1
U (u)) = Sn

U(u).
(2): Immediate from (1).
(3): We proceed by induction on n. Clearly, the equality holds for n = 1 so assume it holds for some
n > 1. Let a ∈ L, then

SUn+1(a) =Un+1a = (UUn)(a) = (U(Un(Ua))) = SU(SUn(SU(a)))

= SU(S
2n−1
U SU(a)) = S2n+1

U (a) = S
2(n+1)−1
U (a)

as required (we are using Proposition 6.1.1 (6) and the inductive hypothesis in the identities above).
(4): By definition, a ∈UnU if and only if there is a u ∈U with a =UnU = SUn(u) = S2n−1

U (u), and
by (1) this is equivalent to a ∈U2n.

(5): If n = 1 or m = 1 the desired equality trivially holds. We assume n,m > 1. By an application of (1)
one has a ∈Unm if and only if a = Snm−1

U (u) for some u ∈U . Further, by (1), b ∈ (Un)m if and only if
b = Sm−1

Un (v) for some v ∈Un. By another application of (1), the latter is equivalent to the existence of
a w ∈U such that

b = S
m−1
Un (Sn−1

U (w)) = S
(m−1)(2n−1)
U (Sn−1

U (w)) = S
(m−1)(2n−1)+n−1
U (w).

The result thus follows from the obvious fact that nm ≤ (m−1)(2n−1)+n: we have that for every
a ∈Unm there is some u ∈U such that

a = Snm−1
U (u)≤ S

(m−1)(2n−1)+n−1
U (u) ∈ (Un)m.

Remark 6.2.5. For a better geometric understanding of the operator SU it is important to notice the
following:

(1) Let n ∈ N and x,a ∈ L. We have that Sn
U(x)∧a ̸= 0 if and only if there are u1,u2, . . . ,un ∈U such

that x∧u1 ̸= 0, ui−1 ∧ui ̸= 0 for i = 2, . . . ,n and un ∧a ̸= 0. Indeed, for n = 1 we know that

SU(x)∧a =Ux∧a =
(∨

{u ∈U | u∧ x ̸= 0}
)
∧a =

∨
{u∧a | u ∈U, u∧ x ̸= 0}
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so SU(x)∧ a ̸= 0 if and only if there is u ∈ U such that x∧ u ̸= 0 and u∧ a ̸= 0. Assuming the
statement holds for n, we will prove it for n+1. If Sn

U(SU(x))∧a = S
n+1
U (x)∧a ̸= 0, then by inductive

hypothesis, there are u1, . . . ,un ∈ U such that SU(x)∧ u1 ̸= 0, ui−1 ∧ ui ̸= 0 for i = 2, . . . ,n and
un ∧a ̸= 0. Furthermore, since SU(x)∧u1 ̸= 0, there is u0 ∈U such that x∧u0 ̸= 0 and u0 ∧u1 ̸= 0.

(2) Consequently, (1) above yields immediately

S
n
U(x) =

∨{
u ∈U | Sn−1

U (x)∧u ̸= 0
}

=
∨

{u ∈U | ∃u1, . . . ,un−1 ∈U, u∧u1 ̸= 0,ui−1 ∧ui ̸= 0 for i = 2, . . . ,n−1 and un ∧ x ̸= 0} .

Using “chains” of connected elements ([8]) gives a better intuition of how the star operator and
the relation between the several types of refinements defined in Section 6.1 work. In Section 7.1,
particularly in Proposition 7.1.7, one can see how this approach is advantageous when working with
prediameters.

Now, we define the pseudocomplement operator P : L → L given by pseudocomplements, that
is, P(a) = a∗. This map is a self-dual Galois adjoint (that is, the pair (P,P) is a Galois connection);
indeed,

a ≤ P(b) = b∗ ⇐⇒ b ≤ P(a) = a∗.

Then, the composition SUP, that we denote by FU , must be a dual Galois adjoint. Note that from
Proposition 6.2.2 we have that

b ≤ FU(a) ⇐⇒ SU(a)≤ P(b) ⇐⇒ SU(b)≤ P(a) ⇐⇒ a ≤ FU(b) (6.2.1)

meaning FU is a self-dual Galois Adjoint, and by uniqueness of adjoints FU = S̃UP. Summarizing, we
have the following diagram:

L

FU

))SU //⊣

L
S̃U

oo

P //⊣ op L
P

oo

FU

ii

The pair (FU ,FU) being a Galois connection yields immediately the following properties:

(F1) FU(
∨

i∈I ai) =
∧

i∈I FU(ai) (in particular, FU(0) = 1). In this case, we have also FU(1) = 0.

(F2) FUFU = F2
U ≥ idL.

(F3) FUFUFU = F3
U = FU .

Now, we can use this in association with the farness relation. First, elements a,b in L are U-far if and
only if SU(a)≤ P(b). Hence, by Proposition 6.2.2 and (6.2.1),

a and b are U-far ⇐⇒ a ≤ FU(b) ⇐⇒ b ≤ FU(a), (6.2.2)
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and it follows from property (F2) that FU(a) is the largest element in L that is U-far from a. Indeed,
since a ≤ FUFU(a) we know a and FU(a) are U-far. Further, FU(a) is the largest element because if a
and b are U-far, then b ≤ FU(a) (by (6.2.2)). These are the general properties of the farness relation
and its associated Galois connection (FU ,FU).

Proposition 6.2.6. Elements a and b are Un-far if and only if Sk
U(a) and Sk

U(b) are Un−k-far for every
1 ≤ k < n.

Proof. Sk
U(a) and Sk

U(b) are Un−k-far if and only if

Sk
U(b)≤ FUn−k(Sk

U(a)) = PSUn−kSk
U(a).

By Proposition 6.2.4 (3),

PSUn−kSk
U(a) = PS2n−2k−1

U Sk
U(a) = PS2n−k−1

U (a).

Hence, by (6.2.1) and using Proposition 6.2.4 (3) again, we may conclude that Sk
U(a) and Sk

U(b) are
Un−k-far if and only if b ≤ PS2n−1

U (a) = PSUn(a) = FUn(a).

In particular, a and b are Un-far if and only if SU(a) and SU(b) are Un−1-far.

Corollary 6.2.7. If a and b are Un-far then (S j
U(a))

∗∨ (Sk
U(b))

∗ = 1 for every 1 ≤ j ≤ k < n.

Proof. Clearly, (S j
U(a))

∗∨ (Sk
U(b))

∗ ≥ (Sk
U(a))

∗∨ (Sk
U(b))

∗. By Proposition 6.2.6, Sk
U(a) and Sk

U(b)
are V -far for some V . Hence, by Remark 6.2.3,

(Sk
U(a))

∗∨ (Sk
U(b))

∗ = 1.

It may be worth pointing out that, by Proposition 6.2.4 (3), (Sn
U(x))

∗ is given by PS2k−1
U (x) = PSUk(x) = FUk(x) if n = 2k−1

PS2k
U (x) = PS2k−1

U SU(x) = PSUkSU(x) = FUk(SU(x)) if n = 2k.

6.3 Uniform Continuity and Scales in Uniform Frames

The purpose of this section is to describe uniformly continuous real-valued functions in terms of the
farness relation. The new characterizing conditions of uniform continuity that we get allow us to
impose conditions on scales in order to generate uniform frame homomorphisms

Uniform Continuity via Covering Farness

Let f ,g ∈ R(L) such that f ≥ g. For each δ ∈Q+,

D f ,g
δ

:= { f (r,�)∧g(�,s) | (r,s) ∈ Dδ}
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is a cover of L. Indeed, since Dδ is a cover of L(R),∨
(r,s)∈Dδ

( f (r,�)∧g(�,s))≥
∨

(r,s)∈Dδ

(g(r,�)∧g(�,s))

= g
( ∨
(r,s)∈Dδ

(r,s)
)
= g(1) = 1.

Note that D f ,g
δ

is a refinement of both covers { f (r,�) | r ∈ Q} and {g(�,r) | r ∈ Q}. Clearly,
D f , f

δ
= f [Dδ ], and we denote this cover by D f

δ
.

Also note that by Remark 2.1.1 one immediately gets the following result:

Lemma 6.3.1. Let U be a cover of L, f ,g ∈ R(L) and δ ∈Q+. The following are equivalent:

(i) f (�,r) and g(s,�) are U-far for every r,s ∈Q such that s− r > 1
δ

.

(ii) f (�,r) and g(�,s)∗ are U-far for every r,s ∈Q such that s− r > 1
δ

.

(iii) f (r,�)∗ and g(s,�) are U-far for every r,s ∈Q such that s− r > 1
δ

.

(iv) f (r,�)∗ and g(�,s)∗ are U-far for every r,s ∈Q such that s− r > 1
δ

.

Proposition 6.3.2. Let (ap)p∈Q,(bq)q∈Q ⊆ L such that

aq ≤ ap and bp ≤ bq for every p ≤ q.

If Uδ = {ar ∧bs | (r,s) ∈ Dδ} is a cover for δ ∈Q+, then a∗r and b∗s are Uδ -far for every s− r > 1
δ

.

Proof. Let s−r > 1
δ

. By Proposition 6.2.2 (vi), we need to show that Uδ ≤ {a∗∗r ,b∗∗s }. Let (p,q)∈ Dδ .
Then s > q or r < p. In the former case we have bs ≥ bq and thus ap ∧bq ≤ bs ≤ b∗∗s ; otherwise, in
the latter case, ar ≥ ap hence ap ∧bq ≤ ar ≤ a∗∗r .

Corollary 6.3.3. Let f ,g ∈ R(L) such that f ≥ g. For each δ ∈ Q+ and every r,s ∈ Q such that
s− r > 1

δ
, the elements f (�,r) and g(s,�) are D f ,g

δ
-far.

Proof. As noted above, D f ,g
δ

is a cover for every δ ∈Q+ whenever f ≥ g. From Proposition 6.3.2,
taking ar = f (r,�) and bs = g(�,s) we have that f (r,�)∗ and g(�,s)∗ are D f ,g

δ
-far. Then, by Re-

mark 6.3.1, f (�,r) and g(s,�) are also D f ,g
δ

-far.

Proposition 6.3.4. Let (ar)r∈Q,(bs)s∈Q ⊆ L satisfy the following conditions:

(1) a∗∗r ≤ ap for p < r,

(2) b∗∗s ≤ bq for s < q

(3)
∨

r∈Q a∗r = 1,

(4)
∨

s∈Q b∗s = 1.



6.3 Uniform Continuity and Scales in Uniform Frames 105

If U is a cover of L such that a∗r and b∗s are U-far for all r,s ∈Q such that s− r > 1
δ

, then

U ≤
{

ar ∧bs | (r,s) ∈ Dγ

}
for every γ < δ in Q+.

In particular,
{

ar ∧bs | (r,s) ∈ Dγ

}
is a cover of L.

Proof. For each r,s ∈Q such that s− r > 1
δ

, U ≤ {a∗∗r ,b∗∗s }. Therefore, for every u ∈U ,

u∧a∗r ̸= 0 =⇒ u∧b∗s = 0. (6.3.1)

Let u ̸= 0 in U . Since {b∗s | s ∈Q} is a cover of L, there exists s0 ∈Q such that u∧b∗s0
̸= 0. By (6.3.1),

u∧a∗
s0− 2

δ

= 0. Thus, u ≤ a∗∗
s0− 2

δ

≤ as0− 3
δ

and the set {r ∈Q | u ≤ ar} is nonempty. It should be also

noted that u ≰ ar for some r ∈Q (and therefore u ≰ ar′ for any r′ ≥ r), otherwise

u ≤
∧
r∈Q

ar ≤
∧
r∈Q

a∗∗r =
( ∨

r∈Q
a∗r
)∗

= 0,

a contradiction. Hence,
r1 = sup{r ∈Q | u ≤ ar} ∈ R.

Now, let γ ∈ Q+ with γ < δ . Set ε = δ−γ

δγ
> 0. Take r ∈ Q such that 0 < r1 − r < ε

5 and p ∈ Q
such that 0 < p− r1 <

ε

5 . Then u ≤ ar and u ≰ ap. Since ap ≥ a∗∗p+ ε

5
, we have further that u ≰ a∗∗p+ ε

5
,

that is, u∧a∗p+ ε

5
̸= 0 and, by (6.3.1), u∧b∗

p+ 2ε

5 + 1
δ

= 0, that is,

u ≤ b∗∗
p+2ε

5 +
1
δ

≤ b
p+3ε

5 +
1
δ

.

In conclusion,

u ≤ ar ∧b
p+3ε

5 +
1
δ

≤ ar ∧b
r+ 1

δ
+ε

∈
{

ar ∧bs | (r,s) ∈ Dγ

}
,

since
p+ 3ε

5 + 1
δ
− r < ε

5 + r1 +
3ε

5 + 1
δ
+ ε

5 − r1 =
1
δ
+ ε

and
1
δ
+ ε = 1

δ
+ δ−γ

γδ
= 1

γ
.

Corollary 6.3.5. Let f ,g ∈ R(L) such that f ≥ g and δ ∈Q+. If U is a cover of L such that f (�,r)
and g(s,�) are U-far for all r,s ∈Q with s− r > 1

δ
, then

U ≤ D f ,g
γ for every γ < δ in Q+.

Proof. We will use Proposition 6.3.4. Let ar = f (r,�) and bs = g(�,s). Since f ,g ∈R(L), conditions
(1)–(4) hold. Furthermore, by assumption and Lemma 6.3.1, a∗r and b∗s are U-far for every s− r > 1

δ
.

Thus,
U ≤

{
ar ∧bs | (r,s) ∈ Dγ

}
= D f ,g

γ .
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Corollary 6.3.6. The following are equivalent for any f ,g ∈ R(L) such that f ≥ g:

(i) For every δ ∈Q+, there exists a cover U of L such that U ≤ D f ,g
δ

.

(ii) For every δ ∈Q+, there exists a cover U of L such that f (�,r) and g(s,�) are U-far for any
s− r > 1

δ
.

Proof. (i) =⇒ (ii): Let δ ∈ Q+ and U such that U ≤ D f ,g
δ

. By Corollary 6.3.3 and Remark 6.2.1,
f (�,r) and g(s,�) are U-far for every s− r > 1

δ
.

(ii) =⇒ (i): Let δ ∈Q+. By assumption, there is a cover U such that f (�,r) and g(s,�) are U-far for
any s− r > 1

δ+1 . Then, by Corollary 6.3.5, U ≤ D f ,g
δ

.

More generally, we have:

Proposition 6.3.7. The following are equivalent for any f ,g ∈ R(L) such that f ≥ g:

(i) For every δ ∈Q+, there exists a cover U of L such that Un ≤ D f ,g
δ

2n−1
for every n ∈ N.

(ii) For every δ ∈Q+, there exists a cover U of L such that f (�,r) and g(s,�) are Un-far for every
s− r > n

δ
and n ∈ N.

Proof. (i) =⇒ (ii): Let δ ∈ Q+ and consider ε = 2δ . By assumption, there is some U such that
Un ≤ D f ,g

ε

2n−1
for every n ∈ N. Let s− r > n

δ
= 2n

ε
> 2n−1

ε
. By Corollary 6.3.3, f (�,r) and g(s,�) are

D f ,g
ε

2n−1
-far. In particular, they are Un-far, as required.

(ii) =⇒ (i): Let δ ∈Q+. By assumption, there is some U such that f (�,r) and g(s,�) are Un-far for
every s− r > n

δ+1 and n ∈ N. Then, by Corollary 6.3.5, since δ

2n−1 < δ+1
n , we have Un ≤ D f ,g

δ

2n−1
as

required.

Remark 6.3.8. Note that the assumption f ≥ g is crucial here. For instance, the condition f ≤ g
does not even imply that { f (r,�)∧ g(�,s) | (r,s) ∈ Dδ} is a cover of L. Moreover, if f ≤ g and,
for every δ ∈ Q+, there is some U such that f (�,r) and g(s,�) are U-far for any s− r > 1

δ
, then

f = g. Indeed, for every pair r < s, f (�,r)∧g(s,�) = 0 (consequence of the farness), thus, g(s,�)≤∧
r<s f (�,r)∗ = f (�,s)∗. This means that, for every s ∈ Q, g(s,�) ≤ f (�,s)∗ and then, for any

rational q,
g(q,�) =

∨
s>q

g(s,�)≤
∨
s>q

f (�,s)∗ ≤
∨

s′>q

f (s′,�) = f (q,�),

which shows that f = g.

Theorem 6.3.9. Let (L,U ) be a preuniform frame. The following are equivalent for any f ∈ R(L):

(i) f is uniformly continuous.

(ii) For every δ ∈Q+, there is some U ∈ U such that f (�,r) and f (s,�) are U-far for all r,s ∈Q
such that s− r > 1

δ
.

(iii) For every δ ∈ Q+, there is some U ∈ U such that f (�,r) and f (s,�) are Un-far for every
natural n and every r,s ∈Q such that s− r > n

δ
.

(iv) For every δ ∈Q+, there is some U ∈ U such that Un ≤ D f
δ

2n−1
for every n ∈ N.
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Proof. (i) ⇐⇒ (ii): Recall that uniform continuity is defined by (6.1.3) and apply Corollary 6.3.6 to
f = g.
(i) =⇒ (iii): Let δ ∈Q+ and consider a natural m such that 1

m ≤ 1
δ

. By assumption, there is a uniform
cover U ∈ U such that U ≤ f [D2m] = D f

2m. We claim this is the cover we are looking for. Let n ∈ N
and r,s ∈Q such that s− r > n

δ
. If n = 1 then, s− r > 1

m > 1
2m . By Corollary 6.3.3, f (�,r) and f (s,�)

are D f
2m-far, and since U ≤ D f

2m, they are U-far. For n ≥ 2, suppose f (�,r) and f (s,�) are not Un-far.
Since U ≤ D f

2m, using Proposition 6.1.1 (7) and Proposition 6.1.5 we obtain

Un ≤ (D f
2m)

n = f [D2m]
n ≤ f [(D2m)

n] = f [D 2m
2n−1

] = D f
2m

2n−1
.

Thus, f (�,r) and f (s,�) are not D f
2m

2n−1
-far. This means that there is some pair (p,q) ∈ D 2m

2n−1
such

that
f (�,r)∧ f (p,q) ̸= 0 and f (s,�)∧ f (p,q) ̸= 0.

It then follows that p < r and s < q and therefore that

n
δ
< s− r < q− p = 2n−1

2m < n
m ≤ n

δ
,

a contradiction. Hence f (�,r) and f (s,�) have to be Un-far.
(iii) =⇒ (ii) is obvious.
(iv) ⇐⇒ (iii): By Proposition 6.3.7.

Recall Section 2.4. In the present situation, we have:

Corollary 6.3.10. Let (L,U ) be a preuniform frame and let f ∈R(L) be given by a descending (resp.
ascending) scale (ap)p∈Q. Then f is uniformly continuous if and only if for every δ ∈Q+ there is a
U ∈ U such that a∗r and as (resp. ar and a∗s ) are U-far for any s− r > 1

δ
.

Proof. Assume f is uniformly continuous and let δ ∈ Q+. By Theorem 6.3.9, there exists U ∈ U

such that f (�,r) =
∨

p<r a∗p and f (s,�) =
∨

q>s aq are U-far for any s− r > 1
δ

. Take q− p > 1
δ

and
s,r ∈Q such that p < r < s < q and s− r > 1

δ
. Then aq ≤ f (s,�) and a∗p ≤ f (�,r). Hence, aq and

a∗p are also U-far.
Conversely, let δ ∈Q+ and s− r > 1

δ
. Take the U provided by the hypothesis and consider u ∈U

such that u∧ f (s,�) ̸= 0. Then there exists q > s such that u∧ aq ̸= 0. By the farness hypothesis,
a∗p ∧u = 0 for every p < r. Hence, u∧ f (�,r) = 0. Therefore, f (s,�) and f (�,r) are U-far and we
may use Theorem 6.3.9 to conclude that f is uniformly continuous.

Scales for Uniform Frames

We now identify sufficient conditions on a scale on a preuniform frame (L,U ) under which it generates
a uniformly continuous real function on L.
Let (L,U ) be a preuniform frame. Consider the following conditions on a family (ar)r∈Q of elements
of L:

(far) For every δ ∈Q+ there is a V ∈ U such that a∗r and as are V -far for any s− r > 1
δ

.
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(far’) For every δ ∈Q+ there is a V ∈ U such that ar and a∗s are V -far for any s− r > 1
δ

.

We know already from Corollary 6.3.10 that if (ar)r∈Q satisfies (s1) (resp. (s1’)), (s2) and (far)
(resp. (far’)), it induces a uniformly continuous real-valued function on L. Instead of taking (s1) and
(s1’) one can consider weaker conditions, namely:

(**) a∗∗p ≤ aq for every q < p.

(**’) a∗∗q ≤ ap for every q < p.

Remark 6.3.11. Condition (**) together with (far) imply (s1): if r < s then there is q ∈Q such that
r < q < s and, by (far), there is U ∈ U such that a∗q and as are U-far. In particular, this means that
a∗∗q ∨a∗s = 1. Hence, using (**), we get 1 = a∗∗q ∨a∗q ≤ aq ∨a∗s , which means that as ≺ ar. Similarly,
(**’) together with (far’) imply (s1’).

Hence, by Corollary 6.3.10 and Remark 6.3.11 we have:

Proposition 6.3.12. Let (L,U ) be a preuniform frame. If a family (ar)r∈Q ⊆ L satisfies (far) (resp.
(far’)), (**) (resp. (**’)) and (s2), then the formulas

f (p,�) =
∨
r>p

ar and f (�,q) =
∨
s<q

a∗s

(resp. f (p,�) =
∨
r>p

a∗r and f (�,q) =
∨
s<q

as).

define a uniform homomorphism f : L(R)→ L.

Inspired by condition (iv) of Theorem 6.3.9 we can define uniform scales in a different way. For
that, consider the following properties, clearly stronger than (s2):

(c) For each δ ∈Q+ there is a V ∈ U such that

V ≤ {ap ∧a∗q | (p,q) ∈ Dδ}.

(c’) For each δ ∈Q+ there is a V ∈ U such that

V ≤ {a∗p ∧aq | (p,q) ∈ Dδ}.

Remarks 6.3.13. Let (L,U ) be a preuniform frame.

(1) (c) + (ws1) =⇒ (s1): Let p < q and consider δ ∈Q+ such that q− p > 1
δ

. For each r ∈Q, r ≤ q
or r− 1

δ
≥ p. In the former case,

ar− 1
δ

∧a∗r ≤ a∗r ≤ a∗q ≤ ap ∨a∗q.

Otherwise, if r− 1
δ
≥ p then ar− 1

δ

∧a∗r ≤ ar− 1
δ

≤ ap ≤ ap ∨a∗q. Thus, 1 =
∨
{ar ∧a∗s | (r,s) ∈ Dδ} ≤

ap ∨a∗q, that is, aq ≺ ap.
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(2) (far) + (**) + (s2) =⇒ (c): Let δ ∈Q+, dr = ar and es = a∗s for r,s ∈Q. By (**), d∗∗
r = a∗∗r ≤

a∗∗p = dp for p < r, and e∗∗s = a∗s ≤ a∗q = eq for s < q. From (s2) we have

∨
r∈Q

d∗
r =

∨
r∈Q

a∗r = 1 and
∨
s∈Q

es =
∨
s∈Q

a∗∗s ≥
∨
s∈Q

as = 1.

Note that by Proposition 6.2.2 (vii) the condition (far) implies that for every δ ∈Q+ there is a V ∈ U

such that a∗r and a∗∗s are V -far for any s− r > 1
δ

. Then for δ +1 there is a cover U ∈ U such that d∗
r

and e∗s are U-far for every s− r > 1
δ+1 . Finally, from Proposition 6.3.4 we get

U ≤ {dr ∧ es | (r,s) ∈ Dδ}= {ar ∧a∗s | (r,s) ∈ Dδ} .

(3) (ws1) + (c) =⇒ (far): Let δ ∈ Q+. By assumption there is a V ∈ U such that V ≤ {ar ∧ a∗s |
(r,s) ∈ Dδ}. In particular, {ar ∧a∗s | (r,s) ∈ Dδ} is a cover in U . Furthermore, (ar)r∈Q is descending
while (a∗r )r∈Q is ascending. Thus, by Proposition 6.3.2, a∗r and a∗∗s are {ar ∧a∗s | (r,s) ∈ Dδ}-far for
every s− r > 1

δ
. In particular, a∗r and as are also V -far.

It follows immediately from Proposition 6.3.12 and Remarks 6.3.13 that

Proposition 6.3.14. Let (L,U ) be a preuniform frame. If (ap)p∈Q ⊆ L satisfies (ws1) (resp. (ws1’))
and (c) (resp. (c’)), then it is an ascending uniform scale.

It seems natural that a condition on a scale defined in terms of the uniform strong relation ▹U

may induce a uniformly continuous function. Thus, consider the following properties:

(u) For every δ ∈Q+ there is some U ∈ U such that Uaq ≤ ap for every q− p > 1
δ

.

(u’) For every δ ∈Q+ there is some U ∈ U such that Uap ≤ aq for every q− p > 1
δ

.

Remarks 6.3.15. Let (L,U ) be a preuniform frame.

(1) (u) =⇒ (s1) is obvious since (u) implies that as ▹U ar for every r < s.

(2) (far) + (**) ⇐⇒ (u): Indeed, assume (u) and let δ ∈ Q+. There is a cover U ∈ U such that
Uas ≤ ar whenever s− r > 1

δ
. Hence, Uas ∧a∗r = 0, that is, a∗r and as are U-far. Conversely, assume

(far) and (**) and let δ ∈Q+ and r,s ∈Q such that s− r > 1
δ

. Consider the cover U ∈ U given by
(far) and take r′ ∈Q such that s− r′ > 1

δ
and r < r′. Then a∗r′ and as are U-far. Thus, by farness and

(**), Uas ≤ a∗∗r′ ≤ ar, showing that (u) holds.

Now, it follows immediately from Proposition 6.3.12 and Remark 6.3.15 that

Proposition 6.3.16. Let (L,U ) be a preuniform frame. If a family (ar)r∈Q ⊆ L satisfies (u) (resp. (u’))
and (s2), then the formulas

f (p,�) =
∨
r>p

ar and f (�,q) =
∨
s<q

a∗s

(resp. f (p,�) =
∨
r>p

a∗r and f (�,q) =
∨
s<q

as).

define a uniform homomorphism f : L(R)→ L.
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Corollary 6.3.10 and Remark 6.3.15 yield:

Proposition 6.3.17. Let (L,U ) be a preuniform frame and f ∈ R(L) be defined by a descending
(resp. ascending) scale (ar)r∈Q. Then the following conditions are equivalent:

(i) f is uniformly continuous.

(ii) (ar)r∈Q satisfies (far) (resp. (far’)).

(iii) (ar)r∈Q satisfies (u) (resp. (u’)).

(iv) (ar)r∈Q satisfies (c) (resp. (c’))

The following diagram shows the implications that hold among all the conditions discussed in this
section:

(u)

(s1) (**) (ws1)

(far) + (**)

(c) (s2)

+(s2)+(ws1)

(6.3.2)

6.4 A Separation Result for Uniform Frames

We now prove the point-free counterpart to Smirnov functional separation result [46, p. 292]. This
result provides a way to construct a uniformly continuous real-valued function that separates far
elements in a preuniform frame. The proof consists of a purely algebraic (order-theoretic) construction
using the Galois Adjunction FU ⊣ FU introduced in Section 6.2.

Denote by D the set of dyadic rationals in the closed unit interval [0,1]⊆ R:

D=
{ m

2n | n ∈ N, m = 0,1, . . . ,2n}= {0,1}∪̇
⋃

n∈N

{2k−1
2n | k = 1,2, . . . ,2n−1} .

Given a preuniformity U in L, let a,b ∈ L be U-far for some U ∈ U and consider a chain of uniform
covers

· · · ≤U3 ≤U2 ≤U1 ≤U0 =U

such that U2
n+1 ≤Un for every n.

By Corollary 6.2.7, if x and y are Um-far then

FUn(x)∨FUn(y) = 1 (6.4.1)

for every n > m.
Now, define, recursively, two families (ad)d∈D and (bd)d∈D, in the following way:

Definition 6.4.1. For n = 0,

a0 = a, a1 = 1 and b0 = 1, b1 = b.
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For each n ≥ 1,
a 2k−1

2n
= FUn(b k

2n−1
) and b 2k−1

2n
= FUn(a k−1

2n−1
)

(cf. Table 6.1).

Lemma 6.4.2. a m−1
2n

and b m
2n are Un-far for every n ∈ N and m = 1,2, . . . ,2n.

Proof. We proceed by induction. The fact that a0 = a and b1 = b are U0-far is obvious. Assuming that
the fact holds for 1,2, . . . ,n we need to show that it also holds for n+1, that is, that a m−1

2n+1
and b m

2n+1

are Un+1-far for m = 1,2, . . .2n+1. There are two cases:

(Case 1): m = 2k for 1 ≤ k ≤ 2n.
Then

a m−1
2n+1

= a 2k−1
2n+1

= FUn+1(b k
2n
) and b m

2n+1
= b k

2n
,

that is,
a m−1

2n+1
= FUn+1(b m

2n+1
),

which implies that a m−1
2n+1

and b m
2n+1

are Un+1-far.

(Case 2): m = 2k−1 for 1 ≤ k ≤ 2n.
In this case, a m−1

2n+1
= a 2k−2

2n+1
= a k−1

2n
, and thus

b m
2n+1

= b 2k−1
2n+1

= FUn+1(a k−1
2n
) = FUn+1(a m−1

2n+1
).

Lemma 6.4.3. a m
2n ∨b m

2n = 1 for every n ∈ N and m = 0,1, . . . ,2n.

Proof. We proceed by induction. For n = 0 we clearly have

a0 ∨b0 = a∨1 = 1 and a1 ∨b1 = 1∨b = 1.

Assume it holds for n, and consider a m
2n+1

and b m
2n+1

. Again, if m = 2k for some 0 ≤ k ≤ 2n, then by
the inductive hypothesis we have

a m
2n+1

∨b m
2n+1

= a k
2n
∨b k

2n
= 1.

Otherwise, if m = 2k−1 for some 1 ≤ k ≤ 2n, then

a m
2n+1

∨b m
2n+1

= FUn+1(b k
2n
)∨FUn+1(a k−1

2n
) = 1

where the last equality follows from (6.4.1) and the fact that, by 6.4.2, a k−1
2n

and b k
2n

are Un-far.

Lemma 6.4.4. (ad)d∈D is an ascending family while (bd)d∈D is a descending family.

Proof. It suffices to show that a0 ≤ a1 (which is obvious) and that

a k−1
2n

≤ a 2k−1
2n+1

≤ a k
2n

for n ∈ N, k = 1,2, . . . ,2n.
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0 1 2 3 4
a1 = 1

a 15
16
= FU4(b)

a 7
8
= FU3(b)

a 13
16
= FU4FU3FU2(b)

a 3
4
= FU2(b)

a 11
16
= FU4FU2FU1(b)

a 5
8
= FU3FU2FU1(b)

a 9
16
= FU4FU3FU1(b)

a 1
2
= FU1(b)

a 7
16
= FU4FU1(a)

a 3
8
= FU3FU1(a)

a 5
16
= FU4FU3FU2FU1(a)

a 1
4
= FU2FU1(a)

a 3
16
= FU4FU2(a)

a 1
8
= FU3FU2(a)

a 1
16
= FU4FU3(a)

a0 = a

b1 = b
b 15

16
= FU4FU3(b)

b 7
8
= FU3FU2(b)

b 13
16
= FU4FU2(b)

b 3
4
= FU2FU1(b)

b 11
16
= FU4FU3FU2FU1(b)

b 5
8
= FU3FU1(b)

b 9
16
= FU4FU1(b)

b 1
2
= FU1(a)

b 7
16
= FU4FU3FU1(a)

b 3
8
= FU3FU2FU1(a)

b 5
16
= FU4FU2FU1(a)

b 1
4
= FU2(a)

b 3
16
= FU4FU3FU2(a)

b 1
8
= FU3(a)

b 1
16
= FU4(a)

b0 = 1

Table 6.1 Definition of (ad)d∈D and (bd)d∈D for n = 0,1,2,3,4.
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By Lemma 6.4.2, a k−1
2n

and b k
2n

are Un-far. Since Un+1 ≤Un, they are also Un+1- far, hence

a k−1
2n

≤ FUn+1(b k
2n
) = a 2k−1

2n+1
.

Furthermore, by Lemma 6.4.3,

1 = b k
2n
∨a k

2n
≤ SUn+1(b k

2n
)∨a k

2n
,

which implies
a 2k−1

2n+1
= FUn+1(b k

2n
)≤ a k

2n .

The proof for (bd)d∈D is similar.

Theorem 6.4.5. Let U be a preuniformity on a frame L. If a and b are U-far, for some U ∈ U , then
there is a uniformly continuous f ∈ R(L) such that 0 ≤ f ≤ 1, f (0,�)≤ a∗ and f (�,1)≤ b∗.

Proof. Let (ad)d∈D and (bd)d∈D be the families defined in Definition 6.4.1. We extend (ad)d∈D

to Q using the procedure of Banaschewski in the proof of the point-free Urysohn’s Lemma [10,
Proposition. 5]: for every r,s ∈Q let

cr =


0 if r < 0∨
{a m

2n | m
2n ≤ r} if 0 ≤ r ≤ 1

1 if 1 < r

We will show that (cr)r∈Q satisfies (s2) and (u’). Observe that (cr)r∈Q is ascending and, trivially, (s2)
holds: ∨

r∈Q
cr = 1 =

∨
r∈Q

c∗r .

Now, we claim that property (u’) also holds. Indeed, let 1 ≤ δ ∈Q (because of how we defined the
cr’s notice that the case δ < 1 is trivial). Take n ∈ N such that δ ≤ 2n. We will show Un+1 is the cover
we are looking for. Let s,r ∈Q such that s− r > 1

δ
. Clearly, for r < 0 or 1 < s, we have Un+1cr ≤ cs.

Consider 0 ≤ r < s ≤ 1, since D is dense and s− r > 1
δ
≥ 1

2n , there is 0 ≤ m ≤ 2n such that r ≤ m
2n ≤ s.

Let
m0 = max{m | 0 ≤ m ≤ 2n and r ≤ m

2n ≤ s}.

Then r < m0
2n ≤ s and r ≤ 2m0−1

2n+1 < 2m0
2n+1 ≤ s. By Lemma 6.4.2, a 2m0−1

2n+1
and b 2m0

2n+1
are Un+1-far. Thus,

Un+1 ·a 2m0−1
2n+1

≤ b∗2m0
2n+1

. Since (ar)r∈D is ascending (Lemma 6.4.4),

Un+1 · cr =Un+1 ·
( ∨

m
2n ≤r

a m
2n

)
≤Un+1 ·a 2m0−1

2n+1
≤ b∗2m0−1

2n+1
.

By Lemma 6.4.3, b∗2m0−1
2n+1

≤ a 2m0−1
2n+1

≤ cs. Hence, Un+1 · cr ≤ cs, as required. By Proposition 6.3.16,

(cp)p∈Q defines a uniformly continuous f ∈ R(L) given by the formulas

f (�,r) =
∨
p<r

cp and f (s,�) =
∨
q>s

c∗q.
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Notice that a ≤ f (�,r) for every r > 0. Indeed, f (�,r) =
∨

q<r cq ≥ c0 = a0 = a. Moreover, b ≤
f (s,�) for every s < 1. Since s < 1, there is some n ∈ N such s < 2n−1

2n < 1, and a 2n−1
2n

and b1 are
Un-far (by Lemma 6.4.2). Hence,

f (s,�) =
∨
q>s

c∗q ≥ c∗2n−1
2n

= a∗2n−1
2n

≥ b1 = b.

Moreover, f (0,�)≤ a∗:

a∧ f (0,�) = a0 ∧
∨
q>0

c∗q ≤ a0 ∧
∨

n∈N
a∗1

2n
=

∨
n∈N

a0 ∧a∗1
2n
≤

∨
n∈N

a0 ∧b 1
2n
= 0

(where the last inequality follows from Lemma 6.4.3 and the last equality from Lemma 6.4.2).
Similarly, f (�,1)≤ b∗:

b∧ f (�,1) = b1 ∧
∨
q<1

cq ≤ b1 ∧
∨

n∈N
a 2n−1

2n
=

∨
n∈N

b1 ∧a 2n−1
2n

= 0

(where the last equality holds by Lemma 6.4.2).
Finally, it is obvious from the definition of f that f (�,0)∨ f (1,�) = 0. Hence, 0 ≤ f ≤ 1 and f

is bounded.

Corollary 6.4.6. For each preuniformity U on a frame L, elements a,b ∈ L are U-far for some
U ∈ U if and only if there is a uniformly continuous f ∈ R(L) such that 0 ≤ f ≤ 1, f (0,�)≤ a∗ and
f (�,1)≤ b∗.

Proof. If f (0,�)≤ a∗ and f (�,1)≤ b∗ for some uniformly continuous f ∈R(L), then a ≤ f (0,�)∗

and b ≤ f (�,1)∗ and thus, by Theorem 6.3.9 (recall also Lemma 6.3.1 and Remark 6.2.1), a and b
are U-far for some U ∈ U .

6.5 An Extension Result for Uniform Frames

In this final section we prove a Tietze-type extension theorem for uniform homomorphisms. This
result provides a uniform extension of any uniformly continuous real function on a dense sublocale S
of L to the whole of L and is based on a well-known general result for lattices (Lemma 6.5.1 below,
known as the Katětov Lemma) that extends the original basic lemma of Katětov, formulated for power
sets in his 1951 celebrated paper (corrected in 1953 [54]).

Recall that a binary relation ⋐ on a lattice L is a Katětov relation if it satisfies the following
conditions for all a,b,a′,b′ ∈ L:

(K1) a ⋐ b =⇒ a ≤ b;

(K2) a′ ≤ a ⋐ b ≤ b′ =⇒ a′ ⋐ b′;

(K3) a ⋐ b and a′ ⋐ b =⇒ (a∨a′)⋐ b;

(K4) a ⋐ b and a ⋐ b′ =⇒ a ⋐ (b∧b′);

(K5) a ⋐ b =⇒ ∃c ∈ L : a ⋐ c ⋐ b.
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The following result ([55, 56]) extends the original idea of Katětov from power sets to complete
lattices.

Lemma 6.5.1 (Katětov’s Lemma). Let L be a complete lattice, ⋐ a Katětov relation on L and ▹

a transitive and irreflexive relation on a countable set D. Further, let (ad)d∈D and (bd)d∈D be two
families of elements of L such that

d1 ▹ d2 implies ad2 ≤ ad1 , bd2 ≤ bd1 and ad2 ⋐ bd1 .

Then there exists a family (cd)d∈D ⊆ L such that

d1 ▹ d2 implies cd2 ⋐ cd1 , ad2 ⋐ cd1 and cd2 ⋐ bd1 .

Example 6.5.2. Let (L,U ) be a preuniform frame. From Proposition 6.1.2 and Remark 6.1.3 (1) we
know that the uniformly below relation ▹U given by the preuniformity U is a Katětov relation.

Let (L,U ) be a (pre)uniform frame and S a sublocale of L with jS : S ↪→ L the localic embedding
of S in L. It is shown in [11, Lemma 2.2] that the system

U L
S := { j∗S[U ] |U ∈ U }

is a (pre)uniformity in S. 1

Remarks 6.5.3. (1) a✁U b =⇒ j∗S(a)✁US j∗S(b) for any a,b ∈ L.

(2) US ⊆ U (since U ≤ j∗S[U ] for every U ∈ U ).

(3) In case S is dense, since meets in S are computed as in L and 0S = 0L, then, for any a,b ∈ S, if a
and b are U-far in S for some U ∈ US, they are also U-far in L.

(4) Let S be a sublocale of L, and let T be a sublocale of S. It is then easy to see that U L
T =

(
U L

S

)S
T .

Let f : L(R)→ (S,U L
S ) be a uniform homomorphism, we say that f̃ : L(R)→ (L,U ) is a uniform

extension of f if the following diagram commutes:

L(R)
f̃ //

f
!!

L

j∗S

��
S.

(6.5.1)

Now, we present an extension result for dense sublocales ([7, Theorem 7.3]):

Lemma 6.5.4. Let (L,U ) be a preuniform frame and S be a dense sublocale of L. Any uniform
homomorphism f : L(R)→ (S,US) has a uniform extension f̃ : L(R)→ (L,U ). Furthermore, if f is
bounded, then so is f̃ .

1We shall simply denote U L
S by US when there is no danger of confusion.
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Proof. Let f ∈ R(S) be a uniform homomorphism. By Theorem 6.3.9 (ii) and Lemma 6.3.1 we know
that for each δ ∈Q+ there is some Uδ ∈ US such that f (p,�)∗S and f (q,�) are Uδ -far in S for every
p,q ∈Q with q− p > 1

δ
. By Remark 6.5.3 (3) we have

∀δ ∈Q+ ∃Uδ ∈ U such that f (p,�)∗S and f (q,�) are Uδ -far in L whenever q− p > 1
δ
. (6.5.2)

Equivalently, by Proposition 6.2.2 (vii),

∀δ ∈Q+ ∃Uδ ∈U such that f (p,�)∗S∗∗ and f (q,�)∗∗ are Uδ -far in L whenever q− p> 1
δ
. (6.5.3)

By Remark 6.2.3, condition (6.5.2) implies

f (q,�)✁U f (p,�)∗S∗

for every p < q. Denoting f (q,�) by aq and f (p,�)∗S∗ by bp and taking D =Q, ▹=< and ⋐=✁U

(Example 6.5.2) the assumptions of Katětov’s Lemma hold; thus, there exists a family (cp)p∈Q of
elements of L such that

cq ▹U cp, aq ▹U cp and cq ▹U bp (6.5.4)

for every rationals p < q. Note that a∗S∗
p = bp.

Claim 1 (cp)p∈Q defines a uniform homomorphism f̃ ∈ R(L).
To prove the claim, we will use Proposition 6.3.12 and show that (cp)p∈Q satisfies (**), (s2) and (far).
(**): Let p< q. Then cq ▹U cp. In particular, by Proposition 6.1.2 (4), cq ≺ cp, which implies c∗∗q ≤ cp.
(s2): Let δ ∈Q+. Since f is a uniform homomorphism there is a U ∈ U such that

j∗S[U ]≤ f [Dδ ] = { f (r,s) | (r,s) ∈ Dδ} ≤ {ar | r ∈Q}.

From (6.5.4) and Remark 6.5.3 (2), we have U ≤ j∗S[U ]≤ {cp | p ∈Q}. Then 1 =
∨

U ≤
∨

p∈Q cp. On
the other hand,

j∗S[U ]≤ { f (r,s) | (r,s) ∈ Dδ} ≤ { f (�,s) | s ∈Q}

and therefore, by (2.1.1),

j∗S[U ]≤ { f (p,�)∗S | p ∈Q} ≤ { f (p,�)∗S∗∗ | p ∈Q}= {b∗p | p ∈Q}.

It then follows from (6.5.4) that b∗p ≤ c∗q for every p < q. Hence

{b∗p | p ∈Q} ≤ {c∗p | p ∈Q}

and from Remark 6.5.3 (2), U ≤ j∗S[U ]≤ {c∗p | p ∈Q} so 1 =
∨

U ≤
∨

p∈Q c∗p.
(far): Let δ ∈ Q+. We will show that there is a U ∈ U such that c∗p and cq are U-far whenever
q− p > 1

δ
. We claim that the cover Uδ given by (6.5.3) satisfies this property. Let p,q ∈Q such that

q− p > 1
δ

. Then there exist r,s ∈Q such that p < r < s < q and s− r > 1
δ

. Since p < r, by (6.5.4),
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we have

ar ▹U cp =⇒ ar ≤ cp =⇒ c∗p ≤ a∗r

and a∗r ≤ a∗S
r ≤ a∗S∗∗

r = b∗r . Hence, c∗p ≤ b∗r . Again, by (6.5.4) we have

cq ▹U bs =⇒ cq ≤ bs =⇒ b∗s ≤ c∗q

and a∗s ≤ a∗S
s ≤ a∗S∗∗

s = b∗s . Thus, cq ≤ c∗∗q ≤ b∗∗s ≤ a∗∗s . By (6.5.3), b∗r and a∗∗s are Uδ -far, and since
c∗p ≤ b∗r and cq ≤ a∗∗s , so are c∗p and cq.

From Claim 1 it follows, using Proposition 6.3.12, that the formulas

f̃ (p,�) =
∨
r>p

cr and f̃ (�,q) =
∨
s<q

c∗s

define a uniformly continuous f̃ ∈ R(L).

Claim 2 f̃ extends f , that is, j∗S f̃ = f .
By (6.5.4), we know that

⊔
r>p j∗S(cr)≥

⊔
r>p j∗S(ar).2 Hence,

j∗S f̃ (p,�) =
⊔

r>p
j∗S(cr)≥

⊔
r>p

j∗S(ar) =
⊔

r>p
ar =

⊔
r>p

f (r,�) = f (p,�).

For the other inequality notice that, from (6.5.4), we have that
⊔

r>p j∗S(cr)≤
⊔

r>p j∗S(br). Then,

j∗S f̃ (p,�) =
⊔

r>p
j∗S(cr)≤

⊔
r>p

j∗S(br) =
⊔

r>p
j∗S( f (r,�)∗S∗)

≤
⊔

r>p
j∗S( f (r,�)∗S∗S) =

⊔
r>p

( f (r,�)∗S∗S).

Finally, since f (r,�)≤ f (r,�)∗S∗S ≤ f (t,�) for every t < r, we obtain j∗S f̃ (p,�)≤
⊔

t>p f (t,�) =
f (p,�) for every p ∈Q.

Furthermore, if f is bounded, say p ≤ f ≤ q for rationals p ≤ q, then (recall (2.1.3)):

f (r,�)∧ f (�,s) = 1 for every r,s ∈Q with r < p ≤ q < s.

Thus, for any r < p we have that

f̃ (r,�) =
∨
t>r

ct ≥ ct ′ ≥ ar′ = f (r′,�) = 1

for some t ′,r′ ∈Q with r < t ′ < r′ < p. And for any s > q we get that

f̃ (�,s) =
∨
t<s

c∗t ≥ c∗t ′ ≥ b∗s′ = f (s′,�)∗S∗∗ ≥ f (s′,�)∗S ≥ f (�,s′)

for some t ′,s′ ∈Q with q < s′ < t ′ < s. Consequently, p ≤ f̃ ≤ q.
2In this proof, to simplify notation, we denote by

⊔
the joins in S.
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Remark 6.5.5. There is an alternative proof for Lemma 6.5.4. One can replace Claim 1 by:

(cp)p∈Q defines a frame homomorphism f ∈ R(L).

Then one applies the following general principle:

Uniform Extension Principle. In the commutative diagram (6.5.1), if S is dense and the given f is
uniform then f̃ is also uniform.

Proof. Let δ ∈Q+. By Theorem 6.3.9 (ii), there is a U ∈ U such that f (�,r) and f (s,�) are j∗S[U ]-
far in S for every r,s ∈ Q such that s− r > 1

δ
. By Remark 6.5.3 (3), f (�,r) and f (s,�) are also

j∗S[U ]-far in L. Furthermore, since

U ≤ j∗S[U ], f̃ (�,r)≤ j∗S f̃ (�,r) = f (�,r) and f̃ (s,�)≤ j∗S f̃ (s,�) = f (s,�),

f̃ (�,r) and f̃ (s,�) are U-far in L for every r,s ∈Q such that s− r > 1
δ

(by Remark 6.2.1). Hence, by
Proposition 7.3.14 (iii), the extension f̃ is also uniform.



Chapter 7

An Insertion Theorem for Uniform
Frames

In this chapter we prove the point-free version of Preiss and Vilimovský’s insertion result for uniform
spaces [71]. For this purpose, in Section 7.1 we recall and extend some results for prediameters from
[73]. Further, to state (and prove) our insertion theorem we need to extend the farness relation from Sec-
tion 6.2 to sublocales and to define uniform continuity for general real-valued functions (Section 7.2).
In Sections 7.3 and 7.4 we present a study of uniform continuity similar to the one in the previous chap-
ter, but in a more general setting. Finally, Section 7.5 is devoted to the proof of the insertion theorem,
and Section 7.6 presents two important corollaries. This chapter should be thought of as a generaliza-
tion of the theory developed in Chapter 6.2, and it is based on the author’s paper with Igor Arrieta [3].

7.1 Prediameters

Let us recall that a prediameter on a frame L is a function d : L → [0,+∞] with the following properties
([73, 1.2] or [66, XI.3.1]):

(PD1) d(0) = 0.

(PD2) a ≤ b =⇒ d(a)≤ d(b) for all a,b ∈ L.

(PD3) For all ε > 0, the set {a ∈ L | d(a)< ε } is a cover of L.

Consider now the following two properties:

(PD4) If a,b ∈ L are such that a∧b ̸= 0, then d(a∨b)≤ d(a)+d(b).

(PD5) If a,b ∈ L are such that a∧b ̸= 0, then d(a∨b) ≤ 2max{d(a),d(b)} (and so, in particular,
d(a∨b)≤ 2d(a)+2d(b)).

Clearly, (PD4) implies (PD5). A prediameter satisfying (PD4) is called a diameter. Moreover, a
prediameter satisfying (PD5) is a weak diameter ([73]). The latter should not be confused with the
notion of strong prediameter ([66]); i.e., a prediameter which additionally satisfies

(PD6) If S ⊆ L is such that a∧b ̸= 0 for all a,b ∈ S, then d(
∨

S)≤ 2sup{d(s) | s ∈ S}.

119
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Clearly, every strong prediameter is a weak diameter. For our purposes we shall be interested only
in weak diameters, but in passing we shall also present an application to strong prediameters. The
following lemma about weak diameters will be crucial in the proof of our uniform insertion theorem.

Lemma 7.1.1. Let d : L→ [0,+∞] be a weak diameter on a frame L. Let a1, . . . ,ak ∈ L with ai−1∧ai ̸=
0 for all i = 2, . . . ,k. Then,

d
( k∨

j=1

a j

)
≤ 2d(a1 ∨a2)+4

k−1

∑
i=3

d(ai−1 ∨ai)+2d(ak−1 ∨ak).

Proof. Obviously we can assume that every summand in the right hand side is finite (and in that
case, by (PD5), the left hand side is also readily seen to be finite, and so each d(

∨i
j=1 a j) is also

finite). We proceed by induction over k. If k = 1 or k = 2 there is nothing to prove. If k = 3, we have
d(a1∨a2∨a3)≤ 2d(a1∨a2)+2d(a2∨a3) by (PD5). Assume now it holds for all sequences of length
< k and let a1, . . . ,ak ∈ L with ai−1 ∧ai ̸= 0 for all i = 2, . . . ,k. Let

A :=
{

i ∈ {1, . . . ,k} | d
( k∨

j=1

a j

)
≤ 2d

( i∨
ℓ=1

aℓ
)}

.

One has trivially k ∈ A, so A ̸= ∅, hence there is a well-defined m = minA. If m = 1 or m = 2,
the formula in the statement holds trivially so assume m > 2. By minimality (and because m > 1)
m−1 ̸∈ A; i.e., 2d(

∨m−1
ℓ=1 aℓ)< d(

∨k
j=1 a j).

Now, by way of contradiction suppose 2d(
∨k

ℓ=m−1 aℓ)< d(
∨k

j=1 a j). Then

2max
{

d
(m−1∨

ℓ=1

aℓ
)
,d
( k∨
ℓ=m−1

aℓ
)}

< d
( k∨

j=1

a j

)
. (7.1.1)

But

d
( k∨

j=1

a j

)
= d

(m−1∨
ℓ=1

aℓ∨
k∨

ℓ=m−1

aℓ
)

and (
∨m−1

ℓ=1 aℓ)∧ (
∨k

ℓ=m−1 aℓ)≥ am−1 ̸= 0, so by (PD5) it follows that

d
( k∨

j=1

a j

)
≤ 2max

{
d
(m−1∨

ℓ=1

aℓ
)
,d
( k∨
ℓ=m−1

aℓ
)}

. (7.1.2)

Combining (7.1.1) and (7.1.2) we reach a contradiction. Hence, we have

d
( k∨

j=1

a j

)
≤ 2d

( k∨
ℓ=m−1

aℓ
)
. (7.1.3)

Now, if m = k, from (7.1.3) we see that the desired formula holds, so we may as well assume m < k.
Now, we have

d
( k∨

j=1

a j

)
= 1

2 d
( k∨

j=1

a j

)
+ 1

2 d
( k∨

j=1

a j

)
≤ d

( m∨
ℓ=1

aℓ
)
+d

( k∨
ℓ=m−1

aℓ
)

(7.1.4)
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(by (7.1.3) and the fact that m ∈ A). We use induction twice:

d
( m∨
ℓ=1

aℓ
)
≤ 2d(a1 ∨a2)+4

m−1

∑
i=3

d(ai−1 ∨ai)+2d(am−1 ∨am)

and

d
( k∨
ℓ=m−1

aℓ
)
≤ 2d(am−1 ∨am)+4

k−1

∑
i=m+1

d(ai−1 ∨ai)+2d(ak−1 ∨ak).

This together with (7.1.4) gives the desired inequality.

The combination of the previous lemma with (PD5) yields the following:

Corollary 7.1.2. Let d : L → [0,+∞] be a weak diameter on a frame L. Let a1, . . . ,ak ∈ L with
ai ∧ai−1 ̸= 0 for all i = 2, . . . ,k. Then

d
( k∨

j=1

a j

)
≤ 4d(a1)+12d(a2)+16

k−2

∑
i=3

d(ai)+12d(ak−1)+4d(ak).

Remark 7.1.3. The last corollary is, in a certain sense, an improvement of [73, Lemma 3.9] (cf. also
[66, Lemma XI.3.2.4]), which shows a similar inequality whenever d satisfies a property stronger than
(PD5) (too strong for our purposes), namely:

(3W) If a,b,c ∈ L are such that a∧b ̸= 0 ̸= b∧ c, then d(a∨b∨ c)≤ 2max{d(a),d(b),d(c)}.

Of course, the price one has to pay for considering (PD5) instead of (3W) is that the inequality in
Corollary 7.1.2 is not as sharp as that in [73, Lemma 3.9].

The following result is an application of Lemma 7.1.1 to strong prediameters. For that, we first
recall the definition of a star-additive diameter ([66, XI.1.2]). It is an important notion, since any such
diameter immediately induces a uniformity on L, and it can be satisfactorily approximated by a metric
diameter ([66, XI.1.3]). A diameter d is said to be star-additive whenever the following condition
holds:

(DS) If a ∈ L and S ⊆ L are such that a∧b ̸= 0 for all b ∈ S, then

d
(

a∨
∨

S
)
≤ d(a)+ sup{d(b)+d(c) | b,c ∈ S}.

We then have the following (compare with [66, Proposition XI.3.2.5]):

Proposition 7.1.4. Let L be a frame and d a strong prediameter on L. Then there is a star-additive
diameter d′ on L such that

1
32 d ≤ d′ ≤ d.

We omit the details of the proof, as it is very similar to [66, Proposition XI.3.2.5] (instead of [66,
Lemma XI.3.2.4] and property (3W), one uses Lemma 7.1.1).

In the following lemma we define a weak diameter using a family of covers. The application of
Corollary 7.1.2 to this weak diameter will give rise to Proposition 7.1.7, which will be crucial for the
proof of the insertion theorem in Section 7.5.
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Lemma 7.1.5. Let L be a frame, {Vn}n∈Z a sequence of covers with Vn−1 ≤∗
3 Vn for all n ∈ Z and set

d : L → [0,+∞] by
d(a) = inf{2n | ∃v ∈Vn with a ≤ v}.

Then d is a weak diameter on L.

Proof. Note that if d(a)≤ 2n, then there is a v ∈Vn such that a ≤ v. Properties (PD1) and (PD2) are
obvious, and (PD3) follows from the fact that each Vn is a cover and Vn ⊆ {a ∈ L | d(a) < 2n+1 }.
Let us show (PD5) holds. Let a,b ∈ L such that a∧b ̸= 0. If d(a) = +∞ or d(b) = +∞, then there
is nothing to prove. Now assume without loss of generality that d(a) ≤ d(b) < +∞. If d(b) = 0,
then d(a) = 0; i.e., for all n ∈ Z there are un,vn ∈Vn with a ≤ un and b ≤ vn. Now, let n ∈ Z. Then
un−1 ∧ vn−1 ≥ a∧b ̸= 0, and since Vn−1 ≤∗

3 Vn, there is a v ∈Vn with un−1 ∨ vn−1 ≤ v. Consequently
a∨ b ≤ v and so d(a∨ b) = 0. Assume d(b) = 2n. Then there are u,v ∈ Vn with a ≤ u and b ≤ v.
Since u∧ v ̸= 0 and Vn ≤∗

3 Vn+1, there is a w ∈ Vn+1 such that u∨ v ≤ w. Hence, a∨ b ≤ w and so
d(a∨b)≤ 2n+1 = 2 ·2n, as required.

Remarks 7.1.6. (1) It is easy to check that the previous lemma also holds when one replaces the
relation ≤∗

3 by ≤∗
2 and the words “weak diameter” by “strong prediameter”.

(2) The lemma above can be easily adapted to a sequence {Vn}n∈N with Vn+1 ≤∗
3 Vn; it suffices to

define d : L → [0,+∞] by d(a) = inf{2−n | ∃u ∈Vn with a ≤ u}.

We also state the following for future reference:

Proposition 7.1.7. Let L be a frame, {Vn}n∈Z a sequence of covers with Vn−1 ≤∗
3 Vn for all n ∈ Z.

Let a1, . . . ,ak ∈ L with ai−1 ∧ai ̸= 0 for all i = 2, . . . ,k, and suppose that ai ∈Vni for all i = 1, . . . ,k.
Suppose also that

k

∑
i=1

2ni+4 < 2n.

Then there is a v ∈Vn−1 such that a1 ∨ak ≤ v.

Proof. Let d denote the weak diameter given by Lemma 7.1.5. By the definition of d, we have
d(ai)≤ 2ni for all i = 1, . . . ,k. In particular,

4d(a1)+12d(a2)+16
k−2

∑
i=3

d(ai)+12d(ak−1)+4d(ak)≤ 16
k

∑
i=1

d(ai)≤
k

∑
i=1

2ni+4 < 2n.

Then, by Corollary 7.1.2, d(a1 ∨ak)< 2n, so it follows by the definition of d that there is a v ∈Vn−1

such that a1 ∨ak ≤ v.

7.2 Covering Farness in S(L)

We say that a subset U ⊆ S(L) is a cover of S(L) if
∨
U = L. This definition is not to be confused

with the notion of cover in the frame S(L)op. In this context, we say that a cover V refines (or is a
refinement of) a cover U if for every S ∈V there is some T ∈ U such that S ⊆ T , and we write V≤ U.
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In particular, we will be interested in open covers of S(L), that is, covers of the form

o[U ] := {o(u) | u ∈U}

for a cover U of L. Notice from (1.4.6) that U is a cover of L if and only if o[U ] is a cover of S(L),
and that for covers U and V of L, o[U ]≤ o[V ] if and only if U ≤V in the sense of Section 6.1.

Let U be a cover of S(L). We say that sublocales S and T of L are U-far1 in the coframe S(L) if

∀D ∈ U D∩S ̸= O =⇒ D∩T = O.

The following observations are trivial:

Remark 7.2.1. Let U be a cover of S(L), and let S,T be sublocales of L. Then:

(1) If S and T are U-far and S′ ⊆ S and T ′ ⊆ T , then S′ and T ′ are also U-far;

(2) If U≤V and S and T are V-far, then S and T are also U-far;

(3) If S and T are U-far, then S# ∨T # = L. Indeed, we have

L =
∨

U=
∨

{D ∈ U | D∩S ̸= O}∨
∨

{D ∈ U | D∩S = O}

⊆
∨

{D ∈ U | D∩T = O}∨
∨

{D ∈ U | D∩S = O} ⊆ S# ∨T #

With only a couple of exceptions, we shall be interested in the case where the cover U is open, say
U= o[U ] for a cover U of L. In that case, we shall simply say that S and T are U-far when they are
o[U ]-far. This notion coincides with that of Section 6.2 above, in the sense that elements a and b of L
are U-far if and only if o(a) and o(b) are U-far.

Given a cover U of L and a sublocale S ⊆ L, we set

U ∗S :=
∨
{o(u) | u ∈U, o(u)∩S ̸= O}

and we say that the sublocale U ∗S is the star of the sublocale S with respect to U . One can define this
star operation for a general cover U [51] (see also [45, 67] for this concept in the more general context
of nearness structures), but for our purposes this is not necessary.

Clearly, U ∗S is an open sublocale of L. From (1.4.7) and the fact that U is a cover of L, one can
also very easily deduce that S ⊆U ∗S. Note also that for every a ∈ L one has U ∗o(a) = o(Ua) (recall
(1.4.6)). Moreover, if S ⊆ T , then U ∗S ⊆U ∗T .

In the case of open covers, we can give a few more characterizations of farness:

Proposition 7.2.2. Let L be a frame and U a cover of L. For sublocales S and T of L, the following
conditions are equivalent:

(i) S and T are U-far.

(ii) (U ∗S)∩T = O.

1A word of caution: this definition of farness is not equivalent to the one given in Section 6.2 applied to the frame S(L)op.
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(iii) (U ∗T )∩S = O.

(iv) T ⊆ (U ∗S)#.

(v) S ⊆ (U ∗T )#.

(vi) S and T are U-far.

Moreover, if S and T are U-far, then S∩T = O.

Proof. (i) ⇐⇒ (ii): Since families of open covers are distributive (recall (1.4.7)),

(U ∗S)∩T =
∨
{o(u)∩T | u ∈U, o(u)∩S ̸= O}.

Then, (U ∗S)∩T = O if and only if for each u ∈U , o(u)∩S ̸= O implies o(u)∩T = O. That is, if
and only if S and T are U-far.
(i) ⇐⇒ (iii): By definition, U-farness is a symmetric relation, so the proof of this equivalence is
analogous to (i) ⇐⇒ (ii).
(ii) ⇐⇒ (iv): This equivalence follows because U ∗S is open and hence complemented (recall (1.4.3)).
(iii) ⇐⇒ (v): Since U ∗T is complemented, by (1.4.3) we have (U ∗T )∩S = O ⇐⇒ S ⊆ (U ∗T )#.
(i) ⇐⇒ (vi): Assume that S and T are U-far; equivalently one has T ⊆ (U ∗S)# and since (U ∗S)# is
closed, it follows that T ⊆ (U ∗S)#. The latter is in turn equivalent to T and S being U-far. Now, (vi)
follows repeating the argument with S and T . The reverse implication is trivial by Remark 7.2.1 (1).

For the last assertion, if S and T are U-far, then so are S and T and by (ii) it follows that
S∩T ⊆ (U ∗S)∩T = O.

Remark 7.2.3. For each cover U of L and every a ∈ L, U ∗o(a) = o(Ua). Thus,

U ∗o(a)⊆ o(b) ⇐⇒ Ua ≤ b

for any a,b ∈ L. Then, by Proposition 7.2.2, we have

U ∗ c(a)⊆ c(b) ⇐⇒ (U ∗ c(a))∩o(b) = O ⇐⇒ (U ∗o(b))∩ c(a) = O ⇐⇒ U ∗o(b)⊆ o(a)

⇐⇒ Ub ≤ a

for any a,b ∈ L.

We also have the following:

Corollary 7.2.4. Let L be a frame and U be cover of L. For sublocales S and T of L, the following
conditions are equivalent:

(i) U ∗S ⊆ T .

(ii) U ∗S ⊆ T ◦.

(iii) S and T # are U-far.

(iv) S and (T ◦)# are U-far.
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Proof. The equivalence between (i) and (ii) follows since

U ∗S ⊆ T ⇐⇒ U ∗S ⊆ T ◦ (because U ∗S is open),

⇐⇒ (U ∗S)∩ (T ◦)# = O (because T ◦ is complemented),

⇐⇒ (U ∗S)∩ (T ◦)# = O (by Proposition 7.2.2),

⇐⇒ U ∗S ⊆ T ◦ (because T ◦ is complemented).

Now, U ∗S ⊆ T ◦ if and only if S and (T ◦)# = T # are U-far (recall (1.4.12) for the equality), which by
Proposition 7.2.2 holds if and only if S and T # are U-far. Thus the equivalence between (ii) and (iii)
follows. Finally, (iii) ⇐⇒ (iv) follows from Proposition 7.2.2 (vi) and 1.4.12.

7.3 Uniform Continuity for General Real-Valued Functions

We now fix some special kind of covers induced by the basis of the metric uniformity in L(R) and by
some general real-valued functions on a frame L. These covers generalize those defined in Section 6.3.

Let f ,g ∈ F(L) and f ≥ g. For every δ ∈Q+ let

D f ,g
δ

:=
{
( f (r,�)∨g(�,s))# | (r,s) ∈ Dδ

}
,

C f ,g
δ

:=
{

f (r,�)# ∩g(�,s)# | (r,s) ∈ Dδ

}
and

F f ,g
δ

:= { f (�,r)∩g(s,�) | (r,s) ∈ Dδ} .

When f = g we simply write D f
δ

:=D f , f
δ

, C f
δ

:= C f , f
δ

, and F f
δ

:= F f , f
δ

. First note that, since f ≥ g and
Dδ is a cover of L(R), we have:∨

D f ,g
δ

=
∨{

( f (r,�)∨g(�,s))# | (r,s) ∈ Dδ

}
⊇

∨{
(g(r,�)∨g(�,s))# | (r,s) ∈ Dδ

}
=

∨{
g(r,s)# | (r,s) ∈ Dδ

}
=
(⋂

{g(r,s) | (r,s) ∈ Dδ }
)#

= L.

Thus, D f ,g
δ

is a cover in S(L) for every δ ∈Q+. Moreover, for every (r,s) ∈ Dδ we have

f (r,�)∨g(�,s)∨ f (r,�)# ⊇ f (r,�)∨ f (r,�)# = L and

f (r,�)∨g(�,s)∨g(�,s)# ⊇ g(�,s)∨g(�,s)# = L

which means, by (1.4.2), that

( f (r,�)∨g(�,s))# ⊆ f (r,�)# and ( f (r,�)∨g(�,s))# ⊆ g(�,s)#.

Therefore, ( f (r,�)∨g(�,s))# ⊆ f (r,�)# ∩g(�,s)#, and since f is a frame homomorphism,

f (r,�)# ∩g(�,s)# ⊆ f ((r,�)∗)∩g((�,s)∗) = f (�,r)∩g(s,�).

Thus, C f ,g
δ

and F f ,g
δ

are also covers and

D f ,g
δ

≤ C f ,g
δ

≤ F f ,g
δ

. (7.3.1)
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Remark 2.5.1 immediately gives:

Lemma 7.3.1. Let U be a cover of L, f ,g ∈ F(L) and δ ∈Q+. The following are equivalent:

(i) The sublocales f (r,�) and g(�,s) are U-far for all s− r > 1
δ

.

(ii) The sublocales f (r,�) and g(s,�)# are U-far for all s− r > 1
δ

.

(iii) The sublocales f (�,r)# and g(�,s) are U-far for all s− r > 1
δ

.

(iv) The sublocales f (�,r)# and g(s,�)# are U-far for all s− r > 1
δ

.

Proposition 7.3.2. Let U and V be covers of a frame L. If o[U ]≤ F f
γ and o[V ]≤ F f

δ
for some γ,δ ∈Q+

and f ∈ F(L), then o[UV ]≤ F f
γδ

γ+2δ

.

Proof. Let Uv ∈UV . Since o[V ] ≤ F f
δ
, there is (r,s) ∈ Dδ such that o(v) ⊆ f (�,r)∩ f (s,�). Take

u ∈U such that u∧ v ̸= 0. Since o[U ]≤ F f
γ , there is (p,q) ∈ Dγ such that o(u)⊆ f (�, p)∩ f (q,�).

Then

O ̸= o(u)∩o(v)⊆ f (�, p)∩ f (q,�)∩ f (�,r)∩ f (s,�) = f ((�,r∨ p)∨ (s∧q,�))

which means that r ≤ q and p ≤ s (otherwise (�,r∨ p)∨ (s∧q,�) = 1). Hence,

r− 1
γ
= r− (q− p)≤ r− r+ p = p and s+ 1

γ
= s+(q− p)≥ s+q− s = q

so
o(u)⊆ f (�, p)∩ f (q,�)⊆ f (�,r− 1

γ
)∩ f (s+ 1

γ
,�).

Consequently, o(Uv)⊆ f (�,r− 1
γ
)∩ f (s+ 1

γ
,�) and s+ 1

γ
− (r− 1

γ
) = 1

δ
+ 2

γ
= γ+2δ

δγ
, showing that

o[UV ]≤ F f
γδ

γ+2δ

.

Proposition 7.3.3. Let U be a cover of a frame L. If o[U ]≤ F f
δ

for some δ ∈Q+ and f ∈ F(L), then
o[Un]≤ F f

δ

2n−1
.

Proof. We proceed by induction on n. For n = 1 is trivial. Assume o[Un]≤ F f
δ

2n−1
. Then, by Proposi-

tion 7.3.2,
o[Un+1] = o[UUn] = F f

δ2
2δ+δ (2n−1)

= F f
δ

2n+1
= F f

δ

2(n+1)−1
.

Next results will help us prove Theorem 7.3.10 below. They generalize the results in Section 6.3.

Lemma 7.3.4. Let L be a frame and f ,g ∈ F(L) with f ≥ g. For each δ ∈Q+ and every r,s ∈Q such
that s− r > 1

δ
, the sublocales f (r,�) and g(�,s) are F f ,g

δ
-far. In particular, they are also D f ,g

δ
-far

and C f ,g
δ

-far.

Proof. Let δ ∈Q+. We proceed by contradiction; suppose there are s,r ∈Q with s− r > 1
δ

such that
f (r,�) and g(�,s) are not F f ,g

δ
-far. This means there must exist (r′,s′) ∈ Dδ such that

f (r,�)∩ f (�,r′)∩g(s′,�) ̸= O and g(�,s)∩ f (�,r′)∩g(s′,�) ̸= O.
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In particular, we would have

f (r,�)∩ f (�,r′) ̸= O and g(�,s)∩g(s′,�) ̸= O.

Thus, r′ ≤ r and s ≤ s′. Hence, 1
δ
= s′− r′ ≥ s− r > 1

δ
, a contradiction. Consequently, for every

s,r ∈ Q with s− r > 1
δ

the sublocales f (r,�) and g(�,s) are F f ,g
δ

-far. From Remark 7.2.1 (2) and
(7.3.1), they are also D f ,g

δ
-far and C f ,g

δ
-far.

Lemma 7.3.5. Let L be a frame, f ,g ∈ F(L) with f ≥ g, and δ ∈ Q+. If U is a cover of S(L) such
that for every s,r ∈Q with s− r > 1

δ
the sublocales f (r,�) and g(�,s) are U-far, then

U≤D f ,g
γ for every γ ∈Q+ with γ < δ .

Proof. Let S ∈ U with S ̸= O. We claim there is s0 ∈ Q such that S∩ g(�,s0) ̸= O. Suppose not,
that is, S∩ g(�,s) = O for every s ∈ Q. Then, since g ∈ F(L) (recall (1.4.2)), we would have S ⊆⋂

s∈Q g(�,s)# ⊆
⋂

s∈Q g(s,�) =O, a contradiction (because S ̸=O). Then, by assumption, S∩ f (s0 −
2
δ
,�) = O. We may consider the non-empty set

A := {r ∈Q | S∩ f (r,�) = O}

which is strictly contained in Q (if this was not the case, then S ⊆
⋂

s∈Q f (r,�)# ⊆
⋂

r∈Q f (�,r) = O

contradicting the fact that S ̸=O). Moreover, if S∩ f (r,�) ̸=O, then S∩ f (r′,�) ̸=O for every r′ > r.
Thus, A is upper bounded, and α := sup A ∈ R. Let γ ∈Q+ with γ < δ , and take ε = δ−γ

δγ
. Clearly,

ε > 0. Now, take r,s ∈ Q such that 0 < α − r < ε

3 and 0 < s−α < ε

3 . Then, S∩ f (r,�) = O and
S∩ f (s,�) ̸= O. By assumption, we have S∩g(�,s+ ε

3 +
1
δ
) = O. Since

s+ ε

3 +
1
δ
− r < α + ε

3 +
ε

3 +
1
δ
+ ε

3 −α = ε + 1
δ
= 1

γ
,

we can pick (r′,s′) ∈ Dγ such that r′ < r < s+ ε

3 +
1
δ
< s′. Consequently, we have

S∩ f (r′,�)⊆ S∩ f (r,�) = O and S∩g(�,s′)⊆ S∩g(�,s+ ε

3 +
1
δ
) = O.

That is, S ∩ ( f (r′,�)∨ g(�,s′)) = O which implies that S ⊆ ( f (r′,�)∨ g(�,s′))#, showing that
U≤D f ,g

γ .

Proposition 7.3.6. Let L be a frame and f ,g ∈ F(L) with f ≥ g. Then the following are equivalent:

(i) For every δ ∈Q+ there is a cover U of S(L) such that U≤D f ,g
δ

.

(ii) For every δ ∈Q+ there is a cover U of S(L) such that the sublocales f (r,�) and g(�,s) are
U-far for any s− r > 1

δ
.

Proof. (i) =⇒ (ii): For δ ∈Q+, let U be the cover of S(L) such that U≤D f ,g
δ

. By Lemma 7.3.4, the
sublocales f (r,�) and g(�,s) are D f ,g

δ
-far for any s− r > 1

δ
. By Remark 7.2.1 (2), f (r,�) and g(�,s)

are U-far for any s− r > 1
δ

(since U≤D f ,g
δ

).
(ii) =⇒ (i): Let δ ∈Q+. By assumption, there is a cover U of S(L) such that the sublocales f (r,�)
and g(�,s) are U-far for any s− r > 1

δ+1 . Then, by Lemma 7.3.5, U≤D f ,g
δ

.
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Proposition 7.3.7. Let L be a frame and f ,g ∈ F(L) with f ≥ g. Then the following are equivalent:

(i) For every δ ∈Q+ there is a cover U of L such that o[Un]≤D f ,g
δ

2n−1
for every n ∈ N.

(ii) For every δ ∈Q+ there is a cover U of L such that for every n ∈ N the sublocales f (r,�) and
g(�,s) are Un-far whenever s− r > n

δ
.

Proof. (i) =⇒ (ii): Let δ ∈Q+ and consider ε = 2δ . By assumption there is a cover U of L such that
o[Un]≤D f ,g

ε

2n−1
for every n ∈N. Let s,r ∈Q with s−r > n

δ
. Since n

δ
= 2n

ε
> 2n−1

ε
, by Lemma 7.3.4, the

sublocales f (r,�) and g(�,s) are D f ,g
ε

2n−1
-far. In particular, they are Un-far (recall Remark 7.2.1 (2)).

(ii) =⇒ (i): Let δ ∈ Q+. By assumption there is some cover U of L such that for every n ∈ N
the sublocales f (r,�) and g(�,s) are Un-far whenever s− r > n

δ+1 . Then, by Lemma 7.3.5, since
δ

2n−1 < δ+1
n , we have o[Un]≤D f ,g

δ

2n−1
.

Definition 7.3.8. Let (L,U ) be a (pre)uniform frame. An f ∈ F(L) is uniformly continuous if for
every n ∈ N there is a U ∈ U such that

o[U ]≤D f
n =

{
f (r,s)# | (r,s) ∈ Dn

}
.

Equivalently, if for every δ ∈Q+ there is a U ∈ U such that o[U ]≤D f
δ
=
{

f (r,s)# | (r,s) ∈ Dδ

}
.

Remarks 7.3.9. (1) If f ∈ C(L) (i.e., f : L(R)→ S(L)op is of the form f = cg for a frame homomor-
phism g : L(R)→ L), it is clear that f is uniformly continuous (in the sense just defined) if and only
if g is a uniform homomorphism. Indeed, we have:

o[U ]≤D f
n ⇐⇒ ∀u ∈U ∃(r,s) ∈ Dn : o(u)≤ f (r,s)# = c(g(r,s))# = o(g(r,s))

⇐⇒ ∀u ∈U ∃(r,s) ∈ Dn : u ≤ g(r,s)

⇐⇒ U ≤ g[Dn] = Dg
n.

(2) Actually, it is not necessary to require f to be continuous in order to recover the usual notion
of uniform continuity. Indeed, we shall show below, in Corollary 7.3.11, that uniform continuity (in
the sense of Definition 7.3.8) implies continuity. Hence, by virtue of the previous remark, uniformly
continuous maps in F(L) correspond precisely to uniform homomorphisms L(R) → (L,U ), thus
ensuring that this is the right notion of uniform continuity for maps in F(L).

Theorem 7.3.10. Let (L,U ) be a preuniform frame and f ∈ F(L). Then the following statements are
equivalent:

(i) f is uniformly continuous.

(ii) for every δ ∈ Q+ there is U ∈ U such that the sublocales f (r,�) and f (�,s) are U-far
whenever s− r > 1

δ
.

(iii) for every δ ∈Q+ there is U ∈ U such that o[Un]≤D f
δ

2n−1
.

(iv) for every δ ∈Q+ there is U ∈ U such that for every n ∈ N the sublocales f (r,�) and f (�,s)
are Un-far whenever s− r > n

δ
.
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Proof. (i) =⇒ (ii): Let δ ∈Q+. Consider the cover U of L given by the uniform continuity of f , so
that o[U ]≤D f

δ
. By Lemma 7.3.4, the sublocales f (r,�) and f (�,s) are D f

δ
-far for any s− r > 1

δ
. By

Remark 7.2.1 (2), since o[U ]≤D f
δ
, f (r,�) and f (�,s) are U-far for any s− r > 1

δ
.

(ii) =⇒ (i): Let δ ∈Q+. By assumption there is a cover U of L such that the sublocales f (r,�) and
f (�,s) are U-far for any s− r > 1

δ+1 . Then, by Lemma 7.3.5, o[U ]≤D f
δ
.

(iv) =⇒ (ii): Trivial.
(i) =⇒ (iv): Let δ ∈Q+ and consider a natural number m such that 1

m ≤ 1
δ

. By assumption, there is a
uniform cover U ∈ U such that o[U ]≤D f

2m. We claim U is the cover we are looking for. Let n ∈ N
and s− r > n

δ
. If n = 1, then s− r > 1

m > 1
2m . By Lemma 7.3.4, sublocales f (r,�) and g(�,s) are

D f
2m-far. Since o[U ]≤D f

2m, they are also U-far. For n ≥ 2, suppose f (r,�) and f (�,s) are not Un-far.
Since o[U ]≤D f

2m ≤ F f
2m, by Proposition 7.3.3,

o[Un]≤ F f
2m

2n−1
.

It then follows (recall Remark 7.2.1 (2)) that f (r,�) and f (�,s) cannot be F f
2m

2n−1
-far, since we assumed

they are not Un-far. This means that there is some (p,q) ∈ D 2m
2n−1

such that

f (r,�)∩ f (�, p)∩ f (q,�,) ̸= O and f (�,s)∩ f (�, p)∩ f (q,�,) ̸= O.

In particular,
f (r,�)∩ f (�, p) ̸= O and f (�,s)∩ f (q,�,) ̸= O.

meaning that p ≤ r and s ≤ q. Therefore,

n
δ
< s− r < q− p = 2n−1

2m < n
m ≤ n

δ
,

a contradiction. In conclusion, f (r,�) and f (�,s) are Un-far.
(iii) ⇐⇒ (iv): Follows from Proposition 7.3.7.

Corollary 7.3.11. Let (L,U ) be a preuniform frame and f ∈ F(L) be uniformly continuous. Then f
is continuous (i.e., f ∈ C(L)).

Proof. By Theorem 7.3.10 (ii), for each δ ∈ Q+ there is a uniform cover Uδ such that f (r,�) and
f (�,s) are Uδ -far whenever s− r > 1

δ
. To show that f is continuous we have to prove that for every

r,s ∈Q, the sublocales f (r,�) and f (�,s) are closed. For each r ∈Q, by Proposition 7.2.2 we have

f (r,�)⊆
(
Uδ ∗ f (�,r+ 2

δ
)
)#

for every δ ∈Q+. Thus,
f (r,�)⊆

⋂
δ∈Q+

(
Uδ ∗ f (�,r+ 2

δ
)
)#
.

From Remark 2.5.1 and the fact that S ⊆U ∗S for any sublocale S ∈ S(L), we obtain

⋂
r<t

f (�, t)# ⊆
⋂
r<t

f (t,�) = f (r,�)⊆
⋂

δ∈Q+

(
Uδ ∗ f (�,r+ 2

δ
)
)# ⊆

⋂
δ∈Q+

f (�,r+ 2
δ
)# =

⋂
t>r

f (�, t)#.
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Since
⋂

δ∈Q+

(
Uδ ∗ f (�,r+ 2

δ
)
)# is closed, f (r,�) is a closed sublocale for every r ∈Q. Similarly,

we can conclude that f (�,s) is closed for every s ∈Q.

Remark 7.3.12. Let f ,g ∈ R(L). Then

Dc f ,cg
δ

=
{
(c( f (r,�))∨ c(g(�,s)))# | (r,s) ∈ Dδ

}
= {o( f (r,�)∧g(�,s)) | (r,s) ∈ Dδ}= o[D f ,g

δ
],

Cc f ,cg
δ

= {o( f (r,�))∩o(g(�,s)) | (r,s) ∈ Dδ}= {o( f (r,�)∧g(�,s)) | (r,s) ∈ Dδ}= o[D f ,g
δ

]

and

Fc f ,cg
δ

= {c( f (�,r))∩ c(g(s,�)) | (r,s) ∈ Dδ} ⊇ {c( f (r,�)∗)∩ c(g(�,s)∗) | (r,s) ∈ Dδ}

=
{
o( f (r,�))∩o(g(�,s)) | (r,s) ∈ Dδ

}
.

If f = g we have

Cc f
δ
=Dc f

δ
= {o( f (r,s)) | (r,s) ∈ Dδ}= o[D f

δ
] = o[ f [Dδ ]] and

Fc f
δ
= {c( f (�,r)∨ f (�,s)) | (r,s) ∈ Dδ} ⊇

{
o( f (r,s)) | (r,s) ∈ Dδ

}
.

Lemma 7.3.13. Let L be a frame and U a cover of L. If δ ∈Q+ and f ,g ∈ R(L) are such that f ≥ g,
then the following are equivalent:

(i) the elements f (�,r) and g(s,�) are U-far whenever s− r > 1
δ

;

(ii) the sublocales c f (r,�) and cg(�,s) are U-far whenever s− r > 1
δ

.

Proof. For any r,s ∈Q we have the following equivalences:

c f (r,�) and cg(�,s) are U-far ⇐⇒ ∀u ∈U c f (r,�)∩o(u) = O

or cg(�,s)∩o(u) = O

⇐⇒ ∀u ∈U c f (r,�)⊆ c(u) or cg(�,s)⊆ c(u)

⇐⇒ ∀u ∈U u ≤ f (r,�) or u ≤ g(�,s).

Now, assume (i), and let r,s ∈ Q with s− r > 1
δ

. Select p,q ∈ Q such that r < p < q < s with
q− p > 1

δ
. Then, f (�, p) and g(q,�) are U-far which means that for all u ∈U one has u ≤ f (�, p)∗

or u ≤ g(q,�)∗ (recall Proposition 6.2.2 (vi)). By Remark 2.1.1, it follows that for all u ∈U either
u ≤ f (r,�) or u ≤ g(�,s). By the equivalences above, c f (r,�) and cg(�,s) are U-far. The converse
follows at once from the equivalences above and Remark 2.1.1.

Proposition 7.3.14. Let (L,U ) be a preuniform frame. Then the following are equivalent for f ∈
R(L):

(i) c f is uniformly continuous.

(ii) f is a uniform homomorphism.
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(iii) For every δ ∈ Q+ there is a U ∈ U such that the elements f (�,r) and f (s,�) are U-far
whenever s− r > 1

δ
.

(iv) For every δ ∈Q+ there is a U ∈ U such that for every n ∈ N the elements f (�,r) and f (s,�)
are Un-far whenever s− r > n

δ
.

(v) For every δ ∈Q+ there is U ∈ U such that for every n ∈ N, Un ≤ D f
δ

2n−1
.

(vi) For every δ ∈ Q+ there is a U ∈ U such that the sublocales c f (r,�) and c f (�,s) are U-far
whenever s− r > 1

δ
.

(vii) For every δ ∈ Q+ there is a U ∈ U such that for every n ∈ N the sublocales c f (r,�) and
c f (�,s) are Un-far whenever s− r > n

δ
.

(viii) For every δ ∈Q+ there is U ∈ U such that for every n ∈ N, o[Un]≤Dc f
δ

2n−1
.

Proof. The equivalences (i) ⇐⇒ (vi) ⇐⇒ (vii) ⇐⇒ (viii) are proved in Theorem 7.3.10.
On the other hand, (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) follow from Theorem 6.3.9.
Then by Remark 7.3.9 one knows that (i) and (ii) are equivalent. One can also use Lemma 7.3.13
to show that (iii) ⇐⇒ (vi) and (iv) ⇐⇒ (vii), or use Remark 7.3.12 to see that (iv) is equivalent to
(viii).

7.4 Scales in S(L) for Uniform Frame Homomorphisms

In Section 2.6 we discussed scales for S(L)op and how they generate a function f ∈ F(L). We also
proved that under condition (IC), these scales define, not only a general real-valued function, but
an f ∈ C(L). In this section we will see whether a scale in S(L)op generates a uniformly continuous
real-valued function and, more generally, when does a family of sublocales (Sr)r∈Q defines a uniformly
continuous function in L.

Inspired by the scales studied in Section 6.3 let us first consider the following conditions on a
family (Sr)r∈Q of sublocales of a preuniform frame (L,U ):

(U) For every δ ∈Q+ there is a U ∈ U such that U ∗Sr ⊆ Ss whenever s− r > 1
δ

.

(U’) For every δ ∈Q+ there is a U ∈ U such that U ∗Ss ⊆ Sr whenever s− r > 1
δ

.

Remarks 7.4.1. (1) (U) =⇒ (S1): Indeed, let r < s and δ ∈Q+ such that s− r > δ . By (U), there is
U ∈ U such that U ∗Sr ⊆ Ss. By Corollary 7.2.4 (iii), Sr and S#

s are U-far. In particular Sr ∩S#
s = O

(Proposition 7.2.2).

(2) (U) =⇒ (IC): Let r < s and δ ∈ Q+ such that s− r > δ . By (U), there is U ∈ U such that
U ∗Sr ⊆ Ss. From Corollary 7.2.4 (ii) it follows that Sr ⊆U ∗Sr ⊆ S◦s , as required.

(3) Similarly, one can show that (U’) =⇒ (S1’) and (U’) =⇒ (IC’).
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Lemma 7.4.2. Let (L,U ) be a preuniform frame. If a family (Sr)r∈Q ⊆ S(L) satisfies (U) (resp. (U’))
and (S2), then the formulas

h(p,�) =
⋂
r>p

Sr and h(�,q) =
⋂
s<q

S#
s

(resp. h(p,�) =
⋂
r>p

S#
r and h(�,q) =

⋂
s<q

Ss)

define a uniformly continuous h ∈ F(L).

Proof. Let (Sr)r∈Q ⊆ S(L) be a family of sublocales satisfying (U) and (S2). By Remark 7.4.1 (1),
(Sr)r∈Q is an ascending scale in S(L)op. Hence, the formulas

h(p,�) =
⋂
r>p

Sr and h(�,q) =
⋂
s<q

S#
s

determine an h ∈ F(L). Moreover, by Remark 7.4.1 (2), we have h ∈ C(L). Now, to show that h is
uniformly continuous let δ ∈Q+ and take the U ∈ U given by (U). Let p,q ∈Q such that q− p > 1

δ

and select r′,s′ ∈Q such that p < r′ < s′ < q and s′− r′ > 1
δ

. Then U ∗Sr′ ⊆ Ss′ . By Corollary 7.2.4,
Sr′ and (S◦s′)

# are U-far. Now,

h(p,�) =
⋂
r>p

Sr ⊆ Sr′ ⊆ Sr′ and h(�,q) =
⋂
s<q

S#
s ⊆ S#

s′ ⊆ (S◦s′)
#

so, by Remark 7.2.1 (1), h(p,�) and h(�,q) are U-far. Thus h is uniformly continuous by Theo-
rem 7.3.10. The statement inside parenthesis can be proved in a similar way.

Condition (ii) in Theorem 7.3.10 points that farness is related to uniform continuity. So, instead of
working with the star operator as in the preceding lemma, we may consider the following conditions
for a preuniform frame (L,U ) and a family (Sr)r∈Q ⊆ S(L):

(FAR) For every δ ∈Q+ there is a cover U ∈ U such that Sr and S#
s are U-far whenever s− r > 1

δ
.

(FAR’) For every δ ∈Q+ there is a cover U ∈ U such that S#
r and Ss are U-far whenever s− r > 1

δ
.

Remark 7.4.3. It is clear from Corollary 7.2.4 (iii) that (U) ⇐⇒ (FAR) and (U’) ⇐⇒ (FAR’).

Lemma 7.4.2 and Remarks 7.4.3 immediately yield:

Lemma 7.4.4. Let (L,U ) be a preuniform frame. If a family (Sr)r∈Q ⊆ S(L) satisfies (FAR) (resp.
(FAR’)) and (S2), then the formulas

h(p,�) =
⋂
r>p

Sr and h(�,q) =
⋂
s<q

S#
s

(resp. h(p,�) =
⋂
r>p

S#
r and h(�,q) =

⋂
s<q

Ss)

define a uniformly continuous h ∈ F(L).
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We consider two last conditions on a familiy (Sr)r∈Q ⊆ S(L):

(C) For every δ ∈Q+ there is a cover U ∈ U such that o[U ]≤
{

Sr
# ∩S◦s | (r,s) ∈ Dδ

}
.

(C’) For every δ ∈Q+ there is a cover U ∈ U such that o[U ]≤
{

Ss
# ∩S◦r | (r,s) ∈ Dδ

}
.

Remarks 7.4.5. (1) (C) =⇒ (S2): For any δ ∈Q+ there is a U ∈ U such that

o[U ]≤
{

Sr
# ∩S◦s | (r,s) ∈ Dδ

}
≤ {Sr

#}r∈Q and o[U ]≤
{

Sr
# ∩S◦s | (r,s) ∈ Dδ

}
≤ {S◦s}r∈Q

so
∨

r∈Q Sr
#
= L and

∨
s∈Q S◦s = L. Let us write Sr = c(ar) for some ar ∈ L, then

O= c
( ∨

r∈Q
ar

)
=

⋂
r∈Q

c(ar) =
⋂
r∈Q

Sr ⊇
⋂
r∈Q

Sr,

since o
(∨

r∈Q ar
)
=

∨
r∈Q o(ar) =

∨
r∈Q Sr

#
= L. Writing S◦s = o(bs) for some bs ∈ L, we have

O= c
( ∨

s∈Q
bs

)
=

⋂
s∈Q

c(bs) =
⋂
s∈Q

(S◦s )
# ⊇

⋂
s∈Q

S#
s ,

since o
(∨

s∈Q bs
)
=

∨
s∈Q o(bs) =

∨
s∈Q S◦s = L.

(2) (C) + (wS1) =⇒ (FAR): Let δ ∈Q+. By (C) there is U ∈ U such that

o[U ]≤
{

Sr
# ∩S◦s | (r,s) ∈ Dδ

}
.

We claim that U is the cover that satisies (FAR); that is, Sr and S#
s are U-far whenever s− r < 1

δ
.

Suppose this is not true. Then there are s′,r′ ∈Q with s′− r′ > 1
δ

such that Sr′ and S#
s′ are not U-far.

In particular, Sr′ and S#
s′ are not

{
Sr

# ∩S◦s | (r,s) ∈ Dδ

}
-far (recall Remark 7.2.1 (2)). Thus, there is

(p,q) ∈ Dδ such that

Sr′ ∩Sp
# ⊇ Sr′ ∩Sp

# ∩S◦q ̸= O and S#
s′ ∩S◦q ⊇ S#

s′ ∩Sp
# ∩S◦q ̸= O.

By (wS1), this implies r′ ≥ p and s′ ≤ q. Then we get a contradiction because

1
δ
< s′− r′ ≤ p−q = 1

δ
.

Thus, Sr and S#
s are U-far whenever s− r > 1

δ
.

(3) (FAR) + (S2) =⇒ (C): Let δ ∈Q+. By assumption there is a cover U ∈ U such that Sr and S#
s are

U-far for every s,r ∈Q with s− r > 1
δ+1 . By Remark 6.2.1 and Proposition 7.2.4 (iv),

(Sr)
◦ and (S#

s )
◦ are U-far whenever s− r > 1

δ+1 . (7.4.1)

We set Sr = c(ar) and S◦s = o(br) for every r,s ∈Q. Since (FAR) implies (IC) we obtain

c(ap) = Sp ⊆ S◦r ⊆ (Sr)
◦ ⊆ ((Sr)◦) = o(a∗r ) = c(a∗∗r ) and
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o(b∗∗p ) = (S◦p)
◦ ⊆ S◦p ⊆ Sr ⊆ S◦r = o(br).

for every p < r. Thus, a∗∗r ≤ ap and b∗∗p ≤ ar. Again by (IC) we have

c(b∗r ) = o(br) = S◦r ⊆ Sr ⊆ S◦s for every r < s

Thus, by (S2),
⋂

r∈Q c(b∗r )⊆
⋂

s∈Q Ss = O. Equivalently,
∨

r∈Q b∗r = 1. Similarly, for every s < r,

Ss ⊆ Ss ⊆ S◦r ⊆ Sr
◦
= c(ar)

◦ = o(a∗r ).

Then, by (S2),

L =
( ⋂

s∈Q
S#

s

)#
=

∨
s∈Q

S##
s ⊆

∨
s∈Q

Ss ⊆
∨
r∈Q

o(a∗r )

meaning
∨

r∈Q a∗r = 1. By (7.4.1), sublocales o(a∗r ) and o(b∗s ) are U-far whenever s− r > 1
δ+1 . Hence,

the elements a∗r and b∗s are U-far whenever s− r > 1
δ+1 . Thus, by Proposition 6.3.4, U ≤ {ar ∧bs |

(r,s) ∈ Dδ}. Equivalently,

o[U ]≤ {o(ar)∧o(bs) | (r,s) ∈ Dδ}=
{

Sr
# ∩S◦s | (r,s) ∈ Dδ

}
.

(4) Similarly, one can check that (C’)=⇒ (S2), (C’) + (ws1’)=⇒ (FAR’), and (FAR’) + (S2)=⇒ (C’).

Thus Remark 7.4.5 and Lemma 7.4.4 yield:

Lemma 7.4.6. Let (L,U ) be a preuniform frame. If a family (Sr)r∈Q ⊆ S(L) satisfies (C) and (wS1)
(resp. (C’) and (wS1’)), then the formulas

h(p,�) =
⋂
r>p

Sr and h(�,q) =
⋂
s<q

S#
s

(resp. h(p,�) =
⋂
r>p

S#
r and h(�,q) =

⋂
s<q

Ss)

define a uniformly continuous h ∈ F(L).

Let us summarize the implications of all the conditions in this section and Section 2.6 in the
following diagram:

(U)

(IC) (S1) (wS1)

(FAR)

(C) (S2)

+(S2)+(wS1)

(7.4.2)

Comparing this diagram with (6.3.2) one can see the importance of Corollary 7.2.4. Indeed, for
sublocales one has

S and T # are U-far ⇐⇒ U ∗S ⊆ T,
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but for elements
a and b∗ are U-far ⇍⇒ Ua ≤ b.

This is the reason why (FAR) is equivalent to (U), but (far) is not equivalent to (u).

We also condense in Table 7.1 the results presented in this section. The table shows what combi-
nations of conditions on a family of sublocales allows us to define a general, continuous or uniformly
continuous real-valued function.

(U) ⇐⇒ (FAR) (IC) (S1) (wS1)

(C) Unif. continuous Unif. continuous Unif. continuous Unif. continuous

(S2) Unif. continuous Continuous General

Table 7.1 Type of real-valued function a family of sublocales defines according to the conditions it
satisfies.

Note that conditions (FAR), (U) and (C) are equivalent under (S1) and (S2). In fact, we have:

Proposition 7.4.7. Let (L,U ) be a preuniform frame and let f ∈ F(L) be induced by a descending
(resp. ascending) scale (Sr)r∈Q in S(L)op. Then the following are equivalent:

(i) f is uniformly continuous

(ii) (Sr)r∈Q satisfies (U) (resp. (U’)).

(iii) (Sr)r∈Q satisfies (FAR) (resp. (FAR’)).

(iv) (Sr)r∈Q satisfies (C) (resp. (C’)).

Proof. Notice that (Sr)r∈Q is a descending (resp. ascending) scale in S(L)op. From (7.4.2), it suffices
to show only one of the statements. We will prove (iii).
Let f : L(R)→ L be given by a descending (resp. ascending) (Sr)r∈Q scale; that is,

f (p,�) =
⋂
r>p

Sr and f (�,q) =
⋂
s<q

S#
s (7.4.3)

(resp. f (p,�) =
⋂
r>p

S#
r and f (�,q) =

⋂
s<q

Ss). (7.4.4)

Suppose f is uniformly continuous. We will show that (FAR) holds for the family (Sr)r∈Q. Let δ ∈Q+

and s,r ∈Q such that s− r > 1
δ

. Now, since f is uniformly continuous, by Theorem 7.3.10 (ii) and
Lemma 7.3.1, there is U ∈ U such that for all p,q ∈Q with q− p > 1

δ
the sublocales f (�, p)# and

f (q,�)# are U-far. Take p′,q′,r′ ∈Q such that r < r′ < p′ < q′ < s and q′− p′ > δ . From (7.4.3) and
(S1) we get:

Sr ⊆ S##
r′ ⊆ f (�, p)# and S#

s ⊆ f (q,�)#.

Then, by Remark 7.2.1 (1), Sr and S#
s are U-far, as required. The parallel statement (inside parenthesis)

is proven in a similar way.
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For the converse, assume (Sr)r∈Q satisfies (FAR) (resp. (FAR’)). Because the family (Sr)r∈Q is a
descending (resp. ascending) scale, (S1) (resp. (S1’)) and (S2) also hold. By Lemma 7.4.4, the
formulas in (7.4.3) (resp. (7.4.4)) define a uniformly continuous function.

Finally, let us show how the conditions in Section 6.3 relate with the ones discussed here.

Remarks 7.4.8. (1) By Remark 7.2.3, a family (ar)r∈Q ⊆ L satisfies (u) (resp. (u’)) if and only if (U)
(resp. (U’)) holds for (c(ar))r∈Q if and only if (U’) (resp. (U)) holds for (o(ar))r∈Q.

(2) A family (ar)r∈Q ⊆ L satisfies (far) (resp. (far’)) and (**) (resp. (**’)) if and only if (FAR) (resp.
(FAR’)) holds for (c(ar))r∈Q if and only if (FAR’) (resp. (FAR)) holds for (o(ar))r∈Q .

(3) A family (ar)r∈Q ⊆ L satisfies (c) (resp. (c’)) if and only if (C) (resp. (C’)) holds for (c(ar))r∈Q if
and only if (C’) (resp. (C)) holds for (o(ar))r∈Q.

7.5 An Insertion Theorem for Uniform Frames

Lemma 7.5.1. Let (L,U ) be a preuniform frame and let f ,g ∈ F(L) with f ≥ g. Assume that for
every δ ∈ Q+ there is a U ∈ U such that for every n ∈ N, the sublocales f (r,�) and g(�,s) are
Un-far whenever s− r > n

δ
. Then, there is a sequence {Vn}n∈Z ⊆ U such that for every n ∈ Z the

following properties are satisfied:

(1) Vn ≤∗
1 Vn+1.

(2) For every r,s ∈Q such that s− r > 2n, the sublocales f (r,�) and g(�,s) are Vn-far.

Proof. Let V0 be the cover given by the assumption for δ = 1. Furthermore, for n ≥ 1, set

Vn := (V0)
2n
.

Clearly, property (2) is satisfied when n ≥ 0. Property (1) is also satisfied for n ≥ 0. Indeed, by
Proposition 6.2.4 (4),

VnV0 = (V0)
2n

V0 = (V0)
2n+1

=Vn+1,

hence Vn ≤∗
1 Vn+1. Now we define recursively Vn for n < 0. First, for each n < 0, let Un denote the

cover given by the assumption for δ = 1
2n . For n =−1, pick V−1 ∈U such that V 2

−1 ≤V0∧U−1 (axiom
(U3)). Clearly, properties (1) and (2) are satisfied (the refinement V−1 ≤ V0 is a star-refinement; in
particular, it is barycentric). Suppose now that for an n < 0 we have constructed Vn,Vn+1, . . . ,V−1

satisfying (1) and (2). Then we choose Vn−1 ∈ U such that V 2
n−1 ≤Vn ∧Un−1. The sequence {Vn}n∈Z

clearly satisfies the required conditions.

Theorem 7.5.2 (Uniform Insertion Theorem). Let (L,U ) be a preuniform frame. The following are
equivalent for any f ,g ∈ F(L) with f ≥ g.

(i) There exists a uniformly continuous h ∈ F(L) such that f ≥ h ≥ g.

(ii) For every δ ∈Q+ there is a U ∈U such that for every n ∈N the sublocales f (r,�) and g(�,s)
are Un-far whenever s− r > n

δ
.
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Proof. (i) =⇒ (ii): This implication follows from Proposition 7.3.14 (vi), the definition (2.5.1) of the
partial order in F(L) and Remark 7.2.1 (1).
(ii) =⇒ (i): Let {Vn}n∈Z ⊆ U be the sequence of uniform covers given by Lemma 7.5.1 and define a
family (br)r∈Q ⊆ L by

br :=
∨
n∈Z

∨
An

r ,

where

An
r :=

{
a ∈Vn | ∃k ∈ N, ∃n1, . . . ,nk ∈ Z,

∃ai ∈Vni for all i = 1, . . . ,k such that a1 = a, n1 = n,

ai−1 ∧ai ̸= 0 (i = 2, . . . ,k), and o(ak)∩ f
(

r−
k

∑
i=1

2ni+5,�
)
̸= O

}
.

Set also Br := o(br) for every r ∈Q. Clearly, Br =
∨
{o(a) | ∃n ∈ Z with a ∈ An

r }.
First we will show that

f (�,r)# ⊆ Br ⊆ g(�,r)# (7.5.1)

for every r ∈Q. For the first inclusion, note that for each n ∈ Z one has

Vn ∗ f (r−2n+5,�) =
∨
{o(a) | a ∈Vn, o(a)∩ f (r−2n+5,�) ̸= O} ⊆ Br.

Consequently,

Br ⊇
∨
n∈Z

Vn ∗ f (r−2n+5,�)⊇
∨
n∈Z

f (r−2n+5,�) =
∨
s<r

f (s,�)⊇
∨
s<r

f (�,s)#

=
(⋂

s<r
f (�,s)

)#
= f (�,r)#.

Let us now show the inclusion Br ⊆ g(�,r)#. Let a ∈ An
r ; our goal is to show that o(a) ⊆ g(�,r)#.

Since a ∈ An
r , there is a k ∈ N and there are ni ∈ Z and ai ∈Vni for all i = 1, . . . ,k satisfying n1 = n,

a1 = a, ai−1 ∧ai ̸= 0 for every i = 2, . . . ,k, and

o(ak)∩ f
(

r−
k

∑
i=1

2ni+5,�
)
̸= O.

Take an m ∈ Z such that

2m−1 ≤
k

∑
i=1

2ni+4 < 2m.

By Proposition 7.1.7 (recall that barycentric refinement implies regular refinement), there is a v ∈Vm−1

such that a1 ∨ak ≤ v. We have that

r−
(

r−
k

∑
i=1

2ni+5
)
>

k

∑
i=1

2ni+4 ≥ 2m−1
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so by Lemma 7.5.1 (2), f (r−∑
k
i=1 2ni+5,�) and g(�,r) are Vm−1-far. Consequently,

o(a) = o(a1)⊆ o(v)⊆Vm−1 ∗ f
(

r−
k

∑
i=1

2ni+5,�
)
⊆ g(�,r)#

where the second inclusion holds because v ∈Vm−1 and

O ̸= o(ak)∩ f
(

r−
k

∑
i=1

2ni+5,�
)
⊆ o(v)∩ f

(
r−

k

∑
i=1

2ni+5,�
)
.

Hence, (7.5.1) holds. Now, we will show that the conditions of Lemma 7.4.2 hold for the family
{Br}r∈Q. First, notice that by (7.5.1) one has

⋂
r∈Q

Br ⊆
⋂
r∈Q

g(�,r)# ⊆
⋂
r∈Q

g(r,�) = O,

and similarly, ⋂
r∈Q

B#
r ⊆

⋂
r∈Q

f (�,r)## ⊆
⋂
r∈Q

f (�,r) = O.

Let δ ∈Q+ and select an n ∈ Z such that 1
δ
> 2n+5. Let s− r > 1

δ
; we will show that

Vnbr ≤ bs, (7.5.2)

which is clearly equivalent to Vn ∗ Br ⊆ Bs. Now, since br =
∨

m∈Z
∨

Am
r , by virtue of Proposi-

tion 6.1.1 (7), to prove (7.5.2) is equivalent to show that if a ∈ Am
r and v ∈Vn are such that v∧a ̸= 0,

then v ≤ bs. If a ∈ Am
r , there is a k ∈ N such that for every i = 1, . . . ,k there is an ai ∈ Vni satisfy-

ing a1 = a, n1 = m, ai−1 ∧ai ̸= 0 for every i = 2, . . . ,k and o(ak)∩ f (r−∑
k
i=1 2ni+5,�) ̸= O. Since

s−2n+5 > r, it follows that

f
(

r−
k

∑
i=1

2ni+5,�
)
⊆ f

(
s−2n+5 −

k

∑
i=1

2ni+5,�
)
,

and so

o(ak)∩ f
(

s−2n+5 −
k

∑
i=1

2ni+5,�
)
̸= O.

Hence, if v ∈Vn is such that v∧a ̸= 0, it follows that v ∈ An
s , which yields v ≤ bs, as required.

By Lemma 7.4.2, the function h ∈ F(L) defined by

h(p,�) =
⋂
r>p

Br and h(�,q) =
⋂
s<q

B#
s

is uniformly continuous. Finally, f ≥ h ≥ g because, from (7.5.1) and Remark 2.5.1, we have

h(p,�) =
⋂
r>p

Br ⊆
⋂
r>p

g(�,r)# ⊆
⋂
r>p

g(r,�) = g(p,�)
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and
h(�,q) =

⋂
s<q

B#
s ⊆

⋂
s<q

f (�,s)## ⊆
⋂
s<q

f (�,s) = f (�,q)

for every p,q ∈Q (see (2.5.1)).

Specializing Theorem 7.5.2 one can easily obtain the Uniform Insertion Theorem for bounded
functions (Theorem 7.5.4 below). However, we present an alternative (and easier) proof of this special
case by using a different technique similar to the one used in Lemma 6.5.4; we will use again Katětov’s
Lemma (Lemma 6.5.1).

Example 7.5.3. Let (L,U ) be a preuniform frame. We know that the uniformly below relation ▹U

given by the preuniformity U is a Katětov relation (Example 6.5.2). Moreover, we can extend this
relation to sublocales:

S ▹U T ≡ there is a U ∈ U such that U ∗S ⊆ T.

It can be easily checked that this is a Katětov relation on S(L).

Theorem 7.5.4 (Uniform Insertion Theorem for Bounded Functions). Let (L,U ) be a preuniform
frame and let f ,g ∈ F(L) be bounded functions with f ≥ g. Then the following are equivalent:

(i) There exists a uniformly continuous h ∈ F(L) such that f ≥ h ≥ g.

(ii) For every δ ∈ Q+ there is a U ∈ U such that the sublocales f (r,�) and g(�,s) are U-far
whenever s− r > 1

δ
.

Proof. (i) =⇒ (ii): This implication follows from Proposition 7.3.14 (v), the definition of the partial
order in F(L) (2.5.1) and Remark 7.2.1 (1).
(ii) =⇒ (i): Since f and g are bounded, by (2.5.2) take α,β ∈Q with α < β such that2

f (β ,�) = L, f (�,α) = L, g(β ,�) = L and g(�,α) = L. (7.5.3)

By assumption, one has in particular that g(�,s)▹U f (r,�)# for every s > r. Since ▹U is a Katětov
relation (Example 6.5.2), by Lemma 6.5.1 there is a family (Cp)p∈Q ⊆ S(L) such that

g(�,s)▹U Cq ▹U Cp ▹U f (r,�)# (7.5.4)

whenever r < p < q < s. We will use Lemma 7.4.2 to show that (Cp)p∈Q determines a uniformly
continuous function. First, from (7.5.4) it is easy to see that

⋂
p∈QCp = O =

⋂
p∈QC#

p. So we only
have to show that

∀δ ∈Q+ there is some U ∈ U such that U ∗Cs ⊆Cr for every s− r > 1
δ
. (7.5.5)

Let δ ∈Q+. Notice that if β < s or α > r, from (7.5.3) and (7.5.4) one obtains Cs ⊆ f (β ,�)# =O or
L = g(�,α)⊆Cr which clearly yields U ∗Cs ⊆Cr for any U ∈ U . Thus, it suffices to show (7.5.5)

2Departing from our usual convention of using p,q,r,s to denote rationals, in this proof we also use α and β . We do this
in order to simplify notation.
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for every s− r > 1
δ

with α ≤ r < s ≤ β . Select an n ∈ N and t0, t1, . . . , tn+1 ∈Q such that

t0 = α < t1 < t2 < · · ·< tn < β = tn+1

and tk+1 − tk < 1
2δ

for all k = 0, . . . ,n. Set U :=U0 ∧U1 · · ·∧Un, where Uk is the cover that witnesses
the relation Ctk+1 ▹U Ctk for k = 0, . . . ,n. Thus U ∗Ctk+1 ⊆ Ctk for every k = 0, . . . ,n. Let s− r > 1

δ

with α ≤ r < s ≤ β and pick a k ∈ {0, . . . ,n} such that r ≤ tk < tk+1 ≤ s. Then

U ∗Cs ⊆U ∗Ctk+1 ⊆Ctk ⊆Cr,

as required. In conclusion, (Cp)p∈Q determines a uniformly continuous h ∈ F(L) given by

h(r,�) =
⋂
r<p

C#
p and h(�,s) =

⋂
q<s

Cq.

Furthermore, by (7.5.4) one may easily check that g ≤ h ≤ f .

Condition (ii) in Theorem 7.5.2 is formally stronger than condition (ii) in Theorem 7.5.4. The
following proposition and the remark afterwards explain the reason behind this discrepancy:

Proposition 7.5.5. Let (L,U ) be a preuniform frame and f ,g ∈ F(L) with f ≥ g. Fix a δ0 ∈ Q+.
Then the following are equivalent:

(i) For every δ ∈Q+ there is a U ∈U such that for every n ∈N the sublocales f (r,�) and g(�,s)
are Un-far whenever s− r > n

δ
.

(ii) The following two conditions hold:

(a) There is a U0 ∈U such that for every n ∈N the sublocales f (r,�) and g(�,s) are Un
0 -far

whenever s− r > n
δ0

.

(b) For every δ ∈Q+ there is a U ∈U such that the sublocales f (r,�) and g(�,s) are U-far
whenever s− r > 1

δ
.

Proof. (i) =⇒ (ii) is trivial.

(ii) =⇒ (i): Let δ ∈Q+ and select an m ∈ N such that δ < δ02m. For each n ∈ {1, . . . ,2m −1} let Un

be the cover given by (b) for the rational δ02m

n ∈Q+. Then

f (r,�) and g(�,s) are Un-far whenever s− r > n
δ02m (7.5.6)

for each n ∈ {1, . . . ,2m −1}. Now use (U3) and choose a cover W such that

W 2m+1 ≤U0 ∧
2m−1∧
n=1

Un.

We claim that, for any n ∈ N, the sublocales

f (r,�) and g(�,s) are W n-far whenever s− r > n
δ02m . (7.5.7)
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Indeed, let n ∈ N and s− r > n
δ02m . We distinguish two cases:

(Case 1): If n ∈ {1, . . . ,2m }, then f (r,�) and g(�,s) are Un-far if n < 2m (by (7.5.6)) and U0-far if
n = 2m (by (a)). In either case they are W 2m+1

-far by Remark 7.2.1 (2). But n ≤ 2m ≤ 2m+1 and so
W n ≤W 2m+1

, hence they are also W n-far.

(Case 2): If n > 2m. Since n2−m > 1, select an ℓ ∈ N such that ℓ < n2−m ≤ ℓ+ 1. We may write
n = ℓ2m + j for a suitable j ∈ {1, . . . ,2m }, namely j = n− ℓ2m. Since

s− r > n
δ02m = ℓ2m+ j

δ02m > ℓ
δ0
,

it follows from (a) that f (r,�) and g(�,s) are U ℓ
0 -far. By Lemma 6.2.4 (5) we conclude then that

W n =W ℓ2m+ j ≤W ℓ2m+2m ≤W ℓ2m+1 ≤ (W 2m+1
)ℓ ≤U ℓ

0 ,

thus f (r,�) and g(�,s) are W n-far, as required.

Hence, (7.5.7) is proved. Finally, if s− r > n
δ

we have s− r > n
δ02m so f (r,�) and g(�,s) are W n-far.

Remark 7.5.6. Let p ≤ g ≤ f ≤ q be bounded. Then by taking δ0 =
1

q−p , condition (a) in Proposi-
tion 7.5.5 is trivially satisfied. Indeed, if s− r > n(q− p), then s− r > q− p and so either r < p or
s > q. By (2.5.3), one has f (r,�) =O or g(�,s) =O, thus f (r,�) and g(�,s) are U-far for any cover
U . This explains why condition (ii) in Theorem 7.5.4 is precisely condition (b) in Proposition 7.5.5.

7.6 Separation and Extension Theorems for Uniform Frames

Usually, a Katětov-type insertion theorem yields an Urysohn-type separation result and a Tietze-type
extension result as straightforward corollaries. In this final section, we prove the uniform versions of
these theorems.

A General Separation Theorem for Uniform Frames

Theorem 7.6.1 (Uniform Separation Theorem). Let (L,U ) be a preuniform frame, and let S and T
be sublocales of L. Then the following are equivalent:

(i) S and T are U-far for some U ∈ U .

(ii) There is a uniformly continuous h ∈ F(L) with 0 ≤ h ≤ 1 such that T ⊆ h(0,�) and S ⊆ h(�,1).

Proof. (i) =⇒ (ii): Assume that S and T are U-far for some U ∈ U . By Proposition 7.2.2, S and T
are U-far. Consider the characteristic functions of S and T # from Example 2.5.2 (2), namely the maps
χS,χT # ∈ F(L) given by

χS(p,�) =


O if p < 0

S# if 0 ≤ p < 1

L if p ≥ 1

χS(�,q) =


L if q ≤ 0

S if 0 < q ≤ 1

O if q > 1
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and

χT #(p,�) =


O if p < 0

T if 0 ≤ p < 1

L if p ≥ 1

χT #(�,q) =


L if q ≤ 0

T # if 0 < q ≤ 1

O if q > 1.

Since S and T are U-far, one has S ⊆ T #, and therefore it follows that 0 ≤ χS ≤ χT # ≤ 1. Furthermore,
we claim that for every δ ∈Q+ the sublocales χT #(r,�) and χS(�,s) are U-far whenever s− r > 1

δ
.

Indeed, if r < 0 or 1 < s, one clearly has that χT #(r,�) and χS(�,s) are U-far. If 0 ≤ r < s ≤ 1, then
χT #(r,�)=T and χS(�,s)= S, which by assumption are U-far. Consequently, by Theorem 7.5.4, there
is a uniformly continuous h∈ F(L) such that 0≤ χS ≤ h≤ χT # ≤ 1. Moreover, (recall (2.5.1)), we have

S ⊆ S = χS(�,1)⊆ h(�,1) and T ⊆ T = χT #(0,�)⊆ h(0,�)

as required.
(ii) =⇒ (i): Since h is uniformly continuous, by Theorem 7.3.10 there is a U ∈ U such that h(0,�)
and h(�,1) are U-far. In particular, S and T are U-far.

Since uniformly continuous real-valued functions are continuous and C(L) ∼= R(L), applying
Theorem 7.6.1 to open sublocales immediately yields our previous Theorem 6.4.5.

A General Extension Theorem for Uniform Frames

Let (L,U ) be a preuniform frame and S a sublocale of L with js : S ↪→ L the localic embedding in S.
Recall from Section 6.5 the preuniformity in S,

U L
S = { j∗S[U ] |U ∈ U } ,

induced by U . Notice that in this more general setting where we work with open covers and farness
between sublocales, we have that:

(1) Remark 1.5.1 and (1.5.1) give us a description of oS[ j∗s [U ]]:

oS[ j∗s [U ]] = {oS( j∗S(u)) | u ∈U}= {( jS)−1[oL(u)] | u ∈U}= {oL(u)∩S | u ∈U} (7.6.1)

for every U ∈ U . A word of caution: one should not confuse oS[ j∗s [U ]] with oL[ j∗s [U ]].

(2) Using (7.6.1) one can easily check that if two sublocales are j∗S[U ]-far (in S(S)) for some U ∈ U ,
then they are U-far (in S(L)).

For general real-valued functions, let h ∈ F(S) be uniformly continuous with respect to U L
S . We

say that an h ∈ F(L) is a uniformly continuous extension of h if it is uniformly continuous with respect
to U and the diagram

L(R) h //

h
##

S(L)op

( jS)−1[−]

��
S(S)op

(7.6.2)
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commutes, where ( jS)−1[T ] = T ∩S for each T ∈ S(L). For f ∈ C(L) we have f = cg with g ∈ R(L).
Note that f has a uniformly continuous extension if and only if g does. Furthermore, the respective
diagram (7.6.2) for f commutes if and only if (6.5.1) applied to g does (recall (1.5.1)). We also know,
from Corollary 7.3.11, that uniform continuity implies continuity for general real-valued functions.
Then, by Proposition 7.3.14, Lemma 6.5.4 yields immediately the following:

Corollary 7.6.2. Let (L,U ) be a preuniform frame and let S be a dense sublocale of L. Every
uniformly continuous h ∈ F(S) (with respect to U L

S ) has a uniformly continuous extension h ∈ F(L)
(with respect to U ). Moreover, if h is bounded, then so is h.

Theorem 7.6.3 (Uniform Extension Theorem). Let (L,U ) be a preuniform frame and let S be a
sublocale of L. Every bounded uniformly continuous h ∈ F(S) (with respect to U L

S ) has a bounded
uniformly continuous extension h ∈ F(L) (with respect to U ).

Proof. Since every sublocale is dense in its closure, by Corollary 7.6.2 and Remark 6.5.3 (4), it
suffices to show the result for closed sublocales. More generally, we shall show it for complemented
sublocales.
Let S be a complemented sublocale of L and denote by jS : S ↪→ L its localic embedding. Let h ∈ F(S)
be bounded and uniformly continuous with respect to U L

S . Select α,β ∈Q such that ααα ≤ h ≤ βββ and
for each r ∈Q set 3

Sr :=


O if r < α

h(r,�) if α ≤ r < β

L if r ≥ β

and Tr :=


L if r ≤ α

h(�,r) if α < r ≤ β

O if r > β .

For each r < s one has S#
s ∩Sr = O. Indeed, if r < α or s ≥ β it is trivial because either S#

s = O or
Sr = O. If α ≤ r < s < β then

S#
s ∩Sr = h(s,�)# ∩h(r,�) = h(s,�)# ∩S∩h(r,�) = h(s,�)#S ∩h(r,�)⊆ h(�,s)∩h(r,�) = O

by (1.4.14) and (2.5.1). Hence (Sr)r∈Q satisfies (S1), and similarly (Tr)r∈Q satisfies (S1’). Let f ,g ∈
F(L) be the functions they define (Proposition 2.6.2). From the equalities

f (�,r) =
⋂
p<r

S#
p and g(�,r) =

⋂
q<r

Tq,

it follows that for each r ∈ Q one has g(�,r) ⊆ f (�,r), that is f ≥ g. Indeed, let r ∈ Q and p < r.
We have to check that

⋂
q<r Tq ⊆ S#

p. If p < α or r > β one has either S#
p = L or

⋂
q<r Tq = O, so the

inclusion follows. Suppose now that α ≤ p < r ≤ β and pick a q′ ∈Q with p < q′ < r. Then

⋂
q<r

Tq ⊆ Tq′ = h(�,q′)⊆ h(p,�)# = S#
p,

as desired.
3As in the proof of Theorem 7.5.4, in order to simplify the notation, in this proof we will also use α and β to denote

rationals.
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Furthermore, the maps f and g satisfy condition (ii) in Theorem 7.5.4. Indeed, let δ ∈Q+. Since
h is uniformly continuous there is a U ∈ U such that h(r,�) and h(�,s) are j∗S[U ]-far (as sublocales
of S) whenever s− r > 1

δ
. By Remark 6.5.3 (2), h(r,�) and h(�,s) are U-far (as sublocales of L).

We claim that f (r,�) and g(�,s) are U-far whenever s− r > 1
δ

. Clearly it suffices to show the case
where α ≤ r < s ≤ β (as otherwise f (r,�) = O or g(�,s) = O). Pick r′,s′ ∈Q with r < r′ < s′ < s
and s′− r′ > 1

δ
. Then

f (r,�) =
⋂
r<p

Sp ⊆ Sr′ = h(r′,�) and g(�,s)⊆ Ts′ = h(�,s′).

The claim follows from Remark 7.2.1 (1).
Moreover, f and g are bounded by (2.5.3). By Theorem 7.5.4 there is a uniformly continuous

h ∈ F(L) with f ≥ h ≥ g. Now it follows trivially from (2.5.3) and (2.5.2) that Sr ∩S = h(r,�) and
Tr ∩ S = h(�,r) for each r ∈ Q. Hence ( jS)−1[−] f = h = ( js)−1[−] g, and so h ≥ ( jS)−1[−] h ≥ h.
Thus, h is the desired extension of h.
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