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Abstract

Cancer is a disease with a high mortality rate whose incidence has risen in
the past years. Cancer Stem Cells (CSCs) are known to contribute to cancer ag-
gressiveness, metastasis, chemo/radio-therapy resistance, and tumor recurrence.
Furthermore, recent studies have emphasized the importance of metabolic re-
programming of CSCs for the maintenance and progression of the cancer phe-
notype through the fulfillment of the energetic requirements and the supply of
substrates fundamental for fast-cell growth. Therefore, it is of paramount im-
portance to develop therapeutic strategies tailored to target the metabolism of
CSCs.

Among the factors that can contribute to cancer onset and progression is
the imbalance of epigenetic regulatory mechanisms like DNAmethylation, which
can promote aberrant gene expression profiles without affecting the DNA se-
quence. Those mechanisms can influence the transcription of genes encoding
signaling and regulatory proteins, but also metabolic enzymes. Hence, the dis-
ruption of epigenetic regulation may induce metabolic shifts that contribute to
the acquisition of cancerous phenotypes. Likewise, since some metabolites are
substrates and cofactors of epigenetic regulators, their availability can impair
epigenetic mechanisms, in such a way that metabolic shifts may feed cancer
progression and onset through epigenetic deregulation. Given the interplay be-
tween metabolism, cancer, and epigenetics, recent research has been developed
on the frontiers between those biological processes in an attempt to identify new
disease mechanisms and potential therapeutic targets.

Genome-Scale Metabolic Models (GSMMs) are mathematical representa-
tions of a network of all metabolic reactions in a cell and genes encoding enzymes
catalyzing those reactions that can be used to simulate in silico the metabolic
state of cells. GSMMs have been very useful in the past to predict metabolic
phenotypes of different organisms and cell types, including cancer cells. Never-
theless, GSMMs of CSCs or of differentiated Cancer Cells (CCs) embodying the
interaction between metabolism and DNA methylation, which is an epigenetic
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mechanism, have not been developed so far.
In the first study presented in this thesis, computational GSMMs were built

for CSCs and CCs of ten different tissues using reconstruction algorithms. The
best reconstruction strategy was selected and implemented to obtain the mod-
els. Models were gapfilled to be able to simulate growth and perform metabolic
tasks, and then, they were validated through the comparison of simulated es-
sential genes and lethal genes identified from gene knockout experiments. Flux
simulations were used to predict metabolic phenotypes, identify potential ther-
apeutic targets, and spot already-known Transcription Factors (TFs), miRNAs,
and antimetabolites that could be used as part of drug repurposing strategies
against cancer. Furthermore, results were in accordance with experimental ev-
idence, provided insights into new metabolic mechanisms for already known
agents, and allowed for the identification of potential new targets and com-
pounds that could be interesting for further in vitro and in vivo validation.

In the second study of this thesis, a generic GSMM of a human cell inte-
grating DNA methylation or demethylation reactions collected from literature
and databases was first obtained, and then, the best of different reconstruction
strategies was identified and applied to the generic model to create GSMMs
for 31 human cancer cell lines. Genome Scale Metabolic Models enhanced with
Enzymatic Constraints using Kinetic and Omics data (GECKOs) were subse-
quently built based on those GSMMs to improve the accuracy of the simu-
lated reaction fluxes without the need to pre-define uptake or secretion rates
for any metabolite. Furthermore, cell-line specific DNA methylation levels were
included in the models in the shape of coefficients of DNA composition reaction
in an effort to depict the influence of metabolism over global DNA methyla-
tion in different cancer cell lines. Flux simulations demonstrated the ability of
these models to provide simulated fluxes of exchange reactions similar to the
equivalent experimentally measured uptake/secretion rates and to make good
functional predictions. These models might be useful in the future identification
of potential new therapeutic targets against cancer.

Keywords: Cancer Stem Cells (CSCs), Genome-Scale Metabolic Models (GSMMs),
differentiated Cancer Cells (CCs), DNA methylation, Genome Scale Metabolic
Models enhanced with Enzymatic Constraints using Kinetic and Omics data
(GECKOs).
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Resumo

O cancro é uma doença com elevada taxa de mortalidade cuja incidên-
cia tem aumentado nos últimos anos. As Células Cancerígenas Estaminais
(CSCs) são conhecidas por contribuírem para a agressividade, metastização,
resistência à quimio/radioterapia, e recorrência do cancro. Além disso, estu-
dos recentes têm enfatizado a importância da reprogramação metabólica das
CSCs para a manutenção e progressão do fenótipo cancerígeno através da
satisfação de necessidades energéticas e o fornecimento de metabolitos funda-
mentais para o rápido crescimento celular. Consequentemente, é indispensável
desenvolver estratégias terapêuticas específicas dirigidas ao metabolismo das
CSCs.

Entre os fatores que podem contribuir para o aparecimento e progres-
são do cancro está o desequilíbrio de mecanismos regulatórios epigenéticos
como a metilação do DNA, que pode promover perfis de expressão génica
aberrantes sem afetar a sequência do DNA. Esses mecanismos podem influen-
ciar a transcrição de genes que codificam proteínas de sinalização e proteínas
regulatórias, mas também enzimas. Logo, a perturbação de regulação epige-
nética pode induzir alterações metabólicas que contribuem para a aquisição
de fenótipos cancerígenos. Do mesmo modo, visto que alguns metabolitos são
substratos e cofatores de reguladores epigenéticos, a sua disponibilidade pode
afetar mecanismos epigenéticos de tal forma que as alterações metabólicas
podem contribuir para o aparecimento e a progressão do cancro através de
desregulação epigenética. Dada a interação entre metabolismo, cancro e epi-
genética, investigação recente tem sido desenvolvida na fronteira entre esses
processos biológicos numa tentativa de identificar novos mecanismos de do-
ença e potenciais alvos terapêuticos.

Modelos metabólicos à escala genómica (GSMMs) são representações ma-
temáticas da rede composta por todas as reações metabólicas de uma célula e
dos genes que codificam enzimas que catalisam essas reações, que podem ser
usados para simular in silico o estado metabólico das células. GSMMs têm sido
muito úteis na previsão de fenótipos metabólicos de diferentes organismos e
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tipos celulares, incluindo células cancerígenas. No entanto, GSMMs de CSCs
ou de células cancerígenas diferenciadas (CCs) materializando a interação en-
tre metabolismo e metilação de DNA, o qual é um mecanismo epigenético,
não foram desenvolvidos até ao momento.

No primeiro estudo apresentado nesta tese, GSMMs foram construídos
para CSCs e CCs de dez diferentes tecidos, usando algoritmos de reconstru-
ção. A melhor estratégia de reconstrução foi selecionada e implementada para
obter os modelos. Os modelos foram “gapfilled” para ser possível simular cres-
cimento e para que pudessem realizar “tasks” metabólicas, e de seguida foram
validados através da comparação de genes essenciais simulados e genes le-
tais identificados com experiências de “knockout” génico. Simulações de fluxo
foram usadas para prever fenótipos metabólicos, identificar potenciais alvos
terapêuticos e detetar factores de transcrição (TFs), miRNAs e antimetabo-
litos já conhecidos que possam ser usados como estratégia de reutilização de
medicamentos contra o cancro. Além disso, os resultados estavam de acordo
com a evidência experimental, forneceram uma perceção de novos mecanismos
metabólicos para agentes já conhecidos, e permitiram a identificação de no-
vos alvos potenciais e compostos que possam ser interessantes para posterior
validação in vitro e in vivo.

No segundo estudo desta tese, um GSMM genérico de uma célula humana,
integrando reações de metilação e demetilação do DNA recolhidas da litera-
tura e bases de dados foi primeiramente obtido, e depois, a melhor de diferen-
tes estratégias de reconstrução foi identificada e aplicada ao modelo genérico
para criar GSMMs de 31 linhas celulares de cancro humano. Modelos metabó-
licos à escala genómica melhorados com limitações enzimáticas usando dados
cinéticos e ómicos (GECKOs) foram posteriormente construídos a partir de
GSMMs para melhorar a precisão da simulação de fluxos sem a necessidade
de pré-definir taxas de captação ou produção de qualquer metabolito. Além
disso, níveis de metilação do DNA específicos para cada linha celular foram
incluídos nos modelos sob a forma de coeficientes na reação de composição
do DNA com o propósito de retratar a influência do metabolismo sobre a
metilação global do DNA in diferentes linhas celulares de cancro. As simu-
lações de fluxo demonstraram a capacidade destes modelos de simular fluxos
de reações de troca similares às equivalentes taxas de captação ou secreção
e de fazer boas previsões funcionais. Estes modelos poderão ser utilizados na
identificação futura de novos potenciais alvos terapêuticos contra o cancro.
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Thesis Outline

Cancer is a disease of high incidence and mortality resulting from the de-
regulation of a wide range of molecular networks, and culminating in abnormal
cell proliferation and evasion. One of those biological networks is metabolism.
In fact, metabolic reprogramming is considered one of the hallmarks of cancer
on account of its effect on cell survival and growth. In addition, many metabo-
lites act as substrates and cofactors of epigenetic enzymes, while epigenetic
modifications affect the expression of different genes, including those coding for
metabolic enzymes. Therefore, emphasis has been given to the interplay between
epigenetic regulation and metabolism in cancer.

Concurrently, there has been an increase in awareness of the importance
of studying Cancer Stem Cells (CSCs), as they are believed to be the "ori-
gin" of cancer development, due to their stem cell-like properties, which also
drive cancer aggressiveness, metastasis, recurrence, and evasion to conventional
treatments.

In the past decades, a technical push has been put into place to create in
silico metabolic models of distinct organisms and cell types at genome-scale, as
a result of the rise in availability of omics data deposited in public databases,
as well as the evolution in the mathematical formulation of metabolic models.

Even though the ability of cancer cells to proliferate fostered the reconstruc-
tion of metabolic models for those cells with cell growth as the main metabolic
objective, few studies have attempted to build models specifically for CSCs, or
that could emphasize the metabolism and epigenetic cross-talk in cancer.
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The main motivation for the present thesis was to fill that knowledge gap,
by creating tissue-specific in silico genome-scale metabolic models that could
be used to: i) predict metabolic phenotypes specific to CSCs in comparison
with their differentiated counterparts; ii) suggest potential therapeutic targets
as well as known biological compounds that could be used in drug repurpos-
ing methodologies against cancer; iii) offer a mechanistic interpretation to the
influence of metabolism in global DNA methylation in cancer.

To meet that goal a general introduction was made to the theme in chapter
1, followed by two studies presented in chapters 2 and 3, respectively, and a
final conclusion summarizing the relevant findings of this thesis in chapter 4.

− The first study tries to clarify the specific objectives i) and ii) and has
already been published: T. Barata, V. Vieira, R. Rodrigues, R. Pires das Neves,
Rocha M., "Reconstruction of tissue-specific genome-scale metabolic models for
human cancer stem cells", Computers in Biology and Medicine, vol. 142, pp.1-12,
2022 (DOI: 10.1016/J.COMPBIOMED.2021.105177).

− The second study tackles the objective iii).

I declare that this thesis was written and organized by me, and I confirm
that it has not been previously submitted, in whole or in part, to obtain another
academic degree. I confirm that the work described was done by me and by the
co-authors, in the case of joint publications.

The work presented in chapter 2 was conceptualized by me, Vítor Vieira,
Rúben Rodrigues and Miguel Rocha. I performed all the analyzes and adapted
some code previously created by co-authors in the sections 2.2.1 and 2.2.3. I
wrote the first draft of the paper and incorporated later suggestions from other
authors.

The work presented in chapter 3 was conceptualized by me, Vítor Pereira,
Ricardo Neves and Miguel Rocha. I performed all the analyzes and the curation
of the mass balance of reactions was done with the help of Sophia Santos. I
wrote the first draft of the study and incorporated later suggestions from other
authors.
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Chapter 1

Introduction

1.1 Cancer

Just in 2020, around 19 million new cases of cancer have arisen and almost
10 million people died of this disease around the globe [1]. Cancer is a disease
characterized by aberrant cell proliferation that can affect any type of cell in
the body. Regardless of the large variability of cell types that may be affected,
only a few cancer types are frequent [2]. In fact, only six cancer types (breast,
lung, colon, prostate, stomach, liver, and cervical cancer) accounted for more
than half of the cancer cases worldwide in 2020 [1].

The high incidence and mortality of this disease makes its study of
paramount importance. This section focuses on traits of cancer and cancer stem
cells, mainly metabolic reprogramming strategies applied by those cells to meet
their need for long-term survival and proliferation.

1.1.1 Cancer hallmarks and origin

Several common characteristics to all types of cancer have been defined. The
traditional cancer hallmarks comprise the ability to self-produce proliferative
signals, block growth suppressors (such as TP53 and retinoblastoma-associated
proteins), evade programmed cell death, induce angiogenesis, activate metasta-
sis and enable replicative immortality, i.e. the ability to proliferate many times
without entering in differentiation or apoptotic state. Two more hallmarks, not
so extensively reported, are evasion of immunological destruction and repro-
grammed cellular metabolism to support energetic requirements of neoplastic
proliferation [3].

Despite its standard features, cancer exhibits wide complexity. Cancer di-

1



versity reflects not only in the variability of tissues affected, but also in its
genetic heterogeneity among patients with the same type of cancer and cancer
cells within the same tumor. Intra- and inter-tumor variability are a hurdle that
conventional and even personalized therapeutic strategies cannot completely
overcome. The main reasons are human-to-human genetic and epigenetic diver-
sity, as well as subclone variety [4].

Many tumors present organized variability, where subclones are ordered in
a hierarchical structure. Clonal evolution theory states that hierarchical subclone
variability results from intra-tumor evolution through cumulative mutations
and selection in different microenvironments. Conversely, the Cancer Stem Cell
hypothesis claims that a small population of Cancer Stem Cells (CSCs), sharing
the same pluripotency properties as normal Stem Cells (SCs), can generate all
cells within the tumor in a hierarchical fashion, on account of their capacity to
differentiate into distinct cell lineages [5].

1.1.2 Cancer stem cells

The study of CSCs has been influenced by research on SCs due to the simi-
larity between these two. In addition to multipotency, CSCs, just like SCs, have
been regarded as a rare population of quiescent cells that seldomly divide, but
with the ability to self-renew [6]. CSCs have been described as cells capable
of asymmetric division, giving rise to some daughter cells and other transient
amplifying cells. While the first contribute to cancer maintenance, the latter
rapidly divide, eventually differentiating into poorly tumorigenic bulk non-stem
cells [7]. Nevertheless, both normal and cancer stem cells were shown to be
abundant and actively divide in many tissues, like the epidermis and intesti-
nal crypts. Furthermore, recent reports show that stem cell progeny does not
necessarily have distinct fates [7].

Stem cells survive in a specific micro-environment, called stem cell niche.
The niche comprises physical, paracrine, and even metabolic cues from neigh-
bor supporting-stromal cells, extracellular matrix, nervous cells, and sometimes
even endocrine signals transported by surrounding blood vessels that regulate
gene expression and signaling pathways of stem cells, enabling the maintenance
of their unique properties [8]. When there is no space within the stem cell niche
for new daughter (cancer/normal) stem cells, they “fall off” outside the niche
and start to differentiate. In that case, all the progeny shares the same fate,
become differentiated cells, while no new daughter stem cells are created. This
process is known as neutral competition. However, it is not irreversible. Tran-
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sient amplifying and even fully differentiated daughter cells can re-enter the
niche and dedifferentiate to replace dead (cancer/normal) stem cells. This plas-
tic behavior makes CSCs difficult to eradicate because even when abolished with
tailored therapies they can regenerate afterwards from differentiated cells [7].

A striking difference between cancer and normal stem cells is that the former
become increasingly independent from the niche, as they can reproduce signals
on their own, assuming a stem cell phenotype even outside of their original
microenvironment. This CSC trait also halts differentiation inside the tumor.
More CSCs than non-CSCs are produced, enabling a shallower subclone hier-
archy in many tumor tissues, as opposed to a broad one usually observed in
corresponding normal tissues [7].

Bulk cancer cells may detach from a primary tumor, enter the blood cir-
culation, and eventually be transported to distant sites, but only CSCs have
the tumorigenic properties needed to create a new tumor. Therefore, CSCs
can colonize other organs and give origin to secondary tumors or metastases,
reproducing all the subclone variability observed in primary tumors [6]. This
is particularly relevant, as metastasis is accountable for 90% of cancer-related
deaths [9]. Additionally, CSCs show resistance to traditional cancer treatments
that target fast-diving cells, such as chemotherapy and radiotherapy, due to
the potential to maintain a slow diving state in most cancers, to increase ex-
pression of drug efflux pumps and efficient DNA repair mechanisms [6]. That
trait, together with the abovementioned CSC phenotype-plasticity, favors tumor
reoccurrence, driving therapy failure.

CSCs secrete factors like Hypoxia-Inducible Factor 1 (HIF1) which in turn
induces the release of pro-angiogenic factors that expand the blood vessel net-
work within and around the tumor, allowing the increase in nutrient supply
necessary for the fast growth of solid tumors. Simultaneously, CSCs can sur-
vive deep within tumors where hypoxia, which would be toxic to normal cells,
prevails. That inward positioning protects CSCs from the effect of chemothera-
peutic drugs, and at the same time, provides hypoxic conditions that shift CSCs
gene expression towards CSC survival, self-renewal, and invasiveness [6, 10].

Immune evasion is another key property of CSCs. CSCs may escape the
immune system surveillance by expressing factors that avoid their eradication
by immune cells and therefore foster their survival outside primary tumors, in
circulation, or at secondary tumor sites. For example, reports have shown that
high levels of anti-apoptotic proteins found in CSCs protect them from NK and
cytotoxic T cells [11].

Epithelial-to-Mesenchymal Transition (EMT), defined as a change from ep-
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ithelial to mesenchymal phenotype and identified by the change of cell surface
markers (like decrease in E-cadherin and increase of N-cadherin and vimentin)
has also been associated with CSC phenotype [10]. By acquisition of mesenchy-
mal properties, CSCs alter their cytoskeleton and lose cell-to-cell adhesion, gain-
ing the capacity to migrate, invade surrounding tissues and metastasize [10,11].
The link between CSCs and EMT has also been established with immunomod-
ulatory effects, and cell plasticity [10]. However, there has been discussion on
whether EMT is fundamental for CSC identity, as a return to an epithelial phe-
notype was described to be essential for metastatic growth. Nevertheless, some
studies suggest that those contradictory observations result from environmen-
tal signals that make cells transit between a CSC and a cancer non-stem cell
state [7].

Different methods are usually conjugated to identify CSCs, such as Fluoresce
Activated Cell Sorting (FACS) based on stem and cancer cell markers, tumor-
sphere formation, Aldehyde Dehydrogenase (ALDH) enzyme activity [6], detec-
tion of overexpression of pathways associated with CSCs, and side population
sorting, i.e. isolation of cells with higher ability to efflux dyes and drugs [6]. Nev-
ertheless, the main criterion to identify CSCs is still nowadays the assessment
of tumorigenicity, attained with the detection of new tumors after inoculation
of a small number of cells in immune-deficient mice over successive passages, a
process known as secondary transplantation [6, 7].

Overall, CSCs can be considered as highly plastic tumorigenic quiescent
cells, prone to survive in adverse environments and with high resistance to tra-
ditional cancer treatments. Characteristics that turn them into the main entities
promoting cancer aggressiveness, drug resistance, metastases, and cancer reoc-
currence.

1.1.3 Metabolic reprogramming of cancer cells

One of the hallmarks of cancer is the ability to reprogram metabolism
to fulfill the energetic and biosynthetic needs of highly proliferating cancer
cells [12]. In 1930, Otto Warburg discovered that cancer cells rely more on
glycolysis than on Oxidative Phosphorylation (OXPHOS) even when oxygen
is abundantly available. This got known as aerobic glycolysis or Warburg ef-
fect [13–15]. Since then, breakthroughs in biochemistry and cellular biology
fields fomented progress in research for the causes and consequences of metabolic
reprogramming in cancer cells [16]. The current scientific knowledge on cancer
cell metabolism can be organized into four tiers: nutrient-uptake modifications,
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alteration of preferential intracellular metabolic pathways, effects of metabolism
on tumor niche, and effects of metabolism on cancer epigenetics [16].

1.1.3.1 Nutrient-uptake modifications in cancer cells

In order to fulfill their goal of survival and growth, cancer cells need to have
appropriate inputs of biosynthetic elements, like carbon and nitrogen. Since
glucose and glutamine are the main sources of carbon and nitrogen for cancer
cells, these cells must acquire cellular mechanisms to uphold a sufficient uptake
of those nutrients from the extracellular environment [17].

In some cancers, mutations in Phospho-Inositol 3 Kinase (PI3K), its in-
hibitors (PTEN and INPP4B), or upstream Receptor Tyrosine Kinases (RTKs)
leads to an increase of expression of the Glucose Transporter 1 (GLUT1) gene
and movement of GLUT1 protein within the cell to the cytoplasmatic mem-
brane, allowing the import of glucose [16] (Figure 1.1). Similarly, oncogenes like
c-Myc, Kras, and Yap/Taz also overexpress GLUT1 in cancer cells, whereas
Yap/Taz and loss-off-function mutations of TP53 tumor suppressor gene en-
hance GLUT3 expression (another glucose transporter) [17]. Another gene which
transcription is increased upon aberrant activation of the PI3K/Akt path-
way is the gene coding for Hexokinase 2 (HK2) [16]. Upon activation, HK2
binds to mitochondria and uses mitochondrial Adenosine Triphosphate (ATP)
to catalyze the first step of glycolysis, the conversion of glucose to Glucose-6-
Phosphate (G6P). In this way, glucose is quickly phosphorylated and remains
trapped within the cell, without being able to move to the extracellular envi-
ronment [13,17] (Figure 1.1).

In order to improve the import of glutamine in cancer cells, the oncogene
c-Myc and Yap/Taz signaling [17] promote the expression of glutamine trans-
porter Alanine, Serine, Cysteine Transporter 2 (ASCT2), and of enzymes that
facilitate glutamine uptake by converting it to glutamate (Glutaminase – GLS,
Ribose-phosphate pyrophosphokinase 2 – PRPS2, and Carbamoyl-phosphate
synthetase 2, Aspartate transcarbamylase and Dihydroorotase – CAD enzymes),
which remains trapped in the cell (Figure 1.1). Furthermore, the outflux of glu-
tamine is coupled to an influx of essential amino acids, such as leucine, through
the Lactate Transporter 1 (LAT1). Therefore, tumors harboring c-Myc muta-
tions indirectly contribute to the import of essential amino acids [16]. The tumor
microenvironment also plays a role in the influx of glutamine. Receptor binding
of Interleukin 4 (IL-4) inflammatory cytokine and uptake of extracellular lac-
tate respectively promotes the expression and stabilizes Myc, indirectly inducing
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ASCT2 expression [17]. Besides, loss-of-function mutations in tumor suppressor
gene Retinoblastoma (Rb) may as well upregulate the intake of glutamine, as
it releases E2F3 activator transcription factor from inhibition by Rb, allowing
ASCT2 gene expression [16] (Figure 1.1).

Figure 1.1: Nutrient-uptake strategies in cancer cells. Names of nutrient transporter proteins
are in blue and metabolic enzymes in yellow. Proteins which genes suffer loss-of-function
mutations with cancer are in red and remaining proteins in orange. AAs: Amino Acids;
EAAs: Essential Amino Acids; IL-4R: IL-4 Receptor; MCT: Mono-Carboxylate Transporter;
Mytc: mitochondria; P53: protein coded by TP53 gene. Redrawn figure based on Pavlova et
al.(2016) [16], Park et al.(2020) [17], and smart.servier.com.

In addition, fatty acid uptake can as well be increased in cancer cells. For
example, under hypoxia, cancer cells activate HIF1α which induces the expres-
sion of fatty acid receptors, like Fatty Acid Binding Protein 3 (FABP3), Fatty
Acid Binding Protein 7 (FABP7), and Adipose Differentiation Related Protein
(ADRP) [17] (Figure 1.1).
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Although the increase in nutrients uptake is beneficial, it is not enough for
cancer cells to meet their metabolic needs, specifically when the blood vessel
formation does not keep up with the fast growth of tumor mass. In that case,
cancer cells face nutrient shortage and hypoxia and are forced to use opportunis-
tic strategies of nutrient acquisition. In some cancers, mutated Kras and c-Src
genes promote an actin cytoskeleton remodeling that allows macropinocytosis,
i.e. extracellular macromolecules (e.g proteins or lipids) are involved in vesicles
and imported to the interior of cytoplasm where they are fused with lysosomes
and eventually degraded. One such case is when cells are under hypoxic con-
ditions and for this reason, cannot drive the oxygen-consuming process of un-
saturated fatty acid synthesis. Instead, they import lipids by macropinocytosis.
Furthermore, apoptotic bodies and even live cells can be exposed to phagocy-
tosis or entosis by cancer cells, as opportunistic ways to obtain nutrients [16]
(Figure 1.1).

1.1.3.2 Preferential intracellular metabolic pathways

Cancer cells not only modify their nutrient-uptake mechanisms but also
change the metabolic pathways through which those nutrients are processed.

i) Glycolysis and intersecting pathways

In aerobiosis, normal cells use mostly aerobic rather than anaerobic res-
piration, since OXPHOS produces energy (ATP) from glucose more efficiently
than glycolysis. Strikingly, one of the most described metabolic traits of cancer
cells is the ability to undergo aerobic glycolysis (also known as the Warburg
effect), i.e. to rely on glycolysis even upon high oxygen concentrations. Back in
1930, when this effect was uncovered, Otto Warburg suggested cancer cells were
forced to rely on glycolysis due to mutations causing mitochondrial damage
or malfunction. However, this theory was refuted later on by scientific evidence
demonstrating that cancer mitochondria can carry out normal OXPHOS. Then,
an alternative hypothesis emerged, implying that glycolysis allowed fast energy
production, which was fundamental for fast-dividing cancer cells [13]. However,
evidence now suggests glycolysis acts as a means to produce reducing equiva-
lents and biosynthetic precursors of macromolecules for cancer cell proliferation
more than a source for fast ATP production [13,16].

As mentioned above, deregulation of signaling pathways in cancer cells leads
to an increase of glucose transporters at the cell surface and HK2 activation,
which foments aerobic glycolysis. Nonetheless, cancer cell signaling interferes
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with other glycolytic enzymes. In glycolysis, Phosphofructokinase-1 (PFK) pro-
motes the formation of Fructose-1,6-bisphosphate (F1,6BP) from Fructose-6-
phosphate (F6P), whereas Phosphofructokinase-2 (PFK2) catalyzes the con-
version of F6P to Fructose-2,6-biphosphate (F2,6BP), which functions as an
activator of PFK [18] (Figure 1.2). In cancer, activation of Yap/Taz upregu-
lates an isoform of PFK2 (the PFKFB3) and the increase in PI3K/Akt sig-
naling activates PFK2 enzyme, while Myc and TP53 mutations enhance PFK
activity. Furthermore, TP53 loss-of-function mutations reduce the expression of
TP53-Inducible Glycolysis and Apoptosis Regulator (TIGAR). As TIGAR pro-
motes F2,6BP degradation, TP53 mutations release glycolysis from the indirect
inhibitory effect of TIGAR [17] (Figure 1.2).

The intense use of glycolysis in cancer cells fosters the metabolic flux
through intersecting pathways, such as the Pentose-Phosphate Pathway (PPP)
and the Hexosamine Biosynthetic Pathway (HBP).

Three glycolytic intermediaries can engage in the PPP: G6P, F6P,
and Glyceraldehyde-3-Phosphate (G3P). In cancer, Myc mutations up-
regulate Glucose-6-Phosphate Dehydrogenase (G6PD) and Transketolase
(TKT) enzymes, which respectively catalyze the conversion of G6P to 6-
phosphogluconolactone, and of G3P to Xylulose-5-Phosphate (Xu5P) or of F6P
to Xu5P [17, 19]. An intense PI3K/Akt signaling can as well increase the ex-
pression of G6PD and directly phosphorylate TKT, activating it. Furthermore,
loss-of-function of TP53 prevents its binding to and inhibition of G6PD, conse-
quently enhancing PPP activity [17] (Figure 1.2).
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Figure 1.2: Preferential intracellular metabolic pathways in cancer cells. Names of nutrient
transporter proteins are in blue and metabolic enzymes in yellow. Proteins which genes suffer
loss-of-function mutations with cancer are in red and remaining proteins in orange.
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2PG: 2-Phospho-Glycerate; 6PGlucono: 6-Phospho-Gluconolactone; ADP+: Adenosine Di-
Phosphate; Asp: Aspartate; Cys: Cysteine; FAD: Flavin Adenine Dinucleotide; GDP:
Guanosine Di-Phosphate; Gln: Glutamine; Glu: Glutamate; Glucosamine-6P: Glucosamine-
6-phosphate; Gly: Glycine; GTP: Guanosine Tri-Phosphate; TAL: transaldoase; P53: pro-
tein coded by TP53 gene. Redrawn figure based on Pavlova et al. (2016) [16] , Park et al.
(2020) [17], Kim et al. (2012) [19] and smart.servier.com.

However, the reactions catalyzed by G6PD and TKT are reversible. There-
fore, it is mainly the accumulation of glycolytic intermediates resulting from
tight regulation of glycolytic enzymes (like HK2, PFK, Phosphoglycerate mutase
- PGM, and Pyruvate Kinase M2 - PKM2) by cancer cells that determines car-
bon flux diversion into the PPP [13]. Ribulose-5-Phosphate (Ru5P), a precursor
for Ribose-5-Phosphate (R5P) which in turn is used for synthesis of nucleotides,
can be produced in the oxidative and non-oxidative phases of PPP, although
only the oxidative phase generates reduced Nicotinamide Adenine Dinucleotide
Phosphate (NADPH) [13]. The diversion of carbon flux from glycolysis to the
PPP pathway is therefore not only essential for nucleotide formation, but also
for fatty acid synthesis and production of Glutathione (GSH) from Glutathione
disulfide (GSSG), as NADPH is consumed in the two last-mentioned processes.
On the other hand, GSH acts as an antioxidant by reducing Reactive Oxy-
gen Species (ROS). Therefore, an increase in NADPH production through PPP
protects cancer cells from oxidative damage, preventing their apoptosis [17].
Furthermore, Erythrose-4-Phosphate (E4P), a precursor for the synthesis of aro-
matic amino acids, can also be produced in the PPP non-oxidative phase [20].
So, an increase of flux in PPP may as well favor amino acid synthesis in cancer
cells (Figure 1.2).

The HBP pathway is initiated with the conversion of the glycolysis inter-
mediary F6P and glutamine to glucosamine-6-phosphate, which is then trans-
formed into N-Acetylglucosamine (GlcNAc) [16], the building block for glycosyl
side chains of proteins and lipids [12]. Hence, the increase in flux through gly-
colysis and consequently through HBP in cancer contributes to protein-function
deregulation by aberrant glycosylation, besides increasing the synthesis of hep-
aran sulfate and hyaluronic acid. The first is a component essential for forma-
tion of new cancer-cell membranes while the last is an extracellular component
that favors the tumor microenvironment [21]. Also, cancer cells harboring Myc
mutations promote glycosylation by raising the activity of GlcNAc transferase
(OGT), the enzyme catalyzing the transfer of GlcNAc to proteins, through
chaperon mediated stabilization [16] (Figure 1.2).
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Additionally, the boost in glycolysis indirectly enhances the formation of
glycerol-3-phosphate through the accumulation of the glycolytic intermedi-
ate Dihydroxyacetone phosphate (DHAP). glycerol-3-phosphate is used in the
biosynthesis of phospholipids, which in turn are fundamental to the establish-
ment of new cell membranes [16] (Figure 1.2).

Another pathway that diverges from glycolysis is the Serine Synthesis Path-
way (SSP). The first reaction of this pathway involves the transition of the
glycolytic intermediate 3-Phosphoglycerate (3PG) to 3-phospho-oxypyruvate
with concomitant production of reduced Nicotinamide Adenine Dinucleotide
(NADH), and it is catalyzed by the enzyme Phosphoglycerate dehydrogenase
(PHGDH) (Figure 1.3). Then, Phosphoserine aminotransferase (PSAT1) fos-
ters the transfer of an amino group from glutamate to 3-phospho-oxypyruvate,
producing 3-phosphoserine and alpha-Ketoglutarate (α-KG), which in turn is a
Tricarboxylic acid (TCA) cycle intermediate for energy production and anabolic
reactions [17]. At the end of the pathway, 3-phosphoserine loses a phosphate
group and it is converted to serine by the activity of Phosphoserine phosphatase
(PSPH) [22]. Serine can then give origin to another amino acid, glycine, while
providing a carbon atom to the one-carbon cycle, through the activity of the
enzyme Serine hydroxymethyltransferase (SHMT) (Figure 1.3).

The one-carbon cycle is composed of the folate and methionine (Met) cycles.
Besides contributing to S-Adenosyl-Methionine (SAM) production and subse-
quent epigenetic regulation (histone and DNA methylation) by providing one
carbon to the Met cycle, the folate cycle has other functions. In the folate
cycle, different one-carbon-carrier-tetrahydrofolate species, like Tetrahydrofo-
late (THF), methyl-THF (mTHF), 5,10-methylene-THF (meTHF), and 10-
formylTHF interconvert through a series of redox reactions, some of which lead
to NADPH/NADH production. meTHF can be used by the enzyme Thymidy-
late synthase (TYMS) to convert deoxyuridine monophosphate (dUMP) into
the nucleotide deoxythymidine monophosphate (dTMP). 10-formylTHF may
be introduced into the structure of purines during nucleotide de novo synthesis,
hydrolyzed to formate in a reaction that produces ATP, or completely oxidized
to carbon dioxide in a reaction where NADPH is produced [23]. On the other
hand, the Homocysteine (hCYS) from the Met cycle may be converted through
the transsulfuration pathway to cysteine. Cysteine, along with glutamate and
glycine allows the production of GSH [22] (Figure 1.3).
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Figure 1.3: Serine Synthesis Pathway (SSP) and one-carbon metabolism in cancer cells. In the
one-carbon cycle, folic acid (vitamin B9) is first reduced to Tetrahydrofolate (THF) by the
activity of Dihydrofolate reductase (DHFR). The folate cycle then begins with the transfer
of one-carbon unit from serine to THF, giving origin to 5,10-methylene-THF (meTHF) and
glycine. Although to a smaller extent, glycine can as well serve as a one-carbon giver, through
a reaction catalyzed by the glycine decarboxylase (not shown) [22, 23]. Thereafter, meTHF
can be reduced to methyl-THF (mTHF), which in turn provides one carbon atom in the form
of a methyl group to Homocysteine (hCYS) from the methionine (Met) cycle and regenerates
THF, closing the folate cycle. In the Met cycle, when hCYS receives a methyl group from
the folate cycle, generates Met, in a reaction catalyzed by Methionine Synthetase (MS). The
ensuing adenylation of Met drives the production of S-Adenosyl-Methionine (SAM), which
provides methyl groups for methylation of enzymes, histones, and DNA. Conversely, SAM
is demethylated into S-Adenosyl-Homocysteine (SAH), which is then transformed back to
hCYS, completing the Met cycle [22–24]. Names of nutrient transporter proteins are in blue
and metabolic enzymes in yellow. Proteins which genes suffer loss-of-function mutations with
cancer are in red and remaining proteins in orange. 3Pser: 3-phospho-serine 3Poxpyr: 3-
phospho-oxypyruvate; Cys: Cysteine; Glu: Glutamate; Gly: Glycine; P53: protein coded by
TP53 gene; Pyr: Pyruvate; Ser: Serine. Redrawn figure based on Ducker et al. (2017) [23],
Rosenzweig et al. [22], Ryall et al. [24] and smart.servier.com.

Therefore, in cancer, the increase in glycolysis leads to the accumulation of
3PG, which upregulates the SSP and consequently enhances the one-carbon cy-
cle. This in turn promotes nucleotide, ATP, and NADPH synthesis through the
folate cycle; induces SAM production through the Met cycle; and fosters GSH
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synthesis both through the Met cycle and through serine to glycine conversion.
Consequently, these events allow the fulfillment of the cancer need for nucleic
acid synthesis, energy, control of cellular redox status, lipid synthesis, signaling,
and epigenetic remodeling [22] (Figures 1.2 and 1.3).

Besides the increase in glucose-derived carbon through the SSP, cancer cells
also directly upregulate SSP and folate cycle enzymes. For example, mutant c-
Myc upregulates the expression of PHGDH and PSAT1 genes in cancer cells,
while intense Yap/Taz signaling upregulates PSAT1 [16, 17] (Figure 1.3). In
normal cells, HIF1 serves as a redox regulator in hypoxia, since it promotes
the expression of SSP and SHMT genes, leading to an increase in reducing
equivalents that prevent ROS accumulation resulting from hypoxia. In cancer,
mutant n-Myc induces a similar effect by further activating HIF1 [22].

Another redox regulator in normal cells that is upregulated in cancer is the
Nuclear factor erythroid-derived 2 (NRF2). In normal cells, oxidative stress in-
duces NRF2. In cancer, loss-of-function mutations in tumor suppressor KEAP1
release NRF2 from KEAP1 inhibition. Then, NRF2-induced upregulation of
Activating Transcription Factor 4 (ATF4) unleashes transcription of SHMT2
and SSP genes [22]. In normal cells, mTOR works as a nutrient-sensor by also
activating ATF4 upon low levels of serine, leading to an increase in serine pools,
while in cancer, Kras oncogene stimulates the effects of ATF4 [22].

Another important regulator of the one-carbon cycle is AMP-activated
Protein Kinase (AMPK). Upon low levels of ATP (and correspondingly high
levels of AMP), AMPK is activated and downregulates the expression of
Methylene-THF Dehydrogenase, which is an enzyme with multifunctional iso-
forms (MTHFD1/2/1L) involved in the interconversion of one-carbon-carrier-
THF species in the folate cycle. By down-regulating the folate cycle when ATP
levels are low, AMPK allows normal cells to stop ATP-consuming anabolic pro-
cesses to help restore ATP levels. In cancer, the loss of function in tumor sup-
pressor Liver Kinase B1 (LKB1), which is an AMPK activator has the opposite
effect of inducing folate metabolism [22] (Figure 1.3).

One of the most relevant enzymes in promoting aerobic glycolysis is the
Pyruvate Kinase (PK). In glycolysis, PK catalyzes the transformation of phos-
phoenolpyruvate into pyruvate [18]. Many cancers use the less active form of
PK, the PKM2, besides inhibiting its activity through growth-factor induced
signaling, leading to an accumulation of glycolytic intermediaries upstream of
phosphoenolpyruvate (Figure 1.2). This contributes to the diversion of carbon
flux to the anabolic pathways mentioned above [13,16].
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The end-product of glycolysis, pyruvate, is converted to lactate through
the activity of Lactate dehydrogenase (LDH). Then, the lactate is secreted to
the exterior of the cell through Monocarboxylic Acid Transporters (MCTs).
Therefore, MCTs avoid the accumulation of lactate inside the cell, preventing
the reverse lactate to pyruvate conversion and a destructive acidic environment
inside the cell [18] (Figure 1.2).

Pyruvate decarboxylation is the irreversible conversion of pyruvate to
acetyl-Coenzyme A (acetyl-CoA) catalyzed by the enzyme Pyruvate Dehydro-
genase (PDH) in the mitochondrial matrix, and it is determinant for entry of
carbon into the TCA cycle and subsequent OXPHOS. Pyruvate Dehydrogenase
Kinase enzymes (PDKs) phosphorylate PDH, inhibiting its activity [18].

In cancer, Myc mutations overexpress both LDH, MCT1 [17] and
PDK1 [16], TCFβ-catenin transcription induces MCT1 upregulation, and loss-
of-function mutations in TP53 release LDH from inhibition and avoid activa-
tion of PDH [17] (Figure 1.2). Furthermore, under hypoxia, the stabilization
of HIF1α by PI3K/Akt/mTOR signaling induces PDK1 [13] and LDH activ-
ity in cancer [17] (Figure 1.2). These events divert pyruvate from conversion
to acetyl-CoA and subsequently avoid entry into TCA cycle [13, 17]. Further-
more, the pyruvate-to-lactate reaction produces oxidized Nicotinamide Adenine
Dinucleotide (NAD+), which can be used as a substrate for glycolytic reactions
where NADH is produced, indirectly sustaining glycolysis [16].

The aerobic glycolysis where pyruvate is diverted to lactate production
avoids an excess of carbon flux through the TCA cycle and associated OX-
PHOS, while at the same time allows NADPH production through the PPP.
Therefore, aerobic glycolysis can be thought of as a mechanism implemented
by cancer cells to avoid the production of ROS, as a disproportionate amount
of ROS can lead to apoptosis. Nevertheless, cancer cells can still produce ROS
due to tumor suppressor and oncogenic pathways that affect cellular enzymes,
the tumor microenvironments (hypoxia or inflammation), and in some cases
even mitochondrial dysfunction. In fact, moderate levels of ROS observed in
cancer cells can be beneficial. ROS may contribute to tumorigenesis, cancer
progression, and chemoresistance [25].

ii) Glutamine metabolism

As mentioned above, cancer cells increase uptake of glutamine because it is
a source of carbon and nitrogen. In the cytoplasm, glutamine can be combined
with glycolytic intermediate F6P and feed the HBP pathway, contributing to
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glycosylation. Besides, glutamine provides nitrogen for pyrimidine and purine
nucleotide synthesis and increases antioxidant potential by GSH generation after
being converted to glutamate (Figure 1.2).

In mitochondria, the enzyme GLS catalyzes the conversion of glutamine to
glutamate. Glutamate can then either be metabolized to α-KG and Ammonia
(NH+

4 ) through the activity of Glutamate dehydrogenase (GDH/GLUD1), or to
non-essential amino acids and an α-ketoacid through the activity of transami-
nases/aminotransferases, such as the Aspartate aminotransferase (AST/GOT)
or the Alanine aminotransferase (ALT) [16,17].

In cancer cells, aberrant c-Myc activation restraints miR-23, releasing GLS
translation from miR-23 inhibition and triggering its activity, while PI3K-Akt-
mTOR enhanced signaling inhibits SIRT4 deacetylation which releases GDH
from SIRT4 inhibition (Figure 1.2). High levels of Kras also induce the activity
of both the mitochondrial and cytosolic ASTs (AST2/GOT2 and ASTT1/GOT1
respectively) in cancer. In mitochondria, AST2 catalyzes a reversible reaction
in the direction where an amino group from glutamate is transferred to an α-
ketoacid (which can be Oxaloacetate - OAA) to give origin to aspartate and a
new α-ketoacid (which can be α-KG) [17, 26]. In turn, aspartate can be trans-
ported to the cytoplasm and be converted to OAA by the reverse of the above-
mentioned reaction, this time catalyzed by AST1. OAA can then be subse-
quently converted to pyruvate, in a reaction where NADPH is produced [17]
(Figure 1.2). So, the abovementioned events in cancer cells, together with the
increase in glutamine uptake, promote amino acid synthesis and generation of
antioxidative potential.

Most importantly, an increase in glutamine metabolism allows anaplerosis,
i.e. replenish of TCA cycle intermediates, through the production of α-KG.
Usually, mitochondrial acetyl-CoA is produced from pyruvate decarboxylation
or obtained from Fatty Acid Oxidation (FAO) [27]. In catabolic conditions,
mitochondrial acetyl-CoA is routed to TCA cycle and OXPHOS, while in an
anabolic state it can be transported to cytoplasm either directly through the
carnitine shuttle or through the citrate-malate-pyruvate shuttle upon previous
conversion to citrate [27]. In the cytoplasm, ATP Citrate Lyase (ACL) produces
acetyl-CoA from the mitochondrial-imported citrate, which in turn may be used
in protein acetylation or as a substrate for fatty acid synthesis [12].

However, due to aerobic glycolysis, cancer cells cannot obtain much acetyl-
CoA through pyruvate decarboxylation. In cancer, oncogenes and hypoxia pro-
mote a context in which excess of α-KG is converted to mitochondrial citrate,
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in a reaction named reductive carboxylation [16] (Figure 1.2). This reaction,
which is the reverse of a TCA cycle reaction, increases the pool of citrate, al-
lowing cancer to synthesize more fatty acids and consequently meet its need for
high phospholipid membrane synthesis. Furthermore, this event enables cancer
to feed the TCA cycle with intermediates that are used for NADH and reduced
Flavin Adenine Dinucleotide (FADH2) production, contributing to some energy
production through OXPHOS [16].

iii) Fatty acid metabolism

The fatty acid synthesis starts with the conversion of cytosolic citrate to
acetyl-CoA and OAA, catalyzed by ACL. Then, Acetyl-CoA Carboxylase (ACC)
converts acetyl-CoA to malonyl-CoA, which is in turn set up into long fatty acid
chains by Fatty Acid Synthetase (FASN) (Figure 1.2). Furthermore, malonyl-
CoA can also be used for cholesterol synthesis [16]. In normal conditions, low
lipid levels activate the SREBPs transcription factors by proteolysis and the pro-
tein product enters the nucleus, inducing the expression of genes coding for the
abovementioned fatty acid enzymes [17]. In cancer, high PI3K/Akt and mTOR
signaling restrain GSK3β, releasing nuclear SREBP from GSK3β inhibition,
consequently enhancing fatty acid synthesis [13,17]. In some other cancers, mu-
tant LKB1 may inhibit LKB1-AMPK signaling and subsequently free ACC from
inactivation by AMPK [17]. Some tumors have also been shown to overexpress
Acetyl-CoA Synthetase 2 (ACSS2), an enzyme that catalyzes the transforma-
tion of imported extracellular acetate to acetyl-CoA, which contributes to fatty
acid synthesis [16].

These events together with an increase of fatty acid uptake allow cancer cells
to increase the pool of lipids to build new cellular membranes, alter membrane
composition to include more saturated fatty acids, which are more resistant to
oxidative damage [16], and use them as secondary messengers in cancer cell
signaling [17].

1.1.3.3 Effects of metabolism on tumor niche

In the same way cell metabolism influences cancer cells, it also affects the
cancer healthy-neighbor cells. The excess of lactic acid secreted by cancer cells
hinders T-cell and dendritic cell activation, and migration of monocytes, while
simultaneously attracting and promoting an immunosuppressive phenotype in
macrophages [13, 16]. On the other hand, macrophages release cytokines and
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growth factors that promote cancer growth, invasion, and metastasis [13].
Besides its role in suppressing antitumor immune-response, lactic acid may

as well foster angiogenesis, which renders nutrients and oxygen for cancer
growth. Specifically, it activates HIF1α, NF-kB, and PI3K in endothelial cells,
and stimulates VEGF release in fibroblasts [16].

Diffusion of carbon dioxide and export of H+ coupled to efflux of lactate
acidifies the cancer extracellular environment, reducing pH and promoting the
proteolytic activity of cathepsins and Matrix metalloproteinases (MMPs), which
in turn degrade the extracellular matrix and boost tumor invasion. Additionally,
stimulation of hyaluronic acid production in fibroblasts by lactate plays a role
as well in cancer invasiveness [16].

Some tumors overexpress the enzymes Indoleamine 2,3-dioxygenase 1
(IDO1) and Tryptophan 2,3-dioxygenase (TDO2) that assist the conversion of
tryptophan into kynurenine, leading to an extracellular shortage of tryptophan.
As tryptophan is an essential amino acid, its depletion induces T-cell apoptosis.
Furthermore, kynurenine enhances Treg cells, which suppress effector T-cells,
and has an autoregulatory effect by inducing extracellular matrix degradation
through interaction with Aryl hydrocarbon Receptor (AhR) in the cancer cells
themselves [16].

1.1.3.4 Effects of metabolism on cancer epigenetics

Unlike genetic mutations, epigenetic alterations do not change the DNA
sequence, but rather refer to the covalent modifications of DNA bases, histones,
and protein complexes controlling nucleosome positioning, that modify DNA
packing and chromatin accessibility to transcriptional machinery, consequently
affecting gene expression [28].

Mutations on genes that code for DNA and histone regulatory enzymes,
histones themselves, or nucleosome positioning complexes contribute to a gene
expression shift in cancer [28]. Furthermore, since different metabolites also
work as substrates or cofactors of epigenetic regulators, mutations on metabolic
enzymes or proteins regulating them can as well change gene expression in
cancer through epigenetic modification [24,28].

The most described epigenetic modifiers are DNA and histone methyltrans-
ferases/demethylases and histone acetyltransferases/deacetylases.

DNA methyltransferases (DNMTs) are enzymes that catalyze the trans-
fer of a methyl group from SAM to the 5th position of a cytosine residue in
DNA, producing a 5-methyl cytosine (5mC) and the by-product S-Adenosyl-
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Homocysteine (SAH) (Figure 1.4). Methylated cytosines are mostly found in
regions of a high density of Guanine-cytosine (GC) located in the promoters
of genes and called CpG islands (CGI). DNA methylation in those areas usu-
ally promotes chromatin condensation, mostly resulting in repression of gene
expression. Additionally, methylation may attract proteins that bind histone-
modifying enzymes, indirectly inhibiting transcription [28].

On the other hand, DNA demethylation (reverse reaction of DNA methyla-
tion) starts with hydroxylation of 5mC into 5-hydroxymethyl cytosine (5hmC),
a step that is catalyzed by the Ten-eleven translocation (TET) family of dioxy-
genases [28,29] (Figure 1.4). TET demethylases require α-KG and iron for their
activity, overall promote chromatin relaxation and subsequent induce gene ex-
pression [24,28].

Like DNMTs, Histone methyltransferases (HMTs) consume SAM and gen-
erate SAH, but instead of methylating DNA, they transfer the methyl group
to a lysine or arginine amino acid in the N-tail of a histone protein [24, 28].
Histone methylation may result in either gene expression induction or repres-
sion depending on which amino acid residue is methylated, the location of the
methyl group within the residue and the number of methyl groups transferred.
It can also affect either gene promoters or enhancers (Figure 1.4). For example,
deposition of three methyl groups in lysine 4 of histone H3 (H3K4me3) lead to
promoter activation, and mono-methylation at same lysine residue (H3K4me1)
marks active enhancers, while trimethylated H3 at lysine 27 (H3K27me3) or
trimethylated H3 at lysine 9 (H3K9me3) affect enhancers and indirectly repress
gene expression [28].

The removal of methylation marks from histones has the opposite effect
on gene expression than of the methylation and it is promoted by Histone
demethylases (HDMs). There are two families of HDMs. One is the Lysine-
Specific Demethylase (LSD) family. Enzymes of this family act specifically on
mono- and di-methylated H3K4 and H3K9 marks while using Flavin Adenine
Dinucleotide (FAD) as a cofactor and reducing it to FADH2. The other is the
family of Jumonji-domain-containing histone demethylases (JHDMs) that re-
quires α-KG and converts it to succinate [24] (Figure 1.4).

Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group
from acetyl-CoA to a lysine residue in histone tails and release Co-enzyme A
(CoA), while Histone deacetylases (HDACs) remove the acetyl group from hi-
stones. There are two types of HDACs, those that depend on zinc ion and
convert the acetyl group to acetate (HDACs I, II, and IV), and those, known as
sirtuins (HDACs III/SIRT 1-7), which convert NAD+ and the acetyl group to
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Nicotinamide (NAM) and 2’-O-Acetyl-ADP-Ribose [24]. Overall, histone acety-
lation activates gene transcription and may occur either in gene promoters or
enhancers (Figure 1.4). For example, acetylated H3 at lysine 27 (H3K27ac)
induces gene expression though enhancer activation [28].

As mentioned before, accumulation of the glycolytic intermediate 3PG and
upregulation of one-carbon cycle enzymes in cancer leads to an increase in
SAM production. Since DNMTs utilize SAM, the rise in SAM levels induces
site-specific gene promoter hypermethylation and consequent transcriptional re-
pression of tumor suppressor and cell-cycle checkpoint genes, which may trigger
cancer formation and growth [22, 28]. On the other hand, deposition of methyl
groups in histones by the SAM-dependent HMTs can as well silence tumor sup-
pressor genes through for example the H3K9me repressive histone mark [28], or
instead enhance oncogene expression through activating histone marks, such as
H3K4me3 [30].

Both the activity of the TET DNA-demethylases and JHDM family of HDMs
are dependent on the levels of the TCA cycle intermediate α-KG, which serves
as a co-substrate of those enzymes (Figure 1.4). In some cancers, the decrease
in α-KG levels promoted by a local reduction of glutamine availability leads to
histone hypermethylation and subsequent block of differentiation genes, which
facilitates the cancerous phenotype [28]. Furthermore, TETs and JHDMs are
inhibited by their reaction product succinate and by the consecutive metabo-
lite of succinate in the TCA cycle, the fumarate. In some cancers, there is a
loss-of-function mutation in Succinate dehydrogenase (SDH), the enzyme that
converts succinate to fumarate, or in Fumarate Hydratase (FH), the enzyme
catalyzing the reaction of fumarate to malate, which leads to the respective
accumulation of succinate or fumarate [16]. The accumulation of those metabo-
lites impairs the activity of TET demethylases and JHDMs and induces global
DNA hypermethylation (Figure 1.4). Among other effects, this event reduces for
instance the transcription of miR-200, which consequently promotes an EMT
phenotype characteristic of some cancers [30]. Additionally, some cancers carry a
neomorphic mutation in the gene coding for TCA cycle enzyme Isocitrate dehy-
drogenase (IDH) so that instead of producing α-KG from isocitrate as it should
in normal cells, the mutant enzyme converts α-KG to 2-Hydroxyglutarate (2-
HG). As 2-HG is structurally similar to α-KG, it acts as a competitive inhibitor
of TET demethylases and JHDMs, producing similar effects to SDH and FH
loss-of-function mutations [16] (Figure 1.4).

Interestingly, even errors in the metabolite-transport system can affect α-
KG-regulated epigenetic modifiers. For example, defects in the enzyme that
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transports pyruvate from the cytoplasm to mitochondria, the Mitochondrial
Pyruvate Carrier (MPC), besides promoting the glycolytic switch, may also
cause tumorigenesis through decrease in α-KG production and consequent hi-
stone hypermethylation [28]. Also, defects on the oxoglutarate(KG)-glutamate
carrier (OGC), which transports α-KG out of mitochondria when working as
part of the malate-aspartate shuttle, have been associated with hypermethyla-
tion phenotype in some cancers [28] (Figure 1.4).
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Figure 1.4: Influence of metabolism on epigenetic regulation of cancer cells. Names of proteins
(enzymes or transporters) which suffer loss-of-function mutations with cancer are in red.
Remaining transporter proteins and metabolic enzymes are in blue and in yellow, respectively.
Other signaling proteins are in orange. Asp: Aspartate. Redrawn figure based on Saggese et
al. (2020) [28] , Ryall et al. (2015) [24], Menon et al. (2020) [30], Pavlova et al. (2016) [16],
and smart.servier.com.
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The other family of HDMs named LSD requires FAD to work. FAD can be
synthesized de novo from riboflavin (vitamin B2), reduced to FADH2 upon acyl-
CoA to 2-enoyl-CoA conversion during FAO or by SDH enzyme in TCA cycle,
and obtained from FADH2 oxidation in the Electron Transport Chain (ETC).
Therefore, FAO, TCA cycle, ETC, and vitamin B2 availability can influence
LSDs action (Figure 1.4). LSD1 activity has been associated with the promotion
of differentiation through demethylation of activator histone mark H3K4me1 in
enhancers of master regulator transcription factors (Oct4/Nanog/Sox2) in stem
cells [24]. This suggests that reduction in LSD1 activity could play a role in
cancer stem cell formation. However, reports show LSD1 can either have tumor
suppressor or oncogenic function, depending on the context [31,32].

Another important metabolite is acetyl-CoA, as histone acetylation relies
on it. On account of the diversion of pyruvate to lactate production in cancer
cells, the main source of acetyl-CoA is the mitochondrial citrate derived from
glutamine. Nevertheless, acetyl-CoA can also be obtained from pyruvate de-
carboxylation, and even acetate [30] (Figure 1.4). As part of the citrate-α-KG
shuttle, OGC’s uptake of α-KG to mitochondria is associated with the export
of isocitrate/citrate by the Citrate carrier (CIC). Isocitrate/citrate is then con-
verted to acetyl-CoA in the cytoplasm, where is used by HATs. So sometimes,
defects on OGC are responsible for cancerous phenotype through changes in
acetyl-CoA levels [28] (Figure 1.4). Another mechanism through which HATs
activity may be affected in cancer is the induction of expression of the ACL
enzyme by the PI3K-Akt signaling, mentioned before.

On the other hand, sirtuins (HDACs) require NAD+ to function. In
the malate-aspartate shuttle, OGC-mediated import of malate is coupled to
Aspartate-Glutamate Carrier (AGC) export of aspartate to cytoplasm. In turn,
the cytoplasmatic aspartate is converted to OAA and subsequently to malate
in a reaction where NAD+ is produced (Figure 1.4). Therefore, OGC malfunc-
tioning affects sirtuins activity, which hampers cell differentiation and induces
cancer growth [28].

It is important to note that histones can suffer other less well-studied
modifications besides methylation and acetylation, such as O-GlcNAcylation,
formylation, propionylation, succinylation, that can affect chromatin remodeling
[16,30]. Furthermore, chromatin modifications induced by metabolic changes in
cancer may as well affect the expression of metabolic enzymes, creating an in-
terplay between epigenetics and metabolic regulation [16,28].
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1.1.4 Metabolic traits of cancer stem cells

Throughout different studies, CSCs have shown to hold a wide variety of
metabolic traits and experimental limitations are one of the reasons for the ob-
served phenotypic variability. There are few studies on CSC metabolism and the
ones that exist apply different methods for CSCs isolation since even the defi-
nition of CSC is ambiguous [12]. Different labs isolate CSCs from fresh tumors
based on distinct surface markers, some of which are not completely reliable
or can be lost during sample preparation [33]. Also, many studies use CSCs
retrieved from approved cell lines grown as 3D spheroids, and although survival
and ability to grow in an anchorage-independent way are traits of stem cells,
just 1% of spheroids have shown to be true bonafide CSCs. Furthermore, cell
lines often do not capture the phenotypic variability of CSCs since they result
from clonal amplification throughout many cell passages [33].

On the other hand, the metabolic phenotype of CSCs frequently changes
with the tissue microenvironment. For example, glioma stem cells mainly rely on
OXPHOS but use glycolysis when oxidative metabolism is inhibited. Metastatic
breast CSCs with tropism to the liver and not to the lung or bone, undergo aer-
obic glycolysis due to the gluconeogenic nature of the liver tissue [7]. Leukemic
CSCs adjacent to gonadal adipose tissue express high levels of fatty acid trans-
porters and can oxidize fatty acids provided from lipolysis of the adipose tis-
sue [34]. As most studies are in vitro, the abovementioned effects of the niche
over CSCs are usually not taken into account in experimental settings [12]. Also,
many studies use cells cultured in high levels of glucose and oxygen, which favors
glycolysis as an energy production pathway and therefore may not recapitulate
in vivo metabolic state of CSCs [7].

Although no common metabolic traits can be identified across CSCs of
all cancer types and tumor micro-environments, CSCs always show distinct
metabolic characteristics in comparison with the corresponding differentiated
cancer cells. Those metabolic features are discussed next.

i) Glycolysis

Overall, most normal SCs, like for example the hematopoietic stem cells, re-
main in hypoxic niches where they use glycolysis instead of OXPHOS. Although
OXPHOS is a more efficient mode of energy acquisition, it promotes ROS accu-
mulation, which can be especially detrimental for cells like the SCs that must
maintain an undamaged self-renewal capacity throughout the entire life of an
organism [7,12]. Furthermore, during cell reprogramming of differentiated cells,
which rely mainly on OXPHOS, to induced pluripotent stem cells, there is an
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increase in expression of glycolytic genes that precedes that of pluripotent mark-
ers. This event suggests the OXPHOS-to-glycolytic switch is the cause rather
than the consequence of stemness acquisition [12].

Likewise, most CSCs depend more on glycolysis, produce more lactate, and
show enhanced ATP levels and reduced mitochondrial respiration in comparison
with differentiated cancer non-stem cells [12, 18]. Tumors with CSCs that were
shown to have the glycolytic phenotype are osteosarcoma, glioblastoma, lung,
breast, ovarian, hepatocellular, nasopharyngeal, and colon cancers [18,33]. The
increase in glycolysis in those CSCs is explained by a rise in gene expression of
glucose transporters, the glycolytic enzymes like HK2, PFK2, and PKM2, and
also LDH [12]. As mentioned before when contrasting cancer cells with normal
cells, the enhanced glycolytic activity observed in CSCs in comparison with dif-
ferentiated cancer cells is advantageous for fast ATP, NADPH, amino acid, and
nucleotide production. Indeed, another enzyme usually overexpressed in CSCs
is the G6PD, which further contributes to nucleotide synthesis [12]. Further-
more, an increase in glycolytic PFK enzyme allows activation of Yap-TED and
subsequent transcriptional activation of genes involved in the CSC features of
cell migration and EMT [17]. Also, as mentioned before the efflux of lactate
acidifies the cancer micro-environment, activating MMPs transcription through
NF-kB signaling. In turn, MMPs degrade the extracellular matrix, promoting
tissue invasion, which is fundamental for metastasis formation [17].

It has been proven that inhibition of glycolysis or glucose uptake can in-
duce CSC death [18]. However, some studies emphasize glycolysis is not per
se responsible for stemness, but instead it is an alternative source of energy
to which CSCs turn to when trying to reduce cytotoxic ROS levels, through
reduction of OXPHOS [33]. In glioblastoma xenografts, for example, the under-
expression of SDH subunit B (SDHB) causes mitochondrial malfunction and
consequent ROS production. ROS activates HIF, promoting the expression of
glycolytic genes, which in turn enhances glycolysis and reduces the synthesis of
OXPHOS-induced ROS [12].

ii) Oxidative phosphorylation

While most normal and cancer stem cells rely on glycolysis for energy pro-
duction, sometimes they may depend on other metabolic pathways, such as
OXPHOS. A classic example is the normal muscle stem cells/satellite cells.
These cells present high OXPHOS activity because they lay in aerobic niches
close to blood vessels. In this case, the electron carriers needed for OXPHOS
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are provided by FAO. Furthermore, when those cells differentiate to more com-
mitted states they undergo a metabolic shift towards glycolysis concomitant
with an epigenetic reprogramming event [7, 12]. Another example of stem cell
dependence on OXPHOS is that of normal Lrg5+ stem cells in the intestinal
crypt. These highly proliferative stem cells use lactate-derived pyruvate to feed
the TCA cycle and OXPHOS, while lactate is supplied by the surrounding gly-
colytic epithelial cells named Paneth cells. Interestingly, the high ROS levels
stemming from OXPHOS activity in intestinal stem cells are not harmful but
instead induce cell differentiation through a signaling event [7, 12].

Likewise, some studies show CSCs prefer to use OXPHOS instead of glycol-
ysis, consume less glucose, synthesize less lactate and produce a higher amount
of ATP than differentiated cancer cells [18]. CSCs with OXPHOS phenotype
have been found in Acute Myeloid Leukemia (AML), glioblastoma, melanoma,
pancreatic, ovarian, breast, lung, and papillary thyroid cancer [33].

The main advantage of opting for OXPHOS is to obtain energy upon nutri-
ent shortage conditions since it is a more efficient method of energy production.
In fact, CD44+CD117+ ovarian CSCs and CD133+ Pancreatic ductal adeno-
carcinoma (PDAC) CSCs are less sensitive to glucose and glutamine shortage
than corresponding differentiated cancer cells [33]. Another possible explana-
tion for the OXPHOS phenotype is the availability of nutrients in the tumor
niche that directly feed the TCA cycle. One such situation occurs when cancer-
associated fibroblasts and differentiated cancer cells secrete lactate which is then
used by CSCs for TCA cycle anaplerosis, a process known as reverse Warburg
effect [18,33]. Another case is the secretion of alanine by pancreatic stellate cells
which can be converted to pyruvate by ALT in pancreatic CSCs, feeding a TCA
cycle derived-OXPHOS in CSCs [33].

As mentioned before, moderate levels of ROS promote tumorigenesis and
cancer progression. This might be the reason why ROS production through
the OXPHOS in CSCs is not detrimental. Furthermore, the increase in mito-
chondrial OXPHOS has been associated with chemotherapeutic resistance [18],
while mitochondrial biogenesis has been identified as a driver of CSC survival
and stemness [33]. Although the specific mechanisms by which these processes
occur have not been described yet, studies identified some key players. One of
those is the mitochondrial biogenesis regulator and transcription factor Peroxi-
some proliferator-activator 1 alpha (PGC1α) [33]. Nevertheless, overexpression
of this transcription factor in CSCs has been associated with either increase in
OXPHOS or an increase in glycolysis. Indeed, it is thought that the metabolic
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plasticity provided by PGC1α activation is important for metastatic CSCs to
adapt to external nutrient conditions of the site they are trying to colonize
during secondary tumor formation [17].

iii) Glutamine

Glutamine metabolism is essential to control cell toxicity through the regu-
lation of ROS levels. This is especially relevant for cells that experience ECM-
detachment, like metastatic CSCs [17]. In lung and pancreatic cancer, glutamine
is essential for CSC stemness through the production of GSH. The reduction in
ROS levels resultant from the increase in GSH production prevents phosphory-
lation and subsequent degradation of β-catenin. Active β-catenin consequently
promotes the expression of stem cell markers, like Sox2 [35]. As mentioned be-
fore, glutamine-derived glutamate can be converted to OAA and then to pyru-
vate while simultaneously producing NADPH, in a non-canonical pathway. In a
study in PDAC, CSCs exhibited that non-canonical behavior to maintain redox
balance and avoid high ROS levels, preventing cell death. Furthermore, glu-
tamine deprivation not only decreased self-renewal and expression of stemness
genes but also enhanced CSC sensitivity to radiotherapy [36]. Glutamine has
as well been implicated as a player in resistance to chemotherapy in colorectal
cancer. Metformin negatively affects CSCs through different mechanisms, one
of them is the activation of AMPK, which phosphorylates Tuberous sclerosis
complex protein 2 (Tsc2). On the other hand, Tsc2 inhibits mTORC1 leading
to a decrease in protein synthesis and cell growth [37]. In fact, metformin-
resistant colon CSCs, unlike sensitive cells, do not activate AMPK, show higher
expression of glutamine transporter ASCT2, and lose their resistance when in
glutamine-depleted medium [38].

Apart from induction of survival and drug resistance, glutamine is essential
for cell invasion. Upregulation of the GLS enzyme boosts the conversion of glu-
tamine to glutamate, which upon secretion works as a ligand for Metabotropic
glutamate receptor 3 (GRM3) receptor, eventually inducing the movement of a
MMP to the cell surface and therefore promoting tissue invasion [17].

iv) Lipid metabolism

As mentioned before, an increase in fatty acid synthesis through the ac-
cumulation of glycolytic intermediates is essential for cancer development, as
it contributes to the formation of new cellular membranes and lipids that act
as secondary messengers in cell signaling. That is especially true for CSCs. In
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comparison with differentiated cancer cells, CSCs of some tumors (like breast,
melanoma, and glioblastoma) show high levels of expression of SREBP, the
abovementioned master regulator transcription factor for fatty acid synthe-
sis [33]. In gliomas, FASN expression is increased and its inhibition decreases
stem cell marker expression, as well as proliferation and migration of CSCs [12].
Furthermore, overall high levels of FASN, ACL, and ACC in CSCs have been
associated with stemness, metastasis, and tumor recurrence [39].

Also, in support of the role of lipids in CSC signaling, some sphingolipids
and eicosanoids were shown to activate self-renewal or survival signaling path-
ways, like Notch, Akt, or NF-kB, inducing CSC proliferation and tumorigenicity
in breast, bladder and ovarian cancers [33].

De novo synthesized fatty acids not only contribute to membrane remodeling
and cell signaling but also energy storage in the form of Triacylglycerides (TAGs)
inside Lipid Droplets (LDs), in the cytoplasm. LDs are spherical organelles made
of retinyl and cholesteryl esters, together with TAGs. Besides fatty acid storage,
LDs protect lipids from harmful ROS-mediated peroxidation [40]. They have
been associated with cancer aggressiveness, support tumorigenicity of CSCs,
and may be utilized as CSC markers [33,39]. In glycolytic CSCs, most pyruvate
is routed to lactic acid synthesis. So, those CSCs primarily use glutamine to
indirectly produce acetyl-CoA-derived fatty acids first through conversion of
glutamate to α-KG and subsequently to citrate.

Nevertheless, CSCs may obtain the substrate for fatty acid synthesis, acetyl-
CoA directly from acetate, or directly get fatty acids from CSC niche [40]. In
agreement with this, CSCs were observed to exhibit high levels of the fatty
acid transporter CD36+ in different cancer types [12]. Metabolism of CSCs is
plastic and therefore when these cells are under glucose-deprived conditions or
when glycolysis is inhibited because of a chemotherapeutic drug, they use the
TAGs stored in LDs instead of glucose to obtain energy. LDs undergo one of
two processes: lipophagy, mentioned as an LD autophagy event; or lipolysis,
described as the conversion of TAGs to fatty acid through the activity of lipases
like Adipose Tissue Triacylglycerol Lipase (ATGL) or Hormone-Sensitive Lipase
(HSL) [40]. Free fatty acids interact with acetyl-CoA to form acyl-CoA which in
turn associates with carnitine. Carnitine carries the acyl moiety to mitochondria
and transfers it to another CoA molecule producing mitochondrial acyl-CoA,
while carnitine moves back from mitochondria to the cytoplasm. From that
point on, mitochondrial acyl-CoA feeds FAO, producing reducing equivalents
that are later used for ATP production through OXPHOS [40]. In this way,
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CSCs can survive glucose shortage and escape chemotherapeutic treatments
targeting glycolysis. In fact, besides fatty acid synthesis and fatty acid uptake,
high FAO activity has been extensively reported as a characteristic of CSCs [33].

Aside from fatty acid metabolism, the lipidic composition of the cell mem-
brane of CSCs is as well peculiar and can facilitate CSC tracing. CSCs have
more Monounsaturated fatty acids (MUFAs) than their corresponding differ-
entiated cancer cells, which provides higher fluidity to cellular membranes and
consequently contributes to an increase in metastatic potential. In that way,
elevated MUFAs expression can be utilized as a CSC marker [39]. One of the
main players in CSC phenotype, the NF-kB, regulates the expression and ac-
tivation of lipid desaturases like the enzyme Stearoyl-CoA Desaturase (SCD).
This leads to an increase in unsaturated lipids, mainly MUFAs, which in turn
activate one of the most significant pathways in cancer and normal stem cells,
Wnt/β-catenin signaling pathway [33,39]. Furthermore, SCD activation has been
shown to stabilize Yap/Taz promoting stemness and chemotherapy resistance
in lung cancer [39].

High levels of other lipids, such as the cell membrane-component cholesterol,
have as well demonstrated to be vital to self-renewal and tumor formation [33].
In CSCs, cholesterol uptake is raised through the intense use of LDLRs, the
receptors for low-density lipoproteins which carry cholesterol [33, 39], and via
cholesterol synthesis driven by an increase in mevalonate pathway [33]. The
importance of cholesterol for CSC phenotype is possibly due to its contribu-
tion to lipid rafts [39]. Lipid rafts are cholesterol-enriched micro-areas in the
cell membrane that regulate cell adhesion and cell signaling through the sig-
naling proteins they contain. Since membrane lipid composition affects protein
recruitment and interaction [33], change in lipid raft composition contributes
to loss of integrin-mediated cell adhesion and extracellular matrix degradation,
promoting cancer invasiveness [41].

v) Other metabolic features

As mentioned before in the epigenetics section, mutations in IDH enzymes
may lead to DNA hyper-methylation through the reduction of activity of TET
demethylases via 2-HG accumulation. These mutations are sometimes associ-
ated with the CSC phenotype. In leukemia, for example, the mutation promotes
CSC self-renewal and impairs differentiation [12].

The metabolism of other amino acids besides glutamine, like serine and
glycine, have as well been associated with CSC traits. For instance, in colorectal
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cancer, CSCs have high levels of enzymes that transport and catabolize lysine
which in turn activates Wnt/β-catenin signaling, contributing to self-renewal
and metastasis [12,33]. Other metabolic traits of CSCs include enhanced purine
synthesis mediated through Myc activation and overexpression of purine syn-
thesis enzymes [12,33], a rise in the use of PPP (to decrease ROS levels through
NADPH) and ketone bodies, and a high hyaluronic acid production through a
HIF-mediated induction of glycolysis and consequent increase in the use of HBP
pathway [33].

Overall, CSCs activate metabolic pathways that allow them to obtain energy
and anabolic substrates to grow in the specific microenvironmental niches where
they locate while favoring pathways and the activation of transcription factors,
like the previously mentioned NRF2 [17, 33], that increase NADPH and GSH
levels, protecting CSCs from high ROS levels usually faced during metastasis
formation or radio/chemotherapy.

1.2 Metabolic modeling

Metabolic models are in silico mathematical representations of metabolic re-
actions and associated metabolites. A sub-class of these models, named Genome-
Scale Metabolic Models (GSMMs), has the purpose to cover all metabolic reac-
tions inside a cell with the intent to analyze cellular metabolic capabilities, simu-
late metabolic phenotypes, and/or optimize metabolite production. As GSMMs
are a collection of mass-balanced biochemical reactions, it is theoretically possi-
ble to determine the rate of any reaction given that a sufficient number of known
parameters are known, such as the enzyme catalytic activity and metabolite
concentration.

Nevertheless, these parameters are difficult to measure experimentally, and
although their values are reported in the literature for some enzymes/reactions,
they often cannot be found for all reactions involved in a model at the genome
scale. In order to overcome this limitation, constraints based on biologically
reasonable assumptions were imposed on these models, allowing to build what
is known as constraint-based models.

This section reviews the fundamentals of constraint-based GSMMs, men-
tions the historical contributions to build human GSMMs, and describes al-
gorithms frequently used to perform simulation and analysis on those models.
It also addresses omics-data integration methods for reconstruction of context-
specific models capable of mimicking the metabolic behavior of specific cell-
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types. Furthermore, this section presents some studies of context-specific mod-
eling in human cells, particularly focused in cancer cells and finishes with the
basis for enhancing models with enzymatic constraints.

1.2.1 Genome-Scale Metabolic Models (GSMMs)

The traditionally reductionist research methodology applied in Biology con-
sists either in fully describing each component (e.g. the structure of a gene,
enzyme, miRNA) of a system (i.e. cell), or removing each component at a time
to understand its function (e.g. to evaluate whether it impacts growth, survival,
or differentiation). Besides, the way a component interacts with others is typ-
ically assessed by cutting the connections to other components one at a time
or in combinations [42]. This strategy allows to build visual maps that enable
scientists to grasp some simple processes, but as the complexity increases, it
becomes increasingly more difficult for a human, who can keep track of only a
limited number of variables, to understand the system just by visual inspection
of such maps. Furthermore, cellular phenotypes may not necessarily be due to
the presence of a component or set of components, but instead the combina-
tions of tuned levels of those components [42]. Hence, there is a need to represent
those systems in a quantifiable and unified language which is amenable for a
computer to analyze [42], to make accurate phenotypic predictions and suggest
viable non-intuitive solutions for biological problems.

The advent of whole-genome sequencing and subsequent refinement of the
technology to a high-throughput scale, where it became affordable to sequence
genomes of organisms in a short time [43], the increase in the availability of
other omics datasets (like proteomics or metabolomics) [44,45] in publicly avail-
able databases, together with the evolution of computational power [42,44] and
mathematical modeling [43] fostered the development of Systems Biology. This
relatively new field of research, instead of just focusing on the description and
qualitative interactions of components of a biological system, applies in silico
modeling to quantitatively study the interplay between those components and
how it affects biological function [42,45].

A similar transition from a reductionist to a holistic view of biological sys-
tems was observed with metabolic modeling. Following the sequencing of the
first genome in 1995, of the Haemophilus influenzae [46], scientists were able to
build the first metabolic model at the genome-scale for the same organism,
four years later [47]. Since then, several GSMMs have been created to model
the metabolism of different organisms across all five taxonomic kingdoms [48].
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Relevant examples are Escherichia coli (a reference gram-negative bacteria), My-
cobacterium tuberculosis (a pathogenic gram-positive bacteria), Methanosarcina
acetivorans (an archea able to synthesize methane), Saccharomyces cerevisiae (a
yeast), and Arabidopsis thaliana (a reference organism in plant research) [48].

As mentioned before, GSMMs comprise all known mass-balanced metabolic
reactions of an organism, but an extra layer of information can be added on top,
the Gene-Protein-Reaction (GPR) rules. In other words, the metabolic reaction
network can be expanded with the associations of each metabolic reaction to
the corresponding enzyme or enzymes that catalyze them and to the genes that
encode those enzymes in that organism [48]. This is useful to test the effect
of specific mutations such us gene knockout, and gene expression up-regulation
or down-regulation in the metabolic network. Advantages are the possibility to
predict essential genes or to suggest more realistic strain design methods (than
those solely based on manipulation of reactions). Also, GPR associations allow
the integration with transcriptomics data in the construction of tissue-specific
models [49].

There are four stages to build a GSMM:

i) Create a draft reconstruction.

This stage starts with structural and functional annotation of the organ-
ism’s genome. The start and end of each gene are annotated in the genome
sequence (structural annotation) and the sequence of those genes that code for
proteins is converted to amino acid sequence (to account for genetic code redun-
dancy) [50]. The amino acid sequence is then compared with protein sequences
of other organisms deposited in databases. Using alignment tools, it is possible
to identify similar sequences of phylogenetic close organisms that are already
annotated and, therefore, assume that the ‘query’ gene has the same function as
the ‘matched’ gene (functional annotation). Genes encoding metabolic enzymes
and transport proteins can be spotted using the appropriate Gene Ontology
(GO) annotation categories and respectively assigned to an Enzyme Commis-
sion (EC) or Transport Classification (TC) number. EC and TC numbers can
then be used to map the genes to the corresponding metabolic and transport
reactions, by resorting to databases of biochemical reactions, such as KEGG or
BRENDA [51].

ii) Manual refinement.

This is a time-consuming stage involving the manual curation of the recon-
structed draft, where each reaction is evaluated based on literature or experi-
mental evidence supporting its existence in the specific organism [51]. During
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this stage of the reconstruction, special care should be given to some aspects,
such as: reactions should be mass and charge-balanced; the standard Gibbs free
energy of products and reagents is used to determine reaction directionality;
non-catalyzed and intracellular transport reactions must be included; informa-
tion on biomass composition, determined in vitro or estimated from genomic
data, should be converted into a pseudo-reaction representing cell growth, called
biomass reaction; and the amount of ATP needed for cell growth and cell main-
tenance should be respectively included in the biomass and in a specific ATP
maintenance reaction [51].

iii) Conversion to a mathematical model.

This is an automated step where the refined metabolic reconstruction is
converted into a mathematical format [51].

iv) Network evaluation.

In this final stage, dead-end metabolites (internal metabolites that are ei-
ther only produced or consumed) are identified together with the directly or
indirectly associated blocked reactions (reactions with no flux in any condi-
tion). Then, by overlapping the model’s network at those points (dead-ends
and blocked reactions) with maps of the generic metabolism is possible to iden-
tify reactions that may fill the gaps in the model network. This is known as gap
filling and should be backed up by organism-specific literature evidence. Then,
the model is evaluated. The criteria used in the model evaluation are the ability
to secret certain by-products at a specific yield, present known metabolic inabil-
ities (e.g. be auxotrophic for specific nutrients), ability to produce all biomass
precursors present in the biomass equation, and simulate a growth rate similar
to the one measured in the lab. Another strategy frequently applied to validate
the model is to identify genes essential for growth in the model and compare
with experimental gene essentiality datasets [51].

Stages ii) to iv) in the reconstruction process are iterated several times
until the performance of the model is satisfactory. So, the reconstruction can be
thought of as an iterative process that takes months to years.

GSMMs have been used to model reference organisms of interest for scientific
research and industry, as they assist in microbial strain design and optimiza-
tion for the production of industrially useful bio-compounds [48], like amino
acids [52] and biofuels [53]. They have also been applied to identify drug targets
in pathogens [54], and to study organisms’ interplay, such as cross-feeding events
in microbial communities [55], the human gut microbiome [56], or host-pathogen
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interactions [57].
Another possible use for these models is the prediction of isozymes and

promiscuous enzymes. The detection of genes that encode enzymes essential for
cell survival (when the gene is knocked out leads to cell death) in the models,
but which are shown to be non-essential in vivo, signal that the model (and
hence the scientific knowledge) is missing another gene encoding for an enzyme
(i.e. isozyme) that catalyzes the same essential reaction. By identifying genes
with similar sequences to those (using BLAST) it is possible to select potential
isozymes that are then experimentally validated [48]. On the other hand, BLAST
can be used to identify other potential functions (i.e. reactions) of a metabolic
gene for which the main function (i.e. associated reaction in the model) is already
known. It is then easy to identify genes/enzymes in the model with the poten-
tial to have a side function that is also the main function of another different
gene/enzyme (i.e. it is possible to spot potential promiscuous genes/enzymes).
Before validating the promiscuous capacity of such genes/enzymes in the lab,
the list of potential promiscuous entities can be narrowed down by testing in
silico whether one can maintain the metabolic function when the other is knock-
out [48]. When representing the human metabolism, GSMMs may as well ex-
plain diseased mechanisms and suggest drug targets for therapeutical interven-
tions [58]. Next, the efforts of the scientific community to build human GSMMs
are reviewed.

1.2.2 Human Genome-Scale Metabolic Models

In 2004, the project aiming to fully sequence the human genome reached
its end [59], and only three years later the first generic GSMM for humans,
Recon1, was reconstructed [60]. In the same year, another generic reconstruc-
tion emerged, the Edinburgh Human Metabolic Network (EHMN) [61]. Since
then, these models underwent successive updates and gave origin to new mod-
els. In 2009, a context-specific model incorporating the information of Recon1
and EHMN was built specifically for hepatocytes, the HepatoNet1 [62], while
the Human Metabolic Reaction (HMR) [63], a generic model based on those
same two models and with information on KEGG and HumanCyc was created
in 2012. HMR was updated [64] two years later to the version HMR2 that con-
densed the information of the previous HMR model with new data on lipid
metabolism [64]. Both HMR models have served as a starting point for the
reconstruction of context-specific models of different tissues, like hepatocytes
(to study non-alcoholic fat liver disease) [64], adipocytes (to understand obe-
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sity) [65], myocytes (to model diabetes) [66], and cancer cells [63].
In 2013, an updated version of Recon1 which integrated information of

EHMN and HepatoNet1 was created [67]. That model was called Recon 2 and
underwent subsequent updates in the following years. Recon 2.1 had generic
metabolites replaced by specific ones to ensure carbon balancing [68]. Recon 2.2
improved mass and charge balancing of all reactions and enhanced the represen-
tation of energy generation, achieving a model that correctly predicts ATP flux
under different carbon sources [69]. Another evolution of Recon2 is Recon2M2,
which was upgraded with Gene-Transcript-Protein-Associations (GTPAs) so
that it could account for the isoforms resultant of metabolic genes subjected to
alternative splicing [70].

The most recent model of the Recon series is Recon3D, a model released in
2018 that includes three-dimensional metabolite and protein structure and inte-
grates data from HMR2 with Recon2, together with more reactions associated
with drug-metabolism, transport, host-microbiome interactions, and absorption
and metabolism of dietary compounds [71]. Note that visualization tools and
databases that allow to inspect and query data of this kind of models have
also been developed. Examples are the ReconMap [72] for visualization of in-
formation deposited in Recon2 and the Virtual Metabolic Human (VMH) [73]
database that links the Recon3D metabolic model with human microbiome re-
constructions and visual data maps, as well as knowledge on disease and nutri-
tion. In 2020, two Whole-Body-Metabolic (WBM) models based on Recon3D
were published: one for the male, called Harvey, and another for the female,
named Harvetta [74]. Omics data and literature were used to reconstruct com-
partments depicting the organs of humans of both genres intertwined by other
compartments which represented the body fluids [74].

In the same year, the most recent generic human GSMM was built, the Hu-
man1 [75]. It reconciles the information of HMR2 with Recon3D and iHsa [76]
(an improved version of Recon2) to produce a unified GSMM of 13417 re-
actions, 10138 metabolites and 3625 genes [75]. In comparison with previous
models, this reconstruction excluded duplicated or unnecessary reactions and
metabolites, rebalanced and corrected reversibility of reactions, and updated
the biomass reaction composition. Changes made during model development
and future changes can be tracked by a version control open-source framework
so that the community may engage in the model refinement. Furthermore, a
web-portal, Metabolic Atlas (www.metabolicatlas.org) was made available to
facilitate exploration and visualization of the data in the model [75].
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1.2.3 Constraint-based models

The standard strategy to mathematically model biochemical reactions is to
use kinetic models. To build kinetic (a.k.a. dynamic) models some assumptions
must be made. One of them is that the compartments within the system under
study (e.g. cytoplasm, organelles, or the extracellular compartment) must be
small enough to assume there are no spatial gradients (i.e. values of physical
parameters do not change with position within the compartment), and be large
enough so that compounds are not crowded and hence stochastic events, like for
example molecules reacting together due to a random clash [77], cannot happen.

The second law of thermodynamics is another physicochemical assumption
that must be followed. It can be understood as the difference of Gibbs free
energy between products and substrates (∆G) that determines if a reaction is
irreversible (when ∆G 6= 0) and in that case in which direction occurs (forward
if ∆G < 0, reverse if ∆G > 0) [51, 78]. Another premise is that there must
be mass and charge balance inside the system which constrains the system
stoichiometrically. In other words, the stoichiometric coefficients of metabolites
in any reaction are such that the number of atoms of each element and charge
in substrates is the same as in the products [78]. The mass balance applies
not only to elements within the same reaction, but also to internal metabolites
across reactions where those metabolites are consumed or produced. Therefore,
in Figure 1.5, the variation in concentration of metabolite A with time can be
represented by:

d[A]

dt
= cA,v1v1 + cA,v2v2 (1.1)

where [A] is the concentration of A, t is time, v1 and v2 are respectively the
rates of reactions that produce and consume A, while cA,v1 and cA,v2 are the
corresponding stoichiometric coefficients. Those coefficients are positive when
the metabolite is a product and negative when it is a substrate [79]. Hence, the
above equation could be simplified to:

d[A]

dt
= v1 − v2 (1.2)

Note, however, that concentration depends on cell volume which can vary
with cell growth, so an extra term, µ[A] (where µ is growth rate), is sometimes
subtracted to the right side of the equations 1.1 and 1.2 to compensate for the
increase in volume, but because µ[A] is much smaller than the other terms it is
often omitted (µ[A] ≈ 0).

In kinetic modeling, v1 and v2 are replaced by functions dependent on [A] that
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contain kinetic constants [77, 79]. For example, when using Michaelis-Menten
kinetics the vmax, the maximum rate a reaction can have, and kM , the substrate
concentration at which the reaction rate is half of vmax, i.e. the Michaelis-Menten
constant, have to be known [79,80]. Such constants can be found in the literature
for reactions of models of small dimensions. However, for large models such as
GSMMs, kinetic parameters of many reactions are unknown [77,81] and even if
they were, the amount of time and computer power needed to solve a system
of that many differential equations (each corresponding to a metabolite used
by the cell) would be substantial [81]. Therefore, to model the metabolism at
the genome scale, it is frequent to make another assumption: that the cell is
in a quasi-steady state. The quasi-steady state ascertains that there is almost
no variation in the concentration of metabolites over time. In other words, that
the same amount of a metabolite produced in a reaction(s) is consumed by
other reaction(s) in the system so that its concentration remains stable, i.e. the
metabolite neither substantially accumulates nor depletes overtime. The quasi-
steady state assumption can be made because, as long as the cell is not exposed
to perturbations [81] (like change in concentration of an external substrate, pH,
or temperature), the rate of metabolic reactions is much faster than that of
other cell processes (transcriptional regulation, cell cycle) and environmental
changes [82]. Therefore, it is a realistic assumption that is applied in specific
situations and imposes constraints over the possible solutions (i.e. values of
reaction rates) a system may present. Hence, the models where steady state is
assumed are called constraint-based models.

Since there is no variation in concentration with time for internal metabo-
lites when using constraint-based modeling, the above differential equation 1.2 is
simplified to the linear equation v1−v2 = 0, where the concentration of metabo-
lite and the kinetic parameters disappear. As there is no need to determine
kinetic parameters, unlike kinetic modeling, constraint-based modeling can be
applied to GSMMs for which no kinetic parameters are known. In addition, the
linear nature of the equations in a constraint-based model makes it much faster
and easy to find a solution, as it requires less computer power. Nevertheless,
it should be noted that kinetic models are much more precise than constraint-
based models and perfectly amenable to represent specific pathways and even
metabolic networks of small and medium scale [81].

To represent the complete system of linear equations of a constraint-based
model the following equation is used:

S.v = 0 (1.3)
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where S is a matrix with the stoichiometric constraints applied to the system,
and v is a vector of variables that stand for fluxes/rates of each reaction in the
system. The matrix S has m rows and n columns, representing the metabolites
and reactions, respectively. Each value in the matrix is the stoichiometric coef-
ficient of a metabolite m in reaction n. Positive coefficients show the metabolite
is produced and negative values that the metabolite is consumed [81, 83]. Note
that external metabolites, the ones participating in exchange reactions (i.e. re-
actions that connect metabolites of the most external compartment with the
outside of the system) are not represented as rows in the stoichiometric matrix
S, since they are not bound to mass balance (Figure 1.5). This fact assures that
the concentration of external metabolites (the ones moving in or out of the sys-
tem) can change with time, as it happens in vitro with cell medium components
and products released from the cell.

Furthermore, the fluxes of reactions in vector v are subjected to reversibility
constraints. Those are mathematically represented by inequalities that define
a lower and upper limit to the flux of each reaction. Reactions in the forward
direction can carry no flux when the reaction does not occur or positive flux
values if it occurs (i.e. flux vn of reaction n is 0 ≤ vn ≤ +∞), while reactions in the
reverse direction can carry no flux or have negative flux values (i.e. −∞ ≤ vn ≤
0). Reversible reactions can assume any flux value (i.e. −∞ ≤ vn ≤ +∞) [81].

In order to algebraically solve the system of equations representing the
constraint-based model (i.e. to obtain values for reaction fluxes), the system
has to be determined. In other words, the number of variables (fluxes) must be
the same as the number of equations (internal metabolites) for a solution to be
found. However, in most biological systems, there is often a higher number of
reactions than internal metabolites, so these systems are said to be underde-
termined [81, 84]. In that case, there is more than one possible solution for the
system of equations, so the null space of S (i.e. any v that satisfies the equation
1.3) can be thought of as a convex polyhedron in a 3-dimensional space, the
limits of which are imposed by mass balance and capacity constrains (lower
and upper flux bounds), as well as the quasi-steady state assumption (Figure
1.6) [85].
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Figure 1.5: Toy metabolic model. Left: a metabolic system including a cellular and an extra-
cellular compartment. Internal reactions can interconvert metabolites (enzymatic) or trans-
port them across compartments (transport reactions). Drains are added to allow the entry or
removal of a compound from the system. In this case, all drains are also exchange reactions,
as they connect the most external compartment with the outside of the system. Up and lower
bounds constraint fluxes capacities and define reactions direction. Top center: A system of
differential equations based on the mass-balance assumption representing the system at left.
Top right: the same equations but with steady state assumptions. Bottom right: mathe-
matical representation of the constraint-based model based on the metabolic network at left.
External metabolites are not represented in the stoichiometric matrix S, since they are not
mass balanced.
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Figure 1.6: Representation of the solution space of a toy constrained-based model with three
reactions, in which each coordinate represents a reaction flux. Left: The solution space is
a pointed polyhedron due to stoichiometric and flux capacity constraints. Right: The blue
point represents an optimal solution provided by FBA. Redrawn figure based on Orth et al.
(2010) [85].

To convert an underdetermined system into a determined one, there is a need
to first identify the degrees of freedom, that is, the number of variables that must
be known to make the system solvable. In basic systems, where there are no
linearly dependent rows or columns in the matrix S, this is simply the difference
between the number of columns (reactions) and rows (metabolites), whereas
when the matrix S has linear dependencies, the rank of the matrix must be
considered in the calculation. Then, scientists may experimentally measure the
same number of fluxes as the degrees of freedom to make the system determined.
Usually, those are fluxes of exchange reactions, as they are easier to obtain. If
that is not sufficient to make the system solvable, then internal fluxes may be
further assessed through substrate labeling with 13C followed by quantification
of labeled carbon contained within the products, using mass spectrometry [84].

When the number of experimentally quantified fluxes is higher than the
degrees of freedom, the system becomes over-determined (i.e. the number of
equations/metabolites is superior to the number of variables/unknown fluxes).
In such situations, a better approach than selecting just a few measured fluxes
(in the same amount as degrees of freedom) and algebraically estimating the
remaining unknown ones is to use a method named overdetermined Metabolic
Flux Analysis (MFA). With this method, the values of all fluxes (known and
unknown) are re-estimated by reducing differences between known experimen-
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tally measured fluxes and in silico estimated fluxes of corresponding reactions.
A typical approach is to do a linear least square regression, where the sum
of squares of the errors associated with those differences is minimized [84].
Overdetermined MFA may work just with fluxes of exchange reactions (obtained
through exometabolomics experiments), in which case is called stoichiometric
MFA (stMFA), or use as well internal fluxes measured through 13C tracing,
which is known as 13C-MFA [81].

1.2.4 Methods for phenotype simulation

Although it can be possible in some cases to transform an underdetermined
system into a determined one by experimentally obtaining fluxes for some re-
actions and arithmetically estimating the others, such a procedure is typically
unfeasible for large systems, as the degrees of freedom are often too high [84].
Furthermore, each time the model is needed to make a simulation under new
environmental settings, a different experimental setup needs to be put into place
to acquire the minimal number of fluxes needed to solve the system. Therefore,
computational methods have been developed to estimate flux distributions un-
der different environmental conditions, or in other words, to make phenotypic
predictions.

One type of methods allows phenotypic simulations in under-determined
constraint-based models by making reasonable biological assumptions and ap-
plying optimization strategies to choose a flux distribution within the solution
space, i.e. to select one of the flux vectors that solves the equation 1.3, which
may also be perceived as a point within the flux polyhedron shown in Figure
1.6. That class of methods turns the constraint-based numeric problem into an
optimization problem, whose mathematical formulation, besides the abovemen-
tioned constraints, includes an objective function.

The most commonly applied method of this class is Flux Balance Analysis
(FBA) [83]. FBA consists in maximization or minimization of a flux of a single
reaction (has one objective) or a linear combination of fluxes of different reac-
tions (multi-objective function) [83], where the mathematical definition of the
objective function is:

max/min : Z = cT .v (1.4)

where Z is the objective function, v is the vector of all variables/reaction fluxes,
and c is a row vector of weights given to each reaction. Whenever the weight
of a reaction is different from zero, it means the function is trying to optimize
(maximize or minimize depending on the signal) the flux of that reaction. The
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magnitude of the weight determines how much each reaction contributes to the
objective function [85]. For example, if the objective is to maximize a function
in which the weight of reaction A is 1 while the weight of reaction B is 2, then
the flux of B will be maximized twice as much as A.

Most of the time, the objective function assumed in FBA is one that tries
to maximize growth (i.e. the flux of biomass reaction) [79]. This assumption,
grounded in the idea of adaptative evolution [86], is proven experimentally,
as cells try to maximize their proliferation (i.e. biomass) in the exponential
growth phase, which is valid for both procaryotes and eukaryotes [79]. Besides,
experimental data shows a good correlation with FBA predicted phenotypes
in wild-type organisms, in relation to growth yield, flux values, and substrate
uptake rates [87]. Nevertheless, alternative objectives may be used with FBA,
such as to maximize ATP production, minimize the sum of squares of all fluxes
(assuming there is maximum enzymatic efficiency during growth), minimize the
number of active reactions [79], maximize the formation of a biotechnologically
relevant compound [83], minimize nutrient uptake rates [86] or minimize redox
potential (assuming cells reduce oxidizing reactions to conserve energy) [88].

One of the main disadvantages of FBA is that when several possible flux
distributions fulfill the same optimal value of the objective function (i.e. there is
more than one optimal solution) it does not have a criterion to select one among
those [83]. Therefore, for situations where multiple optima can be observed,
parsimonious enzyme usage FBA (pFBA) is an alternative that, even though it
does not always guarantee a unique solution, can alleviate the problem. pFBA
consists of two steps. First, an FBA analysis identifies the maximum objective
value (e.g., maximum growth rate), which is then applied as a flux constraint
(e.g., biomass reaction flux lower bound is set to that value), while a new linear
optimization problem is run whose objective function is the minimization of
the sum of the of all fluxes [83, 89]. This procedure narrows down the number
of suitable optimal distributions by keeping overall flux to a minimum, while
assuring the maximization of an objective (e.g. growth) [83] and it is based on
the biologically reasonable assumption of reduced cellular enzyme usage [90].

FBA and pFBA make accurate phenotypic predictions in wild-type organ-
isms, but the same does not apply to phenotype simulation with mutant organ-
isms. Mutants created in vitro are not under the same evolutionary pressure as
wild-type strains and did not have time to develop a reaction flux regulatory
mechanism that optimizes a biological objective such as growth, i.e., mutants
need time to fully adapt. Hence, phenotypic simulation methods for non-adapted
mutants were developed based on the more reasonable premise that such mu-
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tants are likely to display a sub-optimal flux distribution intermediate between
the wild-type and mutant optimum i.e., the mutant metabolic phenotype is
very close to the wild-type one [87]. Examples of such methods are Minimiza-
tion Of Metabolic Adjustment (MOMA), which minimizes the sum of squared
differences between wild-type and mutant fluxes of each relevant reaction in the
wild-type distribution [87] and Regulatory On/Off Minimization (ROOM) [91],
that minimizes the number of reactions of a mutant organism whose fluxes are
significantly different from the corresponding ones in the wild-type.

Before implementing any of the aforementioned methods for phenotypic sim-
ulation in mutants, there is a need to define which reactions are affected by the
mutations and to what degree. First, the set of mutated genes is defined and
the relative expression values of each mutated gene in relation to a reference
wild-type strain are obtained. If the relative expression value is above one, it
means the gene is being over-expressed. In case it is below one, then the gene
is under-expressed, and when the value is zero, the gene is knocked out [89].

Afterwards, the gene expression value is propagated into a reaction value. In
those cases where there is a one-to-one correspondence of a gene to a protein, the
reaction value assumes the relative expression value of the corresponding gene,
whereas in many-to-one correspondence, the Boolean GPR rules of the model
must be first translated into functions that can deal with numerical expression
values [89]. If the reaction is catalyzed by a protein complex, a situation usually
represented by an AND operator in GPR rules, the value associated with the
reaction is the minimum of the values of genes coding the proteins of the com-
plex. This is because, albeit the expression of all genes encoding all the enzyme
sub-units is needed for the reaction to happen, the expression of the gene with
the minimum transcriptional level acts as a bottleneck for the formation of the
enzyme complex [89].

On the other hand, if the reaction can be catalyzed by more than one enzyme
(i.e., there are isozymes), a case represented by an OR operator in GPR rules,
then the value attributed to the reaction can be the average [89], sum or maxi-
mum of the expression levels of the genes, depending on one’s choice [92]. The
average or sum can be applied when there is the assumption that although the
genes involved work independently, both isozymes catalyze the reaction when
both genes are expressed [89], while the maximum function is applied upon the
assumption that the isozyme encoded by the most expressed gene is the one
that most influences the reaction [92].

Once the affected reactions have been identified and the degree of influence
of the mutation on those have been assessed, that information is translated into
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flux constraints over the reactions. Assuming vi as reaction flux value of the
reference (i.e., wild-type strain) and p as the calculated relative expression value
for the reaction in the mutant: if p > 1, then the reaction will be overexpressed
and the flux is constrained to be larger than vi multiplied by p; if p < 1, then the
reaction will be underexpressed and the flux is constrained to be lower than vi

multiplied by p. Depending on whether the flux value of the reference organism
is positive or negative, this results in constrains to the upper or lower bounds
of the fluxes (see Table 1.1) [89]. After adding the flux constraints, phenotypes
can be simulated.

Table 1.1: Constraints applied to mutant reaction fluxes.

Positive reference flux Negative reference flux

Overexpression (p > 1) p.vi < flux < UB∗ LB∗ < flux < p.vi

Underexpression (p < 1) 0 < flux < p.vi p.vi < flux < 0

∗ UB and LB are original upper and lower bounds, respectively, of the reference flux.

There are other phenotype prediction methods that, unlike the ones men-
tioned before, do not need to optimize for a biological objective and, therefore,
are not biased. These are collectively known as Metabolic Pathway Analysis
(MPA) methods, which try to represent all possible phenotypes that a metabolic
network may have, depending solely on the aforementioned stoichiometric, ther-
modynamic, and steady-state constraints of constraint-based models, that is,
without making any assumptions on a biological purpose [78].

Within the scope of MPA, Elementary Flux Modes (EFMs) analysis is one
of the best-known methods [49]. EFMs are non-decomposable flux distributions,
representing subnetworks within the metabolic network, that upon combination
can describe all the feasible flux distributions that a model may theoretically
present. Biochemically, EFMs may be thought of as subnetworks/paths that
connect sets of metabolites in a network without unnecessary loops and therefore
represent the basic metabolic entities of a system [81, 93], while in the visual
representation of the constraint-based solution space described in Figure 1.6
they can be understood as the edges of flux polyhedron [49].

From a phenotypic prediction standpoint, EFMs are useful to identify organ-
isms and the substrates that each of those requires to produce a metabolite of
interest or to observe all the phenotypic consequences of deleting specific genes
or reactions. However, the enumeration of all EFMs is computationally demand-
ing, and it can be infeasible when applied to large-scale models. For example,

43



a medium-scale model can show hundreds of millions of EFMs, which enumer-
ation can be time-consuming. In comparison, the abovementioned optimization
algorithms are faster [79,93].

1.2.5 Methods to analyze metabolic models

Albeit utilized in the prediction of specific metabolic flux distributions,
GSMMs may as well be used to study the generic metabolic limits and proper-
ties of an organism. Flux Variability Analysis (FVA) is one of the methodologies
which can meet that purpose. Whilst it does not identify all possible flux distri-
butions (or the best one) that lead(s) to a specific metabolic phenotype, FVA
uncovers the range of flux variability that is allowed within the metabolic con-
straints of the system [94].

Specifically, it applies Linear Programming (LP) to a pair of objective func-
tions that are the minimization and subsequent maximization of the flux of each
reaction, to identify the lower and upper flux bounds that the reaction may theo-
retically present. When alternate optima (several distinct flux distributions that
achieve the same optimal objective value) exist, FVA can be applied to identify
the minimum or maximum flux values admitted by each reaction in at least one
of those alternative flux distributions. In that case, an FBA must first be per-
formed to identify the optimal objective value (e.g., highest growth rate), which
is set as an additional flux constraint to the model (e.g., the highest growth rate
is set as lower bound of the biomass reaction), followed by maximization and
minimization of the flux of each reaction [94].

FVA enables the detection of reactions that are essential to maintain an
optimal phenotype (e.g. highest growth rate) regardless of the flux distribution
that the system may use to achieve that optimality. Basically, a reaction where
the admissible flux range (interval between maximum and minimum values) does
not comprise a zero value in an FVA can be considered essential [95]. Conversely,
reactions where both the maximum and minimum values are zero, are said to
be blocked, as they are inactive in any flux distribution that follows the system
constraints [96]. With FVA, it is also possible to spot potentially interesting
reactions that show low flexibility (narrow flux range). Hence, FVA allows to
identify reactions that characterize or oppose the phenotype of interest and even
provides an overview of phenotype redundance, as few essential reactions suggest
the organism may use alternative pathways to meet its phenotypic goal [94,95].

FVA may not only be applied to optimal, but also sub-optimal conditions.
For example, flux variability can be computed to a smaller percentage of maxi-
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mum growth. This is useful, for instance, to detect reactions that are essential
for survival in non-optimal growth conditions [97].

Note that the aforementioned EFMs can be used as well to analyze metabolic
networks, namely to determine their robustness, through simple approaches such
as comparing the number of EFMs before and after a reaction knockout [98].

1.2.6 Context-specific models

Multicellular organisms undergo cell differentiation during their develop-
ment. Although all cells of an organism share the same genetic code, differenti-
ated cells of distinct tissues execute different functions due to variation in gene
transcription, mRNA translation levels, and protein Post-Translational Mod-
ifications (PTMs). In that sense, generic GSMMs, solely built on the genetic
context of the organism, cannot accurately describe the specific metabolism
of each cell type. Similarly, unicellular organisms show distinct gene/protein
expression patterns depending on the available substrates and environmental
conditions, which affects their metabolism. Hence, in both cases, there is a
need to integrate condition/cell type-specific omics data into generic GSMMs
to reduce the solution space and consequently attain more accurate phenotypic
predictions [99].

As previously mentioned, genomics data serves as a foundation to build
organism-specific GSMMs suitable to study wild-type or mutated unicellular
organisms. On the other hand, cell type/condition-specific GSMMs, whilst built
upon generic models, require the integration of other types of omics data: tran-
scriptomics, proteomics, metabolomics, and/or fluxomics.

The main types of omics data are described in Table 1.2. From those, flux-
omics is the easiest type to integrate with GSMMs, as it only requires to con-
straint flux bounds to the values measured. Also, it is the most accurate be-
cause, unlike other methods, it does not depend on the assumption of a direct
relationship between transcript/enzyme levels and reaction flux. In fact, one of
the techniques mentioned above to make predictions with overdetermined con-
strained models, the MFA, utilizes fluxomics data. However, this type of data
is scarce and difficult to obtain for large models.

With respect to metabolomics, the data integration may be performed in
either of two ways. One strategy concerns the detection of which metabolites
are produced in vivo that are not obtained in silico, leading to the inclusion of
reactions producing those metabolites in the final model, a process sometimes
applied to close gaps in reconstructed models. Another way is to relax the
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steady-state assumption to allow the empirical accumulation (at an empirical
rate) for metabolites which production levels are backed up by metabolomics
evidence. Drawbacks of metabolomics data are frequent insufficient coverage
and low confidence in the metabolite identification process.

Proteomics is sometimes included in context-specific reconstruction because,
unlike transcriptomics which only reflects the gene expression levels of a cell,
it also accounts for the effect of mRNA translation over the metabolic flux.
However, proteomics coverage is often limited. Hence, as advancements in high-
throughput sequencing increased the coverage and speed while reducing the cost
of RNA sequencing, the majority of omics-integration methods were developed
for transcriptomics data [99–101].

Omics-integration methods can be classified depending on whether they in-
tegrate absolute or relative values, to depict the metabolism under a single
condition or differences in metabolism between conditions, respectively. When
dealing with gene expression, one might assume that the latter approach is bet-
ter, as it overcomes the limitation of lack of proportionality between transcript
and flux levels. However, that is not the case, since none of the two types of
methods outperforms the other [100].

Optionally, integration methods may be grouped as discrete or contin-
uous, depending on whether omics data are discretized (e.g. classified as
high/moderate/low or on/off, accordingly with arbitrary thresholds) or not.
Intuitively, it would seem better to not discretize, but there is no proof that
methods using continuous data perform better than those that discretize values.
Furthermore, discretization has advantages, such as robustness to data noise,
and reduction of reliance on the proportionality assumption between fluxes and
omics data. Also, when the discretization is binary (on/off) the integration with
the logic-based GPR rules becomes easier than with continuous values [100].

These methods may as well be split into two groups, accordingly with their
ability to directly produce flux distributions or context-specific models that
can later be used by traditional phenotype prediction algorithms. Nonetheless,
some methods may be included in both categories, since they return both a
context-specific model and a metabolic flux distribution for the complete model
compatible with condition-specific omics data [100].

Another classification system is based on the mathematical objective. In
that regard, methods can be grouped into three different main types: Objec-
tive Function-Required (OFR), Expression Data-Compatible (EDC), and Core
Reaction-Required (CRR) [101].
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Table 1.2: Main types of omics data useful to build constrained-based models

Type Description Deposited in

Genomics Full-genome sequences ob-
tained with Next-Generation
Sequencing (NGS) techniques

GenBank [102], European Nu-
cleotide Archive (ENA) [103],
DNA Data Bank of Japan
(DDBJ) [104], Genomic Data
Commons (GDC) [105]

Transcriptomics mRNA levels quantified
by microarrays or RNA-
sequencing. It allows to know
which splicing isoforms are
transcribed and how much

Human Protein Atlas
(HPA) [106], Gene Expression
Omnibus (GEO) [107], RNA-
seq Atlas [108], ArrayEx-
press [109], Genotype-Tissue
Expression (GTEx) [110],
GDC [105]

Proteomics Protein levels quantified by
mass-spectrometry or western
blotting

HPA [106], Human Pro-
tein Reference Database
(HPRD) [111], Human Pro-
teome Map (HPM) [112]

Metabolomics Metabolites present in-
side the cells or in the
extracellular media (exo-
metabolites) quantified by
mass-spectrometry or Nuclear
Magnetic Resonance (NMR)

MetaboLights [113], Hu-
man Metabolome Database
(HMDB) [114], Metabolomics
Workbench [115]

Fluxomics Metabolite turnover rates (i.e.
reaction rates) determined
by the proportion of carbon
atoms with 13C in reaction
products upon labeling of
substrates with 13C. Quantifi-
cation of 13C is achieved with
mass-spectrometry

Central Carbon Metabolic
Flux Database
(CeCaFDB)) [116]
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i) Objective Function-Required (OFR) methods

As the name suggests, Objective Function-Required (OFR) methods [101]
utilize a required metabolic function. In other words, they apply FBA to find
the objective value that optimizes a metabolic function representing a biological
objective, such as growth. A fraction of the objective value (e.g., at least 90% of
growth) is then imposed as a minimal flux constraint, while a penalty function
denoting the differences between simulated fluxes and gene expression levels is
minimized [99].

The founding method of this class is Gene Inactivation Moderated by
Metabolism and Expression (GIMME) [117]. In that algorithm, the gene ex-
pression level is converted to the associated reaction expression level using the
functions mentioned before that apply GPR rules to numerical values. Then,
the difference between the reaction expression level and a user-defined thresh-
old is determined. For the reactions where the expression level is lower than the
threshold, that difference multiplied by the reaction flux is defined as a reac-
tion penalty. The sum of those penalties represents the inconsistency score (i.e.,
penalty function), which is minimized. This formulation penalizes (gives lower
flux values and eventually excludes) reactions associated with low expressed
genes but carrying high fluxes. While the penalization step excludes reactions
(to reduce the inconsistency between expression and flux values), the required
metabolic function guarantees the inclusion of low expressed reactions essential
for the model operability [100, 117]. GIMME outputs both a flux distribution
and a contextualized GSMM and integrates absolute expression as continuous
values [100].

GIMME gave origin to other methods, like Gene Inactivity Moderated by
Metabolism and Expression by proteome (GIMMEp), which contains a similar
formulation to GIMME but utilizes proteomics instead of transcriptomics [118].
Gene Inactivation Moderated by Metabolism, Metabolomics and Expression
(GIM3E) [119] is also a GIMME-derived algorithm. However, this method is
substantially distinct. Unlike GIMME, which gives a penalty score just to the
reactions with lower expression than the threshold, GIM3E attributes a penalty
to all reactions. Specifically, each gene gets a penalty that is the difference be-
tween the maximum verified gene expression and the expression level of the
particular gene. That penalty is propagated to a reaction penalty (using GPR
rules) and multiplied by the reaction flux. The penalty function is the mini-
mization of the sum of each reaction penalty. GIM3E also allows the integration
of metabolomics data by defining a non-zero minimal flux value for reactions
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producing metabolites identified in the metabolomics dataset and constrains
reversible reactions to proceed in only one direction, creating a Mixed-Integer
Linear Programming (MILP) formulation that is more computationally expen-
sive than the LP one of GIMME and GIMMEp [99,119].

The advantage of OFR methods is the fact that the optimization for a bio-
logical objective guarantees operability, which improves the prediction of growth
rate in comparison to other types of methods [100]. Nevertheless, whilst the def-
inition of an objective is straightforward for prokaryotes, that is not the case for
eukaryotes, particularly for differentiated cells, that fulfill distinct (sometimes
not well defined) purposes for the organism’s survival. For example, the main
‘goal’ of a neuron is not necessarily to grow, but instead to contribute to the
overall functionality of the organism [99,100]. Therefore, methods solely focused
on solving the inconsistencies between flux predictions and gene expression lev-
els, without requiring the definition of a biological objective, were developed.
Those methods are collectively called EDC [101].

ii) Expression Data-Compatible (EDC) methods

Expression Data-Compatible (EDC) methods [101] are algorithms that
maximize the matches between flux states (i.e., active/inactive) and omics data
states (expressed/not expressed) [99]. One of those, the E-Flux algorithm [120],
integrates absolute gene expression values in a continuous approach. Specifi-
cally, it constrains the upper bound of reaction fluxes with continuous values
that depend on the normalized expression values of associated genes, followed
by phenotype simulation. This is a simple method that utilizes an LP formula-
tion [101] and only produces a flux distribution i.e., no context-specific model
is output.

Other EDC methods, that apply a more complex MILP formulation, may
assign to each reaction a binary variable that assumes a value of one or
zero depending on whether a match between simulated flux and omics data
states is assumed in a specific solution [99]. One of such methods is the in-
tegrated Metabolic Analysis Tool (iMAT). This algorithm deals with abso-
lute data that have been discretized [100]. Hence, the first step in the iMAT
pipeline is gene/protein expression discretization, followed by propagation of the
gene/protein expression score to a reaction score. Then, reactions are grouped
into highly or lowly expressed depending on their reaction scores. iMAT intro-
duces flux constraints that define what is a match in each group of reactions.
For highly expressed reactions (RH), a match is set to happen when the reaction
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is active, i.e. when it carries a flux that is higher than a positive threshold E if
the reaction is in the forward direction and lower than -E if it is in the reverse
direction. For lowly expressed (RL) reactions, a match occurs when the reac-
tion is inactive, i.e. the flux is between -E and E. On top of those constrains,
iMAT maximizes the sum of the mentioned binary variables (each representing
a reaction), that is, it tries to increase the number of matches [121].

Besides producing a context-specific model, iMAT outputs a flux distri-
bution. However, sometimes several flux distributions may provide the same
maximum value for the sum of matches. In such situations, iMAT applies an
adapted FVA approach. Specifically, the similarity between simulated fluxes
and expression scores is assessed for each reaction, firstly when the reaction is
forced to be active and then when it is forced to be inactive. If the similarity
is higher when the reaction is active, the reaction is included, otherwise, it is
excluded. If the similarity is equal in both situations, then the reaction is set as
undetermined [99].

Integrative Network Inference for Tissues (INIT) [63] is another algorithm
of this class that also accepts gene expression as an input although it was orig-
inally designed to integrate proteomics data [100]. INIT deals with absolute
values, similarly to iMAT. However, it can integrate them both in a discrete
or continuous way, depending on whether the user decides to assign distinct
arbitrary reaction values/weights to different ranges of expression or set the re-
action weight as a function dependent on the expression level [99]. Nonetheless,
in both cases, a negative weight is attributed to reactions associated with low
gene/protein expression levels [63]. Unlike iMAT, INIT does not integrate omics
data as constraints. Instead, it directly includes them in the objective function,
as reaction weights [99]. INIT maximizes the sum of the products of the weight
given (by the expression level) to each reaction and the binary variable repre-
senting the inclusion (when its value is one) or exclusion (when value is zero)
of that reaction in the final reconstruction. Therefore, the algorithm excludes
reactions (i.e., gives a zero value to the binary variable) when those reactions
carry negative weights (i.e., are lowly expressed), while including reactions (i.e.,
gives value one to the binary variable) when reactions carry positive weights
(i.e., are highly expressed) [63]. Another characteristic of INIT is the ability
to integrate metabolomics data in a qualitative manner, since a minimal value
for net accumulation is allowed for internal metabolites that are proven to be
produced from metabolomics evidence, while assuming a steady-state for the
remaining ones [63].
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EDC methods can better model cells for which a required metabolic func-
tion is unknown [99] and, therefore, guarantee a higher similarity between flux
distributions and expression data, in those situations, than OFR methods. Nev-
ertheless, the lack of a required functional objective can sometimes hamper the
functionality of models reconstructed with EDC algorithms (e.g. models may
not allow cell growth).

This fact led to the rise of a new class of algorithms, Metabolic Task-Derived
(MTD), that assures both the abovementioned similarity and operability, but
unlike OFR algorithms, does not require the flux distribution to carry a minimal
value for a specific metabolic function. Instead, it guarantees that models can
perform (one or more) metabolic tasks. In other words, although the context-
specific model must be able to perform a metabolic task given the appropriate
conditions, not all allowed flux distributions of the model need to have flux
through the reactions of the task(s) [101]. The tasks can be, for example, the
production or consumption of a metabolite, or even the activation of a whole
pathway, under specific conditions [99].

One of the most well-known MTD methods is the task-driven INIT
(tINIT) [122]. tINIT has a similar formulation to the abovementioned INIT
algorithm, the only difference is that the reconstructed models must be able
to perform a set of user-defined metabolic tasks and that reactions are con-
strained to operate in only one direction, which introduces an additional binary
variable [99].

iii) Core Reaction-Required (CRR) methods

The final class, named Core Reaction-Required (CRR) [101], comprises
methods that only produce models (no flux distributions are obtained), and
that are based on the categorization of reactions into core or non-core, for those
of which there are or there are not, respectively, enough evidences that they
should be included in the context-specific model. CRR algorithms try to achieve
flux consistency, i.e. every reaction of the reconstructed context-specific model
has to be active at least in one of the allowed flux distributions, which is equiv-
alent to say that the model cannot have blocked reactions. More importantly,
CRR methods assure that as many as possible core reactions are included in
the final context-specific model. Although FVA could be applied to identify
blocked reactions, CRR methods often apply alternative algorithms that are
less computationally intensive to speed up the process [99].

Model Building Algorithm (MBA) [123] is a CRR algorithm in which the
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set of core reactions is further split into two subgroups: CH and CM . CH is
the group of core reactions that have a high likelihood of being included in
the context-specific model because they belong to well-known pathways that
have been manually curated, whereas CM is the subset of core reactions with a
moderate likelihood of being part of the model as inclusion is solely supported
by high-throughput transcript/proteomics data. In the first step, the algorithm
randomly removes one non-core reaction from the generic model and evaluates
its consistency. That is, checks whether any reaction of the core reactions be-
comes blocked due to the retrieval of the non-core reaction. If no reaction in the
CH and only a limited number of reactions in CM become blocked, then the re-
action is removed together with all the blocked reactions, otherwise, the model
is kept the same. Note that the maximum number of reactions that are allowed
to be blocked in CM , for the non-core reaction to be removed, is the product of
a user-defined threshold (E) and the number of non-core reactions that become
blocked by the removal. Therefore, the value assigned to the threshold can de-
termine if the final model includes a high number of CM reactions (when the E

is low) or if it is more parsimonious (when E is high).

The aforementioned process is repeated for every non-core reaction in any
arbitrary order. Since inactive reactions are removed in each step without repo-
sition, the order of removal of non-core reactions affects the composition of the
context-specific model. To overcome that limitation, MBA is repeated to create
1000 intermediary models and all reactions are ranked based on the frequency
by which each reaction is present in those. Finally, a model is built where all
reactions of CH are included and each other reaction is added in the order corre-
sponding to their rank. Each time a reaction is added, the final model is checked
for consistency and the process ends when a consistent model is found. This re-
sults in a model including all CH reactions, as many as possible CM reactions,
and a minimum set of non-core reactions necessary to fill the gaps [123].

Unlike MBA, metabolic Context-specificity Assessed by Deterministic Re-
action Evaluation (mCADRE) [124] does not generate intermediary models, it
directly defines a final model. Furthermore, the selection of core reactions is
automated, while the core of high confidence reactions in MBA is based on
manual curation. Therefore, mCADRE is a less time-consuming alternative to
MBA [99]. In mCADRE, gene expression levels of many samples of the same
condition (e.g., a specific cell type) are firstly discretized into expressed or not
expressed. Then, a frequency of expression among the samples is computed
for each gene. GPR rules are utilized to transpose those values into reaction
expression-based evidence values that, together with a user-defined threshold,
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are used to split reactions into two groups: core (above the threshold) or non-
core (below the threshold). Non-core reactions are ranked accordingly with the
frequency of expression, the network connectivity (i.e., the number of ‘neigh-
boring’ reactions in the metabolic network), and a level of confidence based on
the type of evidence that supports the inclusion of the reaction in the generic
model (e.g., in silico, experimental proof, or evidence for a related organism).
Afterwards, each non-core reaction is removed from the generic model in the
inverse order of the mentioned ranking. Each time a reaction is removed, the
model is checked for consistency. As a rule, a non-core reaction and the reac-
tions that are blocked upon its removal are only discarded when the exclusion of
the former does not affect the production of any key-metabolite (a metabolite
which production is confirmed by metabolomics data) and no blocked reaction
is part of the core. However, blockage of core reactions may be accepted as long
as it does not affect a key metabolite if there is evidence that the reaction to
be removed is never expressed in that condition (expression values are zero for
all samples), that its removal is needed to allow flux through core reactions and
the number of non-core reactions versus core reactions that are blocked obeys
to a specific ratio [99, 124].

Both MBA and mCADRE utilize a MILP formulation, which is compu-
tationally intensive. On the other hand, a different CRR algorithm, known as
FASTCORE [125] applies LP, and therefore is several orders of magnitude faster
than MBA, producing models in seconds. Unlike MBA and mCADRE, FAST-
CORE does not establish a specific criterion to define a core. In fact, it provides
the freedom to combine any type of omics data or bibliographic evidence to
decide which reactions belong to the core. This increases the confidence in the
definition of the core, as missing information in one data type can be comple-
mented by the other [99, 125]. Once the core is defined, the algorithm tries to
solve two LP problems. The first is to maximize the number of irreversible core
reactions that have a flux value above a predefined small positive constant E,
i.e., increase the number of core reactions that are active (not blocked). Those
active reactions (that carry flux) after the first optimization are then used as
constraints for the second LP problem, where their fluxes are set as higher than
E. Those constraints assure that whatever is the solution for the second LP prob-
lem, it keeps those core reactions active. The second LP problem tries to reduce
the number of active non-core reactions that are included in the context-specific
model. It does that by minimizing the sum of absolute values of the non-core
reaction fluxes (i.e. minimize the L1 norm of the flux vector of the non-core
reactions). The non-core reactions that are active after the second optimization
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and core reactions that are active in the solution for the first LP problem are
included in the context-specific model. The process is then iterated using the
remaining core and non-core reactions (i.e. those not included in the context
model) until a consistent model that contains all core and a minimal number
of non-core reactions is found [125]. To deal with reversible reactions the algo-
rithm tests both forward and reversible directions, by changing the sign of the
corresponding column in the stoichiometric matrix [99].

There are many other algorithms for omics data integration, besides the
ones mentioned here. Furthermore, although the choice of the reconstruction
method can significantly affect the structure of the context-specific model or
flux distribution, none of those can be considered better than the other, as their
performance varies depending on the specific case that is being modeled [100]. A
procedure suggested to overcome that limitation is to integrate the same omics
data sample with different algorithms and subsequently evaluate the accuracy
of the corresponding reconstructed models with experimental data. The best-
performing algorithm is then applied to reconstruct models for other samples
obtained with the same methods and under the same experimental conditions,
but for which no validation data is available [126]. The strategies often used to
validate context-specific models and related flux distributions are comparisons
of the activated metabolic pathways and metabolic tasks simulated in silico
with what is reported in the literature for that context (e.g. cell type) [127], of
flux values with experimentally obtained fluxomics data [126], or of simulated
essential genes with lethal genes identified in ‘survival’ experiments using gene
knockout screens (like CRISPR or RNAi screens) [92,128].

1.2.7 Context-specific models of human cancer

Context-specific models have been built to reproduce in silico the metabolism
of human cells like adipocytes [65], myocytes [66], hepatocytes [64], endothelial
cells [129], or macrophages [130]. Furthermore, models have been reconstructed
for cells of both healthy and diseased individuals. A variety of diseases have
been modeled with this approach, including Non-Alcoholic Fat Liver Disease
(NAFLD) [64], diabetes [66], obesity [65], sepsis [129], viral infections [130],
and several types of cancers [62, 63]. Overall, these models allowed to identify
metabolic traits, spot potential drug targets, and predict the metabolic response
to drug treatments [48, 131, 132]. The most relevant context-specific metabolic
models reconstructed until now to model human cells, with a particular focus
on cancer models, are summarized in Table 1.3.
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The main advantage of modeling cancer cells is that it is safer to assume their
biological purpose is to increase biomass production, as those cells are known to
have a great potential to proliferate [131]. This allows using phenotype predic-
tion techniques like FBA and context-specific reconstruction algorithms based
on a biological objective. Nevertheless, when trying to assert the metabolic dif-
ferences between cancer cells and metabolic tissues there is a need to build
models for reference tissues as well (i.e., for healthy cells of corresponding tis-
sues), and it is difficult to define a biological objective for differentiated human
cells, though the development of integration methods that utilize tissue-specific
metabolic tasks has mitigated the problem [131].

Furthermore, the assumption of growth cannot apply to cancer cells that
are in a quiescent state, which is the case of some CSCs. Another limitation
for the accurate reconstruction of cancer models and tissue-specific models for
healthy cells is the lack of knowledge about the composition of the biomass re-
action in the specific context, which is distinct from the generalized one usually
applied [126]. For cancer, this is particularly problematic, since they more easily
adapt their metabolic uptake to survive in environments with scarce nutrients
than normal cells [133]. The niche is also known to affect cancer cells and, there-
fore, the lack of knowledge on how the surrounding environment influences the
metabolism can result in inaccurate predictions. Although it is easier to model
cancer cell metabolism in in vitro settings, as the cell culture media formulations
are widely available, the exact rate at which nutrients are consumed is usually
unknown (unless explicitly measured), which hampers the definition of accurate
flux bounds for external model reactions. Also, human cells culture media of-
ten have components like Fetal Bovine Serum (FBS), the composition of which
is unknown, making it impossible to identify exactly which exchange reactions
should be active in the model. This is especially relevant as it has been proven
that constraints in exchange fluxes significantly improve the ability of cancer
models for phenotype prediction [126].
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Table 1.3: Studies using context specific metabolic models

Date Description Generic
model

Method Reference

2010 Model (HepatoNet1) predicted
metabolic states of hepatocytes
in different physiological condi-
tions, including detoxification of
ammonia

Recon1 Manual [62]

2011 Application of enzyme capacity
constraints to generic model pre-
dicted the Warburg effect, the
preference for glutamine uptake
of cancer cells, and metabolic
phases observed during cancer
progression

Recon1 Inclusion
of enzyme
capacity
constrains

[134]

2012 Models for 69 types of healthy
cells and 16 types of cancer
cells allowed to identify cancer-
specific metabolic features and
potential targets

HMR INIT [63]

2013 Adipocyte model predicted
metabolic differences between
obese and lean subjects and
suggested therapeutic targets to
treat obesity

HMR Manual [65]

2014 Human hepatocyte model pre-
dicted markers of different stages
of NAFLD and identified poten-
tial therapeutic targets for the
most aggressive state

HMR2 Manual [64]

2014 Comparative analysis of a model
of Hepatocellular carcinoma
(HCC) summarizing the data of
different patients, 6 personalized
models of HCC and models of 83
types of healthy cells predicted
antimetabolites potentially ef-
fective against HCC

HMR2 tINIT [122]

2019 Integration of single-cell RNA-
seq data of patients with breast
and lung cancer, together with
bulk-metabolomics data into a
generic model to create single-
cell flux distributions. It allowed
to characterize the metabolic
heterogeneity within tumor and
identify metabolic interactions
between cancer cell populations

HMRcore
with
additional
pathways
and GPR
rules

scFBA [135]
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1.2.8 GSMMs enhanced with Enzymatic Constraints using Ki-

netic and Omics data (GECKOs)

Even with constraints on exometabolite uptake rates, traditional constraint-
based models may provide inaccurate flux distributions, because they are based
on the assumption that reaction rates are solely limited by substrate availability,
while it is known that enzyme catalytic activity and concentration also influence
the reaction rate. In such a model, the reaction flux will increase infinitely as
the substrate concentration increases [136]. However, in reality, the reaction
velocity just increases with substrate concentration until the catalytic sites of
all enzyme molecules are occupied with the substrate. Beyond that point, even
if the substrate concentration increases, the velocity of the reaction does not
increase, that is, the reaction rate is limited by the enzyme levels [80].

One of the first strategies developed to depict the enzymatic-induced
metabolic flux restriction in silico was FBA with Molecular Crowding
(FBAwMC), which consists of adding constraints on the total cell volume oc-
cupied by all metabolic enzymes. However, this approach does not allow direct
integration of proteomics data. Other strategies, like Metabolism and gene Ex-
pression (ME) models, integrate metabolic models with the cellular machinery
necessary to synthesize proteins, from gene transcription to protein translation
and maturation [136]. Nevertheless, although these models have been shown to
make accurate predictions, they are very complex and entail detailed parame-
ters that are not usually available for most organisms, like those describing how
proteins fold and maturate [137].

In 2017, a new approach that allowed direct integration of enzyme kinet-
ics and proteomics data (i.e. enzyme abundance) was developed, known as the
Genome Scale Metabolic Models enhanced with Enzymatic Constraints using
Kinetic and Omics data (GECKO). GECKO models expand the S matrix (Fig-
ure 1.5) of constrained-based models (where columns and rows represent, respec-
tively, reactions’ stoichiometry and metabolites’ mass balance) by adding new
rows that depict enzymes and new columns that define enzyme usage reactions.
Protein levels are introduced as upper bounds for each enzyme usage reaction,
whereas kinetic information, in the form of the inverse of the turnover number
(kcat) of each enzyme-reaction pair is inserted as stoichiometric coefficients [137].

The mathematical formulation of GECKO models is based on the following:

v = k.[ES] (1.5)
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which is the rate law (the rate at which the enzyme forms the product) for the
first-ordered reaction:

ES
k−−−→ E + P (1.6)

where v is the reaction rate and [ES] is the concentration of the enzyme-
substrate complex, while E and P are the free enzyme and product respectively.
v is limited by a maximal reaction velocity. Therefore:

vj ≤ Vmax ⇔ vj ≤ kijcat.[Ei] (1.7)

where [Ei] is the concentration of the total enzyme Ei (free and substrate-
bounded enzyme), vj is the rate of the reaction Rj (in mmol.gDW−1.h−1), and
kcat is the turnover number (in h−1) of enzyme Ei in reaction Rj. Note that it
is possible to assume that [ES] = [Ei] when the reaction is at its maximal ve-
locity because at that rate the active sites of all enzyme molecules are occupied
with the substrate. Although enzymes are not consumed in reactions, they are
used for a short period to catalyze them. To represent that enzyme usage in the
following generic reaction Rj:

Rj : A + B −−−→ C + D (1.8)

it is possible to introduce the enzyme as a pseudo-metabolite which does not
affect the mass balance of the reaction:

Rj : nij ·Ei + A + B
vj−−−→ C + D (1.9)

To keep the mass balance of the enzyme after introducing it in the reactions it
catalyzes, an overall enzyme usage pseudo-reaction EUi that supplies enzyme is
introduced:

EUi :
ei−−−→ Ei (1.10)

In addition, the flux of that reaction, ei (in mmol/gDW), can be constrained by
the enzyme’s concentration:

0 ≤ ei ≤ [Ei] (1.11)

Note that the units of flux are not mmol.gDW−1.h−1 in this case, because this is
not a real reaction, but rather a pseudo-reaction built just to represent enzyme
usage. Combining 1.9 with 1.10 and assuming the steady state, the mass balance
for enzyme Ei is:

−nij.vj + ei = 0 (1.12)

58



Joining equations 1.11 and 1.12, the following is obtained:

vj =
ei
nij

≤ 1

nij

.[Ei] (1.13)

By comparing equations 1.13 and 1.7, it is possible to conclude that:

nij =
1

kijcat
(1.14)

This means that in GECKO models, the stoichiometric coefficient of an
enzyme in a reaction catalyzed by that enzyme must be the inverse of the kcat (in
h). As the units of this stoichiometric coefficient are hour, when multiplying by
the reaction flux, the metabolic flux (mmol.gDW−1.h−1) is converted/corrected
to the units of the flux of the enzyme usage reaction (mmol/gDW) [137].

Note that the metabolic reactions must be irreversible for this formulation to
be applied. So, all reversible reactions in traditional constrained-based models
are split into two reactions in GECKO models. One in the forward and the other
in the reverse direction, both with the same enzyme and possibly different kcat
values (as kcat depends on the enzyme affinity for the substrate) [137].

Other specific relationships between enzymes and reactions were also con-
sidered:

i) when a reaction has isozymes, the reaction is split into as many reac-
tions as available isozymes. Each resulting reaction is catalyzed by one isozyme
with a corresponding specific kcat value. Besides, an arm reaction is intro-
duced to keep the original upper bound in place. The arm reaction produces a
pseudo-metabolite from the substrates, which is then used as a substrate by the
isozymes-catalyzed reactions. This way, the flux of all those isozyme-catalyzed
reactions can be constrained at one point, the upper bound of the arm reaction,
and the original upper bound can be kept. The mass balance of each of these
isozymes corresponds to one row that is added to the original stoichiometric
coefficients matrix, S.

ii) for reactions catalyzed by promiscuous enzymes no specific action (for
e.g. to split) is needed. The same enzyme is used as pseudo-substrate for each
reaction, possibly with distinct kcat values (as the substrate is different). Hence,
there will be more than one non-zero coefficient in the row representing the
enzyme’s mass-balance in matrix S. Moreover, only one enzyme usage pseudo-
reaction exists per enzyme, so reactions of promiscuous enzymes share the same
amount of available enzyme.
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iii) for an enzyme complex associated reaction, all proteins that are part of
the complex are used as the reaction pseudo-metabolites, which implies that
there is more than one nonzero coefficient in the column representing the re-
action’s stoichiometry in matrix S. The kcat value is the same for all proteins
of the complex and the stoichiometric coefficient of each protein is the product
of the inverse of the kcat and protein’s stoichiometric coefficient in the enzyme
complex [137].

When proteomics data is not available, instead of constraining each enzyme
usage reaction with the enzyme concentration, it is possible to limit the total
amount of enzyme and let the GECKO model choose which amount of each
protein to use. The steps to implement this approach are:

i) insert another pseudo-metabolite that represents all enzymes in the
model, named Epool

ii) introduce a usage pseudo-reaction for Epool:

ERpool :
epool−−−→ Epool (1.15)

where flux, epool, units are in g/gDW.

iii) limit that usage reaction by total protein content as:

epool ≤ Ptotal.f.σ (1.16)

where the Ptotal is the mass of protein per cell mass (in g/gDW), f is the mass
fraction of enzymes that are accounted for in the model out of all proteins,
and σ is a fitted parameter that represents the in vivo average saturation of all
enzymes.

iv) replace enzyme usage pseudo-reactions by pseudo-reactions that draw
from the enzyme pool towards each corresponding enzyme. A representation of
one of those reactions is:

ERi : MWi ·Epool
ei−−−→ Ei (1.17)

Since the flux ei of this reaction is in mmol/gDW and the flux of Epool usage
reaction, epool, is given in g/gDW, to use the same units when doing the mass
balance, the stoichiometric coefficient of the enzyme pool (Epool) has to be the
molecular weight (MWi) in g/mmol of the enzyme [137].
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Note that, when doing the mass balance for Epool (combining 1.15 and 1.17):

epool −
P∑
i

MWi.ei = 0 (1.18)

By matching equations 1.16 and 1.18, it is possible to obtain:

P∑
i

MWi.ei ≤ σ.f.Ptotal (1.19)

This is equivalent to the formulation of a previous approach based on FBAwMC
that accounted for enzyme limitation when individual concentration was un-
known [137].

GECKO models have been able to mimic different physiological situations.
One of those is overflow metabolism, i.e. the switch from exclusively OXPHOS
metabolism to a mixture of it with fermentation when the growth rate surpasses
a certain value. At high growth rates, there is a large flux of substrate and the
amount of enzyme needed to bind that substrate becomes the limiting factor,
i.e. the protein mass concentration limit is reached. Although respiratory en-
zymes are more energetically efficient (each enzyme molecule produces more
ATP from same amount of substrate) than glycolytic enzymes, they are heav-
ier and therefore fewer molecules of the former than of the latter are sufficient
to reach the cells’ limit of protein mass. Therefore, at high growth rates, the
cell favors the use of more mass-efficient glycolytic enzymes molecules that in
sufficient quantity can overall produce more energy than a few of the heavier
respiratory enzyme molecules. Such biological behavior can only be simulated
in models that integrate protein levels, like GECKOs. Another situation where
these models showed more accurate predictions than traditional GSMMs is when
estimating maximum growth under different carbon sources [137], and they have
been particularly useful when the real flux values for uptake of exometabolites
are unknown or can not be estimated from medium composition [75].

GECKOs have been used to model different organisms [137–139] and, re-
cently, human cells [75]. Their main disadvantage is the need for kinetic data,
that may be difficult to obtain for certain organisms or environmental condi-
tions.

Overall, the simulation accuracy of context-specific metabolic models for a
complex organism like the human one is still very limited. However, there is
hope that integration of signaling and gene regulatory networks with metabolic
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models will improve the functionality of those models as it would account for the
influence of important regulators that are excluded from traditional metabolic
models [48,140,141]. Also, it is expected that the future development of sequenc-
ing techniques and fast metabolic model reconstruction strategies will promote
the creation of patient-specific models useful for personalized medicine [48,132].
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Chapter 2

Reconstruction of Tissue-Specific
Genome-Scale Metabolic Models for
Human Cancer Stem Cells

2.1 Introduction

Like healthy stem cells, Cancer Stem Cells (CSCs) can differentiate into dif-
ferent cell types and hold self-renewal ability (i.e. give origin to new daughter
CSCs), although they may keep themselves in a quiescent state (where they do
not divide) for a long time [142]. These stem cell properties allow CSCs to drive
cancer progression, and metastasis [143], while simultaneously escaping con-
ventional radio/chemotherapy treatments, which are aimed at actively dividing
differentiated cancer cells [142]. Hence, besides promoting cancer aggressiveness,
CSCs are responsible for tumor recurrence after treatment [143]. Furthermore,
according to the CSC hypothesis, CSCs carry a tumorigenesis potential, and
are thought to give rise to most cell types within a tumor [5]. Therefore, there
is an undeniable need to develop therapeutic strategies that specifically target
CSCs to eradicate cancer.

Mutations can lead to cancer (stem) cell formation and indirectly impact
metabolism, but metabolism may as well promote both cancer and stem cell phe-
notypes [5, 144]. Cancer and stem cells undergo metabolic reprogramming that
allows them to obtain the basic metabolites and energy that support anabolic
processes required for cell growth, like the synthesis of nucleic acids, proteins,
and cell membrane triacylglycerols [5,144]. Additionally, metabolites also serve
as substrates and co-factors of enzymes responsible for DNA and histone mod-
ifications, contributing to epigenetic regulation of events, such as proliferation,
differentiation and cell survival, in both cancer and stem cells [145,146].

With the development of next-generation sequencing technologies, more
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omics data is becoming available, allowing for the construction of computational
models at the genome scale [48]. Genome-Scale Metabolic Models (GSMMs) are
mathematical representations of metabolic reactions’ stoichiometry, which in-
clude an additional mapping between genes, proteins, and reactions [48]. Generic
GSMMs represent all metabolic reactions that may happen inside any cell of
an organism, allowing for the study of the interplay of those reactions from a
quantitative point of view, enabling counterintuitive and insightful in silico pre-
dictions of cellular metabolic behavior [48,49,83]. The most up to date generic
GSMM for human cells is Human1 [75], which integrates knowledge from sev-
eral previous models, addressing known issues they present, such as incorrect
reaction reversibility and existence of unnecessary reactions. It is a comprehen-
sive model that covers 13,417 reactions, 4,164 unique metabolites and 3,625
genes [75].

Since the genes expressed (or their expression levels) change depending
on the type of tissue, cells of different tissues often show distinct metabolic
profiles. Therefore, a generic model per se, comprising all potential metabolic
capabilities of a human cell, often does not allow to make accurate and pre-
cise predictions [147]. To address this challenge, a generic GSMM can serve
as a basis for the reconstruction of tissue-specific GSMMs, through the inte-
gration of cell-type specific omics data, usually transcriptomics, to model the
metabolic characteristics of specific tissues [147]. Such context-specific mod-
els were built for a variety of human tissues in the past, like myocytes [66],
adipocytes [65], hepatocytes [64], endothelial cells [129] or macrophages [130],
both to model normal cells and cells affected by morbidities [63]. In fact, differ-
ent tissue-specific models have been created for a range of human diseases, such
as obesity [65], diabetes [66], sepsis [129], NAFLD [64], viral infections [130]
and different types of cancers [62, 63]. Those models were fundamental to de-
tect metabolic traits [62, 63], spot potential drug targets [148], and predict the
metabolic response to drug treatments [132].

Although tissue-specific GSMMs have been created for differentiated/bulk
Cancer Cells (CCs) [149, 150] and normal stem cells [151] in the past, to the
best of our knowledge, there was just one study that has previously reported
the reconstruction of GSMMs for CSCs and for only one tissue: the liver [152].
Furthermore, the tissue-specific models of that study were based on a previous
generic model of human cells, the Recon2. In this study, we build GSMMs for
human CSCs and differentiated CCs of ten different tissues, based on the most
up-to-date Human1 generic metabolic model [75]. Flux simulations with these
models allowed us to identify metabolic traits specific of CSCs (in comparison
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with their differentiated counterparts) that are common to most types of tis-
sues. Additionally, further analyses enabled the detection of essential genes and
metabolites, Transcription Factors (TFs), and miRNAs that potentially revert
the CSC phenotype and could be good candidates for experimental validation.

2.2 Results

In this work, metabolic models were reconstructed for CSCs and CCs of
ten different tissues (AML, glioblastoma, lung, prostate, liver, ovary, breast,
kidney, head and neck, and pancreatic cancers), by integrating gene expres-
sion data from ten individual datasets with the generic genome-scale metabolic
model for human cells, the Human1 [75]. Each raw dataset (either RNA-seq or
microarray data) contained information pertaining CSCs and the corresponding
differentiated CCs of one tissue, and was processed and analyzed independently
of others. Only datasets with more than one donor or cell line and from peer-
reviewed studies were selected. The inclusion of studies followed the published
criteria on CSC phenotype definition: mainly the presence of CSC surface mark-
ers (Table C.1), ability to form oncospheres, and tumorigenicity in mice (Table
C.2 – column ‘Criteria for study inclusion’). Raw transcriptomics data was nor-
malized with pipelines appropriate to each data type (details in Materials and
Methods), and the best parameters for gene expression integration with GSMMs
were tested. A flow diagram of the overall methodology of the study is shown in
Figure A.7. Details of the pre-processing steps are depicted in Figure A.8 and
A.9.

2.2.1 Best strategies for transcriptomics data integration into CSC

metabolic models

Before reconstructing tissue-specific metabolic models for CSCs, it was nec-
essary to select the best strategies/parameters for transcriptomics data integra-
tion into the generic metabolic model. First, to reduce the weight that highly
expressed genes have in comparison with lowly expressed genes, each dataset of
normalized gene expression data has gone through min-max scaling. Such nor-
malization was essential to observe the differences between experimental condi-
tions in hierarchical clustering (Figure A.1). Afterwards, different thresholding
approaches were assessed. A global threshold strategy implies that a unique
threshold value is applied to all genes, and genes with expression above that
threshold are regarded as active (i.e., on), while remaining genes are deemed
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inactive (i.e., off ). In contrast, when using a local threshold strategy, a thresh-
old value is computed per gene. The global approach predicts as active fewer
cell-type-specific genes than the local strategy, and, therefore, metabolic net-
works resulting from the local approach present higher tissue specificity [153].
On the other hand, the local approach may allow for highly expressed genes
with ubiquitous expression across distinct cell types to be predicted as inactive
in some samples, if the expression is slightly lower than the local threshold in
that sample [153]. Hence, we chose to test one global threshold (global strategy),
a combination of one global threshold and one local threshold (local 1 strategy),
and a combination of two global thresholds and a local threshold (local 2 strat-
egy). Variations of local 1 and local 2, the local 1B and local 2B strategies, where
genes defined as on/off by global thresholds were given higher/lower gene scores
than those defined by the local threshold, were also assessed (details in Materi-
als and Methods). This procedure is to account for situations where a gene A,
although more expressed than a gene B, has a lower score because the expression
value is closer to a global threshold than to a local threshold.

Apart from gene thresholds, there was an evaluation of two gene to reaction
scores conversion strategies: the min-max and min-sum as well as the decision
to use the threshold calculation either for all genes or just the ones coding
for metabolic enzymes (details provided in Materials and Methods). Results
show that no integration strategy for transcriptomics data is consistently better
than the others across all datasets, when using the proportion of simulations
where the average Euclidean distance was smaller than the distance observed
in sample groups (Figure A.2, for details of the assessment metric see Materials
and Methods). Also, no strategy creates more variability in the reaction scores
than the others (Figure A.3).

We selected the three-parameter combinations resulting in the lowest values
for the above-mentioned metric, in one cell line of an RNA-seq study (Huh7)
and another cell line of a microarray study (HCC1937) where there is gene
lethality information available. Models were reconstructed with FASTCORE
and INIT algorithms. The Mathews Correlation Coeficient (MCC) score was
calculated between simulated and experimentally verified lethal genes, for each
combination of parameters and each reconstruction algorithm in both cell lines.

The strategies rendering the best MCC scores for the cell line of the mi-
croarray study and the cell line of the RNA-seq study are shown in Table 2.1.
Although the best-observed MCC scores were relatively low (' 0.3), they are
similar to the values previously reported for reconstructed models of human
cancer cell lines [75].
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Table 2.1: Best strategies for transcriptomics data integration.

Study T.S. L.G. U.G. L.T. G.C. R.A. Genes Score

microarray local2 10th 90th 10th min-max FASTCORE metabolic 0.37
RNA-seq local2 25th 90th 10th min-sum INIT metabolic 0.38

T.S.: Threshold Strategy; L.G.: Lower Global Threshold; U.G.: Upper Global Threshold; L.T.:
Local Threshold; G.C.: Gene to reaction Score Conversion strategy; R.A.: Reconstruction
Algorithm; Genes: Type of genes used in gene threshold calculation; Score : MCC score

2.2.2 Flux simulation predicts metabolic pathways with higher flux

in CSCs than CCs

The best transcriptomics data integration strategies mentioned above were
used to reconstruct models for each donor/cell line in each study/tissue. Success-
fully reconstructed models were able to perform 57 essential metabolic tasks and
grow in Ham’s medium. Only donors/cell lines with successfully reconstructed
models in all cell types of a study (i.e., matched donors of CCs and CSCs of each
dataset) were used for further downstream analyses. In terms of model composi-
tion, the total number of active reactions and the distribution of active reactions
across metabolic subsystems/pathways varied depending on the tissue (Figure
A.4-A,C). Also, the overall number of reactions, genes, and metabolites was
similar across the two cell types (Figure A.4-B). A parsimonious enzyme usage
FBA (pFBA) demonstrated that CSCs of five tissues have significantly more flux
than CCs in reactions of the Pentose phosphate pathway (liver, pancreas, head and
neck, ovary, kidney), Pyrimidine metabolism (liver, AML, lung, head and neck,
kidney), and Oxidative phosphorylation (liver, glioblastoma, breast, lung, kid-
ney) (Figure 2.1). CSCs of four tissues are enriched in Purine metabolism (liver,
AML, lung, prostate), Glycolysis/Gluconeogenesis (liver, prostate, ovary, kidney),
Tricarboxylic Acid Cycle and glyoxylate/dicarboxylate metabolism (liver, pancreas,
glioblastoma, breast) and Folate metabolism (liver, pancreas, glioblastoma, lung)
pathways, whereas CSCs of three tissues are enriched in Valine, leucine and
isoleucine metabolism (liver, head and neck, kidney), Alanine, aspartate and gluta-
mate metabolism (liver, pancreas, glioblastoma), and Nucleotide metabolism (pan-
creas, AML, lung) pathways.
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Figure 2.1: Metabolic pathways activated in models of different cell types. For each tissue,
reactions were ranked in a list by the difference between CSCs and CCs median absolute flux
values. A ranked reaction-set enrichment analysis test was applied to identify the reaction
subsystems over-represented (p-value < 0.05) at the top (with more flux in CSCs than in
CCs) of the list. Only over-represented subsystems have color and values are the − log(p-
value). Dendrograms show Euclidian distance with the average agglomeration method.

2.2.3 Prediction of essential genes, metabolites and antimetabolites

In the present work, we identified essential genes and metabolites by simu-
lating their individual removal and subsequent selection of those that decrease
the flux of the biomass reaction. The only gene predicted as essential in models
of CSCs, but not in models of CCs of five tissues (pancreas, prostate, lung,
liver, ovary) is CRAT (Figure 2.2-A), which is also predicted as essential for
both models of CSCs and CCs in breast, AML, and glioblastoma (Figure A.5-
A). The GSTM1 gene was predicted as essential in CSCs, but not in CCs, of
four tissues (pancreas, glioblastoma, liver, head and neck), while ELOVL1 was
predicted as essential in CSCs only of four tissues (pancreas, lung, liver, ovary)
and in both CSCs and CCs of two tissues (breast, AML) (Figure 2.2-A and
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A.5-A). Genes predicted as essential in both models of CSCs and CCs in all
tissues are FECH and PPOX (Figure A.5-A).

Figure 2.2: Essential genes and antimetabolites predicted only in CSCs. A: essential genes
predicted for models of CSCs, but not for models of CCs. B: antimetabolites predicted to
block the effect of the EMs that are specific for CSCs.

The Essential Metabolite (EM) specifically found for CSCs in most tissues
was malonyl-carnitin, which was found as essential only for CSCs of four tissues
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(liver, ovary, lung, and pancreas – see Table C.3), and for both CSCs and CCs of
two tissues (AML and breast) (Table C.4). The metabolites that were essential
for all tissues in both CSCs and CCs are nicotinamide D-ribonucleotide and
nicotinamide (Table C.4). Both are part of nicotinamide metabolism, which is
necessary for NAD synthesis [114], an EM of all cells.

An antimetabolite is a structural analog of a natural metabolite that can
interact with the same targets as the metabolite, but that is not functional. It
works as a competitive inhibitor of the metabolite, abrogating its effect. Here,
we identified antimetabolites that might prevent the effect of EMs detected for
CCs and/or CSCs. Choline is one of those suggested in this analysis because it
is considered an antimetabolite by DrugBank (Figure 2.2-B). However, choline
is also a metabolite in these metabolic models and it is an important metabo-
lite for any cell, as it is necessary for the synthesis of cellular membrane glyc-
erophospholipids [75]. Another suggested antimetabolite is 8-azaguanine that is
predicted to block the effect of EMs specific for CSCs in four tissues (prostate,
breast, AML, kidney – see Figure 2.2-B) and of those common for both CSCs
and CCs in four tissues (liver, prostate, breast, pancreas – see Figure A.5-B).
Other anti-neoplastic antimetabolites suggested in this analysis are capecitabine,
fludarabine, cytarabine, mercaptopurine, decitabine, fluorouracil, ribavirin, cladribine,
nelarabine and methotrexate (see Figure 2.2-B).

2.2.4 Transcription factors and miRNAs that may potentially affect

cell survival

To identify Transcription Factors (TFs) that may potentially cause CSC
death, we first identified genes associated to reactions where the flux positively
correlates with biomass in Flux Variability Analysis (FVA). Then, we found
TFs that upon knockout or knockdown decrease the expression of those genes
in databases. FLI1 is one of the suggested TFs that significantly targets genes
associated with biomass only in CSCs (not CCs) of two tissues (head and neck,
pancreas), although it also targets some genes in CSCs of other cancers (Figure
2.3-A). Results suggest HNF1A is a good target for a knockout in cancer of
four tissues (ovary, liver, kidney, head and neck), although it only seems to
significantly affect genes specific of CCs (not CSCs) (Figure A.6-A). Similarly,
FOXA1 significantly interferes with genes correlated with biomass only in CCs
of three tissues (liver, kidney, head and neck) (Figure A.6-A).
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Figure 2.3: TFs and miRs with potential to target genes that are correlated with biomass
only in CSCs. A: TFs that when knocked-out decrease expression of genes that are directly
correlated with biomass in models of CSCs but not in models of CCs. Only TFs significantly
targeting those genes have color (adjusted p-value< 0.05) and color intensity is− log(adjusted
p-value). Each number counts the genes associated with biomass targeted by the TF. B:
miRs that target genes that are directly correlated with biomass in models of CSCs but not
in models of CCs. miRs targeting the top 10 numbers of targets in each tissue (maybe more
than 10 miRs per tissue if different miRs have the same number of targets) are shown. Color
intensity and numbers reflect the number of genes associated with biomass targeted by the
miR.

As most miRNAs (miRs) work as negative gene expression regulators, we
overlapped genes directly correlated with biomass with targets in a miRNA-
target gene database, to identify miRs that can potentially decrease the expres-
sion of those genes and, therefore, prevent cancer phenotypes. hsa-miR-335-5p,
hsa-miR-26b-5p, and hsa-let-7b-5p target genes directly associated with biomass
only in CSCs in six (pancreas, glioblastoma, AML, breast, liver, and prostate),
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five (pancreas, glioblastoma, AML, liver, and prostate) and another five tissues
(pancreas, glioblastoma, AML, lung, liver), respectively (Figure 2.3-B). How-
ever, none of these three miRs specifically targets CSCs, as they also target
directly associated biomass genes of both CSCs and CCs in all tissues (Figure
A.6-B).

2.3 Discussion

To the best of our knowledge, this is the first time that genome-scale
metabolic models are reconstructed for both CSCs and CCs of ten different
tissues. Such models were built before for liver CSCs, but were based on a
generic metabolic model of human cells that is no longer up to date, the HMR
2.0 [152]. Conversely, the metabolic models in the present work are built upon
the most recent generic metabolic model for human cells, the Human1 [75].
Moreover, different transcriptome data integration strategies and reconstruc-
tion algorithms were tested in this work before choosing the best one to apply
to all models, which has advantages over arbitrarily choosing a gene threshold
or a reconstruction algorithm.

The metabolic pathways more prevalent in reconstructed models of CSCs,
in comparison with those of CCs, agree with reported experimental evidence.
For example, intensive use of glycolysis was already described for some CSCs in
comparison with CCs [154, 155], which is in line with a higher flux through
the Glycolysis/Gluconeogenesis pathway observed in this study. It is thought
that glycolytic CSCs have the advantage of obtaining energy under low oxy-
gen levels, while simultaneously avoiding death through the reduction in oxida-
tive phosphorylation-induced ROS-production, which is especially important for
cells that divide frequently, like the case of CSCs. Nevertheless, Oxidative phos-
phorylation, as well as mitochondrial biogenesis [156], have been described as
metabolic traits of CSCs of some tissues, unlike the differentiated counterparts
that preferentially use glycolysis [157–161], which is also observed in this anal-
ysis. The preference of CSCs for this pathway has been attributed to the need
to efficiently obtain energy in glucose-deprived microenvironments [159], or in
niches rich in nutrients, that can feed the Tricarboxylic acid cycle, such as lac-
tate [162] or alanine [163]. In line with this fact, Tricarboxylic acid cycle and glyoxy-
late/carboxylate metabolism, as well as Alanine, aspartate and glutamate metabolism,
present more flux in models of CSCs of some tissues in this study. Moreover, a
higher use of both glycolysis and oxidative phosphorylation for CSCs of the liver
and kidney is observed. This simultaneous increased usage of both pathways
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has been described before [161]. A possible explanation is that glycolysis can
be fundamental for oxidative phosphorylation through pyruvate-promoted TCA
cycle activation, and/or important to produce intermediary glycolytic metabo-
lites that are substrates of the anabolic pathways that are essential for dividing
cells [154, 155]. Interestingly, the observed increase in glutamate metabolism
(Alanine, aspartate and glutamate metabolism) has also been experimentally ver-
ified in CSCs of some cancers. For example, glutamine-derived glutamate is a
substrate for glutathione synthesis, which has shown to reduce Reactive Oxy-
gen Species (ROS) levels in CSCs of lung and pancreas, preventing β-catenin
degradation, and, therefore, indirectly maintaining the expression of stem cell
markers [35]. In another study of pancreatic CSCs, glutamate caused a decrease
in ROS levels and prevented cell death, through the production of NADPH con-
comitantly with its conversion to oxaloacetate, and then to pyruvate [36]. Fur-
thermore, glutamate has been shown to indirectly induce movement of a matrix
metalloproteinase to the cell surface, which in turn promotes matrix degradation
and subsequent cell invasion [164], a trait often linked to CSCs [143].

The higher use of Pentose phosphate pathway observed in models of CSCs
is also supported by literature [165]. The accepted explanation is that CSCs,
mainly those that obtain energy from oxidative phosphorylation, produce more
ROS, which can induce cell damage. Therefore, CSCs divert carbon flux from
glycolysis to the Pentose phosphate pathway to increase production of NADPH
and, consequently, down-regulate ROS levels [159]. A similar justification is
often provided to explain the resistance of CSCs to chemotherapeutic treat-
ments [166]. On the other hand, the use of the Pentose phosphate pathway
by CSCs, allows them to increase fatty acid synthesis and nucleotide forma-
tion [154,155], which are essential for their fast growth.

In line with this observation, models of CSCs obtained in this work show
a higher flux in Pyrimidine, Purine and Nucleotide metabolism than in CCs, at
least for some tissues. Another interesting pathway, that is significantly more
represented in models of CSCs than in CCs (in four tissues), is Folate metabolism.
The folate cycle is important for DNA methylation (through the donation of
one carbon to the methionine cycle), glutathione formation (through NADPH
production), lipid synthesis (due to NADPH generation), and nucleic acid syn-
thesis, which are relevant processes in cancer [22]. Furthermore, previous studies
state that folate can dedifferentiate glial cells to proliferative stem cells that ex-
press the pluripotent TFs Sox2 and Oct4, and that may be the reason for the
rise in pediatric brain tumors following implementation of acid folic fortification
in food in the U.S. [167].
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It is also important to note that Valine, leucine and isoleucine metabolism
has more flux in models of CSCs of three tissues, as these essential Branched-
Chain Amino Acids (BCAAs) were reported to be important in several cancers.
In those cancers, BCAAs can work as building blocks for protein synthesis,
give origin to glutamate (by transfer of an amino group to αKG), which upon
conversion to glutamine induces nucleotide synthesis, and can be oxidized to
acetyl-CoA and succinyl-CoA that feed the TCA cycle contributing to energy
production [168]. Furthermore, a BCAA metabolic enzyme, the branched-chain
aminotransferase 1 (BCAT1) correlates with cancer aggressiveness [168], which
is a characteristic often associated with CSCs [143].

This study predicted CRAT as an essential gene for both CSCs and CCs
in two tissues, and as an essential gene specifically for CSCs in five tissues.
CRAT is part of the carnitine-shuttle and codes for the enzyme carnitine O-
acetyltransferase, which is primarily located in mitochondria and catalyzes the
inclusion or removal of carnitine from acyl-CoA [169]. Since acetyl-CoA cannot
be directly transferred from mitochondria to the cytoplasm, the CRAT-induced
transfer of the acetyl-group to carnitine allows the resulting acetyl-carnitine to
cross the mitochondrial membrane and transfer the acetyl-group to cytosolic
CoA, indirectly promoting the movement of acetyl-CoA from the mitochondrial
matrix to cytosol [169]. Cytosolic acetyl-CoA can then be used in fatty acid syn-
thesis, which is essential for the formation of new cell membranes during cancer
cell proliferation [169], be used in acetylation-induced deregulation of cytosolic
protein function, an important contributing mechanism for the cancerous phe-
notype [170], or even be transferred again through the carnitine shuttle to the
nucleus, where it contributes to histone and TF acetylation, fostering cancer
cell growth through gene expression regulation [169, 170]. Furthermore, by de-
creasing the mitochondrial levels of acetyl-CoA, CRAT works as a buffer which
prevents excessive mitochondrial protein acetylation, while releasing glycolysis
pyruvate dehydrogenase from the acetyl-CoA-promoted inhibition, consequently
unlocking glucose oxidation [169,171]. In cancer, the release of glucose oxidation
from acetyl-CoA-induced block, together with the abovementioned promotion of
fatty acid synthesis and the increase in Fatty Acid Oxidation (FAO), fostered by
the need to replenish mitochondrial acetyl-CoA levels, ensues the contribution
of high CRAT activity for cancer metabolic flexibility [171].

GSTM1 is a gene that codes for Glutathione S-Transferase Mu 1, an en-
zyme of the GST family. GSTs are known to conjugate cytotoxic compounds
with glutathione, protecting against carcinogen-induced oxidative stress [172],
which is known to cause gene mutations [173]. That is the reason suggested for
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the association of GSTM1 null mutation (which abrogates the enzyme activity)
with increased risk of cancer in some studies [172]. However, many other studies
showed no relation between GSTM1 null phenotype and risk of different types
of cancer [174–177]. Additionally, GSTs were also shown to protect cells from
chemotherapy-induced oxidative stress, playing a role in anti-cancer drug resis-
tance [178]. Here, GSTM1 is suggested as an essential gene for CSCs of four tis-
sues, but it is not essential in corresponding differentiated CCs. As these models
are exclusively metabolic, the reduction in biomass upon GSTM1 knock-out is
probably related to reduced ability in preventing oxidation of amino-acids, since
GSTM1 codes for proteins involved in seven reactions of Phenylalanine, tyrosine
and tryptophan biosynthesis in Human1. ELOVL1 was predicted as essential in
CSCs of four tissues and both CSCs and CCs of two tissues. This gene codes for
an enzyme involved in the synthesis of very-long-chain fatty acids. High levels
of ELOVL1 and increased fatty acid elongation have been observed in colorectal
cancers [179, 180], and its silencing, together with other genes regulating lipid
metabolism, affects the viability of breast cancer cells [181].

FECH and PPOX were predicted as essential in both models of CSCs and
CCs in all tissues. FECH codes for ferrochelatase, which is the last enzyme of
the heme biosynthetic pathway, that catalyzes the addition of a Fe2+ to proto-
porphyrin yielding a heme protein [182]. PPOX codes for protoporphyrinogen
oxidase, which catalyzes the conversion of protoporphyrinogen IX to protopor-
phyrin, and, therefore, is also involved in heme production [183]. The essential
role found for these genes in all tissues of both cell types suggests that they
are important to the organism. In fact, heme is of vital importance due to its
involvement in several biological processes, including oxygen transport, energy
production and drug metabolism. The multifaceted nature of heme renders it
as the best candidate molecule exploited/controlled by tumor cells to modulate
their energetic metabolism, interact with the microenvironment and sustain
proliferation and survival.

The Essential Metabolite (EM) identified in most tissues specifically for
CSCs was malonyl-carnitine, which is part of the carnitine shuttle (more infor-
mation in the Metabolic Atlas [75]), necessary for FAO and fatty acid synthesis.
This result is in line with the intense use of fatty acid metabolism by CSCs to
obtain and store energy [39]. The present analysis also suggested antimetabolites
with the potential to block the effect of EMs in CSCs and/or CCs. The anti-
cancer effect of most of these antimetabolites has already been validated, being
described in Table 2.2. Interestingly, although it is known that Methotrexate does
not efficiently cross the blood-brain barrier (BBB), its efficacy against glioblas-
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toma is being studied alone or in combination with other compounds [184], and
our analysis suggests it can be effective against glioblastoma CSCs. Furthermore,
the present analysis hints that Ribavirin could be a potential antimetabolite to
tackle lung CSCs. Ribavirin is a guanosine nucleoside analogue primarily used in
treatment of Hepatitis C and other RNA virus, and its potential ability to treat
AML is currently under study [114]. Nevertheless, to the best of our knowledge
no connection between ribavirin and death of CSCs has been established before,
although a recent study suggests it could be used to treat lung cancer [185].

Table 2.2: Antimetabolites identified in this analysis with proven anti-cancer effect.

Antimetabolite Role*

8-azaguanine Small molecule with antineoplastic activity that stimulates cell differentiation and as
a purine analogue that competes with guanidine for incorporation into tRNA.

Capecitabine Drug enzymatically converted to fluorouracil, which in turn inhibits DNA synthesis.
It is used in the treatment of metastatic and colorectal cancers.

Fludarabine Purine analogue used in the treatment of leukemia.

Cytarabine Pyrimidine analogue used in the treatment of leukemia.

Mercaptopurine Analog of the purine bases adenine and hypoxanthine.

Decitabine Pyrimidine nucleoside analogue used to treat Myelodysplastic syndromes.

Fluorouracil Pyrimidine analogue used to treat diverse solid tumors, such as colon, rectal, breast,
gastric, pancreatic, ovarian, bladder, and liver cancer.

Cladribine Purine nucleoside analogue, primarily utilized to treat hairy cell leukemia.

Nelarabine Purine nucleoside analogue used to treat T cell lymphoblastic leukemia or lymphoma.

Methotrexate Folate derivative which affects enzymes of nucleotide synthesis, like dihydrofolate
reductase, and it is used to treat leukemias and solid tumors. It has been suggested
to treat glioblastoma.

* Anti-cancer role is supported by the antimetabolite description in DrugBank [114] and
PubChem [186].

FLI1 was identified in this work as a TF that upon knockout could poten-
tially lead to CSC death in two tissues: head and neck, and pancreas. FLI1 is
highly expressed in different cancers [187–189], and the chromosomal translo-
cation of the gene coding this TF produces a mutant that activates a genetic
program essential for tumor maintenance in Ewing’s sarcoma [190]. Additionally,
inhibition of that mutant protein has shown to be effective in targeting CSCs
of Ewing’s sarcoma [191], while its expression seems to be associated with other
aggressive tumors [192]. The FLI1 effect has been attributed to cell cycle regula-
tion in different cancers [193], and to the overexpression of 3-phosphoglycerate
dehydrogenase, an enzyme of the serine synthesis metabolic pathway, in Ew-
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ing’s sarcoma [194]. Furthermore, FLI1 transcriptional activity is increased by
acetylation [195], a process that is regulated by the availability of the metabolite
acetyl-CoA [27]. These facts, together with our results, emphasize the need to
study potential metabolic mechanisms either triggered by or regulating FLI1 in
cancers other than Ewing’s sarcoma.

Our results also suggest that HNF1A and FOXA1 are potential targets
to knockout in cancer of at least three tissues. However, reported literature
for these TFs either validates their role as oncogenes [196–198] or as tumor
suppressors [199, 200]. Therefore, their role appears to be dependent on the
cellular context and may not be good candidates for experimental testing for
that reason.

Three miRs were identified as potentially useful in reverting cancer phe-
notype (both CSCs and CCs) in at least five tissues: hsa-miR-335-5p, hsa-miR-
26b-5p and hsa-let-7b-5p. Down-regulation of hsa-miR-335-5p was reported across
different cancers and this miR has been identified as a tumor suppressor, favor-
able biomarker, or therapeutic target in some of those cancers [201–206]. The
studied mechanisms of action of hsa-miR-335-5p are mainly mediated by cell sig-
naling [201,203,204] and cytoskeleton remodeling [202,205] proteins, but there
is only one report of tumor suppression mediated through a down-regulation
of the metabolic enzyme LDHB [207]. How miR-335-5p-induced LDHB down-
regulation inhibits cancer has not been clarified yet. However, the ability of
LDHB to convert lactate to pyruvate was shown to be important for oxida-
tive phosphorylation-dependent CCs to obtain energy in glucose-deprived con-
ditions and upon cooperativeness with lactate-producing glycolytic CCs [208],
while LDHB activity proved to be necessary for autophagy-promoted cell pro-
liferation in both oxidative and glycolytic CCs [208]. Several studies demon-
strate the hsa-miR-26b-5p capacity to reduce tumor progression, cell prolifer-
ation, and metastasis in different cancer types [209–212]. These studies focus
on growth-factor and cell-signaling mediated mechanisms to explain hsa-miR-
26b-5p function [210, 212]. Nevertheless, one study of bladder cancer suggested
that a gene down-regulated by that miR, PLOD2, might potentially up-regulate
the glycolytic enzyme hexokinase 2, contributing to a glucose-promoted growth
in CCs [209], although more studies are needed to validate this result. Also,
this miR has as potential targets genes encoding enzymes, like ACSL3 and
ACADM [138], which are involved in acetyl-CoA and fatty acid metabolism,
two processes essential in cancer. Furthermore, in another study of breast can-
cer, hsa-miR-26b-5p silences the expression of SLC7A11 [213]. That protein is a
member of the glutamate–cystine antiporter that allows cystine uptake-induced
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glutathione and protein synthesis and, consequently, promotes cancer growth
in the pancreas [214]. Therefore, this might be a metabolic mechanism for hsa-
miR-26b-5p that might attract the interest of wet-lab scientists for experimental
validation. hsa-let-7b-5p (known as let-7) was reported as a growth suppressor
in different cancer types [215, 216], and a link has already been established be-
tween let-7 and the reduction in glucose uptake through the inhibition of several
components of the insulin-PI3K-mTOR pathway [217]. In this way, it can be
postulated that let-7 decreases cancer growth through the repression of glucose
uptake in glycolytic cancer cells. Overall, the detection of the abovementioned
miRs as potential therapeutic strategies against cancer in this study calls the
attention of wet-lab scientists to the need to further understand the role of
those miRs in cancer metabolism. On the other hand, the fact that many of
the identified miRs (even those not discussed here) are reported as cancer sup-
pressors contributes to the validation of the reconstructed metabolic models.
Furthermore, some miRs here presented (Figure 2.3-B and Figure A.6-B) are
not directly reported as cancer suppressors and may be interesting to study, for
example, hsa-miR-6499-3p, hsa-miR-8485, and hsa-miR-6849-3p.

2.4 Materials and Methods

2.4.1 Transcriptomics data collection and gene expression analysis

Gene expression datasets, from either RNA-seq or microarray experiments,
were retrieved from Gene Expression Omnibus [107] (GEO), Array Express [218]
(AE), and/or European Genome-phenome Archive [219] (EGA) databases. All
RNA-seq raw data were pre-processed with the same pipeline. A read quality
evaluation step with fastQC [220] was followed by read filtering with Trimmo-
matic [221], which kept reads with at least 36 bp length and an average quality
score of at least 24. Adapter/primer sequences and other contaminants were also
removed when present. STAR [222] was then used to align reads to a reference
human genome (version GRCh38 from Ensembl) and aligned reads were counted
with HTSeq [223] (annotation release GRCh38.99). Raw counts were normalized
with the GeTMM [224] method, which combines gene-length correction with
TMM normalization, allowing both intra- and inter-sample comparison.

Microarray raw data was analyzed according to the microarray platform.
Affymetrix raw datasets were processed with Robust Multichip Average (RMA)
normalization method, from the oligo [225] R [226] package, while Illumina
and Agilent data underwent logarithm and quantile normalization with the
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limma [227] package. Other R packages used were beadarray [228], ArrayEx-
press [229], and GEOquery [230]. Donors or cell lines unmatched between dif-
ferent conditions (e.g., present in CCs but not in CSCs) were excluded from
both RNA-seq and microarray pre-processing and normalized expression values
of technical replicates were averaged.

The complete RNA-seq data-analysis pipeline, which was based on
Bash [231] language and implemented on docker containers, together with the
microarray analysis pipeline, implemented in R [226], are available in GitHub
(https://github.com/BioSystemsUM/bRNAsPipe). A list of all datasets used, with
respective identifiers, is provided in Table C.2.

2.4.2 Reconstruction of genome-scale metabolic models and task

gap-filling

The in silico procedures of this and the following sections were overall based
on the use of the Troppo [232] Python package developed in-house, following
pre-processing pipelines and parametrizations similar to the study of Vieira et
al. [126]. The flow diagram for the overall study methodology is shown in Figure
A.7. Genome-scale metabolic models were built for each donor or cell line of each
study (gene expression dataset). The best transcriptomics integration strategies
and reconstruction algorithms identified for one sample of an RNA-seq dataset
and one sample a microarray dataset (selection procedure explained in sections
below) were used to reconstruct models for all samples of RNA-seq and microar-
ray datasets, respectively. Models had all exchange reactions closed except for
those referring to metabolites of Ham’s medium, considered to be able to enter
the cell (Table C.5). Models were gap-filled for growth in Ham’s medium. We
assessed whether all models could fulfill 57 metabolic tasks essential for human
cell viability (retrieved from https://github.com/SysBioChalmers/Human-GEM/

tree/master/data/metabolicTasks). When those tasks were not accomplished,
models were gap-filled. This analysis was done in Python and utilized different
modules, like CoBAMP [233], Troppo [232], COBRApy [234], and Pandas [235].
Only models of cell lines/donors that were able to grow (produce biomass) dur-
ing Flux Balance Analysis (FBA), and to perform all 57 essential tasks, were
considered successfully reconstructed. When a model of a specific donor/cell
line was not successfully reconstructed for one of the cell types (e.g., successful
reconstruction for CC but not for CSC) all models of that donor were excluded,
so that subsequent analyses were done only on models with matched donors.
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2.4.3 Parsimonious flux balance analysis

A parsimonious Flux Balance Analysis (pFBA) simulation was also done to
identify the distribution of fluxes that maximized the biomass reaction, while
minimizing the sum of the absolute value of fluxes. After doing pFBA for all
models, the difference of the absolute values of reaction fluxes between CSCs
and CCs was determined for each donor/cell line. The median value of those
differences was then calculated to obtain a value per reaction and tissue. For
each tissue, reactions were then sorted from those with more flux in CSCs to
those with more flux in CCs. As reactions can be classified in different metabolic
subsystems, a procedure similar to a ranked gene-set enrichment analysis [236],
but with reactions instead of genes, was performed. This was done with the
mean-rank gene set test from the limma [227] package in R. Subsystems with a
p-value below 0.05 were identified.

2.4.4 Simulation of lethal/essential genes and metabolites

To find essential genes, we simulated the knockout of one gene at a time by
excluding its corresponding reactions from reconstructed models in compliance
with the Gene-Protein-Reaction (GPR) rules of the models. To identify Essential
Metabolites (EMs), we simulated the removal of one metabolite at a time by
constraining to zero the flux of irreversible reactions that used the metabolite
as a substrate and of reversible reactions in the direction where the metabolite
is a substrate.

Gene or metabolite knockouts that produced biomass flux lower than 0.1%
of biomass flux in wildtype were considered essential genes or metabolites. Then,
those that were essential in at least 50% of the donors/cell lines of one cell type
and tissue were considered essential for that cell type and tissue. Essential genes
and metabolites were split into two groups: those specific to CSCs and those
common to both CCs and CSCs.

2.4.5 Strategies for transcriptomics data integration

To reduce the weight that highly-expressed genes have in comparison with
lowly-expressed genes, each dataset of normalized gene expression data has gone
through min-max scaling: (x−min)/(max−min), where x is a specific expression
value and max−min is the expression range of a gene.

Three gene threshold approaches, first introduced by Richelle et al. [153],
were assessed: a global strategy (which uses a global threshold), a local 1 strategy
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(using the combination of one global threshold and one local threshold), and
a local 2 strategy (using the combination of two global thresholds and a local
threshold). Genes below the global threshold in local 1 and below the lower
global threshold in local 2 were regarded as inactive (i.e., off genes) and genes
above the higher global threshold in local 2 were considered active (i.e., on
genes). Those genes above the global threshold in local 1 and between the two
global thresholds in local 2 (i.e., maybe on genes) were subsequently included in
the on or off groups, if their expression values were above or below the local
thresholds, respectively [153] (Figure A.9). For each of those strategies, the gene
score was computed as log(value/threshold). In the case of local thresholds, the
set of tested thresholds included 10th, 25th, 50th, 75th and 90th percentiles of
samples of each gene. Global thresholds were the average of local thresholds of
the same percentile.

Additionally, two other localB strategies, where genes defined as on/off by
global thresholds were given higher/lower gene scores, respectively, than those
defined by local threshold, were also tested (Figure A.9). In local2B, on and off
genes determined by the local threshold had scores between 0 and 1, and -1 and
0, respectively, while on and off genes defined by global thresholds had scores
above 1 and below -1, respectively. Similarly, local1B off genes determined by
the global threshold had scores inferior to -1, while the remaining genes had a
score of at least -1. Another tested pre-processing decision was whether to use
all genes or just the metabolic genes in the thresholding calculation.

Besides these thresholding approaches, two gene to reaction scores conver-
sion strategies were evaluated: min-max and min-sum. In both strategies, re-
actions catalyzed by enzyme complexes obtained reaction scores equal to the
minimum of the scores of the genes encoding those enzymes. Regarding the re-
action scores of isoenzymes, in min-max, these were defined as the maximum of
the gene scores, while in min-sum they were set as the sum of the gene scores
(Figure A.9).

2.4.6 Assessment and selection of best strategies for transcriptomics

data integration

To evaluate the best pre-processing decisions among the options described
above, we ran an analysis in two steps. First, we split biological samples into
groups of those of the same study and cell type, which are expected to present
similar reaction scores. The average Euclidean distance between reaction scores
of samples in each sample group was determined. To find the probability of
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getting those average distances or lower by chance, randomly simulated sample
groups of the same size were created in 1000 different simulations, and the
same average Euclidean distance calculation was computed for simulated groups.
Subsequently, the following metric was calculated for each group: the proportion
of simulations where the simulated average distance was lower than or equal to
the observed average distance in the real group (Figure A.8). Results for all
sample groups are shown in Figure A.2.

The first step allowed to narrow down the number of strategies to test in
the second step, as the latter is more computationally expensive. The second
step involved the comparison of computationally simulated essential genes with
experimental verified lethal genes, for the strategies with the three best results
(with 3 lowest values) in the abovementioned metric, to further select the one
with the best performance. Note that, because experimental gene lethality in-
formation was not available for all cell types (for all sample groups), only the
three best performing strategies in one cell line of a group of RNA-seq samples
and one cell line of a group of microarray samples were further assessed.

Reaction scores of each of those strategies were used to reconstruct cell-
specific models with both FASTCORE and INIT algorithms. Models were gap-
filled for essential tasks and biomass growth. Essential genes in reconstructed
models were identified and the Mathews Correlation Coeficient (MCC) score
was applied to compare the simulated essential genes with experimental verified
lethal genes. The strategies rendering the best MCC values for the abovemen-
tioned microarray and RNA-seq sample groups were identified (Figure A.8).
This second step enabled to test the influence of reconstruction algorithms,
which the first step could not accomplish.

The best identified strategies in the last step, for the microarray and RNA-
seq sample groups, were applied to pre-process data of all microarray and RNA-
seq studies, respectively.

2.4.7 Detection of potential antimetabolites

Antimetabolites are drugs that can counteract the effect of EMs by competi-
tive inhibition of their targets. To find antimetabolites, genes of active reactions
where EMs were substrates were first identified for each model, and those in at
least 50% of the donors/cell lines of one cell type and tissue were attributed
to that cell type and tissue. Then, the complete DrugBank database [114]
(https://go.drugbank.com/) was parsed. From the aforementioned genes, those
that were reported in the database as coding proteins (targets, enzymes, car-
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riers, and transporters) that interact with antimetabolites, were detected. We
identified antimetabolites associated with genes that coded proteins targeted by
EMs specific to CSCs and for those common to both CCs and CSCs.

2.4.8 Prediction of transcription factors and miRNAs that may po-

tentially affect cell survival

A Flux Variability Analysis (FVA) was performed for each donor/cell line
considering different fractions of biomass (from 0 to 90%, in intervals of 10%).
The minimum and maximum fluxes of each reaction for each value of fraction
of biomass were averaged. Reactions where the average flux directly (Pearson
correlation > 0.7) correlated with the fraction of biomass (flux increases with
biomass) were detected for each donor/cell line. Then, from those reactions, we
selected the ones common in at least 50% of the donors/cell lines, for each cell
type and tissue and, subsequently, identified the genes coding for those reactions
(genes directly correlated with biomass), using GPR rules.

The genes directly correlated with the biomass fraction in each tissue were
overlapped with genes whose expression is known to be downregulated when
a TF is knocked-out, to identify TFs that may potentially cause cell death
when inhibited. To find such TFs, we queried a database of human gene ex-
pression profiles for knockdown/knockout of TFs, the knockTF database [237]
(http://www.licpathway.net/KnockTF/) and specifically identified genes whose
expression significantly decreases (log2(fold-change) < -1.5 and FDR < 0.05)
once the TF is knocked-out.

Similarly, genes directly correlated with biomass were overlapped with
genes whose expression is known to be affected by miRNAs (miRs), to iden-
tify miRs that may potentially cause cell death by interfering with mRNA
translation of those genes. We collected miRs that targeted human genes in
a database of experimentally validated miRNA targets, the miRTarBase [238]
(http://mirtarbase.cuhk.edu.cn/php/index.php). Then, the top 10 miRs (can
be more than 10 if two or more miRs have the same number of targets) that
targeted more genes directly correlated with biomass were identified for each
tissue. MiRs with 10 or more known targets in the database were included.
Note that genes directly correlated with biomass were split into those specific
to CSCs and those common to both CCs and CSCs, and TFs/miRs targeting
both groups are shown.
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Data Availability:

Datasets used and respective identifiers are shown in Table C.2.
The code for the present work is deposited at https://github.com/

BioSystemsUM/human_ts_models/tree/master/projects/csc_devel and https:

//github.com/BioSystemsUM/bRNAsPipe
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Chapter 3

Reconstruction of Cell-specific Models
Capturing the Interplay Between
Metabolism and Epigenetics in Cancer

3.1 Introduction

In the past decades, there has been an increase in the incidence of early-
onset cases of cancer [239]. Changes in lifestyle, environment, and diet, together
with genetic susceptibilities, have contributed to genetic mutations that trig-
ger an imbalance of cell differentiation, survival, and/or proliferation, promot-
ing cancer onset and development [28, 239]. In addition to genetic mutations,
which directly affect the DNA sequence, the de-regulation of epigenetic mecha-
nisms, which control the attachment of chemical groups to DNA, histones, and
nucleosome-positioning protein complexes, can also induce cancerous pheno-
types. In particular, the unbalance in epigenetic modifications may change the
chromatin accessibility to transcriptional complexes, and subsequently, induce
aberrant gene expression profiles without affecting the genomic sequence [28].

Another fundamental feature of cancer is its metabolic rewiring, as cancer
cells are forced to adapt their metabolism to generate enough energy and elemen-
tary metabolites for the synthesis of new cellular membranes, proteins, or nucleic
acids necessary for cell proliferation [12, 144]. Furthermore, given that distinct
metabolites are also substrates or cofactors of epigenetic regulators [145], al-
terations in their availability, as a consequence of metabolic reprogramming,
can induce a cancerous phenotype through epigenetic deregulation [28, 146],
whereas, on the other end, epigenetic alterations on genes encoding metabolic
enzymes may contribute to the metabolic shift characteristic of cancer. There-
fore, there is an urge to investigate the cross-talk between cancer, epigenetics,
and metabolism to develop new and efficient therapeutic strategies against the
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disease.
Genome-Scale Metabolic Models (GSMMs) are mathematical representa-

tions of all metabolic reactions of a cell, where reactions catalyzed by enzymes
are mapped to associated genes and/or proteins [48]. By assuming the steady
state (that metabolite concentrations do not change over time), it has been
possible to utilize these in silico constructs in the prediction of metabolic phe-
notypes. In detail, the product of a matrix with the stoichiometric coefficients
(where columns and rows represent respectively the reactions and metabolites)
and a vector of reaction fluxes (rates) is assumed to be zero upon the steady
state. This results in a solvable system of linear equations, the solution of which
comprises fluxes of all metabolic reactions represented in the system [81]. The
development of methodologies for omics data acquisition over the years has
favored the reconstruction of this type of model under specific biological con-
texts by integration of omics data of a particular tissue or cell type. In par-
ticular, a variety of healthy cells and morbidities [64–66, 129, 130], including
cancer [63, 126,240] have been modeled with context-specific GSMMs.

The main disadvantage of traditional constraint-based GSMMs is that, un-
less some nutrient uptake fluxes are known, no finite flux distribution can be
obtained. Unlike traditional GSMMs, Genome Scale Metabolic Models enhanced
with Enzymatic Constraints using Kinetic and Omics data (GECKOs) do not
require nutrient-uptake rates to produce finite flux values during simulations,
as they integrate both enzymatic kinetic information and concentration, serv-
ing as additional constraints to the flux solution space. Specifically, enzymes
are added as pseudo-metabolites that although represented as substrates, do
not affect the mass balance of the reactions they catalyze, and pseudo-uptake
reactions for each enzyme are included to guarantee enzyme mass balance. This
results in an extended version of the abovementioned matrix of stoichiometric
coefficients, where additional rows representing the enzyme mass balance and
columns depicting enzyme usage reactions are introduced. The catalytic infor-
mation is introduced in the form of the inverse of turnover number (kcat) values
as coefficients to the enzymes in metabolic reactions, whereas enzyme concen-
tration is used as the upper bound of each enzyme usage reaction. When no
proteomic data is available to limit the flux of each enzyme usage reaction, an
enzyme usage reaction of the pool of all enzymes is introduced instead and each
enzyme is drawn from the enzyme pool [137].

Few studies have attempted to use GSMMs to modulate the interaction
of metabolism and epigenetics. An old study from 2014 [241], integrated the
decrease in gene expression observed upon mutation of histone tails, which are
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often mutated in cancer and are targeted by epigenetic marks, into a yeast model
to modulate the effect of those mutations on the rate of production/consumption
of acetyl-CoA, a substrate for histone acetylation. In the following year, an
analysis was published [242] where metabolic models reconstructed for different
time points based on time-course transcriptomics data provided simulations that
were compared with ChIP-seq data for a histone-acetylation mark, to capture
the differentiation of primary human monocytes to macrophages. The authors
observed that enhancers of metabolic genes under high regulatory load (close
to histones with high levels of the acetylation mark) were mainly associated to
transport reactions and other metabolic pathway entry points in comparison
with other metabolic genes, suggesting that the former are critical epigenetic-
regulatory control points for the metabolic reprogramming during monocyte to
macrophage differentiation [242]. In another study from 2017, Chandrasekaran
et al. [243] tried to predict in which of the two states murine pluripotent stem
cells go through during embryonic development, preceding (naïve state) or suc-
ceeding (primed state) the implantation of the embryo in the uterus, was pro-
ducing more S-Adenosyl-Methionine (SAM), a substrate for methylation. Using
a semi-dynamic modeling approach, the authors suggested that histone methy-
lation was more intense in the primed cells, which was experimentally verified
afterward [243]. Most recently, Shen et al. successfully predicted the increase or
decrease in protein acetylation levels in human cells in the presence of different
nutrient sources. Furthermore, through the inclusion of one reaction represent-
ing the overall protein acetylation, cancer cell lines that were more sensitive to
vorinostat, a deacetylase inhibitor used in cancer treatment, were estimated to
have higher acetylation levels, suggesting that GSMMs could be used to identify
cancer cells more responsive to treatments with deacetylase inhibitors [244].

Although those studies represent important steps toward the modulation
of the interplay between metabolism and epigenetics, they all focus on histone
modifications, particularly acetylation. The only study that addresses methyla-
tion dwells on histone methylation in murine cells and simply uses the flux of
SAM as a surrogate for methylation. In the present work, we reconstruct models
for 31 human cancer cell lines which included DNA methylation and demethy-
lation reactions described in the literature, as well as DNA methylation levels
estimated from experimental data. Furthermore, these models are GECKOs,
which present the advantage of providing more accurate flux distributions than
traditional GSMMs when experimental flux values are unavailable.
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3.2 Results

In this study, GECKO models containing DNA methylation and demethyla-
tion reactions were reconstructed for different cancer cell lines. Those reactions,
which included DNA containing modified cytosines were retrieved from liter-
ature, adapted for charge and mass balance, and were first introduced on the
generic GSMM Human1 [75] (more details on Creation of the generic DNA methy-
lation model section of Materials and Methods). The complete list of reactions
introduced is shown in Table D.1 and a simplified visual representation of how
those reactions integrate with the model is presented in Figure 3.1.

In a nutshell, the DNA methylation process starts when SAM is pro-
duced in the one-carbon cycle in the cytoplasm through reaction MAR03875
and, once inside the nucleus, it is used as a substrate of DNA methylation
through reaction MAR08641 (Figure 3.1). DNA can then be demethylated us-
ing different pathways (Figure 3.1). DNA-5-methylcytosines (DNA5mC) can be
successively oxidized to DNA-5-hydroxymethylcytosines (DNA5hmC), DNA-
5-formylcytosines (DNA5fCs), and DNA-5-carboxylcytosines (DNA5CaC) or
converted to thymines, i.e. DNA-5-methyluracils (DNA5mU). DNA5fC and
DNA5CaC can be transformed back to unmethylated cytosines in DNA
(through the enzyme non-catalyzed reactions consdirectDNA5fC and consdi-
rectDNA5CaC ), or like DNA5mU, they can be replaced by unmethylated-
cytosines through the cellular Base-Excision Repair (BER) mechanism. The
BER starts with the excision of the modified cytosine (reactions prodAPsite3
and prodAPsite4 ) or the mismatched thymine (prodAPsite1 reaction) using DNA-
glycosylases that cleave the bound between the base and the deoxyribose cre-
ating an apyrimidinic site (APsite). An endonuclease then cuts the phosphate
backbone at the APsite, leaving a nick and a deoxyribo-5’-phosphate (dRP) to
which the excised base was connected (in reaction proddRPsite). A new unmethy-
lated cytosine is inserted afterward while the dRP is still hung by its 3’ side to
the phosphate backbone (in prodhangdRPsite reaction). The dRP is excised by a
dRP lyase, creating a nick in DNA strand (in prodDNAnick reaction), which is
then ligated by a DNA ligase, restoring the unmethylated DNA (in ligate DNA
reaction) (see Figure 3.1).

Since the ratio of DNA5mC, DNA5hmC, and DNA5fC in relation to un-
methylated DNA can be estimated, a pseudo-reaction representing the compo-
sition of total DNA (DNAtot) in terms of those species was also introduced
in the model (prodDNAtot reaction), and the original biomass reaction was re-
placed by an equivalent one (adaptbiomass reaction) where DNA was substituted
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by DNAtot (Figure 3.1).
The final adapted generic model was able to produce biomass and none of the

introduced (de)/methylation reactions were blocked. Context-specific GSMMs
were then built for different NCI-60 cell lines through the integration of tran-
scriptomics data, and a procedure from Robinson et al. [75] was used to convert
those traditional GSMMs into GECKO models.

3.2.1 Reconstruction of cell-specific metabolic models

This study tested two strategies previously applied to build GSMMs of NCI-
60 cell lines. One of those, introduced by Richelle et al. [92] in MATLAB and here
implemented in Python, is based on the inclusion of cell-type specific metabolic
tasks. Initially, gene scores resulting from the preprocessing of transcriptomics
data were converted to reaction scores for each cell line, using Gene-Protein-
Reaction (GPR) rules. The highest reaction scores in a cell line were then at-
tributed to all reactions necessary for each generic metabolic task, deeming a
generic task as a metabolic task done by all cell types. Also, the same procedure
was applied for reactions necessary for cell-type specific tasks, as long as those
tasks are done by the specific cell type under consideration. Reactions necessary
for a task were identified as the ones carrying flux after the implementation of
the task-associated flux constraints on the generic model upon minimization
of the sum of all fluxes. In order to determine whether a cell type performs
a certain cell-specific task, a metabolic score was calculated for each task and
cell type combination (see more details in Reconstruction of cell line-specific tradi-
tional GSMMs section of Materials and Methods). Afterward, the reconstruction
algorithm FASTCORE was applied to build the cell-specific models, because,
like other MBA-based methods and unlike iMAT-based methods (such INIT),
it preserves almost all tasks after reconstruction [92].

The second strategy consisted of directly using a version of the tINIT algo-
rithm already implemented in MATLAB by Robinson et al. [75], which preserves
the generic metabolic tasks (see more details in Reconstruction of cell line-specific
traditional GSMMs section of Materials and Methods).

For the selection of the best reconstruction and simulation strategies, mod-
els were initially built for only 40 to 42 of the NCI-60 cell lines, due to the
lack of transcriptomics data, DNA methylation measurements, and metabolite
uptake rates for some cell lines. The exact number varied with the reconstruc-
tion strategy applied depending on the number of infeasible models (around 1
or 2). However, after the selection of the best strategy, the number of models
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Figure 3.1: Visual representation of reactions contributing to DNA methylation and demethy-
lation. Note that this is just a simplified scheme, as it does not reflect the stoichiometric
proportions and excludes many metabolites and transport reactions (for all complete re-
actions see Table D.1). Reaction identifiers are in italic. Those in red color were added
to the original Human1 (version 1.12) generic model. Gly: Glycine; Ser: Serine; Met: Me-
thionine; THF: Tetrahydrofolate; mTHF: methyl-THF; meTHF: 5,10-methylene-THF; SAM:
S-Adenosyl-Methionine; SAH: S-Adenosyl-Homocysteine; hCYS: Homocysteine; DNA5mC:
DNA-5-methylcytosine (i.e. methylated DNA); DNA5hmC: DNA-5-hydroxymethylcytosine;
DNA5fC: DNA-5-formylcytosine; DNA5CaC: DNA-5-carboxylcytosine; DNA5mU: DNA-5-
methyluracil.
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used in subsequent simulations was reduced to 31, due to lack of another data
type needed for model integration with degree of DNA methylation, as will be
explained further bellow.

3.2.2 Detection and validation of the best reconstruction and simu-

lation pipelines

Since no flux distribution can be obtained from unconstrained traditional
GSMMs, the uptake rates of metabolites in Ham’s media were loosely con-
strained (from -1000 to 1000) and those of other metabolites were closed (set
from 0 to 1000). Then, a parsimonious Flux Balance Analysis (pFBA) was ap-
plied and the resulting simulated fluxes of exchange reactions of 26 metabolites
were compared with experimentally measured ones. Although there was a small
correlation between simulated and measured fluxes, 0.33-0.51 and 0.34-0.49 of
Pearson and Spearman correlation respectively (with a p-value of zero), most
simulated values did not match measured ones, i.e. the logarithm of their ab-
solute values were higher or lower than ± 1 of log10(|measured value|) (most
data points fell outside the pink area of the graphs in Figure 3.2). Note that the
absolute values of the fluxes were logarithmized as the majority presented small
values (close to zero) (Figure 3.2-E). Richelle’s approach (using FASTCORE)
(Figure 3.2-A,B) showed a higher percentage of matching values than Robin-
son’s strategy (using tINIT) (Figure 3.2-C,D), and the integration of tasks was
slightly detrimental to the correlation values in both reconstruction method-
ologies (Figure 3.2-A,C versus B,D). The predicted flux values of biomass were
much higher than the measured ones and the relative errors of predicted growth
rates were high (Figure B.1).
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Figure 3.2: Comparison of measured and simulated exchange fluxes produced by traditional
GSMMs where uptake/secretion rates of metabolites in Ham’s media were loosely constrained
(from -1000 to 1000). (continues)
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Figure 3.2 (continued from previous page): A-D: scatter plots with log10 of absolute values
of simulated and measured fluxes of exchange reactions of 26 metabolites. Value at top
right of each graph is the percentage of data points that are inside the pink area (where
log10(|predicted value|) is within log10(|measured value|) ± 1). Either Richelle’s pipeline using
FASTCORE (A, B) and Robinson’s pipeline using tINIT (C, D) were applied to reconstruct
the models employed in the simulation. The effect of the integration (B, D) or not (A,
C) of all tissue-specific metabolic tasks in those models was also assessed. E: histograms
with the distribution of absolute values of measured and simulated fluxes before and after
logarithmization. Data points forming a line at the bottom of A-D correspond to metabolites
with a predicted flux of zero, which are shown in the graphs as holding the lowest absolute
measured value (besides zero), as the logarithm of zero is undefined. In the distributions
of logarithmized absolute values (E), the values of those metabolites fall in the lowest bin,
creating an oddly tall bin at the beginning.

Since constraints in the uptake/secretion rates of three metabolites (glu-
cose, lactate and threonine) with experimentally measured values had been pre-
viously reported as sufficient to generate small growth rate prediction errors
for the models of eleven of the NCI-60 cell lines [75], we decided to test the
effect of those constraints here. The absolute values of the fluxes were again
logarithmized because many presented small values (close to zero) (Figure 3.3-
E), and only 23 metabolites were taken into account, as the three metabolites
whose fluxes were constrained were excluded from the analysis to prevent bias.
Overall, there was an increase in the percentage of simulated fluxes whose val-
ues were similar to the measured ones (the log10(|simulated value|) was within
log10(|measured value|) ± 1, as 65-74% of data points are inside the pink area
of the graphs in Figure 3.3) in relation to the loosely constrained models (Fig-
ure 3.2), which was coupled with an improvement in the correlation between
simulated and measured values (the Pearson and Spearman correlations en-
hanced to 0.47-0.62 and 0.54-0.59). Furthermore, the correlations and the per-
centages of biomass flux values in close proximity to the measured ones greatly
increased, while the relative errors of predicted growth rates reduced in compar-
ison with the loosely constrained models (Figure B.2 versus Figure B.1). Unlike
the loosely constrained models, the integration of cell-specific tasks provided a
slight improvement when using Richelle’s strategy (Figure 3.3-A versus B) and
the overall best-performing reconstruction strategy was, in this case, Robinson’s
approach (using tINIT) (Figure 3.3-A,B versus C,D).
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Figure 3.3: Comparison of measured and simulated exchange fluxes produced by traditional
GSMMs where uptake/secretion rates of three metabolites (glucose, lactate and threonine)
were constrained with measured fluxes (continues).
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Figure 3.3 (continued from previous page): A-D are scatterplots with log10 of absolute values
of simulated and measured fluxes of exchange reactions of 23 metabolites (the three metabo-
lites whose fluxes were constrained are excluded). Value at top right of each graph is the
percentage of data points that are inside the pink area (where log10(|predicted value|) is
within log10(|measured value|) ± 1). Either Richelle’s pipeline using FASTCORE (A, B) and
Robinson’s pipeline using tINIT (C, D) were applied to reconstruct the models employed
in the simulation. The effect of the integration (B, D) or not (A, C) of all tissue-specific
metabolic tasks in those models was also assessed. E: histograms with the distribution of
absolute values of measured and simulated fluxes before and after logarithmization. Data
points forming a line at the bottom of A-D correspond to metabolites with a predicted flux
of zero, which are shown in the graphs as holding the lowest absolute measured value (besides
zero), as the logarithm of zero is undefined. In the distributions of logarithmized absolute
values (E), the values of those metabolites fall in the lowest bin, creating an oddly tall bin
at the beginning.

With this dataset, good simulations were obtained by limiting the fluxes of
three exometabolites with experimental data. However, one of the purposes of
this study is to present a pipeline that can be adopted in the future to differ-
ent datasets, creating models that depict the interplay of metabolism and DNA
methylation in other biological contexts, for most of which such experimen-
tally measured metabolite uptake/secretion rates are unknown. Therefore, we
assessed whether GECKO models without constraints on exchange metabolite
uptake rates could be enough to make accurate predictions. Although an enzy-
matic pFBA with GECKOmodels in which the only constrain was the limitation
of the protein pool uptake (with estimated cell-specific total protein concentra-
tions) provided smaller correlations, it predicted more fluxes in close agreement
with measured values (69-77% in Figure 3.4) than both the traditional loosely
constrained GSMMs (1-3% in Figure 3.2) and those constrained with the three
exometabolites uptake rates (65-74% in Figure 3.3). Robinson’s strategy (using
tINIT) was the reconstruction approach that gave the best results with enzyme-
constrained models (Figure 3.4-A,B versus C,D) and the inclusion of tasks was
detrimental (Figure 3.4-A,C versus B,D). Hence, subsequent simulations were
performed with GECKO models reconstructed with Robinson’s approach and
excluding reactions necessary for tissue-specific tasks.
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Figure 3.4: Comparison of measured and simulated exchange fluxes produced by GECKO
models limited by total protein concentration (continues).
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Figure 3.4 (continued from previous page): A-D are scatter plots with log10 of absolute
values of simulated and measured fluxes of exchange reactions of 26 metabolites. Value at
top right of each graph is the percentage of data points that are inside the pink area (where
log10(|predicted value|) is within log10(|measured value|) ± 1). Either Richelle’s pipeline using
FASTCORE (A, B) and Robinson’s pipeline using tINIT (C, D) were applied to reconstruct
the models employed in the simulation. The effect of the integration (B, D) or not (A,
C) of all tissue-specific metabolic tasks in those models was also assessed. E: histograms
with the distribution of absolute values of measured and simulated fluxes before and after
logarithmization. Data points forming a line at the bottom of A-D correspond to metabolites
with a predicted flux of zero, which are shown in the graphs as holding the lowest absolute
measured value (besides zero), as the logarithm of zero is undefined. In the distributions
of logarithmized absolute values (E), the values of those metabolites fall in the lowest bin,
creating an oddly tall bin at the beginning.

Even though 100% of log10(|biomass flux|) values predicted with GECKO
models lay within ± 1 of log10(|measured value|) (Figure 3.5) and the relative
error in prediction of growth rates is in agreement with previously reported
values for eleven of the NCI-60 cell lines [75], there is no significant correlation
(p-value > 0.05) between simulated and real biomass flux values as the simulated
values were underestimated (i.e. most data points are beneath the diagonal line
in Figure 3.5-A-D).

One possible explanation for this is the assignment of default values to two
parameters influencing the limitation given to the total protein uptake flux.
Those parameters are σ, which accounts for the level of enzyme saturation in
vivo, and f , the mass fraction of enzymes that are accounted for in the model
out of all proteins present in the cell. These parameters can change with the
cell type and are unknown for NCI-60 cell lines. Another factor that could have
contributed to the underestimation of biomass flux is an incorrect assessment
of the real value of total protein concentration.

In fact, when biomass fluxes together with the total protein concentration
were constrained with experimental values and an FBA with minimization of
total protein uptake reaction was performed on GECKOs reconstructed with
the best strategy (Robinson’s pipeline and without tasks), only two models
were feasible, reinforcing that the aforementioned parameters or total protein
concentrations are not correct. Therefore, we did a similar simulation where
biomass fluxes were limited with experimentally measured flux rates, but with-
out limiting the total enzyme pool uptake rate.

As expected, the limitation of the biomass flux with bounds determined
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Figure 3.5: Comparison of measured and simulated growth rates produced by GECKO models
limited by total protein concentration. A-D are scatter plots with log10 of values of simulated
and measured growth rates. Value at top right of each graph is the percentage of data points
where log10(|predicted value|) is within log10(|measured value|) ± 1. Either Richelle’s pipeline
using FASTCORE (A, B) and Robinson’s pipeline using tINIT (C, D) were applied to
reconstruct the models employed in the simulation. The effect of the integration (B, D) or
not (A, C) of all tissue-specific metabolic tasks in those models was also assessed. E: Relative
errors of predicted growth rates.
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from experimental values lead the biomass simulated flux to be closer to the
mean measured flux (Figure 3.6-B versus Figure 3.5-C), improving the relative
error of the growth rate (Figure 3.6-D versus Figure 3.5-E). Regarding the
fluxes of the 26 exometabolites, the restriction of growth rates gave as good
results as without the constraints on biomass (Figure 3.6-A versus Figure 3.4-
C). Furthermore, the percentage of simulated flux values within close proximity
to measured ones in GECKOs with a constraint on biomass (77% in Figure 3.6)
is higher than with traditional GSMMs with a constraint on biomass (71% in
Figure B.3). Hence, subsequent simulations were done with GECKO models
reconstructed with Robinson’s approach and limited by experimental growth
rates while minimizing the total enzyme usage.
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Figure 3.6: Comparison of measured and simulated exchange fluxes produced by GECKO
models constrained with measured growth rates. A: a scatter plot with log10 of values of
simulated and measured fluxes of exchange reactions of 26 metabolites. Value at top right of A
andB is the percentage of data points where log10(|predicted value|) is within log10(|measured
value|) ± 1 (in A, it corresponds to the pink area). B: a scatter plot with log10 of values
of simulated and measured growth rates. The correlation coefficients are not exactly one,
because experimentally determined upper and lower bounds were used to constraint simulated
biomass fluxes, while the value of the measured biomass in the graph is the average of those
bounds. C: histograms with the distribution of absolute values of measured and simulated
fluxes before and after logarithmization. D: Relative errors of predicted growth rates. Data
points forming a line at the bottom of A correspond to metabolites with a predicted flux of
zero, which are shown in the graphs as holding the lowest absolute measured value (besides
zero), as the logarithm of zero is undefined. In C, the values of those metabolites fall in the
lowest bin, creating an oddly tall bin at the beginning. Models used were reconstructed with
Robinson’s pipeline (using tINIT) and without tissue-specific tasks.

3.2.3 Integration of models with cell line-specific DNA methylation

levels and generic DNA methylation flux rules

The overall degree of protein acetylation of different human cell lines has
been previously predicted in a study using traditional GSMMs, in which the
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simulated flux of a pseudo-reaction of global protein acetylation was shown to
correlate with the amount of one type of histone acetylation mark that functions
as an epigenetic regulator [244]. Therefore, in this study, we assessed whether an
equivalent correlation could be observed between the simulated DNA methyla-
tion flux and the degree of DNA methylation estimated with experimental data
(details on the estimation procedure in Comparison of fluxes of reactions involved
in DNA (de)/methylation and the degree of DNA methylation section of Material
and Methods).

Results in Figure 3.7-A demonstrated that no strong correlation was ob-
served between the actual global DNA methylation level (details of its esti-
mation in Calculation of the composition of total DNA section of Materials and
Methods) and the simulated flux of the DNA methylation reaction (MAR08641 )
or of the reaction that produces the cytoplasmatic SAM (MAR03875 ), which is
one of the substrates of DNA methylation. Note that the values in the scatter
plots were logarithmized because many of the simulated flux values of reactions
MAR03875 and MAR08641 were close to zero (Figure 3.7-B). Only a weak, but
significant (p-value ≤ 0.05) correlation, with just the Spearman (not with the
Pearson) method, was observed between the flux of each mentioned reaction
and the global DNA methylation. The genomic region which gave the best sig-
nificant correlations for the DNA methylation reaction (MAR08641 ), although
still weak (0.36 and 0.52 of Pearson and Spearman coefficients respectively),
was the one comprising 1000bp upstream of the genes’ Transcription Start Sites
(TSS), i.e. gene promoters (see reaction MAR08641 in Figure 3.7-A). In addi-
tion, it was observed that the overall correlation values are slightly higher for
the DNA methylation reaction (MAR08641 ) than for the one producing SAM
(MAR03875 ).
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Figure 3.7: Comparison of simulated fluxes of reactions involved in DNA methylation and
the estimated degree of DNA methylation. A: scatter plots with log10 values of simulated
fluxes versus the experimentally estimated degree of methylation across all genome or in close
proximity to different genomic features (continues).
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Figure 3.7 (continued from previous page): The procedure and the description of datasets ap-
plied to estimate the level of DNA methylation is detailed in Comparison of fluxes of reactions
involved in DNA (de)/methylation and the degree of DNA methylation section of Materials
and methods. The vertical labels are identifiers of reactions shown in Figure 3.1. Zero flux
values were replaced with a very small value (1×10−15) because log10(0) is undetermined. B,
C: histograms with the distribution of simulated flux values and estimated DNA methylation
levels before (A) and after (B) logarithmization. Only the 30 cell lines for which there was
experimental data across all types of genomic intervals were here used.

Since the simulated methylation fluxes were not able to strongly predict
the degree of DNA methylation, we switched our focus to understanding how
metabolic mechanisms and metabolic shifts are related to the overall degree of
DNA methylation in cancer, which is the ultimate goal of the present work.
For that purpose, the degree of DNA methylation across the genome was inte-
grated with the models. Specifically, the stochiometric coefficients of the pseudo-
reaction prodDNAtot, which represents the composition of total DNA in terms
of DNA cytosine (de)/methylation marks, were modified based on published
cell/tissue-specific DNA5mC and DNA5hmC datasets (more details on Calcu-
lation of the composition of total DNA section of Materials and Methods). Note
that values of DNA5hmC levels were not available for all cell lines. Hence, from
then on simulations were made with models for only 31 of the 41 cell lines.

Another interesting observation from the previous simulations is that while
the DNA methylation reaction always carried flux for any of the different cell
lines, none of the DNA demethylation reactions included in the model was able
to do the same, because the formation of unmethylated DNA necessary for
the biomass production was directly obtained through the DNA polymerization
reaction of the individual nucleotides instead of the DNA demethylation reac-
tions. However, it is known that the extent to which the DNA is methylated
depends on the balance between the rates of the reactions of methylation and
demethylation, which produces a dynamic DNA methylation turnover steady-
state [245]. In fact, variations in the proportion of those rates can originate
methylation deregulation like the hypermethylation (i.e. silencing) of tumor
suppressor genes and hypomethylation (i.e. activation) of pro-metastatic genes
observed in cancer cells [245–247]. Hence, to guarantee that the simulations can
reflect the dynamic DNA methylation turnover state, the flux of certain DNA
demethylation reactions was forced to be positive in the subsequent simula-
tions by constraining those reactions in each model with reaction rate ratios
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previously described in the literature, as long as the imposed constraints would
not produce an infeasible flux distribution. Those rate ratios are described in
Table D.8 and will herein forth be called methylation flux rules.

As would be expected, there was an improvement in the correlation be-
tween the simulated fluxes of reactions MAR08641 or MAR03875 and the es-
timated degree of DNA methylation after adapting the composition of total
DNA with cell-specific information (compare Figure 3.8 with Figure 3.7). This
time, the correlation between the DNA methylation flux (MAR08641 ) and the
global DNA methylation was strong (0.62 and 0.73 of Pearson and Spearman
coefficients respectively) and significant (p-value ≤ 0.05), and the Upstream of
TSS was again the genomic feature that gave the best correlations (Figure 3.8).
Also, the integration of the abovementioned methylation flux rules for models
where their inclusion provided feasible flux distributions enabled the activa-
tion of some DNA demethylation reactions in those models, whereas neither a
positive nor negative correlation was observed between simulated fluxes of any
DNA demethylation reaction and the degree of DNA methylation (Figures B.4
and B.5). Note that, although the number of models used was lower than in
previous simulations because the cell-specific methylation ratios could only be
estimated for 31 cell lines, the correlations between measured and simulated
fluxes and the percentage of simulated flux values in close proximity to the real
ones for exchange reactions or biomass, as well as the relative errors of biomass
were as good as without the cell-specific methylation ratios and the methylation
flux rules (Figure B.6 versus Figure 3.6).

3.2.4 Analysis of active pathways and protein usage in cell-line-

specific models

After model reconstruction and integration with methylation data, the re-
sults from simulated flux value distributions of each cell line were analyzed.
From Figure 3.9-A, it was possible to observe that among the central carbon
metabolism pathways, Glycolysis or Gluconeogenesis is the one carrying the most
flux for all cell lines, while the flux through the pathways directly or indirectly
related with DNA (de)/methylation (Folate metabolism, Cysteine and methionine
metabolism and DNA methylation or demethylation) is very low. However, simula-
tions suggest that these cell lines utilize a higher mass of enzymes to activate re-
actions associated with Cysteine and methionine metabolism than those involved in
Glycolysis or Gluconeogenesis (Figure 3.9-B). Furthermore, the top five pathways
with the most flux were identified as Glycolysis or Gluconeogenesis, Oxidative phos-
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Figure 3.8: Comparison of simulated fluxes of reactions involved in DNA methylation and
the estimated degree of DNA methylation for models with methylation flux rules and cell-
specific methylation ratios. Scatter plots with log10 values of simulated fluxes versus the
experimentally estimated degree of methylation across all genome or in close proximity to
different genomic features. The procedure and the description of datasets applied to estimate
the level of DNA methylation is detailed in Comparison of fluxes of reactions involved in DNA
(de)/methylation and the degree of DNA methylation section of Materials and methods. The
vertical labels are identifiers of reactions shown in Figure 3.1. Zero flux values were replaced
with a very small value (1× 10−15) because log10(0) is undetermined. Only the 30 cell lines
for which there was experimental data across all types of genomic intervals were here used.
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phorylation, Purine metabolism, Fatty-acid biosynthesis (even-chain) and Aminoacyl-
tRNA biosynthesis. With respect to protein mass, the top five scoring pathways
are Cholesterol biosynthesis 2, Glycerophospholipid metabolism, Cholesterol biosynthe-
sis 1 (Bloch pathway), Acylglycerides metabolism and Aminoacyl-tRNA biosynthesis
(Figure 3.10).

Figure 3.9: Flux values and protein usage in pathways related with central carbon metabolism
and DNA (de)/methylation. A: Boxplots show flux values across all cell lines. B: Boxplots
show amount of protein spent across all cell lines.
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Figure 3.10: Top five pathways with highest flux values or protein usage. A: Boxplots show
flux values across all cell lines. B: Boxplots show amount of protein spent across all cell lines.
Top five pathways were selected based on the median across all cell lines of average values of
each pathway.

3.3 Discussion

To the best of our knowledge, this is the first time that models were built
to simulate the interaction between metabolism and DNA methylation. Past
studies have tackled the interplay between metabolism and epigenetics, but most
focused on histone acetylation [241, 242, 244]. Besides, the only study covering
methylation [243] dealt with methylation of histones on murine cells and used
the flux of the substrate for methylation (SAM) as a surrogate for methylation,
instead of introducing protein methylation reactions.

In this study, we developed models for 31 cancer cell lines of Human that
capture the interaction between metabolism and DNA methylation, through
the integration of reactions related to DNA methylation and demethylation
obtained from a review of information deposited in databases and reported in
the literature, and the integration of cell-type specific DNA methylation levels.
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The included reactions were curated to guarantee mass and charge balance and
their integration with the remaining metabolic network of the generic model
Human1.

Furthermore, past studies trying to mimic the relationship between
metabolism and epigenetics utilized traditional GSMMs, whereas the present
study also employs GECKO models. When no metabolite uptake rates are
known traditional constraint-based GSMMs cannot provide a finite flux dis-
tribution, because the solution is unbounded. For example, if uptake reactions
of nutrients have bounds from -∞ to zero (in a model including reversible reac-
tions) and the metabolic objective is to maximize biomass flux, the maximum
growth rate will be infinite [75]. High finite values can be assigned to bounds
of those exchange reactions (e.g. ± 1000) to obtain flux distributions that en-
able the assessment of flux allocation to distinct metabolic pathways [126,240],
the identification of metabolic tasks [92], or detection of essential reactions and
genes [126, 240]. However, such models perform poorly in a quantitative evalu-
ation of flux values, i.e. simulated fluxes are different from the experimentally
obtained fluxomics data [126]. Therefore, to improve the predictability of these
models, it is important to constrain exchange fluxes, with real flux values [75],
which are not always available. On the other hand, GECKO models do not
require the definition of specific uptake rates to provide accurate flux distri-
butions, because they introduce enzyme kinetic and concentration data that is
sufficient to reduce the flux solution space.

Even though uptake/production rates of some exometabolites were available
and therefore could be used to make acceptable predictions with traditional
GSMMs, the use of GECKO models provided better results than traditional
GSMMs constrained with flux values of three metabolites (previously reported
as sufficient to generate small growth rate prediction errors in eleven of the
same cell lines), as the percentage of simulated fluxes with values close to the
measured ones was higher with GECKO models than with the traditional mod-
els constrained with the three fluxes (compare percentages between Figure 3.4
and Figure 3.3). Additionally, the use of cell-specific GECKO models is useful in
presenting a proof-of-concept pipeline that can be adopted in the future to other
datasets for the production of models portraying the interplay of metabolism
and DNA methylation in other biological contexts, for most of which such ex-
perimentally measured uptake/secretion rates may be unknown. Also, note that
even though a constraint, the limitation of biomass flux with measured growth
rates, had to be eventually applied to GECKO models, that still requires gather-
ing less experimental data than when applying measured fluxes of three different
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metabolites (as in constrained traditional models).
Interestingly, the assessment of the best model reconstruction pipeline in

this study suggested that the optimal strategy to apply depends on the de-
cision to either include or exclude experimental flux information, as the opti-
mal approach for traditional GSMMs constrained with specific flux values was
tINIT without cell line-specific task integration, while for loosely constrained
fluxes the approach providing a higher percentage of matching values was FAST-
CORE, which gave the highest correlation values when combined with the non-
integration of reactions essential for cell line-specific tasks.

In this study, the stoichiometric coefficients of modified methyl-cytosines in
the reaction representing the total DNA composition were adapted in accor-
dance with experimentally measured DNA methylation levels specific to each
cell line, so that the simulations could predict metabolic phenotypes associ-
ated with DNA methylation that were cell-type specific. Naturally, one of the
consequences of this adaptation was the increase in correlation between fluxes
of the reactions of DNA methylation and of the production of SAM and the
experimentally observed DNA methylation levels. Notably, those correlations
were higher in the region Upstream of TSS of genes (i.e. gene promoters) than
in other genomic regions, including regions surrounding upstream and down-
stream of the TSS (the TSS (clusters)), suggesting that the variation in global
DNA methylation across these cell lines can be in its majority attributed to
alteration of methylation in gene promoters. Given that Ghandi et al. [248] ob-
served a negative correlation between gene expression and promoter methylation
of many genes in these cell lines, it is possible to hypothesize that variation in
global DNA methylation across cell lines might primarily be associated with
variations in down-regulation of gene expression. Furthermore, another study
with the same cell lines reported that the most significant correlation between
DNA methylation and gene expression was an inverse correlation for epithelial
and mesenchymal genes, more expressive for the former than the latter (-0.639
versus -0.525 correlation), and although to a smaller degree, with tumor sup-
pressors as well [249]. This suggests that the increase in global DNA methylation
across different cell lines is mostly associated with endothelial-to-mesenchymal
transition and silencing of tumor suppressor genes, and therefore, it would be
expected that the proliferation ability of these cell lines increases with the global
DNA methylation levels. To test this, we compared the growth rate of the cell
lines and their global DNA methylation levels and, in fact, a significant but
moderate correlation could be observed Figure B.7.

Another important observation was that the inclusion of the aforementioned
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methylation flux rules based on reported values of ratios of DNA (de)/methylation
reaction rates in the model simulations guaranteed flux through the DNA
demethylation reactions at least in some models. This is relevant because it is
known that there is a dynamic DNA methylation turnover steady-state, where
both methylation and demethylation reactions are active [245]. Nevertheless,
the methylation flux rules could only be applied to some of the cell lines without
affecting the feasibility of the flux distribution, maybe because the metabolite
pools (for e.g. protein pools) are not adapted to the cell type or because those
flux rules are general rules that might not apply to all cell lines. In that sense,
future in silico studies could try to integrate more cell-detailed experimentally
determined flux rules as soon as they become available.

The final models here created, which represented 31 different cell lines, pro-
vided a high percentage of simulated flux values in close proximity to corre-
sponding experimental values (around 77% in Figure B.6) for exchange reactions
of 26 metabolites, which in itself serves as good validation criteria. Furthermore,
the flux and protein mass distribution across metabolic pathways agreed with
the reported experimental evidence.

Glycolysis or Gluconeogenesis was the subsystem among the central carbon
metabolism pathways to carry more flux, and it was the most active metabolic
pathway. This is expected because aerobic glycolysis is one of the characteris-
tics of cancer cells, as it allows them to quickly obtain energy and elementary
metabolites for fast growth [13,16].

Although Glycolysis is more active than Oxidative phosphorylation across the
models of all cell lines, as expected in cancer cells, the latter is still the second
pathway with the most flux. A possible explanation for this is that even though
cancer cells prefer in general aerobic glycolysis, they use Oxidative Phosphory-
lation (OXPHOS) to produce at least some level of Reactive Oxygen Species
(ROS), as a moderate amount of ROS is beneficial for tumorigenesis, resistance
to chemotherapy and cancer progression [25]. Another putative reason could be
the increased levels of citrate in cancer cells, due to the conversion of α-KG to
citrate induced by oncogenes, which indirectly would allow the production of
some energy through the Oxidative phosphorylation by feeding the Tricarboxylic
acid cycle (TCA cycle) [16]. However, in that case, it would be expected that
the TCA cycle was also among the most activated pathways, which is not the
case.

In addition, the fact that Purine metabolism, Fatty acid biosynthesis and
Aminoacyl-tRNA biosynthesis are the third, fourth and fifth pathways with the
most flux in the models could also be anticipated because the first pathway is
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necessary for the synthesis of nucleotides fundamental for the production of new
DNA molecules, the second is essential for the formation of new cell membranes
and the last allows protein production through mRNA translation, all of which
are important factors for fast-dividing cells.

The first and third pathways to use most protein mass are related to Choles-
terol biosynthesis, which is also in accordance with the literature. Cholesterol
biosynthesis is often enhanced in cancer as on one hand, it can activate mTORC1
signaling, which in turn promotes cell proliferation, invasion, and metasta-
sis, while on the other it alters lipid rafts composition, promoting the loss of
integrin-mediated cell adhesion, and consequently contributing to cancer aggres-
siveness [41, 251]. The second and fourth pathways to use most protein mass,
the Glycerophospholipid metabolism and Acylglycerides metabolism, are expected to
be activated in cancer cells as well because those metabolites are part of new
cell membranes needed for intense cell proliferation.

With respect to pathways directly or indirectly related to DNA
(de)/methylation, the flux is reduced. This is expected, since it is possible to an-
ticipate that a small DNA methylation rate is enough to methylate less than 1%
of the genome (the average percentage of methylation of the human genome).
Nevertheless, the use of protein mass in one of those pathways, Cysteine and me-
thionine metabolism is elevated, even more than in glycolysis, suggesting that
although holding a small amount of flux, it is an important pathway.

The models developed in this study could have different applications. One
possible use is to identify metabolic pathways in which variation in flux or
protein usage follows the change in global DNA methylation levels across the
different cell lines, to identify metabolic shifts that could explain the observed
variation in DNA methylation. Another related application could be the selec-
tion of a set of reactions whose flux variations across the different cell lines are
inversely correlated with the flux of biomass reaction. The set of genes mapped
to the identified reactions would then be intersected with a list of genes in
which promoter methylation accompanies cell growth. This way, it would be
possible to find genes that upon methylation would promote metabolic shifts (si-
lence metabolic pathways) necessary for cancer growth. Furthermore, the same
generic model and reconstruction pipeline validated in this study could be ap-
plied to other datasets to understand how the interaction between metabolism
and DNA methylation explains other biological questions. For example, the
reconstruction of models of cancer cells in the presence versus absence of epi-
genetic modulators traditionally used in cancer treatment, or even to study the
effect of metabolic diseases, like obesity, insulin resistance, or dyslipidemia in
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DNA methylation [252].

3.4 Materials and Methods

3.4.1 Creation of the generic DNA methylation model

Alterations were made to the model Human1 (version 1.12) to create a
generic model depicting DNA methylation and demethylation, which was made
available to the public. Overall, the reaction of DNA methylation in the cyto-
plasm was removed (as there is no DNA in the cytoplasm), and the gene rule of
the equivalent reaction in the nucleus was updated (explanation in Table D.4).
Reactions and corresponding GPR rules involved in DNA (de)/methylation
were obtained by literature curation (see explanation in Table D.1 and Ta-
ble D.4). Some transport reactions were added, and two reactions that occur
when cytosine is inside the DNA were assumed to take place also when it is in
its monomeric form (consdirect5fC and consdirect5CaC reactions in Table D.1),
to guarantee flux through the remaining DNA (de)/methylation reactions (i.e.
to prevent their blockage). Metabolites taking part in the added reactions are
described in Table D.5. A pseudo-reaction representing the average total hu-
man DNA composition in the nucleus (prodDNAtot) in terms of DNA cyto-
sine (de)/methylation marks, like DNA-5-methylcytosine (DNA5mC), DNA-
5-hydroxymethylcytosine (DNA5hmC) and DNA-5-formylcytosine (DNA5fC)
was introduced (how the composition was determined is shown in Tables D.2
and D.3). Moreover, the generic biomass reaction was replaced by a similar
reaction (adaptbiomass reaction) where the DNA was changed into the pseudo-
metabolite (DNAtot) representing the total DNA harboring all DNA methy-
lation and demethylation marks (in Table D.1). All introduced reactions were
corrected for charge and mass balance (Table D.6). All blocked reactions and
associated genes and metabolites were removed.

3.4.2 Reconstruction of cell line-specific traditional GSMMs

Cell line-specific GSMMs were built for different NCI-60 cell lines through
the integration of transcriptomics data from Cancer Cell Line Encyclopedia
(CCLE) deposited in DepMap repository in 2019. This version of the transcrip-
tomics dataset was chosen because it was produced by the same study, Ghandi
et al. [248], which the Reduced-Representation Bisulfite Sequencing (RRBS)
dataset used in the present work was retrieved from. The approach presented
in Richelle et. al [92] to build cell type-specific models was here implemented
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in Python and made available to the public. Gene scores were determined from
cell-specific gene expression data using the following expression:

genescore = 5 ∗ log
(

1 +
expression level
threshold

)
(3.1)

where the threshold is the mean value of gene expression over all samples unless
it is lower than the 25th or higher than the 75th percentiles of the gene expression
value distribution, in which cases the threshold value is considered to be the
same as the mentioned percentiles.

Reaction scores were subsequently calculated from gene scores taking the
GPR rules into account so that: the score of a reaction catalyzed by an enzyme
complex was the minimum score of all genes associated with the complex (AND
rule) and that of a reaction catalyzed by isozymes was the maximum score of all
genes encoding the isozymes (OR rule). The highest reaction scores of a cell line
were attributed to the reactions considered necessary for the generic metabolic
tasks (a.k.a. essential metabolic tasks), while the same procedure was applied
to necessary reactions of other tasks if those are performed in that specific cell
type. This was done to give the reconstruction algorithm a higher probability of
building a cell type-specific model that can pass all the generic tasks and tasks
specific to that cell type. A reaction was considered necessary for a task if it
was carrying flux upon the inclusion of the task-associated flux constraints on
the generic model followed by a minimization of the sum of all fluxes. In order
to determine whether a task was done in a certain cell type, a metabolic score
consisting of the average of the scores of the reactions (previously identified as)
required for that task was calculated. When the task metabolic score was higher
than 5 ∗ log(2) (the gene/reaction score to which the expression level is equal
to the aforementioned threshold) the task was considered to be done in that
specific cell type. Then, the FASTCORE algorithm from Troppo package [232]
was run to obtain the cell type-specific models. Note that three DNA demethy-
lation tasks (each one corresponding to a distinct demethylation pathway) were
created and added to the original list of tissue-specific tasks so that each fi-
nal cell-line model could have all reactions necessary for the DNA demethy-
lation pathway done by that specific cell type. We also included two DNA
demethylation-associated reactions (consdirectDNA5fC and consdirectDNA5CaC
in Figure 3.1) that were non-necessary for enzyme-catalyzed DNA demethyla-
tion to occur (demethylation could happen in the generic model without them)
because they were not associated with any gene (were not catalyzed by an en-
zyme), and therefore were always excluded from the reconstructed models (due
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to the lack of associated reactions scores) although they could happen without
the presence of enzymes. For comparison purposes, an equivalent analysis was
done without including the reactions necessary for cell type-specific tasks.

The second approach to building context-specific models consisted of the ap-
plication of a version of the tINIT algorithm run in MATLAB that had already
been implemented by Robinson et al. [75]. That version tries to include reactions
with scores above a threshold while removing those below the threshold and
keeping the connectivity of the model (i.e. making sure all reactions carry flux).
The gene-to-reaction scores conversion strategy applied was again the minimum
and maximum of gene scores for complexes and isozymes, respectively [75]. The
final models also kept the ability to perform the generic metabolic tasks, which
consisted of the previously reported 57 essential metabolic tasks [75]. Further-
more, reactions previously identified as necessary only for DNA demethylation
tasks (in Richelle’s approach using FASTCORE) were included after recon-
struction if the task metabolic score was above the threshold for the particular
tissue. The two non-catalyzed DNA demethylation-associated reactions consdi-
rectDNA5fC and consdirectDNA5CaC were also introduced in all models due to
the reasons explained above for Richelle’s approach. When testing the inclusion
of tissue-specific tasks with this approach, the reactions needed for tissue-specific
tasks were included as well.

3.4.3 Generation of cell line-specific GECKO models from tradi-

tional GSMMs

GECKO models were created from traditional GSMMs using a MATLAB
script produced by Robinson et al. [75], which pipeline was first described
in Sanchez et al. [137]. In that pipeline, enzymes are introduced as pseudo-
substrates in the reactions they catalyze and the stoichiometric coefficients are
the inverse of the turnover numbers of the corresponding enzyme-metabolic
substrate pairs. Reversible reactions are split into two irreversible reactions in
opposite directions, and isozymes are separated into different reactions, each cat-
alyzed by one of the isozymes. Furthermore, for each original un-split isozyme-
associated reaction, a new pseudo-reaction, named arm reaction, is added. The
only product of an arm reaction is an intermediary pseudo-metabolite which
is used as a substrate by each of the isozyme-split reactions so that the flux
bounds of each original un-split reaction can still be applied. For reactions cat-
alyzed by complexes, each enzyme of the complex is introduced as a substrate
and the stoichiometric coefficient is in that case the product of the inverse of
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its turnover number and the stoichiometric coefficient of the enzyme inside the
complex.

Finally, supply reactions for each enzyme known as protein draw reactions,
are added, where each reaction consumes a proportion (based on the enzyme
molecular weight) of a total protein pool, which in turn is supplied by another
included boundary reaction called protein pool exchange reaction [75,137].

3.4.4 Detection and validation of the best reconstruction and simu-

lation pipelines

For the assessment of the best type of models (traditional GSMMs or
GECKOs) and the selection of the most suitable model reconstruction and
simulation strategies, values of simulated uptake/secretion rates of 26 metabo-
lites across different cell lines were compared with corresponding experimentally
measured ones originally obtained from Jain et al. [253]. The 26 metabolites
chosen were the ones previously utilized to validate the reconstruction of eleven
NCI-60 cell lines in Robinson et al. [75] article. The same comparison was made
between the simulated fluxes of biomass reaction and measured rates of cell
growth retrieved from Zielinski et al. [254]. The strategies and model types giv-
ing the best percentage of simulated flux values in close proximity to measured
ones were identified. For simulations with traditional GSMMs, parsimonious
Flux Balance Analyses (pFBAs) were carried out whereby the minimization of
the sum of all fluxes took place after constraining the biomass flux with either,
the objective value of an FBA whose metabolic objective was maximization
of biomass flux or with experimentally measured growth rates. For GECKO
models, the simulations were accomplished through either an enzymatic pFBA
where the minimization of the flux of the total protein uptake reaction followed
the maximization of the flux of biomass reaction, or by an FBA whose metabolic
objective was to minimize the total protein uptake upon limitation of the flux
of biomass reaction with measured growth rates. The last strategy was selected
to be applied to all subsequent simulations, as it was the one to give the best
results. Model manipulation and simulation were done with the MEWpy [255]
and COBRApy [234] python modules.

3.4.5 Calculation of the composition of total DNA

The overall composition of the total DNA in terms of modified-cytosine
species involved in methylation and demethylation was initially estimated for
a generic human cell based on general knowledge of the human genome (see
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Table D.2), and the average level of DNA5hmC sites across different healthy
human tissues (Table D.3) obtained from a Chemical-assistant C-to-T conver-
sion of 5hmC sequencing (hmC-CATCH) experiment, which values were kindly
provided by the authors of He et al. [256].

Those estimations were initially integrated into the total DNA composition
reaction, the prodDNAtot reaction, of the generic model before the reconstruction
of the context-specific models. However, simulations with the cell-line-specific
models have later been performed with a cell-line-specific prodDNAtot reaction.
The stoichiometric coefficient of the DNA5hmC in prodDNAtot reaction of a
specific cell line was the estimated ratio of DNA with 5hmCs of the healthy
tissue to which that cell line corresponds (calculation shown in Table D.3). The
estimation of the stoichiometric coefficients of the remaining cytosine species
was grounded on the results of a Reduced-Representation Bisulfite Sequencing
(RRBS) experiment obtained from the same study that produced the transcrip-
tomics data used in the model reconstruction [248]. The output of bisulfite se-
quencing is the proportion of all cytosines that have remained unconverted (i.e.
were not converted to Uracil) during the bisulfite treatment, and it is generally
used as a proxy for the ratio of cytosines that are methylated. However, in real-
ity, not only DNA5mCs but also DNA5hmCs are not converted to Uracil [257]
upon treatment with bisulfite, while aside from the fully unmethylated cytosines
also the DNA5fCs are converted to Uracil [258] during the process. So, the as-
sumption that the bisulfite sequencing signal is the ratio of DNA that is methy-
lated could lead to imprecise estimations, as in reality, it represents the ratio
(DNA5mC + DNA5hmC)/(unmethylated DNA-5-cytosine + DNA5fC). Fortu-
nately, in this case, the ratio of DNA with DNA5hmCs and DNA5fCs could
be calculated (from the hmC-CATCH results and literature, respectively), and
therefore, there was no need to use the bisulfite sequencing signal directly as a
proxy (calculations shown in formulas of excel Table D.7).

3.4.6 Comparison of fluxes of reactions involved in DNA

(de)/methylation and the degree of DNA methylation

The correlation between simulated fluxes of important reactions involved in
DNA methylation and demethylation and the overall level of DNA methyla-
tion across different cell lines (represented by the stoichiometric coefficients of
DNA5mC calculated above) was assessed in this study. In addition to the global
methylation state, the comparison to the methylation levels of CpGs at specific
genomic regions was also analyzed. For this, the RRBS signal of CpGs within
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1000 bp-length genomic intervals Upstream of the TSS of genes (gene promoters),
retrieved from the same abovementioned RRBS study [248], was added across
all genes for each cell line. The sum of the signal was then directly used as a
proxy for the DNA methylation level, in contrast to the procedure applied above
in the calculation of stoichiometric coefficients, because in this case, the num-
ber of CpGs containing DNA5hmC and DNA5fC within the particular genomic
regions was unknown.

This same analysis strategy was further applied to other datasets of the
same study where the level of methylation in methylation clusters (i.e. regions
where CpG sites have similar methylation changes across different cell lines) was
retrieved for genomic intervals centered around TSS (from 3000 bp upstream to
2000 bp downstream), CpG islands, and enhancers (from 2000 bp upstream to
2000 bp downstream).

Furthermore, the methylation level of genes was also roughly determined
by adding the methylation values of all genes in each cell line from a dataset
deposited at CellMiner [259] database which resulted from a DNA methylation
array experiment [249]. In that case, the average gene methylation values (i.e.
average of beta values) were given by the ratio of the intensity of the probes for
methylated DNA and the intensity of all probes (those detecting methylated
and unmethylated DNA) annotated to that gene.

3.4.7 Analysis of active pathways and protein usage

To compare the simulated flux distribution across the different metabolic
pathways and cell lines, a generic GECKO model was first created from the
generic traditional GSMM where each reaction was associated with a metabolic
subsystem. The flux of all reactions of the same metabolic subsystem in each
cell-line-specific model was added and divided by the number of reactions at-
tributed to that subsystem in the generic GECKO model to correct for the bias
that subsystems with more reactions have a higher chance to have more active
reactions (and therefore carry more flux). Since each isozyme-associated reaction
of a traditional GSMM is split into different reactions in a GECKO model (each
associated with one of the isozymes) that consume the same pseudo-metabolite
of an arm reaction (mentioned above), the flux of the arm reaction is the sum
of the fluxes of the other split-reactions. Therefore, for reactions associated
with isozymes only the arm reactions were considered in the analysis. Also, the
abovementioned protein draw reactions and the protein pool exchange reaction
were naturally excluded, as they were not associated with any subsystem.
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For the estimation of protein usage in each metabolic subsystem, instead
of directly quantifying the amount of enzyme spent in each draw reaction, the
amount of protein used in each enzyme-reaction combination was calculated
instead, because the same enzyme can participate in different reactions of dis-
tinct metabolic subsystems. The flux of each reaction (in mmol.gDW−1.h−1) was
divided by the kcat of each enzyme-reaction combination (in h−1), and then mul-
tiplied by the molecular weight of the enzyme (in KDa, i.e. 1g.mmol−1) and 1000,
to obtain the amount of the enzyme used in the reaction (in mg/gDW). All reac-
tions that do not use any enzyme as a pseudo-substrate (the arm reactions and
non-catalyzed reactions) were excluded. Then, the sum of all protein usage val-
ues of each metabolic subsystem was divided by the number of enzyme-reaction
combinations attributed to that subsystem in the generic GECKO model to
correct for the bias that subsystems with more reactions and with reactions
containing more enzymes have the tendency to use more protein.

Code Availability:

The code produced and models built in the present work are deposited at:
https://gitfront.io/r/user-9348496/UrviDdiW596W/epigen/
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Chapter 4

Conclusion

Two studies were presented in this thesis where GSMMs, traditional GSMMs
and GECKO models, were reconstructed for specific tissues/cell-lines of human
cancer cells so they could be applied to study the role that metabolism plays
in cancer, extending the domains of metabolic modeling to other less studied
areas, including cancer stem cells and epigenetics. In the next sections, we briefly
review the main contributions of each study, but also their limitations and
relevant future directions for research.

4.1 Reconstruction of Tissue-Specific Genome-Scale Metabolic

Models for Human Cancer Stem Cells

In the first study, we built GSMMs of CSCs and CCs of ten different tissues
in humans, by integrating gene expression of distinct datasets with the generic
GSMM of human cells, Human1. After pre-processing published RNA-seq and
microarray datasets, the best parameters to integrate each type of transcrip-
tomics data (RNA-seq or microarray) were identified and applied to all respec-
tive datasets. Models were adapted for medium composition and gapfilled in
order to produce biomass and perform essential tasks.

The comparison of simulated essential genes and lethal genes previously
identified in a gene knockout experiment revealed a similar correlation coeffi-
cient to the one reported in a previous study with models of human cancer cells,
showing evidences of the validity of our models. Metabolic pathways predicted,
from flux simulations, to be more active in CSCs than CCs, were in line with
the available literature. In addition, the study brought attention to new possi-
ble metabolic mechanisms of already known cancer targets and tumor suppres-
sors, like FLI1, hsa-miR-335-5p, hsa-miR-26b-5p, and hsa-let-7b-5p. Besides, new
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potential tumor suppressors for treatment of CSCs and bulk cancer, namely
hsa-miR-6499-3p, hsa-miR-8485, and hsa-miR-6849-3p, as well as ribavirin as an
antimetabolite for the treatment of lung CSCs, were identified.

One limitation of the study relates to the ambiguity of the term CSC, since
both actively dividing cells and quiescent/slow-cycling cells can be considered
CSCs. While, for the first definition, the assumption of growth as the main
cellular objective holds, it may not be the case for the latter. Hence, we suggest
that future studies try to experimentally assess which is the case. Furthermore,
one restriction of the study is that in some cases it uses only one model for each
condition (cell type and tissue). As more data becomes available prospective
studies could include many more models of the same condition obtained from
different datasets to account for the bias of experimental platforms and donor
variability.

Another problem is that the study does not include models of normal stem
and differentiated cells due to the difficulty in finding datasets with all four cell
types. This is a drawback because some of the potential targets suggested for
CCs and CSCs might also impact normal cells. So, future studies should focus
on including those two cell types if new experimental data becomes available.
Nevertheless, existing literature might guide wet-lab scientists in choosing the
best candidates for experimental validation from those suggested in the study.

Additionally, although constraints can be defined over exchange fluxes ac-
cording to media composition, the exact nutrient consumption rates are often
unknown, hampering the definition of accurate bounds for exchange reactions,
which affects the phenotype prediction of cancer models [126]. Therefore, future
studies should attempt to include experimentally measured uptake/secretion
rates or reconstruct enzyme-constrained GECKO models.

4.2 Reconstruction of Cell-specific Models Capturing the In-

terplay Between Metabolism and Epigenetics in Cancer

In the second study, and for the first time, we successfully built tradi-
tional GSMMs and GECKO models for human cancer cell lines comprising the
DNA methylation and demethylation machinery. First, reactions (in)/directly
involved in DNA (de)/methylation were retrieved from literature and databases,
curated, and integrated with the most updated version of the generic GSMM of
human cells, the Human1 version 12.0. Transcriptomics data of different NCI-60
cell lines were then used to create cell-line specific traditional GSMMs, which in
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turn served as draft for the construction of cell-specific GECKO models through
the incorporation of enzyme kinetics information. Different reconstruction and
simulation strategies were tested with both types of models, and the ones pro-
viding the best simulations were identified.

Models were validated through the observation that simulated exchange
rates were similar to their experimentally measured values. GECKO models
performed better than GSMMs in that regard, and were able to give small rela-
tive errors for growth rates, which were similar to the one reported in a previous
study for 11 of these cell lines. Furthermore, the simulated flux and protein mass
distribution across different metabolic pathways of GECKO models were in line
with what was reported in the literature for cancer cells. Additionally, cell-line-
specific DNA methylation levels estimated based on experimental data were in-
troduced in GECKOs to understand how metabolism affects DNA methylation
across different cell lines, whereas DNA methylation flux rules were added to
force flux through demethylation reactions and consequently simulate the exper-
imentally observable dynamic DNA methylation turnover steady-state, where
both DNA demethylation and methylation reactions are active.

The biggest advantage of the GECKO models reconstructed in the study is
that they incorporate enzymatic constraints, and therefore, do not need to be
limited with exact values of many exchange fluxes to guarantee accurate flux
distributions. Besides, it was observed that even the use of constraints on three
exchange fluxes of traditional GSMMs was not sufficient to give as good results
as with GECKO models.

Nevertheless, those models only mirror active DNA demethylation mecha-
nisms, whereas passive DNA demethylation, i.e. the dilution of DNA methyla-
tion signal as a result of fast cellular division in the absence of functional DNA
methylation maintenance machinery, is not taken into account [260].

Another problem is that active DNA demethylation is not achieved with flux
simulations for most of the cell lines modeled, because the flux rules applied are
previously reported generalized flux ratios that may not in fact apply to certain
cell lines, causing the simulations to become infeasible. Hence, it is expected
that prospective studies will incorporate newly discovered cell-specific DNA
methylation rules.

4.3 Limitations of both studies and future directions

A common limitation to both studies is the use of transcriptomics data to
reconstruct models of specific tissues or cells. Despite often being more com-
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prehensive in terms of its coverage, providing data related with a high number
of genes and related reactions, transcriptomics can lead to incorrect predictions
due to the limited correlation between gene and protein expression levels. We
expect, however, that future protein quantification techniques may simplify the
acquisition of more comprehensive proteomics datasets that can be applied to
the reconstruction of models covering all cellular metabolic reactions.

The lack of knowledge about the composition of biomass in each tissue/cell
line is another problem, aggravated by the fact that biomass composition varies
with environmental conditions [261, 262]. The generalized one used in these
studies is only an approximation that can lead to limited accuracy in the model
predictions. Therefore, prospective investigations should integrate experimen-
tally measured cell-specific biomass composition values.

It is also important to note that the reconstructed models are metabolic,
while some of the suggested targets in the first study and targets that might
be discovered in the future with the models in the second study, may have op-
posite effects through regulatory and signaling pathways. Furthermore, DNA
methylation is strongly affected by other regulatory mechanisms, such as other
epigenetic modifications [263]. Therefore, it will be important to integrate regu-
latory and signaling networks into future metabolic models of CSCs and of CCs
with epigenetic machinery.
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Figure A.1: Influence of min-max transformation on normalized gene expression data.
Heatmaps show normalized gene expression data for the pancreas dataset without (A) and
with (B) min-max transformation. There is a clear separation between samples with min-max
normalization. Samples are overall grouped by donor, except CSC and CC samples of donor
5, which are respectively closer to the corresponding cell types of other donors than to each
other.
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Figure A.2: Influence of transcriptomics data integration strategies in the similarity of reaction
scores. The average Euclidean distance among reaction scores of samples of the same group
(same cell type, same study, and donor/cell line) was determined for each gene threshold
strategy (global, local1, local2, local1B, local2B), gene threshold (10th, 25th, 50th, 75th, and
90th percentile), gene to reaction scores conversion strategy (min-max and min-sum), and
either including all genes or just the metabolic genes in the gene threshold calculation. An
identical estimation was then made for simulated groups of random samples of the same size
and the process was repeated 1000 times (continues).
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Figure A.2 (continued from previous page): Boxplots show the proportion of simulations where
the average Euclidean distance was smaller than the distance observed in the corresponding
real sample groups (vertical axis) for each group (horizontal axis), and splits results by gene
threshold strategy (A, B), conversion strategy (C, D) and decision to include all genes or
just metabolic genes in gene threshold calculation (E, F). A, C, and E are sample groups
corresponding to microarray studies. B, D, and F are sample groups of RNA-seq studies.
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Figure A.3: Influence of transcriptomics data integration strategies in the variability of reac-
tion scores. Principal Component Analysis (PCA) of reaction scores for different combinations
of data integration parameters for microarray (A, B, C) and RNA-seq (D, E, F) datasets.
None of the integration strategies per se are responsible for the variability in the first two
components. A and D: gene to reaction scores conversion strategy. B and E: decision to in-
clude all genes or just metabolic genes in gene threshold calculation. C and F: gene threshold
strategy.
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Figure A.4: Composition of reconstructed models. A: number of active reactions in recon-
structed metabolic models of the different tissues. Tissues without error bars are those with
just one donor/cell line. The error bars are 95% CI. B: Boxplot with the overall number of
active reactions, genes, and metabolites of the different cell types. C: The median percent-
age of active reactions in each metabolic subsystem/pathway was calculated across models
of different donors/cell lines of the same cell type and tissue. Then, the difference between
the median values for CSCs and CCs of the same tissue was assessed. Metabolic subsystems
were ranked from those with more percentage of active reactions in CSCs to those with more
percentage of active reactions in CCs (continues).
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Figure A.4 (continued from previous page): The top 10% subsystems in each tissue are shown.
Subsystems with three or fewer reactions, or with no difference between CSCs and CCs across
any tissue were excluded from the analysis. Note: percentage of active reactions was not
directly compared among different tissues, because each tissue corresponds to an independent
experiment/dataset.
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Figure A.5: Essential genes and antimetabolites predicted in both CSCs and CCs.A: essential
genes predicted for models of CSCs and models of CCs. B: antimetabolites predicted to block
the effect of the EMs that are common to both models of CSCs and models of CCs.
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Figure A.6: TFs and miRs with potential to target genes that are correlated with biomass in
both CSCs and CCs. A: TFs that when knocked-out decrease expression of genes that are
directly correlated with biomass in both models of CSCs and of CCs. Only TFs significantly
targeting those genes have color (adjusted p-value < 0.05) and color intensity is −log(adjusted
p-value). Each number counts the genes associated with biomass targeted by the TF. B: miRs
that target genes that are directly correlated with biomass in both models of CSCs and of
CCs. miRs targeting the top 10 numbers of targets in each tissue (maybe more than 10 miRs
per tissue if different miRs have the same number of targets) are shown. Color intensity and
numbers reflect the number of genes associated with biomass targeted by the miR.
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Figure A.7: Flow diagram of the overall study methodology. Full description of the overall
methodology can be found in Materials and Methods. Details of pre-processing and parameter
selection are represented in an independent flow diagram in Figure A.8.
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Figure A.8: Flow diagram of the pre-processing and parameter selection methodology. Full
description of the pre-processing and parameter selection methodology can be found in Ma-
terials and Methods. Details of step 1.3: “Test different strategies for transcriptomics data
integration” are represented in an independent flow diagram in Figure A.9.
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Figure A.9: Flow diagram of the pre-processing step – testing different strategies for tran-
scriptomics data integration. Detailed representation of the different strategies applied for
transcriptomics data integration.
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Figure B.1: Comparison of measured and simulated growth rates produced by traditional
GSMMs where uptake/secretion rates of metabolites in Ham’s media were loosely constrained
(from -1000 to 1000). A-D are scatter plots with log10 of values of simulated and measured
growth rates. Value at top right of each graph is the percentage of data points that are
inside the pink area (where log10(|predicted value|) is within log10(|measured value|) ± 1).
Either Richelle’s pipeline using FASTCORE (A, B) and Robinson’s pipeline using tINIT
(C, D) were applied to reconstruct the models employed in the simulation. The effect of the
integration (B, D) or not (A, C) of all tissue-specific metabolic tasks in those models was
also assessed. E: Relative errors of predicted growth rates.
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Figure B.2: Comparison of measured and simulated growth rates produced by traditional
GSMMs where uptake/secretion rates of three metabolites (glucose, lactate and threonine)
were constrained with measured fluxes. A-D are scatterplots with log10 of values of simulated
and measured growth rates. Value at top right of each graph is the percentage of data points
where log10(|predicted value|) is within log10(|measured value|) ± 1. Either Richelle’s pipeline
using FASTCORE (A, B) and Robinson’s pipeline using tINIT (C, D) were applied to
reconstruct the models employed in the simulation. The effect of the integration (B, D) or
not (A, C) of all tissue-specific metabolic tasks in those models was also assessed. E: Relative
errors of predicted growth rates.
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Figure B.3: Comparison of measured and simulated fluxes produced by traditional GSMMs
constrained with measured growth rates. A: a scatter plot with log10 of values of simulated
and measured fluxes of exchange reactions of 26 metabolites. Value at top right of A and
B is the percentage of data points where log10(|predicted value|) is within log10(|measured
value|) ± 1 (in A, it corresponds to the pink area). B: a scatter plot with log10 of values
of simulated and measured growth rates. The correlation coefficients are not exactly one,
because experimentally determined upper and lower bounds were used to constraint simulated
biomass fluxes, while the value of the measured biomass in the graph is the average of those
bounds. C: histograms with the distribution of absolute values of measured and simulated
fluxes before and after logarithmization. D: Relative errors of predicted growth rates. Data
points forming a line at the bottom of A correspond to metabolites with a predicted flux of
zero, which are shown in the graphs as holding the lowest absolute measured value (besides
zero), as the logarithm of zero is undefined. In C, the values of those metabolites fall in the
lowest bin, creating an oddly tall bin at the beginning. Models used were reconstructed with
Robinson’s pipeline (using tINIT) and without tissue-specific tasks.
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Figure B.4: Comparison of simulated fluxes of reactions involved in DNA demethylation and
the estimated degree of DNA methylation for models with methylation flux rules and cell-
specific methylation ratios - Upstream of TSS, CpG islands, Enhancers. A: scatter plots with
log10 values of simulated fluxes versus the experimentally estimated degree of methylation
across all genome or in close proximity to different genomic features. The procedure and
the description of datasets applied to estimate the level of DNA methylation is detailed in
Comparison of fluxes of reactions involved in DNA (de)/methylation and the degree of DNA
methylation section of Materials and methods. The vertical labels are identifiers of reactions
shown in Figure 3.1. Zero flux values were replaced with a very small value (1×10−15) because
log10(0) is undetermined. Only the 30 cell lines for which there was experimental data across
all types of genomic intervals were here used.
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Figure B.5: Comparison of simulated fluxes of reactions involved in DNA demethylation and
the estimated degree of DNA methylation for models with methylation flux rules and cell-
specific methylation ratios - TSS (clusters), Genes, Global DNA methylation. A: scatter plots
with log10 values of simulated fluxes versus the experimentally estimated degree of methyla-
tion across all genome or in close proximity to different genomic features. The procedure and
the description of datasets applied to estimate the level of DNA methylation is detailed in
Comparison of fluxes of reactions involved in DNA (de)/methylation and the degree of DNA
methylation section of Materials and methods.
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Figure B.5 (continued from previous page): The vertical labels are identifiers of reactions
shown in Figure 3.1. Zero flux values were replaced with a very small value (1 × 10−15)
because log10(0) is undetermined. Only the 30 cell lines for which there was experimental
data across all types of genomic intervals were here used.
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Figure B.6: Comparison of measured and simulated exchange fluxes produced by GECKO
models constrained with measured growth rates, and containing methylation flux rules and
cell-specific methylation ratios. A: a scatter plot with log10 of values of simulated and mea-
sured fluxes of exchange reactions of 26 metabolites. Value at top right of A and B is the
percentage of data points where log10(|predicted value|) is within log10(|measured value|) ± 1
(in A, it corresponds to the pink area). B: a scatter plot with log10 of values of simulated and
measured growth rates. The correlation coefficients are not exactly one, because experimen-
tally determined upper and lower bounds were used to constraint simulated biomass fluxes,
while the value of the measured biomass in the graph is the average of those bounds. C:
histograms with the distribution of absolute values of measured and simulated fluxes before
and after logarithmization. D: Relative errors of predicted growth rates. Data points forming
a line at the bottom of A correspond to metabolites with a predicted flux of zero, which
are shown in the graphs as holding the lowest absolute measured value (besides zero), as the
logarithm of zero is undefined. In C, the values of those metabolites fall in the lowest bin,
creating an oddly tall bin at the beginning. Models used were reconstructed with Robinson’s
pipeline (using tINIT) and without tissue-specific tasks.
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Figure B.7: Comparison of experimentally measured growth rates with degree of DNA methy-
lation in gene promoters. Scatter plot with log10 values of measured growth rates versus the
experimentally degree of methylation in the region Upstream of TSSs.
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Table C.1: Markers of CSCs reported in literature.

Marker Leukemia Bladder Breast Colon Gastric Glioma/

Meduloblastoma

Head

and Neck

Liver Lung Melanoma Myeloma Osteo-

sarcoma

Ovarian Pancreatic Prostate Kidney

ALCAM/CD166 1(c) 1(b)

ALDH1A1 1(b) 1(a,b) 1(b) 1(b) 1(b) 1(b) 1(f) 1(b) 1(b)

Aminopeptidase N/CD13 1(b)

BMI-1 1(b) 1(b) 1(b) 1(b) 1(b) 1(b)

CD117/c-kit 1(b) 1(b) 1(b)

CD123/IL-3 R alpha 1(b)

CD13 1(b)

CD133 1(b) 1(a,b) 1(a,b) 1(b) 1(a,b) 1(b) 1(b) 1(b) 1(b)

CD138/Syndecan-1 1(b)

CD15/Lewis X 1(b) 1(b)

CD151 1(b)

CD166 1(b) 1(b)

CD166/ALCAM 1(b)

CD19 1(b)

CD20/MS4A1 1(b)

CD24 1(b) 1(b) 1(b) 1(a,b)

CD26 1(b)

CD27/TNFRSF7 1(b)

CD29 1(b)

CD34 1(b)

CD34+CD38- 1(d)

CD38 1(b)

CD44 1(b) 1(b) 1(b) 1(b) 1(b) 1(b) 1(a,b) 1(b) 1(b) 1(a,b) 1(b) 1(e)

CD44+CD24-/low 1(a)

CD45 1(b)



Table C.1: Markers of CSCs reported in literature – continued from previous page.

Marker Leukemia Bladder Breast Colon Gastric Glioma/

Meduloblastoma

Head

and Neck

Liver Lung Melanoma Myeloma Osteo-

sarcoma

Ovarian Pancreatic Prostate Kidney

CD47 1(b) 1(b)

CD49f/Integrin alpha 6 1(b) 1(b) 1(b)

CD90 1(b) 1(a)

CD90/Thy1 1(b) 1(b) 1(b)

CD96 1(b)

CEACAM-6/CD66c 1(b)

c-Myc 1(b) 1(b) 1(b) 1(b) 1(b) 1(b)

CX3CR1 1(b)

CXCR1/IL-8 RA 1(b)

CXCR4 1(b) 1(b) 1(b) 1(e)

Endoglin/CD105 1(b)

EpCAM/TROP1/ESA 1(b) 1(b) 1(b) 1(a,b)

KLF4 1(b) 1(b)

KLF4 1(b)

Lgr5/GPR49 1(b) 1(b) 1(b)

Musashi-1 1(b) 1(b)

NANOG 1(b) 1(b) 1(b) 1(b) 1(b)

Nestin 1(b) 1(b) 1(b) 1(b)

OCT4/POU5F1 1(b) 1(b) 1(b) 1(b) 1(b)

Rex1 1(b)

SALL4 1(b) 1(b) 1(b) 1(b) 1(b) 1(b)

SOX2 1(b) 1(b) 1(b) 1(b) 1(b)

TIM3 1(b)

TNFRSF16 1(b)

TRA-1-60(R) 1(b)



Table C.1: Markers of CSCs reported in literature – continued from previous page.

Marker Leukemia Bladder Breast Colon Gastric Glioma/

Meduloblastoma

Head

and Neck

Liver Lung Melanoma Myeloma Osteo-

sarcoma

Ovarian Pancreatic Prostate Kidney

MET/RTK 1(e)

a) [264], b) [265], c) [266], d) [267], e) [268], f) [269]



Table C.2: Studies from which gene expression data sets were retrieved.

Study Cancer Cell Subtype

or Treatment

Patients Cell Line Technique RNAseq

Library

Sequencing

Platform

Microarray Array

Platform

Dataset Ids Paper Comments Criteria

for study

inclusion

R1.1.1 prostate luminal, basal yes no RNAseq NuGEN

kit

Illumina

HiSEq

2000

GSE82071

(Gene Expres-

sion Omnibus),

E-GEOD-

82071 (Array

Express)

[270]

Here stem cells

are the basal cells

(or CD49f high)

and non-stem cells

are the luminal

cells (or CD49f

low). There are

paired samples

(dif. Cells from

same patient).

CSC marker

CD49f.

M2.2.13 liver Hep3B

CD13+CD133+,

Huh7

CD13+CD133+,

PLC/PRF/5

CD13+CD133+,

versus

Hep3B

CD13−CD133−,

Huh7

CD13−CD133−,

PLC/PRF/5

CD13−CD133−

no Hep3B,

Huh7,

PLC/

PRF/5

Microarray Affymetrix [HuGene-2_0-

st] Affymetrix

Human Gene

2.0 ST Array

[transcript

(gene) version

GSE66529

(Gene Expres-

sion Omnibus),

E-GEOD-

66529 (Array

Express)

[271]

Although authors

focus on lnRNAs,

microarray was

done for all mR-

NAs. Platform

is the same as

the one used for

mRNAs and no

specific isolation

protocol for lnR-

NAs is done in

study (total RNA

was used)

CD13+CD133+

markers.

Chemoresis-

tance. Form

oncospheres.

Higher

tumorigenicity

.



Table C.2: Studies from which gene expression data sets were retrieved – continued from previous page.

Study Cancer Cell Subtype

or Treatment

Patients Cell Line Technique RNAseq

Library

Sequencing

Platform

Microarray Array

Platform

Dataset Ids Paper Comments Criteria

for study

inclusion

R4.10.2 glioblastoma FCC, SCC yes no RNAseq NEBNext

UltraTM

RNA

Library

Prep Kit

Illumina

HiSeq 2500

EGAD00001

004380

(European

Genome-

Phenome

Archive)

[272]

SCC: slow-cycling

cells are CSCs

(they maintain

their prolifera-

tion potential but

just divide when

needed - to keep

homeostasis).

FCC: fast-cycling

cells are CCs.

There is also a

metabolomics

dataset in same

article.

Higher cell

migration ability

and tumorigenicity.

Previous study PMID:

21515906 shown that

SCCs are enriched

in stem cell markers

in vitro:

CD133+/CD15+

/ABCG2+.

Higher proliferation

potential (but lower

proliferation, as they

are slow-cycling cells).

R5.8.2.TN breast

cancer

- triple

negative

nonCD44+

CD24−/low,

CD44+

CD24−/low

no SUM149PT,

HCC1937,

SUM159PT

RNAseq unknown Illumina

HiSeq 2500

GSE132083

(Gene Expres-

sion Omnibus)

[273]

CD44+CD24−

/low cells

.



Table C.2: Studies from which gene expression data sets were retrieved – continued from previous page.

Study Cancer Cell Subtype

or Treatment

Patients Cell Line Technique RNAseq

Library

Sequencing

Platform

Microarray Array

Platform

Dataset Ids Paper Comments Criteria

for study

inclusion

M6.3.14 ovary SOC

_differentiated,

SOC

_undifferentiated

yes no Microarray Agilent Agilent-039494

SurePrint G3

Human GE

v2 8x60K

Microarray

039381 (Probe

Name version)

GSE64999

(Gene Expres-

sion Omnibus),

E-GEOD-

64999 (Array

Express)

[274]

Treatment with

Rock inhibitor

produced CSCs.

Treatment with

FBS allowed to get

CCs. soc stands

for serum ovarian

cancer

Form spheroids.

Tumorigenicity.

ALDH1A1,

Nanog and Sox2

markers.

Differentiated cells

(CCs) showed

reduced expression

of ALDH1A1, Nanog

and Sox2, epithelial

-like morphology

and differentiation

marker CDK7.

M8.2.3 acute

myeloid

leukemia

(AML)

AML

(CD34+CD38+),

AML

(CD34+CD38−)

yes no Microarray Affymetrix [HG-

U133A_2]

Affymetrix Hu-

man Genome

U133A 2.0

Array

GSE34044

(Gene Expres-

sion Omnibus),

E-GEOD-

34044 (Array

Express)

[275]

CSCs are AML

(CD34+CD38−)

and CCs are AML

(CD34+CD38+)

CD34+CD38−

marker. Over-

representation

of Notch path-

way.



Table C.2: Studies from which gene expression data sets were retrieved – continued from previous page.

Study Cancer Cell Subtype

or Treatment

Patients Cell Line Technique RNAseq

Library

Sequencing

Platform

Microarray Array

Platform

Dataset Ids Paper Comments Criteria

for study

inclusion

M9.1.4 kidney non-cultured

cells,

CXCR4+MET+

CD44+, spheres

yes no Microarray Illumina Illumina

HumanHT-12

V4.0 expres-

sion beadchip

GSE89461

(Gene Expres-

sion Omnibus)

[268]

Non-cultured cells

are a mixture

of CCs and

some CSCs.

CXCR4+MET+

CD44+ are CSCs.

As not all ’spheres’

are CSCs, (most

but not all are

enriched for

CSC markers),

’spheres’ were

excluded.

CXCR4+MET+

CD44+

markers. Tu-

morigenesis.

Activation of

Wnt and Notch

pathways. Corre-

lation with tumor

aggressiveness and

metastasis

R11.1.4 non-small

cell lung

cancer

ntp, nts no NCIH1703,

NCIH1299,

ChaGoK1

RNAseq NuGEN

kit

Illumina

Genome

Analyzer II

GSE48599

(Gene Expres-

sion Omnibus)

[276]

Samples ending

in ’kds’ mean

knock down with

shRNA, they are

not going to be

used in analysis.

Samples ending

in ’nts’ are CSCs.

Samples ending in

’ntp’ are CCs.

Oncosphere

formation. Ex-

pression of

Sox2, Oct3/4,

Nanog, ALDH1

and CD133.

Tumorigenicity.



Table C.2: Studies from which gene expression data sets were retrieved – continued from previous page.

Study Cancer Cell Subtype

or Treatment

Patients Cell Line Technique RNAseq

Library

Sequencing

Platform

Microarray Array

Platform

Dataset Ids Paper Comments Criteria

for study

inclusion

R12.5.4 pancreas

- pancre-

atic ductal

adenocarci-

noma

PDAC_Adh,

PDAC_Sph

yes no RNAseq Illumina

TruSeq

RNA

Sample

Prep Kit

v2

Illumina

Genome

Analyzer

IIx

E-MTAB-3808

(ArrayExpress) [277]

CSCs are the

spheroid cultured

samples. Adherent

culture samples

are CCs. The same

sample is split

through several

files (instead of

being different

runs of same sam-

ple), because all

files of same sam-

ple had exackly

4M reads except

for the last file

which had variable

number of reads.

fastq.gz. Files of

same sample were

first merged with

’cat’ command.

Form spheres.

Previous stud-

ies (PMID:

24204632)

shown those

spheres express

CD133+ and

other markers

associated with

CSC.



Table C.2: Studies from which gene expression data sets were retrieved – continued from previous page.

Study Cancer Cell Subtype

or Treatment

Patients Cell Line Technique RNAseq

Library

Sequencing

Platform

Microarray Array

Platform

Dataset Ids Paper Comments Criteria

for study

inclusion

M13.2.11 head

and neck

squamous

cell

carcinoma

(HNSCC)

of the oral

tongue/cavity

UT14, UT16A,

UT24A, UT30,

UT33,

UT14CD44+,

UT16ACD44+,

UT24ACD44+,

UT30CD44+,

UT33CD44+

no UT14,

UT16A,

UT24A,

UT30,

UT33

Microarray Affymetrix [HuEx-1_0-st]

Affymetrix

Human Exon

1.0 ST Array

[transcript

(gene) version]

GSE55487

(Gene Expres-

sion Omnibus),

E-GEOD-

55487 (Array

Express)

[278]

Cells were isolated

by different meth-

ods. The method

described in the

article as the most

effective (CD44

isolation) was the

one chosen here.

CD44+ marker.

Chemoresistance



Table C.3: Essential metabolites predicted only in CSCs.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

malonyl-carnitin TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

eicosa-(2E,8Z,11Z,14Z,17Z)-pentaenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

2-methoxy-6-all trans-decaprenyl-2-methoxy-1,4-benzoquinol FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

eicosenoylcarnitine(9) FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE

3-oxo-dihomo-gamma-linolenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

3-oxo-tetracosa-12,15,18,21-all-cis-tetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE

2-trans-7,10,13,16,19-all-cis-docosahexaenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

trans-2-cis,cis,cis-8,11,14-eicosatetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

N-pantothenoylcysteine TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE

sphingosine FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

deoxyguanosine FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE

adenine TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

3-demethylubiquinol-10 FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

deoxyadenosine TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

3-keto-eicosa-8,11,14,17-all-cis-tetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

3(S)-hydroxy-docosa-7,10,13,16,19-all-cis-pentaenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

arachidonyl-carnitine TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

guanine FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE

cytidine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

3-oxo-docosa-7,10,13,16,19-all-cis-pentaenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

2-deoxy-D-ribose-1-phosphate FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE

3(S)-hydroxy-all-cis-8,11,14,17-eicosatetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

dGMP FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE

3(S)-hydroxy-dihomo-gamma-linolenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

1-acylglycerol-3P-gamma-lin FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-palm FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

1-acylglycerol-3P-7,10,13,16,19-docosa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-5-tetrade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-tetraco FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-7-hexade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(9E)-octadecenoylcarnitine TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

1-acylglycerol-3P-palmn FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-6,9,12,15,18-tetraco FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-cis-vac FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

decanoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE

1-acylglycerol-3P-8,11-eico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-15-tetra FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-9,12,15,18,21-tetra FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-ol FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-myrist FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-8,11,14,17-eico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-13,16,19-doco FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-trico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

dGDP FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

1-acylglycerol-3P-eico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-pentade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-ol TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-12,15,18,21-tetra FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(9E)-octadecenoyl-CoA FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE

1-acylglycerol-3P-7,10,13,16-docosa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-10,13,16,19-doco FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-laur FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

cholesterol-ester-arach TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-heneico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

octadecenoylcarnitine(5) TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

1-acylglycerol-3P-11,14,17-eico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-nanode FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

palmitoleoyl-CoA TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

1-acylglycerol-3P-tridec FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-13,16-docosa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-6,9,12,15,18,21-tetra FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-10-heptade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-hexacosa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

bilirubin-monoglucuronoside FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

1-acylglycerol-3P-4,7,10,13,16-docosa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

palmitoleoyl-carnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-docosa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

sphingosine-1-phosphate FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE

fatty acid pool FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

1-acylglycerol-3P-linolen FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

10,13,16,19-docosatetraenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

1-acylglycerol-3P-11,14-eicosa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-hexecose FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-linolen TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

1-acylglycerol-3P-13-docose FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-11-eico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-9-octade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-dihomo-gamma FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

1-acylglycerol-3P-6,9,12,15-octa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-stea FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-5,8,11,14,17-eico TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(2E)-pentadecenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-7-octade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

L-oleoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

1-acylglycerol-3P-9-tetrade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-lin TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-6,9-octa FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

bilirubin FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

ocosatetraenoylcarnitine TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

3-hydroxypentadecanoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-9,12,15,18-tetraco FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(15Z)-tetracosenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

1-acylglycerol-3P-arach FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-9-eicose FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-gamma-lin TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-6,9,12,15-octa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-lin FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

3-oxopentadecanoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

pyridoxine-phosphate FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

linoleic-carnitine TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1-acylglycerol-3P-5,8,11-eico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

ribulose-5-phosphate FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

1-acylglycerol-3P-5,8,11,14,17-eico FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

cholestenol FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE

1-acylglycerol-3P-11-docose FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-13-octade FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1-acylglycerol-3P-4,7,10,13,16,19-doco FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

tricosanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

L-gulonate FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

heneicosanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

phosphatidate-LD-PC pool TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[protein]-N6-methyl-L-lysine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

6-lactoyl-5,6,7,8-tetrahydropterin FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

(6Z,9Z)-octadecadienoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(2E)-decenoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

octanoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

Alpha-Linolenyl Carnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

cholesterol-ester-13,16,19-doco TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

hexanoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(11Z,14Z,17Z)-eicosatrienoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3-oxododecanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(2E)-tetradecenoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

butyryl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-12,15,18,21-tetracosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

trans,cis-hexadeca-2,7-dienoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

L-palmitoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

docosenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-9,12,15,18-tetraco TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-10,13,16,19-docosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

uridine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

phosphatidate-LD-TAG pool FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

simvastatin dihydroxy acid form FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

hexacosenoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-palm TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(2E)-dodecenoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-5-tetra TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

dodecanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-13,16-docosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

CDP-ethanolamine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

simvastatin-acyl-glucuronide FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

eicosenoylcarnitine(7) TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-9-heptade TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

heptadecanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

D-xylulose FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

tetracosanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-9-octa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

hexacosanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

CDP-choline TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(R)-3-hydroxydecanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-tridec TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-4,7,10,13,16-docosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-9-eicose TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

hexanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-9,12,15,18,21-tetra TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

eicosenoylcarnitine(11) TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

xylitol FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

octadecenoylcarnitine(11) TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

D-3-hydroxyhexanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-dihomo-gamma TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(4Z,7Z,10Z,13Z,16Z)-docosapentaenoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(2E)-hexenoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

O-propanoylcarnitine FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

phosphatidylinositol-4,5-bisphosphate FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

HMA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(8Z,11Z,14Z,17Z)-eicosatetraenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

cholesterol-ester-docosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

thymidine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-9-tetrade TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-hepta TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(2E)-octadecenoyl-CoA FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

UDP-galactose FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

acetoacetyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

13-cis-retinol FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

docosanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

pyridoxal FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

(S)-3-hydroxy-7-hexadecenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

cholesterol-ester-7-octade TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-trico TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

dodecanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

Tetradecenoyl Coenzyme A (N-C14:1) FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-11-eico TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

(2E)-octenoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-tetraco TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

dUTP FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

3(S)-hydroxy-docosa-7,10,13,16-all-cis-tetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

tetradecanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-eico TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

nicotinamide ribonucleoside FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

cholesterol-ester-stea TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1,2-diacylglycerol-LD-TAG pool FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

cholesterol-ester-13-eicose TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

deamido-NAD FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

cholesterol-ester-7-tetrade TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1-acylglycerol-LD-PE pool FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

cholesterol-ester-cis-vac TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1-acylglycerol-LD-PC pool FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

3-oxooctanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(S)-3-hydroxybutyryl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-11-docose TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(2E,7Z,10Z,13Z,16Z)-docosapentaenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

alpha-D-galactose-1-phosphate FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

phosphocholine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-10,13,16-docosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-11,14,17-eico TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

ribose-1-phosphate FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

1-phosphatidyl-1D-myo-inositol-5-phosphate FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

12,15,18,21-tetracosatetraenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

glucono-1,5-lactone-6-phosphate FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

cholesterol-ester-8,11,14,17-eico TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

ascorbate FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

acetyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-8,11-eico TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-7-hexa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-6,9,12,15,18,21-tetra TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

trans,cis-hexadeca-2,9-dienoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

(8Z,11Z)-eicosadienoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-7,10,13,16-docosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

eicosadienoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

cholesterol-ester-6,9-octa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-15-tetra TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-6,9,12,15,18-tetraco TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

11-Octadecenoyl Coenzyme A FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

eicosanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

ethanolamine-phosphate FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

cholesterol-ester-13-docose TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3-oxohexanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(9Z,12Z,15Z,18Z)-tetracosatetraenoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-penta TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3-oxodecanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

(R)-3-hydroxybutanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

dehydroascorbic acid FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

3-oxopalmitoleoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

cholesterol-ester-hexecose TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



Table C.3: Essential metabolites predicted only in CSCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

cholesterol-ester-nanode TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

octanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

1,2-diacylglycerol-LD-PC pool FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

cholesterol-ester-11,14-eicosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(9Z,12Z,15Z,18Z,21Z)-tetracosapentaenoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-hexacosa TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-13-octade TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

cholesterol-ester-myrist TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

decanoyl-[ACP] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

tetradecanoylcarnitine TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

crotonyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

dADP FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



Table C.4: Essential metabolites predicted in both CSCs and CCs.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

nicotinamide TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

nicotinamide D-ribonucleotide TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

dADP TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

1,2-diacylglycerol-LD-PC pool TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE

fatty acid pool TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

(9E)-octadecenoyl-CoA TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

dGDP TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE

1-acylglycerol-3P-13,16-docosa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-hexecose TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-7,10,13,16-docosa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-laur TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-nanode TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-tridec TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-tetraco TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-6,9,12,15,18,21-tetra TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-hexacosa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-12,15,18,21-tetra TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-4,7,10,13,16-docosa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-docosa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-linolen TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-pentade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-13,16,19-doco TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

2-deoxy-D-ribose-1-phosphate TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

1-acylglycerol-3P-5-tetrade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-ol TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-5,8,11-eico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE



Table C.4: Essential metabolites predicted in both CSCs and CCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

1-acylglycerol-3P-6,9,12,15-octa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-9,12,15,18-tetraco TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-6,9-octa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-5,8,11,14,17-eico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-11,14-eicosa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-8,11,14,17-eico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-6,9,12,15,18-tetraco TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-10,13,16,19-doco TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-cis-vac TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-palmn TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-palm TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-trico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

2-lysolecithin pool FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE

1-acylglycerol-3P-11,14,17-eico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-heneico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-eico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-10-heptade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-myrist TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-9,12,15,18,21-tetra TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-gamma-lin TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-4,7,10,13,16,19-doco TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-lin TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-9-tetrade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-11-docose TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

sphingosine TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

1-acylglycerol-3P-9-eicose TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE



Table C.4: Essential metabolites predicted in both CSCs and CCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

1-acylglycerol-3P-9-octade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-11-eico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-dihomo-gamma TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-stea TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-13-octade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-8,11-eico TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-7,10,13,16,19-docosa TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-7-hexade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-7-octade TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-arach TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-13-docose TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

1-acylglycerol-3P-15-tetra TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

guanine TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

bilirubin-monoglucuronoside FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

CDP-choline FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

dGMP TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

bilirubin FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

phosphatidate-LD-PC pool FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

phosphocholine FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

deoxyguanosine TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

(2E)-octadecenoyl-CoA FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

histone-N6-methyl-L-lysine FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

N-pantothenoylcysteine FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

3-oxo-tetracosa-12,15,18,21-all-cis-tetraenoyl-CoA FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

deoxyadenosine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

O-propanoylcarnitine TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE



Table C.4: Essential metabolites predicted in both CSCs and CCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

pyridoxine-phosphate TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

eicosa-(2E,8Z,11Z,14Z,17Z)-pentaenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

sphingosine-1-phosphate FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

3(S)-hydroxy-all-cis-8,11,14,17-eicosatetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

palmitoleoyl-CoA FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

adenine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

3-keto-eicosa-8,11,14,17-all-cis-tetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

pyridoxal FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

malonyl-carnitin FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

decanoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

(9E)-octadecenoylcarnitine FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

linoleic-carnitine FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

trans-2-cis,cis,cis-8,11,14-eicosatetraenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

2-Decaprenyl-6-Methoxy-1,4-Benzoquinone FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

12,15,18,21-tetracosatetraenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

(2E)-hexadecenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

Tetradecenoyl Coenzyme A (N-C14:1) FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

pantetheine FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

dodecanoylcarnitine FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3-oxoheptadecanoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

stearoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

3-oxopalmitoleoyl-CoA FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

UDP-galactose FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

trans,cis-hexadeca-2,7-dienoyl-CoA FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

(15Z)-tetracosenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

2-amino-3-oxoadipate FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE



Table C.4: Essential metabolites predicted in both CSCs and CCs – continued from previous page.

Metabolite liver ovary AML kidney head and neck prostate glioblastoma breast lung pancreas

(2E)-heptadecenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

previtamin D3 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

docosenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

alpha-D-galactose-1-phosphate FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

trans,cis-hexadeca-2,9-dienoyl-CoA FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

eicosadienoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

10,13,16,19-docosatetraenoylcarnitine FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

(S)-3-hydroxy-7-hexadecenoyl-CoA FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

3(S)-hydroxy-dihomo-gamma-linolenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

2-Decaprenyl-5-Hydroxy-6-Methoxy-3-Methyl-1,4-Benzoquinone FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

2-Decaprenyl-6-Methoxy-3-Methyl-1,4-Benzoquinone FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

3-oxo-dihomo-gamma-linolenoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

3-hydroxyheptadecanoyl-CoA FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE



Table C.5: Composition of Ham’s medium.

Reaction ID External metabolite Name metabolite Description

HMR_9066 m01365s arginine[s] amino acid

HMR_9038 m02125s histidine[s] amino acid

HMR_9041 m02426s lysine[s] amino acid

HMR_9042 m02471s methionine[s] amino acid

HMR_9043 m02724s phenylalanine[s] amino acid

HMR_9045 m03089s tryptophan[s] amino acid

HMR_9064 m03101s tyrosine[s] amino acid

HMR_9061 m01307s alanine[s] amino acid

HMR_9067 m01986s glycine[s] amino acid

HMR_9069 m02896s serine[s] amino acid

HMR_9044 m02993s threonine[s] amino acid

HMR_9070 m01370s aspartate[s] amino acid

HMR_9071 m01974s glutamate[s] amino acid

HMR_9062 m01369s asparagine[s] amino acid

HMR_9063 m01975s glutamine[s] amino acid

HMR_9039 m02184s isoleucine[s] amino acid

HMR_9040 m02360s leucine[s] amino acid

HMR_9068 m02770s proline[s] amino acid

HMR_9046 m03135s valine[s] amino acid

HMR_9065 m01628s cysteine[s] amino acid

HMR_9159 m02982s thiamin[s] vitamin B1

HMR_9358 m02159s hypoxanthine[s] purine derivative fom in Ham’s media

HMR_9146 m01830s folate[s] vitamin B9

HMR_9109 m01401s biotin[s] vitamin B7

HMR_9145 m02680s pantothenate[s] vitamin B5

HMR_9083 m01513s choline[s] essential nutrient with AA like metabolism: produced in cells, but insufficiently



HMR_9361 m02171s inositol[s] a sugar in media formulations

HMR_9378 m02583s nicotinamide[s] form of vitamin B3

HMR_9144 m02817s pyridoxine[s] vitamin B6

HMR_9143 m02842s riboflavin[s] vitamin B2

HMR_9423 m02996s thymidine[s] nucleotide in ham’s media

HMR_9269 m01361s aquacob(III)alamin[s] vitamin B12

HMR_9167 m02394s lipoic_acid[s] derivative of fatty acid in ham’s media

HMR_9034 m01965s glucose[s]

HMR_9074 m02946s sulfate[s]

HMR_9035 m02387s linoleate[s] essential fatty acid

HMR_9036 m02389s linolenate[s] essential fatty acid

HMR_9048 m02630s O2[s]

HMR_9047 m02040s H2O[s]

HMR_9404 m02833s retinoate[s] vitaminA

HMR_9076 m01821s Fe2+[s]

HMR_9072 m02751s Pi[s]

HMR_9151 m01327s alpha-tocopherol[s] vitamin E

HMR_9153 m01935s gamma-tocopherol[s] vitamin E
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Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1.

Reaction ID Formula Reasoning Notes Metabolites Gene Rule Reversible Subsystem

prodDNAtot 0.009 DNA-5-
methylcytosine[n] +
0.00031665646 DNA-5-
hydroxymethylcytosine[n]
+ 0.0000027 DNA-
5-formylcytosine +
0.99068064354 DNA[n]
=> DNAtotal[n]

To represent the pres-
ence/accumulation of mod-
ified cytosines in the DNA.
Stoichiometric coefficients
are based in the calculated
percentages of genome with
those modified cytosine
species (see Table D.2).

Like guaninemethylcytosine/
hydroxymethylcytosine/
formylcytosine base pairs,
guaninemethyluracil (a.k.a.
guanine-thymine or GT) is
eliminated by base-excision
repair (BER). However,
unlike the first guaninecy-
tosine modified pairs, GT
pairs do not accumulate
in the genome. So, DNA-
5-methyluracil, together
with DNA-carboxylcytosine
and other DNA modifica-
tions that are transient (like
those involved in BER -
DNA-APsite, DNA-dRPsite,
DNA-hang-drPsite, nick-
inDNA) were not included
in this total DNA composi-
tion reaction.

MAM01722n:-0.009,
DNA5hmCn:-0.00031665646,
DNA5fCn:-0.0000027,
MAM01721n:-0.99068064354,
DNAtotn:1.0

False Artificial
reactions

adaptbiomass 45 ATP [c] + 0.0267 DNA-
total [n] + 45 H2O [c] +
0.1124 RNA [c] +
0.4062 glyco-
gen [c] + 0.0012 cofac-
tor_pool_biomass [c]
+ 5.3375 pro-
tein_pool_biomass [c] +
0.2212 lipid_pool_biomass [c]
+ 0.4835 metabo-
lite_pool_biomass [c] =>
45 ADP [c] + 45 H+ [c] +
45 Pi [c] + biomass [c]

To include methylated
nuclear DNA in biomass,
to guarantee that the
DNA methylation reaction
MAR08641 is not blocked
and that there is methyla-
tion when optimizing for cell
growth.

DNA was just replaced by
DNAtotal in the biomass
reaction (MAR13082)

MAM01371c:-45.0,
DNAtotn:-0.0267,
MAM02040c:-45.0,
MAM02847c:-0.1124,
MAM03161c:-0.4062,
MAM10012c:-0.0012,
MAM10013c:-5.3375,
MAM10014c:-0.2212,
MAM10015c:-0.4835,
MAM01285c:45.0,
MAM02039c:45.0,
MAM02751c:45.0,
MAM03970c:1.0

False Artificial
reactions



Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1 – continued from previous page.

Reaction ID Formula Reasoning or references Notes Metabolites Gene Rule Reversible Subsystem

prodDNA5hmC DNA-5-methylcytosine [n] +
O2[n] + AKG[n] => Succi-
nate[n] + CO2[n] + DNA-5-
hydroxymethylcytosine[n]

Reaction R11030 from
KEGG [279]. Article
Bochtler et al. [280].

Although Fe(II) is used as
co-factor and it is converted
to Fe(III) and Fe(IV), it is
also reconverted to Fe(II) in
the same reaction [281, 282],
so iron was not included in
the reaction.

MAM01722n:-1.0,
MAM02630n:-1.0,
MAM01306n:-1.0,
MAM02943n:1.0,
MAM01596n:1.0,
DNA5hmCn:1.0

ENSG00000138336
or
ENSG00000168769
or
ENSG00000187605

False Dna (de)/
methyla-
tion

prodDNA5fC DNA-5-
hydroxymethylcytosine[n]
+ O2[n] + AKG[n] =>
Succinate[n] + CO2[n] +
DNA-5-formylcytosine[n] +
H2O[n]

Reaction 53828 from
Rhea [283]. Articles Bochtler
et al. [280] and Popov et
al. [284].

DNA5hmCn:-1.0,
MAM02630n:-1.0,
MAM01306n:-1.0,
MAM02943n:1.0,
MAM01596n:1.0,
DNA5fCn:1.0,
MAM02040n:1.0

ENSG00000138336
or
ENSG00000168769
or
ENSG00000187605

False Dna (de)/
methyla-
tion

prodDNA5CaC DNA-5-formylcytosine[n]
+ O2[n] + AKG[n] =>
Succinate[n] + CO2[n] +
DNA-5-carboxylcytosine[n]
+ H[n]

Reaction 53832 from
Rhea [283]. Articles Bochtler
et al. [280] and Popov et
al. [284].

DNA5fCn:-1.0,
MAM02630n:-1.0,
MAM01306n:-1.0,
MAM02943n:1.0,
MAM01596n:1.0,
DNA5CaCn:1.0,
MAM02039n:1.0

ENSG00000138336
or
ENSG00000168769
or
ENSG00000187605

False Dna (de)/
methyla-
tion

prodDNA5mU DNA-5-methylcytosine[n]
+ H2O[n] => DNA-5-
methyluracil[n] + NH3[n]

Reaction R01411 from
KEGG [279]. Article Popov
et al. [284].

MAM01722n:-1.0,
MAM02040n:-1.0,
DNA5mUn:1.0,
MAM02578n:1.0

ENSG00000111732
or
ENSG00000111701
or
ENSG00000128383
or
ENSG00000179750
or
ENSG00000244509
or
ENSG00000128394
or
ENSG00000239713
or
ENSG00000100298

False Dna (de)/
methyla-
tion



Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1 – continued from previous page.

Reaction ID Formula Reasoning or references Notes Metabolites Gene Rule Reversible Subsystem

consdirectDNA5fC DNA-5-formylcytosine[n]
+ H2O[n] => DNA[n] +
formate[n] + H[n]

Articles Schon et al. [285]
and Iwan et al. [286].

Formate has chemical for-
mula HCOOH, but since
in Human1 it has less 1
H atom, we added H+ to
keep the mass and charge
balance. There is no report
of an enzyme that catalyzes
this reaction. It is going to
be considered a uncatalyzed
reaction and protected
during reconstruction of
cell-specific models.

DNA5fCn:-1.0,
MAM02040n:-1.0,
MAM01721n:1.0,
MAM01833n:1.0,
MAM02039n:1.0

Uncatalyzed False Dna (de)/
methyla-
tion

consdirectDNA5CaC DNA-5-carboxylcytosine[n]
+ H[n] => DNA[n] +
CO2[n]

Articles Iwan et al. [286] and
Feng et al. [287].

There is no report of an
enzyme that catalyzes this
reaction in humans. One
study suggests the involve-
ment of DNMTs, but it was
done with bacterial and
mouse enzymes [287]. It is
going to be considered an
uncatalyzed reaction and
protected during recon-
struction of tissue-specific
models.

DNA5CaCn:-1.0,
MAM02039n:-1.0,
MAM01721n:1.0,
MAM01596n:1.0

Uncatalyzed False Dna (de)/
methyla-
tion

prodAPsite1 DNA-5-methyluracil[n] +
H2O[n] => DNA-APsite[n]
+ thymine[n]

Articles Bhutani et al. [288],
Popov et al. [284], Tsukada
et al. [289] and Grin et
al. [290].

Grin et al. [290] explains
mechanism of pyrimidine
BER (Base Excision Re-
pair).

DNA5mUn:-1.0,
MAM02040n:-1.0,
DNAapn:1.0,
MAM02997n:1.0

ENSG00000139372
or
ENSG00000129071
or
ENSG00000140398

False Dna (de)/
methyla-
tion

prodAPsite3 DNA-5-formylcytosine[n] +
H2O[n] => DNA-APsite[n]
+ 5-formylcytosine[n]

Articles Rasmussen et
al. [291], Tsukada et al. [289]
and Grin et al. [290].

Grin et al. [290] explains
mechanism of pyrimidine
BER (Base Excision Re-
pair).

DNA5fCn:-1.0,
MAM02040n:-1.0,
DNAapn:1.0, M5fCn:1.0

ENSG00000139372 False Dna (de)/
methyla-
tion

prodAPsite4 DNA-5-carboxylcytosine[n]
+ H2O[n] => DNA-
APsite[n] + 5-
carboxylcytosine[n]

Articles Popov et al. [284],
Tsukada et al. [289] and
Grin et al. [290].

Grin et al. [290] explains
mechanism of pyrimidine
BER (Base Excision Re-
pair).

DNA5CaCn:-1.0,
MAM02040n:-1.0,
DNAapn:1.0, M5CaCn:1.0

ENSG00000139372 False Dna (de)/
methyla-
tion



Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1 – continued from previous page.

Reaction ID Formula Reasoning or references Notes Metabolites Gene Rule Reversible Subsystem

proddRPsite DNA-APsite[n] + H2O[n]
=> DNA-dRPsite[n]

Articles Popov et al. [284],
Grin et al. [290].

Grin et al. [290] explains
mechanism of pyrimidine
BER (Base Excision Re-
pair).

DNAapn:-1.0,
MAM02040n:-1.0,
DNAdrpn:1.0

ENSG00000100823
or
(ENSG00000172613
and
ENSG00000113456
and
ENSG00000136273
and
ENSG00000100823)
or
ENSG00000169188
or
ENSG00000154328

False Dna (de)/
methyla-
tion

prodhangdRPsite DNA-dRPsite[n] + dTTP[n]
=> DNA-hang-dRPsite[n] +
PPi[n]

Articles Popov et al. [284],
Grin et al. [290].

Grin et al. [290] explains
mechanism of pyrimidine
BER (Base Excision Re-
pair).

DNAdrpn:-1.0,
MAM01753n:-1.0,
DNAhgdrpn:1.0,
MAM02759n:1.0

ENSG00000070501
or
(ENSG00000172613
and
ENSG00000113456
and
ENSG00000136273
and
ENSG00000070501)

False Dna (de)/
methyla-
tion

prodDNAnick DNA-hang-dRPsite[n] +
H2O[n] => nick-in-DNA[n]
+ 2-deoxy-D-ribose-5-
phosphate[n] + H+[n]

Articles Popov et al. [284],
Grin et al. [290].

Grin et al. [290] explains
mechanism of pyrimidine
BER (Base Excision Re-
pair).

DNAhgdrpn:-1.0,
MAM02040n:-1.0,
DNAnick:1.0,
MAM00640n:1.0,
MAM02039n:1.0

ENSG00000070501
or
ENSG00000166169

False Dna (de)/
methyla-
tion



Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1 – continued from previous page.

Reaction ID Formula Reasoning or references Notes Metabolites Gene Rule Reversible Subsystem

ligateDNA nick-in-DNA[n] => DNA[n]
+ H2O[n]

Articles Popov et al. [284],
Grin et al. [290].

Grin et al. [290] explains
mechanism of pyrimidine
BER (Base Excision Re-
pair).

DNAnick:-1.0,
MAM01721n:1.0,
MAM02040n:1.0

ENSG00000005156
or
(ENSG00000005156
and
ENSG00000143799)
or
(ENSG00000039650
and
ENSG00000005156
and
ENSG00000073050
and
ENSG00000042088)
or
(ENSG00000005156
and
ENSG00000073050)

False Dna (de)/
methyla-
tion

consdirect5fC ∗ 5-formylcytosine[n] +H2O[n]
=> cytosine[n] + formate[n]
+ H[n]

To allow flux through the
reaction producing 5fC
and the other reactions
leading to that one (e.g.
prodAPsite3, prodDNA5fC).
Although there is no clear
evidence that 5fC is con-
verted to cytosine after
being excised from DNA by
BER, there is evidence that
it occurs when the base is
part of DNA (see reaction
consdirectDNA5fC), so an
assumption will be made
that it can also occur after
the 5fC is released from
DNA backbone.

M5fCn:-1.0,
MAM02040n:-1.0,
MAM01632n:1.0,
MAM01833n:1.0,
MAM02039n:1.0

Uncatalyzed False Dna (de)/
methyla-
tion



Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1 – continued from previous page.

Reaction ID Formula Reasoning or references Notes Metabolites Gene Rule Reversible Subsystem

consdirect5CaC ∗ 5-carboxylcytosine[n] + H[n]
=> cytosine[n] + CO2[n]

To allow flux through the
reaction producing 5CaC
and the other reactions
leading to that one (e.g. pro-
dAPsite4, prodDNA5CaC).
Although there is no clear
evidence that 5CaC is con-
verted to cytosine after
being excised from DNA by
BER, there is evidence that
it occurs when the base is
part of DNA (see reaction
consdirectDNA5CaC), so
an assumption will be made
that it can also occur after
the 5CaC is released from
DNA backbone.

M5CaCn:-1.0, MAM02039n:-
1.0, MAM01632n:1.0,
MAM01596n:1.0

Uncatalyzed False Dna (de)/
methyla-
tion

transp2deox5ribP ∗ 2-deoxy-D-ribose-5-
phosphate[n] => 2-deoxy-D-
ribose-5-phosphate[c]

To allow flux through the
reaction that produces 2-
deoxy-D-ribose-5-phosphate
in the nucleus (prodDNAn-
ick) and other reactions
leading to that one. There
are probably other reactions
that use 2-deoxy-D-ribose-
5-phosphate in the nucleus,
just like it is used in the
cytoplasm, but since there is
no evidence for their occur-
rence in the nucleus, a direct
transport reaction of 2-
deoxy-D-ribose-5-phosphate
to cytoplasm will be as-
sumed.

MAM00640n:-1.0,
MAM00640c:1.0

Uncatalyzed False Transport
reactions



Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1 – continued from previous page.

Reaction ID Formula Reasoning or references Notes Metabolites Gene Rule Reversible Subsystem

transpthymine thymine[n] <=> thymine[c] To allow flux through the
reaction that produces
thymine in nucleus (pro-
dAPsite1) and other reac-
tions leading to that one.
Human ENT2 (SLC29A2)
transports pyrimidine nu-
cleobases and nucleosides
and exists in both cell and
nuclear membranes [292].
In human1, the cytosolic
to extracellular reaction
is reversible (MAR04980),
so we assume the same for
transport from cytoplasm to
nucleus.

MAM02997n:-1.0,
MAM02997c:1.0

ENSG00000174669 True Transport
reactions

transpcytosine cytosine[n] <=> cytosine[c] To allow flux through the
reaction that produces
cytosine in nucleus (cons-
direct5fC, consdirect5CaC)
and other reactions lead-
ing to that one. human
ENT2 (SLC29A2) trans-
ports pyrimidine nucleobases
and nucleosides and exists in
both cell and nuclear mem-
branes [292]. In human1,
the cytosolic to extracel-
lular reaction is reversible
(MAR08636), so we assume
the same for transport from
cytoplasm to nucleus.

MAM01632n:-1.0,
MAM01632c:1.0

ENSG00000174669 True Transport
reactions



Table D.1: Reactions involved in DNA methylation and demethylation that were added to the generic model Human1 – continued from previous page.

Reaction ID Formula Reasoning or references Notes Metabolites Gene Rule Reversible Subsystem

transpakg ∗ AKG[c] => AKG[n] To allow flux through the
reactions that use AKG in
nucleus (prodDNA5hmC,
prodDNA5fC,
prodDNA5CaC). There
is evidence for AKG to be
used in these reactions in
the nucleus, so it has to
be transported to nucleus
somehow.

MAM01306c:-1.0,
MAM01306n:1.0

False Transport
reactions

transpsucc ∗ succinate[n] => succinate[c] To allow flux through
the reactions that pro-
duce succinate in nu-
cleus (prodDNA5hmC,
prodDNA5fC,
prodDNA5CaC). There
are probably other reactions
that use succinate in the
nucleus, just like it is used
in the cytoplasm, but since
there is no evidence for their
occurrence in the nucleus, a
direct transport reaction of
succinate to cytoplasm will
be assumed.

MAM02943n:-1.0,
MAM02943c:1.0

False Transport
reactions

∗ Reaction included based on an assumption and to unblock other reactions



Table D.2: Calculation of generic composition of total DNA in terms of modified cytosines

Citations or sources Calculation

". . . 5mC is found in all tissues, corresponding to ∼
4%–5% of all cytosines" from Rasmussen et al.
[291]. "In human somatic cells, m5C accounts for
∼ 1% of total DNA bases" from Bird et al. [293].

• average of 4.5% of all cytosines in human
genome is methylated.

• proportion of cytosines in human genome is
20%. The stoichiometric coefficient of dCTP
in the reaction of DNA formation MAR07160
is 0.2. So: 0.2*0.045 = 0.009 = 0.9% ∼ 1% of
human genome is methylated"

Authors of He et al. [256] kindly provided us with the
total number of 5hmC sites found in different normal
human tissues. The calculated average percentage of
the human genome with 5hmC sites across different
tissues is ∼ 0.03%.

• average ratio of human genome with 5hmC
sites was calculated in Table D.3. The av-
erage number of 5hmC sites (at both DNA
strands) across different tissues was divided by
twice the total number of base pairs of the ref-
erence genome (hg38 used in the study He et
al. [256]) to account for the two DNA strands.
So, 0.00031665646 = 0.031665646% ∼ 0.03%
of human genome is hydroxymethylated.

"The steady-state levels of 5fC and 5caC are much
lower than those of 5hmC, corresponding to ap-
proximately 0.03% and 0.01% of 5mC levels, re-
spectively" (note: in that context, levels of 5fC, 5caC,
and 5mC refer to levels in the DNA) [294].
"The stable levels of genomic 5CaC have not
been experimentally determined, as they are
often under the detection limit" from Rasmussen
et al. [291].
" (...) approximately 1/3 and 2/3 of the 5caC-
DNA underwent direct decarboxylation and
TDG-BER processing, respectively." from Feng et
al. [287]."

• 0.009 DNA5mC * 0.0003 = 0.0000027 =
0.00027 % of human genome has 5fC

• although a study claims genomic 5CaC lev-
els to be around 0.01% of hmC levels [294],
a later study states its values are often under
detection limit [291] (so reported levels might
not be accurate) and a recent study reports
that almost all genomic 5CaC is either directly
or indirectly decarboxylated [287], suggesting
that genomic 5mC levels are mostly transient.
Therefore, no accumulation of genomic
CaC was assumed (no integration of CaC
in DNAtot reaction).



Table D.3: Calculation of ratio of human genome with 5hmC sites.

Sample name Number of
5hmC sites ∗

Tissue
ID

Tissue name Number of
5hmC sites
per tissue

Average of
5hmC sites

Number
of genome
(hg38) base
pairs ∗∗

Number of
bases in both
strands of
genome

Ratio of hu-
man genome
with 5hmC

Average ra-
tio of human
genome with
5hmC

AG_1 1776524 AG Adrenal gland 1776524 2032482.331 3209286105 6418572210 0.000276779 0.00031665646

AO_1 1738469 AO Aorta 1860046.5 0.000289791

AO_4 1981624 BD Bladder 1385939 0.000215926

BD_4 1158842 BR Brain 2702696 0.000421074

BD_5 1613036 ES Esophagus 2049301 0.000319277

BR_5 2472751 HR Heart 2434799.333 0.000379337

BR_5_BS 2312037 KD Kidney 2354625.667 0.000366846

BR_5_CE 3076511 LE Large Intestine 2102597.286 0.00032758

BR_5_HT 2499648 LI Liver 2281792.333 0.000355498

BR_5_SC 2840152 LN Lung 1953605.333 0.000304368

BR_6_BF 2329263 OV Ovary 2036697.5 0.000317313

BR_7_BF 2595365 PA Pancreas 1626069.5 0.000253338

BR_8_BF 3495841 SE Small Intestine 1918671.667 0.000298925

ES_5 2049301 SK Skin 1618916 0.000252224

HR_1 2205456 ST Stomatch 2006284.667 0.000312575

HR_6_LV 2360358 SX Spleen 2002641.333 0.000312007

HR_8_LV 2738584 TC Trachea 1902447.5 0.000296397

KD_6 2368435 TR Thyroid 2345359 0.000365402

KD_7 2350514 UT Uterus 2258150.667 0.000351815

KD_8 2344928

LE_4_AP 1504499

LE_4_RE 2000723

LE_5_AP 2154628

LE_5_CL 2353520



Table D.3: Calculation of ratio of human genome with 5hmC sites – continued from previous page.

Sample name Number of
5hmC sites ∗

Tissue
ID

Tissue name Number of
5hmC sites
per tissue

Average of
5hmC sites

Number
of genome
(hg38) base
pairs ∗∗

Number of
bases in both
strands of
genome

Ratio of hu-
man genome
with 5hmC

Average ra-
tio of human
genome with
5hmC

LE_5_RE 2202961

LE_6 2238781

LE_8 2263069

LI_1 2229338

LI_4 2130782

LI_8 2485257

LN_1 1854015

LN_6 1978612

LN_7 2028189

OV_7 1866030

OV_8 2207365

PA_5 1955406

PA_6 1296733

SE_4_IE 1998248

SE_4_JE 1908925

SE_5_JE 1601111

SE_6 2131610

SE_7 1518442

SE_8 2353694

SK_1 1610770

SK_5 1571945

SK_8 1674033

ST_5 1971857



Table D.3: Calculation of ratio of human genome with 5hmC sites – continued from previous page.

Sample name Number of
5hmC sites ∗

Tissue
ID

Tissue name Number of
5hmC sites
per tissue

Average of
5hmC sites

Number
of genome
(hg38) base
pairs ∗∗

Number of
bases in both
strands of
genome

Ratio of hu-
man genome
with 5hmC

Average ra-
tio of human
genome with
5hmC

ST_6 2148742

ST_7 1898255

SX_1 1891294

SX_6 2185887

SX_7 1930743

TC_4 1849401

TC_5 1955494

TR_4 2270133

TR_5 2420585

UT_6 2381044

UT_7 2193241

UT_8 2200167

∗ The values were kindly provided by the authors of He et al. [256] and correspond to the number of 5hmC sites on both strands for each sample.
Samples of the same tissue start with the same two-letter-tissue identifier.
Some tissues of NCI-60 (breast, prostate, haemotopoietic and lymphoid tissue) were not tested in He et al. study.
∗∗ Value was taken from genomewiki.ucsc.edu/index.php/Hg38_30-way-Genome.site_statistics.

genomewiki.ucsc.edu/index.php/Hg38_30-way-Genome.site_statistics


Table D.4: Updated gene rules of previously existing reactions and new rules associated with newly added reactions.

Reaction
ID

Original
gene rule

New gene
rule

New gene rule
(with gene IDs)

New protein
rule (with
Uniprot IDs)

Reasoning or references EC
number

Names of pro-
teins inside
complexes

MAR08641 (DNMT3B
and DNMT1)
or TRDMT1
or DNMT3A
or DNMT3L

DNMT1
or DNMT3A
or DNMT3B
or (DNMT3B
and DNMT1)
or (DNMT3A
and DNMT3L)
or (DNMT3B
and DNMT3L)

ENSG00000130816
or
ENSG00000119772
or
ENSG00000088305
or
(ENSG00000088305
and
ENSG00000130816)
or
(ENSG00000119772
and
ENSG00000142182)
or
(ENSG00000088305
and
ENSG00000142182)

P26358 or
Q9Y6K1 or
Q9UBC3 or
(Q9UBC3 and
P26358) or
(Q9Y6K1 and
Q9UJW3) or
(Q9UBC3 and
Q9UJW3)

• TRDMT1 a.k.a. DNMT2 methylates tRNA and there is still
discussion whether it methylates DNA to a low degree or it just
does not work as a DNA methylase [282,295].

So, DNMT2 will not be inlude in the gene rule.

• There is evidence that DNMT1 and DNMT3B are part of the
same complex (retrieved from the CORUM database) [296, 297],
but there is also evidence that DNMT3B is part of a complex of
other proteins that do not include DNMT1 [298]. Also, each en-
zyme is mainly used in different situations: "DNMT1, DNMT3A
and DNMT3B have different functions in the methylation pro-
cess. DNMT1 is required for the maintenance of all methylation
in the genome. During replication, DNMT1 restores the spe-
cific methylation pattern on the daughter strand in accordance
with that of the parental DNA. DNMT3A and DNMT3B are
referred to as de novo methyltransferases, which are responsible
for establishing DNA methylation patterns during embryogenesis
and setting up genomic imprints during germ cell development
(...). Although they are highly expressed in early mammalian
embryos, DNMT3A and DNMT3B decrease in expression over
the course of cell differentiation" [295]. So, instead of only using
"(DNMT3B and DNMT1)" is better to also include "DNMT3B
or DNMT1", i.e. some redundancy will be applied.

• DNMT3A and DNMT3L form a complex: "DNMT3L, an impor-
tant regulator without catalytic activity, operates in the form
of DNMT3L-DNMT3A heterotetramers" [295]. So, the gene
rule should include "(DNMT3A and DNMT3L)", but some re-
dundancy will be used, as DNMT3L seems to only increase the
activity of DNMT3A (does not have catalytic activity) [295,299].

Therefore, "or DNMT3A" will also be used.

• DNMT3B and DNMT3L form a complex [299]. So, the gene rule
should include (DNMT3B and DNMT3L), but some redundancy
will also be assumed, as DNMT3L seems to only increase the
activity of DNMT3B (does not have catalytic activity) [299].

Therefore, "or DNMT3B" alone will also be used.

2.1.1.37 DNA (cytosine-5)-
methyltransferase
1, DNA
(cytosine-5)-
methyltransferase
3A, DNA
(cytosine-5)-
methyltransferase
3B, DNA
(cytosine-5)-
methyltransferase
3L



Table D.4: Updated gene rules of previously existing reactions and new rules associated with newly added reactions – continued from previous page.

Reaction
ID

Original
gene rule

New gene
rule

New gene rule
(with gene IDs)

New protein
rule (with
Uniprot IDs)

Reasoning or references EC
number

Names of pro-
teins inside
complexes

prodDNA5hmC TET1 or
TET2 or
TET3

ENSG00000138336
or
ENSG00000168769
or
ENSG00000187605

Q8NFU7 or
Q6N021 or
O43151

• TET1 role at KEGG (entry: hsa:80312) [279].

• TET1,2,3 role at InterPro (entry: IPR040175) [300].

• TET1,2,3 role at Rasmussen et al. [291].

• There is no complex of these enzymes in CORUM database
[296].

1.14.11 tet methylcytosine
dioxygenase 1, tet
methylcytosine
dioxygenase 2, tet
methylcytosine
dioxygenase 3

prodDNA5fC TET1 or
TET2 or
TET3

ENSG00000138336
or
ENSG00000168769
or
ENSG00000187605

Q8NFU7 or
Q6N021 or
O43151

• TET1,2,3 role at InterPro (entry: IPR040175) [300].

• TET1,2,3 role at Rasmussen et al. [291].

• There is no complex of these enzymes in CORUM database
[296].

1.14.11 tet methylcytosine
dioxygenase 1, tet
methylcytosine
dioxygenase 2, tet
methylcytosine
dioxygenase 3

prodDNA5CaC TET1 or
TET2 or
TET3

ENSG00000138336
or
ENSG00000168769
or
ENSG00000187605

Q8NFU7 or
Q6N021 or
O43151

• TET1,2,3 role at InterPro (entry: IPR040175) [300].

• TET1,2,3 role at Rasmussen et al. [291].

• There is no complex of these enzymes in CORUM database
[296].

1.14.11 tet methylcytosine
dioxygenase 1, tet
methylcytosine
dioxygenase 2, tet
methylcytosine
dioxygenase 3

prodDNA5mU AID/AICDA
or
APOBEC1 or
APOBEC3A
or
APOBEC3B
or
APOBEC3C
or
APOBEC3F,
APOBEC3G
or
APOBEC3H

ENSG00000111732
or
ENSG00000111701
or
ENSG00000128383
or
ENSG00000179750
or
ENSG00000244509
or
ENSG00000128394
or
ENSG00000239713
or
ENSG00000100298

Q9GZX7 or
P41238 or
P31941 or
Q9UH17 or
Q9NRW3 or
Q8IUX4 or
Q9HC16 or
Q6NTF7

• The function of AID, which is part of the family of APOBECs,
is described in Bhutani et al. [288].

• The function of APOBECs family members is described in
Popov et al. [284].

• All APOBECs except A3D, A2 and A4 can convert 5mC to
thymine (same as 5-methyluracil) [301].

• There is no complex of the.se enzymes in CORUM database
[296].

• There is no Ensembl gene id for APOBEC3E so it was excluded
from the gene rule.

3.5.4.36,
3.5.4.38

Activation-induced
cytidine deam-
inase (AID)
a.k.a AICDA,
apolipoprotein B
mRNA-editing
catalytic polypep-
tides (APOBECs)
deaminases



Table D.4: Updated gene rules of previously existing reactions and new rules associated with newly added reactions – continued from previous page.

Reaction
ID

Original
gene rule

New gene
rule

New gene rule
(with gene IDs)

New protein
rule (with
Uniprot IDs)

Reasoning or references EC
number

Names of pro-
teins inside
complexes

prodAPsite1 TDG or
MBD4 or
NEIL1

ENSG00000139372
or
ENSG00000129071
or
ENSG00000140398

Q13569 or
O95243 or
Q96FI4

• TDG and MBD4 role at Popov et al. [284].

• TDG role at UniProt (entry: Q13569) [302].

• MBD4 role at UniProt (entry: Q95243) [302].

• NEIL1 has among other functions DNA glycosylase activity
towards mismatched thymine, see UniProt (entry: Q96FI4) [302].

3.2.2.29 thymine DNA gly-
cosylase, methyl-
CpG-binding
domain protein
4, Endonuclease
8-like 1

prodAPsite3 TDG ENSG00000139372 Q13569 • TDG role at UniProt (entry: Q13569) [302].

• TDG role at Tsukada e. al. [289].

3.2.2.29 thymine DNA
glycosylase

prodAPsite4 TDG ENSG00000139372 Q13569 • TDG role at UniProt (entry: Q13569) [302].

• TDG role at Popov et al. [284].

3.2.2.29 thymine DNA
glycosylase

proddRPsite APE1 or
(RAD9A
and RAD1
and HUS1
and APE1)
or APE2 or
NEIL2

ENSG00000100823
or (
ENSG00000172613
and
ENSG00000113456
and
ENSG00000136273
and
ENSG00000100823
) or
ENSG00000169188
or
ENSG00000154328

P27695 or
(Q99638 and
O60671 and
O60921 and
P27695) or
Q9UBZ4 or
Q969S2

• APE1 role at UniProt (entry: P27695) [302].

• APE1 role at Popov et al. [284], Tsukada et al. [289] and Grin et
al. [290].

• CORUM database has a complex where APEX1 (a.k.a. APE1)
is included that stimulates the activity of APEX1 for DNA
repair [296].

• APE2 role at Uniprot (entry: Q9UBZ4) [302].

• NEIL2 has AP (apurinic/apyrimidinic) lyase activity, see
Uniprot (entry: Q969S2) [302].

3.1.-.-,
3.1.11.2

apurinic/apyrimidinic
endodeoxyribonu-
clease 1 (APE1
a.k.a. APEX1),
RAD9 checkpoint
clamp compo-
nent A, RAD1
checkpoint DNA
exonuclease, HUS1
checkpoint clamp
component, en-
donuclease 8-like
2



Table D.4: Updated gene rules of previously existing reactions and new rules associated with newly added reactions – continued from previous page.

Reaction
ID

Original
gene rule

New gene
rule

New gene rule
(with gene IDs)

New protein
rule (with
Uniprot IDs)

Reasoning or references EC
number

Names of pro-
teins inside
complexes

prodhangdRPsite POLB or
(RAD9A and
RAD1 and
HUS1 and
POLB)

ENSG00000070501
or
(ENSG00000172613
and
ENSG00000113456
and
ENSG00000136273
and
ENSG00000070501)

P06746 or
(Q99638 and
O60671 and
O60921 and
P06746)

• Beta-polymerase role at Popov et al. [284] and Grin et al. [290].

• Beta-polymerase role at UniProt (entry: P06746) [302].

• CORUM database has the complex 9-1-1 composed by
RAD9A+RAD1+Hus1+POL1 that stimulates the activity of
POLB thus recruiting POLB to DNA damage sites [296].

• CORUM database has complexes, where POLB interacts with
enzymes that catalyze other steps of BER, since those steps are
represented by other reactions that we include in the model (e.g.
prodDNAnick, ligateDNA, etc.) such complexes, were excluded
here (for e.g. complex PNKP+LIG3+ POLB+XRCC1 was ex-
cluded because besides POLB it has LIG3, which catalyzes DNA
ligase shown below) [296].

2.7.7.7 DNA polymerase
beta, RAD9 check-
point clamp com-
ponent A, RAD1
checkpoint DNA
exonuclease, HUS1
checkpoint clamp
component

prodDNAnick POLB or
POLL

ENSG00000070501
or
ENSG00000166169

P06746 or
P06746

• Beta-polymerase beta role at Grin et al. [290].

• Beta-polymerase beta role at UniProt (entry: P06746) [302].

• DNA-polymerase lambda has, among other functions, dRP-lyase
activity, shown at UniProt (entry: Q9UGP5) [302].

4.2.99.- DNA polymerase
beta, DNA poly-
merase lambda



Table D.4: Updated gene rules of previously existing reactions and new rules associated with newly added reactions – continued from previous page.

Reaction
ID

Original
gene rule

New gene
rule

New gene rule
(with gene IDs)

New protein
rule (with
Uniprot IDs)

Reasoning or references EC
number

Names of pro-
teins inside
complexes

ligateDNA LIG3 or (LIG3
and PARP1)
or (PNKP
and LIG3
and XRCC1
and TDP1)
or (LIG3 and
XRCC1)

ENSG00000005156
or
(ENSG00000005156
and
ENSG00000143799)
or
(ENSG00000039650
and
ENSG00000005156
and
ENSG00000073050
and
ENSG00000042088)
or
(ENSG00000005156
and
ENSG00000073050)

P49916 or
(P49916 and
P09874) or
(Q96T60 and
P49916 and
P18887 and
Q9NUW8) or
(P49916 and
P18887)

• DNA ligase III role at Popov et al. [284] and Grin et al. [290].

• DNA ligase III role at UniProt (entry: P49916) [302].

• CORUM database has complexes where LIG3 interacts with
enzymes that catalyze other steps of BER, since those steps are
represented by other reactions that we include in the model,
such complexes were excluded here [296].

6.5.1.1 DNA ligase 3,
poly(ADP-
ribose) poly-
merase 1, polynu-
cleotide kinase
3’-phosphatase,
X-ray repair cross
complementing
1, tyrosyl-DNA
phosphodiesterase
1

transpthymine ENT2 ENSG00000174669 Q14542 • human ENT2 (SLC29A2) transports pyrimidine nucleobases
and nucleosides and exists in both cell and nuclear membranes.
ENT1 (SLC29A1, which in Human1, like SLC29A2, transports
deoxycytidine between cytoplasm and nucleus) transports nucle-
osides, but does not seem to transport nucleobases [292]. There-
fore, ENT2 protein/gene was associated here with the reaction.
Nonetheless, there may exist other transport proteins that can
move pyrimidines across the nucleus membrane which may not
have been discovered yet, as the transport reaction itself seems
to not be described in databases(does not exist in KEGG [279]
or Rhea [283]).

Equilibrative
nucleoside trans-
porter 2 (ENT2),
solute carrier fam-
ily 29 member
2



Table D.4: Updated gene rules of previously existing reactions and new rules associated with newly added reactions – continued from previous page.

Reaction
ID

Original
gene rule

New gene
rule

New gene rule
(with gene IDs)

New protein
rule (with
Uniprot IDs)

Reasoning or references EC
number

Names of pro-
teins inside
complexes

transpcytosine ENT2 ENSG00000174669 Q14542 • human ENT2 (SLC29A2) transports pyrimidine nucleobases
and nucleosides and exists in both cell and nuclear membranes.
ENT1 (SLC29A1, which in Human1, like SLC29A2, transports
deoxycytidine between cytoplasm and nucleus) transports nucle-
osides, but does not seem to transport nucleobases [292]. There-
fore, ENT2 protein/gene was associated here with the reaction.
Nonetheless, there may exist other transport proteins that can
move pyrimidines across the nucleus membrane which may not
have been discovered yet, as the transport reaction itself seems
to not be described in databases(does not exist in KEGG [279]
or Rhea [283]).

Equilibrative
nucleoside trans-
porter 2 (ENT2),
solute carrier fam-
ily 29 member
2

Note: Search for complexes was made in CORUM database looking for a core set only, i.e. a reduced set of complexes which is free from redundant entries.



Table D.5: New metabolites participating in the new reactions added to Human1.

Metabolite ID Name Formula Charge Compartment Artificial Notes

MAM01306n ∗ AKG C5H4O5 -2 nucleus False

MAM02943n ∗ succinate C4H4O4 -2 nucleus False

DNAtotn DNA_total C10H17O8PR2 0 nucleus True

DNA5hmCn DNA-5-hydroxy-
methylcytosine

C11H19O9PR2 0 nucleus False

DNA5fCn DNA-5-formylcytosine C11H17O9PR2 0 nucleus False

DNA5CaCn DNA-5-carboxylcytosine C11H16O10PR2 -1 nucleus False

DNA5mUn DNA-5-methyluracil C11H18O9PR2 −N 0 nucleus False Although methyluracil is the
same as thymine, the model
does not have the metabolite
DNA containing thymine or
containing methyluracil

DNAapn DNA-APsite C10H18O9PR 0 nucleus False

MAM02997n ∗ 5-methyl-uracil a.k.a
thymine

CH2OR−N 0 nucleus False

M5fCn 5-formylcytosine CHOR 0 nucleus False

M5CaCn 5-carboxylcytosine CO2R -1 nucleus False

DNAdrpn DNA-dRPsite C10H20O10PR 0 nucleus False

DNAhgdrpn DNA-hang-dRPsite C15H27O15P2R2 -1 nucleus False

MAM00640n ∗ 2-deoxy-D-ribose-5-
phosphate

C5H9O7P -2 nucleus False

DNAnick nick-in-DNA C10H19O9PR2 0 nucleus False

MAM01632n ∗ cytosine RH 0 nucleus False

Metabolites with ∗ do not exist in the nucleus in the original Human1 model, but exist in other compartments. All other metabolites do not exist in any compartment of the
original model. Formulas of all metabolites are based on the formula of DNA in Human1 generic model (which includes two R groups and has a charge of 0): C10H17O8PR2. "R"
represents the azotated base without an H atom (corresponding to the position where the base connects to DNA backbone). "−N" in the formulas means there is one less N atom
in the R group (i.e. to cytosine).



Table D.6: Charge and mass balance calculations.

Table is in Excel spreadsheet format to let the readers view the mathe-
matical formulas. The link to the spreadsheet is: https://docs.google.com/

spreadsheets/d/1OE5QKwO6IAPHlwRAXRLciPJ9LP0RP0qi/edit?usp=share_link&ouid=

101146105014472512253&rtpof=true&sd=true

Table D.7: Estimation of the cell line-specific ratio of total DNA containing DNA5mC,
DNA5hmC or DNA5fC.

Table is in Excel spreadsheet format to let the readers view the mathematical formu-
las. The link to the spreadsheet is: https://docs.google.com/spreadsheets/d/1Jk_

jfhgBQFqyi-NY4WBfknZFB9Btj7dF/edit?usp=share_link&ouid=101146105014472512253&

rtpof=true&sd=true

https://docs.google.com/spreadsheets/d/1OE5QKwO6IAPHlwRAXRLciPJ9LP0RP0qi/edit?usp=share_link&ouid=101146105014472512253&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1OE5QKwO6IAPHlwRAXRLciPJ9LP0RP0qi/edit?usp=share_link&ouid=101146105014472512253&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1OE5QKwO6IAPHlwRAXRLciPJ9LP0RP0qi/edit?usp=share_link&ouid=101146105014472512253&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1Jk_jfhgBQFqyi-NY4WBfknZFB9Btj7dF/edit?usp=share_link&ouid=101146105014472512253&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1Jk_jfhgBQFqyi-NY4WBfknZFB9Btj7dF/edit?usp=share_link&ouid=101146105014472512253&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1Jk_jfhgBQFqyi-NY4WBfknZFB9Btj7dF/edit?usp=share_link&ouid=101146105014472512253&rtpof=true&sd=true


Table D.8: DNA methylation flux rules

Citation Reaction rate rules

"... kinetic analyses of TET catalytic activity suggest
that the rate of cytosine oxidation is significantly re-
duced for [. . . ] and 5fC (7.8-fold to 12.6-fold) sub-
strates compared with the initial oxidation reaction of
5mC." [291].

prodDNA5hmC rate / prodDNA5CaC rate = 7.8 to
12.6 fold. So, 10.2 fold average. Note that: TET cat-
alyzed reaction where 5fC is used as substrate, is
prodDNA5CaC.

"At 48 h following transfection, the levels of direct
decarboxylation product, short-, and long-patch BER
product were approximately 34%, 58%, and 8%, re-
spectively [...]. Collectively, these results illustrate that
approximately 1/3 and 2/3 of the 5caC-DNA under-
went direct decarboxylation and TDG-BER process-
ing, respectively." [287]

2/3 of DNA5CaCn is converted to DNA by TDG-
BER, so the flux of prodAPsite4 is 2/3 of the flux of
prodDNA5CaC (which is the only reaction producing
DNA5CaC).
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