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Abstract

Age-at-death assessment is a crucial step in the identification process of human
skeletal remains. Nonetheless, in adult individuals this task is particularly difficult to
achieve accurately due to the variability of the senescence processes. The literature argues
in favor of a multifactorial approach to skeletal age assessment to obtain precise estimates.
Conceptually a multifactorial perspective can be argued as the most effective approach
because skeletal traits display different age-related trajectories and onsets. However, adult
age estimation struggles with methodological inconsistencies. Techniques that use multiple
skeletal indicators are often limited to the cranial sutures and the pelvic joints. More
generic procedures for multifactorial analysis have also been proposed, but with poor
adoption in forensic casework because they require seriation or advanced mathematical
knowledge to be put into action.

The present thesis aimed to lay a foundation to tackle some of the challenges of
macroscopic adult skeletal age estimation, especially in its holistic or multifactorial aspect.
The main objective of this work was to propose a new method for multifactorial age
estimation using an interdisciplinary approach bridging anthropology and computer
science. From an anthropological perspective, a novel macroscopic technique for skeletal
analysis was developed. This proposal incorporates a total of 64 skeletal traits covering
major joints and musculoskeletal complexes, integrating well established age-related
markers with less explored ones. A dataset comprising information on 500 identified
skeletons was used to establish a reference dataset (19-101 years old, 250 males and 250
females) for adult age estimation. A computational framework based on machine learning
using randomized deep neural networks was implemented and validated. This approach
tackled age estimation from a function approximation perspective as regression problem to

infer both point and prediction interval estimates.



Two experiments were conducted computationally to assess the value of the
multifactorial approach: the first experiment compared multi-trait or multifactorial models
against classic models using specific anatomical regions or skeletal traits only; the second
experiment assessed the accuracy of age estimation from fractioned multifactorial models
using randomly chosen traits.

Based on cross-validation analysis, results demonstrate that age estimation from
skeletal remains can be accurately inferred across the entire adult age span, approximately
with 6 years mean absolute error. Informative estimates and prediction intervals can be
obtained for the elderly population. Multifactorial models introduce a two-to-six-fold
reduction in the mean absolute error and prediction bias compared to standard models.
Virtually every combination of random traits resulted in models with comparable or better
performance than the models built of specific anatomic regions as traditionally encounter
in macroscopic age estimation methods. This finding supports the value of multifactorial
age estimation over methods the focus solely on a single anatomical structure.

A novel software, DRNNAGE, was built to operationalized and integrate the new
method proposed in this thesis, providing an intuitive interface and freely distributed under

an open-source license.

Keywords

Forensic anthropology; Skeletal age; Age estimation; Artificial intelligence; Machine

learning
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Resumo

A estimativa da idade a morte é uma etapa crucial no processo de identificacio de
restos humanos esqueléticos. No entanto, em individuos adultos, a sua avaliacdo é
particularmente dificil de ser realizada com precisao devido a variabilidade dos processos
de senescéncia.

A literatura defende uma abordagem multifatorial para avaliacdo da idade
esquelética de modo a obter estimativas mais exatas e precisas. Esta perspetiva pode ser
conceptualmente argumentada como a mais eficaz, porque os diversos marcadores
esqueléticos e a sua relagdo com a idade exibem diferentes trajetérias. Todavia, na
estimativa da idade a morte em adultos prevalecem inconsisténcias metodoldgicas, uma vez
que as técnicas que usam diversos marcadores esqueléticos resumem-se as suturas cranianas
e as articulagoes pélvicas. Tém sido sugeridos procedimentos mais genéricos, mas com
pouca utilizacdo em contexto pericial porque requerem técnicas de seriacdo ou
conhecimento matematico avancado.

A presente tese procurou solucionar alguns dos problemas da estimativa da idade
em adultos por meio de andlise macroscépica tendo em conta diversos marcadores
osteoldgicos. O principal objetivo foi desenvolver um novo método para estimativa de idade
a morte em adultos usando uma abordagem interdisciplinar que une a antropologia forense
e a inteligéncia artificial. Do ponto de vista antropoldgico foi proposta uma nova técnica
para avaliagdo macroscopica que incorpora um total de 64 marcadores esqueléticos que
cobrem as principais articulagoes e complexos musculo-esqueléticos, integrando marcadores
bem estabelecidos com outros menos explorados.

Para estabelecer um novo conjunto de dados de referéncia, foi estudada uma
amostra composta por 500 esqueletos identificados provenientes de duas colegoes

osteolégicas da Universidade de Coimbra (19-101 anos, 250 homens e 250 mulheres). Neste
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trabalho foi implementada e validada uma nova abordagem computacional tendo por base
técnicas de inteligéncia artificial, concretamente redes neuronais artificiais profundas
aleatorizadas. Nesta metodologia a estimativa da idade é tratada como um problema de
regressao para a estimativa pontual e intervalar. Foram assim conduzidas
computacionalmente duas experiéncias para testar o seu valor: na primeira, comparam-se
modelos multivariados com modelos classicos usando apenas regioes anatomicas especificas;
na segunda avaliou-se a precisdo da estimativa de idade a partir de modelos multivariados
fracionados, que usam apenas uma parte das caracteristicas esqueléticas escolhidas
aleatoriamente.

Os resultados com base na andlise de validagdo cruzada, demonstram que a
estimativa de idade a partir de remanescentes osteoldgicos pode ser inferida com precisao
em toda a faixa etaria adulta incluindo individuos com idade muito avancada, reduzindo
erro médio absoluto de para seis anos aproximadamente.

Praticamente todas as combinagoes aleatorias de marcadores 6sseos resultaram em
modelos com desempenho comparavel ou superior ao dos modelos construidos de regices
anatomicas especificas, diminuindo em duas a seis vezes o erro médio absoluto e o viés de
estimativa em comparacdo com os modelos padrao. Estes resultados reforcam a importancia
de uma andlise multifatorial na estimativa da idade em adultos.

Foi desenvolvido um novo software, DRNNAGE, para implementar o método
supramencionado. O software possui uma interface intuitiva e é distribuido gratuitamente

sob uma licenga de cédigo aberto.

Palavras-Chave

Antropologia forense; Idade esquelética; Estimativa da idade & morte; Inteligéncia artificial;

Aprendizagem automatica
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1|Introduction: problem statement

Anthropology has emerged as a major force in the forensic sciences. Forensic
anthropology is no longer defined solely as a subfield (or application) of biological
anthropology. Over the last thirty years, there has been a profound change, a true paradigm
shift, and forensic anthropology has evolved into a discipline with its own theoretical and
conceptual corpus, as well as a research agenda. Forensic anthropology and its attributions
have changed dramatically. Indeed, this evolution has been so marked and dramatic that
even some of the most experienced and long-term practicing anthropologists may struggle
to conceptualize or be fully proficient in the many areas covered by the discipline nowadays
1, 2].

Although advancement and transformation are fundamental concepts in forensic
anthropology, they are not always visible or implemented. For example, in the 1970s, when
the field was beginning to gain recognition among forensic sciences and the general public,
little to no research was conducted with a strict emphasis on forensic anthropology [1-3].
At the time, anthropologists would conduct skeletal analyses using the classical methods
of biological anthropology developed at the turn of the century.

In terms of research and development, the field experienced a true period of inertia.
Around the 1980s, the discipline underwent an important period of introspection,
recognizing its strengths, weaknesses, and future challenges. In an almost prophetic manner
Iscan [3] wrote that forensic anthropology could “(..) stagnate or even self-destruct if
direction of future research is not carefully planned (..)". Fortunately, forensic
anthropology did not implode, instead a tremendous shift in its paradigm took place.
Understanding what caused such change is fundamental to contextualize any research effort

in the discipline. Change within the discipline flourished from a variety of external and



1] Introduction: problem statement

internal factors. Dirkmaat and collaborators [1, 2] identify the rapid growth and
development of DNA analysis, and the several federal court rulings and USA institutional-
mandated assessments of the state-of-art of forensic sciences as the most significant
external forces changing and shaping the course of forensic anthropology.

It is critical to comprehend the significance and impact of DNA analysis in forensic
anthropology. The primary importance of forensic genetics stems from a common goal:
identification. The precision of molecular analysis transformed the human identification
process, and it is now the undisputed gold standard for this purpose. It is critical to
remember that advancements in forensic genetics were not simplistic refinements of its key
methodologies. Instead, massive advances in this field have occurred in recent decades,
with each stage of its evolution removing critical methodological and technological barriers.
These reasons highlight the significance of DNA analysis in shaping the evolution of forensic
anthropology as it broadened its goals, attributions, and theoretical framework. Forensic
genetics has undoubtedly exerted selective and evolutionary pressure on forensic
anthropology. The discipline was forced to choose between improving its own methods and
techniques or extinction, because its primary goal, identification, could be achieved with
far greater, if not incomparable, accuracy by forensic genetics. Despite this somewhat
pessimistic outlook, collaboration with forensic geneticists increased casework for
anthropology experts, and this collaborative approach improved both disciplines' results
and impact.

Several legal cases trialed in the United States of America courts of law quickly
exposed severe limitations in forensic sciences operating procedures. Independent and
external analysis of the state-of-art of forensic sciences, the most recent conducted by the
prestigious National Academy of Sciences [4], noted several flaws in terms of
standardization of procedures and training of the professionals in the forensic sciences

community. American supreme court-rulings such as Daubert v. Merrill Dow
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Pharmaceuticals, Inc. (1993) and Kumho Tire, Ltd v. Carmichael (1999), certainly enforced
best practices in forensic sciences and shaped research agendas, forensic anthropology was
not left out. More details on the these court-rulings can be found in Christensen & Crowder
[5] and Grivas and Komar [6].

These external factors prompted forensic anthropology to conduct a critical self-
evaluation, resulting in a constant redefinition of its objectives and attributions. The
recognition of the discipline's inherent limitations was a key development, particularly in
an area most classical and defining of the field itself: biological profiling, or the estimation
of sex, age, ancestry, and stature of human remains (especially in cases of skeletonization).

The technical shortcomings of biological profiling techniques were quickly
recognized by anthropologists. The inadequacy of such methods and techniques was
primarily a two-headed problem: the samples used to develop the procedures did not
accurately represent the ever-changing biology and demography of individuals presented
in forensic cases, and the mathematical procedures underlying them did not fully utilize or
were inappropriate for such data in the worst-case scenario. Age-at-death was a component

of the biological profile where such issues were more visible and pervasive.

1.1|Scope

Age estimation is an overarching topic with relevance to diverse disciplines such as
anthropology, archaeology, demography, genetics, dentistry, pediatrics, gerontology and
forensics often convoluted and characterized by significant interdisciplinary dependencies.
When addressing this topic is often made a distinction between chronological and biological
age [7]. Chronological age is the time passed or years lived from the moment birth, and it
is what legally documented for an individual. Biological age is not fully characterized by

the time passed but accounts for the physiological status of the individual. While it is
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believed that biological age better reflects the true age of an organism or individual, it is
important to note that it is a loosely used conceptual artifact that lacks a precise definition
[8-12]. Biological age is established through estimation, where age-related biomarkers are
used to infer chronological age via the application of regression algorithm [9], the estimate
obtained with this process is considered the biological age and it has important applications
in public health and preventive medicine [8, 9]. From this formulation it can be inferred
that biological age can be unfold in many dimensions depending on the biomarkers used,
metabolic biomarkers reflecting metabolic age, dental markers reflecting dental age and so
on. The precision and accuracy of biological age will by a product of the age-related
biomarkers and the mathematical algorithm used in its estimation.

Within the attributions of anthropology and its application to the forensic context,
there is an important division regarding to the state of the subject(s) to whom age
estimation is concerned: age estimation pertains and is required both the living and the
deceased [13]. Age estimation of the living is out of the scope of this thesis, a detailed
overview can be found in Black et al. [14]. However, it is important to note that its goal is
to solve legal issues relating to minors in respect to imputability or their depiction
pedopornographic material, and for adults legal issues regarding to pensionable age and
other questions for those lacking valid identification documents. For the dead, age
estimation integrates the identification process through the creation of the biological profile
of the deceased. In both situations methodological choices to better approach age
estimation are, in first place, dependent of the maturational status of the subject — is it a
subadult (birth to 20 years old) or an adult (from 20 years old onward).

Age estimation of subadults is performed by assessing skeletal and dental
development parameters such as bone growth and maturation, and tooth calcification and
eruption. It is widely acknowledged that the growth and development process is complex,

with variation introduced at the level of the individual and in response to extrinsic factors
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such as nutrition, biological and psychological stress, disease, and socioeconomic status
[15]. However, such complexity is much more amenable compared to the aging and
senescence process underlying the adult age estimation and is a main reason why subadult
age estimation is regularly stated to be more accurate. As aging as a research topic evolve
in depth and breadth, its definition has varied [16]. Within the scope of this thesis,
(skeletal) aging can be understood as a set of cumulative and progressive functional and
structural changes that are manifest after skeletal maturation. Genetics, endocrine
function, disease, joint biomechanics, diet, body size, body composition, activity level, and
even climate may explain differences in the timing and progression of age-related traits
both at inter and intra-individual level [17-19], rendering age estimation from skeletal
remains in adults a difficult task.

Adult age estimation evolved immensely over the last 150 years as reflected in
diverse array methods and modalities that are available nowadays [20, 21|. Age-at-death
can be inferred using biochemical and epigenetic [22-29], histological [30], radiological and
densitometric [31-35] and dental [36-40] approaches. Nonetheless, macroscopic techniques
are the most used in current forensic settings when addressing identification from human
skeletal remains [41, 42]. Macroscopic analysis contrasts with most of the other approaches
due to its inexpensive nature as it does not require specialized equipment, reagents, or
facilities. However, it does present several limitations and challenges which addressing

represents the scope of this thesis.

1.1|Motivation

The main motivation for this thesis is the critical role of age-at-death assessment
in the task of biological profile estimation from human remains, as well as its challenging

nature and the need for methodological improvement.
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In forensic contexts, where achieving identification is pivotal, age-at-death
estimation is critical. In the identification of human remains, age-at-death is a major
screening factor that assist in narrowing the universe of possible matches; thus, an estimate
of this biological parameter is a common request from law enforcement and judicial entities
[43]. This process is based on a meticulous examination of skeletal and dental structures
with association to age-at-death. The efficiency of age estimation methods exhibits a
directional bias, with error increasing with age. Estimating this parameter in neonatal,
juvenile, and adolescent remains is highly accurate. Hormonal and genetic mechanisms
regulate growth. As a result, the age of subadults follows a more consistent pattern of
association with skeletal and dental traits. As growth slows and eventually ceases, age
estimation relies on the skeletal tissue response to degeneration through bone and dental
remodeling and is thus less accurate due to the wide variation in such processes.

Skeletal age estimation in adult remains is particularly difficult because skeletal
morphology and chronological age frequently show a weak relationship (e.g., cranial suture
obliteration), and confounding factors such as sex, ancestry, or intra-personal variation all
have an impact on skeletal morphology and its age-related expression. Most commonly
used adult skeletal age estimation methods rely on macroscopic analysis [41], which means
that age-related information is extracted by a human expert through visual and manual
examination of the skeletal morphology. This leaves room for subjectivity, adding another
thick layer of complexity to an already difficult task.

Despite being a topic where much research was performed in the last years, skeletal
age estimation of adult remains still presents many unanswered questions and challenges,
especially for the elderly. How to handle age-at-death estimation using multiple
morphology indicators are among the problems most commonly identified for which a
satisfactory solution has not yet been presented and research is required [41, 43-49]. Also,

computational and statistical methods employed in the creation of age estimation
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techniques has been a topic of debate and contention [32, 50-62]. The challenging nature
of adult skeletal age estimation, its relevance and current limitations constitutes the main
motivation of the research work here presented. This research aims to addresses those
problems with robust yet simple computational approach, aiming to make forensic adult

skeletal age estimation a more accurate, precise, and efficient process.

1.2|Hypothesis

The present work aims to lay a foundation to tackle some of the challenges of
macroscopic adult skeletal age estimation, especially in its holistic or multifactorial aspect.
Several authors argue in favor of multifactorial age estimation to obtain precise and
accurate age estimates [48, 54, 63]. It is well known that there is not a single age indicator
that can be used on its own across the entire adult age span. On the other hand, it is not
necessarily true that increasing the number of age-related traits results into more accurate
estimates by itself. That said, using more than one skeletal element or marker to assess
age-at-death has long been pointed as fundamental to produce accurate and precise
estimates. Nonetheless, multifactorial age estimation poses its own challenges and
limitations, and is a topic with a clear lack of consensus [41, 49].

Conceptually multifactorial age estimation can be argued as the most effective
approach for age estimation because morphological traits display different age-related
trajectories, onsets, and underlying biological processes. For instance, the symphyseal face
of the pubic bone has been systematically studied ranging from the pioneering studies that
established the morphological analysis of this skeletal marker as an age estimation
technique to modern fully computational frameworks for age estimation [64-72]. However,
other skeletal markers and regions that can convey important age-related information, such

as the degeneration of vertebral bodies, joint margins, or the roughening of muscle and
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tendon attachment sites, have received scarce attention as aging markers. The
unimpressive accuracy and precision associated to the multiple iterations of pubic
symphysis aging techniques, one of the most used and favored techniques for age estimation
[41], underlines the idea that further developments and over-analysis of specific skeletal
markers in isolation is not likely to result in substantial improvements over the state-of-
art of adult age estimation, but rather a more comprehensive array of skeletal markers and
features provide a more fertile ground for further developments [73, 74].

A multifactorial macroscopic approach to skeletal analysis does not solve, on itself,
the many problems associated with determining the age-at-death. In fact, if not properly
designed, this approach can become methodologically burdensome in terms of data
collection and analysis. Collecting more data from the skeleton increases the likelihood of
encountering redundancy, multicollinearity, and dimensionality, which impedes the
straightforward interpretability and pragmatic value of macroscopic analysis. In practice,
a more comprehensive analysis of age-related skeletal features necessitates a higher level of
expertise in collecting the skeletal features. This is a critical issue for approaches that rely
on skeleton morphoscopic analysis. Furthermore, it is common in forensic contexts for
skeletal remains to be fragmentary or incomplete due to a variety of taphonomic factors,
which means that not all age-related traits will be available for every unidentified deceased.
From the standpoint of a practitioner, this translates into the need for computational and
software tools that can fit or train age-at-death estimation models on an individual basis.

To cope with the difficulties and needs of multifactorial age estimation, novel
methods and techniques can be developed by resorting to statistical and machine learning,
data science and artificial intelligence tools and approaches. More than constantly evolving,
machine learning, artificial intelligence and data science are ubiquitous with various
successful applications within forensic anthropology in domains such as biological profiling

or craniofacial identification [32, 52, 75-79)].
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1.3|Objectives

Under the premise of improving age-at-death estimation the main objective of this

thesis was to propose a new method for multifactorial age estimation using an

interdisciplinary approach bridging (forensic) anthropology and computer science (machine

learning) through a predictive modelling framework. This major objective was decoupled

into the following sub-objectives:

1)

Proposed a novel macroscopic technique or protocol that better embodies a
multifactorial perspective of the adult skeleton while mitigating its implicit

limitations such as ease of use and scoring reliability.

Construct a new dataset on age-related skeletal markers. Data is primer of data-
centric computational approaches and the atomic structure that enables the

dialectic between anthropology and computer science.

Devise and validate computational approach based on machine learning technique

to predict age-at-death accounting both for point and interval estimates.

Develop a flexible and easy-to-use software to operationalize the proposed method,
accounting for specific aspects of skeletal analysis and its limitation in forensic

practice.

The sub-objectives detailed above clearly elucidate the interdisciplinary nature of

this work and illustrate the stages needed to establish a new biological profile estimation

method. A critical view from both disciplines is needed to maximize the contribution of



1] Introduction: problem statement

each part to the whole. The development of a software that operationalizes and addresses
the needs of forensic age estimation highlights the advantages and potential contributions

of computationally oriented approaches in anthropology and forensics.

1.4|Document structure

The remainder of the document is structured as follows: Chapter 2 provides
a historical background and a state of the art in macroscopic skeletal adult age-at-death
estimation and contextualization on multifactorial age estimation; Chapter 3 presents one
of the key contributions of the thesis, a novel protocol for macroscopic analysis of the
skeleton and its scoring reliability analysis; Chapter 4 describes the dataset constructed for
the purpose of this research, provides detailed view of the data management and processing
steps, and a critical perspective of its data sources. It also provides a correlation analysis
to inspect age-related variation in the skeletal traits analyzed. This chapter is heavily
complemented by appendix A and B; Chapter 5 details the rationale and the mathematical
formulation of the computational approach pursued in this work, and describes the machine
learning approach used to construct age prediction models; Chapter 6 provides results on
in silico validation of age prediction models constructed with the approach presented in
the previous chapter and is complemented by appendix C; Chapter 7 highlights the key
functionalities of the software developed throughout this research to operationalize in a
practical manner the novel age-at-death estimation method proposed as the main objective
of this thesis; Chapter 8 summarize the thesis conclusions, key contributions, addresses
future work. The main contributions of this thesis have been peer-reviewed and published

as [80-82].

10



2|Macroscopic skeletal age estimation: state of the art

Macroscopic skeletal age estimation of adult human remains has a long research
tradition and applications in anthropology and related fields. Current chapter provides a
state of the art of this topic introducing its historical background, identifying its key

limitations and previous approaches to multifactorial age estimation.

2.1|Historical background

One of the first authors to thoroughly analyze the skeletal changes associated with
age-at-death was T. Wingate Todd. His work can be considered the foundation of skeletal
age estimation research as much of the initial research papers on adult age estimation can
be attributed to or traced back to him [3]. During the 1920s, Todd extensively studied and
wrote on the skeletal changes of the pubic symphysis associated with age on humans, as
well as on other mammals [68, 69, 83]. He also did extensive research on the relationship
between cranial sutures closure and age, accounting for confounding factors such as
ancestry [84, 85]. His research provided the first methods for age estimation based both on
the pubic symphysis and the cranial sutures, and for years these had been the tools
available for aging skeletal remains.

Until the 1970s and the rise of anthropology from an advisory to an authoritative
and fully fledged forensic science, little research work had been developed on age estimation
[3]. Most of the scientific inquiry was devoted to the testing, critique, and modification of
existing techniques [86, 87] — mostly a reassessment of Todd’s contributions. During this
time period one of the most notable exception is the work developed by McKern and

Stewart [67], which introduced a components-wise method (based on Todd’s phase method)
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for age estimation based on pubic symphysis morphology.

The advent of forensic anthropology, during the 1970s (and its onward
consolidation), brought not only the scrutiny and validation of previous age estimation
methods but also new developments and methods for macroscopic skeletal age estimation.
Gilbert and McKern [66] building upon previous work by McKern and Stewart introduced
a component-wise method for age estimation of females based on the pubis, accounting for
the sex differences observed in this skeletal indicator. The confounding effect of sex upon
age estimates from the pubic symphysis became more apparent with research conducted
by Suchey [88]. Hanihara and Suzuki [65] proposed new method based on the os pubis and
using regression analysis. However, the age range (18-38 years old) of their sample limited
the method applicability.

The 1980s was one of the most impactful time periods in skeletal age estimation
research. Meindl and associates [89] performed an extensive validation study of Todd [68,
69], McKern and Stewart [67], Gilbert and McKern [66], and Hanihara and Suzuki [65]
methods for age estimation using the Hamann-Todd identified skeletal collection. The
authors concluded that Todd’s method was more accurate and, to address some of the
problems they identified, proposed a revision to Todd’s original phase system.

Katz and Suchey [70] conducted a validation study of Todd [68, 69] and Gilbert
and McKern [66] methods in large sample (n=736) of male pubic symphysis collected from
cadavers of multiple ancestral backgrounds. The authors concluded that Todd’s method
was more accurate and easier to use and proposed a revised method by collapsing Todd’s
ten-phase system to a scoring system with six morphological phases. Brooks and Suchey
[64] extended Katz and Suchey [70] research work including female individuals (n=237) in
their sample cadaver extracted pubic symphysis. The authors research culminated in the
Suchey-Brooks age estimation method, a six-phase system modified from Todd’s method,

which is the most well-known and used age estimation method [41]. The Suchey-Brooks
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was significant contribution to forensic anthropology because it was the first pubic
symphysis age estimation method created with contemporaneous reference sample making
it more suitable for forensic case work.

During the 1980s, cranial suture closure as age indicator was revised by Meindl and
Lovejoy [90], who proposed a new method for age estimation. Age estimation from cranial
sutures was deemed as unreliable during the 1950s by Brooks [87] and Singer [86]. However,
as Brooks noted the cranium is often the only skeletal element available and cranial sutures
can provide a general idea of age. Meindl and Lovejoy [90] recommended the method to be
applied in conjunction to other aging techniques.

The most significant contribution on age estimation research during the 1980s were
the introduction of macroscopic techniques based on skeletal indicators other than the
pubic symphysis and cranial sutures. Iscan and associates [91-96] developed a new method
for macroscopic age estimation based on the morphological changes of the sternal end of
the fourth rib. The method revealed to be very promising for forensic applications because
like the Suchey-Brooks method it was elaborated using an autopsy room sample and
provided good results in older individuals.

Lovejoy and colleagues [97] published a paper describing the age-related changes
associated to the morphology of the auricular surface of the ilium. Based on validation
studies the authors stated that their technique is as accurate as the Suchey-Brooks method.
Although more difficult to apply because the metamorphosis of the skeletal indicator does
not have features so conspicuous as those of the pubic symphysis. It is important to note
that in a recent survey conducted by Garvin and Passalacqua [41] the Suchey-Brooks [64,
70, 88], Meindl and Lovejoy [90], Lovejoy et al. [97], and Iscan [91-96] age estimation
methods remain the most used methods by forensic anthropology experts.

The process of validation and refinement of macroscopic skeletal age estimation

methods, and the creation of new ones has continued throughout the 1990s to nowadays.
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To handle common problems with Iscan method, correctly identify the fourth rib and the
fragile nature of the sternal end, Kunos et al. [98] developed an extensive study of the first
rib age-related changes. The first rib can be easily identified and recovered due to its unique
morphology, and its small size make it extremely robust against taphonomic agents. Kunos
et al. identified age-related modifications not only in the sternal end of the rib but also on
the tubercle and the head. DeGangi et al. [99] revised the method created by Kunos et al.
and based on it proposed a new one using a sample of males of Eastern European origin
by applying a probabilistic method for age estimation.

Lovejoy et al. [97] auricular surface aging method was evaluated by several authors.
Murray and Murray [100] found that the method was equally applicable across sexes and
ancestral groups but the rate of degenerative changes on the auricular surface was highly
variable. Osborne and associates [101] reached very similar conclusions regarding the effect
of confounding factors upon the age-related morphology of the auricular surface of the
ilium demonstrating that age-related modifications on this skeletal indicator do not depend
on sex, ancestry, or secular changes. However, the authors argue that the age ranges of
Lovejoy et al. [97] method (5-years intervals) are too narrow, and inappropriate for forensic
purposes. They proposed a revised six-phase version of the original method.

To address a problem initially pointed out by Lovejoy and his associates [97], the
difficulty of correctly identify the age-related of the auricular surface, Buckberry and
Chamberlain [102] and Igarashi et al. [103] proposed new methods of age estimation using
a component-wise approach. Despite the inherent limitations of the auricular surface as an
age-related skeletal indicator, several authors concluded that Buckberry and Chamberlain
method is superior to Lovejoy et al. technique [104-108].

The age-related morphology of the pubic symphysis continues to attract attention
and the latest research trends have been focused on the quantification of age-related

changes using medical imaging technology and statistical shape analysis [71, 72, 109-114].
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Obtained results are encouraging, yet currently such methods present limited practical
value as they require highly specialized equipment and personnel.

In terms of macroscopic analysis, Berg [115] and Hartnett [116] both revised the
Suckey-Brooks method. Using modern samples, the authors proposed adding a new phase
to the original six-phase system to more accurately identified age-related changes in
individuals over 70 years old. Chen et al. [117, 118] proposed a new component-wise
regression-based method for age estimation. This new regression-based method was
compared to Suckey-Brooks method in a validation study by Fleischman [119], which
concluded that Chen et al. method is more accurate for middle-age adults. Castillo and
colleagues [120] proposed a novel method for age estimation based on 16 binary traits
observed in the pubic symphysis and machine learning algorithms. Preliminary results show
promising result for older individuals.

In recent years, several papers have made significant contributions for macroscopic
adult skeletal age estimation, researchers investigated and proposed new techniques based
on new skeletal indicators never analyzed systematically in adult age estimation.

Passalacqua [121] proposed a new method for age estimation of human remains
based on the developmental and degenerative changes of the sacrum. Validation tests
demonstrated that the method can be applied with high reproducibility, nonetheless it
provides imprecise age estimates with large predictive intervals [122].

Falys and Prangle [123] studied the post epiphyseal changes occurring on the sternal
end of the clavicle and verified that highly patterned degenerative skeletal changes can be
observed. The authors propose a regression-based method to predict age-at-death based on
three features, preliminary results demonstrate that the degenerative changes of the clavicle
can be useful on the estimation of advanced age.

Several methods for age estimation based on the acetabulum have also been

proposed and validated [124-140]. Literature suggests that age estimation using the
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acetabulum is very promising because the acetabulum shows a stable pattern of changes
with a late onset which is very useful for the elderly, it is also an anatomical region very
dense and resistant.

Listi and Manheim [141] and Listi [142] have conducted statistical analysis on the
utility of osteoarthrosis and entheseal changes as age-related indicators. While their results
show that both skeletal conditions should not be used as the only mean of age estimation,
the analysis of this indicators can be critical to identify individuals who died with more
than 70 years old. Alves-Cardoso and Assis [143], Winburn [144], and Milella et al. [145]
also conducted research on joint and musculoskeletal degenerative traits and their results
urge to reconsider these traits as predictors of age-at-death in adults. While estimates
based solely on these traits over-age individuals under 45 years old, they are important to

refine age assessment in the elderly due to the late onset of this type of skeletal changes.

2.2|Limitations in skeletal age estimation

As demonstrated throughout the historical overview, there is a large set of
techniques available for macroscopic skeletal age estimation. Virtually every bone of the
human skeleton can be a valuable source of age-related information. Nonetheless, adult
skeletal age estimation is one of the most difficult tasks an anthropologist needs to perform,
and where a lack of consensus is evident. An unfortunate expression of such lack of
consensus is the fact that often experts prefer or give more emphasis to a certain method
without provide any statistical or scientific information to support such decision [41, 43,
49]. When multiple skeletal indicators/methods are used, final age estimates are often
obtaining using simple heuristics where the anthropologist’s experience often plays an

important role, which leads to subjectivity being an influent source of error and bias.
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2.2.1|Observation error and observer subjectivity

Intra- and interobserver error is a significant bias component in age estimation and
it is always present in macroscopic techniques. Identifying age-related morphological
features often relies on intricate and elaborate descriptions that may be open to multiple
interpretations. A general observation in skeletal age estimation, is that the level of
proficiency and familiarity of the expert with a given technique will increase the
reproducibility and reliability of the age estimates [44, 47]. An elusive problem of
observation error is that when observation error collides with observer subjectivity. For
instance, the expert may assume that his proficiency with a given technique for certain
skeletal indicator translates, immediately, to a comparable level of proficiency using
another technique or methods available for the same indicator.

Several statistical tools are available to assess the reliability and reproducibility of
macroscopic aging techniques. However, authors often fail to include such information when
proposing a new technique. Another problem is that classical statistical indicators of
reliability (i.e., Cohen’s Kappa and its variants) are omnibus indices, and provide only
information on the overall reproducibility of the method. Having information on which
stages or phases of a given macroscopic method can be re-scored with higher reproducibility
can be more informative to fine-tune and refine a method. While the quantification of
observer error is an important step when developing a new method, currently no
methodology is available to incorporate the effect of observation error in the final age

estimate.

2.2.2|Biological variability

Unfortunately, the poor performance of adult age estimation techniques cannot be

attributed solely to a lack of methodological consensus or operator error. Indeed, as
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previously stated, biology is a major source of error in adult age estimation. The human
skeleton's maturation and degeneration are related to chronological age (civil years passed
since birth to death). However, this relationship does not appear to be a linear correlation
between chronological age and skeletal morphology, particularly in late adulthood. Bone
remodeling throughout life is constant, so that the age estimate depends, almost entirely,
on these changes, which occur, at greater or lesser rates, in different areas of the skeleton
[146]. Individual biology and its interaction with the individual's environment can explain
the nonlinearity between skeletal degeneration and chronological age. While aging and
growing old are universal and progressive in nature, they are highly variable at the
individual level. Individual biological or physiological aging is influenced by complex
interactions between the individual's genetic constitution, environment, and cultural
practices [42, 147].

While there is an association between skeletal morphology and chronological age
such relationship is affected by numerous factors. Such factors can accelerate or delay the
maturation or degeneration process of the skeleton. Mays [17] points out that up to 60%
of the variation observed in skeletal indicators used in age estimation can be attributed to
sources other than age. The goal of a forensic anthropological analysis is to extract the
chronological age to aid the identification process. Chronological age is a proxy variable
for a set of complex factors that cannot be easily quantified, may or not be a direct product

of physiological aging, but accumulate over time.

2.2.3|Skeletal reference samples

The structure of reference samples employed in the creation of age estimation
method has long been seen as a source of error and bias in age estimation [50]. One problem

that can be easily pointed out regarding the structure of the reference sample is its size.
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Reduced sample size undermines statistical significance and support. Small samples tend
to have uneven distribution of age-at-death and other factors such as sex and ancestry.
Uneven distribution of age-at-death is a problem not constrained to small samples. For
example, the Suchey-Brooks method [64] was based on a large sample size (n = 1225), but
the age-at-death distribution is heavy-tailed towards young individuals, which is one of the
reasons the method produce such poor results for older individuals. Another unrecognized
issue with reference samples is their representativeness. Typically, researchers assume that
their samples are representative of the general population. A documented reference sample
is commonly assumed to be a representative sample; however, this assumption is frequently
incorrect and unsupported. Most documented collections of human skeletal remains contain
subsets of individuals that are unlikely to represent individuals of every possible age,
ancestral group, socioeconomic status, or cultural group in a modern human population. A
study by Komar and Grivas [148] demonstrated that even modern identified skeletal
collections, carefully curated for forensic applications, do not represent the living and
decedent populations from which they were drawn in terms of demographic parameters.
As reference collections are the most valuable resource in biological profile
estimation research, researchers need to be aware to the bias associated to this source of
information. Studies such as those of Komar and Grivas [148] do not dismiss the importance
of identified skeletal collections, but force researchers to reconciled with the unbearable
truth the skeletal reference collections are manufactured samples representative only of the
general patterns of human skeletal variation, and they are the perfect example of what is
called in the statistical lingo convenience samples. The structure of the reference sample is
a particularly relevant issue in age estimation, because the age-at-death distribution is a
critical and fundamental piece of information for age estimation methods and is linked to

another issue in age estimation techniques: the computational methods used.
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2.2.4|Computational and statistical methods

Computational and statistical methods employed on the creation of age estimation
techniques have been a topic of debate and contention in the last years [32, 50-62]. From
a computational perspective, methods such as the Suchey-Brooks technique (a phase-based
method) can be viewed as a nearest-neighbor procedure. The age distribution of the
reference sample is conditioned on each level of the discrete variable representing the phases
of morphological metamorphosis and descriptive statistics such as the most relevant
quantiles can be used to estimate age in unidentified individuals. This simple procedure
can be seen as a case of multiple classical calibration [56], and from a technical point of
view is unproblematic. Nevertheless, this type of procedure has the underlying assumption
that the target case (the unidentified individual) is drawn from a population with same
conditional distribution of age given indicator as the one observed for the reference sample.

Another technique that also operates under this assumption is linear regression.
The application of linear regression in age estimation had been thoroughly discussed in
Aykryod et al. [149], Konigsberg and Frankenberg [57] and Lucy et al. [56] the following
remarks are worth mention: skeletal traits used in adult age estimation will rarely exhibit
a linear relationship with chronological age-at-death; regressing age on the skeletal trait
implies from a biological perspective that the changes in x, the random variable (skeletal
indicator), cause or explain a change on y (age). From a biological point of view this is
implausible, and the inverse situation occurs.

Probabilistically speaking the problem with the conditional quantiles and regression
approaches is that they assume an implicit prior distribution on age-at-death, being such
distribution the one observed for the reference sample. If the distribution of age-at-death
from which the target case was drawn is not like the reference sample this result in bias

and error on age estimates. This issue was first acknowledged among the anthropological
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demography community and labeled as age-mimicry [50]. Age-mimicry becomes
particularly problematic for methods built using a reference sample with an uneven or
skewed age distribution. Although aforementioned methods have been criticized in the
past, Samworth and Gowland [55] argue that if the assumption of the preservation of the
conditional distribution of age given indicator can be supported, such methods are valuable
tools with desirable proprieties such as the ease of modelling the distribution and derive
point-estimates, and predictive intervals from it. In situations where the conditional
distribution of age given indicator is not preserved, a solution is to assume that the
conditional distribution of indicator given age is the same in reference and target sample.
However, deriving age estimates is not straightforward as in the first case. A solution to
extract age estimates from such distribution is via the Bayes’ theorem. By using Bayes’
theorem one can obtain the conditional distribution of age given indicator f(y/z), from the
conditional distribution of indicator given age f(z/y), through the following general

expression

Fo 0 LE WS bf(xly)f(y) (2.1)
S sy

where f(y) is the prior distribution for age-at-death. The marginal density function f(z)
ensures normalization and can be found, from the numerator, by integrating with respect
to age. In practice this is normally obtained through numerical approximation. a and b are
the bounding parameters for the domain of the conditional distribution, in adult age
estimation we are usually interested in age between 18 to 110 years old.

The probabilistic formulation for age estimation is an approach that gained
popularity in anthropology in the last years. To estimate age-at-death using this

formulation is essential to know f(z/y) and f(y). Usually f(z/y) must be estimated from a
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reference sample, and it can be obtained with different approaches. Lucy et al. [56] and
Martins et al. [62] propose using nonparametric density estimation with kernel methods.
Boldsen et al. [58] and Konigsberg and associates [54, 150] have proposed parametric
methods based on logistic and ordinal regression, where the indicator is regressed on age.
The authors approach has become widely known as transition analysis. The name
transition analysis derives from the fact that using this approach the slopes and intercept
of the regression models of indicator on age can be converted to means and standard
deviation of age-at-transition, that is, the age at which individuals move from, for example,
a stage I to a stage II of the Suchey-Brooks system. The two approaches for estimating
f(z/y) differ only in assumption made about the shape of the conditional distribution they
are modelling. The first method makes no assumption on the shape of the distribution.
Transition analysis assumes the conditional distribution f(zfy) has a shape that can be
modelled with logistic, or normal (and log-normal) distribution parameterized with age-at-
transition means and standard deviations.

The probabilistic approach to age estimation has several advantages over
traditional statistical methods used to predict age. First, the output of equation 1 is the
entire conditional distribution of age-at-death given the observed indicator. The most likely
age, or the conditional expectation, can be easily extracted as it will coincide with age-
value associated to the highest density of the distribution. Prediction (or credible) intervals
can be obtained by computing the appropriate quantiles of the posterior distribution. The
conditional (or posterior) distribution of age given indicator can be plotted, providing a
visual insight on the age estimation process. Second, this approach while dependent on
knowledge of f(y), the age-at-death distribution of the population from which the target
individual was drawn, f(y) is not assumed to be equal to the distribution of age-at-death
in reference sample. Information on f(y) can be obtained from vital statistics and

population demographic studies, parametric mortality models or assumed to be uniform.
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This is an important propriety of probabilistic age estimation and a key-point to avoid the
issue of age-mimicry.

Probabilistic methods are an important tool in age estimation, but like other
techniques they also have shortcomings. To be able to compute the posterior distribution
of age given indicator, f(y/z), knowledge on f(y) is a fundamental piece of information. In
forensic scenarios, such information can be hard to obtain without making strong
assumptions. When age estimation is being performed in the context of paleodemography,
probabilistic methods introduce a circular logic because to estimate f(y) for the target
population we need to estimate individual age using f(y/z) but to do such estimate with
accuracy, information on f(y) must be given in advance.

With no information available on f(y) to compute f(y/r), some authors argue in
favour of a uniform prior on age-at-death [57, 58]. That means that it is assumed that an
individual has equal chance to die at every given age. While this is a weak prior, yet
equivalent to the lack of information, it would not be a realistic model for most situation
faced in age estimation or to model human mortality. When incorrectly assumed, a uniform
prior can produce inaccurate age estimate and statistical artefacts such as the over-
estimation of age in older individuals.

Probabilistic age estimation is also hard to generalize to the multivariate scenarios
without incurring in some strong assumptions modelling the full conditional distribution
of indicators given age. Conditional independence of indicators given age is often assumed
to ease up computation even if such the premise is not fully address and tested with
appropriate statistical tools. A recent and promising development in this approach to age
estimation is the proposal of the Multivariate Cumulative Probit algorithm (MCP) by Stull
and collaborators [151]. This algorithm expands and solve issues in algorithm proposed by
Konigsberg [54].

Machine learning and artificial intelligence techniques such as neural networks,
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random forests, and genetically evolved ensembles models have also been applied to
macroscopic adult skeletal age estimation [32, 51, 53, 61, 81, 120]. Studies using such
computational methods demonstrate promising results and show that this type of
techniques are efficient for detecting age-related patterns from noisy morphological data.
Thus, producing models that are robust against confounding effect such as sex or ancestry
without imposing or making strong assumptions compared to traditional statistical or
probabilistic approaches. Machine learning as a key computational tool in this thesis will

be later addressed in more detail.

2.3|Multifactorial age estimation

The topic of this thesis, multifactorial skeletal age estimation, is not novel in
anthropology. As previously stated, conceptually multifactorial age estimation is the most
effective approach for age estimation because skeletal indicators have different age-related

trajectories and underlying biological processes.

2.3.1|Contextualization

True multifactorial methods, that is, methods developed with the same reference
sample and multiple skeletal indicators, are rare and typically employ no more than two
or three skeletal markers [58, 61, 62, 126]. A common approach is to use several single
methods independently, then combine the results based on some merging criteria. When
using this method, there are two obvious issues: To begin, if the methods to be combined
are not correctly constructed, which is unfortunately common, the problems and sources
of error in such methods will be propagated in the multifactorial age estimate. Second,

there are no guidelines for which methods should be used and how they should be combined.
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Ritz-Timme et al. [43], Rosing et al. [46] and Cunha et al. [13] provide recommendations
for which methods to use in forensic age estimation, but the problem of how to combine
multiple methods remains.

Anthropologists use a variety of heuristics to combine age estimation from different
methods, which frequently results in the situation where, even when the same methods are
used, the final age estimate can differ greatly among experts [41]. Experts usually provide
an overall age range based on the minimal or maximal age range of observed methods, the
overlap of age ranges, or the average of age ranges when combining age estimates from
different methods. Often, researchers provide a final age assessment based on the age range
of the methods they believe are appropriate for a given skeleton, with their experience in
osteological analysis serving as a guideline. While experience is important, basing a forensic
age estimate on it invokes the argumentum ad verecundiam, or authority argument. That
should not be allowed under any circumstances. A forensic method should strive to produce
the same result whether applied by someone with thirty years of experience in the field or

someone who is just starting out.

2.3.2|The complex method

Nemeskéri, Harsany and Acsadi were the first to propose a multifactorial age
estimation method, the compler method. Their method combines the macroscopic analysis
of the pubic symphysis relief and cranial sutures obliteration with the radiographic analysis
of the trabecular bone pattern of the proximal humerus and femur. It was part of the
recommendations that resulted from the Workshop of European Anthropologists, a
symposium held in Prague in 1972 [152]. The four indicators used in this method, have a
phase system that describes the progressive alterations occurring with age. The final age

estimate is obtained by consulting the tables created by cross-tabulating indicators against
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one another. Such tables are available in Ferembach et al. [152].

2.3.3|The summary age method

Lovejoy et al. [153] proposed a general multifactorial age estimation technique they
called the summary age method. Simply put the summary age method is a method for
combining age estimate obtained from different methods based on a weighted average. The
way how the weights or weighting coefficients used in such averaging procedure are
determined, on the other hand, is statistically sophisticated.

To compute the weighting coefficients, age estimates must be first derived by apply
aging techniques available for different skeletal indicators. An inter-correlation matrix of
the age estimates is computed and subject to a principal component analysis. The first
principal component is assumed to represent true age. The loadings of age estimates,
correlation of the age estimates for each method with the first principal component scores,
are then used as weights for combining the age estimates.

The authors illustrated the procedure by combining age estimates from pubic
symphysis, auricular surface of the ilium, dental wear and radiographic analysis of the
femur but it should be viewed as a generalizable technique.

Martrille et al. [48] used this procedure to combine age estimates from several
methods employed in validation study and concluded that this procedure provided most

accurate and less biased age estimates outperforming single techniques.

2.3.4|The transition analysis method

The transition analysis framework [58, 59|, more widely known for being a
probabilistic approach to macroscopic age estimation, can also be seen as multifactorial

age estimation technique. In this method five segments of the cranial sutures, five features
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of the pubic symphysis and eight feature of auricular surface of ilium are statistically
combined to compute the conditional distribution from which the final age estimate is
derived. However, is important to note that the skeletal indicators are combine under a
strong independence assumption. That means that using this approach, one is assuming
that all morphological features are dependent on age but bare no relation to each other.
While one can suppose that, conditioned on age, the cranial sutures closure has a low
dependence with the changes occurring in the pubic symphysis, is difficult to sustain such
argument when considering the dependence among the cranial suture segments or the
feature of the pubic symphysis. Boldsen et al. [58] suggest that the lack of conditional
independence will affect only the predictive intervals and not the point estimate (most
likely age), but on a recent study Konigsberg [54] demonstrated that failing to correctly
model the conditional dependencies in skeletal indicators can produce biased point
estimates and predictive intervals.

Validation studies of the transition analysis method reached unexpected
disappointing results [59, 154]. Despite the elaborated conceptual and mathematical
foundation, results obtained using transition analysis are comparable to the ones obtained
with less complex methods. Surprisingly, the method works quite well on older individuals
which by itself is a major improvement. A noteworthy conclusion from validation studies
is that combining multiple indicators improves the accuracy of age estimates. Jooste et al.
[154] demonstrated that using the cranial sutures, the pubic symphysis and the auricular
surface independently resulted in a mean absolute error ranging from 15.54 to 23.48 years
old but combining the three indicators reduces the mean absolute error to values between
10.39 to 12.91 years depending on the chosen prior distribution. A refined version of
transition analysis with expanded skeletal traits is currently being developed [155], but no

published data exists on its accuracy at the moment.
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2.3.5|The fuzzy logic system method

Anderson and associates [156-158] developed an algorithm for aggregating results
of different methods based on fuzzy logic instead of probability theory. Their method uses
the Sugeno fuzzy integral to produce what they call an age-graph from which a final age
estimate is derived and visually analyzed. The algorithm requires a measure of accuracy
and quality for each method to combine them. The authors demonstrate the procedure by
using the correlation between the skeletal indicator and chronological age as a measure of
accuracy and skeletal preservation as a measure of quality, but any other measure between
0 and 1 can be used. There is currently no published validation study for this procedure.
From a computational standpoint, the method is complicated. An important step in the
algorithm is the solution of an N-1 degree polynomial, which can only be done easily with
numerical algorithms when N is large. The method lacks an easy-to-use implementation
(i.e., software), which may explain why no one other than the authors has used it thus far.
One disadvantage of the method is that it only combines age ranges obtained through
other methods. If the age ranges of the methods to be combined are biased due to issues

with those techniques, the bias will be propagated through the proposed fuzzy logic system.

2.3.6/The two-step procedure (TSP) method

The two-step procedure [159] is an heuristic that chronologically combines a
macroscopic skeletal age estimation method, the Suchey-Brooks system [64], with a dental
age estimation technique, the Lamendin’s method [38]. The method is based on two simple
premises: First, no single indicator can be informative and relevant for the entire human
lifespan. Second, instead of a brute-force combination of indicators to provide a final age
estimate, the standard approach in multifactorial age estimation, one should choose the

indicator(s) that work best for a given stage of the human life span. To choose which
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indicator(s) is more appropriate for a given age interval we would need to know the age of
the individual and that is exactly what we are trying to estimate, the morphology of the
pubic symphysis is used as a filter. In a first step, the morphology of the pubic symphysis
is analyzed. If it is categorized with a stage three or less, the Suchey-Brooks system is used
to provide an age estimate. That means that the individual is under 40 years old, an age
range for which the Suchey-Brooks method is both accurate and precise. If the pubic
symphysis shows an appearance compatible with a stage four or higher, the Suchey-Brooks
method is discarded and Lamendin’s regression method based on dentin translucency is
applied as the second step of the procedure.

While the procedure is conceptually sound, it is obviously plagued by the problems
associated to the methods it uses to arrive to a final age estimate. However, the logic
subjacent to the procedure can be easily generalized and used to create multifactorial

methods using other indicators.

2.4|Overview

Throughout this chapter a concise review of the state-of-art in macroscopic adult
skeletal age estimation was provided. A historical analysis of this research topic clearly
demonstrates a continuous refinement of old methods and the proposal of new ones. The
anthropologist’s toolbox has never been so rich. However, practitioners fail to reach a
consensus on how to combine age estimates even when doing so is regarded as the most
effective manner of estimate adult skeletal age with both accuracy and precision.

The most vexing statistical and technical problems of age estimation methods have
long been identified and solutions proposed, nevertheless, most forensic anthropologist still
rely on and prefer the techniques developed during the 1980s [41]. This can be explained

by the fact the new computational approaches Transition Analysis [58, 59] and Sugeno

29



2| Macroscopic skeletal age estimation: state of the art

Fuzzy Integral [156-158] are mathematically complex and problem-tailored solutions that
do not have an easy-to-use implementation in general-purpose statistical packages and
environments used by anthropologists and osteologists. There is a need of computational
resources, i.e., graphical interface-based software, that makes modern computing
techniques easily available to anthropologists. Such resources should allow an easy fitting
and deployment of predictive models in age estimation. Without an easy-to-use
implementation, age estimation techniques based on advanced mathematical and statistical
algorithms are just an interesting academic exercise without practical value for the forensic

anthropologist.
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Current chapter introduces a novel macroscopic method designed for the purpose
of multifactorial skeletal age estimation in adults. Method rationale, scoring systems, and

reliability analysis are presented in detail.

3.1|General principles, foundations, and rationale

A principled method design is key to tackle the issues that arise in age estimation

and mitigate its effects bearing in mind that no method is a perfect one-fits-all solution.

3.1.1|Skeletal traits as age-related biomarkers

Skeletal elements and features analyzed should meet certain criteria in order to be
asserted as good biomarkers for age estimation [73, 160]. The criteria and conditions that

define a good skeletal age marker, are according to Milner and Boldsen [73] quite simple:

(1) the features analyzed should display a strong, progressive, and monotonic

relationship with chronological age-at-death.
(2)  the rate and nature of change observed in the features used for age estimation
should follow a consistent pattern across individuals, nonetheless, accounting

for other biological parameters such as sex or biogeographic origin.

(3)  the features analyzed should be possible to score (macroscopic data) or measure

(metric data) in a reliable and consistent manner.

31



3|A macroscopic method for adult skeletal age estimation

In subadults, these three criteria, are to a great extent easily fulfilled. The
biomarkers analyzed in this context such as bone and teeth development exhibit a
progressive relationship characterized by high linear correlations with age, can be
quantified with consistency and reliability, and under normal conditions similar trajectories
are observed for individuals that share the same biological parameters (i.e., sex or
biogeographic affinity). Opposite to this scenario, in adult age estimation no skeletal
structure seems to meet all the criteria on its own and, as stated by Kemkes-Grottenthatler
[160], all markers employed in skeletal age assessment are inherently flawed.

How does one reconcile this inherently flawed nature of age-related markers with
the need of more robust skeletal age estimation methods? A solution and answer to this
conundrum is to employ a principled design when proposing new methods of age estimation.
A method should strive to be comprehensive and incorporate features from as many skeletal
elements as possible. More precisely, a method should encompass different aspects of
skeletal development and degeneration as expressed by different skeletal elements or
anatomical units. For instance, the symphyseal face of the pubic bone has been
systematically studied with several methodological proposal presented in the literature,
ranging from the pioneering studies that establish the morphological analysis of this skeletal
marker as an age estimation technique to modern fully computational frameworks for age
estimation [64-72]. However, other skeletal markers and regions that can convey important
age-related information such as the degeneration of vertebral bodies and joint margins, or
the roughening of muscle and tendon attachment sites have received scarce attention as
aging markers. The unimpressive accuracy and precision associated to the multiple
iterations of pubic symphysis aging techniques, one of the most used and favored techniques
for age estimation [41], underlines the idea that further developments and over-analysis of
specific skeletal markers in isolation is not likely to result in substantial improvements over
the state-of-art of adult age estimation, but rather a more comprehensive array of skeletal
markers and features provide a more fertile ground for further developments [73, 74].

Following this first principle and envisioning the whole skeleton as a biomarker for

age-at-death estimation, the first and third criteria from Milner and Boldsen [73] are more
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likely to be fulfilled given that the skeleton analyzed as a global entity is more likely to
follow a (strong) monotonic relationship with age-at-death, and the rate and nature of
skeletal changes have a greater chance to be consistent across people because an holistic

approach can encapsulate intra and interpersonal variation with greater finesse.

3.1.2|Challenges and issues in multifactorial approach

Using more than one skeletal element to assess age-at-death has long been pointed
as fundamental to produce accurate and precise estimates, nonetheless, multifactorial age
estimation poses its own challenges and limitations. A multifactorial approach to the
analysis of the skeleton does not solve, on itself, the many difficulties faced in the age-at-
death assessment. In fact, if not correctly designed this approach can become
methodologically cumbersome from a data collection and analysis perspective. From an
analytical and statistical perspective, collecting more data from the skeleton increases the
chance of running into redundancy, multicollinearity and a dimensionality that hinders the
straightforward interpretability of the analysis. From a practical view, a more
comprehensive analysis of the age-related skeletal features requires a higher level of
expertise on how to collect the skeletal features. This issue is of great relevance for

approaches that rely on morphoscopic analysis of the skeleton.

3.1.3|Macroscopic analysis as pattern recognition

The macroscopic analysis of human skeletal remains is the most common and
elementary attribution of a forensic anthropologist, yet a crucial and distinctive skill. This
type of approach is prevailing in all aspects of an osteological analysis and is particularly
dominant in adult skeletal age-at-death assessment and the data generation mechanism for
the most commonly used methods [41, 64, 90-92, 94, 96, 97]. The macroscopic inspection
of the skeletal remains is, to the qualified expert, an inexpensive and straightforward

manner to infer the age of the deceased. The visual and tactile analysis of the bone and its
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morphology is both a cognitive and data generation mechanism that enables the process of
age estimation. Is through this type of process that most of the anthropological data in
biological profile estimation is acquired, so it is vital to have a basic understanding of the
cognitive processes involved. Cognitive sciences, in particular cognitive psychology, can
offer some insights to better understand macroscopic skeletal analysis and design better
techniques of examination and age-at-death estimation.

Cognitive psychology aims to understand human internal psychological mechanisms
or cognitive processes. Taking the mind and human brain as information processing unit
as its theoretical core, it focus on the processes and mechanisms by which sensory stimuli
are processed, stored, and retrieved and how it interacts with experience, existent and new
knowledge [161-165].

From a cognitive point of view, the macroscopic examination of skeletal remains
triggers a chain of sensory and mental processes that involve cognitive processes such as
perception, attention, memory, and more specifically as task dominated the visual stimuli
anthropological analysis evokes the cognitive process of pattern recognition. Human visual
pattern recognition can be analyzed as a typical perception process, dependent on
knowledge and experience. Cognitive scientists and psychologists define perception as the
process by which humans gather information from the environment through the sensory
systems and interpret such information. Pattern recognition in this context refers to the
ability of recognize objects and patterns in the environment [163, 165]. A pattern
recognition process or mechanism is initiated by sensory stimuli, which in macroscopic
analysis of human remains is the visual and tactile inspection of the skeleton. By carefully
inspecting the skeletal remains aims to detect key characteristics or patterns that are
suggestive of the age of the individual.

Several theories have been proposed to explain visual perception and pattern
recognition; such theories can be aggregated into two major clusters around the theories of
direct perception and constructive perception. Direct perception emphasizes bottom-up
processing, arguing that perception is mediated by direct acquisition of information from

the environment. Constructive perception, on the hand, postulates perceptions are actively
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constructed by selecting, processing, and merging the interpretation of stimuli with
memory and previous knowledge using a top-down strategy. In age-at-death estimation,
and other aspects of biological profile estimation that rely on macroscopic analysis, bottom-
up and top-down cognitive mechanisms are actively applied to engage in feature extraction,
correspondence matching and comparison with reference representations (internal or
external).

How age-related information is recorded using macroscopic approaches resonates
with important theories and models in cognitive science and psychology. One approach is
to analyze the entire anatomical structure, defining several modal phases through which
the region of interest evolves during the development and senescence process. This
approach assumes that age-related morphology can be associated to certain gestalt where
the individual parts are related as a whole (an idea that can be found in gestalt psychology).
The modal phases are associated to detailed anatomical descriptions, illustrations,
photographs, or casts. One of the most relevant examples of this approach is Brooks and
Suchey [64] six-phase system for age estimation based on the pubic bone which improved
upon the pivotal ten phase developed by Todd [68, 69]. Parallel to phase-based approach
other authors proposed component-based systems, this approach assumes that more
expressive aging pattern can be captured by analyzing and scoring independently the
features that are perceived as whole in the phase-based systems. For example, instead
categorizing the morphology of the pubic symphysis with a six-phase system one can
develop different, ideally less complex and more objective, scoring systems for different
aspects or features of this skeletal marker. Imagine a hypothetical method that scores five
binary traits of the pubic symphysis, contrary to Brooks and Suchey [64] six-phase system,
such method allows (theoretically) to express 32 patterns (2°). The increased
representational capability is one of the reasons why the component-based approach is
appealing for age estimation, this approach is also more suited for statistical pattern
recognition.

One aspect is especially important to consider regarding the cognitive basis of

pattern recognition, the role of the perceiver. Several low-level mechanisms such as feature
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analysis, synthesis and prototype matching are involved in the recognition of specific
patterns. In humans, object and pattern recognition also involves memory which means
the prior knowledge, beliefs, experience, and even prejudice are relevant factors for the
accurate identification and interpretation of a pattern [162, 163, 166]. In the context of
anthropological analysis, this characteristic and intrinsic aspect of human cognition has
been often recognized as a major disadvantage of morphoscopic methods. Both phase and
component-based methods rely on the discretization of the continuum of morphological
variation and its typification according to predefined categories, either broad and global or
restricted to specific features. Such process relies on detailed linguistic descriptions,
exemplary casts and illustrations, all prone to subjective interpretation which translates

into both intra and inter-observer inconsistencies.

3.1.4|Component-based approach

For the new scoring procedures proposed in this work a component-based approach
was adopted when investigating both new and established skeletal markers for age-at-death
assessment. Despite the large number of features analyzed in this proposal, all skeletal
features are limited to discrete variables with no more than three levels or stages. Such
specifications were established during the several iterations of the development and
refinement of the system proposed, and guidelines from the literature. Shirley and Montes
[167] empirically addressed the old methodological debate of phase versus component-based
approach. Their study quantified observation error of a phase and a component-based
method. The results suggests that a component-based approach offers a more objective
scoring if the number of coding possibilities in each component does not exceed three levels
of expression. The rationale for limiting the maximum number of coding states is quite
simple, as this number increases so does the difficulty to differentiate adjacent states which
results in observation errors and inconsistencies. This limited expression on the states for
specific component or feature helps translate more easily, in this context, the language of

the skeletal morphology into the language of the problem it aims to solve. For instance,
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the binary traits represent the absence or presence of specific skeletal features but at the

same time directly translate into young or old age.

3.2|Scoring procedures

The subsequent sub-sections provide detailed information about the scoring systems
developed to incorporate this new macroscopic protocol to assess age-related skeletal traits.
The development of new scoring systems was prompted by the necessity to standardize a
data collection and generation mechanism that was more aligned with a multifactorial
approach to skeletal age estimation and more suitable multivariate data analysis.
Analyzing multiple traits also offsets the limitation intrinsic to specific traits when analyzed
on their own [160].This was done with practical considerations such as observation error

and application simplicity in mind.

3.2.1|Cranial and palatine sutures

The scoring system used for the cranial and palatine sutures consists on a
modification and binarization of the proposal by Boldsen et al. [58]. This system was select
because it incorporates much of the rationale of older methods for scoring ectocranial
sutures (neurocranium) and the palatine sutures [84, 85, 90, 168-172]. The simplification
to a binary scoring system was a result of the difficulty during preliminary and training
sessions to differentiate and consistently score the adjacent stage (i.e, open to juxtaposed
or partially obliterated to punctuated). The scoring scheme described in Table 3.1 should
be applied to nine segments from the palatine, the sagittal, coronal, lambdoid sutures

(Table 3.2, Figure 3.1 and Figure 3.2).
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Figure 3.1 Location of palatine suture analysis segments.

Figure 3.2 Location of cranial suture analysis segments
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Table 3.1 Scoring system for suture obliteration.

Stage 0 [Open or juxtaposed]
The sutural segment is characterized by a distinguishable gap between the cranial bones. The

sutural gap might be narrow and the bones tightly juxtaposed.

Stage 1 [Partially obliterated or totally obliterated]
The sutural segment is partially obliterated or totally obliterated. Remnants of the suture

might be visible as scattered bony bridges or grooves.

Table 3.2 List of cranial and palatine suture segment analyzed.

CRS01 Palatine (posterior median)
CRSO02L Palatine (transverse, left)

CRS02R Palatine (transverse, right)

CRS03 Coronal - Sagittal (pars bregmatica)
CRS04L Coronal (pars pterica, left)

CRS04R Coronal (pars pterica, right)

CRS05 Sagittal - Lambdoid (pars lambdica)
CRSO06L Lambdoid (pars asterica, left)
CRSO06R Lambdoid (pars asterica, right)

3.2.2|Vertebrae development and degeneration

The fusion of the bodies of the first and second sacral vertebrae is part of the
skeletal markers analyzed in the proposed protocol, this skeletal feature is one of the few
developmental traits that persist through early adulthood. Its usefulness as an indicator to
distinguish young adults was demonstrated by several researchers [121, 173, 174]. This trait
was assessed with a binary scale described in Table 3.3. To incorporate both metamorphic
and degenerative traits of the vertebral column a three stage scoring scheme was devised
building upon previous work from Snodgrass [175], Watanabe and Terazawa [176], and
Alberts et al. [177]. The first two methods focus on the degeneration and osteophyte
formation on the margins of the vertebral bodies while the last work focus on the
development of the vertebral epiphyseal rings and body morphology. The proposed system,
Table 3.4, applies to superior and inferior surfaces of the third to seven cervical vertebrae,

the first to fifth lumbar vertebrae and superior surface of first sacral vertebra. Table 3.5
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list all features analyzed in the axial skeletal (excluding sacral auricular surfaces). Examples

depicting the traits analyzed are given in Figure 3.3, Figure 3.4 and Figure 3.5.

Table 3.3 Scoring system for S1-S2 fusion.

Stage 0 [Fusing]
S1 - S2 fusion is incomplete. On the anterior surface of the sacrum, there is a gap* between the

sacral bodies of the S1 and S2.

Stage 1 [Fused]
The sacral bodies of the S1 and S2 are completely fused. No gap* is visible on the anterior sacral

surface.

* The gap seen on the anterior surface of the sacrum should be a discontinuity between the sacral bodies extending for

more 10 millimeters in length.

Figure 3.3 Fusion of the S1-S2 sacral segment (frontal view, Stage 1).
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Table 3.4 Scoring system for vertebral body development and degeneration.

Stage 0

Stage 1

Stage 2

[Absence of degenerative changes]

a) Incomplete or partially epiphyseal ring fusion. Residual fusion line may be observed on
vertebral body. Billows or radiating grooves may also be visible perpendicular to the margin of
the vertebral body margin.

b) The epiphyseal ring is fully fused forming an elevated border and no degenerative change is

observed on the vertebral body margin. Surface is dense and compact.

[Transitive stage]

The vertebral margin is characterized by small segments where the edge of the margin is sharp
but not necessarily lipped. The vertebral body surface is characterized by a flattened aspect.
The vertebral ring has compressed appearance. Microporosities might be visible but usually

have a restricted spatial distribution.

[Presence of degenerative changes]

The vertebra is characterized by its lipped and/or porous aspect. At least one large bony
projection protrudes from the body margin (approximately four millimeters or more). The
surface of the vertebral body is pitted and irregular.

(Vertebrae fused by lipping or ossification and calcification of the vertebral ligaments (i.e.,

candlewax lesions) should be score as Stage 2.)

Table 3.5 List of traits analyzed in the cervical, lumbar, and sacral vertebrae.

Cervical

Lumbar

Sacral

C3IS C3 body inferior surface and margin

C4S8 C4 body superior surface and margin
C4IS C4 body inferior surface and margin

C5SS C5 body superior surface and margin
C5BIS C5 body inferior surface and margin

C6SS C6 body superior surface and margin
C6IS C6 body inferior surface and margin

CT7SS C7 body superior surface and margin
L1IS L1 body inferior surface and margin

L2SS L2 body superior surface and margin
L2IS L2 body inferior surface and margin

L3SS L3 body superior surface and margin
L3IS L3 body inferior surface and margin

L4SS L4 body superior surface and margin
LAIS L4 body inferior surface and margin

L5SS L5 body superior surface and margin
S1SS S1 body superior surface and margin
S1S2F S1-S2 fusion
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Figure 3.4 Lumbar vertebra superior surface (Stage 0)

Figure 3.5 Lumbar vertebra superior surface (Stage 2)
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3.2.3|Joint and musculoskeletal degeneration

Osteoarthrosis and entheseal changes have been traditionally analyzed in biological
anthropology and bioarcheology as markers of health, biomechanical stress, and tentative
indicators of physical activity patterns. According to Milner and Boldsen [73], who
advocate a more detailed analysis of this type of skeletal markers, these features as a
collective contribute to an increase in accuracy and precision of age estimation. The authors
base such assertion on empirical evidence from an experience-based procedure where these
types of skeletal traits were extensively used. Several reasons can be pointed out on why
osteoarthrosis and entheseal changes have been overlooked or not systematically analyzed
in the past as age markers. Broadly speaking due to their degenerative nature and late
onset it is believed that they provide limited information, distinguishing only in a broad
sense young from older individuals. More specifically, osteoarthrosis increases with age but
has complex and multifactorial etiology that hinders or masks its relationship with age-at-
death.

Entheseal changes have been assessed as musculoskeletal stress markers and as
tentative clues to infer physical and occupational activity, this possible relation to activity
can interfere in the expression and variation of entheseal morphology and affected its
relationship to the aging process. However, recent and systematic studies conducted on
identified skeletal collections show that age-at-death is one of the most relevant factors, or
even the only one with statistical significance, in the expression of such skeletal traits [143—
145, 178-182].

Developing a scoring procedure for these features proved to be one of the most
challenging aspects of method development. The difficulties faced were mostly related to
the fact that analyzing joint and musculoskeletal degeneration involves many skeletal
elements, which translate into high dimensionality of the collected data. In initial data
collection sessions for training purposes, Buikstra and Ubelaker [183] procedure was used
to assess joint degeneration. The method consists in scoring of four aspects that are

involved in joint degeneration: lipping, porosity, eburnation, and subchondral exostosis.
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These four features are analyzed in terms of severity but also in extent (area affected),
except for bony exostosis, which increases the number of variables to be collected by joint
surface to seven. Using Buikstra and Ubelaker [183] to evaluate joint degeneration of the
knee — inspecting the femur, tibia, and patella—would involve collecting 21 variables both
on the left and right side. Extending this analysis to other joints, would drastically increase
data dimensionality. This high dimensionality poses two major problems: increased chance
of collinearity, which poses computational issues, and loss of pragmatic value. Similar issues
were found in the initial assessment of entheseal changes when analyzed with a protocol
proposed by Henderson et al. [184]. Using this method, bony areas of muscle and tendon
attachment are evaluated to assess features such as bone formation, erosion, porosity, and
cavitation. A total of seven variables can be collected on each fibrocartilaginous enthesis.

To tackle the high dimensionality and subsequent issues found when scoring joint
and musculoskeletal degeneration, a new binary procedure was developed. The system
retains the analysis of the type of traits evaluated in Buikstra and Ubelaker [183] and
Henderson et al. [184], but simplifies the scoring to a simple absence or presence of
degenerative traits as a whole for any particular anatomical structure. The generic binary
scoring system both for joint and musculoskeletal degenerative changes are presented in

Table 3.6 and Table 3.7.

Table 3.6 Generic scoring system for joint degeneration traits.

[Absence of degenerative joint changes]
Stage 0 Joint margin is smooth and retains normal morphology. Subchondral surface is dense and

smooth.

[Presence of degenerative joint changes]

Joint margin presents osteophytes that can range from isolated bony edges to large structures
Stage 1 on the entire joint margin or most of it rendering its normal contour irregular. Porosities may

be present both on the margin and subchondral bone surface but are less common. Bony

exostosis may be present on the subchondral surface. The most extreme cases are characterized

by eburnation lesions and loss of articular morphology.
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Table 3.7 Generic scoring system for musculoskeletal degeneration traits.

Stage [Absence of degenerative musculoskeletal changes]

The surface of the attachment site contour or margin is regular and smooth.

[Presence of degenerative musculoskeletal changes]
(One or two conditions can be present)
I) The contour of the attachment site is irregular or salient. It manifests as a
Stage small bony crest or enthesophyte.
IT) The bone surface either presents slight irregularities in the form of a diffuse
granular texture or more significant types of bone remodeling such as bony excrescences,

erosions, or cavitation (large perforations).

The scoring system applies to five major anatomical complexes from the upper and

lower limb: shoulder, elbow, hip, knee, and ankle (Table 3.8).

Table 3.8 List of traits used to assess joint and musculoskeletal degeneration of the limbs.

Trait Type Complex
SCo1 Scapula (glenoid fossa) Joint Shoulder
HMO1 Proximal humerus (head) Joint Shoulder
HMO02 Proximal humerus (lesser tubercle) Musculoskeletal Shoulder
HMO03 Proximal humerus (greater tubercle) Musculoskeletal Shoulder
HMO04 Distal humerus (trochlea and capitulum) Joint Elbow
HMO05 Distal humerus (medial epicondyle) Musculoskeletal Elbow
HMO06 Distal humerus (lateral epicondyle) Musculoskeletal Elbow
ULO1 Proximal ulna (articular facets) Joint Elbow
ULO2 Proximal ulna (olecranon) Musculoskeletal Elbow
RDO1 Proximal radius (head) Joint Elbow
RD02 Proximal radius (radial tuberosity) Musculoskeletal Elbow
0Co1 Os coxa (iliac tuberosity) Musculoskeletal Hip
0C02 Os coxa (ischial tuberosity) Musculoskeletal Hip
0Co3 Os coxa (acetabulum) Joint Hip
FMO1 Proximal femur (head) Joint Hip
FMO02 Proximal femur (trochanteric fossa) Musculoskeletal Hip
FMO03 Proximal femur (greater trochanter) Musculoskeletal Hip
FMo04 Proximal femur (lesser trochanter) Musculoskeletal Hip
FMO05 Distal femur (condyles) Joint Knee
TBO1 Proximal tibia (condyles) Joint Knee
PTO1 Patella (articular facets) Joint Knee
PTO02 Patella (base) Musculoskeletal Knee
CLNO1 Patella (calcaneal tuberosity, superior) Musculoskeletal Ankle
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To enhance the analysis of these traits are provided specific scoring descriptions for

the Stage 1 of some traits (Table 3.9).

Table 3.9 Stage 1 description for joint and musculoskeletal degeneration traits.

Trait(s) Stage 1

SCoL The key aspect is the lipping of the articular margin. Lipping (irregular bony growth) should be
considered present if at least one third of the margin is affected.
The key aspect is the lipping of the articular margin. Lipping is not conspicuous as in the glenoid

HMo1 fossa. In early stages it takes the form of sharp elevated rim that interrupts the flow of the
articular surface to para-articular region. The most severe cases form a collar or ring like structure
around the humeral head.

HMo4 Most common degenerative trait observed is the presence of marginal osteophytes. If present,
eburnation usually affects the capitulum.

ULoL The key aspect is the lipping of the articular facets. Usually, the lipping is not so marked as in
other joints. Eburnation and other type of surface remodeling are uncommon.

RDOL Marginal lipping and porosities both on the surface and margin are the most common
degenerative aspects. In some cases, the bone surface seems thinned out (loss density).
Osteophytic growth of the posterior cornum is common evidence of early degenerative changes
of the acetabulum. Osteophytic growth of inner margin can obliterate the acetabular fossa.

0Co03 Lunate surface remodeling is uncommon but in severe cases eburnation can be present. The
acetabular fossa may present textural changes expressed as porosities, bony growths, and
granularity.
Marginal osteophytosis and surface remodeling such as the formation of bone nodules and

FMO1 irregularities of the contour of fovea capitis are common. In extreme cases, osteophytic activity
creates an osteophytic ring around the femoral head. In some cases, the bone surface and the
margin appear thinned out (loss of density).

FMO05

TBOL Surface porosity and marginal lipping are the most common degenerative traits observed.

P Eburnation is observed in extreme cases of joint degeneration.

TO1

Figure 3.6, Figure 3.7, Figure 3.8, Figure 3.9, Figure 3.10, and Figure 3.11 provide

examples of Stage 1 on 76 years old female with a generalized degenerative pattern of the

major joint and musculoskeletal complexes of the upper and lower limb.
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Figure 3.6 Glenoid fossa degeneration (SCO1). Stage 1, Stage 1, left side, 76 y.o, female.

Figure 3.7 Proximal humerus degeneration (HMO01, HMO02). Stage 1, left side, 76 y.o, female.
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Figure 3.8 Distal humerus degeneration (HM04, HMO5). Stage 1, right side, 76 y.o, female.

Figure 3.9 Proximal femur degeneration (FMO1). Stage 1, right side, 76 y.o, female.
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Figure 3.10 Distal femur degeneration (FMO05). Stage 1, right side, 76 y.o, female.

Figure 3.11 Proximal tibia degeneration (TBO01). Stage 1, right side, 76 y.o, female.
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3.2.4|Clavicle sternal and acromial ends

The macroscopic analysis of the clavicle has a long standing in skeletal age

estimation. Nonetheless, its focus has been mostly in the epiphyseal fusion of the sternal

end [123, 185-187]. Sternal epiphyseal fusion of the clavicle is a key trait to obtain precise

age estimate in young adult individuals due to the late total development of this structure

around the 30s. Falys and Prangle [123] were the first to propose a method to score post-

epiphyseal changes of the clavicle for age estimation purposes. The authors suggest a

scoring system focused on surface topography, porosity, and marginal osteophyte

formation, and provide a regression model for age estimation. A new scoring scheme that

integrates both developmental and degenerative changes of the sternal and acromial ends

of the clavicle is proposed. Full description of the traits analyzed are available in Table

3.10.

Table 3.10 Scoring system for clavicle age-related traits.

Trait(s)

Stage

Description

CLV01

Sternal end

Epiphyseal union at the sternal end of the clavicle is incomplete

(nonunion with or without epiphysis) or partial.

Epiphyseal fusion is complete. The sternal surface has smooth to
finely granular texture. The surface contour maintains a normal
appearance without osteophytic irregularities. Porosities (micro or
macropores) are not a characterizing feature, when they occur

spatial distribution is limited (less than one-third of the surface).

Sternal end is characterized by a coarsely granular texture (bone
exostosis). Porosity (micro and macropores) occur in more than half
of the surface. The surface contour may present an irregular profile

due to osteophytic activity.

CLVO02

Acromial end

Bone surface is smooth or finely granular.

Acromial end is characterized by the presence of a coalescent
porosity pattern of macropores. Bone surface appear thinned out

and trabecular bone may be exposed.

50



3|A macroscopic method for adult skeletal age estimation

Figure 3.12 and Figure 3.13 provide an example on the transitive stage (post-epiphyseal,
Stage 1) of the sternal end of the clavicle and its evolution to a status characterized by

degenerative skeletal features (Stage 2).

Figure 3.12 Sternal end of the clavicle — Stage 1

Figure 3.13 Sternal end of the clavicle — Stage 2
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3.2.5|First rib costal face and tubercle

Iscan, Loth and colleagues described multiple morphologic features that

characterize the metamorphosis of the sternal end of the ribs, with particular emphasis on

the fourth rib costal face [91, 92, 94, 96]. Nonetheless, several disadvantages have been

pointed out, such as the difficulty to identify the fourth rib in disarticulated skeletal

remains and the fact the morphology of the costal face is not the only component of the

age-related changes in rib morphology. To address these problems, Kunos et al. [98]

described a new age estimation method based on the metamorphosis of the costal face,

head and tubercle of the first rib. DiGangi et al. [99] improved upon Kunos et al. [98] work

and proposed a revised method for age estimation based on the costal face and tubercle

morphology. A new scoring method is proposed here that build upon previous work [98,

99]. This new system simplifies the scoring of the costal face morphology to a three-stage

coding and the morphology of the tubercle is evaluated in a binary fashion (Table 3.11).

Table 3.11 Scoring system for the first rib age-related traits.

Trait(s)

Stage

Description

RB101

Costal face

Costal face presents a narrow profile. The costal surface has flat profile
characterized by the presence of transverse ridges or a smooth texture.

The periarticular bone surface is smooth.

The topography and texture of the costal face are characterized by an
increasing concavity and cribriform pattern. The margins are slightly
projected with scalloped edges. At the anterosuperior aspect of the
margin, elongated spicules may form a rugged shaft around the costal

face.

Costal face is characterized by extensive ossification of costochondral
interface. Ossification surrounds most of the costal face and may form a
hollow shell around it. Periarticular region is rugged. Sternocostal fusion

may occur.

RB102

Tubercule

Tubercle is characterized by rounded and smooth articular margins. The

periarticular region is smooth.

The tubercle facet is characterized by a coarsely granular texture.
Porosities may occur in the articular surface. Lipping of the articular

margins may occur. The periarticular region is rugose.
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Figure 3.14 and Figure 3.15 provide an example of two opposing stages, 0 and 2,
for the costal face of the first rib.

Figure 3.14 1% rib costal face — Stage 0

Figure 3.15 1% rib costal face — Stage 2
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3.2.6|Pubic symphysis

The metamorphosis of pubic symphysis is the most popular osteological marker
used in adult skeletal age estimation. The attention given in past to this anatomical
structure is not misplaced; yet the overreliance in this indicator can be explained by the
progressive metamorphic features that have enough expression variation to allow an
exhaustive morphological description using different scoring schemes and different types of
supporting materials such as casts. A simple component-based system was developed
focused on the metamorphic and degenerative changes of three features of this structure:
rim development, topography, and texture of the symphyseal face. These three components
(Figure 3.16) are assessed with a three-stage coding system emphasizing early metamorphic
or developmental traits, such as the presence of billowing (a pattern of transverse ridges
and furrows) and late degenerative traits, such as the flattening and erosion of the
symphyseal face. Full description of the scoring system is given in Table 3.12. The proposed

system is based on previous work by Todd [68, 69] and Brooks and Suchey [64].

PSY02
(Topography)
-0

PSY03
(Texture)

----- < PSY01
(Rim)

Figure 3.16 Pubic symphysis traits.
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Table 3.12 Scoring system for the pubic symphysis age-related traits.

Trait(s)

Stage

Description

PSYO01

Symphyseal rim is incomplete. In the early stage of rim formation
there is a continuum between symphyseal face and adjacent
structures (pubic tubercule, pubic ramus). Rim formation later
evolves from an early rampart that forms on the cranial, dorsal,

caudal, and ventral portions of the rim.

Symphyseal rim is complete. An elevated bony rim delineates the
symphyseal face demarcating it from adjacent structures such as the
pubic tubercle. In some specimens, the superior segment of the ventral
margin might not fully form into a rim after early formation of the
ventral rampart. This condition, ventral hiatus, should not be
confused with incomplete rim formation (Stage 0) or rim breakdown
(Stage 2).

Symphyseal rim is breaking down. Breakdown is characterized by
lipping and erosion (porosity, pitting) of the ventral and dorsal
margins. Breakdown of the symphyseal rim is usually associated with
ligamental outgrowths and a bony plaque on the ventral and dorsal

surface of the pubic bone.

PSY02

Topography

Symphyseal topography is characterized by a billowing pattern
(alternating ridge and furrows). In early stages this pattern is very
sharp but as symphyseal face flattens (Stage 1), it becomes shallow
and residual (usually one patch defined by two consecutives flattened

ridges).

Symphyseal surface is flat and homogeneous.

Symphyseal topography is irregular and depressed in relation to the

symphyseal rim.

PSY03

Texture

Symphyseal texture is smooth to finely grained and have dense

aspect.

Symphyseal texture is coarsely granular yet homogeneous. Scattered

porosities (micropores) may occur throughout the surface.

Symphyseal texture appears eroded and is characterized by clustered

porosities and irregular bony formations. Texture is less dense.
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3.2.7|Sacral and iliac auricular surfaces

The description of age-related changes in the sacro-iliac joint can be traced back to
Sashin [188] and Schunke [189] but its usage as an age indicator its mostly due to the work
of Lovejoy and colleagues [97] and Buckberry and Chamberlain [102] on the chronological
metamorphosis of the iliac auricular surface, and the age estimation method by Passalacqua
[121] based on metamorphic and degenerative changes of the sacrum.

To incorporate age-related features of sacro-iliac joint, a two-component based
system was developed to assess textural and marginal changes in the sacral and iliac
auricular surface (Figure 3.17 and Figure 3.18). The iliac and sacral auricular surfaces
undergo textural changes that are characterized by the transition from a smooth, finely
grained surface to a granular, irregular and porotic surface. The margins that delimit the
surface tend to manifest osteophytic activity as age progresses. Both the texture and
margin feature refer to the entire structure but very often the degenerative changes, in
particular the margin, are more pronounced in specific areas such as the inferior and

anterior apexes. Full features descriptions are given in Table 3.13 and Table 3.14.

Table 3.13 Scoring system for the sacral auricular age-related traits.

Trait(s) Stage  Description

Surface is characterized by a homogeneous smooth to finely granular texture.

Bone surface has a dense and compact aspect. A structured relief pattern
SASO01 Texture 0 . . .

characterized by a shallow billows or striae from early development stage may

remain visible (residually). No porosities are observed.

Surface is characterized by coarsely granular texture. Porosity occurs throughout

the surface in a scattered or clustered pattern (both macro and/or micropores).

SAS02 Margin 0 The margin of the auricular surface is smooth and well defined.

The contour of the auricular surface is marked by several irregularities. The
1 margin of the surface is sharped (lipped), more commonly in the anterior and

inferior apices.
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Table 3.14 Scoring system for the iliac auricular age-related traits.

Trait(s) Stage

Description

TASO1 Texture 0

Surface is characterized by a homogeneous smooth to finely granular texture.
Bone surface has a dense and compact aspect. A structured relief pattern
characterized by a shallow billows or striae from early development stage may

remain visible (residually). No porosities are observed.

Surface is transitioning from a finely granular to coarsely granular texture. Small
exostoses may occur but are not a dominant textural element. Porosity

(micropores) occurs throughout the surface in a scattered pattern.

Surface is characterized by an irregular granular texture. Porosity is the
dominant textural element—clustered distribution and presence of macropores.

In overall, the surface has an irregular and eroded aspect.

IAS02 Margin 0

The margin of the auricular surface is smooth and well defined.

The contour of the auricular surface is marked by several irregularities. The
margin of the surface is sharped (lipped), more commonly in the anterior and

inferior apices.

Cem-4-lAS02
v (Margin)

1

]

1
'l

Figure 3.17 Sacral auricular surface traits. Figure 3.18 Iliac auricular surface traits.
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3.2.8| Acetabulum

Several age-related changes can be documented in the acetabulum and be used for
age estimation [125, 126, 128, 130, 131, 134, 138, 139, 190]. One key aspect of the
acetabulum is the late onset of the age-related changes and its durability and resistance to
taphonomic factors.

To incorporate this skeletal element in proposed protocol, a three-stage scoring
system for the changes occurring on the rim, posterior horn and acetabular fossa was
developed (Figure 3.19). In the spirit of Calce [138] who simplified the method developed
by Rissech et al [130, 131], the foundation of the scoring system presented in Table 3.16
was based on a simplification and adaptation of the method proposed by San-Millan et al.
(128, 129].

The system proposed represents a significant tradeoff between of ease of scoring
and representational capacity compared to San-Millan et al. [128, 129]. San-Millan et al.
proposed seven traits with up to seven stages of complexity (Table 3.15). If age is to be
estimated solely on the acetabulum, San-Millan et al. [128, 129] is highly recommended.
The new scoring system aims only to recode and integrate acetabular morphology into
more comprehensive skeletal age estimation method. The tradeoff of representational

capacity is offset by ease of application and integration with other skeletal features.

Table 3.15 Correspondence between San-Millan et al. acetabular traits and new proposed system.

San-Millan et al. Proposed
Groove
Rim shape

ACTO1

Rim porosity
Apex activity ACTO02

Outer edge of the fossa

Texture and density of the
ACTO03
fossa

Activity of the fossa
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)

Figure 3.19 Acetabulum traits.

Table 3.16 Scoring system for the acetabular age-related traits.

Trait(s)

Stage

Description

ACTO1

Rim

Acetabular rim is dense and smooth to the touch. The edge along the rim
presents a rounded profile with no significant porosity. The area adjacent
to the acetabular rim has no significant porosity and its surface is also

dense and smooth.

New bone formation, osteophytic activity, is visible on some regions of the
rim. It is manifested as a small (approximately one millimeter) osteophytic
crest along most of the rim or as a crest with a higher profile (two to four
millimeters) only on a portion of the rim. The osteophytic crest is usually
dense with no porosity on newly formed bone. The rim is not smooth to
the touch and macroporosity may occur. Adjacent areas of the rim, such
as the posterior wall of acetabulum and the region below the anterior
inferior iliac spine may present porosities and textural changes that render

the bone surface rough to the touch.

The acetabular rim has an irregular profile as a by-product of osteophytic
and osteolytic processes. A high profiled osteophytic crest (superior to four
millimeters) is usually present at this stage. Such osteophytic cresting is
accompanied by porotic changes on the newly formed bone which, in
overall, renders the acetabulum a fragile and eroded aspect. Porosity and
new bone formation can invade the lunate surface (usually below the

anterior inferior iliac spine or around the ilium-ischium intersection).
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Table 3.15 Scoring system for the acetabular age-related traits (Continued)

Trait(s)

Stage

Description

ACTO02

Posterior

horn

The apex is round and smooth to the touch and no bony spur is visible.

The apex is rough and sharp to the touch, and a small spicule or spur can
be felt (approximately two millimeters). It is circumscribed to a small part

of the horn edge.

A conspicuous bony spur (superior to three millimeters) is present. This
proliferative feature is variable in its magnitude and extent. In extreme
cases bone proliferation occupies the acetabular notch and may completely
cross it or form a bony bridge. This stage usually co-occurs with more

advanced stages of morphological degeneration of the acetabular rim.

ACTO03

Fossa

The acetabular fossa center is very dense with a smooth texture. The
outer edge of the acetabular fossa, along the inner border of the lunate

surface, has a smooth edge with no osteophytic activity.

The outer edge of acetabular fossa presents early degenerative changes.
The edge is rough to the touch and the osteophytic structure can affect
only a portion or the entire edge but is usually small (approximately one
to three millimeters). The central region of the fossa may present a
rougher bone surface (Stage 0) characterized by an increase in textural
irregularities and porosities. Yet, the fossa does not have a fragile and

irregular aspect due to extensive bone remodeling (Stage 2).

The central region of the acetabular fossa has lost bone density and
structural consistency. Porosity is a key aspect at this stage. Trabecular
bone might be exposed due to extensive osteolytic and osteophytic
processes. Porotic lesions have an irregular and sharp perimeter.
Compared to the previous stage, osteophytic cresting, along with the outer
edge of the fossa, is more pronounced both in extent and magnitude. In

extreme cases, an osteophytic visor obliterates partly the fossa.

3.3|Scoring reliability

Within the scope of the approach pursued in this thesis, age estimation — and the

whole biological profile estimation - can be seen as a generative process. Raw data is

extracted from skeletal material, processed into (skeletal) information, which is converted

into knowledge, the estimate (about skeletal age). This process, however, is not noise-free.

The extent of error and noise involved in such process varies but two major components

are always present, a biological and observational one.
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The biological component of error in age estimation arises from the imperfect
relationship between skeletal morphology and chronological age. It is particularly
noticeable in latter period of the human life span where age estimates tend to be more
imprecise and inaccurate. This component is irreducible and implicitly mapped within the
age estimation process due to its endogenous nature: biology itself. It affects the part of
the process where (skeletal) information is translated into knowledge (an age estimate).
The observational (or observer) error component, on the other hand, affects the processing
of raw data into information. The availability of useful skeletal information has a major
dependency on the ability of the observer/investigator to extract accurate data from
skeletal analysis. As most methods for skeletal age estimation are based on the encoding
of morphology into discrete variables, with a very descriptive nature, observer experience
and familiarity with such procedures are an important source of noise in the age estimation
process. While appropriate training alleviates the effect of this component, it would be
naive to assume that it can be completely removed (even with sophisticated technological
means of data).

The development and proposal of a new age estimation technique, or any other
parameter of the biological profile, follows three phases according to Ferrante and
Cameriere [44]: a first stage of information gathering and data collection, a second phase
of computational model formulation and selection in relation to the data available, and a
final phase of model validation. In current work these three stages are addressed in different
moments. Chapters 5 and 6 focus on the aspects of computational approach formulation
and model validation. In current chapter it will be address throughout this section the
fundamental problem, yet often overlook, of data collection and observational error.

Repeatability of the proposed scoring system was evaluated through statistical
analysis conducted on 50 subjects of the dataset!, randomly selected and re-score on all
possible traits. For bilateral traits only the left side were used for further intra-observer

reliability analysis to avoid redundancy in reported results.

T Dataset constructed and used in this thesis is described on Chapter 4.
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To assess observational or scoring reliability with discrete variables, such as the
one described in this technique, the joint probability of the first and second observation
was first computed by cross-tabulation and normalization to form a matrix A. The

agreement of discrete traits, A(X,X"), is then given by the following mathematical

expression:
k
AX, X)) =D a, (3.1)

which is equivalent to the sum of the diagonal elements of A. Because many of the
morphological traits of analyzed have an implicit increasing order to express a continuum
of age-related progression, allocation to an adjacent morphological stage or score should
not be treated as a full disagreement between observations and agreement under such

circumstances is more accurately assessed with the corrected expression:

k
AX, X )= a,w, (3.2)
i

with W; being an element of matrix W, which stores the weighting factor of agreement for

each element present in matrix A. Each element W;is given by

w, :1—% (3.3)

where ¢ and j are the indices of rows and columns of matrix W and £ is the maximum
number of stages of a morphological trait (in this proposal, k = 2 or k = 3). X’is a replicate
observation of X. Chance-corrected agreement was computed using the following

expression:
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A(X,X'")— P(E) (3.4)

KX X =—="25

where P(E) is the baseline agreement. Cohen [191-193] defined the baseline agreement as
the sum of the product of the marginal distribution of both observation sessions. However,
in this study, and following Navega et al. [136], the baseline chance of agreement was
defined from a full random allocation model. This avoids situations where the marginal
distribution of one observation session dominates the result of this statistical descriptor,
i.e., not observing a specific score in one of the scoring sessions. To assess the statistical
significance of the agreement descriptors a binomial test was performed to test if the
observed agreement was greater than the baseline expected agreement. For a more detailed
analysis, agreement was also computed for each specific level of each trait with the

following expression

o %ta;
A(Xi’Xi)_ﬁ (3.5)

with i=j. The major advantage of computing detailed agreement statistics is the ability to

assess the reliability of specific levels of the scoring system, which is important to

understand error patterns and refine or improve a given scoring description or guideline.
In addition to the agreement descriptors Kendall’s concordance coefficient,

W(X,X", was also computed. The computation was based on the linear relationship

between this coefficient and Spearman’s correlation coefficient [194]

wx,xy=ron (3.6)
m

where I is the average value of Spearman’s correlation coefficient among all [’;j pairs of
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observers or observations sessions (m). Statistical significance was assessed based 2
distribution with 42 =mm-1Dw(x,x" and df =n—1, where n is the number of scored
specimens. This rank-based non-parametric descriptor is not affected by the marginal
distribution of X and its value is bounded between 0 (no agreement) and 1 (perfect
agreement,).

Scoring reliability analysis is reported on Table 3.17, Table 3.18, Table 3.19 and
Table 3.20. All traits presented a statistically significant agreement and concordance
between scoring data obtained by the first author in two different sessions (a=0.05).
Overall average of agreement coefficient, A(X,X’), is 0.900 and concordance coefficient,
W(X,X"), presents a 0.907 global average. With exception to RD01 and FMO01, all traits

present agreement and concordance coefficients above 0.800.

Table 3.17 Scoring reliability analysis for cranial and palatine suture traits.

Stage
Trait n  AXX) K(XX) p-value 0 1 2 W(X,X’)  p-value
CRS01 41 0.878 0.756 0.000 0.848  0.898 0.874 0.002
CRSO02L 42 0.929 0.857 0.000 0.957 0.800 0.891 0.002
CRSO02R 42 0.929 0.857 0.000 0.957 0.800 0.891 0.002
CRS03 44 0.909 0.818 0.000 0.917 0.900 0.910 0.001
CRS04L 42 0.952 0.905 0.000 0.952  0.952 0.955 0.000
CRS04R 43 0.953 0.907 0.000 0.952  0.955 0.956 0.000
CRS05 43 0.907 0.814 0.000 0.905 0.909 0.907 0.001
CRS06L 41 0.878 0.756 0.000 0.906  0.828 0.867 0.003
CRSO06R 42 0.857 0.714 0.000 0.885  0.812 0.851 0.003

The agreement and concordance coefficient values observed can be explained by the
simplicity of the scoring systems used, with large number of traits binary coded. An
important remark for ternary coded traits, is that mismatches only occurred with adjacent
stages. An important limitation of scoring reliability conducted here is that only
repeatability was assess — that is intra-observer error variation. Further inter- and intra-
observer error analysis are required to assess repeatability and reproducibility among and

within skeletal analysts.
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Table 3.18 Scoring reliability analysis for vertebrae traits.

Stage
Trait n  AXX) K(XX) p-value 0 1 2 W(X,X’)  p-value
C3IS 43 0.872 0.712 0.001 0.966 0.744  0.600 0.935 0.001
C4SS 44 0.875 0.719 0.000 0.952 0.744 0.741 0.922 0.001
C41IS 44 0.852 0.668 0.001 0.916 0.606 0.824 0.897 0.001
C5SS 43 0.884 0.738 0.000 0.938 0.706  0.865 0.919 0.001
C5IS 44 0.920 0.821 0.000 0.962 0.800 0917 0.953 0.000
C6SS 45 0.944 0.875 0.000 0.978 0.848 0.936 0.967 0.000
C6IS 45 0.922 0.825 0.000 0.966 0.774 0.917 0.953 0.000
CT7SS 43 0.953 0.895 0.000 0.989 0.875 0.930 0.975 0.000
L1IS 44 0.920 0.821 0.000 0.957 0.741  0.930 0.944 0.000
L2SS 44 0.909 0.795 0.000 0944 0.714 0.930 0.939 0.000
L2IS 44 0.909 0.795 0.000 0.957 0.600 0917 0.945 0.000
L3SS 46 0.902 0.780 0.000 0.941  0.690 0.923 0.939 0.000
L3IS 43 0.860 0.686 0.003 0.952 0.571 0.778 0.918 0.001
L4SS 40 0.938 0.859 0.000 0.973 0.848 0.930 0.960 0.000
LA4IS 40 0.938 0.859 0.000 0.950 0.800 0.978 0.950 0.001
L5SS 46 0.924 0.829 0.000 0.962 0.696 0.941 0.958 0.000
S1SS 45 0.911 0.800 0.000 0.988 0.750 0.851 0.956 0.000
S1S2F 48 0.958 0.917 0.000 0.900 0.974 0.937 0.000

Table 3.19 Scoring reliability analysis for upper and lower limb joint and musculoskeletal traits.

Stage

Trait n AXX) KEXX) p-value 0 1 2 W(X,X") p-value
SCo1 50 0.960 0.920 0.000 0.962  0.958 0.960 0.000
HMO1 49 0.939 0.878 0.000 0.945 0.930 0.938 0.000
HMO02 44 0.864 0.727 0.000 0.889 0.824 0.858 0.002
HMO03 43 0.907 0.814 0.000 0.933 0.846 0.892 0.001
HMO04 47 0.936 0.872 0.000 0.963  0.769 0.868 0.001
HMO05 42 0.929 0.857 0.000 0.951  0.870 0.911 0.001
HMO06 42 0.833 0.667 0.000 0.881 0.720 0.801 0.008
ULO1 49 0.857 0.714 0.000 0.899 0.759 0.833 0.003
ULO02 44 0.841 0.682 0.000 0.877 0.774 0.830 0.004
RDO1 45 0.867 0.733 0.000 0.921 0.571 0.751 0.017
RDO02 46 0.913 0.826 0.000 0.920 0.905 0.919 0.001
0Co1 38 0.842 0.684 0.000 0.885 0.750 0.845 0.005
0C02 47 0.809 0.617 0.000 0.809  0.809 0.812 0.005
0Co03 49 0.939 0.878 0.000 0.943 0.933 0.939 0.000
FMO1 49 0.714 0.429 0.002 0.759  0.650 0.716 0.027
FMO02 43 0.884 0.767 0.000 0.918 0.800 0.860 0.003
FMO03 45 0.911 0.822 0.000 0.933  0.867 0.909 0.001
FMO04 46 0.848 0.696 0.000 0.877 0.800 0.861 0.002
FMO05 48 0.958 0.917 0.000 0.969 0.938 0.953 0.000
TBO01 48 0.917 0.833 0.000 0.941 0.857 0.899 0.001
PTO1 43 0.953 0.907 0.000 0.969  0.909 0.942 0.000
PT02 41 0.927 0.854 0.000 0.947  0.880 0.920 0.001
CLNO1 43 0.907 0.814 0.000 0.929 0.867 0.900 0.001
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Table 3.20 Scoring reliability analysis for skeletal age-related traits of the clavicle, 1% rib, pubic bone,

sacroiliac joint, and acetabulum.

Stage
Trait n  AXX) K(XX) p-value 0 1 2 W(X,X’)  p-value
CLVO01 46 0.924 0.829 0.000 0.936  0.851 0.947 0.947 0.000
CLV02 41 0.854 0.707 0.000 0.880 0.812 0.867 0.003
RB101 43 0.942 0.869 0.000 0.923 0.932 0.960 0.950 0.000
RB102 42 0.905 0.810 0.000 0.923 0.875 0.901 0.001
PSYO01 39 0.897 0.769 0.000 0.952 0.857 0.857 0.922 0.001
PSY02 39 0.885 0.740 0.000 0.909 0.842  0.865 0.923 0.001
PSYO03 40 0.912 0.803 0.000 0.976  0.837 0.903 0.923 0.001
IASO1 44 0.932 0.847 0.000 0.949  0.800 0.960 0.960 0.000
IAS02 49 0.878 0.755 0.000 0.870  0.885 0.879 0.001
SAS01 45 0.889 0.778 0.000 0.921 0.815 0.868 0.002
SAS02 44 0.886 0.773 0.000 0.894  0.878 0.886 0.001
ACTO1 48 0.917 0.812 0.000 0.958 0.778  0.909 0.953 0.000
ACTO02 47 0.904 0.785 0.000 0.919 0.640 0.958 0.946 0.000
ACTO03 37 0.919 0.818 0.000 0.960 0.800  0.903 0.943 0.001

The proposed method strives to be comprehensive and incorporate traits from as
many skeletal elements as possible. Envisioning the whole skeleton as a biomarker for age
estimation, it is more likely that the overall skeletal patterns exhibit a stronger and
monotonic relationship with age-at-death which is pivotal for accurate predictions. The
rate and nature of overall skeletal changes also have a greater chance to be consistent
across individuals since an holistic approach can encapsulate intra and interpersonal

variation with greater finesse [73].
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Data, and its availability, is of utmost importance in forensic anthropology and
assumes a more central role in the approach pursued in this work. Regarding this subject
Steadman [195] stated “data is power”, such bold assertion is particularly true in
computationally heavy approaches. Data is the primer for computational thinking and
reasoning, which can significantly improve forensic anthropology, resulting in more reliable
and accurate techniques. Computational methods offer several benefits to the study of
anthropological data. They enable more extensive and automated computation, thereby
overcoming the limitations of cognitive ability and establishing stronger scientific
foundations for forensic casework methods [196].

The objectives of this chapter are to provide an overview of the issue of reference
data in anthropology, and to present the dataset constructed for the purpose of this
research work and topic. The importance of data is frequently neglected, and its acquisition,
processing and management is frequently considered a trivial aspect implicit to research.
Although research work often translates into inferences and generalizations one should be
bear in mind that results and conclusions from a study are always bounded to the data
analyzed. The dataset here presented is the foundation of the novel age-at-death estimation

technique and software proposed in this doctoral thesis.

4.1|Reference data and age-at-death estimation

The nature and structure of the reference data processed and wused in
anthropological studies and methodologies constitutes a crucial but often undervalued issue
[197]. Any entry-level textbook on statistical analysis will acknowledge that a sample
should ideally be randomly selected from representative of the population of interest. The

sample size must also be sufficient for its intended purpose, such as making inferences
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about the general population or building predictive models. However, this is frequently
easier said than done, and forensic anthropology has long held this to be especially true
[198]. In general context of scientific research, a power analysis can be used to determine
the required sample size if the topic of interest has datasets that are readily accessible.
Unfortunately, public open-access datasets are uncommon in anthropology which can
explained by a slow adoption of an open science policy in the field, the nature of the data
itself, or by a skulking Tolkien character spirit that inhabits the researchers who view their
datasets as precious treasures not to be shared. Typically, forensic anthropology researchers
utilize the specimens they have access to. In such circumstances, common sense has
historically been the most important factor in sampling strategies which are characterized

by their convenience-based nature [199].

4.2|Data source and sampling

In the context of methodological research and development of biological profile
estimation techniques, identified skeletal collections also known as reference collections
play a pivotal role as a data source. The dataset created for the purpose of the present
work was constructed using two identified skeletal collection held at the University of
Coimbra as data source: the Coimbra Identified Skeletal Collection (CISC) and the 21*
Century Identified Skeletal Collections (XXIISC). A brief overview of these collections is

provided in the following sub-sections.

4.2.1|Coimbra identified skeletal collection

The Coimbra identified skeletal collection is constituted of 505 complete skeletons
whose acquisition is due in its majority to Professor Eusébio Tamagnini (1880-1972),
director of the Anthropology Museum from 1907 and 1950. All specimens were exhumed

from Coimbra main cemetery (Cemitério da Conchada) between 1915 and 1942,
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representing individuals born between 1817 to 1924 and who died between 1904 to 1938.
Seven individuals were previously dissected at the medical school before inhumation. With
exception to nine individuals, all were of Portuguese nationality. Age-at-death ranges from
7 to 95 years old, and sex distribution is homogeneous (266 males and 239 females). Forty-
five individuals are juveniles with age-at-death between 7 to 19 years old (18 males and 27

females). More detailed on this collection can be found in Cunha and Wasterlain [200].

4.2.2|21% century identified skeletal collection

The collection is composed of 300 specimens consisting mostly of elderly individuals.
Individuals died between 1982 and 2012 with an average age-at-death is 81.19 for females
(n=161) and 73.20 for males (n=139). Age-at-death ranges from 25 to 101 years old. This
collection comprises skeletons unclaimed by the deceased relatives, it results from a
protocol between the University of Coimbra and the City Council of Santarém. Portuguese
law allows exhumations three years after burial to transfer skeletal remains to an ossuary,
another cemetery, or a recently acquired private grave to reclaim public burial grounds.
Formal notification is given to relatives. If they do not attend the cemetery or express their
wishes, the skeletal remains are cremated or buried in a communal grave. Academic
institutions sometimes curate donated remains, which is the case this collection. See
Ferreira et al. [201, 202] for more details about its constitution, curation and research lines

pursued with this collection.

4.2.3|Demographic structure

The dataset created through this research encompasses a total of 99 morphological
features covering all key traditional age-related and other underexplored skeletal traits.
Accounting for laterality it translates into 64 unique traits from the axial and appendicular
skeleton collected using the new macroscopic scoring method whose rationale and details

are described and explored in Chapter 3. Data was acquired on 500 individuals sampled
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from the two identified skeletal collections previously described. Data was collection was
pursued without access to the demographic parameters of the individuals (i.e., age and sex)
which were reconciled later with the morphological data. All sampled individuals presented
fully developed long bones, a screening and inclusion criterion used to assess skeletal
adulthood. No individual was excluded due to pathology or taphonomy, affected skeletal
structures were deemed not scorable resulting in a missing value for such trait(s). Initially,
data was collected on 512 individuals but 12 were later removed due to high prevalence of

missing values (more than 90%).

Table 4.1 Demographic characterization of reference data sampled from the CISC and XXI-ISC

collections.
CISC XXIISC Pooled collections Pooled
Female Male Female Male Female Male
n 168 166 82 84 250 250 500
Age-at-Death ~ mean(AGE)  48.48 45.33 81.84 74.88 59.42 55.26 57.34
(AGE) sd(AGE) 19.48 18.17 12.89 15.08 23.56 22.14 22.93
min(AGE) 19 19 38 25 19 19 19
max(AGE) 95 96 101 96 101 96 101
Year of Birth mean(YOB)  1877.29  1879.99 1923.87  1930.56 1892.56  1896.98 1894.77
(YOB) sd(YOB) 21.25 19.95 13.14 14.42 28.97 30.10 29.59
min(YOB) 1830 1836 1904 1908 1830 1836 1830
max(YOB) 1911 1917 1970 1982 1970 1982 1982
Year of Death mean(YOD)  1925.77  1925.33 2005.71  2005.44 1951.99  1952.24 1952.12
(YOD) sd(YOD) 6.60 7.34 3.71 3.92 38.05 38.45 38.21
min(YOD) 1910 1910 2000 1995 1910 1910 1910
max(YOD) 1936 1936 2012 2011 2012 2011 2012

Table 4.1 and Figure 4.1 provide a statistical and visual description of the
demographic structure of the dataset considering both the collection from which the data
was sourced and the sex of the individuals, for age-at-death. For this research, along with
morphological data only sex, age-at-death, and year of death and year of birth were
collected as demographic data. Year of birth was computed subtracting age-at-death from

year of death.
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Figure 4.1 Age-at-death profiles of sampled data by sex and collection (KDE method).

4.3|Data management and processing

Multifactorial age estimation poses itself several methodological challenges, mostly
related data management, processing, and analysis. A more comprehensive and expanded
array of age-related skeletal traits increases the chance of running into analytical problems
such as missing values, data redundancy and multicollinearity, and a feature dimensionality
that hinders a straightforward data analysis, modelling, and interpretability.

The data management and processing strategy employed in this work aimed to
tackle three common data-related problems, usually intertwined, faced anthropological

data analysis: missing values, redundancy, and volume.
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Missing values in forensic anthropology results primarily from intrinsic and
extrinsic taphonomic factors. Characteristics such bone architecture and density or the
ecological conditions of cadaveric decomposition and deposition play an important role on
the preservation and representation of human skeletal remains [203].

Data redundancy in anthropology emerges from the body symmetry type that
characterize human anatomy. Most traits analyzed in this work represent bilateral or
paired data characterizing the same entity or trait across the left and right side of paired
skeletal elements. The human body is not fully symmetric, yet it is not expected that the
left and right diverge drastically under normal conditions. Handling bilateral is crucial
minimizing redundancy and reducing dimensionality.

Data volume and quality are highly relevant for robust exploratory and inferential
statistical analysis and assume a pivotal role in predictive modelling and machine learning
approaches. It has already been noted that anthropological data is usually characterized
by the convenience-based sampling which is limited or conditioned by factors such as
availability or access to identified skeletal collection, reference series or other relevant data
sources. Effective data volume, that is sample size, is also conditioned by missing values
and data partitioning co-factors such sex, biogeographic ancestry or any other subsetting
criteria.

The primary goal of data management and processing in this work was to cope
with the challenges posed by multifactorial age estimation from a data-centric point of
view. The final dataset used in predictive modelling for age-at-death estimation, the key
objective of this work, is the result of several operations involving statistical inference,

domain heuristics and data imputation procedures described in the sub-sections below.

4.3.1|Pooling

To maximize data volume (sample size) and age-related variation, data was pooled
across the two major co-factors, documented skeletal collection and sex. Pooling data from

different skeletal collections allowed for a homogenous and uniform age-at-death
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distribution with a balanced representation of young and older individuals. This is a simple
strategy to cope with the problem of age-mimicry and to guarantee that targeted age span
is fully represented in first place [197, 204].
This first pooling operation (Figure 4.2) joined 250 male and 250 female who died

at the age 19 to 101 years old (mean = 57.32, SD = 22.93) that were born between 1830

and 1982 and died between 1910 and 2012.
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Figure 4.2 Age-at-death profiles for pooled collections by sex (KDE method).

Sexes were also pooled (Figure 4.3), while this may seem a more arbitrary choice is

important to note that in forensic anthropology sex is usually estimated during casework.

Pooled data models balance out the potential and pitfalls of sex-specific models and its

misspecifications.
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Figure 4.3 Age-at-death distribution for pooled data (KDE method).

Despite the large temporal frame represented, there is a continuum and a wide

range over the age-at-death distribution that makes this dataset particularly suited for

age-related research and predictive modelling.
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4.3.2|Bilateral merging

To tackle the issue of data redundancy and increased dimensionality caused by
paired data a simple domain heuristic was used: for bilateral traits the left side was selected
as the main source of data. If the left score for a given bilateral trait was missing, the right
side was used as a surrogate value. This is consistent with anthropological data collection
standards and lessens the effect of handedness and potential impact of daily or occupational
activities for some traits, especially in the upper limb [183, 205, 206]. The followed step
minimized redundancy and dimensionality by reducing the number of skeletal traits from
99 to 64. This procedure was applied to all paired skeletal traits with exception of the
cranial and palatine sutures on which paired data exists due the quantization and
segmentation into smaller parts for scoring purposes. This strategy partially deals with

missing value which is address in more detail below.

4.3.3|Imputation

Due to the fragile nature of osseous material, missing data constitutes an inherent
problem in skeletal (data) analysis; these issues are exacerbated in forensic anthropology,
as remains in forensic contexts are frequently subjected to perimortem trauma and
taphonomic factors that damages or alter key features of skeletal morphology. The presence
of missing data or values poses frequently an important technical and analytical issue
because certain computational and anthropological methods do not accommodate missing
values or incomplete data. A common method for avoiding missing data is to exclude any
case in which at least one variable is missing, also known as listwise deletion. In other
cases, variables with a high percentage of missing data may be excluded from an analysis
entirely. Thus, missing data can significantly reduce data volume or limit the number of
variables used in a given analysis, potentially reducing the reliability of some aspects of

the biological profile estimation [207].
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Missing values can be handled in a variety of ways but simply ignoring them via
deletion methods, such as listwise or pairwise deletion, is often an inappropriate choice
which can result in biased estimates and results, a decrease of statistical power, and more
important leads a loss of effective data volume. In most situations, the replacement of
missing values with plausible values derived from the observation of a dataset through
imputation techniques is a far superior and more valuable solution. Missing value
imputation strategies, that is the reconstruction of missing values with plausible values,
are underexplored in anthropology, particularly in forensic anthropological research.
However, Howells [208] almost 50 years ago suggested three strategies to cope with missing
values: 1) substitute missing value with the mean of the target variable; 2) apply regression
models to infer missing values from observed data; and 3) to make a “careful guess”.
Howells’s proposed strategies emerged in the context of multivariate analysis of cranial
data but can by expanded to other domains of anthropological data processing and
analysis, and since his time advances in computing and data analysis have permitted novel
algorithms for data imputation in biological profile estimation [75, 207].

In this work a nearest neighbor procedure combined with heuristic for dealing with
bilateral data was used to impute missing values. As previously described the left side for
bilateral traits was used as the main source of data, and when missing the right side was
use as a surrogate value. Once this first heuristic was applied, the remaining missing values
were imputed using a simple nearest neighbor (k = 1) procedure by substituting all missing
value of given individual by the values of its nearest neighbor. Jaccard similarity on one-
hot encoded data was used to compute the nearest matches. The most notable
characteristic of this strategy is that imputed values are occurring values observed in
similar skeletal patterns and not estimates created by a model. Due to its nonparametric
nature nearest neighbor imputation avoid model misspecification and operates under a
simple yet vital feature in predictive modeling, and implicit assumption in age-at-death
estimation: similar patterns produce similar estimates or predictions.

A simple nearest neighbor (k = 1) according to Beretta & Santianello [209] is the

preferred strategy to preserve the structure of a dataset. The authors demonstrated that
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more advanced algorithms reduced imputation error but introduced significant data
distortion. This finding guided the strategy selected, which favors simplicity and minimal
data distortion over imputation accuracy that is the dominant feature in more complex
techniques such a random forest based algorithms for data imputation [210-212].
Imputation do not to aim “create” data where it is missing but avoid data loss, which is
inevitable in forensic anthropology and exacerbated with simple deletion methods.
Missing values represented 9.52% of the total entries of the dataset when bilateral
data was considered and 6.89% when the domain heuristic described was first applied as
an imputation mechanism and strategy to handle bilateral data redundancy. A detail

missing value percentage by trait analysis is given in Appendix A.

4.3.4|Inference

Data processing via data pooling, bilateral merging and imputation was essential
to establish a new dataset for multivariate analysis and predictive modelling with a
machine learning approach in the context of age-at-death estimation. This important phase
of data management was not performed in an arbitrary fashion but grounded by statistical
inference and guided by pragmatical aspect that should be account in forensic casework.
Statistical description and inference were performed on unprocessed data and is available
in detail in tabular format in Appendix A.

The association of skeletal morphology and sex was assessed through Cramér’s V
statistic [213]. Potential sex-related difference of conditional age-at-death distribution on
trait stages were evaluated with Kolmogorv-Smirnov statistic [214, 215]. Only 10.1%
(10/99) of the skeletal traits marginal distribution presented statistically significant
differences among sexes. Overall, sex explains less than 4% of the variation observed in
marginal trait distribution. Palatine sutures present the highest amount of sex-related
variation, explaining approximately 27% of the variation in marginal distributions. Sex-
related differences of conditional age-at-death distribution on trait stages were detected for

7.07% of the analyzed traits. For C4SS, HM02, OC01, FM04 and ACT02 it only affected
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the age-at-death distribution for maximal trait expression (Stage 1 or 2). Only for CRO1
and CRO3 sex-related differences of conditional age-at-death distributions were detected
on both stages.

Bilateral asymmetry analysis was conducted by computing the proportion of
mismatch between paired and statistical significance assessed using Bhapkar [216] marginal
homogeneity test. Laterality-related differences of conditional age-at-death distribution on
trait stages were evaluated with Kolmogorv-Smirnov statistic [214, 215]. Overall, data
presents an average mismatch between left and right side of 4.70%, with males and females
presenting an average value of 5.00% and 4.40% respectively. Not considering sex, 6 of 39
bilateral traits presented a systematic and statistically significant discrepancy between
sides. Humeral traits (HMO02, HM03, HM04, HM06) presented a systematic discrepancy
favoring the right side (7.4 % bias on average). OC03 and IASO1 presented discrepancy
favoring the left and right respectively but low on magnitude (3.6% and 3.4% mismatches
between sides). Sex-specific analysis revealed a similar pattern, with upper limb traits
presenting discrepancies proportions biased toward the right side (HM02 and HM04 for
males, HM06 and ULO1 for females, and HMO03 for both sexes). Laterality had no impact
for conditional age-at-death distribution on trait stages, both for pooled and sex-specific

analysis.

4.4|Age-related skeletal variation

In Chapter 3 were mentioned the criteria that define a good age-related skeletal
marker, among which having a strong, progressive, and monotonic relationship to
chronological age topped as one of foremost importance. To predict or estimate age-at-
death from skeletal morphology implies both from a biological and computational
perspective that some type and degree of association or statistical signal exists. To assess
age-related signal of the skeletal traits analyzed in this work a univariate and multivariate

statistical analysis using a correlation-based and hierarchical clustering approach.
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Univariate correlation analysis was based on Spearman’s rank correlation coefficient
(p) and Pearson’s correlation ratio (7°). These two effect size statistics offer a
nonparametric, nonlinear and interpretable way to measure the degree of association
between age-at-death and skeletal morphology. Spearman’s rank correlation coefficient is

computed in the general case as

= COVRCX), R(V)) (@)

Or)F r(r)

where cov(R(X),R(Y)) is the covariance of the ranks of X and Y converted with R(X)

and R(Y) respectively. o, and o, ,, are the standard deviations of the rank variables.

This coefficient is equivalent to compute Pearson’s linear correlation coefficient on the
ranks of the data. Spearman's coefficient evaluates how well the relationship between two
random variables can be explained by a monotonic function. Monotonicity is an important
characteristic for age-related markers in adults because it guarantees progressive skeletal
changes with age-at-death, even if not explained by a linear effect.

Pearson’s correlation ratio (7°) measure the proportion of variation in a numeric
random variable that is explained by the grouping effect of a discrete random variable. It

is computed as

, 2.n(,-y)

= 4.2
TN L 2

where ¥ is the mean of Y for category z of X and y is the mean of Y. It can also be
written as the ratio of the sum of the weighted variance of Y across categories of X by the
total variance of Y, hence its name. It is bounded between 0 and 1, with 0 indicating no
dispersion among different categories and 1 indicating no dispersion within the respective

categories or stages. This statistical descriptor has an interesting feature in that it can be

used as an omnibus index, but it can also be computed for each category or stage
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individually, providing a more detailed analysis of the relationship between each skeletal
trait and age-at-death. Statistical significance can be obtained from a y* distribution with
7> =1n’n where n is the sample size, and k-1 degrees of freedom (k is the number of
categories) [217].

Table 4.2, Table 4.3 and Table 4.4 condense the statistical descriptors for this
analysis. Appendix B complements this analysis with a descriptive analysis of unprocessed
data both by sex and laterality. All skeletal traits included in this protocol show a

statistically significant relationship with age-at-death, although with variable effect size.

Table 4.2 Correlation analysis of skeletal traits with age-at-death for joint and musculoskeletal

degeneration traits.

Stage n
Trait P 7]2 V4 2 p-value n 0 1 2
SCo1 0.784 0.619 309.634 0.000 500 0.721 0.519
HMO1 0.708 0.505 252.342 0.000 500 0.467 0.551
HMO02 0.707 0.502 250.843 0.000 500 0.486 0.519
HMO03 0.589 0.346 173.000 0.000 500 0.229 0.522
HMO04 0.432 0.186 93.231 0.000 500 0.048 0.693
HMO05 0.663 0.439 219.314 0.000 500 0.249 0.737
HMO06 0.743 0.552 275.919 0.000 500 0.396 0.754
UL01 0.577 0.335 167.338 0.000 500 0.183 0.620
UL02 0.562 0.318 159.056 0.000 500 0.206 0.508
RDO1 0.380 0.145 72.325 0.000 500 0.032 0.636
RDO02 0.709 0.505 252.592 0.000 500 0.572 0.437
0Co1 0.709 0.506 252.851 0.000 500 0.498 0.514
0C02 0.711 0.511 255.429 0.000 500 0.634 0.394
0Co03 0.789 0.628 313.817 0.000 500 0.685 0.569
FMoO1 0.579 0.337 168.606 0.000 500 0.173 0.660
FMO02 0.515 0.267 133.251 0.000 500 0.105 0.682
FMO03 0.764 0.585 292.267 0.000 500 0.529 0.646
FMO04 0.754 0.571 285.352 0.000 500 0.585 0.556
FMO05 0.658 0.435 217.725 0.000 500 0.318 0.604
TBO01 0.559 0.312 156.146 0.000 500 0.172 0.588
PTO1 0.611 0.374 186.964 0.000 500 0.231 0.619
PT02 0.727 0.531 265.748 0.000 500 0.475 0.598
CLNO1 0.758 0.579 289.306 0.000 500 0.581 0.576
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Table 4.3 Correlation analysis of skeletal traits with age-at-death for standard skeletal markers (clavicle,
1% rib, pubic symphysis, sacroiliac joint and acetabulum).

2

Stage n
Trait £ 772 X 2 p-value n 0 1 2
CLVO01 0.851 0.729 364.626 0.000 500 0.993 0.613 0.633
CLVO02 0.710 0.507 253.428 0.000 500 0.590 0.424
RB101 0.763 0.590 294.834 0.000 500 0.975 0.038 0.787
RB102 0.776 0.607 303.462 0.000 500 0.773 0.453
PSYo01 0.711 0.523 261.291 0.000 500 0.968 0.001 0.731
PSY02 0.731 0.549 274.351 0.000 500 0.912 0.017 0.791
PSY03 0.718 0.536 267.996 0.000 500 0.946 0.093 0.550
TASO01 0.789 0.631 315.435 0.000 500 0.902 0.150 0.561
TAS02 0.731 0.539 269.408 0.000 500 0.673 0.413
SASO01 0.632 0.398 199.074 0.000 500 0.228 0.671
SAS02 0.704 0.499 249.481 0.000 500 0.542 0.453
ACTO1 0.782 0.625 312.327 0.000 500 0.663 0.362 0.825
ACTO02 0.818 0.674 337.107 0.000 500 0.865 0.043 0.671
ACTO03 0.804 0.662 330.860 0.000 500 0.829 0.094 0.741

Global Spearman’s correlation coefficient ( o ) average value is 0.683. This statistic
assumes its minimum average value for the cranial and palatine suture traits, 0.399 (0.297
to 0.518). Vertebral body traits show an average value of 0.821 (0.794 and 0.845), upper
limb traits an average value of 0.623 (0.380 to 0.784), lower limb traits an average value
of 0.678 (0.515 to 0.789), clavicular traits an average value of 0.780 (0.710 to 0.851), 1% rib
traits an average value of 0.769 (0.763 to 0.776), pubic symphysis traits an average value
of 0.720 (0.711 to 0.731), sacroiliac joint traits an average value of 0.714 (0.632 to 0.789),
and the acetabular traits an average value of 0.801 (0.782 to 0.818).

Correlation coefficients provide insight into the ability of skeletal traits to predict
age-at-death while making few assumptions about the underlying data [15]. Pearson’s
correlation ratio (7?), is particularly useful in that regard especially due to its ability to
be both an omnibus statistic and provide a glimpse of the variation partition within
categories or stages of discrete random variable such as the ones used in this work.
Inspecting stage-specific 7? value, it can be inferred that joint and musculoskeletal
degeneration traits (Table 4.2), for instance, are more predictive for Stage 1 with an
average value of 0.587 (0.394 to 0.754) compared to Stage 0 - average value 0.373 (0.032 —

0.721). Based on this statistic it can be identified a subset of skeletal traits with highly
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predictive Stage 0 traits, the CLV01, RB01, PSY01, PS02, PSY03, S1S2F and IASO1. This
subset of consists of skeletal traits for which Stage 0 represents several of the last
manifestations of skeletal maturation such as sternal end of the clavicle ossification
(CLV01), fusion of the sacral S1 to S2 segment (S1S2F), and late stages of maturation of
the symphyseal face of the pubic bone (PSYO01 to PSY03). These traits (Stage 0) are key

to estimate age for young adults.

Table 4.4 Correlation analysis of skeletal traits with age-at-death for cranial and axial traits.

2

Stage n
Trait Y24 772 X 2 p-value n 0 1 2
CRS01 0.431 0.187 93.618 0.000 500 0.372 0.083
CRS02L 0.311 0.096 48.124 0.000 500 0.030 0.314
CRS02R 0.297 0.088 43.990 0.000 500 0.027 0.294
CRS03 0.411 0.170 84.977 0.000 500 0.162 0.179
CRS04L 0.497 0.249 124.598 0.000 500 0.341 0.169
CRS04R 0.518 0.271 135.365 0.000 500 0.373 0.181
CRS05 0.414 0.173 86.711 0.000 500 0.206 0.140
CRS06L 0.358 0.129 64.437 0.000 500 0.093 0.184
CRS06R 0.352 0.125 62.541 0.000 500 0.088 0.184
C3IS 0.794 0.639 319.268 0.000 500 0.639 0.367 0.838
C4SS 0.810 0.663 331.438 0.000 500 0.704 0.277 0.842
C4IS 0.829 0.695 347.375 0.000 500 0.749 0.275 0.818
C5SS 0.822 0.683 341.531 0.000 500 0.753 0.179 0.793
C5IS 0.831 0.712 355.974 0.000 500 0.829 0.172 0.711
C6SS 0.836 0.714 356.755 0.000 500 0.817 0.108 0.723
C6IS 0.815 0.680 340.129 0.000 500 0.779 0.137 0.677
CT78S 0.798 0.657 328.270 0.000 500 0.760 0.161 0.668
L1IS 0.799 0.646 323.211 0.000 500 0.659 0.238 0.823
L2SS 0.811 0.667 333.621 0.000 500 0.709 0.180 0.794
L2IS 0.835 0.710 355.078 0.000 500 0.782 0.201 0.797
L3SS 0.841 0.719 359.253 0.000 500 0.831 0.062 0.774
L3IS 0.845 0.722 360.765 0.000 500 0.780 0.156 0.813
L4SS 0.844 0.725 362.319 0.000 500 0.862 0.027 0.729
L4IS 0.819 0.678 338.971 0.000 500 0.745 0.105 0.726
L5SS 0.833 0.706 352.905 0.000 500 0.843 0.025 0.688
S18S 0.801 0.672 335.879 0.000 500 0.825 0.183 0.706
S1S2F 0.554 0.309 154.320 0.000 500 0.943 0.063
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Figure 4.4 and Figure 4.5 depict inter-trait coefficient of determination matrix, the
squared value of Spearman’s coefficient, and its natural grouping via hierarchical clustering.
The most important point to take from them is the strong inter-trait correlations, even
after controlling for age-at-death (partial correlation, Figure 4.5). Partial correlation after
controlling for age-at-death, is an important aspect to assess in data processing and age
estimation modelling. Strong inter-trait dependencies are useful for data imputation, a
maximal signal among traits helps impute latent or missing data with higher accuracy and
minimal distortion from the observed data. However, two skeletal traits may be so closely
related after controlling for age that knowing the stage or value of one, entirely informs
about the value of the other. This is significant because there is no way to improve age
inference from a pair of features that are so highly correlated [15]. Accounting for this
property of the dataset is key to select an efficient and effective computational modelling
approach (Chapter 5). Based on the strong inter-trait dependencies of the dataset, even
after controlling for age-at-death, it can be hypothesized that certain modelling techniques
are more likely to provide sub-optimal results or ill-conditioned systems such as the case
of probabilistic methods under conditional independence assumption or linear regression

methods without proper regularization techniques [54, 56, 58, 62, 218].

4.5|Data availability

Data collection in anthropology is time-consuming, often expensive, and bounded
by delicate issues concerning ethics and access to human remains or its representation.
Data itself represents one of the most valuable assets, particularly in a field where most
careers are related to academia and open access to data is the fundamental. Restricted
access to data and/or code use for developing or validating models in biological profiling
is a prevalent issue as open science and open source initiatives have not been the
predominant trait in anthropological research and its outputs [151, 219]. To counteract

this tendency, the dataset used in this thesis is available as part of the software developed
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as one of its research objectives (Chapter 7). A tab separate value file (.tsv) is on the sub-
directory data-raw in the code repository of the DRNNAGE software [82]. The data is
archived and shared using the open science platform Zenodo [220], can be accessed via
https://www.doi.orq/10.5281/zenodo. 7274445. Installing DRNNAGE as a R package
enables the dataset to be access in that environment as an object named CAMSAD which

stands for Coimbra Adult Macroscopic Skeletal Age Dataset.
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5|Age estimation using machine learning: an approach

Machine learning and computational techniques can be used to create predictive
models, calculate errors in a statistically sensible way, and compute probability values and
other uncertainty quantities that can be presented in court and forensic reports in a
rigorous scientific manner [195]. A machine learning based approach is valuable in complex
and noisy problems such as skeletal age estimation. Creating explanatory and causal models
to map the relationship between skeletal morphology and age-at-death can be an
intractable or even an impossible problem to solve. Machine learning algorithms have been
used to generate predictive models for age estimation, previous research such as Corsini et
al. [61], Buk et al. [51], Kotérova et al. [52], Stull et al. [221], and Navega et al. [32, 81]
substantiate how machine learning techniques can be an asset in skeletal age estimation.

Computationally age-at-death estimation can be viewed as function approximation

problem. From this perspective, ¥ = f (X ), maps the skeletal traits (X) to an age-at-death

(Y). The approach to skeletal age estimation proposed and validated in this thesis relies
on a regression-based predictive modelling strategy using machine learning. It consists of
using deep random neural networks models to regress age-at-death on skeletal traits
coupled with regression uncertainty models to construct predictive intervals.

Current chapter presents the basics on machine learning, and the conceptual and
mathematical details of artificial neural networks approach and how predictive intervals

can be constructed from a generic framework to address regression uncertainty.

5.1|Machine learning

Machine learning represents a unified algorithmic framework designed to learn and
map underlying properties and structural patterns of data, which can be used to describe

the data or make predictions and estimates on new data [222-225]. It is subfield of artificial
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intelligence, a branch of computer science where areas such computational statistics,
applied mathematics, cognitive science, and information theory converge. Machine learning
enables performing tasks that would be infeasible to accomplish with human-written, static
programs. From a scientific and philosophical standpoint, machine learning is intriguing
because understanding it entails a glimpse over the principles underlying human learning
and intelligence [226]. It is one of the most prolific research areas in computational sciences
due to massive amount of available structured and unstructured data and the relevant
problems (i.e., industrial, medical, biological, economic, military) that can be solve
efficiently using it [223, 225].

Machine learning tends to differ from traditional statistical modelling. The latter
emphasizes modelling accuracy and correctness, that is, creating models that not only
reflect the ground truth but are also correct and can provide some explanatory value.
Machine learning tends to be more operational and emphasize raw accuracy over
understanding the data generation mechanism. Some of the most efficient algorithms in
machine learning, i.e., artificial neural networks, random forest, or support vector
machines, are usually black boxes from an explanatory perspective contrasting with linear
regression models or discriminant analysis. Breiman [227] provides an insightful discussion
on these two cultures as he referred to it.

Following Jung [225] machine learning can be portrayed as a combination of three
components: the data, a model, and a loss function. A plethora of machine learning
algorithms results from different choices regarding representation and parameterization of
these atomic units. Data is the most important component in a problem to be solve by
machine learning?.

Data is the collection of data points that contain the information on the features or inputs
variables, X, and the label, target or output variable Y. The data itself guides the taxonomy

of models and the type of loss function to be a used. Learning from data using machine

i Data as the most important component is one of the reasons why, in this thesis, a chapter was
entirely devoted to the dataset constructed and used.

88



5| Age estimation using machine learning: an approach

learning generally falls in two main categories referred as unsupervised learning and
supervised learning [222]. A third category is reinforcement learning with important
applications in robotics and control problems but due to its nature is out of the scope of
this overview.

In unsupervised learning do not exist a label or output variable, in such cases the
model used aims to discover patterns in the input X. It addresses clustering problems,
grouping patterns, and representation problems such as extracting new features from X or
reducing dimensionality.

Supervised learning has both X and Y available to the learner or model, which aims
to approximateY = £(X,0®). This function maps the relationship between X and Y, ®
represent its learnable parameters. Learning the best parameters is a mathematical
optimization problem, that involves minimizing the loss function (Figure 5.1). The loss
function, which quantifies the discrepancy between known output and its prediction, varies
depending on Y. If the output is numeric the problem can be handled as regression task
and the squared error loss is an appropriate function. For classification problems, those
with discrete or categorical outputs, the logistic or the hinge loss represent suitable

candidates for the loss function [225].

P i P i
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Figure 5.1 Learning as an optimization problem.
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5.2|Artificial neural networks

Artificial neural networks (ANN) are a class of connectionist, biologically inspired
computational models that enables learning from data for a multitude of tasks such as
classification, regression, representation learning, data compression and generation. ANN
are function approximation machines and offer a robust and flexible framework for
unsupervised, supervised and reinforcement learning. They are in a broad sense the result
of two components: architectural bias — that is how many layers and neurons composed
the network, and learning strategy — how the parameters of the network are learnt. With
the nervous system as its schematic, artificial neural networks are based on interconnected
units or nodes also known as artificial neurons. An artificial neuron, Figure 5.2, the basic

unit of a network, is a mathematical operator in the form of
p
h(x) = (Y x,0, +b) (5.1)
=1

where ¢() is an activation function, X; and @, are the i-th components of the input and
weight vector b is the neuron bias. Artificial neurons represent non-linear functions with
learnable parameters which ultimately expand this type of model representational capacity

to be able to approximate any output function.

Input Weights Transfer function Activation function Output

Figure 5.2 Artificial neuron representation.
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Figure 5.3 depicts the non-linear behavior of three commonly used activation

functions.
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Figure 5.3 Activation function representation.

In its basic implementation, an ANN is composed of three components: the input
layer, the hidden layer, and an output layer. Two sets of weights are embedded in the
network structure, one connecting the inputs to the hidden layer and the other connecting

the hidden layer to the output layer. In a neural network, the input is transferred to the
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hidden layer(s) by means of a non-linear activation function (Figure 5.4.)

Input Hidden Layer Output

Y
P

61QIG)

Figure 5.4 Generic representation of a single layer artificial neural network.

A network can represent and map functions of increasing complexity by adding
more layers and more nodes within a layer [226]. Networks with multiple layers are usually

referred as multi-layer or deep neural networks (Figure 5.5).
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Figure 5.5 Generic representation of a deep (multi-layer) artificial neural network.
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A key aspect of ANN is their flexibility and modularity which translate in their
capability to be applied to a vast array of heterogeneous data types and domains. The
explosion in availability and capacity to store and analyze data in the form of image, video,
audio, and unstructured text lead to the development of novel ANN training algorithms
and architectures and a transition from shallow (single hidden layer) to deep (multi-layer)
networks. It is important to note that not all ANN are formulated and trained in the same
manner.

A transversal aspect of modern ANN is their use of gradient-based learning
algorithms where the weights of a network are iteratively fine-tuned [225, 226]. Gradient-
based learning enables end-to-end training and state-of-the-art performance in many
complex tasks, but it is costly and requires considerable amounts of technical knowledge
to leverage an ANN to its full potential. Genetic programming and evolutionary computing
techniques can also be used to train neural network models, particularly to solve the issues
related to find the optimal topology of network but also the weights of the network. These
approaches are usually referred as neuroevolution, two paradigmatic examples are
NeuroEvolution of Augmenting Topologies (NEAT) [228] and Deep Evolutionary Network
Structured Representation (DENSER) [229-233].

In this thesis is explored a counterintuitive, yet highly efficient, approach to the
training of neural models via randomization in which a subset of parameters - hidden
layer(s) weights - are randomly assigned and fixed, and network optimization is recast as

least squares estimation problem [234, 235].

5.3|Randomized artificial neural networks

In the context of artificial neural networks, randomization as an intrinsic
mechanism of model learning can be traced back to late 80s and early 90s with proposal of
randomized radial basis functions network (RBF) and the random wvector functional link

network (RVFL) models [236-240]. However, the recent interest in randomized algorithms
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for training feed-forward neural networks can be attributed to the re-emergence of this
approach in the guise of the controversial extreme learning machine (ELM) algorithm [241—
244]. According to Wang [245], there is no need to rename this strategy for training neural
networks, since all key elements have been previously proposed [236-240], and some of the
minor changes introduced by the ELM algorithm, such as the omission of direct links
between the input and output layer—present in the RVFL network—can have a deleterious
effect in performance. Nonetheless, the ELM algorithm acted as a foundation for many
innovations in the field of randomized artificial neural networks (RANN) such as the
development of highly efficient algorithms to compute and cross-validate the output layer
analytically [246, 247], and its evolution from a framework restricted to shallow networks
to a set of techniques and algorithms capable of deep, multi-layered network architectures
[248-252].

Fully randomized and fully trainable artificial neural networks represent extremes
of a wide algorithmic landscape with a continuum that is only now being explored more
thoroughly [235]. While it is difficult to deny the intuitive elegance of fully trainable deep
neural networks, the training speed of randomized networks make them a pragmatic choice
for many real-world machine learning applications. They can achieve significant accuracy
versus runtime efficiency tradeoffs from a practical standpoint. This method for training
of artificial neural networks may be advantageous for hardware or online implementations

235, 248, 253].

5.3.1|Regularization

In randomized neural networks, the elements of ,, the hidden layer weights, are

randomly generated from suitable probability distribution and not optimized. Only the
output weights are learned from data by solving a least squares estimation (LSE) problem
expressed as

B=H'Y (5.2)
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Where £ are the output layer weights, H' is Moore-Penrose pseudo-inverse of
the matrix H, which defines the hidden layer, and Y is a column vector storing the network
target output. H' can be computed using several methods; a common approach is through

orthogonal projection using Eq. (5.3)
H =H"H)'H" (5.3)

From Eq. (5.2) and Eq. (5.3) can be derive that using this algorithm the estimate
is obtained as y = f7 and that the weights of the output layer are in fact the least squares
solution that maps the non-linear features induced by the hidden layer of the neural
network to its output.

It has been noted that one can keep the algorithmic simplicity of the least squares
solution, while improving its performance and generalization capability by adding a penalty
to the output weights [254]. Such penalty, C, stabilizes the inversion of matrix H and
shrinks the coefficients of the output layer towards zero, smaller coefficients lead to smaller
error rates on unseen data[255]. Imposing such constraint on the output weights is a process
known as shrinkage or regularization, which in the neural network literature is also named
weight decay. This type of regularization is also referred as L2-norm regularization or
Tikhonov regularization. The solution of a regularized RANN is obtained by substituting

Eq. (5.3) as follows:
T T ] -1 T
H'=(H'H+ )" H (5.4)

I refers to the identity matrix with dimensions matching H'H . Regularization is of
paramount importance when training a randomized neural network for age estimation. The
solution of the network is obtained by minimizing squared error as the objective function.
LSE based neural networks lead to unbiased solutions but with high variance if not properly

regularized due to the randomness of the initialization [246]. Regularization shrinks the
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size of the output coefficients towards zeros, which is consistent with the theory that
smaller weights result in better generalization of neural networks [255, 256].

An advantage of optimizing the weights the output layer in a RANN solving a least
squares estimation problem is the efficient, analytical and closed formulation to assess the
leave-one-out (LOO) error as shown by Shao and Er [246] using Allen’s [257] Prediction

Sum of Squares (PRESS) statistic:

13 Vi _j}i 2 55
E = [ R .
LOO n;(l—hatﬁ) ( )

hat, is the i-th diagonal element of the hat or projection matriz, which is the matrix that

maps the hidden layer parameters to the predicted values of the network. Shao and Er
[246] have demonstrated that computing the projection matrix of the network and finding
the optimal regularization parameter, C, under leave-one-out cross-validation (LOO-CV)
can be achieved with computational efficiency by performing a singular value
decomposition (SVD) of the hidden layer which given such operation is written as

H =Uzp7" . Using SVD the network estimate can be written as

> T 1 -1 74T
Y=HHEH+ ) HY (5.6)

. I
Y=UQE'Z+ E)’IZTUTY

I -1
where U (ZTZJFEJ 2'U" is the projection matrix and it can be noted that only

(ZTZ + éjo affects the projection matrix for different values of C .1 is a diagonal matrix

2

il

whose element are expressed as ¢, = where o, is the #th singular value from the

O-; +—=
C
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decomposition of H. SVD makes the regularization of the neural network highly efficient
because the diagonal of the projection matrix, which is needed to calculate the LOO error
using Eq. (5.6), that can be obtained from the following Hadamard products (matrix

element-wise multiplication)

y=UoI'"=Uo(®U") (5.7)

I -1
with ®:[ZTZ+EJ 2", The diagonal elements of the projection matrix, hat,, can be

obtained by performing a column-wise sum of the elements of y. The LOO predictions of

the network can be obtained analytically as follows

s _ Vi S () 5.8
Vi 1—hat,; (5:8)

In addition to this highly efficient computational formulation to train and regularize
a randomized neural network, data standardization and the addition of gaussian noise to

the several components of the network can also improves generalization.

5.3.2|Deep random neural networks

The mathematical and network formulation presented so far pertain to a
randomized single hidden layer network architecture. However, several authors proposed
different techniques to extend RANN to deeper architectures [248-252]. To increase the
depth of the network one can, resort to fully randomized approaches or use autoencoding
strategies and stack multiple autoencoding RANN to build a multi-layer or deep network.
In this thesis both approaches are followed.

The fully randomized approach pursued follows the proposal of Shi et al. [252] to

train deep randomized neural network models (DRNN) due to its simplicity. Following the
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authors, the first layer of the network is defined as
HY =g(xw®) (5.9)

where X is the input matrix, in our case skeletal traits. Every subsequent layer (j > 1)

defined as
HW :g(H(j—l)W(j)) (5.10)

where HY™ is the previous layer. One can also allow connections from the input to all

hidden layers and have the hidden layer define as
H(./') :g([H(jfl) X]W(j)) (5.11)

W'and W’ are the weight matrices between the input-first hidden layer and inter hidden
layers respectively. These matrices are randomly assigned and kept fixed during the

training. The input to output layer is then defined as

D=[H"H® . .H"> H" X | (5.12)

The design of the deep network using this formulation is very similar to a shallow
RANN and can be easily seen that the input to output layer consists of non-linear features
induced by the hidden layers concatenated to the original input of the network. When the
input is reused directly in the output layer the network is classified as a network with
direct links or skips layers. That is, as aforementioned, the key difference between and
ELM and RFVL networks.

The autoencoding strategy adopted is based on the supervised autoencoding

approach proposed by Tissera and McDonnell [248]. The authors propose an algorithm for
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deep randomized neural network for image classification, but it is generalizable to
regression problems and tabular data as performed in this thesis. This deep random neural
network is trained with same mechanism already presented for efficient regularization and
analytical cross-validation, nonetheless it introduces some conceptual and notation changes
that will be briefly addressed.

In this approach, the depth of the network is increased by stacking autoencoders.
An autoencoder is a neural network that attempts to reproduce its input as its output. It
has an internal layer that describes the code used to represent input. Typically, they are
constrained in such a way that they can only reproduce inputs that closely resemble the
training data. Because the model is required to prioritize which aspects of the input should
be replicated, it frequently discovers useful data properties. Autoencoders discover encoding
and decoding functions. Autoencoders with nonlinear encoder functions and nonlinear
decoder functions are therefore capable of learning a more potent nonlinear generalization
of principal component analysis (PCA) [226]. A randomized autoencoder learns to recover
the input from its distorted version as encoded by the hidden layer with random weights.

Following Tissera and McDonnell [248] rather than directly predict ¥ from X | a

randomized autoencoder is trained to recover and reconstruct § =[x y], the concatenated

version of the input and output, from the randomized hidden layer that act as an encoder.

Because the output Y is in fact quantity to be predicted, the input to the first layer of a
deep random neural network trained with this approach is substituted by S I =[X YB],
where Y, is a vector of zeros or other meaningful value (i.e. average of Y ) that acts as

placeholder of Y in the decoder layer. The input to subsequent layers is S ; =[)_( I 171._]],

the autoencoded version of §. The autoencoded data is the input of another random

autoencoder with § as its output. The striking feature here is that X j is the recovered or

reconstructed version of X but YJ represents a prediction or estimation of ¥ because it
was not available to the encoder layers due to its substitution by ¥, in the first layer.

Throughout the depth of the network there is an auto-corrective behavior that
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refines the prediction of ¥ while minimizing the reconstruction error over X at the same

time. By stacking autoencoders in this fashion, the network aims to improve its
autoencoding of §, and implicitly performs a prediction of ¥ as ?2)_’] at every layer

along the depth of the network hence the supervised aspect of this autoencoder which are

typically trained in an unsupervised fashion — only in respect to X .

5.3.3|Implicit ensemble models

One key advantage of the randomized approach used in this thesis is that it can
enable implicit neural ensemble models [252]. For the fully randomized approach it means
that rather than applying Eq. (5.2) once to solve the output layer weights (solution), Eq.
(5.2) can be re-used along the depth of the network for each H'” computed from Eq. (5.9)
or Eq. (5.10) and obtain estimates. The final estimate can be then obtained by averaging

all estimates along the network depth. In the case of the supervised autoencoding strategy,

\) ; is averaged along the depth of the network. This feature stabilizes the predictions and

offer a different mechanism to train an ensemble model other than training each model

independently.

5.4|Regression uncertainty modelling

Previous section presented the foundation for mathematical estimation using neural
networks as a numeric prediction or regression problem. Yet, it focused only on how point
estimates can be obtained, that is the conditional expectation of Y given the observed
values X. Mapping the uncertainty of the point estimate is essential in several domains,
which means that a predictive interval for a prescribed confidence level should also be part
of the analysis and the subsequent report. Incorporating prediction uncertainty into
deterministic estimates improves the model's credibility and reliability [258].

In this thesis a generic approach based on recast uncertainty estimation as
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regression problem was pursued. Simply put this approach consists of regressing absolute
residuals, (estimation errors), on the values of the of estimate itself. This is formally defined

as
EA‘()}}) :ﬂo +ﬂ1i}” (513)

where £(¥) is the estimate absolute residual based of existing estimate, ¥ 5, g, and g,
are the model coefficients and 7 is a exponent parameter that introduces non-linearity in
the model. If =1, the model operates in a linear fashion. Estimation error or absolute

residuals are defined as E =‘Y -y ‘ The model formulated by Eq. (5.13) is from herein

referred as a regression uncertainty model (RUM). This approach is based on Milborrow
[259] and was selected due to its conceptual simplicity and flexibility as it can be used to
infer prediction uncertainty for any underlying regression algorithm that generates Y .
The estimate of £(¥) is fundamental for two strategies, parametric and non-parametric,
used in this thesis to infer predictive intervals. A parametric solution is based on assuming
that uncertainty as a distribution with a gaussian shape around the point estimate. The

non-parametric, distribution-free is based on conformal prediction framework [260-262].

5.4.1| Truncated gaussian

A regression uncertainty model can be used to output a gaussian shaped predictive
interval. In this strategy the predicted residual, £(¥), is first scaled by 1.2533. The scaling
factor is the ratio of the standard deviation to the absolute deviation [125, 126]. Assuming
normality on the variance around each point estimate, the prediction interval associated

to a regression model is given by the quantiles of a gaussian or truncated gaussian

$ In this section its assumed that the estimates, Y , used in the RUM are obtained using some form
of cross-validation.
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parameterized with the conditional mean Y , and conditional variance y —1.2533£(7). A
truncated gaussian distribution is favored as it guarantees that the prediction interval is
within the domain of the problem at hand. The key advantage of this approach is its
simplicity compared to likelihood methods [15-17, 20, 23, 127-129]. In addition to the

numerical interval, this approach also allows visualization as illustrated by Figure 5.6.

Predictive Distribution (Truncated Gaussian)

Predicted: 18.000 [18.000 - 30.597]
Variance: 6427
Confidence: 0.9

012

0.08

Density

0.04

poo| @ !

20 30 40 S0 &80 To 20 g0 100
Age-at-Death

Figure 5.6 Prediction interval using a gaussian uncertainty model in age estimation problem.

5.4.2|Conformal prediction

Conformal prediction (CP) is a learning paradigm and framework proposed by
Vovk et al. [260] to complement the estimates and predictions of machine learning
algorithm with confidence measures. The following key points characterize this approach:
it gives provably valid measures of confidence; the only assumption it makes about the
data is that they are independently and identically distributed (i.i.d); it can be adapted to
accommodate any learning algorithm; and it can be used in classification and regression

settings. Conformal prediction uses past experience, i.e. error patterns of a machine
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learning algorithm to build distribution-free confidence measures [247, 262-267].
Introducing a training set as 7zt = {{x;,yi}, i = 1,2,...,1} where x; denotes the input
vector, and y; denotes the output, both instances of X and Y respectively. Given a testing
example x;;;, the objective of conformal prediction is to use the information of the training
set to construct a predictive region that contains the known output, y..;, with a high and
preset level of probability, i.e. 0.9 or 0.95. Assuming only that the data is drawn from the

same (unknown) distribution, a conformal predictor tests every possible y, predicted value,

for each augmented dataset z' U{x,7}, and [ + 1 nonconformity scores are computed as:

aij} = A({(x;, )55 (X, i~1)> V-1 ), (x(m) > Vi+1) ) (x(z+1) > j>(l+1) )} (x5 5,))

) ) (5.14)
aé+1) = A({(x, 1 )”"7(xl’yl)}’(x(Hl)’y(Hl)))

with 1 =1, 2, .., . A(S,z), a nonconformity measure, defines a function measuring the

degree of disagreement between observation z and the dataset S. In regression problems

the nonconformity function is typically defined as the absolute error

A(S,2)=ly - fi(x))| (5.15)

where f1 is the regression function built from, S, the training set and f(x) is the estimate

generated by it. By using A(S, z) it is possible to compute a p-value for every j which
indicates for a given datum the probability of j being the correct predicted value. Such

p-value is calculated as:

el Ll o za),,) b+
[+1

() (5.16)

with the p-values calculated with Eq. (5.16) and a preset significance level, a , a predictive

region that contains the known output with 1—« confidence is {J: p(») > a}. We refer

here to predictive region as a more generic term that includes the notions of predictive set
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and predictive interval. CP is also used to provide confidence measures to classification
algorithms and defining predictive set of possible predicted classes for a datum.

The notation of CP might seem daunting at first because it assumes a transductive
or on-line approach to learning. That is, predictions are formed in sequence, one at a time
using previous experience to define predictive regions and confidence measures. This
property gives solid theoretical and empirical validity to the prediction region obtained but
it might be computationally prohibitive to implement in practice. CP is built on top of a
machine learning algorithm usually referred to as the underlying algorithm. Depending on
the complexity of the algorithm or the volume of data it might not be cost effective to
apply transductive conformal prediction.

To tackle this problem, techniques that explore and exploit data splitting and cross-
validation strategies have been proposed [262, 265, 266, 268]. Cross-Conformal Prediction
(CCP) and Jackknife (or Leave-One-Out) Conformal Prediction (JCP) are two variants
used to implement CP in a computationally efficient manner. Both techniques use cross-
validation to compute the nonconformity measure, A(S, z), needed in CP. One important
remark is that CCP and JCP are only empirically valid [262, 266]. That means that their
finite out-of-sample coverage probability in regression problems is not theoretically
guaranteed to be 1—a but empirical studies on hypothetical and real problems
demonstrated that the coverage probability converges to the preset level of confidence.

In practice, in a regression problem it is not feasible to apply Eq. (5.14) and Eq.
(5.16) to every possible predicted value to compute the conformal p-value and to construct
the prediction interval. Inferring the nonconformity function is instead recast as regression
problem and is applied a regression algorithm to learn the nonconformity function based
on the absolute residuals obtained from cross-validation on the training set. This is already
accomplished via the regression uncertainty model defined in Eq. (5.13).

Computing a predictive interval using conformal prediction involves a scaling
operation analogous to the one involved in the truncated gaussian strategy. However, this

scaling factor is given as
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CF, =0, () (5.17)

where o confidence level, Q, _(.) is a quantile function that returns the 1—a quantile

of the ratio between the observed absolute residuals and the estimated absolute residuals
as computed by the RUM, Eq. (5.13). The predictive interval is then obtained as

Y+CF,E(Y), truncation of the lower and upper values obtained can be performed for

assurance that the predictive interval is consistent with range of Y for a given problem.
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Current chapter constitutes the experimental core of this thesis and the provides
the results of two in silico experiments, that is by means of computational analysis and
simulation. These experiments were conducted to assess and validate the machine learning
approach described in Chapter 5 for constructing age estimation models using deep random
neural networks and regression uncertainty modelling and test the hypothesis that
multifactorial age estimation models provide more accurate age estimates. This chapter
details the computational procedure and metrics used to assess model performance,

describes the model parameterization, and discusses the results obtained.

6.1|Cross-validation scheme

To assess the performance of DRNN and RUM models in multifactorial age
estimation from macroscopic skeletal traits was followed a simple template for robust
metric assessment based on a resampling method known as Monte Carlo cross-validation
(MCCYV) or repeated random sub-sampling validation [269]. It works as follows: for a given
iteration of the scheme, split the dataset into disjoint train and test partitions. Using the
training partition fit a DRNN and RUM models by making use of Eq. (5.5 to 5.7) to
optimize the regularization parameter C and obtain leave-one-out predictions, which are
used to train the RUM models. C is optimized as 2" with x e {—6,—4,...,12} . With the trained
DRNN and RUM models we predict the age-at-death of the testing sample/partition and
compute the MCCV performance metrics. For a given set of skeletal traits, this procedure
is repeated 1000 times (B=1000). The train partition is set as 80% of the total data (400
of 500) and the test partition as the remaining (100 of 500). This sampling procedure was
performed without replacement. The core of the computational analysis is organized in two

experiments, from now on referred as experiment A and B:
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A)  The first experiment conducted was designed to provide a baseline of the
accuracy obtained by fitting DRNN models to blocks of traits that have
standard or traditional analytical framing. For instance, models were fitted to
different anatomical complexes or set of traits that mimic existing aging

standards—i.e., a model for the sutures or the pubis symphysis.

B)  Second computational experiment consisted of simulated different proportions
of available traits from 90% to 10%. The objective of this experiment was to
assess model performance in a more realistic scenario where the forensic

anthropologist has skeletal traits available on a case-by-case basis.

In both experiments 95% predictive intervals (95% PI) were computed by setting
the uncertainty to parameter o = 0.05. DRNN models were constructed using the fully
randomized and the supervised autoencoding approaches described in Chapter 5, both
models are built as implicit ensembles. Fully randomized approach used direct links
connecting the input to every subsequent layer. RUM models were built using both

approaches previously described and operated in a linear fashion 7 =1, Eq. (5.13). More

details on model parameterization are provided in section 6.3.

6.2|Metrics

In this section are described the mathematical descriptors used to assess model
performance in age estimation. An age-at-death estimation model — regardless of its
underlying mathematical algorithm — should be accurate, unbiased, valid, and efficient.
Accuracy refers to ability of the model to predict age with minimal error. The most
straightforward metric to assess this parameter is the mean absolute error (MAE)

computed as
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Z|y,-—f/,-|
MAE ==L (6.1)
n

where V; and ); are the known and predicted values, respectively, and n is the number

of evaluated samples.
A model should be unbiased, that is free of systematic error. A typical pattern of
bias or systematic error in age estimation models is the over-estimation of young individuals

and under-estimation of the elderly. A robust and omnibus way to assess bias ( ﬂl) is by
computing the slope of regression line of the residuals, e, =y, — »,, on known values. When

minimal to no bias is presented, this value should be close to zero. A positive slope suggests

a systematic bias as the one describe previously. Bias is computed in as

. i(yi—)_/)(ei—é)
="
;(yi _y)Z

where y and e are the means of the known and residuals values.

The validity of model, in the context of this study refers to the ability to contain
the known age within the predictive interval within a reasonable margin close to the
nominal uncertainty level allowed. For an uncertainty level («a ) of 0.05 (or 5%) is expected
that the coverage, correct proportion of individuals within the predictive interval, is close

to 0.95 (or 95%). This validity measure is computed as

S 5l )
Pla)y="t (6.3)
n

where &(y,,/,u,) is an indicator function withs(y,,Z,u)=1, ify, >l Ay, <u,, and

6(y,,1.,u)=0 otherwise. | and wz, are the values of the lower and upper ends of the
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predictive interval respectively.

At last, a model should thrive to be efficient. Efficiency refers to the width or range
of the prediction intervals associated with the regression uncertainty model. A method or
model is efficient when outputs the narrowest predictive interval possible while maintaining

its validity as well. We compute our measure of efficiency as follows
PIW =Q(u-1,7) (6.4)

where Q(.) is a quantile function and , a given quantile, with 7 e {0.5,0.025,0.975} . This

computes the median of the predictive interval width and its associated 95% confidence

interval (quantile-base).

6.3|Parameterization

A key aspect of any ANN model is its architecture, that is how many neurons (or
nodes), and layers compose the network. To leverage the full potential of DRNNs, maximize
its training speed and efficiency rather than search for the optimal architecture, a simple
heuristic was developed based on Lappas [131]. The author demonstrated that the size of
a single layer perceptron can be estimated from the number of samples available. Using his
work as a foundation, is proposed the following heuristics for setting the architecture of a
DRNN as built in this thesis to handle tabular data. The width, size, or number of neurons

of each layer was set as

S= 2{1%[8\/21(7]J ,k =log,(n) (6.5)

where n is the number of samples. The depth or number of layers was set as
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L =20k —10g (n) (6.6)

Following Eq. (6.1) and Eq. (6.2) as a simple heuristic allows predictable, parsimonious
network architectures. This way the network permits many computing units for
randomized feature extraction distributed along several layers without incurring in
overparameterization. This heuristic also leverages the simplicity of training a deep
(randomized) neural network using the same mechanisms of a shallow one, while exploiting
implicit ensemble framework. Applying the described heuristic defines the network
architecture with a rectangular topology composed by eight layers of 32 neurons each, for
a total of 256 randomized units.

DRNN are computationally cheap nonlinear models built by combining regularized
linear regression with nonlinear features obtained by using an activation function, ¢(),
with random weights. In this work, the rectified linear unit (ReLU) is used as the
nonlinearity of the networks. The ReLU is defined as ¢(z,w)=max(0,zw), where z and w
are the layer input and random weights matrices. Since the regularization process involved
in the training process described in this work is not scale invariant, Eq. (5.6), during
network training normalization by mean centering and variance scaling was performed on
the matrices X, XW, H and Y. The output of the network was later rescaled before
computation of the performance metrics. Scaling the output translates in supervised

autoencoding approach as substituting Y by ¥, in the first autoencoder as the mean known

average of Y.

Network architecture selection and design is a non-trivial task often performed
through very expensive and complex computational strategies and procedures. The
heuristic used and architecture selected in this work emerged from trial-and-error
experimentation during the development of the runnet software package (see Chapter 7).
This parameterization leverages the benefits and key features of randomized neural
networks — fast training and prediction with minimum technical knowledge given that the

model is fully described through linear algebra and matrix operations.
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6.4|Results

Results from experiment A are condensed in Table 6.1 to Table 6.4 for both types
of deep random neural network and regression uncertainty models. From a technical and
computational perspective, fully randomized and supervised autoencoding architectures
provide very similar age estimates. However, were detected some key differences as reflected
in the metrics presented. Mean absolute error (MAE) presented a relative absolute
difference of approximately 2% between models using a fully randomized approach and
autoencoding strategy. A similar pattern was observed for validity metric, P(a), and
efficiency as measured by the median predictive intervals width (PIW) for both uncertainty
estimation models — using a gaussian or conformal prediction approach. Neural network
models presented a relative absolute difference of approximately 52% on the estimation
bias metric, [;'e. Supervised autoencoding models (Table 6.3 and Table 6.4) presented a
two-fold reduction in bias compared fully randomized models, which despite by a marginal
amount produced more accurate models (Table 6.1 and Table 6.2). Regression uncertainty
models differ marginally, 1.6%, regarding the approach used. Both approaches produced
valid models converging to expected nominal coverage, 0.95, with a global average of 0.947.

From an anthropological perspective it was observed that models based solely on
the cranial sutures exhibited the worst performance among all models produced with a
MAE of 15.754 (13.586-18.386) and a median predictive interval width (PIW) of 67.032
years, which renders the cranial sutures an inaccurate and inefficient set of traits. Modelling
based on other specific anatomical regions resulted in DRNN models with an average
median MAE of 9.062 (7.583-11.560), focusing solely on this metric it is reasonable to state
that on its own different anatomical regions perform similarly in age estimation based on
the results presented. The same can be said for the metrics of bias, validity, and efficiency.
Predictive interval width is perhaps the most distinctive metric for practical applications,
anatomical regions with strong developmental signs such as the clavicle or the pubis tend

to provide narrower predictive intervals for younger individuals.

112



6 | Analysis of machine learning models for age-at-death estimation

Combining traits from different regions provided an improvement over models built
on specific anatomic regions, reducing both mean absolute error and bias (Figure 6.1).
Using 16 traits from standard age-related traits—clavicle, first rib, pubic symphysis,
sacroiliac complex (auricular surfaces, S1 body surface, and S1-S2 fusion—resulted in a
MAE of 6 (5.561-7.781, 95% CI) and decreased the prediction bias considerably when
compared to any model built on the same anatomical regions independently, and a PIW
of 33.650 (11.267-41.087, PIW 95% CI). A model based only on degenerative traits (m =
39) resulted in a MAE of 6.938 (6.010-7.896, 95% CI) and median PIW of 33.012 (26.827—
35.122, PIW 95% CI).

From the results presented multifactorial age estimation models clearly provide
improved efficiency as reflected in narrower predictive intervals. From Figure 6.2 to Figure
6.4 it can be also observed that multifactorial models provide accurate and efficient
estimates across the entire adult lifespan, solving the problem of open-end and unspecific
age-at-death estimates for the elderly.

Figure 6.2 illustrates the importance of non-standard traits to predict accurately
advanced age-at-death. Based solely on degenerative traits of the vertebrae, limb joint and
musculoskeletal attachments sites we can obtain estimates for the elderly that are
comparable to more classical traits (Figure 6.3) or full set models (Figure 6.4). The
downside of relying solely on this type on indicators for age-at-death estimation is the
wider intervals for young adults with no degenerative traits (95% PI ~18 to 46 years vs.
~18 to 32 if traits with sharp developmental stages are present).

The best performing models in experiment A were those built on the full feature
set (m = 64), with a mean absolute error of 5.877 (4.970-6.728, 95% CI), and PIW of
29.231 (12.619-37.876, PIW 95% CI) years. The prediction bias for this model was 0.091
(0.002-0.170, 95% CI), which represents a two-to-six-fold reduction in the prediction bias

compared to other models built on specific anatomical regions individually.
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Prediction Residuals & Bias Analysis
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Figure 6.1 Bias analysis of full multi-trait model. Deep supervised autoencoder model.

Predictive Interval Width Analysis (Efficiency)

Predictive Interval Width: 32.561, 95% CI: 27.21 - 33.84
Coverage Probability: 0.96

100 4
904
801
70+

60

Known

504

404

30+

204

Index

Figure 6.2 Predictive efficiency of degenerative traits of the axial and appendicular skeleton, a = 0.05.
Fully randomized model with pooled uncertainty models.
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Predictive Interval Width Analysis (Efficiency)
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Figure 6.3 Predictive efficiency of standard age-related traits (Clavicle, 1° rib, pubic symphysis, sacroiliac
joint, S1S2 fusion and acetabulum), « = 0.05. Fully randomized model with pooled uncertainty models.

Predictive Interval Width Analysis (Efficiency)

Predictive Interval Width: 29.54, 95% Cl: 13.8 - 36.17
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Figure 6.4 Predictive efficiency of full multi-trait model, o = 0.05. Fully randomized model with pooled
uncertainty models.
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Table 6.1 Monte Carlo cross-validation for models built on pre-specified skeletal traits sets. Ensembled

deep randomized neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.300 0.656 0.950 68.144 51.699 69.759
(m=09) 95% CI 13.586 0.590 0.900 66.054 46.361 68.312
17.206 0.732 0.990 69.741 55.776 70.963
Axial Median 8.185 0.198 0.960 38.754 33.732 40.842
(m = 16) 95% Cl1 7.365 0.137 0.920 37.102 32.272 39.215
9.139 0.260 0.990 40.091 35.029 42.191
Appendicular Median 7.583 0.167 0.960 37.378 29.109 39.541
(m = 16) 95% CI 6.678 0.103 0.910 35.412 27.613 38.014
8.523 0.231 0.990 39.079 30.399 41.061
Clavicle Median 8.949 0.244 0.960 49.234 17.354 51.610
(m =2) 95% Cl1 7.798 0.169 0.920 39.064 15.981 49.962
10.192 0.307 0.990 52.688 18.617 53.098
First rib Median 9.500 0.277 0.950 48.936 24.334 49.637
(m = 2) 95% Cl1 8.138 0.204 0.900 46.879 22.499 47.687
10.831 0.351 0.990 50.903 26.078 51.533
Pubic symphysis Median 10.897 0.370 0.940 51.210 26.905 56.954
(m = 3) 95% Cl1 9.371 0.280 0.870 48.688 24.520 54.799
12.542 0.459 0.980 55.558 29.058 58.802
Sacroiliac complex Median 8.523 0.223 0.950 44.668 20.378 47.969
(m = 4) 95% Cl1 7.380 0.145 0.890 39.350 18.596  46.017
9.742 0.288 0.990 47.547 21.915 49.720
Acetabulum Median 8.886 0.229 0.970 42.978 31.727 45.742
(m = 3) 95% Cl1 7.758 0.162 0.920 41.201 20.807  43.891
10.006 0.287 1.000 44.509 33.240 47.304
Degenerative traits Median 6.962 0.147 0.970 33.732 28.882 35.122
(m = 39) 95% Cl1 6.084 0.085 0.920 32.460 27.570 33.488
7.814 0.200 1.000 34.935 30.019 36.656
Standard Median 6.609 0.147 0.950 34.245 12.927 41.087
(m = 16) 95% CI 5.561 0.087 0.890 29.701 11.833 39.097
7.598 0.202 0.990 37.857 14.169 42.833
Full Median 5.925 0.117 0.950 30.010 15.631 36.081
(m = 64) 95% Cl1 5.101 0.060 0.900 26.817 14.464 34.612
6.728 0.170 0.990 33.191 16.811 37.515
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Table 6.2 Monte Carlo cross-validation for models built on pre-specified skeletal traits sets. Ensembled

deep randomized neural network with conformal prediction regression uncertainty model.

Conformal prediction

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.300 0.656 0.950 68.900 49.040 71.236
(m = 9) 95% CI 13.586 0.590 0.890 66.060 43.889 68.577
17.206 0.732 0.990 70.998 53.274 73.619
Axial Median 8.185 0.198 0.950 37.194 34.066 38.449
(m = 16) 95% CI 7.365 0.137 0.900 35.626 32.516 36.681
9.139 0.260 0.990 39.218 35.256 41.154
Appendicular Median 7.583 0.167 0.950 35.784 29.844 39.016
(m = 16) 95% CI 6.678 0.103 0.890 33.497 28.391 36.832
8.523 0.231 0.990 37.873 31.269 40.998
Clavicle Median 8.949 0.244 0.950 45.026 16.586 50.522
(m = 2) 95% CI 7.798 0.169 0.890 34.735 15.362 47.707
10.192 0.307 0.990 52.211 17.929 52.799
First rib Median 9.500 0.277 0.950 48.682 24.403 52.042
(m = 2) 95% CI 8.138 0.204 0.890 45.774 22.379 49.911
10.831 0.351 0.990 50.630 26.340 53.750
Pubic symphysis Median 10.897 0.370 0.950 54.089 27.605 62.231
(m = 3) 95% CI 9.371 0.280 0.890 51.271 25.070 59.326
12.542 0.459 0.990 58.940 29.789 64.487
Sacroiliac complex Median 8.523 0.223 0.950 44.205 20.725 49.184
(m =4) 95% CI 7.380 0.145 0.890 38.758 18.815 47.366
9.742 0.288 0.990 47.599 22.472 52.106
Acetabulum Median 8.886 0.229 0.950 40.346 31.292 44.148
(m = 3) 95% CI 7.758 0.162 0.890 37.814 29.581 41.740
10.006 0.287 0.990 43.004 32.866 46.194
Degenerative traits Median 6.962 0.147 0.950 32.091 29.553 33.650
(m = 39) 95% CI 6.084 0.085 0.890 30.592 28.172 31.642
7.814 0.200 0.990 33.607 30.783 35.527
Standard Median 6.609 0.147 0.950 33.992 13.391 43.516
(m = 16) 95% CI 5.561 0.087 0.890 29.790 12.323 41.647
7.598 0.202 0.990 37.381 14.785 45.398
Full Median 5.925 0.117 0.950 29.441 16.425 37.510
(m = 64) 95% CI 5.101 0.060 0.900 25.871 15.199 35.523
6.728 0.170 0.990 32.573 17.685 39.171
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Table 6.3 Monte Carlo cross-validation for models built on pre-specified skeletal traits sets. Deep

supervised autoencoder neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.981 0.449 0.920 63.107 42.025 69.148
(m = 9) 95% CI 13.796 0.311 0.860 60.160 38.291 67.163
18.360 0.598 0.970 65.501 45.677 70.694
Axial Median 8.207 0.111 0.940 36.809 31.336 39.567
(m = 16) 95% CI 7.179 0.033 0.880 34.051 29.891 37.953
9.326 0.177 0.980 38.675 32.600 41.163
Appendicular Median 7.736 0.100 0.950 36.191 27.618 38.889
(m = 16) 95% CI 6.825 0.025 0.900 34.533 26.255 36.919
8.796 0.167 0.990 38.052 28.886 40.703
Clavicle Median 9.231 0.149 0.950 48.670 16.238 49.510
(m =2) 95% CI 8.011 0.065 0.910 39.946 15.008 48.134
10.511 0.235 0.990 50.708 17.482 50.995
First rib Median 9.635 0.165 0.950 46.990 21.762 49.399
(m =2) 95% CI 8.412 0.075 0.900 45.252 20.308 47.552
11.121 0.246 0.990 48.500 23.203 51.141
Pubic symphysis Median 11.560 0.227 0.940 53.625 27.090 56.460
(m = 3) 95% CI 10.111 0.109 0.880 50.240 24.910 54.635
13.193 0.349 0.980 55.817 29.210 58.184
Sacroiliac complex Median 8.575 0.132 0.930 43.663 17.616 46.552
(m =4) 95% CI 7.379 0.052 0.860 38.757 16.069 44.800
9.875 0.208 0.980 45.756 19.101 48.290
Acetabulum Median 8.845 0.134 0.950 41.166 28.798 45.032
(m = 3) 95% CI 7.660 0.056 0.900 39.360 27.090 43.341
10.053 0.199 0.990 42.778 30.236 46.576
Degenerative traits Median 6.915 0.080 0.940 32.293 26.827 33.890
(m = 39) 95% CI 6.010 0.004 0.880 30.923 25.468 32.117
7.896 0.143 0.980 33.583 28.094 35.604
Standard Median 6.650 0.085 0.930 33.054 11.267 39.419
(m = 16) 95% CI 5.739 0.021 0.870 29.418 10.224 37.585
7.781 0.147 0.980 36.742 12.593 41.154
Full Median 5.829 0.064 0.930 28.452 12.619 34.482
(m = 64) 95% CI 4.970 0.002 0.860 25.387 11.187 32.688
6.686 0.119 0.970 31.534 14.876 36.273
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Table 6.4 Monte Carlo cross-validation for models built on pre-specified skeletal traits sets. Deep

supervised autoencoder neural network with conformal prediction regression uncertainty model.

Conformal prediction

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.981 0.449 0.940 67.976 40.592 79.931
(m=09) 95% CI 13.796 0.311 0.870 63.536 36.442 75.268
18.360 0.598 0.980 71.779 44.579 84.595
Axial Median 8.207 0.111 0.940 38.285 32.327 40.240
(m = 16) 95% Cl1 7.179 0.033 0.880 35.451 30.721 37.626
9.326 0.177 0.980 40.496 33.760 42.941
Appendicular Median 7.736 0.100 0.940 36.135 28.168 39.193
(m = 16) 95% Cl1 6.825 0.025 0.880 33.701 26.688 36.449
8.796 0.167 0.990 38.620 29.544 41.816
Clavicle Median 9.231 0.149 0.950 46.688 14.427 51.192
(m =2) 95% Cl1 8.011 0.065 0.890 37.260 13.191 48.577
10.511 0.235 0.990 52.229 15.999 53.127
First rib Median 9.635 0.165 0.950 49.290 20.866 50.282
(m = 2) 95% Cl1 8.412 0.075 0.890 46.794 19.167 47.675
11.121 0.246 0.990 50.233 22,538 52.177
Pubic symphysis Median 11.560 0.227 0.950 55.897 24.783 59.965
(m = 3) 95% Cl1 10.111 0.109 0.890 52.835 22.821 57.551
13.193 0.349 0.990 58.394 26.674 62.771
Sacroiliac complex Median 8.575 0.132 0.940 46.654 18.001 51.591
(m = 4) 95% Cl1 7.379 0.052 0.880 41.134 16.262 49.178
9.875 0.208 0.990 48.883 19.738 53.900
Acetabulum Median 8.845 0.134 0.950 42.164 29.244 46.260
(m = 3) 95% Cl1 7.660 0.056 0.890 40.335 27.221 43.929
10.053 0.199 0.990 44.378 30.680 49.493
Degenerative traits Median 6.915 0.080 0.940 32.838 27.965 34.491
(m = 39) 95% Cl1 6.010 0.004 0.880 30.900 26.413  32.174
7.896 0.143 0.980 34.478 29.253 36.728
Standard Median 6.650 0.085 0.940 33.886 11.352 42.638
(m = 16) 95% Cl1 5.739 0.021 0.880 29.974 10.246 40.344
7.781 0.147 0.980 37.529 13.042 44.742
Full Median 5.829 0.064 0.940 29.906 13.305 37.856
(m = 64) 95% ClI 4.970 0.002 0.880 26.439 11.633 35.690
6.686 0.119 0.990 33.383 15.939 40.161
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Table 6.5 Monte Carlo cross-validation for models built on different fractions of available skeletal traits.

Ensembled deep randomized neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B, P(a) PIW PIW 95%CI

90% Median 5.964 0.120 0.950 30.354 15.851 36.215
(m~57) 95% Cl 5.136 0.062 0.900 27.067 14.466 34.554
6.773 0.169 0.990 33.422 18.081 37.705

80% Median 6.026 0.121 0.950 30.498 16.004 36.261
(m=51) 95% Cl1 5.211 0.061 0.900 27.183 14.213 34.498
6.851 0.172 0.990 33.584 18.492 37.902

70% Median 6.072 0.125 0.950 30.805 16.206 36.454
(m =~ 44) 95% Cl1 5.152 0.062 0.900 27.528 14.001 34.600
6.924 0.180 0.990 34.004 19.666 38.405

60% Median 6.131 0.125 0.950 30.964 16.352 36.649
(m ~ 38) 95% Cl 5.316 0.065 0.900 27.513 13.893 34.672
7.049 0.179 0.990 34.320 20.532 38.692

50% Median 6.237 0.129 0.950 31.479 16.717  36.969
(m ~ 32) 95% Cl1 5.293 0.064 0.900 27.820 13.757  34.930
7.180 0.179 0.990 34.854 22.119 39.250

40% Median 6.360 0.134 0.950 32.125 17.165 37.429
(m ~ 25) 95% CI 5.441 0.074 0.900 28.500 13.910 35.075
7.380 0.193 0.990 35.636 23.292  40.166

30% Median 6.570 0.140 0.950 33.163 17.933 38.137
(m ~ 19) 95% CI 5.565 0.075 0.900 29.036 13.905 35.393
7.651 0.201 0.990 36.916 25.407  40.861

20% Median 6.951 0.153 0.950 35.263 19.946 39.694
(m ~ 12) 95% Cl1 5.857 0.086 0.900 31.082 14.074 36.427
8.139 0.218 0.990 39.625 28.892  43.619

10% Median 8.026 0.196 0.950 39.618 26.914  43.025
(m =~ 6) 95% Cl1 6.592 0.119 0.900 34.681 15.495 38.368
9.683 0.276 0.990 46.043 34.276  49.479
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Table 6.6 Monte Carlo cross-validation for models built on different fractions of available skeletal traits.

Ensembled deep randomized neural network with conformal prediction regression uncertainty model.

Conformal Prediction

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B, P(a) PIW PIW 95%CI

90% Median 5.964 0.120 0.950 29.623 16.606 37.477
(m~57) 95% Cl 5.136 0.062 0.890 26.347 15.164 35.418
6.773 0.169 0.990 32.985 18.853 39.732

80% Median 6.026 0.121 0.950 29.937 16.747  37.579
(m=~51) 95% Cl1 5.211 0.061 0.890 26.468 14.909 35.469
6.851 0.172 0.990 32.810 19.445 39.720

70% Median 6.072 0.125 0.950 30.154 16.960 37.725
(m ~ 44) 95% CI 5.152 0.062 0.890 26.566 14.751 35.429
6.924 0.180 0.990 33.499 20.572  40.306

60% Median 6.131 0.125 0.950 30371 17.133  37.925
(m =~ 38) 95% CI 5.316 0.065 0.890 26.661 14.577 35.524
7.049 0.179 0.990 33.808 21.444  40.635

50% Median 6.237 0.129 0.950 30.773 17.468 38.242
(m ~ 32) 95% Cl1 5.293 0.064 0.890 27.109 14.265 35.521
7.180 0.179 0.990 34.451 22.972  41.432

40% Median 6.360 0.134 0.950 31.493 17.827  38.793
(m =~ 25) 95% CI 5.441 0.074 0.890 27.694 14.436 35.634
7.380 0.193 0.990 35.170 24.064  42.041

30% Median 6.570 0.140 0.950 32.382 18.636 39.386
(m ~ 19) 95% CI 5.565 0.075 0.890 28.479 14.338 35.993
7.651 0.201 0.990 36.209 26.009  43.067

20% Median 6.951 0.153 0.950 34.219 20.427 40.971
(m ~ 12) 95% Cl1 5.857 0.086 0.890 30.021 14.297  35.884
8.139 0.218 0.990 38.578 29.418  45.524

10% Median 8.026 0.196 0.950 38.343 27.355  43.430
(m =~ 6) 95% CI 6.592 0.119 0.890 33.574 15.518 37.713
9.683 0.276 0.990 45.094 34.888 50.867

121



6 | Analysis of machine learning models for age-at-death estimation

Table 6.7 Monte Carlo cross-validation for models built on different fractions of available skeletal traits.

Deep supervised autoencoder neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B, P(a) PIW PIW 95%CI

90% Median 5.906 0.066 0.930 28.737  12.878  34.642
(m=57) 95% CI 5.056 0.004 0.870 25.455 11258  32.922
6.768 0.124 0.980 31923 15534 36.385

80% Median 5.921 0.065 0.930 28.961  12.983  34.837
(m=51) 95% CI 5.032 0.006 0.870 25.825 11200  32.875
6.832 0.122 0.980 32.251  16.048  36.798

70% Median 5.981 0.065 0.930 20199 13.447  34.988
(m ~ 44) 95% CI 5.105 0.002 0.860 26.006  11.196  32.891
6.967 0.126 0.980 32,502 17.103  37.101

60% Median 6.059 0.066 0.930 20.610  13.708  35.196
(m ~ 38) 95% CI 5.243 0.008 0.870 26.362  11.358  33.165
6.998 0.126 0.980 32.668  18.260  37.237

50% Median 6.153 0.070 0.930 30.236  14.066  35.555
(m ~ 32) 95% CI 5.201 0.009 0.870 26.923 11559  33.371
7.227 0.129 0.980 33.367  19.050  37.872

40% Median 6.348 0.074 0.930 30.980  14.823  36.115
(m ~ 25) 95% CI 5.359 0.009 0.870 27.539  11.697  33.690
7.380 0.131 0.980 33.968  21.547  38.448

30% Median 6.550 0.077 0.930 31.857  15.488  36.783
(m ~ 19) 95% CI 5.475 0.018 0.870 28.123 11953  34.248
7.691 0.139 0.980 35.143 23198  39.735

20% Median 6.970 0.086 0.930 33.950  17.086  38.311
(m ~ 12) 95% CI 5.882 0.012 0.880 20974 12.464  35.193
8.247 0.159 0.980 38.045  27.193  42.047

10% Median 8.041 0.113 0.940 38.148  23.368  41.760
(m = 6) 95% CI 6.626 0.032 0.880 33.920  13.528  37.787
9.781 0.188 0.980 44.379 31720 47.693
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Table 6.8 Monte Carlo cross-validation for models built on different fractions of available skeletal traits.

Deep supervised autoencoder neural network with conformal prediction regression uncertainty model.

Conformal Prediction

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B. P(a) PIW PIW 95%CI

90% Median 5.906 0.066 0.940 30.174 13.571 38.034
(m~57) 95% CI 5.056 0.004 0.880 26.674 11.640 35.529
6.768 0.124 0.990 33.891 16.613 40.472

80% Median 5.921 0.065 0.940 30.366 13.691 38.148
(m~51) 95% CI 5.032 0.006 0.890 26.965 11.501 35.706
6.832 0.122 0.990 34.088 17.057 40.904

70% Median 5.981 0.065 0.940 30.565 14.098 38.282
(m ~ 44) 95% CI 5.105 0.002 0.880 26.896 11.609 35.827
6.967 0.126 0.980 34.089 18.122 41.023

60% Median 6.059 0.066 0.940 30.901 14.464 38.497
(m ~ 38) 95% CI 5.243 0.008 0.880 27.273 11.612 35.661
6.998 0.126 0.980 34.706 19.411 41.373

50% Median 6.153 0.070 0.940 31.484 14.761 38.751
(m ~ 32) 95% CI 5.201 0.009 0.880 27.827 11.825 35.839
7.227 0.129 0.990 35.122 20.019 42.046

40% Median 6.348 0.074 0.940 32.184 15.465 39.239
(m ~ 25) 95% CI 5.359 0.009 0.880 28.529 12.048 36.218
7.380 0.131 0.990 35.945 22.740 42.593

30% Median 6.550 0.077 0.940 33.077 16.225 39.944
(m ~ 19) 95% CI 5.475 0.018 0.880 28.895 12.083 36.288
7.691 0.139 0.980 36.873 24.086 43.802

20% Median 6.970 0.086 0.940 35.072 17.633 41.193
(m ~ 12) 95% CI 5.882 0.012 0.890 30.684 12.528 36.698
8.247 0.159 0.980 39.305 28.050 45.879

10% Median 8.041 0.113 0.940 39.414 24.202 44.367
(m ~ 6) 95% CI 6.626 0.032 0.890 33.942 13.187 38.642
9.781 0.188 0.990 46.173 32.477 51.486
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Experiment B (Table 6.5 to Table 6.8) exhibited from a technical perspective a
very similar results with relative absolute differences across model parameterizations being
minimal for the median values of the metrics computed. From an anthropological
perspective the striking result of this experiment is that comparable performances to the
full multi-trait model (m=64) were obtained using different proportions of traits selected
at random. Virtually every combination of random traits resulted in models with
comparable or better performance than the models built of specific anatomic regions as
traditionally encounter in macroscopic age estimation methods. This finding supports the
value of multifactorial age estimation over methods the focus solely on a single anatomical
structure.

An important remark to make regarding the results based of the two computational
experiments is that the analytical leave-one out cross-validation (LOOCYV), implicitly
performed during model optimization, showed little to no disparity with the results
obtained during the repeats of the Monte Carlo cross-validation procedure (B = 1000
repeats) where 20% of the data was used as a proper test set. Detailed tabular results are

available in appendix C.

Prediction Accuracy Analysis

MedAE: 4.47; MAE: 5.87; RMSE: 7.55
R Squared: 0.89
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Figure 6.5 Known vs. predicted age-at-death using a full set of traits (LOOCV, n = 500).
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The maximal potential accuracy of this approach can be visualized in Figure 6.5,
where a scatter plot of known vs. predicted age-at-death is depicted. From this figure, one
can infer that the predictions obtained using this approach maintain a similar level of
error—dispersion around the identity line (dashed red line)—across the entire adult age
span, and slightly more accurate for individuals under 40 years. For individuals over 90
years old at death, there is an observable under-estimation. It was also possible to visualize,
Figure 6.1, that a deep RANN model using multiple traits produces minimally biased
estimates. Multifactorial models also show a systematical reduction in prediction bias when
compared to models based only on a specific anatomical structure.

Regarding the validity of the models trained in the computational experiments,
results show that the predictive intervals contained the known age-at-death without

significant deviation from the nominal level of uncertainty (median of P( ) ~ 0.95).

6.5|Discussion

The current study provides strong support for multifactorial or multi-trait analysis
of the skeleton as a way of obtaining accurate and efficient age estimates across the entire
span of adulthood. The main goal of the computational experiment A was to establish a
baseline of performance of multifactorial age-at-death estimation compared to more
traditional modeling approaches based on specific anatomical blocks or regions. Results
from experiment A suggest, that using each skeletal indicator or anatomical region
separately provides limited improvement over existing methods.

One striking remark from this experiment was the performance of the models solely
based on the axial (vertebrae) and appendicular (limbs) skeleton. In previous studies, these
traits have been considered to be only useful for providing a general estimate or limited in
value for age prediction [141, 142]; nonetheless, our results are consistent with those of
more recent publications that assess their predictive utility and urge reconsideration of

these traits as valid age-related traits [144, 145]. For instance, if these traits all present a
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Stage 0, one can infer without any computation that the age-at-death of the deceased is
between approximately 18-46 years. Results also indicate that the inclusion of these traits
is pivotal to solve the problem of open-ended age intervals and poor age estimation for the
elderly. On their own, degenerative axial and appendicular traits allow estimation of the
age-at-death of the elderly with an improved accuracy and efficiency compared to more
standard traits such as the pelvic joints (i.e., pubic symphysis, acetabulum, iliac auricular
surface). Anthropologists and bioarcheologists have made hazy and sometimes arbitrary
distinctions between normal aging, disease, and activity based on their education,
experience, and research objectives. Most studies on joint and musculoskeletal degenerative
traits have focused on the premise of its relationship with activity patterns or disease. Age-
at-death is one of the most significant, or even the only factor with statistical significance,
in the expression of such skeletal traits, according to recent and systematic studies
conducted on identified skeletal collections [143-145, 178-182]. The results from this thesis
substantiate their importance in age estimation of the elderly.

Experiment B aimed to assess the performance of neural models for age-at-death
estimation in a more realistic setting, where the expert may not be able to use the pre-
specified models or the full set of traits due to the availability of skeletal elements or the
multitude of factors that make it impossible to score all traits defined in this macroscopic
technique. This experiment also provides, both directly and indirectly, answers to several
questions that may arise regarding the approach and technique used, and proposed in this

work from a more pragmatical and casework view:

o Does the skeleton need to be complete to reap the mazimum benefits of this
protocol?
o Which combination of traits works best or is necessary?

e How practical is the method?

The results demonstrated that the accuracy of the full-set model (m = 64) can be

maintained to large degree using smaller random combinations of traits, which are dictated
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on a case-by-case basis in a forensic setting. Once again, this can be explained by the
capacity of the neural models to extract and combine information from the skeletal traits
in an optimal way in terms of prediction. It is important to note here, that models based
on randomized proportions of traits presented performance metrics superior to most models
based on specific anatomical regions, reinforcing the hypothesis that the multifactorial or
multi-trait models are crucial for improving the state-of-art in forensic skeletal age
estimation.

Finding an optimal or minimum number of traits is, from a combinatorial and
practical point of view, an intractable problem, for which a solution can only be
approximated with such a large number of traits (m = 64). However, such a solution would
be computational wasteful and of little pragmatic value because, as in the situation of the
full trait set, the optimal or minimum trait set can result in a non-applicable model due to
the availability of skeletal elements during casework. This was the main reason why it was
opted for a randomized evaluation of smaller traits sets.

From a practitioner perspective, correlation analysis (Chapter 4) and the
performance of the developed models clearly suggest that there is room for improvement
in our approach regarding the issue of the traits to be used. For instance, results suggest
that there is little to be gained from including the cranial sutures, which, from a predictive
modeling standpoint, resulted in the worst model on its own using our scoring protocol.
Similar conclusions were reached by Jooste et al. [154], who also investigated the cranial
sutures in the context of a multifactorial approach. Despite its limited value for age
estimation, according to Teixeira and Cunha [270], and Lourengo and Cunha[271], cranial
sutures and other cranial traits can act as secondary age indicators never to be used alone.

To maximize the potential of the framework proposed, it is important to bear in
mind that domain and expert knowledge is of utmost importance; this can also be said of
any other machine learning or computationally heavy approach. The practical aspect of
this method can be improved if applied with the rationale of the well-known two-step
procedure proposed by Baccino et al. [159]. This procedure and heuristic for age-at-death

estimation suggests age indicators should be combined logically or hierarchically rather
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than by brute force (i.e., averaging). This translates into the following: if several traits
with sharp metamorphic or developmental stages exhibit Stage 0—i.e., clavicle sternal end,
S1-S2 fusion, pubic symphysis components—a neural model is trained using those traits
and the other traits are ignored. The same rationale can be applied if the traits that encode
a strong degenerative signal, such as the vertebrae and limb traits, are scored with their
maximum stage (Stages 1 or 2). In this case, it was demonstrated that age estimation can
be accurate and efficient when relying solely on these traits. As a final remark and
suggestion to improve age estimation with this method, but also with any other method
that employs a multifactorial or multi-trait approach, rather than focusing on an optimal
or minimal number of traits to use, one should focus on the representational power of the
traits analyzed and, whenever possible, use traits that represent both metamorphic and
degenerative aspects of the skeletal development and senescence, as argued by Winburn
[125].

The present work provides a solution to the problem of multifactorial age
estimation based on the macroscopic analysis of the skeleton. A multifactorial perspective
is systematically noted as being the most accurate way to achieve age estimation in adults,
but is obtained through a plethora of procedures and heuristics that are often subjective
and lack a clear statistical or computational rationale [41, 43].

As noted by Ritz-Timme et al. [43], a comparison of different methods with regard
to their performance based on published data is an exercise that can only be undertaken
with severe limitations and caution. The existing methods have been developed on samples
of differing sizes, unbalanced age distributions, and different population backgrounds.
There is no standardized array of statistical parameters used to assess an age estimation
method, and different statistical procedures have been applied. In many cases, there is a
lack of detail regarding the procedures used, and often only an incomplete analysis
performance is pursued (i.e., focusing only on MAE and point estimate accuracy).

These limitations are exacerbated by the fact that no other study published in the
literature have provided objective performance analysis of adult skeletal age estimation

using such a vast and diverse array of macroscopic traits based on a single reference dataset,
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despite that Milner and collaborators [155, 272] are working on similar approach to the one
here presented. Nonetheless, an analysis of the most recent and comprehensive validation
studies clearly demonstrates that the multifactorial approach, offers improved accuracy
(MAE < 8 years) in relation to other skeletal age estimation methods [154, 273-275].
Independent validation of the method and software tools proposed here on samples from
different temporal and biogeographic origins are of utmost importance to ascertain the
broader impact and significance in archaeology, forensic anthropology, and medicine.

Artificial intelligence, statistical, and machine learning approaches are now
ubiquitous in forensic and biological sciences. Several cases in the literature illustrate the
usefulness of such approaches in adult macroscopic age-at-death estimation [31, 51-53, 61,
62, 81]. Although these approaches usually allow for flexible and non-parametric modeling
with improved predictive performance, it also results in more opaque or black-box models
from a non-expert perspective. These approaches also require proper validation and model
selection techniques to avoid overfitting [276]. In this study, was used a resampling strategy
based on Monte Carlo cross-validation for fair model assessment. Analytical and
computationally efficient leave-one-out cross-validation strategy was used to set the
regularization parameter of the networks developed in experiments A and B.

Results support that a regression-based framework produces accurate age
estimation in adult individuals. Prediction intervals can be estimated with ease and
computational efficiency. Probabilistic approaches [54, 56, 58, 62, 218] could have been
used for this purpose but they encapsulate a different philosophy to data analysis and are
more restrictive in regard to assumptions, parameterization, and computational efficiency
compared to the ANN approach pursued here. Recent contributions suggest that Bayesian
approaches do not radically improve age-at-death estimation or outperform regression-
based approaches [204, 277].

The predictive modeling or function approximation approach pursued in this work
is at the same time, its strongest point and its key limitation. Although neural networks
as function approximation machines allowed to obtain individual accurate age estimates,

a predictive modeling strategy — regardless of the underlying algorithm — can only
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demonstrate that there is an efficient mapping in the form of ¥ = f(X). Such a strategy
does not explain the underlying biology of the skeletal traits. Fully understanding the
biology of the skeletal traits used in age estimation is the greatest challenge of this problem,
and perhaps the solution for more refined age estimation based solely on the skeletal

morphology.
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As previously demonstrated a predictive modelling strategy supported by a
regression-based framework using deep randomized neural networks and uncertainty
modelling techniques is an effective method of obtaining accurate, unbiased, valid, and
efficient age-at-death estimation models. The current work provides a strong and favorable
argument for multifactorial age estimation over traditional methods that target specific
anatomic structures. However, fields such as forensic anthropology demand that the results
of research demonstrate usefulness and practical application. The main goal of research
should be to implement and operationalize new knowledge in the form of guidelines,
standard operating procedures, or new tools and methods. The purpose of this chapter is
to provide a general introduction to the software known as DRNNAGE (Deep Random
Neural Networks for Adult Skeletal Age-at-Death Estimation) [198]. This novel piece of
software implements and integrates in a straightforward and user-friendly graphical user
interface, the capability to estimate age-at-death from adult skeletal remains on a case-by-

case basis using the described macroscopic procedures and computational models.

7.1|License

DRNNAGE and its underlying components (i.e., additional software packages) are
released as free and open-source software under the version 3 or later of the GNU General
Public License (GPLv3).

The adoption of open-source and free software philosophy is a two-fold by-product
of both technoscientific and ethical considerations. Some organizations and research groups
charge fees for simple computations and/or routines that may be performed on extensible,
open-source platforms, hence rendering the expense unnecessary in the context of biological

profile estimation. As technology progresses and free open-source software become more
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popular and successful, they may displace commercial closed-source tools and become more
prevalent [219]. It is important to note that commercialized closed-source technologies may
be unreliable, offering little advantage over open-source equivalents despite their high cost.
While an open-source philosophy does not preclude faults, it can provide a platform and
framework for rapid issue resolution in the sense of community engagement and scientific
progress.

In forensic anthropology, a lack of adequate resources can hinder or make software
testing incomplete. If the code is faulty, insufficient testing may damage the utility and
reputation of a tool. In the ethos of science, noncommercial open-source software allows
unrestricted access to the scientific community while avoiding any ethical gray areas

regarding financial benefit from the analysis of decedents and/or crime victims [278].

7.2|Availability

DRNNAGE is primarily intended to be used and accessed as a web application at
https://osteomics.com/DRNNAGE/. It integrates the toolbox provided by
Osteomics (https://osteomics.com) a web-based platform that make freely available
decision support systems for biological and forensic anthropology. The online applications
include regression and classification-based computational solutions for sex, age-at-death,
biogeographic ancestry, and body parameters (i.e., stature and skeletal mass) estimation.
The applications have a user-friendly interface, detailed documentation (redirecting to
relevant literature), data exploration (including graphical analysis), and regression and
classification outputs. In addition, some of the available web applications provide a set of
features with pedagogical significance in the fields of human skeletal anatomy and graphical
and statistical analysis [279].

Source code of the software and its constituting components are under version
control using the Git system [280] and the GitHub service [281] and archiving using the

open science platform Zenodo [220]. Table 7.1 lists the repositories hyperlinks for the source
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code of the packages created and integrated in the DRNNAGE software.

Table 7.1 Repositories of source code for software packages developed during this thesis.

Package Title Repository

D d 1 networks f dult skeletal
DRNNAGE cep random fieurat networks for adult skeleta https://github.com/dsnavega/DRNNAGE

age-at-death estimation

An R/C++ Implementation of Random Weights

rwnnet Neural Networks https://github.com/dsnavega/rwnnet
rumr Regression Uncertainty Modeler in R https://github.com/dsnavega/rumr
rmar Regression Model Assessment in R https://github.com/dsnavega/rmar
lsmr Linear Surrogate Model for Regression in R https://github.com/dsnavega/lsmr

7.3|Development

DRNNAGE was designed with web deployment as its primary point of access.
Nonetheless, it can also be deployed offline as a package for the R programming language
and statistical computing environment [282]. R is a high-level programming language and
environment for statistical computing and data visualization created by John Chambers
and colleagues at Bell Laboratories (previously AT&T, now Lucent Technologies). R is
highly extendable and supports a wide range of statistical (linear and nonlinear modeling,
traditional statistical tests, time-series analysis, classification, clustering, etc.), machine
learning, and data visualization techniques. R is distributed as an open-source free software
under the provisions of the Free Software Foundation's GNU General Public License. It
compiles and operates on a wide range of UNIX and comparable systems (including
FreeBSD and Linux), as well as Windows and MacOS. Higher-level languages allow for
faster prototyping and tool development. R can integrate with C++, C, and Python to
improve processing speed and automate tasks. It also connects with web technologies,

allowing for the creation and deployment of data and computationally intensive online
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apps and dashboards [282]. R is a prominent environment for statistical and morphometric
analysis in forensic and biological anthropology, as well as software development and
analytical tools used by practitioners in these fields. R and its ecosystem are the primary
technologies used by 56% of forensic anthropological software tools [278].

DRNNAGE interface and web deployment was built and made possible due to the
shiny package [283] and shiny webserver [284]. shiny is a R package that makes it simple
to create interactive web applications directly in R. Developed applications can be hosted
on a website or embed in R Markdown documents. shiny applications can also be extended
with CSS themes, HTML widgets, and JavaScript actions. shiny server provides a platform
for hosting multiple shiny applications on a single server, with each application having its
own URL and port. It has support to non-WebSocket enabled browsers such as Internet
Explorer 10 and is licensed under AGPLv3. Figure 7.1 shows the landing page for the

DRNNAGE software as rendered in Microsoft Edge web browser.

n d‘J?’DRNNwE x{+ - X

< C m (& hitpsy//osteomics.com/DRNNAGE/ A 15 B & L 9 B T B 92

DRNNAGE  asout~

DRNNAGE: Deep random neural networks for adult skeletal age-at-death estimation.

@ 2022 David Senhora Navega

DOL 10.5281/zenodo. 7433412

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details

You should have received a copy of the GNU General Public License along with this program. If nat,
see

DAVID SENHORA NAVEGA

Figure 7.1 DRNNAGE landing page (https://osteomics.com/DRNNAGE)
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R was used as the main programming language and ecosystem in the development
of DRNNAGE and all the subcomponents that enable its functionalities. A notable
exception to this is the rwnnet R package (Table 7.1) which has its core written in C++.
Integration of R and C++ was accomplished by using the Repp and ReppArmadillo
packages by Eddelbuettel [285-288]. ReppArmadillo enables access to Armadillo, a
template-based C++ high-performance library for linear algebra based computation [278,
289]. Throughout Chapter 5 it has been demonstrated that deep randomized neural
networks, as used in this work, can be fully represented, and operationalized via matrix
computations. A C++ implementation combined with the mathematical formulation used
in this thesis for training, optimization of the regularization parameter in the output layer,

enabled fast and efficient neural network model training and validation.

7.4|Functionalities

The main function of this software is to enable flexible and case-by-case age-at-
death estimation of adult skeletal human remains from the available and scorable age-
related traits. The software can create new neural network models for any combination of
skeletal traits given that at least two traits are available as input. It integrates and
operationalizes the key contributions of this work: the macroscopic technique developed to
assess age-related traits (Chapter 3) and computational approach used to generate
estimates from the observed skeletal traits (Chapter 5) using as a reference the curated
dataset (Chapter 4). Model assessment metrics are also computed to evaluate the model
performance (Chapter 6). The interface is characterized by two major components: the
macroscopic and the computational analysis tabs whose main functionalities are described

in more detail in the following sections.
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7.4.1|Input

On the macroscopic analysis tab, data is entered using intuitive radio button
components. All values are initially set to NA, which stands for non-availability or not
scored (NA is also the internal representation of R for missing values). For bilateral traits,
both sides can be used as input, but the software will only use the right side if the left side
is missing (NA). The textual description of each trait score is embedded in sub-tabs for
each skeletal trait so that practitioners have self-contained access to the scoring system.
Figure 7.2 and Figure 7.3 depict data input interface and traits description on the

macroscopic analysis tab.

[0C01L] Os coxa iliac tuberosity
] 1 NA

[0C02L] Os coxa ischial tuberosity
0 1 NA

[0C03L] Os coxa acetabulum

o 1 NA

[FMO1L] Femur head

o 1 NA

[FMO2L] Femur trochanteric fossa

0 1 NA

[FMO3L] Femur greater throcanter

] 1 NA

[FMO4L] Femur lesser throcanter

0 1 NA

[FMOSL] Femur condyles
] 1 NA

[0CO1R] Os coxa iliac tuberosity
L] 1 NA

[0C02R] Os coxa ischial tuberosity

L] 1 NA

[0C03R] Os coxa acetabulum

0 1 NA

[FMO1R] Femur head

[FMO2R] Femur trochanteric fossa

L] 1 NA

[FMO3R] Femur greater throcanter

[FMO4R] Femur lesser throcanter

[ 1 NA
[FMOSR] Femur condyles
0 1 NA
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[TBO1L] Tibia condyles

L] 1 NA

[PTO1L] Patella articular surface

o 1 NA

[PTO2L] Patella base

o 1 NA

[CLNO1L] Calcaneus tuberosity

o 1 NA

[TBO1R] Tibia condyles

[PTO1R] Patella articular surface

[PTO2R] Patella base

[CLNO1R] Calcaneus tuberosity

Figure 7.2 Data input via radio buttons on the macroscopic analysis tab.
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Stage 0

Symphyseal rim is incomplete. In the early stage of
rim formation there is a continuum between
symphyseal face and adjacent structures (pubic
tubercule, pubic ramus). Rim formation later evolves
from an early rampart that forms on the cranial,
dorsal, caudal and ventral portions of the rim.

Stage 1

Symphyseal fim is complete. An elevated bony rim
the symphyseal face demarcating it from

adjacent structures such as the pubic tubercle. In

‘some specimens, the superior segment of the ventral

margin might not fully form into a rim after early

Stage 0

Symphyseal topography is characterized by a
billowing pattem (alternating ridge and furrows). In
early stages this pattemn is very sharp bul as
symphyseal face flatlens (Stage 1), it becomes
shallow and residual (usually one patch defined by
two consecutives flattened ridges)

Stage 1

Symphyseal surface is flat and homogeneous
Stage 2

Symphyseal topography is irregular and depressed in
relation to the symphyseal rim

Stage 0
Symphyseal texture is smooth to finely grained and
have dense aspect

Stage 1

Symphyseal ‘texture is coarsely granular yet
homogeneous. Scattered porosities (micropores)
may occur throughout the surface

Stage 2
Symphyseal texture appears eroded and s
characterized by clustered porosities and irregular
bony formations, Texture appears 10 be less dense

formation of the wentral rampart. This condition,
ventral hiatus, should not be confused with
incomplete rim formation (Stage 0) or rim breakdown
(Stage 2)

Stage 2
Symphyseal rim is breaking down. Breakdown is
characterized by lipping and erosion (porosity, pitting)
of the ventral and dorsal margins. Breakdown of the
symphyseal rim is usually associated with ligamental
outgrowths and a bony plague on the ventral and
dorsal surface of the pubic bone

Figure 7.3 Textual trait scoring system description sub-tab example.

7.4.2|Estimate

As previously stated, the primary goal of this software is to obtain age-at-death
estimates on a case-by-case basis. This is done through the computational analysis tab,
which has three main sub-component tabs: estimate, explain, and asses. The estimate tab
is the main output component of the application. If valid data is available, pressing the
analyze button will output the estimated (or predicted) age-at-death for a given skeletal
pattern. The conditional mean age-at-death estimate provided to the user is based on the
skeletal traits observed. The average of the two uncertainty modeling strategies proposed
in this work yields the final predictive interval. A visual representation of the uncertainty
associated with an individual estimation is obtained by representing a truncated gaussian
distribution parameterized with the conditional mean and variance as described in Chapter
5. A report will also be generated as an HTML document by the software, which can be
printed or saved as a portable document file (.pdf) using a modern web browser such as
Google Chrome, Microsoft Edge, or Mozilla Firefox. When you press the report button, a

report is generated and downloaded. This report summarizes all the information from the
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sub-tabs of the computational analysis and parameterization used. Figure 7.4 and Figure

7.5 provide two examples of estimates obtained for a young and an elderly individual.

DRNNAGE COMPUTATIONAL ANALYSIS

Network Algerithm

Ensembled Randomized Network

Layer Size
¢ a2

Network Depth
2 B

Gaussian Noise

g 0

Uncertainty Level (alpha)

os (@

Variance Madel Exponent

o [}

RNG Seed

99676

Figure 7.4 Estimate obtained by DRNNAGE on a young individual (25 years old).
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Age-at-Death

Figure 7.5 Estimate obtained by DRNNAGE on an elderly individual (88 years old).
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7.4.3|Explain

Predictions or estimates made by artificial neural networks models often shows
remarkable accuracy yet these models, and other machine learning techniques as well, are
frequently regard them as black boxes. Humans find it difficult to gain insights into decision
making involved in such predictive algorithms. Understanding decision making in
extremely sensitive domains is especially important. The decision-making behind the
machine learning decision support systems must be more transparent, accountable, and
understandable to humans [290]. The problem of interpretability and explainability is a
current issue in computational systems using machine learning techniques and constitutes
an active topic of research in artificial intelligence with new methods and approaches for
the interpretation being are published at staggering rate [290-295]. It is not the objective
of this section to delve deeper on what constitutes a research problem on its own, but
provide the necessary background to understand the rationale and approach implemented
in DRNNAGE regarding the issue interpretability and explainability of the models and
estimates computed by the software.

A neural network model built with the approach proposed in this work can be seen
as a regularized linear model that operates on the feature space composed of the non-linear
input extracted by the hidden layers and the initial skeletal traits. This approach's
algorithmic transparency is comparable to a linear model, as shown in Chapter 5. Unlike
a linear model, the mathematical features and randomized nature of hidden layers make
the number of coefficients too large for human comprehension, even though the estimate
is defined by linear combination. To improve the interpretability and explainability of
DRNNAGE models and estimates, a global surrogate model approach [291] using a linear
model and data transformation was implemented. This approach exploits the intuitive and
additive nature of linear models and their relationship to an artificial neural network's
output layer in the context of numeric prediction. In the global surrogate model approach
a simpler and interpretable model such a linear model is used to approximate the estimates

obtained from a more complex model. In the case of linear model, an interpretable
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approximation of the network estimate using a surrogate model is written as

f*(Z)::Bo+13121+"'+ﬂpr (7.1)

where the linear coefficients, S, are in this context obtained by regress the (cross-
validated) estimates obtained from the neural network model, 7= f(x,6), on the
decorrelated version of the network initial inputs, Z .

To decorrelate the initial input, the data is centered and scaled before being
transformed using a linear basis that enforces orthogonality among predictors while
preserving the maximum relationship with the original input. After this transformation,
also known as the Mahalanobis transform or sphering [296, 297], the covariance matrix of
the predictors, Z , is the identity matrix. The use of this data transformation removes
multicollinearity among the inputs of the interpretable model — enforcing no correlation

among predictors, an assumption of multiple linear regression. Given that the transformed

data is also centered around the origin (0) and a unit variance (1) the intercept, ﬂo , is the
mean value of the estimates of neural network, f(x,0), and a natural way to measure the

contribution or impact of a particular trait, p, on the estimate as approximated by the

surrogate model is given by ,Biz,- .

An important by-product of the Mahalanobis-decorrelated inputs used in the
interpretable models is that the linear correlation coefficient is equivalent to what Zuber
and Strimmer [296] call CAR scores (Correlation-Adjusted (marginal) coRrelation), defined
as the marginal correlations adjusted for correlation among explanatory variables, a natural
variable importance criterion. The square of the CAR scores and its sum leads to a simple
additive decomposition of the proportion of explained variance.

When deploying a machine learning system is important to guarantee what
Murdoch et al. [293] refers as predictive accuracy, descriptive accuracy and relevance. In
this context, predictive accuracy is accomplished by the neural network models which

capture the underlying relationship between the skeletal traits and age-at-death and can
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predict or estimate with remarkable levels of accuracy. Murdoch et al. [293] defines
descriptive accuracy as the degree to which an interpretation method objectively captures
the relationships learned by machine-learning models. In the explain tab, to ensure the
fidelity of the surrogate model to the neural network, several metrics (MAE, RMSE, R?
Bias) are reported to assess the quality of the surrogate model (Figure 7.6). The addition
of a post hoc interpretation method enhances the relevance of this tools which already
provides a significant solution to the vexing problem of age estimation in the context of
forensic human identification.

This implementation raises the question: why not directly predict age-at-death with
a linear model? The neural network approach pursued in this study, can be viewed as an
extension of a linear model with nonlinearities via activation functions. The linear surrogate
model provides interpretability in manner that is familiar to forensic experts. This
integrative approach paves the way for improved decision support systems, as opposed to

pointless debates over algorithmic preferences.

DRNNAGE COMPUTATIONAL ANALYSIS

Network Algerithm
Ensembled Randomized Network -
Layer Size
v B = MAE RMSE R Squared Bias Baseline Estimate Approximation
-
086 1.096 0997 0.003 57.342 24441 22.496
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=] PSYO1 0.242 0.059 0 9 0.909 ACTO1 0 1.298 9 0.025 0.976
99676 PSYO: 0.233 0.054 0 0 0.96 5158 0 0.834 10 0.016 0.992
S152F 0.185 0.034 0 1 0.997 ACT03 0 -0.396 1 0.008 1.000

Figure 7.6 Interpretability and explainability via linear surrogate model.
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7.4.4|Assess

Due to the flexible nature of the software, it is important for the end user to have
feedback on the predictive accuracy of the model being used for age estimation on case-by-
case basis. Along with on-the-fly model fitting, the software also performs implicit model
validation and assessment. As detailed in Chapter 5 the formulation of neural networks
used in the work allows for analytical leave-one-out estimates to be obtained, which can
then be used as robust baseline for model assessment without resorting to an external
dataset or more computationally intensive cross-validation techniques. This feature enables
fast model validation, a critical feature for a software with web deployment as its main
access-point. The assess tab provides both numeric and graphical output to enable model

evaluation (Figure 7.7).

DRNNAGE COMPUTATIONAL ANALYSIS
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Figure 7.7 Model assessment and evaluation output.
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7.5|Parameterization

Some degree of parameterization or fine-tuning is achievable in the software. By
default the software fits a ensembled randomized network (network algorithm select box)
composed with of 8 layers (network depth slider) with 32 ReLU units each (layer size
slider), all components of the network as disturbed with a moderate amount of gaussian
noise (slider, set to 1) for robust training, the variance model regressor operates in a linear
fashion (slider, set 1) and predictive intervals are created for 90% confidence level (slider,
l-alpha value). This are sensible values chosen based on domain knowledge and extensive
testing during software development.

The usage of skip layers, re-use of the initial input along the layers of the network
path, render the models highly stable and comparable across parameterizations both in
accuracy and computational performance. Variations are mostly due to the intrinsic nature
of this approach, randomization (controlled by the seed numeric box). A notable exception
to this is the use of the ensembled supervised autoencoder algorithm which shows an
autocorrective behavior in relation to predictive bias. This algorithm tends to produce less
biased models which can be important at the extremes of the adult lifespan, more accurate
estimate for very young or elderly individuals. In the current state more important than
the parameterization used, is to keep record of the parameters. The report generated by

the software tracks the parameters (Figure 7.8).

Parameter Value
Network Ensembled Randomized Network
Width 32
Depth 8
(Gaussian Noise 1
Alpha 0.1
Exponent 1
Seed 99676

Figure 7.8 Parameterization as reported in DRNNAGE.
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The main objective of this work was to investigate the fundamental issue of age-
at-death estimation in the analysis of human remains and propose a new method and its
computational analysis from a perspective of multifactorial analysis of the adult skeleton.
Several age estimation methods have been previously developed, focusing on specific
anatomical structures or regions such as the cranium, the ribs, or the pelvic joints.
Nonetheless, it is well known that no single skeletal indicator can produce accurate and
efficient age estimates across the entire human age span. Determining how to report age
estimates using multiple indicators or traits remains an open issue, with experts resorting
to different heuristics that often are not standardized and lack a valid computational or
statistical grounding [41]. In the literature, there are techniques that use multiple skeletal
indicators for age estimation but are often limited to the cranial sutures and the pelvic
joints [59, 62, 81]. More generic procedures for multifactorial analysis have also been
proposed, but with poor adoption in forensic casework because they require seriation or
advanced mathematical knowledge to be put into action [153, 156-158].

This thesis demonstrated that a multifactorial approach to skeletal age estimation
improves accuracy and precision over single anatomic regions, as established in traditional
adult skeletal aging methods. Multifactorial models introduce a two-to-six-fold reduction
in the mean absolute error and prediction bias compared to standard models.

The model based on the full set of traits described in the novel macroscopic age
estimation proposed here provided the best performance results in respect to all metrics
analyzed. This can be attributed to the fact that having more features allows the deep
neural models to operate at their maximum potential regarding what they do best—
extracting novel features from existing ones using, in this case, random weights and a non-
linearity (ReLU function) as a mechanism to combine multiple traits and obtain a more
accurate latent representation of age-related morphology, which ultimately allows the

output layer to operate in a non-linear regime, despite it being, in practice, a regularized
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linear model. Moreover, the multitude of traits scored also permits the models to
encapsulate the intra- and inter-variability of skeletal morphology with greater finesse,
which is manifested as more efficient (narrower) predictive intervals that reflect the
heteroskedastic nature associated with the senescence process.

This research also demonstrated that it is possible to produce informative age
estimates for the elderly and that nonstandard skeletal traits are pivotal in the later stage
of the adult age span. As an age estimation technique developed with forensic casework as
its applicational domain, proper validation by other researchers and practitioners is most
needed because the presented results, as solid as they are, reflect only in silico performance
assess via cross-validation.

Despite the promising results, the current research did not emerge in a vacuum,
nor has it any pretension to be a one-size-fits-all solution to skeletal age estimation, it was
inspired by significant work that was previously developed on this topic [16,19,24,35,140].

An important technical and methodological aspect that deserves a detailed analysis
in the future is intra- and inter-observer error. The results demonstrate the proposed
scoring method is highly reproducible. This can be explained by the fact that traits are
encoded in a binary or ternary system; nonetheless, more data are required from an
independent third party that applies the method as described here.

The major research output of this thesis is the open-source software DRNNAGE.
Randomization of the hidden layers, combined with an efficient C++ implementation of
the models developed, allowed the construction of a software that enables on-the-fly
computation and validation (LOOCV) of deep architecture models for any combination of
traits with minimal to no technical knowledge on the part of the user.

This software was built to operationalize the age estimation procedure described in
this thesis, in a manner that is flexible and practical for the expert applying it, bearing in
mind that each case will be limited by its own available skeletal traits. DRNNAGE allows
the expert to compute the optimal network and associated uncertainty model based only
on the traits that the forensic expert can score. Thus, in that regard, the usefulness of the

estimates obtained is limited by biology and taphonomy, rather than the technical or
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methodological implementation. The software provides intuitive interface and is freely
distributed under an open-source license with web-based access-point for multiplatform
support tackling this way issues of accessibility and usability, major obstacles to casework
usage of computationally advanced methods [151].

One last aspect that deserves attention is the dataset employed in this study. The
constructed dataset aimed to be uniform and homogeneous in respect to age-at-death and
sex. At the moment, it only represents Portuguese nationals over a broad time span; thus,
it would be important to expand the dataset to include individuals from other regions and
ascertain possible population and temporal differences in the performance of the proposed
method.

Future work in age estimation should seek to create truly multifactorial methods,
integrating multiple modalities of data collection and disciplines. Deep artificial neural
networks or deep learning excels in problems involving vision tasks such as the image
analysis involved in bone and dental histological or radiological methods with potential for
automated feature extraction and age estimation. Explainable machine learning was briefly
addressed in this thesis through the inclusion of an explanation system based on global
surrogate model approach in the developed age estimation software, this topic should be

further explored.
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Appendix A

Sex-related inferential analysis

Table A.1 Cramér’s V for assessment skeletal morphology and sex association on bilateral traits.

Trait Side Statistic p-value df n Trait Side Statistic p-value  df n
SCO01 Left 0.000 0.563 1 483 CLVO01 Left 0.000 0.486 2 464
Right 0.000 0.472 1 488 Right 0.009 0.361 2 468
HMO1 Left 0.033 0.216 1 479 CLV02 Left 0.000 0.821 1 418
Right 0.000 0.853 1 474 Right 0.000 0.740 1 435
HMO02 Left 0.000 0.491 1 475 RB101 Left 0.000 0.551 2 424
Right 0.034 0.215 1 469 Right 0.000 0.851 2 410
HMO03 Left 0.043 0.174 1 464 RB102 Left 0.000 0.836 1 408
Right 0.000 0.667 1 454 Right 0.000 0.660 1 411
HMO04 Left 0.000 0.600 1 476 PSYO01 Left 0.000 0.395 2 400
Right 0.049 0.147 1 469 Right 0.000 0.740 2 405
HMO05 Left 0.000 0.406 1 438 PSY02 Left 0.050 0.222 2 402
Right 0.000 0.681 1 433 Right 0.025 0.323 2 410
HMO06 Left 0.056 0.122 1 440 PSY03 Left 0.068 0.149 2 394
Right 0.000 0.320 1 431 Right 0.087 0.082 2 400
ULO1 Left 0.069 0.071 1 475 TASO1 Left 0.029 0.303 2 459
Right 0.100 0.016 1 476 Right 0.050 0.205 2 463
UL02 Left 0.031 0.231 1 449 TAS02 Left 0.000 0.424 1 469
Right 0.056 0.120 1 443 Right 0.040 0.186 1 470
RDO1 Left 0.000 0.685 1 466 SASO1 Left 0.000 0.866 1 430
Right 0.000 0.616 1 465 Right 0.000 0.672 1 432
RDO02 Left 0.000 0.981 1 476 SAS02 Left 0.029 0.245 1 424
Right 0.000 0.700 1 468 Right 0.056 0.124 1 430
OCo01 Left 0.000 0.485 1 433 ACTO1 Left 0.078 0.084 2 483
Right 0.000 0.799 1 430 Right 0.035 0.275 2 475
0C02 Left 0.073 0.062 1 466 ACTO02 Left 0.073 0.106 2 466
Right 0.085 0.038 1 463 Right 0.034 0.283 2 456
OCo03 Left 0.039 0.185 1 485 ACTO03 Left 0.074 0.118 2 417
Right 0.053 0.123 1 484 Right 0.107 0.034 2 413
FMO1 Left 0.000 0.922 1 480
Right 0.000 0.871 1 477
FMO02 Left 0.000 0.726 1 455
Right 0.000 0.690 1 457
FMO03 Left 0.000 0.403 1 448
Right 0.020 0.276 1 448
FMO04 Left 0.047 0.158 1 456
Right 0.046 0.162 1 460
FMO05 Left 0.000 0.420 1 476
Right 0.058 0.107 1 473
TBO1 Left 0.000 0.451 1 474
Right 0.000 0.611 1 473
PTO1 Left 0.000 0.986 1 442
Right 0.000 0.353 1 439
PTO2 Left 0.127 0.006 1 411
Right 0.128 0.005 1 413
CLNO1 Left 0.044 0.175 1 443
Right 0.054 0.133 1 436
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Appendix A

Table A.2 Cramér’s V for assessment skeletal morphology and sex association on cranial and palatine

sutures, and axial traits.

Trait Statistic p-value df n
CRSO01 0.342 0.000 1 457
CRSO02L 0.237 0.000 1 454
CRSO02R 0.234 0.000 1 453
CRS03 0.065 0.082 1 482
CRS04L 0.054 0.123 1 482
CRSO04R 0.070 0.066 1 482
CRS05 0.128 0.003 1 464
CRSO06L 0.000 0.862 1 466
CRS06R 0.000 0.718 1 464
C3IS 0.000 0.912 2 446
C488 0.000 0.788 2 453
C41IS 0.000 0.427 2 452
C58S 0.044 0.234 2 459
C5IS 0.000 0.588 2 463
C6SS 0.000 0.573 2 468
C61IS 0.000 0.918 2 466
C7SS 0.041 0.248 2 466
L1IS 0.000 0.631 2 451
L2SS 0.000 0.927 2 454
L2IS 0.000 0.666 2 452
L3SS 0.000 0.848 2 458
L3IS 0.000 0.935 2 457
L4SS 0.000 0.547 2 459
LAIS 0.000 0.696 2 462
L5SS 0.030 0.298 2 457
S1SS 0.043 0.245 2 446
S1S2F 0.102 0.015 1 470
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Table A.3 Sex-related differences assessment on conditional age-at-death distribution for bilateral joint

and musculoskeletal degenerative traits.

Left Right
Trait Stage D p-value n(?) n(d) D p-value n(?) n(d)
SCO1 0 0.082 0.875 102 108 0.086 0.824 102 110
1 0.119 0.573 141 132 0.142 0.246 143 133
HMO1 0 0.100 0.784 115 127 0.143 0.339 119 121
1 0.085 0.784 127 110 0.085 0.794 119 115
HMO02 0 0.078 0.867 124 113 0.098 0.676 116 103
1 0.190 0.056 116 122 0.198 0.030 117 133
HMO03 0 0.084 0.708 137 145 0.056 0.990 126 126
1 0.165 0.349 101 81 0.182 0.141 106 96
HMO04 0 0.088 0.454 192 188 0.110 0.222 188 173
1 0.268 0.129 45 51 0.274 0.074 a7 61
HMO05 0 0.043 0.999 147 152 0.050 0.993 144 147
1 0.122 0.999 75 64 0.210 0.176 74 68
HMO06 0 0.035 1.000 133 141 0.055 0.991 124 131
1 0.175 0.327 94 72 0.099 0.991 95 81
ULO01 0 0.042 0.999 147 166 0.090 0.582 138 163
1 0.188 0.236 91 71 0.193 0.166 101 74
ULO02 0 0.103 0.467 144 130 0.094 0.600 144 124
1 0.165 0.369 81 94 0.196 0.142 80 95
RDO1 0 0.072 0.704 188 194 0.086 0.828 187 193
1 0.218 0.543 44 40 0.136 0.828 45 40
RDO02 0 0.071 0.956 102 105 0.061 0.991 105 99
1 0.123 0.526 134 135 0.137 0.338 130 134
OCo01 0 0.140 0.206 122 110 0.143 0.193 119 109
1 0.224 0.025 98 103 0.178 0.164 102 100
0C02 0 0.117 0.885 84 109 0.116 0.747 84 110
1 0.071 0.885 144 129 0.083 0.747 144 125
0OCo03 0 0.044 1.000 104 120 0.043 1.000 108 125
1 0.119 0.626 138 123 0.122 0.618 135 116
FMO1 0 0.169 0.040 161 163 0.142 0.163 158 160
1 0.162 0.260 79 7 0.131 0.507 81 78
FMO02 0 0.119 0.366 172 167 0.124 0.276 180 167
1 0.130 0.714 56 60 0.169 0.410 54 56
FMO03 0 0.065 0.954 125 128 0.045 0.999 123 132
1 0.116 0.954 105 90 0.151 0.442 104 89
FM04 0 0.150 0.147 124 110 0.146 0.177 123 107
1 0.202 0.044 102 120 0.213 0.023 107 123
FMO05 0 0.064 0.936 133 145 0.067 0.912 130 150
1 0.124 0.862 103 95 0.082 0.912 105 88
TBO1 0 0.094 0.892 150 155 0.100 0.590 153 156
1 0.089 0.892 90 79 0.121 0.590 86 78
PTO1 0 0.107 0.388 145 141 0.069 0.902 135 141
1 0.203 0.160 80 76 0.176 0.329 88 75
PT02 0 0.132 0.509 106 134 0.125 0.357 109 136
1 0.101 0.787 100 71 0.145 0.357 99 69
CLNO1 0 0.092 0.734 101 126 0.080 0.869 101 126
1 0.106 0.734 111 105 0.106 0.869 109 100
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Table A.4 Sex-related differences assessment on conditional age-at-death distribution for bilateral
standard traits.

Left Right
Trait Stage D p-value n(?) n(J) D p-value n(?) n(d)
CLVO01 0 0.231 0.789 25 34 0.228 0.836 25 34
1 0.073 0.981 82 82 0.071 0.983 84 84
2 0.105 0.789 123 118 0.102 0.836 127 114
CLVO02 0 0.094 0.873 91 97 0.083 0.904 91 95
1 0.078 0.873 115 115 0.157 0.185 127 122
RB101 0 0.171 0.719 35 31 0.116 0.980 34 32
1 0.159 0.268 125 121 0.178 0.146 121 115
2 0.150 0.719 51 61 0.223 0.208 52 56
RB102 0 0.127 0.487 91 82 0.120 0.635 91 81
1 0.109 0.487 120 115 0.096 0.635 120 119
PSY01 0 0.192 0.591 31 34 0.227 0.902 29 33
1 0.121 0.568 135 117 0.072 0.902 132 122
2 0.201 0.568 38 45 0.162 0.902 44 45
PSY02 0 0.249 0.372 40 51 0.224 0.684 38 50
1 0.077 0.870 132 112 0.055 0.992 131 119
2 0.217 0.616 32 35 0.152 0.992 35 37
PSY03 0 0.170 0.902 31 30 0.197 0.929 29 30
1 0.103 0.902 82 96 0.121 0.929 80 99
2 0.092 0.902 88 67 0.052 1.000 92 70
IASO1 0 0.128 0.742 60 54 0.106 0.914 58 53
1 0.164 0.551 58 69 0.188 0.364 54 67
2 0.178 0.192 118 100 0.160 0.316 126 105
TAS02 0 0.059 0.996 94 99 0.039 1.000 90 101
1 0.161 0.114 146 130 0.170 0.072 150 129
SASO01 0 0.095 0.512 150 146 0.112 0.317 147 148
1 0.212 0.196 66 68 0.258 0.042 72 65
SAS02 0 0.064 0.984 97 109 0.065 0.980 98 112
1 0.089 0.984 116 102 0.140 0.471 120 100
ACTO1 0 0.123 0.447 107 110 0.129 0.432 106 108
1 0.273 0.008 98 81 0.180 0.288 102 87
2 0.188 0.447 35 52 0.208 0.432 31 41
ACTO02 0 0.110 0.784 70 72 0.085 0.961 68 73
1 0.193 0.267 7 56 0.164 0.595 70 52
2 0.232 0.036 88 103 0.214 0.073 96 97
ACTO3 0 0.067 0.998 73 92 0.067 0.993 73 92
1 0.062 0.998 75 83 0.069 0.993 79 81
2 0.116 0.998 54 40 0.168 0.993 54 34
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Table A.5 Sex-related differences assessment on conditional age-at-death distribution for cranial and

palatine suture traits.

Trait Stage D p-value n(?) n(d)
CRS01 0 0.491 0.000 102 32
1 0.203 0.004 122 201
CRSO02L 0 0.124 0.243 199 154
1 0.231 0.243 27 74
CRS02R 0 0.129 0.225 199 154
1 0.201 0.404 27 73
CRS03 0 0.119 0.384 129 106
1 0.202 0.027 115 132
CRS04L 0 0.219 0.065 96 78
1 0.115 0.263 146 162
CRS04R 0 0.225 0.057 96 75
1 0.140 0.098 146 165
CRS05 0 0.169 0.164 106 75
1 0.154 0.143 125 158
CRSO6L 0 0.092 0.633 135 131
1 0.145 0.490 99 101
CRSO06R 0 0.103 0.479 136 130
1 0.121 0.479 97 101
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Table A.6 Sex-related differences assessment on conditional age-at-death distribution for vertebrae traits.

Trait Stage D p-value n(?) n(d)
C3IS 0 0.094 0.747 103 107
1 0.140 0.699 74 73
2 0.288 0.150 46 43
4S8 0 0.074 0.949 96 104
1 0.091 0.949 80 79
2 0.342 0.025 49 45
C4IS 0 0.040 1.000 92 106
1 0.170 0.346 77 73
2 0.238 0.320 56 48
C58S 0 0.060 0.996 85 104
1 0.127 0.936 77 65
2 0.196 0.509 65 63
C5IS 0 0.060 0.997 85 97
1 0.113 0.997 60 56
2 0.191 0.295 85 80
C6SS 0 0.077 0.947 87 98
1 0.145 0.909 55 55
2 0.177 0.397 91 82
C6IS 0 0.129 0.618 92 98
1 0.136 0.780 47 46
2 0.201 0.148 92 91
C7SS 0 0.070 0.974 88 100
1 0.167 0.697 60 46
2 0.176 0.414 83 89
L1IS 0 0.152 0.188 106 98
1 0.207 0.188 62 71
2 0.211 0.188 57 57
L2SS 0 0.131 0.558 97 99
1 0.078 0.992 60 63
2 0.199 0.415 69 66
L2IS 0 0.169 0.221 101 95
1 0.139 0.598 57 66
2 0.198 0.221 66 67
L3SS 0 0.103 0.744 83 92
1 0.119 0.744 67 67
2 0.159 0.744 75 74
L3IS 0 0.117 0.537 94 97
1 0.183 0.537 64 69
2 0.140 0.537 67 66
L4SS 0 0.084 0.990 78 91
1 0.080 0.990 63 58
2 0.153 0.838 86 83
L4IS 0 0.125 0.675 93 98
1 0.116 0.846 53 59
2 0.137 0.675 83 76
L5SS 0 0.065 0.994 80 94
1 0.134 0.994 51 56
2 0.115 0.994 95 81
S18S 0 0.084 0.913 84 95
1 0.101 0.913 63 71
2 0.148 0.913 74 59
S1S2F 0 0.224 0.436 26 46
1 0.087 0.436 209 189
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Bilateral asymmetry inferential analysis

Table A.7 Bilateral asymmetry analysis.

Trait Asymmetry Left Right Statistic p-value df n
SCo1 0.034 0.019 0.015 0.250 0.617 1 478
HMO1 0.039 0.024 0.015 0.889 0.346 1 465
HMO02 0.100 0.028 0.072 8.696 0.003 1 458
HMO03 0.133 0.038 0.095 10.593 0.001 1 444
HMO04 0.102 0.033 0.070 6.149 0.013 1 460
HMO05 0.098 0.042 0.056 0.900 0.343 1 410
HMO06 0.078 0.020 0.059 8.000 0.005 1 410
ULO1 0.086 0.030 0.056 3.600 0.058 1 464
UL02 0.065 0.023 0.042 2.286 0.131 1 428
RDO1 0.096 0.045 0.051 0.209 0.647 1 448
RDO02 0.046 0.020 0.026 0.429 0.513 1 455
OC01 0.024 0.007 0.017 1.600 0.206 1 410
0C02 0.025 0.013 0.011 0.091 0.763 1 449
0OCo3 0.036 0.027 0.008 4.765 0.029 1 475
FMO1 0.075 0.032 0.043 0.714 0.398 1 465
FMO02 0.056 0.033 0.023 0.667 0.414 1 431
FMO03 0.040 0.021 0.019 0.059 0.808 1 429
FMO04 0.044 0.018 0.025 0.474 0.491 1 437
FMO05 0.075 0.041 0.035 0.257 0.612 1 464
TBO01 0.069 0.039 0.030 0.500 0.480 1 462
PTO1 0.059 0.019 0.040 3.240 0.072 1 422
PT02 0.028 0.018 0.010 0.818 0.366 1 395
CLNO1 0.019 0.012 0.007 0.500 0.480 1 428
CLVO01 0.002 0.002 0.000 1.000 0.317 1 448
CLV02 0.068 0.030 0.038 0.333 0.564 1 400
RB101 0.019 0.008 0.011 0.143 0.706 1 373
RB102 0.008 0.003 0.005 0.333 0.564 1 367
PSYO01 0.011 0.008 0.003 1.000 0.317 1 368
PSY02 0.016 0.008 0.008 0.000 1.000 1 367
PSY03 0.011 0.003 0.008 1.000 0.317 1 361
TAS01 0.034 0.007 0.027 5.400 0.020 1 441
TAS02 0.018 0.009 0.009 0.000 1.000 1 454
SASO01 0.010 0.002 0.007 1.000 0.317 1 411
SAS02 0.005 0.002 0.002 0.000 1.000 1 410
ACTO1 0.045 0.026 0.019 0.429 0.513 1 468
ACTO02 0.061 0.014 0.047 8.333 0.004 1 445
ACTO03 0.010 0.008 0.003 1.000 0.317 1 397
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Table A.8 Sex-specific asymmetry analysis for joint and musculoskeletal degenerative traits.

Trait Sex Asymmetry Left Right Statistic p-value df n
SCo1 Female 0.025 0.012 0.012 0.000 1.000 1 242
Male 0.042 0.025 0.017 0.400 0.527 1 236
HMO1 Female 0.038 0.030 0.009 2.778 0.096 1 235
Male 0.039 0.017 0.022 0.111 0.739 1 230
HMO02 Female 0.088 0.026 0.061 3.200 0.074 1 228
Male 0.113 0.030 0.083 5.539 0.019 1 230
HMO03 Female 0.106 0.031 0.075 4.167 0.041 1 227
Male 0.161 0.046 0.115 6.429 0.011 1 217
HMO04 Female 0.096 0.035 0.061 1.636 0.201 1 230
Male 0.109 0.030 0.078 4.840 0.028 1 230
HMO05 Female 0.073 0.029 0.044 0.600 0.439 1 207
Male 0.123 0.054 0.069 0.360 0.549 1 203
HMO06 Female 0.081 0.019 0.062 4.765 0.029 1 211
Male 0.075 0.020 0.055 3.267 0.071 1 199
ULO1 Female 0.086 0.022 0.065 5.000 0.025 1 232
Male 0.086 0.039 0.047 0.200 0.655 1 232
UL02 Female 0.028 0.014 0.014 0.000 1.000 1 216
Male 0.104 0.033 0.071 2.909 0.088 1 212
RDO1 Female 0.108 0.049 0.058 0.167 0.683 1 223
Male 0.084 0.040 0.044 0.053 0.819 1 225
RDO02 Female 0.044 0.018 0.027 0.400 0.527 1 226
Male 0.048 0.022 0.026 0.091 0.763 1 229
OCo01 Female 0.024 0.005 0.019 1.800 0.180 1 212
Male 0.025 0.010 0.015 0.200 0.655 1 198
0C02 Female 0.018 0.009 0.009 0.000 1.000 1 220
Male 0.031 0.018 0.013 0.143 0.706 1 229
OCo03 Female 0.017 0.017 0.000 4.000 0.046 1 239
Male 0.055 0.038 0.017 1.923 0.166 1 236
FMO1 Female 0.090 0.039 0.051 0.429 0.513 1 234
Male 0.061 0.026 0.035 0.286 0.593 1 231
FMO02 Female 0.055 0.037 0.018 1.333 0.248 1 219
Male 0.057 0.028 0.028 0.000 1.000 1 212
FMO03 Female 0.032 0.014 0.018 0.143 0.706 1 221
Male 0.048 0.029 0.019 0.400 0.527 1 208
FM04 Female 0.037 0.014 0.023 0.500 0.480 1 218
Male 0.050 0.023 0.027 0.091 0.763 1 219
FMO05 Female 0.078 0.030 0.048 0.889 0.346 1 230
Male 0.073 0.051 0.021 2.882 0.090 1 234
TBO1 Female 0.089 0.047 0.042 0.048 0.827 1 236
Male 0.049 0.031 0.018 0.818 0.366 1 226
PTO1 Female 0.083 0.023 0.060 3.556 0.059 1 217
Male 0.034 0.015 0.020 0.143 0.706 1 205
PT02 Female 0.010 0.010 0.000 2.000 0.157 1 199
Male 0.046 0.026 0.020 0.111 0.739 1 196
CLNO1 Female 0.010 0.005 0.005 0.000 1.000 1 206
Male 0.027 0.018 0.009 0.667 0.414 1 222
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Table A.9 Sex-specific asymmetry analysis for standard skeletal traits.

Trait Sex Asymmetry Left Right Statistic p-value df n
CLVO01 Female 0.000 0.000 0.000 0.000 1.000 1 225
Male 0.005 0.005 0.000 1.000 0.317 1 223
CLV02 Female 0.060 0.035 0.025 0.333 0.564 1 200
Male 0.075 0.025 0.050 1.667 0.197 1 200
RB101 Female 0.021 0.005 0.016 1.000 0.317 1 188
Male 0.016 0.011 0.005 0.333 0.564 1 185
RB102 Female 0.005 0.000 0.005 1.000 0.317 1 192
Male 0.011 0.006 0.006 0.000 1.000 1 175
PSYO01 Female 0.005 0.000 0.005 1.000 0.317 1 189
Male 0.017 0.017 0.000 3.000 0.083 1 179
PSY02 Female 0.011 0.005 0.005 0.000 1.000 1 187
Male 0.022 0.011 0.011 0.000 1.000 1 180
PSY03 Female 0.011 0.000 0.011 2.000 0.157 1 185
Male 0.011 0.006 0.006 0.000 1.000 1 176
TASO1 Female 0.035 0.009 0.026 2.000 0.157 1 229
Male 0.033 0.005 0.028 3.571 0.059 1 212
TAS02 Female 0.004 0.000 0.004 1.000 0.317 1 233
Male 0.032 0.018 0.014 0.143 0.706 1 221
SASO01 Female 0.005 0.000 0.005 1.000 0.317 1 207
Male 0.015 0.005 0.010 0.333 0.564 1 204
SAS02 Female 0.000 0.000 0.000 0.000 1.000 1 207
Male 0.010 0.005 0.005 0.000 1.000 1 203
ACTO1 Female 0.043 0.026 0.017 0.400 0.527 1 234
Male 0.047 0.026 0.021 0.091 0.763 1 234
ACTO02 Female 0.101 0.022 0.079 7.348 0.007 1 228
Male 0.018 0.005 0.014 1.000 0.317 1 217
ACTO03 Female 0.015 0.010 0.005 0.333 0.564 1 196
Male 0.005 0.005 0.000 1.000 0.317 1 201
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Table A.10 Age-related asymmetry analysis for joint and musculoskeletal degenerative traits.

Pooled Female Male
Trait Stage D p- n D p- n D p- n
SCo1 0 0.019 1.000 209 0.029 1.000 102 0.018 1.000 107
1 0.010 1.000 269 0.021 1.000 140 0.023 1.000 129
HMO1 0 0.033 1.000 235 0.047 0.999 113 0.017 1.000 122
1 0.027 1.000 230 0.034 1.000 122 0.023 1.000 108
HMO02 0 0.052 0.927 234 0.040 1.000 122 0.074 0.937 112
1 0.040 0.993 224 0.042 1.000 106 0.037 1.000 118
HMO03 0 0.069 0.553 275 0.065 0.945 134 0.080 0.790 141
1 0.037 1.000 169 0.025 1.000 93 0.065 0.995 76
HMO04 0 0.025 1.000 370 0.021 1.000 190 0.037 1.000 180
1 0.049 1.000 90 0.055 1.000 40 0.077 0.997 50
HMO05 0 0.012 1.000 287 0.023 1.000 143 0.016 1.000 144
1 0.043 1.000 123 0.050 1.000 64 0.058 1.000 59
HMO06 0 0.046 0.945 265 0.057 0.985 132 0.036 1.000 133
1 0.073 0.805 145 0.098 0.821 79 0.049 1.000 66
ULO01 0 0.029 0.999 308 0.057 0.977 145 0.020 1.000 163
1 0.028 1.000 156 0.036 1.000 87 0.052 1.000 69
UL02 0 0.019 1.000 266 0.014 1.000 140 0.042 1.000 126
1 0.023 1.000 162 0.026 1.000 76 0.024 1.000 86
RDO01 0 0.016 1.000 368 0.014 1.000 181 0.021 1.000 187
1 0.059 0.999 80 0.044 1.000 42 0.095 0.995 38
RDO02 0 0.010 1.000 201 0.038 1.000 102 0.033 1.000 99
1 0.011 1.000 254 0.021 1.000 124 0.030 1.000 130
0Co1 0 0.020 1.000 228 0.019 1.000 121 0.028 1.000 107
1 0.015 1.000 182 0.027 1.000 91 0.026 1.000 91
0C02 0 0.017 1.000 192 0.012 1.000 84 0.021 1.000 108
1 0.015 1.000 257 0.007 1.000 136 0.024 1.000 121
0C03 0 0.030 1.000 224 0.033 1.000 104 0.031 1.000 120
1 0.016 1.000 251 0.011 1.000 135 0.031 1.000 116
FMO1 0 0.011 1.000 319 0.028 1.000 159 0.020 1.000 160
1 0.023 1.000 146 0.045 1.000 75 0.060 0.999 71
FMO02 0 0.013 1.000 332 0.015 1.000 169 0.012 1.000 163
1 0.029 1.000 99 0.058 1.000 50 0.041 1.000 49
FMO03 0 0.015 1.000 252 0.018 1.000 124 0.015 1.000 128
1 0.018 1.000 177 0.030 1.000 97 0.014 1.000 80
FM04 0 0.014 1.000 232 0.017 1.000 124 0.019 1.000 108
1 0.025 1.000 205 0.033 1.000 94 0.024 1.000 111
FMO05 0 0.015 1.000 274 0.035 1.000 132 0.030 1.000 142
1 0.025 1.000 190 0.037 1.000 98 0.077 0.955 92
TBO01 0 0.012 1.000 300 0.009 1.000 149 0.020 1.000 151
1 0.031 1.000 162 0.022 1.000 87 0.044 1.000 75
PTO1 0 0.022 1.000 278 0.037 1.000 141 0.007 1.000 137
1 0.021 1.000 144 0.047 1.000 76 0.013 1.000 68
PTO02 0 0.024 1.000 238 0.018 1.000 106 0.030 1.000 132
1 0.027 1.000 157 0.011 1.000 93 0.059 1.000 64
CLNO1 0 0.009 1.000 224 0.010 1.000 100 0.010 1.000 124
1 0.007 1.000 204 0.009 1.000 106 0.025 1.000 98
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Table A.11 Age-related asymmetry analysis for standard skeletal traits.

Pooled Female Male
Trait Stage D p-value n D p-value n D p-value n
CLVO01 0 0.000 1.000 58 0.000 1.000 25 0.000 1.000 33
1 0.006 1.000 163 0.000 1.000 82 0.012 1.000 81
2 0.003 1.000 227 0.000 1.000 118 0.006 1.000 109
CLV02 0 0.017 1.000 179 0.032 1.000 88 0.035 1.000 91
1 0.020 1.000 221 0.028 1.000 112 0.033 1.000 109
RB101 0 0.016 1.000 63 0.000 1.000 34 0.033 1.000 29
1 0.009 1.000 218 0.017 1.000 111 0.009 1.000 107
2 0.016 1.000 92 0.031 1.000 43 0.020 1.000 49
RB102 0 0.011 1.000 166 0.009 1.000 90 0.013 1.000 76
1 0.006 1.000 201 0.009 1.000 102 0.010 1.000 99
PSYO01 0 0.000 1.000 61 0.000 1.000 29 0.000 1.000 32
1 0.005 1.000 231 0.007 1.000 125 0.018 1.000 106
2 0.025 1.000 76 0.014 1.000 35 0.027 1.000 41
PSY02 0 0.024 1.000 84 0.027 1.000 37 0.021 1.000 47
1 0.009 1.000 224 0.008 1.000 123 0.010 1.000 101
2 0.017 1.000 59 0.000 1.000 27 0.031 1.000 32
PSY03 0 0.018 1.000 56 0.000 1.000 28 0.036 1.000 28
1 0.011 1.000 166 0.020 1.000 79 0.011 1.000 87
2 0.004 1.000 139 0.007 1.000 78 0.000 1.000 61
TASO1 0 0.018 1.000 112 0.017 1.000 59 0.027 1.000 53
1 0.047 1.000 120 0.035 1.000 55 0.058 1.000 65
2 0.012 1.000 209 0.021 1.000 115 0.017 1.000 94
TAS02 0 0.011 1.000 189 0.010 1.000 91 0.015 1.000 98
1 0.008 1.000 265 0.006 1.000 142 0.016 1.000 123
SASO01 0 0.010 1.000 289 0.007 1.000 145 0.014 1.000 144
1 0.018 1.000 122 0.015 1.000 62 0.028 1.000 60
SAS02 0 0.005 1.000 205 0.000 1.000 96 0.009 1.000 109
1 0.005 1.000 205 0.000 1.000 111 0.011 1.000 94
ACTO1 0 0.010 1.000 217 0.011 1.000 107 0.017 1.000 110
1 0.011 1.000 175 0.031 1.000 95 0.051 1.000 80
2 0.029 1.000 76 0.078 1.000 32 0.087 0.997 44
ACTO02 0 0.013 1.000 142 0.024 1.000 70 0.009 1.000 72
1 0.038 1.000 131 0.060 0.999 7 0.021 1.000 54
2 0.044 0.995 172 0.084 0.921 81 0.019 1.000 91
ACTO3 0 0.006 1.000 165 0.014 1.000 73 0.000 1.000 92
1 0.011 1.000 152 0.015 1.000 74 0.011 1.000 78
2 0.011 1.000 80 0.011 1.000 49 0.019 1.000 31
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Missing data analysis

Table A.12 Percentage of missing values by skeletal trait (n=500)

Trait Missing Trait Left Right Merged Trait Left Right Merged
CRS01 8.60% CLVo01 7.20% 6.40% 3.20% SCo01 3.40% 2.40% 1.40%
CRS02L 9.20% CLV02 16.40%  13.00% 9.40% HMO1 4.20% 5.20% 2.40%
CRS02R  9.40% HMO02 5.00% 6.20% 2.80%
CRS03 3.60% RB101 15.20%  18.00% 7.80% HMO03 7.20% 9.20% 5.20%
CRS04L 3.60% RB102  18.40%  17.80% 9.60% HMO04 4.80% 6.20% 3.00%
CRS04R  3.60% HMO05 12.40%  13.40% 7.80%
CRS05 7.20% PSY01  20.00%  19.00%  12.60% HMO06 12.00%  13.80% 7.80%
CRSO06L 6.80% PSY02  19.60%  18.00%  11.00% ULO1 5.00% 4.80% 2.60%
CRSO06R 7.20% PSY03  21.20%  20.00%  13.40% ULO02 10.20%  11.40% 7.20%
RDO1 6.80% 7.00% 3.40%
C3IS 10.80% IASO1 8.20% 7.40% 3.80% RDO02 4.80% 6.40% 2.20%

C4S8 9.40% TAS02 6.20% 6.00% 3.00%

C4IS 9.60% SASO1 14.00%  13.60% 9.80% 0Co1 13.40%  14.00% 9.40%
C5S8 8.20% SAS02 15.20%  14.00%  11.20% 0C02 6.80% 7.40% 4.00%
C5IS 7.40% 0Co03 3.00% 3.20% 1.20%
C6SS 6.40% ACTO1 3.40% 5.00% 2.00% FMO01 4.00% 4.60% 1.60%
Ce6IS 6.80% ACTO02 6.80% 8.80% 4.60% FMO02 9.00% 8.60% 3.80%
C7SS 6.80% ACT03  16.60%  17.40%  13.40% FMO03 10.40%  10.40% 6.60%
L1IS 9.80% FMO04 8.80% 8.00% 4.20%
L2SS 9.20% FMO05 4.80% 5.40% 3.00%
L2IS 9.60% TBO01 5.20% 5.40% 3.00%
L3SS 8.40% PTO1 11.60%  12.20% 8.20%
L3IS 8.60% PTO02 17.80%  17.40%  14.20%
L4SS 8.20% CLNO1  11.40%  12.80% 9.80%

L4IS 7.60%
L5SS 8.60%
S1SS 10.80%
S152F 6.00%
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Age-related descriptive statistics

Table B.1 Descriptive age-related statistics for joint and musculoskeletal degenerative traits. Left side.

Female Male

Trait Stage mean(y) sd(y) Qoozs(y) Qoers (¥) n mean(y)  sd(y)  Qoo2s(y) Qoors (¥) n
SCO01 0 36.608 12.893 19.000 66.900 102 35.926 13.322 19.000 67.950 108
1 74.745 14.844 47.000 97.500 141 70.826 14.958 41.275 92.725 132
HMO1 0 42.287 19.883 19.000 88.000 115 38.843 14.843 19.150 73.550 127
1 73.386 15.211 46.000 97.000 127 72.691 14.057 42.725 93.275 110
HMO02 0 41.395 16.259 19.000 76.925 124 40.469 16.755 19.800 77.400 113
1 77.164 14.198 49.125 98.125 116 70.139 16.324 32.075 92.000 122
HMO03 0 45.161 19.122 19.000 85.000 137 47.724 20.370 20.000 88.200 145
1 76.386 15.673 42.500 98.500 101 71.284 16.122 42.000 92.000 81
HMO04 0 53.224 22.567 19.000 95.000 192 49.447 20.990 20.000 89.325 188
1 79.822 12.132 50.800 97.000 45 74.216 14.084 49.250 95.000 51
HMO05 0 45.238 18.312 19.000 84.400 147 45.138 18.599 19.775 84.225 152
1 78.893 13.070 51.700 99.150 75 76.313 12.164 54.000 92.425 64
HMO06 0 42.301 16.368 19.000 75.700 133 43.440 17.601 19.500 88.000 141
1 78.830 12.841 52.325 98.675 94 75.528 11.410 54.775 94.450 72
ULO1 0 47.204 20.940 19.000 92.700 147 47.000 20.514 20.000 89.000 166
1 76.923 13.712 50.500 98.750 91 72.915 14.303 46.000 93.750 71
ULO02 0 47.694 21.997 19.000 92.425 144 43.854 19.783 20.000 85.000 130
1 74.395 13.822 50.000 97.000 81 68.915 16.426 34.600 92.000 94
RDO1 0 53.255 22.842 19.000 94.325 188 50.716 21.507 20.000 90.350 194
1 77.205 14.692 52.000 97.000 44 73.950 14.459 48.475 93.075 40
RDO02 0 38.235 15.938 19.000 77.950 102 36.600 13.993 19.000 69.800 105
1 73.575 15.383 45.325 97.675 134 69.030 16.597 32.350 92.650 135
OCo1 0 41.107 16.762 19.000 79.975 122 37.618 15.292 19.000 71.825 110
1 75.133 13.983 50.850 97.575 98 66.612 16.324 32.550 93.450 103
0Co02 0 34.845 14.271 19.000 65.925 84 37.734 15.090 19.000 76.900 109
1 69.847 16.523 40.725 97.000 144 68.333 16.325 32.400 92.800 129
0OC03 0 36.865 13.377 19.000 67.700 104 37.483 14.007 19.000 71.075 120
1 74.877 14.232 49.425 97.575 138 71.228 14.214 44.100 92.950 123
FMO1 0 50.578 22.847 19.000 92.000 161 43.939 17.644 20.000 81.950 163
1 73.937 14.803 51.800 99.050 79 76.195 11.764 54.800 94.200 77
FMO02 0 50.948 22.296 19.000 94.725 172 46.503 19.988 20.000 89.850 167
1 75.786 13.145 53.125 96.875 56 73.917 12.920 45.850 93.050 60
FMO03 0 41.072 16.120 19.000 73.900 125 39.227 14.337 19.175 70.125 128
1 76.019 13.367 52.600 98.400 105 72.667 13.990 44.350 93.775 90
FMO04 0 40.935 15.837 19.000 74.000 124 36.155 12.740 19.000 64.550 110
1 76.167 13.732 52.000 97.475 102 69.450 15.379 33.975 93.025 120
FMO05 0 44.752 19.876 19.000 88.700 133 42.448 18.011 19.600 85.400 145
1 75.369 14.572 45.550 98.450 103 72.663 13.784 46.400 93.650 95
TBO01 0 48.433 21.910 19.000 92.825 150 44.387 19.048 19.850 87.000 155
1 74.967 14.731 46.675 97.775 90 72.987 14.271 47.400 94.100 79
PTO1 0 45.862 19.570 19.000 87.400 145 42.574 18.326 19.500 85.500 141
1 75.900 14.225 48.925 97.025 80 70.408 13.384 47.625 93.125 76
PTO02 0 37.453 13.797 19.000 68.375 106 41.888 17.643 19.325 81.350 134
1 73.010 14.701 46.950 98.000 100 70.915 14.829 42.000 92.500 71
CLNO1 0 37.446 15.464 19.000 84.000 101 39.127 15.683 19.125 75.000 126
1 73.063 14.407 48.250 97.250 111 71.876 14.401 41.600 92.000 105
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Table B.2 Descriptive age-related statistics for joint and musculoskeletal degenerative traits. Right side.

Female Male
Trait Stage mean(y) sd(y) Qo025(y)  Qoors (¥) n mean(y) sd(y) Qo.025(y)  Qoors (¥) n
SCo1 0 37.373 13.729 19.000 69.475 102 36.418 13.882 19.000 74.550 110
1 74.252 15.594  43.000 97.450 143 70.647 14.351 43.000 92.700 133
HMO1 0 44.000 21.562 19.000 92.200 119 38.198 14.340 19.000 71.000 121
1 71.992 14.778  46.000 97.000 119 72.443 13.663  42.850 93.150 115
HMO02 0 39.681 14.962 19.000 69.625 116 38.485 15.602 19.550 74.250 103
1 75.393 14.710  43.000 97.100 117 68.504 16.579 32.600 92.700 133
HMO03 0 42.627 17.613 19.000 81.375 126 44.429 19.292 20.000 86.750 126
1 75.208 15.177  46.875 97.375 106 70.156 15.528  42.375 92.000 96
HMO04 0 52.590 22.342 19.000 94.000 188 48.694 21.042 20.000 89.000 173
1 79.298 12.729  48.650 97.850 47 72.656 14.299  49.500 94.000 61
HMO05 0 44.618 18.025 19.000 82.700 144 45.639 19.392 19.650 85.700 147
1 79.770 13.138  51.650 97.175 74 74.456 12.742 50.675 92.325 68
HMO06 0 40.919 16.244 19.000 78.850 124 41.580 16.560 19.250 78.500 131
1 76.074 13.431 52.350 97.650 95 74.506 11.751 54.000 93.000 81
ULO1 0 44.862 19.341 19.000 87.000 138 46.712 20.630 20.000 88.950 163
1 77.168 14.279  48.000 97.500 101 72.649 13.940  48.825 93.525 74
UL02 0 47.139 21.387 19.000 90.275 144 43.347 18.730 20.000 80.925 124
1 74.350 13.854  50.000 97.075 80 67.463 17.269 29.350 92.000 95
RDO1 0 53.299 22.984 19.000 94.350 187 50.244 20.991 20.000 89.000 193
1 76.889 15.280  49.300 98.800 45 76.775 13.383 52.900 96.000 40
RDO02 0 39.038 17.102 19.000 87.000 105 37.899 15.072 19.450 70.100 99
1 73.869 15.088  46.225 97.775 130 68.537 16.883 32.325 92.675 134
0Co1 0 40.756 16.883 19.000 82.050 119 36.266 13.362 19.000 66.900 109
1 74.510 14.105  50.000 97.000 102 67.760 15.683 34.850 92.525 100
0C02 0 34.548 13.924 19.000 64.775 84 36.809 14.250 19.000 73.375 110
1 69.951 16.174  42.575 96.425 144 68.592 15.608 34.400 92.900 125
0Co03 0 38.130 14.961 19.000 71.300 108 38.376 15.094 19.100 75.800 125
1 75.007 14.087  49.350 97.000 135 72.078 13.766  43.875 93.125 116
FMO1 0 49.886 22.443 19.000 94.150 158 43.881 18.031 19.975 82.075 160
1 74.037 14.735  48.000 96.000 81 75.705 12.085 55.000 94.150 78
FMO02 0 51.706 22.166 19.000 93.050 180 46.449 20.205 20.000 91.700 167
1 77.204 13.102  52.975 98.375 54 72.518 14.054  42.375 91.250 56
FMO03 0 40.724 15.623 19.000 73.000 123 39.985 15.124 19.275 74.175 132
1 75.510 13.818  51.150 97.850 104 72.191 14.530  43.200 93.800 89
FMo04 0 41.398 16.938 19.000 76.950 123 36.299 13.342 19.000 72.400 107
1 76.224 13.844  52.000 97.000 107 69.252 15.345  40.050 92.950 123
FMO05 0 44.208 19.827 19.000 88.550 130 42.453 17.192 19.725 80.550 150
1 74.943 14.312  48.600 97.000 105 74.364 13.255  49.000 93.825 88
TBO1 0 48.948 22.293 19.000 95.200 153 44.333 18.748 19.875 87.000 156
1 75.279 14.507  49.125 97.000 86 73.359 14.048  45.250 94.150 78
PTO1 0 44.585 19.535 19.000 88.650 135 42.986 18.674 19.500 86.000 141
1 74.477 14.025  49.175 97.000 88 70.133 13.325  47.550 92.300 75
PTO02 0 38.633 15.383 19.000 76.200 109 42.816 18.835 19.375 86.250 136
1 73.404 14.380  47.350 97.550 99 68.609 13.991 41.800 92.000 69
CLNO1 0 37.416 15.308 19.000 81.000 101 38.738 15.194 19.125 74.625 126
1 72.358 14.674  46.000 97.300 109 71.760 14.042  41.475 92.000 100
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Table B.3 Descriptive age-related statistics for joint and musculoskeletal degenerative traits. Pooled sexes.

Left Right
Trait Stage mean(y) sd(y) Qo025(y)  Qoors (¥) n mean(y) sd(y) Qo.025(y)  Qoors (¥) n
SCo1 0 36.257 13.088 19.000 68.325 210 36.877 13.784 19.000 73.450 212
1 72.850 15.000  43.000 96.200 273 72.514 15.089  43.000 96.125 276
HMO1 0 40.479 17.469 19.000 86.925 242 41.075 18.473 19.000 88.000 240
1 73.063 14.660  43.000 96.100 237 72.214 14.212  45.475 96.000 234
HMO02 0 40.954 16.469 19.000 77.000 237 39.119 15.243 19.000 73.100 219
1 73.563 15.692  37.925 97.000 238 71.728 16.075 37.225 96.000 250
HMO03 0 46.479 19.780 19.025 87.000 282 43.528 18.457 19.000 85.000 252
1 74.115 16.033  42.000 97.000 182 72.807 15.514  43.000 96.975 202
HMO04 0 51.355 21.854 19.475 92.525 380 50.723 21.786 19.000 92.000 361
1 76.844 13.435  49.375 96.625 96 75.546 13.974  48.350 97.000 108
HMO05 0 45.187 18.427 19.000 84.550 299 45.134 18.703 19.000 85.000 291
1 77.705 12.681 52.450 97.550 139 77.225 13.177  50.525 97.000 142
HMO06 0 42.887 16.992 19.000 80.400 274 41.259 16.378 19.000 79.000 255
1 77.398 12.315  54.000 97.875 166 75.352 12.674 53.000 97.000 176
ULO1 0 47.096 20.682 19.000 90.400 313 45.864 20.037 19.000 88.500 301
1 75.167 14.072  48.025 96.975 162 75.257 14.273  48.000 97.000 175
ULO02 0 45.872 21.025 19.000 89.525 274 45.384 20.253 19.000 87.000 268
1 71.451 15.478  43.000 95.000 175 70.611 16.127  35.850 95.650 175
RDO1 0 51.966 22.181 19.525 92.000 382 51.747 22.018 19.475 92.000 380
1 75.655 14.585  49.075 96.925 84 76.835 14.333  49.300 97.000 85
RDO02 0 37.406 14.969 19.000 75.700 207 38.485 16.119 19.000 84.325 204
1 71.294 16.135  37.700 96.300 269 71.163 16.215 37.575 96.425 264
0Co1 0 39.453 16.142 19.000 79.225 232 38.610 15.433 19.000 79.325 228
1 70.766 15.778 40.000 96.000 201 71.168 15.250  42.025 96.000 202
0C02 0 36.477 14.771 19.000 74.400 193 35.830 14.118 19.000 72.350 194
1 69.132 16.417  37.800 96.000 273 69.320 15.898 38.700 95.300 269
0Co03 0 37.196 13.691 19.000 70.425 224 38.262 15.001 19.000 74.400 233
1 73.157 14.313  48.000 96.500 261 73.653 13.989  48.000 96.000 251
FMO1 0 47.238 20.634 19.000 89.000 324 46.865 20.532 19.000 89.225 318
1 75.051 13.395  52.000 96.125 156 74.855 13.484 51.800 96.000 159
FMO02 0 48.758 21.276 19.000 92.000 339 49.176 21.377 19.000 92.000 347
1 74.819 13.006  49.000 95.125 116 74.818 13.736  47.350 95.000 110
FMO03 0 40.138 15.242 19.000 72.700 253 40.341 15.341 19.000 73.650 255
1 74.472 13.725  50.000 97.000 195 73.979 14.211 48.800 96.200 193
FMo04 0 38.688 14.630 19.000 74.000 234 39.026 15.548 19.000 76.000 230
1 72.536 14.993  41.525 96.000 222 72.496 15.043  42.725 96.000 230
FMO05 0 43.550 18.927 19.000 88.000 278 43.268 18.449 19.000 85.050 280
1 74.071 14.228  45.000 97.000 198 74.679 13.807  48.800 96.000 193
TBO1 0 46.377 20.572 19.000 89.000 305 46.618 20.676 19.000 89.600 309
1 74.041 14.508  46.400 96.800 169 74.366 14.279  46.150 96.000 164
PTO1 0 44.241 19.005 19.000 87.000 286 43.768 19.082 19.000 87.125 276
1 73.224 14.049  47.750 96.125 156 72.479 13.836  48.050 96.000 163
PTO02 0 39.929 16.178 19.000 79.025 240 40.955 17.475 19.000 84.000 245
1 72.140 14.747  45.000 96.750 171 71.435 14.375  45.000 95.825 168
CLNO1 0 38.379 15.574 19.000 76.350 227 38.150 15.225 19.000 77.050 227
1 72.486 14.382  45.000 96.000 216 72.072 14.344  45.000 96.000 209
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Table B.4 Descriptive age-related statistics for standard skeletal markers. Left side.

Female Male

Trait Stage mean(y) sd(y) Qoo25(y)  Qoors () n mean(y)  sd(y) Qooz2s(y)  Qoors (¥) n

CLVO1 0 21.880 2.438 19.000 26.400 25 23.324 3.245 19.000 29.175 34
1 43.110 12.275  26.000 74.000 82 41.976 10.272  27.025 64.000 82
2 75.293 13.772  50.100 97.000 123 72.636 12.660  50.000 93.075 118
CLVO02 0 36.220 14.627  19.000 73.000 91 37.536 15.612  19.000 73.000 97
1 70.991 16.270  41.550 97.150 115  68.565 16.848  32.000 93.150 115
RB101 0 25.057 6.131 19.000 40.750 35 23.258 3.473 19.000 30.000 31
1 56.352 18.062  28.100 91.600 125  49.777 16.303  26.000 83.000 121
2 80.588 11.810  57.250 97.750 51 77.246 11.679  55.000 95.000 61
RB102 0 36.077 13.373  19.000 71.500 91 32.878 10.697  19.000 54.975 82
1 71.500 15.472  42.900 96.025 120  67.713 15.697  38.850 93.150 115
PSY01 0 24.258 5.698 19.000 38.000 31 25.029 4.783 19.000 34.525 34
1 57.674 19.212  27.350 94.600 135  54.333 16.131  29.000 87.000 117
2 78.605 13.347  54.625 97.075 38 74.556 13.093  52.300 92.900 45
PSY02 0 27.175 9.337 19.000 47.375 40 29.353 8.946 19.000 52.000 51
1 58.871 18.693  29.000 94.900 132 57.830 16.236  31.550 88.225 112
2 80.063 12.536  53.875 95.675 32 75.914 11.184  56.700 93.450 35
PSY03 0 24.516 8.213 19.000 44.000 31 25.333 6.697 19.000 40.300 30
1 49.732 17.152  27.000 86.925 82 51.521 16.647  27.375 85.500 96
2 71.955 15.784  39.700 97.650 88 70.776 14.153  43.000 93.350 67
TAS01 0 30.417 9.977 19.000 50.575 60 28.759 8.452 19.000 48.675 54
1 54.017 16.008  30.850 81.000 58 48.754 15.604  26.000 82.400 69
2 75.195 15.073  51.850 98.000 118 70.770 14.321  41.950 92.525 100
TAS02 0 36.915 15.195 19.000 80.025 94 35.697 13.807  19.000 69.000 99
1 72.534 15.979  41.250 97.375 146 67.169 16.222  34.450 92.000 130
SAS01 0 46.647 19.177 19.000 85.550 150  43.925 18.517  19.625 84.250 146
1 77.136 13.530  51.625 96.375 66 71.162 13.585  47.050 92.325 68
SAS02 0 39.278 17.673  19.000 84.200 97 37.982 15.241 19.000 74.900 109
1 69.103 16.140  39.000 96.000 116  68.098 14.352  39.050 92.000 102
ACTO1 0 38.822 15.385 19.000 75.750 107 35.827 13.155 19.000 66.100 110
1 71.173 15.411  40.700 96.150 98 63.988 13.268  41.000 89.000 81
2 81.171 12.213  57.250 97.150 35 79.962 10.006  60.825 95.450 52
ACTO02 0 32.371 11.263  19.000 60.375 70 30.764 9.226 19.000 49.000 72
1 56.260 14.684  28.800 84.300 77 50.375 14.597  26.000 78.000 56
2 79.386 12.808  53.175 97.000 88 72.806 13.516  43.000 92.450 103
ACTO03 0 32.123 10.406  19.000 51.800 73 33.011 11.086  19.000 60.000 92
1 60.547 15.834  32.400 92.000 75 60.651 14.630  36.050 87.000 83
2 80.074 12.631  53.650 96.675 54 79.150 11.437  52.950 96.000 40
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Table B.5 Descriptive age-related statistics for standard skeletal markers. Right side.

Female Male

Trait Stage mean(y) sd(y) Qo025(y)  Qoors () n mean(y) sd(y) Qoo25(y)  Qoors (¥) n

CLVO1 0 21.880 2.438 19.000 26.400 25 23.235 3.210 19.000 29.175 34

1 43.655 12.929  26.000 76.775 84 42.440 10.627  27.075 64.925 84
2 75.606 14.069  50.300 97.850 127 73.149 12.949  50.000 93.175 114
CLVO02 0 36.319 13.787 19.000 66.750 91 38.011 16.032  19.000 78.650 95
1 72.079 16.495  39.450 97.000 127 67.270 16.869  32.150 92.000 122
RB101 0 24.618 5.635 19.000 36.750 34 23.969 5.550 19.000 34.050 32
1 55.215 17.257 — 27.000 88.000 121 49.383 15.907  26.000 82.900 115
2 80.519 12.315  57.275 98.725 52 77.089 10.933  56.125 93.625 56
RB102 0 36.011 13.338 19.000 71.500 91 32.728 10.557  19.000 54.000 81
1 70.750 15.896  38.975 96.025 120 68.370 14.856  42.000 92.050 119
PSY01 0 23.724 5.257 19.000 38.000 29 25.152 4.777 19.000 34.600 33
1 55.909 18.380  27.275 89.725 132 54.844 16.460  28.025 87.000 122
2 78.432 13.932  50.375 96.850 44 76.356 13.023  52.300 92.900 45
PSY02 0 26.447 7.515 19.000 42.375 38 28.720 7.941 19.225 47.875 50
1 57.878 17.905  29.000 90.750 131 57.731 16.551  28.950 89.000 119
2 80.114 12.792  54.250 95.450 35 78.108 10.582  59.700 93.300 37
PSY03 0 24.379 8.248 19.000 43.100 29 26.033 7.554 19.000 46.100 30
1 48.825 16.949  26.975 88.075 80 51.253 17.502  26.450 85.200 99
2 71.489 15.703  39.000 95.000 92 71.414 14.498  43.000 93.275 70
TAS01 0 29.759 9.336 19.000 48.575 58 28.660 8.519 19.000 48.700 53
1 53.611 16.411  30.650 85.050 54 46.716 14.259  26.650 78.050 67
2 75.127 15.041  50.250 97.875 126 71.057 13.957  43.000 92.400 105
TAS02 0 36.600 15.420  19.000 80.325 90 36.158 14.486  19.000 74.000 101
1 72.693 16.107  41.450 97.275 150  67.256 15.801  37.200 92.000 129
SAS01 0 46.755 19.095 19.000 84.350 147 43.149 17.760  19.675 80.650 148
1 78.139 13.619  51.775 97.000 72 70.600 13.318  46.600 92.000 65
SAS02 0 40.214 18.239 19.000 84.150 98 38.464 15.948  19.000 78.125 112
1 70.133 16.017  42.900 96.025 120  66.620 14.559  38.475 92.000 100
ACTO1 0 39.066 15.972 19.000 79.750 106 35.352 12.777 19.000 65.650 108
1 70.392 15.267  41.100 93.425 102 65.241 13.859  41.150 88.850 87
2 82.677 12.381  56.750 97.250 31 79.415 10.521  60.000 94.000 41
ACTO02 0 31.971 11.024  19.000 57.650 68 30.808 9.169 19.000 49.000 73
1 55.343 14.726  28.450 85.100 70 50.519 14.573  26.000 77.450 52
2 77.875 14.028  46.125 97.000 96 72.268 14.182  41.800 92.000 97
ACTO03 0 31.890 10.303  19.000 51.800 73 33.011 11.086  19.000 60.000 92
1 61.190 15.087  36.800 88.200 79 60.358 14.671  36.000 87.000 81
2 81.296 11.871  55.325 99.025 54 78.412 11.779  52.650 96.000 34
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Table B.6 Descriptive age-related statistics for standard skeletal markers. Pooled sexes.

Left Right

Trait Stage mean(y) sd(y) Qoo25(y)  Qoors () n mean(y)  sd(y) Qooz2s(y)  Qoors (¥) n

CLVO1 0 22.712 2.995 19.000 28.550 59 22.661 2.963 19.000 28.550 59
1 42.543 11.297  26.000 69.925 164  43.048 11.814  26.000 73.300 168
2 73.992 13.278  50.000 96.000 241 74.444 13.578  50.000 96.000 241
CLVO02 0 36.899 15.117  19.000 74.325 188  37.183 14.959  19.000 76.125 186
1 69.778 16.570  38.000 96.000 230  69.723 16.819  38.000 96.000 249
RB101 0 24.212 5.104 19.000 36.875 66 24.303 5.561 19.000 38.750 66
1 53.118 17.497  27.000 88.000 246 52.373 16.833  26.875 88.000 236
2 78.768 11.805  55.000 97.000 112 78.741 11.692  56.350 97.325 108
RB102 0 34.561 12.249 19.000 63.700 173 34.465 12.185  19.000 63.725 172
1 69.647 15.664  39.000 96.000 235 69.565 15.401  41.850 95.000 239
PSY01 0 24.662 5.212 19.000 38.000 65 24.484 5.017 19.000 37.475 62
1 56.123 17.891  28.275 89.725 252 55.398 17.458  27.325 89.000 254
2 76.410 13.285  52.150 95.950 83 77.382 13.444  50.400 95.800 89
PSY02 0 28.396 9.133 19.000 52.000 91 27.739 7.798 19.000 46.475 88
1 58.393 17.580  29.000 90.925 244 57.808 17.239 29.000 89.775 250
2 77.896 11.942  55.000 95.350 67 79.083 11.669  55.775 95.225 72
PSY03 0 24.918 7.455 19.000 43.500 61 25.220 7.879 19.000 47.200 59
1 50.697 16.857  27.000 87.000 178 50.168 17.252  26.450 87.550 179
2 71.445 15.064  42.400 96.000 155  71.457 15.148  39.100 94.975 162
TAS01 0 29.632 9.282 19.000 49.000 114 29.234 8.932 19.000 49.000 111
1 51.157 15.946  27.150 81.000 127 49.793 15.577  28.000 81.000 121
2 73.165 14.864  43.000 96.575 218  73.277 14.668  44.500 97.000 231
TAS02 0 36.290 14.474  19.000 74.600 193  36.366 14.895  19.000 77.250 191
1 70.007 16.287  38.875 96.000 276 70.179 16.168  39.000 96.050 279
SAS01 0 45.304 18.872 19.000 86.250 296  44.946 18.495  19.000 83.650 295
1 74.104 13.836  49.650 96.000 134  74.562 13.949  49.800 96.000 137
SAS02 0 38.592 16.403  19.000 81.875 206 39.281 17.036  19.000 82.775 210
1 68.633 15.303  39.000 94.575 218  68.536 15.437 39.000 95.525 220
ACTO1 0 37.304 14.344  19.000 73.200 217 37.192 14.534  19.000 76.025 214
1 67.922 14.879  40.450 93.650 179  68.021 14.822  40.700 92.000 189
2 80.448 10.895  60.000 96.000 87 80.819 11.392  59.550 96.225 72
ACTO02 0 31.556 10.275 19.000 50.475 142 31.369 10.086  19.000 50.500 141
1 53.782 14.881  26.300 83.100 133  53.287 14.796  26.025 84.000 122
2 75.838 13.565  46.750 96.000 191 75.057 14.347  43.000 96.000 193
ACTO03 0 32.618 10.767  19.000 60.000 165  32.515 10.729  19.000 60.000 165
1 60.601 15.164  33.000 89.000 158 60.769 14.837  35.925 88.025 160
2 79.681 12.082  53.000 96.000 94 80.182 11.852  53.350 96.825 88
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Table B.7 Descriptive age-related statistics for cranial and palatine sutures.

Appendix B

Trait Stage mean(y) sd(y) Qo.025(¥) Qoors (v) n
Pooled CRSO1 0 41.836 20.943 19.000 90.025 134
1 62.409 20.469 24.050 94.000 323
CRSO02L 0 52.493 22.492 19.800 92.200 353
1 68.198 19.049 29.500 94.000 101
CRS02R 0 52.606 22.545 19.800 92.200 353
1 67.600 19.139 29.475 94.000 100
CRS03 0 47.855 22.310 19.000 90.300 235
1 66.567 19.626 28.150 96.000 247
CRS04L 0 42.057 21.076 19.000 88.000 174
1 65.981 19.102 28.675 96.000 308
CRS04R 0 41.263 20.667 19.000 87.750 171
1 66.370 18.955 29.000 96.000 311
CRS05 0 45.188 22.815 19.000 92.000 181
1 64.594 19.457 28.000 96.000 283
CRS06L 0 49.688 22.486 19.000 92.000 266
1 65.930 19.922 27.950 96.000 200
CRS06R 0 50.034 22.805 19.000 92.000 266
1 65.768 19.731 28.000 96.000 198

Male CRSO01 0 29.469 14.830 19.000 70.175 32
1 58.910 20.479 24.000 92.000 201
CRS02L 0 48.877 21.680 19.825 92.000 154
1 66.270 18.817 30.825 92.175 74
CRS02R 0 48.883 21.692 19.825 92.000 154
1 65.959 18.755 30.800 92.200 73
CRS03 0 46.330 22.338 19.000 87.000 106
1 63.030 19.188 28.275 92.725 132

CRS04L 0 37.333 18.008 19.000 87.000 78
1 64.204 18.476 29.000 92.000 162

CRS04R 0 36.853 18.066 19.000 87.000 75
1 63.933 18.475 29.000 92.000 165

CRS05 0 41.813 22.136 19.000 88.600 75
1 61.772 19.123 27.000 92.075 158
CRSO06L 0 48.229 21.766 19.250 88.000 131
1 63.693 19.541 29.500 92.500 101
CRS06R 0 48.362 21.818 19.225 88.000 130
1 63.673 19.544 29.500 92.500 101
Female CRSO01 0 45.716 21.128 19.000 91.475 102
1 68.172 19.181 28.025 95.000 122
CRSO02L 0 55.291 22.761 19.950 95.050 199
1 73.481 19.025 21.600 94.350 27
CRS02R 0 55.487 22.823 19.950 95.050 199
1 72.037 19.817 21.600 94.350 27
CRS03 0 49.109 22.296 19.000 91.600 129
1 70.626 19.415 28.850 98.150 115

CRS04L 0 45.896 22.647 19.000 91.625 96
1 67.952 19.649 29.250 98.000 146

CRS04R 0 44.708 21.972 19.000 91.625 96
1 69.123 19.175 30.625 98.000 146
CRS05 0 47.575 23.089 19.000 93.750 106
1 68.160 19.365 30.300 97.900 125
CRS06L 0 51.104 23.156 19.000 94.300 135
1 68.212 20.147 26.000 98.100 99
CRS06R 0 51.632 23.679 19.000 94.250 136
1 67.948 19.790 26.800 98.200 97
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Table B.8 Descriptive sex-specific age-related statistics vertebrae traits.

Appendix B

Female Male

Trait _Stage mean(y) sd(y) Qoo2s(y)  Qqozs (¥) n mean(y) sd(y) Qooz2s(y)  Qoozs (v) n
C3IS 0 38.447 15.259 19.000 77.850 103 36.477 13.591 19.000 67.100 107
1 68.662 14.072  44.825 92.700 74 65.014 14.297  38.000 90.600 73

2 84.457 10.538  60.250 99.875 46 78.047 10.576  60.000 93.900 43
C4SS 0 37.010 13.903 19.000 68.125 96 36.135 13.330 19.000 65.850 104
1 66.600 14.294  38.950 92.000 80 65.139 15.425 37.750 90.100 79

2 86.286 8.715 69.600 99.800 49 77.044 11.909 55.100 95.800 45
CA4IS 0 35.728 12.708 19.000 64.725 92 35.868 12.448 19.000 64.375 106
1 67.273 13.997 44.900 94.400 77 63.466 13.498  38.000 90.400 73

2 83.143 12.615 51.125 98.625 56 80.167 10.680  56.400 95.650 48
C5SS 0 34.565 12.182 19.000 63.800 85 35.904 13.112 19.000 65.850 104
1 65.195 15.256  38.800 97.100 77 61.492 13.670  38.000 87.800 65

2 82.385 12.441 50.000 98.400 65 78.476 11.150  55.000 94.900 63

C5IS 0 33.694 10.670 19.000 54.800 85 33.711 10.699 19.000 56.600 97
1 64.750 14.163  44.475 94.625 60 61.393 13.157  38.750 82.250 56

2 80.012 13.462  50.000 98.900 85 75.538 12.679  49.875 94.050 80

C6SS 0 34.195 11.058 19.000 53.850 87 33.306 10.422 19.000 55.575 98
1 63.873 13.675  40.750 90.950 55 60.200 13.586  38.000 82.300 55

2 80.154 13.159  50.000 98.750 91 75.488 12.221 51.100 92.975 82

C6IS 0 35.717 12.555 19.000 64.175 92 33.327 10.815 19.000 55.575 98
1 63.723 14.893  38.050 97.100 47 60.478 12.956  38.250 80.750 46

2 79.185 13.180  48.550 97.725 92 73.758 13.313  48.750 92.750 91
C7SS 0 35.034 12.106 19.000 61.125 88 35.070 12.878 19.000 67.575 100
1 64.933 15.446  37.000 95.150 60 60.500 13.293  38.000 80.750 46

2 79.301 13.397  48.100 97.950 83 74.888 13.468  49.000 93.800 89

L1IS 0 38.113 13.759 19.000 65.750 106 34.602 12.256 19.000 62.875 98
1 66.694 15.023  38.050 92.375 62 61.859 13.366  38.750 89.250 71

2 82.684 10.163  61.400 97.600 57 78.526 11.296  54.000 95.200 57

L2SS 0 36.845 13.122 19.000 63.800 97 34.091 11.736 19.000 60.000 99
1 62.967 15.256  34.900 89.525 60 62.238 13.126  39.550 87.900 63

2 81.522 10.737  61.700 97.300 69 76.712 11.968  49.625 94.750 66

L2IS 0 37.089 12.872 19.000 63.500 101 32.968 10.296 19.000 56.000 95
1 63.877 14.159  37.800 91.200 57 61.333 12.700  39.625 90.125 66

2 81.939 10.877  57.625 97.375 66 77.597 11.176 ~ 53.250 94.700 67

L3SS 0 34.048 11.586 19.000 63.450 83 32.533 10.159 19.000 56.000 92
1 60.388 14.109  35.600 90.700 67 58.463 12.687  38.000 83.800 67

2 79.947 12.460  50.000 97.150 75 77.270 10.980  54.650 94.350 74

L3IS 0 35.415 11.854 19.000 61.075 94 33.371 10.592 19.000 56.000 97
1 63.766 13.151  41.300 92.125 64 60.377 12.832 38.000 84.200 69

2 81.328 10.897  56.300 97.350 67 78.197 10.876  55.000 94.750 66

L4SS 0 32.885 10.322 19.000 51.075 78 32.033 9.354 19.000 49.000 91
1 57.683 12.863  33.000 80.900 63 58.655 12.267  38.425 81.000 58

2 78.953 12.665  50.625 97.000 86 75.470 12.605 52.150 93.950 83

LA4IS 0 35.817 13.023 19.000 63.500 93 33.459 10.684 19.000 58.300 98
1 61.660 13.683  37.000 89.700 53 59.915 12.218  38.450 81.000 59

2 79.325 13.210  50.150 97.000 83 76.329 12.792  49.500 94.250 76

L5SS 0 32.938 10.475 19.000 51.050 80 33.085 10.639 19.000 58.700 94
1 56.882 13.046  33.000 79.000 51 59.018 12.118  38.375 81.000 56

2 77.284 13.564  50.000 97.000 95 74.556 13.276  46.000 93.000 81

S1SS 0 33.810 11.220 19.000 53.925 84 33.221 10.039 19.000 53.600 95
1 62.508 15.371 38.000 91.250 63 62.704 14.295 36.500 89.250 71

2 77.568 13.477  49.125 98.350 74 74.271 12.825  49.450 92.550 59

S1S2F 0 25.692 8.527 19.000 48.125 26 27.065 7.172 19.000 42.875 46
1 61.986 21.354  25.000 95.800 209 60.635 18.797  26.000 92.000 189
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Table B.9 Descriptive sex-specific age-related statistics vertebrae traits.

Appendix B

Trait Stage mean(y) sd(y) Qo025(y) Qoo7s (v) n
C3IS 0 37.443 14.432 19.000 T1.775 210
1 66.850 14.254 39.300 92.350 147

2 81.360 10.980 59.200 98.800 89
C48S 0 36.555 13.581 19.000 67.075 200
1 65.874 14.837 37.950 92.000 159

2 81.862 11.307 57.300 98.675 94
CA4IS 0 35.803 12.538 19.000 65.000 198
1 65.420 13.842 39.450 92.275 150
2 81.769 11.800 51.725 97.425 104
C5SS 0 35.302 12.686 19.000 65.000 189
1 63.500 14.618 38.000 92.000 142
2 80.461 11.939 50.525 97.000 128
C5IS 0 33.703 10.656 19.000 56.475 182
1 63.129 13.731 39.750 92.000 116
2 77.842 13.240 50.000 97.000 165
C6SS 0 33.724 10.706 19.000 55.400 185
1 62.036 13.693 38.000 89.825 110
2 77.942 12.900 50.000 97.000 173
C6IS 0 34.484 11.720 19.000 62.550 190
1 62.118 13.988 38.000 91.400 93
2 76.486 13.487 48.000 96.450 183
C7SS 0 35.053 12.489 19.000 66.975 188
1 63.009 14.651 37.000 91.375 106
2 77.017 13.576 48.000 96.725 172
L1IS 0 36.426 13.145 19.000 65.000 204
1 64.113 14.314 38.300 90.000 133
2 80.605 10.899 59.650 96.175 114
L2SS 0 35.454 12.486 19.000 62.375 196
1 62.593 14.151 38.000 89.000 123
2 79.170 11.567 55.700 96.650 135
L2IS 0 35.092 11.846 19.000 60.250 196
1 62.512 13.401 39.000 91.900 123
2 79.752 11.201 52.900 96.700 133
L3SS 0 33.251 10.854 19.000 58.600 175
1 59.425 13.401 37.325 89.675 134
2 78.617 11.785 51.400 96.300 149
L3IS 0 34.377 11.248 19.000 57.000 191
1 62.008 13.048 38.300 88.400 133
2 79.774 10.958 55.000 96.000 133
L4SS 0 32.426 9.792 19.000 50.800 169
1 58.149 12.538 33.000 81.000 121
2 77.243 12.718 50.400 96.000 169
LA4IS 0 34.607 11.907 19.000 60.250 191
1 60.741 12.903 37.000 84.350 112
2 77.893 13.058 49.800 96.050 159
L5SS 0 33.017 10.534 19.000 55.025 174
1 58.000 12.555 33.000 81.000 107
2 76.028 13.463 47.125 96.000 176
S1SS 0 33.497 10.584 19.000 54.550 179
1 62.612 14.755 38.000 89.675 134
2 76.105 13.244 49.300 96.700 133

S1S2F 0 26.569 7.658 19.000 47.225 72
1 61.344 20.166 26.000 95.000 398
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Age-related correlation analysis

Table B.10 Age-related correlation analysis for bilateral traits. Female individuals. Left side.

Stage
Trait p n Ve p-value n 0 1 2
sco1 0801  0.644 156.433 0.000 243 0.748 0539
HMO1 0.662  0.440 106.532 0.000 242 0405 0.488
HMO02 0.760  0.579 139.019 0.000 240 0.533  0.631
HMO3 0.659 0433 103.005 0.000 238 0.326 0571
HMO04 0446 0.199 47.187 0.000 237 0.048 0763
HMO5 0.688 0477 105.964 0.000 222 0.280  0.747
HMO6 0.769  0.592 134.327 0.000 227 0463  0.737
ULO1 0.616  0.380 90.479 0.000 238 0220 0.644
UL02 0551 0.304 68.479 0.000 225 0.161  0.607
RDO1 0402 0.161 37.271 0.000 232 0.038 0641
RD02 0.744  0.559 131.854 0.000 236 0.615  0.498
0Co1 0.740  0.543 119.454 0.000 220 0452 0.648
0C02 0.738 0537 122.532 0.000 228 0.708  0.380
0C03 0.805  0.650 157.251 0.000 242 0.726 0570
FMO1 0470 0.223 53.580 0.000 240 0102 0532
FMO2 0464 0216 49.284 0.000 228 0.070  0.674
FMO3 0.768 0578 133.027 0.000 230 0497 0671
FMO4 0.767  0.582 131.527 0.000 226 0.504  0.667
FMO5 0.649 0424 100.151 0.000 236 0313 0.586
TBOI 0550  0.304 72.861 0.000 240 0172 0.562
PTO1 0.631  0.395 88.961 0.000 225 0.231  0.652
PT02 0.791 0611 125.906 0.000 206 0.612 0610
CLNO1 0.769  0.589 124.944 0.000 212 0.595 0583
CLVO1 0.841 0712 163.679 0.000 230 0.996 0599 0613
CLV02 0.753 0554 114.137 0.000 206 0.640 0473
RB101 0.748 0568 119.932 0.000 211 0.965  0.001  0.802
RB102 0.774 0593 125.112 0.000 211 0.696  0.496
PSYO1 0.678 0472 96.293 0.000 204 0.971 0004  0.738
PSY02 0.703 0494 100.862 0.000 204 0.907 0024 0792
PSY03 0.730  0.542 109.003 0.000 201 0937 0105 0521
TASO1 0.786  0.634 149.525 0.000 236 0.890 0077 0550
TAS02 0.739 0554 132.872 0.000 240 0.673 0434
SAS01 0624 0.390 84.199 0.000 216 0192 0713
SAS02 0.666  0.439 93.603 0.000 213 0.460 0417
ACTO1 0.756  0.585 140.516 0.000 240 0.616 0417  0.784
ACT02 0.828  0.687 161.416 0.000 235 0.838 0011 0742
ACT03 0.824 0681 137.628 0.000 202 0.836 0094  0.794
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Table B.11 Age-related correlation analysis for bilateral traits. Female individuals. Right side.

Stage
Trait P 772 X 2 p-value n 0 1 2
SCOo1 0.774 0.602 147.455 0.000 245 0.713 0.494
HMO1 0.605 0.366 87.196 0.000 238 0.298 0.475
HMO02 0.771 0.594 138.323 0.000 233 0.592 0.596
HMO03 0.703 0.493 114.269 0.000 232 0.419 0.578
HMO04 0.458 0.210 49.385 0.000 235 0.054 0.742
HMO05 0.704 0.506 110.222 0.000 218 0.306 0.760
HMO06 0.762 0.574 125.623 0.000 219 0.470 0.689
ULO01 0.679 0.459 109.784 0.000 239 0.334 0.633
ULO02 0.567 0.321 71.892 0.000 224 0.172 0.618
RDO1 0.396 0.157 36.381 0.000 232 0.038 0.613
RDO02 0.732 0.541 127.140 0.000 235 0.562 0.517
0Co01 0.737 0.538 118.903 0.000 221 0.462 0.626
0C02 0.749 0.554 126.349 0.000 228 0.723 0.396
0Co03 0.784 0.618 150.054 0.000 243 0.654 0.577
FMO1 0.494 0.245 58.465 0.000 239 0.118 0.543
FMO02 0.466 0.218 50.941 0.000 234 0.066 0.695
FMO03 0.767 0.580 131.589 0.000 227 0.512 0.653
FM04 0.749 0.556 127.990 0.000 230 0.480 0.646
FMO05 0.657 0.432 101.623 0.000 235 0.326 0.588
TBO1 0.538 0.290 69.321 0.000 239 0.154 0.577
PTO1 0.645 0.411 91.627 0.000 223 0.269 0.627
PTO2 0.766 0.578 120.195 0.000 208 0.539 0.619
CLNO1 0.766 0.578 121.428 0.000 210 0.586 0.570
CLVO01 0.831 0.696 164.263 0.000 236 0.996 0.573 0.597
CLV02 0.757 0.569 124.003 0.000 218 0.698 0.452
RB101 0.766 0.593 122.670 0.000 207 0.971 0.006 0.794
RB102 0.765 0.575 121.416 0.000 211 0.689 0.473
PSYo1 0.693 0.495 101.502 0.000 205 0.975 0.000 0.723
PSY02 0.718 0.523 106.608 0.000 204 0.940 0.013 0.788
PSY03 0.729 0.540 108.490 0.000 201 0.937 0.142 0.506
IASO1 0.784 0.638 151.953 0.000 238 0.910 0.105 0.531
TAS02 0.733 0.551 132.135 0.000 240 0.684 0.415
SASO1 0.647 0.418 91.440 0.000 219 0.227 0.708
SAS02 0.659 0.435 94.765 0.000 218 0.452 0.416
ACTO1 0.750 0.569 136.014 0.000 239 0.589 0.396 0.803
ACTO02 0.816 0.669 156.542 0.000 234 0.848 0.027 0.674
ACTO03 0.837 0.706 145.539 0.000 206 0.848 0.104 0.821
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Table B.12 Age-related correlation analysis for bilateral traits. Male individuals. Left side.

Stage
Trait P 772 X 2 p-value n 0 1 2
SCOo1 0.769 0.600 143.922 0.000 240 0.677 0.526
HMO1 0.757 0.578 136.994 0.000 237 0.530 0.627
HMO02 0.666 0.448 105.232 0.000 235 0.460 0.435
HMO03 0.513 0.264 59.596 0.000 226 0.148 0.471
HMO04 0.453 0.211 50.311 0.000 239 0.060 0.661
HMO05 0.637 0.416 89.761 0.000 216 0.199 0.768
HMO06 0.691 0.483 102.793 0.000 213 0.277 0.778
ULO01 0.528 0.285 67.564 0.000 237 0.126 0.620
ULO02 0.558 0.312 69.873 0.000 224 0.222 0.442
RDO1 0.390 0.155 36.321 0.000 234 0.033 0.645
RDO02 0.720 0.520 124.865 0.000 240 0.632 0.424
0Co01 0.683 0.459 97.802 0.000 213 0.459 0.459
0C02 0.695 0.485 115.466 0.000 238 0.549 0.426
0Co03 0.766 0.590 143.453 0.000 243 0.600 0.581
FMO1 0.680 0.472 113.199 0.000 240 0.257 0.778
FMO02 0.550 0.303 68.868 0.000 227 0.117 0.712
FMO03 0.753 0.576 125.539 0.000 218 0.483 0.666
FM04 0.762 0.581 133.688 0.000 230 0.652 0.519
FMO05 0.667 0.448 107.511 0.000 240 0.307 0.639
TBO1 0.608 0.374 87.428 0.000 234 0.205 0.641
PTO1 0.622 0.388 84.101 0.000 217 0.222 0.649
PTO2 0.632 0.408 83.592 0.000 205 0.246 0.624
CLNO1 0.731 0.540 124.756 0.000 231 0.476 0.608
CLVO01 0.872 0.754 176.423 0.000 234 0.990 0.609 0.669
CLV02 0.691 0.476 100.923 0.000 212 0.540 0.417
RB101 0.790 0.614 130.848 0.000 213 0.988 0.057 0.804
RB102 0.787 0.609 119.894 0.000 197 0.785 0.463
PSYo1 0.734 0.553 108.340 0.000 196 0.974 0.001 0.718
PSY02 0.751 0.568 112.552 0.000 198 0.883 0.062 0.803
PSY03 0.706 0.519 100.190 0.000 193 0.950 0.024 0.584
IASO1 0.787 0.613 136.725 0.000 223 0.899 0.095 0.587
IAS02 0.722 0.514 117.712 0.000 229 0.628 0.415
SASO1 0.599 0.357 76.321 0.000 214 0.180 0.655
SAS02 0.718 0.510 107.640 0.000 211 0.479 0.543
ACTO1 0.818 0.676 164.241 0.000 243 0.674 0.334 0.867
ACTO02 0.822 0.676 156.211 0.000 231 0.868 0.067 0.655
ACTO03 0.818 0.671 144.160 0.000 215 0.753 0.250 0.850
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Table B.13 Age-related correlation analysis for bilateral traits. Male individuals. Right side.

Stage
Trait P 772 X 2 p-value n 0 1 2
SCOo1 0.768 0.594 144.367 0.000 243 0.648 0.540
HMO1 0.772 0.601 141.772 0.000 236 0.577 0.625
HMO02 0.679 0.461 108.839 0.000 236 0.543 0.386
HMO03 0.582 0.342 75.895 0.000 222 0.251 0.472
HMO04 0.471 0.227 53.004 0.000 234 0.081 0.609
HMO05 0.605 0.370 79.515 0.000 215 0.182 0.708
HMO06 0.732 0.537 113.944 0.000 212 0.368 0.752
ULO01 0.537 0.292 69.138 0.000 237 0.134 0.624
ULO02 0.550 0.305 66.862 0.000 219 0.239 0.387
RDO1 0.441 0.203 47.292 0.000 233 0.045 0.734
RDO02 0.684 0.470 109.603 0.000 233 0.580 0.375
0Co01 0.735 0.542 113.371 0.000 209 0.562 0.526
0C02 0.730 0.530 124.631 0.000 235 0.587 0.478
0Co03 0.757 0.577 139.118 0.000 241 0.538 0.619
FMO1 0.669 0.458 108.915 0.000 238 0.252 0.760
FMO02 0.512 0.266 59.322 0.000 223 0.096 0.663
FMO03 0.724 0.532 117.525 0.000 221 0.426 0.639
FM04 0.754 0.566 130.239 0.000 230 0.638 0.502
FMO05 0.694 0.488 116.075 0.000 238 0.322 0.700
TBO1 0.618 0.386 90.333 0.000 234 0.211 0.658
PTO1 0.605 0.368 79.496 0.000 216 0.204 0.642
PTO2 0.579 0.332 68.110 0.000 205 0.176 0.603
CLNO1 0.742 0.557 125.851 0.000 226 0.482 0.635
CLVO01 0.870 0.748 173.546 0.000 232 0.990 0.575 0.672
CLV02 0.667 0.438 95.118 0.000 217 0.516 0.368
RB101 0.797 0.626 127.144 0.000 203 0.966 0.050 0.831
RB102 0.802 0.637 127.308 0.000 200 0.803 0.488
PSYo01 0.732 0.549 109.836 0.000 200 0.975 0.000 0.737
PSY02 0.761 0.583 120.046 0.000 206 0.914 0.040 0.838
PSY03 0.695 0.496 98.633 0.000 199 0.936 0.034 0.579
TASO1 0.811 0.645 145.188 0.000 225 0.899 0.201 0.606
TAS02 0.719 0.509 116.961 0.000 230 0.594 0.429
SAS01 0.609 0.371 79.008 0.000 213 0.183 0.676
SAS02 0.686 0.460 97.465 0.000 212 0.412 0.513
ACTO1 0.808 0.661 156.091 0.000 236 0.683 0.399 0.857
ACTO02 0.818 0.666 147.885 0.000 222 0.862 0.042 0.638
ACTO03 0.809 0.654 135.430 0.000 207 0.731 0.284 0.846
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Table B.14 Age-related correlation analysis for bilateral traits. Left side. Pooled sexes.

Stage
Trait P 772 X 2 p-value n 0 1 2
SCOo1 0.786 0.621 299.937 0.000 483 0.715 0.530
HMO1 0.711 0.506 242.225 0.000 479 0.461 0.559
HMO02 0.711 0.508 241.233 0.000 475 0.497 0.519
HMO03 0.592 0.351 162.690 0.000 464 0.232 0.525
HMO04 0.447 0.201 95.583 0.000 476 0.053 0.699
HMO05 0.664 0.448 196.437 0.000 438 0.239 0.755
HMO06 0.734 0.542 238.675 0.000 440 0.371 0.754
ULO01 0.579 0.337 160.169 0.000 475 0.177 0.635
ULO02 0.549 0.301 135.090 0.000 449 0.184 0.506
RDO1 0.398 0.159 73.872 0.000 466 0.036 0.642
RDO02 0.731 0.537 255.505 0.000 476 0.622 0.456
0Co01 0.703 0.490 212.101 0.000 433 0.449 0.532
0C02 0.719 0.511 238.305 0.000 466 0.628 0.405
0Co03 0.788 0.621 301.273 0.000 485 0.667 0.575
FMO1 0.574 0.330 158.438 0.000 480 0.161 0.664
FMO02 0.504 0.254 115.543 0.000 455 0.089 0.692
FMO03 0.761 0.577 258.586 0.000 448 0.491 0.667
FM04 0.754 0.567 258.688 0.000 456 0.560 0.574
FMO05 0.660 0.436 207.728 0.000 476 0.311 0.612
TBO1 0.581 0.337 159.556 0.000 474 0.187 0.602
PTO1 0.624 0.388 171.659 0.000 442 0.225 0.642
PTO2 0.714 0.510 209.626 0.000 411 0.408 0.621
CLNO1 0.750 0.565 250.121 0.000 443 0.534 0.597
CLVO01 0.856 0.731 339.234 0.000 464 0.992 0.601 0.639
CLV02 0.721 0.514 214.975 0.000 418 0.590 0.444
RB101 0.763 0.579 245.401 0.000 424 0.974 0.017 0.798
RB102 0.777 0.596 243.084 0.000 408 0.732 0.475
PSYo01 0.701 0.504 201.663 0.000 400 0.972 0.003 0.720
PSY02 0.725 0.527 211.667 0.000 402 0.895 0.039 0.791
PSY03 0.720 0.531 209.330 0.000 394 0.943 0.058 0.549
IASO1 0.786 0.620 284.625 0.000 459 0.893 0.094 0.565
TAS02 0.732 0.533 249.933 0.000 469 0.654 0.421
SAS01 0.607 0.370 158.909 0.000 430 0.185 0.674
SAS02 0.694 0.474 201.072 0.000 424 0.471 0.478
ACTO1 0.782 0.620 299.271 0.000 483 0.641 0.375 0.831
ACTO02 0.818 0.670 312.293 0.000 466 0.851 0.023 0.681
ACTO03 0.823 0.677 282.515 0.000 417 0.796 0.167 0.822
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Table B.15 Age-related correlation analysis for bilateral traits. Right side. Pooled sexes.

Stage
Trait P 772 X 2 p-value n 0 1 2
SCOo1 0.772 0.597 291.442 0.000 488 0.682 0.514
HMO1 0.687 0.472 223.630 0.000 474 0.410 0.553
HMO02 0.721 0.519 243.468 0.000 469 0.566 0.474
HMO03 0.646 0.418 189.732 0.000 454 0.333 0.524
HMO04 0.458 0.211 98.870 0.000 469 0.065 0.654
HMO05 0.658 0.438 189.810 0.000 433 0.241 0.730
HMO06 0.747 0.557 240.091 0.000 431 0.420 0.718
ULO01 0.616 0.380 180.950 0.000 476 0.226 0.630
ULO02 0.551 0.303 134.359 0.000 443 0.196 0.474
RDO1 0.420 0.179 83.074 0.000 465 0.042 0.674
RDO02 0.707 0.502 234.942 0.000 468 0.568 0.436
0Co01 0.730 0.530 227.769 0.000 430 0.497 0.563
0C02 0.744 0.543 251.609 0.000 463 0.656 0.439
0Co03 0.774 0.599 290.138 0.000 484 0.601 0.598
FMO1 0.581 0.338 161.419 0.000 477 0.172 0.658
FMO02 0.483 0.235 107.440 0.000 457 0.077 0.670
FMO03 0.747 0.558 249.884 0.000 448 0.473 0.646
FM04 0.740 0.546 251.094 0.000 460 0.538 0.554
FMO05 0.678 0.461 218.258 0.000 473 0.326 0.646
TBO1 0.579 0.333 157.714 0.000 473 0.178 0.619
PTO1 0.628 0.392 171.984 0.000 439 0.239 0.631
PTO2 0.680 0.459 189.666 0.000 413 0.336 0.614
CLNO1 0.755 0.568 247.703 0.000 436 0.534 0.604
CLVO01 0.851 0.721 337.241 0.000 468 0.993 0.571 0.633
CLV02 0.713 0.503 218.646 0.000 435 0.609 0.407
RB101 0.777 0.600 245.871 0.000 410 0.968 0.020 0.809
RB102 0.782 0.601 246.972 0.000 411 0.738 0.477
PSYO01 0.712 0.520 210.436 0.000 405 0.975 0.000 0.728
PSY02 0.740 0.551 225.873 0.000 410 0.926 0.024 0.811
PSY03 0.713 0.518 207.068 0.000 400 0.936 0.076 0.540
IASO1 0.798 0.636 294.683 0.000 463 0.904 0.161 0.565
TAS02 0.729 0.530 249.233 0.000 470 0.646 0.420
SAS01 0.624 0.392 169.545 0.000 432 0.206 0.679
SAS02 0.677 0.449 193.072 0.000 430 0.437 0.463
ACTO1 0.775 0.607 288.208 0.000 475 0.629 0.395 0.827
ACTO02 0.813 0.661 301.429 0.000 456 0.854 0.027 0.646
ACTO03 0.828 0.685 282.916 0.000 413 0.796 0.189 0.836
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Table B.16 Age-related correlation analysis for cranial and vertebrae traits. Female individuals.

Stage
Trait Y% 772 X ? p-value n 0 1 2
CRS01 0.487 0.238 53.353 0.000 224 0.253 0.223
CRS02L 0.257 0.066 14.833 0.000 226 0.009 0.424
CRS02R 0.232 0.054 12.278 0.000 226 0.007 0.360
CRS03 0.456 0.209 50.974 0.000 244 0.173 0.257
CRS04L 0.453 0.212 51.312 0.000 242 0.259 0.166
CRS04R 0.500 0.258 62.488 0.000 242 0.312 0.204
CRS05 0.437 0.192 44.285 0.000 231 0.190 0.193
CRSO06L 0.359 0.130 30.480 0.000 234 0.090 0.195
CRSO06R 0.339 0.117 27.359 0.000 233 0.077 0.190
C3IS 0.803 0.649 144.795 0.000 223 0.623 0.369 0.866
C4SS 0.834 0.696 156.630 0.000 225 0.702 0.256 0.913
C4IS 0.829 0.696 156.523 0.000 225 0.762 0.293 0.798
C588 0.824 0.690 156.663 0.000 227 0.798 0.157 0.787
C5IS 0.833 0.720 165.487 0.000 230 0.850 0.147 0.713
C6SS 0.839 0.725 168.983 0.000 233 0.837 0.108 0.720
C61S 0.820 0.687 158.590 0.000 231 0.773 0.103 0.709
C78S 0.809 0.676 156.252 0.000 231 0.795 0.142 0.705
L1IS 0.817 0.673 151.468 0.000 225 0.662 0.285 0.864
L2SS 0.827 0.685 154.888 0.000 226 0.713 0.118 0.836
L2IS 0.836 0.702 157.356 0.000 224 0.710 0.188 0.841
L3SS 0.838 0.702 157.969 0.000 225 0.802 0.050 0.772
L3IS 0.853 0.731 164.453 0.000 225 0.773 0.204 0.833
L4SS 0.854 0.730 165.736 0.000 227 0.849 0.001 0.749
L4IS 0.821 0.680 155.675 0.000 229 0.738 0.084 0.733
L5SS 0.843 0.712 161.011 0.000 226 0.842 0.000 0.694
S1SS 0.811 0.671 148.376 0.000 221 0.807 0.129 0.710
S1S2F 0.487 0.240 56.306 0.000 235 0.937 0.034
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Table B.17 Age-related correlation analysis for cranial and vertebrae traits. Male individuals.

Stage
Trait Y% 772 X ? p-value n 0 1 2
CRS01 0.465 0.209 48.640 0.000 233 0.752 0.038
CRS02L 0.369 0.134 30.541 0.000 228 0.064 0.283
CRS02R 0.362 0.129 29.330 0.000 227 0.061 0.279
CRS03 0.373 0.140 33.346 0.000 238 0.148 0.131
CRS04L 0.569 0.322 77.354 0.000 240 0.507 0.184
CRS04R 0.567 0.321 76.943 0.000 240 0.518 0.174
CRS05 0.423 0.178 41.432 0.000 233 0.275 0.102
CRSO06L 0.353 0.120 27.898 0.000 232 0.088 0.168
CRSO06R 0.348 0.118 27.259 0.000 231 0.087 0.164
C3IS 0.789 0.631 140.624 0.000 223 0.622 0.383 0.843
C4SS 0.772 0.608 138.648 0.000 228 0.651 0.335 0.789
C4IS 0.821 0.681 154.634 0.000 227 0.684 0.328 0.859
C588 0.814 0.668 155.079 0.000 232 0.673 0.204 0.823
C5IS 0.832 0.707 164.633 0.000 233 0.796 0.207 0.732
C6SS 0.838 0.715 168.100 0.000 235 0.804 0.160 0.752
C6IS 0.824 0.695 163.267 0.000 235 0.792 0.189 0.684
C78S 0.802 0.654 153.741 0.000 235 0.710 0.143 0.685
L1IS 0.824 0.688 155.536 0.000 226 0.722 0.248 0.825
L2SS 0.828 0.698 159.237 0.000 228 0.748 0.276 0.782
L2IS 0.855 0.743 169.353 0.000 228 0.813 0.238 0.815
L3SS 0.859 0.744 173.380 0.000 233 0.821 0.103 0.817
L3IS 0.854 0.736 170.777 0.000 232 0.796 0.193 0.832
L4SS 0.854 0.739 171.418 0.000 232 0.851 0.117 0.742
L4IS 0.843 0.718 167.187 0.000 233 0.791 0.185 0.753
L5SS 0.832 0.701 161.980 0.000 231 0.795 0.153 0.710
S1SS 0.815 0.679 152.809 0.000 225 0.802 0.306 0.731
S1S2F 0.627 0.378 88.718 0.000 235 0.935 0.109
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Table B.18 Age-related correlation analysis for cranial and vertebrae traits. Pooled sexes.

Stage
Trait Y% 772 X ? p-value n 0 1 2
CRS01 0.415 0.172 78.510 0.000 457 0.327 0.080
CRS02L 0.288 0.083 37.625 0.000 454 0.024 0.293
CRSO02R 0.275 0.075 34.104 0.000 453 0.021 0.273
CRS03 0.406 0.166 80.204 0.000 482 0.156 0.178
CRS04L 0.498 0.252 121.468 0.000 482 0.346 0.170
CRS04R 0.520 0.274 132.216 0.000 482 0.382 0.181
CRS05 0.413 0.172 79.702 0.000 464 0.213 0.132
CRSO06L 0.352 0.124 57.733 0.000 466 0.088 0.179
CRSO06R 0.339 0.116 53.741 0.000 464 0.080 0.174
C3IS 0.795 0.637 283.956 0.000 446 0.622 0.373 0.845
C4SS 0.802 0.649 293.865 0.000 453 0.679 0.298 0.838
C4IS 0.827 0.688 311.124 0.000 452 0.727 0.308 0.826
C588 0.821 0.678 311.263 0.000 459 0.739 0.182 0.801
C5IS 0.833 0.711 329.279 0.000 463 0.825 0.176 0.718
C6SS 0.839 0.718 336.159 0.000 468 0.823 0.132 0.731
C6IS 0.821 0.686 319.529 0.000 466 0.780 0.140 0.688
C78S 0.805 0.662 308.679 0.000 466 0.755 0.149 0.688
L1IS 0.818 0.674 303.793 0.000 451 0.685 0.256 0.840
L2SS 0.827 0.688 312.414 0.000 454 0.728 0.188 0.804
L2IS 0.844 0.716 323.583 0.000 452 0.752 0.207 0.823
L3SS 0.849 0.722 330.485 0.000 458 0.811 0.073 0.792
L3IS 0.853 0.731 333.932 0.000 457 0.782 0.194 0.830
L4SS 0.854 0.733 336.491 0.000 459 0.850 0.037 0.743
L4IS 0.832 0.697 321.825 0.000 462 0.762 0.127 0.742
L58S 0.839 0.707 322.872 0.000 457 0.820 0.041 0.702
S1SS 0.815 0.675 301.137 0.000 446 0.805 0.214 0.720
S1S2F 0.561 0.308 144.782 0.000 470 0.937 0.065
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Computational model assessment

Table C.1 Leave-one-out cross-validation for models built on pre-specified skeletal traits sets. Ensembled
deep randomized neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.245 0.655 0.953 68.120 51.782 69.796
(m=09) 95% Cl1 14.683 0.616 0.940 66.377 46.429 68.371
15.751 0.692 0.963 69.708 55.878 70.996
Axial Median 8.156 0.200 0.960 38.825 33.594 40.881
(m = 16) 95% Cl1 7.896 0.184 0.953 37.468 32.131 39.279
8.394 0.213 0.968 39.872 34.902 42.234
Appendicular Median 7.557 0.169 0.960 37.534 29.035 39.599
(m = 16) 95% Cl1 7.278 0.155 0.948 35.996 27.542 38.082
7.823 0.184 0.970 38.920 30.319 41.109
Clavicle Median 8.943 0.245 0.963 49.216 17.336 51.768
(m = 2) 95% Cl1 8.606 0.228 0.953 47.184 15.969 50.112
9.248 0.263 0.970 51.238 18.597 53.252
First rib Median 9.409 0.275 0.950 48.897 24.356 49.811
(m = 2) 95% Cl1 9.067 0.255 0.938 47.036 22.502 47.862
9.751 0.296 0.960 50.829 26.102 51.724
Pubic symphysis Median 10.898 0.370 0.932 51.113 27.029 57.040
(m = 3) 95% CI 10.436 0.343 0.922 48.668 24.616 54.949
11.315 0.398 0.945 53.003 29.217 58.909
Sacroiliac complex Median 8.438 0.220 0.950 44.765 20.350 48.037
(m = 4) 95% Cl1 8.075 0.200 0.940 42.461 18.607  46.091
8.741 0.239 0.960 46.755 21.893 49.800
Acetabulum Median 8.833 0.229 0.965 43.051 31.541 45.832
(m = 3) 95% Cl1 8.490 0.210 0.955 41.302 29.726 43.995
9.116 0.247 0.975 44,535 33.054 47.395
Degenerative traits Median 6.929 0.147 0.963 33.744 28.816 35.194
(m = 39) 95% CI 6.694 0.133 0.953 32.530 27.499 33.566
7.154 0.157 0.973 34.829 29.946 36.715
Standard Median 6.561 0.145 0.948 34.283 12.952 41.170
(m = 16) 95% Cl1 6.277 0.132 0.935 32.464 11.853 39.222
6.855 0.157 0.960 36.027 14.122 42.921
Full Median 5.899 0.118 0.950 30.057 15.558 36.141
(m = 64) 95% Cl1 5.677 0.110 0.940 28.758 14.403 34.644
6.121 0.127 0.963 31.485 16.668 37.620
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Table C.2 Leave-one-out cross-validation for models built on pre-specified skeletal traits sets. Ensembled

deep randomized neural network with conformal prediction regression uncertainty model.

Conformal Prediction

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.245 0.655 0.950 68.875 49.061 71.352
(m=9) 95% CI 14.683 0.616 0.950 66.402 43.918 68.759
15.751 0.692 0.950 71.000 53.319 73.771
Axial Median 8.156 0.200 0.950 37.171 33.938 38.585
(m = 16) 95% CI 7.896 0.184 0.950 35.662 32.376 36.846
8.394 0.213 0.953 39.232 35.124 41.247
Appendicular Median 7.557 0.169 0.950 35.931 29.751 39.105
(m = 16) 95% CI 7.278 0.155 0.950 34.141 28.298 36.976
7.823 0.184 0.950 37.521 31.194 41.038
Clavicle Median 8.943 0.245 0.950 44.947 16.556 50.739
(m =2) 95% CI 8.606 0.228 0.950 42.173 15.355 47.908
9.248 0.263 0.958 47.518 17.886 53.025
First rib Median 9.409 0.275 0.953 48.631 24.411 52.194
(m =2) 95% CI 9.067 0.255 0.950 46.011 22.362 50.048
9.751 0.296 0.958 50.585 26.334 53.906
Pubic symphysis Median 10.898 0.370 0.953 53.814 27.707 62.436
(m = 3) 95% CI 10.436 0.343 0.948 51.151 25.107 59.714
11.315 0.398 0.963 55.553 29.902 64.387
Sacroiliac complex Median 8.438 0.220 0.950 44.238 20.694 49.290
(m =4) 95% CI 8.075 0.200 0.950 41.626 18.741 47.493
8.741 0.239 0.953 47.091 22.445 52.320
Acetabulum Median 8.833 0.229 0.950 40.223 31.121 44.259
(m = 3) 95% CI 8.490 0.210 0.950 38.257 29.463 41.867
9.116 0.247 0.953 42.034 32.687 46.304
Degenerative traits Median 6.929 0.147 0.950 32.126 29.464 33.763
(m = 39) 95% CI 6.694 0.133 0.950 30.667 28.096 31.766
7.154 0.157 0.953 33.471 30.717 35.619
Standard Median 6.561 0.145 0.950 34.142 13.397 43.611
(m = 16) 95% CI 6.277 0.132 0.950 32.354 12.340 41.685
6.855 0.157 0.950 35.794 14.618 45.507
Full Median 5.899 0.118 0.950 29.471 16.316 37.617
(m = 64) 95% CI 5.677 0.110 0.950 27.857 15.076 35.629
6.121 0.127 0.950 31.004 17.534 39.204
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Table C.3 Leave-one-out cross-validation for models built on different fractions of available skeletal traits.

Ensembled deep randomized neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B, P(x) PIW PIW 95%CI

90% Median 5.942 0.121 0.953 30.276 15.745 36.278
(m~57) 95% Cl 5.699 0.110 0.940 28.748 14.339 34.599
6.198 0.131 0.965 31.797 18.048 37.772

80% Median 5.970 0.122 0.953 30.476 15.941 36.332
(m~51) 95% Cl1 5.702 0.108 0.940 28.860 14.162 34.574
6.235 0.132 0.965 31.963 18.470 37.938

70% Median 6.028 0.124 0.953 30.711 16.182 36.518
(m ~ 44) 95% Cl 5.737 0.108 0.938 28.960 14.013 34.697
6.376 0.137 0.965 32.583 19.643 38.435

60% Median 6.078 0.125 0.953 30.975 16.342 36.716
(m ~ 38) 95% CI 5.768 0.108 0.938 29.070 13.872 34.756
6.441 0.140 0.965 33.017 20.569 38.732

50% Median 6.173 0.128 0.953 31.502 16.684 37.040
(m ~ 32) 95% Cl 5.819 0.111 0.938 29.410 13.724 34.989
6.648 0.146 0.968 33.900 22.110 39.305

40% Median 6.305 0.132 0.953 32.146 17.153 37.511
(m ~ 25) 95% CI 5.903 0.114 0.935 29.839 13.905 35.130
6.797 0.153 0.968 34.565 23.287 40.214

30% Median 6.501 0.138 0.953 33.097 17.923 38.203
(m ~ 19) 95% CI 6.046 0.118 0.935 30.583 13.899 35.468
7.096 0.163 0.965 35.986 25.377 40.943

20% Median 6.957 0.154 0.953 35.321 19.986 39.742
(m ~ 12) 95% CI 6.316 0.127 0.935 32.096 14.117 36.479
7.674 0.184 0.968 38.931 28.768 43.707

10% Median 7.952 0.192 0.955 39.733 26.846 43.076
(m ~ 6) 95% Cl1 6.968 0.154 0.940 35.229 15.515 38.419
9.214 0.256 0.973 46.437 34.087 49.551
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Table C.4 Leave-one-out cross-validation for models built on different fractions of available skeletal traits.
Ensembled deep randomized neural network with conformal prediction regression uncertainty model.

Conformal Prediction

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B, P(x) PIW PIW 95%CI

90% Median 5.942 0.121 0.950 29.601 16.510  37.581
(m~57) 95% CI 5.699 0.110 0.950 27.753  15.032  35.563
6.198 0.131 0.950 31.570  18.860  39.823

80% Median 5.970 0.122 0.950 29.798  16.694  37.668
(m~51) 95% CI 5.702 0.108 0.950 27.990  14.920  35.535
6.235 0.132 0.950 31.590  19.326  39.776

70% Median 6.028 0.124 0.950 30.003  16.914  37.823
(m ~ 44) 95% CI 5.737 0.108 0.950 28.075  14.738  35.561
6.376 0.137 0.950 32114  20.557  40.405

60% Median 6.078 0.125 0.950 30.278  17.128  38.025
(m = 38) 95% CI 5.768 0.108 0.950 28.188  14.560  35.652
6.441 0.140 0.950 32.774 21483  40.739

50% Median 6.173 0.128 0.950 30.812 17440  38.352
(m = 32) 95% CI 5.819 0.111 0.950 28521  14.304  35.647
6.648 0.146 0.950 33.287  23.025  41.491

40% Median 6.305 0.132 0.950 31.448  17.841  38.889
(m = 25) 95% CI 5.903 0.114 0.950 28.960  14.420  35.674
6.797 0.153 0.950 34142 24.051 42231

30% Median 6.501 0.138 0.950 32418 18.662  39.584
(m ~ 19) 95% CI 6.046 0.118 0.950 29.520  14.345  36.119
7.096 0.163 0.950 35.162  26.031  43.309

20% Median 6.957 0.154 0.950 34.370  20.500  41.038
(m ~ 12) 95% CI 6.316 0.127 0.950 30.927  14.348  36.011
7.674 0.184 0.950 37.852  29.314  45.647

10% Median 7.952 0.192 0.950 38472 27.257  43.532
(m ~ 6) 95% CI 6.968 0.154 0.950 34.134 15510  37.887
9.214 0.256 0.953 45.233  34.819  50.951
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Table C.5 Leave-one-out cross-validation for models built on pre-specified skeletal traits sets. Deep

supervised autoencoder neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.212 0.420 0.935 63.254 41.679 69.192
(m=9) 95% CI 14.441 0.386 0.922 61.130 38.004 67.221
15.849 0.452 0.950 65.373 45.298 70.715
Axial Median 7.952 0.107 0.948 36.885 31.182 39.611
(m = 16) 95% Cl1 7.672 0.098 0.938 35.390 29.738 37.998
8.219 0.115 0.958 38.212 32.462 41.199
Appendicular Median 7.482 0.095 0.955 36.240 27.542 38.927
(m = 16) 95% Cl 7.168 0.087 0.943 34.711 26.168 36.962
7.771 0.102 0.968 37.757 28.804 40.691
Clavicle Median 9.087 0.144 0.955 48.944 16.148 49.652
(m =2) 95% CI 8.722 0.132 0.948 47.065 14.905 48.265
9.439 0.155 0.965 50.484 17.400 51.137
First rib Median 9.577 0.163 0.948 47.030 21.697 49.514
(m = 2) 95% Cl 9.197 0.150 0.938 45.454 20.240 47.667
9.925 0.175 0.960 48.516 23.141 51.258
Pubic symphysis Median 11.407 0.225 0.940 53.778 27.069 56.562
(m = 3) 95% Cl1 10.870 0.207 0.927 51.190 24.896 54.734
11.873 0.243 0.958 55.933 29.216 58.294
Sacroiliac complex Median 8.288 0.125 0.932 43.828 17.542 46.645
(m = 4) 95% CI 7.936 0.115 0.920 41.767 16.001 44.883
8.642 0.136 0.948 45.615 19.008 48.377
Acetabulum Median 8.705 0.129 0.950 41.210 28.603 45.112
(m = 3) 95% CI 8.396 0.119 0.943 39.642 26.936 43.423
9.005 0.139 0.958 42.654 30.032 46.666
Degenerative traits Median 6.695 0.075 0.949 32.304 26.748 33.958
(m = 39) 95% Cl1 6.430 0.069 0.935 31.101 25.380 32.186
6.957 0.081 0.963 33.489 28.017 35.681
Standard Median 6.415 0.080 0.940 33.123 11.246 39.482
(m = 16) 95% Cl1 6.104 0.072 0.925 31.121 10.221 37.638
6.703 0.087 0.955 35.020 12.228 41.197
Full Median 5.608 0.059 0.935 28.379 12.494 34.557
(m = 64) 95% Cl1 5.352 0.054 0.920 26.822 11.105 32.803
5.860 0.065 0.950 29.938 14.556 36.330
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Table C.6 Leave-one-out cross-validation for models built on pre-specified skeletal traits sets. Deep

supervised autoencoder neural network with conformal prediction regression uncertainty model.

Conformal Prediction

Accuracy Bias Validity Efficiency

Traits MAE B, P(a) PIW PIW 95%CI
Sutures Median 15.212 0.420 0.950 68.174 40.219 80.033
(m =9) 95% CI 14.441 0.386 0.948 65.044 36.130 75.371
15.849 0.452 0.953 71.329 44.194  84.649
Axial Median 7.952 0.107 0.950 38.611 32.188  40.308
(m = 16) 95% Cl1 7.672 0.098 0.950 36.411 30.593 37.723
8.219 0.115 0.953 40.458 33.629 43.011
Appendicular Median 7.482 0.095 0.950 36.239 28.088 39.281
(m = 16) 95% Cl 7.168 0.087 0.950 33.997 26.610 36.526
7.771 0.102 0.953 38.388 29478  41.895
Clavicle Median 9.087 0.144 0.950 46.713 14.342 51.311
(m =2) 95% CI 8.722 0.132 0.950 43.736 13.100 48.781
9.439 0.155 0.955 49.990 15.896 53.248
First rib Median 9.577 0.163 0.950 49.305 20.798 50.406
(m = 2) 95% Cl 9.197 0.150 0.950 47.144 19.089 47.811
9.925 0.175 0.955 50.252 22.462 52.299
Pubic symphysis Median 11.407 0.225 0.953 55.966 24.752 60.064
(m = 3) 95% Cl1 10.870 0.207 0.950 53.473 22.776 57.695
11.873 0.243 0.965 58.335 26.671 62.889
Sacroiliac complex Median 8.288 0.125 0.950 46.881 17.920 51.686
(m = 4) 95% CI 7.936 0.115 0.950 44.394 16.231 49.305
8.642 0.136 0.955 48.729 19.625 54.145
Acetabulum Median 8.705 0.129 0.950 42.203 29.043  46.478
(m = 3) 95% CI 8.396 0.119 0.950 40.607 27.062 44.050
9.005 0.139 0.953 44.410 30.487  49.676
Degenerative traits Median 6.695 0.075 0.950 32.836 27.895 34.575
(m = 39) 95% Cl1 6.430 0.069 0.950 31.086 26.335 32.327
6.957 0.081 0.953 34.485 29.176 36.753
Standard Median 6.415 0.080 0.950 33.844 11.329 42.738
(m = 16) 95% Cl1 6.104 0.072 0.950 31.973 10.209 40.596
6.703 0.087 0.950 36.055 12.608  45.014
Full Median 5.608 0.059 0.950 29.860 13.160 37.951
(m = 64) 95% Cl1 5.352 0.054 0.950 27.901 11.482 35.837
5.860 0.065 0.950 31.894 15.439 40.252
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Table C.7 Leave-one-out cross-validation for models built on different fractions of available skeletal traits.
Deep supervised autoencoder neural network with truncated gaussian regression uncertainty model.

Truncated Gaussian

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B, P(x) PIW PIW 95%CI

90% Median 5.653 0.060 0.938 28.657 12746 34.707
(m~57) 95% CI 5.398 0.055 0.920 27120  11.210  32.985
5.931 0.066 0.953 30.200 15325  36.428

80% Median 5.706 0.061 0.938 28.887  12.884  34.909
(m~51) 95% CI 5.428 0.055 0.920 27.265  11.167  32.940
6.044 0.068 0.953 31.056  15.922  36.906

70% Median 5.770 0.063 0.938 29.251 13.368  35.057
(m ~ 44) 95% CI 5.443 0.055 0.917 27.310  11.219  32.963
6.109 0.069 0.953 31.247  16.897  37.186

60% Median 5.827 0.064 0.938 29.626  13.647  35.271
(m = 38) 95% CI 5.527 0.057 0.920 27.819  11.298  33.244
6.217 0.071 0.953 31.645 18256  37.271

50% Median 5.917 0.065 0.938 29976  14.021  35.619
(m = 32) 95% CI 5.591 0.058 0.920 28113  11.418  33.463
6.392 0.074 0.955 32397  19.069  37.987

40% Median 6.091 0.069 0.939 30.984 14794  36.182
(m = 25) 95% CI 5.694 0.060 0.922 28.694  11.718  33.743
6.592 0.078 0.955 33412  21.548 38515

30% Median 6.269 0.073 0.940 31.834 15516  36.829
(m ~ 19) 95% CI 5.849 0.063 0.922 29.579  11.937  34.292
6.918 0.085 0.958 34.678  23.101  39.827

20% Median 6.740 0.082 0.943 33.982  17.049  38.323
(m ~ 12) 95% CI 6.100 0.069 0.925 30.890 12451  35.218
7.510 0.099 0.960 37.552  27.047 42111

10% Median 7777 0.105 0.945 38.169  23.297  41.827
(m ~ 6) 95% CI 6.771 0.083 0.927 34.197  13.519  37.846
9.044 0.142 0.963 44.295  31.549  47.740
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Table C.8 Leave-one-out cross-validation for models built on different fractions of available skeletal traits.

Deep supervised autoencoder neural network with conformal prediction regression uncertainty model.

Conformal Prediction

Accuracy Bias Validity Efficiency
Available Traits (%) MAE B. P(x) PIW PIW 95%CI

90% Median 5.653 0.060 0.950 30.108 13.431 38.132
(m~57) 95% CI 5.398 0.055 0.950 28.011 11.556 35.709
5.931 0.066 0.950 32.303 16.140 40.459

80% Median 5.706 0.061 0.950 30.336 13.534 38.252
(m~51) 95% CI 5.428 0.055 0.950 28.165 11.499 35.852
6.044 0.068 0.950 32.641 16.905 40.973

70% Median 5.770 0.063 0.950 30.678 14.042 38.378
(m ~ 44) 95% CI 5.443 0.055 0.950 28.388 11.509 35.968
6.109 0.069 0.950 33.115 18.086 41.075

60% Median 5.827 0.064 0.950 30.987 14.377 38.634
(m ~ 38) 95% Cl1 5.527 0.057 0.950 28.507 11.576 35.804
6.217 0.071 0.950 33.477 19.430 41.418

50% Median 5.917 0.065 0.950 31.330 14.708 38.856
(m ~ 32) 95% Cl1 5.591 0.058 0.950 28.922 11.702 36.137
6.392 0.074 0.950 34.035 20.015 41.977

40% Median 6.091 0.069 0.950 32.203 15.454 39.393
(m ~ 25) 95% CI 5.694 0.060 0.950 29.456 12.019 36.321
6.592 0.078 0.950 35.090 22.724 42.666

30% Median 6.269 0.073 0.950 32.996 16.240 39.973
(m ~ 19) 95% CI 5.849 0.063 0.950 30.219 12.029 36.413
6.918 0.085 0.950 36.480 24.039 43.923

20% Median 6.740 0.082 0.950 34.984 17.642 41.255
(m ~ 12) 95% CI 6.100 0.069 0.950 31.600 12.503 36.785
7.510 0.099 0.953 38.860 27.961 45.996

10% Median 7.777 0.105 0.950 39.329 24.062 44.424
(m ~ 6) 95% CI 6.771 0.083 0.950 34.259 13.154 38.648
9.044 0.142 0.953 45.752 32.337 51.567
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