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Abstract

Additive Manufacturing (AM) is a key driver of Industry 4.0, with metallic AM, in
particular, driving innovation in the production of materials with tailored geometrical,
functional, and aesthetic characteristics. This has led to a new era of material science,
providing an understanding of the physical and chemical phenomena related to AM pro-
duction. However, until recently, the study of defects in additive manufacturing has been
considered only as a characteristic of AM processing.

To achieve a repeatable, reliable, and sustainable process, defects in AM must be cate-
gorised by their origin, and their consequences on the final 3Dobject properties must be
understood. Metal AM defects differ greatly between solid-state-based AM (SSAM) and
liquid-state-based AM (LSAM) processes. In SSAM, densification occurs without melt-
ing or partial melting, while LSAM achieves full melting, resulting in different mecha-
nisms of defect emergence.

Detecting defects in AM is crucial for qualifying AM parts for critical uses. Non-
destructive testing (NDT) is essential, and micro-computed tomography (µCT) is a unique
tool for defect observation in small metal parts. µCT is capable of assessing defects with
a resolution in the micron order and can be used to construct a digital twin that mod-
els 3Dobject mechanical properties and consolidation behaviour, which is essential for
critical/structural AM applications.

This work selected two representative processes of SSAM and LSAM for defect ob-
servation through µCT: Material Extrusion (MEX) and Selective Laser Melting (SLM).
Stainless Steel 316L (AISI) was used due to its high densification, good mechanical prop-
erties, and ease of handling and processing.

The work revealed feedstock, shaping, and consolidation defects in SSAM. The influ-
ence of shaping parameters was highlighted through a test group encompassing shaping
optimisation using µCT. This tool was shown to be useful not only for defect observation
but also for defect reduction and optimisation when coupled with a deep understanding of
material science.

LSAM research focused on establishing the capacity for defect observation in small parts
and assessing its capability when used on highly dense objects with different microstruc-
tures. Copper was used as a defect inducer due to its known processing difficulty with
conventional SLM. Defect emergence was then compared to a tailored copper:steel alloy
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that altered the melting dynamics and material response. µµCT was proven capable of
assessing density improvement and adequate alloy mixing.

Finally, LSAM was studied using four stainless steels with increasing carbon content,
highlighting the role of microstructure in the mechanical properties of materials processed
through SLM. µCT was capable of providing more information than commonly used den-
sity methods, assuring high density while being impervious to phasic or microstructural
defects.

This work can serve as a guide for adequate material characterisation with the fewest
possible steps, streamlining the 3Dobject qualification procedure through the develop-
ment of standards for NDT qualification of AM-produced 3Dobjects.

Keywords: Additive Manufacturing, Defects, Material Extrusion, Selective Laser Melt-
ing, Micro-computed tomography.



Resumo

A fabricação aditiva (FA) é a tecnologia de fabricação principal no contexto da Indústria
4.0. O FA de metais, em particular, tem liderado a inovação científica na produção de ma-
teriais com características sob medida, sejam elas geométricas, funcionais ou estéticas.
Uma nova era de ciência dos materiais desenvolve-se ao providenciar um conhecimento
profundo dos novos fenómenos físico-químicos relacionados com a FA. Não obstante, o
estudo de defeitos em FA está apenas atualmente a ser considerado mais que uma carac-
terística do FA.

Os defeitos em FA devem ser categorizados pela sua origem. Para além disso, as suas
consequências nas propriedades do objecto3D devem ser compreendidas a fim de con-
seguir um processo reproduzível, fiável e sustentável. Em FA metálico, dois grupos de
processos podem ser distinguidos no que concerne os defeitos: FA em estado sólido
(FAES) e FA em estado líquido (FAEL). O primeiro grupo, FAES, abrange os proces-
sos onde a densificação ocorre sem fusão ou com fusão parcial. Devido a esse facto, os
mecanismos de origem de defeitos são largamente diferentes do que a sua contraparte,
FAEL, onde há fusão do material.

A importância da deteção de defeitos em FA está ligada à capacidade de observar o
tamanho, localização e geometria dos defeitos sem comprometer a aplicabilidade dos
objectos3D. Os testes não-destrutivos (TND) são essenciais na qualificação de objetos
fabricados por via aditiva com aplicações críticas/estruturais. A microtomografia com-
putadorizada (µCT) é, neste contexto, uma ferramenta única na observação de defeitos
em objetos metálicos de pequena dimensão. Capaz de detetar defeitos com uma resolução
na ordem do mícron, é, para além disso, capaz de construir um gémeo digital que poderá
ser usado na modelação das propriedades mecânicas e comportamento à consolidação,
essencial em FA para aplicações críticas/estruturais.

Neste trabalho, duas tecnologias representativas dos processos de FAES e FAEL, para
peças de pequena dimensão, foram selecionados para a observação de defeitos através
de µCT - Extrusão de Material (MEX do inglês material extrusion) e Fusão Seletiva por
Laser (SLM do inglês selective laser melting). O aço inoxidável 316L (AISI) foi pro-
cessado através de MEX e SLM. Este material é considerado como uma referência no
FA metálico. A ausência de transformações de fase na gama de temperaturas de proces-
samento do MEX e SLM, aliado ao baixo conteúdo de carbono, conduz a uma elevada
densificação e boas propriedades mecânicas, mantendo a facilidade de processamento e
manuseamento.
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Os defeitos em FAES forem estudados, recorrendo aos defeitos originados em MEX.
O presente trabalho revelou defeitos originários na matéria-prima, no fabrico e na con-
solidação. A influência dos parâmetros de fabrico é destacada através da produção de
um grupo de testes que engloba a otimização de parâmetros recorrendo ao µCT. Conse-
quentemente, foi mostrado que esta ferramenta poderá não só ser usada para observação
de defeitos, mas para a sua redução e otimização, quando aliada a um conhecimento pro-
fundo da ciência de materiais.

A investigação em FAEL, neste trabalho, teve dois focos principais. Estabelecer a ca-
pacidade de observação de defeitos em peças de pequena dimensão e estabelecer essa ca-
pacidade quando usado em objetos de elevada densidade, qualquer que seja a microestru-
tura obtida. O cobre foi selecionado como um material que induz defeitos devido à sua
conhecida problemática em ser processado através de SLM convencional. O apareci-
mento de defeitos em cobre foi comparado com uma liga de cobre:aço (316L) que alterou
fortemente a dinâmica de fusão, e obviamente, a resposta do material. A utilização do
µCT foi comprovada como capaz de confirmar o aumento de densidade e a mistura de
liga adequada.

Finalmente, o FAEL foi estudado aquando das condições de fabricação são favoráveis a
uma elevada densificação, recorrendo a quatro aços inoxidáveis com um crescente quan-
tidade de carbono. Este trabalho sublinhou o papel da microestrutura nas propriedades
mecânicas de materiais fabricados por SLM. O µCT foi capaz de acrescentar mais infor-
mação que os métodos convencionais de medição de densidade, assegurando a elevada
densidade dos objectos3D enquanto imune aos defeitos fásicos/microestruturais.

No geral, este trabalho pode ser considerado como um guia para a caracterização de ob-
jetos3D recorrendo ao menor número de passos. Isto pode assim agilizar o procedimento
de qualificação de materiais produzidos por FA através do desenvolvimento de normas
para a qualificação não-destrutiva destes.

Palavras-chave: Fabrico Aditivo, Defeitos, Extrusão de Material, Fusão Seletiva por
Laser, Micro-tomografia.
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“Weakness of character is the only defect which cannot be amended."

Francois De La Rochefoucauld

“By nature we have no defect that could not become a strength
no strength that could not become a defect"

Johann Wolfgang Von Goethe

“In a true zero-defects approach, there are no unimportant items."

Phil Crosby
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Introduction

Additive manufacturing (AM) is an inescapable reality. Customers demand celerity,
customisation and constant innovation, in pair with local and European goals for sustain-
ability and efficiency. In response to this new worldview, the industry is adapting itself
to new pillars of development, achieving what has now been established as a new indus-
trial revolution. This is an inevitable consequence of market demands and the growing
cost-efficiency needed in a globalised world, in tandem with the technological advances
made in the last decennia. The interconnectivity between all cyber-physical technologies
has been designated by industry 4.0 [1, 2]. The new possibilities brought by these tech-
nologies have a significant impact on industry standards and methodologies, disrupting
conventional fabrication procedures. More efficient materials and manufacturing sustain-
ability, by reducing waste and bringing fast adaptation to ever-changing industries, are
developed. AM was the only manufacturing process resulting from this new 4.0 revolu-
tion.

Metal additive manufacturing (MAM) had enormous growth in the last few years due
to the huge and valuable market for engineered metallic 3Dobjects [3]. The possibil-
ities in MAM are endless: new designs with “impossible” geometries, complex inter-
nal systems (e.g. constructal cooling systems); new structural and functional designs of
parts/systems/devices; sensorisation for new characteristics and applications; and elimina-
tion/reduction of secondary processes, like welding. These are associated with the weight
reduction of materials, and decreasing waste, which can effectively improve sustainabil-
ity [4]. In MAM, there is a possibility of separating the processes into two distinct groups:
solid and liquid-state-based additive manufacturing. Solid-state-based AM (SSAM) pro-
cesses do not reach the material melting temperature or only achieve it partially during
sintering. SSAM commonly has the thermal energy applied in a series of fabrication steps
to achieve the final part in an SDS approach (Shaping, Debinding and Sintering) [5].

In what concerns liquid-state AM (LSAM), the energy is directly applied to the feed-
stock, and a metallic 3Dobject with different topographies is achieved. The melting point

1



2

is reached (liquid state) in LSAM, which origins a complex history on the final 3Dobject,
without post-heat treatment, due to successive heating and cooling cycles of the subse-
quent layers. 3Dobjects with non-standard properties often result from the processes (e.g.
high hardness and tensile strength associated with a low fatigue resistance). Due to the
difference in the main thermal energy application in SSAM (e.g. SLS, MEX, BJT. . . ), it
is possible during sintering to promote new metallic materials (i.e. intermetallic, high en-
tropy alloys, metamaterials. . . ), as demonstrated by the extensive knowledge from metal
injection moulding, for the same conditions.

Whatever the additive processing selected, defects are a characteristic/consequence of
the relationship between materials/technology. A non-atomic defect is “an imperfec-
tion or abnormality that impairs quality, function or utility” [6]. They can contribute
to an enormous influence on the behaviour of the additive manufactured 3Dobject. MAM
presents a unique set of recurring defects that are mainly connected to thermal energy
material response. Consequently, this means that an effective optimisation of particle
powder characteristics and processing parameters can largely mitigate defect formation.
However, a completely defect-free 3Dobject is yet impossible to achieve, even with con-
ventional powder manufacturing methodologies. Nevertheless, this may not disqualify the
3Dobjects for use in critical applications. A sustainable knowledge of defect formation
causes and consequences must be the focus for the qualification of AM 3Dobjects. More-
over, the properties of 3Dobjects can be predicted if sufficient information is retrieved
from the 3Dobject characterisation and accounted for in specific applications. Thus, de-
fects must be observed through a holistic approach, from feedstock to final 3Dobject, and
accounting for the consequences of each step in the intended end user application of those
objects [7–9].

This major obstacle supports a new age of material science engineering, with a new
perspective regarding physical and chemical transformations of the materials through-
out these complex manufacturing techniques [10, 11]. Many variables can influence the
building of AM parts, and new tools and methods are emerging to respond to these new
challenges. Destructive characterisation techniques are, in general, utilised to analyse
deterministic defects. However, they can impair the part for further analysis and cannot
provide information regarding stochastic defects. X-ray micro-computerised tomography
(µCT) is one of the most promising characterisation techniques proving to have an essen-
tial role in AM. Denominated a non-destructive testing (NDT) technique, this allows the
defect inspection without damaging the analysed object.

CT scan shows the defect by multiple slices. Defect morphology and dimension could
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be easily acquired. The defect can also be reconstructed into a 3D model for the best
visualisation. Based on the results, µCT can be considered an appropriate way of detect-
ing defects in additive manufactured parts. µCT is suitable to detect stochastic defects,
whatever the parameters selected, depending essentially on the analysed material. µCT
uses an x-ray beam to radiate a rotating 3Dobject. The attenuation of the beam is detected
on a flat panel, and a projection is obtained. A 3D high-resolution representation of the
selected volume is achieved by rotating the object as low as hundreds of nanometers [12].

Since reproducibility and properties dispersion are the major drawbacks for qualification
MAM parts, µCT must be used as an essential tool for predicting their behaviour when
used in conjunction with other characterisation techniques, e.g. SEM (EBSD), from feed-
stock to 3Dobject. This procedure allows an accurate knowledge of defect location, size
and shape. Moreover, it also contributes to the detection of chemical heterogeneities that
may occur.

The main thesis work focuses on defect detection for two representative MAM technolo-
gies applied to 3Dobject manufacturing: Material Extrusion (MEX) and Selective Laser
Melting (SLM). MEX is an emergent technology normally used to build a 3Dobject with
low thickness. Its methodology was supported by the extensive knowledge acquired in the
homothetic formative process denominated PIM. Through filaments made by feedstocks
with a similar high metal/ceramic volume ratio [13]. For this solid technology, state of
the art is almost non-existent. The research work performed concerns stochastic defects
and is focused on 3Dobjects resulting from liquid processing. SLM is one of the leading
established liquid technologies for structural metal AM parts and is already being used in
industries like aerospace, medical, and automotive regularly. However, the influence of
microstructure from process characteristics is not highlighted.

Whatever the type of additive manufacturing selected, the presence of defects can con-
tribute to an enormous detrimental influence on the mechanical behaviour of the additive
manufactured 3Dobject.

The main objective of the present study is to reinforce the quadrinomial: material-
processing-properties-structure (micro-) on two of the most promising technologies of
additive manufacturing: SLM and MEX. This can support the welcome of the modelling
approach, which could contribute definitively to a sustainable methodology.
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Motivation and Goals

In the frame of the present thesis, three main goals are achieved, as follows:

- Establishment of µCT as an essential tool for MAM, evaluation of significant de-
fects in SSAM and LSAM;

- Defects analyse on SSAM and LSAM processes: non-ferrous and ferrous metallic
materials;

- Highlight the role of the new microstructures resulting from LSAM of the same
types of steel (stainless steel).

This research work intends to be a guide to establish an effective qualification method-
ology for modelling AM 3Dobjects for sustainable applications using advanced charac-
terisation methodologies.

Scientific Outputs

Various scientific works were published as a result of the research presented in this thesis.

Published papers (Appendixes)

• D. Gatões, R. Alves, B. Alves, and M. T. Vieira, ‘Selective Laser Melting and
Mechanical Properties of Stainless Steels’, Materials, vol. 15, no. 21, Art. no. 21,
Jan. 2022, doi: 10.3390/ma15217575. (Appendix A)

• F. Cerejo, D. Gatões, and M. T. Vieira, ‘Optimisation of metallic powder filaments
for additive manufacturing extrusion (MEX)’, Int J Adv Manuf Technol, vol. 115,
no. 7–8, pp. 2449–2464, Aug. 2021, doi: 10.1007/s00170-021-07043-0. (Ap-
pendix B)

• C. Santos, D. Gatões, F. Cerejo, and M. T. Vieira, ‘Influence of Metallic Powder
Characteristics on Extruded Feedstock Performance for SSAM Additive Manufac-
turing’, Materials, vol. 14, no. 23, p. 7136, Nov. 2021, doi: 10.3390/ma14237136.
(Appendix C)

• P. Carreira, D. Gatões, N. Alves, A. S. Ramos, and M. T. Vieira, ‘Searching New
Solutions for NiTi Sensors through Indirect Additive Manufacturing’, Materials,
vol. 15, no. 14, p. 5007, Jul. 2022, doi: 10.3390/ma15145007. (Appendix D)

Conference papers:
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• D. Gatões, A. Mateus, C. Azevedo, R. Santos, and M. T. Vieira, ‘Adjustment of
Selective Laser Melting parameters as function of different geometries of metallic
components to improve dimensional and surface quality’, in Dimensional Accuracy
and Surface Finish in Additive Manufacturing, KU Leuven, BE, October 2017, KU
Leuven, BE, Oct. 2017.

Posters:

• D. Gatões, R. J. Santos, P. Carreira, A. Mateus, and M. T. Vieira, ‘Selective Laser
Melting (SLM) Fabrication of Shape Memory NiTi functional parts’, presented at
the PMTI 2017, Xi’an, China, Sep. 2017. (BEST POSTER AWARD)

• D. Gatões, A. Mateus, and M. T. Vieira, ‘Surface characteristics of austenitic stain-
less and tool steel parts manufactured by Selective Laser Melting’, presented at the
Materials 2017, Aveiro, Portugal, April 2017.

• D. Gatões, R. Alves, H. Reis Marques, A. Mateus, and M. T. Vieira, ‘Influence
of protective atmosphere on the mechanical properties of 420 Stainless Steel (AISI)
processed by Selective Laser Melting (SLM)’, presented at the Jornada de Materiais
Estruturais, Lisbon, Portugal, June 2019.

Thesis Structure

This document is divided into six chapters. The driving force of the document is to
demonstrate a practical methodology for the detection and characterisation of defects. The
influencing factors that contribute to defect emergence in each selected technology must
be laid out. A detailed state of the art of the known physical and chemical phenomena that
occur within the process is necessary to understand the defect origin and how to mitigate
its occurrence, in the most detailed manner, with a deep connection between additive
manufacturing & material and mechanical properties.

After the introduction, Chapters 1 and 2 concern the state of art of additive manufactur-
ing processes and the detection/characterisation of defects focused on additive manufac-
turing processes.

Chapter 3 concerns the particle powder materials and techniques and methodologies
used for the prosecution of the work. Moreover, detailed information regarding 3Dobject
production is achieved.
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Chapters 4 – Study of the defects in SSAM (MEX) resulting from homemade feed-
stock filaments and compares it to commercial alternatives. Then, a large test group with
different layer heights and strand widths is analysed regarding defect origin. Finally, con-
solidation analysis is linked to feedstock and green defects, and NDT possibilities are
discussed regarding defect prediction and observation. The powder material selected for
3Dobject was stainless steel 316L.

Chapter 5 - Study of the defects in LSAM (SLM) resulting from pure copper with and
without addition of stainless steel alloy.

Chapter 6, a case study of SS 3Dobject manufactured by SLM using similar powder and
SLM parameters, with maximum densification of 99%, to highlight the effect of different
carbon contents in the microstructure and mechanical properties (strain, tensile stress and
hardness) induced by the processing.

Finally, the conclusions and detailed future research work that can be achieved from this
work are proposed.

Thesis Outline

Figure 1 summarises the thesis outline in a graphical way.



Introduction 7

Figure 1: Thesis Outline.
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Chapter 1

State of The Art

1.1 Metal Additive Manufacturing

Industry 4.0 has developed from utopia to reality in the last few years. The conjunc-
tion of the different disruptive pillars (Additive Manufacturing, Augmented Reality, Au-
tonomous Robots, Big Data and Analytics, Cloud, Cybersecurity, Horizontal and Vertical
System Integration, Internet of Things, Simulation) (figure 1.1) are bringing forward the
full potential of the industry to adapt itself to a constantly changing world. The global
market now depends on an ever-growing exigent customer base who want celerity, cus-
tomisation, and sustainability without cost increases. The industry has to adapt by being
closer, faster, and more innovative. This demands more industry investment in research
and development and exclusive know-how that differentiates the product, being at the
forefront of innovation [1].

In this new industrial revolution, Additive Manufacturing (also designated over time
as additive fabrication, processes, techniques, additive layer manufacturing, layer man-
ufacturing, solid freeform fabrication, and freeform fabrication [15]) is the only disrup-
tive technology present [16]. Its capacity for fast adaptation, customisation, freedom of
design, weight and waste reduction is highly appealing for the new industrial perspec-
tive [10]. The industry of the future must have agility and flexibility in its production
while product complexity is rapidly increasing. AM processes fit these demands by being
cost-effective for low production volumes and high-complexity applications. Due to their
associated digital process, a rapid adjustment of the design and product iterations can be
made with great agility, answering the 4.0 market paradigm since the consumer will have
an almost unlimited range of products chosen to customise [17].

9
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Figure 1.1: Pillars of Industry 4.0 [14].

ASTM designated AM as a “process of joining materials to make parts from 3D model
data, usually layer upon layer, as opposed to subtractive manufacturing and formative
manufacturing methodologies” [15]. The AM process starts with a 3D model in a
computer-aided design (CAD) file, later translated into a stereolithography file (STL),
rendering the solid surface into a series of triangles, known as tessellation [18]. Although
many alternatives to STL have appeared, like AMF, it still is the most relevant file type.
This file is usually input into another software, such as Magics, Cura or PrusaSlicer,
which defines, through a series of user preferences, the path of the AM tool, deposition
parameters, and, if necessary, supports to overhanging features. Then, the 3D model is
divided layer by layer with a user-defined height in a step called slicing [19]. When
the feedstock is loaded and the resulting file is fed into the machine, the shaping can be
started [20]. Low-level user input should be required during processing, which is primar-
ily automatic. However, feedstock and process preparation requires technical prowess, a
trained user, and continuous inspection to guarantee that no unexpected error may have
occurred during fabrication [21]. Finally, despite some AM techniques being able to at-
tain a near-net-shape 3Dobject after shaping, post-processing is almost always required
to achieve a serviceable part (figure 1.2) [22].

AM was initially developed for, and only limited to, polymeric materials. Still, the re-
quirement and possibility of producing metal parts were observed early on, mainly driven
by the powder metallurgy knowledge, which is tightly connected to MAM and is the
basis for the bulk of these technologies [24]. On a historical note, MAM starts with Se-
lective Laser Sintering (SLS), recognised as the first metal AM technology. It allows the
layer-per-layer sintering of metal powder particles. It was first developed 30 years ago
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Figure 1.2: General process flow in AM [23].

in Austin, Texas, and the first 3Dobject, “Betsy”, made of a mix of copper, tin, and Pb-
Sn solder, was achieved by Frayre and Bourell [25]. Due to the low laser power, only
partial sintering was attained, resulting in the very high porosity of the 3Dobject. The
main technological disadvantage was the low laser material absorption due to the high
laser wavelength. The development of more powerful and efficient lasers, with lower
wavelengths, like the Ytterbium fibre laser, allowed for the complete melting of powders,
achieving higher densities, in a process referred to as Selective Laser Melting (SLM) [26].
In alternative to powder bed fusion processes, Direct Energy Deposition (DED) was then
developed as a process not dependent on the powder bed, feeding the feedstock to the
energy source directly, like wire and powder [27]. After SLS, Binder Jetting, which uses
inkjet printing to deposit metal powder mixed with a binder, was then introduced at MIT.

Metal and its alloys are the main focus of the scientific community, as it carries the
most industrial interest, complexity and the most promising added value applications [28].
Moreover, the complexity of the metal additive processes must be recognised when eval-
uating the scientific importance of these processes [10]. Figure 1.3 shows the number of
scientific publications on the themes regarding MAM, mainly SLM, MEX and BJT, as
well as the prevalence of steel on these technologies.

MAM can produce virtually unlimited geometric complexity, allowing customisation,
improving performance, reducing development times, and eliminating process steps, like
tooling, while being low cost and effective [1]. These advantages lead to MAM being
applied in several fields, such as aerospace, automotive, and medical devices, where flex-
ibility and functionality are particularly significant [29, 30].

ISO/ASTM classified MAM processes into seven categories: material extrusion, mate-
rial jetting, binder jetting, sheet lamination, vat polymerisation, powder bed fusion, and
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Figure 1.3: Number of AM related articles throughout the last two decades [28].

direct energy deposition [15] (figure 1.4). Two main process groups can be distinguished,
solid or liquid-state-based technologies. The main difference between them is that no
melting or only partial melting is achieved in the solid state, and complete melting is
required in liquid-based additive manufacturing [31].

Figure 1.4: Types of AM processes [32].

The most relevant MAM processes are, for liquid-state processes, powder bed fusion
(PBF, e.g. SLM) and DED, and for SSAM, MEX and BJT. In PBF, a powder bed is
selectively scanned by thermal energy. DED requires that focused thermal energy melts
the material as its being deposited. Regarding solid-state processes, the MEX process
involves selectively extruding material through an orifice or nozzle, and in BJT, a liquid
bonding agent is deposited to join powder.

The growth of MAM has shown great potential, but two of the main hurdles to fully
implementing these technologies are the capacity to be repeatable. This is mainly due to



1.1 Metal Additive Manufacturing 13

the intrinsic defects related to the complex set of physical and chemical changes brought
by a new processing paradigm, which will be explored in this work [33].

Furthermore, the material range for each technology is still minimal, where liquid-state
additive processes are more affected in what concerns highly-conductive materials. The
challenge in material development when melting (PBF/DED) is related to the complex
interactions that occur when there are consecutive material fusion (e.g. the loss of car-
bon in high-carbon steels due to laser interaction leading to vaporisation) [34]. These
paradigm changes from conventional materials result in the choice of metastable materi-
als within processing temperatures that have more reliability and similar characteristics to
their subtractive manufactured counterparts [3].

Due to the announced difficulties in controlling material properties, SSAM has been
assumed as an alternative. Through polymeric vehicles, indirect processes can emulate
debinding the polymeric counterparts, with the difference that they are mainly constituted
from metal powders. These metal powders in a polymer matrix must be higher than 50
vol.% [35]. The use of MEX and Binder Jetting is a viable alternative to LSAM since
they use a similar manufacturing process to PIM.



14 State of The Art

1.2 Solid-State Additive Manufacturing

Material extrusion is a process in which material is selectively dispensed through a noz-
zle or orifice [15]. MEX was initially developed for polymer extrusion under the name
of Fused Deposition Modelling (FDM™), marketed by Stratasys, and patented by its co-
founder Scott Crump in 1991. However, the term was broad, and the denomination Fused
Filament Fabrication (FFF) became more common to refer to MEX using filament as
feedstock. However, in the last few years, the process name MEX has become blended
with the technology of extruding polymers with metallic or ceramic powder particles in
general, in volume concentrations higher than 50% [36, 37].

Metal MEX promotes, by combining a polymeric binder (and additives) with metallic
powder particles promotes new capabilities to process metals as polymeric materials. This
methodology name evolved with the same pattern as its polymeric counterpart and was
first introduced as Fused Deposition of Metals (FDMet) and then associated with FFF,
metal FFF (or MF3) [38].

Moreover, MEX technology is cheap, easy to use, simple and very low-risk while having
a wide selection of materials [39]. MEX methodology is inspired by the combination of
FFF with PIM, acting as a shaping substitute to injection moulding, in an SDS (shaping,
debinding, sintering) approach [40]. In both technologies, a feedstock must be produced.
In general, using a polymeric binder with metallic powder particles in a high concentration
and, in MEX, some addition of polymeric additives is necessary to promote flexibility and
toughness of the filament [41].

MEX involves two steps: first, the materials must be selected considering the rheolog-
ical properties, which are related to the optimal powder concentration; after, an effective
mixing must be achieved using the selected materials. For the next step, shaping, PIM
technology differs by injecting the feedstock into a mould, producing a green 3Dobject
(object prior to consolidation). Alternatively, MEX uses an FFF 3D printer for the same
effect. Subsequently, in a similar method, to produce a fully ceramic/metallic object, the
green 3Dobject must undergo a debinding process, creating the denominated brown. The
brown must contain no polymeric components, which should have been totally ustulated,
and the previously selected shape. Finally, a sintering process consolidates the powders
into a fully dense 3Dobject (figure 1.5) [42].

The similarity between the two processes - MEX and PIM - makes them share almost the
same advantages and disadvantages. PIM technology requires a mould, making the pro-
cess extremely expensive for small series and complex 3Dobjects, that require complex
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Figure 1.5: Steps in MEX production [42].

moulds, which are very difficult to achieve and make the process more costly. Moreover,
AM brought forward the feasibility of 3Dobjects that cannot be produced by any conven-
tional process, which in PIM are governed by mould injection rules. However, the lack of
high extruding pressure in MEX leads to higher inter-particulate space, worsening green
density [43].

On a historical note, the MEX process seems to have appeared around 1996, with an
extensive review of different materials, where are already included several binder system
compositions with good performance (silicon nitride, fused silica, piezoelectric ceram-
ics, stainless steel, WC-Co, and alumina) [44]. Nevertheless, a major patent, US Patent
5738817, from 1998, based on the MEX technology for producing metallic and ceramic
3Dobjects from a particulate-binder system [45] and other alternative AM technologies
hindered the market growth of MEX. The patent existence and the development of LSAM
processes contributed to a decrease in interest in SSAM.

In the last few years, a new interest has been in MEX revealed due to the difficulties and
costs of LSAM processes. LSAM difficulties regarding the production of highly thermally
conductive and reflective materials; maintaining the original material characteristics and
properties; low reproducibility and lack of definitive standards; high equipment costs;
hinder the evolution of these methodologies and open the door to SSAM processes (MEX
or BJT). Since the patent expiration [46], multiple studies on the feasibility of MEX for
different materials have been growing exponentially (c.f. figure 1.3).

Although MEX is commonly associated with FFF, different extrusion types for MEX ex-
ist. They are divided into three categories: screw, plunger, or filament-based (Figure 1.6).
Each type of feeding system requires different feedstock compositions and constituents
in order to guarantee the optimal extrusion conditions [47].

Screw-type extruders use granulates (or pellets) as feedstock. These granulates are
achieved after binder and powder mixing through the use of a granulator to achieve
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Figure 1.6: Types of extruders used in MEX.

smaller particles. The granulates are fed continuously using the screw rotation, contin-
uously heated above the glass transition temperature (Tg) of the polymer(s) and forced
through the nozzle. This extruder aims to guarantee a similar result to PIM when do-
ing MEX through the presence of higher extrusion pressures. Thus, it allows for the
use of PIM feedstocks, which guarantees material versatility since the PIM know-how is
directly applied without requiring new binder formulas, additives or debinding and sin-
tering test groups. Therefore, the powder content is usually the highest in this type of
system [48–50]. Furthermore, it does not need an extra extruding filament or bar feed-
stock production step. This guarantees no thermal degradation after mixing occurs and
facilitates feedstock handling since other feedstocks are usually brittle. Moreover, the
granulate size must be carefully controlled (less than 5 mm). Screws for MEX are usu-
ally smaller in diameter than in PIM, which affects the feeding system since they are
connected to extruding efficiency. Large granulates can hamper the rotation movement
due to insufficient heat to soften the material. Small granulates can clog the hopper and,
therefore, lead to gaps in extruding, which are detrimental to 3D printing. Air entrapment
is the main consequence of irregular feeding of the screw [51–53]. AIM 3D has solved
some of these issues by including a pneumatic component to the extrusion, guaranteeing
that there is a material buffer to be extruded, but, due to this movement, the feeding is
not continuous, unlike the alternative systems. Direct3D also has a pellet extruder in their
catalogue [54, 55].

Plunger-based extrusion can use rods or granulates as feedstock, which is loaded into a
chamber and then subjected to compression pressure, forcing the material to go through
the nozzle. When the plunger is at its end, the printing stops temporarily, the plunger
is brought back to its initial position, the new feedstock is loaded into the compression
chamber, and the process is repeated. This system has the disadvantage of needing to
refill the chamber repeatedly. Feedstocks similar to PIM are usually employed in this
technique since higher extrusion pressure allows for the extrusion of higher loads on the
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rod feedstock. However, like screw-type extruders, special 3D printers must be bought
to allow for the usage of such feedstocks. Commercial systems like Desktop Metal and
Markforged assumed the plunger technique for their MEX systems [56, 57].

In traditional filament-type extrusion, a filament based on a feedstock (inorganic material
and polymers) is extruded. The filament is fed to a couple of gears that ensure the path
from the extruder motor to the nozzle. This is an attractive process since no complicated
and expensive equipment development is needed to force the material into the nozzle
(ramming), and no specialised printer is needed. This allows the usage of most low-
cost 3D printers available in the market. However, it is important to consider that the
drive pulley force on the filament may cause plastic deformation and buckle, clogging
the extruder and stopping the process, losing overall process reliability. The filament
production process must consider this behaviour and guarantee sufficient friction with the
pulleys and shear resistance during spooling. This gives rise to many constraints for the
binder system composition [51, 58, 59]. The last type of extrusion will be the main focus
of this thesis due to its prevalence, low cost, and no commercial attachment being needed
while maintaining the possibility of feedstock modification.

Metal MEX with filament is defined by three steps (figure 1.5):

1. Feedstock production (1.2.1), which encompasses: materials selection (powder,
binder, and additives); torque value in mixing; and filament fabrication;

2. Shaping using a conventional 3D printer equipment (1.2.2), optimising the inputted
process parameters;

3. Debinding and sintering (1.2.3) or consolidation, where the organic component is
eliminated and a final metallic 3Dobject is achieved [60–62].

An insight into each of these steps will be highlighted hereafter.

1.2.1 Feedstock

Materials Selection

Feedstocks are the starting point of the MEX process. While the main concern is the
desired metallic material of the final 3Dobject, all the feedstock constituents should have
a specific purpose to be present. Three different components can be distinguished for the
filament: metallic powder, binder, and additives [63].
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The metallic powder should take into account the particles complete sintering, meaning
that it should be controlled in terms of size, size distribution, shape factor, surface area,
structural composition, and surface topography [42].

Spherical powders are usually recommended for sintering since they have a high specific
surface and allow for a high packing density. Powder size is usually recommended in
the order of 5-20 µm to avoid gas entrapment during debinding while maintaining low
interparticle distance. The powder structure should provide a guarantee that the powder
has the intended characteristics and does not suffer any structural transformation during
atomisation and/or milling [64].

Binder formulation must contain components with physical properties that allow extru-
sion at low temperatures (180-250◦C), essential to material extrusion with a low-cost ma-
chine. Also, gradual degradation of the organic constituents is necessary to guarantee the
3Dobject design and to avoid organic residues, like carbon. In fact, the organic residues
must be zero, since they affect the final 3Dobject chemical composition and properties.
Any binder system must be analysed using thermogravimetry sustained by differential
scanning calorimetry (DSC) in order to ensure that within debinding temperatures, all the
binder is eliminated, and the degradation is gradual [65, 66].

Additives are different chemical compounds that confer some characteristics to the feed-
stock, not particularly related to debinding or sintering. A too-significant increase in the
number of additives can result in incorrect properties for the complete debinding of the
green. In PIM, additives are usually employed to facilitate the mixing (i.e. stearic acid)
and reduce the torque, allowing the mixture to be injected. In MEX, the filament must
behave in a way that allows continuous feeding to the printer. This means that it has to
have the ability to go through the path to the gears and then endure the gear shear forces,
be rammed into the nozzle, and then withstand the change in pressure resultant from the
change from 1.75 mm (standard filament diameter) to 0.4 mm of the standard nozzle di-
ameter. Flexibility and stiffness are then the essential characteristics of filaments for metal
AM. Some essential additives to achieve these characteristics are denominated backbone
and plasticisers [67, 68].

Mixing

In the MEX context, mixing is obliged to use equipment with a heated chamber and
torque application to the mixed material to induce feedstock homogeneity. Thus, the
mixing temperature should be greater than the softening temperature of each component
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in the binder, but to avoid the decomposition of components, this temperature should
be kept as low as possible while allowing the mixing of the components. The mixing is
usually done using a mixer that is capable of controlled temperature and rotation, ensuring
measuring the mixing torque, that a homogeneous mix is achieved through the analysis
of torque evolution and stability [69–71].

After the material selection, the first step toward filament production is “coating” the
metallic powders with several polymers and waxes (binder and additives) made in a high-
shear mixer until a homogeneous mixture is achieved. The optimal concentration of each
component is usually achieved by the capillary rheometry method, density method or
torque rheometry and must be the support for new material selection [72, 73].

The evaluation of mixture torque has been shown to optimise the rheological behaviour
of feedstock for injection or extrusion. These techniques lie on the concept that there
is a point where a maximum feasible concentration is achieved [74]. Particularly, an
in-house developed methodology by Barreiros et al. [75] defines it as the true critical
powder volume concentration (CPCV). CPVC is the maximum inorganic solids fraction
which provides mixing stability. Since the maximum powder concentration is essential
to achieve a high sintered density, a methodology to achieve high powder concentration
while guaranteeing the extrudability of the feedstock is essential. CPVC defines a critical
powder concentration when the binder & additives occupy the space between the particles,
but no excessive interparticle distance exists (Figure 1.7)

Figure 1.7: Wettability in different powder content conditions.

Filament Fabrication

In order to attain the filament for the shaping step, the mixed material must undergo a
granulator, attaining small pellets that can be fed through an extruder. Screw extruders
are generally used for filament production (figure 1.8). The filament is extruded through
a nozzle with a diameter suitable for MEX (usually 1.75 mm) [76].



20 State of The Art

Figure 1.8: Filament extrusion process flow [77].

Filament diameter is usually controlled through screw speed. Controlling the screw
speed, or extruding speed can guarantee different diameters. A high-speed increase can
lead to gas entrapment which decreases the filament density. Alternatively, a decrease
in speed can lead to higher torques that may hinder extrusion. The manual setting of
this parameter can lead to a highly inconsistent filament. This is usually connected to
measuring equipment that detects the filament diameter change and sets the extruding
speed accordingly. Gravity can also be used to guarantee that the filament diameter is
as desired. The drop between the extruder nozzle and the surface can be used as a way
to oblige the filament to achieve the correct diameter. The filament diameter variation
should be no greater than ±0.05 mm in order to achieve a continuous extrusion when
shaping [78, 79].

Various organic material combinations have been developed to guarantee filament char-
acteristics while shaping, stiffness and flexibility.

As established (1.2.1), several binder systems and powder loading can be used for fil-
ament production. Table 1.1 summarizes the common binder systems for PIM and fila-
ments feedstocks which are commercial or were developed in research works.
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Table 1.1: Powder content and Binder System for PIM feedstock and filaments (ND -
non-disclosed).

Material
Powder
content

Powder size
(d50)

Binder System Reference

SS
17-4PH
(ASTM)

93 wt.%
(PIM)

10.3 µm (water
atomized);
12 µm (gas
atomised)

Paraffin wax (PW),
Stearic acid (SA),
Polyethylene (PE)

[80]
(2015)

60 vol.%
(PIM)

9.77 µm
Polyacetal (POM)-based
(Mould Research, Co.,

Ltd.)

[81]
(2017)

60 vol.% 43 µm
30% wax, 35% polymer,
20% elastomer and 15%
tackifier (RU1 binder)

[82]
(1996)

58 vol.%

22 µm
(spherical
powder);

10 µm
(irregular
powder)

ECG2 binder and SA
[83]

(2002)

55 vol.% 12.3 µm
ND (Multicomponent

binder)
[84]

(2017)

55 vol.% 12.3 µm
ND (Two-component

binder)
[47]

(2018)

55 vol.% 12.3 µm
Thermoplastic Elastomer

(TPE) and grafted
Polyolefin (PO)

[56]
(2019)

60 vol.% 10 µm
POM, Polypropylene

(PP) and PW
[85]

(2021)

63 vol.% 3.97 µm
ND (Polymeric blended

binder)
[86, 87]
(2022)

SS 316L
(AISI)

60 vol.%
(PIM)

d80 = 22 µm
Acrylic resin and

cyclohexyl methacrylate
(CHMA)

[88]
(2003)
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Table 1.1 Continued: Powder content and Binder System for PIM feedstock and filaments (ND -
non disclosed).

65 vol.%
(PIM)

16-22 µm
PW, PP and LDPP

(Low-density
polypropylene)

[89]
(2004)

62 vol.%
(PIM)

10.21 µm

LDPE (low-density
polyethylene), HDPE

(high-density
polyethylene), PW, SA

[90]
(2009)

60 vol.%
(PIM)

ND
PW, HDPE, acetic
acid-vinyl acetate
copolymer and SA

[91]
(2010)

83 wt.% ND
Two types of binder

(Virtual foundry)
[92]

(2019)

88 wt.% 30-50 µm
POM, PP, DOP, DBP and
ZnO - Ultrafuse 316LX

(ξ)

[30, 93]
(2019)

80 wt.% 30-50 µm ξ(3 mm)
[94]

(2020)

88 wt.% 30-50 µm ξ(1.75 mm)
[95]

(2020)

80 wt.% 3-15 µm PE and SA
[96]

(2021)

80 wt.% 30-50 µm ND
[97]

(2021)

83.5 wt.% 0.87-76 µm Polylactic acid (PLA)
[36]

(2021)

88 wt.% 30-50 µm ξ

[67, 98,
99]

(2021)

88 wt.% 30-50 µm ξ
[100]

(2022)
50 vol.%;
55 vol.%

6.9 µm Polyamide (PA)
[101]

(2016)

55 vol.% ND ND (Thermoplastic)
[102]

(2016)
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Table 1.1 Continued: Powder content and Binder System for PIM feedstock and filaments (ND -
non disclosed).

55 vol.% ND
TPE, three types of PO

and two types of
compatibiliser

[103]
(2016)

40-70
vol.%

(0.1-30 µm)

POM, PO, dispersant,
and confidential polymer
(BASF patented binder

system)

[104]
(2016)

55 vol.% 6.05 µm
TPE, PO and

compatibilizer
[105]

(2017)

55 vol.% (d90<45 µm)
Confidential polymer,

TPE, PO and dispersant
[106]

(2017)

55 vol.% 15.1 µm
ND (Multicomponent

binder)
[84]

(2017)

55 vol.% 8.6 µm
ND (Two-component

binder)
[47]

(2018)

55 vol.% 17.7 µm TPE and PO
[107]

(2019)

60 vol.% ND POM and PW
[46]

(2020)

50 vol.% 2.8 µm LDPE, TPE and SA
[108]

(2021)

50 vol.%
10 µm;
30.8 µm

PP, TPE, PW and SA
[70]

(2021)

60 vol.% 9.4 µm
POM, TPE, ULDPE
(ultra-low-density

polyethylene)

[42]
(2021)

65 vol.% 20-53 µm LDPE
[109]

(2021)

1.2.2 3Dobject Shaping

3Dobject fabrication begins in 3Dobject preparation. A slicer translates the geometry
into individual strands distributed per user input. Interaction between strands of extruded
material must result in bonding between adjacent material lines. This is affected by the
temperature of the nozzle, but other parameters, such as the amount of extruded filament



24 State of The Art

per transversal movement (feed rate), speed of the extruding head, nozzle diameter, etc.,
can largely affect the quality of the deposited strand (figure 1.9) [59,110]. Regardless, the
binder system is the driving force for parameter selection and should be carefully consid-
ered since no universal parameters are possible due to different compositions behaving in
different ways [51, 76].

Figure 1.9: Shaping parameters in MEX [111].

Numerous parameters influence the quality of MEX 3Dobjects. Selecting the optimal
parameters is crucial for attaining 3Dobjects with high densities. Some of the most rele-
vant parameters are summarised in table 1.2.
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Table 1.2: Shaping parameters in MEX.

Shaping
Parameter

Explanation Consequence

Layer
thickness

Height of each
layer of

deposited
material

Has an influence on the strand geometry,
features/geometric quality, and process

time [112].

Extrusion
temperature

Heating block
temperature for
nozzle heating

Affects the rheological properties of the
extrusion; too low, ⇒ clogging may occur
due to insufficient gear force to push the
filament through the nozzle; too high ⇒

causes drooping, and to polymer
degradation [55].

Bed
temperature

Temperature of
the printing

surface

Reduces the warping; increases the
adhesion between the deposited material

and the printing surface [113].

Environment
temperature

Temperature of
the enclosure

Usually carefully controlled when an
enclosure is available, can highly reduce
warping caused by rapid cooling of the

strand [114].

Feed rate
(extrusion
multiplier)

The amount of
extruded material

per XY
movement
(mm/mm)

A compensation mechanism for extrusion
for eliminating the disparity between the
feeding gear movement and XY motor

movement. Necessary when the filament has
some diameter/rheological anomaly [49].

Strategy
The path of the
extruder when

depositing

Number of contours, infill angle, seam
creation and type of infill must be carefully
controlled to achieve the desired 3Dobject

functionality [115].

Infill %
3Dobject inside

density
Affects 3Dobject mechanical properties and

process time [116].

Cooling
Cooling fan

speed

Essential for the rapid cooling of polymers
that have enough thermal energy for

movement [117].
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Table 1.2 Continued: Shaping parameters in MEX

Extrusion
width

Strand width
prediction

Affects the calculated distance between the
strands for optimal densification; a lower
than suitable distance may mean higher

densification but can lead to clogging and
geometrical distortion; higher values can

lead to a low-density 3Dobject with fragile
features [118].

A uniform deposition with superior extrusion characteristics is developed by numerical
modelling of the extruded strand that allows the optimal selection of printing parameters.
Moreover, this could be used for optimising MEX parameters [119].

Davis et al. [120] designed a method for measuring the bonding strength between two
strands of extruded material. This methodology shows the influence of strand thickness
on the final 3Dobject quality. Other printing parameters, such as temperature and printing
speed, also have a significant influence on the quality of the final 3Dobject.

The other two aspects to be considered regarding the quality of the green 3Dobject are
dimensional/geometrical accuracy and surface roughness. It was shown that even the first
steps of tessellation and slicing could promote geometric errors and aggravate the surface
roughness of a printed 3Dobject. Pérez et al. [121] studied the most important parameters
that influence surface quality for a specific material, concluding that layer height and wall
thickness are critical factors that have a negative influence on the quality of the printed
3Dobject. It was also shown that path, speed, and temperature might have a low influence
when compared to other announced parameters. Powder size and composition can wear
the nozzle, so a suitable material should be chosen for this component function of wear
aggressivity [58, 59].

Dimensional and geometrical accuracy must be carefully attested since subsequent steps
exacerbate errors. Literature reports anisotropy in this step since material deposition,
combined with equipment imprecisions and wrong support structure, may increase this
characteristic [110, 122].

Parenti et al. [61] have been trying to show that a hybrid additive/subtractive technology
(green machining) may solve the geometrical error in MEX 3Dobjects, improving surface
finish. This can decrease the need for smaller nozzle sizes, boost production, correct
interior features, and allow shrinking compensation techniques. In parallel with this work,
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Kuriakose et al. [123] take this concept further to micro-milling MEX 3Dobjects with
exciting results.

1.2.3 Debinding and Sintering

Debinding and sintering are the most essential steps in MEX since these two stages can
determine whether the final 3Dobject is achieved or not, independently of the quality of
the green 3Dobject. Thermal processes should be optimised by carefully studying the
3Dobject behaviour at various thermal cycles (holding time and temperature).

Debinding is the elimination of the polymer by thermal processes. It is the most time-
consuming step and one of the most important in the MEX process. Defects in debinding
result from gas trapped inside the 3Dobject, from the organic material degradation. The
debinding process results in separation between powder particles, essential to maintain
the 3Dobject integrity.

Debinding, as a thermal process, can have two consequences: binder flowability im-
provement, and hence it flows out of the desired 3Dobject or binder degradation and gas
removal by diffusion, preferably quickly and efficiently. Due to their composition, binder
and additives degrade at different temperatures in a vacuum or gas atmosphere. Usu-
ally, an inert atmosphere is used to reduce chemical reactions within the organic binder
constituents. Thus, a suitable heat treatment for binder removal is essential for optimal
processing. This process should depend on the knowledge of 3Dobject weight loss and
shrinkage characteristics during the thermal process since stresses may occur inside the
3Dobject, leading to failure if enough diffusion is not achieved for the expulsion of cre-
ated gases. Finishing the procedure is essential to guarantee that the internal gaps will not
cause the collapse/failure of the 3Dobject [56, 74].

Some techniques are used to guarantee this diffusion. Wu et al. [83] covered the 3Dob-
ject with high surface carbon powder to aid the removal of the binder through capillary
suction at low temperatures.

The sintering process (figure 1.10) uses 2/3 to 4/5 of the brown 3Dobject material melt-
ing point to create a liquid phase that bonds the particles together due to free surface
energy and material-related wettability. The selection of powder concerning size and
shape and the sintering procedure is essential to achieve a fully dense 3Dobject since it
undergoes a series of complex physical and chemical changes [124].
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Figure 1.10: Illustration of the sintering process [125].

Similarly to the PIM process, 3Dobject resulting from MEX after sintering can increase
the anisotropy. This is related to 3D printing layer-per-layer wich may affect how the
3Dobject will behave in this process [30, 56, 102, 126].

Zhigang Zak Fang (as editor) contributed to one of the most complete compilations of
the sintering process in “Sintering of Advanced Materials” [127], from thermodynamics,
kinetics, and mechanisms of densification to computer modelling and sintering behaviours
of different materials, providing an excellent insight into this technology. Table 1.3 sum-
marises a literature review of sintering temperatures and atmospheres, final density and
powder content.

Table 1.3: Powder Content, Sintering temperatures, environmental atmospheres and final relative
density of sintered steel 3Dobjects.

Material
Powder
content

Sintering
temperature

Sintering
atmosphere

Relative
density

Reference

SS
17-4PH
(ASTM)

ND
(PIM)

Sintering at
1325◦C for 2h

Ar 98.8-99.2%
[128]

(2007)

93 wt.%
(PIM)

Pre-sintering
for 15 min at

1000◦C;
Sintering for
2h at 1350◦C

Vacuum with
Ar partial
pressure

98.8%
[80]

(2015)
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Table 1.3 Continued: Powder Content, Sintering temperatures, environmental atmospheres and
final relative density of sintered steel 3Dobjects

60
vol.%
(PIM)

Sintering at
1350◦C for 2h

Ar 97.5%
[81]

(2017)

60
vol.%

Sintering for
1h at 1350◦C

H2 + N2 92-95%
[44, 82]
(1996)

58
vol.%

Sintering for
3h at 1260◦C

H2 ND
[83]

(2002)
55

vol.%
Sintering for
3h at 1050◦C

ND ND
[47, 84]
(2018)

55
vol.%

Pre-sintering
for 1.5h at

900◦C;
Sintering for
5h at 1380◦C

ND 95.7%
[56]

(2019)

60
vol.%

Sintering for
2h at 1280◦C

Ar 97.3-98.2%
[85]

(2021)
63

vol.%
Sintering for
3h at 1200◦C

96% Ar +
4% H2

96.5-98.6%
[86, 87]
(2022)

SS 316L
(AISI)

60
vol.%
(PIM)

Sintering for
1h at 1350◦C

Ar 95%
[88]

(2003)

65
vol.%
(PIM)

Pre-sintering
for at 1000◦C;
Sintering for
1h at 1360◦C

H2
95.45-

98.35%
[89]

(2004)

62
vol.%
(PIM)

Pre-sintering
for at 1050◦C;
Sintering for
3h at 1380◦C

Vacuum 95.4-97.2%
[90]

(2009)

60
vol.%
(PIM)

Sintering for
1h at 1380◦C

H2 70.3-78.1%
[91]

(2010)

83 wt.%
Sintering at

1100◦C
Ar ND

[92]
(2019)
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Table 1.3 Continued: Powder Content, Sintering temperatures, environmental atmospheres and
final relative density of sintered steel 3Dobjects

88 wt.% ND H2/Vacuum 98.5%
[30]

(2019)

88 wt.%
Sintering for
3h at 1380◦C

H2 98.3-99.5%
[93]

(2019)

80 wt.%
Sintering for
3h at 1380◦C

H2 82.2%
[94]

(2020)

88 wt.%
Sintering for
2h at 1380◦C

Ar 92.2%
[95]

(2020)

80 wt.%
Sintering for
2h at 1320◦C

Vacuum
92-99.7%

(HIP)
[96]

(2021)

80 wt.%
Sintering for
3h at 1380◦C

Ar 97.9-98.1%
[97]

(2021)

83.5
wt.%

Sintering for
1h; 6h; and

12h at
1310-1400◦C

Ar 72-92%
[36]

(2021)

88 wt.%
Sintering for
3h at 1380◦C

H2 95.6%
[129]

(2021)

90 wt.% ND ND 95%
[98]

(2021)

90 wt.%
Sintering for
3h at 1380◦C

H2 84%
[99]

(2021)

88 wt.%
Sintering for
3h at 1380◦C

H2 ND
[100]

(2022)
50

vol.%;
55

vol.%

Sintering at
1250◦C

H2 89%
[101]

(2016)

55
vol.%

ND ND 97.1%
[102]

(2016)
55

vol.%
Sintering at

1100◦C
H2/Ar 88.6-90.6%

[106]
(2017)

55
vol.%

Sintering for
1.5h at 1250◦C

Vacuum ND
[84]

(2017)
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Table 1.3 Continued: Powder Content, Sintering temperatures, environmental atmospheres and
final relative density of sintered steel 3Dobjects

55
vol.%

Sintering for
2h at 1360◦C

Vacuum 95%
[107]

(2019)
60

vol.%
Sintering for
2h at 1280◦C

Ar 91-93%
[46]

(2020)
50

vol.%
Sintering for
4h at 1350◦C

97.5% Ar +
2.5% H2

75-96%
[70]

(2021)
60

vol.%
Sintering at

1250◦C
H2 ND

[42]
(2021)

65
vol.%

Sintering for
3h at 1380◦C

H2 93%
[109]

(2021)

1.2.4 Post-processing

Low post-processing is needed, in MEX, to attain the maximum quality of the final
metallic 3Dobject. Moreover, the final microstructure resulting from sintering is close
to its conventional counterparts. However, many processes can be used to increase final
accuracy and density. The use of green machining (as previously stated) has been taken
selected for MEX 3Dobjects treatment since the low tool wear means that the cost of
machining prior to sintering is very low. Moreover, it increases the design possibilities
since outward connecting tubes should not be horizontal in relation to the layer growth
direction. Machining allows for this possibility [130]. Final density can be improved
using isostatic pressing, approaching bulk density [131]. Sufficient pressure and tem-
perature avoids defects that can be filled by the surrounding material, largely reducing
or completely eliminating interior porosity. However, material migration can also mean
3Dobject deformation. Consequently, the volume of voids inside the 3Dobject must be
low. Moreover, inside features can be eliminated if pressure is not carefully controlled, as
well as polymer degradation may occur if the temperature is not suitable [96, 131].
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1.3 Liquid State Additive Manufacturing

Selective Laser Melting (SLM) is the most prevalent technology of the PBF process
for metals [3]. F&S Stereolithographietechnik GmbH developed SLM to produce dense
metallic components from metallic powders, using a high-energy-density laser to melt the
powders layer-per-layer, according to CAD data [132].

SLM has been growing in the industry and is yet the AM technology for able to build
complex small/medium metal parts [133]. This technology starts by depositing a thin
layer of powder inside a closed chamber. After the powder bed is laid on the substrate, a
high-power laser is used to scan the layer selectively. The slicing information file is used
as a guide for the laser beam, melting the powder particles in successive interconnected
melt pools. When the laser scanning path is finished, the platform is lowered, and a new
powder layer is applied, looping the procedure until the component is fully built (figure
1.11).

Figure 1.11: Schematic of the SLM technology (adapted from [134]).

The build chamber is under inert gas, which avoids forming unwanted compounds,
mainly oxides [135]. Once the part is made, it is completely submersed in powder. The
powder is collected, sifted, and reused until possible (typically 5-6 cycles). The attained
part can be separated from the substrate (base) by electric discharge machining (EDM) or
directly separated from the substrate when using supports [136]. The area of the building
chamber and platform, the number of lasers and the sieving mechanism can be varied, as
well as the laser type and output [137].
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Although the concept of SLM technology is relatively simple, many variables affect the
quality of 3Dobjects during the process (figure 1.12). The main bulk of these variables
cannot be considered parameters since they cannot be fully controlled by the operator
and will be discarded in future discussions regarding the influence of SLM parameters on
the 3Dobjects, but they are important to have in mind and correlate them to the intrinsic
properties and failure/results of producing SLM parts [138–140].

Figure 1.12: Technology variables involved in SLM (adapted from [141]).
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1.3.1 Physical Phenomena in SLM

Understanding the physical phenomena in SLM is essential to know the mechanism of
defect formation. The radiation absorbed by the powder bed promotes the melting of the
powder. This leads to a melting pool, growing in the scanning direction and continuously
cooling as it reaches the solidification temperature. Nevertheless, laser-matter interac-
tion is very complex and dependent on a myriad of variables, as previously shown in
figure 1.12. Whatever the application, mechanisms like heat transfer, molten metal flow,
Marangoni effect and phase transformation are present and influence the quality of the
3Dobject [142].

Melting pool physics are the basis of SLM. Each melting pool can be envisaged as
a construction block. Thus, each layer can be analysed as a collection of overlapped
melting pools. This means that the understanding of the behaviour of the melting pool
and its correlation to the input parameters is essential [143, 144].

Two main factors are essential in the analysis of melting pool quality: depth and width.
An ideal melting pool should have sufficient depth to promote good adhesion to the pre-
vious layer without originating a keyhole effect resulting in porosity. Also, it must have
a constant width to allow for the correct calculation of hatching space, layer thickness,
and overlaps. These factors are connected to the shaping parameters input by the opera-
tor [145, 146].

The melting pool behaviour on a workable set of parameters, is usually translated by the
volumetric energy density (VED) equation 1.1, which encompasses the most influencing
parameters: laser power (P); scanning speed (v) (the speed at which the laser advances);
layer thickness or layer height (e); and space between laser passes (hatching space - h)
[147].

V ED =
P(W )

e(mm)h(mm)v
(mm

s

) , J
mm3 (1.1)

A graphical description of these parameters can be seen in figure 1.13.
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Figure 1.13: Parameters in SLM [148].

All VED parameters can affect the melting pool, but the main driving force is the laser
power [149]. Power output is usually the main parameter for the production of specific
materials in SLM. However, laser wavelength has an influence on the material absorptivity
of the laser power [150].

Ytterbium fibre lasers are currently mainstream and typically have a maximum output of
200 to 400 W and a wavelength of ≈1.070 µm. Considered ideal for low laser power scan-
ning of most metallic materials (figure 1.14), it is deemed insufficient for most conductive
materials. New laser technology development is still ongoing in response to these issues,
such as the development of green and blue wavelength lasers (λ≈0.515 µm and ≈0.420
µm, respectively) [151, 152]. Spot size is another major factor in SLM, concentrated en-
ergy results in more controlled melting pools with a smaller width, which is essential for
excellent resolution. Usually, the spot size for ytterbium fibre lasers is around 70 µm, but
this value can be offset for different scanning strategies. Spot size is essential for control-
ling the VED, to effectively melt the powder and reach sufficient dimensional precision
and surface roughness [153].

A detailed analysis of parameters is done bellow.

P. Power output, whatever the wavelength and spot size, has a deep effect on melting
pool dynamics. It affects melting, solidification rate, spatter creation, vapour recoil,
and microstructure of the final 3Dobject [155]. Consequently, changing the power
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Figure 1.14: Wavelength-absorption for several metallic materials [154]

output variable can have severe repercussions on the material behaviour during pro-
cessing [156–158].

e- Layer thickness is the distance between two consecutive layers (usually set at 20 or
30 µm), it depends on the desired layer quality or intended features, affecting the
building time by increasing the number of layers necessary to achieve the desired
building height. However, the layer thickness must be adjusted according to the
melting pool depth, it should be sufficient for partial remelting the previous layer.
This guarantees that low (or no) interlayer gaps occur. If the layer thickness is
set too low, the depth may affect the quality of overhanging features by melting
undesired powder and blocking interior channels or degrading 3Dobject features
[159–161].

h- Hatching distance is intended as the distance between the centre of two consecutive
melting pools. Essential in the intralayer connection between melting pools is usu-
ally set regarding the selected overlap: the amount of the previous melting pool that
is remelted when a new melting pool is scanned. This results in a strong connection
on consecutive melting pools. Hatching space must be set up while considering the
variables that affect melt pool widths, such as the material response to the thermal
energy, the spot size and the scanning speed. Although usually a fixed parameter
per material, hatching distance can greatly affect the final density [162, 163].

v- Scanning speed is the last variable on the equation. It is defined as the speed the
deflection mirror moves to scan the powder bed, normally dependent on the laser
power output. Since hatching space and layer thickness are typically set per mate-
rial, laser power and scanning speed are the only parameters that can be changed.
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As previously enounced, laser power is the driving force of melting pool physics.
Thus, scanning speed is usually input as a means of attaining an ideal VED. Never-
theless, that must be sufficient for the material to be affected by the material energy,
essential for the material width and depth [129, 157].

A closer analysis of the melting pool, complex fluid dynamics guide the molten flow.
Vapour pressure, Marangoni currents, capillary effect and surface tension are all affected
by the process parameters. The laser creates a vapour pressure in the centre of the melting
pool during the processing. This leads to the recoil of the material, while the Marangoni
currents - where the fluid flows from low to high surface tension - drive the dynamics
of the molten material [160, 164]. Sufficient knowledge of the melting pool physics and
their relation to the VED allows for the grouping of different consequences regarding the
variation of laser output and scanning speed, as follows:

– high laser power at low scanning speed leads to a keyhole regime that occurs when
the depth-to-width ratio is less than 0.5, resulting in a very deep and thin melting
pool occurs and leads to deep pores due to molten flow mobility, which solidifies
while in movement [165, 166];

– high laser power at medium scanning speeds results in elements vaporization due
to the high temperatures related to SLM processing; contact with the laser can lead
to overcoming the boiling temperature of the processed material or its constituents,
resulting in the modification of the chemical composition of the powder, and unex-
pected 3Dobject properties [167–169];

– high laser power at high scanning speeds affects the continuity of the melting pool,
thus leading to random pores throughout the part; as previously stated, a consistent
melting pool is essential for building a dense 3Dobject, this regime can be avoided
by reducing the laser power and scanning speed simultaneously [157, 170];

– low laser power at medium to high scanning speeds result in a shallow melting
pool or balling effect, the lack of fusion that results from this set of parameters
is the most present defect in powder bed fusion; interlayer connection is deeply
affected in this mode and can lead to process failure due to delamination between
the layers [139, 171].
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1.3.2 Feedstock Preparation

While the melting pool dynamics are usually the main phenomena when producing
3Dobjects using PBF, the complexity starts with the feedstock. The metallic powder can
have different origins: gas and water atomisation, milling, oxide reduction, precipitation,
plasma. Gas and water atomisation are yet the main processes for steel powder produc-
tion. Gas atomisation gives a more uniform shape distribution at a higher cost than its
water counterpart, which is normally when the powder particle material is not reactive.

Usually, the factors that determine the quality of powder for SLM are particle size
and particle size distribution, shape, structure (including topography)/flowability. The
methodology of powder production highly affects these powder characteristics and, con-
sequently, their behaviour in the powder bed construction [76]. Optimal powder particle
characteristics for SLM is summarised bellow:

– particle size must be between 20 and 50 µm, which are in line with the usual layer
sizes (around 20-30 µm) for an insignificant surface roughness they contribute to
the best packing behaviour (also named powder bed density); a normal, narrow,
symmetric distribution is recommended, but some prevalence of smaller powders
can be beneficial for the packing behaviour [172, 173];

– spherical powder (shape factor of 1) is usually advised since it contributes to the
compaction behaviour, meaning that the layer deposition results in a higher packing
density since high interparticle space tends to result in voids from a lack of material
[174];

– powder structure is highly affected by the powder production technique; stresses
can be due to the high cooling rates inherent and/or environment atmosphere [175];

– powder flowability depends on the surface quality and surface tension, which con-
tributes to powder agglomeration; the decrease of these characteristics improves
powder bed density [176].

The powder is usually provided in controlled environment containers, with moisture con-
trol and vacuum sealed, which means that opening the container in a harsh environment
can immediately affect the powder. For this reason, the powder must be handled under
controlled conditions that start now to exist in real-life industrial facilities [177, 178].

Moisture control in powder is usually done by silica packets and heating the powders,
in a furnace, to around 90°C [178]. For reactive powders, this can be impossible, and
the powder must be subjected to a close loop of an inert gas-protected atmosphere for



1.3 Liquid State Additive Manufacturing 39

any handling. Some SLM machines integrate sieving systems. At the end of the process,
the powder spatter is vacuum cleaned, and the one that does pass through the sieve is
discarded. Therefore, there is a risk for the operator and environment regarding powder
handling since there is direct contact with the small metallic particles that may cause
undesired health complications due to airborne particles [177].

Handling problems lead to low reusability and recyclability in SLM powder, lowering
the overall quality of the produced parts per powder use, and this has been a major topic
of investigation in the last few years. Consequently, powder costs increase, and environ-
mental issues appear due to the quantity of discarded powder that may originate from this
issue [179, 180].

1.3.3 3Dobject Shaping

Shaping, in the SLM context, usually involves powerful software, such as Materialise
Magics, to process the STL and input the parameters [181].

The position of the 3Dobjects is usually centred in the printing bed. Laser is deflected
from source to powder bed, which means that angle deviation from the centre has small
but noticeable changes in laser beam focus due to increased path. SLM manufacturers
have been developing systems with multiple lasers to overcome this disadvantage on large
systems, as well as to increase production speed. Furthermore, object angle in relation to
the bed is extremely important and must consider the application. It is recommended
that the larger surface area is fixed on the powder bed to provide more anchoring points.
However, 3Dobject features, such as holes and overhangs, require different positions if the
feature quality is the target. Moreover, mechanical properties are affected by the 3Dobject
position since there structural/properties anisotropy can be present. For this reason, design
for AM has been growing in the last few years, and objects must be designed having taken
into account the process limitations [182, 183].

SLM technology requires direct contact with the substrate (platform), which means that
a metallic bond between part and substrate exists and is not usually possible to easy re-
moval. Supports are necessary if EDM is not a possibility. Moreover, supports provide a
fine connection, with micrometric walls that are easy to remove by the use of simple tools.
There is still no automatic software easily available for automatic support generation, and
it is necessary expertise to ensure that support density, height from the bed and strategy are
suitable to guarantee sufficient adhesion and thermal conductivity. Supports are necessary
for some features, such as overhanging areas. However, a bottom anchor is not always
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possible to guarantee for the supports, which in some cases can be the object itself, which
will increase the post-processing time to eliminate the supports. Moreover, some features
may usually not supported due to inaccessibility for their removal [182, 184, 185].

Moreover, it must be highlighted that 3Dobject texture and residual stresses are con-
nected to the scanning strategy. An angle increase per layer is input to avoid thermal
stress concentrations on one specific object zone, which can result in part warping and
processing failure. Some of the most common strategies are [186]:

• orthogonal strategy scans the layer in a linear pattern, with 0° in relation to the
substrate, and adds 90° per layer;

• angled scanning is similar to orthogonal but scans the surface at a selected angle;

• islands or chessboard scan with an orthogonal or angled strategy, dividing the layer
into several small areas and applying to each a 90° angle in relation to the neigh-
bouring areas; avoids stress concentration, but mechanical properties are affected.

1.3.4 SLM of common materials

Different materials are being processed by SLM with and without success. In this item,
it was selected as powder, copper and copper alloys (hard to be processed by SLM) and
stainless steels (considered easy to manufacture by SLM technology).

1.3.4.1 Copper and copper alloys

Copper has consecutively researched materials in SLM due to its challenging character-
istics. The search for a material that would harvest the unique possibilities of MAM, such
as the new thermal diffusion geometries, cooling channels and embedded sensors, puts
copper on the forefront of the most desirable materials to be efficiently used, due to its
optimum thermal and electrical conductivity. Copper is a metallic element with a wide
range of applications due to its thermal and electrical properties while maintaining good
mechanical strength. Consequently, it has been the subject of multiple studies in MAM,
but with limited results. The thermal properties of copper make it a difficult material to be
processed under a direct energy source since its absorptivity is low and heat dissipation is
high. Moreover, the reflectivity of metal copper to the beam also contributes to thermal
loss, resulting in incomplete melting and, consequently, low density.
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A summary of studies regarding copper and copper alloys produced by SLM is sum-
marised in table, where new approaches are being used to achieve high densities, while
1.4.

Table 1.4: State of the art summary of copper and copper alloys produced by SLM.

Material VED
(

J
mm3

)
(P)

Relative density (%)
(Method)

Reference

Pure copper 533 (800 W) 96.60 % (Archimedes)
[187]

(2018)

310 (200 W) 99.10 % (Archimedes)
[188]

(2020)

210 (300 W) 98.80 % (Archimedes)
[189]

(2020)

95 (500 W) 69.40 % (Archimedes)
[190]

(2020)

350 (400 W) 95.00 % (Archimedes)
[191]

(2020)

533 (800 W) 96.60 % (Archimedes)
[192]

(2020)

350 (140 W) 96.00 % (Optical)
[193]

(2021)

350 (140 W) 96.00 % (Optical)
[193]

(2021)
740-1120 (800

W)
98.00 % (Archimedes)

[152]
(2021)

Cu-Cr-Zr 158 (370 W) 99.43 % (Archimedes)
[194]

(2020)

242 (425 W) 99.43 % (Archimedes)
[195]

(2021)

Cu-Ni-Sn 142 (340 W) 99.40 % (Archimedes)
[196]

(2018)

Cu-Cr-Zr-Ti 570 (800 W) 99.20 % (Archimedes)
[197]

(2018)

1.3.4.2 Stainless Steel

316L as been one the most researched material since the development of SLM due to
the lack of phase changes. SS 316L is considered a standard material for MAM due
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to its characteristics since any material-related issues are reduced, and the parameters
influence is elevate has been the most researched material due to its properties. Such as
the combination of corrosion behaviour, mechanical properties, carbon content and lack
of phase changes within the process temperature [30].

As an alternative, precipitation-hardening stainless steels have been widely researched
due to their increased mechanical properties while maintaining a low carbon content
through the application of heat treatments. The interest, however, in producing high-
hardness stainless steels, such as 420, was not hindered, although issues like cracking,
carbon depletion and fragility are usually present [198].

Table 1.5 summarises research works that produce stainless steels with the same equip-
ment as the one used in this work, an EOS system.

Table 1.5: VED as function of density regarding stainless steels produced with EOS®systems.

Material VED
(

J
mm3

) Tensile
Strength
(MPa)

Hardness
(HV)

Relative
density (%)

Reference

SS 316L
(AISI)

39-75 NA NA
99.97

(Optical)
[199]

(2017)

127 NA NA
99.37

(Archimedes)
[200]

(2018)

43 660 219 (HV0.5)
99.75

(Optical)
[201]

(2018)

50;200 630 NA 98.00 (XCT)
[202]

(2018)

325 620 NA
99.95

(Optical)
[203]

(2020)

28-74 NA NA
99.60

(Optical)
[204]

(2020)

96 690 270 (HV0.3)
99.50

(Archimedes)
[205]

(2020)

100 NA NA
99.30

(Archimedes)
[206]

(2021)

92.5 NA 230 (HV0.2)
99.80

(Optical)
[162]

(2022)

100 NA NA 99.80 (XCT)
[207]

(2022)
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Table 1.5 Continued: State of the art summary regarding stainless steels produced with
EOS®systems.

SS 630
(AISI)

41 NA NA

98.70
(Archimedes)

99.40 %
(Optical)

[208]
(2013)

60 1550 NA NA
[209]

(2014)

40 NA 373 (HV0.1)

99.90
(Archimedes)

99.40
(Optical)

[210]
(2019)

62 NA 368 (HV1)

99.50
(Archimedes)

99.40
(Optical)

[210]
(2019)

1.3.5 Post-processing

Post-processing in SLM usually obliges to powder cleaning on 3Dobjects and removal
of supports or the separation from the platform (substrate). Moreover, heat treatments
are usually performed to attain mechanical properties closer to the bulk metals and al-
loys. Regarding surface treatments, polishing, sandblasting, shot-peening or laser shock-
peening are performed to improve surface finishing quality [211]. Although costly, due to
improved hardness common in SLM 3Dobjects, machining (milling) must be employed
for specific features, and overall object accuracy [212]. Hot isostatic pressing has been
proven to be successful in removal interior voids and has been growing as an essential
tool for parts produced by MAM [213–215].



44 State of The Art



Chapter 2

Defects in Additive Manufacturing

Defect is understood as "an imperfection or abnormality that impairs quality, function or
utility". Consequently, it is of extreme importance to report known types of defects and
their origin if a complete understanding of MAM is to be ensured. Defects in MAM, as
detailed in chapter 1, are mainly associated with the processing step that occurs in each
technology. However, MAM defects must be studied not only focusing on the processing
step but a holistic approach to know how the feedstock material affects the final properties
and defect emergence must be performed. Depending on the melting or sintering thermal
cycles of the feedstock, the metal powder will affect the final properties differently. A
detailed glossary of observed defects is laid down per process type.

2.1 Defects in SSAM

Defects in MEX can be divided into three categories, feedstock, shaping, and consolida-
tion. They are dependent on each of these steps in what concerns their origin, but they are
correlated. Feedstock defects can lead to shaping and consolidation defects due to lack
of material or conditions to achieve high densification or the intended material properties.
For example, shaping defects can lead to delamination in sintering; consolidation defects
can undermine the previous steps.

2.1.1 Feedstock defects

Defects occur when feedstock preparation is done inadequately. A correct combination
of material selection, homogenous mixing and filament extrusion must be ensured in order

45
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to minimise defect occurrence. Moreover, CPVC will affect the behaviour of the filament,
as well as the 3Dobject.

The main defects that occur in the feedstock are due to:

– uneven distribution of powder, binder or additives in the feedstock, resulting from
uneven mixing or lack of wettability of the binder & additives and metallic powder
[37, 216];

– filament diameter variations leads to variable extrusion quantity and strands with
inconsistent width, which results in underextrusion or overextrusion if the filament
diameter is smaller or bigger than expected [76, 93];

– filament slipping and deformation due to inconsistent stiffness can lead to clogging,
which is a major issue in MEX feedstocks [217].

2.1.2 Shaping defects

Shaping step is the main source of the defects in MEX. A fully-dense 3Dobject is very
difficult to translate in a series of ≈0.40 mm strand lines, which will cause resolution
defects. A nozzle size of 0.45 mm is usually considered since smaller nozzles can increase
clogging due to pressure build-up. Furthermore, joining adjacent strands requires careful
control of the thermal conditions, which is very difficult to achieve and demands optimal
parameters. Some of the more relevant shaping defects are:

– movement voids, resultant from rapid nozzle movement change, leads to a gap or
inconsistent extrusion; a moving head carrying the extruder is deeply connected to
the extruding behaviour since transversal movement is a function of extrusion rate;
any rapid movement change or jump can result in defects [218];

– under or overextrusion occurs when the strand has a smaller or bigger size than
expected; if smaller, it results in constant voids parallel to the strand; if bigger,
an expansion in that layer results in geometrical deviations; can be controlled by
changing the extrusion multiplier parameter [219–221];

– base bulging is visible in the first layer due to the increased pressure between the
nozzle and the substrate, leading to an exaggerated flattening of the strand and an
X-Y growth on the first layer when compared to the CAD; solved by increasing
the distance between the base and the nozzle or by compensating the value on the
digital model in order to improve adhesion [218];
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– drooping, resulting from enough thermal energy for polymer flowability, causing
its exit from the nozzle; results in a lack of material in the object and can be solved
by tuning the nozzle temperature when not extruding or overall decreasing the print-
ing temperature [100];

– strand bonding weakness occurs when the thermal energy is not enough to join the
strands and layers together; two adjacent strands must be joined together in order to
avoid voids or polymer excess in the interface between them; which implies using
a higher process temperature [222];

– delamination occurs when the layers of the print separate from each other, resulting
in a poor-quality object can occur due to incorrect bed levelling, incorrect nozzle
height, or poor adhesion between the material; nozzle height is an important aspect
of shaping in MEX, if the nozzle is too close to the bed, the strand will not have
enough time to cool and connect with the previous layer causing delamination [223,
224];

– geometrical deviations include warping, curling, sagging, and stringing; warping
is caused by unequal cooling rates in the material, which can be caused by the 3Dob-
ject geometry being too large or too thin; curling is caused by unequal contraction
of the material, which can be attributed to the 3Dobject being too small or thick;
sagging is caused by the weight of the 3Dobject, which can be caused due to being
too tall or narrow; stringing is caused by the material sticking to the build platform
or the extruder nozzle, which can be associated to the feedstock being too viscous
or the temperature of the build platform; geometrical deviations can be minimised
by using a suitable feedstock, optimised shaping conditions, and post-processing
treatment; [100, 225, 226].

Understanding the causes of these deviations, it is possible to produce parts with very
tight tolerances.

2.1.3 Consolidation Defects

Debinding and sintering are affected by feedstock and shaping defects. It was demon-
strated that sintering could solve small porosities, but if not optimised, it can generate
different defects, as follows:

– incomplete debinding, which can result from faulty debinding or uneven debond-
ing, occurs when some of the unwanted polymers are still present in the green;
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caused by insufficient temperature or time for complete debinding [227, 227];

– internal voids resulting from high thermal rates, leading to fast polymer degrada-
tion, but they may also result from a heterogeneous feedstock [228, 229];

– blistering are bumps that result from local delamination due to polymer degradation
and bonding issues, characterised by the formation of small, raised areas on the
surface of the metal during sintering or post-sintering; these raised areas, or blisters,
can be of a few millimetres or more; the cause of blistering in sintering is thought to
be related to the presence of impurities in the metal; when the metal is heated, these
impurities can react with the metal to form gas that becomes trapped in the metal,
and as they expand, cause the formation of blisters; in some cases, blistering can
be prevented by careful control of the sintering process and the addition of certain
additives to the metal [68, 126, 230];

– cracking due to thermal stresses that, when cooling, lead to fissures; an unsuitable
heating rate also induces cracks in the 3Dobject [79, 230];

– microstructural defects due to chemical alterations when producing the feedstock
or polymer incomplete ustulation, leading to impurities or carbon contamination of
the metallic powder [231, 232];

– warpage due to uneven shrinking when sintering [100].

2.2 Defects in LSAM

2.2.1 Defects in Powder

Powder characterisation is essential in SLM. Packing density is one of the primary
drivers of 3Dobject density. If too low, interparticle space results in a lack of fusion
due to low material presence [233–235]. Although the presence of voids within the pow-
der bed is usually connected to the powder size and size distribution, powder defects can
negatively affect the resulting powder bed density, such as:

– agglomeration is typically characterised by joint powder, can be caused by high
impacts between the particles or hollow particle filling (figure 2.1) [11, 236, 237];
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Figure 2.1: Different shapes of powder agglomeration.

– dendrites occurs when the surface has a phase change due to rapid cooling; it usu-
ally emerges in powder subjected to phase transformation within atomising temper-
atures;

– microstructural defects, oxides presence and inclusions due to atomisation pro-
cedure and powder handling; the atomisation process is usually undertaken on the
same atomising system, paraphernalia of environmental conditions may occur; thus
cross-contamination may occur, and different elements may appear in the powder
(in almost insignificant quantity, but its consequences may not be insignificant)
and affect porosity; oxidation may occur during powder cooling or be the result
of bad handling (figure 2.2) [238–241]; phase modifications can affect the powder
spreadability [236], caused by magnetic behaviour of some undesirable phases; the
sieving system, which usually uses screens bigger than 100 µm, is meant to separate
the sintered powders and spatter;

Figure 2.2: Inclusions in powder.

– powder deformation is usually the resultant of powder handling that has been
subjected to impacts and friction (figure 2.3) [238];
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Figure 2.3: Deformed powders.

– powder porosity is usually the result of gas entrapment inside the particle during
atomisation, caused by high-pressure jets and high cooling rates (figure 2.4) [242,
243];

Figure 2.4: Powder porosity.

– satellites are smaller powders that surround and agglomerate in bigger powder,
effectively affecting its morphology, and consequently, the flowability (figure 2.5)
[237, 244, 245];

Figure 2.5: Satellites in a large powder.
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2.2.2 Defects in 3Dobjects

Although powder quality can be correctly characterised and handled, SLM processing
also induces a series of different defects, as follows:

– lack of fusion (LOF) occurs when the volumetric energy density (VED) is insuf-
ficient to create a melt pool deep enough to penetrate the substrate or wide enough
to overlap sufficiently to the next parallel scanning line; this defect can be reduced
by increasing the VED or decreasing the hatching space; appears at the surface and
inside defects in the order of hundreds of micrometers (figure 2.6) [246–252];

Figure 2.6: Lack of fusion defect [244].

– balling occurs when localised energy is insufficient to guarantee the melt pool con-
tinuity, thus resulting in an uncontrolled scan track melting, resulting in small spher-
ical melted zones; increasing the laser power, or decreasing scan speed contributes
to avoid it (figure 2.7) [219, 247, 253–255];

Figure 2.7: Balling defect evolution with scanning speed [256].

– keyhole porosity occur when the melt pool penetration is excessively high (figure
2.8) [248, 257–260];



52 Defects in Additive Manufacturing

Figure 2.8: Keyhole pore [261].

– roughness is a consequence of inadequate melt pool geometry; protrusions and
depressions are the results of the melt pool centre and sides, respectively; although
impossible to be completely mitigated in the SLM process, a wavy surface may
be resultant of low hatching space or high energy input, due to melting pool z-
growth; can be mitigated by tuning parameters; Different authors argue that a direct
correlation can be established between porosity and surface quality (figure 2.9); an
excessive roughness on the lateral walls of the SLMed 3Dobject can be caused by
particle aggregation due to sufficient heat to form a neck between part and wall [9,
247,262]; roughness can also be highly detrimental to the performance of 3Dobject
features, like internal channels or lattice structures and the consequential changes
to diameter and overall design can negatively affect object qualification;

Figure 2.9: Surface roughness in SLM.

– gas entrapment results from the presence of protective or degradation-resultant
gas, which is trapped by the melting pool within the 3Dobject; the porosity can be
identified through small (tens of micrometre), perfectly spherical pores distributed
throughout the 3Dobject (figure 2.10) [243];
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Figure 2.10: Porosity caused by gas entrapment [263].

– cracks result from thermal stresses during production, they can occur still during
processing (hot-cracking) or during final cooling of the part (figure 2.11) [264–266];

Figure 2.11: Cracking.

– inclusions not soluble in the base material can originate voids and chemical hetero-
geneities (figure 2.12); may result from inclusions already present in the powder or
from deficient powder handling [267–269];

Figure 2.12: Copper inclusion in steel causing a defect.
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– geometrical defects like distortion or warping are resultant of the complex thermal
history that the 3Dobject is subjected to during SLM processing; other geometrical
errors, like deviations, usually result from a bad translation of the scanning parame-
ters to the true physical phenomena that are occurring since the melting pool width
may not be well calculated; the stair-case effect is relative to the Z-resolution that
is being input to the SLM process [270, 271];

– spatter-related defects are due to the spattered particles that are thrown back into
the powder bed. Due to laser contact, abnormal particle shape and surface metal-
lurgy can affect the melting pool [159, 272];

– microstructural defects are related to grain size, phase changes and anisotropy
throughout the height of the 3Dobject. They are mainly caused by the complex
thermal treatment that the 3Dobject is submitted to during processing and may im-
pose different-than-expected properties; heat treatments are usually employed to
solve some of the problems, but they are expensive, and some properties unique to
SLM, like higher than normal tensile strength and hardness, may be lost after heat
treatment [183, 272, 273].

A summary of porosity defects in 316L is shown in figure 2.13.

Figure 2.13: SLM defects and size [238].

2.3 Non-destructive Testing for Defect Detection

NDT techniques refer to a wide group of analysis techniques used to evaluate the prop-
erties of materials, parts/systems or devices without destroying their applicability. NDT
is essential in a wide range of industries, including aerospace, automotive, power genera-
tion, oil and gas.
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There are many different NDT techniques, each one with its own advantages and disad-
vantages. The most common NDT methods are radiographic testing, ultrasonic testing,
magnetic particle testing, and eddy current testing. Radiographic testing uses X-rays or
gamma rays to create an image of the object being tested. This method is often used
to detect internal defects that are not surface-connected. Ultrasonic testing uses high-
frequency sound waves. This method is often applied to inspect metal components for
cracks or other defects. Magnetic particle testing uses a magnetic field to detect surface
defects, often used in welding inspection. Eddy current testing uses an electric current;
this method is often used to inspect non-metallic materials.

The low reliability of 3Dobjects in AM demands that a high number of objects is to
be observed when critical applications are concerned. However, this can be a wasteful
and meaningless process if repeatability is low, as is common in AM processes. NDT
has been growing in AM as an essential tool to guarantee that the minimum standard
is attained and the part is still usable, lowering waste and having higher reliability than
random inspections.

Defect detection is dependent on the characterisation technique resolution and limita-
tions. From visual/optical inspection to x-ray computed tomography, there is an estab-
lished history of defect detection technologies that must be understood in order to assess
the quality of the results of each selected technology. Moreover, certain NDT can be used
for inline and real-time defect inspection, which might guarantee further knowledge of
defect formation.

Since the dawn of AM, NDT has been developed for defect inspection, whatever the step
of the manufacturing technology. Various reviews on this subject have been published
since 2013, demonstrating the importance of these techniques for MAM [274]. Most
of these techniques have already been subject to standards for metal applications, and
specific MAM methodologies are in advanced phases of development [275].

2.3.1 Visual/Optical Method

Visual or optical method is the main form of defect observation. Generally, performed by
the operator, using their knowledge and experience, is essential for cheap and rapid qual-
ification of parts outside of the scientific quantification method. Naked eye inspection,
optical microscopy, and scanning electron microscopy (cameras, mirrors, etc...) have,
historically, been the main methods for 3Dobject observation and analysis. The use of
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cameras for inline process inspection has been the main standard for MAM machines and
is essential for cost and waste savings.

This type of technique is limited to surface observation and does not have access to
any interior flaws without the total or partial destruction of the object (such as grinding
and polishing). However, they can be used as an early qualification method to save time
in the further costlier analysis of an already visible low-quality object. Nevertheless,
an inline inspection can, through the use of video or layer photographs, be used as an
input for optical tomography, resulting in a digital twin for further analysis, and correct
information about interior features. Arguably more important, video can be an effective
tool for observation of in-layer defect formation and as a way for parameter optimisation.
Techniques such as optical emission spectroscopy can be associated with conventional
recording to assess process-dependent emitted light to perform a temperature profile.

The main advantages of the described techniques are: they are well-established, mainly
low-cost and quick. When used in tandem with other methods for measuring interior
porosity, it can give a general idea of the overall quality of the object but not qualify the
part for critical uses [276–278].

2.3.2 Liquid Penetrant Method

One of the most used NDT, due to its low-cost, and minimal expertise requirement,
works on the basis that a liquid penetrant flows into part surface flaws, and excess liquid
is removed. Defects are then revealed using a developer. Like optical testing, this method
can only detect surface-connected defects. In additive manufacturing, some changes to
the dye or liquid penetrant may be necessary due to the surface roughness, which can be
signalised as a defect, affecting the technique capability to spot "hidden" defects. Typical
resolution is limited to defects bigger than 750 µm [279, 280].

2.3.3 Magnetic Particle Method

Limited only to ferromagnetic materials, these techniques induce a magnetic field and
analyse the behaviour of magnetic ferrous particles scattered around the surface. A dis-
continuity in the material will affect the magnetic field, and the particle behaviour will be
changed, hence concluding that a surface defect is present. Defects smaller than 1000 µm
are not suitable for this method [281].
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2.3.4 Electromagnetic (Eddy Current) Method

These techniques measure changes in the electrical properties of the conductive materi-
als. Porosity causes changes in capacitance, which is measured and analysed. In conven-
tional Eddy current testing, a coil with alternating current induces two opposing magnetic
fields. Defects affect the Eddy currents in the secondary magnetic field, which is mea-
sured by the impedance. The resolution for this testing method is reportedly bigger than
350 µm [282–284].

2.3.5 Ultrasonic Method

Ultrasonic methods involves the measurement of the reflection, transmission, mode con-
version and diffraction of the ultrasonic wavelength when transmitted through a 3Dobject.
Acoustic impedance affects the reflection and transmission of ultrasounds. Defects must
be large enough to affect the ultrasonic beams, and resolution is considered to be one-half
of the used wavelength (at least 500 µm). But this technique can be adapted for inline
inspection by means of laser ultrasonic spectroscopy or phase array variation, and the use
of laser ultrasonic testing can reportedly improve resolution to 100 µm. However, it is
mainly material dependent, as well as other limiting factors, such as complex geometries,
multimaterial or wide array of features, can make the use of this methodology impossi-
ble [285–287].

2.3.6 Acoustic Method

Acoustic emission uses a piezoelectric or electromagnetic transducer placed near the
surface of the object to detect defects during manufacturing processing. Alternatively,
it uses an optical microphone in the vicinity of the object. Used for inline inspection,
the object must be subjected to forces for this technique to be effective. No resolution is
reported for this technique; it depends mainly on the present material stresses.

For conventional acoustic emission, the main disadvantages are the contact with the
surface, which might be impossible for some MAM processes [288, 289].

2.3.7 Infrared/Thermal Method

Thermography is an established technology that can detect geometrical defects, lack
of material, inclusions and interior porosity. It uses infrared (IR) cameras to detect the
temperature difference caused by objects to the energy input. Thermal energy can be
essentially given by electrical current, laser and vibrations. The presence of a flaw in the
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object will cause a disruption in an otherwise homogeneous heat distribution within the
material.

One of the most exciting uses of this technology is the easiness to adapt for inline defect
inspection, mainly on high heat-dependent processes, such as DED and PBF. Reading
online melt pool status can be a powerful tool for parameter optimisation due to the fact
that in-layer defect formation mechanisms can become clear under thermography. This
technology has been adapted to be used paired with powerful software to warn or point out
discontinuities in object scanning. Resolution is considered to be bigger than 400 µm; it is
mainly connected to IR camera resolution and frequency. Moreover, the heat generation
mechanism is extremely important since the fast material response to the given heat is
necessary for disruption detection [290–292].

2.3.8 Other Methods/Techniques

Technologies such as Laser Induced Breakdown Spectroscopy (LIBS) can be a great
addition to the inline object information. Capable of real-time chemical analysis, this
technology can provide qualitative and quantitative results. This technology uses the
wavelength and intensity of a laser-induced plasma. MAM laser-based processes are ideal
for this technology since laser-caused vaporization is already present [293].

Conventional profilometry is an established testing method that has been substituted, in
AM, for technologies that can give integral information about the surface defects (rough-
ness). Since roughness in MAM is dependent on the scanning method, a pattern and a
preferential direction are usually present, making 2D profilometry obsolete for qualifying
the part. Laser and optical-based methods, such as focus variation microscopy, have been
growing as effective testing methods for roughness evaluation of AM parts [294–296].

2.3.9 Radiology Method

Radiographic testing is a nondestructive testing that uses chi (χ) rays, gamma (γ) rays
or neutrons (n) to inspect materials and objects for hidden flaws. X-ray is undoubtedly
the most used radiation for NDT. X-ray radiography or radiographic testing uses an x-
ray beam to measure the attenuation caused by an object in its path. X-ray computed
tomography (XCT) takes this concept and uses a full 360° scan to slice the object into a
volume rendering. These techniques are limited by the radiation absorption of the 3Dob-
ject, thicker materials or higher atomic weight materials being more difficult to transmit
through. In order to overcome this issue, higher energy and intensity are required, which
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is longer and more costly. Image quality is dependent on the resolution, contrast and
artefacts (such as noise) [297, 298].

Growing research regarding µCT use in MAM inspection is now a reality. The possi-
bility of detecting microdefects, their geometry and their accurate location contribute to
the analysis of the so-called "effect of defect". Studies on the influence of porosity size,
location and shape have been used as an input to a new age of material research, using
modelling for predicting final material properties and fatigue behaviour [9, 299].

The most common methodology for micro-computed tomography is the use of a 3D
cone x-ray source and a flat panel detector. The source or the object rotates continuously
for 180° (symmetrical objects) or 360° until a half or full scan is achieved. A brief history
of the relation of µCT and AM is established by Thompson et al. in 2016 [300]. As an
NDT methodology, µCT has been used as a transversal technique, from powder to final
part porosity.

µCT has been relatively scarce in MEX research. Damon et al. and Santamaria et
al. [93,301] used the technique to measure the process-induced porosity in sintered parts.
Singh et al. [302] used µCT to validate the optimised extrusion parameters for copper pro-
duction. As far as the authors are aware, no other metallic material extrusion research has
been focused on using µCT for the study of MEX defects. Moreover, no transversal study
of the MEX process from feedstock to final 3Dobject, using µCT, has been published.

µCT in SLM, on the opposiotion, has been developing in the last few years, and a few
reviews have already been published [300, 303–305]. µCT has mainly been used for de-
fect reconstruction, and visualisation [306–308]. However, research studies on the use of
µCT as an input for modelling are still growing and are limited to lattice structure be-
haviour [309–313]. A deep study of dense specimens has often been hindered by process
resolution or source power. Nevertheless, the contribution of µCT to the qualification of
small SLM 3Dobjects must be explored and put into evidence.



60 Defects in Additive Manufacturing



Chapter 3

Materials and Methods

In this study, copper and stainless steels were selected for the production of 3Dobjects.
MEX, and its parent technology, PIM, used SS 316L homemade filaments. Homemade
filaments were compared to commercial filament alternatives - BASF (BASF SE, Lud-
wigshafen, Germany) and Virtual Foundry (The Virtual Foundry, Wisconsin, USA).

In SLM, to study the influence of additive manufacturing limitations on the production
of highly conductive materials, copper was chosen as the master material. This material
was selected due to its high demand, related to its unique thermal and electrical properties,
which are highly desirable to associate with novel complex geometries and applications,
and to its particular challenge for MAM production. Furthermore, a tailored copper alloy,
copper + 316L steel (80:20 weight), was mixed through manual tumbling of the two dif-
ferent powders. This copper-based iron alloy is known as a high-strength, electrical and
thermal conductivity material with magnetoresistance. However, this material is an ex-
tremely difficult copper:iron alloy to produce due to the positive enthalpy between liquid
Cu and Fe. Moreover, four different stainless steels powder were selected to evaluate the
material reaction to a constant VED value: 316L, 630, 420 and 440C (AISI).

Different powder characteristics are needed for SSAM and LSAM for the production of
3Dobjects.

For MEX, powder particles were furnished from Sandvik Osprey Ltd. Powders for SLM,
SS 316L and 630 (17-4PH) were provided from SLM Solutions (SLM Solutions Group
AG, Lübeck, Germany), and 420, 440C and copper powder were furnished from Sandvik
Osprey Ltd (Sandvik AB, Sandviken, Sweden).

61
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The chemical compositions of the copper and steel powder provided by the supplier are
summarized in table 3.1.

Table 3.1: Chemical composition of the studied powder (wt.%).

Element Fe C Cr Ni Cu Mo Nb+Ta Si Mn N P S O
316L

(SLM)
Balance 0.030 16-18 10-14 - 2-3 - 1 2 0.100 0.045 0.030 0.100

316L
(MEX)

Balance 0.030 16-18 10-14 - 2-3 - 1 2 - 0.040 0.030 -

630
(SLM)

Balance 0.070 15-17 3-5 3-5 -
0.150-
0.450

1 1 0.100 - 0.030 0.100

420
(SLM)

Balance
min

0.150
12-14 - - - - 1 1 - 0.040 0.030 -

440C
(SLM)

Balance
0.950-
1.200

16-18 - - 0.750 - 1 1 - 0.040 0.030 0.100

Copper <0.05 - - - Balance - - - - - - - <0.100

3.1 Powder characterisation

Particle size and particle size distribution (PSD), as well as specific surface area were
evaluated by laser diffraction spectrometry LDS, Malvern Mastersizer 3000 (Malvern
Panalytical, Egham, UK). SEM Quanta 400 FEG STEM (FEI Company, Oregon, USA)
was applied for powder shape factor evaluation. Powder density was measured (5 samples
per powder material) by helium pycnometry with Accupyc 1330 (Micrometrics, Georgia,
USA).

The phasic composition was evaluated by X-ray diffraction. A Philips X’Pert diffrac-
tometer (Philips, Egham, UK) at 40 kV, with Bragg–Brentano geometry (θ–2θ ), cobalt
anticathode (λ(kα1) = 0.178897 nm and λ(kα2) = 0.179285 nm), and a current intensity of
35 mA. The x-ray diffraction scans were carried out in steps of 0.025°, with an acquisition
time of 1s per step. The copper was indexed with ICDD 004-0836, austenite phase was
indexed with ICDD 33-0397 and ferrite/martensite with ICDD 87-0722.

3.1.1 Stainless Steel powder for MEX production

Concerning the powder particles used in MEX, shape factor for the stainless steel (316L)
was close to 1 (figure 3.1).
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Figure 3.1: Particle shapes of the MEX 316L powder.

Powder size was suitable to be processed, for filament fabrication followed by sintering,
with a D50 of 6.8 µm with the distribution observed in figure 3.2.
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Figure 3.2: Particle size of the MEX 316L powder.

The powder phasic structure was constituted of austenite with a relevant residual marten-
site phase (figure 3.3).
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Figure 3.3: X-ray diffractogram of the MEX 316L powder.

3.1.2 Copper powder

Copper powder had a mostly spherical shape with a low dispersion of sizes (figure 3.4).
The D50 of the copper powder was slightly bigger than optimal for SLM processing (figure
3.5).

Figure 3.4: Particle shapes of the copper powder (SEM).
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Figure 3.5: Particle size distribution of the copper powder.

X-ray diffraction shows only copper (figure 3.6).

Figure 3.6: X-ray diffractograms of the SLM copper powder.

3.1.3 Stainless Steel powder

The stainless steels selected in the present study are related to their characteristics and
applications. Stainless steel 316L has been the most studied material in SLM [314] and is
used as a standard in this thesis. SS 630 was selected due to its low carbon content, and
excellent mechanical properties [315]. 420 martensitic stainless steel is also of signifi-
cant interest due to its high strength and corrosion resistance [316]. Consequently, many
studies have been published concerning the microstructure, mechanical properties, and
roughness of these stainless steels produced by SLM ( [252,317, 318] – 316L, [319–321]
– 630, [153, 198, 322] – 420). SS 440C, which is also a martensitic stainless steel, with
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the highest carbon content of all stainless steels studied. This steel is used in applica-
tions where high hardness and corrosion resistance are required (e.g. bearings and other
automotive parts, and knives) [323].

All stainless steel powder had an adequate shape factor (1) for SLM, but with some
satellites only on 440C that could modify the bed density and powder flowability (figure
3.7).

Figure 3.7: Particle shapes of the 316L (a), 630 (b), 420 (c) and 440C (d) powder (SEM).

The powder particle size and particle size distribution were similar for all selected steels,
which guarantees that the packing density is similar (figure 3.8).
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Figure 3.8: Particle size distribution of the 316L (black), 630 (red), 420 (green) and 440C (blue)
powder particles.

Two phases, austenite and ferrite/martensite, can be distinguished in 316L, 630, 420
powder particles. In 440C steel, usually martensitic, the austenite presence can be due to
the high carbon content or high cooling rate (figure 3.9).

Table 3.2 summarizes the main powder characteristics for all studied particle powder,
including density.

Table 3.2: Powder characteristics.

Powder
Particle Size

D10 (µm)
Particle Size

D50 (µm)
Particle Size

D90 (µm)
Shape
factor

Phase
Composition

Density
ρ

(
Kg
m3

)
316L

(MEX)
3.6 6.8 12.0 ≃1

Austenite and
residual martensite

7342

316L
(SLM)

22.7 32.4 45.2 ≃1
Austenite and

residual martensite
7880

630
(SLM)

17.8 26.2 37.6 ≃1
Austenite and

martensite
7880

420
(SLM)

17.0 24.3 34.3 ≃1
Austenite and

martensite
7820

440C
(SLM)

18.1 26.4 37.9 ≃1 Austenite 7940

Copper
(SLM)

30.7 46.7 69.0 ≃1 Pure Copper 8940
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Figure 3.9: X-ray diffractograms of the 316L, 630, 420 and 440C powder particles (from bottom
to top).

3.2 Feedstock production

In MEX, an effective mixture between the powder, binder and additives is essential for
the success of the debinding and sintering steps. In this study, an optimised mixture
of 316L powder [42, 324], master binder and additives (backbone and plasticizer) were
mixed on a Plastograph® Brabender W50 torque rheometer (Brabender GmbH & Co.
KG, Duisburg, Germany) at 180°C, 30 rpm, with a 38.5 cm3 mixture chamber. Previous
studies on the CPVC of 316L stated that 60 vol.% for this particular metallic powder [42].

The resulting mixture was granulated and extruded into filament, on a Brabender single-
screw extruder, with five different heating zones. The nozzle diameter was the same as
the intended final filament diameter, 1.75 mm. The heating steps were set, from feeder to
nozzle, to 160, 165, 170, 175 and 180°C.
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3.3 3Dobject Production

3.3.1 Solid State AM (MEX)

The filaments were processed through a Prusa i3 MK3S (Prusa Research, Prague, Czech
Republic) with a 0.4 mm nozzle diameter. For the production of SS 316L, the nozzle
temperature was set at 195°C for the first layer and 190°C for the other layers. Bed
temperature was set at 60°C. Print speed was 20 mm/s, and the extrusion multiplier was
1.1, with the objective of offsetting the overlap and creating a more homogenous layers.
A large test group for the analysis of shaping parameters is summarised in table 3.3.

Table 3.3: MEX production conditions for 316L 3Dobjects.

3Dobject Layer Height (mm) Strand Width (mm)
H0.15W0.45 0.15 0.45

H0.15W0.35 0.15 0.35

H0.10W0.45 0.10 0.45

H0.10W0.35 0.10 0.35

H0.05W0.45 0.05 0.45

H0.05W0.35 0.05 0.35

The selected 3Dobjects were cylindrical (10 mm diameter and 5 mm height) in order to
assess the geometrical accuracy of the MEX process (figure 3.10).

Figure 3.10: Cylinders dimensions for MEX production: a) isometric and b) top views.

All 3Dobjects were debinded and sintered in an Ar + H2 atmosphere (5 vol.% H2). The
thermal cycles selected for debinding (1°C/min) and sintering (10°C/min) 316L green are
shown in figure 3.11, respectively.
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Figure 3.11: Debinding and Sintering Thermal Cycles for SS 316L.

3.3.2 Liquid State Based AM (SLM)

For all copper productions, an SLM 125HL from SLM Solutions was utilised, equipped
with a Yb-fiber laser (λ=1064 nm) with a maximum power of 400 W and a spot size of 100
µm, under an argon atmosphere. Pure copper was processed using a fixed power of 400 W
due to the aforementioned absorption issues. The design test group for the optimisation
of pure copper production is summarised in table 3.4.



3.3 3Dobject Production 71

Table 3.4: Test group for pure copper production.

Position A B C
Parameter

1 Scanning Speed (v) - 240 270

VED
(

J
mm3

)
- 220 200

2 Scanning Speed (v) 300 330 360

VED
(

J
mm3

)
180 160 150

3 Scanning Speed (v) 390 420 -

VED
(

J
mm3

)
140 130 -

Copper Steel production, due to the uncertainty of the response of the mixture to the
laser energy, was more broad. Test group parameters are summarised in table 3.5

Table 3.5: Test group for copper-steel production.

Position A B C D E
Parameter

1 Power (W) 200 200 200 200 200

VED
(

J
mm3

)
140 160 180 200 220

2 Power (W) 250 250 250 250 250

VED
(

J
mm3

)
140 160 180 200 220

3 Power (W) 300 300 300 300 300

VED
(

J
mm3

)
140 160 180 200 220

4 Power (W) 350 350 350 350 350

VED
(

J
mm3

)
140 160 180 200 220

5 Power (W) 400 400 400 400 400

VED
(

J
mm3

)
140 160 180 200 220

Following the position of the 3Dobjects, the proposed nomenclature is: VXXXWYYY,
where V identifies the VED, W identifies the power and XXX and YYY are the set values
for each of these parameters, respectively.

The SLM equipment used for stainless steel production was an EOS M290 system (EOS
GmbH, Krailling, Germany) equipped with a Yb-fiber laser (λ=1064 nm) with a maxi-
mum power of 400 W and a spot size of 100 µm.
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SLM processing of stainless steels was undertaken with an oxygen content below 0.1
vol.% in the working chamber using a continuous flow of nitrogen. Laser power was set
at 260 W, scanning speed at 1060 mm/s, hatch space at 100 µm, and a layer thickness of
30 µm (VED 82 J/mm3). The scanning strategy was a zigzag pattern with a rotation angle
of 67° between adjacent layers. Each batch included density cubes (10× 10× 10 mm3)
and tensile test specimens. Additionally, a 10° rotation relative to the substrate position
was added to avoid contamination by spattering. All 3Dobjects were studied as-SLMed,
without post-processing treatment.

3.4 3Dobject characterisation

The final density for all 3Dobjects was evaluated through the Archimedes method. Mate-
rialography was supported by optical microscopy using a Leica DM 4000 M LED (Leica
Microsystems AG, Wetzlar, Germany) with a Leica camera, model MC 120 HD.

Copper surface etching was performed with FeCl3, HCl , H2O and C3H8O3 (1:1:3:5).
For 316L, 630 and 420 steels, etching treatment was Vilella solution. For 440C, Kalling
solution etching was selected.

Surface roughness was evaluated using focus variation microscopy Alicona Infinite Fo-
cus - IFM (Bruker, Kontich, Belgium) following ISO 4287 and 4288.

Copper and copper alloy thermal conductibility was measured with a TPS2500 from
Hot Disk (Hot disk AB, Göteborg, Sweden) based on the Transient Source Plane (TPS)
method and suitable for measuring a wide range from 0.005 – 1800 W/m.K.

Microhardness measurements were performed on a Fisherscope H100 (Fischer Instru-
mentation LTD, Pershore, UK), equipped with a Vickers indentor (10 measurements per
sample, maximum load of 1000 mN, holding time of 30 s). Tensile tests were performed
on a SHIMADZU Autograph (Shimadzu, Kyoto, Japan), with a 100 kN load cell, ac-
cording to ISO 6892, at room temperature with a rate of 10 MPa per second. Tensile
specimens dimensions are in accordance to figure 3.12. All bulk values were taken from
CES Edupack material selection software [325].

Figure 3.12: Tensile test specimen measurements, in mm.
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3.4.1 µCT

µCT is the main defect characterisation technique used in the present study, Surface and
inside defects tensile specimens were evaluated by X-ray micro-computed tomography
using a Bruker SkyScan 1275 (Bruker, Kontich, Belgium). Tensile specimens of SLMed
were polished on both the top and bottom surfaces until a thickness of 2 mm was achieved.
For all 3Dobjects, an acceleration voltage of 100 kV and a beam current of 100 µA were
set using a 1 mm copper filter with step-and-shoot mode. The images were acquired at
0.4° angular step with 10 frames average per step using an exposure time of 245 ms.
The µCT images were reconstructed with the dedicated manufacturer software. The pixel
size was set to the minimum value possible, and the random mode was used. For tensile
specimens, 10 µm was used; for MEX 316L and copper, pixel size was set at 8 µm.
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Chapter 4

MEX as a Paradigm of Defects in Solid
State Additive Manufacturing

This chapter highlights the groundwork necessary to attain the main objective of the
thesis, smart control of defects – in additive manufacturing – and their origin, in order to
achieve the necessary quality for structural/functional applications. Powder technologies
for manufacturing objects are supported in phenomena that generally occur in solid state
(e.g. pressing and sintering, powder injection moulding, . . . ). In additive manufacturing,
the challenge is not only in solid state, but also when using technologies where cooling
at high rates of a liquid phase is essential to attain the final object (liquid state additive
manufacturing). Thus, this chapter analyses defects in solid-state processes (MEX) and
is followed by two chapters where the liquid phase is essential to attain consolidation
(SLM).

The preselection of solid state additive processes as the demonstration, with universal
character, is due to the complexity of stages necessary to attain a 3Dobject. This enlarges
the spectra associated with the common type of defects in additive manufacturing. The
target is to highlight, but not establish, the report between defect and application, whatever
the additive manufacturing technology. The MEX is the most suitable indirect additive
manufacturing technology to achieve the disclosed goals. This technology, based on PIM,
accentuates the gaps between layers, which is uncharacteristic in PIM, so new challenges
for effective densification emerge. Moreover, the addition of additives to the binder (PIM)
may bring unforeseen consequences to the debinding step. Consequently, it is essential
to provide a critical overview of the defects and defect-inducing mechanisms existent in
MEX.
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As stated in chapter 2, defects in MEX can be separated into three specific steps: feed-
stock, shaping and consolidation (which includes debinding and sintering). As such, each
of these phases must be analysed separately to assess the processes of defect emergence.

4.1 Feedstock Preparation

Three types of filaments with different particle sizes and particle size distribution were
effectively analysed using µCT. One was developed at UC, and the other are commercially
available. UC filament presented some random defects throughout its volume, which
might be mainly related to trapped gas when mixing/extruding the filament. Furthermore,
elongated defects can be present close to the surface. This type of porosity is mainly due
to material recuperation after passing through the nozzle (figure 4.1).

Figure 4.1: 2D and 3D visualisation of defects location in UC filament cross-section (left and
right).

In what concerns BASF filaments, they show a large number of minor defects in the fil-
ament volume (figure 4.2). These defects may be related to a lack of effective binder wet-
tability between 316L powder and binder+additives (figure 4.3, right). Moreover, BASF
opted for using a solution of "encapsulating" their filaments with a polymeric coating,
providing strength and flexibility to the filament, making it effectively easier for han-
dling, which is visible by SEM (figure 4.3, left). It must be highlighted that this solution
may contribute to problems during 3Dshaping (nozzle clogging and excess of polymer in
the interface layers that constitute the green of the 3Dobject).

Virtual Foundry (VF) uses a different approach from UC and BASF filaments (figure
4.4). With a single binder polymer (PLA), bigger 316L powder particles, visible by µCT,
reveals stochastic defects and enormous interparticular spaces.
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Figure 4.2: 2D and 3D visualisation of defects location in BASF filament cross-section (left and
right).

Figure 4.3: SEM of BASF filament cross-section.

Analysis of geometrical defects (e.g. eccentricity) through µCT demonstrates that higher
than optimal diameter filament is achieved through extruding with a 1.75 mm nozzle due
to the filament elastic recuperation. BASF and VF filaments have lower-than-optimal
filament diameters. All filaments studied have a small and similar eccentricity.

All filaments were submitted to the printer nozzle to assess the particle reorganisation
within the strand (feedstock after exiting the 0.4 mm nozzle) and mainly the polymer re-
sponse to the heat temperature. The UC strand shows the nonexistence of defects larger
than 10 µm (µCT resolution). On the other, it is clear that the strand maintains the cylin-
drical aspect of filament (figure 4.6). Regarding BASF strands, they show small defects
throughout the length of the filament (figure 4.7). VF strands are deformed and full of
defects. This is to be expected from the larger metallic powder particle size when com-



78 MEX as a Paradigm of Defects in Solid State Additive Manufacturing

Figure 4.4: 2D and 3D visualisation of defects location in VF filament cross-section (left and
right).

Figure 4.5: Measured diameter and eccentricity of the different analysed filaments.

pared with UC and BASF filament since the diameter change from 1.75 mm (filament)
to 0.4 mm (strand) leads to massive particle stress and to an almost hollow cylinder with
irregular size (figure 4.8).

Eccentricity analysis (figure 4.9) seems to demonstrate that only the UC strand remains a
quasi-perfectly cylindrical shape, with a diameter closer to 0.4 mm. The wide eccentricity
range of values for the VF strand is a clear indicator of extreme shaping difficulties that



4.2 Green 3Dobject from UC filament 79

Figure 4.6: 2D and 3D visualisation of defects location in UC strand cross-section (left and
right).

Figure 4.7: 2D and 3D visualisation of defects location in BASF strand cross-section (left and
right).

may arise from irregular strands within the 3Dobject.

As can be observed, µCT evaluation of the feedstock can be an effective tool for as-
sessing some of the expected defects that will occur during shaping and sintering. Some
feedstock characteristics can be previewed, such as powder size inadequacy and irregular
filament and strand sizes, as well as uneven powder/polymer distribution.

4.2 Green 3Dobject from UC filament

As stated in methodology (chapter 3), a test group of cylinders with different shaping pa-
rameters was manufactured. Layers of 0.15 mm from 0.45 mm strand size were selected
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Figure 4.8: 2D and 3D visualisation of defects location in VF strand cross-section (left and
right).

Figure 4.9: Diameter and eccentricity of the strands (UC, BASF, VF).

to be the standard for this study. It assesses the filament capability to be processed through
a 0.4 mm nozzle, whatever the layer height. A 0.05 mm final layer height was selected,
which is the equipment minimum capability. Strand size considerations are complex due
to the extruding physics involved in the process. When a strand is deposited, multiple fac-
tors must be considered due to nozzle movement, flow and interaction with the substrate.
Consequently, strand width is usually regarded as 0.45 mm for a 0.4 mm nozzle. Nev-
ertheless, when layer height was set to 0.15 mm, single, separated strands were evident
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(figure 4.10). This means that there is a general inadequacy of standard parameters for
this strand size and flow. Moreover, defects relating to path generation are clearly visible.
The comparison with the shaping input (figure 4.11), top 2D layer image to object clar-
ifies the observed intralayer defects. Moreover, a seam (the point where a single strand
starts and finishes) is visible, which causes a defect, impossible to avoid in MEX.

Figure 4.10: 2D cross-section of the H0.15W0.45 cylinder.

Figure 4.11: Top layer comparison between slicing input and final object (left and right).

Through defect and volume separation, using µCT, it is possible to observe them inside
the 3Dobject (figure 4.12). Volume rendering allows for the clear visualisation of stacked
porosity, with strand direction, layer per layer. This corresponds to the general inadequacy
of the strand width parameter to the selected height. Furthermore, a kind of corner defect
is visible and related to the stated inevitable strategy defects.
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Figure 4.12: 3D rendering of the H0.15W0.45 cylinder volume and defects (left and right).

Further decreasing the layer size did not have a significant influence on the overall lack
of density of the 3Dobject (figures 4.13 and 4.14). Poorly stacked strands are visible
throughout the object, which seems to affect its geometric accuracy. Besides infill strand
width inadequacy, lack of contour-infill overlap is also evident and prejudicial to the qual-
ity of structural/functional application.

Figure 4.13: 2D cross-section of the H0.10W0.45 cylinder.

Layer height reduction to 0.05 mm resulted in major alterations regarding the 3Dob-
ject density (figure 4.15 and 4.16). Stochastic porosity is the dominant defect. However,
a single layer of width inadequacy, related to flow changes due to filament geometrical
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Figure 4.14: 3D rendering of the H0.10W0.45 cylinder volume and defects (left and right).

variation or partial clogging, is the origin of the detected defects. This effect is more con-
nected with layer height reduction due to pressure increases in the nozzle. Nevertheless,
density is much higher in these 3Dobjects; geometrical dimensions were affected due to
over-extrusion, as is visible on the cross-section (X-Z) (Figure 4.15).

Figure 4.15: 2D cross-section of the H0.05W0.45 cylinder.

µCT measurements were applied to determine the actual width regarding 0.15 mm layer
height (figure 4.17). Measurements of 320-370 µm were attained, and a width size of 350
µm was set as the standard for the following productions.

Width adjustment was effective in reducing the gaps between strands (figure 4.18 and
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Figure 4.16: 3D rendering of the H0.05W0.45 cylinder volume and defects (left and right).

Figure 4.17: X-Z cross-section measurements of the H0.15W0.45 strand width.

4.19). However, it increases the chances of clogging. This led to a reduced volume of
defects but higher random defects and defect distribution. Moreover, it is visible that
the pressure between the nozzle and the printing bed had a densification effect by strand
deformation.

Cylinder H0.10W0.35 further demonstrates the difficulties and consequences of incon-
sistent extrusion (figure 4.20 and 4.21). Otherwise a defect-free infill cylinder, under-
extrusion caused a significant number of defects concentrated on the central part of 6-8
layers. Overpressure caused by part growth in Z-direction due to overextrusion may result
in the opposite defect by clogging.

Similar to cylinder H0.10W0.35, cylinder H0.05W0.35 presents the same defect type
(figure 4.22 and 4.23). However, the larger diameter before the defect, reversed imme-
diately when the underextrusion mechanism is present, seems to support the advanced
hypothesis. Thus, effective control of nozzle pressure is essential for process reliability in
MEX of dense parts.
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Figure 4.18: 2D cross-section of the H0.15W0.35 cylinder.

Figure 4.19: 3D rendering of the H0.15W0.35 cylinder volume and defects (left and right).

All the cylinders produced in different conditions are collected in figure 4.24. The main
conclusion is that defect type is largely dependent on the selected shaping parameters.
Moreover, other assumptions can be highlighted:

– strand geometry is controlled by the pressure between the nozzle and the substrate;
thus, a complete prediction is only possible if real-time analysis is performed;

– overextrusion leads to clogging or geometrical deviations, which can be prejudicial
for part interior features, which cannot be accessed by machining the green;
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Figure 4.20: 2D cross-section of the H0.10W0.35 cylinder.

Figure 4.21: 3D rendering of the H0.10W0.35 cylinder volume and defects (left and right).

– random defects are mostly unavoidable in the production of the green due to the
intrinsic nature of the extrusion process.

To highlight the importance of filament-to-strand quality, several objects were produced
with VF filament. As expected, the quality of the part was primarily affected by the
inconsistent individual strands (figure 4.25).

Thus, µCT is an essential tool for observing the shaping quality in MEX products. More-
over, it is relevant as an optimisation tool. Feedstock quality defects consequences were
visible in the final 3Dobject. The shaping strategy is revealed as the main inducer of



4.3 Consolidation (Debinding and Sintering) 87

Figure 4.22: 2D cross-section of the H0.05W0.35 cylinder.

Figure 4.23: 3D rendering of the H0.05W0.35 cylinder volume and defects (left and right).

defects, which are repeated in all the layers. The next relevant defect type is irregular
extrusion and underextrusion, which affects densification negatively. This is affected by
feedstock characteristics, such as powder size and filament diameter.

4.3 Consolidation (Debinding and Sintering)

The evaluation of the capability of the feedstock to be consolidated, independent of
the shaping parameters or reheating influence, was performed. Sections of all studied
filaments were sintered. UC sintered filament had no detectable porosity, maintaining
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Figure 4.24: 2D green cylinders cross-section comparison.

its integrity, despite being cylindrical. It must be highlighted that no support was used
during sintering (figure 4.26). Also, BASF filament maintained structural integrity, but
defects already present in the green filament were not resolved by sintering (figure 4.27).
Moreover, the sintering of BASF filament presents cracking of the filament, despite the
reduced width of the green. Consequently, further studies on the thermal sintering of
BASF filaments were not developed.



4.3 Consolidation (Debinding and Sintering) 89

Figure 4.25: 2D and 3D visualisation of defects location in VF green object cross-section (left
and right).

Figure 4.26: 2D cross-section of the sintered UC filament.

A comparison between green and sintered UV cylinders was performed. In the case of
cylinder H0.15W0.45, virtual interior channels caused by the non-optimal shaping pa-
rameters led to partial sintering of the part. The content defects after sintering are similar
to the green (figure 4.28). Moreover, intense warping is observed. This behaviour may
be due to the debinding-related stresses resulting in geometrical distortion. The base of
the cylinder contraction led to warping. Exhausted gas (from polymer ustulation) from
the cylinder interior helped to increase the distance between the strands since the inter-
strand connection was almost non-existent. Furthermore, during the shaping step, there
is a possibility of inducing thermal stresses that, when starting the debinding process, can
result in object warping. 3D digital image comparison of the defects in the green and
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Figure 4.27: 2D cross-section of the sintered BASF filament.

sintered part shows that no major defects have disappeared, and the geometrical aspect
has degraded, like in PIM manufacturing process (figure 4.29).

Figure 4.28: 2D cross-section comparison of H0.15W0.45 cylinder, green and sintered (left and
right).

Since the consolidation had similar behaviour regarding the same shaping heights and
was less affected by strand width, in this section, cylinders were grouped per height and
not per width. Thus, cylinders shaped with 0.35 mm strand width (H0.15W0.35) showed
similar behaviour to H0.15W0.45 (figure 4.30). The interspace between strands was in-
creased, and some warping is yet clearly visible. The magnitude of the warping seems
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Figure 4.29: 3D rendering comparison between green and sintered (top and bottom)
H0.15W0.45 cylinder volume and defects (left and right).

to be reduced by the improvement of green density, as expected. Furthermore, some
small defects were reduced on the lower half of the cylinder, mainly due to the warping
movement leading to void closure (figure 4.31).

Figure 4.30: 2D cross-section comparison of H0.15W0.35 cylinder, green and sintered (left and
right).
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Figure 4.31: 3D rendering comparison between green and sintered (top and bottom)
H0.15W0.35 cylinder volume and defects (left and right).

The cylinders H0.10W0.45 had a different sintering behaviour from the H0.15W0.45
(figure 4.32). The compaction from the green to sintered object is clear. The reduction
of the cylinder in the Z direction (height) must be due to an effective increase of weight
resulting from the relation H:W and the variation of linear defects in XY directions. This
occurs typically during debinding. After sintering, this led to a smaller 3Dobject with
a higher density than H0.15W0.45. However, the increased density in the central zone
induced a crack in the 3Dobject (figure 4.33). This was not to be expected when the de-
fects/voids are connected to the surface, which significantly reduces the stresses caused by
the possible concentration of gas from debinding ustulation. Consequently, the structural
collapse of the reticulated infill can be observed in figure 4.32 (bottom right).

Cracking issues increased when the strand width was reduced (figure 4.34). Moreover,
cracking occurred in two distinct zones. The first one, from the top, was initiated on
the underextruded layer, which is mainly a delamination phenomenon. The second crack
occurred on the lower half of the object, where the density was higher. Since warping is
observed, some internal stresses during sintering could have led to the delamination due
to cracking (figure 4.35).
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Figure 4.32: 2D cross-section comparison of H0.10W0.45 cylinder, green and sintered (left and
right).

Figure 4.33: 3D rendering comparison between green and sintered (top and bottom)
H0.10W0.45 cylinder volume and defects (left and right).

Observations from cylinder H0.05W0.45 confirm that the debinding cycle seems not to
be optimised to the binder & additives debinding behaviour (figure 4.32). The pressure
from gas entrapment led to delamination in the 3Dobject. Even in dense parts, this is the
demonstration that in MEX, intralayer strength is stronger than interlayers. This resulted
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Figure 4.34: 2D cross-section comparison of H0.10W0.35 cylinder, green and sintered (left and
right).

Figure 4.35: 3D rendering comparison between green and sintered (top and bottom)
H0.10W0.35 cylinder volume and defects (left and right).

in some highly deformed layers with wide gaps. Otherwise a relatively dense cylinder,
some of the green voids were reduced, delamination during consolidation caused wide
interior defects that compromised the geometrical integrity of the 3Dobject (figure 4.37).
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Figure 4.36: 2D cross-section comparison of H0.05W0.45 cylinder, green and sintered (left and
right).

Figure 4.37: 3D rendering comparison between green and sintered (top and bottom)
H0.05W0.45 cylinder volume and defects (left and right).

The presence of an underextruded layer on the bottom half of the cylinder leads to low
consolidation changes relative to the green object. However, the dense top half showed
severe cracking. The presence of "chimneys" for gas flow during sintering is deemed es-
sential for thicker objects, as in PIM. However, the binder and additives can widely affect
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the object thickness range for sintering. Consequently, deep insight into the influence of
these defects caused by gas flow must be the object of future studies.

Figure 4.38: 2D cross-section comparison of H0.05W0.35 cylinder, green and sintered (left and
right).

Figure 4.39: 3D rendering comparison between green and sintered (top and bottom)
H0.05W0.35 cylinder volume and defects (left and right).

All the sintered cylinders produced are collected in figure 4.40. Debinding and sinter-
ing issues are evident for all the manufactured 3Dobjects. Total debinding and sintering
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time, including dwell times, must be optimised according to the physical and chemical
behaviour of the feedstock components.

Figure 4.40: 2D cross-section comparison of the sintered cylinders.

Whatever the sintering atmosphere, consolidation did not produce good results (figures
4.41 and 4.43). Besides the large gaps due to sintering, cracking, and delamination, in-
trastrand porosity is widespread due to precarious consolidation (figures 4.42).
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Figure 4.41: Micrographies of the polished surface of a 316L cylinder sintered under hydrogen
atmosphere.

Figure 4.42: SEM detail of the polished surface of a 316L cylinder sintered under hydrogen
atmosphere.

Figure 4.43: Micrographies of the polished surface of a 316L cylinder sintered under argon
atmosphere.

A part produced by MIM undertook the same consolidation parameters as its MEX coun-
terparts, resulted also in disastrous effects (figure 4.44). The prevalence of widespread
porosity in the thin part corroborates the anticipated theory of general inadequacy of the
feedstock to thermal treatment.

An overlook of defects in MEX revealed that µCT is an essential tool for AM quality
evaluation. Moreover, green defects consequences on the consolidation behaviour could
be effectively predicted. The use of modelling, combined with µCT is, therefore, a smart
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Figure 4.44: Micrographies of the polished surface of MIM 316L, sintered under argon
atmosphere.

development that can be achieved to predict the consolidation behaviour, thus saving high
sintering costs, contributing for MEX to become a sustainable technology. This can be
achieved through a series of rules regarding the consequences of each green defect type on
the consolidation, feeding a digital model attained on the µCT to the modelling software.
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Chapter 5

Conventional SLM of Copper and
Copper Alloys Powder

Up to now, one of the metals that gives rise to enormous problems during its processing
by SLM is copper. In the last decennia, SLM equipments were constituted by a fibre
laser of ytterbium, with a wavelength of 1070 nm. This radiation was not suitable for
copper powder and, therefore, it was not possible to attain the desired quality for copper
3Dobjects. A significant quantity of defects could be present in the 3Dobject. Thus,
the selection of this metal had the goal of enhancing the role of µCT in the detection of
defects.

SLM defects resulting from AM of copper powder were also complemented with the
defects present after the addition of other significant elements.

5.1 SLM of Pure Copper

Up to now, it has been a challenge to process copper by SLM due to its reflectivity and
high thermal conductivity. In order to mitigate this problem, high laser power (P) should
be used, contributing to the increase of the VED. However, uncontrolled melting pool and
laser backfire (reflection shattering the laser deflection mirror), may occur [326]. Never-
theless, research works do not point to a specific set of VED to attain high densification
in reproducible conditions, so a test group was designed, as previously indicated in table
3.5. A combination of high laser power and different scan speeds (different high VEDs)
of a set of seven objects are shown in figure 5.1.
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Figure 5.1: Pure copper 3Dobject by SLM.

All set parameters achieved a final 3Dobject. In spite of recent literature results [327], all
3Dobjects had less than 95% of the powder density. The low density of 3D cubes is highly
detrimental to their thermal and electrical conductivity and is in line with state-of-the-art.
Surface micrography (figure 5.2), as well as µCT of the 3Dobjects (figures 5.3 and 5.4)
were analysed. Whatever the VED (130-220 J/mm3) or scanning speed selected, the low
density seems to result from an irregular melting pool, as expected from the low absorp-
tion of copper, which should lead to partial melting. The balling effect is seen throughout
the surface and is especially higher close to it, where thermal accumulation due to re-
peated laser scanning is low. A general remelting, whenever a new layer is scanned, does
not seem to be sufficient to increase the overall density of the copper 3Dobjects, but only
contribute to aggregate the particles.

Figure 5.2: Optical micrography of pure copper SLMed 3Dobject.

For further investigation about thermal conductivity regarding pure copper produced by
SLM, with the best parameters, a small disk with suitable diameter and thickness, ac-
cording to equipment (hot disk thermal constants analyser) was produced. The overall
thermal conductivity was below 60 W/m.K, which is far from the 398 W/m.K attributed
to copper [325]. This significant decrease in thermal conductivity can be concluded that
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Figure 5.3: 2D cross-section of the SLMed B1 pure copper 3Dobject.

Figure 5.4: 2D cross-section of the SLMed C1 pure copper 3Dobject.

copper SLM objects produced with standard parameters are not suitable for copper ap-
plications. This occurrence was overcome by the addition/substitution of other materials
when produced by SLM. This could aid in improving the thermal conductivity of SLM
copper objects [328].

5.2 Tailored Copper Mixture for SLM

One of the more exciting opportunities brought forth by SLM is the possibility of devel-
oping new alloys for specific uses from powder particles. Furthermore, the opportunity of
multimaterial processing through additive manufacturing, harvesting the described main
advantages of copper alloys and the hardness (e.g. steels) is exciting. This has been a
persuasive argument for the continued development of SLM-manufactured copper and
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copper-based alloys, where the other metallic element may contribute to better bulk den-
sity and, and good thermal conductivity (> 60 W/mK). Conventional processes fail to
produce a good Cu-Fe alloy due to the immiscibility of the Fe phase in the copper matrix.
However, the different behaviour of iron versus copper when submitted to a laser source
in SLM can induce a significant improvement of 3Dobject quality. Porosity decreases
significantly because iron, which has no problems in SLM, avoids it.

In this work, the copper powder was mixed with austenitic stainless-steel powder - 316L
(source of Fe), and not with pure iron due to eventual problems of oxidation and phase
modification that could be present in iron. The weight ratio of copper:steel selected was
80:20 and was compared in what concerns the defects with pure copper. Due to the
adjustments brought by steel addition, a large test group of powder was produced with
medium to high laser power and volumetric energy density. This option has contributed
to highlight the role of microtomography in establishing the limits of defect detection,
whatever the metallic alloys processed by SLM.

Table 5.1 summarises the densities for all the 3Dobjects produced and compares them
to a theoretical density of the copper element and stainless steel 316L studied mixture.
As can be discerned, achieved densities are higher when power reaches 400 W. The steel
presence seems to be an aggregating agent that serves as a stabilising presence to the pure
copper.
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Table 5.1: Cu-Fe test group objects density compared to a theoretical Cu-Fe mixture density.

3Dobject
3Dobject Average

Density
(

Kg
m3

)
Mixing Density
Copper:Fe, Cr,
Ni (Austenitic

SS)
(

Kg
m3

)
V140W200 8210 8678
V140W250 8420
V140W300 8009
V140W350 8350
V140W400 8210
V160W200 8310
V160W250 8250
V160W300 8290
V160W350 8290
V160W400 8580
V180W200 8280
V180W250 8300
V180W300 8310
V180W350 8370
V180W400 8490
V200W200 8280
V200W250 8330
V200W300 8270
V200W350 8390
V200W400 8460
V220W200 8370
V220W250 DNF
V220W300 8360
V220W350 8290
V220W400 8510

The highest density 3Dobjects (in bold on table 5.1) were selected for further analysis.
Steel islands on the copper matrix are clearly visible throughout the 3Dobject. However,
big steel islands can also be observed, which may arise from the remelting that occurs
when a new layer is scanned, which increases element mobility within the matrix. EBSD
images confirm the immiscibility of the steel in the copper matrix, as has been observed in
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conventional fabrication processes (figure 5.8). Furthermore, EBSD quantification of the
copper:steel relation is close to 80:20 with a weight percentage of iron ≈ 20.6 ± 3.1%.

Figure 5.5: Optical micrographies of 3Dobject V160W400 surface.

Figure 5.6: Optical micrographies of 3Dobject V180W400 surface.

Figure 5.7: Optical micrographies of 3Dobject V220W400 surface.

The µCT of 3Dobjects V160W400, V180W400 and V220W400 (figures 5.9-5.11) cor-
roborate the justification of the highest density measured by Archimedes method. Some
random defects can be observed throughout the 3Dobject volume. These defects can be
resultant of LOF defects due to the high thermal conductivity of copper.

For comparison, the worst finished 3Dobject was also µCT analysed (figure 5.12). The
overall presence of defects is clear. These are mainly related to hatching space, being
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Figure 5.8: EBSD element distribution for 3Dobject V220W400.

Figure 5.9: 2D visualisation of 3Dobject V160W400 cross-section.

visible as the separation between melting pools in the X-Z direction. Since all the ob-
served defects can be related to this type of defect inducer, a corrected hatching space
may provide better results, increasing the VED if maximum power is limited.

To understand the mechanism of copper:steel production in SLM, a test group of in-
creasing 3Dobject building height was made, with heights of 0.5; 1.0; 2.0; 4.0 and 8.0
mm. Surprisingly, bigger steel islands seem to be less prevalent in the bigger objects.
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Figure 5.10: 2D visualisation of 3Dobject V180W400 cross-section.

Figure 5.11: 2D visualisation of 3Dobject V220W400 cross-section.

An effective melting pool is shown, through Marangoni currents, to be an effective way
of mixing elements in SLM processing. In accordance with that, a special prevalence of
steel islands in the melting pool boundary is related to the density of this element within
the alloy (figure 5.13).

Density was measured for all heights (table 5.2). An increase in density is apparent. A
remelting effect may be acting as a porosity correction mechanism by filling the spaces
that were not fully melted on the previous layer.
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Figure 5.12: 2D visualisation of 3Dobject V140W300 cross-section.

Table 5.2: Density of copper-iron 3Dobjects with different heights.

3Dobject 3Dobject Density
(

Kg
m3

)
0.5 mm 7888

1.0 mm 8176

2.0 mm 8381

4.0 mm 8420

8.0 mm 8339

The µtomography upholds that the initial defects disappear with an increase in 3Dob-
ject height (figures 5.14-5.18). LOF defects gradually disappear, and random porosity is
more dominant. However, a further increase to 8.0 mm height seems to contribute to a
slight increase in porosity, but can be mainly attributed to process reproducibility. Further
characterisation fails to show any reason for this behaviour.

Diffractograms of the highest density copper:steel 3Dobject were compared to the small-
est and highest height 3Dobjects (figure 5.19). When compared to the virgin powder, an
austenitic phase corresponding to the steel addition is evident in the XRD. Furthermore,
SLM production of copper-steel did not affect the powder material significantly, and the
presence of copper oxide is not evident.

The addition of steel powder to copper decreases the defects, as detected by µCT, and
emphasises density values. Inside SLM 3Dobject, it could attain 99% of densification
against 95% of copper. This is associated with an improvement of alloy properties con-
tributing to a significant increase of the 3Dobject hardness (table 5.3).
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Table 5.3: Microhardness and density of copper-steel objects.

3Dobject Hardness (HV) 3Dobject Density
(

Kg
m3

)
V160W400 164 ± 6 8580

0.5 mm 166 ± 3 7888

8.0 mm 173 ± 8 8339
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Figure 5.13: Optical micrographies of Cu-Fe 0.5 (a), 1.0 (b), 2.0 (c), 4.0 (d), 8.0 (e) mm height
3Dobjects.
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Figure 5.14: 2D visualisation of 3Dobject height 0.5 mm cross-section.

Figure 5.15: 2D visualisation of object height 1.0 mm cross-section.
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Figure 5.16: 2D visualisation of object height 2.0 mm cross-section.

Figure 5.17: 2D visualisation of object height 4.0 mm cross-section.
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Figure 5.18: 2D visualisation of object height 8.0 mm cross-section.

Figure 5.19: XRD diffractograms of the 0.5, 8.0 mm and V160W400 (B5 as a standard)
copper-steel 3Dobjects.



Chapter 6

Case study: Role of additive
manufacturing on SS 3Dobject
properties with minor interference of
process defects

The main objective of this chapter is to highlight the importance of defect minimisation
due to the powder characteristics and SLM processing parameters. This contributes to
demonstrate the role of structural modifications induced by additive manufacturing on the
mechanical properties of the 3Dobjects. This case study also led to a better understanding
of the carbon content role in SS processed by SLM.

6.1 SLM of Stainless Steels

First of all, the study was focused on one of the most studied powder materials processed
by additive manufacturing – stainless steel 316L (AISI). Moreover, all the stainless steel
powder studied was processed using the established parameters (EOS®). This allows to
compare the results of the present research with the enounced in the state of the art.

6.1.1 Standard Stainless Steel Production

The EOS®parameters must be related to the lowest content defects, whatever their lo-
cation inside the 3Dobject. However, µCT analyses reveal in the 3Dobject (tensile speci-
men), fabricated in the established conditions, that there is a small concentration of defects
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close to the surface (>200 µm), but without contact with the exterior (closed defects). Fig-
ure 6.1 shows pores that have an irregular shape, which may correspond to lack-of-fusion
defects due to deficient contour-infill hatching distance. This type of defect can be solved
by decreasing this parameter or increasing the laser power in contour zones. Further-
more, the contour is usually at an angle in relation to infill scanning, which may result in
LOF between the two scanning zones, even if the hatching space is correct. A 2D view
of the object confirms the small prevalence of interior defects and the clear incidence of
close-to-surface pores. Also, interior pores are low and mostly random since their size
and location do not seem to be directly correlated to any µCT visible pattern. However,
this can occur and, if spherical, can be attributed to high VED, resulting from the keyhole
regimen.

Figure 6.1: 3D rendering of defect location within the SS 316L 3Dobject volume.

In order to evaluate the degree of optimisation attained, the density of the 3Dobject was
measured. Density values for 316L (table 6.1) correspond to ≈ 1% of defects in 3Dob-
jects, similar to other authors values and could also be attributed to phase modification
during processing [224]. A direct comparison with the virgin powder is considered more
important due to the intrinsic phase changes that the material is subjected to during atom-
isation, which is lacking when compared to standard bulk stainless steel.

Table 6.1: SS 316L powder and 3Dobject density.

Type
Powder Density(

Kg
m3

) 3Dobject Density
(

Kg
m3

) Densification
(%)

316L 7880 7790 99

In fact, X-ray diffraction of the 316L virgin powder and 3Dobject (figure 6.2) show
that the total austenitic phase results from the processing of the virgin powder, that is
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constituted mainly by austenite but also by ferrite/martensite. This means that the residual
ferrite/martensite phase disappears during processing. A strong orientation (220) can be
observed in the 3Dobject. The preferential direction is according to <011>, resulting from
thin and deep melting pools. Mechanical properties are often improved when this texture
is attained, as reported by Sun et al. [329]. However, a recrystallisation procedure may be
performed to achieve properties closer to bulk 316L.

Figure 6.2: X-ray diffractograms of the 316L powder and 3Dobject (bottom and top).

After showing the reduced influence of defects on the 3Dobject densification, it was
possible to analyse the effect of SLM on the microstructure, having as standard the 316L
bulk. Micrographies of SLM-processed SS 316L powder (figure 6.3) show a homogenous
equiaxial grain distribution. However, a typical microstructure resulting from SLM is
anisotropic with preferential growth in the melting pool direction.

Roughness analysis of the 3Dobject surface (table6.2) reveals a prevalence of a waviness
corresponding to the scanning direction (figure 6.4). Surface roughness (cf. chapter 2),
can be an indicator of melting pool suitability. The extremely high roughness (≈16 µm)
compared with the roughness of subtractive manufacturing (≈2-6 µm) of SS 316L. 3Dob-
ject confirms the deep melting pools that result in high growth in ZZ’ direction. Moreover,
a thin melting pool corresponds to a texture that can also be observed through the valleys
between solidified melting pools (figure 6.4). The optimal overlap in steels is considered
to be around 30%. Thus, intermelting-pool distance can result in a lack of fusion pores on
the lower layer space between the melting pools. Furthermore, an incidence of spattered
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Figure 6.3: Optical micrography of etched surface of 316L stainless steel after SLM (200x).

powders can be seen scattered around the object surface, resulting from powder partial
melting, which further decreases surface quality.

Figure 6.4: Optical micrography of the 316L stainless steel surface (50x).

Table 6.2: Average roughness values of 316L 3Dobjects.

Type Ra (µm) Rq (µm) Rz (µm)
316L 16.204 19.864 94.401

Comparisons between CAD data and final measurements of the tensile specimens were
made (table 6.3). A slight reduction in all directions is observed. This can be related to
a bad translation of the actual measurements by the scanning. Generally, melting pool
width is considered to be around 140 µm. Any modification in relation to this assumed
value will result in a final 3Dobject variation. To mitigate this factor, an extra thickness is
included in the design of the part and it can be machined after fabrication.
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Table 6.3: Comparison between CAD and final SS 316L 3Dobject sizes of tensile test
specimens.

Type Width at Grip (%)
Width at Reduced

Section (%)
Length (%)

316L 99.40 ± 0.24 98.50 ± 0.32 99.70 ± 0.03

Tensile tests validate the final quality of SLM products. All the specimens have similar
tensile behaviour (figure 6.5). This reinforces the previous statement evaluated by µCT
shown that the defect prevalence is indeed low. When compared to the bulk 316L, tensile
properties have been improved, which can be connected to the resulting texture associated
with the low defect prevalence. However, as is common in SLMed 3Dobjects, strain is
slightly reduced. Table 6.4 summarises the tensile strain, and ultimate tensile strength and
compares it to bulk 316L.

Figure 6.5: Stress–strain curves for the 316L tensile test specimens.

Table 6.4: Elongation and ultimate tensile strength for 316L 3Dobjects, compared to bulk.

Type
3Dobject ε

(%)
Bulk ε

(%)
3Dobject UTS

(MPa)
Bulk UTS

(MPa)
316L 25.4 ± 2.4 30–50 645 ± 10 550

Microhardness was also measured for the 316L 3Dobjects (table 6.5). Lower hardness
than the bulk 316L was measured. This might be related to the nitrogen in the atmosphere,
during atomisation and SLM processing, grain size, orientation, and surface porosity (fig-
ure 6.1).
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Table 6.5: Microhardness of SS 316L objects.

Type 3Dobject HV0.1 Bulk HV0.1

316L 133 ± 17 170–220

6.1.2 Stainless Steels and Carbon Content

Material reaction to the given energy is dependent on its chemical composition. On this
case study, stainless steels with three different carbon content but with similar alloying
elements were processed. Comparison with the results attained by 316L standard, manu-
factured by SLM printing with similar processing parameters, was done. First of all, the
defects analysed were highlighted using µCT. 3D rendering of 630 SS confirms the idea
of inadequacy of contour to infill overlap as in 316L (figure 6.6). Large irregular pores
can also be observed on the boundary between the two scanning patterns.

Figure 6.6: 3D rendering of defect location within the SS 630 3Dobject volume.

In what concerns SS 420, it displays the same inadequacy between contour and infill,
visible for all studied steels (figure 6.7). Moreover, internal pores are also smaller and
rarer.

Although 440C resulted in the lowest density, when measured by Archimedes method,
it can be visible that it presents a high close-to-surface porosity (figure 6.8). However,
440C porosity is in accordance with the idea that the contour parameters become more
inadequate as the melting pool is reduced in size. A bigger presence of pores can be
detected closer to the surface. Overall lack of density is in line with LOF resulting from
inadequate hatching space and is not mitigated by the deeper melting pools observed on
the other stainless steels.
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Figure 6.7: 3D rendering of defect location within the SS 420 3Dobject volume.

Figure 6.8: 3D rendering of defect location within the SS 440C 3Dobject volume.

As a remark, it must be highlighted that the contour/infill pores can be rectified, for
example, by machining process if induced extra thickness, or offset, that must accounted
for in the first stage of design, as previously stated.

Density was measured for the three stainless steels selected and compared to the virgin
powder (table 6.6). An overall decrease in the density with carbon increase can be ob-
served. One of the major challenges of producing high-carbon steels is the vaporisation
of this element when directly affected by the laser beam.
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Table 6.6: SS 630, 420 and 440C powder and 3Dobject density.

Type
Powder Density(

Kg
m3

) 3Dobject Density(
Kg
m3

) Densification (%)
(Disregarding phase

modification)

630 7880 7660 97.2
420 7820 7590 97.0

440C 7940 7490 94.3

Having in mind that virgin powder phases and texture could be different after SLM, for
a density understanding the diffractograms before and after SLM must be analysed.

XRD of the 630 stainless steel shows that an almost dual-phase steel was attained after
SLM processing (figure 6.9). The phasic composition is similar to 316L, but a non-
discernible preferential direction (220) is detected in 316L (figure 6.2).

Figure 6.9: X-ray diffractograms of SS 630 powder and 3Dobject (bottom and top).

A change in texture in austenitic phase (220) in 420 stainless steels is also visible, just as
observed in 316L (figure 6.10). A change in the austenite grain direction can be resulting
from SLM processing regarding microstructure growth due to melting pool phenomena.

In what concerns phases and texture present in virgin powder and SLM 3Dobject, no
change between virgin powder and SLM is visible in the 440C steel diffractograms (fig-
ure 6.11). Both have a unique phase - austenite, that shows a light tendency for a pref-
erential direction (220). Parameters may not be as harsh when considering the ultra-high
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Figure 6.10: X-ray diffractograms of SS 420 powder and 3Dobject (bottom and top).

carbon content that is present in 440C steel, resulting in mitigated texture changes in the
3Dobject.

Figure 6.11: X-ray diffractograms of SS 440C powder and 3Dobject (bottom and top).

The micrographies can contribute to understanding the reason for the densification mea-
sured by Archimedes density method. A thorough observation of the microstructures of
the selected stainless steels shows that the 630 and 420 SS have a more complex thermal
history, with the two austenitic and ferritic/martensitic phases related to the melting pool
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dynamics (figure 6.12). This contrasts with 440C SS, where the micrographies are similar
to the 316L stainless steel, which is in pair with the austenitic phase dominance revealed
by XRD. However, these results in 440C are in disagreement with the low-density values
measured. These low values could be attributed to the highest porosity close to the surface
in 440C detected by µCT, which could assume a density decrease in Archimedes density
evaluation.

Figure 6.12: Optical micrographies of the etched surfaces of 630 (a), 420 (b) and 440C (c)
stainless steels (200x).

The surface roughness (figure 6.13 and table 6.7) decreases as the carbon content in-
creases. As stated before, roughness can be an assessment of parameter suitability. 440C
melting pools are wider, and overlap is more acceptable. This corroborates the idea that
texture changes may be resultant of deep and narrow melting pools since 440C texture
changes are lighter.
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Figure 6.13: Optical micrographies of the 630 (a), 420 (b), 440C (c) surfaces (50x).

Table 6.7: Roughness values of SS 630, 420 and 440C 3Dobjects.

Type Ra (µm) Rq (µm) Rz (µm)
630 12.988 16.030 79.347
420 7.669 9.440 53.783

440C 6.369 8.093 46.391

Reductions in specimen dimensions seem to be general for all steels and an answer to
the selected inputs (table 6.8). 440C had a universal decrease in size, bigger than the other
steels.
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Table 6.8: CAD vs final 3Dobject percentage sizes of tensile test specimens (630, 420 and
440C).

Type Width at Grip (%)
Width at Reduced

Section (%)
Length (%)

630 99.60 ± 0.19 99.00 ± 0.27 99.81 ± 0.05
420 99.70 ± 0.25 98.67 ± 0.27 100.00 ± 0.06

440C 99.20 ± 0.03 98.83 ± 0.25 99.58 ± 0.05

Tensile tests (figure 6.14 and table 6.9) of the stainless steels studied show that 420 and
440C stainless steels have a completely fragile behaviour, without plastic strain when
compared to bulk steels. Furthermore, they have an outstanding UTS when compared to
the bulk, typicall in SLM 3Dobjects. SS 630 show a particular behaviour connected to
the present dual phase (ferrite/martensite and austenite). TRIP (strain-induced martensite
formation) effect is resultant of a high content of retained austenite [320, 321, 330]. This
effect results in a higher strain than normally observed in heat-treated SS 630.

Figure 6.14: Strain–stress curves for SS 630 (red), 420 (green) and 440C (blue) steels.
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Table 6.9: Elongation and ultimate tensile strength for 630, 420 and 440C 3Dobjects, compared
to bulk (according to databases).

Type
3Dobject

ε (%)
Bulk ε

(%)
3Dobject UTS

(MPa)
Bulk UTS

(MPa)
630 10.0 ± 1.3 4–6 1020 ± 33 943
420 0.7 ± 0.2 5–11 814 ± 74 655

440C 0.4 ± 0.1 0.5–4 1164 ± 13 760

The microhardness values of the SLM 3Dobjects produced from the powders of SS 630,
420 and 440C were higher than the maximum hardness of the bulk steels processed by
conventional approaches, including heat treatment (table 6.10).

Table 6.10: Microhardness of the SS 630, 420 and 440C objects, compared to bulk (according to
databases).

Type 3Dobject HV0.1 Bulk HV0.1

630 306 ± 11 250–460
420 647 ± 27 260–641

440C 803 ± 26 510–760
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Conclusions

The final quality of a 3D object produced using powder technology depends heavily on
the size, distribution, and localization of defects, as well as the microstructure. This thesis
aims to investigate the effect of metal 3D objects processed by additive manufacturing in
solid (SSAM) and liquid states (LSAM) on their microstructure and extrinsic properties.
The primary goal was to minimize the impact of stochastic defects that result from pow-
der material and processing parameters, which are selected based on the metal additive
technology used. This thesis highlights the microstructure induced in the final structural
properties for the intended application.

A thorough analysis of stochastic defects was performed using the µCT technique, which
provides an extraordinary and unique insight into internal defects. The studies on SSAM
and LSAM 3D objects revealed that there is a significant difference in the type, localisa-
tion, and dimensions of defects between the two groups. LSAM processes, such as MEX,
where 3D objects are built from a filament that is reduced from millimetric to micromet-
ric thickness layers, lead to distinct defect types. The study also illustrates the tendency
of SSAM products to present large pores that are generally harmful to the final quality.
However, different powder materials can attain high densification values after suitable pa-
rameter selection, particularly if high pressure is applied in the green solid (such as cold
isostatic pressing - CIP).

Regarding LSAM, Copper and standard material SS 316L were selected to establish the
limits of the defects created during the processing. The µµCT technique led to a detailed
analysis of the subsurface and internal characteristics of the 3D objects. The dimension
of defects in LSAM tends to be smaller than in SSAM, with a preferential distribution
closer to the surface. While these pores may be detrimental to the mechanical properties
of the 3D objects, this is not always well understood or predictable. The effects of these
defects on mechanical properties are not fully considered, which is due to the AM effect
on final microstructures, which is usually not taken into account.
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The study shows that SLM parameters used for SS 316L induce low porosity and high
densification in other stainless steels with low nickel and higher carbon content. How-
ever, the study of attained LSAM microstructures, without post-processing treatments, is
necessary to assess the mechanical behaviour of 3D objects. The hardness and UTS of
SLM 3D objects are higher than those of bulk stainless steels with the same chemical
compositions after heat treatments. This is due to a direct relationship between carbon
and elements with high affinity to it (e.g., chromium, molybdenum) since the content of
other elements of the selected stainless steels is insufficient for carbide formation. More-
over, the stabilisation of residual austenite present in the steels with higher carbon content
can result from the processing atmosphere; nitrogen is more effective than other elements
in the matrix.

The anisotropy observed in all stainless steels resulted from the selected scanning strat-
egy and VED values. In the studied stainless steels, the microstructural difference, when
compared to conventionally processed bulk materials, is mainly due to the processing at-
mosphere. Therefore, a constant VED can be used to process different stainless steels with
varying carbon compositions. X-ray tomography, associated with new practical method-
ologies, emphasises, non-destructively, the true effect of defects and highlights the role
of phase transformation and microstructures in the physical and mechanical behaviour of
3D objects.

By using advanced modelling techniques, it is possible to evaluate the impact of de-
fects on the microstructure and macroscopic properties of the 3D object, and to optimise
the production parameters to minimise the defects and enhance the performance of the
final product. The integration of modelling with experimental methods can lead to a
comprehensive understanding of the underlying physics and mechanics of the additive
manufacturing process, and enable the development of reliable and efficient strategies for
producing high-quality 3D objects.

Future Work

The fatigue properties of 3D objects are highly dependent on the extent of total porosity
and the distance of defects from the surface. Pores located within 1 mm of the surface are
known to act as typical crack initiators, which has previously been underestimated. How-
ever, the use of microcomputed tomography (µCT) can provide a better understanding of
the impact of such defects on fatigue, as demonstrated by the Proof of Concept project
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AM.PPT, CCDRC, PT2020. The effects of post-processing thermal and pressure treat-
ments on the removal of pores and residual stresses must be thoroughly investigated to
achieve a balance between their effectiveness and any potential negative impacts. Surface
treatments, such as shot or laser peening, can also be considered, as they not only induce
compressive stress in the material but also partially or totally close near-surface pores.

Furthermore, future studies should investigate the influence of carbon content on solid-
state additive manufacturing of 3D objects.
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Urban Wiklund, Ulf Jansson, Björgvin Hjörvarsson, and Martin Sahlberg. The
effect of laser scanning strategies on texture, mechanical properties, and site-
specific grain orientation in selective laser melted 316L SS. Materials & Design,
193:108852, August 2020.

[206] Dengcui Yang, Yanjun Yin, Xinfeng Kan, Yan Zhao, Zhengzhi Zhao, and Jiquan
Sun. The mechanism of substructure formation and grain growth 316L stainless
steel by selective laser melting. Materials Research Express, 8(9):096510, Septem-
ber 2021.

[207] Joseph J. Sopcisak, Mingxi Ouyang, Duane A. Macatangay, Brendan P. Croom,
Timothy J. Montalbano, David J. Sprouster, Robert G. Kelly, Jason R. Trelewicz,
Rengaswamy Srinivasan, and Steven M. Storck. Improving the Pitting Corro-
sion Performance of Additively Manufactured 316L Steel Via Optimized Selective
Laser Melting Processing Parameters. JOM, 74(4):1719–1729, April 2022.

[208] Hengfeng Gu, Haijun Gong, Deepankar Pal, Khalid Rafi, Thomas Starr, and Brent
Stucker. Influences of Energy Density on Porosity and Microstructure of Selective
Laser Melted 17- 4PH Stainless Steel. In SFF Symposium Proceedings. University
of Texas at Austin, July 2013. Accepted: 2021-10-11T20:40:39Z.

[209] H. Khalid Rafi, Deepankar Pal, Nachiket Patil, Thomas L. Starr, and Brent E.
Stucker. Microstructure and Mechanical Behavior of 17-4 Precipitation Harden-
able Steel Processed by Selective Laser Melting. Journal of Materials Engineering
and Performance, 23(12):4421–4428, December 2014.

[210] A. Stashkov, E. Schapova, T. Tsar’kova, E. Sazhina, V. Bychenok, A. Fedorov,
A. Kaigorodov, and I. Ezhov. Magnetic, electric properties and hardness of 17-4 PH
stainless steel fabricated by selective laser melting. Journal of Physics: Conference
Series, 1389(1):012124, November 2019. Publisher: IOP Publishing.

[211] Chuanli Yu, Zhiyong Huang, Zian Zhang, Jian Wang, Jiebin Shen, and Zhiping
Xu. Effects of sandblasting and HIP on very high cycle fatigue performance of



REFERENCES 153

SLM-fabricated IN718 superalloy. Journal of Materials Research and Technology,
18:29–43, May 2022.

[212] Jino Joshy, Allan George, Basil Kuriachen, and Jose Mathew. Influ-
ence of post processing on the micro-machinability of selective laser melted
AlSi10Mg: an experimental investigation. Materials and Manufacturing
Processes, 0(0):1–13, May 2022. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/10426914.2022.2075886.

[213] Johannes Kunz, Simone Herzog, Anke Kaletsch, and Christoph Broeckmann. In-
fluence of initial defect density on mechanical properties of AISI H13 hot-work
tool steel produced by laser powder bed fusion and hot isostatic pressing. Pow-
der Metallurgy, 65(1):1–12, January 2022. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/00325899.2021.1934634.

[214] A. du Plessis and E. Macdonald. Hot isostatic pressing in metal additive manufac-
turing: X-ray tomography reveals details of pore closure. Additive Manufacturing,
page 101191, April 2020.

[215] M. Åsberg, G. Fredriksson, S. Hatami, W. Fredriksson, and P. Krakhmalev. In-
fluence of post treatment on microstructure, porosity and mechanical properties
of additive manufactured H13 tool steel. Materials Science and Engineering: A,
742:584–589, January 2019.

[216] M. Krinitcyn, N. Toropkov, A. Pervikov, and M. Lerner. Structure and mechanical
properties of Fe-10Cu alloy obtained by material extrusion-based additive man-
ufacturing method with bimodal powder. Powder Technology, 406:117593, July
2022.

[217] Paramjot Singh, Vamsi K. Balla, Alireza Tofangchi, Sundar V. Atre, and Ku-
nal H. Kate. Printability studies of Ti-6Al-4V by metal fused filament fabri-
cation (MF3). International Journal of Refractory Metals and Hard Materials,
91:105249, September 2020.

[218] Marc-Antoine de Pastre, Yann Quinsat, and Claire Lartigue. Effects of additive
manufacturing processes on part defects and properties: a classification review. In-
ternational Journal on Interactive Design and Manufacturing (IJIDeM), February
2022.

[219] Youssef AbouelNour and Nikhil Gupta. In-situ monitoring of sub-surface and inter-
nal defects in additive manufacturing: A review. Materials & Design, 222:111063,
October 2022.

[220] Saveria Spiller, Filippo Berto, and Seyed Mohammad Javad Razavi. Mechanical
behavior of Material Extrusion Additive Manufactured components: an overview.
Procedia Structural Integrity, 41:158–174, 2022.



154 REFERENCES

[221] Yubo Tao, Fangong Kong, Zelong Li, Jingfa Zhang, Xin Zhao, Qing Yin, Dan
Xing, and Peng Li. A review on voids of 3D printed parts by fused filament fabri-
cation. Journal of Materials Research and Technology, page S2238785421012448,
October 2021.

[222] Weiheng Xu, Sayli Jambhulkar, Yuxiang Zhu, Dharneedar Ravichandran, Mounika
Kakarla, Brent Vernon, David G. Lott, Jeffrey L. Cornella, Orit Shefi, Guillaume
Miquelard-Garnier, Yang Yang, and Kenan Song. 3D printing for polymer/particle-
based processing: A review. Composites Part B: Engineering, 223:109102, Octo-
ber 2021.

[223] Joamin Gonzalez-Gutierrez, Santiago Cano, Josef Valentin Ecker, Michael Kitz-
mantel, Florian Arbeiter, Christian Kukla, and Clemens Holzer. Bending Properties
of Lightweight Copper Specimens with Different Infill Patterns Produced by Mate-
rial Extrusion Additive Manufacturing, Solvent Debinding and Sintering. Applied
Sciences, 11(16):7262, January 2021. Number: 16 Publisher: Multidisciplinary
Digital Publishing Institute.

[224] Slawomir Kedziora, Thierry Decker, Elvin Museyibov, Julian Morbach, Steven
Hohmann, Adrian Huwer, and Michael Wahl. Strength Properties of 316L
and 17-4 PH Stainless Steel Produced with Additive Manufacturing. Materials,
15(18):6278, January 2022. Number: 18 Publisher: Multidisciplinary Digital Pub-
lishing Institute.

[225] Lennart Waalkes, Jan Längerich, Philipp Imgrund, and Claus Emmelmann. Piston-
Based Material Extrusion of Ti-6Al-4V Feedstock for Complementary Use in
Metal Injection Molding. Materials, 15(1):351, January 2022. Number: 1 Pub-
lisher: Multidisciplinary Digital Publishing Institute.

[226] Paolo Parenti, Dario Puccio, Bianca Maria Colosimo, and Quirico Semeraro.
A new solution for assessing the printability of 17-4 PH gyroids produced via
extrusion-based metal AM. Journal of Manufacturing Processes, 74:557–572,
February 2022.

[227] Vahid Momeni, Zahra Shahroodi, Christian Kukla, and Clemens Holzer. Devel-
oping a Feedstock for the Fused Filament Fabrication (FFF) of Aluminium. Con-
ference: 2nd International Conference on Polymer Process Innovation, September
2022.

[228] Amir Hadian, Leonard Koch, Philipp Koberg, Fateme Sarraf, Antje Liersch, Tutu
Sebastian, and Frank Clemens. Material extrusion based additive manufacturing of
large zirconia structures using filaments with ethylene vinyl acetate based binder
composition. Additive Manufacturing, 47:102227, November 2021.

[229] Gurminder Singh, Jean-Michel Missiaen, Didier Bouvard, and Jean-Marc Chaix.
Additive manufacturing of 17–4 PH steel using metal injection molding feedstock:
Analysis of 3D extrusion printing, debinding and sintering. Additive Manufactur-
ing, 47:102287, November 2021.



REFERENCES 155

[230] J. Vetter, F. Huber, S. Wachter, C. Körner, and M. Schmidt. Development of a Ma-
terial Extrusion Additive Manufacturing Process of 1.2083 steel comprising FFF
Printing, Solvent and Thermal Debinding and Sintering. Procedia CIRP, 113:341–
346, 2022.

[231] Antonio Cañadilla, Ana Romero, Gloria P. Rodríguez, Miguel Á Caminero, and
Óscar J. Dura. Mechanical, Electrical, and Thermal Characterization of Pure Cop-
per Parts Manufactured via Material Extrusion Additive Manufacturing. Materials,
15(13):4644, January 2022. Number: 13 Publisher: Multidisciplinary Digital Pub-
lishing Institute.

[232] Sara Nasiri and Mohammad Reza Khosravani. Machine learning in predicting me-
chanical behavior of additively manufactured parts. Journal of Materials Research
and Technology, 14:1137–1153, September 2021.

[233] Gowtham Soundarapandiyan, Carol Johnston, Raja H.U. Khan, Bo Chen, and
Michael E. Fitzpatrick. A technical review of the challenges of powder recycling
in the laser powder bed fusion additive manufacturing process. The Journal of
Engineering, 2021(2):97–103, February 2021.

[234] Austin T. Sutton, Caitlin S. Kriewall, Sreekar Karnati, Ming C. Leu, and Joseph W.
Newkirk. Characterization of AISI 304L stainless steel powder recycled in the laser
powder-bed fusion process. Additive Manufacturing, 32:100981, March 2020.

[235] J. Boes, A. Röttger, W. Theisen, C. Cui, V. Uhlenwinkel, A. Schulz, H.-W. Zoch,
F. Stern, J. Tenkamp, and F. Walther. Gas atomization and laser additive manu-
facturing of nitrogen-alloyed martensitic stainless steel. Additive Manufacturing,
34:101379, August 2020.

[236] F.C. Pinto, I.R. Souza Filho, M.J.R. Sandim, and H.R.Z. Sandim. Defects in parts
manufactured by selective laser melting caused by δ-ferrite in reused 316L steel
powder feedstock. Additive Manufacturing, 31:100979, January 2020.

[237] Laura Cordova, Mónica Campos, and Tiedo Tinga. Revealing the Effects of
Powder Reuse for Selective Laser Melting by Powder Characterization. JOM,
71(3):1062–1072, March 2019.

[238] V. B. Vukkum and R. K. Gupta. Review on corrosion performance of laser powder-
bed fusion printed 316L stainless steel: Effect of processing parameters, manufac-
turing defects, post-processing, feedstock, and microstructure. Materials & De-
sign, 221:110874, September 2022.

[239] Daniel Powell, Allan Rennie, Louise Geekie, and Neil Burns. Understanding pow-
der degradation in metal additive manufacturing to allow the upcycling of recycled
powders. Journal of Cleaner Production, page 122077, May 2020.

[240] Zahraa Lotfi, Amir Mostafapur, and Ahmad Barari. Properties of Metal Extrusion
Additive Manufacturing and Its Application in Digital Supply Chain Management.
IFAC-PapersOnLine, 54(1):199–204, 2021.



156 REFERENCES

[241] Konrad Gruber, Irina Smolina, Marcin Kasprowicz, and Tomasz Kurzynowski.
Evaluation of Inconel 718 Metallic Powder to Optimize the Reuse of Powder and
to Improve the Performance and Sustainability of the Laser Powder Bed Fusion
(LPBF) Process. Materials, 14(6):1538, March 2021.

[242] Shihua Wang and Baoxi Xu. Calibrated X-ray computed tomography for testing
micro-scale pore defect in metallic powder particles for additive manufacturing.
Measurement: Sensors, 18:100110, December 2021.

[243] Debomita Basu, Ziheng Wu, John L. L. Meyer, Elizabeth Larson, Robin Kuo, and
Anthony Rollett. Entrapped Gas and Process Parameter-Induced Porosity Forma-
tion in Additively Manufactured 17-4 PH Stainless Steel. Journal of Materials
Engineering and Performance, 30(7):5195–5202, July 2021.

[244] Muhannad Ahmed Obeidi, Andre Mussatto, Robert Groarke, Rajani K. Vija-
yaraghavan, Alex Conway, Frederico Rossi Kaschel, Eanna McCarthy, Owen
Clarkin, Robert O’Connor, and Dermot Brabazon. Comprehensive assessment of
spatter material generated during selective laser melting of stainless steel. Materi-
als Today Communications, 25:101294, December 2020.

[245] Michael Katancik, Saereh Mirzababaei, Milad Ghayoor, and Somayeh Pasebani.
Selective laser melting and tempering of H13 tool steel for rapid tooling applica-
tions. Journal of Alloys and Compounds, 849:156319, December 2020.

[246] Majid Laleh, Anthony E. Hughes, Sam Yang, Jiangting Wang, Jianli Li, A. Matt
Glenn, Wei Xu, and Mike Y. Tan. A critical insight into lack-of-fusion pore
structures in additively manufactured stainless steel. Additive Manufacturing,
38:101762, February 2021.

[247] Ankur K. Agrawal and Dan J. Thoma. High-throughput surface characterization to
identify porosity defects in additively manufactured 316L stainless steel. Additive
Manufacturing Letters, 3:100093, December 2022.

[248] Elliott Jost, John Miers, Aron Robinsont, David Mooret, and Christopher Sa. Ef-
fects of Spatial Energy Distribution-Induced Porosity on Mechanical Properties of
Laser Powder Bed Fusion 316 L Stainless Steel. In SFF Symposium Proceedings,
volume 39, page 15, August 2021.

[249] Chenghong Duan, Minghuang Zhao, and Xiangpeng Luo. Study on typical defects
and cracking characteristics of tool steel fabricated by laser 3D printing. IOP Con-
ference Series: Earth and Environmental Science, 714(3):032026, March 2021.

[250] Olivier Andreau, Etienne Pessard, Imade Koutiri, Patrice Peyre, and Nicolas Sain-
tier. Influence of the position and size of various deterministic defects on the high
cycle fatigue resistance of a 316L steel manufactured by laser powder bed fusion.
International Journal of Fatigue, 143:105930, February 2021.



REFERENCES 157

[251] Yingyu Wang and Zhenli Su. Effect of micro-defects on fatigue lifetime of addi-
tive manufactured 316L stainless steel under multiaxial loading. Theoretical and
Applied Fracture Mechanics, 111:102849, February 2021.

[252] Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-
Long Feng, Long-Fei Chen, Jing-Yu Hou, and He-Jian Xu. Effect of Process
Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior
of 316L Stainless Steel Produced by Selective Laser Melting. Acta Metallurgica
Sinica (English Letters), 34(4):495–510, April 2021.

[253] Zeki Azakli and Recep Gümrük. Particle Erosion Performance of Additive Man-
ufactured 316L Stainless Steel Materials. Tribology Letters, 69(4):130, December
2021.

[254] Aniket K. Dutt, G. K. Bansal, S. Tripathy, K. Gopala Krishna, V. C. Srivastava, and
S. Ghosh Chowdhury. Optimization of Selective Laser Melting (SLM) Additive
Manufacturing Process Parameters of 316L Austenitic Stainless Steel. Transac-
tions of the Indian Institute of Metals, July 2022.

[255] Filip Véle, Michal Ackermann, Václav Bittner, and Jiří Šafka. Influence of Se-
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Abstract
Additive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology
selected. Material extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is
associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D
functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/
extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can over-
come some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions.
The present study reveals an optimal methodology to produceMEX filament feedstocks (metallic powder, binder, and additives),
having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high
extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks
was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was
established by means of the mixing torque value, which is related to the filament extrudability performance.

Keywords MEX . Filament . Additivemanufacturing .Mixing torque . Austenitic stainless steel (316L)

1 Introduction

Additive manufacturing (AM) of powder metals and metal
alloys is an unavoidable area for Industry 4.0 owing to its
potential to address some of the most significant industrial
challenges in the twenty-first century concerning parts/sys-
tem/devices processing [1]. The rising trend to select AM
processes is based on new design approaches, the ability to
create near net shape 3D objects, cloud access to manufactur-
ing, shorter time-to-market, product customization, and circu-
lar economy [2]. Among other factors, the possibility of merg-
ing cost savings and new part properties and features that are

impossible to obtain using traditional manufacturing technol-
ogies is the largest benefit of AM. This manufacturing para-
digm, concerning powder metal AM, has attracted significant
interest over the past few years, where AM direct methods
(e.g. Selective Laser Melting, Electron Beam Melting, etc.)
established themselves as technologies for functional/
structural metallic parts, with several components approved
by ISO and ASTM standards in industries such as aerospace
and automotive [3]. However, these processes have several
drawbacks, the high-power source that can promote micro-
and macroscopic defects in metallic parts due to the multiple
thermal treatments of the deposited layers; material range, due
to the energy-matter interaction that limits the powder charac-
teristics, like reflectivity and conductivity; and significant
powder wastes during manufacturing and handling hazard.
Besides, the high cost of direct AM equipment is one of the
major obstacles [4–10].

Material extrusion (MEX) and binder jetting (BJ) [11] are
already well-established technologies with market acceptance
for the AM. Based on this successful background,MEX and BJ
have been investigated with the aim to produce metallic and
ceramic functional/structural components through shaping,
debinding, and sintering (SDS). In these indirect AMprocesses,
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unlike direct methods, the material processability is indepen-
dent of the power source, which makes the production of func-
tionally graded materials feasible [12]. Regarding shaping, BJ
and MEX differ from each other and are often complementary
technologies, since resolution, the optimal number of parts per
production, the necessity of supports, material, and equipment
costs are unique for each process. In BJ, the binder droplets are
selectively deposited to interact with powder particles, which
present new challenges not associated with MEX, such as
powder/binder wettability; binder vertical migration, since layer
height affects the penetration depth of the binder, through time
and capillary force; and binder saturation that must be fine-
tuned, as well as droplet size and dispensing frequency.
However, the metallic powder is fed independently of the bind-
er, whichmakes the rheological properties not as hard to control
as it happens with MEX, which is beneficial to achieve the
highest vol.% of metallic powder and less binder content in
the shaped 3D object [12, 13]. Even though both technologies
differ in what concerns the powder-binder processability, they
also face the same challenges, such as optimizing debinding
heating profiles to degrade the polymer is time-consuming;
possible undesired reactions from residual polymer ash that
could affect the final properties; and porosity, since both

technologies do not have high pressures that promote the
highest final part densification [12, 14].

The present study is focused on the MEX technology,
which was initially referred to as the fused deposition of
metals (FDMet), and then as Fused Filament Fabrication
(FFF) or as Metallic Fused Filament Fabrication (MF3) [15].
MEX is based on the fused deposition modelling (FDMTM)
technology commercialized by Stratasys Inc. for polymers
and waxes, where the filament is composed of a mixture of a
high volume content (vol.%) of metallic powders with organic
constituents [16]. MEX is suitable for manufacturing geomet-
rical complex metal parts in conjunction with post-shaping
steps, such as debinding and sintering [17].

The processing by MEX technology consists of 5 stages
(Fig. 1), as follows: Stage 1, materials selection; Stage 2,
mixing (1+2=powder material extrusion feedstocks fabrica-
tion); Stage 3, feedstock extrusion (filament); Stage 4, 3D
part/device built layer-by-layer (green) from extruded fila-
ment; and Stage 5, binder removal (debinding) and subse-
quent consolidation of metallic powder particles (sintering).
The first two stages are fundamental to attain an appropriate
viscosity and an excellent balance between flexibility and
stiffness of the filament associated with the highest content

Fig. 1 MEX manufacturing route through the shaping, debinding, and sintering (SDS) process

Fig. 2 a Particle size distribution (Malvern Mastersizer 2000) and b powder shape (SEM analysis, SE) of the SS 316L powder
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(%vol) of metallic powders and a subsequent homogeneity
(chemical and dimensional) needed to attain low porosity
and excellent quality of the parts/devices.

High-quality structural/functional parts/systems/devices
through an SDS process must include efforts to achieve the
highest content (vol.%) of the metallic powder particles
possible in the feedstock within the steady-state regime
but always taking into account the final mixing torque val-
ue. This becomes a significant challenge in MEX because
the mixture must be manufactured in a filament form. Based
on these assumptions, there are a few available studies in
the bibliography. Agarwala et al. obtained stiff and straight
filaments from feedstocks with 60 vol.% 17-4PH grade
stainless steel (SS) [18]. Kukla and Gutierrez et al. [19,
20] used 55 vol.% SS 316L and 17-4PH; Godec et al. [10]
also selected 55 vol.% SS 316L, as well as Burkhardt et al.
[21]. Anderson et al. [22] produced SS 316L grade fila-
ments with 55 vol.%; Kurose et al. [23] used SS 316L grade
filaments with 60 vol.%. Gloeckle et al. [24] performed an
extensive study on the printability of Ti-6Al-4V filaments
with up to 60 vol.% of inorganic material, and Singh et al.
[15] used the same Ti-6Al-4V with 59 vol.%. BASF SE®
has a commercially available SS 316L filament with a me-
tallic powder content lower than 60 vol.% [25].

The mechanical performance of MEX metallic filaments
has been a major limitation for increasing the ratio between
inorganic and organic constituents since high powder concen-
tration can lead to poor extrudability, where the filament be-
comes too brittle to be handled. A balance between stiffness
and flexibility must be guaranteed to promote filament print-
ability [15, 19].

The focus of the present study is to develop filaments with
the highest metallic powder volume content (>50 vol.%) that
link the primary MEX filament requirements to a suitable
viscosity and mechanical behaviour. The selection of the
highest content of metallic powder was evaluated by critical
powder volume concentration (CPVC) methodology [26–28].
This procedure aims to promote the highest part green density,
which is essential for maintaining the part shape integrity after
debinding and sintering.

The present study aims to contribute, whatever the powder
selected, to high-quality filaments forMEX technology, that is
in conjunction with binder jetting technology, the future of
AM of functional/structural 3D metallic objects.

2 Materials and methods

2.1 Characterization techniques

The characterizations of the powders, feedstocks, and fila-
ments were performed through the following techniques: laser
diffraction to measure the particle size (Malvern Mastersizer
2000, Malvern Instruments Ltd, Worcestershire, UK) accord-
ing to ISO 13320:2009(E); helium pycnometry to measure the
density, based on the mean of five runs for each specimen
(Micromeritics AccuPyc 1330, Micromeritics Instrument
Corporation, Norcross, GA, USA); scanning electron micros-
copy (SEM) to analyse the morphology and shape factor (FEI
Quan t a 400FEG, FEI Eu rope BV, E indhoven ,
The Netherlands) x-ray diffraction (XRD) according to EN
13925:2003, to identify the phases (Philips X'Pert, cobalt ra-
diation λkα1= 0.1789 nm and λkα2= 0.1793 nm, Bragg-
Brentano geometry, Philips, Eindhoven, Netherlands); and
TGA to analyse the weight variation kinetics (TGA Q500
V20.13, TA Instruments, DE, USA). The filament was
micro-CT (X-ray micro computed tomography) scanned
using a Bruker SkyScan 1275 (Bruker, Kontich, Belgium).
An acceleration voltage of 80 kV and a beam current of
125 μA was set while using a 1-mm aluminium filter and
step-and-shoot mode. Pixel size was set to 6 μm, and random
mode was used. In total, 1056 projection images were ac-
quired at 0.2° angular step with 5 frames average per step
using an exposure time of 46 ms. The micro-CT images were
reconstructed with the dedicated manufacturer software.

A three-point flexural test of each filament was performed
five times using SHIMADZU-EZ-LX (Shimadzu Corp.,
Kyoto, Japan) equipment with a load capacity of 500 N. The
load was applied to the specimen at a rate of 0.5 mm/min with
a span length of 20 mm.

3D prototype geometries were measured with Focus
Variation Microscopy (FVM) using Alicona InfiniteFocusG4
(Alicona Imaging; Graz, Austria). Hardness measurements, ac-
cording to ISO 6507-2:2018, were performed with a Shimadzu

Table 1 SS 316L powder characteristics

d10 [μm] d50 [μm] d90 [μm] SSA* [kg/m2] ρ [kg/m3] **

4.63 9.43 16.60 786 7896 ± 30.2

*Specific surface area

**Density Fig. 3 SS 316L XRD diffractogram; λ Co = 0.1789 nm (Philips X'Pert)
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HMV microhardness tester (Shimadzu Corp., Kyoto, Japan).
For each measurement, a load of 9.8 N was applied for 15 s
by a Vickers indenter.

2.2 Metallic powder, binder, and additives

The set material for this study was austenitic stainless steel
316L (SS 316L) since it is one of the most studied materials in
AM. This material can be a good standard for the methodol-
ogy to be established by the present work and extrapolated to
other metallic alloys [29].

The characteristics of the selected powders were studied
using the 4S’s methodology (size and size distribution, shape,
and structure). The particle size is d50 = 9.43 μm. Figure 2
shows the particle size distribution (a) and particle shape fac-
tor (b). Shape factor was close to 1 for the nitrogen-atomized
SS 316L powders (Sandvik Osprey Ltd., Neath, UK).

Table 1 summarizes the powder characteristics.
The X-ray diffractogram (Fig. 3) of the SS 316L powder

exhibited a biphasic character, where the major phase was
austenite (ICDD 33-0397). However, other peaks with low
I/I0 were present, which can be indexed as (100), (200) that
are typical of ferrite/martensite (ICDD 87-0722). The cooling
stress could contribute to the evolution of the austenite phase
into martensite. Nevertheless, nitrogen atomizing results in

lower stress in the particles than those from water atomizing,
where martensite is more prevalent for a similar powder [30].

In the present study, the organic constituents of the feed-
stocks were divided into two primary groups: master binder
and additives; the last one includes the backbone and surfac-
tant/plasticiser. The selected master binder (M1) was a
commercial-grade (Atect Corp., Shiga, Japan) that is a mixture
of polyolefin waxes and > 60 wt. % of polyoxymethylene
(POM). Although POM is included, this binder is commer-
cialized as a thermal-only debinding and previous studies with
this binder shown that no carbonaceous residues remained on
the final parts. The thermoplastic elastomer (TPE), as well as
an ultra-low density polyethylene (ULD-PE), was used for the
backbone, and a surfactant (stearic acid (S †)) and an external
plasticizer (P Ӿ) were used as additives. Density of master
binder and additives (Table 2) was performed to support the
theoretical calculations of the volume of these constituents in
the feedstock, which is further compared with the practical
results (TGA analysis).

2.3 Filament production

The vol.% of each organic component in the feedstock was
tailored to achieve the proper filament properties for MEX
(rheology and flexibility/stiffness balance). The CPVC and

Table 2 Densities of the binder
and additives measured with a
helium pycnometer
(Micromeritics AccuPyc 1330)

M1 TPE ULD-PE S† PӾ

Density [kg/m3] 970 ± 1 1028 ± 12.2 9144 ± 1.5 983 ± 1 965 ± 0.6

S† Surfactant

PӾ Plasticizer

Table 3 Filament feedstocks

Feedstock Master binder Additives Powder

Backbone Backbone content (vol.%)* S† or PӾ S† or PӾ (vol.%) SS 316 L content (vol.%) Particle size d50 (μm)

F01 M1 - - - - 60 6.85

F02 M1 TPE Y - - 60 6.85

F03 M1 TPE X S† 5 60 6.85

F04 M1 TPE X + 5 S† 5 60 6.85

F05 M1 TPE X + 10 S† 5 60 6.85

F06 M1 TPE X PӾ 5 60 6.85

F07 M1 TPE W PӾ 10 60 6.85

F08 M1 ULD-PE X PӾ 5 60 6.85

*The exact ratio of master binder/backbone in the feedstock will be kept confidential. Y, X, andW represent the different amounts of backbone (vol.%).

X = Y – 2.5 vol.%; (½ of S/P content: 5 vol.%).

W = Y – 5 vol.%; (½ of F07 plasticiser (P) content: 10 vol.%).

S† , Surfactant

PӾ , Plasticiser
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feedstock optimization was performed with a torque rheome-
ter (Plastograph® Brabender W 50, Brabender GmbH & Co.
KG, Duisburg, Germany) that evaluates the torque variation
as a function of the powder composition. The temperature
inside the 38.5 cm3 mixing chamber of 180 °C was selected
together with 30 rpm blades rotation speed, taking into ac-
count previous work with the same master binder [31]. For
the CPVC evaluation, an increment of 1 vol.% powder content
was made approximately every 10 min or after reaching a
steady state. The backbone percentage was not higher than
30% of the total organic portion. Table 3 summarizes the
different feedstock compositions (F01–F08, F03A, and
F03B). Each formulation mixing torque value was evaluated
from six independent measurements and done until a steady-
state regime was achieved.

Small pellets of feedstocks were extruded into a filament
form. Filament fabrication was performed in a single screw
extruder (Brabender GmbH & Co., Duisburg, Germany) with
5 heating zones. The temperature of the zones, from feeder to
nozzle (ø 1.75mm), was set at 160, 165, 170, 175, and 180 °C.
The screw rotation speed was set at 5 rpm. The filament was

measured at multiple points to guarantee its dimensional ac-
curacy throughout the filament fabrication process.

Instead of using catalytic debinding, thermal debinding
was selected, which shows no carbonaceous residues present
during sintering, consistent with previous studies with low-
pressure injection moulding [31], thus voiding the nitric acid
used for catalytic debinding. The thermogravimetric analysis
highlights that all of the organic constituents of the feedstock
fully degrade, during the debinding stage (Fig. 4).

The thermal cycles in this work were selected based on
thermogravimetric analysis (TGA). The primary events in
the master binder and backbone weight loss curves up to
600 °C (Fig. 4 and Table 4) were the isothermal plateaus
during the debinding stage. The beginning and ending values
were evaluated from the first derivative (DTG) of the respec-
tive curve. At 495 °C, the carbonaceous residue was close to 0
wt.%.

Concerning the thermal oxidation of the as-received SS
316L powder, TGA showed that it was quite stable up to
600 °C in an N2 atmosphere. An insignificant increase in the
weight of the powder was noticeable above 500 °C. This is not

Fig. 4 TGA curves of the SS
316L, M1, TPE, and M1 + TPE
under an N2 atmosphere

Table 4 Weight loss and
degradation temperatures of the
M1, TPE, and M1 + TPE

Binder component Degradation stage Weight loss [%] Onset [°C] End [°C]

M1 1st 41 232 314

2nd 13 378 437

3rd 46 437 472

TPE 1st 2 300 327

2nd 98 408 454

M1 + TPE 1st 35 238 320

2nd 11 375 398

3rd 23 427 441

4th 31 450 475

Plasticizer 1st 100 242 276
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exclusively attributed to the TGA protective atmosphere type
(N2) because other studies show the same behaviour under an
Ar + H2(5%) atmosphere [30, 32].

A significant difference was not detected in the debinding
kinetics of the M1 and TPE as raw materials (Fig. 4) and as
feedstocks constituents (Fig. 5) when mixed with 60 vol.% of
metallic powder. This is an indication that there are no unde-
sired reactions among the feedstock constituents that could
interfere in the debinding cycle.

Table 5 shows a comparison of the theoretical values
against the final experimental values (wt.%) of the feedstock
filaments at 600 °C in order to illustrate the expected SS 316L
weight (%) after binder degradation based on the SS 316L
vol.% in the feedstock. The small deviation between theoret-
ical and experimental values can be attributed to the experi-
mental evaluation of the densities and can be assumed that the
binder degradation was total.

2.4 Printability

Green specimens were built on a BQ Prusa I3 Hephestos 3D
printer. Extruder nozzle temperature was maintained at

210°C, extrusion speed was limited to 10 mm/s, and extrusion
multiplier was set at 1.4. Layer height was set at 0.20 mm, and
the selected nozzle diameter was 0.40 mm. A glass platform
with a layer of glue was used, to promote part adhesion, since
this 3D printer has no heated build plate feature.

2.5 Debinding and sintering

The heating rates for debinding and sintering were 1 °C/min
and 10 °C/min up to the maximum temperatures of 600 °C
and 1250 °C, respectively, including several debinding iso-
thermal holding times, based on the TGA results. The fila-
ments and parts were debinded and sintered under H2 atmo-
sphere at 4×10−2 MPa.

3 Results and discussion

3.1 Feedstock optimization

3.1.1 Evaluation of the critical powder volume concentration

The evaluation of the CPVC in each feedstock was performed
by recording the mixing torque to maximize the metal powder
content (vol.%), to promote higher green densities.
Nevertheless, MEX feedstocks require overcoming new chal-
lenges (rheology and flexibility/stiffness balance) because the
filament must be spooled, handled, and extruded through a
small-diameter nozzle. Therefore, PIM feedstocks must be
modified to be suitable for MEX, and the rheological behav-
iour of the new feedstock must be studied.

Torque values were recorded for the initial mixture of
the master binder and additives F06 (M1 + TPE + P)
with 50 vol.% SS 316L powder. The effect of

Fig. 5 TGA curves of the
filaments F03, F06, and F08 with
60 vol.% of SS 316L powder
under an N2 atmosphere

Table 5 TGA experimental vs theoretical weight reduction of filaments
F03, F06, and F08

Feedstock Metallic powder [wt.%]

Experimental Theoretical*

F03 92.5±0.1 92.4

F06 92.5±0.1 92.4

F08 92.4±0.1 92.4

*Conversion from SS 316L 60 vol.%
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subsequent additions of metallic powder (1 vol.%) on
the torque value, shown at every peak from the 10-
min mark, was measured after attaining a steady-state
regime for each percentage (Fig. 6). Based on this eval-
uation, the defined ratio of inorganic/organic vol.%
among all studied feedstocks was maintained.

Figure 7 shows the torque values for the incremental addi-
tions of 1 vol.% of SS 316L powder (50–65 vol.%). Three
linear regimes can be observed:

– The first regime includes up to 58 vol.% of SS 316L
powder, and the torque variation between each addition
is between 1.9 (50 vol.%) and 3.5 N∙m (58 vol.%).

– In the second regime, at up to 62 vol.% of SS 316L
powder, the mixture rheology changes, which corre-
sponds to a slightly higher slope than the first regime,
and the maximum torque is 5.4 N∙m.

– The third regime, where the most significant variation
occurs (62–65 vol.%), reaches the highest mixing torque
value (8.1 N∙m). In this range, the mixing torque behav-
iour clearly becomes more unstable (cf. Fig. 7).

The CPVC should correspond to the interface torque value
between the second and third regimes (point of intersection),
which in the present study was 62 vol.%. However, a great
number of studies performed concerning the optimization of
powder and binder feedstocks show that the torque value
should not exceed 5 N.m for this specific torque rheometer
(Plastograph®W 50), to attain the best rheological properties,
in order to guarantee optimal processability [28, 33, 34].

Based on the CPVC evaluations (Figs. 6 and 7) and keep-
ing in mind that the feedstock flowability to build the green
part, through a 3D printer with a 0.4-mm nozzle, is promoted
by the filament (it acts like a piston through the 3D printer pull
system) and not by a screw (high pressures), 60 vol.% (torque
value of 4.3 N.m) was selected as the metallic load for all
studied feedstocks.

3.1.2 Effect of additives in the feedstock

In PIM, the binder generally promotes the best compromise
between green integrity and flowability.

Fig. 6 Torque as a function of
time of the F06 feedstock at 180
°C with the incremental addition
of 1 vol.% of SS 316L

Fig. 7 Three different regimes of
torque as a function of powder
volume concentration (feedstock
F06)
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However, as previously mentioned, flexibility is one of the
major characteristics of MEX filaments. For this reason, the
backbone, surfactant, and plasticizer content were optimized.
To select the best feedstock composition, two different

approaches were considered: the addition of TPE + surfactant
(S) and the addition of TPE + plasticizer (P).

Figure 8 shows the impact of the additive composition on
the final torque value at the end of 30 min. F01 is a feedstock

Fig. 8 Mixing torques (F01-F05)
as a function of time (Y < X
vol.%.); Stage 1, only binder ad-
dition; Stage 2, feedstock with
additive addition. F01 is the stan-
dard feedstock without additives

Fig. 9 F01 and F06–F08 mixing
torques as a function of time (W <
X vol.%); Stage 1, only binder
addition; Stage 2, feedstock with
additive addition. F01 is the stan-
dard feedstock without additives
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used in PIM, where there are no concerns about flexibility. In
addition to promoting filament flexibility, TPE has a negative
impact on the rheological behaviour of the feedstock. To over-
come this issue, a surfactant (S) was added. Among the feed-
stocks in Fig. 8, F03 (blue curve) showed the most promising
behaviour (close to 4 N.m).

Although the selected surfactant, stearic acid (SA), clearly
reduced the feedstock torque, other mixtures were studied to
possibly replace it owing to the difficulty of fully removing it
during debinding. Other work reported that SA requires rais-
ing the debinding temperature from 600 to 700 °C [30]. Thus,
SA was replaced with a plasticizer (P), which also acts as a
rheological modifier with the advantage that it promotes fila-
ment flexibility.

Figure 9 shows the different torque values for the remain-
ing studied feedstocks (F06–F08). F06 had a final torque (4.6
N∙m) that was higher than that of F07 (3.6 N∙m) due to its high
TPE content. Comparing the feedstocks with the same vol.%
of all constituents (F03, F06, and F08), the addition of the
surfactant (F03) had a larger influence on the final torque
value than a plasticizer (F06 and F08), as expected.
However, the plasticizer boosts filament flexibility, which is
a very important requirement.

The feedstock F08, which had the composition as F06 ex-
cept the TPE was replaced by ULD-PE, had a lower torque
value, but it was still higher than the feedstock with SA (F03).
Based on torque values of the feedstocks, F06–F08 seem to be
suitable for use in MEX.

3.1.3 Influence of metal powder particle size

To evaluate the influence of the SS 316L powder par-
ticle size on the rheological behaviour of the feedstock,
two mixtures with the same vol.% of SS 316 and addi-
tives but different particle sizes were compared: F03A
and F03 with d50 = 3.76 μm and d50 = 6.85 μm, re-
spectively (Fig. 10). The finer particle size led to a
higher final mixing torque compared with that of F03.
For this reason, powder with d50 = 3.76 μm was not
selected for the studied feedstocks. This is an expected
behaviour as small particles have a high specific surface
area of contact, which promotes high interparticle fric-
tion [35].

Table 6 summarizes the average of ten torque values for
each of the different feedstocks.

Fig. 10 Torque of the F03A and
F03 mixtures as a function of
time; Stage 1, only binder
addition; Stage 2, feedstock with
additive addition

Table 6 Torque values of different feedstocks

F01 F02 F03 F04 F05 F06 F07 F08 F03A

Torque [N.m] 2.0±0.04 5.5±0.07 3.7±0.03 4.3±0.04 5.3±0.06 4.5±0.07 3.6±0.05 4.2±0.07 4.6±0.07

Backbone content - Y X X+5 X+10 X W X X

S† or PӾ (vol.%) - - 5 5 5 5 10 5 5
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3.2 Filaments

3.2.1 Green filament production

In this study, the filament was not spooled by an automatic
system. To avoid filament diameter deviations due to gravity

action, a constant height between the extruder nozzle and the
table was preserved for all formulations.

Standard filament (powder and binder, F01) was too brittle
to spool. TPE addition resulted in the highest final torque
value (5.5 N.m) in mixture F02 curve. Also, the torque profile
is the most unstable, because the dispersion of powder

Fig. 11 Spooled filament from
feedstock F06

Fig. 12 Cross-section fracture
surfaces of filaments F01, F03,
F06, and F08
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particles is more problematic in this binder. Thus, F02 was not
extruded in a filament form. The other feedstocks (powder,
binder, and additives) could be spooled (F03, F04, F05, and
F08) but with a higher curvature than those of F06 and F07
(Fig. 11). It must be emphasized that the best filaments were
those resulting from feedstocks with plasticizer and torque
close to 5.0 N∙m.

3.2.2 Characterization

3.2.2.1 Homogeneity SEM observations of the filament cross-
section shown that filament feedstocks without TPE (F01 and
F08) appeared to be more homogeneous than the others (F03
and F06, Fig. 12), but their flexibility was poor. F03 and F06
(= M1 + TPE + S/P vol.%) were quite similar regarding the
homogeneity of the distribution of metallic powder. A large
powder particle distance in the feedstocks improves flexibility
but decreases density. Thus, considering these two features
(filament flexibly and interparticle distance), a homogenous
powder distribution is crucial, and a suitable balance between
these features is required for the success of MEX.

Micro-CT analysis can be an effective solution for
assessing filament homogeneity without fracture, which can
modify the defect distribution on the observed volumes.
Micro-CT was performed in a representative cross-section of
filament F06 in the green and sintered states (Fig. 13 a and b,
respectively). It can be noted that the green filament (extruded
feedstock in filament form, not subject to any subsequent pro-
cessing step) presents a high density and consistent diameter
throughout its section, reiterating the mechanical behaviour

results (cf. 3.2.2.3). The observed residual pores seem to fol-
low the extrusion direction (Fig. 13a, X-Z and Z-Y section),
suggesting that the defects may occur in the extrusion process,
resulting in elongated pore geometry. Nevertheless, the
sintered filament shows that a sintered part with consistent
density, with no persistent porosity caused by debinding, is
still achievable, indicating that resulting porosity in final parts
may be connected to printing parameters.

3.2.2.2 Structure The X-ray diffractograms (Fig. 14) show the
evolution from SS 316L powder to the green and sintered
filament. As referred, the austenitic powder, owing to its prep-
aration technique, besides austenite (ICDD 33-0397), presents
a ferrite/martensite phase (ICDD 87-0722—Fig. 3). This one
increases, as expected, due to the deformation of powders

Fig. 13 Micro-CT of the a green filament F06 and b sintered filament F06 – green filament with the highest homogeneity

Fig. 14 X-ray diffraction of the sintered filament F06

2459Int J Adv Manuf Technol (2021) 115:2449–2464

192 Optimization of metallic powder filaments for additive manufacturing extrusion



during its extrusion (Fig. 14) [36]. However, after sintering,
the X-ray diffractogram shows only constituted by the austen-
itic phase, avoiding a post heat treatment, required in other
additive processes.
3.2.2.3 Mechanical behaviour The deflection at rupture (%)
and flexural modulus of elasticity (Eflex) was measured by
three-point bending tests (Fig. 15). Each value in the figure
is the average of five tests. These results, together with the
previous torque rheometry study, allowed for selecting the

most promising filament feedstocks regarding green
processability.

The filament from feedstock F01, without additives, was
the most brittle (13%). With the incremental addition of TPE
to feedstocks F03–F05, the maximum deflection of the fila-
ments increased. Comparing filaments F03 and F06 (equal
vol.% of organic constituents), the replacement of the surfac-
tant with a plasticizer improved the flexibility. A reduction in
deflection from F06 (91%) to F07 (71%) was noticeable. F07

Fig. 15 Deflection at break (%)
and Eflex of filaments F01 and
F03–F08

Fig. 16 Morphological analysis of the F06 green part: a, b, and c top views; d, e, and f side views
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had the highest additive content and, consequently, less TPE
in the feedstock. F08 had ULD-PE instead of TPE. The reduc-
tion in the F08 filament flexibility (44%) is more obvious
compared to that of F06, which had the same additive, a plas-
ticizer. In fact, filament from feedstock F08 was not used to
produce the green parts because it was brittle, despite its prom-
ising mixing torque (4.2 N∙m).

The Eflex results of F07 and F08 were not expected, taking
into account the relationship between the maximum deflection
at break and the Eflex of the remaining filaments. This can be
attributed to several factors, including porosity and the non-
homogeneous feedstock mixture. Similar behaviour was also
reported by another study [19].

3.3 Proof of concept

The printability of the spoolable filaments (F03-F08) was
studied. Filaments with the same surfactant (SA) but dif-
ferent TPE content (F03 and F04) were successfully
printed. F05 was not printable owing to its high torque
value, which was promoted by the high amount of TPE
(vol.%). F08 was too brittle to be printable, although
within optimal mixture torque range. F06 and F07 shown
the best printing behaviour.

The filament with the best mechanical characteristics (F06)
was used to produce a part consisting of an infill pattern ex-
trusion lines (0.4 mm) in a grid form and a two-perimeter
exterior. Figure 16 shows different details of the green part
(top and side views) built from the selected filament.
Figure 16b shows that a single extrusion line is geometrically
reliable (not considering the flat zones due to superposition of
lines), indicating that a filament with consistent diameter and
no relevant ovality was achieved, since this would otherwise
affect the extrusion behaviour. Figure 16d shows that the post-
deposited layer thickness was almost the same as the 3D de-
sign (0.2 mm).

For the highest magnifications (Fig. 16e and f), it is obvi-
ous that a critical zone exists: interface layers. These bonding
zones could have a significant role in the occurrence of defects
in the final parts. For this reason, further detailed studies must
be performed to understand their influence on the properties of
the final metallic part.

The green shrinkage and warpage were evaluated by FVM.
The measurements of the external diameter and height were
performed in two opposite locations. From the results
(Table 7), a slight variation in the green dimensions was no-
ticeable when compared with the 3D model (ø 20 mm and a
height of 7.0 mm).

Table 7 FVM part dimensions (before and after sintering)

Height (mm) Diameter (mm)

Green Final part Green Final part

Measurement 1 7.2 6.2 19.7 16.5

Measurement 2 7.2 6.2 19.7 16.5

Mean 7.2 6.2 19.7 16.5

Shrinkage (%) 13 16

Table 8 FVM part infill evaluation (before and after sintering)

Measurement Distance (mm)

1 2 3 4 5 6

Green Direction 1 1.6 1.6 1.6 1.6 1.6 1.6

Direction 2 1.6 1.6 1.6 1.6 1.5 1.7

Final Direction 1 1.3 1.3 1.3 1.3 1.3 1.3

Direction 2 1.3 1.3 1.3 1.3 1.2 1.4

Shrinkage (%) 19 18 19 19 19 19

Fig. 17 FVM part B infill
evaluation: a green and b sintered
part
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There was a slight variation in the shrinkage between
the XY plane and the Z-axis. This deviation was also
reported in other studies and can be associated with the
build strategy (orientation of the layers) [4, 17]. The
diameter shrinkage was, on average, 2.5% higher than
in the build direction. Because the amount of shrinkage
is affected by processing parameters and feedstock char-
acteristics, a detailed comparison must be avoided with-
out further investigation.

The geometry of the green infill (40%) and shrinkage was
also evaluated by FVM (Fig. 17). Green part infill was printed
with high accuracy because the interlayer distance (measure-
ment 1 to 6) was constant in both measured directions (0° and
90°) (Fig. 17a and Table 8). After sintering, accuracy was not
affected (Fig. 18b and Table 8).

In comparison with the previous FVM measurements,
the part infill (width = nozzle ø, 0.4 mm) shrinkage was
higher (~19%, Table 8) than in the other directions (13–
17%, Table 7). The 40% infill configuration can largely
affect the shrinkage of the part relative to the XY direc-
tions. This is similar to what occurs in PIM parts for
different thicknesses.

The microhardness value of the part developed as a proof
of concept (PoC, Fig. 18) was 1.1 GPa, which is higher than
those of other studies for the same material on MEX [37].
Nevertheless, the microhardness values are lower than those
measured in a PIM made from SS 316L and a bulk steel part
[30, 38].

4 Conclusions

High-quality filaments for metallic MEX can be attained by
optimization of different manufacturing steps: feedstocks

production (metallic powder, binder, and additives), evalua-
tion of extrudability (torque <4.0–4.5 N∙m, supported by other
rheological studies), debinding, and sintering. In the filament
feedstocks, the main challenges are to reach the highest me-
tallic powder content with good extrudability and a suitable
ratio between stiffness and flexibility. Some filaments, with-
out surfactant/plasticizer or with different additive contents,
are unsuitable due to the difficulty to be extruded, owing to
their high mixing torque.

From the extruded feedstocks, the selected case study
shows that, for the filament constituted by SS 316L + M1 +
TPE + P, the best green mechanical characteristics are attained
due to the excellent homogenization of the mixing, demon-
strated by micro-CT. Moreover, the best filament, after
debinding and sintering, continues to show excellent perfor-
mance, concerning defects (porosity) and consequently, the
best flexural modulus, and deflection at break, assuring an
excellent MEX processability. In the case of austenitic steel
powders, the austenite phase is the only phase present,
avoiding other costly post heat treatments. In conclusion, this
study promotes a supported methodology for producing fila-
ments for MEX and promotes the possibility to make 3D
parts/systems or devices whatever the metallic powders select-
ed, without commercial market offer dependence.
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Abstract: Material extrusion (MEX) of metallic powder-based filaments has shown great potential
as an additive manufacturing (AM) technology. MEX provides an easy solution as an alternative to
direct additive manufacturing technologies (e.g., Selective Laser Melting, Electron Beam Melting,
Direct Energy Deposition) for problematic metallic powders such as copper, essential due to its
reflectivity and thermal conductivity. MEX, an indirect AM technology, consists of five steps—
optimisation of mixing of metal powder, binder, and additives (feedstock); filament production;
shaping from strands; debinding; sintering. The great challenge in MEX is, undoubtedly, filament
manufacturing for optimal green density, and consequently the best sintered properties. The filament,
to be extrudable, must accomplish at optimal powder volume concentration (CPVC) with good
rheological performance, flexibility, and stiffness. In this study, a feedstock composition (similar
binder, additives, and CPVC; 61 vol. %) of copper powder with three different particle powder
characteristics was selected in order to highlight their role in the final product. The quality of the
filaments, strands, and 3D objects was analysed by micro-CT, highlighting the influence of the
different powder characteristics on the homogeneity and defects of the greens; sintered quality was
also analysed regarding microstructure and hardness. The filament based on particles powder with
D50 close to 11 µm, and straight distribution of particles size showed the best homogeneity and the
lowest defects.

Keywords: additive manufacturing; copper; feedstock; MEX; filament; micro-CT

1. Introduction

Additive manufacturing (AM) has gained a great amount of interest in the past
two decennia for various fields of applications [1]. After the boom of direct processes (i.e.,
selective laser melting (SLM), electron beam manufacturing (EBM), direct energy deposition
(DED)), two indirect technologies assume more and more the future (binder Jetting (BJ) and
material extrusion (MEX)), due to their simplicity, reliability, low cost (i.e., equipment) and
a wide range of different printing materials available. The latter is well known, particularly
for polymeric materials, under the name of fused deposition modeling (FDM). When
applied to the mixing of metallic/ceramic powder particles and organic binder and/or
additives based on polymers, it has adopted the standardised name of MEX [2–6]. This
process for 3D object shaping is based on FDM, but filament manufacturing is similar
to powder metal extrusion process (PEP) and powder injection moulding (PIM). Both
these processes use, as feedstock, polymers and organic materials with the highest feasible
metal powder content, designated by critical powder volume concentration (CPVC) [7]. A
feedstock must consist of a powder with optimal characteristics and an appropriate binder,
which are determinant factors to achieve quality in the final 3D object [8,9]. Similarly to
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PEP/PIM, the parts produced by MEX use filaments with a high volume percentage of
metals particles, typically between 50 and 65 vol.% [10–12], and need two subsequent steps:
debinding, to promote binder removal, and sintering, to attain a dense 3D object (Figure 1).
Nevertheless, PIM feedstocks result in a brittle filament form; thus, it is necessary to
optimise the mixture to achieve filament requirements for MEX, such as a good balance
between suitable rheology properties, stiffness, and flexibility.
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Nowadays, commercial filaments with metal particles are emerging, although most of
them have a low metal powder content or use PLA or ABS as the binder, which means that
the main goals are the aesthetic appearance of the products or to increase properties of the
master polymer [13,14].

For stainless steel, different studies reveal that powder must have (3Ss): particle size
D50 from 5 µm to 15 µm, a monomodal particle size distribution, and a shape factor close
to 1 [12], similar to the ones used in PIM.

Copper, particularly pure copper, is a widely applied metal in engineering applica-
tions due to the combination of suitable mechanical strength and excellent thermal and
electrical properties (391 W/(m·◦C) and 103.6% IACS, respectively, at 20 ◦C) [15]. However,
considerable research studies and advancements are still needed in processing copper by
AM to match the industry requirements and process repeatability. A few studies inves-
tigated copper using SLM [2,16]. Although SLM has been demonstrated to successfully
work with a comprehensive range of metals, it has disadvantages when it comes to the
fabrication of copper due to the high reflectivity of this metal to the laser beam, particularly
for near-infrared radiation [17], and high thermal conductivity that leads to rapid heat
dissipation and an uncontrolled molten pool [18], thus resulting in parts with significant
porosity (11.9–17.0%) [19–21]. In order to achieve dense copper parts, a higher laser energy
density is required, which means a higher power laser source and, therefore, an increase in
energy consumption. Some studies regarding SLM of pure copper using a greater output
laser power reported theoretical density values between 96.6 and 99.4% in self-developed
platforms [22–24]. These are the reasons for the selection of copper powder as a material to
highlight the role of the MEX as an effective processing technology.

In summary, the production of 3D objects made of copper powder by direct AM, par-
ticularly those associated with the liquid state (SLM), entails several problems surmounted
with the indirect MEX process. In addition to significant research on the role of powder
characteristics, studies focus essentially on steel powder. However, the properties of steel
and copper powder oblige a detailed analysis of these powder particles. Furthermore,
according to the available literature, no scientific studies have investigated the influence of
the application of MEX technology for the production of densified copper parts, in spite of
the company Markforged having commercialised copper filaments for MEX recently [25].

According to the state of the art, no studies have investigated the influence of copper
powder particles characteristics on the products made by MEX technology. It is, therefore,
crucial to have a complete understanding of all five steps involved in the manufacturing
process—namely, mixing the constituents of the filaments (copper powder, binder, and
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additives), extrusion (filament manufacturing), strands for shaping (3D objects), debinding
(binder removal), and sintering (powder particle consolidation).

2. Characterisation Techniques and Material
2.1. Experimental Conditions

The powder particle size and the particle size distribution were measured by laser
diffraction spectrometry (LDS) on a Malvern Instruments Mastersizer 3000 (Malvern In-
struments Ltd., Worcestershire, UK), following ISO 13320:2009. The analysis of particles
powder, filament, and strands morphology was made by scanning electron microscopy
(SEM) on a Tescan Vega 3 (Tescan, Brno, Czech Republic) and an FEI Quanta 400FEG (FEI
Europe BV, Eindhoven, The Netherlands). The phasic structure of the powder and greens
were evaluated by X-ray diffraction (XRD) on a Philips X’Pert diffractometer (Philips,
Eindhoven, The Netherlands); according to EN 13925:2003, the current intensity was
35 mA and voltage of 40 kV. The wavelength radiation was cobalt (Kα1 = 0.17810 nm and
Kα2 = 0.17928 nm). The acquisition conditions used a Bragg–Brentano (θ–2θ) geometry
(40◦ ≤ 2θ ≤ 80◦) and a step of 0.04◦/s per point. The thermogravimetric analyses (TGA)
were performed on a PerkinElmer STA 6000 (Waltham, MA, USA).

The filaments were analysed by a non-destructive method using X-ray microcomputed
tomography (micro-CT), Bruker SkyScan 1275 (Bruker, Kontich, Belgium). An acceleration
voltage of 80 kV and a beam current of 125 µA was set using a 1 mm copper filter and
step-and-shoot mode. Pixel size was set to the equipment minimum of 5.67 µm, and the
random mode was used. In total, 1056 projection images were acquired at 0.2◦ angular step
with 3 frames average per step, using an exposure time of 65 ms. Regarding the strands,
they were scanned with an acceleration voltage of 50 kV and a beam current of 80 µA,
using as a filter aluminium with 1 mm thickness and an exposure time of 230 ms. The
3D objects and sintered filaments were scanned using an acceleration voltage of 100 kV
and a beam current of 100 µA, using a 1 mm copper filter. Then, 3D objects’ projection
images (529) were acquired at 0.4◦ angular step with 8 frames average per step, using an
exposure time of 245 ms, and sintered filaments projection images (1056) were acquired at
0.2◦ angular step with 3 frames average per step and a 225 ms exposure time. All omitted
conditions on the strands and parts were similar to the ones used on the filament. The
micro-CT images were reconstructed with dedicated manufacturer software.

Hardness measurements were performed with a microhardness tester Shimadzu
HMV (Shimadzu Corporation, Kyoto, Japan). For each measurement, a load of 98 mN was
applied for 15 s by a Vickers indenter.

2.2. Copper Powder Characterisation

Three copper powders with essentially two different characteristics—particle size
and particle size distribution—were tested. A similar organic mixing based on polymeric
materials (master binder, backbone, and plasticiser) with identical thermal cycle heat
treatments for debinding and sintering were mixed (Table 1) [26]. In addition to the
selected binder (a mixture of polyolefin waxes and ethylenic polymers) [27], the additives
chosen are necessary to attain a feasible stiffness (backbone) and flexibility (plasticiser) in a
filament, which means a thermoplastic elastomer (TPE) and a plasticizer, respectively. The
green filaments developed based on this procedure were constituted by copper powder
(purity 99.99%), with different particle sizes and particle size distributions.

Table 1. Composition of binder and additives.

Master Binder
Additives

Backbone Plasticiser

Vol (%) 77.5 17.5 5.0
Density (kg/m3) 970 1025 96.5
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The three different copper powder particles highlighted the role of particle size and
particle size distribution of particles in the quality of filament, strands, and consequently,
in the final product, and were furnished by Ecka (Ecka Granules GmbH, Fürth, Germany—
type A) and Alfa Aesar (Alfa Aesar, Haverhill, MA, USA—type B,C) (Table 2).

Table 2. Diameter of powder particles (D10, D50, D90) and their density.

Powder D10 [µm] D50 [µm] D90 [µm] ρ [Kg/m3]

A 8.57 28.00 46.60 8896
B 7.75 11.30 16.20 8648
C 1.95 3.97 6.67 8427

The powder particle sizes were chosen as D50 equal to (A) 28.00 µm, (B) 11.30 µm, and
(C) 3.97 µm, and particle size distribution ranged from a bimodal with wide distribution
(A) up to monomodal with a very narrow distribution (C) (Figure 2).
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Figure 2. Particle size distribution of the different copper powder particles.

Table 2 shows the different particle size distribution of the three different copper
powders selected in this study.

The density values revealed pre-oxidation of powder particles B and C (density of
Cu = 8960 Kg/m3; density Cu2O = 6310 Kg/m3) [28]. Moreover, the colour of the different
copper powder particles indicated the presence of Cu2O on the powder surface (B,C).

Regardless of the selected copper powder, the shape factor (Dmaximum:Dminimum) was
close to 1 (Figure 3).

XRD of the highest D50 powder showed pure copper (ICDD 04-0836), and the presence
of copper oxide phase (ICDD 075-1531) was not distinguishable (Figure 4). However, in
powder particles B and C, the XRD diffractogram detected strong peaks of Cu and weak
peaks of copper oxide. The weak peak of copper oxide confirmed the slight involvement
of Cu with the atmospheric oxygen during conventional atomisation of powder, showing
that a small oxide phase was present in the powder surface.

Table 3 summarises the 4Ss (particle Size, particle Size distribution, Shape, and Struc-
ture (topography and phases) of the copper powder particles used in this work.
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Table 3. Particle size (D50), particle size distribution, shape factor, and surface (topography and structure).

Powder Particle Size
D50 (µm)

Particle Size
Distribution Shape Factor * Topography Phase

Composition

A 28.00 Bimodal ≈1
Uniform

with some
satellites

Cu + traces of
copper oxide

B 11.30 Unimodal ≈1
Uniform

with some
satellites

Cu + copper
oxide

C 3.97 Unimodal ≈1
Uniform

with some
satellites

Cu + copper
oxide

* Shape factor close to 1 means spherical particle.

3. Experimental Methodology
3.1. Processing of Filament Feedstocks
3.1.1. Evaluation of CPVC

The feedstocks were optimised in a torque rheometer (Plastograph® Brabender W 50,
Brabender GmbH & Co. KG, Duisburg, Germany) at a temperature of 180 ◦C, 30 rpm, and
a 38.5 cm3 mixing chamber. The strategy was to establish the best compromise between the
maximum volume concentration of copper powder in the feedstock and its extrudability,
which leads to the best conditions to extrude the filament without disruptions. This
compromise is named CPVC [27]. The optimum volume ratio has been widely studied in
research studies related to PIM. In the processing of filaments (extrusion), the methodology
was similar, but the role of backbone and plasticiser needed to manufacture a filament
must be highlighted.

3.1.2. Filaments

After the evaluation of CPVC feedstocks, they were granulated into small pellets and
extruded in filament form, using a single screw extruder (Brabender GMBH & Co. E 19/25
without calibration system) and a nozzle of 1.75 mm. The temperatures in different zones
of the extrusion cylinder were 170, 175, and 180 ◦C (nozzle).
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In order to support the quality of filament for the additive process (MEX), a function
of powder characteristics, several tests of tensile and flexural strength were performed.
The equipment was a Stable MicroSystems, Godalming, with a 5 kN loading cell; tensile
tests were carried out with a velocity of 0.5 mm/min and a gauge length of 10 mm; for
the three-point bending test, the loading span was 20 mm, and the cell load velocity of
0.5 mm/min. For both tests (tensile and bending), six specimens (green filament) were
tested for each reference powder particle (A, B, and C).

3.2. Three-Dimensional (3D) Printing

The filament was extruded in a Prusa i3 MK3S (Prusa Research, Prague, Czech Re-
public) through a 0.4 mm nozzle diameter. The nozzle temperature was 200 ◦C, and the
platform temperature was 50 ◦C for the first layer and 80 ◦C for the remaining layers. The
print speed was 30 mm/s. The extrusion multiplier was set to 1.15 to offset the overlap
and create a more homogenous layer.

3.3. Processing Conditions after Shaping
3.3.1. Debinding

The master binder and additives must be completely removed during the debinding
step. The elimination of the polymeric component is critical in the shaping, debinding, and
sintering (SDS) process. The type of debinding selected was based on thermal gravimetric
analysis (TGA) of the filaments. The TGA curve highlights the temperatures during the
heating process where the loss of weight is disruptive, which means the temperatures at
which the organic constituents of feedstock are ustulated. The TGA curve represents the
weight loss evolution of the feedstock studied with temperature, in an inert atmosphere
of Ar + H2 (5 vol.% H2) and a heating rate of 1 ◦C/min. From this curve, it became clear
that the temperature of 500 ◦C was enough to eliminate all the binder and additives of the
feedstock (7.5 wt.% = 39 vol.%) (Figure 5).
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Figure 5. TGA of feedstocks (powder A).

Figure 6 shows the thermal cycle selected for an efficient debinding of the parts
(brown). The conditions were similar to the TGA, with the atmosphere being Ar + H2
(5 vol.% H2) and a heating rate of 1 ◦C/min.
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Figure 6. Thermal cycle of debinding.

3.3.2. Sintering

The brown parts were sintered in the same atmosphere of debinding, but the heating
rate was 5 ◦C/min and the maximum temperature was 1045 ◦C, for 3 h (Figure 7).
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3.3.3. Micrographic Analysis of Green and Sintered Filament

The filament green was analysed without polishing and etching. However, after
sintering, the specimens of filament were polished and chemically etched for optical
microscopy analysis (Nikon OPTIPHOT metallographic polarising microscope, Tokyo,
Japan). For the evaluation of the grain size (ASTM 407) and microstructure, the selected
etchant was iron chloride, hydrochloric acid, water, and glycerol (1:1: 3:5), and the duration
of etching was 1 min.

4. Results and Discussion
4.1. Optimisation of Feedstocks for Copper Filaments

For the development of a new copper filament for material extrusion (MEX), several
feedstocks were developed using torque rheometry equipment. CPVC established was
61 vol.% [29]. Table 4 shows the final composition and density of each feedstock, with its
associated torque.

Table 4. CPVC of feedstocks, density, and maximum torque.

Feedstock Cu (vol.%)
Binder +
Additive
(vol.%)

ρ (Kg/m3) Torque (N·m)

A 61 39 5345 3.8
B 61 39 5330 5.1
C 61 39 5205 4.4
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4.2. Green
4.2.1. Filaments

The extruded filaments, all produced under the same conditions, had variations in
diameter depending on the dimension and distribution of copper particles. Thus, filaments
had the following diameters: for powder A = 1.76 mm, B = 1.70 mm, and C = 1.68 mm. The
variation in the filaments was not significant, i.e., negligible.

The filaments were analysed in terms of homogeneity (distribution of Cu powder
particles into the polymeric material). Figures 8–10 show micro-CT and SEM images of
each type of filament with different particles size and particle size distributions. Filament A
showed small pores distributed randomly throughout its volume. This could be the result
of the large size distribution and particle size, which severely affects the powder behaviour
during extrusion. Particle mobility is highly dependent on particle size. Filament B was
almost an ideal case since there was a uniform distribution and low interparticular distance,
with no discernible defects (within the micro-CT resolution). Filament C showed random
pores, even though less prevalent and smaller than in filament A. SEM micrographs indi-
cated apparent high mobility of the binder and additives. This low wettability can severely
affect the sintering and debinding dynamics. Moreover, micro-CT volume rendering of the
filaments revealed low-to-no ovality on the different filaments and a constant diameter.
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Figure 9. Filament B (green): (a) micro-CT; (b) feedstock (SEM) (100×); (c) feedstock (SEM) (500×); (d) feedstock (SEM)
(1000×).
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Figure 10. Filament C (green): (a) micro-CT; (b) feedstock (SEM) (100×); (c) feedstock (SEM) (500×); (d) feedstock (SEM)
(1000×).

After detailed analyses of the filament morphology, tensile tests (Figure 11) and
flexural tests (Figure 12) were performed. The mechanical characterisation revealed that
filament A had more fragile behaviour than the others in the tensile tests, consistent with
the porosity throughout the filament volume. Nevertheless, the tensile strength was the
highest for filament B (12.1 MPa), followed by filament C (10.9 MPa), and the lowest value
was measured for filament A (7.6 MPa). This decrease seems to be influenced by particle
size and particle size distribution. Young’s modulus showed the highest value for filament
B (2.2 GPa). The mechanical results support the detailed analysis made by micro-CT.
Flexural tests revealed that the highest deflection was detected in the filament with the
highest homogeneity and fewer defects, which is filament B. Even so, the behaviour of the
flexural modulus was very similar for the three different filaments. The high deflection at
break and low flexural modulus was already established to be printable by [29].
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Figure 12. Flexural modulus, maximum strength, and deflection at break of different filaments
(three-point bending test).

4.2.2. Strands

The strands, subsequent to printer extrusion to build the 3D object, were analysed.
The aim was to highlight the influence of the small nozzle (diameter = 400 µm) on powder
distribution, which would be organised similarly in the final 3D object. The micro-CT
analysis for the whole volume of the filament was confirmed using SEM. In the first case,
powder A resulted in a non-uniform strand (denominated strand A), with larger particles
randomly distributed throughout the volume (Figure 13). Henceforth, the strands were
denominated by the powder name of their constituents. Micro-CT (high-density particles
with a diameter larger than the lowest resolution, 5.67 µm, are in white) and the SEM
images show particle distribution in the strand. In strand B, even though a low wettability
of the binder + additives could be observed, had a very good distribution of the powder
and interparticular distance, as seen in the original filament form (Figure 14). The results
of strand C indicated that small defects, enlarged in the extrusion direction, may appear
during printing and may be caused by the small hole diameter and particle compaction
behaviour (Figure 15).
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4.2.3. The 3D Objects after Shaping

Hereafter, the different 3Dobjects resulting from strands A, B, and C were designated
by A, B, and C, respectively.

Micro-CT of the green 3D objects (Figures 16–18) was produced to observe the influ-
ence of powder size and powder distribution on the quality of a final 3D object produced
with the same parameters. Since copper is a dense material, which affects the X-ray be-
haviour on micro-CT, as previously mentioned, only high-dimension pores were detected.
Furthermore, 3D object A had a large number of defects that started halfway through
building the object and a large open pore resulting from the use of the spiral printing
strategy. This may be the result of the nozzle lacking heated bed pressure, which makes the
strands flattened against the surface since the distance between the nozzle and substrate is
not the same as each strand height. Similar to the filament, 3D object B seems to have no
apparent defects and presents a better geometrical accuracy than A. object C also shows
high density, but the micro-CT suggests that small defects may be present in its centre.
This can be due to the extrusion multiplier parameter, as it may be creating enough strand
flattening to mitigate the lack of the density apparent in each filament strand.
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4.3. Debinding and Sintering

These stages, transversal to the greens (filament and 3D object), were applied only
to the filaments. To prove the copper feedstocks’ sinterability and avoid the influence
of printing parameters on the final density, the three different filaments underwent the
debinding (brown) process and were sintered. Figures 19–21 show a micro-CT and a
macrography of the sintered filaments. If A and B show the same defects, filament C had
different behaviour. The external part of the filament was sintered, and the central part
had a low density, which means it was not sintered. This can be attributed to copper oxide
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present in filament C, resulting in a barrier to the sintering of the central part. In fact, the
high surface area of powder C was responsible for the highest oxidation.
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4.4. Microstructures and Hardness

Figure 22 shows different representative metallographic images of sintered copper
MEX filaments. All the sintered filaments presented a typical microstructure of copper.
However, it is clear that A and C presented a significant porosity, A with higher porosity
than C.
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Figure 22. Macrography (top, 20×) and microstructure (OM) (bottom, 200×) of sintered filaments
after etching: from powder A (a), B (b), and C (c).

In spite of C having the smallest particle size and particle size distribution, and
consequently, the highest surface area, they had a difficult sintering process, evident in
micro-CT. This behaviour is due to powder oxidation.

Table 5 summarises the different microhardness values measured in MEX 3D sintered
objects from powder A, B, and C for the same thermal treatment (debinding and sintering)
conditions. The microhardness values, particularly for powder C, support the presence of
copper oxide ‘reinforcement’ on the powder surface [30,31].

Table 5. Microhardness of the sintered filament.

Specimens A B C

Microhardness (HV0.1)
(10 measurements) 68 ± 8.9 65 ± 2.7 80 ± 2.3

5. Conclusions

Highly filled composite materials were prepared with 61 vol.% of copper with three
different particle size and particle size distributions. It was concluded that the filaments
were successfully extruded with a homogeneous distribution of powder, binder, and addi-
tives, particularly considering the absence of pressure effect during extrusion. Moreover, it
became evident that the green filament based on powder B had the maximum strength and
deflexion at break. After debinding and sintering, the best filament (B) had a D50 close to
11 µm with a monomodal particle size distribution, shape factor 1, and a surface similar
to other powder. The only negative aspect of copper that must be solved in MEX was the
powder oxidation resulting from powder preparation, which depends on particle size, and
it became evident by the density values of copper powder. This negative aspect, which had
consequences in sintering, must be overcome by the selection of another environmental
atmosphere than Ar + H2, for example, H2 [32].
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Abstract: Shape Memory Alloys (SMAs) can play an essential role in developing novel active sensors
for self-healing, including aeronautical systems. However, the NiTi SMAs available in the market are
almost limited to wires, small sheets, and coatings. This restriction is mainly due to the difficulty in
processing NiTi through conventional processes. Thus, the objective of this study is to evaluate the
potential of one of the most promising routes for NiTi additive manufacturing—material extrusion
(MEX). Optimizing the different steps during processing is mandatory to avoid brittle secondary
phases formation, such as Ni3Ti. The prime NiTi powder is prealloyed, but it also contains NiTi2
and Ni as secondary phases. The present study highlights the role of Ni and NiTi2, with the later
having a melting temperature (Tm = 984 ◦C) lower than the NiTi sintering temperature, thus allowing
a welcome liquid phase sintering (LPS). Nevertheless, the reaction of the liquid phase with the Ni
phase could contribute to the formation of brittle intermetallic compounds, particularly around NiTi
and NiTi2 phases, affecting the final structural properties of the 3D object. The addition of TiH2 to
the virgin prealloyed NiTi powder was also studied and revealed the non-formation of Ni3Ti for a
specific composition. The balancing addition of extra Ni revealed priority in the Ni3Ti appearance,
emphasizing the role of Ni. Feedstocks extruded (filaments) and green strands (layers), before
and after debinding & sintering, were used as homothetic of 3D objects for evaluation of defects
(microtomography), microstructures, and mechanical properties. The composition of prealloyed
powder with 5 wt.% TiH2 addition after sintering showed a homogeneous matrix with the NiTi2
second phase uniformly dispersed.

Keywords: Nickel-Titanium (NiTi); Shape Memory Alloys (SMAs); Metal Extrusion (MEX); additive
manufacturing (AM); Titanium Hydride (TiH2)

1. Introduction

NiTi is classified as a shape memory alloy (SMA), and is defined as an intermetallic
material, with the ability to restore its previously defined shape when exposed to a specific
thermal cycle, either through shape memory effect or superelasticity, induced by solid state
diffusionless, reversible phase transformation between austenite, the high temperature
phase, and martensite, the low temperature one [1,2]. Two main properties of NiTi, such as
superior corrosion resistance and super long fatigue life, make this material suitable for
smart engineering structures and medical applications. Nevertheless, NiTi is extremely
difficult to process by conventional processes [3]. Casting problems, such as segregation
of alloying elements and the rapid work hardening and superelasticity of NiTi, make
conventional machining a challenge and leads to poor quality workpieces. Although new
processing approaches, particularly for NiTi machining, have been proposed [4], powder
metallurgy (PM) has been demonstrating its efficiency, particularly in what concerns
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additive manufacturing (AM). Direct processes, such as selective laser melting (SLM),
creates a material with homogeneous microstructure and stable properties [5]. Current
research on the AM of NiTi parts from prealloyed powders has been associated with
difficulties concerning chemical homogeneity and chemical composition control caused
by Ni evaporation during the melting process [6]. Moreover, the limits of SLM are mainly
related to the ability to achieve complex microshapes and internal microfeatures, as well
as high dimensional accuracy. These limitations open new paths to the indirect additive
process (shaping = extrusion of a filament, debinding, and sintering) and denominated
material extrusion (MEX) [7]. Research studies on NiTi and other metallic powder show the
viability and importance of this AM technology to process 3D objects [8,9]. Nevertheless,
MEX has some geometrical limitations of PIM (Powder Injection Moulding).

The main target of this study is to attain a suitable NiTi-based material with high
densification and appropriate microstructure after MEX, compatible with a crack’s sensor
and predictive of component/system failure. Prealloyed NiTi powder is pointed out as the
best solution for additive processes. A uniform austenitic structure, a suitable composition,
and transformation temperatures for stress-induced martensitic transformation must be
its characteristics. Nevertheless, secondary phases originated during prealloyed powder
production (atomization) oblige us to search for mechanisms that could contribute to de-
creasing the Ni in excess by producing NiTi from NiTi2, mainly by avoiding the formation
of Ni3Ti during processing [8]. Adding TiH2 in different percentages can contribute to
this target, particularly by favoring the disappearance of Ni3Ti. In addition, using TiH2
instead of Ti can protect powder from oxidation during post- shaping heat treatments
(debinding and sintering) and create “brown” inside, a reducing atmosphere (TiH2 de-
composition temperature is lower than the temperature of post-heat treatments defined
for NiTi [10]). The main strategy to reduce oxidation of Ti is to use TiH2. Moreover, TiH2
dehydrogenation releases Ti that could react with Ni and promote the formation of NiTi [11].
Dehydrogenation occurs up to 600 ◦C [12] to 650 ◦C [11,13], or 700 ◦C [10,14]. Although
there is no defined temperature for dehydrogenation, all the temperatures mentioned are
lower than the sintering temperature (1165 ◦C). Thus, total dehydrogenation is expected
before sintering. Another advantage of using TiH2 is that dehydrogenation will expose
activated Ti enhancing the sintering process, meaning higher density; the oxygen and
nitrogen pickup is expected to be lower [15,16]. However, some authors state that when
using TiH2, pore size reduces, but with more occurrence and is consistently distributed.
Different authors studied the effect of TiH2 addition with Ni elemental powders to obtain
NiTi (Table 1). Li et al., in 1998 and 2000, observed in conventional powder processing
that when using TiH2, the general porosity and open-pore ratio tend to decrease, pore size
also decreases, and the number of pores increases and becomes more uniform, meaning a
reduction in shrinkage [17,18]. When increasing TiH2 vol.%, together with temperature,
sintering is enhanced, contributing to the formation of Kirkendall pores and the shrinkage
of the large ones, which is also associated with the enhancement of the shape memory effect
(SME). The phases present were NiTi, NiTi2, and Ni3Ti [17,18]. Bertheville et al. showed
the presence of NiTi (B2), Ni4Ti3, Ni3Ti, Ni2Ti4Ox, and TiC0.7N0.3 in the unpolished surface
characterization [19]. The two last ones result from contamination of the virgin powder
particles during processing [19]. After post-processing, the most prominent phases were
NiTi (B2), Ni4Ti3, and Ni2Ti4Ox [19]. Chen et al. used elemental compositions of 51 at.%
of Ni with TiH2 and observed a reduction in pore size and an increase in their number
associated with a uniform distribution [11]. One significant difference was that Ni-Ti 3D
objects swelled and Ni-TiH2 shrinkage was observed. The most prominent phase was
NiTi (B2), and the occurrence of NiTi2 and Ni3Ti was reduced compared with Ni-Ti virgin
powder [20]. Bohua et al. observed that after sintering with Ni-Ti powder, among the NiTi
main phase, NiTi2, Ni4Ti3, TiO2, and TiC phases were detected [12]. However, when using
Ni-TiH2, the TiO2 and TiC phases were absent due to the reducing environment formed by
the released hydrogen after dehydrogenation. When using Ni-TiH2 powder, the 3D object
presented a much smaller mean pore size and a homogeneous pore distribution [12].
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Table 1. Sintering and post-processing conditions of elemental Ni-TiH2 powder and final phases.

Temperature
[◦C]

Holding Time
[h]

Vacuum Pressure
[Pa]

Processing
Technology

Porosity after
Sintering (%) Post-Processing Phases Ref.

950 1 1.33 × 10−2 Pressing 33.9–37.6 -
NiTi

NiTi2/Ni2Ti4Ox
Ni3Ti

[17,18]

920 14 - Pressing 29–34

Aged (Ar) 500 ◦C (1 h)
Not polished

NiTi
Ni2Ti4Ox

Ni4Ti3
Ni3Ti

TiC0.7 N0.3 [19]

HIP (Ar) 180 MPa 1050 ◦C (3 h)
Aged (Ar) 500 ◦C (1 h)

Not polished

NiTi
Ni2Ti4Ox

Ni3Ti
TiC0.7 N0.3

Aged (Ar) 500 ◦C (1 h)
Polished

NiTi
Ni2Ti4Ox

Ni4Ti3
HIP (Ar) 180 MPa 1050 ◦C (3 h)

Aged (Ar) 500 ◦C (1 h)
Polished

HIP (Ar) 180 MPa 1050 ◦C (3 h)
Annealed (Ar) 1100 ◦C (1 h)

Aged (Ar) 500 ◦C (1 h)
Polished

1000
2 3 × 10−3 Pressing 10–33.8 -

NiTi
NiTi2
Ni3Ti

[11]1100
1200
900

2 3 × 10−3 Pressing 19
(>900 ◦C)

-

Ni
Ti

NiTi
NiTi2
Ni3Ti

[20]

950
1000
1100
1200
1100

1000 ◦C 6 h vacuum
NiTi
NiTi21200

1000 2 1 × 10−3 Gel Casting 40–46 -
NiTi
NiTi2
Ni4Ti3

[12]

222 Searching New Solutions for NiTi Sensors through Indirect Additive Manufacturing



Materials 2022, 15, 5007 4 of 18

Studies with TiH2 and Ni elemental powder particles used to tune prealloyed NiTi
shaped by an additive process were not yet carried out in-depth. The use of TiH2 could
solve some problems encountered when processing NiTi from prealloyed powder, mainly
by promoting sintering kinetics and hindering the formation of pernicious secondary
phases. Hydrogen, as a reducing atmosphere, can promote good performance outside and
inside the 3D objects. During cooling, the remaining H2 should reconnect to Ti, preventing
the formation of secondary phases such as Ni2Ti4Ox. The disadvantage of this mechanism
is that it could lead to the formation of NiTi2 due to the presence of free Ti. However, as
referred, this phase can contribute to high densification in post-treatments. In addition, it is
also important to highlight that studies where no binder is used could be the explanation
for the low presence of oxides and carbides. However, in MEX, the presence of organic
materials (binder and additives) constitutes a challenge that must be overcome.

2. Materials and Methods

The flowchart of the MEX process starting with the mixture of the NiTi powder with
binder and additives is shown in Figure 1.
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Figure 1. Flowchart of the MEX process (adapted from [21,22]).

Prealloyed powder is the elective powder for SLM because the elemental Ni and Ti
powder is predisposed to form NiTi2 and Ni3Ti intermetallics due to its high contamination
by N2 and O2. Thus, the option for MEX was also prealloyed powder, with the expectation
to yield the main targets of the SLM process, in particular to attain maximum densification
and a more uniform microstructure. The virgin prealloyed NiTi powder particles were
supplied by LPW Technology Ltd. (Runcorn, UK), nickel powder particles by Sandvik
(Sandviken, Sweeden), and TiH2 powder particles by Reade Advanced Materials (Riverside,
RI, USA). Particle size distribution (PSD) was evaluated using laser diffraction spectrometry
LDS, Malvern Panalytical (Egham, UK) with a Malvern Mastersizer 3000. A Philips X’Pert
diffractometer (Egham, UK) at 40 kV with Bragg–Brentano geometry (θ–2θ), with cobalt
anticathode (λ(kα1) = 0.178897 nm and λ(kα2) = 0.179285 nm), and a current intensity of
35 mA was used to perform phase analysis. The x-ray diffraction scans were carried out
from 20 to 100◦ in steps of 0.025◦, with an acquisition time of 1 s per step.

Characteristics of NiTi prealloyed powder, binder, and additives are described else-
where [8]. Phase analysis by X-ray diffraction (XRD) of the prealloyed powder revealed
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a phase other than NiTi and Ni; it also included NiTi2 [8]. TiH2 and Ni powder particles
have a unique phase present (Figure 2). Particle size analysis shows distinct sizes of the
different powder particles. This multiplicity of particle sizes can be a promotor of density
during the sintering process [23] (Table 2). Moreover, the D50 of powder particles is not
the ideal where sintering is the consolidation step. In MEX, to guarantee an effective solid
diffusion among powder particles, D50 should be lower than 10 µm.
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Figure 2. X-ray diffractograms of (a) TiH2 and (b) Ni powder.

Table 2. NiTi, TiH2, and Ni powder particles size, particle size distribution, and specific surface
area (SSA).

NiTi TiH2 Ni

D10 [µm] 13.4 3.4 21.4
D50 [µm] 22.1 15.3 30.0
D90 [µm] 34.7 35.7 41.2

SSA [m2 kg−1] 293.4 750.2 207.7

The evaluation of the critical powder volume concentration (CPVC) [24–26] methodol-
ogy used in powder injection molding (PIM) feedstocks allows for the optimization of the
NiTi filament composition (NiTi powder, master binder, and additives). A torque rheometer,
Plastograph Brabender GmbH and Co. (Duisburg, Germany) with a rotation blade speed
of 30 rpm at a temperature of 180 ◦C, was used to optimize the feedstock. The feedstock
was granulated and the filament shaped using a single screw extruder Brabender GMBH &
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Co. E 19/25 (Duisburg, Germany) without a calibration system and with a nozzle diameter
of 1.75 mm. The temperatures in different zones of the extrusion cylinder were 170, 175,
and 180 ◦C (nozzle). In order to confirm the quality of the filament for the additive process
(MEX) and function of the powder mixture, several mechanical tests were performed.
The equipment was a Stable MicroSystems (Godalming, UK). Specimens with 25 mm in
length, randomly removed from the filament spool, and were characterized by tensile and
three-point bending tests with a 5 kN loading cell; tensile tests were carried out with a
loading rate of 0.5 mm min−1 and a gauge length of 10 mm; for the three-point bending
tests, the span size was 20 mm. For both tests (tensile and bending), twenty specimens of
filament (green) were tested at room temperature for each reference powder particle:

A. NiTi prealloyed powder;
B. NiTi prealloyed powder + 1 wt.% TiH2;
C. NiTi prealloyed powder + 5 wt.% TiH2;
D. NiTi prealloyed powder + 5 wt.% TiH2 and 6.2 wt.% Ni.

Solidworks software from Dassault Systèmes [27] was used to create the 3D models
and to export the STL file. The G-Code was created with CURA software from Ultimaker
B.V. [28]. A Hephestos2 from BQ (Madrid, Spain) with a nozzle diameter of 0.4 mm was
used to create the 3D objects.

The thermal consolidation of the “green” filament/3D object was performed in two
steps (debinding followed by sintering) in an H2 atmosphere. The dwelling times and
temperatures were previously optimized [8]. Debinding was performed at a heating rate of
10 ◦C min−1 up to 600 ◦C followed by sintering at a heating and cooling rate of 5 ◦C min−1

up to 1165 ◦C during 5 h in a MIM3002T furnace ELNIK Systems (Cedar Grove, NJ, USA).
Optical microscopy (OM) and scanning electron microscopy (SEM) FEI Quanta 400 FEG
ESEM/EDAX Genesis, Thermo Fisher Scientific (Waltham, MA, USA) were used to analyze
the 3D objects. Thermal analyses of sintered parts were performed by differential scanning
calorimetry (DSC), allowing for the transformation temperatures to be evaluated. The DSC
analysis were carried out in a DSC 204 F1 Phoenix equipment (NETZSCH-Gerätebau GmbH,
Selb, Germany), with thermal cycles from −150 ◦C to + 150 ◦C and a heating/cooling rate of
10 K.min−1. Hardness was evaluated by microhardness testing with HMV equipment from
Shimadzu (Kyoto, Japan). Four specimens of each composition were measured 40 times
using a maximum load of 10 g. Surface and inside defects of filaments and strands were
evaluated by X-ray microcomputed tomography using a Bruker SkyScan 1275 (Bruker,
Kontich, Belgium). An acceleration voltage of 80 kV and a beam current of 125 µA was
set while using a 1 mm aluminum filter with step-and-shoot mode. Pixel size was set to
6 µm and random mode was used. The images were acquired at 0.2◦ angular step with
five frames average per step using an exposure time of 46 ms. The microCT images were
reconstructed with the dedicated manufacturer software.

3. Results and Discussion

A steady state must occur to ensure homogeneity in the mixtures, which is crucial
to prevent the formation of secondary phases where the ratio of Ni:Ti is unbalanced. The
values of torque for A, B, C, and D are quite similar. However, there is a tendency for a
slight increase of torque with the increase of TiH2 and/or Ni (Table 3). Filaments for all
compositions were produced with a CPCV of 60 vol.% of powder particles content, which
was the best compromise with the torque value.

Table 3. Steady state torque.

A B C D

Steady state
torque [Nm] 4.2 4.0 4.6 4.8
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Figure 3 shows microstructures of the green filament cross sections where a multitude
of sizes from their constituents is visible. All filaments show similitudes, with a good
distribution of the multiple particle sizes, which is good to attain an excellent interparticle
closeness. This is very important, keeping in mind that the powder particles suitable to
indirect additive process must have D50 lower than 10 µm.
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In filaments A, B, and C, the particles have a shape factor close to 1. However, in
filament D (Ni addition), some sharpened particles are observed.

Regarding the mechanical properties, the Young modulus values are very similar
for all compositions (Table 4). The filaments reveal a similar behavior on elastic domain,
whatever the feedstock selected.

Table 4. Young modulus of the green filaments (powder + binder + additives).

A B C D

Young modulus
[GPa] 2.6 ± 0.11 2.8 ± 0.15 2.7 ± 0.14 2.5 ± 0.28
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Three-point bending tests were performed to highlight the filaments homogene-
ity/reproducibility by the Weibull index (m). This index, when greater than 10, is an
indicator of reproducibility of the green filament. The Weibull modulus from the 3-point
bending test show significative difference between filaments A, B, and C to the filament
D, which has a value almost the double of the other ones (Table 5). This behavior can be
attributed to the multiplicity of particle sizes of the different added powder and excel-
lent homogeneity.

Table 5. Weibull modulus of green filaments from 3-point bending tests.

Tests A B C D

3-point bending 23 29 28 45

The shaping, debinding and sintering (SDS) were previously optimized, and the
conditions of processing for all compositions are described elsewhere [8]. Sintering of the
prealloyed powder (1165 ◦C) must be enough to guarantee the consolidation of the powder
particles, without formation of other intermetallic phases, different from the existent in
virgin powder (NiTi + NiTi2 + Ni) [8]. The sintering temperature (1165 ◦C) is enough
to melt the NiTi2 phase (Tm = 984 ◦C), which can contribute to a liquid phase sintering,
accelerating the densification and homogenization processes.

After sintering, the SEM micrographies (backscattered electrons, BSE) suggest the
appearance of a new phase (S2) rich in Ni (Ni3Ti) (Figure 4, Table 6). X-ray diffraction of
sintered A (standard) shows: NiTi as the master phase, NiTi2 already present in virgin
powder, Ni3Ti resulting from the diffusion of loose nickel into NiTi and NiTi2 and residual
Ni (Figure 5). The semi-quantitative analysis of A shows a significant difference between
NiTi and NiTi2 volume percentages (85:15). The white phase distributed around the
different grains of NiTi can be attributed to Ni3Ti (Figure 4).
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Figure 4. Micrographies of 3D object from filament A. (a) after sintering (SEM), (b) selected zones for
evaluation of Ni:Ti ratio (S1, S2, S3 and S5) by SEM/EDS.

Table 6. 3D object phases from filament A after sintering (Spectra(S) 1, 2, 3, and 5 in Figure 4b).

Phase Composition (EDS)

S1 S2 S3 S5
NiTi2 Ni3Ti NiTi2 NiTi
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Figure 5. X-ray diffractograms of 3D object from filament A. (a) top, (b) bottom.

With the addition of 1 wt.% of TiH2 to NiTi prealloyed powder, no notorious differ-
ence is observed. Based on the colors of the SEM micrographies (BSE) and EDS results,
three distinct phases (NiTi, NiTi2, and Ni3Ti) are identified (Figure 6, Table 7). The x-ray
diffractogram analysis clearly shows the presence of NiTi, NiTi2, and Ni3Ti and also Ni
from virgin powder (Figure 7). In what concerns the percentages of NiTi and NiTi2, there is
a tendency for a small increase of NiTi2 percentage in filament B.
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Table 7. Phases from filament B after sintering (Spectra 9, 10, and 11 in Figure 6b).

Phase Composition (EDS)

S9 S10 S11
NiTi2 NiTi Ni3Ti
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Figure 7. X-ray diffractograms of 3D object from filament B. (a) top, (b) bottom.

The micrographies of 3D objects from composition C (NiTi + 5 wt.% TiH2) show a
significant difference from the other compositions. The white phase, identified as Ni3Ti,
is not present in composition C. Similar to the other compositions, the Ni:Ti ratio also
suggests the formation of phases constituted by Ni and Ti, although enriched in Ni, such as
Ni3Ti2 and/or Ni4Ti3 [29–32] (Figure 8, Table 8). Moreover, a slight increase of the NiTi2
content is also evident.
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Figure 8. Micrographies of 3D object from filament C (addition of 5 wt.% TiH2). (a) after sintering
(SEM), (b) selected zones for evaluation of Ni:Ti ratio (S14, S15 and S16) by SEM/EDS.

Table 8. Three-dimensional object phases from filament C after sintering (Spectra 14, 15, and 16 in
Figure 8b).

Phase Composition (EDS)

S14 S15 S16
NiTi NiTi NiTi2

The DSC curves in Figure 9 show the influence of 5 wt.% TiH2 addition (3D object from
filament C) to NiTi (3D object from filament A). The phase transformation temperatures are
above room temperature for both cases, which might indicate a Ti-rich NiTi matrix [2]. The
final austenite phase transformation temperature slightly increased with the TiH2 addition
(Af (A) = 68◦C and Af (C) = 69◦C). Moreover, a 3D object from filament C displays the
presence of R-phase on cooling, probably due to the increase of the Ti content.
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Composition D has a supplementary content of Ni (6.2 wt.%) mixed with virgin 
powder (NiTi + NiTi2 + Ni) and with 5 wt.% TiH2. This composition has two objectives: 
first to highlight the role of the excess of Ni in the Ni3Ti phase formed during processing, 
and the second, to analyze the role of the excess of Ni in the disappearance of NiTi2 
resulting from NiTi powder fabrication. In fact, with the addition of Ni, a drastic decrease 
of the NiTi2 is observed, as evidenced in the SEM images of 3D object D (Figure 11) when 
compared to B (Figure 6) and C (Figure 8) 3D objects. Thus, powder Ni content could be 
tuned as a possible solution for the disappearance of NiTi2 in order obtain only NiTi in 
prealloyed powders. 

Figure 9. DSC curves of 3D objects from filaments A and C (addition of 5 wt.% TiH2).

X-ray diffractograms corroborate the SEM results in the apparent disappearance of the
Ni3Ti phase. Moreover, they suggest the possibility that Ti, resulting from dehydrogenation,
may have contributed to the formation of NiTi. The XRD results also support the possible
reaction of free Ti resulting from dehydrogenation with free Ni present in the virgin powder,
since Ni is not identified in the x-ray diffractograms (Figure 10).
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Composition D has a supplementary content of Ni (6.2 wt.%) mixed with virgin
powder (NiTi + NiTi2 + Ni) and with 5 wt.% TiH2. This composition has two objectives:
first to highlight the role of the excess of Ni in the Ni3Ti phase formed during processing,
and the second, to analyze the role of the excess of Ni in the disappearance of NiTi2
resulting from NiTi powder fabrication. In fact, with the addition of Ni, a drastic decrease
of the NiTi2 is observed, as evidenced in the SEM images of 3D object D (Figure 11) when
compared to B (Figure 6) and C (Figure 8) 3D objects. Thus, powder Ni content could be
tuned as a possible solution for the disappearance of NiTi2 in order obtain only NiTi in
prealloyed powders.
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composition, meaning that all binder and additives were effectively removed, and the 
sintered phases are similar. 

Tomography analysis is of enormous importance to detect failures inside the green 
and sintered 3D objects. For some compositions, detailed analysis of filaments defects 
before and after debinding and sintering reveals a significant presence of porosity, inside 
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Figure 11. Micrographies of 3D objects from filament D (addition of 5 wt.% TiH2 and Ni). (a) after
sintering (SEM), (b) selected zones for evaluation of Ni:Ti ratio (S19, S20, S21 and S22) by SEM/EDS.

Similar to sintered 3D objects from filaments with TiH2 lower than 5 wt.%, microgra-
phies and x-ray diffractograms from 3D objects with composition D (Ni in excess, other than
the pristine one) show again the formation of a white phase identified as Ni3Ti. Despite
the addition of Ni, Figure 11 and Table 9 show the occurrence of a “new phase” almost
depleted of Ni, suggesting the presence of Ti without any reaction with other metal present.
However, there are no discernible Ti peaks in the x-ray diffractogram (Figure 12).

Table 9. Three-dimensional object phases from filament D after sintering (Spectra 19, 20, 21, and 22 in
Figure 11b).

Phase Composition (EDS)

S19 S20 S21 S22
Ti Ni3Ti NiTi2 NiTi
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Figure 12. X-ray diffractograms of 3D object from filament D (a) top, (b) bottom.

Considering that during sintering the 3D objects are on a platform that could com-
promise the process and originate the formation of new phases, both the top and base
were analyzed by XRD. It is clear that the top and base of 3D objects show similar phase
composition, meaning that all binder and additives were effectively removed, and the
sintered phases are similar.
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Tomography analysis is of enormous importance to detect failures inside the green
and sintered 3D objects. For some compositions, detailed analysis of filaments defects
before and after debinding and sintering reveals a significant presence of porosity, inside
and at the surface. The defects are mainly present in filament D. Filaments A, B, and C,
sintered at 1165 ◦C for 5 h, show a low quantity of defects against D that shows a significant
content of porosity (Figure 13). Defects in the strands can be inherited from filaments and
consequently transmitted to the 3D object. A relation can be observed between filaments
and strands of composition D that also shows a large amount of porosity and surface
defects (Figure 13).

As a complement, the study of isostatic pressing (IP) was performed in the green
filaments. IP is one of the most significant treatments to decrease porosity in filaments/3D
objects in the green state (Figure 14). As expected, the most relevant observation is the
reduction of porosity in Filament D.
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Indirect additive manufacturing, such as MEX, could be the sustainable technology
ideal for applications where the geometry envisaged could be complex, but the thickness is
less than 3 to 5 mm. Moreover, the densification could be improved by the formation of a
liquid phase during sintering, allowing the sintering temperature/time to be decreased.
For densification, the mechanism of LPS is valid in a system with a very small volume
fraction of liquid (e.g., NiTi2), so that the liquid is present only in the neck region between
particles. The pore filling mechanism is justified for LPS, where the grain maintains an
equilibrium shape. The microstructural evolution observed in the system studied supports
the pore filling [33].

Hardness values are higher than the hardness of bulk NiTi (NiTi (B2) 275 HV, NiTi
(B19) 112 HV, NiTi2 163 HV and Ni3Ti 1071 HV [34–37]), confirming the presence of hard
phases (i.e., Ni3Ti) (Table 10). The hardness values are similar to those of NiTi 3D objects
obtained from other non-conventional technologies (800 HV [38], 700 HV [39,40], and
742 HV [41]).

Table 10. Hardness of the sintered filaments/3D objects (1165 ◦C, 5 h).

A B C D

Hardness
[HV0.01] 887 ± 58 773 ± 68 715 ± 39 677 ± 59
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In composition C where Ni3Ti was not detected, a lower hardness was expected.
Instead, composition D, where Ni3Ti was detected, presents the lowest value. A possible
explanation for the decrease in hardness observed for composition D is the presence of the
Ti-phase previously identified.

4. Conclusions

NiTi SMA 3D objects manufactured from prealloyed powder by MEX with the lowest
possible porosity with a uniform and suitable microstructure were the main objective of
the present study.

The presence of NiTi2 with low melting temperature (984 ◦C) and Ni in the prealloyed
powder are expected outcomes of the atomization process. The NiTi2 phase can convert
the conventional consolidation process of NiTi based on solid diffusion in a liquid phase
sintering process. In addition to decreasing the porosity, the NiTi2 intermetallic phase
can also have a significant role when sintering is the consolidation process because it
can contribute to the uniformization of the final microstructure. The porosity can be
significantly reduced by the isostatic pressing of greens (P = 100 GPa, time = 2 h).

Both NiTi2 and free Ni would be suitable to promote NiTi formation during the liquid
phase sintering. The addition of 5 wt.% of TiH2 to virgin prealloyed powder highlights that
Ti (released after dehydrogenation), together with free Ni from pristine powder, contributes
to the formation of NiTi instead of Ni3Ti and total depletion of the loose Ni. The composition
of prealloyed powder with 5 wt.% TiH2 showed after sintering a homogeneous matrix, but
yet with a NiTi2 second phase uniformly dispersed. The sintering process was excellent and
for all the mixtures studied the phases formed, both at the top and bottom, were similar.

Therefore, the use of MEX for processing NiTi prealloyed powder particles showed
promising results, opening a field to new applications of NiTi, namely as a sensor. In
the future, the role of NiTi2 in the detection of failure cracks by mechanical sensors must
be demonstrated.
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