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Resumo  
Os recetores acoplados à proteína G (GPCRs) desempenham funções críticas no 

desenvolvimento e progressão de diversas patologias. Muitos membros da família 

GPCR são expressos no cérebro e exercem as suas funções através de 

neurotransmissores conhecidos, como a dopamina, a noradrenalina e outras moléculas. 

Também têm sido considerados determinantes estruturais e biológicos de doenças 

neurodegenerativas. 

 

Para além do facto de que GPCRs individuais podem contribuir para condições 

patológicas através de desregulação ou ativação aberrante, agora é amplamente aceite 

que os GPCRs são capazes de formar homodímeros e heterodímeros funcionais, bem 

como oligómeros que consistem em mais de dois recetores. A interação e comunicação 

cruzada, também denominadas interações proteína-proteína (PPIs), levam a mudanças 

nas vias de sinalização e resultados fisiológicos complexos. Estas PPIs também foram 

relatadas como tendo um impacto significativo nos processos de doença. 

 

Neste estudo, foram investigados dois tipos de GPCRs, ambos provavelmente 

relevantes para condições neurológicas e patologias consequentes: o recetor de 

dopamina D2 (D2R) e o recetor acoplado à proteína G 143 (GPR143). Embora os 

recetores de dopamina, especialmente o D2R, tenham sido correlacionados com muitas 

doenças neurológicas e neurodegenerativas, a função precisa do órfão GPR143 ainda 

não foi descoberta. 

 

Determinámos uma PPI relevante entre o GPR143 e os recetores de dopamina (DR), 

especialmente o D2R e o D3R, e mostrámos que o GPR143 modula negativamente a 

atividade do DR em resposta à dopamina. Além disso, fomos capazes de localizar 

complexos GPR143-DR em vesículas intracelulares. Este efeito não foi influenciado 

pela coexpressão de GPR143, que geralmente não é encontrado na membrana 

plasmática, ou pela variante GPR143 localizada na membrana plasmática, pmGPR143, 

quando coexpressa. Estudámos o efeito do GPR143 nos DRs através do recrutamento 

de β-arrestina e visualizámos os complexos utilizando Transferência de Energia de 

Ressonância de Fluorescência (FRET). 

 

Seguidamente, estudámos a homodimerização PPI do conhecido alvo D2R. Foi relatado 

que os homodímeros D2R estão envolvidos no desenvolvimento de esquizofrenia e no 

stress de derrota social. Construímos diferentes configurações de homodímeros D2R, 

onde os monómeros tinham conformações diferentes, por exemplo, ativa (ligada ao 

agonista de D2R bromocriptina), inativa e ligada à β-arrestina. Depois de construir uma 

pipeline computacional para gerar os dímeros de GPCR, os modelos de homodímeros 

D2R foram submetidos a simulações de dinâmica molecular. A partir destas simulações, 

pudemos concluir que os domínios transmembranares 4 e 5 (TM4 e TM5, 

respetivamente) são os mais proeminentes na interface do dímero. Além disso, 

identificámos um subconjunto de resíduos-chave que eram principalmente apolares em 
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TM4 e TM5. Outros TMs, como o TM2 e o TM3, também se mostraram relevantes para 

certas combinações de monómeros D2R. Para algumas configurações, a conformação 

inativa de um monómero levaria a uma mudança da conformação ativa para inativa do 

seu recetor parceiro. Também observámos que a conformação β-arrestina apresentaria 

propriedades de um recetor ativo, mesmo na ausência de um agonista, quando 

complexada com outro recetor. Sugerimos que este comportamento reflete uma 

mudança para outro meta-estado após a dimerização. Os resultados deste estudo 

computacional são consistentes com os dados experimentais. 

 

No geral, este estudo fornece informações profundas sobre a dimerização de GPCRs 

no contexto de problemas neurológicos. Conseguimos elucidar a arquitetura dos 

homodímeros D2R de uma perspetiva computacional. Além disso, determinámos as 

funções potenciais do GPR143 na sinalização dopaminérgica usando PPIs 

determinados experimentalmente. Os nossos resultados sobre a dimerização de 

GPCRs são promissores como novas oportunidades para o desenvolvimento futuro de 

medicamentos para doenças neurodegenerativas. 

 

Palavras-chave: Doenças neurodegenerativas, receptores acoplados à proteína G 

(GPCRs), receptores de dopamina, D2R, D3R, receptor acoplado à proteína G 143, 

doença de Parkinson, interações proteína-proteína, interface dímero, homodímeros, 

cross-talk, seletividade, classe A, classe C. 
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Abstract 
 
G protein-coupled receptors (GPCRs) play a critical role in the development and 

progression of various pathologies. Many members of the GPCR family are expressed 

in the brain and exert their functions through known neurotransmitters, such as 

dopamine and noradrenaline. They have also been considered structural and biological 

determinants of neurodegenerative diseases.  

 

Apart from the fact that single GPCRs can contribute to pathological conditions through 

dysregulation or aberrant activation, it is now widely accepted that GPCR can form 

functional homo- and heterodimers, as well as oligomers consisting of more than two 

receptors. Crosstalk and interaction, also termed protein-protein interactions (PPIs), lead 

to changes in signaling pathways and complex physiological outcomes. Such PPIs have 

also been reported to have a significant impact on disease progression.  

 

In this study, two types of GPCRs were investigated, both of which are probably relevant 

to neurological conditions and consequent pathologies: dopamine receptor D2 (D2R) and 

G protein-coupled receptor 143 (GPR143). While dopamine receptors, especially D2R, 

have been correlated with many neurological and neurodegenerative diseases, the 

precise role of orphan GPR143 is yet to be discovered.  

 

We determined a relevant PPI between GPR143 and dopamine receptors (DR), 

especially D2R and D3R, and showed that GPR143 negatively modulated DR activity in 

response to dopamine. Moreover, we were able to localize GPR143-DR-complexes in 

vesicles of the intracellular vesicles. This effect was not influenced by co-expression of 

wild-type GPR143, which is usually not found in the plasma membrane, or the plasma 

membrane-localized GPR143 variant pmGPR143. We studied the effect of GPR143 on 

DRs via β-arrestin recruitment and visualized the complexes using Fluorescence 

Resonance Energy Transfer (FRET).  

 

Next, we studied PPI homodimerization of the well-known target D2R. D2R homodimers 

have been reported to be involved in the development of schizophrenia and social defeat 

stress. We constructed different setups of D2R homodimers, where the protomers had 

different conformations, such as active (bound to the D2R-agonist bromocriptine), 

inactive, and β-arrestin-bound. After constructing a computational pipeline for 

generating, scoring, and docking GPCR dimers, D2R homodimer models were subjected 

to molecular dynamics simulations. From these simulations, we can conclude that 

transmembrane domains 4 and 5 (TM4 and TM5, respectively) were the most prominent 

at the dimer interface. Furthermore, we identified a subset of key residues that were 

mostly non-polar in TM4 and TM5. Other TMs such as TM2 and TM3 are also relevant 

to certain combinations of D2R-monomers. In some setups, the inactive conformation of 

a protomer leads to a switch from the active to the inactive conformation of its partnered 

receptor. We also observed that the β-arrestin conformation would display the properties 
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of an active receptor, even in the absence of an agonist, when complexed with another 

receptor. We suggest that this behavior reflects a switch to another meta-state upon 

dimerization. The findings of this computational study are consistent with the 

experimental data.  

 

Taken together, this study provides profound insights into GPCR dimerization in the 

context of neurological disorders. We elucidated the architecture of D2R homodimers 

from a computational perspective. Furthermore, we determined the potential role of 

GPR143 in dopaminergic signaling using experimentally determined PPIs. Our results 

on GPCR dimerization hold promise as novel opportunities for future drug development 

for neurodegenerative diseases. 

 

Keywords: Neurodegenerative diseases, G protein-coupled receptors (GPCRs), 

dopamine receptors, D2R, D3R, G protein-coupled receptor 143, Parkinson’s disease, 

protein-protein interactions, dimer interface, homodimers, cross-talk, selectivity, class A, 

class C. 
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CHAPTER 1: CLASS A AND CLASS C DIMERS IN NEURODEGENERATIVE 
DISEASES 
_______________________________________________________________ 

1 
 

 

Chapter 1: Introduction 
 

1.1. Biological Background: Class A and Class C dimers in neurodegenerative 
diseases  

1.1.1. Scope of review 

Neurodegenerative diseases, characterized by progressive neuronal dysfunction, 

toxicity and death [1] are prevalent among the worldwide elderly population [2]. These 

diseases cause irreversible damage to all types of brain functions and it is estimated that 

over 30 million individuals suffer from them worldwide [3,4]. Parkinson’s disease (PD), 

Alzheimer’s disease (AD), Vascular dementia (VaD), Frontotemporal dementia (FTD), 

and Huntington’s disease (HD) are the most prevailing ones [5,6]. Among those, AD and 

PD have an earlier average onset between 50 and 60 years [5,7,8]. 

Impaired cognitive function, memory loss and negative personality are common traits 

associated with people suffering from AD [9–11]. The accumulation of amyloid b (Ab) in 

amyloid plaques and hyperphosphorylated aggregates of the microtubule-associated 

protein tau in neurofibrillary tangles, which slowly progress from the frontal and temporal 

lobes to other areas of the neocortex are the pathological features observed in AD patient 

[9]. 

PD is predominantly characterized by motor impairments such as bradykinesia, rigidity, 

tremor and gait disorder [12]. Also non-motor impairments like cognitive impairment and 

neuropsychiatric symptoms are observed among PD patients [12]. The pathology of PD 

has been well-studied over the years. The loss of dopaminergic neurons in the substantia 

nigra is the major feature observed in PD patients, but also the deposition of Lewy bodies 

and abnormal aggregates of the a-synuclein protein in several brain regions, such as the 

substantia nigra and temporal cortex, have been described to play a role in PD [12]. 

In contrast to AD, VaD has a variable onset age and is the second most common cause 

of dementia [5]. Disturbance in the frontal executive function and multiple cerebral 

pathologies including arteriosclerosis and various forms of arteritis, aneurysms or vessel 

occlusion are characteristic for VaD [13,14]. Under the age of 65, FTD is known to be 

the mayor responsible for dementia [5,15]. FTD patients display neuropsychiatric 

symptoms and cognitive, motor and behavioral impairments as well as the abnormal 

This chapter is an unmodified version of a review 
article published in Current Neuropharmacology, 
written in co-authorship with Ana B. Caniceiro, 
Anke C. Schiedel and Irina S. Moreira. The 
manuscript was up-to-date at the time of 
submission (March 2022). 
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deposition of the three major proteins tau, transactive response DNA-binding protein 43 

(TDP-43) and fused in sarcoma (FUS) protein in the brain [16]. 

As for PD, HD symptoms can be divided into motor and non-motor symptoms such as 

chorea, bradykinesia, impaired coordination, rigidity, which are motor symptoms, 

whereas depression and slowed cognitive function are described as non-motor 

symptoms [17]. The root-cause of HD is genetic, unlike the other diseases described 

here. HD is caused by a CAG trinucleotide repeat expansion in the Huntingtin (Htt) gene 

[5,17]. In unaffected individuals the CAG repeats vary from 6 to 35 nucleotides, while > 

36 repeats are present in HD patients [18]. The number of repeats inversely correlates 

with the age of onset [5,18]. Consequently, Huntingtin protein (HTT) is deposited in the 

brain, typically in the cerebral cortex, but also in other regions such as striatum, 

hippocampus, and cerebellum [19]. 

Some of the structural and biological determinants of neurodegenerative diseases have 

already been revealed [20–24]. However, the turning point of when a pathological 

condition becomes chronic and leads to neurodegeneration remains elusive for most of 

the diseases. In this review we focus on G protein-coupled receptor (GPCRs) 

heterodimers, which are known to play significant roles in the brain [25–29]. 

 

1.1.2. G protein-coupled receptors 

1.1.2.1. General mode of action 

GPCRs are the mediators of almost all (patho)physiological responses in the human 

body and comprise the largest family of membrane proteins [30,31]. GPCRs share a 

common architecture of seven transmembrane helices (7TM), connected through 3 intra- 

and extracellular loops (ICL1-3, ECL1-3) with an extracellular N-terminus and 

intracellular C-terminus [32,33]. Around 800 genes encode for GPCRs in the human 

genome [34,35] and about 370 of them are non-sensory GPCRs, ~90% of each 

expressed in the brain [1,5]. They play important roles in regulating mood, appetite, 

pain,vision, immune responses, cognition, and synaptic transmissions [5,30,33]. Most of 

these functions are mediated via endocrine and neurological pathways [1,5,29,35]. 

In the brain, neurotransmitters signal via GPCRs to modulate the activity of muscles and 

neurons [36,37]. Dopamine, serotonin, noradrenaline and other derivatives of amino 

acids and amines, but also oligopeptides like oxytocin or endorphins as well as purines 

constitute some of known GPCRs ligands [38–45]. Furthermore, an individual small-

molecule neurotransmitter might target a dozen different GPCRs. Neurons expressing 

certain types of receptors are then formed as entire systems. The five main transmission 

systems are: the noradrenaline, dopamine, histamine, serotonin, and the acetylcholine 

system [46–50]. Strong imbalances or disruption of these systems have been associated 

with many mental disorders and neurological conditions such as depression, 

schizophrenia, attention deficit hyperactivity disorder (ADHD), anxiety, memory loss, 

pain perception as well as dramatic changes in weight and addictions, aside from 

neurodegenerative diseases [51–58]. Some studies were also able to connect 

malfunctioning of the dopaminergic system to multiple sclerosis (MS) [59]. Genetics may 

also play a role [60]. 
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Vertebrate GPCRs were classified through the GRAFS (Glutamate, Rhodophsin, 

Adhesion, Frizzeled/Taste, Smoothened families) system that uses a phylogenetic tree 

of approximately 800 human GPCR sequences to assign the receptors to a specific 

family[61–64]. Another system, the A-F system, classifies GPCRs by their amino acid 

sequences and functional similarities (e.g. fingerprints of the characteristic 7TM 

domains) [64–66]. Here, GPCRs are categorized into six classes: Class A—rhodopsin-

like receptors, Class B—secretin family, Class C—metabotropic glutamate receptors, 

Class D—fungal mating pheromone receptors (non-vertebrate receptors), Class E—

cAMP receptors (non-vertebrate receptors, and Class F—frizzled (FZD) and 

smoothened (SMO) receptors [67,68]. The difference between the GRAFS system and 

the A-F system is the further division of class B from the A-F system into the secretin 

and adhesion family in the first system based on preliminary findings that these two 

families evolved distinct from each other [64]. 

From these, the classes A and C receptor families comprise the relevant members 

involved in neurodegenerative diseases and neurological pathologies. These receptors 

also show a higher amount of relevant data regarding alternative signalling pathways 

through the formation of GPCR dimers. 

1.1.2.2. Dimerization 

For a long time it was believed that the functional entity of GPCRs was monomeric: an 

extracellular signal, such as the binding of a ligand, would lead to conformational 

rearrangements within the protein, so that the signal was further transmitted 

intracellularly via heterotrimeric G proteins, arrestin proteins and different downstream 

signalling cascades [69,70]. This concept was then extended by findings that the 

receptors can also function as homo- and/or heterodimers or even higher-order 

oligomers with relevant biological value [71–74]. It was also reported that GPCRs can 

also form heterodimers with ionotropic receptors and receptor tyrosine kinases and 

henceforth, modulate their function [75]. In addition, adaptor proteins were described to 

interact with receptor protomers, modulating their interactions [75]. Consequently, GPCR 

signalling is not only determined by conformational changes induced by ligand-binding, 

but also by interaction with other proteins [76], which diversifies and fine-tunes their 

signalling, rendering it highly dynamic nature [76–79]. 

For instance, it was reported that the physiological consequences of GPCR-dimerization 

results in the modulation of downstream signalling, trafficking, and regulation as well as 

negative and positive cooperativity on ligand-binding [71,79,80]. Furthermore, allosteric 

dimerization between a monomer and another GPCR can influence ligand recognition 

by modulation of the orthosteric and allosteric binding sites. This can influence G protein-

coupling and selectivity and may cause switching from G protein- to β-arrestin-coupling 

[79,81]. Additionally, dimerization may lead to the appearance of novel allosteric sites 

that can again alter different pharmacological properties [81]. However, the structural 

basis behind such interactions is not fully understood yet. 

While class C GPCRs function as dimers only, there is also evidence for the existence 

of homodimers, heterodimers, and/or higher-order oligomers in other GPCR classes 

through a variety of reports describing biophysical studies: single-molecule fluorescence-

based approaches, X-ray crystallography, nuclear magnetic resonance (NMR) 
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spectroscopy, and cryogenic electron microscopy (cryo-EM) - as well as computational 

studies [82–88]. Furthermore, the knowledge about GPCR-dimers being involved in 

pathological conditions increased in the last years [71]. Such an impact has been 

reported for asthma, cardiac failure, preeclampsia, schizophrenia and PD [71]. Several 

studies have shown that GPCR heterodimers elicit a significant role in various diseases 

at different stages, by regulating the pathological condition towards its progression, or 

modulating selective downstream signalling cascades [71]. It was already hypothesized 

that learning and memory occurs at a molecular level by the reorganization of homo- and 

heterodimers in the postsynaptic membrane [75]. According to the authors Borroto-

Escuela and Fuxe, disbalances of homo- and heterodimers are linked to diseases and 

targeting heterodimers represents a novel strategy for the treatment of brain disorders 

[75,89]. 

The understanding of the pharmacological and functional properties of GPCR classes A 

and C dimers can be crucial for the treatment of mental disorders and neurological 

conditions, due to evidence suggesting that these macromolecular structures may play 

an important role. Additionally, the large number of GPCRs and their ability to form 

different complexes, suggests the existence of a high number of possible GPCR 

heterodimers in the CNS. This also indicates that heterodimers constitute a unique 

signalling in such that different neurons with different heterodimers may respond 

differently to the same ligand [90]. Here, we review the latest advances in obtaining and 

understanding GPCR dimers (classes A and C) structure and function and, 

consequently, their role in neurodegenerative diseases. Listing of these complexes can 

be found on Table 1 (found at the end of chapter 1.1.8). Until now, 56 dimers were 

identified as expressed in the brain. Out of these, 48 were from class A-class A dimers, 

3 from class C-class C dimers and 5 were class A-class C dimers (Figure 1). 
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In the next sections, we will describe brain-relevant class A GPCRs and known 

heterodimers followed by class C. A few examples for interclass heterodimers, 

comprising of class A and class C as well as receptor mosaics will be also listed. 

 

1.1.3. Class A G protein-coupled receptors 

1.1.3.1. Class A receptors in the brain 

The family of class A GPCRs, also referred to as rhodopsin receptors, is a very large 

and diverse group of receptors. They mediate signalling processes in all kinds of 

physiological actions such as cell communication, the senses of sight, smell and taste, 

sensory perception, chemotaxis and neurotransmission [70,91]. In those processes, 

there is involvement of a wide array of different ligands including light, peptides, lipids, 

proteins and small molecules such as biogenic amines, nucleotides and ions [70,92]. 

The activation mechanism of class A GPCRs is the prime example for studying how 

monomeric GPCRs transduce extracellular signals into intracellular ones. All members 

of class A GPCRs share a sequence identity of more than 20% in their TM domains, so 

they are expected to have evolved from a common ancestor [93]. Hence, the growing 

number of structure-function studies and the increase in resolved crystal structures, 

suggests that there are common structural and functional motifs responsible for the 

activation of this family of GPCRs [70,94,95]. In order to make the localization of such 

structural and functional motifs easy to compare between the different GPCR families, 

all GPCR residues are usually numbered according to the Ballesteros & Weinstein 

nomenclature [96]. Hereby, the first digit identifies the TM helix and the second digit 

Figure 1. Overview of neurodegenerative-relevant GPCR heterodimers of classes A and C. 
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identifies the position of the residues in relation to the most conserved residue in the TM 

helix which is assigned the index number 50 (numbers decrease towards the N-terminus 

and increase towards the C-terminus) [70,96]. As already summarized by Moreira [70] 

and Zhou et al. [97] the most important motifs are: (i) the interaction of the cytoplasmic 

“ionic lock” on TM3 with the consensus “(D/E)R(Y/M)” (3.49-3.51) with D/E (6.30) on 

TM6, which is disrupted when the receptor is activated [98–107]; (ii) the hydrophobic 

arginine cage around the conserved arginine (R3.50) of the DRY motif, which restrains 

its conformation in inactive state of the receptor consisting of  two hydrophobic amino 

acids (such as L, V, I or M) on TM3 and TM6 (3.46, 6.37) [108–110]; (iii) the NPxxYxF 

motif on TM7,responsible for interaction of a tyrosine (7.53) on TM7 with the 

phenylalanine (7.60) on HX8 together with the side chain and backbone of an arginine 

on TM2 (2.40) via a water molecule [101,111–122]; (iv) the Rotamer Toggle Switch, a 

coordinated change upon ligand coupling of aromatic residues in TM6 around a very 

conserved tryptophan (6.48) that leads to disruption of the ionic lock [109,114,123,124]; 

(v) the CWxP motif, the cluster around the conserved tryptophan on TM6, which is part 

of the Rotamer Toggle Switch and also undergoes a conformational rearrangement upon 

activation from pointing towards TM7 in the inactive state to pointing towards TM5 in the 

active state [112,119–127]; (vi) the PIF motif [96,101,128,129], and (vii) the Na+-pocket 

[113,119,127,130–136]. It is well established that the outward movement of TM6 upon 

ligand binding is another common feature of class A GPCR activation. However at the 

residue level, the changes that triggers such a movement can be individual for each 

receptor subfamily as it requires a global rearrangement of residue contacts and water-

mediated interactions [97,107,137,138]. 

 

5-Hydroxytryptamine receptors 

Serotonin, also called 5-hydroxytryptamine (5-HT), is an important neurotransmitter 

responsible for anxiety, aggressive behaviour, stress, blood pressure regulation, 

peristaltic movements, heart rate, and the coagulation system [139–141][142] This family 

comprises many members: 5-HT1AR, 5-HT1BR, 5-HT1DR, 5-HT1eR, 5-HT1FR, 5-HT2AR, 5-

HT2BR, 5-HT2CR, 5-HT4R, 5-HT5AR, 5-HT5bR, 5-HT6R, 5-HT7R [143]. Many of them, such 

as 5-HT1AR, 5-HT1DR, 5-HT1ER are drug targets of numerous disorders [144]. Currently, 

alterations in the serotoninergic neurotransmission and disturbances in the level of 5-HT 

have been described to be associated with migraine, epilepsy, PD, MS, amyotrophic 

lateral sclerosis (ALS), ADHD and autism spectrum disorder (ASD) [139,140,145–149]. 

Especially for migraine, disturbances in the serotoninergic system are the hallmark of 

this disorder, which affects 11% of adults worldwide [139]. Chronically low 5-HT 

disposition due to malfunction of its biosynthesis leads to the development of migraine 

[139]. 

 

Adenosine receptors 

Adenosine receptors (AR) are another family of class A GPCRs that are activated by 

their endogenous ligand, adenosine [151]. The four members A1R, A2AR, A2BR, A3R have 

been considered potential targets for several disorders such as PD, schizophrenia, 
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analgesia, ischemia and cancer [151,152]. Some studies also reported effects of 

adenosine on neuronal protection and neuronal viability as well as in inflammatory 

processes [153]. Combined effects may lead to considerations for ARs and possible 

roles in Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease, PD 

and AD and multiple sclerosis, as well as the brain damage associated with stroke 

[152,153]. 

Adrenoceptors 

The noradrenergic system in the brain has the global function of neuronal modulation, 

controlling vigilance, attention, the sleep-wake cycle and to some extent also in learning 

and memory processes [154–157]. In addition, depression, anxiety and sensory 

information processing, such as pain or touch, mediated through the sympathetic 

nervous system, are processes regulated by noradrenaline and the neurohormone 

epinephrine through the noradrenergic system [154,156–158]. All these ligands bind to 

the nine members of the adrenoceptor family, all expressed in the brain: α1AAR, α1BAR, 

α1DAR, α2AAR, α2BAR, α2CAR, β1-AR, β2-AR and the  β3-AR [71,158,159]. The 

adrenoceptors are further classified into three subgroups: the α1 group which comprise 

α1AAR, α1BAR and α1DAR since they couple to Gq; the α2 group containing α2AAR, α2BAR 

and α2CAR, in which all couple to Gi and the β group which consists of the β1-AR, β2-AR 

and the  β3-AR, all able to couple to Gs. However, β2-AR and β3-AR also couple to Gi 

[160]. Disruption in the noradrenergic system was reported to be connected to a number 

of neurological diseases such as AD, epilepsy, ADHS, PD, depression, schizophrenia, 

and posttraumatic stress disorder [154]. 

Cannabinoid receptors 

The two cannabinoid receptors CB1R and CB2R together with their endogenous ligands, 

anandamide, 2-arachidonoylglycerol and other endocannabinoids, were discovered in 

the late 80s and resulted in a major effort in understanding the mechanisms and 

physiological roles of the endocannabinoid system (ECS) [143,150]. The ECS regulates 

a variety of physiological processes such as appetite, mood, memory and pain sensation 

[151]. This complex system is also believed to play a neuroprotective role during 

traumatic brain injury, and may be part of a natural compensatory repair mechanism, 

relevant also during neurodegeneration [152–155]. The modulation of this new neuronal 

network has been proposed to target many neurological conditions including epilepsy, 

cognitive deficits and neurodegenerative diseases [152,156,157]. While CB1R is mainly 

expressed in the brain, CB2R can be found in diverse parts of the immune system and 

partially in the brain [158–160]. Interestingly, CB1R is a promiscuous protein, able to 

couple to different G proteins, activate signalling pathways mediated by β-arrestins and 

signal from intracellular compartments, adding another level of complexity to this system 

[150,161,162]. Therefore, CB1R has an impact in brain disorders including basal ganglia 

disorders such as AD, MS and HD [157,163]. 

The expression pattern of CB2R contrasting to CB1R is more defined and increased in 

microglia and macrophages of the central nervous system (CNS) [160,164]. The CB2R 

is mainly associated with inflammation, and due to its selective localization, it is a 

promising target for AD and other basal ganglia disorders [157,165–167]. 
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Cholecystokinin receptors 

Cholecystokinin (CCK) is a gastrin-like peptide found in the brain and the gastrointestinal 

tract [168]. CCK triggers the signalling cascade by activating two GPCRs, 

CCK1R/CCKAR and CCK2R/CCKBR, also found in similar regions of the human body 

[143,169]. The CCK2R has been associated with the neurobiology of anxiety and panic 

attacks since the 90s [170]. The CCK1R is mainly known as physiologic mediator of 

pancreatic enzyme secretion and smooth muscle contraction of the gallbladder and 

stomach [171].  Yet, at minor levels, CCK1R is also present in different regions of the 

brain, where it mediates the anorectic action of CCK [172–174]. Besides this function, 

CCK1R also facilitates dopamine neurotransmission, regulates hypothalamic 

neurotransmitters, increases the excitability of the cortex and regulates endocrine 

secretions [171]. For instance, there is accumulating evidence that about 70% of PD 

patients have experienced diverse non-motor symptoms, most commonly 

gastrointestinal problems, before the onset of motor dysfunctions [175,176]. Such 

findings suggest that neuropeptides derived from the gastrointestinal tract may be 

related to the onset of PD. This is further supported by the fact that CCK and several 

other neuropeptides are expressed in dopaminergic neurons of the substantia nigra, and 

galanin or opioid neuropeptides are also released from the hypothalamic neurons 

[175,177,178]. In PD patients or experimental models, significant changes in brain 

neuropeptides have already been observed [175]. 

Dopamine receptors 

The dopamine receptor family consists of five receptors (DRD1-DRD5) [179] which are 

divided into two subclasses (D1-like and D2-like) based on their coupling to G proteins. 

DRD1 and DRD5 couple to GS,olf and belong to the D1-like class, while DRD2, DRD3 and 

DRD4 couple to Gi/o and belong to the D2-like class [179–182]. Additionally, for DRD2 

two splicing variants exist, DRD2long and the 29 amino acids shorter DRD2short [179]. While 

DRD2long is mostly located in the intracellular part, DRD2short is primarily found at the 

plasma membrane [183]. DRs are associated with many pathological conditions and 

mental disorders, most prominently PD, schizophrenia, Tourette’s syndrome, 

depression, bipolar disorder, hypertension, gastroparesis and nausea, as well as others 

[179,182,183]. 

Galanin receptors 

The neuropeptide galanin (GAL) is widely found in the human brain and gastrointestinal 

tract and couples to three GPCRs: GAL1R, GAL2R and GAL3R [184]. In the past, several 

physiological effects were attributed to galanin signalling including smooth muscle 

contraction, inhibition of insulin release and stimulation of growth hormone release [185–

187]. However, it was revealed that the galanin-like immunoreactivity in the CNS and 

peripheral nervous system (PNS) leads to the regulation of numerous biological 

processes such as learning and memory, neurogenesis and neuroprotection, seizure 

activity, pain threshold, neurotransmitter and hormone release and many more [187–

198]. Consequently, the role of galanin in mood disorders has attracted a lot of interest 

[187,191,199]. Neurological disorders have also been linked to galanin signalling such 

as AD, epilepsy, depression, eating disorders and addiction [194,200]. 
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Histamine receptors 

The histamine receptor (HR) family comprises four members, H1R, H2R, H3R, H4R [201]. 

Histamine itself is known to be involved in local immune responses as well as regulating 

functions in the gastrointestinal tract [202]. For a long time it has been considered as a 

local hormone, as it lacks the endocrine glands to secrete it, but it has now been 

recognized as neurotransmitter [202,203]. The HRs exert diverse functions in the brain. 

Whereas H1R promotes wakefulness, nociception, endocrine homeostasis and appetite, 

the role of H2R has not been established yet, since most known ligands are unable to 

cross the blood-brain barrier in sufficient concentrations [62,201,204–207]. The H3R is 

described as an “autoreceptor” with constitutive activity and decreases the release of 

histamine, acetylcholine, serotonin and norepinephrine [201,208]. Lastly, H4R is not 

located in the brain, but rather in basophils and in the bone marrow [201]. Especially H1R 

and H3R orchestrate disparate behaviours and homoeostatic functions [207]. Recent 

evidence suggested that aberrant neuronal histamine signalling may also be a key factor 

in degenerative diseases such as PD, AD, sleep disturbance and MS, as well as in 

addictive behaviours [207,209–211]. Moreover, the concentration of metabolites of 

histamine was shown to be increased in the cerebrospinal fluid of schizophrenia patients 

compared to normal patients [212,213]. In addition, a decrease in the binding sites of  

H1R was observed in schizophrenia patients [212,213]. 

Opioid receptors 

The oldest and most potent drugs used for the treatment of moderate-severe acute and 

chronic pain are opioids [214,215]. Actions of opioids are mediated through opioid 

receptors (ORs), widely distributed across the skin, digestive tract, spinal cord and in the 

brain [69,216–218]. There are four major classes of receptors: delta receptor (DOR), 

kappa receptor (KOR), mu receptor (MOR) and the nociceptin (NOP) receptor 

[217,219,220]. ORs are activated by their endogenous opioid ligands that are released 

by neurons such as dynorphins, enkephalins, endorphins, endomorphins and nociceptin, 

but also by exogenous opiate drugs [221–227]. Since the ORs are all coupled to Gi 

proteins, their activation characteristically inhibits neuronal firing as well as 

neurotransmitter and hormone release [221,228–231]. The opioid system plays an 

important role in hedonic homeostasis, mood and well-being, including a large number 

of sensory, motivational, emotional and cognitive functions and addictive behaviours 

[221,232]. The ORs are also known to regulate peripheral functions including endocrine, 

gastrointestinal, immune and respiratory functions and responses to stress [232]. Due to 

its main role in the control of pain, the opioid system is also associated with multiple 

adaptations in the nervous, endocrine and immune system which can lead to the 

development of pathologic, chronic pain [228,233,234]. In addition, ORs may play a 

pivotal role in the development of AD, since ORs are known to regulate the 

neurotransmitters acetylcholine, γ-Aminobutyric acid (GABA), glutamate, norepinephrine 

and serotonin that have been implicated in the pathogenesis of AD [221]. 

Somatostatin receptors 

https://paperpile.com/c/SDT9Uy/7oAW
https://paperpile.com/c/SDT9Uy/OADJ
https://paperpile.com/c/SDT9Uy/OADJ+oEFZ
https://paperpile.com/c/SDT9Uy/7oAW+nO7E+pn9A+yCBX+ZVdm+0WH3
https://paperpile.com/c/SDT9Uy/7oAW+ECLl
https://paperpile.com/c/SDT9Uy/7oAW
https://paperpile.com/c/SDT9Uy/ZVdm
https://paperpile.com/c/SDT9Uy/ZVdm+bGdx+7rEY+WDK4
https://paperpile.com/c/SDT9Uy/5fxq+By85
https://paperpile.com/c/SDT9Uy/5fxq+By85
https://paperpile.com/c/SDT9Uy/YQ18+OXxH
https://paperpile.com/c/SDT9Uy/E1Pd+CP4g+fCoT+yoFg
https://paperpile.com/c/SDT9Uy/fCoT+vsDp+rza1
https://en.wikipedia.org/wiki/Dynorphin
https://en.wikipedia.org/wiki/Enkephalin
https://en.wikipedia.org/wiki/Endorphin
https://en.wikipedia.org/wiki/Endomorphin
https://en.wikipedia.org/wiki/Nociceptin
https://paperpile.com/c/SDT9Uy/ibEi+IHxy+rAhR+4Gou+FHIT+lHld+x8kF
https://paperpile.com/c/SDT9Uy/ibEi+XIIW+V4L3+apfh+FNIT
https://paperpile.com/c/SDT9Uy/ibEi+HhUS
https://paperpile.com/c/SDT9Uy/HhUS
https://paperpile.com/c/SDT9Uy/XIIW+oOy5+LaSF
https://paperpile.com/c/SDT9Uy/ibEi


CHAPTER 1: CLASS A AND CLASS C DIMERS IN NEURODEGENERATIVE 
DISEASES 
_______________________________________________________________ 

10 
 

The peptide somatostatin (SST) consists of two bioactive forms, SST-14 and SST-28, 

produced in neuroendocrine cells in the periphery and in the brain that modulate cell 

secretion and proliferation as well as neurotransmission [235–238]. Five GPCRs, SST1R, 

SST2R, SST3R, SST4R and SST5R mediate the actions of SST which are variably 

expressed in the brain [236,238,239]. SST2R, SST3R, SST4R and SST5R undergo rapid 

endocytosis, induced by the binding of agonists, while SST1R does not internalize but is 

rather up-regulated when continuously exposed to agonists [240,241]. The types of 

active SST isoforms, SST-14 and SST-28 vary in their distribution: SST-14 is more 

predominant in the CNS, whereas SST-28 is more abundant in peripheral organs 

[242,243]. Both bind to the SSTR in nanomolar affinity. However, SST5R has a higher 

affinity for SST-28 over SST-14, while for the other SSTRs the contrary is true [256]. In 

the cortex, SST is a protein marker of inhibitory interneurons, as SST is expressed mainly 

in a subset of GABAergic neurons [242]. SST and SSTRs contribute to cortical 

processing and in the striatum SST-positive interneurons are able to co-release 

glutamate and GABA [242]. This co-release generates excitation-inhibition sequences in 

postsynaptic neurons, which is interpreted as the glutamatergic response and persists 

for a shorter time than a usual inhibitory response would [242,244,245]. The involvement 

of SSTR in neurodegenerative and neuropsychiatric disorders such as AD, OD, HD, 

bipolar disorder, schizophrenia and major depressive disorder (MDD) has been linked to 

a decrease in the amount of expressed SST [242]. 

Vasopressin and oxytocin receptors 

Arginine-vasopressin, also known as antidiuretic hormone (ADH), and oxytocin (OT) are 

hormones derived from the neurohypophysis. These are similar nonapeptides that differ 

only at residues 3 and 8 [246]. ADH is essential for cardiovascular homeostasis (water 

body balance), key for shock states [246,247]. OT is also known as the “quick birth” 

hormone, because it facilitates reproduction in vertebrates at several levels, due to its 

uterine-contracting properties. This hormone is the one that responds to sexual activity 

and during labour where oxytocin controls the highly potent uterotonic activity, induces 

milk production  and it additionally induces the  first onset of maternal behaviour [246–

250]. The actions of ADH are mediated by tissue specific GPCRs and known as V1 

vascular (V1AR), V2 renal (V2R) and V3 pituitary (V1BR, previously known as V3R) [251–

253]. The V1AR has been shown to be ubiquitously expressed in the brain [246], and 

therefore plays a role in many physiological functions including cell contraction and 

proliferation, platelet aggregation, liver glycogenolysis, vascular smooth muscle, 

aldosterone secretion by the adrenals and subserve neurotransmitter-like actions of ADH 

in the CNS [254–258]. Species-typical social behaviours (e.g., affiliative behaviour) in 

rodents and humans may be associated with the pattern of V1AR expression in the brain 

[259–262]. The V1BR mediates the release of ADH and beta-endorphin from the anterior 

pituitary through the mobilization of intracellular calcium by phosphatidylinositol 

hydrolysis [246,263]. However, the receptor was also found in other organs including the 

adrenals, the brain and the pancreas [264–266]. In 2002, SSR149415, a V1BR-

antagonist, was developed with antidepressant- and anxiolytic-like properties [246,267]. 

Since then, it has been hypothesized that V1BR may play an important role in major 

depressive disorder (MDD) and chronic stress. In addition it has been shown that a small 

subset of MDD patients display an impaired hypothalamus-pituitary-adrenal (HPA) axis 

function, which was also present in patients with treatment-resistant depression or 
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severe depression [268–277]. This led to the assumption that V1BR-antagonists would 

improve the treatments of such conditions, and several selective and potent antagonists 

have been developed and their potential as antidepressants has been verified in animal 

models [277]. 

The main endocrine function of ADH, the facilitation of water reabsorption in the kidney 

through inhibition of the diuresis, is mediated by the V2R [246]. The deployment of ADH 

analogous (dDADH, desmopressin) as selective V2R-agonists has been successful for 

the treatment of central diabetes insipidus, patients suffering from hemophilia A and Von 

Willebrand’s disease, the most frequent congenital bleeding disorders [278–282]. In 

summary, the key function of the V2R is to regulate fluid homeostasis [283]. 

The last member of this family, the oxytocin receptor (OTR), is activated by the 

neurotransmitter oxytocin (OT) which regulates emotional, parental, affiliative and sexual 

behavioural functions, including mother-infant bonding [246,284]. The OTR is expressed 

in the brain and body, especially in reproductive organs [284]. Also, the number of 

receptors varies in different periods of life such as birth and postpartum [284,285]. In the 

brain, OT induces the suppression of GABAergic neurons [286,287]. It has also been 

reported that OT has an anti-inflammatory effect, observable in wound healing and pain 

relief [288,289]. Besides this function, anti-depressant effects have been described for 

OT [290,291]. OT might also have anti-anxiety effects mediated by the HPA axis [292]. 

Recently, increased methylation levels in the OTR have been linked to obsessive-

compulsive disorder (OCD) [293]. Another study demonstrated that substantial loss of 

hypothalamic oxytocin-producing neurons occurs in amyotrophic lateral sclerosis [294]. 

Trace Amine-associated Receptors 

Trace amine-associated receptors (TAARs) were discovered in 2001 [295,296] and are 

activated by a diverse group of aminergic compounds. In mammalian, the nine TAAR 

members are divided into two sub-families: TAA1-4R and TAA5-9R [297,298]. In humans, 

there are six functional TAAR genes (TAA1R, TAA2R, TAA5R, TAA6R, TAA8R and 

TAA9R) and three pseudogenes (TAA3R, TAA4R and TAA7R) [299]. TAA1R is the most 

well-characterized member and a potential target for psychiatric disorders, such as 

schizophrenia [299] and drug abuse [300], as well as for metabolic disorders [301]. The 

endogenous trace amines p-tyramine, β-phenylethylamine, tryptamine and octopamine 

bind to TAARs [302–304], essentially to TAA1R and TAA4R, and they induce effects in 

CNS. For example, phenylethylamine acts as a postsynaptic neuromodulator of 

dopamine and noradrenaline neurotransmission [305]. Tryptamine potentiates neural 

responses to dopamine and causes an increased response to norepinephrine in cortical 

neurons [306]. Octopamine increases depressive and excitatory responses to 

norepinephrine in the rat cerebral cortex [307]. 3-Iodothyronamine may have a pro-

learning anti-amnesia effect [306]. With the exception of TAA1R, all TAARs have been 

detected in olfactory sensory neurons [321]. TAA1R is coupled to Gs protein [295,302], 

recruits the β-arrestin-2 cascade [308,309] and increases the opening of inwardly 

rectifying K+-channels that have the characteristics of G protein-coupled inwardly-

rectifying potassium channels (GirK) channels [310,311]. All the other TAARs within the 

olfactory epithelium are coupled to Golf to regulate cyclic adenosine monophosphate 

(cAMP) accumulation [312]. TAA5R is also coupled to Gs cascade [313], Gq/11 cascade 

and G12/13 dependent mitogen-activated protein (MAP) kinase pathways [314]. In 
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contrast, TAA8R is Gi-coupled [315]. The signal transduction events of TAA6R and TAA9R 

are still unknown. 

Neurotensin receptors 

The central and peripheral effects of tridecapeptide neurotensin (NT) are mediated 

through interaction with three identified neurotensin receptors: NTS1, NTS2 and NTS3 

(Sortilin 1) [316]. Whereas NTS1 and NTS2 receptors have seven transmembrane helices 

and are G protein-coupled, the Sortilin 1 receptor is a single transmembrane domain 

receptor [316]. NTS1R are found in the brain and intestine of rats and humans [317]. In 

the brain, the NTS1R is mainly found in in neurons of the diagonal band of Broca, medial 

septal nucleus, nucleus basalis magnocellularis, suprachiasmatic nucleus, 

supramammillary area, substantia nigra and ventral tegmental area, as well as in the 

small dorsal root ganglion neurons of the spinal cord [318,319]. NTS2R are mostly 

expressed in brain [320–322] and mainly localized in the olfactory system, the cerebral 

and cerebellar cortices, the hippocampal formation and selective hypothalamic nuclei of 

the mouse [323] and rat [324] brain. NTS1R are Gq-coupled [316,325,326], but some 

other studies demonstrated that NTS1R are also Gi/o and Gs-coupled [316,327–329]. In 

contrast, signal transduction of NTS2R receptors is still unclear. The role of neurotensin 

and its receptors is related with analgesic effects, which could be an alternative to opioids 

[330–332]. 

Angiotensin receptors 

The actions for angiotensin II, which is an important peptide hormone in the renin–

angiotensin–aldosterone system (RAAS), are mediated through angiotensin receptors 

AT1R and AT2R [333–335]. The RAAS system involves different peptides and proteins 

with opposing effects in order to function [336]. On the one hand vasoconstrictive, pro-

inflammatory and pro-proliferative are mediated by angiotensin II, AT1R and angiotensin-

converting enzyme (ACE), while on the other hand cardio-protective effects are mediated 

by Ang(1-7), AT2R and ACE2 [336]. However, angiotensin II displays ubiquitous actions 

by activation of different pathways by the binding to AT1R and AT2R in order to initiate 

the RAAS system or to further get cleaved into shorter peptides such as Ang IV, Ang(1-

7) and almandine [336–339]. Besides, angiotensin II, angiotensin I and angiotensin III 

are endogenous ligands of ATRs [335]. The AT1R is clinically relevant as it is targeted 

by a large class of sartans, AT1R blockers [335]. The AT1R is mainly expressed in the 

brain, heart, blood vessels, lungs and kidneys [340,341] and known to bind to Gq/11, Gi/o 

proteins, G12 and G13 proteins as well as tyrosine kinases [336,342]. Functions involving 

AT1R are cardiac hypertrophy, vasoconstriction, aldosterone synthesis and secretion, 

increased vasopressin secretion, decreased renal blood flow and renin inhibition, central 

and peripheral sympathetic nervous system activity and osmocontrol [343]. In the brain, 

AT1R antagonists were shown to reduce fear memory recall in mice [344,345]. 

AT2R was shown in in vitro and in vivo studies to counterbalance the effect of AT1R, 

however this is still speculative [334,335,338,346–348]. AT2R are highly expressed in 

fetus and neonate and induce fetal tissue development, and so, although controversially, 

it is assumed they are  involved in vascular growth, [349,350]. However, some studies 

could show that AT2R was upregulated after vascular injury, cardiac failure, myocardial 

infarction or wound healing, suggesting that this possibly reflects the re-activation of this 
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fetal genetic programme [334,338,351,352]. The expression of AT2R in humans is 

therefore developmentally regulated. In adults AT2R is expressed in lower density in the 

adrenal medulla, brain and reproductive tissues [349,350]. AT2R expression in the 

cerebellum has been associated with inhibition of cell growth differentiation, neuronal 

regeneration and ventricular hypertrophy [353]. Also, it was suggested that AT2R-

mediated effects in other tissues require the local conversion of angiotensin II to II [354–

356]. The downstream signalling transduction of the AT2R is poorly understood. It is 

known that the receptors possesses important structural motifs which are typical for class 

A GPCR activation; however several modalities can result in AT2R activation [357–375]. 

The existence of AT3R and AT4R was also proven, but only AT4R remained to be relevant 

[376,377]. AT4R was shown to be the mammalian selective receptor for angiotensin IV 

(Ang3.8) as well as a receptor for insulin-regulated membrane aminopeptidase [378–

381]. It has been proposed that the AT4R may be relevant in the regulation of the 

extracellular matrix of the CNS and modulation of oxytocin release [378,382–386]. 

Growth Hormone Secretagogue Receptors 

The Growth Hormone Secretagogue Receptor (GHS-R) is a GPCR that binds growth 

hormone secretagogues (GHSs), like ghrelin. GHS-R is Gq and Gs-coupled and the 

binding of ghrelin or synthetic peptidyl and non-peptidyl ghrelin mimetic agents leads to 

increased intracellular calcium content [387,388]. GHS-R and its ligand ghrelin have 

special influence in food intake, gut motility, sleep, memory, behaviour, lipid and glucose 

metabolism, and cardiovascular effects [389]. GHS-R is expressed by growth hormone-

releasing hormone (GHRH) neurons in the pituitary [390], but also in hypothalamus, 

pancreas, adipose tissue, immune cells and cardiovascular system [391,392]. GHS-R 

has two isoforms, GHS-R1a and GHS-R1b, but only GHSR1a transduces ghrelin signalling 

by binding the active form of ghrelin [393]. GHS-R1a agonist and antagonist reveal to 

have benefits in cancer, cachexia [394–396], aging related cognitive decline [397,398], 

obesity [399] and diabetes [400–402]. 

Melatonin receptors 

The melatonin receptors MT1R and MT2R are expressed in several areas in the human 

body such as brain, retina, cardiovascular system, organs or skin are activated by their 

endogenous ligand melatonin [403–407]. An additional MT3R has been identified in birds 

and amphibians [407]. MT3R was later identified in humans as a cytoplasmic enzyme, 

involved in the detoxification by reduction of quinones and also binds with low affinity to 

melatonin [408,409]. Melatonin is a hormone mainly produced in a circadian rhythm in 

the pineal gland, with low levels during day and high levels at night [405,410–412]. This 

circadian secretion was found to be regulated by the suprachiasmatic nucleus (SCN) in 

a negative feedback-loop by melatonin binding to MT1R and MT2R, which then 

decreases SCN firing [413]. Melatonin is mainly known as a sleep promoter and regulator 

of circadian rhythms. Still, more effects such as antioxidants, reproduction-stimulation, 

analgesic and suppression of tumors have been attributed to it [407,414]. 

It has been identified that the sleep promoting effects for melatonin are mainly regulated 

by MT1R [415]. MT1R was also shown to be involved in adaptation to the light/dark-circle, 

phase-shifting activity and prolactin secretion [407,415]. MT1R and also MT2R exert their 
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signals by binding to Gi/o proteins [416]. However, they are also able to bind to other G 

proteins such as Gq and to soluble guanylate cyclases [405,415–417]. In contrast to 

MT1R, the MT2R was shown to regulate a variety of functions in the body. It is known 

that melatonin inhibits through MT2R the Ca2+-dependent release of dopamine in the 

retina [418] as well as light-dependent phagocytosis and photopigment disc shedding 

[419]. MT2R were also shown to be expressed in a higher amount on differentiating 

osteoblasts [420]. 

In many studies melatonin improved the treatment of PD, AD, alcoholism, depression or 

traumatic brain injuries [403,421,422]. For instance, addictive behaviours have been 

associated with an increased MTR-related cAMP concentration in the mesolimbic 

dopaminergic system [407]. Mostly, melatonin is used as a treatment for different types 

of insomnia, jet lag or shift work due to its sleep-promoting function [413]. MT1R and 

MT2R were also found to exist as homo- and heterodimers in vivo and in vitro [406,423–

425]. In mice rod photoreceptors, in vivo melatonin mediated the light sensitivity by 

formation of heterodimers, which led to heterodimer-specific activation of phospholipase 

C and protein kinase C [425]. This effect was abolished in MT1R knockout (KO) mice, 

MT2R KO mice and in mice overexpressing a non-functional mutant of MT2R, that also 

interfered with the formation of functional heterodimers [425]. 

1.1.3.2. Orphan class A receptors 

The orphan receptor GPR139, was first discovered in 2002 [426], further curated in full-

length in  2005 and classified into the class A GPCR family, right next to its closest 

relative, GPR142 [427–429]. As GPR139 is still considered an orphan receptor, a precise 

function remains to be determined. However, some reports suggest a role for GPR139 

in locomotor activity, metabolism, alcohol addiction and hyperalgesia and 

phenylketonuria [430]. Lastly, genetic analysis has linked GPR139 to depression, 

schizophrenia and ADHD [430–435]. 

1.1.3.3. Class A receptor heterodimers 

While class C GPCRs are obligate dimers, for a long time it was not clear if class A 

GPCR were also able to dimerize, and what was the importance of such macromolecular 

structures. However, as GPCRs exhibit a high tendency to aggregate, some authors 

raised the question: What are the criteria for a minimal functional unit? [436,437]. Indeed, 

for example, it was found for the 5-HT4R that two monomers were associated with one 

G protein [438]. In this case, one 5-HT4R was enough to simulate the G protein, but 

positive receptor crosstalk was observed upon co-activation, leading to the conclusion 

that 5-HT4R would rather function as homodimers [437]. This was also the case for the 

DRD2. In a study by Han et al. 2009 [439] it was shown that the maximal activity of the 

DRD2 was achieved upon agonist-binding to one monomer but was modulated by the 

constitutive activity of the second monomer indicating asymmetric functional interaction 

[437]. Hence, the minimal functional unit of class A receptors, which can either be a 

monomer or a homodimer, appears to be receptor dependent [72]. In addition to these 

findings, heterodimers have been intensively studied using cotransfected cells in 

biochemical, biophysical and pharmacological experiments with wildtype or often also 

using mutant receptors [440–442]. 

https://paperpile.com/c/SDT9Uy/IQKG
https://paperpile.com/c/SDT9Uy/9d8T+WcDV+IQKG+Pljw
https://paperpile.com/c/SDT9Uy/fA7e
https://paperpile.com/c/SDT9Uy/eYsR
https://paperpile.com/c/SDT9Uy/XnXy
https://paperpile.com/c/SDT9Uy/fiBy+kE0S+Dqqi
https://paperpile.com/c/SDT9Uy/nNlo
https://paperpile.com/c/SDT9Uy/LL4R
https://paperpile.com/c/SDT9Uy/u964+HnIK+QyhM+MHNI
https://paperpile.com/c/SDT9Uy/u964+HnIK+QyhM+MHNI
https://paperpile.com/c/SDT9Uy/MHNI
https://paperpile.com/c/SDT9Uy/MHNI
https://paperpile.com/c/SDT9Uy/ZtKz
https://paperpile.com/c/SDT9Uy/soLf+e0nn+JhXV
https://paperpile.com/c/SDT9Uy/q2kn
https://paperpile.com/c/SDT9Uy/q2kn+ZRYU+Hs1j+N0QY+wNv7+3Q2c
https://paperpile.com/c/SDT9Uy/Rx4j+yjB9
https://paperpile.com/c/SDT9Uy/aqTn
https://paperpile.com/c/SDT9Uy/yjB9
https://paperpile.com/c/SDT9Uy/0IoC
https://paperpile.com/c/SDT9Uy/yjB9
https://paperpile.com/c/SDT9Uy/huRZ
https://paperpile.com/c/SDT9Uy/vISu+S2vm+Xf1D


CHAPTER 1: CLASS A AND CLASS C DIMERS IN NEURODEGENERATIVE 
DISEASES 
_______________________________________________________________ 

15 
 

Since the family of class A GPCRs comprises many receptor subfamilies such as 

dopamine, adenosine or serotonin receptors that mediate diverse functions in the human 

body transduced by only one endogenous ligand, it becomes patent that 

heterodimerization is indeed also required for this GPCR class [443,444]. Many 

prominent examples have been intensively studied, such as the A1R–A2AR complex, able 

to couple to Gi at low concentrations of adenosine and to Gs at high concentrations [445–

447]. Another example is the DRD1–DRD2, which couples to Gq, whereas as monomers 

the DRD1 and DRD2 couple to Gs or Gi, respectively [448–451]. Lastly, the finding that 

opioid receptors are also able to form heterodimers resolved many questions about 

atypical behaviour of targeting drugs, which apparently were selective for such 

heterodimers [452–459]. 

However, the idea of dimerization/oligomerization of GPCRs for neurotransmitters was 

already formulated by Fuxe et al. in the 80s [444,460–462]. Since then and until 2014 

the number of protein-protein interactions between GPCRs was found to be 537 

according to Borroto-Escuela et al., indicating that class A GPCR dimers are an 

important and relevant discovery [463]. 

Dopamine - Dopamine receptor heterodimers 

The five members of the dopamine receptor family are known to form dimers among 

their family and with other class A GPCRs [464–467]. Besides homodimers DRD2–DRD2 

[77,468], DRD3–DRD3 [469], DRD4–DRD4 [467], also many heterodimer combinations 

were identified such as DRD5–DRD2 [470], DRD1–DRD2 [465], DRD1–DRD3 [464] or DRD2–

DRD3 [471]. More combinations were reviewed in Schiedel et al. [79], displaying the 

dopamine signalling heterogeneity [466,472]. 

DRD1 and DRD2 receptors are mainly expressed in the dorsal (caudate-putamen) and 

ventral striatum (nucleus accumbens, NAc) areas [473].  DRD1–DRD2 was discovered 

using co-immunoprecipitation (Co-IP) and confocal Förster-Resonance-Energy-Transfer 

(FRET) experiments performed in brain tissues [451,465,474] and later by protein 

complementation studies [475]. More recent studies demonstrated the existence of the 

heterodimer in the dorsal striatum and NAc of  mammalian species, including mouse, 

rat, nonhuman primate, and human, with a higher extent in the ventral than in the dorsal 

striatum [476–478]. In 2020, a study showed that the heterodimer is also found in cortical 

brain regions, such as piriform, medial prefrontal, and orbitofrontal, and claustrum, 

amygdala, and lateral habenula  [479]. Many studies using signalling assays were able 

to show that the heterodimer formation might induce a change in the pattern of G protein-

coupling (see Figure 2A) [448,474,478,480]. Monomeric DRD1 couples to Gs and DRD2 

to Gi/o, but DRD1–DRD2 was found to be associated with Gq/11 and activate the 

phospholipase C cascade in the striatum [451]. However, in order to conduct such 

actions and subsequent intracellular Ca2+ release, the specific DRD1 agonist SKF83959 

had to bind to both receptors: it acted as full agonist at DRD1 and high-affinity partial 

agonist for a pertussis toxin-resistant at DRD2 [451]. Furthermore, the intracellular 

calcium increase was associated with an increase in striatal calcium/calmodulin kinase 

IIa (CaMKIIa) phosphorylation [481]. The DRD1–DRD2 was reported to be upregulated 

in individuals suffering from depression [482,483], while it was diminished in 

schizophrenia patients (Figure 2B) [484]. In striatal neurons, the DRD1–DRD2 

heterodimer activity resulted in rapid activation of cytosolic and nuclear CaMKII with an 

https://paperpile.com/c/SDT9Uy/0IVq+dw66
https://paperpile.com/c/SDT9Uy/z1oy+MRj4+s4Jw
https://paperpile.com/c/SDT9Uy/z1oy+MRj4+s4Jw
https://paperpile.com/c/SDT9Uy/IQHN+Q932+o8nC+6FwB
https://paperpile.com/c/SDT9Uy/ElA2+ILVk+JjEh+K2bH+u6Rm+vZXL+0cHS+Je9m
https://paperpile.com/c/SDT9Uy/dw66+u0iC+ox3P+19Rw
https://paperpile.com/c/SDT9Uy/XPih
https://paperpile.com/c/SDT9Uy/GBe3+eGnO+6BRl+nPzE
https://paperpile.com/c/SDT9Uy/pAFc+wzDz
https://paperpile.com/c/SDT9Uy/QWOn
https://paperpile.com/c/SDT9Uy/nPzE
https://paperpile.com/c/SDT9Uy/qIsw
https://paperpile.com/c/SDT9Uy/eGnO
https://paperpile.com/c/SDT9Uy/GBe3
https://paperpile.com/c/SDT9Uy/0Trr
https://paperpile.com/c/SDT9Uy/4dWX
https://paperpile.com/c/SDT9Uy/6BRl+CUG2
https://paperpile.com/c/SDT9Uy/1DZM
https://paperpile.com/c/SDT9Uy/6FwB+eGnO+DQjw
https://paperpile.com/c/SDT9Uy/hHrU
https://paperpile.com/c/SDT9Uy/KpaX+KbR5+Q85G
https://paperpile.com/c/SDT9Uy/sLBY
https://paperpile.com/c/SDT9Uy/IQHN+DQjw+Q85G+sWeF
https://paperpile.com/c/SDT9Uy/6FwB
https://paperpile.com/c/SDT9Uy/6FwB
https://paperpile.com/c/SDT9Uy/iGg7
https://paperpile.com/c/SDT9Uy/thuA+V3EM
https://paperpile.com/c/SDT9Uy/Gmai


CHAPTER 1: CLASS A AND CLASS C DIMERS IN NEURODEGENERATIVE 
DISEASES 
_______________________________________________________________ 

16 
 

increase in brain-derived neurotrophic factor (BDNF) expression, which was the first 

evidence by then, linking dopamine receptors and endogenous GPCR heterodimers to 

neuronal maturation [449]. 

Regarding the potential interface of the DRD1–DRD2, a comprehensive study by O’Dowd 

et al. [485], showed that it involves  a pair of adjacent glutamic acids in the C-terminus 

of the DRD1 and a pair of adjacent arginine residues in ICL3 of the DRD2, oppositely 

charged residues, able to form stable electrostatic interactions [448],498]. When 

SKF83959, which apparently is an agonist to the DRD1–DRD2, was administered to rats, 

activation of the heterodimer generated aversion in conditioned place preference 

studies, while disruption of it was rather rewarding [448]. Schizophrenia is known to be 

associated with hyperdopaminergia in subcortical dopamine projections [448]. 

Compared to globus pallidus tissue from normal subjects, the number of agonist-

detected high-affinity state DRD1–DRD2 was found to be increased in globus pallidus 

tissue of schizophrenia patients [448]. According to George et al., these findings possibly 

reflect the hyperdopaminergic state associated with schizophrenia, similarly to what was 

observed upon amphetamine administration [448,476]. 

A recent study revealed that genetic variations of DRD2 (Val96Ala, Pro310Ser, and 

Ser311Cys) affect the heterodimerization between DRD1 and DRD2 [465]. In addition, 

the  Ser311Cys variant seems to be a risk factor in schizophrenia [499] and shows a 

better response to the schizophrenia’ treatment [486]. Once this DRD2 variant forms less 

heterodimeric interactions with DRD1 than DRD2 native, targeting the DRD1-DRD2 

heterodimer under excessive dopaminergic firing will result in antipsychotic actions, with 

minimal side effects [465]. Another recent study showed that DRD1-DRD2 heterodimers 

play a role in cocaine dependence [487] and repeated cocaine administration of rats 

increase DRD1-DRD2 heterodimer expression [478]. The cocaine-induced biochemical 

changes, such as accumulation of ΔFosB, phosphorylation of extracellular signal-

regulated kinases (ERK), and phosphorylation of Thr34-DARPP-32 in NAc are blocked 

by heterodimer activation [487]. Similar to what happens with cocaine, heterodimer 

expression is also increased after chronic administration of Δ-tetrahydrocannabinol 

(THC) in rhesus monkeys [478]. Consequently, the DRD1-DRD2 heterodimer would also 

be a good pharmacological target in cannabis use disorder (CUD) and the THC-induced 

changes in the dopamine signalling are also implicated in behavioural despair disorders 

[478,479,488,489]. 
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Another dopamine receptor heterodimer, DRD1–DRD3 was also found to be expressed 

in the ventromedial striatum by FRET and bioluminescence resonance energy transfer 

Figure 2. Possible modulations upon GPCR dimer formation. (A) Heterodimerization 
can induce a change of G protein-coupling. (B) Different expression levels of 
heterodimers are associated with distinct diseases. (C) Activation of one receptor can 
promote signalling of the other receptor via positive crosstalk. (D) Activation of both 
receptors can lead to b-arrestin recruitment and internalization via negative crosstalk. 
This can lead to intracellular signalling via mitogen-activated protein kinase (MAPK). 
(E) Dimerization can be necessary for plasma membrane localization, e.g. by masking 
an endoplasmic retention signal, which will prevent the transport to the plasma 
membrane as monomers. 
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(BRET) techniques [464,490–493]. One of the first studies about DRD1–DRD3 

heterodimer’s mechanism, reported in 2008 that DRD3 activation amplified DRD1-

mediated adenylate cyclase (AC) signalling in the DRD1–DRD3 heterodimer (Figure 2C) 

[493]. However, in 2014, Ferré and co-workers reported that co-activation of both 

receptors had antagonistic effects at the level of the AC, due to DRD3-mediated inhibition 

[490]. Therefore, co-activation of both receptors led to the canonical negative interaction 

at the level of AC signalling, to the recruitment of β-arrestin-1 and selective activation of 

MAPK signalling, which was mediated by a G protein-independent mechanism (Figure 

2D) [490,491]. Furthermore, this positive crosstalk through β-arrestin-1 recruitment and 

MAPK signalling, induced by DRD3 and DRD1 agonists, respectively, was counteracted 

by DRD1 and DRD3 antagonists. Moreover, the DRD1-DRD3 heterodimer was implicated 

in L-DOPA-induced dyskinesia [490,494–496]. Some studies reported that DRD1 super-

sensitivity during L-Dopa induced dyskinesia was accompanied by DRD3 up-regulation 

[494–496], and mice with DRD3 knockout displayed reduced L-Dopa-induced dyskinesia 

[496,497]. In vitro studies performed by Cortés and colleagues using transfected human 

embryonic kidney 293 (HEK293) cells [490] and in vivo studies conducted by Bishop and 

colleagues (using hemi-parkinsonian rats) [495] demonstrated that DRD1–DRD3 

heterodimers influenced the cooperative effect of both receptors in L-Dopa-induced 

dyskinesia. The co-activation with the DRD1 and DRD3 agonists SKF38393 and 

PD128907, respectively, generated an exacerbated dyskinetic effect, and an increase of 

downstream signalling of ERK phosphorylation, which is specific to dyskinesia as 

general locomotor effects or pERK were not observed in non-responders [495]. 

In 2001, evidence based on Co-IP studies in cultured cells pointed to DRD2 and DRD3 

heterodimerization [471]. DRD2 and DRD3 were found to colocalize on dopaminergic 

neurons as autoreceptors and at postsynaptic loci to dopaminergic projections in the 

globus pallidus, nucleus accumbens and in the frontal cortex on pyramidal cells and/or 

GABAergic interneurons [498,499]. In a study by Maggio and colleagues, [500], it was 

shown that some antiparkinsonian agents (pramipexole and ropinirole) with a preference 

for DRD3, displayed amplified potency at DRD2-DRD3 heterodimers. In COS-7 cells 

cotransfected with DRD2 and DRD3, together with a chimeric AC AC-V/VI, these same 

agents were able to suppress forskolin (FK)-stimulated cAMP production with higher 

potencies as compared to cells only transfected with DRD2 or DRD3 receptors and 

without exposure to the ligands [500,501]. Furthermore, the binding of this heterodimer 

may be responsible for the antipsychotic actions of DRD2 partial agonists and DRD3 

agonists, such as aripiprazole and N-desmethylclozapine [500,502]. The 

characterization of the pharmacological properties of the DRD2-DRD3 heterodimer by 

Novi and co-workers [502] showed that the agonist  quinpirole  potently  suppresses  FK-

induced  cAMP accumulation in recombinant cell lines transfected with DRD2 receptors 

and AC-V/VI, while the partial agonists aripiprazole, S33592, bifeprunox, NDMC, and 

preclamol less strongly reduce FK-stimulated cAMP accumulation. On the other hand, 

all these compounds failed to modify FK-induced cAMP accumulation in cells transfected 

with DRD3 and the chimeric DRD3-insensitive AC-V/VI [502]. However, in cells 

transfected with DRD2 and an excess of DRD3, together with AC-V/VI, quinpirole 

diminished FK-induced cAMP accumulation with a potency and efficacy comparable to 

cells transfected solely with DRD2, and the partial agonists were inactive [502]. These 

results suggest that an excess of DRD3 receptors can modify the functional status of 
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DRD2 receptors, since partial agonists of DRD2 are transformed into antagonists at the 

DRD2-DRD3 heterodimers [500,503]. Thus, this could justify the low incidence of 

extrapyramidal side effects of the partial agonists, as the extent of the DRD2-DRD3 

heterodimer formation is low in the dorsal striatum [500,503]. Knowledge about the 

structure and action mechanism of this heterodimer provides insights into cellular 

processes associated with diseases such as schizophrenia, PD, and ADHD. 

DRD4 is also expressed in the brain, but its expression is lower than other types of 

dopamine receptors [504,505]. However, human DRD4 has polymorphic variants [506] 

that are more abundant: DRD4.2, DRD4.4 and DRD4.7 [463]. DRD2 and DRD4 receptors 

partially co-distribute in the dorsal striatum and appear to play a fundamental role in 

complex behaviours and motor function. In 2011, based on BRET and in situ proximity 

ligation assay (PLA) in cotransfected HEK293T cells showed the coupling between DRD2 

and DRD4 [463]. Specifically, they showed that the long form of human DRD2 (DRD2long) 

was able to interact and form heterodimers with the three human DRD4 isoforms, with 

the DRD4.7 variant being the least effective [463]. Upon co-activation by the DRD4 agonist 

PD168077, DRD2 agonist-induced ERK phosphorylation was enhanced in cells co-

expressing DRD2 with DRD4.2 and DRD4.4, but not in cells co-expressing DRD2long with 

DRD4.7 [463]. The DRD4.7 variant showed reduced ability to form a heterodimer with 

DRD2long, as no additive effect was observed after combined treatment with DRD2 and 

DRD4 agonists (quinerolane and PD, respectively) on MAPK activity when these 

receptors were expressed together [463]. Furthermore, the short form of DRD2 

(DRD2short) was reported to form heterodimer complexes with DRD4.2 and DRD4.4, while 

the DRD4.7 failed to interact with DRD2short in BRET studies, using cotransfected 

HEK293T cells [463]. So, the biochemical crosstalk between DRD2short and cotransfected 

DRD4 variants potentiates DRD4-mediated MAPK activation and ERK phosphorylation 

by DRD2 and not the inverse [507]. This biochemical crosstalk was not observed in 

striatal slices taken from gene knock-in mice carrying the human DRD4.7, confirming that 

DRD2 and DRD4.7 do not form heterodimers [507]. Solely DRD2-DRD4.2 and DRD2-DRD4.4 

heterodimers exist in the striatum and they may be a potential target for antiparkinsonian 

drugs [508]. 

Finally, O’Dowd and colleagues also demonstrated the existence of the DRD5-DRD2 

heterodimer in HEK293T cells co-expressing both receptors, through FRET analyses 

[480]. The authors reported that co-activation of both receptors of the DRD5-DRD2 

heterodimer resulted in the generation of a calcium signal [480]. DRD5 was able to 

activate a strong calcium signal when it was expressed alone. These calcium signals 

resulting from activation of DRD5 alone or within a heterodimer, require Gq/11 and 

phospholipase C (PLC) activity, and the presence of extracellular calcium [480]. 

However, DRD5 and DRD2 heterodimerization negatively modified the functional unit of 

calcium signalling, attenuating the ability of the DRD5 receptor to trigger a calcium signal. 

DRD5 and DRD2 receptors have been shown to cooperate functionally to facilitate motor 

activity and striatal long-term depression [509]. 

Dopamine - Adenosine receptor heterodimers 

Besides neuronal dopaminergic transmission regulation through different heterodimers 

compositions, dopamine can also be regulated by adenosine. According to George et 
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al., two mechanisms of adenosine receptor-mediated neuromodulation of dopamine 

exist in cells: (i) adenosine counteracts cAMP levels, which are modulated by dopamine; 

(ii) adenosine-dopamine receptor dimers exert a different signal then when they are 

activated as monomers [448]. 

Co-expression of adenosine and dopamine receptors in different basal ganglia pathways 

and pathways that control motor behaviour, underlined that different heterodimers exist 

in neuronal subpopulations [448]. In 2000, Gines and co-workers showed the existence 

of A1R-DRD1 heterodimer, using Co-IP in cotransfected fibroblast cells and cortical 

neurons in culture [510]. The expression of the A1R-DRD1 heterodimer in the brain was 

demonstrated by Franco and co-workers, using FRET and BRET techniques [511]. A1R 

and DRD1 were found to colocalize in soma and dendritic regions of cortical neurons 

[512,513]. One of the first evidence found was that A1R agonists can reduce oral 

dyskinesias induced by levodopa in rabbits [514]. Adenosine agonists inhibited the motor 

responses of dopamine in basal ganglia and vice-versa, suggesting their functional 

antagonist action [515]. While DRD1 is predominantly coupled to Gs protein, which in 

turns stimulates AC, A1R is coupled to Gi/o protein, which has inhibitory effects [514]. A1R 

antagonist 1,3-dipropyl-8-cyclopentylxanthine lead to an increase in the DRD1-induced 

cAMP response, which can be related to their regulation of G proteins having offsetting 

activities [516]. Thus, co-activation of A1R-DRD1 heterodimer induces a decrease of the 

affinity of DRD1 for agonist and, consequently, decrease of the DRD1-induced cAMP 

accumulation [510,516]. Kalivas and co-workers demonstrated that A1R-DRD1 

heterodimer can also be involved in the pathophysiology of addiction [517]. They 

reported that cocaine, a potent stimulant of the CNS, targets the A1R-DRD1 heterodimer 

in rat nucleus accumbens, inhibiting the physical interaction between A1R and DRD1 

[517]. This evidence emphases the therapeutic relevance of this heterodimer for cocaine 

addiction. Moreover, a recent study demonstrated the existence of A1R-DRD1 

heterodimers in the spinal motoneuron, using PLA experiments, and that adenosine 

tonically inhibited DRD1-mediated signalling in the spinal motoneuron [518]. Given the 

importance of controlling motoneuron excitability, the A1R-DRD1 heterodimer may also 

be a potential target for the treatment of spinal cord injury, motor aging-associated 

disorders, and restless legs syndrome. 

A2AR-DRD2 heterodimer was among the first heterodimers reported, involving two 

different neurotransmitters [448,519,520]. The existence of A2AR-DRD2 was proven by 

Co-IP, BRET and FRET analyses [521,522]. Later on, PLA studies located the A2AR-

DRD2 in the mice striatum [523,524]. A functional association between A2AR and DRD2 

was also reported to exhibit a negative allosteric cooperativity in which the activation of 

the A2AR by CGS21680 (A2AR agonist) leads to a decrease of DRD2 of dopamine binding 

affinity [519,525–527]. Furthermore, the activation of A2AR was shown to decrease 

coupling of DRD2 to its Gi/o protein and stimulation of DRD2 was shown to decrease the 

coupling of A2AR to its Gs protein [520,528]. The effect of the A2AR-DRD2 heterodimer on 

ligand binding of the monomers and G protein-coupling was also associated with cross-

desensitization mechanisms, which function via agonist-induced coaggregation and co-

internalization of both receptors [520]. The A2AR-DRD2 is also a promising candidate 

target for the treatment of PD, schizophrenia and addiction [515,521,528,529]. For 

instance, the A2AR-DRD2 has been considered as a potential target to reduce L-DOPA-

induced dyskinesia in PD treatment [71,530]. Behavioural and microdialysis experiments 
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in mouse, rat, dog and human  models suggested a mechanism that involves a co-

expression of A2AR-DRD2 in striatopallidal GABAergic neurons and nucleus accumbens 

[531–534]. Consequently, selective and potent A2AR antagonists are able to reduce 

DRD2-dependent signalling in these areas and enhance therapeutic effects, as it was 

demonstrated in animal models of PD [526,535–537]. 

Indications that DRD3 can heterodimerize with A2AR emerged in 2005, based on confocal 

microscopy and FRET studies using transiently cotransfected HeLa cells [538]. Results 

from confocal microscopy showed that A2AR and DRD3 colocalize in the plasma 

membrane, and results from FRET experiments showed that A2AR and DRD3 receptors 

can form heterodimers in the transiently cotransfected HeLa cells [538]. Also, saturation 

analysis of [3H]dopamine binding in the A2AR-DRD3, a CHO cell line was generated, 

indicating that A2AR agonist CGS-21680 is able to significantly reduce the affinity of the 

high affinity binding state of the DRD3 receptors for dopamine [538]. Moreover, A2A and 

DRD3 receptors seem to interact at the G protein coupling level, since the CGS-21680 

A2AR agonist fully counteracted the dopamine mediated strong inhibition of forskolin-

induced cAMP accumulation. So, when both receptors are co-expressed in the same 

cells, the antagonistic interaction of  A2AR–DRD3 is verified, that is, A2A receptors 

antagonistically modulate both, the affinity and the signalling of DRD3 receptors [538]. 

Since DRD3 is involved in the treatment of schizophrenia, the DRD3–AA2R receptor 

interactions could provide an alternative antischizophrenic treatment. 

Dopamine receptor and other GPCR heterodimers 

Besides the intensive relationship between dopamine and adenosine receptors, DRs 

may also form heterodimers with GPCRs from other families. For instance, H3R is found 

in striatal medium spiny neuron that express post-synaptic DRD1 and obtain 

histaminergic input from hypothalamic asynaptic varicosities [539]. The receptors were 

then shown to form DRD1-H3R heterodimers by BRET and binding assays in transiently 

transfected human embryonic cells [540], Co-IP experiments in rats [541] and PLA 

studies in mice striatum [542]. Upon DRD1 and H3R receptors activation by their 

respective agonists (SKF38393 and (R)-α-methylhistamine (RAMH)), DRD1 and H3R 

lead to the coupling to the Gi/o protein and MAPK cascades, respectively [540]. The 

unique biochemical function of this heterodimer is supported by the fact that, when each 

receptor is activated alone, DRD1 leads to the coupling to the Gs/olf protein, while H3R 

does not signal through the MAPK pathway, and they are unable to induce ERK1/2 

phosphorylation in mice with either receptor knockout [540,541,543]. In addition, DRD1 

and H3R antagonists, such as SCH23390 and thioperamide, can block the distinct 

signalling mediated by the heterodimer [540]. An antagonist of one of the receptor units 

in the DRD1–H3R heterodimer is able to induce conformational changes in the other 

receptor and block specific signals originating in the heterodimer [540]. One of the last 

studies on this heterodimer, performed in rats and mice, reported that cocaine inhibited 

the bidirectional cross antagonism and the inhibitory effect of the DRD1 and H3R 

signalling [542]. McCormick and co-workers reported that σ1R binds DRD1-H3R 

heterodimers in transfected cells and in mouse and rat striatum. Authors also postulated 

that cocaine, a σ1R-agonist, modifies the structure and counteract the biochemical 

properties of the DRD1-H3R heterodimer, such as heterodimer signalling through Gi 

protein, the ability of H3R activation to signal through MAPK, and the ability of H3R 
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ligands to inhibit the effects of DRD1-mediated signalling, including cell death [542]. They 

also reported that blockade of H3R-mediated inhibition of DRD1 function in the σ1R-

DRD1-H3R complexes plays a key role in the effects of cocaine [542]. So, σ1R-DRD1-

H3R may be a new target for the treatment of cocaine abuse. 

Besides the DRD1, also DRD2 was found to form a heterodimer with H3R, which was 

discovered by Ferrada and co-workers in 2008 using BRET in cotransfected HEK293 

cells [544]. Heterodimerization of DRD2 and H3R was also demonstrated in vivo by 

Moreno and co-workers, using Co-IP studies in rat striatal tissues [541]. DRD2 and H3R 

can colocalize in GABAergic striatal efferent neurons and in specific DRD2-expressing 

GABAergic enkephalinergic neurons [545]. The study from Ferrada and co-workers 

reported the existence of behaviourally significant antagonistic postsynaptic interactions 

[546] between H3R and DRD2 receptors in reserpinized mouse model [544]. Whereby 

the stimulation of the H3R significantly decreased the ability of agonists to bind to the 

DRD2, while antagonists were unaffected [544]. Thus, this heterodimer may play a role 

in the function of the GABAergic enkephalinergic neuron [544]. Beyond Parkinson's 

disease, a therapeutic approach based on H3R receptor-mediated negative modulation 

of DRD2 receptor function may emerge and play a role in disorders involving the cortico-

striatal-thalamo-cortical circuits, such as Huntington’s disease, Tourette syndrome, 

obsessive– compulsive disorder, schizophrenia and addiction [544]. 

DRD2 was also found to colocalize with SST5R in transfected HEK293 cells, using FRET 

[547]. The heterodimerization of both receptors was promoted by application of 

antidepressant drugs (desipramine and citalopram) [547]. The physical evidence of 

DRD2-SST5R heterodimer was then proven with PLA studies in the striata of mice and 

striatal neuronal cultures [548]. It was suggested, that the DRD2-SST5R may be a 

potential mediator of antidepressant effects, since the heterodimerization of these 

receptors appeared to occur in native brain tissue and in primary striatal neuronal 

cultures [548]. Furthermore, prolactin is a neurotransmitter regulated by those two 

receptors and its excessive excretion was reported in cases of depression [549]. In 

addition, a study by Szafran-Pilch et al. suggested that the stimulation of DRD2-SST5R 

may enhance the inhibition of this prolactin [548]. Proceeding with the promiscuous 

DRD2, another interaction partner was reported in a BRET study using transfected 

HEK293T cells: NTS1R [550]. Recently, Friedland et. al. reported the existence of DRD2-

NTS1R heteroreceptor complexes in the accumbens core and shell, especially in the 

dorsal striatum, using PLA assays [551]. The NTS1R was shown to negatively modulate 

DRD2 signalling through immediate receptor-receptor crosstalk, that is, based on CRE 

luciferase gene assay, NTS1R activation generates a blockade of the DRD2 induced 

inhibition of the AC-PKA-CREB pathway [552–554]. Also, the NTS1R agonist NT(8-13) 

reduces the Gαq-mediated calcium signal in the DRD2-NTS1R heterodimer compared to 

the NTS1R monomer, which can also be reversed by DRD2 antagonists [551]. The 

heterodimer activation by CS148, a NTS1R agonist and also DRD2 antagonist, increases 

the calcium response, dependable with the effect of the monovalent ligands indicating 

an allosteric DRD2-mediated modulation [551]. This provides the evidential basis of 

functional association of DRD2 and NTS1R in brain areas that closely linked to the 

pathophysiology of schizophrenia [551,555]. 
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Another partner for DRD2 is the TAA1R, a member of class A GPCRs, not yet well 

investigated. The DRD2-TAA1R heterodimer was found in dopaminergic innervated 

areas and provides a mechanism for dopamine neurotransmission modulation via TAA1R 

[556,557]. Different studies could show that TAA1R may affect the DRD2 function and 

firing rate of dopaminergic neurons [310,556,558]. The DRD2- TAA1R heterodimer exerts 

its effect through the cAMP pathway, and haloperidol was found to promote cAMP-

mediated TAA1R signalling [556]. With haloperidol as a known antipsychotic, the DRD2- 

TAA1R may have a role in the treatment of schizophrenia [299]. The DRD2-OTR was 

identified in cotransfected HEK293 cells using PLA [559,560]. Further studies on the 

DRD2-OTR suggested the existence of allosteric reciprocal interactions endowed with 

the ability to enhance signalling of DRD2-OTR. The heterodimer is excreted upon OT 

activation, facilitating DRD2 signalling via allosteric receptor-receptor interactions [560]. 

It was also reported that the dysfunction of the DRD2-OTR in the central amygdala may 

lead to anxiety development [560]. Therefore, restoration of its activity may be a new 

therapeutic approach against anxiety [560]. 

Another DRD2 interaction partner represents the growth hormone secretagogue 

receptors (GHS-R), also known as Ghrelin receptors [561,562]. GHS-R1a is a transcript 

variant of GHS-R and encodes the functional protein, which defines a neuroendocrine 

pathway for growth hormone release [563]. GHS-R signals via Gαq/11 cascade to mobilize 

calcium from intracellular stores [564] and plays a role in the regulation of feeding 

behaviour [565]. Similarly, DRD2 are also known to control physiological functions like 

food consumption [566,567]. Henceforth, it was very likely that a DRD2-GHS-R1a exists, 

which was eventually discovered by Smith and co-workers, using immunofluorescence 

and time-resolved FRET experiments in hypothalamic neurons of rodents [568]. Within 

the DRD2-GHS-R1a, the apo-ghrelin (unliganded) GHS-R1a was reported to modulate 

DRD2 signalling from the normal Gαi/o subunit mediated inhibition of cAMP to Gβγ subunit 

mediated PLC-IP3 cascade [568]. Also, in the absence of ghrelin, the endogenous ligand 

of GHS-R, dopamine and/or DRD2 agonists were able to activate this biased Gβγ subunit 

mediated PLC-IP3 signalling, suggesting that apo-GHS-R1a acts as an allosteric 

modulator on DRD2 [568]. In order to assess if the allosteric interaction between DRD2 

and GHS-R1a could be pharmacologically targeted, the selective GHS-R1a antagonist 

JMV2959 was applied in treated mice with the highly selective neutral GHS-R1a 

antagonist JMV2959 prior to cabergoline treatment. It was shown that cabergoline-

induced anorexia (selective DRD2 agonist) was blocked upon binding to the DRD2-GHS-

R1a [568]. Targeting heterodimers represents a therapeutic advantage for the treatment 

of eating disorders. 

Adenosine - Adenosine receptor heterodimers 

The endogenous purine nucleoside adenosine is obtained by the breakdown of 

adenosine triphosphate (ATP) and consists of a ribose sugar and adenine attached by a 

glycosidic linkage [569]. The importance of ATP and its metabolites is further underlined 

as they are the main energetic molecules in living organisms. The actions of adenosine 

through the four specific ARs are found in every single mammalian cell [569]. The first 

heterodimer consisting of A1R and A2AR was found in 2006 by a study using Co-IP, BRET 

and time-resolved FRET techniques from Ciruela et al. [445]. It was shown that A1R-
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A2AR exists in striatal glutamate neurotransmission at the presynaptic level [445]. 

Interestingly, both monomers are known to couple to different G proteins, A1R couples 

to Gi/o whereas A2AR couples to Gs [570]. Ciruela and co-workers were able to 

demonstrate that depending on the concentration of adenosine, the regulation of 

glutamate release by cortical glutamatergic terminals would be opposite [445,569]. A1R-

A2AR was shown to regulate the GABA uptake through adenosine in astrocytes. Hence, 

it was suggested that A1R-A2AR acts as a sensor of adenosine concentration as 

consequent fine-tuning modulation of striatal glutamatergic neurotransmission, in a 

manner that there is either A1R or A2AR-mediated signalling [569]. Elevated extracellular 

levels of adenosine activate the A2AR protomer in this complex, producing an antagonist 

allosteric receptor-receptor interaction inhibiting A1R protomer signalling. Thus, 

activation of the  A2AR in A1R-A2AR heterodimers produces an increase of glutamate 

release, while the activation of A1R leads to the opposite effect [445,546,571]. Upon G 

protein-coupling to the heterodimer,  the long C-terminus of A2AR is the key region that 

determines the dominant A2AR-mediated signalling [569,572]. A1R-A2AR heterodimers 

may exist in glutamate projections that regulate GABA striatal pallidal neurons, mediating 

motor inhibition. In the case of this heterodimer, A2AR-induced glutamate release should 

neutralize movement inhibition, making it a therapeutic target for neurological diseases 

associated with motor activity [573]. Other studies determined caffeine as a new ligand 

for A1R–A2AR, which when chronically applied, led to strong tolerance to the psychomotor 

effects of caffeine mediated by A1R–A2AR [574]. 

Adenosine receptor and other GPCR heterodimers 

The frequency of ‘spontaneous’ (non-electrically evoked) excitatory postsynaptic 

currents (EPSCs) in layer V pyramidal neurons increases after 5-HT2A receptor 

activation [575] and leads to an increase in late components of EPSCs evoked by 

electrical stimulation [576]. Since A1R and 5-HT2AR receptors are both localized in the 

prefrontal cortex, a study about how A1R receptor modulate 5-HT2A-enhanced 

‘spontaneous’ and electrically evoked excitatory postsynaptic currents in layer V 

pyramidal neurons in the medial prefrontal cortex was done by Aghajanian and co-

workers [577]. They showed that A1R-agonist (N6-cyclopentyladenosine) suppressed the 

frequency of EPSCs generated via 5-HT2A receptor-induced glutamate release in the 

medial prefrontal cortex. As it did not generated large postsynaptic currents, the 

suppression mechanism was thought to be predominantly presynaptic [577]. Also, in 

2009, Marek studied the effects of the A1R receptor agonist N6-cyclohexyladenosine on 

phenethylamine hallucinogen DOI-induced head shakes in order to examine a behaviour 

induced by activation of 5-HT2A receptors in the rat prefrontal cortex [578]. The results 

showed that while N6-cyclopentyladenosine suppressed head shakes, induced by 

activation of 5-HT2A receptors with the DOI, an A1R receptor antagonist (DPCPX) 

enhanced DOI-induced head shakes and blocked the suppressant action of an A1R 

agonist on DOI-induced head shakes [578]. This mechanism of action of A1R agonists 

on the 5-HT2A receptor suggests a novel therapeutic approach for schizophrenia as well 

as psychosis and anxiety disorders [577,578]. 

In 2018, an A2AR-H3R heterodimer was discovered for the first time in recombinant cell 

systems and in rat striatal nerve terminals, based on functional complementation and 
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Co-IP assays in HEK293T cells [579].  A2AR and H3R were found to be co-expressed in 

the cortico-striatal glutamatergic afferents and the GABAergic medium-sized spiny 

neurons that originate from the indirect pathway of the basal ganglia [579]. Therefore, 

both monomers can regulate the striatal GABAergic and glutamatergic transmission. It 

was reported that the co-activation of A2AR and H3R leads to enhancement of A2AR 

signalling and decrease of H3R functionality via their coupled G proteins [579]. As a 

protomer, H3R is coupled to Gi/o proteins and, consequently, inhibits AC activity. When 

RAMH, a H3R agonist, activates the H3R receptor, it leads to a decrease in cAMP 

formation. However, the expression of A2AR leads to an increase of the H3R-mediated 

cAMP formation [579]. In addition, the endogenous ligand histamine cannot signal 

through the heterodimer, unlike the exogenous agonist RAMH, suggesting that RAMH 

can lead to conformational changes in the H3R, allowing heterodimerization. On the other 

hand, the histamine-induced changes may not be sufficient to signal the heterodimer 

[579]. Based on binding studies with striatal membranes and histamine, it was 

demonstrated that H3R activation by histamine resulted in an increase of the binding 

affinity of the A2AR for its agonist CGS-21680, while RAMH resulted in a decrease of the 

binding affinity, indicating that histamine and RAMH lock the H3R in different 

conformational states that affect its interaction with the A2AR [579]. It is possible that the 

H3R-A2AR heterodimer plays a role with key physiological implications. 

Opioid - Opioid receptor heterodimers 

As referred, the most effective analgesics in clinical pain management are opioids such 

as morphine, codeine, hydrocodone, oxycodone, fentanyl, and tramadol [580]. However, 

they are also commonly prescribed and frequently abused [581,582]. Among the 

intricacy of opioid receptor pharmacology, opioid receptor heterodimers represent 

another important layer of signalling complexity and provide an opportunity for the 

development of analgesics with fewer side effects [583]. Dimerization was already 

reported for homodimers MOR-MOR [584] and heterodimers containing only opioid 

receptors such as MOR-DOR [585–587], MOR-KOR [588] and DOR-KOR heterodimer 

[589], were proven to exist both  in vitro and in vivo. OR heterodimers are often 

expressed in limited and specific brain regions and are involved in adverse effects 

induced by chronic opioid therapy, underlining the importance to develop therapeutic 

strategies to target these heterodimers [108,590]. 

Selective agonists and antagonists were developed to target MOR-DOR [591]. Devi and 

Rozenfeld reported that the MOR agonist Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) 

activates Gi/o-mediated signalling in MOR-expressing cells as well as β-arrestin-2-

mediated signalling for changing the dynamics of ERK-mediated signalling in MOR-DOR 

heterodimer-expressing cells [592]. In MOR-DOR expressing cells, using a chimeric G 

protein-mediated calcium fluorescence assay, it was shown that the DOR selective 

agonist SNC80 induces intracellular Ca2+ release [593]. Another example is CYM51010, 

a selective MOR-DOR agonist, able to induce the recruitment of β-arrestin-2 and GTPγS 

binding, which could then be blocked by a MOR-DOR selective antibody (mAb) [594]. 

Here, the DOR was shown to have an antagonistic allosteric influence on MOR activity 

within the heterodimer [590]. The DOR peptide antagonist TIPPΨ was shown to enhance 

the binding of morphine to MOR, Gi/o coupling and inhibition of cAMP levels [587]. 

Furthermore, the MOR-DOR may also have specific intracellular trafficking. According to 
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studies by Milan-Lobo and Whistler, MOR and DOR are only able to dimerize when both 

are present at the plasma membrane [595]. Controversly, Hasbi et al., stated that MOR-

DOR are located in the endoplasmic reticulum, where they recruit the Gaz protein [596]. 

Another study by Décaillot et al. reported that the agonists DAMGO, Deltorphin (Delt) II, 

SNC80 and methadone can induce MOR-DOR endocytosis, but others such as DADPE 

were not able to do so [597]. In the same study, Décaillot and co-workers identified 

RTP4, a Golgi chaperone as an important regulator of MOR-DOR levels at the cell 

surface [597]. This was found to be in concordance with a study by He et al., where the 

application of DOR-selective agonists Delt I, Delt II and SNC80 induced endocytosis and 

further procession of degradation of DOR and MOR, resulting in a reduced MOR surface 

expression in double-transfected HEK293 cells [598]. This effect was also achieved 

when DAMGO, a selective MOR agonist, was applied [598]. The effect was then only 

diminished when an interfering peptide D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2 

(CTOP) or the antagonist naloxone was added [598]. In order to perform a whole-brain 

dual receptor mapping study, RedMOR/ greenDOR double knock-in mice were 

generated. MOR and DOR were colocalized in subcortical neuronal networks, 

responsible for eating actions, sexual behaviours or response to aversive stimuli [599]. 

In 2018, Wang et al. found that the co-expression of MOR and DOR is restricted to small 

populations of spinal cord neurons and yet is rare in the parabrachial, amygdala and 

cortical regions of the brain for pain processing [600]. In another study carried out by 

Gomes et al., they showed, using tail-flick assays in mice, that the CYM51010 ligand for 

the heterodimer MOR-DOR has analgesic activity identical to the one from morphine 

[594]. Also, CYM51010-induced analgesia was abrogated in MOR knockout mice and 

still persisted in morphine-tolerant mice [594]. The evidence of these heterodimers in 

CNS pain circuits suggests that MOR-DOR heterodimers cellular interactions are 

important for the development of novel opioid analgesics. 

The MOR-KOR heterodimer was discovered in 2010 by Chakrabarti and co-workers 

[588]. The results of their study showed that MOR-KOR was more prevalent in the spinal 

cord of proestrus (with high estrogen receptor levels) vs. diestrus females and vs. males 

[588,601]. It was then concluded that dynorphin would serve a potential female-specific 

KOR-ligand within the MOR-KOR. Furthermore, gender- and ovarian steroid-dependent 

recruitment of MOR-KOR was seen as a way to balance the actions of anti-nociceptive 

and pro-nociceptive functions of the dynorphin/KOR opioid system in the spinal cord. 

Lastly, various types of chronic pain states that are significantly more common in women 

than men, could be the result of impaired formation of MOR-KOR and therefore this holds 

promise for the development of a special ligands to target the MOR-KOR [590]. 

Opioid receptor and other GPCR heterodimers 

The main goal of studying OR heterodimers is to understand their existence and 

physiological function under the perspective of pain transmission. Once resolved, potent 

analgesics with fewer side effects could be developed. Studies by Vilardaga et al. and 

Yang et al. showed that a conformational antagonistic crosstalk exists between MOR 

and α2AAR [602,603]. FRET microscopy studies showed that MOR and α2AAR 

communicate via a switch of conformations within the monomers that leads to inhibition 

of one monomer by the other [602]. Morphine binding to MOR within the MOR-α2AAR 
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was reported to induce a conformational change in the norepinephrine-bound α2AAR, 

which then inhibits Gαi signalling and the downstream MAP kinase responses [602]. 

Hence, MOR activation mediates the rapid inactivation of its coupled partner α2AAR. 

Already in the 90s it was reported that combined agonist acting on MOR and α2AAR 

would act synergistically when co-administered into the spinal cord and would have an 

analgesic effect [604]. Furthermore, it was also reported that norepinephrine or clonidine, 

which are both agonists of α2AAR, were able to reduce significantly the release of 

glutamate, substance P and calcitonin gene related peptides from spinal cord synapses 

[605,606]. MOR and α2AAR were both located in the superficial layers of the dorsal horn 

of the spinal cord, and in the rat spinal cord, α2AAR was located on the terminals of 

capsaicin-sensitive, SP-containing primary afferent fibers in immunostaining studies 

[605]. Both receptors were reported to affect the nociceptive system and are particularly 

involved in depression of neurotransmitter release in the spinal cord [607,608]. However, 

the synergy of MOR and α2AAR agonists in the MOR-α2AAR in analgesia remains unclear 

[590]. 

In 2019, Wang and co-workers identified the MOR-GPR139 heterodimer in which the 

orphan GPR139 negatively regulates the opioid receptor function, signalling and 

trafficking [590,609]. By using C. elegans as a model organism, it was shown that 

mammalian MOR was expressed in the nervous system of nematodes (tgMOR), and 

that application of morphine and fentanyl leads to a decrease in locomotion in nematodes 

expressing tgMOR [590,609]. By applying a large-scale genetic screening and whole 

genome sequencing, Wang et al. identified the orphan receptor FRPR-13, the homolog 

of the human GPR139, as negative regulator of MOR in vivo [590,609]. The functional 

relationship between MOR and GPR139 was further investigated in MOR and GPR139 

transfected HEK293 cells, where MOR activation was shown to cause an opening of G 

protein-coupled inwardly rectifying potassium channels (GIRKs). This lead to 

hyperpolarization of membrane potential, which could be inhibited by GPR139 

expression [590,609]. In addition, Zhang et al. were able to show that MOR and GP139 

could be co-immunoprecipitated. They also showed that when GPR139 was highly 

overexpressed, the cell surface expression of MOR was reduced, suggesting that 

GPR139 is able to regulate MOR trafficking to the plasma membrane or internalization 

[590]. Furthermore, GPR139 was found to bind directly to MOR in vitro and promote the 

recruitment of β-arrestin-2 and inhibit GIRK and G protein activation [590]. More 

evidence for MOR-GPR139 was generated in in situ hybridization experiments, where 

MOR and GPR139 are co-expressed in similar brain regions [590]. Zhang et al. also 

provided electrophysiological evidence, where in cultured brain slices GPR139 

deficiency reduced the basal firing rate and increased opioid sensitivity in neurons [590]. 

Lastly Wang et al. investigated the relationship between MOR and GPR139 in in vivo 

animal studies in mice. GPR139 knockout (KO) mice had normal baseline learning, 

nociception, locomotor activities, and motor coordination, but showed sensitivity to 

morphine-induced analgesia and reward effects [590,609]. When JNJ-63533054, an 

GPR139-agonist, was administered, morphine-induced analgesia and rewards was 

inhibited in mice [590,609]. Also, GPR139 KO mice did not show explicit opioid 

withdrawal reactions [590,609]. Hence, GPR139 was identified as a novel anti-opioid 

system in the brain. 
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In 2018, Koshimizu and co-workers identified the MOR-V1BR heterodimer [610]. The 

endogenous ligand of V1BR, ADH (or also AVP) was reported to regulate morphine 

tolerance and sensitivity [590]. Koshimizu et al. revealed in V1BR KO mice, the 

nociceptive thresholds and morphine sensitivity is enhanced. Also, the development of 

analgesic tolerance to morphine was significantly delayed in these mice, when V1BR-

subtype-selective antagonist SSR149415 was administrated [610]. Furthermore, 

application of SSR149415, a selective V1BR-antagonist but not a V1AR-antagonist, into 

the lateral ventricle of the mice also reduced the development of morphine tolerance 

[590,610]. In in situ hybridization experiments, Koshimizu et al. discovered that MOR and 

V1BR colocalized in the rostral ventromedial medulla [590,610]. By using cotransfected 

HEK293 cells, a functional interaction between MOR and V1BR was observed as well as 

in single cells BRET analysis (close proximity of both receptors <10 nm) [590,610]. In 

another experiment, using a radioligand binding assay and cyclic AMP assay, morphine 

binding to MOR was shown to be significantly influenced by MOR-V1BR formation 

[590,610]. Also, ADH-enhanced morphine-induced super activation of the AC triggered 

by the MOR-V1BR, was indicated to be dependent on β-arrestin-2 and ERK 

phosphorylation [590,610].  Koshimizu and co-workers also discovered that a leucine-

rich segment in the C-terminal tail of the V1BR is responsible for binding of β-arrestin-2, 

which when deleted through genome editing, increased morphine analgesia and reduced 

ADH-mediated AC super activation increased [590,610]. Taking all findings together, it 

was suggested that the MOR-V1BR is indeed another mechanism to alter opioid receptor 

function such that morphine-induced analgesia could be potentiated, and morphine 

tolerance could be delayed. 

The formation of a MOR-GAL1R was identified by Moreno et al., in transfected cells and 

in neurons in the rat ventral tegmental area (VTA) [611]. Previous in vivo studies showed 

that behavioural effects of MOR agonists were counteracted by galanin [590]. According 

to Moreno et al. the MOR-GAL1R mediates antagonist interactions between MOR- and 

GAL1R-selective ligands and is a key player in the functioning of dopaminergic neurons 

[611]. In another study by Cai et al. it was discovered that methadone potency for 

stimulating dopamine release and euphoria was reduced through MOR-GAL1R 

heterodimers in the rat VTA [590,612]. Such alterations of opioid receptor functions in 

opioid-induced rewarding were not observed for other opioids such as morphine and 

fentanyl [590,612]. These data suggest that MOR-GAL1R mediates dopaminergic effects 

of opioids and that pharmacological differences between methadone and other opioids 

may provide a way to dissect the euphoric from therapeutic effects of methadone-like 

compounds [590,612]. Consequently, novel methadone-like compounds with reduced 

potency, able to activate MOR-GAL1R may be a possibility to develop safer opioid 

analgesics [590,612]. 

Early studies in 2001, identified MOR and CB1R co-localization in lamina II neurons in 

the spinal cord [613]. Synergistic interactions between the opioid and the cannabinoid 

system in analgesia were already known, as the CB1R is also present in the brain on 

primary sensory neurons in the DRGs, spinal cord, and some brain regions related to 

pain processing [590,614,615]. Rios et al. were able to show MOR-CB1R heterodimers 

in transfected HEK293 cells using biophysical methods, such as BRET [616]. 

Additionally, they demonstrated that co-activation of MOR-CB1R would lead to 
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antagonistic allosteric interactions, which was determined by cross-inhibition of neurite 

outgrowth involving inhibition of the Src-STAT3 pathway [590,616]. In 2016, Manduca et 

al. identified MOR-CB1R heterodimers in rodents nucleus accumbens core (NAcC) and 

studied the importance of MOR-CB1R heterodimers to control social behaviour in 

adolescent rodents [617]. They studied, in particular, the role of the endocannabinoid 2-

arachidonoylglycerol (2-AG) in social play [617]. 2-AG is released in the brain of 

adolescent rats during social play [618] and 2-AG levels are high in the NAc of socially 

stimulated mice [619]. Systemic administration of the JZL184 (a 2-AG hydrolysis 

inhibitor) or morphine (MOR agonist) increased social play behaviour in adolescent rats 

[617]. However, these social play-enhancing effects were blocked by direct infusion of 

SR141716 (CB1R antagonist) and naloxone (MOR antagonist) into the NAcC [617]. 

Neuronal plasticity and socioemotional behaviours could be modulated by MOR-CB1R. 

Already in the 90s it was discovered that the cholecystokinin octapeptide (CCK8) 

antagonises opioid analgesia [620]. Furthermore, using L-365,260, a CCK2R/CCKBR-

selective antagonist, it was shown that CCK-8 inhibited opioid analgesia through CCKBR 

[621]. In 2018, Yang et al. identified the MOR-CCKBR heterodimer, which they believed 

may underlie the CCK8-antagonism of opioid analgesia [590,602]. Co-localization 

studies using double-labelling immunofluorescence staining showed that MOR and 

CCKBR colocalize in neurons in spinal cord dorsal horn and DRGs. Using Co-IP and 

fluorescence lifetime-imaging-microscopy-based fluorescence resonance energy 

transfer (FLIM-FRET) assays, Yang et al. showed heterodimerization of MOR and 

CCKBR in HEK293 cells [590,602]. They also validated that the TM3 of MOR plays a 

key role in the formation of MOR-CCKBR [590,602]. The MOR-CCKBR functions include 

a decrease in MOR affinity for ligands and reduction of agonist-mediated 

phosphorylation of ERK1/2 in transfected HEK293 cells [590,602]. In their study Yang 

and co-workers developed a cell-penetrating interfering peptide by adding the TAT 

sequence (RKKRRQRRR) to the C terminal of the entire TM3 (TM3MOR-TAT), which 

disrupted the MOR-CCKBR [590,602]. In transfected cells TM3MOR-TAT was shown to 

enhance MOR signalling and in rats it prevented CCK8-induced antagonism against 

morphine analgesia, rendering TM3MOR-TAT as a promising target for increasing 

morphine analgesia without applying increasing amounts of morphine [590,602]. 

Suzuki et al. demonstrated that MOR and chemokine receptor CCR5 can also form 

heterodimers in the cell membrane of lymphocytes, using Co-IP and chemical 

crosslinking experiments [622]. In this study, the authors demonstrated that the MOR-

CCR5 heterodimer is functional, since the co-activation of receptors with morphine (MOR 

agonist) and MIP-1beta (CCR5 agonist) suppresses the inhibitory effect of MIP-1beta 

and increases the stimulatory effect of morphine on CCR5 expression [622]. Also in 

2002, based on behavioural test in rats’ PAG (the brain area that is the focus of opioid 

analgesic actions), Szabo et al. found the ability of CCR5 receptors to desensitize MOR 

receptors [623]. They demonstrated that chemokine ligands for CCR5 (CCL5) can 

inactivate the normal neuronal signalling pathway involved in reducing the sensation of 

pain [623].. Thus, activation of MOR-CCR5 increased nociception. 

In 2008, immunohistochemistry experiments by Juhasz et al. demonstrated that MOR 

and DRD1 colocalized in neurons of the cortex and caudate nucleus and in living cells 
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[638]. They showed within the cellular nuclear translocation pathway that MOR-DRD1 

formation resulted in a significantly enhanced surface expression of MOR [624]. Another 

study by Tao et al. by performing Co-IP, BRET and cross-antagonism assays, confirmed 

the existence of MOR-DRD1 [625]. Furthermore, they could show that SCH23390, a DRD1-

selective antagonist, was able to inhibit the agonist-induced activation of MOR and 

downstream signalling in transfected cells and in striatal tissues from wild-type but not 

DRD1 KO mice [625].. Similarly, to what has been described for heterodimers so far, 

antagonizing one monomer within the dimer, also inhibits the signalling of the partnered 

monomer, although the latter was activated by its own ligand [625]. In addition, the MOR-

DRD1 was identified in vivo through biochemical and biophysical assays [625]. Here it 

was shown, that by destruction of the dopaminergic projection from the ventral tegmental 

area to the striatum, dopamine release was abolished, and SCH23390 was still able to 

significantly inhibit agonist-induced MOR behavioural responses in rats [625]. Lastly, Tao 

et al. demonstrated that MOR or DRD1 KO mice were not able to show locomotor 

sensitization to morphine, because they were unable to form MOR-DRD1 [625]. Hence, 

MOR-DRD1 may be involved in the dopamine-independent expression of locomotor 

sensitization to opiates [625]. 

MOR and DRD2 receptors are colocalized in the spinal cords of mice, confirmed by Co-

IP assays [626]. In 2019, Stove and co-workers proved the existence of MOR-DRD2 

heterodimers using HEK293T and HeLa cells, both cotransfected, by Co-IP, BRET, 

FRET and functional complementation of a split luciferase techniques [627]. MOR 

activation by its agonists (DAMGO and fentanyl) resulted in a recruitment of  β-arrestin 

to the receptor and, consequently, caused internalization of the receptor [628,629]. This 

β-arrestin recruitment is associated with the unwanted effects of opioids [630,631]. 

Based on time-lapse imaging technique, the effect of heterodimerization of MOR-

DRD2long on the internalization characteristics of MOR, indicated a decrease in the 

internalization of MOR-YFP (MOR associated with Yellow fluorescent protein) with the 

co-expression of DRD2long, when stimulated upon addition of DAMGO [627]. This 

suggests that the heterodimer may be a potential therapeutic target associated with 

diseases such as addiction. 

Serotonin - serotonin receptor heterodimers 

5-HT1A and 5-HT2A receptors, which have inhibitory actions via Gi/o and excitatory actions 

via Gq/11, respectively, are the two major known 5-HT receptors in the brain [632]. The 

evidence that 5-HT1A and 5-HT2A receptors can form a heterodimer was demonstrated 

by Borroto-Escuela et al. in the dorsal hippocampus and the anterior cingulate cortex 

using in situ PLA assay and BRET saturation assay in cotransfected HEK293T cells 

[633]. Based on a 5-HT1A radioligand binding assay, Borroto-Escuela et al. showed that 

TCB2 (5-HT2A agonist) reduced the binding affinity of the 5-HT1A agonist ipsapirone in 

membranes of the frontal lobe of the cortex [633]. However, this action seems to be 

blocked by ketanserin, a 5-HT2A antagonist. These results suggest that 5-HT1A-5-HT2A 

heterodimers perform inhibitory interactions of the allosteric type, with a dominant effect 

of 5-HT2A over 5-HT1A protomer [633]. In 2018, another study with this heterodimer was 

performed to understand how antipsychotic drugs, such as clozapine, ketamine and 

haloperidol, affect the formation of the heterodimer [634]. Clozapine and ketamine 
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showed an impact on heterodimer formation. Whereas ketamine exhibited high affinity 

only for 5-HT2A, clozapine only had an effect on heterodimers in low dosage [634]. Since 

both receptors are known to be involved in depression [635], this heterodimer may play 

a role in this disease. 

5-HT2A, 5-HT2B and 5-HT2C receptors are both Gq/11-coupled receptors, which mediate 

excitatory neurotransmission [636]. These receptors are co-expressed in GABAergic 

interneurons and in a subpopulation of pyramidal neurons of the prefrontal cortex (PFC) 

[637,638], and in dopaminergic neurons of the ventral tegmental area [639,640]. Using 

Co-IP and BRET techniques, Moutkine and co-workers demonstrated that 5-HT2A-5-HT2B 

and 5-HT2A-5-HT2C heterodimers can be formed, when co-expressed in heterologous 

expression systems [641]. In 5-HT2C-containing heterodimers, ligands bind and activate 

only the 5-HT2C protomer. The same authors also demonstrated that 5-HT2A-5-HT2B and 

5-HT2A-5-HT2C heterodimers exhibit an asymmetry in Gq-protein coupling, and that 

signalling from 5-HT2A and 5-HT2B protomers is blunted, as only the 5-HT2C protomer is 

able to activate the Gq protein [641]. Thus, there is a dominance of 5-HT2C on 5-HT2A and 

5-HT2B receptor binding. Also, this dominant effect was validated in vivo (observed in 

neurons), which resulted in an exogenous expression of an inactive form of the 5-HT2C 

receptor in the locus ceruleus associated with a decreased 5-HT2A-dependent 

noradrenergic transmission [[641]. As such, these heterodimers must be considered for 

depression and addiction conditions. 

Heterodimerization between 5-HT1A and 5-HT7 receptors was demonstrated by 

Ponimaskin and colleagues, using Co-IP and  immunoblotting techniques and FRET 

assays  in cotransfected neuroblastoma  N1E-115  cells [642]. The 5-HT1A receptor is 

Gi/o-coupled, which induces inhibition of AC and decrease of intracellular cAMP 

[643,644], and the 5-HT7 receptor is Gβγ-coupled, which activates K+ channels and MAPK 

Erk2 [643]. 5-HT1A-5-HT7 heterodimerization decreases the 5-HT1A-receptor-mediated 

activation of Gi protein without affecting 5-HT7-receptor-mediated Gs protein activation. 

Also, authors discovered that 5-HT1A–5-HT7 heterodimers reduce the ability of 5-HT1A 

receptors to activate GIRK channels, an effect mediated through the Gβγ subunits of 

inhibitory G proteins [643]. This phenomenon may result from 5-HT7 interacting with and 

directly modulating 5-HT1A. In addition, MAP kinases ERK1/2 phosphorylation is induced 

by 5-HT1A agonists, and this signal is enhanced when 5-HT7 receptors are co-expressed, 

which suggests that heterodimerization favours activation of 5-HT1A-receptor-mediated 

ERK signalling whereas it prevents 5-HT1A-mediated activation of Gi/o-GIRK channel 

activity [643]. The differences in desensitization patterns between pre- and postsynaptic 

5-HT1A receptors can be explained by the differences in relative concentration of 5-HT1A-

5-HT7 heterodimers on presynaptic serotonergic neurons and postsynaptic neurons. 

Besides, regulated and balanced ratio of homo- and heterodimerization on pre- and 

postsynaptic neurons may be involved in both the onset and the response to the 

treatment of neurological conditions, such as depression, anxiety, schizophrenia and 

drug abuse [645,646]. 

Serotonin receptor and other GPCR heterodimers 
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It is well established that the dopaminergic and the serotonin system play an important 

role in neurotransmission, and thus their malfunctioning is suggested to be linked to the 

development of psychiatric disorders such as schizophrenia [634]. Łukasiewicz and co-

workers identified in HEK293 cells the presence of 5-HT1AR-DRD2 heterodimers [647]. 

The heterodimerization was shown to be mainly enhanced by exposure of clozapine but 

also by other antipsychotics such as olanzapine, aripiprazole, and lurasidone [647]. 

Functional assays like as cAMP and IP1 and ERK activation, indicated that the different 

antipsychotics exhibited diverse effects on the 5-HT1AR-DRD2 [661]. For instance, 

Łukasiewicz et al. demonstrated that clozapine and 8-OH-DPAT potentiated 

postsynaptic effects, especially ERK activation [647]. Furthermore, 5-HT1AR activation 

by 8-OH-DPAT along with the DRD2-blockade by clozapine led to a conformal change 

within the heterodimer and consequently change their signalling via Gαq/11-mediated 

activation of ERK1/2 [647]. In 2018, a study by Szlachta et al. investigated the role of 

well-known antipsychotic drugs, clozapine and haloperidol, in the formation of 5-HT1AR-

DRD2 heterodimers in mouse cortex [634]. By using PLA, in in vitro and ex vivo 

experiments co-localization of 5-HT1AR and DRD2 was confirmed [634]. Also, Szlacht 

and co-workers demonstrated that low-dose administration of clozapine increased the 

levels of 5-HT1AR-DRD2, while administration of haloperidol decreased their level in 

mouse cortices [634]. Different studies located the 5-HT1AR-DRD2 in the dorsal and 

ventral striatum using in situ PLA and FRET as well as in cellular models using BRET 

[648–650]. The 5-HT1AR-DRD2 has developed as an important therapeutic target due to 

a well-documented serotonin-dopamine interaction and its relevance to schizophrenia 

[651]. 

A study by Albizu et al., using radioligand-binding and inositol phosphate production 

assays, identified a functional crosstalk between 5-HT2AR and DRD2 in the mouse brain 

and in HEK293 cells [649]. They were able to show that DRD2 activation increases the 

hallucinogenic agonist affinity for 5-HT2AR and decreases the 5-HT2AR induced inositol 

phosphate production [649]. Albizu and co-workers demonstrated that the inhibition of 

MK-801-induced locomotor activity by DRD2 antagonist haloperidol requires the 5-

HT2AR expression [649]. MK-801, a potent and selective non-competitive NMDA receptor 

antagonist also known as dizocilpine, serves as a pharmacological model for 

schizophrenia in mice [652]. It was reported that MK-801 increases the locomotor activity 

of mice, a behaviour that is suppressed by the DR-antagonist haloperidol [653]. In Co-

IP studies Albizu et al. showed that 5-HT2AR and DRD2 are able to interact physically in 

HEK293 cells [649]. Lastly, they suggested that depending on the treatment 

combination, different actions could be achieved by application of DRD2-ligands such as 

quinpirole or butaclamol and 5-HT2AR-ligands such as DOI and ketanserin [649]. DRD2 

expression was shown to increase the efficacy of DOI to activate the 5-HT2AR-induced 

phosphoinositol Gq/11 signalling pathway [649]. Only the hallucinogenic partial agonist 

DOI seemed to promote this effect on 5-HT2AR signalling [649]. 

The 5-HT1AR and GAL1R are both known to couple to Gi/o proteins and transduce their 

signals mainly by inhibitions of the AC, calcium channel activity and neurotransmitter 

release [643,654,655]. In 2010, a study by Borroto-Escuela et al. discovered 5-HT1AR-

GAL1R heterodimers in double-transfected mammalian cells with PLA and FRET 

techniques [654]. The presence of 5-HT1AR-GAL1R, induced either MAPK or AC 
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signalling pathways, indicating a allosteric cross-inhibition mechanism in order to block 

the excessive activation of Gi/o and an exaggerated inhibition of AC or stimulation of 

MAPK activity [654]. By using reporter gene assays, CRE-luciferase and SRE-luciferase 

assays, it was possible for Borroto-Escuela et al. to further assess possible antagonistic 

allosteric receptor-receptor interactions 5-HT1AR-GAL1R [654]. In the brain, previous 

biochemical, cardiovascular and behavioural work has given additional proof for the 

existence of antagonistic 5-HT1AR-GAL1R interactions [656–661]. 

Only recently, in 2019, Chruścicka et al. discovered the existence of 5-HT2AR-OTR 

heterodimers in vitro in living cells using a flow cytometry-based FRET approach and 

confocal microscopy [662]. The 5-HT2AR and OTR were found to be expressed in similar 

brain regions modulating central pathways critical for social and cognition-related 

behaviours [663–666]. Therefore, Chruścicka et al. applied the PLA technique ex vivo in 

order to observe the formation and location of the 5-HT2AR-OTR, which were found in 

limbic regions such as hippocampus, cingulate cortex and nucleus accumbens [662]. 

These were identified as key regions associated with cognition and social-related 

behaviours [662]. Functional crosstalk was observed in 5-HT2AR-OTR using cellular-

based assays, when a reduction in potency and efficacy of oxytocin, carbetocin and 

WAY267464 (synthetic OTR-agonists) was observed on OTR-mediated Gαq signalling 

[662]. Likewise, 5HT-induced activation of 5-HT2AR also revealed attenuation in Gαq-

mediated signalling. According to Chruścicka et al. co-trafficking of 5-HT2AR and OTR 

within the cell was also demonstrated [662]. 

Chruścicka et al. pointed towards the existence of 5-HT2C-OTR heterodimer, based on 

FRET and confocal microscopy in vitro in a heterologous cell expression system and 

further using PLA assays in the rat brain [667]. 5-HT2CR and OTR co-expression resulted 

in an attenuation of OTR-mediated Gq-signalling and significant changes in receptor 

trafficking. This attenuation was specifically caused by 5-HT2CR protomer activation 

[667]. It seems likely that 5-HT2AR-OTR and 5-HT2C-OTR heterodimers can be involved 

in the development of depression and other types of psychiatric diseases involving 

disturbances in social behaviours. 

To date, a functional link between the serotoninergic and melatoninergic system has only 

been sparsely reported. In a study by Prosser et al., functional crosstalk between those 

two systems was reported, revealing that melatonin inhibits the ability of 5-HT to phase 

shift the suprachiasmatic circadian clock [668]. In addition, melatonin is synthetically 

derived from 5-HT, and therefore a close relationship is probable [669]. Furthermore, the 

clinically proven antidepressant ago-melatine, the first non-monoaminergic therapeutic, 

was shown to act as agonist at MT1R and MT2R, which are coupled to Gi proteins, while 

it is a neutral antagonist at the Gq/11-coupled 5-HT2CR system [670,671]. According to 

Racagni, the affinity of agomelatine was reported to be substantially lower at 5-HT2CR 

compared to MT1R and MT2R in vitro, suggesting that it may exert its actions 

“synergistically” [672]. It was also discovered that 5-HT2CR, MT1R and MT2R are 

necessary for expression of the antidepressant actions of agomelatine, which cannot be 

reproduced either by melatonin or by selective 5-HT2CR antagonists alone [669,672]. 

However, Kamal et al. presented evidence that 5-HT2CR and MT2R are able to form a 

heterodimer, by using Co-IP, BRET and pharmacological techniques, in transfected cells 
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and in human cortex and hippocampus [669]. The 5-HT2CR-MT2R was also discovered 

in the mouse brain [673]. The 5-HT2CR-MT2R was reported to be composed of Gi-coupled 

melatonin MT2R and Gq-coupled serotonin 5-HT2CR [669,673]. The activation of 5-

HT2CR-MT2R was shown to amplify the activation of 5-HT-mediated Gq/phospholipase C 

response and trigger melatonin-induced unidirectional transactivation of the 5-HT2CR 

[669,673]. According to Kamal et al., agomelatine (antidepressant) has a distinctive 

profile on 5-HT2CR-MT2R. Whereas melatonin is able to activate both Gi and Gq 

pathways, agomelatine tends to activate the Gi/cAMP pathway and has an allosteric 

antagonistic effect on 5-HT-induced Gq pathway activation [669]. Lastly, a beneficial 

involvement of agomelatine in 5-HT2CR-MT2R heterodimer was suggested for the 

treatment of major depression and generalized anxiety disorder [669]. 

MOR and 5-HT1A receptors are co-expressed in discrete areas of brain, such as, dorsal 

raphe nucleus, periaqueductal grey neuron, dorsal horn of the spinal cord, amygdala and 

primary afferent nociceptive fibers [674–676]. Also, both receptors are coupled to Gi/o 

protein, which induces the inhibition of AC, the opening of K+ channels, the closing of 

Ca2+ channels and the stimulation MAPK ERK1/2 pathways [677]. 5-HT1A-MOR 

heterodimers were detected by Cussac et al. using Co-IP and by BRETmax 

determination in transiently cotransfected COS7, HEK293 or CHO-K1 cells [678]. To 

demonstrate the functional transactivation in GPCR heterodimers, they used receptor-

Gα-protein fusions, consisting in the application of fusion proteins of protomers with a 

subtype of Gα protein, and that it is only activated by protomers if they are not in a free 

form [679]. As a result, by co-expressing the MOR and 5-HT1A-Gαo fusion protein as well 

as MOR and 5-HT1A-Gα15 fusion protein, they demonstrated that both receptors can 

induce transactivation of the Gα protein fused to its partner protomer in membrane 

preparations and in live cells, respectively [678]. In addition, MOR and 5-HT1A receptors 

can co-exert control in the ERK1/2 pathway. However, the MOR receptor-induced 

EKR1/2 phosphorylation was selectively desensitized by prolonged stimulation and 

activation of 5-HT1A receptor with 8-OH-DPAT agonist [678]. This heterodimer could 

have interesting therapeutic influences, since MOR and 5-HT1A are involved in pain 

control. 

Cannabinoid - Cannabinoid receptor heterodimers 

One of the most important inhibitory regulation mechanisms acting in the CNS is the 

cannabinoid system [680,681]. The two cannabinoid receptors, CB1R and CB2R, share 

around 44% sequence similarity [682,683]. Until 2012 it was not clear if cannabinoid 

receptors were able to form heterodimers, despite the fact, that CB1R and CB2R have 

overlapping expression tissues and that they have been shown to regulate similar 

cellular processes [684]. Heteromerization of CB1R and CB2R was then demonstrated in 

a large study by Callén et al. [684]. In this study the receptors were investigated using 

cotransfected cells and in a variety of brain tissues, including pineal gland, nucleus 

accumbens, and globus pallidus and BRET technique and in situ PLA [684]. Another 

study by Sierra and co-workers identified the first CB1R-CB2R heterodimers in 

pallidothalamic projection neurons in the monkey, using PLA [685]. Both, CB1R and 

CB2R are coupled to Gi proteins, which is particular interesting as within the CB1R-CB2R 

heterodimer the CB1R-antagonist AM251 was reported to block the effect of the CB2R-
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agonist JWH133 and vice versa, the CB2R-antagonist AM630 was reported to inhibit the 

effect of the CB1R-agonist ACEA [684,686]. Furthermore, agonist co-activation by ACEA 

and JWH133 of the CB1R-CB2R heterodimer was shown to lead to negative crosstalk in 

Akt phosphorylation and neurite outgrowth [684,686].. Recently, a study by Narvarro et 

al. showed that CB1R-CB2R heterodimers are expressed in LPS/IFN-γ-activated 

microglia [687]. When compared to resting cells, it was visible that CB2R became 

robustly coupled to Gi in activated cells if CB1R-CB2R were also present, suggesting a 

potentiation effect by CB1R-CB2R [687]. In addition, an upregulated expression of CB1R-

CB2R was observed in primary microglia cultures from the hippocampus of mutant β-

amyloid precursor protein (APPSw,Ind) mice, a transgenic AD model [687]. Lastly, Navarro 

and co-workers identified a correlation between the increased expression of CB1R-CB2R 

in the striatum of in 6-hydroxy-dopamine-lesioned rat model for PD and dyskinesias by 

chronic levodopa (L-DOPA) treatment [687]. 

Cannabinoid receptor and other GPCR heterodimers 

The cannabinoid and the dopaminergic system are known to display complex 

interactions within the basal ganglia [688–690]. The CB1R was shown to be co-

expressed with DRD2 in the soma and dendrites of the ventral striatopallidal GABAergic 

neurons [691]. Meschler et al. also reported interactions between CB1R and DRD2 (and 

DRD1) in the rat and monkey striatum [692]. 

CB1R and DRD1 receptors colocalize in the basal ganglia circuitry, sharing the same G 

protein transduction pathway and playing a main role in the control of motor activity in 

both systems [693,694]. In 2011, Tersian and colleagues provided the first evidence for 

a physiological crosstalk between CB1R and DRD1 receptors in the modulation of 

depression-like behaviour, social skills, and fear conditioning [695]. In this study, the 

authors revealed that conditional CB1R knockout mice lacking CB1Rs in neurons 

expressing DRD1 exhibited significantly increased contextual and auditory-cued fear. 

This suggested that a specific reduction of endocannabinoid signalling in neurons that 

express simultaneously dopamine DRD1 is indeed able to affect acute fear adaptation 

[695]. Serrani et al. studied the role of DRD1 receptors in the behavioural responses 

induced by acute and repeated stimulation of cannabinoid CB1R receptors, including the 

development of physical dependence, using female dopamine DRD1 receptor-deficient 

mice and wild-type littermates treated with HU-210 (a synthetic cannabinoid agonist) 

[696]. The results of the study showed that the mutant mice, compared to wild-type 

females, exhibited an enhanced response to the acute motor and hypothermic effects of 

HU-210 [696]. Administration of SR141716A (CB1R antagonist) precipitated a 

cannabinoid withdrawal syndrome in HU-210 tolerant female mice. Furthermore, the 

severity of the cannabinoid withdrawal syndrome was potentiated in female mice with 

DRD1 deficiency [696]. Therefore, there is involvement in DRD1 in the acute effects 

induced by HU-210, as well as in the somatic expression of cannabinoid withdrawal, 

supporting the functional interaction between the cannabinoid and dopaminergic 

systems in the development of cannabinoid dependence [696]. 

Some studies pointed out that CB1R and DRD2 receptors are colocalized in the basal 

ganglia, mainly in the striato-pallidal GABAergic neurons and in the cortico-striatal 
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glutamate neurons [697–699]. The first author to provide the evidence of CB1R-DRD2 

heterodimerization was Kearn et al., based on Co-IP studies in HEK293 cells [690]. 

Then, other studies confirmed this evidence in globus-pallidus and striatum of rodents 

and primates, using BRET, PLA and Co-IP assays [699–704]. In the study of Kearn et 

al., it was demonstrated that stable expression of CB1R and DRD2 in HEK293 cells 

resulted in a pertussis toxin-insensitive component to CB1R activation of ERK 1/2 and a 

stimulation of AC activity after simultaneous activation of both receptors by the agonists 

quinpirole (DR-agonist) and CP55940 (CB1R-agonist) [690]. Furthermore, the study 

could show and confirm previous results [705,706] that DRD2-activation together with the 

activation of CB1R resulted in the complex coupling Gs instead of its preferred G-protein, 

Gi/o, which was observed in an increase in cAMP levels instead of an synergistic inhibition 

of AC activity [690,707,708]. In addition, recent studies revealed that CB1R-DRD2 

heterodimerization requires the bidirectional allosteric interaction of the two receptors, 

as the expected effect was not observed when only one receptor was activated 

[701,702]. A recent study from Bagher et al. revealed that CB1R-DRD2 heterodimer 

formation in C57BL/6J mice is reduced when treated with the typical antipsychotic 

haloperidol [700]. In addition, the abundance of the heterodimer increased when treated 

with the nonselective cannabinoid receptor agonist (CP55,940), whereas the atypical 

antipsychotic olanzapine treatment had no effect [700]. These results suggest that this 

heterodimer has an influence in dopamine and cannabinoid-related disorders. 

The expression of CB1R and A2AR in corticostriatal glutamatergic terminals, suggests an 

interaction potential between those two receptors [709,710]. Indeed, it has been 

demonstrated that the ability of WIN 55212-2, a CB1R-agonist, to increase DARPP32 

phosphorylation and to inhibit motor activity, requires the presence and the activation of 

A2AR, which then functions as a heterodimer [711,712]. The study of Carriba et al. also 

demonstrated, through Co-IP and BRET experiments in living cells and in rat striata, that 

CB1R-A2AR heterodimers are functional since they were shown to mediate the 

cannabinoid-induced motor effects [709,712]. Another study by Tebano et al. using SH-

SY5Y neuroglioblastoma cells in biochemical and cellular signalling assays as well as 

behavioural tests using wildtype and A2AR KO mice indicated that striatal CB1R 

activation-induced synaptic effects depend on A2AR activation [710]. Indeed, CB1R-

agonist WIN55,212-2-induced motor depressant effects are inhibited by the A2AR-

antagonist ZM241385 [712]. Furthermore, Tebano and co-workers demonstrated that 

the blockade of A2AR reduces WIN55,212-2-induced depression of synaptic transmission 

in corticostriatal slices and that the synaptic effects of WIN 55212-2 are reduced in slices 

from A2AR KO mice. According to Tebano et al., this suggests the occurrence of a 

permissive role of A2ARs towards CB1R effects [710,712]. In addition, this permissive role 

of the A2AR was reported to occur in postsynaptic effects [712]. 

The main psychoactive compound in Cannabis sativa, THC, a ligand of cannabinoid 

receptors, is known to induce a variety of behavioural responses and undesirable effects 

such as dependence, anti-anxiety effects and memory impairments [713–717]. Different 

studies have shown that THC and other cannabinoid-induced behaviours are typically 

mediated by 5-HT2AR [718–720]. CB1R, that typically couples to Gi and 5-HT2AR, which 

is coupled to Gq were found to be colocalized in brain structures involved in regulating 

emotions, learning, and memory, including the amygdala, cerebral cortex, and 
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hippocampus [721–723]. For the first time. In 2015, it was discovered that the anxiolytic 

and amnestic effects of the THC, a CB1R-agonist, require the presence of 5-HT2AR [717]. 

Behavioural studies in 5-HT2AR KO mice, BRET, cAMP and calcium signalling assays 

using cotransfected HEK293T cells  and in situ PLA using mouse brain slices, 

determined a remarkable 5-HT2AR-dependent dissociation in the beneficial 

antinociceptive effects of THC and its detrimental amnesic properties, mediated by 

CB1R-5-HT2AR [717]. Furthermore, their study showed that CB1R and 5-HT2AR are 

expressed and functional in specific brain regions involved in memory impairment [717]. 

Moreover, it was shown that in CB1R-5-HT2AR co-stimulation of both receptors by 

agonists WIN 55212–2 and DOI reduces cell signalling, antagonist binding to one 

receptor (either rimonabant or MDL 100907) blocks signalling of the interacting receptor, 

and heterodimer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq 

to Gi [717]. Heterodimerization was shown to be disrupted in vivo by ICV infusion of 

synthetic peptides with the sequence of TM5 and TM6 of CB1R, leading to blunted 

amnesic and anxiolytic, but not antinociceptive, effects of THC selectively in wild-type 

mice [717]. Later Galindo et al., presented more evidence that CB1R-5-HT2AR exists in 

ex-vivo primary cultures of human olfactory epithelial cells [724]. Furthermore, they 

observed a positive correlation between CB1R-5-HT2AR heterodimer expression, and the 

amount of cannabis consumed. A negative correlation was observed between 

heterodimer expression levels and attention and working memory performance in 

cannabis users [724]. Galindo and co-workers also observed negative crosstalk between 

CB1R and 5-HT2AR within the heterodimers in human olfactory epithelial cells when co-

stimulated with WIN 55212–2 and DOI, which would lead to reduced activation of ERK1/2 

signalling [724]. Furthermore, rimonabant and MDL 100907 blocked the effects induced 

by WIN 55212–2 and DOI, suggesting that CB1R-5-HT2AR in control subjects and in 

cannabis users display bidirectional cross antagonism [724]. 

Diverse GPCR heterodimers 

Besides the more common families described above, other class A GPCRs can form 

heterodimers. One example is the GAL1R-GAL2R heterodimer, identified in HEK293T 

cells using BRET and in the midbrain raphe-dorsal hippocampal pathways of rodents 

using in situ PLA [725]. In this study by Borroto-Escuela et al., the hypothesis was 

formulated that the N-terminal galanin fragments preferring binding sites on galanin 

receptors are formed through the formation of GAL1R-GAL2R heterodimers. The galanin 

1-15 fragment was shown to induce a disbalance in GAL1R-GAL2R signalling, where 

enhanced activation of Gi/o-mediated signalling via GAL1R was observed, while no 

significant effects were induced by Gq/11-mediated signalling of GAL2R [725]. By 

comparing the results of the study between the two galanin fragments galanin (1-15) and 

galanin (1-29), it was suggested that the orthosteric agonist binding site of GAL1R may 

have an increased affinity for the galanin (1-15) vs galanin (1-29), leading to its 

demonstrated increase in potency to inhibit CREB vs galanin (1-29) in CRE luciferase 

reporter gene assays [725]. Furthermore, Borroto-Escuela and co-workers 

demonstrated that NFAT reporter gene assays galanin (1-29) shows a higher efficacy 

than galanin (1-15) in increasing Gq/11-mediated signalling over GAL2R of GAL1R-GAL2R 

heterodimers [725]. The reported galanin(1-15)-mediated disbalance may contribute to 

depression and anxiety-related behaviours [726,727]. 
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In 2020, a study by Rivas-Santisteban et al. discovered the existence of AT1R and AT2R 

heterodimer expression in hemilesioned 6-OH-DA  rat model of PD [728]. AT1R and 

AT2R, which are part of the angiotensin-peptide producing RAS, and their endogenous 

ligand angiotensin are important regulators of motor control, have been suggested to be 

promising targets for PD and related conditions such as levodopa (L-DOPA)-induced 

dyskinesias [728–730]. In their study, Rivas-Santisteban and co-workers demonstrated 

that co-activation of AT1R and AT2R by Ang II and CGP-42112A within the AT1R-AT2R 

heterodimer was known to reduce the downstream signalling of angiotensin II [728]. 

However, a cross-potentiation was observed, as that application of AT1R-antagonist 

candesartan increased the effect of the selective AT2R-agonist CGP-42112A [728]. 

Regarding their relevance for PD, it was demonstrated that microglial AT1R-AT2R 

heterodimers are upregulated in parkinsonian conditions and in L-DOPA-induced 

dyskinesias and their activation was observed to exert neuroprotective effects [728]. 

Lastly, Rivas-Santisteban et al. suggested that the opposite action of AT1R and AT2R by 

AT1R-antagonist-mediated cross-potentiation of AT2R actions and the upregulation of 

AT1R-AT2R heterodimers in microglia may be beneficial to treat PD through AT2R by this 

heterodimer signalling mechanism [728]. 

  

1.1.4. Class C G protein-coupled receptors 

1.1.4.1. Class C receptors in the brain 

Class C receptor family in humans is composed by γ-aminobutyric acid B receptors 

(GABAB1R and GABAB2R receptors), calcium-sensing receptor (CaSR), metabotropic 

glutamate receptors (mGlu1-8R), sweet and amino acid taste receptors and several 

orphan receptors (GPR156, GPR158, GPR179, GPRC5A, GPRC5B, GPRC5C, 

GPRC5D, GPRC6) [143,430,731]. Among them CaSR, GABABR and mGluR are highly 

expressed in the brain and represent an important class of drug targets for neurological 

diseases and calcium homeostasis [732–734]. 

mGluR and GABABR receptors are particularly relevant as they constitute a 

comprehensive model for the allosteric regulation and cooperativity of receptor 

protomers, which can be tendentially transferred to other GPCR classes, such as class 

A receptors [88]. Despite the fact that their sequences and overcall structures differ 

significantly from other classes, some structural similarities have been reported between 

classes A and C receptors. The most significant similarities were found in the TM 

domains.  In class A receptors the “ionic lock” is defined by a salt bridge between a 

conserved Arg3.50 and Glu(Asp)6.30, while this motif occurs via Lys3.50 and Glu6.35 in 

class C [735]. 

Aside from the common architecture of GPCRs, the class C receptors possess an 

extracellular domain that contains a Venus flytrap (VFT) module and a cysteine rich 

domain (CRD, except in the GABABR) [734]. This exceptionally large extracellular 

domain contains the orthosteric binding site for ligands, while in the 7TM region only 

allosteric binding sites are found [734]. Moreover, the C-terminus is highly variable and 

plays a role in scaffolding and signalling protein coupling [731]. Another unique 

characteristic of the class C receptor family is the fact that they only function as 
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homodimers (mGluR and CaSR) or heterodimers (GABABR) [734]. The structure of the 

VFT was first solved for the mGlu1R (PDB-id: 1EWV, 1EWT, 1EWK) [750] and it revealed 

that the VFT consists of a bilobed domain being separated by a cleft in which 

endogenous ligands are able to bind [736–738]. In absence of a ligand, the VFT 

oscillates between an open and closed conformation [734]. Agonists interact with lobe 1 

in the open form of the VFT and stabilize the closed conformation through additional 

contacts with lobe 2, while antagonists inhibit the VFT closure [734,739]. Due to the 

necessary dimerization of class C receptors, the VFTs consequently interact with each 

other by forming constitutive dimers. Different studies found that a hydrophobic 

interaction between lobe 1 of each monomer is the driving force for VFT dimerization 

[740,741]. An additional disulphide bond linking the two VFTs was reported to further 

stabilize the dimer [741–743]. The CRD which is a segment of 80 amino acids, containing 

9 conserved cysteines, connects the VFT and the 7TM domains [731,734]. 

Crystallography data shows that the CRD physically separates the VFT and 7TM 

modules (PDB-id: 2E4U, 2E4V, 2E4W,2E4X, 2E4Y, 2E4Z) [743]. Especially for mGluR, 

a conserved disulphide bond between the VFT and the CRD is necessary for receptor 

activation through allosteric interaction between VFT and 7TM [744]. CRD is also a 

mediator of receptor activation for CaSR [734,745].   

 

Calcium-sensing receptor 

CaSR is a unique receptor, highly sensitive to calcium ions (Ca2+) and their concentration 

change in the extracellular space [734]. CaSR ensures calcium homeostasis and can 

consequently be activated by calcium itself without the cooperation of other ligands 

[732,746]. Pathological conditions involving CaSR are hyperparathyroidism, 

osteoporosis and different forms of hypocalcemia [746–748]. CaSR is pharmacologically 

targeted by positive allosteric modulators (PAMs), i.e., cinacalcet, evocalcet and 

etelcalcetide, for the treatment of secondary hyperparathyroidism and familial 

hypocalciuric hypercalcemia (FHH1). CaSR negative allosteric modulators (NAMs) act 

as calcilytics and are currently in phase II clinical trials for the treatment of Autosomal-

Dominant Hypocalcemia Type 1 (ADH1) [749,750]. 

Although CaSR is mainly expressed in the  parathyroid gland and in the renal tubules of 

the kidney, there is also a significant expression in the brain [751,752]. Calcium is one 

of the most abundant second messengers in the brain [753]. In the extracellular space 

calcium levels are maintained constant (between 1.1 and 1.4 mM), whereas in resting 

neurons calcium levels are strictly maintained around 100 nM [754,755]. Without a 

substantial calcium gradient neuronal functions, such as gene transcription, synaptic 

transmission, memory encoding, apoptosis, and many others may not be conducted 

[753,754]. The inability to maintain required calcium levels has been brought into context 

with neurodegenerative diseases such as PD, AD, HD, where this neuronal calcium 

dysregulation contributes to motor and/or cognitive dysfunctions [754,756–760]. 

γ-aminobutyric acid B receptors 

γ-aminobutyric acid (GABA) is the major neurotransmitter for inhibitory signals in the 

mammalian CNS [734]. GABABR, which responds to GABA, regulates synaptic plasticity, 
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learning, and memory in the dentate gyrus [1], mediating a slow and prolonged synaptic 

inhibition [761]. They only function as obligate heterodimers of the two subtypes, 

GABAB1R and GABAB2R [762–767] with two distinct features: GABAB1R contains the 

GABA binding site [768], whereas GABAB2R activates the Gi/o protein [769]. GABAB 

receptors are responsible for neuronal excitability and plasticity [734]. For instance, in a 

VaD rat hippocampus, it was observed a reduction in GABABR expression, which 

resulted in spatial learning and memory deficits [1,770]. However, under certain 

conditions they may promote neuron survival such as metabolic stress, ischemia and 

apoptosis [734,771–773]. Consequently, these receptors are considered as promising 

targets for the treatment of many diseases including spasticity, neuropathic pain, drug 

addiction, schizophrenia, anxiety, depression or epilepsy [774–777]. 

Metabotropic glutamate receptors 

L-Glutamate is the major neurotransmitter for most of the excitatory synapses in the 

mammalian CNS [8]. As L-glutamate is the endogenous ligand for mGluR, they 

participate in the neuronal excitability and modulation of synaptic transmission in the 

CNS [778,779]. The mGluR family comprises eight members, which are further classified 

based on their G protein coupling and sequence homology. The first group (Group I) 

consists of mGlu1R and mGlu5R, which are coupled to Gq/G11 [1,780]. The second group 

consists of mGlu2R and  mGlu3R (Group II) and the third group (Group III) of mGlu4R, 

mGlu6R, mGlu7R andmGlu8R, of which all are coupled to Gi/Go [778,780]. As such, mGlu 

receptors negatively regulate the adenylyl cyclase (AC) and were reported to also 

activate MAP kinase and PI-3-kinase pathways [778,780]. The mGlu5R has been 

reported to be involved in several neurodegenerative disorders [778]. Since mGlu5R is 

highly expressed in astrocytes, glial cells and neurons of  the forebrain and 

hippocampus, several lines of evidence suggest a significant role of mGlu5R in 

developmental and neurodegenerative disorders such as Down Syndrome and AD 

[781,782]. Over the last years, several mGluR agonists, antagonists, PAMs and NAMs 

have been developed and studied in vivo animal models [1]. Comprehensive work from 

Chen et al. showed that LY341495 (Group I/II mGluR antagonist) was able to block 

amyloid β-enhanced long-term depression and improve synaptic plasticity [783]. In 

addition, the authors also showed that pre-treatment with an mGlu1/5R agonist, DHPG, 

decreased amyloid β-enhanced long-term depression [783]. Another study by Renner et 

al. demonstrated that SIB1757, a non-competitive antagonist of mGlu5R, prevented 

amyloid β oligomer-induced synaptic N-Methyl-D-aspartic acid receptor NMDAR 

reduction [784]. Moreover, Caraci and co-workers demonstrated in their study that the 

mGlu2R PAM LY566332 amplified amyloid β-induced neurodegeneration, while 

treatment with the antagonist LY341495 of mGlu2/3R prevented this effect [785]. In a 

similar manner the dual mGlu2/3R agonist LY379268 exhibited neuroprotection by a 

paracrine mechanism mediated by transforming growth factor-β1 [785]. Consequently, 

negative modulation of the mGlu5R could be a promising strategy for treatment of PD 

and AD. Moreover, dual activation of Group II receptors, mGlu2R and mGlu3R could be 

a strategy for providing neuroprotection against amyloid β-induced toxicity [785]. 

 

1.1.4.2. Class C receptor heterodimers 
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Marshall and colleagues discovered already in 1998 that heterodimerization formation 

was crucial for a functional GABABR [75,786]. Since then, the concept of GPCR 

dimerization has been widely accepted for class C receptors. The receptor-receptor 

cooperation has been found to be positive and negative and vital for signal transduction 

[88,787–790]. Class C GPCRs act as obligate dimers, since the VFTs of the single 

receptors have to interact with each other [740–742,791]. Therefore, homo- and 

heterodimerization is a common event among class C GPCRs. 

In a recombinant system, it was found that GABAB1R,  cannot reach the cell surface 

without the presence of GABAB2R, as GABAB1R contains a C-terminal endoplasmic 

retention motif, only masked when the heterodimer is formed (Figure 2E) [792,793]. 

Unexpectedly, all orthosteric agonist and antagonists rather bind to the VFT of the 

GABAB1R. This coupling leads to the necessary conformational change in GABAB1R, 

which crosstalks to GABAB2R leading to an active conformer able to bind to G protein 

and promoting functional physiological responses [794–797]. Also, additional GPCRs 

which can bind to GABABR were identified: e.g., GABAAR, mGlu1R, N-methyl-D-

aspartate (NMDA), insulin-like growth factor-1 (IGF-1), and tyrosine protein kinase 

receptor (TrkBR). It also has been shown that these GPCRs are able to form multi-

complexes such as tetramers [798,799]. Such tetramers were described to exhibit 

negative cooperativity between the GABABR-heterodimers by decreasing the coupling 

efficiency towards Gi proteins [787,800]. Despite the large therapeutic potential and the 

development of many PAMs and NAMs which could help to investigate the relationship 

between the monomers of the  GABABR, only Baclofen (Lioresal), a selective GABABR 

agonist is available on the market [801,802]. 

Furthermore the well-known GABABR, the eight members of the mGluR family are key 

modulators of glutamatergic synaptic transmission of excitatory and inhibitory responses 

in the brain [779,803,804]. The structure of the mGluR contains special features such as 

a large cysteine enriched domain, which is linked to the transmembrane domain, and a 

large extracellular domain involving the VTF, where glutamate binds involving the VFT, 

which is also linked to the transmembrane domain, binding pocket to glutamate [75]. 

Many GPCRs are known to interact and regulate the mGluR subgroups such as the 

neuronal Ca2+ binding protein 2 that forms a co-assembly and coupling with activated 

Ca2+-activated K+-channels; and the contactin-associated protein 1, which appear to be 

important for the function of mGlu5R to control memory formation in the hippocampus 

[75,805–809]. 

For instance, the mGlu2R-mGlu4R heterodimer, was already discovered in 2005 by 

Doumazane and co-workers using a technique to study plasma membrane receptor 

complexes and FRET [810]. Later, Kammermeier and co-workers elucidated that 

mGlu2R-mGlu4R complexes are functional in neurons, only using both, mGlu2R specific 

and mGlu4R specific agonists [811]. Each individual receptor has two NAM binding sites 

and one PAM binding site. The activation of each receptor by NAMs was able to reverse 

the signalling of this heterodimer. Moreover, only one PAM per complex was needed for 

the full enhancement of the heterodimer complex activity[810]. 

Another example, the mGlu1R-mGlu5R heterodimer in mice, was identified by Pandya 

and co-workers in 2016 [812]. The mGlu1R-mGlu5R was found to be expressed in the 

cerebral cortex, hippocampus and hippocampal neurons using an interaction proteomics 
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strategy and super resolution microscopy [812]. The exact receptor complex composition 

is still unclear, but there is the indication that scaffolding proteins, phosphatases and 

kinases are involved in the process [813]. In synaptic and extra-synaptic locations, 

mGlu1R-mGlu5R also appears to be in balance with the corresponding homodimers 

mGlu1R-mGlu1R and mGlu5R-mGlu5R [814]. The mGlu1R-mGlu5R heterodimer may be 

a potential therapeutic target in autism spectrum disorders [812]. 

Although class C GPCRs, and especially mGluRs, are functional as constitutive dimers, 

the importance of dimerization remains unclear [804]. A study by El Moustaine et al. also 

demonstrated that the dimer formation is not required for G protein coupling, but rather 

for agonist activation and for limiting the agonist activity of PAMs [796,804]. This 

asymmetrical activation is also consistent with the asymmetric functioning reported for 

class A GPCR dimers [439,815,816]. 

  

1.1.5. Heterodimers class A-class C 

GPCR heterodimers of the same classes such as class A - class A or class C - class C 

appear to be physiologically conclusive as they have the same activation mechanism 

despite the different ligands and G protein-coupling state. Also, their physiological 

functions appear coherently, notwithstanding that the partnered proteins often belong to 

different families. However, the existence of GPCR heterodimers of different classes 

such as class A - class C heterodimers, which will be described here, add another 

perspective to the complexity of GPCR signalling. 

In 2020, Sebastianutto et al. discovered the DRD1-mGlu5R heterodimer using BRET and 

bimolecular fluorescence complementation (BiFC) techniques at the plasma membrane 

in HEK293 cells, primary hippocampal neurons and in 6-OHDA lesion in mice and rats, 

which were used as PD models [817]. The dopaminergic and glutamatergic system are 

known to signal to the striatum where their crucial inputs control action selection and 

behavioural plasticity [818,819]. Hence, these basal-ganglia circuits represent an 

important target of L-DOPA-based therapy in PD [817]. Sebastianutto and co-workers 

demonstrated that the DRD1-mGlu5R synergistically activates PLC signalling and 

intracellular calcium release in response to either glutamate or dopamine [817]. In 

addition, PLC signalling was seen to be responsible for a considerable proportion of 

striatal ERK1/2 activation in PD-model rodents which were treated with DRD1-agonists 

SKF38393 or quinpirole [817]. Moreover, in the PD-model rodents, DRD1-mGlu5R 

complexes were found to be strongly upregulated in the dopamine-denervated striatum 

[817]. DRD1-mGlu5R -dependant PLC signalling was also linked to enhanced activation 

of extracellular signal–regulated kinases in striatal neurons, leading to dyskinesia in 

animals treated with L-DOPA or DRD1-agonists SKF38393 or quinpirole [817]. It was 

concluded that DRD1 appeared to engage in a preferential crosstalk with mGlu5R- and 

Gq-related signalling components in dopamine-denervated striatal neurons [817]. 

Another example, A1R-mGlu1R, was discovered by Ciruela et al. already in 2001 using 

Co-IP, immunohistochemistry and ligand-binding experiments in HEK293 and rat 

cerebellum synaptosomes [820]. Furthermore, they showed that activation of A1R and 
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mGlu1R would lead to a synergistic neuroprotection effect, since preincubation with 

quisqualic acid (mGlu1R-agonist) and adenosine was much more effective than pre-

treatment with any of the compounds used in their study. Later, more studies based on 

an analysis of non-neuronal cells using Co-IP and FRET by Kamikubo et al. supported 

the existence of A1R-mGlu1R [821]. In a previous study, it was described that, in 

cerebellar Purkinje cells, the activation of A1R attenuates neuronal responses to 

glutamate, as mediated by mGlu1R [821,822]. The mGlu1R is also known to regulate 

responses such as long-term depression of postsynaptic response to glutamate, which 

is a cellular basis for cerebellar motor learning [821]. Furthermore, Kamikubo and co-

workers demonstrated that the activation of mGlu1R through glutamate inhibits A1R 

signalling, which was measured in elevated cAMP signalling, since the A1R is known to 

couple to Gi/o-proteins [821,823].  Kamikubo et al. concluded from their findings that 

mGlu1R-mediated inhibition of A1R signalling, which should activate PKA and cAMP 

response element-binding protein (CREB) may play a role in mGlu1R-dependent 

cerebellar long-term depression and motor learning [821]. 

In 2008, González-Maeso et al. identified a physical and functional interaction between 

5-HT2AR and mGlu2R in cortical pyramidal neurons using Co-IP, BRET and FRET in 

HEK293 cells and brain cortices from mice and humans [824,825]. Competition binding 

experiments showed that the mGlu2R-agonist LY379268 was able to increase the affinity 

of hallucinogenic drugs such as DOI, DOM or for the 5-HT2AR-binding site [825]. 

However, it was also shown that the 5-HT2AR-agonist DOI decreased the affinity for 

mGlu2R-agonists LY379268, DCG-IV, and L-CCG-I [825]. Hence, within the 5-HT2AR-

mGlu2R, unique cellular responses are mediated when targeted by hallucinogenic drugs 

and activation of mGlu2R was shown to abolish hallucinogen-specific signalling and 

behavioural responses. González-Maeso et al. further supported those findings by 

showing that  hallucinogens, including mescaline, psilocybin, and lysergic acid 

diethylamide (LSD) which profoundly affect perception, cognition, and mood and are 

known to activate 5-HT2AR, but not all excerpt hallucinogenic behaviours [826]. It was 

shown that hallucinogenic and non-hallucinogenic 5-HT2AR-agonists both regulate 

signalling in the same 5-HT2AR-expressing cortical neurons. However different agonists 

were found to either regulate phospholipase C via coupling to Gq/11 proteins and/or bind 

to Gi/o proteins and Src [826]. Fribourg et al. demonstrated that the signalling of the 

endogenous ligand on the associated protomer is suppressed or potentiated, by an 

agonist or an inverse agonist of one protomer, respectively [827]. Therefore, the 5-

HT2AR-mGlu2R heterodimer establishes an optimal Gi/o-Gq balance in response to 

serotonergic and glutamatergic drugs binding. The hallucinogenic agonists LY341495 

(mGlu2R inverse agonist) and DOI (5-HT2AR receptor agonist) promote a decrease in Gi/o 

and a strong increase in Gq. The opposite happens with the antipsychotics LY379268 

(mGlu2R receptor agonist) and clozapine (inverse 5-HT2AR receptor agonist), which 

produce the opposite effect on Gi/o-Gq balance. Lastly, González-Maeso and co-workers 

identified that mGlu2R interacts via TM4 and TM5 with 5-HT2AR [825]. 

In 2009, Schröder et al. identified the MOR-mGlu5R heterodimer using Co-IP in HEK293 

cells [828]. It was long hypothesized that opioid analgesia and tolerance can be 

modulated by metabotropic glutamate receptors [828–831]. Studies by Gabra et al. and 

Lee et al. were able to show that the mGlu5R-antagonist MPEP inhibits hyperalgesia, 
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nociceptive behaviour and inflammation. Moreover, when co-administered with 

morphine, the morphine-induced antinociception development was suppressed 

[832,833]. The treatment of the cotransfected MOR and mGlu5R cells with DAMGO, a 

selective MOR-agonist, showed that co-expression of mGlu5R had no significant effect 

on the agonist binding sites and functional coupling of the MOR towards DAMGO, as 

DAMGO-induced inhibition of intracellular cAMP level was still observed [828]. However, 

when MPEP was co-administered, DAMGO-induced MOR phosphorylation, 

internalization, and desensitization was decreased, whereas non-selective competitive 

mGlu5R-antagonists or -agonists had no effects [828]. According to Schröder et al. this 

allosteric modulation of mGlu5R on MOR displays a mechanistic basis how the MOR-

mGlu5R functions, further supported by DAMGO-induced co-internalization of MOR and 

mGlu5R and the increase of MPEP bindings sites and a change of binding affinity of 

mGlu5R after the co-expression of MOR [828]. 

1.1.6. Heteroreceptor mosaics 

The term “receptor mosaics” stands for assemblies of more than two receptors and was 

already introduced in the 80s to underline the role of topology in the highly dynamic life 

cycles of GPCRs [834–837]. Such mosaics may be the result of engrams of short-term 

memory, which are stored as a state of molecular circuit. They further suggested that 

these mosaics may be the representations of engrams of ultra-short memory in transient 

receptor mosaic formed in kiss-and-run encounters [836,838–840]. There are now many 

indications that heteroreceptor mosaics exist in nerve cells and throughout the brain 

[836,839,841]. 

The A2AR–CB1R–DRD2 mosaic is one of the few examples where more than two 

receptors exhibit protein-protein interactions [519,712,834].  It also underlines the 

relevance of adenosine, dopamine and cannabinoid signalling and their pivotal 

contribution to various signalling mechanisms. The A2AR–CB1R–DRD2 hetero-oligomer 

was identified for the first time in 2008 [842] using a method combining BiFC and BRET 

techniques [843–849]. In 2009, the A2AR-DRD2-mGlu5R was discovered in HEK293 cells, 

using BiFC and BRET approaches [850]. In addition to adenosine and dopamine 

transmission, glutamate transmission also plays an important role in the function of 

striatal GABAergic efferent neurons originating in the nucleus accumbens. In 2001 Popli 

et al. discovered the DRD2-mGlu5R heterodimer and its association with A2AR receptor 

[851]. Authors used 6-OH-DA-lesioned rats as PD models to make behavioural and 

microdialysis experiments. In 6-OH-DA rats, the selective mGlu5R-agonist (RS)-2-

Cholro-5-Hydroxyphenylglycine (CHPG) was shown to inhibit the contralateral turning 

induced by quinpirole, a DR-agonist and less pronounced by the DR-agonist SKF 38393 

[851]. The effect of CHPG on quinpirole-induced turning were significantly potentiated 

by CGS 21680, an A2AR-agonist and attenuated by SCH 58261, an A2AR-antagonist 

[851]. CHPG was shown to reduce the affinity of the high-affinity state of DRD2 for 

quinpirole and this effect was again enhanced by CGS 21680 in rat striatal membranes 

[851]. A2AR and mGlu5R agonists (CGS 21680 and CHPG, respectively) synergistically 

increase ventral pallidal extracellular level of GABA in the nucleus accumbens promoting 

a potential stability of the inhibitory dopaminergic DRD2 effects on the striato-pallidal 

GABA pathway [852]. In PD, where the dopaminergic nerve terminals are degenerated, 
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the DRD2 on the glutamate nerve terminals can no longer appropriately inhibit glutamate 

release. Here, A2AR and mGlu5R antagonists could be successful to inhibit parkinsonian 

symptoms considering their increasing dominance, since the inhibitory DRD2 lose their 

function [853]. Consequently, extracellular levels of adenosine and glutamate may 

increase, leading to a higher probability of formation of A2AR-DRD2, DRD2-mGlu5R and 

A2AR-DRD2-mGlu5R that leads to further inhibition of PD symptoms. Lastly, A2AR–CB1R–

DRD2 and A2AR-DRD2-mGlu5R mosaics have recently been demonstrated in living cells 

using fluorescent techniques [846,850]. 

1.1.7. GPCR Interacting Proteins 

Besides the binding of GPCRs to G proteins, β-arrestins and kinases, there exists a large 

numbers of GPCR interacting proteins (GIPs) [809,854–857]. GIPs can be other 

cytoplasmic or transmembrane proteins such as heat-shock proteins, PSD-95/Discs-

large/ZO-1 (PDZ) domain-containing proteins or GPCR-associated sorting proteins 

(GASPs) [858–860], among many others. They excerpt multiple effects on GPCRs: 

interact with GPCRs in a more receptor-selective manner and can additionally mediate 

downstream signalling directly through binding to GPCRs, organize GPCR signalling 

through G proteins, promote receptor trafficking or anchor the receptors in certain 

subcellular areas [809,854,857,861]. In contrast to GPCRs, GIPs are capable of cluster 

various proteins and coordinate different types of signalling such as positive and 

negative feedback signals, graded or digital signals, transient or oscillatory signalling 

[809,862,863]. 

In terms of GPCR dimerization, it is known that the receptors influence each other 

through PPIs and subsequent conformational rearrangements upon the dimerization 

event that also influence the affinity for the binding of G proteins, alterations in ligand 

binding affinity and many other effects [71,79–81]. This also raised the question, how 

could dimerization affect the coupling to GIPs [856]. For instance, it was reported that 

MT1R directly and constitutively bind to Gi proteins and RGS20 forming the MT1R 

homodimers-RGS20-Gi protein complex [864]. Regulators of G-protein signalling (RGS) 

proteins bind to the activated form of G𝛼 proteins and accelerate their GTPase activity 

[865,866]. By using BRET probes inserted at multiple sites of the complex and by 

homology modelling experiments, Maurice et al. suggested a model, where the Gi protein 

can bind to one MT1R, while the RGS20 binds to the other MT1R [864]. Similar 

observations were made for MT1R/MT2R-RGS20-Gi protein-complex, which was 

previously not known to bind to RGS20 [864]. Hence, it was concluded that the formation 

of asymmetric quaternary complexes involving GIP-binding and non-GIP-binding 

receptors may lead to sensitivity for GIPs, which is only present upon formation of such 

complexes [856,864].  

Another example was recently discovered, involving mGluRs, known to be obligate 

dimers. The constitutive active mGluR1 and mGluR5, in absence of glutamate, were 

reported to form an interaction with Homer1a. This protein, part of the scaffolding protein 

family Homer, lacks dimerization capacity [867–870]. Usually, mGlu1/5R dimers are 

functionally physically linked to NMDA receptors via scaffolding proteins, which is then 

disrupted through the binding of Homer1a [867,871,872]. The mGlu1/5R-Homer1a-
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complex has been associated with several functions in synaptic plasticity of the visual 

system, in rewarded synapses, in chronically overactivated synaptic networks and sleep 

cycle [867]. 

Hence, the binding of GIPs to GPCR dimers adds another level of signalling complexity 

towards downstream signalling and indicates that its fine-tuning can be also context 

dependent [871,873]. 

1.1.8. Summary and concluding remarks 

It has been widely accepted by now that GPCRs are able to couple to other GPCRs in 

order to alter their partner’s signalling and/or their own, which furthermore diversifies and 

fine-tunes their physiological responses. Many studies have demonstrated that the 

nature of crosstalk within the heterodimer or oligomer can be either positive or negative. 

Hence, when GPCRs form a heterodimer, it was shown that this leads to the 

enhancement of each other’s natural signalling pathways or inhibition of downstream 

signalling of either one receptor or both. Among all heterodimers described in this review, 

there was a clear balance between examples, which promoted either positive or negative 

crosstalk. In addition, there are still more options of alternate signalling by heterodimers 

to be investigated. Especially, when it comes to formation of oligomers, the signalling 

repertoire is even further increased. 

The concept of GPCR dimers, which carry out physiological and pathophysiological 

actions in the brain, adds a new dimension to molecular signalling in the nervous system. 

To be able to target both monomers within the dimer at the same time new concepts in 

drug design have been explored. Already in 1982 the concept of bivalent ligand was 

discovered and introduced for opioid heteromers by Philip Portoghese [874,875] and 

many have been developed over the years [876,877] to target other disease-relevant 

dimers. By definition bivalent ligands consist of two distinct pharmacophores that are 

connected by a linker/spacer, hence they are able to target two GPCRs simultaneously 

[878]. They can be further classified into either homobivalent ligands with two identical 

pharmacophores or heterobivalent ligands with two different pharmacophores [876].  

The advantage of targeting both monomers of the dimer simultaneously provides insight 

into enhanced physiological responses and may help to understand the dynamic 

interactions of the two proteins, as usually either one of them is targeted by their ligands 

resulting in positive or negative crosstalk. Moreover bivalent ligands can be designed to 

either consist of two agonists, two antagonists or cross-overs which make them a helpful 

tool to understand the dynamics of dimerization and subsequent downstream signalling 

[876]. Considering the recent developments of bivalent ligands, most of them target class 

A heteromers including opioid receptors, dopamine receptors, serotonin receptors and 

cannabinoid receptors  [876]. However one ligand described, was developed for an 

heterodimer between class A and class C, MQ-22a, which targets the DRD2-mGlu5R 

heteromer [879]. Interestingly, an allosteric modulator 3-[(2-methyl-4-

thiazolyl)ethynyl]pyridine (MTEP) was chosen for mGlu5R, while for DRD2 ligands 

targeting the orthosteric binding pocket were selected, the DRD2- and DRD4-agonist 5-

hydroxy-2-(dipropylamino)tetralin (DPAT) and the DRD2-antagonist 1,4-disubstituted 

aromatic piperazine (DAP) [879]. Consequently also the level of binding property of the 
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selected pharmacophores provide an additional chemical space to be explored in terms 

of dimerization dynamics as it has been shown for monomers, that the physiological 

response also varies if ligands bind either to orthosteric or to the allosteric binding 

pockets [880–882]. Other bivalent ligands were also designed to induce dimerization as 

shown for the gastrin-releasing peptide receptor GRPR within 20-30Å [883].  

Together with the growing numbers of GPCR crystal structures available and the 

improvement in computational techniques such as homology modelling, ligand docking 

and molecular dynamics, bivalent ligands are additional pharmacological tools for 

investigating the dimerization process and dynamics.  

However there is still room for improvement as none of the bivalent ligands has made it 

to clinical trials yet, mostly due to their large size (> 700 kDa) and consequent 

unfavourable pharmaco-chemical properties, selectivity profiles and lacking in vivo 

studies [876].  

Aside from bivalent ligands, nanobodies which are mostly derived from antibody 

fragments from the heavy chain-only antibodies of camelids, have emerged as promising 

alternatives due to their high target specificity [884,885]. Like bivalent ligands also 

nanobodies have been discovered in the 1980s but their utility was for long not 

recognized [886]. Nanobodies can be fused to fluorescent tags, radioisotopes or other 

biosensors to monitor cellular processes in living cells [885]. More recently fluorescently 

labeled conformation-specific nanobodies were utilized to monitor the activation of 

GPCRs upon ligand binding or rapid state transformation in living cells [885,887–890]. 

In another more recent study nanobodies were used to modulate the activity of mGlu4R 

in the brain but not Glu4R heteromers with other GluRs, indicating that therapy of PD or 

pain could be improved through subtype-selective and blood-brain barrier permeable 

nanobodies [884]. While only biparatopic nanobody targeting different binding sites of 

the chemokine receptor CXCR2 entered phase 1 studies as potential new therapeutic 

for inflammation [891,892], nanobodies specifically targeting GPCR dimers (homo- and 

heterodimers) will be for sure a promising new therapeutic approach. Until now Ernumab, 

a monoclonal antibody, was recently approved for preventive treatment of chronic 

migraine as it binds to the calcitonin gene-related peptide receptor dimers [891,893,894]. 

All in all, future studies should be directed to identifying the dimer interface to design and 

develop interface-interfering molecules, able to specifically disrupt the dimer. This 

strategy will help to determine the functional role of the dimer as well as the allosteric 

receptor-receptor interaction within the dimer. 

Herein, we provided a collection of neurodegenerative-relevant GPCR heterodimers of 

classes A and C, which appear to be promiscuous in their signalling. A detailed structural 

and functional characterization of these macromolecular machineries will be key to the 

development of new and improved drugs to treat neurodegenerative diseases. 

 

Table  1. GPCR dimers and potential roles in neurodegenerative diseases. 

HETERODIMER GPCR 
CLASS 

CLINICAL 
RELEVANCE 

CROSSTALK REFERENCES 
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https://paperpile.com/c/SDT9Uy/C4Ag+yGg9+D4Gr
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DRD1-DRD2 Class A PD 

Schizophrenia 
Autism 

Addiction 

Depression 

Positive crosstalk [448,449,451,465,473–475,482–
484,487,895–897] 

 

DRD1-DRD3 Class A PD Positive crosstalk [464,490–496] 

DRD2-DRD3 Class A PD 

Schizophrenia 

Autism 

ADHD 

Positive crosstalk [471,499–503,897] 

DRD2-DRD4 Class A PD Positive crosstalk [463,507,508] 

DRD5-DRD2 Class A Depression Positive crosstalk [480,509] 

A1R-DRD1 Class A PD 

Schizophrenia 

Addiction 

Negative crosstalk [446,510,511,513,515–
518,551,898–900] 

A2AR-DRD2 Class A PD 

Schizophrenia 

Addiction 

Negative crosstalk [71,448,515,519–528,901–904] 

 

A2AR-DRD3 Class A Schizophrenia Negative crosstalk [538] 

DRD1-H3R Class A ADHD 
Schizophrenia 
Addiction 

Positive crosstalk [540–543] 

DRD2-H3R Class A PD Negative crosstalk [544,545] 

DRD2-SST5R Class A Depression Positive crosstalk [547–549,905] 

DRD2-NTS1R Class A PD 

Schizophrenia 

Negative crosstalk [550–555] 

https://paperpile.com/c/SDT9Uy/IQHN+6FwB+eGnO+Q932+1DZM+DQjw+hHrU+thuA+V3EM+Gmai+9JQe+JQ9Q+YneF+fLvK
https://paperpile.com/c/SDT9Uy/IQHN+6FwB+eGnO+Q932+1DZM+DQjw+hHrU+thuA+V3EM+Gmai+9JQe+JQ9Q+YneF+fLvK
https://paperpile.com/c/SDT9Uy/GBe3+Gfo6+CWiw+WRxc+rTKO+Y8tZ+cjr6+Nh5M
https://paperpile.com/c/SDT9Uy/0Trr+R9iP+7NXc+104x+LVQs+6t8G+fLvK
https://paperpile.com/c/SDT9Uy/XPih+N25D+RnhO
https://paperpile.com/c/SDT9Uy/sWeF+yJiP
https://paperpile.com/c/SDT9Uy/MRj4+8ZlL+OfLy+NW5e+gjyU+8UgV+dz9a+1rSL+GXp8+lizF+aMgt+PLzg
https://paperpile.com/c/SDT9Uy/MRj4+8ZlL+OfLy+NW5e+gjyU+8UgV+dz9a+1rSL+GXp8+lizF+aMgt+PLzg
https://paperpile.com/c/SDT9Uy/PvrU+IQHN+gjyU+RvSE+Wcse+3Ny9+vTXd+hEfz+JIsN+bdQ3+h7BJ+3LZA+QUSy+p9Gr+qMIQ+Lnkx+mDnS
https://paperpile.com/c/SDT9Uy/tHWS
https://paperpile.com/c/SDT9Uy/J4Jf+31yt+jDtw+ZIdu
https://paperpile.com/c/SDT9Uy/IXIv+wUpM
https://paperpile.com/c/SDT9Uy/HWtM+aEHn+nUd5+Q9sT
https://paperpile.com/c/SDT9Uy/ugKl+GXp8+Er2C+DQNJ+gcR6+UaPD
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DRD2-TAA1R Class A Schizophrenia Negative crosstalk [299,310,556–558] 

DRD2-OTR Class A Anxiety 

Autism 

Positive crosstalk [559,560,897] 

DRD2-GHS-R1A Class A Eating 
disorders 

Negative crosstalk [568,906,907] 

A1R-A2AR Class A Drug tolerance Negative crosstalk [445,546,569,571–574] 

A1R-5-HT2AR Class A Schizophrenia 

Anxiety 

Negative crosstalk [577,578] 

A2AR-H3R Class A PD Negative crosstalk [579,908] 

MOR-DOR Class A Chronic pain Positive crosstalk [587,591–600,909,910] 

MOR-KOR Class A Chronic pain Positive crosstalk [588,590,601] 

MOR-Α2AR Class A Addiction Negative crosstalk [590,602–605,911–914] 

MOR-GPR139 Class A Chronic pain Negative crosstalk [590,609] 

MOR-V1BR Class A Chronic pain 

Morphine 
tolerance 

Positive crosstalk [590,610] 

MOR-GAL1R Class A Chronic pain 

Addiction 

Positive crosstalk [590,611,612] 

MOR-CB1R Class A Chronic pain Negative crosstalk [590,613,615–619] 

MOR-CCKBR Class A Chronic pain Negative crosstalk [590,602] 

MOR-CCR5 Class A Chronic pain Negative crosstalk [622,623] 

https://paperpile.com/c/SDT9Uy/zzen+M5oM+SDCV+ibgC+CNrA
https://paperpile.com/c/SDT9Uy/8HnG+7Bfu+fLvK
https://paperpile.com/c/SDT9Uy/Sxe1+JCye+upyT
https://paperpile.com/c/SDT9Uy/z1oy+8IpR+7Duw+6XOJ+enp1+55xR+K0TV
https://paperpile.com/c/SDT9Uy/Raju+tXEo
https://paperpile.com/c/SDT9Uy/NykS+K3mI
https://paperpile.com/c/SDT9Uy/otYR+jVWN+z13v+J3BG+AezY+WbXT+7F3P+VSgz+QMb9+Q0DQ+ni5h+HLdc+g4Ql
https://paperpile.com/c/SDT9Uy/qv41+sYRV+1I5b
https://paperpile.com/c/SDT9Uy/sYRV+YooR+SSGy+VNgr+DH3B+Hgjv+wazK+tjtE+e2bQ
https://paperpile.com/c/SDT9Uy/sYRV+sOFL
https://paperpile.com/c/SDT9Uy/sYRV+kQVY
https://paperpile.com/c/SDT9Uy/sYRV+Q134+fBBl
https://paperpile.com/c/SDT9Uy/sYRV+w2Hb+Enp0+QEYU+86Gi+hSs8+Wbzl
https://paperpile.com/c/SDT9Uy/sYRV+YooR
https://paperpile.com/c/SDT9Uy/80yc+7afm
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MOR-DRD1 Class A PD 

Addiction 

Negative crosstalk [625] 

MOR-DRD2 Class A Addiction Negative crosstalk [626–629] 

5-HT1AR-5-HT2AR Class A Depression Negative crosstalk [632–635] 

5-HT2A-5-HT2B Class A Addiction 

Depression 

Negative crosstalk [637,638,641] 

5-HT2AR-5-HT2CR Class A Addiction 

Depression 

Negative crosstalk [637,638,641,915,916] 

5-HT1AR-5-HT7R Class A Depression 

Anxiety 

Schizophrenia 

Addiction 

Negative crosstalk [642,643,645,646] 

5-HT1AR-DRD2 Class A Schizophrenia Positive crosstalk [634,647–651] 

5-HT2AR-DRD2 Class A Schizophrenia 

Autism 

Positive crosstalk [551,648,649,652,897] 

5-HT1AR-GAL1R Class A Depression Negative crosstalk [654,656,658,660,661] 

5-HT2AR-OTR Class A Anxiety 

Autism 

Depression 

Negative crosstalk [662][676,910] 

5-HT2CR-OTR Class A Depression Negative crosstalk [667] 

5-HT2CR-MT2R Class A Depression 

Anxiety 

Positive crosstalk [668–673] 

5-HT1AR-MOR Class A Chronic pain Positive crosstalk [674] 

https://paperpile.com/c/SDT9Uy/4BPW
https://paperpile.com/c/SDT9Uy/rnI0+U6PO+9A4w+gVVu
https://paperpile.com/c/SDT9Uy/aMTO+BnbL+oVmS+h3S1
https://paperpile.com/c/SDT9Uy/FIIQ+F4vj+aJQD
https://paperpile.com/c/SDT9Uy/FIIQ+F4vj+aJQD+sivS+n9iQ
https://paperpile.com/c/SDT9Uy/sj0R+b2jE+bbkd+U59h
https://paperpile.com/c/SDT9Uy/oVmS+KXne+zcxq+Ebt5+5ai3+ajmE
https://paperpile.com/c/SDT9Uy/GXp8+zcxq+Ebt5+widD+fLvK
https://paperpile.com/c/SDT9Uy/w5Cd+ighF+qbhn+PwSV+WPXz
https://paperpile.com/c/SDT9Uy/UhXA
https://paperpile.com/c/SDT9Uy/SCW5
https://paperpile.com/c/SDT9Uy/xc5V+DOjX+JFK3+JH4x+VWCB+Rfbr
https://paperpile.com/c/SDT9Uy/8Zon
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CB1R-CB2R Class A AD 

PD 

Positive crosstalk [673,684–686] 

CB1R-DRD1 Class A PD Positive crosstalk [693–696] 

CB1R-DRD2 Class A PD 

Schizophrenia 

Addiction 

Autism 

Negative crosstalk [690,699–702,704–
706,708,897,917] 

CB1R-A2AR Class A Depression Negative crosstalk [709,710,712] 

CB1R-5-HT2AR Class A Addiction 

Anxiety 

Positive crosstalk [717,724] 

GAL1R-GAL2R Class A Depression 

Anxiety 

Positive crosstalk [726,727] 

AT1R-AT2R Class A PD Positive crosstalk [729,730,918] 

mGlu1R-mGlu5R Class C PD 

AD 

Schizophrenia 

Autism 

Unknown [35,812] 

mGlu2R – 
mGlu4R 

Class C PD 

AD 

Schizophrenia 

Negative crosstalk [810,811,919] 

GABAB1R- 
GABAB2R 

Class C Nonspecific 
neurological 
diseases 

Positive crosstalk [792–797,920] 

DRD1-mGlu5R Class A 
and C 

PD Positive crosstalk [817] 

A1R-mGlu1R Class A 
and C 

Schizophrenia Negative crosstalk [820–822] 

5-HT2AR-
mGLU2R 

Class A 
and C 

Schizophrenia 

Autism 

Negative crosstalk [824,825,827,897,921,922] 

https://paperpile.com/c/SDT9Uy/Rfbr+G2mg+Wuny+YqCm
https://paperpile.com/c/SDT9Uy/Ct1v+q2gY+F46T+uKj0
https://paperpile.com/c/SDT9Uy/chNF+eYMP+e9oA+mvUM+rJLU+vD42+w0Wh+aiYC+IfPy+fLvK+dXr6
https://paperpile.com/c/SDT9Uy/chNF+eYMP+e9oA+mvUM+rJLU+vD42+w0Wh+aiYC+IfPy+fLvK+dXr6
https://paperpile.com/c/SDT9Uy/6Ldu+OK2h+SexR
https://paperpile.com/c/SDT9Uy/J3tS+O3xh
https://paperpile.com/c/SDT9Uy/Bmg5+5ePD
https://paperpile.com/c/SDT9Uy/j98X+wF1U+1y3A
https://paperpile.com/c/SDT9Uy/pBKj+VUG7
https://paperpile.com/c/SDT9Uy/7yPX+pdk5+7xCR
https://paperpile.com/c/SDT9Uy/Zhrk+jcMz+ieUm+5A8c+CYes+92hc+6P0N
https://paperpile.com/c/SDT9Uy/4ezm
https://paperpile.com/c/SDT9Uy/JQWY+nbe4+AmTc
https://paperpile.com/c/SDT9Uy/55ah+PuCO+vW0v+fLvK+i4J7+cMK0
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MOR-mGlu5R Class A 
and C 

Chronic pain 

Addiction 

Negative crosstalk [832,833] 

A2AR–CB1R–
DRD2 

Class A Schizophrenia Negative crosstalk [519,690,707,708,712,834,842–
849] 

A2AR-DRD2-
mGlu5R 

Class A 
and C 

PD 

Schizophrenia 

Addiction 

Autism 

Negative crosstalk [850,851,853,897] 

https://paperpile.com/c/SDT9Uy/hgPj+kgJt
https://paperpile.com/c/SDT9Uy/RvSE+chNF+0OHK+IfPy+SexR+PZtk+vC0U+sujV+kxb4+T4ml+noII+akG1+qf6Y+S6tW
https://paperpile.com/c/SDT9Uy/RvSE+chNF+0OHK+IfPy+SexR+PZtk+vC0U+sujV+kxb4+T4ml+noII+akG1+qf6Y+S6tW
https://paperpile.com/c/SDT9Uy/3w0U+eVFf+7t1D+fLvK
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1.2. Pharmacological and computational methodologies 

GPCRs are the targets of more than 40% of food and drug administration (FDA)-

approved drugs; hence, they are the most intensively studied protein family, which has 

led to the development of a wide array of biological and computational methods to study 

GPCRs [35,923]. Over the years high-throughput screenings (HTS) in vitro and in silico 

have been applied to screen clinically relevant GPCRs, and these methods still are first-

line drug discovery tools [924].  

1.2.1. Pharmacological methods used to study G protein-coupled receptors 

Pharmacological/biological experiments typically characterize either binding properties 

of a ligand bound to its target protein or measure a functional response within a biological 

context. Affinity, potency and/or efficacy can be determined.  

The affinity describes the strength of the physical interaction between ligand and 

receptor, which is expressed as KD (or Ki) value, defined as the equilibrium constant that 

describes the concentration of a ligand required to occupy 50% of the available target 

binding sites [925]. Affinity (or binding affinity) is hereby independently of the ligand’s 

function, e.g. whether it activates or inactivates the target receptor. KD can be determined 

directly from saturation type ligand-binding experiments using radioisotope- or 

fluorescence-labeled ligands [925]. Given a functional assay system, the potency 

describes the required concentration for a half-maximum response of a ligand at its 

target, expressed as EC50 (agonist effect, activating response) or IC50 (antagonist effect, 

inhibiting response) [926]. The maximum effect of an agonist/activating response in a 

functional assay system is described as efficacy and is expressed as the Emax value, 

which is an absolute value dependent on the assay-specific readout, for example, 

fluorescence intensity or percentage relative to a reference such as the endogenous 

agonist [927]. Such functional assays determine potency and efficacy of a ligand by 

measuring the response of a biological system following the stimulation of inhibition of 

the target GPCR. Commonly used pharmacological assays determine responses of 

receptor activation or blockade in cells by quantifying second messenger concentration, 

for example, cAMP accumulation or intracellular calcium mobilization. In addition, more 

recent assay systems use artificial probes that do not occur in nature, such as effector 

proteins or fluorescent tags, allowing 1:1 indirect measurement of the pathway activated 

(or inhibited) by the target GPCR. 

This chapter describes the principles behind the 
applied methods in this study. The chapter is 
divided into two sections: Pharmacological and 
computational methodologies 
______________________________________ 

https://paperpile.com/c/SDT9Uy/pBKj+BfI1
https://paperpile.com/c/SDT9Uy/Xt4e
https://paperpile.com/c/SDT9Uy/nMk1
https://paperpile.com/c/SDT9Uy/nMk1
https://paperpile.com/c/SDT9Uy/QE0o
https://paperpile.com/c/SDT9Uy/F7xJ
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1.2.1.1. β-arrestin recruitment assay      

In this study, the β-arrestin recruitment assay was a useful tool for detecting GPCR 

activation after ligand stimulation. β-arrestin recruitment relies on β-arrestin biosoners, 

which are based on BRET technology, as well as enzyme complementation [928]. All 

assay systems require modification at the receptor (C- or N-terminus), such as insertion 

of tags, for example, enzyme fragments, luciferases, fluorescent tags, and many more 

[929–935].  

The β-arrestin recruitment assay system PathHunter® developed by Eurofins 

DiscoverX® (Fremont, CA, USA, https://www.discoverx.com/arrestin, accessed on 10 

July 2023, Figure 3) is based on enzyme fragment complementation of β-galactosidase 

[936]. The enzyme β-galactosidase is split in two parts, the Enzyme Acceptor (EA), which 

is fused to the  β-arrestin protein and the ProLink (PL), which is fused to the C-terminus 

of receptor of interest [936,937]. EA and PL are inactive as single fragments. Both 

constructs, β-arrestin-EA and GPCR-PL are located on two different plasmids which are 

transfected to Chinese Hamster Ovary (CHO) cells (Figure 4). To ensure receptor 

expression antibiotic selection is then applied.  

In the life cycle of GPCRs, the binding of a ligand leads to activation of the GPCR [938]. 

The receptor undergoes several conformational rearrangements, thus enabling space 

from the intracellular side for the trimeric G protein to bind [938]. Aside from the 

dissociation of the G protein into its three subunits alpha, beta and gamma, GPCRs are 

also able to be silenced by β-arrestin proteins [939,940]. Binding of β-arrestin leads to 

desensitization of the GPCRs [940]. 

With regards to the β-arrestin recruitment assay, this step assembles a fully active  β-

galactosidase. The active enzyme is then able to catalyze hydrolysis of its 1,2-

dioxethane substrate, which is added to the cells together with a reaction buffer, creating 

a chemiluminescent signal [941]. 1,2-dioxetane substrates emit visible light upon 

enzyme-catalyzed decomposition and are extremely sensitive as a result of low 

background luminescence coupled with high-intensity light output [941]. The energy for 

light emission is generated upon dioxetane degradation, whereas fluorescence requires 

an external light source for excitation energy, which must be filtered to discriminate the 

fluorescent signal. In addition, the reaction buffer contained an enhancer that amplified 

the chemiluminescent light signal. Hence, measured chemiluminescence or activity of 

the β-galactosidase correlates with receptor activation. 

https://paperpile.com/c/SDT9Uy/U7Bp
https://paperpile.com/c/SDT9Uy/4fzf+cTTt+p6kp+MvXs+Ex5j+VH9K+NUQI
https://paperpile.com/c/SDT9Uy/ONXn
https://paperpile.com/c/SDT9Uy/ONXn+jKz7
https://paperpile.com/c/SDT9Uy/FGBc
https://paperpile.com/c/SDT9Uy/FGBc
https://paperpile.com/c/SDT9Uy/WJQ4+czWr
https://paperpile.com/c/SDT9Uy/czWr
https://paperpile.com/c/SDT9Uy/nEJm
https://paperpile.com/c/SDT9Uy/nEJm
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Figure 3. Assay principle of the Pathhunter β-arrestin recruitment assay by Eurofins DiscoverX®. A: Internalization of 
GPCRs by β-arrestin. B: Assay principle (https://www.discoverx.com/technologies-platforms/enzyme-fragment-
complementation-technology/cell-based-efc-assays/protein-protein-interactions/gpcrs-b-arrestin-en, accessed August 
24th, 2023). 

 

 

Figure 4. Creating a cell line for Pathhunter β-arrestin recruitment assay and assay principle short by Eurofins DiscoverX® 
(https://www.discoverx.com/technologies-platforms/enzyme-fragment-complementation-technology/cell-based-efc-
assays/protein-protein-interactions/gpcrs-b-arrestin-en, accessed August, 24th, 2023). 

 

1.2.1.2. Fluorescence Resonance Energy Transfer (FRET) 

FRET has been shown to effectively detect molecular interactions between proteins at a 

cellular level [942]. Detecting relevant PPIs through in vitro and in vivo methods have 

been further developed [943].  

FRET was initially discovered by the French physicist Jean Perin 1932 [944] and further 

developed later by the German scientist Theodor Förster in 1948 [945]. FRET is a 

process where an excited fluorophore molecule (donor) transfers its energy in the form 

of a photon non-radiatively to another fluorophore partner (acceptor) [946]. In order for 

this transfer to occur, donor and acceptor molecules have to be <10 nm close to each 

other, the emission spectrum of the donor needs to have sufficient overlap with the 

absorption spectrum of the acceptor and the emission and absorption dipole moment of 

both, donor and acceptor must not be perpendicular [942,946]. The amount of FRET 

https://www.discoverx.com/technologies-platforms/enzyme-fragment-complementation-technology/cell-based-efc-assays/protein-protein-interactions/gpcrs-b-arrestin-en
https://www.discoverx.com/technologies-platforms/enzyme-fragment-complementation-technology/cell-based-efc-assays/protein-protein-interactions/gpcrs-b-arrestin-en
https://www.discoverx.com/technologies-platforms/enzyme-fragment-complementation-technology/cell-based-efc-assays/protein-protein-interactions/gpcrs-b-arrestin-en
https://www.discoverx.com/technologies-platforms/enzyme-fragment-complementation-technology/cell-based-efc-assays/protein-protein-interactions/gpcrs-b-arrestin-en
https://paperpile.com/c/SDT9Uy/Uw1H
https://paperpile.com/c/SDT9Uy/nUOl
https://paperpile.com/c/SDT9Uy/yDkE
https://paperpile.com/c/SDT9Uy/yU03
https://paperpile.com/c/SDT9Uy/ixLZ
https://paperpile.com/c/SDT9Uy/Uw1H+ixLZ
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events is then expressed as FRET efficiency, which is described as the fraction of the 

photons transferred to the acceptor [942,946]. FRET therefore is highly sensitive to the 

distance between donor and acceptor dipoles and suitable for detecting PPIs, aside from 

also being able to detect conformational changes, intracellular ion concentrations and 

enzyme activity, basically all events that lead to changes in molecular proximity [947–

949]. Another advantage of FRET is that it can be performed optically in live cells in a 

non-destructive and minimally invasive way [949]. Selecting two fluorophores are the key 

to the high performance of biosensors in living cells [947,950]. Several FRET-pairs have 

been described such as cyan fluorescent protein (CFP) and yellow fluorescent protein 

(YFP), green fluorescent protein (GFP) and red fluorescent protein (RFP), far red and 

infra-red fluorescent protein (FFP-IFP) and many more as well as multicolor pairs [947]. 

One of the most popular FRET pairs is CFP-YFP [950,951]. This pair has been 

previously described to have a strong spectral overlap for recording FRET events and 

provides powerful insights into kinetics and mechanisms of associations and 

conformational changes of GPCRs in live cells [952–954]. 

To date, two measurement categories have been developed to quantify PPis in the form 

of FRET changes: (1) direct methods, which directly correlate changes in fluorescence 

intensity, such as sensitized emission methods and polarization-resolved FRET; (2) 

indirect methods, which involve measurements of FRET efficiency in different states, 

such as spectral imaging, acceptor photobleaching, and fluorescence lifetime imaging 

FRET [947]. 

In this study, we utilized two methods: the sensitized emission method and acceptor 

photobleaching (Figure 5). 

With the sensitized emission method acceptor fluorescence can be detected using donor 

excitation (Da) [942]. This method can be carried out on a conventional wide-field 

confocal microscope, but recorded FRET intensities require normalization [943]. This is 

necessary due to secondary effects like fluorescence of the acceptor can be induced 

inadvertently by light intended to excite the donor or bleeding of donor emission into the 

acceptor emission channel [943]. 

For each donor and acceptor channel the changed in the intensities of the donor at the 

donor emission (Dd), the acceptor at the acceptor emission (Aa), and the acceptor at the 

donor emission (Da) are recorded and lastly the FRET signal is corrected (FRETcorr, 

(Equation 3)) [955]. Using the correction factors (CoA and CoB, (Equation 1), 

(Equation 2)) and the corrected FRET intensities (FRETcorr) the overall FRET efficiency 

(Equation 4) can then be determined.  

 

CoA = Da ACCEPTOR/Aa ACCEPTOR    (1) 

CoB = Da DONOR/Dd DONOR     (2)    

FRETCORR= Da FRET − (Dd FRET x CoB) − (Aa FRET × CoA) (3) 

https://paperpile.com/c/SDT9Uy/Uw1H+ixLZ
https://paperpile.com/c/SDT9Uy/i2XW+sDcr+GpbO
https://paperpile.com/c/SDT9Uy/i2XW+sDcr+GpbO
https://paperpile.com/c/SDT9Uy/GpbO
https://paperpile.com/c/SDT9Uy/gqoV+i2XW
https://paperpile.com/c/SDT9Uy/i2XW
https://paperpile.com/c/SDT9Uy/Mvqs+gqoV
https://paperpile.com/c/SDT9Uy/agYk+XUZ7+XJ5E
https://paperpile.com/c/SDT9Uy/i2XW
https://paperpile.com/c/SDT9Uy/Uw1H
https://paperpile.com/c/SDT9Uy/nUOl
https://paperpile.com/c/SDT9Uy/nUOl
https://paperpile.com/c/SDT9Uy/qXmh
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FRET EFFICIENCY [%]= (FRET CORR / Dd FRET) × 100 (4)   
   

The acceptor photobleaching method measures the increase in donor fluorescence after 

complete destruction of the acceptor fluorescence by laser-bleaching [942]. The signal 

of the donor fluorescence is then un-quenched by the spectral overlap of the acceptor 

spectrum and can therefore be detected [943]. Images are taken in donor and acceptor 

channels simultaneously before and after the bleaching and FRET efficiency is then 

calculated by subtracting the donor emission before bleaching (IB) from the donor 

emission after bleaching (IA) (Equation 5).  

 

FRET EFFICIENCY [%] = (IA − IB) × 100/ IA   (5) 

 

 

Figure 5. Principle of FRET sensitized emission method (left) and acceptor photobleaching (right). 
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1.2.1.3. Western Blot 

Western blotting is a technique to separate and identify proteins based on their molecular 

weight by gel electrophoresis [956,957]. [956,957]. A given protein sample was loaded 

onto a gel and proteins were separated by electrophoresis. For this protein, samples 

were diluted in a loading buffer containing glycerol for the samples to sink to the wells of 

the gel and a tracking dye, which is usually bromophenol blue, in order to track the 

progress of the run. Furthermore, samples are usually heated before dilution with a 

loading buffer to denature the proteins and retain sulfide bridges [958]. The SDS-PAGE 

method, which is the most common form of western blotting, makes use of the detergent 

sodium dodecyl sulfate (SDS) that is added to the loading buffer, which strongly binds to 

proteins and then gains a negative charge in proportion to their molecular size [959,960]. 

A negative charge is required for proteins to be pulled through a polyacrylamide gel by 

electrophoresis (PAGE) [959]. In addition, a negative charge was maintained, even when 

the samples were boiled for denaturation. 

The proteins are then separated by their molecular size, which is determined by the 

distance they can travel through the gel, where smaller proteins can travel quickly [960]. 

In addition, one SDS molecule can bind two amino acids when SDS is present in 0.1% 

of the protein sample [961]. Western blot gels consist of two different types of agarose 

gels: stacking and separating [958]. The stacking gel had a lower polyacrylamide 

concentration and was slightly acidic, allowing the sample to form thin, sharply defined 

bands [958]. The separating gel (lower gel) is more basic and has a higher 

polyacrylamide concentration; hence, the gel pores are narrower [958]. Once the 

proteins are loaded on the gel, the negative charge allows them to travel towards the 

positive electrode when a voltage is applied. 

Electrophoretic transfer was applied after running the gel, where an electric field was 

used to elute proteins from the gels and transfer them to membranes [962,963]. To 

achieve this, the membrane and gel were placed together with a filter paper between the 

two electrodes. A high-voltage current is the driving force for the proteins to migrate from 

the gel to the membrane due to the negative charge of SDS. 

After transfer, Ponceau S staining was used to visualize its success [963,964]. Ponceau 

S (also known as Acid Red 112) is a bisazo dye used for reversible staining of proteins 

on membranes. It was first described by Salinovich and Montelaroused in 1986 as an 

alternative to Coomassie Brilliant blue staining [965]. Apart from Ponceau S and 

Coomassie brilliant blue, there are many more dyes with different binding properties and 

detection limits [964]. With Ponceau S staining and a suitable protein ladder, the size of 

the proteins can already be determined. 

However, to identify a particular protein of interest with the corresponding band size, 

antibody staining is usually the method of choice for western blotting. Before antibodies 

can be applied to proteins on the membrane, the membrane must be blocked to prevent 

nonspecific binding of the antibodies [958]. Usually, blocking is performed with 5% 

bovine serum albumin (BSA) or non-fat dried milk powder diluted in Tris-buffered saline 

buffer with Tween20 buffer, so the background signal is reduced [958,966]. After 

blocking and washing the membrane the antibody staining can be carried out. First, the 
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primary antibody is applied, which directly binds to its specific antigen (target epitope), 

f.e. against the human D2R [967,968]. Then, the secondary antibody is applied that 

recognizes the primary antibody [968]. Usually secondary antibodies are conjugated with 

fluorescent molecules for detection. An alternative to fluorescent secondary antibodies 

are ones that catalyze a chemical reaction leading then to chemiluminescence. Typically 

it is an oxidation reaction of a substrate such as luminol, which is oxidized by enzymes 

like the horseradish peroxidase (HRP) [969,970]. The oxidation then produces light as a 

by-product [969]. The signal is captured on a film or an imager, and it is produced 

corresponding to the position of the target protein.  

1.2.2. Computational approaches to study G protein-coupled receptors  

1.2.2.1. Homology modeling 

 

GPCRs have been previously characterized by a fraction of three-dimensional (3D) 

information available. For many years, structural information has only been available for 

rhodopsin, whose atomic resolution was solved in 2000 [971–973]. While rhodopsin was 

crystallized in its native state, the first ligand-bound receptor, β2AR, was solved in 2007 

(Figure 6) [974,975]. 

 

Quality of the template structure 

Major progress in GPCR nuclear magnetic resonance-spectroscopy (NMR-spec), X-ray 

crystallography (X-ray) and cryo-electron microscopy (cryo-EM) has led to the resolution 

of many additional receptor structures, which can be viewed and downloaded from the 

Protein Data Bank (PDB) (www.rcsb.org) [971,976]. Initially, most structures were solved 

by X-ray crystallography; however, recent advances in cryo-EM have made GPCR 

tractable targets [976]. According to GPCRdb, from 988 deposited structures, 462 were 

obtained by X-ray crystallography, whereas 524 were obtained by cryo-EM (May 2023) 

[977,978].  

In addition, the first ligand-bound structures of GPCRs are mainly in antagonist-bound 

or-inactive states [976]. Crystallization of the fully active states of GPCRs, usually 

coupled to a G protein or β-arrestin, is required [976]. However, GPCR-G protein/β-

arrestin complexes are extremely flexible and have difficulties forming crystal contacts 

[118,976,979]. Alternative strategies for X-ray crystallography to obtain active GPCR 

structures include the application of conformation-specific nanobodies and C-terminal 

peptides of the Gα subunit or mini-G proteins [980–985]. Such structures are highly 

informative for studying receptor conformations but are rather difficult to obtain. In 

contrast, cryo-EM has been proven to be an optimal technique for resolving GPCR-G 

protein/β-arrestin complexes [976]. New electron microscopes with higher resolution, 

direct electron detectors and advanced image processing software have significantly 

improved this method [976,986–989]. Hence, the first GPCR structure solved using cryo-

EM was published in 2017 [990].  

 

The aim of these methods is to obtain a 3D-molecular structure from a crystal. 
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For X-ray these crystals are then exposed to an X-ray beam, which then diffracts. The 

resulting diffraction patterns are catched by a detector and are then processed using 

Fourier-Transformation. The symmetry and size of the repeating patterns and spots 

determines the intensity, which in turn then can be used to calculate a map of the electron 

density [991,992]. Various adjustments can be used to improve the quality of the electron 

density map until it carries sufficient information to allow the building of the molecular 

structure following its protein sequence. The map and structure are then combined to 

more accurately adopt a thermodynamically favored conformation of the resulting 3D-

structure [991,992]. These crystals contain a high concentration of purified protein. 

For NMR-spec, the protein was purified, placed in a strong magnetic field, and then 

probed with radio waves [993]. The local magnetic fields around the atomic nuclei 

change the resonance frequency, providing information on the electronic structure of the 

respective atom [994,995]. The resonance of electromagnetic radiation in a magnetic 

field is analyzed, and atoms that are bonded together give a characteristic local 

conformation. Together, these results provide a list of close atomic nuclei and restraints 

that are used to build a model of a protein that shows the location of each atom. Areas 

with fewer restraints correspond to flexible parts of the protein [127]. 

 

Cryo-EM, especially single-particle cryo-EM, has revolutionized the structure 

determination of large protein complexes [996,997]. Unlike X-ray crystallography, the 

protein probe does not have to be crystallized; rather, it is flash-frozen and can therefore 

be examined in near-native states [998]. This is a huge advantage over X-ray 

crystallography, where the resolution is limited by the purity of the crystal and coaxing 

GPCRs into a crystalline state can be very time-consuming [999]. The frozen proteins 

were prepared in a water-free environment and imaged several times with an electron 

microscope under conditions below -150°C. Computational alignment and averaging of 

the images led to 3D reconstruction of the protein [978,1000,1001]. Despite the ease of 

preparing protein samples for cryo-EM, the resolution of the structures has not been as 

high as that of structures obtained by X-ray crystallography, with resolutions around 3–

4 Å, compared to 1.5 Å for X-ray crystallography [976,1002]. However, single-particle 

cryo-EM has been reported to resolve GPCR complexes reaching atomic resolutions up 

to 1.2 Å [997,1003,1004]. 

  

For some use cases, it might be rational to check the B-factor for a given protein 

structure. The B-factor, also known as the Debye-Waller factor, is used to describe the 

attenuation of X-ray or neutron scattering through thermal motion (oscillation) that occurs 

during protein crystallography [1005]. For proteins, this can be seen as a metric to 

identify the flexibility of atoms, side chains, or even whole regions, and are refined 

isotropically under the assumption that oscillation amplitudes are identical in all 

directions [1005,1006]. B-factor information can be helpful for sequence-based 

predictions of local protein flexibility [1007–1012]. Finally, an increasing number of 

structures can be determined by nuclear magnetic resonance spectroscopy [1013]. 

To date, only 140/800 experimentally determined structures of known human GPCRs 

have been published (January 2023) [1014]. Without a published structure as a starting 

point, the generation of homology models is required. Hence, the resolution of the 

template structure (Å), particularly around a potential binding pocket, is crucial for further 

model construction and assessment. 
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Constructing a homology model 

Given this knowledge gap, homology modeling is an important tool for studying the 

targets of interest in silico. This methodology uses a template 3D-structure, in which the 

sequence of the target receptor is modeled onto its backbone coordinates [972,1015]. If 

the sequence similarity is sufficiently high (minimum of 20-30%), a single template 

structure is sufficient for target structure prediction; however, this is still prone to fail to 

generate accurate models [972]. The use of multiple templates has become increasingly 

popular for sequence identities below 50% for any template [972,1016–1020]. 

Furthermore, the availability of receptors co-crystallized with different ligands, as well as 

G proteins or β-arrestin, increases the quality of homology models. In addition, the 

resolution of the template structure is crucial. If the electron densities around an 

estimated binding pocket are not well resolved, major drawbacks can occur in structure-

based drug design [976]. Amino acid sequences of the candidate templates are aligned 

with their target sequences, since the transmembrane regions, including HX8, are highly 

conserved for GPCRs, so the best possible selection can be made. In contrast, higher 

sequence variability is observed for the extra- and intracellular regions; hence, sequence 

identity does not necessarily have to be the highest in these regions [971,1021]. Before 

subjecting PDB files to structure-based sequence alignments, for example, by 

ClustalOmega (EMBL-EBI, Cambridgeshire, UK) [1022], the files should be edited, in 

particular, removing all components apart from the receptor structure (and ligand), since 

they are not relevant for homology modeling. All the records pertinent to these 

components were deleted. Once an alignment is performed, there exist several software 

and web servers that then construct the target sequence onto the 3D-coordinates of the 

template structures, such as Robetta and Rosetta[1023–1025], MODELLER 

[1026,1027], and commercial programs such as Molecular Operating Environment 

(MOE; Chemical Computing Group) or Yet Another Scientific Artificial Reality Application 

(YASARA) [1028,1029]. Apart from alphaFold [1030], other ab initio solutions exist where 

the 3D-coordinates of a template are not required anymore [1031,1032]. Especially 

alphaFold was a major breakthrough in structure prediction as it is an artificial intelligence 

system that has access to the largest protein sequence data bank. Hence, it can directly 

predicts the 3D coordinates of all heavy atoms for a given protein using the primary 

amino acid sequence and aligned sequences of homologues as inputs [1030]. 
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Later on the AlphaFold Protein Structure Database was released (AlphaFold DB, 

https://alphafold.ebi.ac.uk) [1033] that is an unprecedented collection of high-accuracy 

protein-structure predictions powered by AlphaFold V2.0 of DeepMind, containing 

360,000 predicted structures across 21 model-organism proteomes. It is reported to 

cover most of representative sequences from the UniRef90 data set (over 100 million) 

[1033]. 

 

It should also be noted that for non-conserved regions, such as loops, refinement of 

these regions would improve the quality of the model, where AlphaFold has already 

elucidated many of such regions. In addition, de novo modeling or omission of the loop, 

which is usually performed for ICL3, are viable solutions [971]. Furthermore, conserved 

disulfide bridges within the receptor were added during model construction. Usually, 

minimums of approximately 100 models are required to select the most accurate 

candidate. 

 

Scoring 

Having constructed several potential homology models for the target of interest, the 

question of how to select the most accurate candidate based on qualitative methods, 

such as scores, remains. Despite relying on the built-in metrics of open-source and 

licensed software, visual inspection is still one of the best approaches for selecting the 

best homology model [1034–1036]. In our experience, a combination of different metrics 

can provide adequate models[ 1037]. For instance, the combination of MODELLER’s 

metrics [1038], ProSA-web [1039,1040] and ProQ [1041,1042] has shown to be a 

Figure 6. Workflow of creating a homology model. 
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reliable combination to validate homology models and has been followed in this work. 

MODELLER’s built-in metric, Discrete Optimized Protein Energy (DOPE) [1043], and 

initial visual inspection help remove incorrect models before they are processed through 

ProSA-web and ProQ. Generally, all maps aim to map the free energy of a given protein. 

Because the goal is to generate a homology model with the west free energy, it is 

valuable to know what each metric considers as the lowest free energy achievable, so 

that it can then be evaluated as to the importance of the absolute value. 

 

DOPE accounts for the finite and spherical shape of native protein states, which 

generally have the lowest free energy[1043,1044]. It calculates the statistical potential 

based on the improved reference state of the non-interacting atoms. This estimation of 

statistical potential is derived from the negative logarithm of the joint probability density 

function of a protein [1043]. This potential list is also distance-dependent on an atomistic 

level without recourse to statistical mechanics and the assumption of the Boltzmann 

distribution [1043]. Furthermore, this reference statistical potential solely depends on the 

size of the native structures, while it should be noted that the statistical potentials 

commonly used rely only on atomic distances [1043]. 

 

ProSA-web calculates the z-score with values around −4 are considered 

acceptable[1040]. In addition to the z-score, problematic regions were highlighted in a 

3D viewer, where the output model was represented. For ProSA, Cα potentials, which 

are knowledge-based, have the advantage that low-resolution input can also be 

evaluated through a web service [1045]. Using the coordinates of the input protein, the 

distance-based pair potential estimates the total energy (z-score) [1046,1047]. Z-scores 

outside the characteristic range for native proteins are considered faulty models. This 

comparison of particular values is displayed in an additional plot that shows the z-scores 

of all experimentally solved protein structures from the PDB, where the different sources 

(X-ray and NMR) are color-coded [1040]. Furthermore, another plot of residue energies 

is output, which is calculated based on the general solvent exposure of protein residues 

[1048]. It should be noted that the z-score is usually considered a globular protein; 

therefore, for GPCRs, the z-score is not the most accurate metric [1040,1046]. 

 

 

ProQ analysis provides two scoring metrics, LGscore and MaxSub, and operates based 

on a neural network [1038,1049]. For LGscore values > 3, MaxSub values > 0.5 are 

typically considered as “good.” 

The LGscore detects the most significant non continuous segment of a model after 

structural superposition [1050]. Similarity is measured using the negative log of a set of 

structural P-values defined by Levitt and Gerstein 1998 [1050]. 

 

Sstr =  M(∑1/(1+(dij/d0)2) - (Ngap/2))   (6)  

According Levitt and Gerstein, a structural P value (= significance of similarity, Sstr, 

Equation 6), where M is equal to 20, dij is the distance between residues i and j, d0 is 

equal to 5 Å and Ngap is the number of gaps in the alignment. For calculating the entire 

set, the distribution for collection of structural alignments of unrelated proteins Sstr 
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dependent on the alignment length was calculated [1038,1050]. From this distribution 

the P-values dependent on Sstr could be determined.  

 

MaxSub also determines the similarity of a model to its corresponding experimental 

structure in the range of 0 to 1 (0= completely wrong, 1= perfect model), considering Cα 

atoms [1049]. This range is thereby correlated with the normalization of the size of the 

largest “well-predicted” subset and uses a variation of a formula by Levitt and Gerstein 

[1049,1050]. MaxSub displays the maximum number of predicted residues that can be 

superimposed over an experimental structure within a given threshold [1049]. Hence, 

the limiting number of the residues is the factor as well as the threshold which represents 

the distance between residue pairs that is allowed after superposition and usually set to 

3.5 Å [1049]. For more details on the algorithm, please refer to Siew et al. [1049].  In 

addition, ProQ allows the addition of secondary structure information generated by 

solutions such as PSIPRED to improve prediction accuracy [1051]. Finally, the root-

mean-square distance (rmsd) between two given structures can also be used to quantify 

the similarity between two structures [1038]. 

 

1.2.2.2. Understanding proteins in 3D 

The difference between molecular docking and simulations 

Molecular docking is the computational modeling of two interacting molecules with the 

aim of predicting their best orientation. The goal of docking is to explore and optimize 

the behavior of the two molecules of interest in 3D, which can either be two proteins 

(PPIs) or small molecules, or ligands with their target protein, to reduce the total free 

energy of the system [1052,1053]. Protein-ligand docking has been particularly helpful 

in drug design by predicting the binding mode and affinity of drugs within the binding site 

of a protein (receptor) [1054]. The earliest reported docking methods were based on the 

lock-and-key assumption, where both entities were treated as rigid, and their affinity was 

directly proportional to the geometric fit between their shapes (Figure 7A). To assess 

meaningful interactions between the two molecules of interest, the maximizing attracting 

and minimizing repulsive forces are mathematically determined. To define the range of 

interactions and relations that either protein-protein or protein-ligand complexes can 

undergo, empirical rules based on physical principles such as van der Waals forces and 

hydrogen bond lengths are applied to predict the potency and type of signal (agonism 

and antagonism) [1055]. Finally, geometric algorithms are applied to generate a 3D 

representation of the binding interface, which can be used to calculate binding 

conformations and binding affinities. Typically, the protein conformation is treated as 

fixed with the defined binding site, the ligand is often treated as flexible, and the protein 

is assumed to be rigid. For protein–protein docking, both are treated as semi-flexible, 

with the backbone treated as rigid and only allowing the side chains to be flexible. 

 
 

Molecular Dynamics simulations (MDs) are used to study the dynamic 

behavior/movement and interactions as a function of time. MDs allow the exploration of 

protein flexibility, conformational changes, and equilibration of the defined molecular 

system. All entities of the system (ligands, proteins, water, lipids, etc.) are treated as 
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flexible[1056]. All atoms are allowed to interact for a given fixed period of time, and the 

created trajectories of the atoms are determined by numerically solving Newton’s laws 

of motion (classical mechanics) [1054,1057,1058]. Such simulations typically use a full 

atomistic 3D representation of the molecules, can provide detailed insight into protein 

dynamics and structural changes, and can be useful for interpreting experimental 

results[1059]. In summary, molecular docking focuses on predicting ligand-binding 

modes and affinities within a fixed protein structure, while molecular simulations aim to 

understand the dynamic behavior and interactions of proteins by simulating their motions 

and exploring various conformations over time (Figure 7B). 

 

Since both methods involve (i.) 3D representations of proteins and molecules and require 

(ii) definition of molecular interactions at an atomistic level, such as potential energies 

and the use of mechanical force fields, we will briefly introduce these determinants before 

covering the entire process of molecular docking and MD simulation: 

 

 
 

Protein representation 

Computationally mimicking proteins and molecules is crucial for creating realistic 

molecular complexes of biological protein functions, however classical all-atom 

representations are still limited by the algorithmic efficiency and computing power [1060–

1064]. The representation of all atoms is expensive because it requires the calculation 

of the interactions between all atom pairs that grow rapidly (n2) with the number of atoms.  

Hence, coarse-grained protein representations have been developed as a practical 

alternative, which is also part of the Rosetta docking search algorithm used in this study, 

which previously helped to understand protein folding in general [1065–1072]. Coarse-

grained protein models assume various levels of a reduced representation of their chains 

[1066,1067,1073]. The main purpose of these models is to reduce the number of degrees 

of freedom [1069]. However, as we were concerned with key details of the relationship 

structure function, these were not used in this study. 

Figure 7. Basic principles of molecular docking (A) and molecular dynamics simulations (B). 
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Early computational approaches by Levitt, Warshel and Karplus aimed to design a 

simplified representation of a protein, where spheres (so-called “pseudo-atoms'' or 

“beads” would represent amino acids for the structural characterization of lysozyme and 

later turned out to be the first coarse-grained model for a protein system (pancreatic 

trypsin inhibitor) [1070,1074–1076]. From these simulations, the so-called “Levinthal 

paradox” was formulated [1077], which describes that the protein folding process has a 

relatively small number of conformations. For instance, in their protein model, each 

residue consisted of only two pseudo-atoms: the Cα atom and the centroid of the side 

chain. The United pseudo-atoms were then placed at the centers of their average 

conformations to mimic the side chains (apart from glycine). The angle between three 

consecutive Cα was assumed to be constant and planar and equal to the statistical 

average known from familiar protein structures. Furthermore, non-bonded interactions 

occurred only between the side chains. Hence, torsion angles for the central pseudo-

bonds between four consecutive Cα atoms were considered, which reduced the degrees 

of freedom per residue to 1 [1069,1076]. The Lennard-Jones potential describes the 

interactions between united atoms. The sampling scheme was described using simple 

Brownian dynamics (BD). They demonstrated with their work that the packing and 

pairwise interactions of side chains are the driving forces leading to specific folded 

structures, among other factors [1078]. Levitt, Warshel, and Karplus received the Nobel 

Prize in Chemistry in 2013 [1076]. Moreover, many of these principles are now well-

established quantum mechanics/molecular mechanics (QM/MM) methods [1074]. 

 

Definition of molecular interactions on an atomistic level and force fields 

At the atomic level, molecular interactions refer to the forces and interactions between 

individual atoms or groups of atoms within a molecule, or between different molecules. 

Such interactions are covalent and non-covalent, consisting of van der Waals forces, 

electrostatic effects, π-effects, and hydrophobic effects [1079,1080].  In the context of 

MD, a force field (FF) is a mathematical expression describing the energy of a system 

depending on the coordinates of its particles (atoms) [1081]. This allows for the 

calculation of the potential energy surface of the system and the calculation of forces 

and energies occurring between the interacting atoms with respect to their coordinates 

[1082]. Force fields provide a framework for calculating the potential energy and forces 

acting on each atom based on their interactions with neighboring atoms. The FF 

parameters (chosen energy functions) were derived from experimental physics, chemical 

data, quantum mechanical calculations, or both. Such parameters may include 

equilibrium bond lengths, bond angles, dihedral angles, force constants, van der Waals 

parameters, partial charges, and other terms that describe specific interactions, such as 

hydrogen bonding or metal-ligand coordination [1083,1084]. Here again, it can be 

distinguished between all-atom force fields, which provide parameters for every type of 

atom in a system, or coarse-grained potential, which omits certain chemical details, 

depending on the purpose [1069]. 

An FF typically consists of the interatomic potential energy (U) defined by a set of 

parameters (Equation 7), where the bonded terms for interactions are covalent bonds, 

and the non-bonded terms are described by long-range electrostatic and van der Waals 

forces. 
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U =  ∑bonded - ∑non-bonded   (7)  

 

The bonded terms for interactions are covalent bonds, and the non-bonded terms are 

described by long-range electrostatic and van der Waals forces. 

 

Covalent bonds - Intramolecular energy terms  

Covalent bonds are formed when atoms share electrons to achieve a more stable 

electron configuration, leading to atoms holding together within a molecule [1085–1087]. 

Furthermore, covalent contributions carry terms for harmonic energy functions for 

angles, dihedral, and torsions, and do not allow bond breaking [1088]. Each factor is 

described by an individual energy term, which can be expressed as i.) bond energy 

(energy associated with the stretching, bending, or rotation of covalent bonds within a 

molecule), ii.) angle energy (energy associated with the bending or deformation of bond 

angles within a molecule); iii.) torsional energy (energy associated with the rotation 

around a dihedral angle (the angle between two connected bonds) within a molecule)) 

[1089,1090]. 

  

These intramolecular energy terms can be further extended by different descriptions, 

such as “improper torsional” terms, to enforce the planarity of aromatic rings or amide 

bonds [1083]. In addition, explicit terms for hydrogen bonds were added. For all energies 

described above, the harmonic energy function is usually applied, which describes the 

molecules as a set of atoms that are held together by simple elastic (harmonic) forces 

[1083]. Within the FF, the true potential is replaced by a simplified model (Equation 8). 

 

Vbond = kb *(rij-r0)2   (8)  

 

Where VBond is the potential energy associated with the bond at a given bond length r, kb 

is the force constant, and r0 is the equilibrium bond length, which is the distance at which 

the potential energy is minimum [1083,1091]. Therefore, the harmonic potential 

represents a simple oscillator. When the bond length deviates from the equilibrium value, 

the potential energy increases quadratically, reflecting the restoring force that pulls the 

atoms back toward the equilibrium position. Consequently, in a bond, the energy may 

oscillate between the kinetic energy of the atom mass and the potential energy stored. 

The angle energy is defined for each triplet of the bonded atoms (Equation 9). 

 

VAngle = kθ *(θijk-θ0)2   (9) 
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VAngle is the potential energy associated with a given force constant kθ with an equilibrium 

angle θ0. The torsional energy was set for four sequentially bonded atoms, and the 

torsion angle ϕ describes the angle of rotation of the covalent bond between two atoms, 

n describes the periodicity and δ is the phase shift angle (Equation 10). 

 

VDihed = kϕ *(1+cos(n-δ))+...   (10) 

 

Non-covalent bond - Intermolecular energy terms 

 

Noncovalent interactions are relatively weak compared to covalent bonds but are 

essential in determining the molecular structure and properties. These can be subdivided 

into van der Waals forces and electrostatic interactions. Van der Waals forces arise from 

temporary fluctuations in electron density, resulting in attractive forces between atoms 

or molecules, and do not result from chemical electronic bonds, such as ionic or covalent 

bonds [1092,1093]. Van der Waals interactions are formed if no other forces are present 

[1094]. The Lennard Jones potential is usually a suitable approach to describe the van 

der Waals forces as an energy term in FF [1095,1096]. The Lennard-Jones potential 

captures the general shape and behavior of van der Waals interactions, with the 

attractive term dominating at longer distances and the repulsive term becoming 

significant as atoms get closer to each other (Equation 11) [1097]. 

 

V(r) = 4ε[(σ/r)12 - (σ/r)6]   (11) 

 
V(r) represents the potential energy between the two atoms as a function of the 

separation distance (r). ε represents the depth of the potential energy well, which 

determines the strength of the van der Waals interaction, whereas σ represents the 

distance at which the potential energy is zero, also known as the van der Waals radius. 

The term (σ/r)^12 describes the attractive van der Waals forces, while (σ/r)^6 represents 

the repulsive forces. The parameters ε and σ are specific to each atom type and are 

typically obtained by fitting the potential energy surface to the experimental or quantum 

mechanical data. 

Overall, van der Waals interactions are described as weaker than covalent (and ionic) 

bonds; their strength is distance dependent; they are additive and cannot be saturated; 

they have no directional characteristics and are independent of temperature, except for 

dipole-dipole interactions[1098–1102]. 

Molecular dipoles are described in FF with the use of partial charges described by 

Coulombic terms [1103–1105]. Dipole-dipole interactions: Dipole-dipole interactions 

arise from the electrostatic attraction between polar molecules [1106]. These interactions 

depend on the orientation and magnitude of the molecular dipoles and are accounted for 

in force fields through the assignment of partial charges and the use of Coulombic terms, 

which consider the charges and distances between the atoms [1106]. The Coulombic 

terms capture the attractive or repulsive forces between charges (Equation 12). 
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V(r) = k*q1*q2 / r2   (12) 

 

Where V(r) represents the electrostatic potential energy between two charged particles, 

q1 and q2, separated by distance r. k is a constant that depends on the units and system 

of measurement used in the force field. Hence, equally charged atoms repel each other, 

while oppositely charged atoms attract each other.  Electrostatic interactions occur 

between charged atoms, such as ions, and hydrogen bonds [1080,1107,1108]. While 

ionic bonds are formed between full permanent charges, such as Na+ (cation) and Cl- 

(anion), hydrogen bonds are formed between H atoms, basically dipole–dipole attraction 

between a partially positive H atom and a highly electronegative, partially negative atom, 

such as oxygen, nitrogen, or sulfur. 

Representing long-range electrostatic interactions computationally can be challenging 

because of the decreasing coulombic potential with increasing distance. The Ewald 

summation overcomes this gap by electrostatic potential into short- and long-range 

components and uses different techniques to compute each component [1109]. It 

assumes real-space (Vreal, short-range interactions within a specified cutoff distance) 

and reciprocal space (Vrecip, long-range interactions computed in Fourier space) 

contributions to accurately account for long-range electrostatic interactions (Equation 

13) [1110,1111]. Self-energy term that corrects the self-interaction of charged particles 

[1112]. 

 

VEwald = Vreal + Vrecip + Vself   (13) 

 

The Ewald summation is a starting point for molecular dynamics algorithms. To compute 

long-range electrostatic interactions, Particle Mesh Ewald (PME) [1113] and Smooth 

Particle Mesh Ewald (SPME) [1114] are techniques for defining periodic boundary 

conditions [1115]. SPME is one of the most popular long-range algorithms among 

mainstream molecular simulation packages, for example, AMBER [1116] and 

GROMACS [1117,1118]. PME and SPME accelerate the calculation of the long-range 

electrostatic potential of a system by employing a fast Fourier transform (FFT) algorithm 

[1119] and mesh-based representation of the potentials. The PME describes the charge 

distribution of the system on a three-dimensional grid, known as the mesh. The charge 

density on the grid is then transformed into a reciprocal space using FFT. This 

transformation allows for efficient calculation of the electrostatic potential in reciprocal 

space. Subsequently, the potential is transformed back to real space using the inverse 

FFT, and the short- and long-range contributions are combined [1115,1120]. SPME can 

be seen as an improvement over PME, where the issue of grid artifacts is eliminated 

owing to the introduction of a smoothing function [1121,1122]. Furthermore, π–π 

stacking can be a relevant noncovalent interaction [1123]. π–π stacking refers to 

interactions between aromatic systems, where the π orbitals of adjacent aromatic rings 

align and interact. This stacking interaction contributes to the stability of molecular 

assemblies and can be modeled using force field parameters that capture favorable 

aromatic-aromatic interactions [1124]. π-π stacking configurations are sandwiched, 

displaced, or edge-to-face [1080].  Finally, solvent effects can also be mathematically 

described, as they have significant effects on non-covalent interactions. Some FF 
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include explicit solvent models used to generate a generalized description of the solvent 

environment and approximate their effects. 

Types of force fields 

 

Many force fields (FF) available in the literature with different levels of complexity [1083]. 

FFs can be divided into physics-based, knowledge-based statistical, and structure-based 

FFs. The most used force fields in molecular simulations are based on classical 

mechanics, the so-called physics-based FF, and they make certain approximations to 

simplify the calculations. 

 

i.) Physics-based FF // Molecular Mechanics FF 

  

Physics-based FF are empirical models that approximate the potential energy of a 

system based on classical physics principles [1125]. They rely on mathematical functions 

to describe the interactions between atoms and include terms for the bonded and non-

bonded interactions described above. The parameters for these types of FFs were 

derived from the experimental data or QM calculations. Examples of physics-based FFs 

include the empirical conformational energy program for peptides (ECEPP) [1126–1128], 

Molecular Mechanics (MM) FF [1129–1131] Chemistry at Harvard Molecular Mechanics 

(CHARMM) FF [1132–1135], Assisted Model Building with Energy Refinement (AMBER) 

FF [1136–1139], GROMOS FF [1140], and the Universal (UFF) force field[1141], which 

contains parameters for all the atoms in the periodic table [1125]. Many of these force 

fields are continuously evolving and different versions are available [1083]. 

  

ii.) Knowledge-based statistical FF 

Knowledge-based statistical FF, also known as knowledge-based or empirical potential, 

is derived from statistical analyses (probability of a chosen observable) of known protein 

structures and their corresponding experimental data [1142,1143]. Such FF captures the 

statistical tendencies of atom-atom interactions and is developed by analyzing 

databases of protein structures [1144]. Examples for knowledge-based statistical FF are: 

DOPE [1043], CABS [1145], Rosetta [1146], just to name a few examples [1143]. In 

addition, more recent approaches improve the performance of these FF by combination 

with experimental data such as RosettaEPR [1147–1149] 

iii.) Structure-based FF 

Structure-based force fields are a subset of physics-based force fields that specifically 

derive their parameters and functional forms based on their molecular structures and 

electronic properties [1083,1150]. Examples include Density Functional Tight Binding 

(DFTB), which combines density functional theory (DFT) with the computational 

efficiency of MM [1151] and AM1/PM3/PM6, which are all semi-empirical quantum 

mechanical methods based on the neglect of diatomic overlap (NDDO) approximation 

[1152] or Atomic Multipole Optimized Energetics for Biomolecular Simulation 

(AMOEBA), which includes polarization effects, and the Reactive Force Field (ReaxFF), 

which is capable of describing chemical reactions [1153,1154]. 
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For instance, Density Functional Theory (DFT), developed by Walter Kohn, is a QM 

method that can calculate the electronic structure of atoms (and consequently 

molecules) [1155]. It was originally developed in the 1970s and is currently the most 

widely used electronic structure method, for which Walter Kohn received the Nobel Prize 

in 1998 [1156]. DFT provides the possibility of calculating the total energy of a system 

by considering the electron density rather than the wavefunctions of individual electrons, 

as in the Møller–Plesset perturbation theory, which improves the performance of DFT-

based MDs [1157]. 

Molecular docking - the process 

Apart from “classical” molecular docking, for example, docking a small-molecule ligand 

to a target protein, protein-protein docking (PPD) has become an interesting approach 

to study PPIs. The PPD question can be summarized as a prediction of the complex, 

given the structures of the individual proteins, where additional information is available 

[1158]. The introduction of rigid-body docking algorithms by Vakser in the late 1980s can 

be considered an early principle of PPD. Using geometric and energetic estimations, 

searches were performed using shape complementarity [1158]. Usually, a potential 

binding site is required, which is not necessary for protein-protein docking. The binding 

site is defined as the active site of a target protein where a ligand can bind [1159]. Such 

forecasts, as well as the binding conformation of the target of interest, are mes-structure-

based drug designs because the 3D protein structure is used as the basis for designing 

new drugs [1055]. Compared to this approach, ligand-based drug design relies on known 

binders of the target for rational drug design. Moreover, the implementation of artificial 

intelligence has been reported to significantly improve drug design [1160]. 

  

In general, molecular docking programs perform a search in which the conformation of 

the complex is evaluated recursively until the minimum energy is reached, by generating 

many docking poses (searching/sampling step) (Figure 8). This convergence is 

expressed by a scoring function, which is usually ΔG [U total in kcal/mol] and is 

associated with every docked pose (scoring step) [1161–1163]. However, proteins can 

be described as semiflexible oligomers that can form two or three specific shapes, 

depending on their amino acid sequences. These amino acids are linked via covalent 

peptide bonds, which always adopt a trans conformation. This in turn leads to limitations 

in the space and conformation available for the protein backbone. Hence, characteristic 

native 3D protein structures are not only determined by the conformational properties of 

the main chain but also by specific packing and interactions of the side chain [1069]. 

These determinants are considered in molecular docking, and apart from the aim to fit 

molecules together in their minimum energy are certain driving forces, such as 

electrostatic and van der Waals energies, hydrogen bonds, and interactions between 

amino acid side chains [1052,1069,1164,1165]. 
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Search/sampling algorithms for the conformational space 

The search algorithm should create an optimum number of docking poses that represent 

the probable experimental binding modes. Instead of a rigorous search of all possible 

poses between two molecules, several algorithms have been developed to reduce the 

computing time and reasonably access the conformational space between two 

molecules. The search for optimal docking poses involves exploring the conformational 

space of both the ligand and the protein, or two proteins for the case of PPD. Several 

search algorithms have been developed in recent decades to search for potential 

spaces, which consist of all possible orientations of the two interactants [1166]. There 

are two general types of docking: rigid docking, which treats only the ligand as flexible, 

and flexible docking (induced-fit), which also treats the binding pocket residues as 

flexible [1167–1169]. Depending on the type of docking, different search algorithms 

developed for molecular docking can be divided into exhaustive search/shape 

complementarity, Generic Algorithms (GAs), Monte Carlo (MC) methods, docking with 

molecular dynamics, and flexible docking among hybrid and machine learning methods. 

 

Shape complementarity-based searches or matching algorithms [1170–1173] are 

based on molecular shape (geometric) maps, where a ligand is docked into the binding 

site based on shape features and chemical information, such as hydrogen bond donors 

and acceptors or steric surface complementarity [1174]. The ligand is represented as a 

pharmacophore, and new conformations are defined by the distance matrix between the 

pharmacophore and corresponding ligand atoms, following the idea of matching as many 

points as possible. An example of this is DOCK [1175]. In addition, solvent-accessible 

surface area (SASA) is often used to assess the structural complementarity of ligand-

receptor complexes [1176,1177]. 

 

In contrast to matching based on geometry, stochastic methods such as Monte Carlo 

(MC) and genetic algorithms (GA), which randomly modify ligand conformations in 

Figure 8. Workflow of molecular docking. 
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order to position them best possible into an attempted binding pocket [1174], MC 

algorithms generate ligand poses through bond rotation, rigid-body translation, or 

rotation [1178]. The generated conformations were tested using different energy-based 

selection criteria, which were sequentially tested, saved, and further modified to generate 

the next conformation. These iterations proceed until the requested number of 

conformations is generated. Software such as AutoDock [1179] and ParDOCK [1180] 

make use of MC sampling. Regarding protein-protein docking, MC is used in Rosetta 

[1178,1181]. 

  

Genetic algorithms (GA) [1182–1184] are another form of stochastic method derived 

from the Darwin theory of evolution [1174]. They are commonly used to solve complex 

problems by mimicking the principles of evolution such as selection, reproduction, 

crossover, and mutation. For GAs, the ligand is described by its degrees of freedom 

encoded as binary strings (genes), which make up to the “chromosome” describing the 

pose of the ligand within the protein binding pocket [1174,1185]. Mutations and 

crossover calculations were performed using the docking pose described as a 

“chromosome.” While mutations cause random changes in the pose, crossover 

exchanges degrees of freedom between two docked poses [1174]. New poses that pass 

a given threshold are used for the next round until the desired number of poses is 

generated, which is called Lamarckian GA [1174,1186,1187]. GAs have been used by 

AutoDock [1182], GOLD [1188] or DARWIN [1189]. GAs are also useful for PPD [1190]. 

In addition to these general algorithms, many hybrid methods have been developed, 

including GLIDE [1174,1191]. 

 

Scoring functions 

The scoring function consists of several mathematical methods used to predict the 

potential binding affinity of a docked ligand to its receptor. An energy scoring function 

that can rapidly and accurately describe the interaction between the protein and ligand 

was used. The lower the energy of a system, the more reliable the docked pose. Scoring 

functions are usually differentiated as FF-based, empirical, and knowledge-based (see 

the types of force fields). 

Briefly, FF-based scoring functions calculate the binding energy as a non-covalent 

sum, based on the Coulombic formulation [1192–1194]. While van der Waals 

interactions are usually described by the Lennard-Jones potential, charge-charge 

interactions are described by a distance-dependent dielectric function. In addition, 

hydrogen bonds, solvation, and entropy contributions can be considered[1175,1195–

1197]. FF-based scoring functions can be further refined and improved using linear 

interaction energy (LIE) and free-energy perturbation (FEP) methods [1192,1198,1199]. 

While LIE estimates the free energy change by considering the contributions from non-

covalent contributions (such as electrostatic and van der Waals interactions) between 

the ligand and receptor, assuming a linear relationship between the energy and 

experimentally measured binding affinity [1057,1200–1202], FEP calculations are based 

on the free energy difference between two states by gradually transforming one state 

into another through a series of intermediate states [1203–1205]. This is typically 

achieved by applying thermodynamic integration or a related technique to obtain the 
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free-energy profile along the transformation pathway [1205–1207]. Both use the Zwanzig 

expression for free-energy perturbation [1208]. 

Empirical scoring functions calculate the binding energy as the sum of several energy 

components, including hydrogen bonding, ionic interactions, entropy, and hydrophobic 

effects. Each component is multiplied by a coefficient derived from regression analysis 

and then summed up in a final score [1209–1212]. 

Knowledge-based scoring functions use statistical analysis of crystal structures of 

receptor-protein complexes to calculate interatomic contact frequencies and/or the 

distance between the protein and its ligand [1213–1216]. Based on the assumption that 

a greater contact frequency is the more favorable docked position, these frequencies 

were converted into pairwise atom-type potentials, favoring preferred contacts and 

penalizing repulsive interactions, leading to a total score [1217–1219]. 

Hybrid scoring functions such as consensus scoring are also possible [1220,1221], as 

well as scoring functions that implement the treatment of the solvation effect by using 

the Poisson-Boltzmann and generalized Born assumptions to calculate the SASA 

[1222,1223] or HYDE, which considers desolvation and solvation terms [1224,1225]. 

Molecular dynamics simulations - the process 

Molecular dynamics (MD) simulations are used to study the behavior and dynamics of 

the atoms and molecules over time. It simulates the motion and interactions of atoms by 

numerically solving Newton's equations of motion and requires considerable 

computational power. Newton’s laws of motion, more precisely Brownian motion, enable 

us to calculate motion and quantities such as position, velocity, acceleration, and energy 

of atoms in a given fluid system [1226,1227]. In particular, the Langevin equation, which 

combines deterministic and stochastic forces to describe the motion of atoms in a fluid 

environment, is solved [1226,1228]. The deterministic forces arise from the potential 

energy gradients acting on the atoms, whereas the stochastic forces represent random 

fluctuations due to thermal energy, which is dependent on the temperature defined for 

the system. For thermal energy, the Born–Oppenheimer approximation is assumed to 

be valid, and the potential energy of all systems is calculated as a function of the nuclear 

coordinates using force fields [1229,1230]. To run an MD simulation, the initial 

configuration and build of the system must be established. This includes specifying the 

positions and velocities of atoms as well as assigning force field parameters that describe 

the interactions between atoms. As soon as the system is defined, one can proceed with 

setting box size and boundary conditions. Thus, to integrate the equations of motion 

and their accelerations, integration schemes such as the Verlet algorithm are used to 

numerically integrate these forces over small-time steps [1231,1232]. The system further 

evolves by defining a time propagation, where the forces on all atoms are updated based 

on their current positions, velocities, and force field [1233,1234]. In addition, periodic 

boundary conditions were applied to mimic an infinite system, ensuring that atoms that 

moved out of the defined simulation box re-entered the opposite site [1235,1236]. Before 

starting an MD, the initial atomic positions and velocities have to be set in the simulation 

box, which are usually randomized from a Maxwell-Boltzmann distribution at a given 

temperature as well as thermostats and barostats [1237–1239].  After the initial positions 

and velocities are set, an equilibration phase is often performed to relax the system to 

the desired temperature and pressure. This involves running the simulation for a certain 

number of steps, allowing the system to reach a stable state by adjusting particle 
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velocities and positions. Then, MDs can be run using predefined ensembles such as the 

NVE ensemble (constant number of particles, volume, and energy), NVT ensemble 

(constant number of particles, volume, and temperature), or NPT ensemble (constant 

number of particles, pressure, and temperature) [1240], which maintain the temperature 

and pressure of the system constant.  Furthermore, time steps must be defined. 

Unfortunately, the time step in MDs is limited by the fastest motions, which are bond 

oscillations owing to their high frequency and low amplitude, which are in the 

femtosecond range (fs) [1241]. To overcome the timescale gap between MDs and 

biological processes, which usually takes up to milliseconds [1240], these bond 

vibrations involving hydrogen atoms are replaced by constraints [1241]. Hess developed 

a method to parallelize the application of these constraints, which are usually solved 

linearly over processor boundaries; hence, the fastest time step unit in MDs is 

approximately 10 fs [1240,1241]. This method, called the Parallel LINear Constraint 

Solver (P-LINCS), was implemented in GROMACS [1242]. However, there exist other 

constraints that will allow the speedup of time steps in MDs [1243].  Lastly, whenever the 

algorithm proceeds in a time step that contains all the information about the positions 

and velocities of every atom of a system, these are stored in so-called trajectories. The 

trajectory is obtained by repeatedly updating the positions and velocities of atoms based 

on the forces acting on them [1244]. Each time step continuously solved the equations 

of motion numerically, and the simulation calculated the positions and velocities of the 

atoms. The information stored in the trajectories can be analyzed and visualized in 3D 

using software tools to gain insight into the dynamic behavior of the simulated system. 
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Chapter 2: Objectives and thesis 
outline 

 

In the past 15 years, molecular dynamics and the increasing availability of new functional 

assays have helped to study drug-receptor interactions and improve drug design. The 

appreciation of GPCRs as dynamic systems of varying micro-conformations, also called 

ensembles, has increased the understanding of GPCR signaling bias, and thus the ability 

to dissect multiple signals from receptors, and GPCR oligomerization. 

Both events, signaling bias and oligomerization, diversify and fine-tune GPCR signaling 

and finally set the ground for cells to process a wide array of physiological signals. 

Furthermore, there has been a paradigm shift in describing responses not as monotonic 

signals from the receptor to the cell, but rather as versatility of interactions between 

proteins and ligands and proteins with proteins. From a pharmacological perspective, 

small-molecule drug development has shifted from copying natural ligands, such as 

neurotransmitters and hormones, to new scaffolds and ideas and may have opened new 

therapeutic targets. Dimerization/oligomerization of GPCRs induces changes in ligand 

coupling, receptor signaling, and trafficking in both physiological and pathological states. 

However, the functional implications of these interactions are not fully understood. 

This study aimed to elucidate the structure and function of the G protein-coupled receptor 

143 (GPR143). We hypothesized that GPR143 functions in multiple roles because of its 

ability to bind partner proteins that modulate its function. We proposed that one binding 

partner was a DR, which was already shown by co-localization experiments and that the 

observed L-DOPA effects are mediated by the altered pharmacology of GPR143-DRs. 

The workflow encompassed a set of scientific and technological objectives. 

● To mine all known GPCR-dimers relevant for neurological and 

neurodegenerative diseases that are mostly localized in the brain, since DRs are 

key players in neuronal transmission and plasticity, among others. We aimed to 

detect the influence of partnered protomers on each other by promoting or 

inhibiting each other's downstream signaling cascade. 

 

● To collect experimental proof of GPR143 undergoing PPIs with DRs. Given the 

robust response of DRs in the β-arrestin recruitment assay towards dopamine, 

this was a suitable approach to quantify the effect of GPR143 on dopaminergic 

This chapter describes the objectives that were 
tackled in this study as well a brief outline on the 
workflow that was followed. 
______________________________________ 
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signaling. Furthermore, fluorescence microscopy helped to localize the GPR143-

DR PPI within the cell. 

 

● To understand GPCR-dimerization from a computational point of view, D2R-D2R 

homodimers in different combinations of protomer conformations were 

constructed and subjected to molecular dynamics simulation to precisely 

determine the effect of dimerization on monomeric entities. 

 

The remainder of this dissertation is structured as follows. 

In Chapter 1, an introduction into the biological context of GPCR dimerization is given, 

as well as the theoretical background behind the in vitro and in silico methods. 

In Chapter 2 (present chapter), the objectives of this study are described. 

Chapter 3 is divided into two sections that describe the main findings of this study. The 

first part describes the discovery of a biologically relevant PPI between GPR143, D2R, 

and D3R. The negative allosteric effects of GPR143 on the affinity of DRs for dopamine 

could be determined. Furthermore, a brief overview of the GPR143 expression was 

provided. Additionally, the PPI between GRP143 and DRs was localized in vesicles near 

the cellular plasma membrane. In the second section, the computational framework for 

constructing a robust model to study GPCR dimers was described. Using a well-studied 

target, D2R, for which X-ray crystal structures were published with different ligands, 

allowed to construct dimers with pairs of different conformations of the protomers. These 

models were then subjected to MD simulations. The results obtained from this study help 

to understand the specific requirements of class A GPCR dimerization. 

In Chapter 4, the main contributions are summarized, and an experimental outlook is 

provided on future studies on this topic. Based on the findings of this thesis, the overall 

results were analyzed, and some ideas for improvement were proposed. 
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Chapter 3: Results 

3.1. Evidence for Protein–Protein 
Interaction between Dopamine 
Receptors and the G Protein-Coupled 
Receptor 143 

 

3.1.1. Introduction 

GPCRs constitute the largest family of transmembrane proteins and are involved in 

almost all (patho)physiological processes. GPCRs can contribute directly to disease due 

to pathogenic mutations that modulate function or modify expression levels, but are also 

excellent therapeutic targets. Over 40% of all marketed drugs target GPCRs, rendering 

them the largest class of drug targets [25,1245]. 

GPCRs were previously thought to function as monomers; however, it is now widely 

accepted that the receptors form highly dynamic, yet specific, functional homo- and/or 

heterodimers or even higher-order oligomers that can increase the number of roles a 

single protein can play [71,72]. Formation of heteromers can modulate the GPCR activity 

by influencing ligand recognition sites (e.g., changing or creating orthosteric and 

allosteric binding sites), G protein-coupling, and switching from G protein- to β-arrestin-

coupling [81]. The structural basis underlying dimerization and receptor modulation is 

not fully understood, and the role of dimers in pathological conditions such as asthma, 

cardiac failure, and neurological diseases has only been reported in recent years [71]. 

These interactions can thus provide novel opportunities for future drug development. 

 

The DRs, DRD1-DRD5, are a family of GPCRs that regulate numerous physiological 

functions including vision, cognitive function, and voluntary movement. They have been 

associated with pathological conditions and mental disorders such as PD, schizophrenia, 

and nicotine addiction [179,183,1246]. DR activity can be modulated by dimerization 

and/or oligomerization with other DRs as well as other GPCRs such as adenosine A1 

receptors, NMDA receptors, or cannabinoid 1 receptors, which can further diversify and 

fine-tune their function [76–79,525,1247]. For example, DRD2 forms hetero-dimers and 

This chapter is an unmodified version of a 
research article published in the International 
Journal of Molecular Sciences written in co-
authorship with Prashiela Manga, Erika Penner 
and Anke C. Schiedel. The manuscript was up-
to-date at the time of submission (August 2021). 
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high-order oligomers with adenosine 2A receptors (A2AAR) [76,519,703] that block 

activation of dopaminerigc transmission by A2AAR, as well as the modulation of MAPK 

responses [75,466]. DRD3-A2AAR-complexes display similar allosteric antagonistic 

receptor–receptor interactions [179,1248,1249]. 

We previously performed a chemical library screen to identify small molecules that 

modulate activity of the orphan receptor GPR143 and identified pimozide as an 

antagonist [1250]. Pimozide is an oral antipsychotic that is also an antagonist of DRD2 

and -D3 [1251–1254], we therefore hypothesized that, given the overlap in areas of 

expression in the eyes and brain [1255,1256], GPR143 could interact with these DRs. 

GPR143 is an atypical GPCR found primarily in pigment cells but is also expressed in 

some neurons [1257]. In pigment cells, it is localized intracellularly at endolysosomes 

and melanosomes (specialized organelles in which the pigment melanin is synthesized) 

rather than the cell membrane where most other GPCRs function [1258–1260]. GPR143 

mutations result in ocular albinism type 1 (OA1) [1261], an X-linked recessive disorder 

that is characterized by visual anomalies including loss of stereoscopic vision due to 

misrouting of the optic fibers at the optic chiasm [1262,1263]. 

The precise role of GPR143 remains to be determined; however, modulation and 

translocation of other proteins may be a key feature of its function - for example, the 

melanocyte protein melanoma antigen recognized by T cells-1 (MART-1 ) has been 

shown to interact with GPR143, which serves as an escort/stabilizing protein [1264]. 

Furthermore, GPR143 is co-immunoprecipitated with tubulin, suggesting a physical 

interaction with the cytoskeleton [1265]. GPR143 has also been shown to physically 

interact with the heterotrimeric G protein Gαi3 [1266][38] and fine-tune activity of the 

vascular alpha1B adrenergic receptor [1267]. Given the propensity for GPR143 to interact 

with other proteins and our finding that the DRD2/-D3 antagonist pimozide also modulates 

GPR143 activity, we hypothesized that GPR143 could also interact with these DRs and 

modulate their activity. 

3.1.2. Results 

3.1.2.1. Fluorescence resonance energy transfer 

FRET in order to investigate GPR143-DR interactions. FRET analysis allows observation 

of interactions between two proteins localized within 10 nm of each other. 

We first used the sensitized emission method to evaluate FRET efficiency. If proteins 

are in close enough proximity for energy transfer to occur, donor fluorophore excitation 

CFP leads to acceptor molecule emission YFP. Images of transfected cells were 

simultaneously acquired in all three channels (CFP, YFP, and FRET, Figures 9 and 10). 

Correction parameters (CoA and CoB) were calculated by means of single transfected 

COS7s (Figure S1) and FRET efficiency values of each pixel in a pixel-to-pixel manner. 

This way, a FRET efficiency distribution across the picture was obtained, color-coded in 

a transition from purple to red (0 to 100 %; Figures 9 and 10, right panels). A high FRET 

efficiency indicates an intense protein–protein interaction. 
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In this study, we used two GPR143 expression plasmids, one encoding wildtype 

GPR143 (wtGPR143) that is usually found on melanosomes of melanocytes (pigment 

cells) and in late endosomal/lysosomal fractions in the intracellular space in non-

melanocytic cells [1245,1268–1271]. The other encodes a mutant GPR143 that is fully 

Figure 9. FRET of GPR143-YFP and DRD2-CFP in COS7 cells. The sensitized emission method was used to detect 
interaction between GPR143 (YFP channel) and DRD2 (CFP channel). FRET signal, corrected by CoA and CoB 
parameters, and FRET efficiency (color scale on the far right) are shown. White arrows indicate regions where the FRET 
signal is localized. Controls are shown in Figure S2. Scale bar = 20 μm. 

Figure 10. FRET of GPR143-YFP and DRD3-CFP in COS7 cells. A sensitized emission method was used to detect 
interaction between GPR143 (YFP channel) and DRD3 (CFP channel). FRET signal, corrected by CoA and CoB 
parameters, and FRET efficiency (color scale on the far right) are shown. White arrows indicate regions where the FRET 
signal is localized. Controls are shown in Figure S2. Scale bar = 20 μm.  
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functional but localizes to the plasma membrane (pmGPR143). Plasmids were 

generated as previously described [1245]. 

In the sensitized emission FRET experiments, when wtGPR143 was co-expressed with 

DRD2, the FRET signal was observed in several vesicles around the perinuclear region, 

as well as near the plasma membrane with lower FRET efficiency (Figure 9, upper 

panels, white arrows). Similarly, when wtGPR143 was co-expressed with DRD3, the 

FRET signal was exclusively found in vesicles in the intracellular space around the 

perinuclear region (Figure 10, upper panels). pmGPR143 was found to interact with 

DRD2 and DRD3 in vesicles at or near the plasma membrane and spread at intracellular 

locations (Figures 9 and 10, lower panels, white arrows). In control experiments with 

A2AAR, known to bind DRs, A2AAR-DRD2 and A2AAR-DRD3 interactions (up to 100% 

FRET efficiency) were mostly found at the plasma membrane (Figure S1, panels B and 

C). When comparing the double transfected with the single transfected COS7 cells 

(Figure S1, panel F and G), it was evident that co-transfection caused a change in the 

localization of the DRs. When the DRs were expressed alone, they showed a uniform 

distribution across the cell, while co-expression of wtGPR143 or pmGPR143 increased 

intracellular localization of the DRs. In contrast, co-expression of A2AAR or GPR18 did 

not cause a similar internal restriction of DRs (Figure S1, panels B-E). GPR18, a 

cannabinoid related orphan receptor [1272], was used as negative control, since no 

interaction between GPR18 and DRs has been reported to date. When GPR18 was 

coexpressed with DRs, there was no evidence of interaction (Figure S1, panels D and 

E) and distribution within the cells did not differ from single transfected COS7 cells 

(Figure S1, panels F–I). 

To further validate GPR143 and DR interactions, we used a quantitative FRET approach, 

the acceptor photobleaching method. During FRET, the donor fluorescence is partially 

quenched by the acceptor. Photobleaching the acceptor irreversibly eliminates the 

quenching effect and the level of donor fluorescence increases. Thus, this method was 

used to measure donor “dequenching” as an indicator of colocalization. Bleaching was 

limited to designated regions of interest (ROI, Figure S2). For wtGPR143 samples, 

intracellular regions where colocalization was observed were chosen. Images captured 

before and after photobleaching display fluorescence in the CFP and YFP channels 

(Figure S2). The absolute fluorescence in the ROIs was used to calculate the ratio of 

emission intensity after versus before photobleaching and FRET efficiency (Figure 11). 

When GPR143 and DRs were coexpressed, the intensity of CFP emission increased, 

indicating that the two fluorophores were in close proximity and involved in resonance 

energy transfer before photobleaching (Figure 11). The FRET efficacy of the co-

transfected receptors was slightly higher for DRD3 as compared to DRD2. While co-

expression of wtGPR143 yielded similar FRET efficacies for both DRs (24.5 ± 1.3 for 

DRD2 and 29.5 ± 1.3 for DRD3), the co-expression of pmGPR143 with DRD3 (34.5 ± 1.2) 

was significantly higher compared to DRD2 (19.2 ± 1.0). When A2AAR was co-expressed 

with DRs, FRET efficacy reached up to 30% (28.9 ± 1.0 for DRD2 and 32.5 ± 1.8 for 

DRD3), which was comparable with the control pECFP-EYFP fusion protein (29.4 ± 1.3), 

suggesting maximal ratio. GPR18 was used as a negative control. Fluorescence ratios 

in the photobleaching experiment confirmed that, for GPR18, there was almost no CFP 

increase in fluorescence after photobleaching, indicating that the DRs do not interact 

with this receptor. The FRET efficacy calculated for the control experiment (1.2 ± 1.2 for 
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DRD2 and −4.8 ± 2.3 for DRD3) was significantly different (p < 0.0001) from the positive 

controls (A2AAR-DRs and fusion protein CFP-YFP, Figure S3). In addition, the GPR18 

transfected samples did not differ in FRET efficiency from the single transfected samples 

(p > 0.05). FRET efficiency values are similar to those reported in previous studies using 

CFP-YFP [947,1245,1273,1274], suggesting that they can be considered reliable. 

Hence, we demonstrate that GPR143 and DRs directly interact with each other in several 

regions of the cell. 

 

3.1.2.2. GPR143 Influences Dopaminergic Signaling in the β-arrestin Recruitment 

Assay 

Having determined that GPR143 and DRs, as well as A2AAR and DRs, also colocalize in 

CHO cells (Figure S4, panels A and B), we performed a β-arrestin recruitment assay 

(PathHunter®, DiscoverX, Fremont, CA, USA) to determine if dimerization with GPR143 

affects functionality of the DRs. This assay is based on enzyme fragment 

complementation of β-galactosidase. When a ligand binds and activates the GPCR, β-

arrestin-2 is recruited, thereby complementing the enzyme and rendering it active. The 

active β-galactosidase now can hydrolyze a substrate generating chemiluminescence, 

which can be quantitated as a correlate of receptor activation. Dopamine, the 

endogenous DR ligand chosen for the experiments, was used at 10 μM. A2AAR-DRD2-

complex formation also modulates DRD2 ligand binding affinity and G-protein coupling 

[525] and A2AAR was therefore a suitable positive control. GPR18 was used as a 

Figure 11. Quantification of acceptor photobleaching FRET. Wt or pmGPR143-YFP, A2AAR-YFP or GPR18-YFP and 
DRs-CFP (DRD2 or DRD3) were co-transfected in COS7s. (A) Ratio of emission intensity after:before bleaching was 
determined. Controls = single transfected COS7s, DRs-CFP + GPR18-YFP, and CFP-YFP fusion protein; (B) FRET 
efficiency was quantified for co-transfected COS7s. Controls = Single transfected cells, DRs-CFP + GPR18-YFP, and 
CFP-YFP fusion protein. Data represent means ± SEM of three independent experiments; on average, 92 ± 9 ROIs were 
analyzed per sample. Significant differences between controls (single transfected and +GPR18 samples) and treatment 
samples including the positive control CFP-YFP fusion protein were observed. Wt and pmGPR143 and A2AAR-transfected 
samples did not differ from the CFP-YFP fusion-protein, except for pmGPR143+DRD2. Values refer to limited regions (see 
Figures S3 and S4). * = p < 0.0001, ns = not significant.  
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negative control, as this receptor did not colocalize in FRET studies. Having established 

a functional system, we were able to determine a physiologically relevant functional 

interaction between GPR143 and DRs. Co-expression of either wt or pmGPR143 

resulted in significant inhibition of the DR response towards dopamine (Figure 12, p = 

0.0113 for wtGPR143+DRD2, p < 0.0001 for wtGPR143+DRD3, p = 0.0052 for 

pmGPR143+DRD2 and p < 0.0001 for pmGPR143+DRD3) compared to co- expression 

of A2AAR-DR which significantly inhibited the DRs response to dopamine at any 

concentration (up to 90%, Figure 12), in concordance with the antagonistic allosteric 

effect of the A2AAR on DRD2 and DRD3 [538,703,1249,1275,1276]. Lastly, GPR18 did 

not have an effect on the DRs response to dopamine, as it was not different from the DR 

only controls.  

Figure 12. Dopamine response in CHO β-arrestin cells expressing DRD2 and DRD3 co-transfected with a second GPCR. 
β-arrestin assays were performed on dopamine-treated CHO cells expressing DRD2 (A) or DRD3 (B), co-transfected with 
a second GPCR. The data were baseline corrected and correspond to 2–3 independent experiments performed in 
duplicates or triplicates. (A) Significant differences were observed between the DRD2 alone and the other dimer pairs (vs. 
wtGPR143+DRD2 p = 0.0113; vs. pmGPR143+DRD2 p = 0.0052 and vs. A2AAR+DRD2 p = 0.0052), except for 
GPR18+DRD2 where no significant difference was observed (p = 0.8082). (B) Significant differences were also observed 
between DRD3 alone and the other dimer pairs (* = p < 0.0001 for all), except for GPR18+DRD3 where no significant 
difference (ns = not significant) was observed (p = 0.1192). 
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Next, we performed β-arrestin assays with DRD2 or -D3 expressing cells co-expressing 

different amounts of GPR143 receptors (Figure 13) in order to show that changes in 

dopamine activation of DR’s correlated with the presence of GPR143 (or A2AAR). Cells 

stably transfected with DRs were transiently co-transfected with decreasing amounts of 

GPR143 or A2AAR plasmid (8, 4, 2, 0.2, 0.02 μg, for Western blot analysis confirmation, 

see Figure S5). The luminescence signal, corresponding to the DR activation by 

dopamine, was decreased with increasing amounts of co-transfected receptors. This 

was also the case for A2AAR, as expected [1249]. We did not observe differences in the 

DR’s response towards dopamine for GPR18.  

Figure 13. Dopamine response of CHO β-arrestin DRD2 and DRD3 cells co-transfected with different concentrations of 
wtGPR143-, pmGPR143-, A2AAR- and GPR18-YFP in the β-arrestin recruitment assay. CHO β-arrestin DRD2 and DRD3 
cells were transfected with different amounts of plasmids containing receptor cDNA (8, 4, 2, 0.2, and 0.02 μg) and treated 
with 10 μM dopamine (or buffer). Data were normalized to buffer (0%), and DRs only (0 μg, 100%) and correspond to 
mean ± SEM of two to three independent experiments performed in triplicates or quadruplicates. (A) Coexpression of 
wtGPR143 had a significant effect on DRD2 at all concentrations (p < 0.0001). (B) Coexpression of pmGPR143 had a 
significant effect overall on DRD2 activity (p < 0.0127). The 0 μg vs. 0.02 μg sample differed less (p = 0.003), while the 
other concentrations differed more significantly (p < 0.0001 for 0 μg vs. 0.2–8 μg). (C) Coexpression of A2AAR did not 
have a significant effect on DRD2 for 0 μg vs. 0.02 μg (p = 0.1037), while significant differences were observed for the 
other concentrations (0.2 μg p = 0.0445; vs. 2 μg p = 0.0222; vs. 4 μg p = 0.0066; vs. 8 μg p = 0.0066). (D) Coexpression 
of GPR18 had no significant effect on DRD2 (p > 0.05 for all). (E) Coexpression of wtGPR143 had a significant effect on 
DRD3 at concentrations of 4 μg and 8 μg (p = 0.0301, p = 0.0024). (F) Coexpression of pmGPR143 had a significant effect 
on DRD3 overall (p < 0.0001). Post-hoc comparisons indicated significant differences in activity for concentrations greater 
than 2 μg (vs. 2 μg p = 0.012; vs. 4 μg p = 0.0006, vs. 8 μg p = 0.0004). (G) Coexpression of A2AAR had a significant 
effect on DRD3. Post-hoc comparisons indicated that the transfection of 0.02 μg and 0.2 μg significantly differed from the 
0 μg sample (p = 0.071; p = 0.0066, respectively), while higher concentrations had a greater effect (vs. 2–8 μg p < 0.0001 
for all). (H) Coexpression of GPR18 had no significant effect on DRD3 (p > 0.05 for all, except for buffer). * = p≤ 0.05; ** 
= p ≤ 0.01. ns = not significant.  

https://paperpile.com/c/SDT9Uy/aBex
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3.1.3. Discussion 

DRs regulate numerous physiological functions and have been linked to numer- ous 

pathological conditions [179,183]. DRs have been shown to be very promiscuous and 

complex with many other GPCRs in order to carry out these multiple functions with 

specificity [79,179,510,690,703,850,1248,1277,1278]. Among them, the A2AAR-DRD2-

complex is the most studied heteromer, as it appears to be highly relevant for 

schizophrenia and Parkinson’s disease [71,179,530]. 

We previously demonstrated that pimozide, a DRD2 and DRD3 antagonist [1252–

1254,1279], also modulates activity of the orphan receptor GPR143 [1250]. We therefore 

hypothesized that GPR143 and DRs may interact with each other in ocular and brain 

tissues [1255,1256]. Our hypothesis was supported by a number of studies that 

observed protein–protein interactions between GPR143 and other proteins, which similar 

to DRs, facilitate multiple functions. GRP143 binds MART-1 [1264], tyrosinase (a key 

enzyme required for melanin synthesis) [1245] and Gαi3 [1266], which may underlie its 

regulation of melanosome differentiation and maturation. Furthermore, melanocytes 

express DRs1–5 [1280] and expression of DRs and GRP143 overlap in various areas of 

the brain [1256]. 

Various roles have been proposed for GPR143; however, a precise function remains to 

be defined. Lack of GPR143 function results in formation of abnormal melanosomes 

[1281]. Rather than small distinct organelles, macromelanosomes form, thus GPR143 

appears to function as a “sensor” of melanosomal maturation to prevent formation of 

macro-organelles [1258]. GPR143 function has also been shown to modulate the 

number of early- stage melanosomes [1282] and form the trafficking fork separating 

lysosome and early melanosome bound proteins [1283]. GPR143 may also control 

intracellular melanosome transport by regulating microtubule-mediated motility through 

interaction with tubulin [1265]. Recent studies have shown that GPCRs can bind ligands 

on both membrane faces [1284], which may underlie the interaction with tubulin. 

GPR143 may also regulate transcription of several melanosomal genes through 

modulation of the microphthalmia-associated tran- scription factor (MITF), thus forming 

a feedback loop being both a regulator and target of MITF [1285,1286]. In addition to its 

role in pigment cells, GPR143 has also been shown to mediate depressor response in 

the brain stem solitary nucleus [1257], is expressed in several regions of the central 

nervous system such as the hippocampus [1256], and, most recently, GPR143 was 

shown to be associated with nicotine addiction [1287]. GPR143, like DRs, has multiple 

functions, numerous binding partners, and functions in various areas of the brain. 

In this study, we investigated the influence of GPR143 on DRD2 and DRD3. FRET studies 

demonstrated that GPR143 and DRs interact, while β-arrestin recruitment assays 

showed that GPR143 can reduce DR activity by at least 50%. The reduction in activity 

may be due to reduced DR levels at the plasma membrane as we observed an increase 

in intracellular DRs colocalized with GPR143; alternatively, GPR143 may modulate DR 

affinity for dopamine or a combination of the two effects. 

The site of DR-GPR143 interaction appears to be determined by the location of GPR143, 

since we observed the difference depending on the GPR143 plasmid used for 

transfection. In pigment cells, wtGPR143 localizes intracellularly [1268]. In non-pigment 
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cells, such as COS cells or yeast (Saccharomyces cerevisiae), wtGPR143 is found in 

late endosomal/lysosomal fractions in the intracellular space or in the prevacuolar 

compartment, which are both functionally equivalent to melanosomes/late endosomes 

[1245,1269–1271]. pmGPR143 sorts to the plasma membrane [1245,1250,1288]. When 

wtGPR143 was co-transfected, DR-complexes were found exclusively in vesicles in the 

intracellular space and more often in the perinuclear region, while pmGPR143-DR-

complexes were also found in vesicles in the intracellular space, but some appeared 

near the plasma membrane. It should, however, be noted that some studies reported 

that GPR143 protein can be found at the cell surface in human retinal pigment epithelial 

cells in situ but only 4% of total GPR143 protein [1289], thus some interactions may take 

place at the plasma membrane. In addition, overexpression of GPR143 can cause 

accumulation at the cell surface [1268,1271]; however, our experiments were optimized 

such that we did not observe any accumulation at the plasma membrane [1245,1250]. 

The concept of orphan receptors modulating non-orphan receptors is not novel— for 

example, GPR50 modulates melatonin receptors MT1 and MT2 [1290,1291] and 

GPR143 itself has been shown to modulate the activity of the alpha1B adrenergic receptor 

[1267]. Consequently, GPR143 may play a similar role in modulating DR function. 

The results of the β-arrestin assays demonstrated a significant reduction (at least 50%) 

in the DR response to activation with dopamine when GPR143 was co-expressed. The 

effect was less pronounced than the effect A2AAR had on the DRs (reduction of DR 

activity up to 90%), which is in concordance with previous studies that demonstrated that 

active A2AAR has a negative allosteric effect on dopaminergic signaling [76,1249]. 

Although GPR143 is expressed primarily in pigment cells, several studies have sug- 

gested a link between the pigmentary system and dopaminergic signaling. For example, 

tyrosinase activity (which produces L-DOPA, a dopamine precursor, for pigment biosyn- 

thesis) and GPR143 expression are necessary for precise development of the optic tract 

[1292], which may require an L-DOPA concentration gradient for correct nerve projection 

[70]. We have shown that GPR143 binds tyrosinase [1250], which may allow for direct 

regulation of L-DOPA production and pigment synthesis. GPR143 may thus play a role 

in regulating both the production of L-DOPA by tyrosinase and dopamine-mediated 

signaling through DRs. 

A potential model for DR-GPR143 interaction may involve dimer formation which occurs 

in late endosomes/multivesicular bodies, since these organelles are important for 

transport and sorting of proteins coming from the Golgi apparatus on their way to 

organelles such as lysosomes and melanosomes as well as for internalized receptors 

on their way to degradation or recycling [1293]. It is also possible that the GPR143-DR 

interaction occurs during the transport of DRs to the plasma membrane. This interaction 

may, for example, delay DR recycling to the plasma membrane. While GPCR activity at 

the plasma membrane has been well characterized, recent studies have demonstrated 

a key role for intracellular activity of several GPCRs [1294]; furthermore, this activity can 

be therapeutically targeted [1295]. 

 

In conclusion, we have shown that GPR143 interacts with DRD2 and DRD3 and 

negatively modulates DR activity in response to dopamine. Furthermore, we have shown 

that GPR143-DR-complexes are primarily formed in vesicles in the intracellular space, 

even when a plasma membrane-localizing GPR143 variant, pmGPR143, was co-
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expressed. Whether GPR143 modulates DR activity by promoting its localization away 

from the plasma membrane and/or through allosteric modulation remains to be 

determined, as does the question of whether this mechanism is shared by melanocytes, 

the retinal pigment epithelium and other GPR143 expressing cells. 

3.1.4. Materials and Methods 

3.1.4.1. Plasmids 

The cDNA sequences of the human DRD2short and DRD3 genes were inserted into pE- 

CFP-N1 and pCMV-ARMS2-Prolink2 (DiscoverX, Fremont, CA, USA) vectors using NheI 

and HindIII restriction enzymes. For insertion into pCMV-ARMS2-Prolink2, an additional 

amino acid sequence (TC) was added to the 3′-end of the coding sequence. To generate 

pE- YFP-N1-wtGPR143, pE-YFP-N1-pmGPR143 and pE-YFP-N1-ADORA2A cDNA 

sequences of the human wtGPR143, pmGPR143 and ADORA2A were inserted into pE-

YFP-N1 vector using KpnI and AgeI restriction enzymes as we previously described 

[1245]. We removed the stop codon, so that the C terminal tag was in frame. pE-YFP-

N1-GPR18 was kindly provided by the Mueller Lab (University of Bonn, Dept. 

Pharmaceutical and Medicinal Chemistry). The fusion protein pECFP-EYFP vector 

(referred to as CFP-YFP hereafter) was cloned as previously described ([1245], Chapter 

7.1.). CFP-YFP was used as internal control for statistical analysis. All plasmids were 

verified by sequencing (Eurofins Genomics Germany, Ebersberg, Germany). GPR143 is 

typically restricted to endosomal compartments in the intracellular space. It has been 

previously reported that the addition of a GFP tag at the C terminus does not affect the 

localization of GPR143 [1258,1260,1270,1271,1288]. Therefore, the YFP protein was 

also fused to the C-terminus. 

3.1.4.2. Cell culture and Transfection 

Chinese Hamster Ovary (CHO) β-arrestin cells were engineered by DiscoverX (Fremont, 

CA, USA) to express the β-galactosidase EA fragment fused to β-arrestin. CHO β-

arrestin cells were cultured in a humidified incubator with 5% CO2 at 37°C in Gibco F12 

(Ham) (1×) medium supplemented with 10% FCS, 5 U/mL penicillin, 5 mg/mL 

streptomycin, 300 μg/mL hygromycin. β-arrestin CHO cells were transfected with DRD2 

and DRD3 expression plasmids using LipofectamineTM2000 (Thermo Fischer Scientific, 

Schwerte, Germany) according to the manufacturer’s recommendations and stable lines 

generated by antibiotic selection with G418. Cells were then maintained in 800 μg/mL 

G418 for maintenance of transfected cells. CHO β-arrestin-DRD2 and -DRD3 cells were 

then transiently transfected with expression plasmids for wtGPR143, pmGPR143, and 

A2AAR or GPR18. COS7 cells were cultured in Dulbeccos’s modified eagle medium 

(DMEM) supplemented with 10 % fetal calf serum, 5 U/mL penicillin, and 5 mg/mL 

streptomycin at 37°C with 10% CO2. Transient transfections were performed for 

microscopy experiments using Lipofectamine™ 2000 (Thermo Fischer Scientific, 

Schwerte, Germany) according to the manufacturer’s recommendations. 
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3.1.4.3. β-arrestin Assay 

The β-arrestin recruitment assay system PathHunter®developed by DiscoverX 

(Fremont, CA, USA, https://www.discoverx.com/arrestin, accessed on 30 July 2021) 

detects GPCR activation following ligand stimulation. The assay is based on enzyme 

fragment complementation of β-galactosidase. The assay is performed using a cell line 

expressing an Enzyme Acceptor (EA) which is fused to the β-arrestin. The second part 

of the enzyme (ProLink/ PL) is fused to the C terminus of the GPCR of interest. EA and 

PL are inactive as single fragments. When a ligand binds and activates the GPCR of 

interest, the β-arrestin-2 protein is recruited to the GPCR since it is involved in receptor 

desensitizing and recycling. The recruitment of the β-arrestin leads to the 

complementation of the β-galactosidase. The active enzyme can catalyze hydrolysis and 

generate chemiluminescence when an appropriate substrate is proved. Thus, measured 

chemiluminescence (or β-galactosidase activity) correlates with receptor activation. In 

this study, the recruitment assay was performed using engineered CHO cell lines stably 

expressing the β-arrestin protein linked to the EA fragment. The cell lines were 

transfected with the GPCR cDNA of interest fused to the ProLink-tag. 

At 48 h post-transfection, co-transfected CHO β-arrestin DRD2 and DRD3 cells were 

seeded in 96 well-plates (NunclonTM F96 MicroWell™, Thermo Fischer Scientific, 

Scwerte, Germany). On the day of the assay, the medium was changed for 90 μl of F12 

with 100 U/mL penicillin G, 100 μg/mL streptomycin, and the cells were incubated for at 

least 2 h at 37°C with 5% CO2. Then, 10 μl of dimethyl sulfoxide (DMSO)-diluted 

dopamine was added. Unsupplemented F12 medium was used as negative control. The 

final DMSO concentration per well was 1%. After 90 min, the PathHunter®detection 

reagent (DiscoverX, Fremont, CA, USA) was added to the cell plate (50 μL/well) and 

incubated 1 h at room temperature in the dark, and finally chemiluminescence was 

detected by using the MikroWin2000 software and a multimode microplate reader 

(Mithras LB 940, Berthold Technologies, Bad Wildbad, Germany). 

3.1.4.4. Immunostaining 

At 48 h post-transfection, the same co-transfected CHO β-arrestin DRD2 and DRD3 cells 

used in the β-arrestin recruitment assay were seeded on sterile coverslips in a 12 well-

plate (Sarstedt, Nümbrecht, Germany) and cultured overnight. The next day (in parallel 

with the β-arrestin assay), the CHO cells were fixed with 4% paraformaldehyde (pre-

heated at 37°C) for 20 min at room temperature. The cells were then washed with 

phosphate-buffered saline (1xPBS, pH 7.4) and blocked for 15 min with 1% bovine serum 

albumin (BSA)/1xPBS solution. Cells were incubated in the dark for 60 min with the 

primary antibody and then 30 min with the secondary antibody, both diluted in 1% 

BSA/1xPBS. The primary antibody was diluted 1:1000 and the secondary antibody 

1:500). 1xPBS was used to wash cells between and after antibody incubations. In 

addition, the nuclei of the cells were stained with DAPI (1 mg/μl diluted 1:1000 in 1% 

BSA/1xPBS) for 5 min in the dark. Finally, coverslips were mounted using 

FluoromountTM Aqueous Mounting medium (Sigma-Aldrich, Merck KGaA, Darmstadt, 

Germany) and stored in the dark at 4°C. The mouse monoclonal anti-PK/PL antibody 

(DiscoverX, Fremont, CA, USA) was used as the primary antibody and donkey anti-
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mouse-AlexaFluor594 (Jackson Immuno Research, Hamburg, Germany) as the 

secondary antibody to stain the Prolink tag on DRD2 and DRD3. Cotransfected receptors 

(wtGPR143, pmGPR143, and A2AAR) were tagged with a YFP-fluorophore-tag in order 

to reduce the spectral overlap of the fluorophores. A Nikon A1 Spectral confocal 

microscope operating with an argon laser (Pharmaceutical Institute, University of Bonn, 

Bonn, Germany) and the NIS Element Advanced Research software 4.0 were used for 

image acquisition and analysis. Each transfection and staining was repeated two to three 

times and at least ten squares (60× objective) containing 3–15 cells each were imaged 

for each sample. The cells that are most representative of the majority of each condition 

are shown. 

3.1.4.5. Fluorescence Resonance Energy Transfer 

COS7 cells were seeded on sterile coverslips in 12 well-plates at 80–90% confluence 

and transfected with DRD2- and DRD3-CFP alone or in combination with YFP-tagged 

wtGPR143, pmGPR143 or A2AAR. After 48 h, cells were fixed with 4% paraformaldehyde 

(pre-heated at 37°C) for 20 min at room temperature. The cells were then washed with 

phosphate-buffered saline (1xPBS, pH 7.4) and blocked for 15 min with 0.1% 

BSA/1xPBS solution. For the sensitized emission method, cells were mounted on slides 

using FluoromountTM Aqueous Mounting medium (Sigma-Aldrich), while, for the 

photobleaching method, Mowiol 4–88 medium (Roth, Karlsruhe, Germany) was utilized 

as mounting medium. A Nikon A1 Spectral confocal microscope operating with an argon 

laser (Pharmaceutical Institute, University of Bonn, Bonn, Germany) and the NIS 

Element Advanced Research software 4.0 were used for image acquisition and analysis. 

Cells were examined with a 60× oil immersion objective. Each transfection and staining 

was repeated two to three times. The cell that was most representative of the majority of 

each condition was shown. 

For the sensitized emission method, different optical configurations were set up: “Dd 

channel” for excitation and emission of the donor chromophore (ECFP, excitation filter: 

457 nm, emission filter: 482/35 nm), “Aa channel” for excitation and emission of the 

accep- tor chromophore (EYFP, excitation filter: 514 nm, emission filter: 540/30 nm) and 

“FRET channel” for the excitation of the donor and emission of the acceptor chromophore 

(excita- tion filter: 457 nm, emission filter: 540/30 nm). For each image, parameters (high 

voltage, offset, and laser intensity) were adjusted in order to limit the spectral bleed 

through and to avoid the pixel over-saturation. The laser intensity was equalized in both 

FRET and donor channel, while the high voltage was equalized in both FRET and 

acceptor channel. The FRET calibration was performed with single transfected cells 

expressing DRD2-CFP, DRD3- CFP, A2AAR -YFP, wtGPR143-YFP, pmGPR143-YFP, or 

GPR18-YFP. Correction parameters (CoA and CoB) were calculated by the software 

using the following formulas: 

CoA = Da ACCEPTOR/Aa ACCEPTOR   (1) 

CoB = Da DONOR/Dd DONOR    (2) 
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where Aa corresponds to the channel where the excitation and the emission of acceptor 

is measured, Dd corresponds to the channel of excitation and emission of the donor, and 

Da corresponds to the channel of the excitation of the donor and emission of the 

acceptor. 

Xx DONOR/ACCEPTOR coefficients are average intensities of the donor/acceptor-only 

images. The corrected FRET signal and the FRET efficiency were calculated for each 

image using the following formulas:      

FRETCORR= Da FRET − (Dd FRET x CoB) − (Aa FRET × CoA) (3) 

FRET EFFICIENCY [%]= (FRET CORR / Dd FRET) × 100 (4)   

   

where Xx FRET members are average intensities of assigned FRET image components. 

For the acceptor photobleaching method, images were captured before and after the 

photobleaching of acceptor molecules in a specific region of the cell (ROIs). If any 

interactions leading to energy transfer were present, photobleaching of the acceptor wil 

lead to an increase of donor fluorescence, as it is no longer quenched by the acceptor. 

Acceptor photobleaching was performed with a high-intensity laser pulse at 514 nm. 

Images in the Aa and Dd channels were captured simultaneously before and after the 

photobleaching. FRET efficiency was calculated using the following formula: 

FRET EFFICIENCY [%] = (IA − IB) × 100/ IA   (5) 

where IA is the CFP intensity emission after bleaching, and IB is the CFP intensity 

emission before bleaching. 

3.1.4.5. Western Blot 

At 48 h post-transfection, co-transfected CHO β-arrestin DRD2 and DRD3 expressing 

cells were scrapped off the plates, washed with PBS, and lysed on ice using an ultra- 

sound sonicator. The protein concentration was determined using a Bradford reagent. In 

addition, 30 μg of sample protein was mixed with loading buffer containing 2% SDS and 

warmed at 37°C for 30 min. Then, proteins were separated on 10% SDS-PAGE gel and 

then transferred to a nitrocellulose membrane (PROTRAN—Nitrocellulose Transfer 

Membrane—Whatman, Sigma, Taufkirchen, Germany). The Mark12™ Unstained 

Standard and PageRuler™ Prestained Protein Ladder were used as protein markers. 

The membrane was blocked 1 h in a 5% powdered milk/PBS-Tween solution. 

Afterwards, the membrane was incubated with the primary antibody overnight at 4°C or 

1 h at RT, washed 1 h with PBS-Tween, incubated with secondary antibody and washed 

again. The detection was performed with ECL kit (GE Healthcare, Amersham, Arlington, 

IL, USA—Dassel, Germany) according to the manufacturer’s instructions. The following 

antibodies were used: mouse monoclonal anti-GFP (Biolegend, San Diego, CA, USA) 

and anti-mouse-HRP (Jackson Immuno Research, Hamburg, Germany). 
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3.1.4.6. Data Analysis 

Data were analyzed using Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA). 

NIS Element Advanced Research software 4.0 was used for microscopy image 

acquisition and analysis. 

3.1.4.7. Statistical Analysis  

Ordinary one-way ANOVA and the Holm–Sidak test for post-hoc comparisons were used 

for statistical analysis of the data. 

3.1.4.8. Supplementary Materials 

The following are available online at https://www.mdpi.com/article/10 

.3390/ijms22158328/s1, Figure S1: Control images of sensitized emission FRET; Figure 

S2: Acceptor photobleaching FRET in COS7 cells; Figure S3: Control images of FRET 

acceptor photobleaching.; Figure S4: Colocalization of GPR143 and DRs by 

immunofluorescence in CHO cells; Figure S5: Western blot analysis shown as an 

example for wtGPR143+DRD3. The figures can also be found in Chapter 7.1. 
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3.2. The world of GPCR dimers - 
mapping dopamine receptor D2 
homodimers in different activation 
states and configuration 
arrangements 

3.2.1. Introduction 

 
The G protein-coupled receptor (GPCR) family, the largest class of membrane receptors, 

targets more than 40% of the marketed pharmaceuticals [1296]. Moreover, GPCRs 

mediate almost all (patho)physiological responses in humans [30,31]. Over the past few 

decades, it has been widely accepted that GPCRs increase their signaling repertoire by 

forming homo- or heterodimers or even higher-order oligomers [1297,1298]. The 

physiological consequences of GPCR dimerization have been reported to modulate 

downstream signaling, trafficking, and regulation as well as the negative and positive 

cooperativity of ligand binding [71,79,80]. Dimerization can influence ligand recognition 

by modulating orthosteric and allosteric binding sites. It can also influence G protein-

coupling and selectivity and may cause switching from G protein- to β-Arrestin-coupling 

[81]. Moreover, dimerization may lead to the formation of novel allosteric sites, which 

can result in different pharmacological properties [81]. 

Several GPCR dimers have been implicated in numerous pathological conditions, 

[71,1299] including asthma, cardiac failure, preeclampsia, schizophrenia, and 

Parkinson’s disease (PD), [71,1299,1300] which have drawn special interest in 

elucidating the mechanism of dimerization and oligomerization, as well as the 

development of drugs that are capable of targeting both monomers within the dimers, 

known as bivalent ligands [71,79,876,877,1297]. 

In general, for class A receptors, transmembrane helices (TM) 1, 4, and 5 possess the 

largest membrane-accessible areas and hence were reported to be of most relevance 

for dimerization [1301]. It was reported that the common orientations in class A dimers 

derived from crystal structures are head-to-head TM1/2 and TM4/5 [1301]. Since most 

crystallographic structures miss the N- and C-termini and the long intracellular loop (ICL) 

3, these parts of the receptors and their possible roles cannot be clearly 

This chapter is an unmodified version of the 
research article published the Computational 
and Structural Biotechnology written in co-
authorship with Pedro R. Magalhães, Carlos 
A.V. Barreto, Rita Melo, Anke C. Schiedel, 
Miguel Machuqueiro, and Irina S. Moreira 
(September 2023). 
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evaluated [1302]. Before computational approaches became feasible to study GPCR 

dimers, in vitro studies first showed their existence. For instance, early studies of Guo et 

al. (2003, 2005, 2008) used cysteine-crosslinking experiments and mutagenesis studies 

with substituted cysteine residues [472,1303,1304]. Using cysteines in order to 

determine interaction contacts between proteins is advantageous for GPCRs as 

cysteines are conserved in most rhodopsin-like GPCRs among others [1305]. Cysteine 

contains a highly reactive thiol group and a disulfide bond can be formed between two 

that are in close vicinity under oxidizing conditions, which can only be reversed by 

reducing agents [1306]. Furthermore, fluorescence/bioluminescence resonance energy 

transfer (FRET, BRET) and time-resolved FRET strategies as well as co-

immunoprecipitation (Co-IP) have become increasingly successful in determining GPCR 

interfaces among other methods [79,1307,1308].  

While classical biochemical methods such as Co-IP, rarely determine the existence of 

such dimers and often require the availability of highly selective antibodies, RET 

methods are able to monitor their active movement [79]. For example, a study by 

Wouters et al. used complementation-based NanoLuciferase® Binary Technology 

(NanoBiT® assay) to investigate the effect of antagonists on the formation of D2R-

homodimers (D2long), with a focus on the TM5-TM6-TM5-TM6 interface [77]. Another 

more recent study by Cheng et al. described a combinatorial approach using 

experimental and computational methods to characterize the interface of Apelin receptor 

(APJ)/Nociceptin receptor 1 (ORL1) and APJ/Vasopressin receptor 2 (V2R) dimers 

[1308]. Chen and co-workers used a TM peptide containing a human immunodeficiency 

virus trans-acting transcriptional activator (HIV-TAT) protein transduction motif, together 

with matrix-assisted laser desorption tandem time-of-flight mass spectrometry 

(MADLITOF-MS) and BRET to demonstrate the switches of the dimers from active to 

inactive states [1308]. They reported that transitions would range from a TM1/TM2 

interface in the inactive state to an active TM5 interface [1308]. From the experimental 

information obtained they constructed atomic resolution models.  

Despite the fact that various strategies have been developed to study GPCR dimers and 

explore their functional significance, many questions still remain unsolved. While some 

experimental methods do not deliver results that are robust enough, computational 

calculations are laborious and time-consuming. Hence, we focused our work on a well-

studied example of D2R-homodimer, which was first described by Ng et al. in 1996 and 

was considered pathologically relevant [468]. 

The five dopamine receptors (D1R-D5R) mediate the essential functions of dopamine and 

are highly promiscuous, forming homo- and heterodimers, as well as higher-order 

complexes that play a role in several neurological or neurodegenerative diseases 

[79,179,876,1297,1309–1312]. By binding to different types of G proteins, the secondary 

messenger cAMP is either stimulated or inhibited by dopamine receptors. D1R and D5R 

are coupled to Gαs and Gαolf and are therefore classified as D1-like receptors, whereas 

D2R-D4R is coupled to Gαi/o and belongs to the D2-like receptors [179,180,1313]. In 

addition, D2R exists as two isoforms, D2long and D2short, generated by alternative splicing 

[1314]. Dimerization phenomena with their family members have been documented for 

all five receptors (D1R-D3R [464], D1R-D2R [465], D2R-D3R [471], D3R-D3R [469], D2R-

D5R [470], D4R-D4R [467]; additional combinations are reviewed in Schiedel et al. 

[77,79,466]). Increased formation of the D2R homodimer has been correlated with 
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schizophrenia, chronic social defeat stress, and a sensitized state after exposure to 

amphetamine, which can cause psychosis [77,1315,1316]. 

Although DR dimers have been analyzed in vivo and in vitro, and the targetability of the 

dimers has been shown experimentally, the structural details have not yet been fully 

understood. The crystal structure of GPCRs is a useful and indispensable tool for drug 

design [1317]. However, in silico studies of GPCR dimers are scarce [76,1318,1319] with 

the dimer interface and their monomer conformational states being unexplored for most 

known GPCR dimers. 

Several studies by Guo et al. proposed a symmetrical interface of the D2R homodimer 

involving TM4 [472,1303,1304]. This hypothesis was further supported by the existence 

of an interface between TM4 and TM5 in the inactive inverse agonist-bound state, 

whereas in the active state, TM4-TM4 was shown to form the interface [472]. In addition, 

a different study by Guo et al. identified a second symmetrical interface of TM1 that is 

relevant for higher-order oligomerization and does not seem to undergo major 

conformational changes upon ligand binding [1304]. The authors showed that neither 

agonists (quinpirole and bromocriptine) nor antagonists (sulpiride and butaclamol) 

affected dimer formation and concluded that D2R exists as a constitutive dimer [1303]. 

Similar conclusions were drawn in a study by Armstrong and Strange, where they 

showed in radioligand binding studies using CHO cells that the D2R homodimer has two 

identical and functional ligand-binding sites [1320]. Moreover, receptor crosslinking, as 

observed by Guo et al., does not impair the inhibition of adenylate cyclase by dopamine 

[472,1303,1304]. Guo and coworkers concluded from their results that each of the D2R 

dimer subunits is, therefore, able to bind to a Gi protein [1303]. Using the same 

experimental approach, a similar pattern was found for the metabotropic glutamate 2 

receptor (mGlu2R) [1321]. Both D2R and mGlu2R homodimers share similar inactive 

interfaces via TM4-TM5, while the active interface occurs via TM4 in D2R and via TM6 

in mGlu2R [1301]. Lee et al. studied the role of highly conserved cysteine residues in 

extracellular loops (ECL) 1 and 2 in D2R oligomerization [1305]. These cysteine residues 

are conserved in most rhodopsin-like GPCRs [1305]. Cys→Ala mutations in the 

extracellular loops were not significantly different between the mutant and wild-type D2R. 

They also identified TM4 as the site of interaction in D2R dimerization, which supports 

the proposal of a symmetrical TM4-TM4 interface. Similar to the full-length receptor, D2R 

truncation mutants incorporating TM4 and TM5 (e.g., D2TM4-ICL3) or consisting of TM1-

TM4 (D2AT-TM4) were able to form dimers. Truncated mutants lacking TM4 were 

identified only as monomers. To confirm this hypothesis, disruption of the helical 

structure of TM4 by the introduction of a proline residue in the truncation mutant, 

composed only of TM4 and TM5 domains, prevented the formation of dimers. This is 

important evidence but does not exclude the possible role of TM5 in the dimerization 

process [1305]. Marsago et al. showed another possible homodimer interface involving 

TM1 and TM2, along with HX8 [1322]. In addition to these interfaces, it has been widely 

described that D2R can form heteromers through a TM4–TM5–TM4–TM5 interface with 

other class A GPCRs such as A2AR and angiotensin 1 receptors (AT1R) [77]. However, 

such interfaces between homo- and heterodimers for the same GPCRs could be different 

[77]. More information on dimerization can be found in the Supplementary Information. 

To date, the most biologically relevant interface for D2R homodimers remains unknown. 

It is also possible that the interface depends on the specific conformation (active or 
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inactive) of the protomers. According to Cordomi et al., the activation of a single 

monomer implies a symmetry change in the established interface [1301]. This was 

shown by Guo et al., where, upon ligand binding, the D2R homodimer interface moved 

from the inactive TM4-TM5-TM4-TM5 toward an active TM4-TM4 interface [472]. 

Understanding the mechanism of action of D2R homodimer formation, as well as the 

interactions formed upon dimerization, is of great importance and may offer new insights 

into the pathophysiology of dopamine-related diseases. 

Therefore, we address the following key questions regarding the interface composition 

using a well-studied example: (i) What are the possible D2R homodimer configurations 

and their dependence on the monomer activation status, (ii) are these physiologically 

stable, (iii) which interfacial amino acids and which main interactions are relevant in the 

process, and (iv) what are the structural and dynamic consequences of dimer formation 

in the macro- and microswitches? We used published structures of D2R in different 

conformational states: inactive (PDB-id:6CM4 [1323]) and active (PDB-id:6VMS [1324]). 

We successfully built several dimer models, studied them using molecular dynamics 

(MD) simulations, and performed a thorough structural analysis of the data.  

 

3.2.2. Results 

3.2.2.1. Model generation and analysis 

The application of typical protein-protein docking procedures to GPCR dimers is not 

straightforward [1325,1326]. A previously published protocol has been successfully 

applied to model a D2R homodimer in an inactive conformation [1302,1310], among other 

studies on different GPCRs [1327,1328]. Therefore, we extended its application to other 

possible configurations of D2R homodimers in various activation states. After selecting 

the most suitable models for the MD simulations, they were checked for overall structural 

equilibration over time. Next, the interface and relevant residues were identified and 

compared with the initial prediction before structural relaxation was obtained using MD 

simulations. Important macro- and microswitches for class A GPCR activation were 

analyzed and compared among dimer configurations to observe any conformational 

changes in the monomers when complexed as dimers (protomers). The significant 

interfacial elements were assessed and compared. 

 

3.2.2.2. Contributing transmembrane helices 

Upon generation of dimer models, it was shown that different combinations of TMs were 

involved in the establishment of the interface (Table 2, Figure S6). To determine the 

biological relevance of our different D2R decoy configurations, they were subjected to 

the PRODIGY-CRYSTAL and PRODIGY-PROTEIN algorithms (Table S2). Using 

consensus scoring, we selected two ac-ac dimers as equally possible: one with a 

proposed TM4-TM5-TM4-TM5 interface and a second (B) with a proposed TM4-TM5-

TM7-TM1 interface (Table 1, Figure S6). 

 

https://paperpile.com/c/SDT9Uy/HGLeL+vTqCw
https://paperpile.com/c/SDT9Uy/mgW7p+wAeeb
https://paperpile.com/c/SDT9Uy/XrGfj+TMQNA
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Table  2. Proposed interfaces of D2R homodimer configurations based on consensus scoring (Figure S6). 

 Dimer configuration Proposed interface Template used 

1 in-in TM4-TM5-TM4-TM5 6CM4-6CM4 

2 ac-ac-B TM4-TM5-TM7-TM1 6VMS-6VMS-B 

3 ac-ac TM4-TM5-TM4-TM5 6VMS-6VMS 

4 ar-ar TM4-TM5-TM4-TM5 6U1N-6U1N 

5 ac-in TM1-TM2-TM4-TM5 6VMS-6CM4 

6 in-ar TM3-TM4-TM4-TM5 6CM4-6U1N 

7 ac-ar TM4-TM5-TM4-TM5 6VMS-6U1N 

 

The TM4-TM5-TM4-TM5 interface was the most prominent among the dimers. Other 

possible interfaces were determined for the ac-ac-B, ac-in, and in-ar dimers. For D2R, 

only in-in, ac-ac and ac-in D2R homodimers have been experimentally detected thus 

far, but all relevant combinations are nevertheless theoretically possible [87,439,472]. 

 

3.2.2.3. Predicted interface in models 

We identified interfacial amino acids in the static model structures using both PRODIGY 

algorithms (Table S2) [1329–1331]. We found that the number of residues varied 

between 21 and 35 and that the composition of interfacial amino acids was slightly 

different among the different D2R homodimer configurations. Although the total number 

of interfacial amino acids differed between dimer configurations, they were similar for the 

pairs of monomers complexed together (Table S2). In addition, we identified amino acids 

present in two or more dimers, marked in bold in Table S2, while the others were unique 

(frequency = 1), marked in italics in Table S2. Subsets of frequently appearing amino 

acids were found in configurations with a symmetric interface (TM4-TM5-TM4-TM5). No 

unique residues were found for one protomer in the in-in, ar-ar, or ac-protomer of the 

ac-ar configuration. We also analyzed the frequency of common residues across all 

dimer configurations (Table S3). These 98 residues were sorted into three categories: 

very frequent (8-12x), moderate (3-7x), and rare (1-2x). Nineteen frequent residues were 

found: 110Met (ICL2), 160Ala (ECL2), Tyr3.48, Tyr3.51, Thr3.52, Ala3.55, Arg4.40, Arg4.41, 

Val4.44, Ile4.48, Leu4.52, Thr4.55, Pro4.59, Tyr5.41, Val5.45, Val5.49, Ile5.52, Val5.53, and Leu5.56. 

More detailed analyses of the various interfaces are provided in the Supplemental 

material (Chapter 7). 

 

3.2.2.4. Analysis of the simulated systems 

After analyzing the final models, they were subjected to MD simulations. We first ensured 

that the systems were stable during simulation, that is, no disruption of the dimer 

occurred, and that the binding interfaces achieved equilibrium before further analysis. 

https://paperpile.com/c/SDT9Uy/CUG2+h4os+0IoC
https://paperpile.com/c/SDT9Uy/4X3Bw+nzXWY+J11VX
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This was not the case for ac-ac-B, which was disrupted upon initialization and was 

therefore excluded from further analysis (Figure S7).  

 

3.2.2.5. Equilibration and stability of the systems 

We evaluated the equilibration of the system by calculating the distance over time 

between a subset of residues located roughly at the center of each TM and the average 

position of the membrane P atoms. Two residues were selected per TM (1.44, 1.45, 2.52, 

2.53, 3.37, 3.38, 4.51, 4.52, 5.49, 5.50, 6.44, 6.45, 7.49, and 7.50), and their distance to 

the membrane center along the z-coordinate was calculated (Figure S7). Based on 

these results, an equilibration period of 200 ns was determined to be appropriate (black 

area in Figure S7). RMSD calculations were used to determine the stability and relative 

orientation of the TMs, loops, and important structural motifs of the D2R homodimer and 

were compared with those of the monomers (Figure S8). RMSD calculations were 

therefore performed for the individual monomers (in M), for each protomer within the 

dimer (in D), and for the entire dimer itself (Dim), and averaged among replicates. 

Overall, the systems were stable over time, with no major movements or disruptions of 

TMs. Analysis of microswitches and key domains showed that dimers had higher RMSD 

values than monomers, likely due to conformational rearrangement upon complex 

formation. A more widespread distribution was also observed for dimers, particularly at 

the DRY, CWxP, NPxxY, PIF, arginine cage domains, serine residues, and toggle switch, 

likely because of the same conformational rearrangement. We also monitored certain 

macro- and microswitches over time, including the relative orientation of the dimers 

(Figure S9), the interface area (Figure S10), the distance between TM3-TM6 (Figure 

S14) and TM3-TM7 (Figure S15), the angle between the centroids of the benzene ring 

of residues 5.51Phe, 6.44Phe, and 6.45Ile (Figure S23), the opening of the hydrophobic 

lock (Figure S25), both angles χ1 and χ2 of Tyr7.53 (Figures S26 and S27), and the sizes 

of the G protein and β-arrestin binding sites (Figures S33 and S34). For most time-series 

captures, no major changes were observed, indicating that an equilibration time of 200 

ns was sufficient for the systems to reach convergence. 

3.2.2.6. The D2R homodimer interface 

Relative orientation of the dimers 

We determined the relative orientation of the receptors in the dimeric state by calculating 

the relative rotational angles of the two receptors (Figure S9). The two-dimensional plots 

indicated that the symmetrical in-in dimer was highly stable across the MD simulations, 

suggesting a nonflexible dimer interface. Except the ac-ac configuration, all others 

populated two similar conformation states. The ac-ac configuration showed higher 

plasticity and could be mapped to three different dimer configurations. 

Key residues and interface area 

We calculated the interface area values of the various dimer configurations (Figures 14 

and S10) and found that these values were consistent across replicates over time. In 

terms of the size of the homodimer interface, the smallest area was observed in the ar-

ar configuration, whereas the largest area was observed in the in-ar configuration. 

Furthermore, configurations with the same interface type (e.g., TM4-TM5-TM4-TM5) 
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varied in size, with ar-ar configurations having the smallest interfacial area and in-in 

configurations having the largest interfacial area. 

To consider the dynamical behavior of the systems and to determine which residues 

formed the so-called “decoy original interface” of the dimer, we calculated the ΔSASA of 

each residue at the start of the simulation, where ΔSASA = SASAm - SASAd, where 

SASAm and SASAd are the SASA values in the monomeric and dimeric forms, 

respectively. The rationale was that residues with a ΔSASA of 0 had the same exposure 

in both the dimeric and monomeric forms and, as such, were not part of the initial 

interface. In addition to the requirement of a ΔSASA >0, we employed another set of 

criteria to further narrow down this list: residues should have a ΔSASA higher than 0.05 

nm2 in at least 2 out of the 3 replicates. We then calculated ΔSASA over time for each 

residue on this list, and for each residue, we performed normalization by dividing by 

SASAmax, defined as the maximum SASA value for that residue type (i.e., when fully 

exposed). Only residues with a normalized ΔSASA >10% were considered to belong to 

the initial interface (Figure S11, Table S4). 

 

We observed that most of the residues of the original interface remained there for more 

than 50% of the simulation time, but there were exceptions (detailed analysis can be 

found in Figure S11 and Table S4). In addition, we also found that a significant number 

of residues located in the loops contributed to the interface, especially residues from 

ICL2 (110Met, 111Pro, 112Met, 113Leu, 114Tyr, 115Asn,  

 

116Thr, 117Arg, 118Tyr, 119Ser, 120Ser, 121Lys) and ECL2 (144Phe, 145Gly, 146Leu, 

147Asn, 148Asn, 158Asn, 159Pro, 160Ala). In addition, we determined that TM7 and 

ICL3 do not contribute to the interface of any configuration. For in-protomer-2 of the in-

in dimer and the in-protomer of the in-ar, but not for ac-in, two residues from TM6 

(Ile6.56, Ile6.59) were part of the interface, which was unexpected because TM6 was not 

part of the initially predicted interface. In addition, ar-protomer-2 of the ar-ar 

Figure 14. Interface area of each D2R homodimer system. The 
interface area was calculated for each system, and replicates are 
summarized as the mean ± standard error of the mean (SEM). 
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configuration and the in-protomer of the in-ar configuration possessed 248His (ECL3) 

as part of their interface. Furthermore, for the two hetero-configuration dimers, ac-in and 

in-ar, residues from TM1, ICL1 and TM2 (Val1.51, Cys1.54, Met1.55, Ser1.58, Arg1.59, 35Lys, 

38Gln, Tyr2.41, Val2.48, Leu2.52, Thr2.55, Leu2.56) contributed to their interface. While the ac-

in configuration was formed by TM1-TM2 of the ac-protomer, the in-ar configuration 

was formed by TM4-TM5 of the ar-protomer. A unique feature was also observed in the 

ar-protomer of the in-ar configuration, which contained one ECL1 residue (75Ser) and 

two HX8 residues (Ile8.53 and Cys8.56) at the interface. 

We compared the "decoy original interface" to the prediction made with the 

PRODIGY/static structure using homodimers before they underwent MD simulations 

(Table S5) [1326–1328]. While most residues were accurately predicted, there were 

some changes in the interface residue list, indicating some conformational 

rearrangement. It is worth noting that all relevant residues from the Guo et al. studies 

were present among the dimer configurations (Figure 15) [472,1312,1313]. 

 

Predicted static interface vs. dynamical interface 

After comparing the PRODIGY/static structure and the SASA/dynamical interfaces and 

sorting all residues according to their frequency (Table S2-S6), we identified the 

following highly frequent residues in the D2R homodimer: 160Ala (ECL2), Arg4.40, Val4.44, 

Ile4.48, Val4.51, Leu4.52, Thr4.55, Pro4.59, Tyr5.41, Val5.45, Val5.49, and Val5.53. Interestingly, we 

also observed that partnered protomers with different TMs, such as the ac-protomer of 

the ac-in configuration, which uses TM1 and TM2 as part of the interface, also included 

Arg4.40 and Val4.51 among the prevalent residues. Similarly, the in-protomer of the in-ar 

configuration, which uses TM3 and TM4 as part of the interface, also contains residues 

from TM5 (Val5.40, Tyr5.41, Ile5.44, Val5.45, Val5.49, Ile5.52, Val5.53, Leu5.56, Lys5.60, Arg5.67) and 

TM6 (Arg6.67, Ile6.56, Ile6.59). 

In addition to the highly prevalent residues, certain regions of the receptor also contribute 

to the size of the interface in the dimer with the TM4-TM5-TM4-TM5 interface, such as 

TM3, ECL2, and ICL2. For example, many residues from TM3 and the loops contributed 

to the interface in the in-in symmetric dimer, while this was not the case for the ac-ac 

and ar-ar dimers. Almost no residues from the loops contributed to the interface in the 

ar-ar homodimer. In contrast, various residues from the loops were important for binding 

in the ac-ac dimer, but only one residue from TM3 (Ala3.55) was part of the interface. 

https://paperpile.com/c/SDT9Uy/4X3Bw+nzXWY+J11VX
https://paperpile.com/c/SDT9Uy/Lmvs+CUG2+2YvY
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Similarly, only Ile3.48 and Thr3.52 were part of the TM4-TM5-TM4-TM5 interface in the ac-

ar configuration. 

 

For dimers with a nonsymmetric interface, such as ac-in (TM1-TM2-TM4-TM5), we 

again found that residues from other regions, such as TM3 and ICL1, contributed to the 

interface. Interestingly, for the in-ar (TM3-TM4-TM4-TM5) configuration, some residues 

from TM5 and TM6 were part of the interface on the in-protomer side (TM3 and TM4), 

while residues from TM1, ICL1, TM2, TM3, and HX8 contributed from the ar-protomer 

side (TM4-TM5). This finding is consistent with the large interfacial area of the in-ar 

configuration (Figure 14). The same observation was also made for the ac-in interface 

(Figure 14). 

Apart from the size of the interface area and, consequently, the number of interfacial 

residues, we also wanted to determine the types of residues that are preferentially 

conserved in these interfaces. As expected, most of the 12 conserved/highly frequent 

residues were nonpolar, including 5 valine residues. Asp and Glu were the only amino 

acid residues that were not found at any of the interfaces. 

Interaction type established for the different interfaces 

The type of pairwise interaction was determined and averaged among replicates (Figure 

S12). Each system displayed a unique pattern, and interestingly, they were not solely 

found between the TMs of partnered receptors (a detailed analysis can be found in 

Figure S12). 

Overall, the results showed that the conformational status of the monomers contributed 

to the interaction patterns when considering dimer configurations with the same 

Figure 15. Snake plot of D2R showing relevant residues from the literature and this study. Residues 

known from literature from studies of Guo and co-workers for the active conformation (green) and from 

Wouters and co-workers (blue) which considered TM5 and TM6 as determinants of the interface. In this 

study, PRODIGY-predicted frequent residues are colored yellow, and SASA-determined frequent 

residues are shown in brown. Common residues between the PRODIGY and SASA analyses are colored 

orange. The residues predicted in our study by PRODIGY and SASA are shown in pink by Guo et al. 
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interface. For example, in the in-in configuration, interactions involving TM5 were not 

present even though TM5 was part of the interface. TM4 was relevant for forming H-

bonds and π-cation interactions with ICL2 as well as H-bonds and salt bridges with TM3. 

The subset of interfacial residues on TM3 comprises Ile3.48, Tyr3.51, Thr3.52, and Ala3.55. 

ICL2, ECL2, and ECL3 were the domains mainly involved in the formation of π-stacking, 

T-stacking, and some H-bond and π-cation interactions. Moreover, residues on ECL3 

have not been previously identified as part of the interface. ICL2 consisted of only a few 

residues, 110Met, 111Pro, and 120Ser, whereas the ECL2 interfacial residues were 

146Leu, 147Asn, 159Pro, and 160Ala. Ile6.59 was the only relevant residue identified in 

TM6.  

When comparing these findings to other configurations with the same interface, we found 

that for ar-ar and ac-ac, where the protomers possess the same conformation, no salt 

bridges were present. However, conserved salt bridges between TM4 and TM3 were 

found for the ac-ar configuration, similar to our observation for the in-in configuration. In 

the ar-ar configuration, TM4 and TM5 are involved in the formation of H-bonds. Although 

this configuration has the smallest interface (Figure 14) with only 12 residues, it appears 

to be crucial for many of the interactions. 

For instance, the TM5 residues, comprising Phe5.38, Tyr5.41, and Val5.45 from protomers 1 

and Val5.40, Ile5.44, Tyr5.48, Val5.49, Ile5.52, Leu5.56, Lys5.60 from protomer 2. Only π-cation 

interactions were formed by residues from TM4, ECL2 and ECL3. In contrast to the ar-

ar and in-in configurations, the ac-ac configuration behaved differently. H-bond 

interactions were mainly formed by TM3, TM4 and TM5, while π- and T-stacking 

interactions were again mostly formed by TM5. However, for this configuration, the loops 

appeared to be less involved in establishing meaningful interactions. This was also true 

for the ac-ar configuration. We also concluded that TM3 was highly involved in other 

types of interactions, such as H-bonds and π-cation interactions, which is quite 

interesting, as only Ile3.48 and Thr3.52 were previously considered part of the interface. 

When looking at the major structures involving mixed conformational dimers, such as in-

ar and ac-in, a larger subset of salt bridges was found compared to the other homo-

conformational configurations. For the in-ar configuration, ICL1 residues 35Lys and 

38Gln were also involved in the observed interactions. Interestingly, π-cation interactions 

were also formed by residues from HX8, namely Ile8.53 and Cys8.56. For the ac-in 

configuration, HX8 also contributed to H-bond and π-cation interactions. In this 

configuration, residues from the relevant TMs interact with each other or with residues 

from the loops, particularly ICL2 (117Arg, 118Tyr, 121Lys) and ECL2 (144Phe, 145Gly, 

147Asn, 160Ala). 

 

3.2.2.7. Macro- and microswitches upon dimerization 

The effects of activation on different macro- and microswitches are reviewed in the 

Supplementary Information. In this study, we investigated these effects in the context of 

dimerization. 

Outward movement of TM6, inward movement of TM7, and disruption of the ionic 

lock 
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A description of the GPCR activation mechanism and main effects can be found in the 

Supplementary Information (Figure S13). First, we compared the distance between the 

Cα atoms of residues 3.50-6.34 (TM3-TM6) and 3.50-7.53 (TM3-TM7) (Figure S14 and 

S15).  Arg3.50 is part of the ionic lock and is known to form a salt bridge with Glu6.30, which 

stabilizes the inactive state [1332–1334]. The ionic lock is disrupted upon activation, 

leading to the outward movement of TM6, for which 6.34 was chosen as the 

representative part of the key DRY motif [1335]. In addition, Tyr7.53, also part of the 

NPxxY motif, is a highly conserved tyrosine that undergoes conformational transitions 

depending on the activation state of the receptor [107,1332]. According to Zhou et al., 

Tyr7.53 also experiences several rewiring events with a shortening of its distance to TM3 

[97]. As expected, we obtained a shorter TM3-TM6 distance and a higher TM3-TM7 for 

the in-monomer conformation, whereas these values were higher for the ar- and ac-

monomers and dimers containing them. For the various dimer configurations, we 

observed that the TM3-TM6 distances were (i) even lower for in-in, (ii.) lower for one 

protomer on the ar-ar dimer, (iii.) constant for the ar-protomer in the in-ar and ac-ar; 

(iv.) higher for the ac-protomer in the ac-ar dimer, and (v.) lower for the ac-protomer 

in the ac-in dimer configuration. 

Second, the distances between the Cα atoms of residues 3.50 and 6.34 (TM3-TM6) and 

between 5.46 and 7.41 (TM5-TM7) were measured to observe the overall concerted 

movement of the TMs (Figure S16, S17). The role these residues play in activation is 

further explained in the Supplementary Information. As for TM3-TM7 (3.50-7.53), the 

distance between TM5-TM7 (5.46-7.41) should also be short when the receptor is 

activated. For the distance between TM5 and TM7, we expected distances similar to 

those observed for TM3-TM7. When comparing these two measurements for the 

individual monomers, we found that the distance between TM3-TM6 was shorter 

(between 0.5-1.0 nm) for the in-monomer, while the distance between TM5-TM7 was 

larger (between 1.6-2.0 nm). For the ar-monomer, the distance between TM3-TM6 was 

consistent at approximately 1-1.5 nm, while a high dispersion was found for the TM5-

TM7 distance ranging from 1.4-2.4 nm over time. However, the distance between TM5-

TM7 was much larger than that between TM3-TM7. The opposite was true for the ac-

monomer configuration. The distance between TM5 and TM7 was consistently between 

1.6 and 2 nm over time, which was larger than the distance between TM3 and TM7. In 

contrast, the distance between TM3 and TM6 showed considerable variability over time, 

ranging from 0.7-1.7 nm. 

As a third metric, we analyzed the distance between the Cα atoms of residues 3.50 and 

6.34 and between 5.58 and 7.53 (Figure S18, S19). While the distance between 3.50 

and 6.34 is an indicator of outward movement of TM6, the distance between the two 

conserved tyrosine residues Tyr5.58 and Tyr7.53 represents an important microswitch 

in class A GPCR activation [1336]. Residues from TM5 that interact with the ligand, such 

as 5.46, cause rearrangements in the NPxxY motif in form of a twist, which reorients 

Tyr7.53 towards Tyr5.58, forming a water-mediated interaction known as the Y-Y 

interaction [1336,1337]. Together with the displacement of TM6, captured by the 

distance between 3.50 and 6.34, the formation of the G protein binding site was 

established [1336]. Therefore, we expected that the fully active conformation of the 

monomers would result in a short distance between the two tyrosines (Y-Y interaction). 

Conversely, we expected inactive conformers to exhibit longer distances between the 

https://paperpile.com/c/SDT9Uy/OGtsV+0yjbc+JGbGB
https://paperpile.com/c/SDT9Uy/vFg7D
https://paperpile.com/c/SDT9Uy/OGtsV+eMHD
https://paperpile.com/c/SDT9Uy/PfW6
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two tyrosine residues. Our observations for the monomers (Figure S18) support these 

expectations. The in-monomer showed a short distance between TM3-TM6 and a large 

distance between Y and Y-Y. The ar-monomer had a larger distance between TM3-

TM6 but a visibly shorter distance between Y-Y. For the ac-monomer, at some time 

points, the distances were even shifted towards a more active conformation compared 

to those measured for the ar-monomer. When comparing the monomer and dimer 

configurations, it could be shown that some conformational changes occurred within the 

dimers (Figure S19). While most of the protomers displayed similar properties to their 

uncomplexed monomers, the ac-protomer of the ac-ar configuration was found to be 

fully active than the monomer only, while this was not the case for its partnered ar-

protomer. However, the ac-protomer in the ac-in dimer was clearly shifted towards a 

more inactive conformation, displaying a short distance between TM3-TM6 and a larger 

distance between Y-Y. We also monitored the comparison of the distances between the 

Cα atoms of residues 5.46-7.41 (TM5 bulge) and the ΔRMSD of two residues of the PIF 

motif (Ile3.40 and Phe6.44) (Figure 16, S20). According to Fleetwood et al., the formation 

of a bulge on TM5 by residues 5.46 and 7.41 influences the intracellular distance 

between residues 3.40 and 6.44, which are part of the PIF motif (connector motif) [1336]. 

These residues are also known to be in contact with highly conserved Asp2.50 and 

NPxxY through a network of water molecules [1336]. When analysing the results for the 

free monomers (Figure S15), it is clear that the in-monomer had the distance of the 

TM5 bulge varied between 1.60–2.00 nm, while the ΔRMSD of the connector ranged 

between -0.15 and -0.10 nm. In contrast to the in-monomer, the ΔRMSD of the 

connector of the ac- and ar-monomer was between 0.00 and 0.15 nm. In addition, the 

distance between the residues of the TM5 buffer showed a more dispersed distribution 

(range 1.40–2.20 nm) for the ar-monomer and was more concentrated (approximately 

1.50–1.90 nm) for the ac-monomer. These findings are in agreement with those 

reported by Fleetwood et al. (Figure 4 of Fleetwood et al., panels d-f, [1335]) and put the 

ar-monomer in an intermediate activation state compared with the fully activated ac-

monomer. In the in-in dimer configuration (Figure 16), there is a decrease in the 

ΔRMSD towards -0.20 nm and a different behavior of the two protomers, with one 

accessing more inactive-like conformations. In the in-ar and in-ac dimers, we also 

observed a high stability of the in-protomer in its inactive state. Both inactive and active 

conformations of the TM5 bulge were populated in the ar-ar dimer, reaching even higher 

values for the ar-protomer in the in-ar dimer. In contrast, the ar-protomer in the ac-ar 

dimer populated only the active-like states. The ac-protomer is very stable in an active 

conformation in the ac-ac, ac-ar, and ac-in dimers. 

 

 

https://paperpile.com/c/SDT9Uy/JjDIS
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Lu et al. tracked the angle between the centroids of the benzene ring of three 

phenylalanines (5.51, 6.44, and 6.45) over time. We replicated this analysis in our current 

study (Figure S23) [1339]. Upon activation, residues 6.44 and 6.45 moved towards 

residue 5.51, which then promoted an outward movement of TM6. Furthermore, all 

residues near the aromatic microdomain, where the rotamer toggle switch takes place, 

also moved forward [182,1339,1340]. For the uncomplexed monomers, the in-monomer 

was constant at 50–60°, while the ar-monomer was found at 70–90°, and the ac-

monomer was found between 60 and  80°. 

 

Upon closer examination of the properties of TM6, we observed that the conformational 

states of the individual monomers did not change significantly during simulation. 

However, the configurations of most dimers changed, with the exception of in-

conformers. The ac-protomer in the ac-in configuration adopted the properties of an 

inactive conformer. In the ac-ac, ar-ar, and ac-ar configurations, one protomer appeared 

to be more active than the other, indicating that it may shift between a fully active 

Figure 16. Comparison of TM5 bulge movement and RMSD of residues I.340 and F.644 (connectors) for the D2R 
homodimer configurations. Comparison of Cα-distance between 5.46 and 7.41 and the RMSD of residues Ile3.40 and 
Phe6.44, which were measured for all protomers and replicates over time. For easier comparison, the distances of the 
individual monomers in the three activation states (in, ar, and ac) are shown as light-colored clouds in the background in 
three different lines. Conformations are color-coded as inactive-red, arrestin-yellow, active – blue. 

https://paperpile.com/c/SDT9Uy/1Vljs
https://paperpile.com/c/SDT9Uy/u9uB+hMDpv+1Vljs
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conformation and an intermediate state, which has several properties similar to the 

arrestin-bound conformation. This can also explain the differences between the 

protomers of the ar-ar configuration. 

The collapse of the sodium pocket 

Numerous studies have shown that ligand binding and activation of class A GPCRs lead 

to changes around the CWxP, TM5, and PIF motifs, resulting in the collapse of the 

sodium pocket around the conserved aspartic acid 2.50. This process involves 

dehydration, displacement of the sodium ion, and protonation of Asp2.50, ultimately 

leading to a rewiring of the NPxxY motif [130,133,134,1336,1341]. The allosteric Na+ ion 

forms strong interactions with residues Asp2.50 and Ser3.39 and several water molecules, 

all stabilizing the inactive state of GPCRs [1336,1342–1344]. Upon activation, the ionic 

lock is disrupted, and the sodium pocket around Asp2.50 collapses and releases the 

sodium towards the intracellular space [134]. In our study, we also monitored changes 

in these two regions by calculating the distance between the Cα atom of Asp2.50 and the 

Figure 17. Comparison of disruption of the ionic lock represented as a distance between 3.50 and 6.34, and the distance 
between Asp2.50 and its closest sodium for the D2R homodimer configurations. Comparison of the Cα-distance between 
3.50 and 6.34 and the distance between the Cα atom of the conserved residue Asp2.50 and sodium (Na+), which were 
measured for all protomers and replicates over time. For easier comparison, the distances of the individual monomers in 
the three activation states (in, ar, and ac) are shown as light-colored clouds in the background in three different lines. 
Conformations are color-coded as inactive-red, arrestin-yellow, and active-blue. 

https://paperpile.com/c/SDT9Uy/igULM+pnvAF+MBaj+UAEW+rBoU
https://paperpile.com/c/SDT9Uy/pnvAF+vjyiY+dUklX+PJX5c
https://paperpile.com/c/SDT9Uy/MBaj
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closest sodium atom and compared this to the distance between the Cα atoms of 

residues Arg3.50 and Thr6.34, the ionic lock (Figure 17, S24). When looking at the 

individual monomers, the in-monomer appeared to have a short distance towards 

sodium, whereas in the ac- and ar-monomers, sodium was located more than 1.5 nm 

away from Asp2.50 (Figure S24). The distance between Arg3.50 and Thr6.34 was less than 

1.0 nm for the in-monomer, indicating that the ionic lock had not yet been disrupted. 

Distances above 1.0 nm were considered indicators of activated conformations, which 

was the case for ac- and ar-monomers (1.0-1.5 nm). When comparing these results 

with the dimer configurations (Figure 17), we see that all the in-protomer, ac-ac, ar-ar, 

and in-ar configurations have metrics similar to their individual uncomplexed forms. In 

the ac-ar configuration, the ionic lock residues of the ac-protomer were more widely 

separated than those of the uncomplexed monomers, and the same was true for the ar-

protomer. In the ac-in dimer, the ac-protomer had properties of an inactive receptor, 

with approximately 1.5 nm and a closed ionic lock (0.5-1.5 nm). Another indicator of 

disruption of the sodium pocket is the number of water molecules in its vicinity. Therefore, 

we calculated the number of water molecules within a 0.8 nm radius around Asp2.50 

(Figure 18). 

 

We found that the number of water molecules was consistently higher (~30) in the in-

conformer than in the ac- and ar-conformers (~10). Interestingly, a clear distribution 

between the conformers was observed for the individual monomers. A comparison of 

these findings with the dimer configurations showed that the number of water molecules 

in the in-in configuration was similar to that of the individual monomers. Interestingly, 

the average number of water molecules differed between the two protomers within the 

ac-ac dimers. In this configuration, protomer 2 contains approximately twice as many 

water molecules as protomer 1. Furthermore, in the ar-ar configuration, the number of 

Figure 18. The number of water molecules within 8 Å of Asp2.50 for the D2R homodimer configurations. The number of 
water molecules within 8 Å of the conserved residue Asp2.50 for the complete simulation time are represented as mean ± 
SEM. Conformations are color-coded: inactive - red, arrestin - yellow, active - blue 
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water molecules is significantly reduced by 50% upon dimerization. For the in-

conformation, we found that they remained inactive regardless of the partnered 

monomer, whereas the ac- and ar-conformations behaved very similarly to the active 

conformers (Figure 18). 

Hydrophobic lock 

After GPCR activation, the breaking of the hydrophobic lock comprising the hydrophobic 

residues at positions 3.43Leu3.43, Val6.40, and Leu6.41 is another important microswitch 

event that loosens the connection between TM3 and TM6 [97,1339]. It also promotes 

the breaking of the ionic lock between Arg3.50 and Glu6.30, which finally releases TM6 

outwards [97,126,1339]. To observe the status of the hydrophobic lock, we measured 

the area of the angle composed of the Cγ atom of Lys3.43, the Cβ atom of Val6.41, and the 

Cβ atom of Ile6.40 over time, as described by Lu et al. (Figure S25) [1339]. The authors 

suggested that an area of approximately 15 Å2 represents an inactive state, 10-20 Å2 

indicated an intermediate state, and everything above 20 Å2 represents an active state 

of a GPCR [1339]. We only found breaking of the hydrophobic lock upon activation in 

the ac-conformers, while all in-protomers behaved like inactive conformers, regardless 

of their partners. 

Microswitch: Transition of dihedral angles χ1 and χ2 tyrosine 7.53 

 

Upon class A GPCR activation, the highly conserved tyrosine 7.53 undergoes 

conformational transitions between its dihedral angles χ1 and χ2 according to Yuan and 

coworkers [107]. Following the angles over time (Figure S26, S27), we observed major 

differences between the different conformational states of the individual monomers and 

the dimer configurations. The χ2 angle displayed several, large conformational shifts, 

foremost for ac- and ar-conformers at any combination undergoing large movements, 

while in-conformers were more restricted. When comparing the dihedral angles χ1 and 

χ2 (Figure S28 and S29), it became clear that some of the configurations showed more 

variation than others. The smaller variation in χ1 can be explained by the large rotations 

at this angle, which lead to steric clashes with the protein backbone. We also observed 

a lower rotation in Tyr7.53 for in-conformers, while rotations of χ2 in ar- and ac-

conformers indicated that these conformations switch from active to inactive 

conformations. Moreover, the ac-protomers in the mixed configurations showed more 

constricted variation than that in the uncomplexed form, which can be explained by less 

space to unfold into a fully active conformation when complexed. 

 

Transitions in the NPxxY motif 

According to Leioatts et al. [1332] and Dror et al. [1345], the deactivation of class A 

GPCRs consists of a two-step process, where the NPxxY motif undergoes transitions 

towards an inactive conformation first, followed by ionic lock closing as TM6 moves 

inward to the helical bundle. Hence, the RMSD of NPxxY and the distance between the 

Cα-atoms of residues of the ionic lock Arg3.50 and Glu6.30 should give us the possibility to 

map this process [1332]. When we calculated these structural properties for the different 

D2R homodimer configurations, we observed that specific values could be determined 

for individual monomers based on their conformation (Figure 6, S25). For the in-

https://paperpile.com/c/SDT9Uy/PfW6+1Vljs
https://paperpile.com/c/SDT9Uy/PfW6+1Vljs+TAX8
https://paperpile.com/c/SDT9Uy/1Vljs
https://paperpile.com/c/SDT9Uy/1Vljs
https://paperpile.com/c/SDT9Uy/eMHD
https://paperpile.com/c/SDT9Uy/OGtsV
https://paperpile.com/c/SDT9Uy/FfJtM
https://paperpile.com/c/SDT9Uy/OGtsV
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monomer, the distributions of both the RMSD of NPxxY and the distance of the ionic 

lock were relatively small and concentrated, indicating that the ionic lock was closed in 

the inactive conformation,, and no significant transitions occurred in the NPxxY motif. 

(Figure S30). For the ar-monomer, the RMSD of NPxxY varied more than the ionic-lock 

distance. For the ac-monomer, the RMSD of the NPxxY motif was more diverse, and 

the distance of the ionic lock was increased. In the dimer configurations, the protomers 

remained inactive in the inactive conformations, whereas differences between 

monomers and complexes were observed for the ac- and ar-conformers (Figure 19). It 

is worth noting that the ar-protomers adopt inactive-like conformations in the in-ar 

dimer, and the ac-protomers are distributed over both  According to Leioatts et al. 

[1332] and Dror et al. [1345], the deactivation of class A GPCRs consists of a two-step 

process, where the NPxxY motif undergoes transitions towards an inactive conformation 

first, followed by ionic lock closing as TM6 moves inward to the helical bundle. Hence, 

Figure 19. Comparison of the RMSD of NPxxY and the distance between Cα-atoms of residues of ionic lock 3.50 and 
6.30. Comparison of the RMSD of NPxxY and the distance between Cα-atoms of residues of ionic lock 3.50 and 6.30, for 
which RMSD and distances [nm] of the uncomplexed monomers are shown as light-colored clouds in the background. 
Conformations are color-coded: inactive - red, arrestin - yellow, active - blue. 

https://paperpile.com/c/SDT9Uy/OGtsV
https://paperpile.com/c/SDT9Uy/FfJtM
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the RMSD of NPxxY and the distance between the Cα-atoms of residues of the ionic 

lock Arg3.50 and Glu6.30 should give us the possibility to map this process [1332] (Figure 

19). When we calculated these structural properties for the different D2R homodimer 

configurations, we observed that specific values could be determined for individual 

monomers based on their conformation (Figure 19, S30). For the in-monomer, the 

distributions of both the RMSD of NPxxY and the distance of the ionic lock were relatively 

small and concentrated, indicating that the ionic lock was closed in the inactive 

conformation, and no significant transitions occurred in the NPxxY motif. (Figure S30). 

For the ar-monomer, the RMSD of NPxxY varied more than the ionic-lock distance. For 

the ac-monomer, the RMSD of the NPxxY motif was more diverse, and the distance of 

the ionic lock was increased. In the dimer configurations, the protomers remained 

inactive in the inactive conformations, whereas differences between monomers and 

complexes were observed for the ac- and ar-conformers  (Figure 19). It is worth noting 

that the ar-protomers adopt inactive-like conformations in the in-ar dimer, and the ac-

protomers are distributed over both active and inactive-like populations in the ac-in 

dimer. 

We analyzed changes in the NPxxY motif by comparing ΔSASA with the RMSD of this 

motif (Figures S26 and S27). When examining the individual monomers, we found that 

for the in-monomer, the RMSD was between 0.0 and 0.1 nm, and the ΔSASA was 

between 9% and 18%, while the RMSD was increased to 0.1-0.2 nm for the ar-monomer 

and the ΔSASA did not change significantly. For the ac-monomer, the RMSD increased 

above 0.2 nm, and the ΔSASA was spread between 9% and 20%. In the dimer 

configurations, the in-conformers always displayed the same values, regardless of the 

partner, whereas more variation was observed for the other conformers (Figure S27). 

Analysis of the NPxxY motif in the monomer and dimer configurations confirmed the 

results obtained for other motifs. The in-conformer is always inactive, whereas the ar-

ar, ac-ac, and ac-ar configurations display properties similar to those of the activated 

receptors. 

3.2.2.7. Sizes of G protein- and β-arrestin-binding areas 

The sizes of the binding sites for the G protein and β-arrestin were determined using 

SASA values of relevant residues, which were then normalized to the SASAmax values 

determined earlier for each type of amino acid. The sizes (expressed as a percentage) 

were calculated over time (Figures 33 and S34), and then averaged and compared 

within the different dimer configurations (Figure 20). According to Yuan et al., small 

binding areas suggest an inactive state of the receptor, as there is no space available 

for the binding of a G protein or β-arrestin [107]. We observed the smallest areas of the 

binding sites for the inactive protomers (Figure 20). The largest values were determined 

for the ar-ar and ac-ac dimer configurations. Additionally, the ratios between the 

protomers were consistent for both the G protein- and β-arrestin-binding sites. 

 
 
 
 
 
 
 

https://paperpile.com/c/SDT9Uy/OGtsV
https://paperpile.com/c/SDT9Uy/eMHD
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3.2.3. Discussion 

3.2.3.1. Dimer configurations are stable 

The goal of our study was to design a straightforward protocol for building GPCR 

homodimers, identifying their most stable interfaces, and complementing previous 

studies on other GPCR dimers, including those of Kaczor et. al [1310,1327,1328]. We 

used the D2R homodimer as a case study since the TMs involved in its interface were 

previously experimentally identified. 

Our results show that different dimer configurations can form stable TM4-TM5-TM4-TM5 

interfaces, regardless whether the partnered protomers are active or inactive. This is in 

line with experimental studies showing that the dimers seem to be pre assembled 

independent of ligands and therefore also independent of the conformation of partnered 

protomers.  

Figure 20. Size of binding sites for the G-protein and β-arrestin. The sizes of G protein and β-arrestin binding sites [%] 
were determined using SASA values of binding sites resides retrieved from Preto et al. (2020). This were then normalised 
to the SASAmax values determined for each type of amino acid. The volumes are shown as mean ± SEM. Conformations 
are colour-coded: inactive - red, arrestin - yellow, active - blue. 



CHAPTER 3: THE WORLD OF GPCR DIMERS - MAPPING DOPAMINE 
RECEPTOR D2 HOMODIMERS IN DIFFERENT ACTIVATION STATES AND 
CONFIGURATION ARRANGEMENTS 
_______________________________________________________________ 

111 
 

However, we found that the inactive conformation was maintained in all combinations, 

whereas the ac- and ar-conformations were either active or desensitized (activated 

state). We observed variations in some metrics for ac- and ar-conformers, particularly in 

terms of helix movement. The ac-ac combination was found to be active while the 

individual monomers were rather found in an intermediate conformation, between 

inactive and active. This indicates that the active protomers stabilize each other’s active 

conformations. Most notably, we observed that an active protomer adopts properties of 

the inactive conformation when paired with an inactive protomer, particularly in terms of 

helix movement, transitions in the NPxxY motif, and the position of the ionic lock. The 

latter was only observed for the in-ac dimer. Additionally, we found that this ionic lock 

was broken for ac conformers in all combinations, even when paired with an inactive 

protomer. The addition of G proteins may change this behavior. We verified that the 

dimers with the TM4-TM5-TM4-TM5 proposed interface followed the same behavior as 

previously described for a similar configuration in the serotonin1A receptor [1346,1347]. 

The in-conformer was always inactive, whereas the ar-ar, ac-ac, and ac-ar 

configurations displayed properties similar to those of the activated receptors. Analyses 

of the macro- and microswitches revealed that the inactive configuration was 

unperturbed by its partnered protomer, whereas in the ac-in dimer, the active protomer 

adopted the properties of an inactive receptor. In some cases, the arrestin configuration 

displayed properties of an active receptor in the absence of an agonist, suggesting that 

a switch to another meta-state within the dimerization process was observed. In 

summary, the relevant residues found in our study are in agreement with experimental 

data, thus, validating our computational protocol. This method can easily be adapted to 

heterodimers and may also be extended by adding additional proteins such as G proteins 

or β-arrestins. 

 

3.2.3.2. The central role of transmembrane domains 4 and 5 in dimer formation 

TM1, TM4, and TM5 bear the largest membrane-accessible areas, which indicates their 

importance in the establishment of protein-protein interactions [1301]. Several studies 

have revealed the importance of TM4 and TM5 in homo- and heterodimer formation 

[825,1305,1318,1346,1348–1354]. However, many other interface points have been 

identified, including TM5-TM6-TM5-TM6 [77,1355], TM1, TM2, HX8, and ECL1 

[876,1247,1310,1351,1354,1356]. Here, we observed that the involvement of TMs 

changed depending on the combination of conformers. A symmetric interface of TM4-

TM5-TM4-TM5 was determined for most configurations, except for two very different 

arrangements: ac-in (TM1-TM2-TM4-TM5) and in-ar (TM3-TM4-TM4-TM5). This is 

consistent with the “rolling dimer” interface model proposed by Dijkman et al., which 

suggests that GPCRs can exploit multiple interaction interfaces that can coexist and 

interconvert [1357]. In the ac-in and in-ar dimers, the interaction between GPCRs led to 

the establishment of asymmetrical and larger interfaces in comparison to the ac-ac 

configurations and were therefore,  closer in size to the in-in dimer. 

Overall, our findings are in agreement with earlier experimental studies by Guo et al., 

which reported that TM4-TM5 is the most likely physiological interface of the D2R 

homodimer [472,1303,1318]. However, other studies have supported these alternative 

possibilities. Marsago et al. showed that the D3R homodimer has two potential interfaces: 
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one involving residues from TM1, TM2, and HX8, and the other involving TM4 and TM5 

[1298,1322]. TM3 has also been found at the interface of the A2AR-D2R heterodimer [76]. 

TM6 is unlikely to play a significant role in complex formation, as it would likely cause 

steric clashes between the protomers upon activation due to its outward movement 

[1357–1359]. 

3.2.3.3. Transmembrane domain and loop involvement in dimer formation 

The interfacial characterization of all configurations in this study highlights the important 

role of the TM regions and loops in driving complex formation. This finding is in 

agreement with those reported by Simpson et al. [1319], Pulido et al. [1360], and Filizola 

et al. [1352], pinpointing ICL2 and ECL2 as particularly relevant, which has also been 

observed in other studies [1361]. ICL3 also forms relevant interactions, particularly at the 

C-terminal regions. However, it is difficult to fully assess their involvement because these 

loops are very large and flexible, and cannot be well-captured by experimental 

techniques or well-modeled by computational methods. Consequently, the analysis of 

the ensemble of conformations involving these loops remains elusive. We identified a 

subset of highly conserved residues that were relevant for all dimer configurations 

determined in a static structure (PRODIGY) and we considered the dynamic behavior of 

the dimers (SASA) during the simulation:160ALA (ECL2), Arg4.40, Val4.44, Ile4.48, Val4.51, 

Leu4.52, Thr4.55, Pro4.59, Tyr5.41, Val5.45, Val5.49, and Val5.53. Comparing these findings with 

those of Guo et al., some differences and similarities were observed [472,1303,1304]. 

For example, Arg4.40, Val4.44, Ile4.48, Val4.51, Thr4.55, and Pro4.59 residues were involved in 

both studies. Guo and coworkers [472,1303,1304] stated that residues Trp4.50, Phe4.54, 

Cys4.58, and Arg4.43 were relevant to mediate the crosstalk between the protomers in an 

active conformation. Herein, we observed their participation only in the ac- and ar-

conformers. Guo et al. reported different amino acid combinations for TM4-TM5 

(inactive dimer configuration) and TM4-TM4 (active dimer configuration) [472]. It has also 

been reported that the replacement of Cys4.58 leads to the elimination of receptor 

crosstalk and that this amino acid is relevant for the active TM4-TM4 conformation of the 

D2R homodimer. In our study, Cys4.58 was present in both protomers of the ac-ac 

configuration with the TM4-TM5-TM4-TM5 interface and in both protomers of the ac-ar 

dimer (Table S2). Guo et al. also identified other residues relevant for an additional 

interface involving TM1 (Pro1.30, Tyr1.34, Tyr1.35, Leu1.38, Leu1.41, Asn1.50, Arg1.59, and 

Phe7.65) [1304]. Residues Tyr1.34, Tyr1.35, and Arg1.59 were also relevant for our dimer 

configurations. Residue Arg1.59 could be identified on the ac-protomer of ac-in and on 

the ar-protomer of in-ar [1304]. Lastly, Wouters et al. suggested the formation of a TM5-

TM6-TM5-TM6 interface and that Tyr5.48 and Phe6.52 are important for dimerization [77]. 

While Phe6.52 was not found at any D2R homodimer, Tyr5.48 was found twice on the in-in 

dimer, once on the ac-ac, once on the ar-ar, on the in-protomer of the ac-in, and of the 

in-ar configuration. 

The highly prevalent residues identified in our study (mostly from TM4 and TM5) were 

nonpolar and, therefore, complementary to establishing stable interfaces. These types 

of residues are expected, considering the nature of TMs, as exposing charged or polar 

residues to the lipid bilayer could lead to transient dimerization [1318,1362]. It has 

previously been shown that at least two adjacent arginine, glutamic acid, aspartic acid, 

or phosphorylated amino acid residues are sufficient to induce stable noncovalent 
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complexes in heterodimers [1353,1363,1364]. From our set of highly preserved residues, 

Arg4.40, Thr4.55, and Tyr5.41 were the most capable of establishing electrostatic 

interactions. 

Our results indicate the involvement of ICL2, ECL2, ECL3, and TM3 in stabilizing 

interactions. This is also in line with a study on opioid receptor homodimers, showing 

that residues from loops TM3 and TM2 stabilize the TM4/TM5 interface [1365]. In the 

same study, the authors described a specific subset of conserved residues (4.39, 4.43, 

4.47, 4.50, 4.51, 4.54, and 4.62), similar to our identified prevalent residues in the case 

of the dopamine receptor [1365]. In another study investigating the D1R-D2R 

heterodimer, it was found that mutations to valine, proline, and serine residues altered 

the dimerization propensity of D1R and D2R [1366]. The authors also stated that valine 

and proline residues would promote the formation of the D2R homodimer interface 

[1366]. Interestingly, Johnston et al. also identified two important valine residues, 

whereas we found five across all configurations [1365]. 

H-bonds were predominant, involving several residues from the TMs and loops, 

particularly in the in-in, ac-ac, ac-in, and in-ar dimer configurations. In contrast to these 

types of interfaces, most interactions were found between TMs for the ar-ar 

configuration, especially involving TM5. In a comprehensive study involving the A2AR-

D2R heterodimer, it was also shown that TM5 was responsible for interactions between 

the two protomers, thus promoting the negative allosteric effect of the adenosine 

receptor on dopaminergic signaling [76,1367]. However, most interactions, such as π-

cation, π-stacking, T-stacking, or even salt bridges, are formed between loops or 

between a loop and TM. Hence, loops can be the main drivers of interface formation and 

provide extra affinity to stabilize the final dimers. Similarly, O’Dowd et al. found a pair of 

adjacent glutamic acids (at the C-terminus of D1R) and a pair of adjacent arginines (from 

ICL3 of D2R) in the D1R-D2R heterodimer interface, forming stable electrostatic 

interactions [448,485]. 

3.2.3.4. The conformational status of individual protomers affects the macro- and 

microswitches 

Macro- and microswitches of class A GPCRs are known to be involved in conformational 

rearrangements upon ligand binding to promote the outward movement of TM6 and its 

activation by enabling the necessary space for binding of a G protein (Figure S13) 

[97,485]. Our results indicated that the conformational status of the protomers remained 

consistent over time and that the movements of the relevant TMs (TM3, TM5, TM6, and 

TM7) are in agreement with what is known about the mechanism of class A GPCR 

activation. 

However, two motifs remained active for ac-conformers in all combinations: (i) the 

distance between the TM5 bulge and the ΔRMSD of the connector motif and (ii) the 

sodium-binding pockets. This can be attributed to the large volume occupied by the 

bound bromocriptine ligand in the orthosteric binding pocket, which leads to the partial 

activation of some motifs, such as CWxP and the sodium-binding pocket. These 

rearrangements did not extend throughout the entire receptor to the ionic lock, NPxxY, 

or other motifs because of the presence of the protomer in an inactive conformation. This 

would be seen as negative allosteric crosstalk, which has been reported for many 

heterodimers involving DRs [1297]. In contrast, the ar-conformer within the ac-ar dimer 
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appeared to possess a collapsed sodium pocket, although no ligand was bound to this 

conformer. 

In contrast, the ar-protomer within the in-ar configuration displayed the same properties 

as its individual monomer, namely the properties of an active receptor, which seemed 

not to be influenced by its inactive protomer. Ac-ac, ar-ar and ac-ar dimers displayed 

larger variations after simulation, remaining, however, in an active form. Interestingly, we 

found that one protomer in the ar-ar configuration displayed asymmetric properties of 

active receptors. Their outward movement of TM6 was not as pronounced as that of the 

ar-conformers. In fact, one protomer of the ar-ar dimer transitioned to an active 

conformation when comparing the distance of the ionic lock and Y-Y motif, and showed 

that the ar-protomers in the ar-ar dimer behaved differently, pointing to two distinctive 

active-like states. We also observed slight differences between the homo-conformation 

and mixed conformation. The ac-ac configuration displayed the properties of activated 

protomers, but it was difficult to assign the conformational status of the ac-ar dimer. For 

some structural properties, the ar-protomer adopted values of an active conformation, 

whereas the ac-protomer appeared to be less active in the ac-ar configuration. 

According to Caniceiro et al., most studies reported positive crosstalk for DR-DR dimers, 

and in some cases, this resulted in a hyperdopaminergic response, which other authors 

have linked to schizophrenia or the use of amphetamines [448,1297,1368]. Such an 

effect would be represented by configurations ac-ac, ar-ar, and ac-ar, where at least 

one bromocriptine was bound to the dimer. This is also in line with the results of Guo et 

al., who stated that ligand binding to one of the protomers would be enough to bind a G 

protein and cause conformational arrangements within the ligand-free protomer towards 

an active-like state [815,1304,1369]. For instance, a study with D1R-D3R heterodimers 

showed that coactivation of both receptors leads to a negative interaction at the level of 

adenylate cyclase, recruitment of β-arrestin-1, and selective activation of MAPK 

signaling mediated by a G protein-independent mechanism [490,491,1367]. Likewise, it 

has been reported that the D2R-D3R heterodimer could suppress forskolin-induced 

activation of adenylate cyclase at very high levels without the need for ligands 

[471,500,501]. One possible explanation for this is that, in the ac-in configuration, the 

ac-protomer adopts the conformation of an  inactive receptor. The asymmetrical TM4-

TM5-TM4-TM5 interface was not found for this dimer, which may prevent both protomers 

from reaching active-like conformations, as the ac-protomer does not contribute to TM4 

at the interface. 

This also supports the idea that in the in-ar configuration, where the in-protomer 

contributes TM3 and TM4 to the interface and the ar-conformer contributes TM4 and 

TM5, the correct conformations can be achieved, and both protomers are in an inactive 

or activated/intermediate state due to the absence of a ligand. Additionally, the results 

for the hydrophobic lock showed that the ac-ar configuration had the most active-like 

values for both protomers, suggesting that one ac-monomer alone may not be fully 

activated in the absence of a G protein. As only one protomer in the mixed conformations 

had a smaller binding site for the G protein, it could be assumed that it would be possible 

to bind only one G protein. Nevertheless, because the ac-ac and ar-ar dimers have 

similar binding site sizes for both protomers, this hypothesis does not seem to hold. In 

fact, the composition of the dimer interface and the presence of an agonist may affect 
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the size of the G protein binding area (and β-arrestin), supporting the 'rolling dimer' 

interface model proposed by Dijkman et al.[1357]. 

 

3.2.3.5.  Key residues and pathogenic relevance 

 

According to a study by Caniceiro et al., mutations of certain residues can have 

pathological consequences for DRs [1370]. For example, the presence of Arg1.59, Thr3.52, 

Arg4.40, Arg4.41, and Val5.49 have been found in different dimer configurations. Guo et al. 

[1304] as well as  other authors [1346,1371] reported that Arg4.40, Arg4.41, and Arg1.59 

were key residues, which led to changes in the secondary structure of the helix when 

mutated [1372]. In addition, Arg4.40 was identified as a key residue in another study 

involving the 5-hydroxytryptamine 1A receptor and orexin receptor 1 heterodimer, 

changing its interface from TM4-TM5 in the basal state to TM6 in the active conformation 

[1371]. Zhang and coworkers also showed that mutations of Arg4.40 can affect G protein 

binding [1371]. The ability of arginine residues to better accommodate hydrophobic 

mismatches at TM4 of GPCRs may explain why the mutation of Arg4.40 can affect G 

protein binding [1373,1374]. Residues at positions 3.52 and Arg4.41 have been found to 

be important for the formation of the TM4-TM5 interface for serotonin receptors [1346]. 

Arg4.40 and Arg4.41 can interact with the corresponding amino acids in the opposite 

protomer. Arg1.59 has been reported to be relevant for G protein binding, particularly in 

the interaction between Gαs and Gαi1 for the β1-adrenoceptor [1375]. According to Wang 

et al., residues at position 3.52, Thr3.52 for D2R, would only be relevant for G protein 

binding if they were hydrophobic [1376,1377]. Overall, residues on TM4, such as Arg4.40 

and Arg4.41, are important for homo- and heterodimers comprising the TM4-TM5 interface 

and can be pathogenic when mutated. In addition, mutations in the residues at positions 

1.59 and 3.52 may affect G protein binding. 

Understanding GPCR homo- and heterodimers is of key relevance for the development 

of new biased drugs [1378] because these dimers can display unique allosteric 

properties, and the interface can be targeted with agents that either stabilize or disrupt 

the dimerization process. 

3.2.4. Conclusion 

The goal of our work was to develop a workflow for identifying GPCR homo- and 

heterodimer interfaces and to validate them with available experimental data. As proof 

of concept, we chose the D2R-homodimer as it is a well-studied GPCR. 

We found that the protomer interaction types were very specific to the type of dimer 

configuration and the formed interfaces and that they  were stable over time, suggesting 

a conserved pattern. Most interactions were formed by loops (especially ICL2 and ECL2) 

rather than TMs, since loops have a higher electrostatic character, whereas TMs were 

mostly composed of nonpolar amino acids at favorable positions in the lipid bilayer. 

Highly conserved residues in TM4 and TM5 were rarely involved in forming interactions, 

and a large interface area correlated with the establishment of stabilizing interactions by 

TM residues. Our models are in good agreement with those reported in the literature, 

including in identifying the roles of important residues and TMs. For example, TM4 and 

TM5 were found to be critical for dimer formation, regardless of the conformational status 

of the protomers, which is consistent with experimental findings. 
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Using different conformations of one receptor, we gained insights into the dynamic 

nature of the D2R homodimer by mapping and comparing known macro- and 

microswitches of class A GPCR activation. We found that the proposed dimer interfaces 

are physiologically stable and that different homodimer configurations and interfaces are 

possible, which are highly dynamic and possess fully or partially adapting features of 

activation/inactivation. Key conformational changes relevant to dimer function and 

signaling were also observed. We also identified a subset of mostly nonpolar key 

residues present in all dimer configurations located on TM4 and TM5 and observed that 

loops and neighboring TMs significantly contribute to dimer formation. It should also be 

noted that large conformational transitions in GPCRs require large-scale MD simulations, 

since such processes usually occur in the µs timescale [1379–1381]. 

This protocol can be easily applied to identify the interface of any type of GPCR homo- 

or heterodimer and will be a useful tool for understanding the molecular and structural 

properties of other dimers. Furthermore, it can be extended by adding ligands, G 

proteins, and β-arrestins, and will be useful for the development of dimer-targeting 

pharmaceuticals targeting different pathological conditions. 

3.2.5. Material and Methods 

3.2.5.1. Homology modeling 

 

The receptors were modeled using the MODELLER package [1026] as previously 

described [1382]. As stated in Preto et al. an Alan linker was added to connect TM5 and 

TM6, which were modeled with an extended helical segment (beyond the membrane) up 

to the linker, making the intracellular extension of these helices similar to that observed 

in the crystal structure of the  β2-adrenergic receptor (β2AR)-Gs complex (PDB-id: 3SN6 

[118]) and therefore corresponds to the D2short isoform [1382]. D2R was modeled in three 

different conformations. The D2R inactive (in) was based on the structure of the D2R 

bound to risperidone (PDB-id: 6CM4 [1323]), whereas the D2R active (ac) (G protein-

bound) was based on the D2R-G protein complex (PDB-id: 6VMS [1324]). The D2R β-

arrestin-bound conformation (ar) was modeled using the M2 muscarinic acetylcholine 

receptor (M2R)-β-arrestin-complex (PDB-id: 6U1N [1383]) as a template. 

3.2.5.2. Dimer assembly protocol 

The Kaczor et al. [1302,1310] pipeline was used to construct the D2R homodimers. The 

protocol was applied for each configuration of the D2R homodimer: inactive-inactive 

(6CM4-6CM4/in-in), two configurations of the active-active (6VMS-6VMS/ac-ac and 

6VMS-6VMS-B/ac-ac-B, as a result of consensus scoring), arrestin-arrestin (6U1N-

6U1N/ar-ar), active-inactive (6VMS-6CM4/ac-in), inactive-arrestin (6CM4-6U1N/in-ar) 

and active-arrestin (6VMS-6U1N/ac-ar). 

3.2.5.4. Initial set of dimers 

The initial set of possible dimer interfaces (composed of 144 conformational 

arrangements) was obtained by rotating one monomer around the other in steps of 30 
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degrees. This task was performed using the Visual Molecular Dynamics (VMD) tcl script 

[1384] provided by Kaczor et al. [1302,1310]. 

3.2.5.5. Protein-protein docking in Rosetta 

Protein-protein docking using Rosetta [1385] was applied to obtain 10 models per 

interface, resulting in a total of 1440 models. The docking was run in “refine only” mode 

to generate dimers compatible with membrane integration (as suggested by Kaczor et 

al.) [1302,1310]. Additionally, all 1440 models were analyzed using the InterfaceAnalyzer 

implemented by Rosetta [1385]. 

 

3.2.5.6. Scoring parameters and scoring procedure 

In our study, we used scoring parameters similar to the default ones, as they were 

previously considered capable of reproducing the interfaces from X-ray structure dimers 

[1302]. We used the Rosetta interface score (I_sc), the solvent-accessible area buried 

at the interface (dSASA, like interface area), the free energy of binding (dG_ separated), 

the energy of hydrogen bond interactions (hbond_E_fraction), and the number of 

residues at the interface (nres_int). All scores were provided by InterfaceAnalyzer [1385], 

except for the Rosetta Interface score (I_sc), which is a direct output of the protein-

protein docking procedure [1385]. The number of residues at the interface (nres_int) was 

additionally chosen, assuming that a relevant interface would have a higher number of 

stabilizing interactions and that the different combinations of conformations would likely 

involve a varying number of residues.  

Two methods of consensus scoring were used, as previously described [1310]: (i) 

average scores of the 100 best-scored dimers concerning each interface and (ii) 

frequencies of the interfaces among the 100 best-scoring dimers. Before consensus 

scoring, values were normalized between 0 and 1. These two scoring methods were 

chosen to avoid bias when using only one, and the top-scoring model would be found 

with both methods. Similar to Kaczor et al. [1302], we set the most favorable value of a 

given scoring factor in the normalization process to 1 and subsequently adjusted the 

other values. For dG_separated and hbond_E_fraction, negative values were 

considered favorable, whereas, for dSASA and nres_int, positive values were 

considered favorable. For I_sc, Rosetta documentation considers values from -5 to -10 

as a good interface score 

(https://www.rosettacommons.org/docs/latest/application_documentation/docking/docki

nG protocol). To obtain the most favorable value for performing subsequent scoring, the 

mean of all 1440 models with an I_sc within this range was calculated upon 

normalization. Scores closest to 1 (range, 1.2, and 0.9) were selected for further 

evaluation. 

The best interface for each configuration of the D2R homodimer was chosen based on 

the ranking of each parameter (the top three were considered). After determining the 

interface, all models (of the pool of 1440 models) possessing this interface were ranked 

again. The top three models were considered for the selection of the final model. These 

were submitted for a quality evaluation. 
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3.2.5.7. Quality evaluation of the final dimers 

The chosen representative model for each configuration of the D2R homodimer was 

analyzed using PRODIGY-CRYSTAL, a machine-learning algorithm trained to 

distinguish between biologically relevant complexes and crystallization artifacts [1329–

1331]. PRODIGY [1331,1386,1387] was used to estimate the binding affinity, 

dissociation constant, and listing of interfacial residues. Finally, the predicted residues of 

PRODIGY-CRYSTAL and PRODIGY-PROTEIN were compared to define the dimer 

interfaces of the selected models. Selected dimers were inserted into a lipid bilayer 

system and subjected to MD simulations. To easily locate relevant residues and 

important motifs and to compare them to other GPCRs, residues were annotated using 

Ballesteros and Weinstein nomenclature [96]. According to this nomenclature, the first 

digit identifies the TM helix, and the second digit identifies the residue position in relation 

to the most conserved residues on each helix (assigned index number X.50). 

Subsequently, the number decreases towards the N-terminus and increases towards the 

C-terminus [70,96]. 

 

3.2.5.8. Molecular dynamics simulations 

Membrane orientation 

Protein orientation in the membrane was obtained using the OPM-PPM-server for every 

modeled dimer structure (https://opm.phar.umich.edu/ppm_server) [1388]. 

 

System building 

The dimer structures (as well as the monomers to be used as controls) were inserted 

into a lipid bilayer membrane in a cubic simulation box hydrated with TIP3 waters and 

0.15 M NaCl using CHARMM-GUI Membrane Builder (http://www.charmm-gui.org) 

[1389–1392]. Termini ACE (or ACP in the case of D2R ac-monomer)/CT1 were used as 

caps at the N- and C-termini. Disulfide bonds were established between residues 79/154 

and 249/251 in the in-monomer and ar-monomer structures, respectively. Since the 

template structure of the ac-monomer (6VMS) was found to be three amino acids 

shorter at the N-terminus, their disulfide bonds involved residues 76/151 and 246/248. 

Palmitoylation of the last Cys residue (Cys293 for in-monomer, ar-monomer, or 

Cys290 for ac-monomer) was performed. The protonation state of the important Asp at 

position 2.50 was defined as follows: for the D2R in-monomer, it was charged (not 

protonated), whereas, for the D2R ar-monomer (residue 52) and ac-monomer (residue 

49), it was set to neutral (protonated), as upon class A GPCR activation, protonation of 

Asp2.50 takes place due to dehydration and displacement of the Asp2.50-bound sodium 

ion [130,133,134,1336,1341]. Owing to the importance of water molecules for GPCR 

activation, [1341] we also added pore water using protein geometry. A heterogeneous 

lipid bilayer was built around the dimer structures with POPC and cholesterol (CHL1) 

(ratio 9:1), with 240 lipids in each leaflet (for the monomers, a total of 100 lipids per leaflet 

was chosen). The size of the x/y plane is based on the number of lipid components. The 

box was rectangular, and its hydration number was set to 100 (100 water molecules per 

lipid). The D2R ac-monomer (single and part of the dimer) also contains the co-

crystallized ligand bromocriptine in the same orientation as in the 6VMS crystal structure 
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(PDB-id:6VMS [1324]). Consequently, the ac-ac dimer possesses two ligands, one per 

receptor. The ligand itself was parameterized using the CHARMM-GUI ligand reader and 

modeller [1393] and added to the system while building CHARMM-GUI. CHARMM36m 

was selected as the force field [1390]. The remaining options were set to default. 

 
Molecular dynamics parameters 

MD simulations were performed using GROMACS 2019.4 and the CHARMM36m force 

field [1242,1390,1394,1395]. The systems were simulated using the NPT (isothermal-

isobaric) ensemble. To achieve and maintain the desired temperature (310 K), a v-

rescale thermostat was used, with a coupling constant of 0.1 ps [1396]. Pressure 

coupling was performed using a semi-isotropic Parrinello-Rahman barostat at 1 bar with 

a compressibility of 4.5✕10–5 bar–1 and a coupling constant of 1.0 ps [1397,1398]. 

Electrostatic interactions were computed with the particle-mesh Ewald (PME) method 

with a Fourier grid of 0.12 nm and a cut-off of 1.2 nm for direct contributions [1113,1114]. 

Lennard-Jones interactions were computed using a non-bonded neighbor pair list with a 

cut-off of 1.2 nm, enabling the use of the Verlet scheme [1399]. Solute bonds were 

constrained using the Parallel LINear Constraint Solver, P-LINCS [1241]. The steepest 

descent algorithm was used to minimize the initial energy of the system through a 

50,000-step run [1400]. The systems were then initialized for 25 ns: five runs of 5 ns 

each with successively lower constraints for lipid heavy atoms and protein carbon alpha 

(1.000, 500, 100, 10, and 0 kJ nm–2 mol–1). Three replicates (500 ns long) were 

performed for each dimer configuration and monomer, and the initial 200 ns were 

discarded to ensure a good system equilibration. 

3.2.5.9. Analysis 

Plots were generated using GraphPad Prism (GraphPad Prism Version 8.1.0, GraphPad 

Software, San Diego, California USA, www.graphpad.com) and Gnuplot (Gnuplot 

Version 5.2, Williams, T., and Kelley, C., www.gnuplot.info). Residue-residue 

interactions were determined using GetContacts 

(https://getcontacts.github.io/interactions.html), and flare plots were created using 

gpcrviz.github.io/flareplot/?p=create. All remaining calculations were performed using in-

house scripting. 

We focused our analyses on the transmembrane helices, loops, and structural motifs, 

including DRY (Asp3.49, Arg3.50, and Tyr3.51), CWxP (Cys6.47, Trp6.48, Leu6.49, and Pro6.50), 

ionic lock (Arg3.50 and Glu6.30), NPxxY (Asn7.49, Pro7.50, Ile7.51, Ile7.52, and Tyr7.53), PIF 

(Pro5.50, Ile3.40 and Phe6.44), arginine cage (Ile3.46 and Leu6.37), serine microdomain 

(Ser5.42, Ser5.43,and Ser5.46), and rotamer toggle switch (Trp6.48, Phe6.51, Phe6.52, and 

His6.55), which were previously described as important determinants of the GPCR 

activation mechanism[70,97,182]. The following calculations were performed: (i.) the 

distance over time between a subset of residues located roughly at the center of each 

TM and the average position of the membrane using its phosphorus atoms as 

references; (ii.) the root-mean-square-deviation (RMSD) of the TM and the other 

mentioned domains; (iii.) the relative dimer orientation by calculating two pseudo-

dihedral angles along the MD simulations: θ1 consisting of residues Phe1.48, Ser4.53, Ile4.56 

from protomer 1 and Ile4.56 from protomer 2; and θ2, consisting of residues Phe1.48, 

Ser4.53, Ile4.56 from protomer 2 and Ile4.56 from protomer 1; (iv.) the solvent-accessible 
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surface area (SASA); (v.) the number of intermolecular H- bonds, salt bridges, π-cation, 

π-stacking and T-stacking interactions using GetContacts; (vii.) pairwise distances 

between Cα-Cα of interfacial residues; (viii.) TM5 bulge as the distance between the 

heavy atoms of Ser5.46 and Leu7.41; (ix.) ΔRMSD as the difference between the average 

RMSD of Ile3.40 and Phe6.44 heavy atoms and the inactive and active structures 2RH1 

[974] and 3P0G [980], respectively; (x.) angles between the centroids of the benzene 

ring of three phenylalanines Phe5.51, Phe6.44 and Phe6.45 over time; (xi.) distance between 

the Cα atom of Asp2.50 and the closest sodium atom; (xii.) number of water molecules 

within an 8 Å distance cut-off of Asp2.50; (xiii.) the angles between the Cγ atom of Lys3.43, 

the Cβ atom of Val6.41, and the Cβ atom of Ile6.40; (xiv.) RMSD of the NPxxY domain and 

the distance between Cα atoms of residues of the ionic lock, Arg3.50 and Glu6.30; (xv.) size 

of the binding sites for G protein and β-arrestin using the SASA values of relevant 

residues and normalized to the SASAmax values determined earlier for each type of amino 

acid. 

3.2.5.10. Data availability 

Flare plots were published in Zenodo (10.5281/zenodo.7515851). Additional information 

can be found in Chapter 7.2., containing the tables (S1-S5) and 29 figures, which present 

the following information: S6 - Results of the consensus scoring for the D2R-homodimer 

configurations; S7 - Distance of the phospholipids of the lipid bilayer and a geometric 

membrane center as measure for equilibration of the D2R homodimer configurations; S8 

- Root-mean-square-deviations calculated for backbone, transmembrane helices, loops 

and structural motifs such as DRY, CWxP, ionic lock, NPxxY, PIF, arginine cage, serine 

microdomain, rotamer toggle switch of the D2R homodimer configurations and 

monomers, which were followed over time; S9 - Orientation of the D2R homodimer 

configurations followed over time by measuring the angles θ1 and θ2; S10- Interface 

area over time; S11 - Decoy original interface residues of the D2R homodimer 

configurations; S12 - Types of interaction of the original interface; S13 - General 

activation mechanism of class A GPCRs; S14 - Distance between TM3 and TM6 over 

time; S15 - Distance between TM3 and TM7 over time; S16 - Distance between TM3 

and TM6 vs. the distance TM3 and TM7 for the monomers; S17 - Distance between TM3 

and TM6 vs. the distance TM3 and TM7 for the D2R homodimer configurations; S18 - 

Distance between TM3 and TM6 vs. the distance between TM5 and TM7 (YY motif) for 

the monomers; S19 - Distance between TM3 and TM6 vs. the distance between TM5 

and TM7 (YY motif) for the D2R homodimer configurations; S20 - Comparison of Cα-

atom distances between TM5-TM7 (5.58-7.41) and the dRMSD of a connector module, 

consisting of residues 3.40 (F of PIF motif) and 6.44 (I of PIF motif) for the monomers; 

S21 - Distance TM5-TM7 vs. angle of Cα atoms of 6.34-6.47-2.41 for the monomers; 

S22- Comparison of the angle between residues 6.34-6.47-2.41 and the distance 

between the Cα-atoms of residues 5.55 and 7.46 for the D2R homodimer configurations; 

S23 - Angle of benzene centroids of residues Phe5.51, Phe6.44 and Ile6.45 followed 

over time; S24 - Comparison of Cα-atom distances between 3.50 and 6.34 (TM3-TM6) 

representing the ionic lock and between Asp2.50 and the closest sodium atom for the 

monomers; S25 - Opening of the hydrophobic lock measured as the area of the angle 

composed by the Cγ atom of residue 3.43, the Cβ of residue 6.41 and 6.40 and followed 

over time; S26 - Angle χ1 of the conserved tyrosine 7.53 followed over time; S27 - Angle 
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χ2 of the conserved tyrosine 7.53 followed over time; S28 - Comparison of the dihedral 

angles χ1 and χ2 of Tyr7.53 for the monomers; S29 - Comparison of the dihedral angles 

χ1 and χ2 of Tyr7.53 for the D2R homodimer configurations; S30 - Comparison of the 

distance between residues of the ionic lock and the RMSD of the NPxxY motif for the 

monomers; S31 - Comparison of the NPxxY motif using RMSD and dSASA for the 

monomers; S32 - Comparison of RMSD and dSASA of the NPxxY motif of the D2R 

homodimer configurations; S33 - Sizes of binding site the for the G protein over time; 

S34 - Sizes of binding site the for β-arrestin over time.  
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Chapter 4: Conclusions and future 
work 

4.1. Main contributions 

PPIs play a crucial role in cellular signaling and are fundamental to the functioning of 

various biological processes[88,437,1398]. Among the diverse range of proteins in the 

human body, GPCRs are of great importance and are the highest targeted protein class 

for pharmaceuticals, with over 30% of FDA-approved drugs being the primary targets for 

drug discovery and design[35,1296]. In this study, we investigated the PPIs between 

known and orphan GPCRs. 

  

Although monomeric GPCR downstream signaling is already complex, since GPCRs 

mediate almost all physiological functions, the concept of PPIs between GPCRs upon 

dimerization and oligomerization adds another level of complexity to be 

elucidated[78,88]. Hence, understanding the interactions between GPCRs and other 

proteins sheds light on their activation, regulation, and altered downstream signaling 

cascades. Additionally, by identifying non-GPCR proteins that interact with GPCRs, new 

molecular mechanisms can be identified. Consequently, PPIs involving GPCRs have 

immense implications in drug discovery and development. 

Putting PPIs in a larger context has broader implications for systems biology and network 

pharmacology because they are considered integral components of biological networks 

[1399,1400]. Over the years rather a system-level understanding of biological processes 

has emerged for which PPIs are crucial nodes within such a network/system. 

Furthermore, this knowledge guides network pharmacology approaches in which drugs 

are designed to modulate multiple targets within a network to achieve multiple 

therapeutic effects. 

GPCRs are interactive systems which closely associate with other proteins and 

molecules within the cell and extracellular space. Furthermore, the allosteric interactions 

of ligands towards their GPCRs also transferred onto interactions between GPCRs and 

partnered proteins.  

  

We investigated the allosteric effect within the GPCR-dimers using pharmacological and 

computational methods. 

  

Part 1: 

We discovered a new GPCR-dimer between D2R and D3R with GPR143, an orphan 

receptor, with an undefined physiological role. Hence, this finding is an important 

This chapter summarizes the main findings of 
this study and evaluates the relevance for the 
scientific community. In addition, an outlook is 
given how the study could be continued in the 
future. Furthermore, a publication list is enclosed 
with all papers published during the PhD period. 
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advancement in our understanding of the potential role of GPR143, which is still an 

orphan receptor. GPR143 is primarily related to pigmentation of skin, hair, and other 

tissues[1245]. Genetic mutations in the GPR143 gene, resulting in impaired function of 

the receptor, trigger X-linked OA1, leading to altered melanosome development and 

melanin distribution in melanocytes. This disruption affects the normal development and 

function of the retina, resulting in reduced visual acuity, nystagmus (involuntary eye 

movements), and light sensitivity[1258,1265,1270,1401]. It is known that GPR143 is able 

to interact with other proteins[1402] such as melanoma antigen recognized by T-cells 

(MART-1)[1264], tyrosinase[1245], tubulin[1265], master regulator of melanocyte 

differentiation (MITF) and premelanosome protein (PMEL)[1285], among many more.  

GPR143 has already been reported to interact with a GPCR. For instance, Masukawa 

et al. determined that α1b-adrenoceptor and GPR143 can form functional heteromers 

that modulate noradrenaline-mediated regulation of blood pressure[1267,1403]. 

In our study, the two DRs and GPR143 were shown to physiologically interact with each 

other, with GPR143 negatively modulating the DR activity in response to dopamine. The 

discovery of a new GPCR dimer involving D2R and D3R and GPR143 represents an 

important advancement in our understanding of these receptors and their interactions. 

We took advantage of pharmacological assays, in this case the β-arrestin recruitment 

assay, which enabled us to monitor GPR143-DR interactions in functional cell systems, 

and showed that GPR143 significantly reduced the affinity of DR for its endogenous 

ligand dopamine (by 57% for D2R and 67%  for D3R) at an amplitude similar to that of the 

D2R-A2AAR-dimer[75,519]. Furthermore, we showed that GPR143-DR-complexes were 

mostly located in vesicles in the intracellular space, even when DRs were complexed 

with the plasma membrane-localized GPR143 variant, pmGPR143, using confocal 

microscopy and two FRET methods. Overall, the combination of pharmacological assays 

and fluorescence microscopy provides a comprehensive approach for studying GPR143-

DR interactions and their functional consequences. This research has shed light on a 

previously unknown dimerization between these receptors, revealed the negative 

modulatory role of GPR143 in DR activity, and provided valuable insights into the 

subcellular localization and functional consequences of GPR143-DR complexes. 

  

Part 2: 

In the second part of this work, we gained insight into the structural basis of GPCR 

dimerization from a computational perspective using the D2R-homodimer. We developed 

a computational framework to generate dimer models with different combinations of 

protomer conformations: active, inactive, and β-arrestin-bound. The aim was to 

understand the interfaces and molecular details of these dimeric structures and to 

investigate the impact of different monomer activation states on the overall quaternary 

structure and dynamics. 

We discovered that TM4 and TM5 are frequently found at the dimer interface of the D2R-

homodimer. These regions contain a subset of key residues, mostly nonpolar, which play 

a significant role in mediating the dimerization process. This observation suggests that 

TM4 and TM5 are critical for stabilizing the D2R-homodimer, which is supported by 

experimental findings[472,1312,1313]. In addition, this interface combination can be 

superimposed on other GPCR dimers and has already been described for other cases; 

however, TM1, TM2, TM4 and TM5, are often involved in forming the dimer interface in 

GPCR dimers[1316,1343,1345]. Apart from TM4 and TM5, we also found that TM2 and 
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TM3 in certain combinations within the dimers can also be relevant for the interface. 

Hence, we conclude from these results that variations exist not only between receptor 

subtypes and combinations, but also between the conformational combinations of 

partnered protomers. This might also have functional implications, such as ligand binding 

and residues relevant for stabilizing the dimer interface; hence, we also determined the 

key residues that we propose to be crucial for the TM4-TM5 interface. Furthermore, we 

demonstrated that for certain combinations, the conformational status of one protomer 

within the dimer could influence the behavior of its partner protomer, which underlines 

the dynamic nature of the GPCR dimers. We showed that one protomer can adopt the 

conformational properties of its partner. Such conformational mimicry indicates that the 

rotation or tilting of TMs or repositioning of extracellular loops can impact the stability 

and geometry of the dimer interface. This can affect the strength and specificity of the 

dimeric interaction, leading to changes in the signaling properties or ligand-binding 

affinity of the partner protomer. We showed that such a flow of information through the 

interface existed for specific combinations, such as for the active-inactive dimer, where 

the active protomer adopted an inactive conformation, although a ligand was bound to 

its binding pocket. 

Overall, this approach contributes to our understanding of the molecular mechanisms 

underlying GPCR dimerization and its functional consequences. This provides a 

foundation for further investigations into the complex nature of GPCR interactions and 

their roles in cellular signaling pathways. The conformational changes and interactions 

described within DRD2-homodimers can also be extrapolated to modulate the ligand-

binding affinity, signaling efficacy, and desensitization kinetics of the receptors. Finally, 

the computational framework developed in this study can be adapted to study other 

GPCR dimers, including heterodimers, and potentially extended to include additional 

proteins, such as G proteins or β-arrestins, which are known to interact with GPCRs. 

4.2. Future Work  

Investigation of PPIs between known and orphan GPCRs is of immense importance in 

various areas of biological research. Understanding these interactions contributes to the 

further functional characterization of GPCRs, aids in drug discovery and development, 

provides information for receptor deorphanization, unravels possible new signal 

transduction networks, and advances the field of systems biology. The investigation of 

these interactions opens new avenues for understanding the complexity of cellular 

processes and holds significant potential for the development of novel therapeutic 

interventions in the future. 

  

The findings of this study suggest that GPR143 may modulate DR activity through two 

potential mechanisms: by sequestering the receptors away from the plasma membrane 

and/or by allosterically modulating the binding pocket of the DRs, resulting in a lower 

affinity for dopamine binding. The precise mechanism remains to be determined through 

further experimental investigation. Experimental approaches, such as co-

immunoprecipitation, proximity ligation assays, and live-cell imaging techniques, should 

be employed to examine the physical interaction between GPR143 and the DRs, as well 

as to further elucidate their cellular localization patterns in other cell types, such as the 

retinal pigment epithelium and other GPR143-expressing cells, to determine if the 
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interaction is robust. Additionally, mutagenesis studies and functional assays can be 

performed to identify key residues or domains involved in the interaction and determine 

their impact on DR activity. 

By elucidating the precise mechanisms by which GPR143 influences DR activity, we can 

gain a more comprehensive understanding of the complex interplay between these 

receptors and potentially identify novel therapeutic targets for conditions involving 

dysregulated dopamine signaling. 

The experimental validation of the D2R-homodimer will be relevant for future studies. For 

instance, the conformational changes and interactions described within D2R homodimers 

can be expanded to modulate the ligand-binding affinity, signaling efficacy, and 

desensitization kinetics of the receptors, which helps to further investigate the functional 

consequences of dimerization. Experimental validation can be achieved using 

techniques, such as site-directed mutagenesis, cell-based pharmacological assays, and 

structural determination methods, such as X-ray crystallography or cryo-EM. 

Experimental verification of the predicted dimer interfaces and their key residues would 

provide further insight into the molecular and structural basis of GPCR dimerization. 

Understanding how dimerization influences ligand-binding affinity, signaling pathways, 

and cellular responses would have implications for drug discovery and therapeutic 

interventions targeting GPCRs. 

In addition, the computational framework developed in this study can be extended to 

investigate the dimerization of GPCRs with different subtypes (heterodimers). By 

applying the same approach to heterodimers, this study provides a deeper 

understanding of the molecular mechanisms underlying the dimerization of different 

GPCR subtypes and explores the implications for signaling and functional outcomes. In 

addition, the potential extension of the computational framework to include additional 

proteins such as G proteins or β-arrestins would be helpful. Investigating the interactions 

and conformational dynamics of GPCRs with these downstream effectors in the context 

of dimerization would enhance our understanding of intricate signaling networks. 

Finally, the integration of experimental and computational approaches to constantly 

improve models will be a comprehensive and integrated approach for studying GPCR 

dimerization in general. This iterative interplay between the computational and 

experimental methods can further refine the models and enhance our understanding of 

GPCR dimers. 
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6. Appendices 

6.1. Additional introductory information on: The world of GPCR dimers - mapping 
dopamine receptor D2 homodimers in different activation states and configuration 
arrangements 

 
In contrast to the proposed TM4-TM5-TM4-TM5 interface firstly described by Guo et al. 

(Guo, Shi, and Javitch 2003; Guo et al. 2005), a study by Wouters et al. (2019) used 

complementation-based NanoLuciferase® Binary Technology (NanoBiT® assay) to 

investigate the effect of antagonists on the formation of D2R-homodimers (D2long), with a 

focus on the TM5-TM6-TM5-TM6 interface (Wouters et al. 2019). Dimer formation was 

observed over time in the presence of spiperones. Although the D2long dimer was 

significantly decreased by 40-60% in real time, A2AR-D2long-dimer formation was not 

altered. The other antagonists (clozapine, risperidone, and droperidol) appeared to have 

no effect. In molecular modelling studies, Tyr1995.48 and Phe3906.52 were found to be 

crucial residues that may determine D2R-homodimerization (Wouters et al. 2019). This 

was further supported by a study by Guitart et al. showing that D1R-homodimerization 

was reduced by D1R TM5- or TM6-derived single peptides (Guitart et al. 2014). 

Therefore, a potential TM5-TM6-TM5-TM6 interface is also possible in The D2R-

homodimer, as has been reported for other GPCRs (Wouters et al. 2019). The D2R-

homodimer without a bound antagonist was modelled from the original crystal structure 

with a TM5-TM6-TM5-TM6 interface and was used for protein docking studies (Pulido et 

al. 2018). When the model was subjected to MD, rapid cis to trans conversion occurred 

at Tyr1995.48, and Phe3906.52, suggesting that these residues were relevant for the D2R-

homodimer interface. The removal of these aromatic interactions (by alanine mutation) 

results in a less favorable average interface energy (Guitart et al. 2014). 

An in silico study by Kaczor et al. generated a D2R-homodimer model with a TM4-TM5-

TM7-TM1 interface to investigate the role of homo-bivalent antagonists (Kaczor, Jörg, 

and Capuano 2016). They developed a protocol for building dimers suitable for molecular 

dynamics simulations and ligand docking, which we used as the basis of our study 

(Kaczor et al. 2015; Kaczor, Jörg, and Capuano 2016). Multiple higher-order D2R 

oligomers consisting of at least four monomers were reported in combined Forster 

Resonance Energy Transfer (FRET) and Bioluminescence Resonance Energy Transfer 

(BRET) assays (Wouters et al. 2019; Guo et al. 2008; Strange 2005). These findings 

support the hypothesis that D2R can undergo multiple cycles of monomeric and dimeric 

states at different interfaces (Wouters et al. 2019; Kasai and Kusumi 2014). The 

dimerization process itself should be considered a dynamic process between monomers 

and dimers, suggesting that this process is transient (Kasai and Kusumi 2014; Kasai et 

al. 2018). 

The nature of GPCR dimers has been described as dynamic and fast-moving, and 

whether the formation of such dimers is transient or constitutive has been controversial 

and might be different for different GPCRs (Guo, Shi, and Javitch 2003; Kasai et al. 2018; 

https://paperpile.com/c/3nBZ3R/8VJT+XBWP
https://paperpile.com/c/3nBZ3R/NXQfF
https://paperpile.com/c/3nBZ3R/NXQfF
https://paperpile.com/c/3nBZ3R/ooGE6
https://paperpile.com/c/3nBZ3R/NXQfF
https://paperpile.com/c/3nBZ3R/OViAd
https://paperpile.com/c/3nBZ3R/OViAd
https://paperpile.com/c/3nBZ3R/ooGE6
https://paperpile.com/c/3nBZ3R/rnJvT
https://paperpile.com/c/3nBZ3R/rnJvT
https://paperpile.com/c/3nBZ3R/cTabi+rnJvT
https://paperpile.com/c/3nBZ3R/NXQfF+odl6R+8EUxY
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https://paperpile.com/c/3nBZ3R/8VJT+lvhol+odDHk
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Ng et al. 1996). Previous studies showed that the half-life of a dimer was approximately 

t1/2= 0.1–5.0 s (Hern et al. 2010; Kasai et al. 2011; Calebiro et al. 2013; Dijkman et al. 

2018) and that there can be an equilibrium between monomeric and dimeric species 

(Tabor et al. 2016). It is known to D2R forms transient homodimers that could be 

prolonged in their lifetime by a factor of 1.5 upon agonist binding (e.g., dopamine, 

quinpirole) (Kasai et al. 2018). Although it has been reported for several heterodimers 

that partnered monomers can have different conformations to pharmacologically 

influence one another, this has not yet been well described for homodimers (Caniceiro 

et al. 2022; Cordomí et al. 2020). Nevertheless, some theoretical models attempt to 

explain the phenomenon of biphasic curves for the same receptor and ligand by 

homodimerization (Sun et al. 2007; Rovira, Pin, and Giraldo 2010; B. Zhou and Giraldo 

2018). 

 

2. Results 

2.1. Predicted interface in models 

The entire subset of very frequent residues was found in the in-in configuration in both 

monomers as well as in the in-monomer of the in-ar configuration. Fewest ac monomers 

were also found. The other symmetric dimer configuration, ar-ar, lacked Ile3.48, Tyr3.51, 

Thr3.52, Ala3.55, Val5.49, Ile5.52, Val5.53, and Leu5.56 in one monomer and Ala3.55, Arg4.40, 

Val4.44, Ile4.48, Leu4.52, and Thr4.55. Different situations were observed for asymmetric 

dimer configurations. For the in-ar configuration, all 19 very frequent residues were 

found in the in-monomer; only Val4.44, Thr4.55 and Pro4.59 were found on the ar-

monomer. This was also true for the in-monomer ac-in configuration, except for Ile3.48, 

Thr3.52, Thr4.55, Pro4.59, and Val5.53. None of the 19 residues were found in the ac-

monomer. Finally, the ac monomer lacked Tyr3.51, Thr3.52, Ile4.48, Thr4.55, Ile5.52, Val5.53, 

and Leu5.56, whereas the ar monomer lacked Arg4.40, Va4.44l, and Ile5.52.  

Guo et al. did not specify if Cys4.58 was found for both monomers and if the presence of 

one was sufficient for crosstalk (Guo et al. 2005). Interestingly, Cys4.58 was only 

considered 1x an interfacial residue for the ac- and ar-monomers (Table S2). Regarding 

other residues suggested by Guo et al., Pro4.59, Thr4.55, Val4.51, Ile4.48, Val4.44, and Arg4.41 

were found to be present in the inactive conformation, whereas Cys4.58, Phe4.54, Trp4.50, 

Ser4.47, Thr4.43, and Arg4.40 were proposed for the active conformation of the dimer (Guo 

et al. 2005). 

The pattern of amino acids assigned to the inactive conformation (Pro4.59, Thr4.55, Val4.51, 

Ile4.48, Val4.44, and Arg4.41) was found for both monomers in the in-in conformation, the 

in-monomer of the ac-in dimer (only comprising Arg4.41, Val4.44, and Ile4.48), and the in-

monomer of the in-ar configuration (only Val4.51 missing) (Table S2). Furthermore, ar-

ar comprised one monomer with all six residues, whereas the other monomer possessed 

only Arg4.41 and Pro4.59. The ar-monomers of the in-ar accounted for Val4.44, Val4.51, 

Thr4.55, and Pro4.59. The ac-ar showed four residues in each monomer (Arg4.41, Val4.44, 

Val4.51, Thr4.55 in the ac-monomer; Arg4.41, Ile4.48, Thr4.55, and Pro4.59 in the ar-monomer). 

One monomer of the ac-ac dimer comprised all six residues, while the other comprised 

Val4.44, Ile4.48, Thr4.55, and Pro4.59. Interestingly, the ac-monomer in the ac-in 

https://paperpile.com/c/3nBZ3R/8VJT+lvhol+odDHk
https://paperpile.com/c/3nBZ3R/hqh5R+QH7E6+5nCfQ+u2Z4B
https://paperpile.com/c/3nBZ3R/hqh5R+QH7E6+5nCfQ+u2Z4B
https://paperpile.com/c/3nBZ3R/68iY2
https://paperpile.com/c/3nBZ3R/lvhol
https://paperpile.com/c/3nBZ3R/eOwxJ+o2WNO
https://paperpile.com/c/3nBZ3R/eOwxJ+o2WNO
https://paperpile.com/c/3nBZ3R/ksMEV+4UQ8t+QfY3u
https://paperpile.com/c/3nBZ3R/ksMEV+4UQ8t+QfY3u
https://paperpile.com/c/3nBZ3R/XBWP
https://paperpile.com/c/3nBZ3R/XBWP
https://paperpile.com/c/3nBZ3R/XBWP
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configuration appeared to be the only monomer without any residues assigned to the 

inactive conformation. 

The active set of amino acids was described by Guo et al. (Cys4.58, Phe4.54, Trp4.50, Ser4.47, 

Thr4.43, and Arg4.40) and only five were found per monomer (Table S2) (Guo et al. 2005). 

In the ac-ar dimer, Arg4.40, Phe4.54 and Cys4.58 were found on the ac-monomer. The ac-

monomer in ac-in contains Thr4.43, Ser4.47, Trp4.50, and Phe4.54. The in-in dimer contains 

Arg4.40 (2x), Thr4.43 (2x), and Ser4.47. Arg4.40 was also found in one monomer of ar-ar, in 

the in-monomer of ac-in, and in the in-ar dimer. All six residues were found in the ar-

monomer of in-ar, except for Arg4.40. Finally, Cys4.58 was found in the ar-monomer of the 

ac-ar configuration. 

 

2.2. The D2R-homodimer interface 

2.2.1. Interaction type established for the different interfaces 

For the in-in configuration, H-bond contacts were distributed along TM4-ICL2, ICL2-

ICL2, TM3-TM4, ECL2-ECL3, ICL2-TM6, and ECL3-ECL2 with an occurrence of 5-22% 

(first structure from monomer 1, second structure from monomer 2; M1-M2). Regarding 

salt bridges, 75% occurred between TM4-TM3 and 25% between TM3-TM4. π-cation 

interactions for the in-in configuration were found between ECL3-ECL2, ECL2-ECL3, 

TM4-ICL2, ICL2-ICL2 and ICL2-TM6, ranging from 14-36%, while π-stacking 

interactions were mainly found between ICL2-ICL2 (66%) and ECL2-ECL3 (32%). In 

contrast, this was the case for T-stacking interactions, in which 64% occurred for ECL3-

ECL2 and 33% for ICL2-ICL2. 

In the ar-ar configuration, TM5 was involved in most of the interactions analyzed. No salt 

bridges were found for ar-ar and π-cation interactions, which were concentrated to 98% 

between ECL2-ECL3 and only 1-2% between TM4 and ECL3. π-stacking interactions 

were also concentrated between TM5-TM5 (95%), and few were found between ECL2-

ECL3 (4%) and TM5-ECL2 (1%). T-stacking interactions were also found between TM5-

TM5 (45%) and between ECL2-ECL3 (55%). Finally, H-bond interactions were mostly 

found for the TMs, particular between TM5-TM4, TM5-ECL2, TM5-TM5 and TM4-TM5, 

ranging from 15-29%. 

No salt bridges were observed in the ac–ac configuration. However, H-bond interactions 

were widely distributed between TM4-TM3, TM4-ICL2, TM5-TM4, TM5-TM5, ECL2-TM5 

and TM4-TM5, ranging between 6-29%. π-cation interactions were mostly concentrated 

in the ECL2-ECL3 regions (46%), with a few in ICL2-TM6 (23%) and TM3-TM4 (25%). 

Most π-stacking interactions could be determined between TM5-TM5 (60%) and TM5-

ECL2 (34%), and very few could be determined between ECL2-ECL3 (2%) and TM4-

TM5 (3%). The in-ar configuration formed dimer along TM3-TM4 and TM4-TM5. Hence, 

different areas were involved in the establishment of interfacial interactions. TM3-TM1, 

TM3-ICL1, TM4-ICL1, ECL2-TM4, ECL2-ECL2, and TM4-TM4 were relevant for 

establishing H-bonds, ranging between 9-17%. Salt bridges were mostly found between 

TM3-ICL1 (81%) and ECL3-TM3 (15%), ECL3-ECL2 (2%), TM6-ICL1 (1%) and TM4-

ICL1 (1%). The π-cation interactions were mainly observed in ECL4-TM3 (81%), TM5-

HX8 (27%), TM4-ICL2 (12%), and TM3-TM1 (13%). π-stacking interactions were located 

https://paperpile.com/c/3nBZ3R/XBWP
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between TM5-TM4 (75%) and ECL3-TM3 (25%). Finally, the T-stacking interactions 

involved 67% of TM5-ECL2 and 33% of TM5-TM4. 

In the ac-ar configuration, a highly conserved salt bridge is found between TM4 and 

TM3. Furthermore, H-bond interactions were distributed along TM4-TM3 (41%), ECL2-

ECL2 (23%) and TM5-ECL2 (23%), with few between TM4-TM5 (9%) and TM3-TM4 

(8%). For this configuration, π-cation interactions were also found to be conserved 

between TM4-TM3 (73%) and TM3-TM4 (26%) and 1% between ICL2-TM5. For π-

stacking interactions, 94% were found in ECL2-TM5, 5% in TM5-ECL2, and 1% were 

found in TM5-TM4. Finally, T-stacking interactions were distributed between TM5-TM4 

(67%) and between ECL2-TM5 (33%). 

The ac-in configuration possessed an interface comprising TM1-TM2-TM4-TM5. 

Relevant H-bonds were formed between HX8-TM5, ECL2-ECL2, ICL2-TM3, ICL2-ICL2, 

TM3-ECL2, TM2-TM3, TM2-ICL2, TM2-TM5, and TM1-TM3 (range 5-14%). TM1, TM2, 

and ICL2 from the in-monomer domain were the domains most involved in the 

establishment of H-bonds. Salt bridges could be determined not only between ICL2-TM3 

(73%) but also between ICL1-TM5 (23%), TM3-ECL2 (24%), and some between ICL1-

TM6 (1%) for the ac-in. π-cation interactions were mainly concentrated in ICL2-ICL2 

(73%) but also–HX8-TM5 (24%), TM4-TM4 (1%) and TM1-TM5 (1%). Finally, π-stacking 

and T-stacking interactions were found between the same regions:70% or 60% between 

ICL2-ICL2 and 30% or 40% between ECL2-ECL2, respectively. 

 

2.3. Macro- and microswitches upon dimerization 

The activation mechanism of class A GPCRs has been intensively studied (Leioatts et 

al. 2014; Nygaard et al. 2009; Trzaskowski et al. 2012; Schwartz et al. 2006; Shi et al. 

2002; Mertz et al. 2012), and was recently generalized and summarized in a holistic 

study by Zhou et al. (Figure S8) (Q. Zhou et al. 2019). According to Zhou et al., the 

GPCR class A activation mechanism involves 34 residue pairs, which rearrange known 

but spatially apart structural motifs such as CWxP, PIF, Na+ pocket, NPxxY, and DRY, 

including the ionic lock (Q. Zhou et al. 2019). This conserved rearrangement of residue 

contacts takes place from the extracellular ligand-binding domain to the intracellular 

space where the G protein binds (Q. Zhou et al. 2019). Briefly: (i.) The conserved signal 

initiation step, where the CWxP motif (especially Trp6.48) senses the binding of a ligand 

(also known as rotamer toggle switch),((Leioatts et al. 2014)) which then leads to a 

transmission switch by repacking the PIF motif (5.51, 6.44, 3.40) and collapse of the Na+ 

pocket (2.50, 7.45, 3.39, 7.49); (ii.) Breaking of critical hydrophobic contacts, such as 

opening of the hydrophobic lock (3.43, 6.40, 6.41); (iii) rewiring of microswitch residues 

6.37 and 7.53, (.) the release of 3.50 and G protein-contacting positions (5.61, 6.33, 3.54, 

and 3.53) to become prone to binding to the G protein (Figure 3 of (Q. Zhou et al. 2019)). 

To further determine the conformational changes involving the outward movement of 

TM6, inward movement of TM7, and disruption of the ionic lock, the distances between 

the Cα atoms of residues Arg3.50 and Thr6.34 (TM3-TM6) and between Ser5.46 and Leu7.41 

(TM5-TM7) were measured to determine their relevance in the activation process. Here, 

Ser5.46 and Leu7.41 were chosen because the inward movement of TM7 upon activation 

https://paperpile.com/c/3nBZ3R/nCf9k+p9mSy+66Npm+yElpH+3UNof+MI5R5
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also leads to a structural movement towards TM5 (Fleetwood et al. 2020). According to 

Fleetwood et al., ligand binding to 5.46 (in their work it was the catechol group of 

adrenaline binding to the β2-adrenergic receptor that would form hydrogen bonds) leads 

to an inward bugle of TM5, causing structural rearrangement of the PIF motif and several 

other conserved motifs (Fleetwood et al. 2020). Additionally, the DRs residue Ser5.46 is 

part of the conserved serine microdomain, which, together with Ser5.42 and Ser5.43, are 

known to form hydrogen bonds with the catechol hydroxyls of dopamine (Bueschbell et 

al. 2019; Floresca and Schetz 2004; Salmas et al. 2015; Kling et al. 2014). According to 

Fleetwood et al., micro-switching of residue 7.41 and approach towards TM5 leads to a 

conformational change in a so-called connector region involving the PIF motif (5.51-3.40-

6.44) (Fleetwood et al. 2020). 

2.3.1. Outward movement of TM6, inward movement of TM7 and disruption of the ionic 

lock 

The rotamer toggle switch of Trp6.48 (part of the CWxP motif) and Tyr7.53 (NPxxY) has 

been shown to result in a final outward movement of TM6 and inward movement of TM7 

simultaneously after ligand binding (Plazinska et al. 2017; Bueschbell et al. 2019). The 

CWxP motif, carrying the conserved tryptophan 6.48 additionally is part of the binding 

pocket of many aminergic GPCRs, including DRs.(Floresca and Schetz 2004) This so-

called aromatic microdomain sterically collapses uponligand bindingg and repacks intra-

helical contacts between Trp6.48 and Phe6.44, increasingthe  contact between Ile3.40 and 

Trp6.48 towards Phe6.44, which then leads to rotation of the cytoplasmic end of TM6 and 

consequently to the disruption of the ionic lock involving Arg3.50 and Thr6.34 (Q. Zhou et 

al. 2019; Bueschbell et al. 2019; Ballesteros et al. 2001; Vogel et al. 2008). At the same 

time, the collapse of the Na+ pocket would lead to tighter packing of the relevant residues 

(Asp2.50, Val3.29, Asn7.45, Asn7.49) and movement of TM7 towards TM3 and TM5 (Q. Zhou 

et al. 2019; Vogel et al. 2008). In our study, we captured this process by measuring the 

distances between the relevant residues on the different TMs. 

 

References 

Ballesteros, J. A., A. D. Jensen, G. Liapakis, S. G. Rasmussen, L. Shi, U. Gether, and J. A. 

Javitch. 2001. “Activation of the Beta 2-Adrenergic Receptor Involves Disruption of an 

Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6.” The 

Journal of Biological Chemistry 276 (31): 29171–77. 

Bueschbell, Beatriz, Carlos A. V. Barreto, António J. Preto, Anke C. Schiedel, and Irina S. 

Moreira. 2019. “A Complete Assessment of Dopamine Receptor- Ligand Interactions 

through Computational Methods.” Molecules  24 (7). 

https://doi.org/10.3390/molecules24071196. 

Calebiro, Davide, Finn Rieken, Julia Wagner, Titiwat Sungkaworn, Ulrike Zabel, Alfio Borzi, 

Emanuele Cocucci, Alexander Zürn, and Martin J. Lohse. 2013. “Single-Molecule 

Analysis of Fluorescently Labeled G-Protein-Coupled Receptors Reveals Complexes 

with Distinct Dynamics and Organization.” Proceedings of the National Academy of 

Sciences of the United States of America 110 (2): 743–48. 

https://paperpile.com/c/3nBZ3R/Nlne9
https://paperpile.com/c/3nBZ3R/Nlne9
https://paperpile.com/c/3nBZ3R/dITbh+u2I94+vCFdi+sUmYr
https://paperpile.com/c/3nBZ3R/dITbh+u2I94+vCFdi+sUmYr
https://paperpile.com/c/3nBZ3R/Nlne9
https://paperpile.com/c/3nBZ3R/bpnhF+dITbh
https://paperpile.com/c/3nBZ3R/u2I94
https://paperpile.com/c/3nBZ3R/PqOHc+dITbh+4cuKr+SMgAT
https://paperpile.com/c/3nBZ3R/PqOHc+dITbh+4cuKr+SMgAT
https://paperpile.com/c/3nBZ3R/PqOHc+SMgAT
https://paperpile.com/c/3nBZ3R/PqOHc+SMgAT
http://paperpile.com/b/3nBZ3R/4cuKr
http://paperpile.com/b/3nBZ3R/4cuKr
http://paperpile.com/b/3nBZ3R/4cuKr
http://paperpile.com/b/3nBZ3R/4cuKr
http://paperpile.com/b/3nBZ3R/dITbh
http://paperpile.com/b/3nBZ3R/dITbh
http://paperpile.com/b/3nBZ3R/dITbh
http://paperpile.com/b/3nBZ3R/dITbh
http://dx.doi.org/10.3390/molecules24071196
http://paperpile.com/b/3nBZ3R/dITbh
http://paperpile.com/b/3nBZ3R/5nCfQ
http://paperpile.com/b/3nBZ3R/5nCfQ
http://paperpile.com/b/3nBZ3R/5nCfQ
http://paperpile.com/b/3nBZ3R/5nCfQ
http://paperpile.com/b/3nBZ3R/5nCfQ


APPENDICES 
_______________________________________________________________ 

254 
 

Caniceiro, Ana B., Beatriz Bueschbell, Anke C. Schiedel, and Irina S. Moreira. 2022. “Class 

A and C GPCR Dimers in Neurodegenerative Diseases.” Current Neuropharmacology, 

March. https://doi.org/10.2174/1570159X20666220327221830. 

Cordomí, Arnau, Gemma Navarro, Leonardo Pardo, and Rafael Franco. 2020. “Chapter 7 - 

Structure of G-Protein-Coupled Receptor Heteromers.” In GPCRs, edited by Beata 

Jastrzebska and Paul S-H Park, 109–19. Academic Press. 

Dijkman, Patricia M., Oliver K. Castell, Alan D. Goddard, Juan C. Munoz-Garcia, Chris de 

Graaf, Mark I. Wallace, and Anthony Watts. 2018. “Dynamic Tuneable G Protein-

Coupled Receptor Monomer-Dimer Populations.” Nature Communications 9 (1): 1710. 

Fleetwood, Oliver, Pierre Matricon, Jens Carlsson, and Lucie Delemotte. 2020. “Energy 

Landscapes Reveal Agonist Control of G Protein-Coupled Receptor Activation via 

Microswitches.” Biochemistry 59 (7): 880–91. 

Floresca, Christina Z., and John A. Schetz. 2004. “Dopamine Receptor Microdomains 

Involved in Molecular Recognition and the Regulation of Drug Affinity and Function.” 

Journal of Receptor and Signal Transduction Research 24 (3): 207–39. 

Guitart, Xavier, Gemma Navarro, Estefania Moreno, Hideaki Yano, Ning-Sheng Cai, Marta 

Sánchez-Soto, Sandeep Kumar-Barodia, et al. 2014. “Functional Selectivity of 

Allosteric Interactions within G Protein-Coupled Receptor Oligomers: The Dopamine 

D1-D3 Receptor Heterotetramer.” Molecular Pharmacology 86 (4): 417–29. 

Guo, Wen, Lei Shi, Marta Filizola, Harel Weinstein, and Jonathan A. Javitch. 2005. 

“Crosstalk in G Protein-Coupled Receptors: Changes at the Transmembrane 

Homodimer Interface Determine Activation.” Proceedings of the National Academy of 

Sciences of the United States of America 102 (48): 17495–500. 

Guo, Wen, Lei Shi, and Jonathan A. Javitch. 2003. “The Fourth Transmembrane Segment 

Forms the Interface of the Dopamine D2 Receptor Homodimer.” The Journal of 

Biological Chemistry 278 (7): 4385–88. 

Guo, Wen, Eneko Urizar, Michaela Kralikova, Juan Carlos Mobarec, Lei Shi, Marta Filizola, 

and Jonathan A. Javitch. 2008. “Dopamine D2 Receptors Form Higher Order 

Oligomers at Physiological Expression Levels.” The EMBO Journal 27 (17): 2293–

2304. 

Hern, Jonathan A., Asma H. Baig, Gregory I. Mashanov, Berry Birdsall, John E. T. Corrie, 

Sebastian Lazareno, Justin E. Molloy, and Nigel J. M. Birdsall. 2010. “Formation and 

Dissociation of M1 Muscarinic Receptor Dimers Seen by Total Internal Reflection 

Fluorescence Imaging of Single Molecules.” Proceedings of the National Academy of 

Sciences of the United States of America 107 (6): 2693–98. 

Kaczor, Agnieszka A., Ramon Guixà-González, Pau Carrió, Antti Poso, Stefan Dove, 

Manuel Pastor, and Jana Selent. 2015. “Multi-Component Protein - Protein Docking 

Based Protocol with External Scoring for Modeling Dimers of G Protein-Coupled 

Receptors.” Molecular Informatics 34 (4): 246–55. 

Kaczor, Agnieszka A., Manuela Jörg, and Ben Capuano. 2016. “The Dopamine D2 

Receptor Dimer and Its Interaction with Homobivalent Antagonists: Homology 

Modeling, Docking and Molecular Dynamics.” Journal of Molecular Modeling 22 (9): 

203. 

Kasai, Rinshi S., Shuichi V. Ito, Ryo M. Awane, Takahiro K. Fujiwara, and Akihiro Kusumi. 

2018. “The Class-A GPCR Dopamine D2 Receptor Forms Transient Dimers Stabilized 

by Agonists: Detection by Single-Molecule Tracking.” Cell Biochemistry and Biophysics 

76 (1-2): 29–37. 

http://paperpile.com/b/3nBZ3R/eOwxJ
http://paperpile.com/b/3nBZ3R/eOwxJ
http://paperpile.com/b/3nBZ3R/eOwxJ
http://dx.doi.org/10.2174/1570159X20666220327221830
http://paperpile.com/b/3nBZ3R/eOwxJ
http://paperpile.com/b/3nBZ3R/o2WNO
http://paperpile.com/b/3nBZ3R/o2WNO
http://paperpile.com/b/3nBZ3R/o2WNO
http://paperpile.com/b/3nBZ3R/u2Z4B
http://paperpile.com/b/3nBZ3R/u2Z4B
http://paperpile.com/b/3nBZ3R/u2Z4B
http://paperpile.com/b/3nBZ3R/Nlne9
http://paperpile.com/b/3nBZ3R/Nlne9
http://paperpile.com/b/3nBZ3R/Nlne9
http://paperpile.com/b/3nBZ3R/u2I94
http://paperpile.com/b/3nBZ3R/u2I94
http://paperpile.com/b/3nBZ3R/u2I94
http://paperpile.com/b/3nBZ3R/ooGE6
http://paperpile.com/b/3nBZ3R/ooGE6
http://paperpile.com/b/3nBZ3R/ooGE6
http://paperpile.com/b/3nBZ3R/ooGE6
http://paperpile.com/b/3nBZ3R/XBWP
http://paperpile.com/b/3nBZ3R/XBWP
http://paperpile.com/b/3nBZ3R/XBWP
http://paperpile.com/b/3nBZ3R/XBWP
http://paperpile.com/b/3nBZ3R/8VJT
http://paperpile.com/b/3nBZ3R/8VJT
http://paperpile.com/b/3nBZ3R/8VJT
http://paperpile.com/b/3nBZ3R/odl6R
http://paperpile.com/b/3nBZ3R/odl6R
http://paperpile.com/b/3nBZ3R/odl6R
http://paperpile.com/b/3nBZ3R/odl6R
http://paperpile.com/b/3nBZ3R/hqh5R
http://paperpile.com/b/3nBZ3R/hqh5R
http://paperpile.com/b/3nBZ3R/hqh5R
http://paperpile.com/b/3nBZ3R/hqh5R
http://paperpile.com/b/3nBZ3R/hqh5R
http://paperpile.com/b/3nBZ3R/cTabi
http://paperpile.com/b/3nBZ3R/cTabi
http://paperpile.com/b/3nBZ3R/cTabi
http://paperpile.com/b/3nBZ3R/cTabi
http://paperpile.com/b/3nBZ3R/rnJvT
http://paperpile.com/b/3nBZ3R/rnJvT
http://paperpile.com/b/3nBZ3R/rnJvT
http://paperpile.com/b/3nBZ3R/rnJvT
http://paperpile.com/b/3nBZ3R/lvhol
http://paperpile.com/b/3nBZ3R/lvhol
http://paperpile.com/b/3nBZ3R/lvhol
http://paperpile.com/b/3nBZ3R/lvhol


APPENDICES 
_______________________________________________________________ 

255 
 

Kasai, Rinshi S., and Akihiro Kusumi. 2014. “Single-Molecule Imaging Revealed Dynamic 

GPCR Dimerization.” Current Opinion in Cell Biology. 

https://doi.org/10.1016/j.ceb.2013.11.008. 

Kasai, Rinshi S., Kenichi G. N. Suzuki, Eric R. Prossnitz, Ikuko Koyama-Honda, Chieko 

Nakada, Takahiro K. Fujiwara, and Akihiro Kusumi. 2011. “Full Characterization of 

GPCR Monomer–dimer Dynamic Equilibrium by Single Molecule Imaging.” The Journal 

of Cell Biology 192 (3): 463–80. 

Kling, Ralf C., Nuska Tschammer, Harald Lanig, Timothy Clark, and Peter Gmeiner. 2014. 

“Active-State Model of a Dopamine D2 Receptor-Gαi Complex Stabilized by 

Aripiprazole-Type Partial Agonists.” PloS One 9 (6): e100069. 

Leioatts, Nicholas, Pooja Suresh, Tod D. Romo, and Alan Grossfield. 2014. “Structure-

Based Simulations Reveal Concerted Dynamics of GPCR Activation.” Proteins 82 (10): 

2538–51. 

Mertz, Blake, Andrey V. Struts, Scott E. Feller, and Michael F. Brown. 2012. “Molecular 

Simulations and Solid-State NMR Investigate Dynamical Structure in Rhodopsin 

Activation.” Biochimica et Biophysica Acta 1818 (2): 241–51. 

Ng, G. Y., B. F. O’Dowd, S. P. Lee, H. T. Chung, M. R. Brann, P. Seeman, and S. R. 

George. 1996. “Dopamine D2 Receptor Dimers and Receptor-Blocking Peptides.” 

Biochemical and Biophysical Research Communications 227 (1): 200–204. 

Nygaard, Rie, Thomas M. Frimurer, Birgitte Holst, Mette M. Rosenkilde, and Thue W. 

Schwartz. 2009. “Ligand Binding and Micro-Switches in 7TM Receptor Structures.” 

Trends in Pharmacological Sciences 30 (5): 249–59. 

Plazinska, Anita, Wojciech Plazinski, Rafal Luchowski, Artur Wnorowski, Wojciech 

Grudzinski, and Wieslaw I. Gruszecki. 2017. “Ligand-Induced Action of the W2866.48 

Rotamer Toggle Switch in the β2-Adrenergic Receptor.” Physical Chemistry Chemical 

Physics: PCCP 20 (1): 581–94. 

Pulido, Daniel, Verònica Casadó-Anguera, Laura Pérez-Benito, Estefanía Moreno, Arnau 

Cordomí, Laura López, Antoni Cortés, et al. 2018. “Design of a True Bivalent Ligand 

with Picomolar Binding Affinity for a G Protein-Coupled Receptor Homodimer.” Journal 

of Medicinal Chemistry 61 (20): 9335–46. 

Rovira, Xavier, Jean-Philippe Pin, and Jesús Giraldo. 2010. “The Asymmetric/symmetric 

Activation of GPCR Dimers as a Possible Mechanistic Rationale for Multiple Signalling 

Pathways.” Trends in Pharmacological Sciences 31 (1): 15–21. 

Salmas, Ramin Ekhteiari, Mine Yurtsever, Matthias Stein, and Serdar Durdagi. 2015. 

“Modeling and Protein Engineering Studies of Active and Inactive States of Human 

Dopamine D2 Receptor (D2R) and Investigation of Drug/receptor Interactions.” 

Molecular Diversity 19 (2): 321–32. 

Schwartz, Thue W., Thomas M. Frimurer, Birgitte Holst, Mette M. Rosenkilde, and Christian 

E. Elling. 2006. “Molecular Mechanism of 7TM Receptor Activation--a Global Toggle 

Switch Model.” Annual Review of Pharmacology and Toxicology 46: 481–519. 

Shi, Lei, George Liapakis, Rui Xu, Frank Guarnieri, Juan A. Ballesteros, and Jonathan A. 

Javitch. 2002. “Beta2 Adrenergic Receptor Activation. Modulation of the Proline Kink in 

Transmembrane 6 by a Rotamer Toggle Switch.” The Journal of Biological Chemistry 

277 (43): 40989–96. 

Strange, Philip G. 2005. “Oligomers of D2 Dopamine Receptors.” Journal of Molecular 

Neuroscience: MN 26 (2): 155–60. 

http://paperpile.com/b/3nBZ3R/v4UMC
http://paperpile.com/b/3nBZ3R/v4UMC
http://paperpile.com/b/3nBZ3R/v4UMC
http://dx.doi.org/10.1016/j.ceb.2013.11.008
http://paperpile.com/b/3nBZ3R/v4UMC
http://paperpile.com/b/3nBZ3R/QH7E6
http://paperpile.com/b/3nBZ3R/QH7E6
http://paperpile.com/b/3nBZ3R/QH7E6
http://paperpile.com/b/3nBZ3R/QH7E6
http://paperpile.com/b/3nBZ3R/sUmYr
http://paperpile.com/b/3nBZ3R/sUmYr
http://paperpile.com/b/3nBZ3R/sUmYr
http://paperpile.com/b/3nBZ3R/nCf9k
http://paperpile.com/b/3nBZ3R/nCf9k
http://paperpile.com/b/3nBZ3R/nCf9k
http://paperpile.com/b/3nBZ3R/MI5R5
http://paperpile.com/b/3nBZ3R/MI5R5
http://paperpile.com/b/3nBZ3R/MI5R5
http://paperpile.com/b/3nBZ3R/odDHk
http://paperpile.com/b/3nBZ3R/odDHk
http://paperpile.com/b/3nBZ3R/odDHk
http://paperpile.com/b/3nBZ3R/p9mSy
http://paperpile.com/b/3nBZ3R/p9mSy
http://paperpile.com/b/3nBZ3R/p9mSy
http://paperpile.com/b/3nBZ3R/bpnhF
http://paperpile.com/b/3nBZ3R/bpnhF
http://paperpile.com/b/3nBZ3R/bpnhF
http://paperpile.com/b/3nBZ3R/bpnhF
http://paperpile.com/b/3nBZ3R/OViAd
http://paperpile.com/b/3nBZ3R/OViAd
http://paperpile.com/b/3nBZ3R/OViAd
http://paperpile.com/b/3nBZ3R/OViAd
http://paperpile.com/b/3nBZ3R/4UQ8t
http://paperpile.com/b/3nBZ3R/4UQ8t
http://paperpile.com/b/3nBZ3R/4UQ8t
http://paperpile.com/b/3nBZ3R/vCFdi
http://paperpile.com/b/3nBZ3R/vCFdi
http://paperpile.com/b/3nBZ3R/vCFdi
http://paperpile.com/b/3nBZ3R/vCFdi
http://paperpile.com/b/3nBZ3R/yElpH
http://paperpile.com/b/3nBZ3R/yElpH
http://paperpile.com/b/3nBZ3R/yElpH
http://paperpile.com/b/3nBZ3R/3UNof
http://paperpile.com/b/3nBZ3R/3UNof
http://paperpile.com/b/3nBZ3R/3UNof
http://paperpile.com/b/3nBZ3R/3UNof
http://paperpile.com/b/3nBZ3R/8EUxY
http://paperpile.com/b/3nBZ3R/8EUxY


APPENDICES 
_______________________________________________________________ 

256 
 

Sun, Yutong, Jianyun Huang, Yang Xiang, Murat Bastepe, Harald Jüppner, Brian K. 

Kobilka, J. Jillian Zhang, and Xin-Yun Huang. 2007. “Dosage-Dependent Switch from 

G Protein-Coupled to G Protein-Independent Signaling by a GPCR.” The EMBO 

Journal 26 (1): 53–64. 

Tabor, Alina, Siegfried Weisenburger, Ashutosh Banerjee, Nirupam Purkayastha, Jonas M. 
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Figure S1. Control images of sensitized emission FRET. Sensitized emission method was used to detect interaction 
of GPR143 (YFP channel) and DRs (CFP channel) in COS7s transfected either with (A) CFP-YFP fusion protein, (B) 
DRD2-CFP and A2AAR-YFP, (C) DRD3-CFP and A2AAR-YFP as positive controls, (D) DRD2-CFP and GPR18-YFP, (E) 
DRD3-CFP and GPR18-YFP as negative controls (F) DRD2-CFP, (G) DRD3-CFP, (H) A2AAR-YFP, (I) GPR18-YFP, (J) 
wtGPR143-YFP or (K) pmGPR143-YFP. FRET signal, corrected by CoA and CoB parameters, and FRET efficiency (color 
scale on the far right) are shown. Scale bar = 20 μm. FRET, fluorescence resonance energy transfer; wt, wildtype, pm, 
plasma membrane. 
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Figure S2. Acceptor photobleaching FRET in COS7 cells. COS7s were co-transfected with wt or pmGPR143-YFP or 
A2AAR-YFP and DRs-CFP. The YFP photobleaching was performed and detected in delimited regions (highlighted and 
zoomed in the pictures). The fluorescence of GPR143 (YFP channel) and DRs (DRD2 or DRD3; CFP channel) were 
detected before and immediately after the acceptor photobleaching. Controls are shown in Figure S5. Scale bar = 20 μm. 
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Figure S3. Control images of FRET acceptor photobleaching. The YFP photobleaching was performed and detected 
in delimited regions (highlighted and zoomed in the pictures) of COS7s transfected with either DRs-CFP, here DRD3 as 
representative (A) or GPCR-YFP (B), here A2AAR as representative. CFP-YFP was used as positive control (E), while co-
transfections with GPR18 (C, D) were used as negative controls. Images of all sample fluorescence are shown before 
and immediately after the acceptor photobleaching for CFP and YFP channels. For corresponding FRET efficacies see 
Figure 3. Scale bar = 20 μm. 
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Figure S4. Colocalization of GPR143 and DRs  by immunofluorescence in CHO cells. A: CHO DRD2 cells were co-
transfected with wt or pmGPR143-YFP, or A2AAR -YFP, fixed and stained with anti-ProLink (against PL tagged-DRD2) 
and DAPI (nuclei). AlexaFluor594 was used as secondary antibody. B: CHO DRD3 cells were co-transfected with wt or 
pmGPR143-YFP, or A2AAR-YFP, fixed and stained with anti-ProLink (against PL tagged-DRD3) and DAPI (nuclei). 
AlexaFluor594 was used as secondary antibody. DR only samples are shown in the first row of A and B. Scale bar = 20 
μm. 

 

 

 

 

 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

266 
 

 

Figure S5. Western Blot Analysis shown as example for wtGPR143+DRD3. CHO b-arrestin cells stable expressing 
DRD2 or DRD3 were co-transfected with wt or pmGPR143-YFP, A2AAR-YFP or GPR18-YFP in different concentrations 
(8, 4, 2, 0.2 or 0.02 µg). Untransfected CHO b-arrestin cells were used as control. 30 µg lysates were separated in 10% 
SDS-PAGE and transferred onto nitrocellulose. The anti-GFP tag (mouse monoclonal) antibody was used as primary and 
rabbit anti-mouse horseradish peroxidase–coupled antibody was used as secondary antibody, both in 1:5000 dilutions. 
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7.2. Supplemental information of the research article: The world of GPCR dimers - mapping 
dopamine receptor D2 homodimers in different activation states and configuration 
arrangements 
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Figure S6. Dimer protocol – model selection. Consensus scoring of normalized values (left plots) and frequencies of 
best interfaces (right plots) for the different D2R-homodimer configurations for interface score (A), free energy of binding 
(B), interface area (C), hydrogen bond energy (D) and number of residues at interface (E). Scoring was performed for 28 
interfaces (x-axis) and labelled according to transmembrane (TM) helices forming the interface, e.g., 12_12 for the 
interface formed by TM1 and TM2 from one protomer, and TM1 and TM2 from the other protomer. Y-axis indicates the 
parameter analysed Graph F represents the average number of residues per interface. I: Inactive-Inactive (in-in), II: Active-
Active (ac-ac), III: Arrestin-arrestin (ar-ar), IV: Active-Inactive (ac-in), V: Inactive-arrestin (in-ar), VI: Active-arrestin (ac-
ar). 
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Figure S7. Equilibration of the systems. Distance of the phospholipids of the lipid bilayer and a geometric membrane 
center, comprising 2 residues per transmembrane helix (TM) at the same height. TM1: 1.44 and 1.45, TM2: 2.52 and 
2.53, TM3: 3.37 and 3.38, TM4: 4.51 and 4.52, TM5: 5.49 and 5.50, TM6: 6.44 and 6.45 and TM7: 7.49 and 7.50. 
Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. For these representations the total 500 ns 
of the simulations were utilized. For instance, one of the ac-ac D2R homodimer configurations, ac-ac-B, was already 
disrupted upon initialization of the system and therefore was excluded from further analysis. This may be due to the 
predicted interface involving TM4-TM5-TM7-TM1, where HX8 at TM7 consequently generated a larger gap between the 
monomeric entities and leaves room for water molecules to enter the interface and disrupt the dimer (Filizola, 2010). 
Reference: 
Filizola M. Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or 
Pandora's box for novel drug discovery? Life Sci. 2010 Apr 10;86(15-16):590-7. DOI: 10.1016/j.lfs.2009.05.004. 

 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

279 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

280 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

281 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

282 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

283 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

284 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

285 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

286 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

287 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

288 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

289 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

290 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

291 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

292 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

293 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

294 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

295 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

296 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

297 
 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

298 
 

 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

299 
 

Figure S8. Equilibration of the systems. The equilibration status of the systems was verified using root-mean-square 
deviations (RMSD) calculated for the backbone of the transmembrane helices (TMs), the loops and structural motifs 
including DRY (3.49, 3.50 and 3.51), CWxP (6.47, 6.48, 6.49 and 6.50), the ionic lock (3.50 and 6.30), NPxxY (7.49, 7.50, 
7.51, 7.52 and 7.53), PIF (5.50, 3.40 and 6.44), arginine cage (3.46 and 6.37), serine microdomain (5.42, 5.43 and 5.46), 
rotamer toggle switch (6.48, 6.51, 6.52 and 6.55). For these representations the total 500 ns of the simulations were 
utilized. The black lines represent the dimers in total (Dim), while dark colours represent the monomers within the dimer 
(M1/M2 in D) and the light colours represent the monomers alone (M1/M2 in M). Conformations are colour-coded: inactive 
- red, arrestin - yellow, active - blue. 
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Figure S9. Orientation of the systems. Conformational plasticity of the D2R-homodimer configurations was verified 
according to Prasanna et al. (2016). The following angles were observed along the MD simulations: θ1 consisting of 
residues 1.48, 4.53, 4.56 from protomer 1 and 4.56 from protomer 2; and θ2, consisting of residues 1.48, 4.53, 4.56 from 
protomer 2 and 4.56 from protomer 1. Conformer B (Figures 2 and S2 of Prasanna et al., 2016) corresponds to the 
interface of the D2R homodimer and was used as reference with θ1 and θ2 between -50 and -150°. Residues for θ1 and 
θ2 in the D2R homodimer configurations were identified according to Paila et al. (2010). 
References:  

• Prasanna, X., Sengupta, D. & Chattopadhyay, A. Cholesterol-dependent Conformational Plasticity in GPCR 
Dimers. Sci Rep 6, 31858 (2016). DOI: 10.1038/srep31858 

• Paila, Y. D., Kombrabail, M., Krishnamoorthy, G. & Chattopadhyay, A. Oligomerization of the serotonin1A 
receptor in live cells: a time-resolved fluorescence anisotropy approach. J. Phys. Chem. B. 115, 11439–
11447 (2011). DOI: 10.1021/jp201458h 

 

https://doi.org/10.1038/srep31858
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Figure S10. Interface area over time. Interface area of the D2R homodimer configurations was followed over time. The 
interface area was calculated using the solvent accessible surface area (SASA). The difference (DSASA) between a 
residue in monomeric and dimeric state was calculated using DSASA=(SASAmonomer-SASAdimer). Precisely, the SASA of 
each monomer was determined in the presence and absence of the partnered monomer. Then the average was 
calculated: AInterface=(AInterface monomer1 +AInterface monomer2 )/2. Conformations are colour-coded: inactive - red, arrestin - yellow, 
active - blue. 
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Figure S11. Decoy original interfacial residues for the D2R-homodimer configurations. Relevant residues were 
calculated the ΔSASA of each residue at the start of the simulation, where ΔSASA = (SASAm - SASAd). SASAm is the 
SASA of a residue in the monomeric form and SASAd is the SASA in the dimeric form. Residues with a ΔSASA of 0 have 
the same exposure in both the dimeric and monomeric form, and as such, are not part of the initial interface. In addition 
to the requirement of a ΔSASA >0, another set of criteria to further narrow down this list was employed: residues should 
have a positive ΔSASA in at least 2/3 replicates, and this value had to be at least >0.05. ΔSASA was calculated over time 
for each residue on this list and normalized by dividing it by SASAmax, defined as the maximum SASA value for that residue 
type (i.e., when fully exposed). Only residues with a normalised ΔSASA >10% were considered to truly belong to the initial 
interface. Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. Black was used for the loop 
residues. 
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Figure 
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S12. Types of interaction of the original interface. The type of pairwise interaction established by the residues of the 
original interface of the D2R homodimer configurations was determined and quantified using the GetContacts  
(https://getcontacts.github.io/index.html) application. For each system the average number and location of H-bonds, salt-
bridges, π-cation, π-stacking, and T-stacking interactions were determined among the 3 replicates and simulation time 
(% interactions). Left axis: protomer 1, bottom axis: protomer 2.  
 
 
 

S13 
 

 
 
Figure S13. Most important macro- and microswichtes upon acitvation of class A GPCRs. Residues which are 
part of conserved structural motifs are colored grey, while residues which are involved in conformational swichtes are 
colored blue.  

 

https://getcontacts.github.io/index.html
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Figure S14. Distance between TM3 and TM6. Distance [nM] between Cα-atoms of residues 3.50 and 6.34 for each 
dimer configuration over time [ns]. Replicates are color-coded and distance is compared to the distance of the replicates 
of the uncomplexed monomers  (black lines) for each protomer. Conformations are colour-coded: inactive - red, arrestin 
- yellow, active - blue. 
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Figure S15. Distance between TM3 and TM7. Distance [nM] between Cα-atoms of residues 3.50 and 7.53 for each 
dimer configuration over time [ns]. Replicates are color-coded and distance is compared to the distance of the replicates 
of the uncomplexed monomers (black lines) for each protomer. Conformations are colour-coded: inactive - red, arrestin 
- yellow, active - blue. 
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Figure S16. Distance TM3-TM6 vs. distance TM5-TM7. Comparison of Cα-atom distances between TM3-TM6 (3.50-
6.34) and TM5-TM7 (5.46-7.41) as scatter plots for the replicates of the monomers over time. Conformations are colour-
coded: inactive - red, arrestin - yellow, active - blue. This data was used as background for Figure S17. 
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Figure S17. Comparison of transmembrane movement for the D2R homodimer configurations. Comparison of Cα-
distances between 3.50-6.34 [nm] and 5.46-7.41 [nm] (TM3-TM6 vs TM5-TM7) were measured for all monomers and 
replicates over time. The distances of the individual monomers in the three activation states (in-, ar- and ac-monomers) 
are shown as light-coloured clouds in the background in three different lines for easier comparison. Conformations are 
colour-coded: inactive - red, arrestin - yellow, active – blue. 
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Figure S18. Distance TM3-TM6 vs. distance TM5-TM7 (YY). Comparison of Cα-atom distances between TM3-TM6 
(3.50-6.34) and TM5-TM7 (5.58-7.41), which are two tyrosines known as the Y-Y motif, as scatter plots for the replicates 
of the uncomplexed monomers over time. Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
This data was used as background for Figure S19. 
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Figure S19. Distance TM3-TM6 vs. distance TM5-TM7 (YY). Comparison of transmembrane movement for the D2R 
homodimer configurations captured. Comparison of Cα-distances between 5.58-7.53 [nm] and 3.50-6.34 [nm] (TM5-TM7 
vs TM3-TM6) were measured for all monomers and replicates over time. The distances of the individual monomers in the 
three activation states (in-, ar- and ac-monomers) are shown as light-coloured clouds in the background in three different 
lines for easier comparison. Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
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Figure S20. TM5 bugle vs. connector RMSD. Comparison of Cα-atom distances between TM5-TM7 (5.58-7.41) and 
the ΔRMSD of a connector module, consisting of residues Phe3.40 (F of PIF motif) and Ile6.44 (I of PIF motif) as scatter 
plots for the replicates of the uncomplexed monomers. Conformations are colour-coded: inactive - red, arrestin - yellow, 
active - blue. This data was used as background for Figure 16. 
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Figure S21. Distance TM5-TM7 vs. angle of Cα-atoms of 6.34-6.47-2.41. Comparison of Cα-atom distances between 
TM5-TM7 (5.55-7.46) [nm] and the angle consisting Cα-atoms of residues 6.34, 6.47 and 2.41 [°] as scatter plots for the 
replicates of the uncomplexed monomers. Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
This data was used as background for Figure S22. 
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Figure S22. Distance TM5-TM7 vs. angle of Cα-atoms of 6.34-6.47-2.41. Comparison of the angle between residues 
6.34-6.47-2.41 [°] and the distance between the Cα-atoms of residues 5.55 and 7.46 [nm]. Comparison of the angle 
between residues 6.34-6.47-2.41 [°] and the distance between the Cα-atoms of residues 5.55 and 7.46 [nm], which were 
measured for all monomers and replicates over time. The distances of the individual monomers are shown as light-
coloured clouds in the background. Conformations are colour-coded: inactive - red, arrestin - yellow, active – blue. 
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Figure S23. Angle among the centroids of the benzene ring of residues Phe5.51, Phe6.44 and Ile6.45 over time. Angle 
of benzene centroids [°] of residues Phe5.51, Phe6.44 and Ile6.45 measured over time [ns]. Replicates are color-coded and 
distance is compared to the distance of the replicates of the uncomplexed monomers (black lines) for each protomer. 
Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
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Figure S24. Ionic lock vs. distance between Asp2.50 and sodium. Comparison of Cα-atom distances between 3.50 and 
6.34 (TM3-TM6) representing the ionic lock and between Asp2.50 and the closest sodium atom as scatter plots for the 
replicates of the uncomplexed monomers. Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
This data was used as background for Figure 17. 
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Figure S25. Opening of the hydrophobic lock. Opening of the hydrophobic lock was measured by calculating the area 
of the angle [Å2] composed by the Cγ atom of residue 3.43, the Cβ of residue 6.41 and 6.40 over simulation time [ns]. 
Replicates are color-coded and distance is compared to the distance of the replicates of the uncomplexed monomers 
(black lines) for each protomer. Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
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Figure S26. . Angle χ1 of the conserved tyrosine 7.53 (Tyr7.53) over time. Angle χ1 [rad] of the conserved Tyr7.53 
observed over simulation time [ns]. Replicates are color-coded and distance is compared to the distance of the replicates 
of the uncomplexed monomers (black lines) for each protomer. Conformations are colour-coded: inactive - red, arrestin - 
yellow, active - blue. 
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Figure S27. Angle χ2 of the conserved tyrosine 7.53 (Tyr7.53) over time. Angle χ2 [rad] of the conserved Tyr7.53 observed 
over simulation time [ns]. Replicates are color-coded and distance is compared to the distance of the replicates of the 
uncomplexed monomers (black lines) for each protomer. Conformations are colour-coded: inactive - red, arrestin - yellow, 
active - blue. 
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Figure S28. Angles χ1 and χ2 [°] of tyrosine 7.53 (Tyr7.53) compared. The angles χ1 and χ2 [°] of Tyr7.53 were observed 
over time and averaged for each replicate of the uncomplexed monomers. Conformations are colour-coded: inactive - 
red, arrestin - yellow, active - blue. This data was used as background for Figure S29. 
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Figure S29. Angles χ1 and χ2 of tyrosine 7.53 (Tyr7.53) compared in the dimers. Comparison of dihedral angles χ1 and 
χ2 of the conserved residue Tyr7.53, which were measured for all monomers and replicates over time. The angles [°] of the 
monomers only are shown as light-coloured clouds in the background. Conformations are colour-coded: inactive - red, 
arrestin - yellow, active - blue. 
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Figure S30. Distance of ionic lock vs. RMSD of NPxxY motif. Comparison of the distance between residues of the 
ionic lock and the RMSD of the NPxxY motif. The RMSD of the NPxxY motif [nm] was compared to the distance between 
the Cα-atoms of residues 3.50 and 6.30 [nm], which are part of the ionic lock.  Conformations are colour-coded: inactive 
- red, arrestin - yellow, active - blue. This data was used as background for Figure 19. 
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Figure S31. RMSD of NPxxY motif vs ΔSASA NPxxY. Comparison of the NPxxY motif using RMSD and DSASA. The 
RMSD [nm] and ΔSASA [%] was calculated for all systems separately. DSASA was determined as previously described. 
Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. This data was used as background for 
Figure S32. 
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Figure S32. Comparison of RMSD and ΔSASA of the NPxxY motif. Comparison of RMSD and dSASA of the NPxxY 
motif of the D2R-homodimer configurations. The RMSD [nm] and ΔSASA [%] was calculated for all systems separately 
and then joined in the scatter plot. ΔSASA was calculated as previously described. The distances of the individual 
monomers in the three activation states (in-, ar- and ac-monomers) are shown as light-coloured clouds in the background 
in three different lines for easier comparison Conformations are colour-coded: inactive - red, arrestin - yellow, active - 
blue. 
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Figure S33. Size of binding site for G protein over time. Sizes of binding site for the G protein were determined over 
time [ns] for all D2R-homodimer configurations using the SASA for a known subset of interacting residues (Preto et al., 
2020). These values were then normalized to SASAmax. 
 
G protein-relevant residues: 39THR, 2.39THR, 3.50ARG, 3.53ALA, 3.54VAL, 202ARG, 210ARG, 212LYS, 213LEU, 
214SER, 215GLN, 6.29LYS, 6.30GLU, 6.32LYS, 6.33ALA, 7.56PHE, 8.43ASN, 8.44ILE, 8.45GLU, 8.46PHE. 
 
Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
 
Reference:  
Preto AJ, Barreto CAV, Baptista SJ, Almeida JG, Lemos A, Melo A, Cordeiro MNDS, Kurkcuoglu Z, Melo R, Moreira IS. 
Understanding the Binding Specificity of G-Protein Coupled Receptors toward G-Proteins and Arrestins: Application to 
the Dopamine Receptor Family. J Chem Inf Model. 2020 Aug 24;60(8):3969-3984. DOI: 10.1021/acs.jcim.0c00371. 
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Figure S34. Size of binding site for β-arrestin over time. Sizes of binding site for β-arrestin were determined over time 
[ns] for all D2R homodimer configurations using the SASA for a known subset of interacting residues (Preto et al., 2020). 
These values were then normalized to SASAmax. 
 
β-arrestin-relevant residues: 36ALA, 37LEU, 38GLN, 39THR, 2.39THR, 2.40ASN, 3.50ARG, 3.53ALA, 3.54VAL, 11PRO, 
112MET, 113LEU, 115ASN, 116THR, 119SER, 5.64VAL, 5.65LEU, 5.67ARG, 5.68ARG, 5.72VAL, 5.75LYS, 199ARG, 
200SER 201SER, 214SER, 6.29LYS, 6.30GLU 6.31LYS, 6.32LYS, 6.33ALA, 6.34THR, 6.36MET, 7.56PHE, 8.43ASN, 
8.44ILE.  
 
Conformations are colour-coded: inactive - red, arrestin - yellow, active - blue. 
 
Reference:  
Preto AJ, Barreto CAV, Baptista SJ, Almeida JG, Lemos A, Melo A, Cordeiro MNDS, Kurkcuoglu Z, Melo R, Moreira IS. 
Understanding the Binding Specificity of G-Protein Coupled Receptors toward G-Proteins and Arrestins: Application to 
the Dopamine Receptor Family. J Chem Inf Model. 2020 Aug 24;60(8):3969-3984. DOI: 10.1021/acs.jcim.0c00371. 

 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

388 
 

 



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

389 
 

 
T
a

b
le

  
S

2
. 

In
te

rf
a

c
ia

l 
re

s
id

u
e

s
 d

e
te

rm
in

e
d

 b
y

 P
R

O
D

IG
Y

. 
In

te
rf

a
c
ia

l 
re

s
id

u
e

s
 w

e
re

 e
it
h

e
r 

s
o

rt
e

d
 b

y
 a

p
p

e
a
ra

n
c
e

 w
it
h

in
 t
h

e
 p

a
rt

n
e

re
d
 m

o
n

o
m

e
rs

 (
b

o
ld

/i
ta

lic
) 

a
n

d
 f

re
q
u

e
n

c
y
 a

c
ro

s
s
 a

ll 
c
o

n
fi
g

u
ra

ti
o
n

s
 (

c
o

lo
rs

).
 

D
im

e
r

In
te

rf
a

c
e

M
o

n
o

m
e
r

A
B

A
B

A
B

A
B

A
B

A
B

A
B

T
e

m
p

la
te

6
C

M
4

6
C

M
4

6
V

M
S

6
V

M
S

6
V

M
S

6
V

M
S

6
U

1
N

6
U

1
N

6
V

M
S

6
C

M
4

6
C

M
4

6
U

1
N

6
V

M
S

6
U

1
N

3
.4

8
IL

E
3
.4

8
IL

E
1
1

2
M

E
T

 (
IC

L
2

)4
P

R
O

 (
N

te
rm

)
3
.4

8
IL

E
3
.4

8
IL

E
1
1
0

M
E

T
 (

IC
L

2
)

3
.4

8
IL

E
1
.5

1
V

A
L

3
.5

1
T

Y
R

3
.4

8
IL

E
1
.5

1
V

A
L

3
.4

8
IL

E
3
.4

7
S

E
R

3
.5

1
T

Y
R

3
.5

1
T

Y
R

1
6

0
A

L
A

 (
E

C
L

2
)5

H
IS

 (
N

te
rm

)
3
.5

1
T

Y
R

3
.5

1
T

Y
R

1
1
3

L
E

U
 (

IC
L

2
)

3
.5

1
T

Y
R

1
.5

4
C

Y
S

3
.5

5
A

L
A

3
.5

1
T

Y
R

1
.5

5
M

E
T

3
.5

2
T

H
R

3
.4

8
IL

E

3
.5

2
T

H
R

3
.5

2
T

H
R

5
.4

1
T

Y
R

1
.3

4
T

Y
R

3
.5

2
T

H
R

3
.5

4
V

A
L

1
1

6
T

H
R

 (
IC

L
2

)
3
.5

2
T

H
R

1
.5

5
M

E
T

1
1

0
M

E
T

 (
IC

L
2

)
3
.5

2
T

H
R

1
.5

7
V

A
L

1
1
0

M
E

T
 (

IC
L

2
)

3
.5

1
T

Y
R

3
.5

5
A

L
A

3
.5

5
A

L
A

1
.3

5
T

Y
R

3
.5

5
A

L
A

3
.5

5
A

L
A

1
1

7
A

R
G

 (
IC

L
2

)1
1

0
M

E
T

 (
IC

L
2

)
1
.5

7
V

A
L

1
1
1

P
R

O
 (

IC
L

2
)

3
.5

5
A

L
A

1
.5

8
S

E
R

1
1

2
M

E
T

 (
IC

L
2

)
3
.5

2
T

H
R

1
1
0

M
E

T
 (

IC
L

2
)1
1

0
M

E
T

 (
IC

L
2

)
6
.2

3
A

R
G

1
1

0
M

E
T

 (
IC

L
2

)1
1

0
M

E
T

 (
IC

L
2

)1
1

8
T

Y
R

 (
IC

L
2

)1
1

3
L

E
U

 (
IC

L
2

)
1

.5
8

S
E

R
1
1

2
M

E
T

 (
IC

L
2

)1
1

0
M

E
T

 (
IC

L
2

)
1

.5
9

A
R

G
1
1
3

L
E

U
 (

IC
L

2
)

3
.5

5
A

L
A

1
1
1

P
R

O
 (

IC
L

2
)1
1
1
P

R
O

 (
IC

L
2

)
6

.2
4

LY
S

1
1
1
P

R
O

 (
IC

L
2

)1
1
1

P
R

O
 (

IC
L

2
)1
1

9
S

E
R

 (
IC

L
2

)1
1

7
A

R
G

 (
IC

L
2

)
1

.5
9

A
R

G
1
1

4
T

Y
R

 (
IC

L
2

)1
1
1
P

R
O

 (
IC

L
2

)3
5

L
Y

S
 (

IC
L

1
)1

1
6

T
H

R
 (

IC
L

2
)1

1
0

M
E

T
 (

IC
L

2
)

1
2

0
S

E
R

 (
IC

L
2
)1
2

0
S

E
R

 (
IC

L
2

)
1
1

2
M

E
T

 (
IC

L
2

)1
1

2
M

E
T

 (
IC

L
2

)
4
.4

0
A

R
G

4
.4

1
A

R
G

3
4

G
L
U

 (
IC

L
1

)1
1

5
A

S
N

 (
IC

L
2

)1
1

2
M

E
T

 (
IC

L
2

)
2

.4
1

T
Y

R
1
1

8
T

Y
R

 (
IC

L
2

)1
1

3
L

E
U

 (
IC

L
2

)

4
.4

0
A

R
G

4
.4

0
A

R
G

1
1

3
L

E
U

 (
IC

L
2

)1
1

3
L

E
U

 (
IC

L
2

)
4
.4

1
A

R
G

4
.5

6
IL

E
3

5
L
Y

S
 (

IC
L

1
)

4
.4

0
A

R
G

4
.4

0
A

R
G

2
.4

8
V

A
L

1
1

9
S

E
R

 (
IC

L
2

)1
1

7
A

R
G

 (
IC

L
2

)

4
.4

1
A

R
G

4
.4

1
A

R
G

1
1

6
T

H
R

 (
IC

L
2
)1
1

6
T

H
R

 (
IC

L
2

)
4

.4
4

V
A

L
4

.5
9

P
R

O
3
7

L
E

U
 (

IC
L

1
)

4
.4

1
A

R
G

4
.4

1
A

R
G

2
.5

1
L

E
U

4
.4

0
A

R
G

4
.4

1
A

R
G

4
.4

3
T

H
R

4
.4

3
T

H
R

1
1

9
S

E
R

 (
IC

L
2

)1
1

9
S

E
R

 (
IC

L
2

)
4
.4

8
IL

E
1

5
8

A
S

N
 (

E
C

L
2

)3
7

G
L
N

 (
IC

L
1

)
4

.4
4

V
A

L
4
.4

4
V

A
L

2
.5

2
L

E
U

4
.4

1
A

R
G

4
.4

8
IL

E

4
.4

4
V

A
L

4
.4

4
V

A
L

4
.4

0
A

R
G

4
.4

0
A

R
G

4
.5

1
V

A
L

1
5

9
P

R
O

 (
E

C
L

2
)

2
.4

1
T

Y
R

4
.4

8
IL

E
4
.4

8
IL

E
2

.5
6

L
E

U
4

.4
4

V
A

L
4
.5

2
L

E
U

4
.4

8
IL

E
4
.4

7
S

E
R

4
.4

1
A

R
G

4
.4

4
V

A
L

4
.5

2
L
E

U
1

6
0

A
L

A
 (

E
C

L
2
)

2
.4

8
V

A
L

4
.5

2
L
E

U
4
.5

2
L

E
U

7
5

S
E

R
 (

E
C

L
1

)
4

.5
1

V
A

L
4
.5

5
T

H
R

4
.5

1
V

A
L

4
.4

8
IL

E
4

.4
2

V
A

L
4
.4

8
IL

E
4
.5

5
T

H
R

5
.3

8
P

H
E

2
.5

1
L

E
U

1
4

6
L

E
U

 (
E

C
L

2
)

4
.5

5
T

H
R

3
.2

2
A

R
G

4
.5

2
L

E
U

4
.5

6
IL

E

4
.5

2
L

E
U

4
.5

1
V

A
L

4
.4

3
T

H
R

4
.5

2
L

E
U

4
.5

6
IL

E
5

.4
0

V
A

L
2

.5
2

L
E

U
1
4

7
A

S
N

 (
E

C
L

2
)

4
.5

9
P

R
O

3
.2

3
IL

E
4

.5
4

P
H

E
4
.5

8
C

Y
S

4
.5

5
T

H
R

4
.5

2
L

E
U

4
.4

4
V

A
L

4
.5

5
T

H
R

4
.5

9
P

R
O

5
.4

1
T

Y
R

2
.5

6
L

E
U

1
4

8
A

S
N

 (
E

C
L

2
)1
4

6
L
E

U
 (

E
C

L
2
)

3
.2

7
IL

E
4
.5

5
T

H
R

4
.5

9
P

R
O

4
.5

6
IL

E
4
.5

5
T

H
R

4
.4

7
S

E
R

4
.5

8
C

Y
S

1
6

0
A

L
A

 (
E

C
L

2
)

5
.4

2
S

E
R

2
.6

0
T

R
P

1
6

0
A

L
A

 (
E

C
L
2

)1
4

7
A

S
N

 (
E

C
L
2

)
3

.3
1

L
E

U
4

.5
8

C
Y

S
1

4
4

P
H

E
 (

E
C

L
2

)

4
.5

9
P

R
O

4
.5

6
IL

E
4
.4

8
IL

E
4

.5
9

P
R

O
5

.3
8

P
H

E
5
.4

4
IL

E
7

5
S

E
R

 (
E

C
L
1

)
5

.4
0

V
A

L
1

4
8

A
S

N
 (

E
C

L
2

)
3

.3
4

M
E

T
4
.5

9
P

R
O

1
6

0
A

L
A

 (
E

C
L

2
)

1
4

6
L

E
U

 (
E

C
L

2
)

4
.5

9
P

R
O

4
.5

1
V

A
L

5
.4

1
T

Y
R

5
.4

1
T

Y
R

5
.4

5
V

A
L

3
.2

2
A

R
G

5
.4

1
T

Y
R

1
4

9
A

L
A

 (
E

C
L

2
)1

2
1
L
Y

S
 (

IC
L

2
)

4
.6

1
L
E

U
5
.3

8
P

H
E

1
4

7
A

S
N

 (
E

C
L

2
)1
4

6
L

E
U

 (
E

C
L

2
)

4
.5

2
L

E
U

5
.4

4
IL

E
5

.4
2

S
E

R
5
.4

8
T

Y
R

3
.2

3
IL

E
5
.4

4
IL

E
1
6

0
A

L
A

 (
E

C
L

2
)

4
.4

3
T

H
R

1
4

4
P

H
E

 (
E

C
L

2
)

5
.4

1
T

Y
R

1
4

8
A

S
N

 (
E

C
L

2
)

1
4

7
A

S
N

 (
E

C
L

2
)

4
.5

5
T

H
R

5
.4

5
V

A
L

5
.4

5
V

A
L

5
.4

9
V

A
L

3
.2

4
H

IS
5

.4
5

V
A

L
5

.4
0

V
A

L
4
.4

4
V

A
L

1
4

5
G

L
Y

 (
E

C
L
2

)
5
.4

2
S

E
R

1
5

1
G

L
N

 (
E

C
L

2
)

1
4

8
A

S
N

 (
E

C
L

2
)

4
.5

8
C

Y
S

5
.4

8
T

Y
R

5
.4

6
S

E
R

5
.5

2
IL

E
3
.2

7
IL

E
5

.4
8

T
Y

R
5
.4

1
T

Y
R

4
.4

7
S

E
R

1
4

6
L

E
U

 (
E

C
L

2
)

5
.4

5
V

A
L

1
5

9
P

R
O

 (
E

C
L

2
)

1
5

9
P

R
O

 (
E

C
L

2
)

4
.5

9
P

R
O

5
.4

9
V

A
L

5
.5

3
V

A
L

3
.3

1
L

E
U

5
.4

9
V

A
L

5
.4

4
IL

E
4
.5

0
T

R
P

1
5

8
A

S
N

 (
E

C
L

2
)

5
.4

9
V

A
L

1
6

0
A

L
A

 (
E

C
L

2
)1
6

0
A

L
A

 (
E

C
L

2
)

1
4

4
P

H
E

 (
E

C
L
2

)
5
.5

2
IL

E
5
.5

6
L

E
U

1
1

8
T

Y
R

 (
IC

L
2

)
5
.5

2
IL

E
5

.4
5

V
A

L
4
.5

1
V

A
L

1
6

0
A

L
A

 (
E

C
L

2
)

5
.5

3
V

A
L

5
.4

0
V

A
L

5
.4

0
V

A
L

1
4

5
G

L
Y

 (
E

C
L

2
)

5
.5

3
V

A
L

5
.5

7
V

A
L

1
2

1
L
Y

S
 (

IC
L

2
)

5
.5

6
L
E

U
5
.4

8
T

Y
R

4
.5

4
P

H
E

5
.3

8
P

H
E

5
.5

6
L

E
U

5
.4

1
T

Y
R

5
.4

1
T

Y
R

1
4

6
L
E

U
 (

E
C

L
2
)

5
.5

6
L

E
U

5
.6

0
L
Y

S
4
.4

3
T

H
R

5
.6

0
L
Y

S
5

.4
9

V
A

L
4
.5

5
T

H
R

5
.4

1
T

Y
R

5
.5

7
V

A
L

5
.4

4
IL

E
5
.4

4
IL

E
5
.4

1
T

Y
R

5
.6

0
L
Y

S
6
.5

9
IL

E
4

.4
7

S
E

R
5
.6

3
IL

E
5
.5

2
IL

E
4

.5
8

C
Y

S
5
.4

5
V

A
L

5
.6

0
L
Y

S

5
.4

5
V

A
L

5
.4

5
V

A
L

5
.4

5
V

A
L

5
.6

4
V

A
L

4
.5

0
T

R
P

5
.6

4
V

A
L

5
.5

3
V

A
L

4
.5

9
P

R
O

5
.4

9
V

A
L

5
.4

8
T

Y
R

5
.4

8
T

Y
R

5
.4

9
V

A
L

5
.6

7
A

R
G

4
.5

4
P

H
E

5
.6

7
A

R
G

5
.5

6
L

E
U

4
.6

1
L

E
U

5
.4

9
V

A
L

5
.4

9
V

A
L

5
.5

2
IL

E
5

.6
8

A
R

G
4

.6
1

L
E

U
5
.6

8
A

R
G

5
.5

7
V

A
L

1
4

4
P

H
E

 (
E

C
L

2
)

5
.5

2
IL

E
5
.5

2
IL

E
5
.5

3
V

A
L

1
4

4
P

H
E

 (
E

C
L

2
)

5
.7

0
LY

S
5

.6
0

L
Y

S
8
.5

3
IL

E

5
.5

3
V

A
L

5
.5

3
V

A
L

5
.5

6
L

E
U

8
.5

3
IL

E
5
.7

1
A

R
G

5
.6

7
A

R
G

8
.5

5
H

IS

5
.5

6
L

E
U

5
.5

6
L

E
U

8
.5

5
H

IS
5
.7

4
T

H
R

5
.6

8
A

R
G

8
.5

6
C

Y
S

5
.6

0
L
Y

S
6
.5

9
IL

E
8

.5
6

C
Y

S
5

.7
1

A
R

G

6
.5

9
IL

E
2

4
8
H

IS
 (

E
C

L
3

)
6
.5

9
IL

E

2
4

8
H

IS
 (

E
C

L
3
)

2
4

8
H

IS
 (

E
C

L
3

)

T
o

ta
l 
n

u
m

b
e

r 
o

f 
in

te
rf

a
c
in

g
 r

e
s
id

u
e

s
3
5

3
4

3
6

3
1

2
9

2
1

2
6

3
3

3
2

3
5

3
2

2
7

2
6

B
o

ld
 r

e
s
id

u
e

s
: 

D
o

u
b

le
 r

e
s
id

u
e

s
 w

it
h
in

 d
im

e
rs

It
a
lic

 r
e

s
id

u
e

s
: 

U
n

iq
u

e
 r

e
s
id

u
e

s
 a

c
ro

s
s
 a

ll 
d

im
e

rs

G
re

e
n

: 
V

e
ry

 f
re

q
u

e
n
t 

re
s
id

u
e

s
 (

8
-1

2
x
)

O
ra

n
g

e
: 

M
o

d
e

ra
te

 f
re

q
u
e

n
t 

re
s
id

u
e
s
 (

3
-7

x
)

P
in

k
: 

R
a

re
 r

e
s
id

u
e

s
 (

1
-2

x
)

a
c

-a
r

T
M

4
-T

M
5

-T
M

4
-T

M
5

T
M

4
-T

M
5

-T
M

7
-T

M
1

T
M

4
-T

M
5

-T
M

4
-T

M
5

T
M

4
-T

M
5

-T
M

4
-T

M
5

T
M

1
-T

M
2

-T
M

4
-T

M
5

T
M

3
-T

M
4

-T
M

4
-T

M
5

T
M

4
-T

M
5

-T
M

4
-T

M
5

in
-i

n
a
c

-a
c
-B

a
c

-a
c

a
r-

a
r

a
c

-i
n

in
-a

r



SUPPLEMENTAL MATERIAL 
_______________________________________________________________ 

390 
 

 

Table  S3. Frequency of common interfacial residues for dimer configurations determined by PRODIGY.                                                                                                                                                                      

1-2 times:

rare

3-7 times:

moderate

8-12 times:

very frequent

4PRO (N-terminus) 111PRO (ICL2) 110MET (ICL2)

5HIS (N-terminus) 112MET (ICL2) 160ALA (ECL2)

34GLU (ICL1) 113LEU (ICL2) 3.48ILE

35LYS (ICL1) 116THR (ICL2) 3.51TYR

37LEU (ICL1) 117ARG (ICL2) 3.52THR

38GLN (ICL1) 118TYR (ICL2) 3.55ALA

75SER (ECL1) 119SER (ICL2) 4.40ARG

114TYR (ICL2) 144PHE(ECL2) 4.41ARG

115ASN (ICL2) 146LEU (ECL2) 4.44VAL

120SER (ICL2) 147ASN (ECL2) 4.48ILE

121LYS (ICL2) 148ASN (ECL2) 4.52LEU

145GLY (ECL2) 159PRO (ECL2) 4.55THR

149ALA (ECL2) 248HIS (ECL3) 4.59PRO

151GLN (ECL2) 4.43THR 5.41TYR

158ASN (ECL2) 4.47SER 5.45VAL

1.34TYR 4.51VAL 5.49VAL

1.35TYR 4.54PHE 5.52ILE

1.51VAL 4.56ILE 5.53VAL

1.54CYS 4.58CYS 5.56LEU

1.55MET 4.61LEU

1.57VAL 5.38PHE

1.58SER 5.40VAL

1.59ARG 5.42SER

2.41TYR 5.44ILE

2.48VAL 5.48TYR

2.51LEU 5.57VAL

2.52LEU 5.60LYS

2.56LEU 5.67ARG

2.60TRP 5.68ARG

3.22ARG 6.59ILE

3.23ILE

3.24HIS

3.27ILE

3.31LEU

3.34MET

3.47SER

3.54VAL

4.42VAL

4.50TRP

5.46SER

5.63ILE

5.64VAL

5.70LYS

5.71ARG

5.74THR

6.23ARG

6.24LYS

8.53ILE

8.55HIS

8.56CYS

Total 50 30 19

Frequency
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