
 

 
 
 
 

 
 
 
 
 
 

António José Preto Martins Gomes 

 
 

DEEP LEARNING APPLICATION TO IN 

SILICO DRUG DESIGN 
 
 
 
 
 

 
 

Doctoral Thesis submitted for the PhD degree in Experimental 
Biology and Biomedicine – Biotechnology and Health, supervised 

by Professor Irina de Sousa Moreira and Professor Alexandre 
Bonvin and presented to the Institute of Interdisciplinary 

Research of the University of Coimbra 
 
 
 
 
 

December 2022



Institute of Interdisciplinary Research of the University of Coimbra

Deep-Learning application to in silico Drug Design

António José Preto Martins Gomes

Doctoral Thesis submitted for the PhD degree in Experimental

Biology and Biomedicine - Biotechnology and Health, supervised

by Professor Irina de Sousa Moreira and Professor Alexandre

Bonvin and presented to the Institute of Interdisciplinary Research

of the University of Coimbra

December 2022



”All generalisations - perhaps except this one - are false.” - Kurt Gödel



Agradecimentos

Antes de mais quero agradecer à minha orientadora, a Professora Irina Moreira, a oportunidade

e o apoio que me foram dados. Não é comum encontrar um líder de grupo disposto a investir nas

pessoas como a professora investe. Quando enviei o primeiro email, em 2017, a perguntar se haveria

possibilidade de reunir para discutir a possibilidade de fazer tese de Mestrado não antevia que isso

se fosse desenrolar numa tese de Mestrado, uma tese de Doutoramento, cinco EJIBCES, vários

projetos, diversas publicações e, mais importante, uma jornada científica. Obrigado.

I would also like to thank Professor Alexandre Bonvin, my co-advisor, for the opportunity to com-

municate and collaborate with international peers and the support in multiple publications and ex-

citing projects.

Agradeço também todo o apoio financeiro fornecido por parte da Fundação para a Ciência e a Tec-

nologia (FCT), Ministério da Ciência, Tecnologia e Ensino Superior de Portugal (Bolsa de Doutora-

mento: SFRH/BD/144966/2019) e do Centro de Neurociências e Biologia Celular, bem como à

Universidade de Coimbra.

Quero também agradecer a amigos que Coimbra me deu, o Chicória, o Gonçalo, a Ana Rita, a

Margarida, o Pedro António (a.k.a. Mágico), o Piedade, o Bidarra, a Dani Costa, o Xavier, o Frias,

a Baptista, o Diogo, o Cláudio, o Brandão, a Ana Costa, o Roque, o Cruz. Ao grande Miguel

Oliveira (não o piloto, mas sim a versão melhorada). E a amigos que já Viseu me tinha trazido, o

João Pedro, o Ferrolho e o Routar.

À Joana, num sistema científico que atravessa sérios problemas no que toca a publicações, finan-

ciamento, entre outros, a Joana relembra constantemente aqueles com quem trabalha daquilo que

verdadeiramente importa, a ciência. Adicionalmente, quero agradecer-lhe o cuidado e rigor que teve

ao reler este documento (emuitos outros); sobretudo, quero agradecer-lhe a amizade. Quero também

agradecer ao Carlos, o meu camarada nas trincheiras que é a ciência para alunos de doutoramento

em Portugal. Ao Pedro, à Salete, à Teresa, ao Manel, ao Piochi, à Catarina, à Raquel, ao Ramalhão

e a todos os membros e amigos do grupo com quem tive a oportunidade de aprender.

Ao Zé Gui quero agradecer a amizade em tempos de cólera, o orgulho sem preconceito e a amizade

sem fronteiras. Ao Navega, por ser o irmão mais velho de todos nós. Ao Coelho, por ser o Coelho.

Ao Manolo por ser, com o Zé Pedro, um dos meus mais antigos e melhores amigos.

Ao meu padrinho. Como em muitas famílias, o número de pessoas com Ensino Superior na minha

só recentemente começou a crescer. Até ao momento, o meu padrinho é a única pessoa na minha

família com Doutoramento. O mais engraçado é que isso não é o mais que lhe tenho a agradecer.

Ele não me incitou propriamente a querer ter Doutoramento. Ele foi a pessoa que mais confortável

me fez sentir com a vontade de ser cientista e, por isso, deu-me o melhor incentivo possível.

Ao meu afilhado, o Afonso, espero poder fazer por ele tanto como o meu padrinho fez por mim.

Ao Tiago, cunhado é uma palavra estranha, mas amigo é também um termo insuficiente para o que

o Tiago é. Entre muitos Legos, jogos de estratégia e tabuleiro, puzzles, pancadaria na garagem,

qualquer pessoa teria sorte de ter o Tiago como amigo, eu tenho a sorte de o ter como família.

i



ÀLau. Quando eu tenho dúvidas se consigo fazer alguma coisa, pormais descabidamente ambiciosa

que seja, ela não. E não me refiro a aqueles “tu consegues” vazios que, por vezes, as pessoas dizem

para tranquilizar os outros sem terem verdadeiramente a certeza. A Lau sabe que eu consigo, sem

sombra de dúvidas, mesmo antes de eu saber se é possível. A Lau é a minha casa quando chego a

casa.

À Ana. Quando andávamos no colégio, um rapaz vários anos mais velho por várias vezes me

azucrinou o juízo – no vernáculo atual poder-se-ia chamar de bullying - e a Ana chegou ao pé dele,

encostou-o à parede, e deu-lhe um sermão de fazer inveja ao Padre António Vieira. Desde então,

eu sei que terei sempre alguém com quem contar.

À minha mãe. É difícil escrever acerca de alguém que não cabe nas páginas. Alguém que suportou

dois filhos sozinha tendo um emprego a tempo inteiro sem lhes permitir abdicar de qualquer opor-

tunidade. Sem exigir nada em troca que não felicidade. É difícil de conceber como alguém se pode

desviar tanto dos interesses próprios por outros, filhos ou não. Estudei filosofia, bioquímica, biolo-

gia, física, química, matemática, programação, informática, fisiologia, neuropsicologia, inteligência

artificial, entre outras, e não consigo explicar. Mas agradeço, e espero vir a ser uma fração da pessoa

que a minha mãe é.



Resumo

Tem havido um aumento significativo no investimento e contribuição de ferramentas computa-

cionais para a descoberta de fármacos. A aprendizagem automática tem esculpido um lugar con-

fortável no campo, com particular destaque para o conjunto específico de ferramentas que é a apren-

dizagem profunda. A sua utilização tem-se mostrado capaz de reduzir custos, acelerar o processo

entre o desenho e a produção e limitar o erro humano. De facto, técnicas centradas nos dados têm

sido utilizadas para propulsionar muitos passos no processo de desenvolvimento de fármacos. Iter-

ativamente, isto gera nova informação que pode ser reciclada para melhorar soluções já existentes

ou permitir o aparecimento de novas.

Uma componente da investigação em desenvolvimento de fármacos foca-se em perceber e modu-

lar os componentes moleculares que são alvos dos fármacos. Comummente, estes são proteínas.

As proteínas frequentemente contêm aminoácidos específicos que são particularmente propícios a

manter a estrutura e função – Hot-Spots (HS). Devido à sua contribuição para o desempenho dos

principais papéis proteicos, os HS assumem o cargo adicional de se tornarem localizações privile-

giadas para a ligação dos fármacos. Uma parte deste trabalho descreve o SPOTONE, uma ferra-

menta de previsão de HS a partir, somente, de informação de sequência com elevado desempenho

num conjunto de dados independente (accuracy = 0.82, AUROC=0.83, precision=0.91, recall=0.82

e F1-score=0.85)1.

Embora sejam os alvos farmacológicos mais comuns, as proteínas variam em muitos aspetos, tais

como a constituição, a localização e a função. Um conjunto de proteínas destaca-se como sendo de

particular interesse para o desenho de fármacos, devido à sua função e especificidade. As proteínas

membranares são mediadoras entre o ambiente interno e externo à célula. Como tal, são as guardiãs

que permitem a comunicação entre estímulos externos e o funcionamento celular. O MENSAdb

caracteriza um vasto conjunto de proteínas membranares, apresentando dímeros manualmente pro-

cessados para informação útil, tornando-a disponível para consulta.

Outros componentes vastamente abordados na investigação de desenho de fármacos são, sem sur-

presas, os fármacos. Habitualmente moléculas, idealmente os fármacos interagem especificamente

com alvos únicos, limitando a sua interação com outras moléculas biológicas. ODrugTax é uma fer-

ramenta, implementada e distribuída como ferramenta de Python, que foi desenvolvida para facilitar

a interpretação de dados de pequenas moléculas. O DrugTax possibilita a caracterização de taxono-

mia química para obter descritores farmacológicos explicáveis. Adicionalmente, permite análise

simultânea de múltiplos compostos para visualização e aprendizagem automática. A caracterização

de alvos e fármacos é necessária para a maior parte das tarefas finais no processo de desenho de fár-

macos, tais como a previsão de interação entre fármacos e alvos, a previsão de reposta a fármacos

e a previsão de resposta a combinação de fármacos. A última tem ganho particular interesse sob

a forma de previsão de sinergia de combinações de fármacos em linhas celulares de cancro. Este

interesse justifica-se pela natureza da doença e dos seus alvos, visto que os perfis de cancro podem

variar abundantemente em diversos fatores como tecido, indivíduo, entre outros. Por este motivo,

para fazer frente ao cancro é necessário desenvolver soluções flexíveis que possam ser adaptadas

1A tradução destes conceitos levaria, quase inevitavelmente, a imprecisões
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e otimizadas para cada caso. A sinergia de combinação de fármacos permite isto, pois, ao admin-

istrar doses menores dos mesmos fármacos e obter resultados semelhantes ou melhores, permite

diminuir a probabilidade de resistência farmacológica e, dessa forma, aumentar a probabilidade de

sucesso. O SYNPRED é um conjunto de previsores para previsão de sinergia de combinações de

fármacos em linhas celulares. O SYNPRED foi desenvolvido considerado cinco modelos de siner-

gia de referência, um esquema de validação especificamente desenhado para o efeito e os métodos

de aprendizagem automática e profunda mais atuais. O modelo de previsão do SYNPRED com

melhor desempenho tenta prever o Combination Sensitivity Score (RMSE, 11.07; MSE, 122.61;

Pearson, 0.86; MAE, 7.43; Spearman, 0.87)2.

Em resumo, ao longo deste trabalho fizeram-se diversos avanços em secções distintas do processo

de desenho de fármacos. O presente trabalho resultou em 8 publicações científicas indexadas (5

artigos de investigação original, 1 base de dados e 2 artigos de revisão sob a forma de capítulos de

livro), 5 repositórios de GitHub, 3 websites e 1 biblioteca de Python de distribuição gratuita.

Palavras-chave

Desenho de fármacos; Fármaco; Alvo; Proteína; Hot-Spot; SPOTONE; Proteína Membranar;
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2A tradução destes conceitos levaria, quase inevitavelmente, a imprecisões



Abstract

There has been a significant investment and contribution increase from computational tools to drug

discovery pipelines. Machine Learning (ML) has carved a comfortable spot in the field, with a

particular highlight for the specific set of tools that is Deep Learning (DL). Their utilization has

proven to reduce costs, speed up time from design to production and limit human error. In fact,

data-centric techniques have been used to boost many steps of the drug design pipeline. Iteratively,

this generates new information that can be recycled into improving already existing solutions or

allowing the sprout of new ones.

One part of drug design research is heavily focused on understanding and modulating the molecu-

lar components targeted by the drugs. Most commonly, these are proteins. Proteins often feature

specific amino acids that are particularly adept at maintaining protein structure and function - Hot-

Spots (HS). For their key contribution to proteins’ main roles, HS take on the additional burden of

becoming optimal drug binding locations. A part of this work describes SPOTONE, a state-of-the-

art freely available HS prediction tool from sequence-only information with accuracy, AUROC,

precision, recall and F1-score of 0.82, 0.83, 0.91, 0.82 and 0.85, respectively, on an independent

testing set.

Although the most common drug targets, proteins vary widely in many regards, such as constitution,

location, and function. One set of proteins stands out as particularly interesting for drug design, due

to their role and specificity. Membrane Proteins (MP) are mediators between the cell inner and

outer environment, as such, they are gatekeepers between external stimuli and cellular functioning.

MENSAdb characterises a wide array ofMPs, manually curatingMP dimers into useful information,

making it available for easy consultation.

Other components heavily focused in drug design research are, non-surprisingly, the drugs. Most

commonly small molecules, ideally drugs interact specifically with single targets, limiting their

interactions with other biological molecules. DrugTax is a tool, implemented and distributed as

a Python package, that was developed to facilitate interpretable small molecule data. DrugTax

explores chemical taxonomical characterization to deliver explainable drug features. Furthermore,

it allows bulk analysis for visualization and ML purposes.

Target and drug characterisation are required for most end-goal drug design tasks, such as Drug-

Target Interaction (DTI) prediction, drug response prediction and drug combination response pre-

diction. The latter has gained particular interest as drug combination synergy prediction in cancer

cell lines. This added focus traces back to the nature of the disease and its targets, as cancer profiles

vary widely among several factors such as tissue, individual, among others. For this reason, to tackle

cancer it is necessary to develop flexible solutions that can be adapted and tuned for each case. Drug

combination synergy is a venue that allows this, since by delivering smaller dosages of the same

drugs and achieving the same or better results, it diminishes the likeliness of drug resistance and thus

increases the probability of success. SYNPRED is a set of predictors for drug combination synergy

in cancer cell lines. SYNPRED was developed considering five different synergy reference mod-

els, a problem-tailored validation scheme and the most state-of-the-art ML and DL methods. The

best-performing prediction model in SYNPRED targets the Combination Sensitivity Score (RMSE,

11.07; MSE, 122.61; Pearson, 0.86; MAE, 7.43; Spearman, 0.87).
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In sum, throughout this work, several advances were made regarding the different sections of the

drug design pipeline. The present work resulted in 8 indexed scientific publications (5 original

research papers, 1 database and 2 reviews in the form of book chapters), 5 GitHub repositories, 3

websites and 1 freely distributed Python package.

Keywords

Drug design; Drug; Target; Protein; Hot-Spot; SPOTONE; Membrane Protein; MENSAdb; Ma-

chine Learning; Artificial Intelligence; Deep Learning; DrugTax; Cancer; Synergy; SYNPRED.
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Chapter 1: Introduction

1.1. Drug Design and Development

Drug design, development and discovery is the inventive process of finding new drugs based on

the knowledge of a biological target. In the most basic sense, drug design involves the design of

molecules capable of interacting with one or several molecular targets, usually by binding through

complementary shapes and/or charge [1] (Figure 1). According to the United States Food and Drug

Administration (FDA) glossary, drugs are substances whose activity towards a biological target has

been identified to cure, mitigate, treat, prevent, or diagnose a disease [2]. Currently, over 90%

of all approved drugs are small molecules with Molecular Weight (MW) below 900 Da [3]. This

broad definition allows for a wide array of possible drugs, both organic and inorganic, with various

chemical properties and groups.
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Figure 1: Representation of the binding of the drug – spiperone – to the human dopamine D2 re-

ceptor with spiperone [4], (created with PyMOL [5])).

A typical drug design pipeline uses a combination of computational, experimental, translational, and

clinical models included in the following steps: basic research, preclinical development, clinical

trials and, finally, drug approval [6, 1](Figure 2). The usage of computational approaches has been
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pivotal to optimize findings concerning the first steps of basic research. This covers subjects such

as target identification, active compound screening and lead optimization. Despite advances in

biotechnology and the understanding of biological systems, the Research & Development (R&D)

pipeline is still a time-consuming, expensive and difficult process. The usage of computational

approaches in the first step of basic research (e.g., target identification, active compound screening,

and lead optimization) has been pivotal to minimize some of these disadvantages by selecting and

prioritizing compounds for further in vivo and clinical testing. Optimizing these steps maximises

the chance of success in the subsequent, more expensive ones.

The application of computational approaches can branch out in two different directions: new drug

development [7], or more recently, the scaffold repurposing of existing ones (also called drug repo-

sitioning or drug reprofiling) [8]. When considering drug repurposing [9], the benefits of in silico-

boosted research are even higher as it reutilizes previous research by revisiting already approved

or investigational drugs with the aim of finding new therapeutical approaches different from the

original ones [9]. Therefore, the latter makes the R&D pipeline faster and less expensive due to the

possibility of skipping parts of the process, which lends it additional interest [10].

Figure 2: Drug design and development pipeline representation [11].

While many fields of science emerge mainly from publicly funded research, drug design has long

been fuelled also by private companies. Between 1985 and 2005, 91% of FDA approved drugs were

associated with a patent detained by the private sector. However, almost half of these patents cited

a public research paper or patent [12]. The private sector is leveraging the generated knowledge

from the public sector to meet market needs, denoting the importance of valuing both public and
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private research. Although the private sector clearly dominates the development, the research is still

largely driven by academia.

According to a recent market analysis provided by Signify Research, there has been a significant

increase in venture capitalists’ funding (i.e., investor – person or company - that provides young

companies with capital in exchange for equity) for the use of Artificial Intelligence (AI) in drug

design. Particularly, the United States of America (USA) report the highest funding, going over 7.6

billion dollars between the 2011-2021 period (about 71% of the worldwide total), also displaying

the highest number of deals, at 197. Interestingly, China was the country that, in the same period,

invested most in start-ups, with an investment of 136.9 million dollars, also exhibiting the highest

average funding per deal (47.6 million dollars). There was a slowdown in funding rounds that

coincides with the COronaVIrus Disease 2019 (COVID-19) in the years 2019 and, particularly

2020, which dropped below one billion dollars, while in 2018 it was close to reaching the two

billion dollars mark. However, in 2021, in the post-pandemic, drug design funding gained renewed

traction, for the first time surpassing the three billion dollars mark. All this information shows

an increased interest in AI applications with no signs of slowing down in the immediate future.

However, investors are taking a closer interest in end-to-end solutions and slightly shifting from

inflexible drug design pipelines that yield a single drug and have limited further uses [13].

1.1.1. Computer-Aided Drug Design

Computer-Aided Drug Design (CADD) leverages computational methods (e.g., computer mod-

elling and simulation techniques) to accelerate and rendermore efficient the design and development

of new lead compounds [14]. CADD is frequently coupled with High-Throughput Screening (HTS),

allowing quick and efficient screening of datasets to identify the most likely effective compounds

against a given target [15, 16, 17]. The computer-aided search for a compound with the potential

to be a useful drug candidate able to modulate a specific target involves screening major chemical

libraries in a process called Virtual Screening (VS) [18]. When combining HTSwith VS, to perform

computer-enhanced compound screening, emerges the combined concept of virtual High Through-

put Screening (vHTS) [19]. vHTS is vital to CADD, as it requires minimal compound design and

can yield multiple compound candidates. These methods have proven to be very useful to arrive at

a small set of candidates [20, 21].

Sliwoski et al. define three major CADD applications: (i) selection of sets of active compounds

from chemical libraries, that can be further submitted to experimental assays; (ii) optimization of

lead compounds (in terms of affinity, metabolism, or pharmacokinetic properties); and (iii) design

of novel compounds [22]. It can be added to these a fourth application: (iv) understanding of

Drug-Target Interactions (DTI) to detect new targets for existing drugs. Conventionally, CADD

approaches are broadly classified into Ligand-Based Drug Design (LBDD) and Structure-Based

Drug Design (SBDD).

LBDD uses known ligands and follows the premise that similar ligands display similar properties,

thereby binding to similar proteins. As such, through the chemical structure, the aim is to un-

derstand which are the functional groups (and why they are) responsible for binding to the target
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towards the development of novel analogues [23, 22]. LBDD is extremely useful when the tar-

get’s three-dimensional (3D) structure is not available [24, 22]. The most used LBDD methods are

Quantitative Structure-Activity Relationship (QSAR) and ligand-based pharmacophore modelling.

QSAR evaluates the relationship between a structure and its biological activity to predict the activity

of analogues. Pharmacophore modelling depends on common properties between ligands with the

same biological activity [24]. LBDDmodels’ performance is limited by the number of ligands used

in the process, meaning that the lower the number of ligands used to build the model, the lower its

accuracy [22].

Contrarily to LBDD, in SBDD, the targets’ 3D structure is required, which is usually obtained

through experimental approaches such as X-Ray Crystallography and Nuclear Magnetic Resonance

(NMR) or, more recently, via Cryo-EM [24]. When the targets’ 3D structure is not available, it can

be predicted by several in silico approaches (such as homology modelling and de novo modelling).

Homology modelling can be used to develop a model of the target with an unknown structure (e.g.,

Modeller [25], i-Tasser[26], Swiss-model [27]). For that, we use a known template structure with

enough sequence similarity with the target, which should be as high as possible to minimize the

model’s error. This approach assumes that similar structures hold similar functions and binding site

conservation [24, 28]. De novo approaches can include AlphaFold [29] and Rosetta [30, 31], as

they generate the protein structure, taking only the amino acid sequence as the starting point.

The main methods used for SBDD are docking and Molecular Dynamics (MD). Docking simula-

tions identify promising drug candidates for a given target by using their 3D structures and studying

structure-activity relationships [32, 21]. These simulations also allow the ranking of drug-target

candidates based on binding affinity estimates [32, 33]. VS complements these methods, by nar-

rowing down both the most appropriate ligands and targets [24]. Docking and VS are not mutually

exclusive. It is common to use VS on large sets of docked structural models [34]. MD simula-

tions provide further insights into protein-ligands binding [35]. More recently, DTI prediction has

become possible using HTS information and computational tools. DTI approaches interact (often

even overlap) closely with CADD (Figure 3) [36, 37].
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Figure 3: Importance of CADD and how it can mediate different phases of drug design and de-

velopment. It is also shown how DTI understanding is expanded and helps expand both CADD

and DTI prediction approaches [38].

1.1.2. Drug Characterization

Drugs are often small molecules that bind to specific targets. PubChem[39] registers over 112

million compounds and 298 million substances (November 2022). Currently, Drugbank [40, 41]

lists 12.012 drugs out of which 2.729 are FDA-approved. ChEMBL [39] reports over 2.3 million

compounds and 14.000 drugs. The abundance of drugs or drug-like compounds is evidently over-

whelming, thus demonstrating the importance of using automatized approaches.

It is advantageous to be able to provide a deeper understanding of the drugs’ characteristics while

also being able to mathematically describe them [42]. Feature extraction is a focus when consid-

ering computational-based approaches, as it is a crucial and a necessary step for any algorithms to

distinguish between the different patterns within the data. Under the scope of drug design, sev-

eral packages have been developed to this end. Open Babel [43]is a broad example, providing a

set of chemical tools to describe and manipulate drugs and other small molecules. More recently,

packages such as Mordred [44] and ChemmineR [45] have also been developed. These packages

usually determine straightforward features – designated molecular descriptors – which must be rep-

resentative and form a unique characterization for the molecule, ensuring no two molecules can be

represented with the same set of features. Such descriptors usually include MW, charge, pH, hydro-

gen bonds, occurrence of specific atoms, aromaticity, and others. In addition, they can expand to

more abstracted features involving hydrophobicity and topological indexes, as well as 3D-derived

features [44].
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Alternatively, different types of approaches have been gaining attention towards faithfully repre-

senting the molecules’ 3D information while simultaneously providing additional insights, such as

the ones based on graph [46, 47] and voxel-based [48] drug representations. The chemical char-

acterization of small molecules is a cornerstone for further understanding and essential for bulk

data approaches, and as such this can used for data grouping and feature extraction, some of the

characterizations stemming from the root biochemical definitions [49].

1.1.3. Absorption, Distribution, Metabolism, Excretion and Toxicity

From the first tests to final approval, getting a single drug to the market takes a long time and

involves many resources [50]. However, only a few drug candidates that reach clinical trials are

approved for human use, representing a substantial waste of time and money [51]. Most of the

issues related to this enormous failure rate in drug development are associated with undesirable

pharmacokinetics and toxicity. Therefore, it has been widely accepted that Absorption, Distribu-

tion, Metabolism, Excretion and Toxicity (ADMET) properties should be considered in the early

stages of drug discovery to increase drug development success, especially later, during the clinical

phase [52]. Moreover, post-marketing safety issues have led to several drug withdrawals and unex-

pected mortality and morbidity concerns boosting the need to apply ADMET prediction even after

drug approval. Computational approaches emerged as crucial tools to evaluate ADMET proper-

ties in a cheaper but still efficient way [53]. Several ADMET-related databases, which incorporate

pharmacokinetics and toxicity parameters can be used for shape and/or pharmacophore screening to

obtain further information about bioactivity on similar models that match the input query compound

[52]. Furthermore, databases like ADME Database [54], SuperToxic [55], PKKB [56], CompTox

[57] and DSSTox [58] were reported as reliable and comprehensive sources for the training and de-

velopment of ADMET prediction models. Besides they are also useful to predict drug metabolites

and toxicity, which are ultimately responsible for drug efficacy and safety [53, 59].

Traditionally, several in silico ADMET approaches tend to establish a relationship between differ-

ent molecular descriptors and ADME properties by applying statistical models or prediction algo-

rithms [60]. Among them is the widely used SwissADME tool, a free web tool able to assess small

molecules’ pharmacokinetic profile, alongside their physicochemical properties and drug-likeness

[61]. Other methodologies were applied to study the ADMET profile of drug candidates, particu-

larly its toxicity, by testing several drug features combined with target-based predictions and QSAR

studies. QSAR models were mainly applied to assess several drug safety endpoints, such as Lethal

Dose 50% (LD50), tissue-specific toxicity, and skin and eye irritation [62]. PrOCTOR [63] and

TargeTox [51] are two examples of freely target-based toxicity prediction tools based on QSAR

models.

Specific models for metabolism prediction were also developed in recent years due to their recog-

nized impact on the pharmacokinetics and pharmacodynamics of xenobiotics and their derivatives

[59]. However, most of these models have a limited scope, coverage, and performance. To over-

come this issue, a freely available software package, BioTransformer [64] was developed allowing

both metabolism prediction and compound identification. Another interesting tool, MetaTrans [59],

predicts human metabolites and associated features from small molecules, not to be confused with
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its homonymous tool from 2016 [65], which is an open-source pipeline for metatranscriptomics. An

additional approach with the same aim was developed by first using chemical reaction data to pre-

train a transformer model. This model was further fined-tuned using freely available databases of

human metabolic reactions, which includes metabolism not only of xenobiotics but also of endoge-

nous molecules, comprising the full spectrum of enzyme classes [59]. To conclude the previous

protocol, an ensemble prediction model combining the output of several fined-tuned models and

considering different metabolites was built. Authors showed that their method displayed an equiva-

lent performance in comparison with other drugs metabolite prediction approaches, such as SyGMa

[66], GLORYx [67] and BioTransformer [64], considering the major enzyme families screened.

Furthermore, it seems able to identify metabolites using fewer common enzymes [59].

1.1.4. Drug activity evaluation

Drug activity can be evaluated using experimental techniques by testing them against a panel of

cells. Among other metrics, this activity can be measured by using minimal concentration for 50%

activity inhibition (IC50). This data is often available in large databases such as the Cancer Cell Line

Encyclopedia (CCLE) [68], Genomics of Drug Sensitivity in Cancer (GDSC) [69] and the National

Cancer Institute - A Large Matrix of Anti-Neoplastic Agent Combinations (NCI-ALMANAC) [70].

Besides direct drug response data these databases are an invaluable resource for non-computable

data. The Cancer Cell Line Encyclopedia (CCLE) [68] is a thorough example of a repository of

biological samples’ information, covering data from gene mutation, RNA expression, chromatin

profiling to methylation, among others.

1.1.5. Drug targets

Although the drugs are heavily highlighted when talking about the subject, the target(s), - the bio-

logical entity or entities with which the drug interacts – are equally important. These interactions are

a topic of extensive research, commonly referred to as DTIs [33]. Targets are heavily involved with

sets of disease-associated biological molecules [71]. Most of the time, these molecules are deeply

connected through several kinds of interaction networks, forming the interactome [72, 73]. The

importance of the interactome is tied to its biological signalling pathway control, which is directly

linked to organism functioning and, conversely, malfunctioning – herein – disease [74, 75]. Fur-

thermore, the same drug target can participate in multiple intracellular signalling pathways known

to trigger several cellular and physiological consequences, further deepening the complexity with

each component [76] (Figure 4).
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Figure 4: Drawn in Cytoscape [77], this image depicts the three most expressed genes of 25 ran-

domly chosen cell lines from the CCLE RNA Expression dataset [68]. Genes are represented in

blue and cell lines in green; circle size is proportional to the number of connections, meaning the

genes that are most expressed in more cell lines are represented with larger circles.

The action of the drugs is meant to trigger effects on molecules or their interactions in disease-

associated networks while attempting to affect minimally other unrelated targets [78, 79, 80]. Sev-

eral studies have shown increasing evidence that drugs acting over the same target can have different

physiological effects since they modulate different intracellular signalling pathways [81]. The im-

portance of pathwaymapping was explored in recent years. Diez-Alarcia and colleagues determined

the probability of a molecule interacting with different targets by considering pathway information.

The authors focused on predicting pharmacological compounds with affinity for Serotonin 5-HT2A

Receptor (5-HT2AR). The experiment results indicate that some drugs, which previously behaved

as selectively activating or inhibiting 5-HT2AR activity, can generate different effects under dif-

ferent circumstances. The conclusions for the 5-HT2AR showed that this computational approach

could help design new antipsychotic drugs with better efficacy and tolerability profiles [82].

The most common drug targets are proteins, although there are circumstances in which DNA, RNA,
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lipids, and other biological molecules can also be targets. Santos et al. 2017 showed that 95.86%

of the FDA-approved drug targets are proteins, with 84.73% corresponding to small molecules [83,

84]. When highlighting specific protein types, Rask-Anderson et al. [85] reported that G-Protein

Coupled Receptors (GPCRs) make up 44% of drug targets, enzymes 29% and transporter proteins

15%. Overington et al. [86] found that over 50% of drugs target either GPCRs, nuclear receptors

or ion channels. Across even more studies, the predominance of Membrane Proteins (MPs) as drug

targets was well established [87].

The impact of protein activity stems, first and foremost, from their variety and amount. The collec-

tive of the human proteins is called proteome, and its size is debated to be between 20.000 to several

millions, depending on whether gene splicing and post translation modifications are taken into con-

sideration [88]. Proteins play a fundamental role in numerous (or almost all) biological processes.

The complexity and dynamics of these biological processes cannot be understood without proper

knowledge of the proteins that take part in them. Although they play a broad role in cell structure

and activity [49], the broader messenger role they play is a major reason why they retain the number

one spot as drug targets [84, 76]. It should be noted that for a protein to have any potential as a drug

target it must be druggable. Most druggable proteins possess folds that favour interactions with

small drug-like molecules, be they endogenous or extraneous, and therefore is one that contains a

binding site. These binding sites are expected to have certain characteristics that enable high affinity

site-specific binding by the drug-like molecule [87]. This, however, does not encompass drugs that

target interacting proteins, which can depend on the interface formed between each other, rather

than simply their individual 3D folding [89].

The number of experimentally solved 3D protein structures has increased in the last few years due to

technological improvements both in the crystallography and Cryo-Electron Microscopy (Cryo-EM)

fields. Since many in silico methods require prior 3D knowledge of protein and/or drug, this incre-

ment boosted not only the number of structural and dynamical studies but also broader approaches

that use Artificial Intelligence (AI) algorithms to extract and process all the information available

in these structures. Known 3D structures are generally deposited in the Protein Data Bank (PDB)

[90].

Protein activity is also dependent on their interactions with other macromolecules such as nucleic

acids, membranes, glycans, or other proteins. The interactions between proteins are undoubtedly

the most common type of interaction, with over 650.000 Protein-Protein Interactions (PPIs) in the

human organism, which dynamically contribute to the understanding of cellular function and orga-

nization [91]. Detailed characterization of PPIs is key, as their dysregulation through changes in the

structure of each of the interacting proteins, the environment, or other factors can be determinant

in several diseases such as cancer, neurological disorders, metabolic diseases, and others [92], this

needs to be taken into account in contrast with attributing such issues to changes in the activity of

single proteins. As such, PPIs involved in disease pathways have become popular targets for the

development of new diagnostic and therapeutic strategies [93, 94].
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1.1.6. Membrane proteins as targets of interest

The lipid membranes are essential structures to life and assume many functions within cells, such

as mobility and nutrient intake, energy transduction, biosynthesis, and immunologic and nerve re-

sponses [95]. These actions are often controlled or mediated by ubiquitous MPs (Figure 5), with

20–30% of most organisms’ genes coding for this type of protein [96]. Given the relevance of

MPs, the membrane proteome warrants particular attention, as it is said to account for between 15%

to 39% of the human proteome [97, 96]. They play essential roles in ion and nutrient transport,

communication with the extracellular environment [98], nutrient uptake, toxin and waste product

clearance, respiration and signalling [99]. MPs also regulate a lot of the communication from inside

to outside the cell as well as membrane-bound subcellular structures [100, 101, 49].

Experimental characterization of MPs is difficult as the membrane imposes obstacles to its ma-

nipulation, notably its purification and crystallization. Despite these difficulties, progress in ex-

perimental techniques has generated a growing body of structural information. For instance, the

mpstruc—Membrane Proteins of Known 3D Structure—database from the Stephen White Labo-

ratory at UC Irvine (available at http://blanco.biomol.uci.edu/mpstruc/) [102] now lists

1509 unique MP whose 3D structures are known (as of November 3, 2022). The number of exper-

imentally solved 3D protein structures has also increased in the last few years due to technological

improvements both in the crystallography and Cryo-Electron Microscopy (Cryo-EM) fields.
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Figure 5: Human β2-adrenergic G-Protein Coupled Receptor (PDB identifier 2rh1 [103]) embed-

ded on a cholesterol and PhOsPhatidylCholine (POPC) membrane extracellular (top), side (mid-

dle) and intracellular (bottom) views (created with PyMOL [5]).

Almén et al. 2009 categorize MPs into 225-234 families, four functional groups and 21 subgroups

(Table 1) [97]. GPCRs represent the largest subgroup across all the functional groups and both

families [104], accounting for 26.51% of the total number of analysed MPs (which is higher than

any other MP subgroup) [97]. On top of this, it has been reported that 35% of all FDA-approved
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drugs target GPCRs [105]. Some reasons make this subgroup attractive drug targets besides their

large number. For example, their intracellular coupling with G-proteins and arrestins induces the

activation of various downstream signalling pathways [106, 107]. Although there are many GPCRs

they share structural motifs, seven TransMembrane α-helices (TM1–7), separated by three loops

on each side of the cellular membrane, three Extracellular Loops (ECL1–3) and three Intracellular

Loops (ICL1–3) [108]. They also possess an extracellular N-terminus and a C-terminus located

in the intracellular space [109]. Despite all the similarity between GPCRs, they are individually

modulated by a very broad spectrum of ligands, such as small molecules like dopamine, sub-atomic

particles such as photons or even larger molecules such as other proteins [110].

Table 1: MPs distribution and categorization according to Almén et al. [97]

Families Functional groups Subgroups MPs Group MPs

151

Receptors (63)

GPCRs 901

1.352

Tyrosine Kinase 72

Immunoglobulin 149

Scavenger 63

Other 167

Transporters (89)

Channels 247

814-817

Solute carriers 393

Active 81

Other 51

Auxiliary 42

Enzymes (7)

Oxidoreductases 123

533

Transferases 194

Hydrolases 178

Lyases 17

Isomerases 8

Ligases 7

Varied 6

74 Miscellaneous (3)

Ligands 57

697
Other 272

Structural/Adhesion 187

Unknown function 181

Total: 225-234
Starting at 19.523 protein-coding genes, of these, only 5.369 were valid MPs.

Excluding unclassified proteins 3.145-3.399 MPs remained.

Two GPCR-specific databases are currently available: the G Protein-Coupled Receptor database

(GPCRdb) [111] and the GPCR-EXP [112], providing more organized and detailed information

about the currently available structures. Both GPCRdb and GPCR-EXP provide structures from

homology model protocols for receptors, or different activation states of receptors, that are still not

available [112, 111].

There are a variety and abundant number of MPs in monomeric form (individual units), although

13



they frequently assemble as dimers or even higher-order oligomers. These higher-order assemblies

can have specific roles that do not necessarily coincide with those of their monomeric constituents

[113, 114]. This makes the structural biology of MPs even more complex and demands the de-

velopment of new experimental and theoretical methods to elucidate their function. Dimers or

higher-order assemblies of MPs are often the subject of computational studies through MD, but

also alternative venues, since MD can be very computationally expensive due to the large size of

the biological system implied [101].

1.1.7. Protein hot-spots as focalized targets

Alanine scanning mutagenesis allows the characterization of protein Hot-Spots (HS) as amino acid

residues that upon alanine mutation generate a change in binding free energy (∆∆Gbinding) higher

than 2.0 kcal mol-1, in opposition to Null-Spots (NS), which are unable to meet this threshold (Fig-

ure 6) [115, 116, 117, 118, 119, 120]. Protein HS are typically conserved residues or clusters of

residues that have been identified as crucial for the interaction and stability of proteins with other

molecules (e.g., proteins, DNA) [119]). Drugs can be designed to specifically interact with these

regions in other to either activate or inhibit the protein’s function. Besides, HS are key elements

in PPIs and, as such, fundamental for a variety of biochemical functions. The disruption of these

interactions can alter entire pathways and is of interest to therapeutic approaches [121, 119]. These

residues are also known to be important for protein dimerization [122]. Furthermore, HS tend to

be associated with the binding of small ligands, hence becoming ideal subjects of study on target

proteins for drug design approaches [123, 124, 125].

The time and resource expenditure needed for protein HS/NS determination favours the usage of

computational approaches that expedite this process. By deploying current tools, it is possible to

leverage the relatively low and sparse amount of data available on the subject (less than 1.000

samples) [126] and build methodologies able to fully characterize a protein regarding its HS/NS

profile. Furthermore, these methods have the advantage of being translatable to previously unseen

proteins [127, 128, 119, 126, 129].
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Figure 6: (A) Structural representation of the complex between angiogenin and a ribonuclease in-

hibitor: PDB identifier 1a4y [130]. Brighter red colours were attributed to residues with a higher

probability of being classified as HS. (B, C) Close ins of all interfacial residues for which there is

an experimental ∆∆Gbinding value, and as such a HS/NS classification. Green boxes represent

correctly predicted residues, whereas red boxes represent incorrectly classified residues.
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1.2. Machine Learning Fundamentals

Table 2: Key concepts in Machine Learning

Algorithm
Step-by-step procedure required to perform a task or reach a

solution/goal to a given problem or question.

Artificial Neural Networks

Prediction models that take inspiration from their biological

counterparts, neuronal networks. They display complex

webs of perceptrons – neurons – whose joint and layered

functioning allows for the fulfilment of a wide variety of

prediction tasks.

Classification task
Type of supervised learning approaches in which the algorithm

is trained with labelled discrete datasets.

Confusion Matrix

Matrix with the number of true positives, true negatives, false

positives, and false negatives used to evaluate the performance

metrics of classification-based ML approaches.

Correlations
Scale independent performance evaluation metrics for

regression-based ML approaches.

Deep Learning
Artificial Neural Networks models with more than one hidden

layer that can serve a wide variety of purposes.

Dimensionality Reduction
The process of lowering the number of variables in the

feature space.

Error function
Scale dependent performance evaluation metrics for

regression-based ML approaches.

Feature Information use to describe samples.

Feature space The totality of all the features in a dataset.

Generalizability
A model’s ability to accurately predict previously

unknown/unseen features.

Instances Data samples.

Label

Information associated with the instance that is, in supervised

learning approaches, the target variable

(i.e., what the model predicts).

Machine Learning

The process of getting computers to act without being explicitly

programmed how to do so. A field of Artificial Intelligence that

focuses on the development of algorithms that can learn from

data and make predictions or decisions based on that learning.

Missing Values The lack of information when characterizing data instances.

Programming Language

A language with rules - syntactic and semantic - as well as

lexical elements, that allow the passage of instructions from

the programmer to the computer.

Regression task
Type of supervised learning approaches in which the algorithm

is trained with discrete continuous datasets.

Sample The minimal unit that can be fed to a ML model.

Software
Set of instructions delivered to the computer hardware to

achieve an objective.

Software 2.0 The designation of data-boosted software programming.

Supervised Learning Development of prediction models using labelled data.

Target Leakage
The unwarranted passage of label-associated information

to the feature space.

Unsupervised Learning Development of prediction models using unlabelled data.



Machine Learning (ML) is a field of AI that focuses on training algorithms to learn from data and

make predictions or decisions based on learning without being explicitly programmed. The goal

of developing a ML model is to create a system that can automatically improve its performance

on a specific task over time [131]. ML approaches, however, have roots on a less advanced yet

broader, concept – algorithm. An algorithm is a step-by-step procedure required to perform a task

or reach a solution/goal to a given problem/question. Although this is a concept deeply associated

with computer programming, it existed long before the existence of modern-day computers, dating

back to the IX century, from the Persian mathematician whose latinized name originated the term

“algorithm” - Muhammad ibn Mūsā al’Khwārizmī [132].

The invention of computers coupled with algorithms boosted the speed and precision at which we

can solve some tasks. By enabling the imputation of rules as well as their interpretation and chaining,

the concept of software emerged as the set of instructions delivered to the hardware (the comput-

ers’ physical components) via programming languages. Although the emergence of these concepts

can be traced back to the early XIX century, they gained real momentum in the mid-1940s, when

computers started to be viable [133]. Only more recently, a new approach named software 2.0 has

emerged by leveragingML to build new software. In contrast to traditional software, which is based

on a set of fixed instructions, software 2.0 is built using ML algorithms that can automatically learn

and improve their performance over time. This allows software 2.0 to be more adaptable and flexi-

ble than traditional software, and to make better predictions and decisions based on data (Figure 7)

[134]. Besides software development, ML has been a valuable tool for many computational biology

fields since it potentiates data analysis, text mining, DDD and many more (specific applications of

ML models to biology will be further discussed in section 1.3.).
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Figure 7: Representation of the relationship between algorithm, software, and Machine Learning

[135]

The development of a ML model usually involves some steps that should be followed to assure the

quality of the predictions (some of them will be deeply discussed in the next sections). The first

step is defining the problem and the goal that the model will solve. This involves understanding

the biological context and the desired outcome of the model. ML methods are generally divided

into supervised and unsupervised learning [136], the two most used in biological fields (Figure

8). There are however other relevant approaches such as reinforcement [137] and semi-supervised

learning [138].
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Firstly, the data that the model will be trained on must be collected. The data must be expressed in

the form of meaningful information that should represent samples according to the main objective

[33, 83]. It is important to have a dataset as comprehensive and large as possible, to create the

circumstances for the algorithm to find patterns and build models that can recognize the relationship

between the data and perform a specific task [139]. After that, pre-processing is a crucial additional

step since it involves cleaning the data to remove any errors or inconsistencies and transforming it

into a format that the model can use. Once the data is ready, the next step is to select and train the

model, something that demands high computational power, even more, if the process must be time

effective. This involves choosing a model type and training it on the prepared data.

There are many different types of predictionmodels, including Decision Trees (DT), Support Vector

Machines (SVM), Artificial Neural Networks (ANN) (explored in more detail in section 1.3). Some

approaches are displaying consistently positive results for a wide array of problems, such as Deep

Learning (DL) [140], which comprises the usage of a wide array of Artificial Neural Networks

(ANNs) based methods, has taken the spotlight on several occasions, when discussing ML [141,

142]. Furthermore, prediction models can be combined through ensembles, in which two or more

of the best ML algorithms can be merged through a system of voting to form a unique predictor that

can, ideally, outperform the individual predictors [143]. However, there is not a perfect model to

fit all possible problems. Thorough knowledge of models and data is the best way to maximize the

use of both in the development of a good predictor.
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Figure 8: Depiction of ML concepts organization and how they fit into the field of AI [144].

After the model has been trained, it must be evaluated to determine how well it is performing in the

presence of unknown outcomes. This involves using metrics to measure the model’s performance

according to the task at hand [145]. If the model’s performance is not satisfactory, the next step is to

fine-tune and improve it. This may involve adjusting the model’s parameters, changing the training

data, or trying a different model altogether. It may be necessary to iteratively repeat the process

of fine-tuning and improving the model before the desired performance level is reached. Once the

model is performing well, it can be deployed and maintained in a production environment. This

involves integrating the model into an application or system and monitoring its performance over

time. On a production environment, the model may need to be retrained periodically to ensure that

it continues to perform well on new data.
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1.2.1. Data collection and pre-processing

Usually, the construction of a dataset is first conducted by gathering instances. Instances are every

entry - the available samples - that can be characterized and constitute a data point on a ML de-

ployment pipeline. Gathering more data points will yield more information for the model to learn

from. Usually, a dataset with more data points leads to stronger and more generalized models than

its smaller counterparts. Regarding the type of data, instances can be many things, if they can be

standardized among each other and can yield a pattern that relates towards the target prediction. An

example of common standardization can be seen in (Equation 1).

z =
x− µ

σ
(1)

Equation 1: Standardization (z) of a value (x) according to the mean (µ) and standard deviation
(σ)

The quality of the data samples determines the possible prediction performance of themodels as such

it is necessary to filter out irrelevant, faulty or duplicated instances. For all these processes, there

are well-developed mathematical approaches that are available in most ML-centred software [146].

The number and quality of instances are determinants for the quality of the upcoming predictions.

What is associated or generated from those instances, however, can be equally important. The

descriptors that we associate with instances are called features. Features are the characteristics that

can be associated to a data point. These features need to be relevant for the output prediction and be

independent among each other. One of the simplest ways to assess a feature usefulness is calculating

its variance, if a feature has null variance, it will be useless on the scope of most prediction models

(Equation 2). Conversely, if variance is so high that it means that most samples have unique values,

it will also not add much to the model [147].

σ2 =
1

n

n∑
i=1

(xi − µ)2 (2)

Equation 2: Feature variance (σ2) according to the mean (µ) and the average of the sample
values for said feature. The number of samples ranges from 1 to n, i being the iterator that

represents the current sample. xi represents the feature value of the current sample i

The usage of inadequate features can introduce biases, noise, or overall weakening of the prediction

capability of the model [148, 147]. However, what makes a feature relevant is not always straight-

forward. Although there are approaches that can test the dataset for the most relevant features, the

scientific/technical knowledge of the dataset is certainly an important factor in the selection and

analysis of features. Freely available data from databases or, in some cases, data collected by the

researchers, does not always contain information adequate to generate robust models.

One of the most common problems faced by researchers is how to deal with missing values. in some

cases, several approaches artificially generate values when they are not available [149]. Neverthe-

less, it is usually preferable to first consider alternative data sources that can yield the corresponding
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values. Feature extraction is the process in which, for the original raw data or instance data points,

alternative features are generated to better describe the entries. Feature extraction is highly depen-

dent on the type of data under focus. After data acquisition and pre-processing, the final dataset

should be at least split into training (train the model) and test (validate the model) sets. The test

set should not be present in the learning phase, and depending on the context, more subsets can be

set aside for validation. This can be performed several times, in a process called cross-validation

(CV). The standard approach when deploying CV is to have the computer randomly split the dataset

into two sets with a given percentage each time, performing the training on the larger dataset and

evaluating the model on the small test set for each case [150, 151]. CV is used to determine how

well the ML model can generalize (i.e., if it is able to give accurate predictions about upcoming,

unknown, instances) and learn from the data. It also helps to prevent two common problems that

occur when training a ML model, overfitting and underfitting. Overfitting is when the prediction

model may appear to be highly reliable but when faced with new information, it can output unreli-

able predictions due to its bias towards the input data [152]. Contrarily, underfitting occurs when

the model is not performing properly even on the training data, and as a result, it performs poorly

on both the training data and new/unseen data. This is because the model is unable to learn the

underlying patterns in the data and cannot make accurate predictions [153].

1.2.2. Feature representation

When developing a ML protocol that leverages computational tools, it is generally necessary to

convert or represent the raw data into a form that is suitable for a model to learn from (i.e., feature

representation). This typically involves extracting and selecting relevant features from the raw data

(i.e., feature extraction) and transforming them into a numerical form that the model can work with.

Characterising data instances through an adequate feature space is pivotal to developingwell-performing

and useful ML approaches [154]. Like many of the referred concepts, there is no all-encompassing

answer regarding the appropriate feature space for each problem. Regarding the set of problems

that focuses on drug design and development, it is particularly relevant to address how the biolog-

ical elements involved are represented. According to the prior exposition, we will highlight more

prominently the small ligands and the protein target, as they are the more intervenient elements in

drug design. The properties of molecules (e.g., structure, chemical composition) are frequently rep-

resented by molecular descriptors. They play a fundamental role in the development of ML models

since they can provide features useful for predicting for example the properties and behaviours of a

molecule [155]. When considering the unique representation of a molecule through molecular de-

scriptors, it is often mentioned the term molecular fingerprint, which must be exclusive for a single

molecule [46]. Although a specific molecular fingerprint should be unique for each molecule, the

samemolecule can havemultiple fingerprints, whichmight prove useful to improve the performance

of ML models, as they often provide unique information [156].

1.2.2.1. Ligands

In ML-based tasks, ligand representation features are commonly used to develop models to tackle

issues, such as DTI prediction. Ligands can be represented through atomic or structural data as
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well as molecular descriptors . In drug design, there are some features recurrently used to study

biologically active compound: atom composition, MW, functional groups, bonds connecting dif-

ferent functional groups, distances between different atoms or functional groups and the Polar

and Non-Polar Surface Area (PSA and NPSA, respectively) [157, 155]. From a systematic per-

spective, molecular descriptors can be categorized in 1D, 2D, 3D [157], and, more recently, voxel

[48](Figure 9).
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Figure 9: SMILES, 2D, 3D and Voxel representation for the ibuprofen molecule. SMILES and

2D data retrieved from DrugBank [41]. 3D view was made using PyMol [5].
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1D descriptors are the simplest type and can be easily calculated using the chemical formula of the

ligand. These descriptors consist, for instance, on the frequency of a given atom or functional group,

its type, MW and sum or average of atomic properties (e.g., atomic Van der Waals volumes). Most

1D information is narrow and can assume the same values for different molecules, meaning that it

is frequently not specific enough. As for 2D descriptors, they are calculated using a representation

of the molecule on a plane, where the atoms are laid and connected by bonds, but without the 3D

component of space. In this way, 2D descriptors define atoms’ connections. Also, this type of

representation allows for the calculation of several topological indices which represent properties,

like adjacency and connectivity, depending on the size, shape, symmetry, branching and cyclicity

of the molecule overcoming some of the 1D descriptors’ disadvantages. Lastly, 3D descriptors

give information on the molecule’s conformation, identifying and quantifying its interaction(s).

In addition, PSA and NPSA surface area, intramolecular hydrogen bonding and valence electron

distribution are often calculated. To calculate these descriptors, Quantum Mechanics (QM) theory

can be a significant contributor since the molecules under scope are often relatively small and cannot

be as accurately described with the more standard Newtonian physics [157, 155].

When considering ligands, a fingerprint is often a numerical vector uniquely describing the chemical

composition, structural features, and physical properties of a compound [46]. They allow a compar-

ison between different ligands turning the evaluation of molecules similarity into a more straight-

forward task. Fingerprints can also store 2D information, thus called 2D fingerprints, or 2D and 3D

information, in which case they are most known as pharmacophore fingerprints. Cereto-Massagué

et al. categorized and thoroughly described fingerprints according to the type of information and

how it was stored as: substructure keys-based, topological, or path-based, circular pharmacophore,

hybrid, and other types of molecular fingerprints [158]. Finally, voxels have been gaining attention

as alternative and abstract molecule representations for DTI problem-solving [48], these molecules

allow the storage of the same information as 3D, while also enabling the attribution of additional

properties, rendering it an n-dimensional representation approachs [159]. Several packages pro-

vide the tools to generate ligand representation features, such as Mordred [44], PyDPI [160] and

OpenBabel [43].

1.2.2.2. Proteins

On the scope of protein molecular representation, this usually means either sequence or structure-

derived features. Sequence-derived features are extracted from the protein sequence [161], and

comprise a wide array of information, such as amino acid properties, whole-protein sequence fea-

tures, and conservation information. When considering amino acid properties for sequence-derived

feature extraction, information such as the known composition of the amino acids (e.g., number of

sulphur atoms, number of carbon atoms, presence of aromatic rings, etc.) can be used. Experimen-

tally determined values (e.g., pKa values, secondary structure propensity and average accessible

area), as those available at the Biological Magnetic Resonance Data Bank [162] are also commonly

used. These features characterize each amino acid of the protein individually or when usingwindow-

based features an overall environment of each amino acid [163]. Whole-sequence protein features

are descriptors common to all amino acids of the system, but that complement the variability intro-

duced by single amino-acid level analysis. Furthermore, these features can be particularly useful
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to characterize PPI as they provide thorough characterizations of the protein chains [160, 164, 165,

166, 167].

Experimental data availability is a noticeable constraint when addressing protein feature represen-

tation. In the case of proteins, it is useful to divide protein features according to their source, whose

most prominent two are sequence and structure-based data, depending, respectively, on whether

there is knowledge of the amino acid sequence based or the 3D atom spatial distribution. Structural

data is less abundant than sequence-based data; however, their use to train ML models’ leads to

improvements in performance [168].

Evolutionary conservation information has been introduced in several contexts to expand on the

more standard sequence-based information [169, 29, 170]. Features encompassing conservation

information presume the calculation of a Multiple Sequence Alignment (MSA), which takes the

target protein sequence as input and aligns it with other known protein sequences. Several tools

were developed and fine-tuned for this purpose, such as Clustal Omega [171], Basic Local Align-

ment Search Tool (BLAST) and Psi-BLAST [172]. Upon these alignments, a Position-Specific

Scoring Matric (PSSM) can be calculated and used to score every amino-acid position according to

its conservation, depending on its accordance with the remaining aligned protein sequences. The

conservation scores for each amino acid are valuable features, as highly conserved residues tend to

be more relevant in both protein structure and function. This information allows the PSSM to repre-

sent structural information and as such, albeit being sequence-based, methods, provide meaningful

contributions to overall prediction models [170], and to protein-ligand DTI predictors [173, 174,

175].

A more recent approach successfully uses representation learning to automatically extract the most

significant characteristics of protein sequences and express them as features [176]. Differently,

other approaches focus on minimizing the noise of less relevant features using methods such as

wrapper feature selection [177]. However, researchers should consider that if structural data is

available and easy to use, it is generallymore reliable than sequence-based partly as it also comprises

sequence-based information [178, 179]. Some approaches can take the raw atom coordinates and

process them inside DL architectures, whereas others can add a prior step in which structural features

are abstracted from the coordinates before they are subject to prediction tasks. The construction

of feature vectors from contact matrices between the amino acids and physicochemical distance

matrices is one of the approaches that was already applied [180].

As previously referred, MPs raise further problems that are not as pronounced when considering

soluble proteins. The ability to characterize the structural and physicochemical properties of MPs as

well as their interactions and interfaces is essential to develop improved and more targeted therapies

as well as to discover new drug targets. Features of proteins, such as electrostatic interactions [181],

hydrophobic effects [182] or HS residues [127, 119, 126, 183], were shown to contribute to the

affinity and specificity of PPIs. Other well-characterized properties of proteins are the evolutionary

conservation and distribution of their amino acids. These two features contribute the most to the

prediction of functionally essential residues, as highlighted by several publications [184, 185, 186,

187]. While many studies have dealt with soluble systems, there is a significant lack of in-depth

analysis of MP complexes and their interactions.
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1.2.3. Supervised and Unsupervised Learning

Supervised learning is a ML technique in which the data fed to the prediction model is characterized

by both input and output information. This means that every instance has a label. The labels inform

the prediction model of the possible outputs since they are the known values of the target prediction.

A supervised learning approach will make use of the labelled instances to build a model able to

predict the labels to unknown, previously unseen samples [188]. Although the labels are pivotal

for a supervised learning approach they cannot, in any circumstance, be considered alongside the

features – such an issue fits into the definition of target leakage [189]. Target leakage can often occur

by keeping target-associated variables or by applying pre-processing techniques before dividing the

data.

If the model is well-suited to the problem, and the dataset is made up of meaningful and represen-

tative data, the model should be able to make predictions close to its real counterparts. Supervised

learning can be applied to data with discrete (classification task) or continuous labels (regression

task) [190]. When considering classification approaches, there is added attention requiredwhen con-

sidering the instances. Due to an uneven class population, it is often required to balance the dataset

to equilibrate the number of instances in each class. There are several sample balancing processes

such as up-sampling (artificially augmenting the lower populated classes) and down-sampling (low-

ering the number of instances in the overpopulated classes) [191, 146].

Contrarily to supervised learning, unsupervised learning occurs in the absence of labelled data. The

algorithm is aimed at apprehending a relationship or pattern between features on the dataset [192].

In some cases, unsupervised learning approaches can be used as intermediary aids to more complex

pipelines, for instance, when addressing datasets of large size that might require dimensionality

reduction. On this scope, unsupervised learning comprises techniques such as Principal Compo-

nent Analysis (PCA) and MultiDimensional Scaling (MDS). However, these can be too reductive

depending on problem [193]. Autoencoders are more complex unsupervised learning algorithms

that can be helpful in this situation [194]. Another well-known application of unsupervised learn-

ing is clustering algorithms that compute the similarity between data point pairs. As such, these

algorithms can weigh the importance of each feature and reorganize the dataset in clusters of data

[138].

1.2.4. Model performance evaluation

The goal of model evaluation is to determine how well the model can make predictions on new,

unseen data, and to identify any potential problems or limitations with the model. There are many

different metrics and techniques that can be used for model evaluation depending on the specific

problem and the type of model being used. In the case of classification models, the most common

metrics are derived from a confusion matrix (Table 3). On a binary classification problem, this is

used to directly compute the results, whereas when there are more than two classes the metrics are

iteratively calculated taking each class as positive (P) and the remaining ones as negatives (N), with

the final performance metric being averaged out.
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Table 3: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Some frequently used metrics include for example the accuracy (Equation 3)., sensitivity or True

Positive Rate (TPR, Equation 4), specificity, selectivity, or True Negative Rate (TNR, Equation

5), precision or Positive Predictive Value (PPV, Equation 6), Negative Predictive Value (NPV,

Equation 7), and F1-score (Equation 8) are calculated directly from the values attained from the

confusion matrix. The False Discovery Rate (FDR, Equation 9), although it can be calculated in-

dependently, can also be seen as the inverse of precision. Similarly, the False-Negative Rate (FNR,

Equation 10) is the inverse of sensitivity. The Area Under the Receiver Operating Characteris-

tic Curve (AUROC, Equation 11) depends on the TPR (Equation 4) and the FDR (Equation 9).

By including different metrics on all the evaluated set of data points, AUROC constitutes a good

metric for classification models [195]. However, as any other performance metric, should not be

considered solely, but rather in conjunction with other metrics, depending on the problem step.

The equations listed below (3-11) are all dependent on these values and can be used to address the

particularities of a dataset.

Accuracy =
TP + TN

P +N
(3)

Equation 3: Accuracy

TPR =
TP

P
(4)

Equation 4: Sensitivity, recall or TPR

TNR =
TN

N
(5)

Equation 5: Specificity, selectivity, or TNR

PPV =
TP

TP + FP
(6)

Equation 6: Precision or PPV

NPV =
TN

TN + FN
(7)

Equation 7: NPV
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F1− score =
2TP

2TP + FP + FN
(8)

Equation 8: F1-score

FDR =
FP

FP + TP
(9)

Equation 9: FDR

FNR =
FN

P
(10)

Equation 10: FNR

AUROC =

∫ 1

0
TPR(FPR), dFPR (11)

Equation 11: AUROC

Regarding regression approaches in which the target variable is continuous, the available perfor-

mance evaluation metrics are entirely different. Nevertheless, there is still no single metric, rather,

two groups of performance evaluation metrics must be considered: errors and correlations. Errors

are scale dependent, which signifies their meaning depends on the range of values usually associ-

ated with the problems at hands. These are often used to optimize ML regression models, through

minimization. Errors vary widely, depending on the problem considered, making them less flexible

than correlations regarding comparing results across different approaches and datasets. On the other

hand, they can give good insights regarding the data under scope. Some of these performance eval-

uation metrics are Mean Squared Error (MSE, Equation 12), Root Mean Squared Error (RMSE,

Equation 13) and Mean Absolute Error (MAE, Equation 14).

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (12)

Equation 12: MSE

RMSE =
√
MSE (13)

Equation 13: RMSE
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MSE =
1

n

n∑
i=1

|Yi − Ŷi|2 (14)

Equation 14: MAE, with n being the number of samples, Yi the actual values and Ŷi the
predicted values.

Complimentarily to errors, correlations offer an alternative performance evaluation approach to

regression-based problems. Correlations are scale independent and, thus, fall inside well-defined

ranges, regardless of the problem at hands. Nonetheless, correlations tend to erase the particularities

of the data and problem at hands, therefore errors should still be taken into consideration for a com-

plete performance evaluation. Some correlations are R2 or coefficient of determination (Equation

15), Pearson correlation coefficient (Equation 16-18) and Spearman rank correlation coefficient

(Equation 19).

R2 = 1−
∑n

i=1(Yi − Ŷ )2∑n
i=1(Yi − Y )2

(15)

Equation 15: R2 or coefficient of determination, with n being the number of samples, Yi the
actual values, Ŷi the predicted values and Y the average of the actual values.

σ =

√∑n
i=1(y − y)2

n− 1
(16)

Equation 16: Standard deviation (σ), with y being the values and y their average.

cov(x, y) =
1

n2

n∑
i=1

(
n∑

j=1

1

2
(xi − xj)(yi − yj)) (17)

Equation 17: Covariance (cov), with n being the number of samples, x one characteristic and y

the other.

Pearson =
cov(Yi, Ŷi)

σY σŶ
(18)

Equation 18: Pearson correlation coefficient, with cov(Yi,Ŷi) (Equation 16) being the
covariance between the actual values (Yi) and the predicted values (Ŷi), σY the standard deviation

(Equation 17) of the actual values and σŶ the standard deviation (Equation 17) of the predicted

values.
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Spearman =
cov(R(Yi), R(Ŷi))

σR(Y )σR(Ŷ )
(19)

Equation 19: Spearman rank correlation coefficient, with cov(R(Yi),R(Ŷi)) (Equation 16) being
the covariance between the actual ranked values R(Yi) and the predicted ranked values R(Ŷi),

σR(Y ) the standard deviation (Equation 17) of the actual ranked values and σR(Ŷ ) the standard
deviation (Equation 17) of the predicted values.
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1.3. Prediction Models

Throughout this section, we explore the most commonly applied AI approaches to biological data

and we list innovative ones, the ones that were not yet extensively applied in the field. A few of the

algorithms comprise simple approaches. However, some of the most recent approaches deal with

more complex algorithms, particularly Artificial Neural Networks (ANNs). In this section there

will be no major specification between classification or regression approaches as most of the models

share most of the components and diverge slightly only at the end, to provide either a continuous or

discrete output.

1.3.1. Decision trees, random forests, extreme randomized trees, and extreme

gradient boosting

A Decision Tree (DT) algorithm works through nodes, branches, and leaves. When considering

a particular dataset, all the features are measured against the target variable to determine the leaf

impurity. One common impurity metric is Gini index, although there are others that can be used,

such as entropy [196]. The Gini impurity accounts for the probabilities of each classification option

given the feature under scope. The feature with the lowest Gini impurity score is defined as the

root node. This node ramifies through branches to new nodes (internal nodes) on which the Gini

impurity score will be reassessed, excluding the already used feature. The process is repeated until

all the features are used, so that their inclusion lowers the Gini impurity score. Thus, if a feature has

a Gini impurity score higher than the value achieved without that feature, the DT will stop at that

point in what is called a leaf. Leaves are the final stop of a DT, more objectively determined as the

point that is connected to prior nodes but is not connected to subsequent nodes. The measurement

of a Gini impurity score, for a new sample, at each of the leaves, will yield the final classification

[196]. Figure 10, below, follows the process of constructing a DT from the ground, with a HS/NS

classification example dataset (not based on experimentally determined data).
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Figure 10: DT construction from HS/NS example data (not based on experimentally determined

data) [197] 33



Random Forests (RF) are a well-known type of ensemble – meaning their predictions are the result

from a combination of predictions from smaller, individual predictions. RFs take multiple DTs as

individual predictors, forming an ensemble in which the different attributes are tested in random

combinations and the final decision is made taking into consideration the output of the individual

DTs. Extreme Randomized Trees (ERT), a variation of RF, were effectively used in several bio-

logical problems although still scarcely applied to proteins [198, 199]. This method has increased

randomization, compared to RF, picking not only attributes but also samples at random. Further-

more, it chooses node cut-off points fully at random. This means that for continuous variables,

which must be split according to a threshold, instead of following the standard approach of com-

mon DTs (by calculating Gini impurity scores for the samples until the lowest Gini score is found),

ERT uses random cut-off points, which can help eliminate sample dependent bias.

More recently, there has been an increased focus on eXtreme Gradient Boosting (XGB). This

method is also an ensemble of DTs, although these trees differ slightly from those previously ex-

plored, as they compute similarity scores for each node, instead of Gini impurity scores. Similarity

scores make use of the residuals – differences among samples – to assess how well the different

tree branches divide the data. The similarity score includes a variable – λ – that should be subject

to optimization depending on the problem. Subsequently, the gain is calculated from the similarity

scores of each node for each of the possible branch splits. The branch split associated with the high-

est gain is then kept. This is performed several times from the root node to the full depth of the tree,

which can be controlled as a parameter. To prune the XGB tree, there is an additional value – γ- that
is picked and subtracted to the gain, if the resulting number is negative, the corresponding branch

is removed from the tree; γ is a hyper-parameter that should be subject to optimization depending

on each problem. XGB trees predictions are updated according to a learning rate (ε) that changes
previous predictions. By cumulatively building XGB trees and applying ε, the residuals get lower,

until they are either minimal or stop at a set number of trees. This process of improving predictions

of the previous trees with the updated ones is what characterizes XGB as a boosting ensemble [200].

1.3.2. Hidden Markov models

When considering a Hidden Markov Model (HMM), there is a non-observable (hidden) variable

for which the algorithm will try to solve based on known variables, typically chained sequentially.

Thus, HMM is typically appropriate to predict the likelihood of time-dependent events. However,

it can also be useful to derive inferences from non-timed yet sequentially chained data, as seen in

its usage on biological sequence data, particularly the inclusion of evolutionary data from protein

sequences alignments [201]. Based on Bayesian probability, HMM considers, by default, both

transition and emission probabilities. The transition probabilities are related to previous samples or

states and influence the probability of the current sample prediction introducing a sequential bias.

On the other hand, the emission probabilities associate individual events with their probability of

occurrencewithout being influenced by previous events. The collective impact of these probabilities

is calculated to estimate the event of the highest likelihood [202].
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1.3.3. Support Vector Machines

A Support Vector Machine (SVM) is an algorithm that discriminates samples according to their

features. Depending on the features number (n), an n-dimensional space is generated, and samples

are assessed in terms of proximity. On a classification approach, the n-dimensional space is then

split into k sections, with k being the number of classes that the algorithm is bound to determine.

The k sections are split among space by n-dimensional support vectors that define the places that

are going to be occupied by the samples (Noble, 2006). First, to define a support vector, an edge

is defined as the object between two samples. Secondly, all the samples are evaluated according to

this edge, with the possibility of some being misclassified. Next, soft margins are calculated as the

distances from the samples used to define the edge and the edge itself. The space occupied between

the soft margins (with the edge in between) is called a support vector. Samples outside the support

vector should be correctly classified. However, there is a possibility of finding samples inside the

soft margins. The hardest and most time and resource consuming task when training a SVM is

cross-validation to find the best support vector so that the number of misclassified samples is the

lowest while maintaining the performance on new samples, and as such, achieving a generalizable

algorithm [203].

1.3.4. Artificial Neural Networks

ANNs were originally inspired by the biological structure of the human brain and how neurons

communicate. ANNs can also be interpreted and referred to as Multilayer Perceptron’s (MLP).

MLPs, as the name indicates, stem from their counterpart, the perceptron. A perceptron is a single

input variable that is related to an output variable through a function. As such, a simple linear

regression can qualify as a perceptron [141]. A perceptron is usually graphically depicted as a

single circle (input node or neuron) connected to another circle (output node or neuron) through a

line (edge). This description is also applicable to a simple graph (not to be confused with Graph

Neural Networks (GNNs), discussed subsequently) [204]. Upon combining multiple perceptrons,

such that a row of input nodes would be connected to the second row of nodes, we have our first

MLP. If we add a third layer, we now refer to the first layer as the input layer, the second layer as

a hidden layer and the third layer as the output layer. This is now an ANN, with the output layer

providing a value that can, depending on the problem, be of a continuous or discrete nature. When

we have more than one hidden layer, we can now refer to the network as a Deep Neural Network

(DNN), although also still an ANN, it is now entering the realm of Deep Learning (DL) Figure 11,

below, gives an example of an ANN.
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Figure 11: ANN for classification and its biological counterpart.

1.3.4.1. Deep Learning

The ability to arbitrarily add hidden layers can give ANNs the capacity to abstract information

and achieve higher performance than other methods, particularly when using increasingly larger

amounts of data. Furthermore, this also opens the gates to tackle problems of supervised and un-

supervised nature, among others [141]. A DL based model takes the input features, which should
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have the same size as the input layer and passes them along with the hidden layers by activating

nodes (neurons), until it reaches a final vector of values, in the output layer. The activation pro-

cess depends on the activation function (initially typically sigmoid, currently, more often, ReLU),

weights and biases (usually randomly initialized), and the network’s architecture. The final output

values can then be assessed according to a cost function, against actual values. The algorithm can

then be backpropagated to fine-tune the parameters (weights and biases are improved according to

a learning rate) until the model has converged and the loss is no longer significantly decreasing

[141]. One of the most significant disadvantages of DL is that it is quite demanding in terms of

computational resources, especially when dealing with massive datasets. In the last years, DL has

proven to effectively perform different computational tasks, mainly of categorical and regression

nature [205, 206]. The set of steps described opens a gateway to a whole new family of ML algo-

rithms, nowadays referred to as DL, in which the parameters can be tuned, and the architecture can

be twitched to have the best performing algorithm for each task [207]. We elaborate some of these

algorithms on the subsections below and provide the most significant examples applied to GPCRs.

1.3.4.2. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are another subtype of ANNs that use a DL architecture.

CNNs, unlike other ANNs, do not connect all the neurons in each layer. Instead, they activate

subsets of neurons depending on a specific batch of input features and then overlap part of the

information not to miss any data. When considering image processing, this would be the equivalent

of analyzing subsets of subjacent pixels and finding patterns among and in them. Furthermore,

CNN’s usually have pool layers that reduce the noise and standardize the information [208].

1.3.4.3. Autoencoder

Autoencoders are unsupervised DL algorithms. However, they have some peculiar characteris-

tics, with three specialized groups of layers on the hidden layers: encoder, bottleneck, and decoder

[209]. The encoder layers are the hidden layers situated immediately downstream from the input.

The number of layers in this structure varies; however, the number of neurons in each layer will

gradually decrease in each layer until the single bottleneck layer is reached. The bottleneck is situ-

ated downstream from the encoder and upstream from the decoder. It is usually the middle layer of

the network and the layer with fewer neurons on the autoencoder. The decoder layers are added after

the bottleneck layer and before the output layer. The size and number of the decoder layers usually

mirrors that of the encoder layers, with fewer neurons close to the bottleneck and more neurons

on layers closer to the output layer [210]. When data is fed to the input layer, it flows through the

encoder section decreasing in dimension. At the bottleneck, information is at its most compressed

state. Typically, the bottleneck information represents the input data as it is that data encoded in a

smaller state. The decoder segment transforms the bottleneck information on the original data, and

so the autoencoder output should be equal to the input data, lending the ability of data reconstruction

to autoencoders. This algorithm is commonly applied to dimensionality reduction, denoising and

inpainting images, among others [211].

37



1.3.4.4. Graph Neural Networks

Before explaining what the GNN algorithm is and how it works, it is necessary to introduce the

concept of a graph. A graph is a data structure composed of nodes and edges, being the last one

responsible for establishing the relationship between nodes. This type of data structure presents a

significant difference compared to others, as it does not necessarily consider spatial features and

enables the inclusion of data of different sources in a graph representation (the representation of

molecules as graphs is one example of GNN usage in biological problems [212]). An example of

a graph is the common visual representation of ANNs, such as the one in Figure 11. GNN is a

DL tool that allows processing, representing, and collecting information from graphs, an example

of which are graph embedding techniques [213]. GNNs looks to discover the weight vector called

embedding state. Each node has a state in the graph, and both the node and the edges have features.

The embedding state is then calculated in an iterative process through a local transition function

dependent on the node, edges, state, and neighborhood features. After setting the embedding state,

it is possible to determine the output using a local output function that considers this state and the

nodes’ features. Finally, when obtaining all the nodes’ functions, these are stacked, generating a

single global function, either for the embedding state or the output [214, 213].
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1.4. Machine Learning applications to Drug Design and Develop-

ment

There has been an increase in the usage of ML in drug design and development. This usage is

mainly hinged on the ability ofML to provide data-driven decision-making on drug design pipelines,

speeding up the process, reducing the cost and time associated with this process, and diminishing the

associated error with human intervention. There are, however, still many challenges associated with

the integration of ML in drug design, and the interpretability of these processes and their biological

meaning is one of the most promising ones [42, 215].

One subject concerning drug design and development that is pivotal for data-driven approaches is

abundant information regarding targets and ligands, the key to attaining automated responses [216].

Subsequently, it can be used in a wide array of tasks such as drug susceptibility prediction [217],

drug synergy response prediction [218], protein binding sites prediction [219], ligand VS processing

[220], protein structure modulation prediction [221], ligand functional activity prediction [158],

drug design for new targets and binding sites [222], DTIs prediction and identification of accurate

docking decoys [223, 216]. Some approaches can even aid in selecting the most appropriate drug

design protocol, such as PROFILER, designed for polypharmacology prediction, which applies a

DT to choose LBDD or SBDD approaches given the amount and quality of available data [224].

Some important ML applications for this thesis will be further discussed in the next sections.
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1.4.1. Ligand activity prediction

Ligand activity prediction can engulf several different issues. On top of increasingly comprehensive

datasets, there is now an extensive array of features regarding both target and drugs that coupled

with complementary tools, are driving DTI prediction [33].

Countless ligands can interact with proteins, making it imperative to improve our understanding and

characterization of DTIs [225, 226]. These can be studied through proteome-ligand information

to shed light on the binding process and accelerate drug design and development. DTIs depend

on several factors that can be leveraged as features, such as binding energy, electrostatic energy,

intermolecular energy, the interaction energy of van der Waals or intermolecular forces [227]. Most

intermolecular DTIs result from van der Waals forces, weaker than hydrogen bonds or hydrophobic

interactions [227, 228]. Throughout the drug design process, compounds are modified to improve

properties such as bioactivity and selectivity [229].

Recently, multiple sequence-based ML models with promising accuracy values were developed

to predict DTIs, all trained with targets varying from enzymes, ion channels, GPCRs, and nuclear

receptors [174, 230, 231, 177, 232, 233, 234, 235]. Different classifiers canmake use of a wide array

of available algorithms, such as SVM and RF [174, 177, 232, 233]. These classifiers use a broad

spectrum of features for the target, such as Position-Specific ScoringMatrix (PSSM) [236, 237, 175,

230], pseudo-position PSSM [175] and BI-Gram Probabilities [238], among others. For the drug

features, substructure fingerprints [174, 230, 239, 232] as well as other molecular fingerprinting

representations [175], are necessary to attain good-performing DTI predictors. In some cases, data

processing tools such as PCA [230], Lasso algorithm [240, 175], or wrapper feature selection [177]

are also used to improve the overall model performance. Wang et al. described amodel with stacked

auto-encoders used to extract features from a protein dataset [241]. Those features were then used

to predict the DTIs with an RF algorithm that achieved nearly 87% accuracy. In another approach,

target bias was included to simulate possible target conformations. Moreover, the authors state that

their approach could predict completely new DTIs [231].

Although DTI prediction is a focal point in ligand activity prediction, many other problems can

benefit from the deployment of ML approaches. When searching for the biological meaning behind

drug activity, it is important to zoom in on several factors such as the knowledge of the functional

groups involved in the biological activity [242] and specific protein binding motifs [226]. Protein-

ligand binding site classification and dynamic molecular changes are crucial for a more precise

ligand activity understanding. Plante et al., by deploying DL upon MD trajectories developed a

method able to extract useful information to reveal distinct ligand characteristics and molecular

factors and ultimately discriminate protein structure and function with high accuracy on the test

set (> 98%) [243]. In another example, an SVM prediction model was developed to estimate if a

ligand is an agonist or antagonist showing an accuracy of 86.5% [244]. Another study compared

several ML models with other ligand-based VS methods and showed that DNN and RF were able

to enhance protein agonists prediction even with fewer compounds in the training set [245].

To generate a method able to extract more precise information than simply agonist/antagonism

classification, Wu et al. first used DL for molecular fingerprinting representation and then used an
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RF algorithm to assess ligand bioactivity [246]. By combining homology modelling, MD, and a VS

approach, it was possible to detect allosteric modulator molecules that bind to a protein at a location

different to the binding site [247]. Compounds from several libraries were selected based on known

positive and negative antagonists and classified. Selected ligands were docked into the protein target

binding site and binding modes were calculated and used to improve inhibitory activities [248].

Throughout the current section, we showed how VS is often used in CADD approaches focusing on

a single protein target. However, only a few are based on ML methods, which opens new venues

of research, such as the automatization of new target identification given a pool of drugs. This has

been explored by Ru et al., who developed a model which incorporates an RF classifier to rank

putative new drug-target pairs [249].
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1.4.2. Boosting target knowledge with Machine Learning

Attaining an MP with good 3D-structure resolution (either by X-ray crystallization or Cryo-EM) is

a challenging task [250]. The knowledge about a target structure is, however, crucial for SBDD as

well as DTI prediction. Computational applications have helped to accelerate the process of target

structure prediction by avoiding or complementing expensive laboratory experiments. The appli-

cation of ML methods, in particular, has become indispensable over the years and is continuously

improving with the increasing number of solved X-ray crystal structures and computational tech-

niques. Many algorithms were already employed to describe and predict the membrane-embedded

sections of MPs. Appropriate target features for ML predictions have proven to be useful such as

TransMembrane Helix (TMH) domain topology, like inter-TMH residue contacts, TMH-TMH in-

teractions and residue-residue contact patterns (crucial for ab initio protein folding) [251]. Some

of these ML model examples include TMHit [252], MemBrain (CMA + ML-based method [251]),

PSIPRED [253], MEMSAT3 [254], DeepMetaPSICOV (Kandathil et al., 2019)[255] and GPCR-I-

Tasser [256].

As was already highlighted, modelling MPs is still very challenging compared to soluble proteins

[101, 257]. Many standard sequence-based methods for model quality evaluation (not based upon

ML)were initially developed for water-soluble proteins but can also be applied toMPs [258, 257, 31,

259]. For the best model’s discrimination, an ideal scoring function is the output of such methods,

measuring the distance between the model and the native structure correlating between the score

and quality [257]. Available scoring functions can be split into three categories: physics [260,

261], knowledge [262, 257, 263, 264, 265] and learning-based [257]. The latter, learning-based

functions, have recently been highlighted and include methods such as ANNs or SVMs trained to

distinguish between correct and incorrect models based on structural features to predict the actual

quality of a given model [266, 267, 268, 257, 269].

The increasing number of MPs available structures and the technological advance in computational

power allows for bigger systems and longer timescales (microseconds) MD simulations, which cre-

ated a ”big data” problem in their analysis [270]. The currently reported integration of MD simula-

tions andML algorithms shows promising results [101, 243]. For example, Plante et al. presented an

ML approach to analyse GPCR-ligandMD simulations. The atomic coordinates calculated through-

out the simulations were converted into Red Green Blue (RGB) code to form an image that was

readable by a DNN-based pipeline. This novel approach successfully classified GPCR conforma-

tions by ligand class (full, partial, and inverse agonist), and allowed authors to identify the structural

motifs that undergo conformational changes for each type of molecule studied [243].

The Marta Filizola group recently published another ML/MD protocol to better estimate the kinetic

properties of (un)binding of a ligand to GPCR. The rate of dissociation of a drug is an important

predictor of its in vivo efficacy. However, the timescale of drug dissociation is around the minute,

which would be computationally inefficient to simulate. Filizola’s group reported a possible so-

lution to this problem by using features extracted from a short, unbiased MD as an initial dataset

that was fed into a pipeline that used state-of-the-art ML methods for dimensionality reduction.

This protocol successfully estimated two prototypical opioid receptor drugs’ kinetic rates at a re-

duced computational cost while granting atomic resolution of transitional structures throughout the

unbinding pathway [271].
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Most of the cases explored regard single proteins interacting with single ligands. However, on

the biological landscape, proteins often group or interact forming dimers, trimers, or higher-order

oligomers. The relevance of protein-oligomers has increased over the last few years asmore disease-

specific heteromers are being identified [272, 273, 274, 275]. Hence, it is now widely accepted that

highly dynamic protein networks exist and that the monomer’s functions such as ligand binding

affinity and signalling may be altered through oligomer formation [272, 276]. This paradigm shifts

from basic signal transduction towards a more holistic and multifactorial view on MPs challenge

rational drug design [276]. Therefore, computational studies (including AI approaches) on MPs

oligomerization are necessary to understand the disease mechanism and support experimental stud-

ies to reveal novel pathways for treating MP-linked illnesses [277]. At the plasma membrane, a

GPCR-complex can either be a target for dynamic regulation of ligand-binding, promote or inhibit

ligand binding cooperativity or potentiate, attenuate downstream signalling or even change G pro-

tein selectivity [276]. Several well-established ML-based methods and web servers were already

developed for the prediction of their interfaces, such as WHISCY [278] and ISIS [279] (other mod-

els/servers were recently reviewed by Barreto et al.. However, not all were developed explicitly

for protein dimer interface prediction and their modulation. Until today, there are no methods that

cover the complexity of oligomeric systems, and as such, these innovative ML-based methods may

provide strategic prediction tools [272].

1.4.3. Protein Hot-Spot prediction

Similarly, to other problems, in HS prediction computational methods - particularly ML - have

been used in recent years as a viable option to overcome the technical issues (e.g., cost, time, ac-

curacy) concerning experimental techniques, providing thorough insights and a high-throughput

HS identification [280]. In HS prediction, a panoply of features (e.g., physicochemical properties,

evolutionary scores, solvent-accessible area, binding energy scores) have been extracted and ML

algorithms such as SVM [281], ANNs [279], and XGB [241] were deployed.

One of the main reasons ML is a suitable tool to tackle this problem is also its Achille’s heel:

low amounts of data. Most of the reliable and available experimental data in SPOTON [126] was

assembled from several different databases of experimental determined HS and NS: ASEdb [282],

BID [283], PINT [284] and SKEMPI [285]. More recently, SKEMPI 2.0 was released, making

available a larger amount of experimental information. However, most of the new information does

not include mutations to alanine (and the corresponding change in free binding energy), which is

necessary for HS prediction [286]. These databases can be used to deploy ML algorithms that take

both the positive (HS) and negative (NS) information and construct a binary classifier that should

be able to predict, upon previously unforeseen amino acid residues in a protein, its HS/NS status.

Based on this problem, and given the available data format, binary classification is themost explored

approach.

Several algorithms have been proposed for HS computational predictions, using different ML ap-

proaches, features, and datasets [287, 288, 128, 289, 290, 126, 291, 129, 292]. Recently (2017),

SPOTON [126], using the information on both the protein sequence and structure, achieved 0.95

accuracy on an independent testing set. Like SPOTON, most of the high-performing HS predictors
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incorporate structural information. Although yielding robust results, it hinders the possibilities of

a broader deployment since there are still fewer proteins for which a 3D structure is available in

online repositories [90] compared to the determined and available protein sequences [293].

It is known that sequence-based predictors tend to perform less well in comparison with the ones

engulfing structural information. For example, Nguyen et al. [291] were able to achieve an accuracy

of 0.79 and a precision of 0.75 using sequence-based features, and upon the addition of structure-

based features, the accuracy and precision raised to 0.82 and 0.80, respectively. The same pattern is

displayed in the results of PredHS, where results with sequence-based features only are significantly

worse than those including structure information [294]. Amore complete benchmark of the problem

can be found in the review by Rosário-Ferreira et al. [295].

1.4.4. Synergistic Approaches for Cancer Treatment

Drug resistance in cancer is a multifactorial problem driven by the tumour microenvironment and

genetic and nongenetic/epigenetic mechanisms that, along with cell plasticity, contribute to tumour

heterogeneity [296]. In clinical settings, this problem is minimized with a combination of drugs

administered together or in sequence (i.e., polytherapy). Targeting multiple components of different

or interconnected cancer pathways is an efficient strategy to block vital biological processes [297,

298].

In the past years, the development and improvement of high-throughput technologies and compu-

tational tools boosted the use of large volumes of multi-omics data (e.g., genomic, transcriptomic,

proteomic) essential to dissect and uncover the complex molecular signatures of cancer. Machine

learning (ML) algorithms have attracted particular attention for their ability to learn new associa-

tions and extract valuable insights from this type of data. A few ML models based on XGB, RF,

SVM, and naive Bayes were already developed to predict the best combination of anticancer drugs

by the integration of omics data with chemoinformatic properties of drugs or network information of

their targets [299, 300, 301, 302] (Table 4). Likewise, DL implemented via DNNs was particularly

useful in dealing with the high multidimensionality of omics data in supervised and unsupervised

contexts. DL classification and regression models such as AuDNNsynergy [303], DeepDDS [304],

DeepSynergy [305], DeepSignalingSynergy [306], Matchmaker [307], TranSynergy [308], or the

work by Xia and colleagues [309] were recently developed for drug combination prediction (Equa-

tion 4). Nearly all the surveyed works developed drug synergy prediction models based upon a

single reference model, which is in most cases the Loewe reference model [299, 307, 308, 305,

304, 306]. Currently, there is a wide scope of well-studied available reference models, including

the Bliss independence [310], Highest Single Agent (HSA) [311], Loewe additivity [312, 313], and

Zero Interaction Potency (ZIP) [314]. Furthermore, recently Malyutina et al. [302] developed the

Combination Sensitivity Score (CSS), which measures drug combination synergy using their IC50.

As such, this led us to the question of whether the development of a novel prediction approach

should be based solely upon a single reference model. Besides, most of the available web interfaces

such as DECREASE [315] or DrugComb [316] require the upload of a full or partial mandatory

dose–response matrix (experimentally determined), which hinders its systematic use by the scien-

tific community and handicaps its usefulness.
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Table 4: Summary of drug synergy ML models, with relevant comments on performance metrics,

usability, and validity. Performances listed are dependent on the authors’ reported metrics, and,

sometimes, are incompatible or irrelevant in a biological setting.
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Chen et al.

2013 [317]

RF AUROC = 0.88;

Accuracy = 0.92;

Precision = 0.65;

Specificity = 0.97

Target: Combined score - chemical similarity, experimental, database and text-mining.

Sun et al. 2014

[318]

SVM Accuracy = 0.68;

F1-score = 0.67;

Recall = 0.61;

Specificity = 0.74

Target: Positive values from Drug Combination DataBase (DCDB) [319], negatives

randomly generated.

Huang et al.

2014 [320]

LR AUROC = 0.92

Comments: The scope of this predictor is slightly different from the remaining ones.

Target: FDA approved drug combinations (positive), unsafe drug combinations (negative).

Li et al. 2015

[321]

PEA AUROC = 0.90

Comments: Website listed but address not available. Target: Positives samples come

from several databases; negatives are unclear.

Sun et al. 2015

[322]

RACS AUROC = 0.85 3 3

Comments: no README on the code, no instructions, no data. Target: Drug combination

ranking according to similarity with known combinations.

Wildenhain et

al. 2015 [323]

SONAR AUROC = 0.91 3

Comments: Only data available, not a viable protocol to deploy the predictor. The benchmark

presented was not actually performed by the authors, was conducted with challenge results.

Chen et al.

2016 [324]

NLSS AUROC = 0.91

Target: Literature binary mining (synergistic/non-synergistic).

Gayvert et al.

2017 [325]

RF AUROC = 0.87;

Accuracy = 0.82

3

Target: Chou-Talalay [312] synergy score.
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Li et al. 2017

[47]

SyDRa AUROC = 0.89 3

Comments: These results regard the training data. Target: Definition from DREAM challenge.

Xu et al. 2017

[326]

PDC-SGB AUROC = 0.95;

Accuracy = 0.90;

F1-score = 0.81;

Recall = 0.93

3

Target: Positives from DCDB [319], negatives randomly generated.

Shi et al. 2017

[327]

Ensemble AUROC = 0.95 3

Comments: Github exists, but only shows datasets, no code. Target: Positive samples from

DCDB [319], unlabelled pairs were considered negative.

Preuer et al.

2018 [305]

DeepSyn-

ergy

AUROC = 0.90;

Accuracy = 0.92;

Recall = 0.56;

Specificity = 0.51

MSE = 255.50;

RMSE = 15.91;

Spearman = 0.73

3 3 3

Comments: Github exists, but it is unclear how the code can be deployed on other datasets.

Subsequent models claim to benchmark this one, but in fact they simply retrain a neural network

with the same architecture. The website does not allow the submission of neither cell lines nor

drugs, thus, the user is restricted to the dataset used for model development. Target: Loewe

additivity model.

Janizek et al.

2018 [300]

TreeCombo MSE = 0.52;

Spearman = 0.70

3 3

Comments: It is unclear how the benchmark was performed. The presented MSE is highly

dubious, as the range is very far out from the usual and incompatible with

the Spearman correlation score. Target: Loewe additivity model.

Chen et al.

2018 [328]

DBN F1-score = 0.65;

Recall = 0.60; Pre-

cision = 0.72

3 3

Comments: The benchmark presented was not actually performed, it represents challenge

results. Target: Loewe additivity model.

Shi et al. 2019

[233]

TLMCS AUROC = 0.82

Target: Only positive samples are clear.
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Cheng et al.

2019 [329]

SynerDrug AUROC = 0.95;

F1-score = 0.88;

Recall = 0.87; Pre-

cision = 0.90

3 3

Target: Positive samples DCDB [319], negative samples randomly generated.

Sidorov et al.

2019 [330]

RF, XGB RMSE = 40.40;

Spearman = 0.60;

Pearson = 0.65; R2

= 0,44

3 3

Comments: No GitHub available, but there is a zip file containing the code, however, the link

to this file does not work. Website only contains data. Target: ComboScore.

Ianevski et al.

2019 [315]

DE-

CREASE

Pearson = 0.87 3 3 3

Target: Loewe additivity and Bliss independence.

Zhang et al.

2019 [331]

SyFFM AUROC = 0.93;

F1-score = 0.76

3 3 3

Comments: The section of the code available is not enough for benchmark. The scope of the

authors diverges cancer drug synergy prediction, Target: Positives – FDA approved drug

combinations; Negatives – randomly generated.

Jiang et al.

2020 [332]

GCN AUROC = 0.89;

Accuracy = 0.92

3 3

Target: Loewe additivity.

Julkunen et al.

2020 [333]

comboFm RMSE = 11.50;

Spearman = 0.90;

Pearson = 0.96

3 3

Class: An inspection of the protocol reveals heavy concerns with data leakage, thus raising

doubts about the reported results.Target: Claimed to be ComboScore, code inspection also raises

doubts on this regard.

Zhang et al.

2021 [306]

AuDNNSyn-

ergy

AUROC = 0.91;

Accuracy = 0.93;

Precision = 0.72

3 3

Target: Unclear, from the available information.

Liu et al. 2021

[308]

TranSyn-

ergy

AUROC = 0.91 MSE = 232.00;

Spearman = 0.73;

Pearson = 0.75

3 3 3

Target: Loewe additivity.
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Wang et al.

2021 [334]

DeepDDS AUROC = 0.66;

Accuracy = 0.64;

Recall = 0.67; Pre-

cision = 0.80

3 3 3

Target: Loewe additivity.

Kuru et al.

2022 [307]

Match-

Maker

MSE = 267.90;

Spearman = 0.69;

Pearson = 0.69

3 3 3

Comments: Matchmaker claims to benchmark authors with no code or website available. Github

does not allow the full pipeline deployment for prediction of unseen samples. Target: Loewe

additivity.
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Chapter 2: Objectives and thesis outline

2.1. Objectives

The main objective of drug design and development is to identify and develop drugs which tar-

get specific biological mechanisms or pathways involved in disease processes. By disrupting these

mechanisms or pathways, the drugs can help alleviate symptoms of the disease and potentially cure

it. This process involves using diverse techniques and approaches, including computer modelling

and simulations, laboratory testing, and clinical trials. However, computational tools have a major

impact on drug design and development since we can use them to screen large numbers of potential

drug compounds and predict which ones are likely to be effective at treating a particular disease

quickly and efficiently. This approach is often more cost-effective and time-efficient than per-

forming experimental tests on each compound individually. They are also essential to predict how

a potential drug compound is likely to interact with the target biological pathway or mechanism,

allowing researchers to identify probable side effects or other potential issues before conducting

expensive and time-consuming experimental tests.

On the latest years, with the most up-to-date research and technology, the end goal of attaining

patient-specific healthcare has become both more feasible and inevitable. Personalized medicine is

still a distant dream, however, step by step, it is getting closer. Thriving for its arrival, however, is

a tricky endeavour. It is unreasonable to expect a single work to shift the process of mass-produced

chemicals to streamlined personalized drugs. Nevertheless, it is possible to make steady small ad-

vances through joint scientific effort.

One of the possible drug design and development strategies could be to break each problem into

smaller building blocks. It means looking separately at the drugs and the targets and building up

from there to their interactions, their location and roles in the cells and organism and their biological

significance. This approach can lead to the understanding of complex biological networks and the

ability to modulate them through specific drugs.

To address the target it is necessary to characterize proteins on multiple levels. This will open

the gates to create target feature spaces that are usable by ML approaches. Another goal was MP

oligomer characterization, as they pose the most considerable challenge among the candidates while

also being the most promising. In parallel, I was focused on the usability of the information, and

as such, the generation of sequence-based features was privileged, due to the superior abundance of

protein sequence data in comparison to structural data.
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Target protein objectives

Aim: Characterize protein targets as thoroughly as possible to increase the understanding

and generate ML-appropriate feature spaces on amino acid, single protein, oligomeric pro-

tein and, ultimately, MP levels:

• Objective 1: Address the feasibility of designing protein sequence-only features and

hinging HS/NS prediction on these.

• Objective 2: Deploy and optimize an HS/NS ML predictor using sequence informa-

tion only.

• Objective 3: Create a web-based easily accessible computational tool for HS/NS

prediction available for users with any type of background.

• Objective 4: Gather, explore, and characterize MP dimers in a systematic approach.

• Objective 5: Create a database that allows easy access to curated data on MP dimers

and inquiry of their main features.

Regarding the drugs, the approachmust be slightly different. While proteins can build up to be some

of the largest biological molecules, drugs tend to be small molecules that bind to these. However,

the involvement of drugs does not come without hindrances. Their smaller size demands a more

detailed characterization, usually at an atomic level.

Drug objectives

Aim: Characterise drugs, with a focus on small molecules, considering the biological

meaning and ML-purposeful usage.

• Objective 1: Attain from the literature a broad knowledge of the current state of AI-

driven research related to drugs and the most viable targets (with a high focus on

GPCRs).

• Objective 2: Explore the available information for drug-related feature space genera-

tion.

• Objective 3: Create an easy-to-use and fast tool that can be used to generate mean-

ingful and interpretable drug features while also providing bulk analysis insights.

The final section of this work will address the competitive landscape of drug combination synergy

prediction on cancer cell lines. Cancer is one of the leading causes of death worldwide and the most

difficult-to-treat disease (or set of diseases) that afflict humankind. Thus, any advance regarding

its treatment is a gateway to further research and drug development since it helps scientists and

physicians determine and find the most effective treatment options for cancer patients. Combination

synergistic therapy has proven to be more effective in treating cancer than using a single drug alone,
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leading to improved patient outcomes and reducing the risk of resistance development. Since it

can manifest itself in several ways and individuals, tackling it demands a wide understanding of

the organs, cell tissues and molecules involved. This unfolds unto a multipronged problem, that

requires multipronged solutions. Thus, drug combinations synergy prediction on cancer cell lines

has become a quintessential cornerstone on drug design and development, as it is the crossroad

for many health, research and technological paths. These are the aim and objectives of this work

regarding this problem:

Synergy drug ccombination prediction in cancer objectives

Aim: Create a model that is able to accurately predict the synergy of different drug combi-

nations in cancer cell lines.

• Objective 1: Address the definition and ambiguity of the definition of synergy.

• Objective 2: Identify available and viable data to use regarding the problem, both

regarding the samples and the features – particularly on the scope of omics data, that

still has a lot of promising venues to be explored.

• Objective 3: Develop and deploy a thorough protocol that leverages the available

data and tools to arrive at the most optimized solutions for feature selection, data pre-

processing, and are able to select the best approaches out of a battery of ML predic-

tion models’ testing and optimization.

• Objective 4: Create a platform that provides physicians and researchers with a tool

that can help them quickly and accurately predict the potential effectiveness of previ-

ously unseen drug pairs for treating cancer, so that they can choose the best treatment

options for their patients.
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2.2. Thesis outline

The work conducted under the scope of the proposed objectives generated an output of several

publications in peer-reviewed journals (n=8, 5 original research papers, 1 indexed database and 2

reviews in the form of book chapters). Under the scope of computational results output, it is also

relevant to mention that 5 GitHub repositories, 3 websites and 1 freely distributed Python package

are directly associated with the research conducted.

I Protein understanding through HS prediction and MP features characterization. As the

most relevant drug targets, proteins are irrevocable when considering a work centred on drug

design and development. Under this scope, three publications are most relevant for deepening

the understanding of proteins and providing tools for subsequent work development.

i HS Detection with DL

• Original Research Article 1: Preto, A.J.,Matos-Filipe, P., de Almeida, J.G., Mourão,

J., Moreira, I.S. (2021). Predicting Hot Spots Using a Deep Neural Network Ap-

proach. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular

Biology, 2190. Humana, New York, NY.

https://doi.org/10.1007/978-1-0716-0826-5_13
• GitHub repository 1: HS Detection with DL

ii SPOTONE

• Original Research Article 2: Preto, A.J.; Moreira, I.S. (2020). SPOTONE: Hot Spots

on Protein Complexes with Extremely Randomized Trees via Sequence-Only Fea-

tures. International Journal of Molecular Sciences, 21, 7281.

https://doi.org/10.3390/ijms21197281
• GitHub repository 2: SPOTONE

• Website 1: https://moreiralab.com/resources/spotone

iii Membrane protein dimer characterization

• Review in the form of book chapter 1: António J. Preto *, Preto Matos-Filipe *,

Panagiotis I. Koukos, Pedro Renault, Sérgio F. Sousa, Irina S. Moreira (2020). Struc-

tural Characterization of Membrane Protein Dimers. Methods in Molecular Biology.

Chapter 21 (1958).

https://doi.org/10.1007/978-1-4939-9161-7_21.
*António J. Preto and Pedro Matos-Filipe contributed equally with all other contribu-

tors.

iv MensaDB

• Original Research Article 3: Matos-Filipe, P.*, Preto, A. J.*, Koukos, P. I., Mourão,

J., Bonvin, A. M. J. J., Moreira, I. S. (2021). MENSAdb: a thorough structural anal-

ysis of membrane protein dimers. Database: the journal of biological databases and

curation, baab013.

https://doi.org/10.1093/database/baab013 *Co-first authors
• GitHub repository 3: https://github.com/MoreiraLAB/mensadb-open
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• Website 2: http://www.moreiralab.com/resources/mensadb/

II Small molecule explainable representation as key to drug understanding. This section

focuses on ML explainability and answers it by providing a package that takes small molecules

as input and categorises them taxonomically according to their chemical properties.

i Drugs in AI-driven research

• Review in the form of book chapter 2: AJ Preto, C Marques-Pereira, Salete J Bap-

tista, B Bueschbell, Carlos AV Barreto, AT Gaspar, I Pinheiro, N Pereira, M Pires,

D Ramalhão, D Silvério, N Rosário-Ferreira, R Melo, J Mourão, IS Moreira (2022).

Targeting GPCRs Via Multi-Platforms Arrays and AI. Comprehensive Pharmacol-

ogy, 2.08.

https://doi.org/10.1016/B978-0-12-820472-6.00048-7

ii DrugTax

• Original Research Article 4: Preto, A.J., Correia, P.C., Moreira, I.S. (2022) Drug-

Tax: package for drug taxonomy identification and explainable feature extraction.

Journal of Cheminformatics 14, 73.

https://doi.org/10.1186/s13321-022-00649-w
• GitHub repository 4: DrugTax

• Python Package 1: https://pypi.org/project/drugtax/

III Drug synergy prediction of cancer cell lines. The final topic of this work condenses many

previous concepts of feature representation, data pre-processing, ML, and model evaluation,

by tackling the problem of drug combination prediction of cancer cell lines. By building six

different final ML predictors, it is possible to understand the complexity of the problem, and

how a single answer - according to the current state of the literature – is unlikely to solve the

problem.

i SynPred

• Original Research Article 5: António J Preto, Pedro Matos-Filipe, Joana Mourão,

Irina S Moreira, (2022). SYNPRED: prediction of drug combination effects in cancer

using different synergy metrics and ensemble learning, GigaScience, 11, giac087,

https://doi.org/10.1093/gigascience/giac087
• Indexed database: Preto AJ,Matos-Filipe P, Mourão J, Moreira IS (2022). Support-

ing data for “SYNPRED: Prediction of Drug Combination Effects in Cancer using

Different Synergy Metrics and Ensemble Learning” GigaScience Database.

http://dx.doi.org/10.5524/102255
• GitHub repository 5: SynPred

• Website 3: http://www.moreiralab.com/resources/synpred/
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Chapter 3: Results and discussion

3.1. Protein understanding through HS prediction and MP features

characterization

3.1.1. Predicting Hot Spots Using a Deep Neural Network Approach
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Chapter 13

Predicting Hot Spots Using a Deep Neural Network
Approach

António J. Preto , Pedro Matos-Filipe , José G. de Almeida ,
Joana Mourão , and Irina S. Moreira

Abstract

Targeting protein–protein interactions is a challenge and crucial task of the drug discovery process. A good
starting point for rational drug design is the identification of hot spots (HS) at protein–protein interfaces,
typically conserved residues that contribute most significantly to the binding. In this chapter, we depict
point-by-point an in-house pipeline used for HS prediction using only sequence-based features from the
well-known SpotOn dataset of soluble proteins (Moreira et al., Sci Rep 7:8007, 2017), through the
implementation of a deep neural network. The presented pipeline is divided into three steps: (1) feature
extraction, (2) deep learning classification, and (3) model evaluation. We present all the available resources,
including code snippets, the main dataset, and the free and open-source modules/packages necessary for
full replication of the protocol. The users should be able to develop an HS prediction model with accuracy,
precision, recall, and AUROC of 0.96, 0.93, 0.91, and 0.86, respectively.

Key words Protein–protein interactions, Hot spots, Machine learning, Neural networks, Python,
TensorFlow

Abbreviations

FN False negatives
FP False positives
TN True negatives
TP True positives

1 Introduction

The human interactome is composed of approximately 650,000
protein–protein interactions (PPIs), which dynamically contribute
to the understanding of cellular function and organization
[1]. Detailed characterization of PPIs is key, as their dysregulation

Hugh Cartwright (ed.), Artificial Neural Networks, Methods in Molecular Biology, vol. 2190,
https://doi.org/10.1007/978-1-0716-0826-5_13, © Springer Science+Business Media, LLC, part of Springer Nature 2021
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is often involved in several diseases such as cancer, neurological
disorders, metabolic diseases, and others [2]. As such, PPIs
involved in disease pathways have become popular targets for the
development of new diagnostic and therapeutic strategies [3, 4].

In PPIs, not all the residues contribute equally to the binding
free energy and Hot-Spots (HS) are one of these cases. HS were
defined as those residues that, upon alanine mutation, generate a
variation of the free binding energy (ΔΔGbinding) of at least
2.0 kcal/mol [5, 6]. These are typically conserved residues and
have been identified as crucial for the tight binding and stability
of proteins to their partners [6]. Computational methods, in par-
ticular machine learning (ML), have been used in recent years as a
viable option to overcome the technical issues (e.g., cost, time,
accuracy) concerning experimental techniques, providing thorough
insights and a high-throughput HS identification [7]. The key
principle of this approach is that it can provide answers based on a
mathematical representation by recognizing patterns within data
[8, 9], avoiding the need of being explicitly programmed to achieve
its goal. In HS prediction, a panoply of features (e.g., physicochem-
ical properties, evolutionary scores, solvent-accessible area, binding
energy scores) were extracted from protein interactions, and ML
algorithms such as support vector machines—SVM [10], neural
networks [11], and extreme gradient boosting [12] were applied
to develop prediction models. Moreira et al. [5] proposed SpotOn,
a model that uses sequence—and structure-based features in anML
ensemble method to predict Hot-Spots and non-Hot-Spots.

In this chapter, we depict point-by-point, an in-house pipeline
used for HS prediction and based on a deep neural network (DNN)
in the same dataset published in SpotOn [5]. This dataset continues
to be the most relevant collection of important biological
HS. Furthermore, its size is adequate to highlight the importance
of being able to handle small datasets, a recurrent problem in the
overlap between the biological sciences and data analysis. Tensor
Flow in a familiar python-based fashion was the chosen platform for
this analysis.

DNNs are a complex type of artificial neural network (ANN).
Overall, DNNs assume a graph-based architecture [13], where
mathematical operations, updated according to a loss function
(L), are performed in nodes connected by directed edges that
carry weights (wi) conditioning those mathematical operations
[14]. The nodes can be organized in layers, where the first layer
accepts the inputs, and the last layer returns the outputs. In
between, secondary operations are executed in hidden layers. In
each layer, extra information can be added in the form of biases (b)
to enhance the final output of the DNN (these concepts are shown
schematically in Fig. 1). While simpler ANNs comprise only one
hidden layer, DNNs typically include more [15]. DNNs, like other
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deep learning (DL) algorithms, allow for a greater understanding
of abstract patterns within input data in comparison to simpler ML
models [16].

2 Materials

All the materials used in this chapter are freely accessible through
the Web. The provided code was tested in a 64-bit version of Linux
Ubuntu 18.04 (Intel Xeon 40 Core 2.2 GHz, 126 GB RAM) and
uses python version 3.7 and the associated free and open-source
packages (see Subheading 2.2).

Fig. 1 Representation of a DNN. Weights are represented by wi, the input of the loss function is represented by
L and the bias to the node is represented by b
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2.1 Data The SpotOn dataset (Table 1) used herein is constituted by
482 amino acids from 47 complexes. It was curated to ensure that
every user can fully replicate the pipeline, solely from the code
presented here and the tools and data available online.

2.2 Tools The basic ML and python tools necessary to perform this tutorial
are listed in Table 2.

3 Methods

This section will cover our approach to predict HS in step-by-step
fashion, with easily recognizable sequence-based features, through
the implementation of a simple neural network. This tutorial makes
use of the SpotOn dataset of soluble proteins, in which several
amino acids are classified as Hot-spots or non-Hot-spots
(Table 3). The information for the features will be acquired
through the corresponding files attained from Protein Data Bank
(PDB). These files have tridimensional information of the proteins
shown by indicating the space coordinates of each atom. To show
how it is possible to collect the data, we will also be displaying the

Table 1
Location of the SpotOn dataset and the one-hot encoded amino acid table

Description Location Reference

SpotOn (spoton.Csv)
The SpotOn dataset table has suffered
minimal transformation.

https://github.com/MoreiraLAB/Deep-Neural-
Networks-for-Hot-Spots-prediction

[5]

Amino acid identification (one-hot
encoded)

–

Table 2
Information regarding Python and the associated free and open-source packages as well as
TensorFlow, the deep-learning library for designing, building, and training ML models

Name Version References

Biopython 1.74 [17]

NumPy 1.17 [18]

Pandas 0.25.1 [19]

Python 3.7.4 [20]

Scikit-learn 0.21.0 [21]

TensorFlow 1.14 [22]
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steps necessary to download the “.pdb” files. This chapter assumes
some familiarity with Python.

The process will be split into three main steps with Code
Snippets (C.S.) provided for full replication of the protocol: (Sub-
heading 3.1) feature extraction, (Subheading 3.2) deep learning
classification, and (Subheading 3.3) model evaluation. The folder
structure (Fig. 2), depicts the organization required to run the code
smoothly, as well as where the dataset should be located. All the
forthcoming code should be integrated into scripts and run from
the terminal/command line with !python script.py. To run the
code as it was originally run, you should have two scripts, the first
containing the code from Subheading 3.1 and the second contain-
ing the code from Subheadings 3.2 and 3.3.

Table 3
First four rows of the “spoton.csv” file

CPX PDBChain PDBResNo PDBResName Class

1A4Y A 261 TRP NS

1A4Y A 263 TRP NS

1A4Y A 289 SER NS

1A4Y A 318 TRP NS

The columns represent the PDBid (CPX), protein chain (PDBChain), residue number (PDBResNo), residue name
(PDBResName), and hot-spot (HS) or non-hot-spots/null-spot (NS) labels (Class)

Fig. 2 Folder structure to deploy the protocol. The python scripts should be added inside the “DL” folder. Blue
boxes represent folders and green boxes represent “.csv” files
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3.1 Feature
Extraction

The first step of feature extraction is the acquisition of protein data
from the “.pdb” files. In particular, for this protocol, we only used
the amino acid number and the full sequence, which can be fetched
from the column with the residue names of the “.pdb” files (Fig. 3).

In order to open and process the “.pdb” files we need several
python packages (C.S.1): (1) to interact with the computer’s folder
structure in order to access the files with the operative system
package (os), (2) to use biopython for easily download and manipu-
lation of “.pdb” files (Bio), and (3) to effortlessly manipulate tables
(pandas).

1 import os

2 import Bio

3 from Bio.PDB import *

4 import pandas as pd

C.S.1: Importation of feature extraction packages.

Fig. 3 Representation of a “.pdb” file attained by opening it with a text editor. This file lists the residue name
(green), the chain name (red), the residue number (blue) as well as the atom coordinates (yellow)

272 António J. Preto et al.



Having imported the necessary tools, we need to write a func-
tion to automatically download the “.pdb” files (C.S.2).

1 def get_unique(input_df):

2

3 from Bio.PDB import PDBList

4 unique_pdbs = input_df.CPX.unique()

5  pdbl = PDBList()

6 for single_pdb in unique_pdbs:

7    pdbl.retrieve_pdb_file(single_pdb, pdir='PDB', file_format = "pdb")

C.S.2: Use of biopython to download the “.pdb” files by iterat-
ing over a column (“CPX” corresponding to the complexes’
PDBid) with the “.pdb” file code identifiers.

To prepare in advance the extraction of protein sequences from
the “.pdb” files and the opening of tables in comma separated
values (.csv) format, we developed a “utilities” class, which com-
prises a set of helper functions, that will be useful throughout the
remainder of the section (C.S.3). This step requires the user to
have a “PDB” folder inside the same folder where the code is run
(Fig. 2).

1 class utilities:

2

3 def __init__(self):

4

5 self.amino_acids = ['CYS', 'ASP', 'SER', 'GLN', 'LYS',

6 'ILE', 'PRO', 'THR', 'PHE', 'ASN', 

7 'GLY', 'HIS', 'LEU', 'ARG', 'TRP', 

8 'ALA', 'VAL', 'GLU', 'TYR', 'MET']

9     self.converter = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 

10     'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T',

11      'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H',

12      'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A',
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13       'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'}

14

15 def table_opener(self, file_path, sep = ","):

16

17 opened_decoder = pd.read_csv(file_path, sep = sep, header = 0)

18 return opened_decoder

C.S.3: The “utilities” class with its “amino_acids” and “con-
verter” functions allow us to treat protein sequences and easily
convert between the single letter and the three-letter amino acid
codes, necessary to process the full sequence. The “table_opener”
function allows us to open a simple table easily and automatically
generate a pandas data frame.

To systematically manipulate proteins, we need to store their
sequence in a dictionary, that holds the proteins’ information,
particularly, residue number and name (C.S.4).

1 def retrieve_sequence_raw(input_folder = "PDB", system_sep = "/"):

2

3 target_folder = os.getcwd() + system_sep + input_folder

4 output_dict = {}

5 for files in os.listdir(target_folder):

6 parser = PDBParser()

7 target_file = os.getcwd() + system_sep + input_folder +

system_sep + files

8 structure = parser.get_structure(files[0:-4], target_file)

9 pdb_id, pdb_dict = structure.id[3:], {}

10 for model in structure:

11 for chain in model:

12 chain_dict, chain_name, sequence = {}, chain.id, ""

13 for residue in chain:

14 res_number, res_name = residue.get_full_id()[-1][1],

residue.resname
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15 if res_name in utilities().amino_acids:

16 single_letter = utilities().converter[res_name]

17 sequence += single_letter

18 chain_dict[res_number] = res_name

19 pdb_dict[chain_name] = chain_dict

20 output_dict[pdb_id] = pdb_dict

21 return output_dict

C.S.4: The “retrieve_sequence_raw” function mines the
“PDB” folder in order to construct a dictionary that holds all the
proteins’ numbered sequences.

To develop the proposed method, we also perform feature
extraction. This is based upon straightforward features that are
obtained from sequence alone. We built twenty features for each
amino acid residue (C.S.5). These twenty features are a one-hot
encoded version [23] of the target amino acid residue. So, they
represent the twenty non-exotic amino acids and in only one of the
columns a positive value could be found, while the remaining
columns are filled with zero. For this, we built our one-hot amino
acid encoding table (Fig. 4) in the form of a “.csv” file, stored in the
“resources” folder (Fig. 2), which the user should add on the same
folder of the script (seeNote 1 for additional remarks on this topic).

1 def generate_encoded(input_sequence):

2

3 output_table = []

4 encoded_table = utilities().table_opener(encoder_path)

5 for residue_number in input_sequence.keys():

6 residue_letter = utilities().converter[input_sequence[residue_number]] 

7 encoded_residue = encoded_table.loc[encoded_table[class_id_name] ==

residue_letter].iloc[:,1:]

8 proper_row = [residue_number] + list(encoded_residue.values[0])

9 output_table.append(proper_row)

10 header = [class_id_output] + list(encoded_residue)

11 return pd.DataFrame(output_table, columns = header)
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C.S.5: The “generate_encoded” scans a residue numbered
dictionary from a protein chain and yields a table with their
one-hot encoded version.

Iterating over the SpotOn table, upon use of the “converter”
attribute from the “utilities” class, we can extract the one-hot
encoded version of the amino acid, which is now able to be easily
used as a feature.

Three more sequence-based features are also crucial for the
fulfillment of this protocol. These features are simply the relative
distance of every amino acid in the sequence to both the N- and
C-termini of the protein and the relative distance to the target
residue. Since, in this case, we only use the target residue, the last
feature value is always zero. However, as such this does not affect
the upcoming steps, and could be useful to the reader for other
purposes, we kept this chunk of code. Thus, the “features” class (C.
S.6), when iterating over the table from SpotOn, retrieves the
one-hot encoded version of the sequence. This is performed by
the “retrieve_sequence” function which needs to be adapted
depending on the dataset table, namely, by changing the names of
the column tables. Finally, this Python class also has the “location_-
features” function that takes the full sequence associated with the
row in the target table and calculates the aforementioned relative
positions for all the amino acids belonging to the sequence of the
protein.

Fig. 4 One-hot encoded amino acid table, considering the single-letter amino acid codes (A alanine,
C cysteine, D aspartic acid, E glutamic acid, F phenylalanine, G glycine, H histidine, I Isoleucine, K lysine,
L leucine, M methionine, N asparagine, P proline, Q glutamine, R arginine, S serine, T threonine, V valine,
W tryptophan, Y tyrosine)
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1 class features:

2 

3 def __init__(self, row):

4 self.row = row

5 

6 def retrieve_sequence(self, input_sequences):

7 

8 self.complex_name = self.row["CPX"].lower()

9 self.chain = self.row["PDBChain"]

10 self.res_number = self.row["PDBResNo"]

11 chain_sequence = input_sequences[self.complex_name][self.chain]

12 encoded_sequence = generate_encoded(chain_sequence)

13 return encoded_sequence

14

15 def location_features(self, input_sequences, target_residue):

16

17 self.sequence_table = self.retrieve_sequence(input_sequences)

18 order_list = list(range(0,self.sequence_table.shape[0]))

19 ordering = pd.DataFrame(order_list, columns = ["order"])

20 inverse_ordering = pd.DataFrame(order_list[::-1], columns =

["reverse_order"])

21 pseudo_distance = pd.DataFrame(list(range(0,target_residue –

self.sequence_table[class_id_output].iloc[0] + 1))[::-1] 

+ list(range(1, self.sequence_table[class_id_output].iloc[-1] –

target_residue + 1)), columns = ["pseudo_distance"])

22 return pd.concat([self.sequence_table, ordering / ordering.max(),

inverse_ordering / inverse_ordering.max(), pseudo_distance /

pseudo_distance.max()], axis = 1)
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C.S.6: The “features” class merges the previous functions into
a tool that takes as input a row from the target table and extracts
twenty-three sequence-based features from the protein sequence to
which the target residue belongs.

To iterate over the “spoton.csv” file, we run the “generate_file”
(C.S.7) function that takes as input the location of the referred
table and the dictionary with the features. When iterating over the
table, this function matches the target residues with the
corresponding features and transforms the target label into a binary
format. This function outputs two pandas data frames, one con-
taining the original row identifiers from the SpotON table and the
other containing the processed labels.

1 def generate_file(input_file, residues_features):

2 

3 prepared_table, classes = [], []

4 for row in range(input_file.shape[0]):        

5 current_row = input_file.iloc[row]    

6 current_properties =pd.DataFrame(features(current_row)

7 .location_features(residues_features,          

8 current_row[class_id_original]))

9 writeable_row = list(current_row.values) + \

current_properties.loc[current_properties[class_id_output]

== current_row[class_id_original]].values.tolist()[0]

10 if current_properties.isnull().any().any() == True: continue

12 prepared_table.append(writeable_row)

13 if current_row[class_name] == NS: classe = 0

14 elif current_row[class_name] == HS: classe = 1

15 classes.append(classe)

16

17 return pd.DataFrame(prepared_table),

pd.DataFrame(classes, columns = [class_name])

C.S.7: The “generate_file” function iterates over the target
table, matches the amino acid residues with their corresponding
features, transforms the label into a binary form and outputs two
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tables with the identifiers and features as well as the processed
labels.

Before deploying the code, we defined a set of variables (C.S.8)
containing most of the static information to be used. This set
includes some of the file paths, usable variable strings as well as
the names for the output files.

1 encoder_path = os.getcwd() + "/resources/encoding.csv"

2 target_table = "spoton.csv"

3 output_features_name = "spoton_clean.csv"

4 output_class_name = "class_clean.csv"

5 class_id_original = "PDBResNo"

6 class_id_output = "res_number"

7 class_id_name = "res_letter"

8 class_name = "Classe"

9 NS, HS = "NS", "HS"

C.S.8: Static variables to be used throughout the script.
Finally, we deploy the previous code to open the target file as a

pandas data frame and download the “.pdb” files for all the proteins
present in the SpotOn Table (C.S.9). Furthermore, we retrieve the
dictionary containing the numbered sequences from the proteins
present in SpotOn and use the target file and the processed
sequences to extract the output data frames with the features and
the label. Finally, we write these data frames into .csv files. These
files will be used to perform deep learning classification in the
following section.

1 opened_file = utilities().table_opener(target_table)

2 get_unique(opened_file)

3 residues_dict = retrieve_sequence_raw()

4 novel_features, classes = generate_file(opened_file, residues_dict)

5 novel_features.to_csv(output_features_name, sep = ",", index = False)

6 classes.to_csv(output_class_name, sep = ",", index = False)

C.S.9: Call the previous functions to use the whole pipeline
and attain the files ready for Deep Learning deployment.
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3.2 Deep Learning
Classification

In the previous section, we finished our feature extraction deploy-
ment with two files: “spoton_clean.csv”, containing the original
identifiers and the extracted features, and “class_clean.csv”, with
the corresponding label for each residue in a processed format. This
section makes use of these files as well as TensorFlow to construct a
DNN that can classify the residues as hot spots or null spots. The
code in this subsection has purposely been left unprocessed and
more drawn out state, to allow the reader a clear understanding of
the steps required to follow this part of the protocol.

Firstly, we import the needed packages (C.S.10). We use scikit-
learn (sklearn) to perform random train-test split (see Note 2 for
details) and TensorFlow to perform the learning associated tasks.
Finally, we also import numeric python (numpy) to handle differ-
ent types of variables.

1 import pandas as pd

2 from sklearn.model_selection import train_test_split

3 import tensorflow as tf

4 import numpy as np

C.S.10: The packages imported for the Deep Learning classifi-
cation script.

We then write the function “encode_binary” (C.S.11) to split
our single label column from the previous steps into two columns,
hence constructing a one-hot encoded version of the data that will
make the upcoming steps simpler.

1 def encode_binary(input_col):

2

3 HS_col, NS_col = [], []

4 for class_value in input_col.values:

5 if class_value == 1: HS_col.append(1), NS_col.append(0)

6 elif class_value == 0: NS_col.append(1), HS_col.append(0)

7 output_df = pd.DataFrame()

8 output_df[NS], output_df[HS] = HS_col, NS_col

9 return output_df
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C.S.11: The “encode_binary” function takes a single column
data frame and yields a two column one-hot encoded data frame
version of the label.

Next, we construct the “neural_network” function (C.S.12)
that sets up a five-layered neural network (see Note 3 for further
details) in which each layer is built by multiplying the weights and
adding the bias factors to the result of the activation of the previous
layer. The activation was either performed with ReLU or the sig-
moid function.

1 def neural_network(features):

2

3  layer_1 = tf.add(tf.matmul(features,

weights['hidden_1']), biases['bias_1'])

4 layer_2 = tf.add(tf.matmul(tf.nn.relu(layer_1),

weights['hidden_2']), biases['bias_2'])

5 layer_3 = tf.add(tf.matmul(tf.nn.relu(layer_2),

weights['hidden_3']), biases['bias_3'])

6 layer_4 = tf.add(tf.matmul(tf.nn.relu(layer_3),

weights['hidden_4']), biases['bias_4'])

7 layer_5 = tf.add(tf.matmul(tf.nn.relu(layer_4),

weights['hidden_5']), biases['bias_5'])

8 out_layer = tf.matmul(tf.nn.relu(layer_5),

weights['output'])

9 return out_layer

C.S.12: The “neural_network” function sets up the input, the
hidden and the output layers of the neural network to be later used.

To use the “neural_network” function, we need to set up the
starting weights and biases (C.S.13).
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1  weights = {

2 'hidden_1': tf.Variable(tf.random_normal([num_input, num_hidden_1])),

3 'hidden_2': tf.Variable(tf.random_normal([num_hidden_1, num_hidden_2])),

4 'hidden_3': tf.Variable(tf.random_normal([num_hidden_2, num_hidden_3])),

5 'hidden_4': tf.Variable(tf.random_normal([num_hidden_3, num_hidden_4])),

6 'hidden_5': tf.Variable(tf.random_normal([num_hidden_4, num_hidden_5])),

7   'output': tf.Variable(tf.random_normal([num_hidden_5, num_classes])),

8      }

9  

10 biases = {

11     'bias_1': tf.Variable(tf.random_normal([num_hidden_1])),

12     'bias_2': tf.Variable(tf.random_normal([num_hidden_2])),

13     'bias_3': tf.Variable(tf.random_normal([num_hidden_3])),

14     'bias_4': tf.Variable(tf.random_normal([num_hidden_4])),

15     'bias_5': tf.Variable(tf.random_normal([num_hidden_5])),

16 }

C.S.13: Set up the weights and biases of the neural network by
yielding random values in a normal distribution.

We also need to set up some static neural network parameters
for the neural network (C.S.14).

1  num_hidden_1 = 100

2  num_hidden_2 = 100

3  num_hidden_3 = 100

4  num_hidden_4 = 100

5  num_hidden_5 = 100

6  num_input = 23

7  num_classes = 2

8  display_step = 1

9  num_steps = 100000

10 learning_rate = 0.001
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C.S.14: Set up the layer sizes, the number of steps, the learning
rate and the batch size.

We set up TensorFlow placeholders to which the training data
is fed (X, Y variables). Furthermore, we also need to set up the
“logits” variable, that can transform the output layer information
into label prediction values. Next, we can calculate the loss with
“softmax_cross_entropy_with_logits” and minimize this loss using
an optimizer, that generally leads to good results (AdamOptimizer)
[24], taking into consideration the learning rate (C.S.15). These
are crucial steps to ensure the neural network can minimize the loss
along the epochs (see Note 4 for further details).

1  X = tf.placeholder("float", [None, num_input])

2  Y = tf.placeholder("int32", [None, num_classes])

3  logits = neural_network(X)

4  loss_calc = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(

logits=logits, labels=Y))

5  optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

6  train_op = optimizer.minimize(loss_calc)

C.S.15: Prepare the neural network output processing and loss
minimization.

Similarly, to the training data, we need to prepare variables that
can compare the predictions with the labeled values and evaluate
the model (accuracy, AUROC, precision, and recall) (C.S.16).

1  output_pred = tf.argmax(logits, 1)

2  true_values = tf.argmax(Y, 1)

3  correct_pred = tf.equal(output_pred, true_values)

4  accuracy = tf.metrics.accuracy(labels = true_values, predictions =

. output_pred)

5  auroc = tf.metrics.auc(labels = true_values, predictions = output_pred), 

6  precision = tf.metrics.precision(labels = true_values, predictions =

. output_pred), 

7  recall = tf.metrics.recall(labels = true_values, predictions = .

. output_pred)
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C.S.16: Prepare the comparison of the predictions and labels
and the output evaluation.

Having set up everything, we need to load our data and ran-
domly split into train and test set, in this case, using a 70:30 ratio
(C.S.17) (see Note 2 for details).

1  identifiers = pd.read_csv("spoton_clean.csv", sep = ",").iloc[:,0:4]

2  features = pd.read_csv("spoton_clean.csv", sep = ",").iloc[:,6:]

3  classes = pd.read_csv("class_clean.csv", sep = ",")

4  encoded_classes = encode_binary(classes)

5  X_train, X_test, y_train, y_test = train_test_split(features, encoded_classes, 

. test_size=0.3, random_state = 42)

C.S.17: Load the data and split it into a training and a test set.
Finally, we can initiate a TensorFlow session and deploy our

neural network on the training set, printing out the loss and accu-
racy values of each epoch, which allows for the monitorization of
the process. In the end, the model prints out the evaluation results
for both the training and the test set (C.S.18).

1  init = tf.global_variables_initializer()    

2  with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:

3  sess.run(init)

4  sess.run(tf.initialize_local_variables())

5  for step in range(1, num_steps + 1):

6  sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})

7 if step % display_step == 0 or step == 1:

8 loss, acc = sess.run([loss_calc, accuracy], .

. feed_dict={X:batch_x, Y: batch_y})

9 print("Row:", row ,"Step " + str(step) + ", Loss= " + \

str(float(loss)) + ", Training Accuracy= " + \

str(float(acc)))

10 print("Optimization Finished!")

11 print("Training Accuracy:", \

sess.run(accuracy, feed_dict={X: X_train, Y: y_train}))
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12 print("Training AUROC:", \

sess.run(auroc, feed_dict={X: X_train, Y: y_train}))

13 print("Training Precision:", \

sess.run(precision, feed_dict={X: X_train, Y: y_train}))

14 print("Training Recall:", \

sess.run(recall, feed_dict={X: X_train, Y: y_train}))

15

16 print("Testing Accuracy:", \

sess.run(accuracy, feed_dict={X: X_test, Y: y_test}))

17 print("Testing AUROC:", \

sess.run(auroc, feed_dict={X: X_test, Y: y_test}))

18 print("Testing Precision:", \

sess.run(precision, feed_dict={X: X_test, Y: y_test}))

19 print("Testing Recall:", \

sess.run(recall, feed_dict={X: X_test, Y: y_test}))

C.S.18: Deploy the TensorFlow model and evaluate the
results.

3.3 Metrics Used
for Evaluating Model
Performance

After deploying the pipeline indicated in the METHODS section,
for the SpotOn dataset, we achieved the results presented in
Table 4. The different metrics shown are (1) accuracy: represents
the fraction of correct predictions by our model (Eq. 1); (2) preci-
sion: attempts to answer what fraction of positive identifications are
actually correct (Eq. 2); (3) recall: represents the fraction of actual
positives that were identified correctly by our algorithm (Eq. 3);
and (4) AUROC: measures the two-dimensional area underneath
the entire receiver operating characteristic (ROC) curve (Eq. 4).
On a ROC curve, recall (rec) (Eq. 3) is plotted on the y axis and
selectivity (sel) (Eq. 5) is plotted on the x axis.

accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð1Þ

precision ¼ TP
TPþ FP

ð2Þ
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recall ¼ TP
TPþ FN

ð3Þ

AUROC ¼
ð1

0
rec sel xð Þð Þ dx ð4Þ

selectivity ¼ TN
TNþ FP

ð5Þ

4 Notes

1. Although we built our own table, it is also possible to generate
an internal one-hot encoded version of the amino acids. A
simple approach to do this would be to use the function Labe-
lEncoder, from the sklearn package.

2. In ML, datasets are usually split into training (for adjusting the
model’s weights and biases) and test (for evaluation) sets. The
fraction of the whole dataset reserved for training and testing
stages is usually stapled at 70% and 30% respectively; however,
this ratio may vary depending on the characteristics of the
original dataset and the model itself [25].

3. The number of hidden layers and nodes included within them
is often obtained via a grid-search procedure where various
architectures are tested. The user then selects the best hyper-
parameter set to attain a high-performance algorithm.

4. The number of epochs corresponds to a hyperparameter that
defines the number of times an entire dataset passed through
the learning algorithm. An epoch that is usually too big to feed
the network is divided into smaller batches, containing a lesser
number of samples.

Table 4
Results of the deployment of the METHODS section in the SpotOn dataset

Training-set Test-set

Accuracy 0.95 0.96

Precision 0.99 0.93

Recall 0.96 0.91

AUROC 0.97 0.86
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Abstract: Protein Hot-Spots (HS) are experimentally determined amino acids, key to small ligand
binding and tend to be structural landmarks on protein–protein interactions. As such, they were
extensively approached by structure-based Machine Learning (ML) prediction methods. However,
the availability of a much larger array of protein sequences in comparison to determined tree-
dimensional structures indicates that a sequence-based HS predictor has the potential to be more useful
for the scientific community. Herein, we present SPOTONE, a new ML predictor able to accurately
classify protein HS via sequence-only features. This algorithm shows accuracy, AUROC, precision,
recall and F1-score of 0.82, 0.83, 0.91, 0.82 and 0.85, respectively, on an independent testing set.
The algorithm is deployed within a free-to-use webserver, only requiring the user to submit a FASTA
file with one or more protein sequences.

Keywords: big-data; hot-spots; machine learning; protein–protein complexes; structural biology

1. Introduction

Hot-Spots (HS) can be defined as amino acid residues that upon alanine mutation generate a
change in binding free energy (∆∆Gbinding) higher than 2.0 kcal mol−1, in opposition to Null-Spots
(NS), which are unable to meet this threshold. Although the threshold of 2.0 kcal mol−1 can vary in
the definition of HS, a representative amount of studies on the subject typically use this cut-off [1–6].
HS are key elements in Protein–Protein Interactions (PPIs) and, as such, fundamental for a variety
of biochemical functions. The disruption of these interactions can alter entire pathways and is of
interest to therapeutic approaches [1,7]. These residues are also known to be important for protein
dimerization [8] and ligand binding [9]. Indeed, HS tend to be associated with the binding of small
ligands, hence becoming ideal subjects of study on target proteins for drug design approaches [9–11].

Databases of experimental determined HS and NS can be found in the literature: ASEdb [12],
BID [13], PIN [14] and SKEMPI [15]. More recently, SKEMPI 2.0 was released, making available a
larger amount of experimental information. However, most of the new information does not include
mutations to alanine (and the corresponding change in free binding energy), which is the material
under scope in the present work [16]. These databases can be used to deploy Machine-Learning (ML)
algorithms that take both the positive (HS) and negative (NS) information and construct a binary
classifier that should be able to predict, upon previously unforeseen amino acid residues in a protein,
its HS/NS status. Although ML is not limited to binary classification, on this problem and given
the available data format, binary classification was the most explored approach until now. Several
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algorithms have been proposed for HS computational predictions, using different ML approaches,
features and datasets [17–25]. Recently (2017), SPOTON [22], using information on both the protein
sequence and structure, achieved results of 0.95 accuracy on an independent testing set, making it
the best performing HS predictor at the time. Most of the high-performing HS predictors incorporate
structural information. Although yielding clearly robust results, it hinders the possibilities of a broader
deployment, since there are still fewer proteins for which a three-dimensional (3D) structure is available
in online repositories [26] compared to the determined and available protein sequences [27]. It is known
that sequence-based predictors tend to perform more poorly, in comparison with the ones engulfing
structural information. For example, Nguyen et al. (2013) [19] were able to achieve an accuracy of
0.79 and a precision of 0.75 using sequence-based frequency-derived features. More recently, Hu et al.
(2017) [20] achieved an F1-score of 0.80 using only sequence-based features while Liu et al. (2018) [21]
achieved an F1-score of 0.86 using sequence-based features and amino acid relative Solvent Accessible
Surface Area (SASA). The problem of HS computational determination is usually riddled with class
imbalance, as there are commonly more experimentally determine residues as NS than HS due to the
nature of PPIs. Conversely, the size of the dataset is usually not large enough to dilute this discrepancy.
As such, problems emerge on the dataset training, but, more importantly, on the analysis of the results.
We developed SPOTONE (hot SPOTs ON protein complexes with Extremely randomized trees), a HS
predictor that only makes use of protein sequence-based features, all of which were calculated with
an in-house Python pipeline. To avoid protein-centered overfitting, features concerning the whole
protein were not applied to the classification problem. This allowed us to avoid the predictor from
learning HS/NS only on a specific subset of proteins and be able to correctly classify even for unforeseen
subtypes of biological machineries. Furthermore, we deployed a rigorous train–test split that ensured
equality among classes, not only in the training and testing datasets, but also regarding the amino acid
types. The resulting platform and predictor are available at: http://moreiralab/resources/spotone.

2. Results

The results presented herein were attained following a ML pipeline, depicted in Figure 1, which lays
the overall steps involved in dataset preparation and prediction model training and refinement.
The detailed version of each step is further explored in the Material and Methods Section.

2.1. Dataset

We began by analyzing our dataset, the same previously mined and cleaned for SPOTON [22],
composed by 534 amino acid residues, of which 127 are HS and 407 are NS, from 53 protein–protein
complexes. Figure 2A shows the class distribution by amino acid type. Clearly, TYR, one of the most
common HS in nature, is an outlier. Secondly, it should be noted that MET and CYS have no registered
HS. Finally, it should also be noted that, due to the nature of the method used for HS experimental
determination, there are no ALA residues in either the HS or NS class (as already explained). Figure 2B
shows the split of the protein primary sequences into four equally long quartiles, which allowed us to
analyze the HS/NS distribution along these ordered sections. It should be noted that, in the first quartile
of the protein, the number of HS is at its highest value, although the number of NS is not equally as
high. In the last quartile of the protein sequences, the number of overall registered HS/NS is the lowest;
however, the proportion in which they stand favors the existence of HS rather than NS, in comparison
with the remaining quartiles. The comparison with the literature-based features can be consulted at the
landing page of our website. These features include secondary structure propensity, pKa associated
values, number of atoms of each type and standard area and mass associated values. Their analyses
can show tendencies of these features that correlate to their usefulness to the ML deployment.
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Figure 1. Workflow of the Machine Learning pipeline. Firstly, the 534 amino acids were split into
experimentally determined HS (127) and NS (407). Secondly, 60% of the entries of both classes were
randomly picked for the train dataset while the remaining 40% were not used for the training phase
(20% for test and 20% for an independent test). All datasets were matched with their corresponding
173 features. The training data were used to train the models, which were tested on the test set to yield
HS/NS predictions. The predictions were then used to update probability thresholds and generate the
final model, which basically consists of the trained model with subsequent HS probability correction.
The final model was then applied to an independent test, which did not influence any step of the
process, in order to be evaluated. More details on the used method can be found in the Materials and
Methods Section.
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Figure 2. (A) Class distribution by amino acid type; and (B) class distribution by relative position in
the protein sequence. In both plots, the y-axis represents the amino acid count.

2.2. Machine-Learning Algorithms

Tables A1 and A2 in the Appendix A list the full results attained for the various algorithms
and methods. Table A1 shows that the in-house built features subset displayed one of the highest
performance metrics in comparison with any of the other features alone. It can be noticed that PSSM
led to a slight improvement, but the small difference of performance does not compensate the larger
amount of time needed for this feature calculation. The introduction of iFeatures, concerning the
whole protein, did not increase significantly the performance and introduced concerns related to
protein-centered overfitting, and as such was discarded of further studies.

The extremely randomized trees took the lead in most performance metrics, and it is clearly more
robust in what concerns the identification of HS, as denoted by the high recall score. It should be noted
that neither grid search parameter tuning nor prediction probability tuning according to amino acid
type performance was used before method selection to keep the independent test unbiased (further
explained in the Material and Methods Section). As such, all values presented in Table 1 concern
default settings. This allowed the selection of extremely randomized trees algorithm for parameter
tuning, as well as subsequent required alterations.
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Table 1. ML results in the training and testing sets using 5 different algorithms and evaluated using the
metrics accuracy (Acc), AUROC, precision (Prec), recall (Rec) and F1-score (F1).

Method Data Acc AUROC Prec Rec F1

Neural network
Train 0.81 0.73 0.81 0.81 0.81
Test 0.69 0.56 0.72 0.69 0.71

AdaBoost
Train 0.98 0.98 0.98 0.98 0.98
Test 0.71 0.56 0.77 0.71 0.74

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

Extremely Randomized Trees Train 0.99 1.00 0.99 0.99 0.99
Test 0.81 0.77 0.88 0.81 0.83

To avoid the adaptation introduced and displayed in Table A3 leading to the generation of false
positives, we set half of the testing set aside, comprising 20% of the whole dataset. Table 2, which lists
the performance metrics of the parameter-tuned adapted model for both the training and the testing set,
shows a significant increase in the testing performance, while the training scores remain unchanged.
This trend was further validated by deploying the model in the independent testing set.

Table 2. Performance metrics on the same training and testing sets after updating the prediction
thresholds, and evaluated using the metrics accuracy (Acc), AUROC, precision (Prec), recall (Rec) and
F1-score (F1).

Data Acc AUROC Prec Rec F1

Training after threshold adaptation 0.99 0.99 0.99 0.99 0.99
Testing after threshold adaptation 0.85 0.88 0.93 0.85 0.87

Independent Testing after threshold adaptation 0.82 0.83 0.91 0.82 0.85

It should be noted that the “class_weight” parameter, available on the deployment of the extremely
randomized trees used was particularly relevant in tackling class imbalance, since, by setting it to
“balanced_subsample”, it generates and updates class weights based on the samples. A full comparison
with state-of-the-art predictions is shown in Table 3. Apart from SPOTON [22], two values for each
performance metric are listed: on the left is the value assessed with the dataset used on SPOTONE
and on the right are the values presented in the corresponding scientific papers for each method.
These values were attained from the pipeline used in SPOTON [22]; since the dataset is the same,
the performance comparison also stands equal. In the case of the sequence-based methods that are
not SPOTONE, we were not able to deploy our dataset as the webservers indicated were not active or
available; this applies to the methods of Nguyen et al. (2013) [19] (reported metrics in their dataset:
accuracy of 0.79, recall of 0.59, F1-score of 0.66 and precision of 0.75), Hu et al. (2017) [20] (reported
metrics in their dataset: recall of 0.67, F1-score of 0.80 and precision of 1.00) and Liu et al. (2018) [21]
(reported F1-score of 0.86 in their dataset).

Table 3. Structure-based HS prediction performances.

Metrics for Testing-set Evaluation
Structure-Based Methods

SPOTON [22] SBHD2 [23] KFC-A [24] KFC-B [25]

AUROC 0.91 0.69/0.69 0.66/– 0.67/-
Recall 0.98 0.70/0.77 0.53/0.85 0.28/0.62

F1-score 0.96 0.62/0.86 0.56/- 0.42/-
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3. Discussion

This work presents a significant improvement in HS prediction at the interface of protein–protein
complexes. However, more than the high performing metrics, the robustness of this model emerges
from a thorough treatment and splitting of the dataset, as well as from the exclusion of whole protein
sequence features, leaving only residue specific sequence-based features. Figures A1–A3 display the
performance of SPOTONE upon being applied to three different complexes (PDB ids: 1a4y, 1jck and
3sak), with insights on all the residues experimentally determined for these complexes and comparison
of this information to our HS/NS SPOTONE prediction. These three examples clearly show how well
the predictor works on a point-by-point example. Our final accuracy (0.82), recall (0.82) and precision
(0.91) highlight the existence of a very low number of falsely predicted HS as well as NS. Its closeness
in performance to the best structural based predictor is complemented with the high versatility of
using only sequence-based features prediction, which allows a much wider application in a variety of
biological problems.

Finally, all the work is available in a free-to-use platform that allows the user to input one or more
protein sequences in FASTA format (Box 1) and attain a detailed HS/NS prediction with corresponding
graphical interface. The platform is available at http://moreiralab.com/resources/spotone.

Box 1. Example FASTA file, with the different proteins’ chains separated by paragraphs and clear
identifiers initiated with “>”, separated from the single letter amino acid code chain with a paragraph.
This needs to be stored in a “.fasta” file to be submitted to SPOTONE.

>6Q1G:H|PDBID|CHAIN|SEQUENCE
ASQVQLQESGPGLVKPSGTLSLTCAISGGSISSSNWWTWVRQPPGKGLQWIGEIQHGGGTNYNPS
LKSRATIFVDVSKNHFSLRLSSVTAADTAVYYCAKVPPYCTSASCPDDYYYHYMDVWGKGTTVTV
SGASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKHHHHHH
>6Q1G:L|PDBID|CHAIN|SEQUENCE
ASSSELTQDPAVSVALGQTVRITCQGDSLRGYSASWYQLKPGQAPVLVIYGKNNRPSGIPDRFSGST
SGNRASLIITGTQAEDEADYYCNSRDTNGYRPVLFGGGTKLTVLGQPKGAPSVTLFPPSSEELQAN
KATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQ
VTHEGSTVEKTVAPTECS

4. Materials and Methods

The dataset used here was retrieved from our previous method, SPOTON [22], and is comprised
of 534 amino acid residues (127 positive-HS and 407 negative-NS). This dataset was constructed of data
merged from the experimental databases ASEdb [12], BID [13], PINT [14] and SKEMPI [15], and as
such comprises all literature available experimental data coming from alanine scanning mutagenesis.
We also highlight that sequence redundancy was already eliminated in our previous work. To address
this particular problem, we did not simply split the 534 samples into training and testing sets. Firstly,
we split all the samples into two datasets containing either HS or NS. Of these datasets, we extracted
20 different subsets from each (corresponding to the 20 possible amino acids). We randomly split these
40 sets (20 HS subsets and 20 NS subsets) in a 60:40 ratio, using “train_test_split” from scikit-learn [28].
Finally, we stitched the tables corresponding to the training set and the testing set back together.
Our process was devised to ensure that HS and NS were equally represented for each residue in both
the training set and the testing set. Unfortunately, ALA entries were completely absent from the
dataset (due to the experimental detection method typically used in wet labs) and CYS and MET only
had NS entries (as these residues have a lower/null incidence as key in PPIs). For the latter two cases,
we included them in the training set, as it would not be possible to assay their presence in the testing
set. Following this procedure, we ended up with a training set containing 312 residues and a testing set
containing 222 residues. We randomly split the final testing set in two, with 111 residues each; half the
testing set was used to fine-tune probability thresholds (see Prediction Probability Tuning), while the
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other half was set aside for fully independent test analysis, only having been used after selecting the
ML model and performing all parameter tuning.

4.1. Features

The following section reports the calculation of 173 features with an in-house Python pipeline and
literature-based information on amino acid characteristics. All the extracted features can be calculated
simply using the input sequence of a FASTA file. It should be noted that we only used sequence-based
features and, furthermore, we did not add any sequence feature about the protein as a “whole”,
which might have, due to the size of the dataset, promoted overfitting on a protein level. As shown in
Tables A1 and A2, pre-constructed whole-sequence based features and Position-Specific Scoring Matrix
(PSSM) were also tested. For the first, we used iFeature [29] and attained 14.056 whole sequence-based
features, for each of the chains. For PSSM, we used an in-house psiblast [30] deployment to extract
42 position conservation features.

4.2. One-hot Encoding (20 Features)

The first twenty features extracted for each amino acid residue were simply a one-hot encoded
representation of the amino acid; thus, for each amino acid, nineteen columns were filled with “0”,
and only one (with the corresponding value), was filled with “1”.

4.3. Relative Position Feature (1 Feature)

In Figure 2B, we display the abundance of NS/HS on the protein sequence quartiles. The quartiles
were defined by splitting the proteins’ length by four and analyzing the residues present in each of the
sections. As such, we used the numbering 1–4 (representing its relative position in the sequence) as a
feature that indicates the quartile in which each amino acid is present.

4.4. Literature-Based Features (19 Features)

Several amino acid properties are constantly determined, updated and made available online.
We downloaded 19 amino acid properties from the BioMagResBank [31] and associated each of
them with each of the amino acids; the features and corresponding values per amino acid used
are listed in Tables A4 and A5. Please note that this database is regularly updated to improve the
reliability of the experimental data. The statistical distribution of these properties regarding their
HS/NS on the dataset used are available in form of violin, scatter and boxplots on the landing page
(http://www.moreira.com/resources/spotone).

4.5. Window-Based Features (133 Features)

Window-based features were described with a “sliding windows” that stopped on the target
residue and considered the residues that stand close to it, sequence wise. We considered window
sizes of 2, 5, 7, 10, 25, 50 and 75 amino acid residues, and, for each target residue, averaged the values
corresponding to the features of in the Literature-Based Features Section on the residues comprised in
the windows. Thus, if we multiply the number of raw features (19) by the number of windows (7),
we added 133 features.

4.6. Machine-Learning Models Deployment

We exploited different algorithms: Neural Networks (“MLPClassifier”) [32], Random Forest
(“RandomForestClassifier”) [33], AdaBoost (“AdaBoostClassifier”), Support Vector Machine (“SVC”) [34]
and Extremely Randomized Trees (“ExtraTreesClassifier”) [35]. All of the algorithms were used from
their scikit-learn [28] deployment. The extremely randomized trees algorithm, similar to a random
forest, is based on decision trees. From the training set, the algorithm picks attributes at random and
generates subsets; by training these on the decision trees that comprise the model, an ensemble model is
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built by majority vote. However, one of the main differences to other algorithms is that it chooses node
cut-points (the bifurcation points’ thresholds in a decision tree) fully at random; another significant
difference is that the full training set is used, instead of a bootstrap replica, for each of the decision trees
that comprise the ensemble model. This additional randomization is ideal in small datasets, in which
overfitting is more likely to occur on the training set without a proper test evaluation of robustness.
This method has proven to have successful results in solving other biological based problems [36,37].
After running all the methods in default scikit-learn [28] settings, we fine-tuned some parameters of
the extremely randomized trees [35] with a grid search (“GridSearchCV”, scikit-learn [28]), and the
following parameters were updated: “n_estimators”: 500; “bootstrap”: True; and class_weight:
“balanced_subsample”. The full set of parameters can be consulted in Table A6, the parameters not
referred were kept as default. Grid search was performed with 10-fold cross-validation.

4.7. Model Evaluation

To evaluate the models, we subjected both the training and the testing set to confusion matrix
analysis. This table relates the actual and the predicted instances (sample) and compares them by their
binary status of Negative (N) or Positive (P) in the prediction to their actual class of True (T) or False
(F). It further relates these in four different possible combination states: True Negative (TN) is when
the prediction is N and the actual is F; True Positive (TP) is when the prediction is P and the actual is T;
False Negative (FN) is when the prediction is N and the actual is T; and False Positive (FP) is when the
prediction is P and the actual is F.

The confusion matrix allows the calculation of several metrics, such as accuracy (Equation (1));
precision (Equation (2)); sensitivity, recall or True Positive Rate (recall, Equation (3)); False Positive Rate
(FPR, Equation (4)); F1-score (Equation (5)); and Area Under the Receiver Operating Characteristic
curve (AUROC, Equation (6)). All these metrics were used from the scikit-learn package 20.

accuracy =
TP+TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

F1− score =
2 ∗ (precision ∗ recall)
(precision + recall)

(5)

AUROC =

∫ 1

x=0
TPR

(
FPR−1(x)

)
dx (6)

4.8. Prediction Probability Tuning

We performed further inspection of the HS/NS prediction by amino acid, in addition to the whole
dataset, as can be seen in the “original” rows in Table A3. This inspection led us to notice that the
HS/NS ratio had a significant toll in model performance. For example, TYR had a robust prediction
of HS/NS; however, residues which had not such a balanced HS/NS ratio performed more poorly.
Although this is a classification problem, most classification methods calculate class probability before
yielding the predicted class, which is determined according to the higher probable class. As such,
we examined the probability associated to the positive class (HS). Upon inspection of classification
probabilities of the actual residues, it was noticed that, although not classified as HS, most of these
amino acids still had a higher probability of HS classification than NS. The adaptation value displayed
in Table A3 is the increase in probability of the HS class, added post-training, that allows higher HS
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probability amino acids to reach the HS class (above 50%). This value was implemented following the
condition that it should not generate FP while increasing the amount of TP. As such, when, for each
amino acid, the maximum false negative HS probability was higher than the maximum true negative
HS probability, the HS probability (for that amino acid) was updated (Equation (7)). CYS, MET and
ALA were not displayed in Table A3 due to their absence from the testing set.

Correction factor = 0.50 – Maximum False Negative HS probability (7)

4.9. Webserver Implementation

The webserver was fully implemented with Python. Plotly [38] was used for dynamic graphical
representations; scikit-learn [28] was used to perform user submission treatment, analysis and
prediction; and in-house Python scripts were used to perform all feature extraction and intermediate
steps. Flask was used for overall server set-up and visual layout construction [39]. The output each
run includes a dynamic heatmap displaying the probability of HS, for each amino acid in the single or
more chains submitted by the user. The full table with the classification probabilities as well as binary
class before and after class probability tuning are also available for the user to download. A snapshot
of the webserver output is displayed in Figure 3.

Figure 3. Sample of the output page of SPOTONE.

5. Conclusions

SPOTONE is a thorough prediction algorithm that tackles HS classification in a problem-tailored
protocol. The pre-processing and ML steps can be the framework for further protein-based structural
biology problems, as are innovating in several processes: (1) by highlighting the importance of
protein-based overfitting versus amino acid based features; (2) by providing an answer with a set
of simple, replicable, in-house features that make use of freely available information and amino
acid position; (3) by considering the evaluation of the amino acid prediction capabilities instead
of simply the target features at hand; (4) by attributing specific weights to amino acid types as a
way to underline that these are not only features but also subsample spaces of the dataset; (5) by
introducing a viable sequence-based HS predictor; and (6) by providing an intuitive and biologically
relevant data interpretation tool (HS probability maps). Furthermore, SPOTONE as a webserver
(http://moreiralab.com/resources/spotone) is easily usable by non-proficient researchers, with an
intuitive framework.
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Appendix A

Table A1. Performance metrics (training and testing datasets) for the three studied subsets: with only
the in-house features (one-hot encoding, relative position, literature based and window-based features),
using only PSSM features and the joint dataset with both in-house and PSSM features.

Dataset Classifier Name Subset Accuracy AUC Precision Recall F1-Score

In-house features Extremely Randomized Trees Train 0.99 1.00 0.99 0.99 0.99
Test 0.81 0.77 0.88 0.81 0.83

Neural Network Train 0.81 0.73 0.81 0.81 0.81
Test 0.69 0.56 0.72 0.69 0.71

AdaBoost Train 0.98 0.98 0.98 0.98 0.98
Test 0.71 0.56 0.77 0.71 0.74

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

PSSM features Extremely Randomized Trees Train 0.96 0.98 0.97 0.96 0.97
Test 0.72 0.55 0.82 0.72 0.76

Neural Network Train 0.96 0.97 0.96 0.96 0.96
Test 0.70 0.57 0.74 0.70 0.72

AdaBoost Train 0.91 0.92 0.93 0.91 0.91
Test 0.73 0.60 0.79 0.73 0.75

Support Vector Machine Train 0.80 0.86 0.96 0.8 0.86
Test 0.76 0.64 0.92 0.76 0.82

In-house + PSSM Extremely Randomized Trees Train 1.00 1.00 1.00 1.00 1.00
Test 0.83 0.86 0.93 0.83 0.86

Neural Network Train 0.83 0.78 0.85 0.83 0.82
Test 0.56 0.50 0.52 0.56 0.53

AdaBoost Train 0.98 0.98 0.98 0.98 0.98
Test 0.72 0.60 0.74 0.72 0.73

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86
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Table A2. Performance metrics for the subsets: The joint dataset with both in-house (one-hot encoding,
relative position, literature based and window-based features) and iFeature features (full sequence
features); the dataset with in-house, PSSM and iFeature features; and the dataset with only iFeatures.

Dataset Classifier Name Subset Accuracy AUC Precision Recall F1-Score

In-house +
iFeatures Extremely Randomized Trees Train 1.00 1.00 1.00 1.00 1.00

Test 0.83 0.77 0.85 0.83 0.84

Neural Network Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

AdaBoost Train 0.99 0.99 0.99 0.99 0.99
Test 0.81 0.75 0.83 0.81 0.82

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

In-house + PSSM
+ iFeatures Extremely Randomized Trees Train 1.00 1.00 1.00 1.00 1.00

Test 0.83 0.77 0.84 0.83 0.83

Neural Network Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

AdaBoost Train 0.99 0.99 0.99 0.99 0.99
Test 0.77 0.69 0.79 0.77 0.78

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

iFeatures Extremely Randomized Trees Train 0.83 0.80 0.90 0.83 0.85
Test 0.77 0.67 0.82 0.77 0.79

Neural Network Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

AdaBoost Train 0.83 0.76 0.86 0.83 0.84
Test 0.79 0.72 0.80 0.79 0.79

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

Table A3. Extremely randomized trees algorithm scores, by amino acid, in the testing set.

Amino Acid Adaptation
Value Accuracy Precision Recall Amount Used for

Threshold Adaptation

ASP
Original - 0.71 0.00 1.00

11
Adapted - - -

SER
Original - 1.00 0.00 0.00

4
Adapted - - -

GLN
Original - 0.67 0.00 0.00

6
Adapted - - -

LYS
Original - 1.00 1.00 1.00

12
Adapted - - -

ILE
Original

+0.15
0.80 0.00 0.00

5
Adapted 1.00 1.00 1.00

PRO
Original

+0.15
0.50 0.00 0.00

2
Adapted 1.00 1.00 1.00



Int. J. Mol. Sci. 2020, 21, 7281 12 of 19

Table A3. Cont.

Amino Acid Adaptation
Value Accuracy Precision Recall Amount Used for

Threshold Adaptation

THR
Original - 1.00 1.00 1.00

8
Adapted - - -

PHE
Original

+0.25
0.75 0.00 0.00

4
Adapted 1.00 1.00 1.00

ASN
Original

+0.15
0.50 0.00 0.00

6
Adapted 0.83 0.67 1.00

GLY
Original - 1.00 0.00 0.00

1
Adapted - - -

HIS
Original - 0.80 0.00 0.00

5
Adapted - - -

LEU
Original

+0.06
0.50 0.00 0.00

4
Adapted 1.00 1.00 1.00

ARG
Original - 1.00 0.00 0.00

9
Adapted - - -

TRP
Original - 0.71 0.00 0.00

7
Adapted - - -

VAL
Original

+0.25
0.67 0.00 0.00

3
Adapted 0.67 0.00 0.00

GLU
Original - 0.85 0.00 0.00

13
Adapted - - -

TYR
Original - 0.55 0.33 0.67

11
Adapted - - -
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Table A4. Literature-based amino acid features, such as secondary structure propensity, pKa associated values, number of atoms of each type and standard area and
mass associated values, attained from BioMagResBank [31].

Amino
Acid

Helix
Propensity

Sheet
Propensity

Helix Propensity
Values

Sheet Propensity
Values

Molecular
Weight

pKa
Carboxylate

pKa
Amine

pKa Side
Chain

Number of
Carbons

ALA 1 1 1.45 0.97 89.09 2.30 9.90 0.00 3

CYS 2 2 0.77 1.30 121.16 1.80 10.80 8.65 3

ASP 2 3 0.98 0.80 133.10 2.00 10.00 4.04 4

GLU 1 4 1.53 0.26 147.13 2.20 9.70 4.39 5

PHE 3 2 1.12 1.28 165.19 1.80 9.10 0.00 9

GLY 4 3 0.53 0.81 75.07 2.40 9.80 0.00 2

HIS 3 5 1.24 0.71 155.16 1.80 9.20 6.75 6

ILE 5 6 1.00 1.60 131.17 2.40 9.70 0.00 6

LYS 5 5 1.07 0.74 146.19 2.20 9.20 11.00 6

LEU 1 2 1.34 1.22 131.17 2.40 9.60 0.00 6

MET 3 6 1.20 1.67 149.21 2.30 9.20 0.00 5

ASN 6 5 0.73 0.65 132.12 2.00 8.80 0.00 4

PRO 4 5 0.59 0.62 115.13 2.00 10.60 0.00 5

GLN 3 2 1.17 1.23 146.15 2.20 9.10 0.00 5

ARG 2 3 0.79 0.90 174.20 1.80 9.00 12.50 6

SER 2 5 0.79 0.72 105.09 2.10 9.20 0.00 3

THR 2 2 0.82 1.20 119.12 2.60 10.40 0.00 4

VAL 3 6 1.14 1.65 117.15 2.30 9.60 0.00 5

TRP 3 2 1.14 1.19 204.22 2.40 9.40 0.00 11

TYR 6 2 0.61 1.29 181.19 2.20 9.10 9.75 9
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Table A5. Literature-based amino acid features, such as secondary structure propensity, pKa associated values, number of atoms of each type and standard area and
mass associated values, attained from BioMagResBank [31].

Amino
Acid

Number of
Hydrogens

Number of
Nitrogen Atoms

Number of
Oxygens

Number of
Sulphur

Standard
Free Area

Protein
Standard Area

Folded
Buried Area

Mean
Fractional Area

Residue
Mass

Monoisotopic
Mass

ALA 7 1 2 0 118.10 31.50 86.60 0.74 71.08 71.04

CYS 7 1 2 1 146.10 13.90 132.30 0.91 103.14 103.01

ASP 7 1 4 0 158.70 60.90 97.80 0.62 115.09 115.03

GLU 9 1 4 0 186.20 72.30 113.90 0.62 129.12 129.04

PHE 11 1 2 0 222.80 28.70 194.10 0.88 147.18 147.07

GLY 5 1 2 0 88.10 25.20 62.90 0.72 57.05 57.02

HIS 9 3 2 0 202.50 46.70 155.80 0.78 137.14 137.06

ILE 13 1 2 0 181.00 23.00 158.00 0.88 113.16 113.08

LYS 14 2 2 0 225.80 110.30 115.50 0.52 128.17 128.10

LEU 13 1 2 0 193.10 29.00 164.10 0.85 113.16 113.08

MET 11 1 2 1 203.40 30.50 172.90 0.85 131.19 131.04

ASN 8 2 3 0 165.50 62.20 103.30 0.63 114.10 114.04

PRO 9 1 2 0 146.80 53.70 92.90 0.64 97.12 97.05

GLN 10 2 3 0 193.20 74.00 119.20 0.62 128.13 128.06

ARG 14 4 2 0 256.00 93.80 162.20 0.64 156.19 156.10

SER 7 1 3 0 129.80 44.20 85.60 0.66 87.08 87.03

THR 9 1 3 0 152.50 46.00 106.50 0.70 101.11 101.05

VAL 11 1 2 0 164.50 23.50 141.00 0.86 99.13 99.07

TRP 12 2 2 0 266.30 41.70 224.60 0.85 186.21 186.08

TYR 11 1 3 0 236.80 59.10 177.70 0.76 163.18 163.06
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Table A6. Extreme randomized trees parameters tested in the Grid Search.

Parameter Default Value Tested Values

n_estimators 100 (50,100,250,500,1000)

boostrap False (True, False)

class_weight None (None,”balanced_subsample”,”balanced”)

criterion “gini” (“gini”,”entropy”)

max_depth None (None,1,2,3)

min_samples_split 2 (2,3,4,5)

min_samples_leaf 1 (1,2,3)

max_leaf_nodes None (None,1,2,3)

max_samples None (None,1,2,5,10)

max_features “auto” (“auto”,”sqrt”,”log2”)

min_impurity_decrease 0.0 (0.0, 0.01, 0.001)

min_weight_fraction_leaf 0.0 (0.0, 0.01, 0.001)

Figure A1. (A) Structural representation of the complex between angiogenin and a ribonuclease
inhibitor: PDB ID 1a4y. Brighter red colors were attributed to residues with a higher probability of being
classified as HS. (B,C) Close-ins of all interfacial residues for which there is an experimental ∆∆Gbinding

value, and as such a HS/NS classification. Green boxes represent correctly predicted residues, whereas
red boxes represent incorrectly classified residues.
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Figure A2. (A). Depiction the complex between a T-Cell receptor beta chain and SEC3 superantigen:
PDB ID 1jck. Brighter red colors were attributed to residues with a higher probability of being classified
as HS. (B,C) Close-ins of all interfacial residues for which there is an experimental ∆∆Gbinding value,
and as such a HS/NS classification. Green boxes represent correctly predicted residues, whereas red
boxes represent incorrectly classified residues.
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Figure A3. (A). Depiction of chain C of the complex PDB ID 3sak. Brighter red colors were attributed
to residues with a higher probability of being classified as HS. (B,C) Close-ins of all interfacial residues
for which there is an experimental ∆∆Gbinding value, and as such a HS/NS classification. Green boxes
represent correctly predicted residues, whereas red boxes represent incorrectly classified residues.
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Chapter 21

Structural Characterization of Membrane Protein Dimers

António J. Preto, Pedro Matos-Filipe, Panagiotis I. Koukos, Pedro Renault,
Sérgio F. Sousa, and Irina S. Moreira

Abstract

Membrane proteins are essential vessels for cell communication both with other cells and noncellular
structures. They modulate environment responses and mediate a myriad of biological processes. Dimeriza-
tion and multimerization processes have been shown to further increase the already high specificity of these
processes. Due to their central role in various cell and organism functions, these multimers are often
associated with health conditions, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and diabetes,
among others.
Understanding the membrane protein dimers’ interface takes advantage of the specificity of the structure,

for which we must pinpoint the most relevant interfacial residues, since they are extremely likely to be
crucial for complex formation. Here, we describe step by step our own in silico protocol to characterize
these residues, making use of known experimental structures. We detail the computational pipeline from
data acquisition and pre-processing to feature extraction. A molecular dynamics simulation protocol to
further study membrane dimer proteins and their interfaces is also illustrated.

Key words Membrane protein dimers, Machine learning, Feature extraction, Interfacial residues,
Protein-protein interaction, Molecular dynamics

1 Introduction

Membranes are essential structures for life assuming many func-
tions within cells, such as mobility and nutrient intake. To add to
these, energy transduction, biosynthesis, and immunologic and
nerve response are displayed in higher organisms [1]. These actions
are often controlled by membrane proteins (MPs), which play
essential roles such as ion and nutrient transport, communication
with the extracellular environment, and signal transduction
[2]. These proteins are also ubiquitous: 20–30% of genes of most
organisms code for MPs [3]. Understanding these cellular
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functions requires detailed knowledge of MPs’ 3D structures and
interactions. MPs frequently assemble as dimers or even higher-
order oligomers. These higher-order assemblies can have specific
roles that not necessarily coincide with those of their monomeric
constituents [4, 5]. This makes the structural biology of MPs even
more complex and demands the development of new experimental
and theoretical methods to elucidate their function.

Experimental characterization of MPs is difficult as the mem-
brane imposes obstacles to its manipulation, notably its purification
and crystallization. As such MP structural studies can greatly
benefit from in silico tools, since they provide useful approaches
that complement, make use of, and add to the experimental results.
In spite of the difficulties mentioned above, progress in experimen-
tal techniques has generated a growing body of structural informa-
tion. For instance, thempstruc—Membrane Proteins of Known 3D
Structure—database from the Stephen White Laboratory at UC
Irvine (available at http://blanco.biomol.uci.edu/mpstruc/) [6]
now lists 817 unique membrane proteins whose 3D structures are
known (as of August 30, 2018).

Dimers or higher-order assemblies of MPs are often the subject
of computational studies [7]. These typically aim at predicting
protein-protein interactions (PPIs) or hot spots (HS), interfacial
residues that upon alanine mutation generate a binding free energy
difference of 2.0 kcal/mol. We have recently developed a web
server, SpotOn, for the prediction of HS in a soluble complex
[8, 9]. However, we are still lacking reliable computational
approaches that target the understanding of multimeric MPs.
Here, we describe in detail our protocol to analyze a variety of
biological and physic-chemical characteristics of interfacial interac-
tions within MPs. By following this protocol, the reader has access
to a comprehensive set of tools that target the understanding of MP
dimerization and that can be used to construct any possible data-
base regarding these biological systems. In the interest of readers,
we also revise and explain the basics of machine learning (ML) and
molecular dynamics (MD) techniques, which could potentially be
used to further describe the MP interfacial residues. This tool
contributes to further understanding the interaction of MP com-
plexes and should be a valuable addition to the repertoire of meth-
ods/tools that aim to elucidate MP structure and function.

2 Materials

The goal of this chapter is to introduce a variety of tools to help
readers characterize interfacial residues between two transmem-
brane monomers of a MP system. To achieve this, we built a
pipeline of different scripts and tools able to process protein data-
bank files (.PDB) containing the two monomeric chains. We also
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provide tools to retrieve a large amount of key features. In the end,
the users can apply ML to this database to attain a predictive
algorithm or MD if their main interest is to depict the mechanism
of a particular system.

2.1 Machine

Learning

ML has been defined in several different ways, yet there is a com-
mon concept of ML as the science of “getting computers to act
without being explicitly told how to do so.” This means that ML is
appropriate to solve real life problems in which there is no tool to
deduct an answer as ML focuses on learning from experience.
Usually, this means that the predictions from a ML model are not
absolute; they improve when gathering more data [10]. Recently,
many fields have experienced an increase in the accessible data. In
particular, in the realm of biological problems where scarce data is
many times a big obstacle, this was also true [11].

When referring to data, we also use the term instances, the
available “samples” that we can feed to a predictor. Each of these
instances is associated to the characteristic we want to predict and
to the descriptors (features) that are associated or can be extracted
from it. Furthermore, the features are components of the dataset
instances that can be used to predict the target characteristic.

2.1.1 Supervised

and Unsupervised Learning

ML is typically divided in two subfields, depending on its relation to
the data: supervised and unsupervised learning (although there can
also be the concept of semi-supervised learning, which can make
use of both the previous approaches). This partition implies that the
methods used to construct the prediction models are usually dis-
tinct for each different type of learning [12]. Supervised learning is
the case in which the data fed to the prediction model is constituted
of both input and output information. This means that every
instance has a label. The labels inform the prediction model of the
possible outputs, since they are the known values of the target
prediction. A supervised learning model will make use of the
labeled instances to predict cases in which the entries have
unknown output values. The input information is constituted by
all the features that characterize the instance, not including the
output information. The output information on the data of a
supervised learning model can lead to classification or regression
models. A classification model is generated when the output is
limited to a discrete number of possible values (classes). When
there are only two possible classes, the problem is referred to as a
binary problem. Regression models allow an infinite number of
possible values. Unsupervised learning models do not have asso-
ciated output values. This means that it is impossible to label an
unknown new entry according to the starting data. However, these
models are useful to identify patterns, since they can group
instances according to their input information (features).
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2.1.2 Dataset

Construction: Instances

From a general point of view, the construction of a dataset is firstly
conducted by gathering instances. Overall, instances are every entry
that can be characterized and constitute a data point on a ML
deployment pipeline. Gathering more data points will yield more
information for the model to learn from. Usually, a dataset with
more data points leads to stronger and more generalized models
than its smaller counterparts. Regarding the type of data, instances
can be many things, as long as they are able to be standardized
along each other and can yield a pattern that relates towards the
target prediction. In the case of classification models, it is preferable
if the number of instances for each class is similar. This sometimes
requires that the dataset is balanced to equilibrate the number of
instances in each class. There are several sample (instances) selection
processes such as up-sampling (artificially augmenting the lower
populated classes) and down-sampling (lowering number of
instances in the overpopulated classes). Another possibility is filter-
ing out the irrelevant instances. For all these processes, there are
well-developed mathematical approaches that are available in most
ML-centered software [13].

2.1.3 Dataset

Construction: Features

The number and quality of instances are certainly determinants for
the quality of the upcoming predictions. What is associated or
generated from those instances, however, can be equally important.
The descriptors that we associate with instances are called features.
Features are all the characteristics that can be associated to a data
point. These features need to be relevant for the output prediction
and be independent among each other. If this relationship is miss-
ing, the features can introduce biases, noise or overall weakening of
the prediction capability of the model. What makes a feature rele-
vant, however, is not always straightforward. Although there are
approaches that can test the dataset for the most relevant features,
the scientific/technical knowledge on the dataset is certainly an
important factor in the selection and analysis of features. Freely
available data from databases or, in some cases, data collected by the
researchers, does not always comprise all the necessary information
to generate strong models. For example, sometimes the problem of
missing values must be addressed; in some cases, several approaches
artificially generate values where they are not available. Neverthe-
less, it is always preferable to first mine alternative data sources that
can yield the corresponding values. Feature extraction is the process
in which, for the original raw data or instance data points, alterna-
tive features are generated to better describe the entries. Feature
extraction is highly dependent on the type of data under focus.

2.1.4 Splitting

the Dataset

“Generalized” is a term that has been mentioned several times to
address the quality of a model. A ML model is said to be
generalized if it can give accurate predictions about upcoming,
unknown, instances. Indeed, a classification model may appear to
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be highly reliable and yield good accuracy, but when faced with new
information, it can output unreliable predictions due to its bias
towards the input data. In order to overcome these issues, the
data should be split into training and test sets. The training set
should then be used to train the model, while the test set should
not be present in the learning phase. This is usually performed
several times, in a process called cross-validation (CV). When
deploying CV, the computer is not informed of the specific
instances that will be used for the training and test sets. Rather, it
is told to split the dataset into two sets with a given percentage each
time (commonly 70–30%), performing the training on the larger
dataset and testing the model on the small test set for each case
[14]. CV is usually performed several times for each run. Each time,
the data undergoes randomized resampling, which leads to differ-
ent training and test sets, in order to achieve an unbiased and
generalized model [15].

2.1.5 Predictive Model

Deployment

The application of predictive models on the dataset is probably
the step for which ML is more commonly identified. A ML model
engulfs a predictive approach that makes use of a mathematical or
logical model to predict an outcome with a given degree of cer-
tainty. The specific model, however, differs for classification, regres-
sion, or clustering (unsupervised). Although some approaches are
displaying consistently positive results for a wide array of problems,
such as deep learning [16], there is not a perfect model to fit all
possible problems. A thorough knowledge on the models and
the data is the best way to maximize the use of both on the
construction of a good predictor. Furthermore, there are
approaches that allow the combination of several models, which
are referred to as ensemble models. Ensemble models have been
displaying competitive results in comparison to single complex
models, even if sometimes the models that make up ensemble
models are themselves simple. Such is the case of our own SpotOn
predictor [8, 9].

2.1.6 Model Evaluation The final evaluation of the models is one of the most important
steps, since it can lead to the drawback of the process until the very
start. Evaluating a ML model means assessing its validity upon
unknown outcomes. There are many available metrics, but most
supervised learning approaches rely on the relation between the
predicted outcome and the actual outcome. This ratio is yielded
from the test and validation sets when in comparison with the
outcome predicted by the trained model. In the case of classifica-
tion models, several common metrics derive from a confusion
matrix (Table 1). Sensitivity (Eq. 1), specificity (Eq. 2), precision
(Eq. 3), negative predictive value (NPV, Eq. 4), and F1-score
(Eq. 7) are calculated directly from the values attained from the
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confusionmatrix. The false discovery rate (FDR, Eq. 5), although it
can be calculated independently, can also be seen as the inverse of
precision. Similarly, the false-negative rate (FNR, Eq. 6) is the
inverse of sensitivity. The area under the receiver operating charac-
teristic curve (AUROC, Eq. 8) depends on the true-positive rate
(TPR, Eq. 1) and the false discovery rate (FDR, Eq. 5). By includ-
ing different metrics on all the evaluated set of data points,
AUROC constitutes a good metric for binary classification models
[17]. All this can be attained by computing a confusion matrix
(Table 1). The equations listed below (1)–(8) are all dependent
on these values and can be used to address the particularities of a
dataset.

Sensitivity formula

TPR ¼ TP

TPþ FN
ð1Þ

Specificity formula

TNR ¼ TN

FPþ TN
ð2Þ

Precision formula

PPV ¼ TP

TPþ FP
ð3Þ

Negative predictive value

NPV ¼ FP

FPþ TN
ð4Þ

False discovery rate

FDR ¼ FP

FPþ TP
¼ 1� PPV ð5Þ

False-negative rate

FNR ¼ FN

FNþ TP
¼ 1� TPR ð6Þ

F1-score

F1‐score ¼ 2TP

2TPþ FPþ FN
ð7Þ

Table 1
Confusion matrix

Predicted: no Predicted: yes

Actual: no True negative (TN) False positive (FP)

Actual: yes False negative (FN) True positive (TP)
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AUROC

AUROC ¼
Z 1

�1
TPR Tð ÞFDR 0 Tð ÞdT ð8Þ

2.2 Molecular

Dynamics Simulations

Molecular dynamics (MD) simulations are now a standard tool in
the study of biomolecules. Following the publication of the first
study describing an MD simulation of a protein (the bovine pan-
creatic trypsin inhibitor) already 40 years ago [18], this field has
been one of the strong and enthusiastic developments, taking
advantage of the astonishing computational progress that has char-
acterized the past decades and of the good parallelization efficiency
of most modern MD algorithms and more recently of the efficient
use of GPUs. The dynamic properties of a protein have a profound
effect upon its functional behavior. This is even more important
when dealing with protein-protein interfaces. MD simulations
allow the study of the dynamic properties of a system. They enable
the complex and dynamic processes that take place in biological
systems to be analyzed and provide atomistic detail concerning the
individual particle motion as a function of time. Typical examples of
application include the study of phenomena such as protein stabil-
ity, molecular recognition, conformational changes, protein fold-
ing, and ion transport in biological systems.

MD methods normally used when dealing with such systems
are based on the classic equations of motion, which are at the
cornerstone molecular mechanics (MM). MM methods represent
the energy of a system as a parametric function of the nuclear
coordinates. These methods neglect both electrons and the quan-
tum aspects of the nuclear motion and are based on classical New-
tonian mechanics. They typically consider a rather simplified
scheme of the interactions within a system. A “ball and spring”
model is usually employed, in which the atoms are described as
charged spheres of different sizes, whereas the bonds are described
as springs with different degrees of stiffness. The van der Waals
interactions are also an important step in the interaction between
the modeled biomolecules and the solvent [19]. The neglect of the
concept of electron forecloses any direct study of processes involv-
ing the formation or breaking of chemical bonds.

The energy of the system is split into a sum of contributions
from different processes, including the stretching of bonds, the
opening and closing of angles, rotations around simple bonds,
etc. Each of these contributing processes is described by an individ-
ual expression, parameterized for a given set of standard atom
types. Hence, a MM method is characterized not only by its func-
tional form but also by the corresponding parameters, the two of
which form a single entity termed force field. The parameters
involved are typically derived from experimental data and/or
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from calculations with higher-level methods (e.g., density func-
tional theory (DFT)) for small molecules. The accuracy of the
parameterization protocol is of paramount importance to the reli-
ability of the force field, and special care should be taken when
calculating properties other than those included in the parameteri-
zation process.

2.2.1 Biomolecular Force

Fields

When preparing an MD simulation, one of the most critical choices
to be made is the selection of a force field. As previously mentioned,
the term force field encompasses the functional form, and the
parameter sets are used to calculate the potential energy of a system
of atoms or coarse-grained particles in molecular mechanics and
molecular dynamics simulations. The development of a general
force field, able to yield accurate results for a plethora of chemically
different compounds, is a particularly hard, complex, and ungrate-
ful task. To obtain high-accuracy calculations on such chemically
different compounds, a careful parameterization of an extremely
diverse and complete set of reference molecules is required. This is,
in practice, an impossible mission. Hence, it is not surprising that
currently available general force fields had to sacrifice accuracy for a
wider applicability. Improved quality is normally achieved by devel-
oping specialized force fields, ensuring accurate calculations to be
performed, albeit in a much more limited class of compounds. The
limited structural diversity, in terms of building blocks, that char-
acterizes most biological systems of relevance, including proteins,
lipids, carbohydrates, and nucleotides, renders the development of
specialized force fields for each one of these large and important
classes of biological macromolecules a particular interesting and
valuable strategy, with an almost infinite number of applications,
given the large number of combinations of the correspondent
biological structural basic elements that can be found in nature
[20–24].

Different levels of detail can also be achieved using different
types of force fields, including coarse-grained, united-atom, and
all-atom force fields. All-atom (i.e., atomistic) force fields have
explicit parameters for all the atoms in a system, including hydro-
gen atoms. United-atom force fields treat the hydrogen and carbon
atoms in each methyl group (terminal methyl) and each methylene
bridge as one interaction center, providing a cruder representation.
Coarse-grained force fields, which are often used in long-time
simulations of macromolecules such as lipids, proteins, nucleic
acids, and multi-component complexes, provide even cruder repre-
sentations for higher computing efficiency.

All-atom force fields are generally the most accurate, as they
retain virtually all atomic-level interactions and can use time steps in
the femtosecond range. While this makes them quite slow and
computationally expensive compared with the other alternatives,
the wide range of carefully tested parameters available for these
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models, including proteins, lipids, nucleic acids, and small organic
molecules, makes them reliable when it comes to quantitative pre-
diction of properties such as motional time scales or interaction
strengths, showing that this type of simulations has advantages,
over those with a lower level of detail. They are also the most
appropriate type of force field for simulating the interactions
involving membrane proteins, as they provide an explicit represen-
tation of all the atoms and interactions at the interface, including
those involving hydrogen atoms.

2.2.2 Simulating

Biomembranes

In the particular case of membrane proteins, MD simulations offer
an unparalleled way to analyze from a dynamic perspective the
interactions established between MPs when inserted in the mem-
brane, taking also into account the particularities of the water/
membrane interface. Performing MD on membrane proteins
requires the use of force fields for the representation of the protein,
the water, and a model of the biomembrane.

AMBER, CHARMM, GROMOS, and OPLS are the most
popular molecular mechanics force field families devised to describe
biomolecular systems [25]. A common characteristic to these force
fields is that the potential energy function is a function of pairs of
atoms (it is two-body additive). Most force fields used in biological
simulations apply the same form for the energy function, with
harmonic terms for bonds and angles, Fourier series for torsions,
and pairwise van der Waals and Coulombic interactions between
atoms that are separated by three or more bonds. However, they are
parameterized in conceptually different ways. Hence, individual
parameters from different force fields should not be compared, as
the parameterization scheme varies from force field to force field.
Comparisons have to focus on the ability to reproduce observable
data for a given system. Each of these force field families has
specialized versions for the treatment of proteins and lipids. How-
ever, while for the treatment of proteins, accurate atomistic force
field variations have been commonly in use with great success in a
wide range of problems for a couple of decades, options to simulate
lipids have remained for many years some steps behind. Further-
more, when combining membranes and proteins, it is important to
take into account that the parameters used should be consistent,
which means that the same general protocol should have been
followed in the parameterization of all the associated molecules.
This is especially important in the treatment of the non-bonded
interactions (particularly charges, which decay slower with the
distance), as the interactions between atoms within the protein or
within the lipid bilayers have to be handled in the same fashion, and
so should be the ones involving atoms in the protein with those in
the bilayer. Such requirement is critical for an accurate representa-
tion of the interaction between the different partners.
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More recently, dedicated force field extensions for the treat-
ment of lipids have also been made available within all the major
biomolecular force fields, levelling both fields and contributing to
accurate representations of both the protein and the biomembrane
[24, 26]. Within GROMOS, a number of variations have been
made available through the years [27], including the parameter
sets 45A3 [28], G53A [29], and G54A [30] and the popular Berger
lipid FF [31], based on the original GROMOS non-bonded para-
meters and adopting a united-atom representation. More recent
and improved versions include the 43A1-S3 [32] and the G53A6
[33] parameter sets. CHARMM [34, 35] included several parame-
ter sets for atomistic simulations of lipids, including the
CHARMM22 set (C22) [36], CHARMM27 (C27 and C27r)
[17, 18, 37, 38], and the more recent CHARMM36 (C36) param-
eter set [39]. An extension for cholesterol has also been made
available (C36c) [40]. Within AMBER, lipid simulations were
done through many years with sets of lipid parameters based on
re-parameterizations of the general AMBER force field
[21, 41–43]. A specialized AMBER parameter set for lipids, called
LIPID11 [44], was reported in 2012, followed by LIPID14
[45]. OPLS-AA also included parameters for lipids containing the
DPPC bilayer [46]. Other common force field examples include
MARTINI [47, 48], a coarse-grained force field, and Slipids [49].

The other critical partner is water, which also plays a funda-
mental role in mediating the interactions between different pro-
teins and of these with the biomembrane. For the representation of
the water molecules [50], common choices include the TIP3P
(transferable intermolecular potential 3P) [51, 52], SPC (simple
point charge) [53], and the SPC/E (extended simple point charge)
[54] water models.

In spite of the increase in computational power that has char-
acterized the past decades and advance in the technical sophistica-
tion of the software packages and force fields available, knowledge
by the user still represents the single most determinant factor for a
detailed simulation [55], particular of a complex problem such as
this which involves the interaction between the protein, the mem-
brane, and the water molecules. It is also important to consider that
the length of the simulation is always a critical issue when discussing
anMD simulation. Different chemical phenomena involve different
time scales, and even when considering only proteins, it is impor-
tant to keep in mind that their various characteristic types of
motion have very different time scales, ranging from the fast and
localized motion characteristic of atomic fluctuations to the slow
and large-scale motions that involve rearrangements on the full
protein. The length of the simulation should therefore be adequate
to the type of motion under study. In addition, it is also important
to retain that the different types of motion are interdependent and
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coupled to one another, although for some practical applications,
some types may be regarded as independent. In general, these
motions can span over 20 orders of magnitude in terms of time
scale, from femtoseconds (e.g., vibrations of bonds) to several
seconds and even hours. Membrane protein recognition and mem-
brane interaction in particular normally require a minimum simu-
lation length from 20 to 100 ns for proper sampling of the
properties associated [56].

3 Methods

All the python-associated methods of the work pipeline for this
protocol are based on Python version 3.6 and its respective
packages. Manually curated changes and visualization were per-
formed with PyMOL [57] unless otherwise indicated. The meth-
ods and databases referred along the text can be consulted in
Table 2, in Subheading 4. The overall workflow is depicted in
Fig. 1.

3.1 Dataset The final biological dataset should be made of protein dimers that
obey a predetermined set of criteria and for which a variety of
features can be calculated. Residues should also be labeled as inter-
facial and non-interfacial, a binary positive and negative class, to be
used by the reader to effectively train a ML model.

3.1.1 Raw Data We began by accessing thempstruc [6] database in which allMPs are
associated to a .PDB file corresponding to the experimentally deter-
mined structure, mostly through X-ray crystallography and more
rarely by nuclearmagnetic resonance (NMR). The list ofMPprotein
identification codes is made available at http://blanco.biomol.uci.
edu/mpstruc/, by means of Extensible Markup Language (.xml)
files. The .xml files retrieved are available on the “XML representa-
tions” section of thewebsite.Wedownloaded “XML for the β-barrel
proteins” and “XML for the α-helicalmembrane proteins,” since the
only remaining structures (monotopicMP) do not comply to one of
the requirements for this database: constituting a transmembrane
protein. The files were read with the python package ElementTree,
and the final structureswere retrieved fromPDB[58]with an inbuilt
method that employs Biopython [63] through a python pipeline.
The structures were downloaded with the code below:
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Table 2
List of methods or databases referred along the text

Method or
database URL Description Ref.

Mpstruc http://blanco.biomol.uci.edu/mpstruc/ Known membrane protein structures [6]

SpotOn http://milou.science.uu.nl/cgi/services/
SPOTON/spoton/

Soluble protein complexes, hot spot
detection

[9]

Protein data
bank

https://www.rcsb.org/ Known protein structures [58]

AMBER http://ambermd.org/ Biomolecular molecular dynamics
simulation software

[59]

CHARMM https://www.charmm.org/charmm/ Biomolecular molecular dynamics
simulation software

[60]

GROMOS http://www.gromos.net/ Biomolecular molecular dynamics
simulation software

[61]

OPLS Molecular dynamics force field for
liquid simulations

[62]

PyMOL https://pymol.org/2/ Molecular visualization software [57]

ElementTree https://pypi.org/project/elementtree/ Python package for XML files
handling

Biopython https://biopython.org/ Python-based biological
computational tools

[63]

MODELLE
R

https://salilab.org/modeller/ Protein structures homology
modeling tool

[64]

VMD https://www.ks.uiuc.edu/Research/
vmd/

Molecular modeling and visualization
tool

[65]

PyDPI https://pypi.org/project/pydpi/ Python-based chemoinformatics and
bioinformatics package

[66]

iFeature http://ifeature.erc.monash.edu/ Python-based package for protein
feature extraction

[67]

DSSP https://swift.cmbi.umcn.nl/gv/dssp/
index.html

Protein secondary structure
dictionary. Can be accessed via
Biopython

[68]

Rosetta https://www.rosettacommons.org/
software

Molecular modeling program [69]

Psiblast https://www.ebi.ac.uk/Tools/sss/
psiblast/

Protein sequence alignment tool [70]

LipidBuilder http://lipidbuilder.epfl.ch/home Lipid creation, storage, and sharing [37]

MemBuilder http://bioinf.modares.ac.ir/software/
mb2/

Membrane model initial configuration
tool

[71]

(continued)
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Table 2
(continued)

Method or
database URL Description Ref.

Insane http://www.cgmartini.nl/index.php/
insane

Lipid bilayer system setup tool [39]

Packmol http://m3g.iqm.unicamp.br/packmol/
home.shtml

Molecular dynamics simulations initial
configuration tool

[40]

InflateGRO https://github.com/fuentesdt/
MembraneProtein/blob/master/
inflategro.pl

Biomembrane lipid simulation tool [21]

Griffin AMBER force field development [41]

Alchembed https://github.com/philipwfowler/
alchembed-tutorial

Tool for incorporating multiple
proteins into lipids

[72]

SHAKE Molecular dynamics simulation box [73]

LINCS Molecular simulation constraint solver [74]

Fig. 1 Overall graphical depiction of the work pipeline for in silico characterization of MP interfacial residues
database
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import Bio
from Bio.PDB import *
import os

pdbl = PDBList()

###Append the PDB files to the following list before continuing
PDBlist2=[]

for pdb_entry in PDBlist2:
try:

print pdb_entry
pdbl.retrieve_pdb_file(pdb_entry, pdir='PDB')

except:
continue

3.1.2 Data

Characterization

To more easily and thoroughly select and manipulate the structures
for the database, we performed an initial analysis. From the .xml
files, by once again using the ElementTree package in python, we
organized tables that characterized each structure with its PDB
identification code, protein name, organism species and taxonomic
domain, resolution of the structure, digital object identifier (DOI),
protein subgroup name, and description. When the information
was not available for all the referred fields, we attempted to retrieve
it manually. In addition to the previous information, the number of
chains, chains’ biological names, in-file chain names (according to
alphabetical labeling), and number of non-repeated chains were
retrieved by analyzing the complexes with the Biopython [63]
package. Stoichiometry was retrieved from PDB [58] with python
through the selenium package for web automation. However, due
to a high number of failing processes, this information was also
partially manually retrieved and fully manually confirmed. Finally,
all structures were manually analyzed to determine the complex
class and the oligomer state. Regarding the complex class, there
were the following possibilities: single chain, protein-ligand, pro-
tein-antibody, protein-protein, protein-peptide, and pore. When
considering oligomer states, the options considered were single
chain, multimer, multimer with at least one soluble protein (multi-
mer*), membrane protein dimer (m–m), membrane protein-
soluble protein dimer (m–s), membrane protein and soluble pro-
tein dimer (m–m*), or membrane protein dimer with soluble pro-
tein (both). All these characteristics were documented in separate
tables for β-barrel and α-helical MPs. We also constructed a joint
table to document all the complexes adding a descriptor to charac-
terize them as β-barrel or α-helical. From the final characteristics,
some were especially determinant on the selection of the structures:
number of chains, complex class, and oligomer state.

3.1.3 Selection of Valid

Dimeric Structures

At this point, we had a fully characterized set of MP structures,
which needed to be further analyzed to ensure that the protein
structures selected contributed positively to the purpose of this
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dataset. Although not referred extensively at the time, the choice of
not using the monotopic membrane proteins was already under the
scope of selection criteria. First of all, as said before, there are basic
characteristics that this dataset must comply to: the structures must
be MP and must contain more than one transmembrane chain. By
choosing the mpstruc database, we ensured only MP would be
present, and by excluding monotopic MP, we already excluded
some non-transmembrane or single-chained proteins.

The characterization of the downloaded structures allowed us
to automatically exclude, from the complex class and oligomer
state, single chains, dimers in which one of the chains was a soluble
protein (m–s), single MPs interacting with soluble small peptides
(protein-peptide), pores, protein-antibodies (since antibodies are
soluble proteins), and proteins with small organic or nonorganic
ligands (protein-ligand). None of these structures had truly a PPI
between two transmembrane MPs that contributed decisively to
the upcoming prediction of interfacial residues. Regarding the
remaining structures, not all were considered. The second round
of selection excluded structures in which an excessive number of
residues were unknown or incomplete. Furthermore, although
some structures had two or more transmembrane chains, there
was no clear PPI, in most cases due to a significantly large distance
between them (much higher than the typical 5 Å). Finally, a very
high amount of lipids between the chains was in some cases deter-
minant for the exclusion, since it would clearly interfere in the
interface. Figure 2 illustrates a typical MP dimer.

3.1.4 Data

Pre-processing

Pre-processing treatment of any dataset is necessary and mandatory
to ensure the success of ML application. First, since the quality of
the data is vital to the training of the model, we describe the steps

Fig. 2 Representation of an MP example (PDBid 5sy1 [75]) with the interface
illustrated in the close-up
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employed to guarantee the viability of the models from the dataset
built (3.1.4.i–3.1.4.v). Next, an additional pre-processing step
from our automated pipeline is also described (3.1.4.vi).

(i) Trim Non-transmembrane Residues
The α-helical and β-barrel structures attained for the dataset

were representative of transmembrane dimers but had neverthe-
less non-transmembrane residues or motifs. Visual inspection of
the .PDB as well as information contained in these files was used
to identify the transmembrane domain in order to posteriorly
remove residues outside these regions. The process of identify-
ing non-transmembrane residues is, on the automated part of
this pipeline, underlined by the use of an inbuilt deployment of
Rosetta [69].

(ii) Remove Heteroatoms
The downloaded structures were experimentally deter-

mined and, in many cases, present structural water molecules,
metal ions, or small molecules. Also, since these are MP pro-
teins, lipids are often found, even if not in sufficient amounts to
exclude the structure for interfacial interference. For the pur-
pose of this pipeline, these atoms would introduce unnecessary
error and often intervene negatively with the measurements
from the upcoming steps. Hence, a very simple but yet impor-
tant step was to remove these atoms. They are listed as heteroa-
toms in the .PDB files, and PyMOL [57] scripts allow their easy
removal. The PyMOL code snippet below displays a possible
protocol for PyMOL visualization and heteroatom removal
after loading all structures:

load pdb_file.pdb
bg_color white
set depth_cue, off
set fog, off
hide lines
show cartoon
util.cbc(selection='(all)',first_color=7,quiet=1,legacy=0,_self=cmd)
remove hetatm

(iii) Mutate Exotic Amino Acids
Besides heteroatoms, there were still other atoms capable of

introducingerrorornullifying someofourmethods. Inparticular,
many feature extraction methods are not prepared to deal with
amino acids out of the ordinary set of 20. Selenomethionine
residues are an example of amino acids that raise this problem.
Furthermore, since these amino acids stand in thebackboneof the
protein, they could not be simply erased, as the heteroatomswere.
To avoid this, such residues were mutated to their more usual
counterparts (selenomethionines, e.g., were mutated to methio-
nine) by using the PyMOL [57] “Mutagenesis” tool, available at
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the “Wizard” section, and choosing the rotamer with the lowest
number of crashes.

(iv) Model Incomplete Structures
Structures from the raw dataset that contained residues with

many missing atoms were excluded, as referred before. How-
ever, in some cases, only a few residues were incomplete, and so
the structure was kept. This being the case, homologymodelling
was used to rebuild the full residues. Following the extraction of
the sequence of the original structure in the form of a FASTA
file, we employed MODELLER [76], to generate an alignment
file with both the original and the target sequences, which are
the same in this case.

from modeller import *
import os

def align(input_pdb):

pdb_name = input_pdb[0:-4]
env = environ()
aln = alignment(env)
first_chain = "FIRST:A"
last_chain = "LAST:B"
fasta_name = pdb_name + ".fasta"
mdl = model(env, file=pdb_name, model_segment=(first_chain,last_chain))
aln.append_model(mdl, align_codes=pdb_name, atom_files=input_pdb)
aln.append(file=fasta_name, align_codes=pdb_name)
aln.align2d()
q_ali_name = pdb_name + ".ali"
aln.write(file=q_ali_name, alignment_format='PIR')

Also using MODELLER [76] with the previously generated
alignment and the original structure as template, we generated
models of the structure with the full residues (where they were
previously incomplete). These models, since the template was
the protein itself, had very little difference in structure, but they
were complete and apt to be properly included in the dataset.

from modeller import *
from modeller.automodel import *
from modeller import soap_protein_od

def generate_model(input_ali):

input_name = input_ali[0:-4]
env = environ()
a = automodel(env, alnfile=input_ali,

knowns=input_name, sequence=input_name,
assess_methods=(assess.DOPE,

assess.GA341))
a.starting_model = 1
a.ending_model = 5
a.make()

(v) Dimer Extraction from the Structure Files
Having standardized all the models to meet the criteria for

the dataset purpose, the final step was the extraction of the
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dimers from the structural files in which there were more than
two valid possible dimer options. This was performed by visual
inspection with PyMOL [57]. The following steps of the proto-
col are fully automated.

(vi) Add Hydrogens
Most structures available do not include hydrogen atoms,

but their explicit representation is important since they can be
involved in hydrogen bonds that contribute to stabilize the
structure and, in particular, the interfaces. To add them, we
employed the visual molecular dynamics (VMD) [65] software
in a fully automated manner. Using a template (.tpl) file which
stores the necessary commands that VMD [65] needs to prop-
erly add hydrogens to a .PDB file with two chains (see the code
snippet below), a new file was generated specifying the com-
mands for the specific structure under scope. This output file
was then run, also from inside python, employing the python
“os.system” in-built function.

package require psfgen
topology top_na.inp
alias residue HIS HSD
alias residue HOH TIP3
alias residue ZN ZN2
alias atom ILE CD1 CD
alias atom HOH O OH2
pdbalias residue DG GUA
pdbalias residue DC CYT
pdbalias residue DA ADE
pdbalias residue DT THY
foreach bp { GUA CYT ADE THY URA } {

pdbalias atom $bp "O5\*" O5'
pdbalias atom $bp "C5\*" C5'
pdbalias atom $bp "O4\*" O4'
pdbalias atom $bp "C4\*" C4'
pdbalias atom $bp "C3\*" C3'
pdbalias atom $bp "O3\*" O3'
pdbalias atom $bp "C2\*" C2'
pdbalias atom $bp "O2\*" O2'
pdbalias atom $bp "C1\*" C1'

}

segment A {
pdb chain_A.pdb
first none
last none

}
segment B {

pdb chain_B.pdb
first none
last none

}

coordpdb chain_A.pdb A
coordpdb chain_B.pdb B

guesscoord
writepdb final_file_HS.pdb
quit
exit
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3.2 Feature

Extraction

In order to performML on a given dataset, more than the instances
(in these cases the MP structures’ residues), there is a need to
associate them with features, which, as already mentioned, are
descriptors that characterize the instances. For this dataset, we
engulf as many features as possible, provided they are reliable and
their extraction/calculation can be automated. In the case of pro-
teins, many of the features relate to their different hierarchical
structures: primary (or sequence-based), secondary, and tertiary
features. Furthermore, other features can be associated with the
interfacial interaction or the proteins’ evolutionary profile.

3.2.1 Sequence-Based

Features

i) PyDPI

PyDPI [66] is a python package developed toward chemoinfor-
matics, bioinformatics, and chemogenomics studies. We focused on
PyPro, a PyDPI [66] sub-module that mines protein structural files
in order to retrieve sequence-based features. To perform this, the
sequences of both chains of each dimer were retrieved from the files
with the aid of Biopython [63]. A “PyPro()” object was initialized,
allowing for the next steps. This object read the sequences employ-
ing the ReadProteinSequence() method. Finally, we employed the
GetALL() method on the same object, to retrieve a python dictio-
nary in which the keys were the name of the feature and the values
were the computed results. Notice that these features are not
residue specific but rather associated to the whole sequence;
hence, all the residues in one chain will have the same associated
score. The features provided by this method are:

– 20 Amino Acid Composition (AAC) descriptors—the amount
of each amino acid residue in the sequence.

– 400 Dipeptide Composition (DPC) descriptors—the amount of
possible combinations of two subsequent amino acids.

– 240 Moreau-Broto autocorrelation (MBauto) descriptors.

– 240 Moran autocorrelation (Moranauto) descriptors.

– 240 Geary autocorrelation (Gearyauto) descriptors.

– 21 Composition descriptors.

– 21 Transition descriptors.

– 105 Distribution descriptors.

– 100 Quasi-Sequence Order (QSO) descriptors.

– 777 Pseudo Amino Acid Composition (PAAC), Amphiphilic
Pseudo Amino Acid Composition (APAAC) and Conjoint
Triad (CT) descriptors.
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from pydpi import pypro
from pydpi import protein
from pydpi.pypro import GetAAIndex1, GetAAIndex23
from pydpi.pypro import PyPro
from pydpi.protein import getpdb, AAComposition
from pydpi.pypro import CTD

def amino_sequence_pypro(input_pdb):

###Retrieves amino acid sequence from bioython structure object
structure = pdb_parser(input_pdb)[0]
seq_type = "ATOM "
for model in structure:

for chain in model:
seq = ""
for residue in chain:

## The test below checks if the amino acid
## is one of the 20 standard amino acids
## Some proteins have "UNK" or "XXX", or other symbols
## for missing or unknown residues
if is_aa(residue.get_resname(), standard=True):

seq = seq + (str(three_to_one(residue.get_resname())))
else:

continue
return seq,seq_type

def pypro_features(input_pdb, chain_name):

###All the sequence based features come from here
path_to_pdb = main + "/" + input_pdb + "_HS_" + chain_name + ".pdb"
res1, res2 = amino_sequence_pypro(path_to_pdb)
protein = PyPro()
protein.ReadProteinSequence(res1)
all_features = protein.GetALL()
key_list = []
value_list = []
for key, value in all_features.items():

key_list.append(round_number(key))
value_list.append(round_number(value))

return key_list,value_list

i) iFeature iFeature [67] is another package developed for python applications
which encompasses several tools for bioinformatics deployment.
Namely, it allows feature extraction. Similar to PyDPI [66], we
used iFeature [67] to extract sequence-based features. iFeature
[67] was called from inside the main script. To use it, the features
must be called separately and computed from the sequence (FASTA
file), since there is no unified function. Similar to PyDPI [66], the
scores do not characterize specific residues, but rather the proteins’
chains. Hence, all the residues from the same chain have the same
associated score. The features retrieved from iFeature are:

– 240 Normalized Moreau-Broto (NMBroto) descriptors.

– 240 Moran descriptors.

– 39 Composition features.

– 60 Sequence-Order-Coupling Numbers (SOCNumber).

– 100 Quasi-Sequence-Order (QSOrder) descriptors.

– 50 Pseudo Amino Acid Composition (PAAC) descriptors.

– 80 Amphiphilic Pseudo Amino Acid Composition (APAAC)
descriptors.
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Even considering that some features are similar between PyDPI
[66] and iFeature [67], we kept all of them since posterior ML
methods chosen by readers will be able to rule out or ignore
redundant features.

import os

executeCommands = True
def RunInOS(command):

if executeCommands:
os.system(command)

def write_iFeature(pdb_input, iFeature_path, feature_type):

###Write a .txt file with 
out_name = pdb_input[0:-4] + "_" + feature_type + ".txt"
fasta_path = pdb_input[0:-4] + ".fasta"
new_command = "python " + '"' + iFeature_path + '"' + " --file " + '"' + fasta_path + '"' + " --type "

+ feature_type + " --out " + out_name
RunInOS(new_command)

def read_iFeature(input_feature_txt, feature_type):

###Read the previously written iFeature .txt
read_file = open(input_feature_txt, "r").readlines()
count = 0
header = []
chain_A = []
chain_B = []
for row in read_file:

row = row.split() 
for cell in row[1:]:

if count == 0:
feature_name = feature_type + "_" + cell
header.append(feature_name)

if count == 1:
chain_A.append(round_number(cell))

if count == 2:
chain_B.append(round_number(cell))

count = count + 1
return header, chain_A, chain_B

3.2.2 Secondary

and Tertiary Features

In order to predict secondary structure, and later secondary and
tertiary structure derived features, we employed DSSP (Database of
Secondary Structure assignments for all Protein entries), from PDB
[58]. The approach that we developed was to use the “sys” package
from python to call DSSP from the shell, using the command:

dssp -i input_pdb > input_pdb_name_dssp.txt

This command generates a text file from which several features
can be obtained. Before extracting the features, however, we used
DSSP to attain the secondary structure prediction, which could
then be manipulated for obtaining amino acid propensity in sec-
ondary structure motifs, as explained below. Regarding the features
extracted with DSSP, they are residue specific and are:

– Relative accessible surface area (ASA).

– Phi angle.
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– Psi angle.

– NH–O1 energy and relaxation (2 features).

– O–NH1 energy and relaxation (2 features).

– NH–O2 energy and relaxation (2 features).

– O–NH2 energy and relaxation (2 features).

def DSSP_features(input_pdb, feature_number):

###Retrieves the features 0-13 described bellow, from bioython structure object
###0            DSSP index 
###1            Amino acid 
###2            Secondary structure 
###3            Relative ASA 
###4            Phi 
###5        Psi 
###6            NH-->O_1_relidx 
###7            NH-->O_1_energy 
###8            O-->NH_1_relidx 
###9            O-->NH_1_energy 
###10           NH-->O_2_relidx 
###11           NH-->O_2_energy 
###12           O-->NH_2_relidx 
###13           O-->NH_2_energy
to_break = [7,8,9,10]
structure = pdb_parser(input_pdb)[0]
dssp_name = input_pdb[0:-4] + "_dssp.txt"
opened_file = open(dssp_name, "r").readlines()
chain_SS_sequences = []
useful = False
feature_residues_A = {}
feature_residues_B = {}
residues_A_count = 0
residues_B_count = 0
feature_gaps = {"0":[0,5], "1":[5,10], "2":[10,12], "3": [12,14], "4":[14,22], "5":[22,33], 

"6":[34,38],"7":[38,50], "8":[50,61], "9":[61,72], "10":[72,83], "11":[83,91], "12":[91,97], 
"13":[97,103], "14":[103,109], "15":[109,115], "16":[115,122], "17":[122,129], "18":[129, 136], "19":[136,
150]}

for row in opened_file:

if useful == True:
if row[feature_gaps["2"][0]:feature_gaps["2"][-1]].replace(" ","") == "A":

residues_A_count = residues_A_count + 1
if feature_number in to_break:

feature_to_store = row[feature_gaps[str(feature_number)][0]:feature_gaps[str(fea-

ture_gaps[str(feature_number)][1]].replace(" ",""))
feature_residues_A[residues_A_count] = feature_value

if row[feature_gaps["2"][0]:feature_gaps["2"][-1]].replace(" ","") == "B":
residues_B_count = residues_B_count + 1
if feature_number in to_break:

feature_to_store = row[feature_gaps[str(feature_number)][0]:feature_gaps[str(fea-
ture_number)][1]].replace(" ","").split(",")

feature_value = round_number(feature_to_store[-1])
feature_residues_B[residues_B_count] = feature_value

else:
feature_value = round_number(row[feature_gaps[str(feature_number)][0]:fea-

ture_gaps[str(feature_number)][1]].replace(" ",""))
feature_residues_B[residues_B_count] = feature_value

if row[feature_gaps["0"][0]:feature_gaps["0"][-1]].replace(" ","") == "#":
useful = True

chain_SS_sequences.append(feature_residues_A)
chain_SS_sequences.append(feature_residues_B)
return chain_SS_sequences

ture_number)][1]].replace(" ","").split(",")
feature_value = round_number(feature_to_store[-1])
feature_residues_A[residues_A_count] = feature_value

else:
feature_value = round_number(row[feature_gaps[str(feature_number)][0]:fea-
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Using the Biopython [63] module, we extracted the B-factor
values from the complexes and constructed a windowed function
that averages, for each residue, its values in a radius of 5 residues,
generating a new feature (please check Note 2 for further
information).

import Bio
from Bio.PDB import *

def pdb_parser(input_pdb):

###Parses pdb from .pdb file
parser = PDBParser()
pdb_name = input_pdb[0:-4]
structure = parser.get_structure(pdb_name, input_pdb)
return structure, pdb_name

def b_factor(input_pdb, input_atom = "CA"):

###Returns b-factor for the input .pdb atoms, alpha carbon as default
structure = pdb_parser(input_pdb)[0]
chain_tagger = []
for model in structure:

for chain in model:
count = 0
b_factors = {}
for residue in chain:

count = count + 1
for atom in residue:

if atom.get_name() == input_atom:
B = atom.get_bfactor()
feature_value = round_number(B)
b_factors[count] = feature_value

chain_tagger.append(b_factors)
return chain_tagger

def window(input_dicts, user_function, window_size = 5):

###Iterates over previously achieved scores and builds new values by sliding a window of twice the 
size of the argument

chain_storer = []
for chain in input_dicts:

output_dict = {}
for entry in chain.keys():

value_list = []
current_value = chain[entry]
value_list.append(current_value)

for new_value in range(1, window_size):
try:

value_list.append(chain[int(entry) + new_value])
except:

continue
try:

value_list.append(chain[int(entry) - new_value])
except:

continue
final_value = user_function(value_list)
output_dict[entry] = final_value

chain_storer.append(output_dict)
return chain_storer

Using the secondary structure predicted with DSSP, we created
an amino acid propensity feature that associates to each of the
possible secondary structural motifs the frequency of occurrence
of each amino acid.
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def amino_acid_propensity(sequence, secondary_sequence, secondary_structure_tag):

###Fetches the amino acid counts by secondary_structure:
all_chains = []
for chain_simple, chain_second in zip(sequence, secondary_sequence):

PC_dict = {'G': 0, 'A': 0,'V': 0,'L': 0,'M': 0,'I': 0,'F': 0,
'Y': 0,'W': 0,'S': 0,'T': 0,'C': 0,'P': 0,'N': 0,
'Q': 0,'K': 0,'R': 0,'H': 0,'D': 0,'E': 0, 'X' : 0}        

count = 0
for residue, residue_TM in zip(chain_simple, chain_second):

if residue_TM == secondary_structure_tag:
count = count + 1
PC_dict[residue] = PC_dict[residue] + 1

for entry in PC_dict:
try:

PC_dict[entry] = float(PC_dict[entry])/float(count)
except:

continue
new_PC_dict = {} 
new_count = 0 
for new_residue in chain_simple:

new_count = new_count + 1
feature_value = round_number(PC_dict[new_residue])
new_PC_dict[new_count] = feature_value

all_chains.append(new_PC_dict)
return all_chains

Furthermore, we used VMD [65] to find surface residues using
the code below, in which the individual solvent-accessible surface
area values considered were the ones described in Miller et al. [77].

mol new file_name.pdb
set allsel [atomselect top "all and chain name"]
set chain A
set tot_sasa [dict create ARG 241 TRP 259 TYR 229 LYS 211 PHE 218 MET 204 GLN 189 HIS 194 GLU 183 LEU 180 
ILE 182 ASN 158 ASP 151 CYS 140 VAL 160 THR 146 PRO 143 SER 122 ALA 113 GLY 85]
set residlist [lsort -unique [$allsel get resid]]
set surf_list [list]
foreach r $residlist {

set sel [atomselect top "resid $r and chain $chain"]
set temp_rsasa [measure sasa 1.4 $allsel -restrict $sel]
set temp_name [lsort -unique [$sel get resname]]
set temp_id [lsort -unique [$sel get resid]]
set temp_tot [dict get $tot_sasa $temp_name]
set rsasa [expr $temp_rsasa/$temp_tot]
if {$rsasa > 0.2} {lappend surf_list "$temp_id $temp_name"}

}

set filename "residues_surface_chain_name"
set fileId [open $filename "w"]
puts $fileId $surf_list
close $fileId
exit

This code was then run on VMD, from the python main frame
by issuing the command:

vmd -dispdev text -e get_surf_residues_chain_name.tcl

The surface residues are then associated with 1, while the
non-surface residues are associated with 0, in the data table for
ML deployment. Similar to surface residues, we calculated the
interface residues, also using VMD [65], with specific model
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scripts. The interfacial characterization (also binary) was the class
we used to perform theML deployment. The code used to perform
this is displayed below.

mol file_name.pdb
set outfile [open "residues_number_according_to_chain" w]
set sel1 [atomselect top "protein and (chain A) and within 5 of (chain B)"]
$sel1 get {resid resname}
set sel2 [lsort -unique [$sel1 get {resid resname}]]
puts $outfile "$sel_number_according_to_chain"
close $outfile
quit
exit

In addition to the individual solvent-accessible surface area,
lipid accessibility by residue was extracted as well. For this proce-
dure, we used the “mp_lipid_acc”—an application included in the
Rosetta Software Suite [69]. The following command was used,
creating a new model .PDB file from information in the original .
PDB file in addition to the span file. The obtained model contains a
binary score column with the values 0 and 50, depending in the
lipid accessibility—0 corresponding to inaccessible and 50 to
accessible.

./rosetta_bin_linux_2018.09.60072_bundle/main/source/bin/mp_lipid_acc.static.linuxgccrelease -database

./rosetta_bin_linux_2018.09.60072_bundle/main/database -in:file:s [input_pdb_file] -mp:setup:spanfiles
[general span file, built in the previous command] -ignore_unrecognized_res

Like stated in section 3.1.4, it is essential to restrict the analysis
exclusively to residues in the transmembrane region. This proce-
dure was performed using the “mp_span_from_pdb” application,
from the Rosetta Software Suite [69]. The following commands,
having downloaded and built the Rosetta Software Suit in the same
directory as the input files, output a span file, which lists the
transmembrane regions of the chain under analysis. Below, is high-
lighted the command needed to attain this output which will gen-
erate a set of span files, one for each chain in the input .PDB file.

./rosetta_bin_linux_2018.09.60072_bundle/main/source/bin/mp_span_from_pdb.static.linuxgccrelease -
in:file:s [input_pdb_file] -ignore_unrecognized_res

An example of the output file, obtained from the sucrose-
specific porin (PDBid: 1A0T) [78], is displayed below:

Rosetta-generated spanfile from SpanningTopology object

19 413

antiparallel

n2c

3 11

49 58

64 72

91 98

111 118
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123 128

139 147

151 157

178 183

186 190

221 228

234 241

270 276

281 287

308 314

319 324

352 357

369 373

407 412

This procedure was performed using a Linux operating system.
The Rosetta build may vary depending on the operating system
in use.

3.2.3 Sequence

Comparison Features

In this pipeline, there is also the possibility of adding position-
specific scoring matrix (PSSM) features. To do this, the option
must be specifically selected, since these features increase signifi-
cantly the time of the process. While without PSSM features the
in-house process can run within 3 min, for one dimer, it can take up
to a few hours if this option is chosen, due to the alignment process.
This happens because of the use of the “psiblast” [70] alignment
for PSSM extraction. Please confer Note 3 to learn how to employ
“psiblast” to extract PSSM features.

3.3 Molecular

Dynamics Simulations

3.3.1 Building

the Protein-Membrane

Model

A critical step before initiating any MD simulation involving a
membrane protein is the creation of reasonable conformation con-
taining the protein and the biomembrane model [21, 79]. Such
structure has to represent or enable within a reasonable simulation
time a realistic packing of the protein and lipids [35].

The choice of the biomembrane model represents an obvious
approximation into the biology of the problem. Biomembranes are
complex systems comprised by a wide range of different molecules,
the balance of which determines its physical properties [80]. The
relative composition of different molecular types in biomembranes
can vary significantly between different organelles and cell types,
ranging from 20% to 60% proteins, 30% to 80% lipids, and up to
10% carbohydrates. Among lipids, phospholipids, sphingolipids,
and sterols are the major components present, in a ratio that
determines a variety of properties, including surface charge, thick-
ness, packing order, curvature, etc. [81]. However, most simula-
tions represent the biomembrane as small bilayer patches
containing just a few lipid moieties, often manually prepared.
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Sometimes, a limited number of cholesterol molecules are intro-
duced into the simulation to partially account for the heterogeneity
of the bilayer. However, when preparing the biomembrane model,
it is also important to take into account that building the biomem-
brane model as a simple assembly of the selected lipids is not
enough, as extensive sampling would be required to transform
the modeled bilayer structure into a reasonable biomembrane
model [35]. Rather, a variety of solutions are currently available in
current MD packages which contain ensembles of pre-equilibrated
lipids [45, 82]. This approach is, however, not flexible, as it enables
the simulation of only the limited set of alternatives explicitly
present.

More recently a variety of membrane builder applications have
beenmade available, enabling customization by the user in building
biomembranes with custom compositions. These can be grouped
into two main categories: web servers and distributed software.
Web server membrane builder applications are normally user-
friendly and relatively fast in distributing different components
along the model generated. Examples include CHARMM-GUI
[36], LipidBuilder [37], and MemBuilder [38]. However, the
membranes generated are normally a long way from equilibrium,
as optimizing biomembrane distribution and interactions can be an
intensive process. Also, these servers are normally limited to specific
molecular components and lipid types. Software-based application
includes programs such as Insane [39] and Packmol [40] that can
be downloaded and installed locally. They can generate any kind of
densely packed structures, with the components and physical
requirement imposed by the user and taking into account density
optimization. However, such alternatives are still in their infancy,
and generally consider only a crude description of the properties of
the individual molecules in the density optimization.

i) Insertion of the Protein

in the Membrane

Choosing the exact orientation and position of the membrane
protein within the bilayer model can be a challenging task, as
there is often no experimental data to guide how the protein should
be placed relative to the bilayer. Nevertheless, an analysis on the
amino acid residues defining the surface of the membrane protein
can provide valuable clues, taking into account the amphipathic
nature of the biomembrane. In fact, for many membrane proteins,
there is a clear distinction between the type of amino acid residues
located in the surface interacting the hydrophobic core of the
biomembranes and those that interact with the lipid polar heads
or with the solvent. The surface of the membrane protein interact-
ing with the solvent or with the polar heads results from a careful
balance between hydrophilic and hydrophobic amino acid side
chains, with the first being prevalent [83]. However, the surface
of the membrane protein that interacts with the hydrophobic core
of the biomembrane presents an almost total absence of polar or
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charged amino acid residues, being composed almost entirely by
amino acid residues with hydrophobic side chains. Taken together,
these tendencies normally help to define a perpendicular axis for
membrane protein insertion in the biomembrane, which will be
clearer for membrane proteins with a high degree of insertion in the
biomembrane or for transmembrane proteins. These observations
also help to identify an axis along the membrane protein that will be
parallel to the biomembrane surface and that differentiates the
predominately hydrophilic from the predominant hydrophobic sur-
face regions of the protein and that will tend to be aligned with
hydrophilic/hydrophobic regions of the membrane.

Once an orientation for the membrane protein is selected, the
next step is its insertion into the membrane. Early alternatives relied
on building the membrane around the protein or deleting a certain
amount of lipids from a pre-equilibrated bilayer, creating a void
into which the membrane protein could be placed. Both
approaches tend to lead to excessive perturbations into the overall
structure of the biomembrane and require careful equilibration.
More recently, several specialized methods have been developed
to ensure a smoother insertion of the membrane protein. Examples
include the InflateGRO methods [21, 41], GRIFFIN [42], and
GROMACS-based approaches such as Mdrun_hole [43] and
G_membed [44]. Alchembed [72] is another popular alternative
for membrane protein insertion, making use of soft-core potentials
to slowly push the lipids away from the membrane protein during
insertion. CHARMM-GUI also contains a functionality that
enables the inclusion of one membrane protein per biomembrane.
Its wide range of functionalities coupled to the ability to generate
membranes with different compositions make CHARMM-GUI a
popular starting point for generating custom biomembranes and
inserting the protein.

ii) Selection of Force Fields As described above, several force fields are currently available for
the simulation of membrane proteins inserted in a bilayer. The
study of membrane protein interactions with detail greatly
encourages the use of atomistic force fields, and these enable the
inclusion of all the main interactions formed along the protein
interface with detail, enabling also the inclusion of the effect of
the membrane and water. As reviewed previously, the major limita-
tion in terms of atomistic force fields has been lipid representation.
Presently, several atomic-level force fields able to describe a variety
of lipid molecular types with accuracy have been made available,
including CHARMM36, Lipid14, and SLipids, just to cite some of
the most popular and recent. Although the level of accuracy of
different alternatives can differ when performing extensive MD
simulation on lipid properties, for the interactions between mem-
brane proteins, alternatives as the ones mentioned would provide
excellent results. Consistency in the force field selection for protein
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and biomembrane is therefore presently the main issue to take into
account, as the parameters used to describe the amino acid residues
and lipid molecules should have been developed using a similar
approach, based on the same type of overall principles. Hence,
mixing different force field families and classes for protein and
membrane is highly discouraged.

Final choice often emerges from the specific software package
available to the user and his working knowledge. While some
software packages like GROMACS and NAMD offer the user the
possibility to choose from several different force fields, others like
CHARMMM and AMBER initially only supported their own spe-
cific force fields. Alternatives to convert topology files and input
parameters from one software package to another have been
increasingly made available, making it possible to use specific
force fields in other software packages. However, this process is
often difficult to master for the non-expert user, often still limiting
the final choice.

iii) Simulating the Protein

by Molecular Dynamics

Once the model system is prepared and force field and software are
selected, the molecular dynamics simulation can be performed.
This is normally run in a cuboid box, with periodic boundary
conditions along the biomembrane plane (xy), typically with an
integration time step of 1 or 2 fs (if bonds involving hydrogen are
kept constrained with specialized algorithms as SHAKE [73] or
LINCS [74]), and with a cutoff of 10–12 Å for the treatment of the
non-bonded interactions. Given the complexity of the model, and
the two phases that it comprises (water and biomembrane), special
care must be taken when starting the simulation. First, to prevent
disruption of the model system in the initial stages of the simula-
tion, a set of MMminimizations are normally recommended. These
normally start with a preliminary MM minimization in which all
heavy atoms are frozen and only hydrogen atoms are allowed to
optimize. Typically, in a second stage, the water molecules are
optimized, while the gross of the biomembrane and protein is
kept frozen. Subsequent steps involve the progressive release of
the constraints imposed in the system (e.g., protein side chains,
biomembrane tails, protein backbone, biomembrane heads, etc.),
ending in a fully free MM minimization of the full system. Only
after this stage is the system ready for MD simulation.

This normally starts with a stage in an NVT ensemble starting a
0 K, during which the temperature of the system is gradually
increased up to the desired simulation temperature (typically
298 or 310 K). The densities of the water and biomembrane are
evaluated through time, until equilibrated. The system is then
switched to an NPT ensemble (or a variation), and the simulation
continues at the desired temperature and pressure. The structural
stability of the components analyzed is monitored through time
through a RMSd analysis. Total simulation lengths of 20–500 ns
after equilibration are normally pursued.
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3.3.2 Analyzing

the Interactions

Depending on the specific software chosen, a variety of tools can be
used to analyze membrane protein interactions through MD simu-
lations. Common examples include the analysis of hydrogen bonds,
distances, radial distribution function, and solvent-accessible sur-
face areas. An important feature is the analysis of the hydrogen
interactions along the protein interface. Contrary to the static
representation of systems, MD simulations offer the opportunity
to assess the prevalence of specific hydrogen bonds during an entire
simulation, enabling the determination of dynamic properties
including average length and angle and their standard deviation,
average time during which the hydrogen bond is kept, maximum
occupancy, alternative hydrogen bonds involving the same group,
etc. Similar procedures can be used to analyze other interactions or
lengths, including the overall length and width of the protein,
difference between centers of mass of different proteins, differences
between average axis of α-helices, etc. [46].

Radial distribution function analysis is often applied to sample
the accessibility of specific functional groups along the interface to
solvent molecules, or the atoms from other molecular components.
In a radial distribution analysis, a number of increasingly larger
circles are traced around atoms or groups of reference, with increas-
ing size (typically by 0.1 Å) typically covering a range of different
radius from as much as 0–10 Å. Within each increasing circle, the
number of interacting molecules (e.g., water) is determined for
each recorded conformation of the simulation trajectory. From
these analyses, a probability density for the type of interactions
evaluated with distance emerges.

Another common property is the solvent-accessible surface
area. This property can be used to analyze a simulation of a
protein-protein biomembrane complex and determine the area of
a given amino acid residue that is in contact with the solvent or with
the biomembrane. SASA tools can also normally be adjusted to
estimate the area of a specific amino acid residue that is in contact
with other protein, the potential SASA lost upon protein-protein
interaction, or the percentage of surface of an amino acid residue
that is employed in the interaction, always from a dynamic perspec-
tive, as these quantities oscillate during a simulation. VMD [65] is a
popular molecular visualization tool used to analyze molecular
dynamics simulations. It contains a selection of built-in tools for
automated analysis of these and other properties. AMBER,
CHARMM, GROMACS also contain specific commands to ana-
lyze these properties.

Here, we described two identifiable processes. The first, assem-
bling the dataset prepared to characterize a MP database and to
potentially train an interfacial residues predictor. The processed
forms of the original .PDB files, the final dimer database, and the
description of the used structures from their original files will be
available for use and constitute a landmark for protein dimer study.
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The automated pipeline for the study itself is hereby explained in its
individual steps and will be made fully available for any user to
access it in an easy way. The second process was focused on special
techniques and advices when applyingMD to extra characterization
of structural and mechanistic features of membrane proteins of
particular interest for the user.

4 Notes

1. When adding hydrogens bonds, PyMOL [57] can also be used
in a simpler manner. To do this the PDB file must be loaded,
and the method “add_h” is called, adding the hydrogens. This
method was not employed due to not being as thorough
as VMD [65] and being of difficult employment on a Python-
integrated pipeline; however, it can be used for simpler
modifications.

2. Regarding the windowed function used to compute B-factors
with the influence of surrounding residues, it can also be used
for other purposes. The feature under scope can be different
from the B-factor. The window radius of residues and the
function that is employed on the values can be changed. This
aims at reproducing the influence of other residues on a given
residue.

3. The following command, having installed psiblast and down-
loaded the “non-redundant” proteins dataset, outputs a PSSM
for one chain.

psiblast_path -query file.fasta -evalue 0.001 -num_iterations

2 -db nr -outfmt 5 -out pssm_file_ chain_name.txt -out_-

ascii_pssm pssm_file__chain_name.pssm -num_threads 6

The output file can then be read to retrieve 42 PSSM-
derived features.
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Abstract

Membrane proteins (MPs) are key players in a variety of different cellular processes and
constitute the target of around 60%of all Food and Drug Administration–approved drugs.
Despite their importance, there is still a massive lack of relevant structural, biochemical
and mechanistic information mainly due to their localization within the lipid bilayer. To
help fulfil this gap, we developed the MEmbrane protein dimer Novel Structure Anal-
yser database (MENSAdb). This interactiveweb application summarizes the evolutionary
and physicochemical properties of dimeric MPs to expand the available knowledge on
the fundamental principles underlying their formation. Currently, MENSAdb contains
features of 167 unique MPs (63% homo- and 37% heterodimers) and brings insights
into the conservation of residues, accessible solvent area descriptors, average B-factors,
intermolecular contacts at 2.5Å and 4.0Å distance cut-offs, hydrophobic contacts, hydro-
gen bonds, salt bridges, π–π stacking, T-stacking and cation–π interactions. The regular
update and organization of all these data into a unique platform will allow a broad
community of researchers to collect and analyse a large number of features efficiently,
thus facilitating their use in the development of prediction models associated with MPs.

Database URL: http://www.moreiralab.com/resources/mensadb.

Introduction

Membrane proteins (MPs) account for around 15–39% of
the human proteome (1, 2). They assume a critical role

in a vast set of cellular and physiological mechanisms,
including molecular transport, nutrient uptake, toxin and
waste product clearance, respiration and signalling (3).

© The Author(s) 2021. Published by Oxford University Press. Page 1 of 10
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While roughly 60% of all Food and Drug Administra-
tion (FDA)–approved drugs target MPs, there is a shortage
of structural and biochemical data about them mainly
due to their localization in the lipid bilayer (4, 5). In
the last years, a daunting challenge of drug discovery
has been the development of compounds that can target
the ‘undruggable’ regions of MPs, enabling the modula-
tion of protein–lipid, protein–nucleic acid and protein–
protein interactions (PPIs) (6, 7). In this respect, being
able to characterize the structural and physicochemical
properties of MPs as well as their interactions and inter-
faces is essential to develop improved and more targeted
therapies as well as to discover new drug targets. Par-
ticular features of proteins, such as electrostatic interac-
tions (8), hydrophobic effects (9) or ‘hot-spot’ residues
(10–13), were shown to contribute to the affinity and
specificity of PPIs. Other well-characterized properties of
proteins are the evolutionary conservation and distribu-
tion of their amino acids. These two features contribute the
most to the prediction of functionally essential residues, as
highlighted by several publications (14–17). While many
studies have dealt with soluble systems, there is a signifi-
cant lack of in-depth analysis of MP complexes and their
interactions.

We present here the MEmbrane protein dimer Novel
Structure Analyser database (MENSAdb), the first interac-
tive web application exposing a comprehensive and thor-
ough array of fundamental features of dimer surfaces of
MPs and their interfacial regions. Users can easily access
a thorough, systematic analysis of sequence–structure rela-
tionships (Figure 1) based on a curated database of 201
protein dimers obtained from the Membrane Proteins of
Known 3D structure (MPSTRUC) (18). MENSAdb deliv-
ers tabular and graphical data formats that can be visually
explored for a large number of MP features based on con-
servation, accessible solvent area (ASA) descriptors, aver-
age B-factors, intermolecular contacts at 2.5Å and 4.0Å
distance cut-offs, hydrophobic contacts, hydrogen bonds,
salt bridges, π–π stacking, T-stacking and cation–π inter-
actions. Additionally, users can inspect differences in these
features between three distinctive residue classes: (i) non-
surface, (ii) surface and non-interfacial and (iii) surface and
interfacial. The web server relies on a custom front-end
application that provides the results to the user. The result-
ing knowledge and full database can be easily assessed and
downloaded.

Our main goal with the integration of these features into
a single platform is to assist the development of predic-
tion models associated with MPs, either for classification
or for regression tasks, as well as to help researchers to bet-
ter understandMP interfacial characteristics. Our database

is freely available at www.moreiralab.com/resources/
mensadb.

Materials and methods

Data collection and pre-processing
Experimental structures of 167 unique transmembrane
(TM) proteins that included β-barrel TMs and α-
helix TMs were obtained from MPSTRUC (http://blanco.
biomol.uci.edu/mpstruc/) (18). These correspond to struc-
tures achieved mainly from X-ray crystallography (91%)
or electron microscopy (4%), with a resolution below or
equal to 4.50Å, and less frequently from nuclear magnetic
resonance (5%). We discarded all non-TM, monomeric
and monotopic (not embedded in the lipid bilayer) pro-
teins. Pre-processing of the database was performed by
excluding dimers in which one of the chains was a sol-
uble protein, single MPs interacting with small soluble
peptides (protein–peptide), pores, protein–antibodies (since
antibodies are soluble proteins) and proteins with small
organic or non-organic ligands (protein–ligand). In the pre-
vious case, the complex was maintained if the presence
of more than one MPs chain was observed. Additionally,
structures with unknown residues or with many incom-
plete amino acids were also excluded, as were structures
with interfaces interacting highly with lipids. Sequences
were filtered to ensure at most 35% sequence redundancy
in each interface by using the PISCES web server (19).
The final database was composed of 63% (n=105/167)
homodimers and 37% (n=62/167) heterodimers. From the
Protein Data Bank (PDB) files, all possible dimer combina-
tions were extracted for the structures in which the num-
ber of chains was higher than two (functional high-order
oligomers) and it is constituted by 201 protein dimer com-
binations (Supplementary File 1). The selected structures
were then subjected to further processing. In particular, we
(i) identified and removed residues outside the TM domain
according to the MPSTRUC (18) annotation of α-helix and
β-barrel amino acids available in the PDB (20) in conjunc-
tion with visual inspection; (ii) removed unnecessary het-
eroatoms; (iii) reversed mutated non-standard amino acids
(e.g. selenomethionine was mutated to methionine); and
(iv) added hydrogens to the structures. In-house PyMOL
(20) and Visual Molecular Dynamics (VMD) scripts (21)
were used to perform these pre-processing steps.

Definition of interfacial and non-interfacial residues
The relative solvent accessibility (RSA) defined as the ratio
between an amino acid ASA value and its correspond-
ing area in a Gly-X-Gly peptide was calculated using an
in-house pipeline with Database of Secondary Structure
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Figure 1. Overall representation of MENSAdb. Boxes A–F illustrate the steps involving the data collection, evolutionary conservation, B-factor,
accessible surface and PPI analysis. Each box contains an example of the proteinic motifs under the scope of this work. (A) Interface between
chains A and B of the STRA6 receptor for retinol uptake in Danio rerio (PDBid: 5SY1) (55). (B) Representation of evolutionary conservation of protein
motifs (purple being more conserved and yellow less conserved) in the chain P of a hedgehog auto-processing domain in Drosophila melanogaster
(PDBid: 1AT0) (56). (C) and (D) Average B-factor and complexed accessible surface area, respectively, of the chains A and B of 5SY1 (55). (E) Salt
bridge between GLU120 and ARG161 of the chain Q of the sucrose-specific porin (PDBid: 1A0T) of Salmonella typhimurium (57). (F) The spectrum
of π systems predicted: (A1 and A2) T-stacking motif between TRP25 (chain L) and TRP255 (chain M) from Rattus norvegicus S100B protein (PDBid:
1XYD) (58) is represented from two perspectives; (B) illustration of a π–π stacking structure between TRP262 (chain A) and TRP262 (chain B) from
Archaeoglobus fulgidus CDP-alcohol phosphotransferase (PDBid: 4O6M) (59) and (C) cation–π interaction between HIS275 (chain B) and TRP175
(chain C) from Escherichia coli formate dehydrogenase-N (PDNid: 1KQF) (60).

assignments for all Proteins entries (DSSP) (22). Residues
above a 0.20 RSA cut-off were considered as surface
residues (23). We obtained 55 008 possible surface residues
from a total of 91 861, while the remaining ones were
considered core residues. Secondly, we considered those
for which the pairwise distance between any atom of chain
A and any atom of chain B was below 5Å as interfacial
residues, splitting surface residues into two classes: inter-
facial (15 277 residues) and non-interfacial ones (39 731
residues).

Determination of sequence and structural features of all
residues
Evolutionary conservation of all sites was calculated using
the Jensen–Shannon divergence (JSD) measure, a sym-
metrized and smoothed version of the Kullback–Leibler

divergence (24), of the Position-Specific Scoring Matrix
(PSSM), which itself was calculated with a local deploy-
ment of PSI-BLAST against the NCBI non-redundant
database with parameters num_iterations = 3 and evalue
= 0.001 (25). Equation 1 was used to quantify the simi-
larity between two probability distributions and compares
the amino acid distribution observed in PSSM pia with a
background distribution fa.

JSD=H
(pia+pa

2

)
− 1

2
H(pia)−

1
2
H(fa) (1)

H(.) denotes the entropy of amino acid distribution. The
code provided by Capra et al. was introduced into the
pipeline due to its high performance in comparison with
other methods (16). This metric works on the premise that
the highest JSD value corresponds to a more conserved
residue. We tested three different background distributions,
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BLOSUM62 (the PSI-BLAST default one), SLIM (26) and
bbTM (27) to assess which one of them was the most suit-
able for MPs interface prediction. SLIM is a non-symmetric
matrix optimized for TM protein segments, whereas bbTM
is a set of matrices optimized for β-barrel proteins that uses
three different matrices (one for intracellular segments, one
for extracellular segments and another for TM residues).
Herein, we only used the matrix developed for TM seg-
ments, since the remaining residues were already excluded
from the analysis. We also generated a new column named
‘appropriate JSD’ in which we selected SLIM and bbTM
depending on the presence and absence of an α-helix or
β-barrel protein, respectively.

DSSP was used to calculate the RSA not only in the com-
plexed form but also in the monomeric form, which were
then multiplied by Sander and Rost amino acid constants
(ALA: 106, ARG: 248, ASN: 157, ASP: 163, CYS:135,
GLN: 198, GLU: 194, GLY: 84, HIS: 184, ILE: 169, LEU:
165, LYS: 205, MET: 188, PHE: 197, PRO: 136, SER: 130,
THR: 142, TRP: 227, TYR: 222 and VAL: 142) (28) to
calculate ASA of each amino acid, ‘i’, in the complexed
(compASAi) and monomeric (monASAi) systems, respec-
tively. These values were also used to calculate ∆ASAi

(Equation 2).

∆ASAi = compASAi−mon ASAi (2)

For further clarification, we also listed all relASAi values
(Equation 3), which allows the differentiation of residues
with equal ∆ASAi but with different absolute monomer
ASA values (29–31).

rel ASAi =
∆ASAi

mon ASAi
(3)

We also extracted the temperature factor (B-factor)
value for each residue from the PDB file of the anal-
ysed structures (obtained directly from MPSTRUC) using
Biopython (32).

Determination of structural descriptors of MP–protein
interface
Close and hydrophobic contacts, hydrogen bonds, salt
bridges and π-interactions (π–π stacking, T-stacking and
cation–π interactions) were described using BINANA—
Binding Analyzer, a Python-implemented algorithm that
characterizes protein complexes (33). Close contacts cor-
respond to the number of pairs of atoms formed within 2.5
and 4.0Å radius.

Data treatment
Since the composition of the database was not equally dis-
tributed across the three classes of MPs presented here, we

defined a correction factor (Cfactor), Equation 4, based on
the concept of propensity score calculation, as shown by
Huang (34). This factor is defined as the ratio between
the frequency of occurrence of residue i in each one of the
classes (fiCLAS) and the frequency of occurrence of the total
number of amino acids in that class (fiTOT). The obtained
MP-class-specific Cfactor was used to correct the various
metrics described in the ‘Results’ section by multiplying
them by their respective Cfactor except that of relASA.

Cfactor =
fiCLAS
fiTOT

(4)

Statistics
For all plots, residues are ordered by increasing hydropho-
bicity based on the Kyte and Doolittle hydropathy index
(35). Descriptive statistics such as three quartiles (Q1, Q2
and Q3), average and standard deviation were obtained
using Pandas, a Python library (36). P-values were calcu-
lated through SciPy (https://docs.scipy.org/) with the inde-
pendent t-test and one-way ANOVA. Further statistics
were calculated for amino acids sets split according to the
hydrophilic and hydrophobic potential as (i) charged—Asp,
Glu, Lys and Arg; (ii) positively charged—Lys and Arg;
(iii) negatively charged—Asp and Glu; (iv) polar—Ser, Thr,
Asn, Gln, Tyr and His; (v) non-polar—Ala, Val, Ile, Leu,
Met, Phe and Trp; aromatic—Phe, Trp and Tyr. Cys, Gly
and Pro were not included in those subsets.

Code availability
MENSAdb code used for all the structural and physico-
chemical analyses of MP dimers is freely distributed as
a GitHub repository at https://github.com/MoreiraLAB/
mensadb-open. The available Python code allows users to
perform feature extraction using a pre-processed PDB file
easily. For detailed information on all the pre-processing
steps (trimming of non-TM residues, removal of het-
eroatoms, mutation of exotic residues, modelling of incom-
plete structures and dimer extraction from the struc-
ture files), please see Preto et al. (37). The addition
of hydrogens was implemented within the pipeline avail-
able in the GitHub repository. The original code was
tested in a 64-bit version of Linux Ubuntu 18.04 (Intel
Xeon 40 Core 2.2GHz, 126 GB RAM) and required
the installation of Python version 3.7.2 with the fol-
lowing free and open-source packages: NumPy≥1.16.1,
pandas≥0.23.4, vmd-python≥3.0.6, dit≥1.2.3, Biopy-
thon≥1.7.3 and standalone software: BLAST+≥2.9.0,
BINANA≥1.2.0, DSSP≥3.0.7, MGTools≥1.5.6 and
AutoDock≥3.0.7. The JSD measure we determined using
a non-redundant protein database for comparison (for
download options, please see https://ftp.ncbi.nlm.nih.gov/
blast/db/).
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Database development
Data resulting from this work are available through MEN-
SAdb (www.moreiralab.com/resources/mensadb), without
the need for login, registration or license, a rich data
visualization web application built using Python’s ‘Flask’-
based ‘Dash’ visualization framework (by ‘Plotly’). MEN-
SAdb’s real-time query features are supported by a Mon-
goDB back end, which enables the application to query,
filter and aggregate the data in multiple meaningful
ways. To boost performance, a ‘Flask’ caching layer is
applied to support the complex queries required for visu-
alization. To further ensure performance and security
and support high-availability scenarios, all HTTP traffic
directed at MENSAdb is served by the NGINX high-
performance webserver and load balancer, which then
routes it to multiple MENSAdb application instances.
The final database of MENSAdb containing all the raw
data of structural and physicochemical properties of
MPs is publicly available from Figshare (Data Citation
1; dx.doi.org/10.6084/m9.figshare.7808909), and the full
membrane dimer structures listed according to PDB code
can be found in Supplementary File 1.

Results and discussion

MP dimer composition and characteristics

The overall residue distribution in Figure 2A and B
shows that MPs have a higher content of hydrophobic

and aromatic residues, such as leucine (13.2%), alanine
(9.4%), valine (8.6%), glycine (8.4%), isoleucine (8.3%)
and phenylalanine (6.9%) that account for 54.8% of all
detected residues. For a better clarification the percentages
presented in this sub-section, oppositely to remaining sub-
sections are listed without correction factor. Indeed, these
residues were shown to contribute the most to the accuracy
of machine learning (ML) models developed for predict-
ing protein–protein binding sites (38). This high content
in hydrophobic residues, also previously reported in other
studies (14, 38–43), is essential since it favours the thermo-
dynamic interactions with the lipid bilayer. Figure 2A and B
also show that GAS residues are significantly enriched at
the MPs core (12.3%) and non-interfacial surface locations
(8.5%), in comparison to interfacial surface (3.0%). These
small residues are the strong driving force for membrane
folding (44, 45). As expected, charged residues (arginine,
aspartate, glutamate and lysine) are typically excluded
from the MPs interface (surface: 7.4%; core: 2.6%;
interface: 2.3%).

Evolutionary conservation of protein sequences is a key
feature to better understand and characterize the function-
ally and structurally important residues at PPIs. Herein,
we used three different background matrices to calculate
conservation, namely BLOSUM62 (PSSM_JSD), SLIM and
bbTM as well as the ‘appropriate_JSD’. Figure 3 illustrates
their distribution split into three different protein regions:
core/non-surface, interfacial surface and non-interfacial

Figure 2. Panel of selected structural and physicochemical properties of MPs and their interactions. (A)—residue distribution of the translocator
membrane protein (PDBid: 4UC1) from Rhodobacter sphaeroides (61). Amino acids are coloured according to the protein region within which they
are embedded: grey—non-surface residues; green—non-interfacial surface residues; blue—interfacial surface residues. (B)—residue composition of
the database. The correction factor described in section ''Data treatment'' of Material andmethods was not applied here. (C)—normalized evolution-
ary conservation scores. (D)—normalized B-factor scores. (E)—normalized relASA. (F)—normalized intermolecular contacts at 4Å. (G)—normalized
hydrophobic contacts.
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Figure 3. Conservation JSD distribution using BLOSUM62, SLIM, bbTM and the appropriate JSD background matrices (SLIM and bbTM were con-
sidered for α-helix and β-barrel proteins, respectively). Mean values are represented as a brown diamond. The results from the multiple pairwise
test against all three background matrices yielded non-significant.

surface. The three different background matrices yielded
similar results, which were non-significant according to
multiple pairwise test. The same pattern was observed
for all, with conservation being lower for surface, fol-
lowed by interface and then protein core. As the used
background matrix does not change the main conclusions
about conservation at a MP dimer, we decided to follow
up with the BLOSUM62 matrix for an easier implemen-
tation by the reader. Figure 2C reveals that for MPs,
the more conserved JSD normalized values were found in
the non-surface (0.05±0.03) and in the interface (inter-
face: 0.04±0.02, surface non-interfacial 0.03±0.02). The
highest differences were for the GAS residues of the core

region (core: 0.06±0.03, surface: 0.03±0.02; interface:
0.03±0.02) and for the non-polar residues at protein
core (core: 0.05±0.02; surface: 0.04±0.02; interface:
0.05±0.03). These results, albeit not remarked different,
support that the core and the interface are the most con-
served regions, granting the necessary structural stability at
specific PPIs, as previously observed (46). Additional results
are available in the ‘Conservation’ option in the MENSAdb
webserver.

B-factor (Figure 2D), related to the displacement of an
atom from its reference position due to thermal motion and
positional disorder (47), is typically used in a variety of
applications including as a measure of atoms mobility for
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PPIs prediction (48, 49). We observed a decrease in nor-
malized average B-factor values of the interfacial residues
compared to the non-interfacial surface ones (5.71±6.10
Å2 vs 6.25±6.16 Å2), putting their average closer to
the non-surface MP residues (6.02±5.69 Å2). Also, pos-
itively charged residues are one of the most dissimilar
ones (B-factor core: 1.19±0.96 Å2; B-factor surface:
5.34±3.72 Å2; B-factor interface: 3.74 ± 2.86 Å2). This
is in agreement with the fact that residues participating
in PPIs are usually less flexible in comparison with the
ones from the surface, which is reflected in lower B-factor
values (49–51). Leucine, very conserved at the interface,
seems to also have a higher mobility at PPI-associated loca-
tions (surface: 12.66±9.86 Å2; interface: 12.25±9.52 Å2

vs core: 9.88±6.83 Å2). Previous studies have suggested
that leucine and isoleucine have an important role in flex-
ible loop-mediated PPIs (52). Users can find illustrative
plots of average B-factor values (by residue) in the ‘Average
B-factor’ option in the MENSAdb web server.

The ASA descriptors detect protein regions that,
when interacting or aggregating, lose solvent accessi-
ble area, while relASA indicates the relative exposed
solvent surface area. MENSAdb and Figure 2E show
that relASA, which is the fraction of ∆ASA by monASA,
is increased upon complex formation. These seem to
be particularly relevant for non-polar residues (core:
5.27±19.78 Å2; surface: 0.00±0.09 Å2; interface:
52.01±32.49 Å2). Additional and detailed information
about ‘Monomer Accessible Surface Area’ (monASA), ‘Com-
plex Accessible Surface Area’ (compASA), ‘Delta Accessi-
ble Surface Area’ (∆ASA) and ‘Relative Accessible Sur-
face Area’ (relASA) can be viewed in MENSAdb web
server options.

Characteristics of interfacial residues

Identification and characterization of critical features of
membrane PPI dimers can provide important clues to
pinpoint residues or interactions, important for drug
development. For this, additional interfacial structural
characteristics were quantified to better understand MP
dimers. Concerning the intermolecular atomic contacts per
amino acid type, we observed that the aromatic residues
(Figure 2F, corrected contacts at 4Å: 0.56±0.61) aremuch
more prone to establish close contacts at short distance
than other residues. Arg was also highlighted in our results
(corrected contacts at 4Å: 0.75±0.82). For further infor-
mation, check the ‘Interactions at 2.5 Angstroms’ and
‘Interactions at 4.0 Angstroms’ options in the MENSAdb
web server.

Hydrophobicity involving large aromatic residues is
key in MP dimers and aromatic residues, and non-polar

residues show a high number of hydrophobic con-
tacts (Figure 2G, aromatic: 0.25±0.34 and non-polar:
0.23±0.32). In particular, Phe and Tyr establish π–
π stacking, T-stacking and cation–π interactions in dif-
ferent dimers. Cation–π interactions are also partic-
ularly relevant for Arg (for a closer detailed view,
please see the ‘Hydrophobic Interactions’, ‘Pi–Pi Inter-
actions’, ‘T-Stacking Interactions’ and ‘Cation–Pi Interac-
tions’ options in the MENSAdb).

Additionally, although MP residues reside in a non-
polar (low dielectric) environment (8, 53), both salt
bridges between charged residues and hydrogen bonds
through almost all amino acids are common to stabilize
the interface and promote complex formation. Hydro-
gen bonds measured here involving both side chains
and backbone are particularly important not only for
charged residues (0.01±0.03) but also for aromatic ones
(0.01±0.02), in particular tyrosine (0.01±0.03) and tryp-
tophan (0.01±0.01). For a closer detailed view, please see
the ‘Salt-bridge Interactions’ and ‘Hydrogen-bond Interac-
tions’ options in the MENSAdb web server.

All different values presented herein showed statistical
relevance.

All the results presented herein were obtained under the
assumption that the interfaces in this study were biolog-
ically relevant, and utmost care was taken to ensure this
(Supplementary File 1). Further limitations could arise from
possible crystallographic artefacts.

MENSAdb interface and usability

The developed application enables users to explore the
MP-dimer database (Figure 4). Access to evolutionary and
physicochemical features is provided through a drop-down
menu on the main page (Figure 4A). The data are presented
in downloadable box plots for visual inspection that can
be easily changed, for example, by filtering, zooming or
panning (Figure 4B). Besides, data-associated statistics are
also accessible in a tabular format [Q1, Q2, Q3, Aver-
age (Avg.) and Standard Deviation (Std.)] (Figure 4C).
Stats and raw data can be downloaded as a .csv file using
the export button for further reuse and integration in
other studies. Users can also filter data for each selected
feature by classification (non-surface, non-interfacial sur-
face and interfacial surface) or residue type (Figure 4D).
The database also has an ‘Information’ tab with general
information for each included feature and a brief descrip-
tion of the underlying methods for their acquisition and
pre-processing to help first-time users. MENSAdb will
continue to be updated at least annually, and we expect,
shortly, to integrate a new model for the prediction of
MP interfaces.



Page 8 of 10 Database, Vol. 00, Article ID baab013

Figure 4.Main landing page of MENSAdb web server. Screenshot of the home page (A)—quickly query by evolutionary or physicochemical features.
(B)—In the visualization tab, the results are shown in a graphical format. Users can easily change visual properties (opacity, size, jitter, gap and
padding) by interacting with the lower panel. (C)—Statistics tab displays the data in a tabular format with associated metrics (Q1, Q2, Q3, Average-
Avg. and Standard Deviation-Std.). Stats and raw data can be downloaded using the Export button in the top right corner, as a .csv file. (D)—In the
left panel, users can filter graphic data by classification and residue type.

MENSAdb is the first comprehensive resource dedicated
explicitly to exposing the evolutionary and physicochemi-
cal features of dimeric MP structures. Our main goal with
the integration of these features into a single platform is to
assist the development of experimental and computational
assays, relevant for a better understanding of dimeric MP
interactions and interfaces of this largest but poorly stud-
ied type of proteins. In the last years, some studies used

evolutionary and physicochemical properties similar to the
ones provided in our database to train ML for the predic-
tion of MP complex binding sites (38, 46, 54). Neverthe-
less, as far as we know, herein we offer original features
such as the ones from membrane PPI analysis not yet used
or provided by other databases more dedicated to MP
structures (PDBTM, OPM,MemProtMD and, MPSTRUC)
or classification (TCDB).
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Supplementary data
Supplementary data are available at Database online.
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Nomenclature

5-HT Neurotransmitter serotonin
5-HT1AR 5-HT1A receptor
5-HT2AR Serotonin 5-HT2A receptor
ADMET Absorption, distribution, metabolism, excretion
and toxicity
AI Artificial intelligence
AMINO Automatic mutual information noise omission
ANN Artificial neural network
AOP Adverse outcome pathways
BIGP Bi-gram probabilities
BLAST Basic local alignment search tool
BoW Bag of words
BRDTI Bayesian ranking prediction of drug-target
interactions
CADD Computer aided drug design
CMA Correlated mutation analysis
CNN Convolutional neural network
CRD: Cysteine-rich-domain
Cryo-EM cryo-Electron Microscopy
DA Drug abuse
DKPES 3,12-Diketo-4,6-petromyzonene-24-sulfate
DL Deep learning
DNN Deep neural network
DT Decision tree
DTI Drug-target interaction
ECD Extracellular domain
ECL1-3 Extracellular loops 1-3
ERT Extreme randomized trees
FDA Food and drug administration
FTT Failure to thrive
FZD Frizzled
GAFS Genetic algorithm-based feature selection
GAIN G-protein-coupled-receptor
Autoproteolysis-INducing
GNN Graph neural network
GPCRdb G protein-coupled receptors database
GPCRs G protein-coupled receptors
HMM Hidden Markov model
HTS High-throughput screening

ICL(1–3) Intracellular loops 1–3
IFP Interaction fingerprints
J48 Decision tree
kNN k-nearest neighbor
LBDD Ligand-based drug design
LD50 Lethal dose 50%
MD Molecular dynamics
MDS Multidimensional scaling
MIE Molecular initiating events
ML Machine learning
MLP Multilayer perceptron
MP Membrane protein
MSA Multiple sequence alignment
NB Naïve bayes
nDCG Normalized discounted cumulative gain
NLP Natural language processing
NMR Nuclear magnetic resonance
NPSA Non-polar surface area
PCA Principal component analysis
PDB Protein data bank
PPI Protein-protein interactions
PSA Polar surface area
PsePSSM Pseudo-position PSSM
PSSM Position-specific scoring matrix
PT Perturbation theory
PTM Post-translational modifications
QSAR Quantitative structure-activity relationship
RAVE Reweighted autoencoded variational bayes for
enhanced sampling
RC Reaction coordinate
RF Random forest
RL Reinforcement learning
RVM Relevance vector machine
SBDD Structure-based drug design
SMO Smoothened
SVM Support vector machine
TF-IDF Term frequency-inverse document frequency
TM Text mining
TM1–7 Transmembrane segments 1–7
TMH Transmembrane helix domain
VFT Venus flytrap
VS Virtual screening

1 Introduction

1.1 GPCRs structural characterization

G protein-coupled receptors (GPCRs) represent the largest family of Membrane Proteins (MPs) (Rosenbaum et al., 2009) and play an
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intracellular coupling to G proteins and Arrestins, induces the activation of various downstream signaling pathways, making them
attractable drug targets (Sangmin et al., 2018).

GPCRs are composed by seven TransMembrane α-helices (TM1–7), separated by three loops on each side of the cellular membrane,
three ExtraCellular Loops (ECL1–3) and three Intracellular Loops (ICL1–3) (Lu and Wu, 2016). Additionally, GPCRs possess both an
extracellular N-terminus and a C-terminus located in the intracellular space (Lindner et al., 2009) as well as two cysteine residues (one
on ECL1 and one on ECL2) that form a disulfide link responsible for conformational stabilization (Bockaert and Pin, 1999). According
to the Glutamate, Rhodopsin, Adhesion, Frizzled/Taste, Secretion system (Schiöth and Fredriksson, 2005), this protein superfamily
can be subdivided into five subfamilies: class A (rhodopsin-like receptors), class B1 (secretin receptors), class B2 (adhesion receptors),
class C (glutamate receptors) and class F (Frizzled (FZD) receptors) (Lu and Wu, 2016). Despite their common architecture, major
structural differences exist between the subfamilies and therefore they do not share any overall sequence homology (Lindner et al.,
2009; Rosenbaum et al., 2009; Katritch et al., 2013). For example, the N-terminus is variable in terms of length, sequence and shape
(Lindner et al., 2009; Unal and Karnik, 2012; Venkatakrishnan et al., 2013). For class A GPCRs it is usually shorter (e.g., only seven
residues for adenosine A2A receptor, (Lindner et al., 2009)) whereas for class B receptor and class C receptors it can be very long
(ranging from 100 to 4000 residues) (Krishnan et al., 2016). Another prominent feature of the class B receptor N-terminus is the formation
of a network of disulfide bridges (Gether, 2000). The adhesion receptor family additionally contains a proteolytic domain (so-called
G-protein-coupled-receptor Autoproteolysis-INducing (GAIN)-domain) for autocleavage (Lagerström and Schiöth, 2008; Krishnan et
al., 2016), which is unique among the GPCR superfamily. Class F receptors are characterized by Cysteine-Rich-Domain (CRD) in their
extracellular space (Zhang et al., 2018; Wright et al., 2019).

GPCRs react to very diverse stimuli spanning a multitude of molecules such as photons, ions, odorants, nucleotides, amino-acids,
peptides and even other proteins (Bockaert and Pin, 1999; Coleman et al., 2017). As such, the classical ligand-binding domain (often
also called orthosteric binding pocket) must be structurally diverse among them and requires several factors to provide recognition of
specific ligands (Katritch et al., 2012). For class A GPCRs, ligands are recognized by a binding pocket, located in the transmembrane
region near the intracellular space, while for class B, ligands are recognized by transmembrane domains and extracellular domains (ECDs)
(secretin-like receptors) (Coleman et al., 2017). For class C receptors the ligand-binding pocket is located on the ECD that contains the
Venus FlyTrap (VFT) motif (Neumann et al., 2008; Basith et al., 2018a). For class F GPCRs, both subgroups Smoothened (SMO) and
Frizzled (FZD), the CRD and a linker domain on the ECD are involved in ligand-recognition (Basith et al., 2018a).

The majority of approved drugs target mainly the orthosteric binding site. This is due to the fact that orthosteric sites usually are
wide open and easily accessible from the extracellular region, without needing to penetrate the membrane (Chan et al., 2019). However,
recently, additional ligand-receptor interactions were revealed such as positive and negative allosterism, inverse agonism, biased signaling
and multimeric receptor interactions which complicates the traditional ligand-binding principle (Lane et al., 2017; Chan et al., 2019). The
traditional orthosteric site of GPCRs is located near the extracellular region between the ECL2 and a highly conserved W6.48 on TM6
(Chan et al., 2019). The ECL2 plays a critical role in ligand recognition, access and selectivity (Dror et al., 2011; Zhang et al., 2015a).
For class A GPCRs, lipophilic ligands get in on the orthosteric site through the “lid” formed by the N-terminus and ECL2 (Basith et al.,
2018a), while for class B receptors, which are mainly targeted by peptides, a more solvent-accessible binding pocket is required in order to
provide enough space and flexibility for their modulators (Liang et al., 2017).

Furthermore, for class A GPCRs, several structural motifs were also identified, such as the “ionic lock,” an interaction between R3.50
of the DRY motif on TM3 with D/E3.49 and D/E6.30 (Ballesteros et al., 1998; Moreira, 2014), a hydrophobic arginine cage on TM3
(positions 3.46 and 6.37) that restrains the absolute inactive conformation of R3.50 (Prioleau et al., 2002; Moreira, 2014), the NPxxYxF
motif on TM7 (Prioleau et al., 2002; Moreira, 2014) and the rotamer toggle switch (Venkatakrishnan et al., 2013; Moreira, 2014).
Upon ligand activation, aromatic residues on TM6, which detect the binding of a ligand, undergo spatial movements in rotamer angles
triggering the cleavage of the ionic lock (Preininger et al., 2013; Lu and Wu, 2016; Manglik and Kruse, 2017). The cluster of aromatic
residues on TM6 around W6.48 are part of the CWxP motif that undergoes a conformational rearrangement pointing from towards TM7
(inactive state) towards TM5 (active state), (Visiers et al., 2002; Moreira, 2014). For some ligands, extracellular loops are also relevant
for ligand-binding, especially ECL2, which is the most structurally variable loop in the extracellular region (Flood, 1990; Karnik et al.,
2003; Katritch et al., 2012). Residues on TM2 were also reported to interact with orthosteric ligands (Chan et al., 2019).

While X-ray crystallization of many class A receptors has significantly increased the understanding of the structural mechanisms of
receptor activation, for class B receptors there is still a lack of solved structures due to the large N-terminal ECD (Krumm and Roth,
2020). Many of these structural microdomains already described for class A are absent for class B receptors. However, it is known that
peptide binding to class B receptors causes rearrangement of the ECL2 (Krumm and Roth, 2020). As reported for class B1 GPCRs,
peptide-ligands are located above a central polar network in the presence of waters and interacting with a conserved residue with TM5 and
TM6 (Krumm and Roth, 2020; Liang et al., 2020; Ma et al., 2020). The large ECD possesses a three-layer α-β-β/α-fold, which is also
involved in peptide binding (Krumm and Roth, 2020). It can be assumed that similarly to class A receptors, class B receptor activation
leads to an outward movement of TM5 and TM6 (Krumm and Roth, 2020). Class C receptors possess, besides VFT on the ECD and CRD
(except for the GABAB receptor), the further unique characteristic to mandatory form homo- or heterodimers with the VFT upon their
activation (Chun et al., 2012). In the apo-state the lobes of the VFT oscillate between an open and closed conformation. As soon as a ligand
(e.g., glutamate) binds to one lobe, it stabilizes the closed conformation by interactions with the second (Chun et al., 2012). The molecular
mechanisms of activation of class F receptors was also not yet studied in detail but in a recent study a molecular switch was identified,
consisting of basic amino-acids on TM6, similar to what can be observed for class A receptors (Wright et al., 2019). Depending on the
effect provoked on the basal activity of receptors and the active conformation that underlies the functional activity of the GPCRs, a drug
can be defined as an agonist (a drug capable of enhancing the activation of GPCRs), an inverse agonist (a drug described as a ligand that
changes the equilibrium towards the inactive state and thereby inhibits the basal activity) or an antagonist (a drug that blocks the activation
of GPCRs) (Wootten et al., 2018; Diez-Alarcia et al., 2019).
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1.2 Medical and biological importance of GPCRs

Over- or malfunctioning of GPCRs leads to severe pathologies such as retinitis pigmentosa (rhodopsin receptors), cardiac diseases
(beta-adrenergic receptor polymorphisms), nephrogenic diabetes insipidus (arginine vasopressin receptor 2), familial hypocalciuric
hypercalcemia (calcium-sensing receptor), atopic asthma (cysteinyl leukotriene receptors), neuropsychiatric and neurodegenerative
diseases such as Parkinson’s disease, Huntington’s disease and schizophrenia (Jaber et al., 1996), and many more (Zalewska et al., 2014).
Mostly, these are caused by mutations in the coding sequence that lead to either gain-of-function or loss-of-function of the receptors. Over
700 mutations are known to change GPCR function and subsequent signaling (Zalewska et al., 2014).

GPCRs are the largest druggable class of biomolecules, with over 35% of the United States Food and Drug Administration
(FDA)-approved drugs (Jabeen and Ranganathan, 2019). In 2016, 460 GPCR-targeting drugs of a total of 1286 were approved by the
FDA (Chan et al., 2019). Of these drugs 460 drugs, approximately 94% target class A GPCRs, 4% class B, 2% class C and F from a total
of 108 targeted-GPCRs (Chan et al., 2019). The most frequent categories of GPCR-drugs are the ones used as analgesic, schizophrenia,
antiallergic and antihypertensive (Chan et al., 2019). As such, it is also not surprising that GPCRs possess a broad and diverse function in
cancer and its metastatic progress (e.g., protease-activated receptors) (Arakaki et al., 2018). Nevertheless, despite the success of GPCRs
as therapeutic targets, there are still currently only nine antibodies/anticancer drugs on the market that specifically target GPCRs (Usman
et al., 2020). Moreover, the discovery of GPCRs as a highly complex network of interactions (either as dimeric or oligomeric structures),
has led to a paradigm shift in the last few years, since it unfolds the already large array of targets into a much broader landscape. By
including their potential combinations in multimeric forms, GPCRs can behave differently towards ligands, in comparison to the individual
counterparts (Barreto et al., 2020a,b). From the over 1000 estimated genes coding for unique GPCRs in the human genome (Nemoto
et al., 2016), 108 receptors are FDA approved drug targets while for around 100 orphan receptors neither their physiological function
nor endogenous ligand is yet known (Gloriam et al., 2007; Chung et al., 2008; Fang et al., 2015; Hauser et al., 2017; Jabeen and
Ranganathan, 2019). The main tasks of drug development today are associated with the deorphanization of GPCRs and GPCR-multimeric
structures, understanding the pathophysiology of known GPCR-related diseases and the application of drugs not only to monomeric but
also to dimeric or oligomeric structures.

1.3 GPCRs structures available

The number of experimentally solved three-dimensional (3D) GPCR structures has increased in the last few years due to technological
improvements both in the crystallography and Cryo-Electron Microscopy (Cryo-EM) fields. Since a large number of in silico methods
require prior 3D knowledge of protein and/or drug, this increment boosted not only the number of structural and dynamical studies but also
broader approaches that use Artificial Intelligence (AI) algorithms to extract and process all the information available in these structures.

Known 3D structures are generally deposited in Protein Data Bank (PDB), two other GPCR-specific databases are also available: the
G Protein-Coupled Receptor database (GPCRdb) (Pándy-Szekeres et al., 2018) and the GPCR-EXP (Chan et al., 2018), providing a
more organized and detailed information about the current available structures. Both GPCRdb and GPCR-EXP provide predicted structures
from homology model protocols for receptors, or different activation states of receptors, that are still not available (Chan et al., 2018;
Pándy-Szekeres et al., 2018). In September of 2020, about 500 GPCR structures were available in PDB, compared to the 154 structures
available in 2015. Considering all five subfamilies: there are ~ 80 unique receptor structures, ~ 300 unique receptor-ligand complexes,
35 unique receptor-G-Protein complexes and 4 unique receptor-Arrestin complexes. Most of these structures are from Class A receptors,
where structures from Secretin, Glutamate and FZD subfamilies start to appear. Experimentally determined structures are not yet available
for classes B2, D1 and Taste.

1.4 Why is AI appropriate to tackle GPCRs under the scope of finding new therapies?

AI is not the first candidate when considering computational approaches to tackle GPCRs, since Molecular Dynamic (MD) simulations
and/or docking protocols are widely explored in the literature (Velgy et al., 2018; Ribeiro and Filizola, 2019; Zou et al., 2019) (Fig. 1).
Although effective and highly detail-oriented, these approaches may suffer from problems similar to those of non-in silico methods as these
techniques generally focus on understanding a single GPCR or GPCR-ligand interaction. Regarding these approaches, it is often difficult
to generalize a protocol that can, although unchanged, be quickly used to test other GPCRs and ligands of interest. In this respect, one of
the strongest traits of AI is its ability to handle a massive amount of data.

AI is a field that started with the goal of programming a machine to mimic human intelligence. To accomplish this goal, AI uses
algorithms that allow the machine to perform human-like tasks like learning, knowledge representation and even abstract thinking (Minsky
et al., 1980). As such, the capacity to deal with large amounts of data, as well as the increase in computational power, boosted the usage
of AI to tackle biological issues (Han and Liu, 2019). Although GPCRs are still far from being fully documented, the existence of a
large amount of GPCR related information is fueling the construction of AI models applied to these clinically relevant proteins (Jabeen
and Ranganathan, 2019). This technology was used to help widen the research on several subtopics: GPCR-ligand interaction (i); feature
engineering of both GPCRs and ligands (ii); molecule representation of both GPCRs and ligands (iii); GPCR identification (iv); ligand de
novo modeling (v); drug repurposing (vi); drug characterization—Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET)
(vii); protein structural stabilization (viii); signaling pathways construction and analysis (ix) and other subfields in which the use of AI is
emerging more recently. This article reviews the main applications of Machine Learning (ML) methods, a subfield of AI, to GPCRs data to
help uncover new insights about their structure and function.
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Fig. 1 The cumulative count of PubMed results by year using the following keywords: Machine Learning, Deep Learning, Homology Modeling,
de novo Modeling, Docking and Molecular Dynamics, regarding GPCRs.

2 Machine learning

ML is a sub-area of AI that focuses on algorithms that can identify patterns in the input data and improve a given task without being
explicitly programmed to do so (Kubat, 2017). To develop a more accurate ML model, the data must be expressed in the form of
meaningful features that should represent variable samples according to the main objective. ML is a valuable tool for many computational
biology fields since it potentiates data-analysis, Text Mining (TM), drug design and many more. The development of robust ML models
requires that some general conditions are fulfilled to assure the quality of the output model. First, it is important to have a comprehensive
and large dataset to create the circumstances for the algorithm to find patterns and successively build models that can recognize the
relationship between the data and perform a specific task (Baldi, 2012). The application of ML methods to this complex data also demands
a high computational power, even more, if the process must be time effective. ML methods can be split into supervised, unsupervised
or Reinforcement Learning (RL). Furthermore, ML methods can be combined through ensembles, in which two or more of the best ML
algorithms can be merged through a system of voting to form a unique predictor that can, ideally, outperform the individual predictors
(Zhang and Ma, 2012).

2.1 Supervised learning

Supervised learning consists of training a machine with labeled data, i.e., the label is the target characteristic of interested to be predicted.
Using this type of data, researchers guide the final model based on a pre-determined correlation between data and labels and so, the past
experiences will be the stepstone to create a generalizable model. After this process, the user provides the model with unseen data, which
will be label autonomously (Cunningham et al., 2008). If the model is well-suited to the problem, and the dataset is well constructed
with meaningful and representative data, the labeling process shows high performance. These methods can be applied to data with discrete
labels (classification) or continuous labels (regression) (Rajoub, 2020). Two prevalent issues that affect supervised learning algorithms
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are overfitting and underfitting. In overfitting, the prediction model excessively fits data, meaning it has difficulties in classifying new
unseen samples, although it fits most of the training samples correctly. When underfitting is present, the model is incapable of correctly
classifying the training data, thus suggesting that the features are inappropriate to fit the model and predict a class (Badillo et al., 2020).
Some of the simplest supervised learning approaches include k-Nearest Neighbors (kNN), Linear Regression, Naïve Bayes (NB), or
Decision Trees (DT). In contrast, more complex approaches include Random Forests (RF), Support Vector Machines (SVM), Extreme
Randomized Trees (ERT), and Artificial Neural Networks (ANN) (Uddin et al., 2019).

2.2 Unsupervised learning

Contrarily to supervised learning, unsupervised learning is used to study datasets without labels. Users do not explicitly specify to the
algorithm the data label, letting the algorithm build a relationship between features on the dataset (Francis, 2014). These algorithms are
relevant if the user does not have full access to the labels, or if the user does not completely understand the nature of the data. For instance,
datasets of huge size require dimensionality reduction. Features with low importance can be removed based on simple statistical concepts
like variance; however, this can be too simplistic when the data is not fully understood. Techniques such as Principal Component Analysis
(PCA) and Multidimensional Scaling (MDS) are slightly more complex techniques for dimensionality reduction that can be used; however,
they can also be too reductive depending on the problem (Tenenbaum et al., 2000). Autoencoders are one of the unsupervised algorithms
that can be helpful in this situation. They are neural networks that encode all the features from a dataset in a chosen smaller dimension,
and they do it autonomously and automatically. Another well-known application of unsupervised learning are clustering algorithms that
compute the similarity between pairs of examples. As such, these algorithms are able to weigh the importance of each feature and reorganize
the dataset in clusters of data (Kulis et al., 2009).

2.3 Reinforcement learning

Similarly, to unsupervised learning, RL does not require labeled data. However, in addition to the data, researchers should also provide a
signal to guide the algorithm to an output that makes sense to the problem in hand (Szepesvári, 2010). When deploying RL algorithms
there is an environment upon which an agent (the algorithm) should act. After this action is finished, the agent is signaled with a “reward”,
e.g., win or lose. Depending on this reward the algorithm will shift itself to be more likely to achieve the desired output (Mousavi et al.,
2018).

3 Machine learning key algorithms

Throughout this section, we explore the most commonly applied AI approaches to GPCRs as well as list innovative ones not yet extensively
applied in the field. A few of the algorithms comprise simple approaches; however, some of the most recent approaches deal with more
complex algorithms, particularly ANNs.

3.1 Decision trees, random forests and extreme randomized trees

A DT algorithm works through nodes, branches, and leaves. When considering a particular dataset, all the features are measured against the
class to determine the Gini impurity of the classification (the Gini impurity score accounts for the probabilities of each classification option
given the feature under scope). The feature with the lowest Gini impurity score is defined as the root node. This node ramifies through
branches to new nodes (internal nodes) on which the Gini impurity score will be reassessed, excluding the already used feature. The process
is repeated until all the features are used so that their inclusion lowers the Gini impurity score. Thus, if a feature has a Gini impurity score
higher than the value achieved without that feature, the DT will stop at that point in what is called a leaf. Leaves are the final stop of a DT,
more objectively determined as the point that is connected to prior nodes but is not connected to subsequent nodes. The measurement of a
Gini impurity score, for a new sample, at each of the leaves, will yield the final classification (Kingsford and Salzberg, 2008).

RF, on the other hand, encompasses multiple DTs, forming an ensemble in which the different attributes were tested in random
combinations and the final decision is made taking into consideration the output of the individual DTs. ERT, a variation of RF, were
effectively used in several biological problems although still not yet applied to GPCRs (Basith et al., 2018b; Manavalan et al., 2019; Preto
and Moreira, 2020). This method has increased randomization, compared to RF, picking not only samples but also attributes at random.
Furthermore, it chooses node cut-off points fully at random; this means that for continuous variables, which have to be split according to a
threshold, instead of following a standard approach such as DT and RF (by calculating Gini impurity scores for the samples until the lowest
Gini score is found), ERT uses random cut-off points, which can help eliminate sample dependent bias. These differences might make it
suitable to handle Drug-Target Interaction (DTI) prediction, as this task exhibits many of the difficulties of other biological problems, such
as structural characterization of proteins through Hot-spot identification (Preto and Moreira, 2020).

3.2 Hidden Markov models

When considering a Hidden Markov Model (HMM), there is a non-observable (hidden) variable for which the algorithm will try to solve
based on known variables, typically chained sequentially. Thus, HMM is typically appropriate to predict the likelihood of time-dependent
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events. However, it can also be useful to derive inferences from non-timed yet sequentially chained data, as seen in its usage on biological
sequence data, particularly the inclusion of evolutionary data from protein sequences alignments (Bartoli et al., 2009). Based on Bayesian
probability, HMM considers, by default, both transition and emission probabilities. The transition probabilities are related to previous
samples or states and influence the probability of the current sample prediction introducing a sequential bias. On the other hand, the
emission probabilities associate individual events with their probability of occurrence without being influenced by previous events. The
collective impact of these probabilities is calculated to estimate the event of the highest likelihood (Jurafsky and Martin, 2009).

3.3 Support vector machines

An SVM is an algorithm that differentiates samples according to their features. Depending on the features number (n), an n-dimensional
space is generated, and samples are assessed in terms of proximity. The n-dimensional space is then split into k sections, with k being the
number of classes that the algorithm is bound to determine. The k sections are split among space by n-dimensional support vectors that
define the places that are going to be occupied by the samples (Noble, 2006). First, to define a support vector, an edge is defined as the
object between two samples. Secondly, all the samples are evaluated according to this edge, with the possibility of some being misclassified.
Next, soft margins are calculated as the distances from the samples used to define the edge and the edge itself. The space occupied between
the soft margins (with the edge in between) is called a support vector. Samples outside the support vector should be correctly classified;
however, there is a possibility of finding samples inside the soft margins. The hardest and most time and resource consuming task when
training a SVM is cross-validation in order to find the best support vector so that the amount of misclassified samples is the lowest while
maintaining the performance on new samples, and as such, achieving a generalizable algorithm (Noble, 2006).

3.4 Deep learning

Deep Learning (DL) refers to a class of algorithms that stem from (and are), ANNs which, in turn, were originally inspired by the biological
structure of the human brain and how neurons communicate. ANNs can also be interpreted and referred to as Multilayer Perceptron’s
(MLP). MLPs, as the name indicates, stem from their counterpart, the perceptron. A perceptron is a single input variable that is related to an
output variable through a function. As such, a simple linear regression can qualify as a perceptron (Goodfellow et al., 2016). A perceptron
is usually graphically depicted as a single circle (input node or neuron) connected to another circle (output node or neuron) through a
line (edge). This description is also applicable to a simple graph (not to be confused with Graph Neural Networks (GNNs), discussed
subsequently) (Alpaydin, 2014).

Upon combining multiple perceptrons, such that a row of input nodes would be connected to the second row of nodes, we have our
first MLP. If we add a third layer, we now refer to the first layer as the input layer, the second layer as a hidden layer and the third layer
as the output layer. This is now an ANN, with the output layer providing a value that can, depending on the problem, be of a continuous
or discrete nature. When we have more than one hidden layer, we can now refer to the network as a Deep Neural Network (DNN),
although also still an ANN. The ability to arbitrarily add hidden layers can give ANNs the capacity to abstract information and achieve
higher performance than other methods, particularly when using increasingly larger amounts of data. Furthermore, this also opens the
gates to tackle problems of supervised, unsupervised and RL, among others (Goodfellow et al., 2016). A DL based model takes the input
features, which should have the same size as the input layer and passes them along with the hidden layers by activating nodes (neurons),
until it reaches a final vector of values, in the output layer. The activation process depends on the activation function (initially typically
sigmoid, currently, more often, ReLU), weights and biases (usually randomly initialized), and the network’s architecture. The final output
values can then be assessed according to a cost function, against actual values. The algorithm can then be backpropagated to fine-tune
the parameters (weights and biases are improved according to a learning rate) until the model has converged and the loss is no longer
significantly decreasing (Goodfellow et al., 2016). One of the most significant disadvantages of DL is that it is quite demanding in terms
of computational resources, especially when dealing with massive datasets. In the last years, DL has proven to effectively perform different
computational tasks, mainly of categorical and regression nature (Tavanaei et al., 2019) (Schmidhuber, 2015).

The set of steps described opens a gateway to a whole new family of ML algorithms, nowadays referred to as DL, in which the
parameters can be tuned, and the architecture can be twitched in order to have the best performing algorithm for each task (Koutsoukas et
al., 2017). We elaborate some of these algorithms on the subsections below and provide the most significant examples applied to GPCRs.

3.4.1 Convolutional neural networks
Convolutional Neural Networks (CNN) are another subtype of ANNs that use a DL architecture. CNNs, unlike other ANNs, do not connect
all the neurons in each layer. Instead, they activate subsets of neurons depending on a specific batch of input features and then overlap part
of the information not to miss any data. When considering image processing, this would be the equivalent of analyzing subsets of subjacent
pixels and finding patterns among and in them. Furthermore, CNN’s usually have pool layers that reduce the noise and standardize the
information (Li et al., 2017).

3.4.2 Autoencoders
Autoencoders are unsupervised DL algorithms inside the ANNs; however, they have some peculiar characteristics. There are three
specialized groups of layers on the hidden layers: the encoder, the bottleneck, and the decoder (Liou et al., 2014). The encoder represents
the hidden layers situated immediately downstream from the input. The number of layers in this structure varies; however, the number of
neurons in each layer will gradually decrease in each layer until we reach the bottleneck. The bottleneck is situated downstream from the
encoder and upstream from the decoder. It is usually the middle layer of the network and the layer with fewer neurons on the autoencoder.
The decoder is the layer downstream from the bottleneck and upstream of the output layer. This structure is almost always the encoder’s
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mirror, with fewer neurons close to the bottleneck and more neurons on layers close to the output layer (Fig. 2) (Hinton and
Salakhutdinov, 2006). Data is fed to the input layer, and it flows through the encoder decreasing in dimension. When the flow gets to the
bottleneck, it reaches the most compressed state. Typically, the bottleneck information represents the input data as it is that data encoded in
a smaller state. The decoder segment transforms the bottleneck information on the original data, and so the autoencoder output is equal to
the input data. This algorithm can also be applied to dimensionality reduction, denoising and inpainting images, among others (Boehmke
and Brandon, 2019).

3.4.3 Graph neural networks
Before explaining what the GNN algorithm is and how it works, it is necessary to introduce the concept of a graph. A graph is a data
structure composed of nodes and edges, being the last one responsible for establishing the relationship between nodes. This type of data
structure presents a significant difference compared to the other ones, as it does not necessarily consider spatial features and enables the
inclusion of data of different sources in a graph representation (the representation of molecules as graphs is one example of GNN usage
in biological problems (Shui and Karypis, 2020)). GNN is a DL tool that allows processing, representing, and collecting information
from graphs, an example of which are graph embedding techniques (Zhou et al., 2019). GNNs aims to discover the weight vector called
embedding state (Scarselli et al., 2009; Zhou et al., 2019). Each node has a state in the graph, and both the node and the edges have
features. The embedding state is then calculated in an iterative process through a local transition function dependent on the node, edges,
state, and neighborhood features. After setting the embedding state, it is possible to determine the output using a local output function that
considers this state and the nodes’ features. Finally, when obtaining all the nodes’ functions, these are stacked, generating a single global
function, either for the embedding state or the output (Scarselli et al., 2009; Zhou et al., 2019).

3.5 Text-mining

TM involves a plethora of methods that take advantage of standard and existing ML techniques as well as other ones specifically developed
to access, retrieve and process text information (Feldman and Sanger, 2007). The resulting text data can be used by other data mining
and ML techniques. TM first employs data mining techniques to retrieve unstructured text information. The obtained unstructured data, the
corpus, is then pre-processed using, tailored to the context, Natural Language Processing (NLP) methods. Despite being able to comprise a
myriad of steps that increase the complexity of the text pre-processing, steps of data cleaning and normalization are usually included. Data
cleaning aims to flatten the text formatting by making it even despite its origin. Text normalization can be achieved through the employment
of, for example, tokenization, lemmatization or stemming of the words. Tokenization includes the segmentation of the text into smaller
units as words or terms named tokens. While stemming is a simpler form of text normalization where, following a rule-based algorithm, a
word is cut from its suffixes to its stem word; lemmatization is a more mature method where the word is converted to its lemma, the base
form of the word taking into consideration lexical analysis and proximal dictionary-term. The stop word removal stage is usually used to
discard common words to streamline further analysis (Wachsmuth, 2015) (Fig. 3).

The processed text is then used to extract meaningful features. Some of the most common approaches to do this are the n-grams, Bag
of Words (BoW), and Term Frequency-Inverse Document Frequency (TF-IDF). N-grams is a method that analyses the text by splitting it
into groups of n words. This model can then predict the next word’s probability, given the n − 1 previous words (Niesler and Woodland,
1999). BoW essentially counts the number of occurrences of every word for a given document, generating a numeric vector that describes
it (Zhao and Mao, 2018). Finally, the representation of words can be done employing word embeddings. Given a dictionary of words,

Fig. 2 Autoencoder graphical depiction detailing the three autoencoder-specific sets of layers (encoder, bottleneck and decoder).
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Fig. 3 Example of TM processing pipeline (BoW, Bag of words; TF-IDF, Term Frequency-Inverse Document Frequency).

these models will generate vectors to represent each word concerning its meaning and surrounding context. The closer the vectors, the
more similar context the words have. Full-TM pipelines use word embedding to extract features that can be employed for biologic purposes
(Asgari and Mofrad, 2015).

4 Computer aided drug design: Ligand design and discovery

In the next sections AI implementation to different sub-fields of GPCR world were listed in greater detail. For an easier analysis by the
reader, Table 1 summarizes their key data.

4.1 Chemical coverage

Drug discovery is a challenging task mainly due to the expensive and time-consuming Research & Development (R&D) pipeline. This
process can follow two different directions: the development of new ones (Talevi, 2018) or more recently the scaffold repurposing of
existing drugs (drug repositioning or drug reprofiling). The search for a compound that modulates a specific target involves screening
chemical libraries to determine potential molecules to become drug candidates. This process requires the development and maintenance
of large compound libraries, application or development of specific assays, and employment of High-Throughput Screening (HTS). HTS
is a highly regarded technique used to identify lead compounds within a library through cell-based and biochemical assays (Yadav and
Tripathi, 2018).

Computer-Aided Drug Design (CADD) uses accurate computational methods that are less expensive and time-consuming than
experimental/bench approaches. Furthermore, CADD is particularly useful in identifying lead compounds among extensive chemical
libraries (Pinzi and Rastelli, 2019). Sliwoski et al. defines three major CADD applications: (i) selection of sets of active compounds
from chemical libraries, consequently submitted to experimental tests; (ii) optimization of lead compounds (affinity, metabolism, or
pharmacokinetic properties) (Sliwoski et al., 2014); and (iii) design of novel compounds (Sliwoski et al., 2014). We consider vital to
add to these a fourth application: (iv) understanding of DTIs in order to detect new targets for existing drugs. Conventionally, CADD
approaches are broadly classified into Ligand-Based Drug Design (LBDD) and Structure-Based Drug Design (SBDD) (Sliwoski et al.,
2014). LBDD uses known ligands and predicts the on and off-target interactions. It follows the premise that similar ligands display similar
properties, thereby binding to similar proteins. So, through the chemical structure, the aim is to understand which functional groups (and
why) are responsible for binding to the protein-target towards the development of novel analogs (Sliwoski et al., 2014; Ezzat et al.,
2019). LBDD is extremely useful when the target’s 3D structure is not available (Sliwoski et al., 2014; Baig et al., 2016). Quantitative
Structure-Activity Relationship (QSAR) and ligand-based pharmacophore modeling are the most used LBDD methods. QSAR evaluates
the relationship between a structure and its biological activity to predict the activity of analogues. Pharmacophore modeling depends
on common properties between ligands with the same biological activity (Baig et al., 2016). LBDD models’ performance is limited
by the number of ligands used in the process, meaning that the lower the number of ligands used to build the model, the lower its
performance (Sliwoski et al., 2014). Contrarily to LBDD, in SBDD, the targets’ 3D structure is required, which is usually obtained through
experimental approaches such as X-Ray Crystallography and Nuclear Magnetic Resonance (NMR) or, more recently, via Cryo-EM (Baig
et al., 2016). When the targets’ 3D structure is not available, it can be predicted by several in silico approaches. Homology modeling can
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Table 1 Known applications of AI to GPCRs.

Task type Description Year Software namea References

Database GPCR-ligand database 2008 GLIDA Okuno
(2008)

Database GPCR ligand library (GLL) and GPCR decoy database (GDD) 2012 GLL/GDD Gatica and
Cavasotto
(2012)

Database Database generated from RF predictions of receptor-ligand
pairings in conjunction with TM

2012 ReLiance Iacucci et
al. (2012)

Database GPCR-ligand experimentally validated database 2015 GLASS Chan et al.
(2015)

Database GPCR-related information database 2016 GPCRdb Munk et al.
(2016)

Database Drug-abuse related GPCRs information repository 2019 DAKB-GPCRs Chen et al.
(2019)

Database Data-independent acquisition mass-spectrometry and DL
driven database for proteomic profiling

2020 Lou et al.
(2020)

DTI detection Using ML algorithms used to aid the detection of GPCR-
ligand pairs in live cell microscopy

2020 Allikalt et
al. (2020)

DTI predictor Using SVM algorithm to predict GPCR-ligand interactions
without using GPCR structural information

2008 Jacob et al.
(2008)

DTI predictor Using SVM and Bayesian methods algorithms to determine
predict adenosine receptors antagonists

2010 Lee et al.
(2010)

DTI predictor SVM to predict 5-HT receptor agonist or antagonist drugs 2011 Zhu et al.
(2011)

DTI predictor DTI Predictor based on GPCR pseudo amino-acid composition
(PseAAC) and drug fingerprint

2013 iGPCR-drug Xiao et al.
(2013)

DTI predictor Supervised neural networks ANN using IFPs 2016 Vass et al.
(2016)

DTI predictor Using various ML methods to predict active/non-active ligands
for GPCRs as well as ligand toxicity

2016 Mansouri
and
Judson
(2016)

DTI predictor DTI prediction using RF and evolutionary features 2016 TargetGDrug Hu et al.
(2016b)

DTI predictor DTI predictor with Bayesian Ranking Prediction for Drug
repurposing

2017 BRDTI Peska et al.
(2017)

DTI predictor DTI prediction with SVM based on features calculated with
discrete wavelet transform

2017 DAWN Shen et al.
(2017)

DTI predictor Sequence-based approach with RVM to predict DTI networks 2017 PDTPS Meng et al.
(2017)

DTI predictor Testing Several ML algorithms against used to predict dataset
of VS GPCR inhibitors

2018 Raschka et
al. (2018)

DTI predictor ML algorithms used to unveil new 5-HTA2 receptor agonists.
Using ML

2019 Diez-
Alarcia et
al. (2019)

DTI predictor DTI prediction with protein sequences and drug fingerprints 2019 Li et al.
(2019b)
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Table 1 (Continued)

Task type Description Year Software namea References

DTI predictor Using RF to predict DTI with evolutionary information and
chemical structure

2019 LRF-DTIs Shi et al.
(2019)

DTI predictor DTI prediction with wrapper feature selection and class
balancing

2020 Redkar et al.
(2020)

DTI predictor GPCR-ligand prediction with hub and cycle feature 2020 Breer et al.
(1985)

Feature
representation

Protein-ligand fingerprint to mine chemogenomic space 2009 Weill and
Rognan
(2009)

Feature
representation

Using n-grams as protein subspaces and SVM algorithms to
identify class C GPCR motifs

2014 König et al.
(2014)

Feature
representation

Using SVM algorithm used to represent GPCR information
and a RF approach to classify GPCRs and non-GPCRs

2016 Cai et al.
(2003) and
Liao et al.
(2016)

Feature
representation

Shape similarity profile between ligands and structural
samples of GPCR-binding molecules from PDB

2016 Hu et al.
(2016a)

Feature
representation

DL and physicochemical properties to characterize class C
GPCRs

2018 Cruz-
Barbosa et
al. (2018)

Feature
representation

Text mining-based techniques to generate features and classify
GPCR-ligand interactions

2020 Wang et al.
(2020)

Functional
selectivity

Using ML algorithms used to predict interactions between
GPCR and PDZ domain proteins interactions

2009 Eo et al.
(2009)

Functional
selectivity

GPCR classification up to three levels (class A) making use of
several ML algorithms

2009 Kumari et
al. (2009)

Functional
selectivity

GPCR classification with grey incidence degree 2011 Zia-Ur-
Rehman
and Khan
(2011)

Functional
selectivity

Classification of GPCRs using family specific motifs selected
by the distinguishing power evaluation technique

2011 GPCRBind Cobanoglu
et al.
(2011)

Functional
selectivity

Ligand classification algorithm with adaptively boosting
ensemble stumps

2011 LiCABEDS Ma et al.
(2011)

Functional
selectivity

GPCR classification with an ensemble of nearest neighbor,
SVM, grey incidence degree and probabilistic neural
network

2012 Zia-Ur-
Rehman
and Khan
(2012)

Functional
selectivity

Automatic classification of GPCRs using a Genetic Ensemble 2012 GPCR-
MPredictor

Naveed and
Khan
(2012)

Functional
selectivity

ML algorithms used to identify chemical substructures and
amino-acid properties associated with ligand binding

2013 Shiraishi et
al. (2013)
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Table 1 (Continued)

Task type Description Year Software namea References

Functional
selectivity

Pseudo amino-acid composition and physicochemical
properties to classify GPCRs

2013 Rehman et
al. (2013)

Functional
selectivity

Using an SVM ensemble to predict GPCR glycosylation sites 2013 Xie et al.
(2013)

Functional
selectivity

Hierarchical classification method based upon an SVM that is
able to identify GPCR subtype levels

2013 Gao et al.
(2013)

Functional
selectivity

Using SVM algorithms used to classify GPCRs/non-GPCRs
and GPCRs subfamilies

2015 Nie et al.
(2015)

Functional
selectivity

Using SVM algorithm to identify GPCR misclassifications 2015 König et al.
(2015)

Functional
selectivity

Gaussian Process Models for VS 2016 Bieler et al.
(2016)

Functional
selectivity

Using RF ensembles to identify misclassified GPCRs 2017 Shkurin and
Vellido
(2017)

Functional
selectivity

GPCR classification using CNN and TM based techniques 2017 Li et al.
(2017)

Functional
selectivity

Using an SVM algorithm used to discriminate and
characterize class C GPCRs

2018 König et al.
(2018)

Functional
selectivity

DL and RF to predict ligand bioactivity prediction using DL
and RF

2018 WDL-RF Wu et al.
(2018)

Functional
selectivity

MD data analysis with DNN 2019 Plante et al.
(2019)

Functional
selectivity

SVM to predict SVM-neuropeptide pair 2019 Shiraishi et
al. (2019)

Functional
selectivity

Prediction of allosteric modulators for metabotropic glutamate
receptors with QSAR

2019 Butkiewicz
et al.
(2019)

Functional
selectivity

Function prediction for GPCRs through TM and induction
matrix

2019 TM-IMC Wu et al.
(2019)

Functional
selectivity

Ligand discovery with using DL and RF 2020 Tsou et al.
(2020)

Functional
selectivity

Combination of ML with metadynamics to study GPCR-
ligand kinetics

2020 Lamim
Ribeiro et
al. (2020)

Functional
selectivity

A learning to rank algorithm to explore target-drug
correlations

2020 Ru et al.
(2020)

Model quality
assessment

SVM to predict MP models’ quality 2010 ProQM Ray et al.
(2010)

Network
visualization

Application of an unsupervised clustering algorithm for
detection of GPCR sequences

2017 MSC Hu et al.
(2017)

PPI predictor GPCR-GPCR interaction predictor with SVM 2016 GGIP Nemoto et al.
(2016)
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Table 1 (Continued)

Task type Description Year Software namea References

Structural
modeling and
enhancement

Using HMM algorithms to predict coiled-coil regions from
MSA information

2009 CCHMM_PROF Bartoli et al.
(2009)

Structural
modeling and
enhancement

Predict Multiple ML classifiers to predict transmembrane
inter-helix contacts. With multiple ML classifiers

2013 MemBrain Yang et al.
(2013)

Structural
modeling and
enhancement

Ligand de novo modeling with the assistance of ML
methods

2014 Reutlinger et
al. (2014)

Structural
modeling and
enhancement

Conditional random fields for transmembrane topology
prediction

2016 dCRF-TM Wu et al.
(2017)

Structural
modeling and
enhancement

GPCR thermostabilizing point mutations with MD and ML
using 5-HT2C receptor as case study

2018 CompoMug Popov et al.
(2018)

Structural
modeling and
enhancement

Protein modeling from sequences with using DL algorithms 2018 DeepFam Seokjun et
al. (2018)

Structural
modeling and
enhancement

GPCR mutants thermostability enhancement with four ML
methods

2019 Muk et al.
(2019)

Structural
modeling and
enhancement

Using ML algorithms used to aggregate MD trajectories
information

2019 Ferraro et
al. (2020)

Structural
modeling and
enhancement

Using ML algorithms used to distinguish active from
inactive GPCRs

2020 Bemister-
Buffington
et al.
(2020)

aSoftware name is provided when available in the original research article.

be used to develop a virtual model of the target with an unknown structure, using a known target structure (template) and considering
the sequence similarities between them, which should be as high as possible to minimize the model’s error. This approach assumes that
similar structures hold similar functions and binding site conservation (Baig et al., 2016; Muhammed and Aki-Yalcin, 2019). The main
methods used for SBDD are docking and Virtual Screening (VS). A docking simulation allows identifying promising drug candidates for
a given target and studying structure-activity relationships (Li et al., 2019a; Pinzi and Rastelli, 2019). Docking simulations also allow the
ranking of drug-target candidates based on rough estimates of binding affinity, where 3D predictions are made by using both targets’ and
ligands’ 3D structure (Li et al., 2019a; Sachdev and Gupta, 2019). In turn, VS, which can be both structure-based or ligand-based, is a
computational analysis of an extensive chemical library to identify lead compounds capable of interacting with the target of interest (Baig
et al., 2016). Agreeable to these definitions, docking and VS are not mutually exclusive, in fact, it is common procedure to deploy VS
upon large sets of docked structural models (Kontoyianni, 2017). To complement these methods, Molecular Dynamics (MD) simulations
are another SBDD methodology often used to give further insights into the GPCRs coupling to a variety of ligands/drugs (Jabeen and
Ranganathan, 2019).

Through ligand-based VS regarding the analysis of GPCR ligands, ML can be applied to distinguish active from non-active compounds
and to reckon the functional groups’ influence in their biological activity. For example, Raschka et al. used DT and RF in
3,12-diketo-4,6-petromyzonene-24-sulfate (DKPES) analogs binding to GPCR and revealed that the presence of sulfur atoms compromises
ligands’ activity in 35% while sulfate ester groups induced around 20% of ligands’ activity (Raschka et al., 2018). Thus, the knowledge
of the functional groups involved in the biological activity was used to evaluate a ligand’s analog and infer whether it could or could not
interact with the desired target (Raschka et al., 2018).

4.2 Ligand representation

Ligand representation is an essential step of CADD since it determines how much the information available can be maximized for the
subsequent tasks. In ML-based tasks, ligand representation features are usually used to train and develop models, such as DTI prediction.
Ligands can be represented through atomic or structural data as well as molecular descriptors (Chandrasekaran et al., 2018; Grisoni et
al., 2018). These molecular descriptors are mathematical representations of molecules’ features (Chandrasekaran et al., 2018), which
quantify molecules’ physical and chemical properties, either ligands or proteins (Chandrasekaran et al., 2018). In CADD, the main
features used to study biologically active compounds are: (i) atom composition, (ii) molecular weight, (iii) functional groups constituting a
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drug, (iv) bonds connecting different functional groups, and (v) distances between different atoms or functional groups and the Polar and
Non-Polar Surface Area (PSA and NPSA, respectively) (Chandrasekaran et al., 2018; Grisoni et al., 2018). From another perspective,
molecular descriptors can be categorized in 1D, 2D, and 3D (Chandrasekaran et al., 2018). 1D descriptors are the simplest type and
can be easily calculated using the chemical formula of the ligand. These descriptors consist, for instance, on the frequency of a given
atom or functional group, its type, molecular weight and sum or average of atomic properties (e.g., atomic Van der Waals volumes)
(Chandrasekaran et al., 2018; Grisoni et al., 2018). Yet, 1D information is narrow and can assume the same values for different
molecules, meaning that is frequently not specific enough (Grisoni et al., 2018). As for 2D descriptors, they are calculated using a
representation of the molecule in a plain, where the atoms are laid and connected by bonds, but without the third dimensional component of
space (Grisoni et al., 2018). In this way, 2D descriptors define atoms’ connections. Also, this type of representation allows the calculation
of several topological indices which represent properties, like adjacency and connectivity, depending on the size, shape, symmetry,
branching and cyclicity of the molecule overcoming some of the 1D descriptors disadvantages (Grisoni et al., 2018; Chandrasekaran et
al., 2018). Lastly, 3D descriptors give information on the molecule’s conformation, identifying and quantifying its interaction(s) (Grisoni
et al., 2018). In addition, PSA and NPSA surface area, intramolecular hydrogen bonding and valence electron distribution are often
calculated. To calculate these descriptors, quantum mechanics can be a significant addition since the molecules under scope are often
relatively small and cannot be as accurately described with the more standard Newtonian physics (Chandrasekaran et al., 2018).

Molecular descriptors play a fundamental role in the progression of computational biology (Grisoni et al., 2018). They are the
foundation of fingerprints, a tool that, indeed, connects experimental evidence to in silico methods, once it relates the information beyond
a molecule with experimental data through mathematical algorithms in a fast and inexpensive way (Grisoni et al., 2018). Like molecular
descriptors, fingerprints are used to implement ML in CADD (Kearnes et al., 2016). A fingerprint often is a binary sequence describing
the chemical composition, structural features, and physical properties of a compound (Kearnes et al., 2016). They allow a comparison
of different ligands turning the evaluation of molecules similarity into a more straightforward task (Cereto-Massagué et al., 2015).
Fingerprints can also store 2D information, thus called 2D fingerprints, or 2D and 3D information, in which case they are most known
as pharmacophore fingerprints (Cereto-Massagué et al., 2015). Cereto-Massagué et al. categorized and thoroughly described fingerprints
according to the type of information and how it was stored as: substructure keys-based, topological or path-based, circular pharmacophore,
hybrid and other types of molecular fingerprints (Cereto-Massagué et al., 2015).

A more recent approach uses graphs to exploit a new form of ligand representation, which can be very useful when considering larger
ligands, as for example small peptides. Bandholtz et al. used a GNN as a genetic algorithms’ fitness function to optimize a GPCR ligands’
metabolic activity, preventing bioactivity loss. As input, the GNN receives the peptide ligand’s linear structure and two biochemical
properties, agonistic activity and metabolic stability. It then translates the peptides’ structure into a graph where each node corresponds
to an amino-acid and each edge to the connections between them. Furthermore, this network output allows for exploring possible virtual
ligands without relying on information from a three-dimensional structure (Bandholtz et al., 2012).

4.3 Drug-target interactions

Countless ligands can interact with GPCRs, making it imperative to improve our understanding and characterization of GPCR-ligand
structures (Shiraishi et al., 2013; Bueschbell et al., 2019). DTIs can be studied through GPCRome-ligand information to shed light on
the binding process and accelerate drug discovery. Drug-target coupling depends on several factors, such as binding energy, electrostatic
energy, intermolecular energy, the interaction energy of van der Waals or intermolecular forces (Chakraborty et al., 2017). Most
intermolecular DTIs result from van der Waals forces, weaker than hydrogen bonds or hydrophobic interactions (Van Oss et al., 1986;
Chakraborty et al., 2017). Although this superfamily has a low overall reduced sequence similarity among its members, excepting
a transmembrane conservative region (Sanders et al., 2011), some structure-based approaches were developed and can predict GPCR
binding motifs (Shiraishi et al., 2013).

Throughout the drug discovery process, compounds are modified to improve ligand properties such as bioactivity and selectivity
(Klabunde and Hessler, 2002). GPCR-ligand structures and binding conformational information are helpful tools to achieve compound
optimization. Ligand properties can be improved using ML methods to identify chemical and residue properties associated with
protein-ligand coupling (Shiraishi et al., 2013). GPCR-specific descriptors and statistical scores were established to predict residues
and chemical structures in GPCR-ligand interactions using different kernels comparison (Shiraishi et al., 2013). Reliable protein-ligand
predictions seems to directly depend on positive and negative pairs for the predictor (Weill and Rognan, 2009). Noninteraction pairs are
limited in public databases and pairs with unknown interaction can be randomly selected to overcome this limitation, although this is a
less than desirable solution. To select more plausible noninteracting pairs, residue pairs with low co-occurrence scores can be chosen to
improve model accuracy (Shiraishi et al., 2013). These approaches can be applied to GPCR ligand VS and active compounds modification,
to predict GPCR-ligand binding.

GPCR-ligand can also be represented as Interaction FingerPrints (IFPs), one-dimension binary representations determining the
occurrence of contacts between ligand and protein amino-acids (Vass et al., 2016). Each IFP encodes seven interaction types between
pocket residues and ligand as 1 if a contact is present or 0 if it is absent (Kooistra et al., 2016). The seven interaction types encoded
are hydrophobic contact, aromatic face-to-face, aromatic edge-to-face, H-bond donor-acceptor, H-bond acceptor-donor, ionic
positive-negative, and ionic negative-positive (Manning et al., 2002). Protein-ligand fingerprints are a proper biochemical structure
representation and suitable to work with substantial amounts of data (Vass et al., 2016). IFPs can ultimately be used to predict
GPCR binding sites (Deng et al., 2004), process virtual ligand screening (Da and Kireev, 2014), predict GPCR structure modulation
(Kruse et al., 2013), ligand functional activity prediction (Cereto-Massagué et al., 2015) and drug discovery for new targets binding
sites (Lavecchia, 2015). By constructing an IFP dataset, it is possible to use algorithms such as ANNs to predict GPCR ligands’
IFPs and accurate docking decoys
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(Chupakhin et al., 2013; Vass et al., 2016). Furthermore, it is possible to unravel new target-ligand associations with algorithms such as
PROFILER, designed for polypharmacology prediction, that applies a DT to choose ligand-based or structure-based approaches given the
amount and the quality of available data (Meslamani et al., 2013).

4.4 Drug-target interaction predictors

Recently, eight sequence-based ML models were developed in order to predict DTIs, all trained with enzymes, ion channels, GPCR, and
nuclear receptor datasets with an accuracy higher than 82% (Xiao et al., 2015; Meng et al., 2017; Peska et al., 2017; Shen et al., 2017;
Shi et al., 2019; Li et al., 2019b; Redkar et al., 2020; Zhan et al., 2020). In this section, we explore in more detail some of these DTI
prediction approaches that were applied to study GPCRs and summarize their performance (Table 2). Different classifiers were previously
used such as Rotation Forest (Li et al., 2019b), Relevance Vector Machine (RVM) (Meng et al., 2017), SVM (Shen et al., 2017), and RF
(Redkar et al., 2020) (Shi et al., 2019). These classifiers can make use of a large array of features for the target, Position-Specific Scoring
Matrix (PSSM) (Jones, 1999; Gautam et al., 2013; Meng et al., 2017; Li et al., 2019b), pseudo-position PSSM (PsePSSM) (Shi et al.,
2019) and BI-Gram Probabilities (BIGP) (Sharma et al., 2013), among others. For the drug features, substructure fingerprints (Ojansivu
and Heikkilä, 2008; Meng et al., 2017; Shen et al., 2017; Li et al., 2019b) as well as other molecular fingerprinting representations (Shi et
al., 2019), were used to attain good performing DTI predictors. In some cases, data processing tools such as Component Analysis (Meng et
al., 2017), LASSO algorithm (Ghosh and Chinnaiyan, 2005; Shi et al., 2019), or wrapper feature selection (Redkar et al., 2020) shown
to improve the overall model performance.

Table 2 GPCR DTI predictors performance metrics.

Name ACC (%) SE (%) SP (%) AUC PE (%) MCC (%) RC (%) FM (%) STR (%) References

BRDTI N/A N/A N/A 0.96 N/A N/A N/A N/A N/A Peska et al.
(2017)

DAWN 89.0 88.8 89.1 0.95 N/A N/A N/A N/A N/A Shen et al.
(2017)

Diez-Alarcia et
al., 2019

86.5 95.4 85.6 N/A N/A N/A N/A N/A N/A Diez-
Alarcia
et al.
(2019)

iDrug-Target 90.3 97.6 86.7 N/A N/A 80.7 N/A N/A N/A Xiao et al.
(2015)

iGPCR-drug 85.5 80.0 88.3 N/A N/A 67.8 N/A N/A N/A Xiao et al.
(2013)

Jacob, L. et al.,
2008

78.1 N/A N/A N/A N/A N/A N/A N/A N/A Jacob et al.
(2008)

Lee, J.H. et al.,
2010

97.9 93.3 98.8 1.00 N/A 92.0 N/A N/A N/A Lee et al.
(2010)

Li, Y. et al.,
2019

82.2 81.3 N/A 0.87 82.8 70.6 N/A N/A N/A Li et al.
(2019b)

LRF-DTIs 95.7 95.3 96.1 0.99 N/A N/A N/A N/A N/A Shi et al.
(2019)

Mansouri, K.
and Judson
R.S., 2016

95.0 100.0 91.0 N/A N/A N/A N/A N/A N/A Mansouri
and
Judson
(2016)

PDTPS 86.8 84.9 88.4 N/A 87.9 79.7 N/A N/A N/A Meng et al.
(2017)

Redkar, S. et
al., 2020

90.8 N/A 92.4 N/A 90.1 81.5 88.9 89.3 N/A Redkar et
al. (2020)

TargetGDrug 80.8 83.1 79.6 N/A N/A 60.0 N/A N/A 81.3 Hu et al.
(2016b)

Zhan X. et al.,
2020

82.3 81.2 N/A 0.89 83.4 70.9 N/A N/A N/A Zhan et al.
(2020)

Zhu, X. et al.,
2011

92.7 91.7 94.1 0.91 N/A N/A N/A N/A N/A Zhu et al.
(2011)

Abbreviations: ACC, accuracy; SE, sensitivity; SP, specificity; AUC, Area under Receiver Operating Characteristic Curve; PE, precision; MCC, Matthews’s
correlation coefficient; RC, Recall; FM, F-Measure; STR, Strength. N/A, Not Available.
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Mainly, there are now an extensive array of features regarding simultaneously target and drugs and complementary tools that are
driving GPCR-DTI prediction. The development of more standard approaches has also opened the gates to tackle the problem using
more elaborate and complex ones. For instance, BRDTI, a DTI predictor using Bayesian Ranking Prediction matrix factorization with
drug-centric repositioning was developed (Peska et al., 2017). Wang et al. described a model with stacked auto-encoders used to extract
features from a GPCR dataset (Wang et al., 2018). Those features were then used to predict the DTIs with an RF algorithm that achieved
near 87% accuracy. In another approach, target bias was included as a way to simulate possible target conformations (Peska et al., 2017). In
this work, the GPCR dataset had a normalized Discounted Cumulative Gain (nDCG) of 92.9%, outperforming previous approaches (Peska
et al., 2017). The authors described these performance metrics as evaluating a drug-centric approach better than the area under the ROC
curve (Table 2). Moreover, the authors state that their approach could predict completely new DTIs (Peska et al., 2017).

Another issue to keep in mind regarding DTI prediction of GPCRs is the subproblem that arise when considering how different these
proteins can be. Since it is challenging to identify ligands for specific GPCR subtypes, an approach using ML, docking and multiple scoring
methods was proposed for this task using two Neurotransmitter Serotonin (5-HT) receptors (Rataj et al., 2018). In this particular case,
Neighboring Substructures Fingerprints were applied to select compounds from a large database, creating a two-dimension fingerprint with
substructural compound features. The compound selection was then conducted considering interactions with protein binding pockets (Rataj
et al., 2018). The examples presented were considered mainly to display the wide variety of features, methods, classifiers and overall
strategies that are on the rise in GPCR DTI prediction. To the best of our knowledge, LRF-DTIs (Shi et al., 2019) DTI predictor appears to
have achieved the best performance (accuracy, specificity, and AUC) (Table 2).

4.5 Ligand effect prediction

GPCR-ligand binding site classification and dynamic molecular changes are crucial for a more precise ligand effect understanding. Plante
et al., by deploying DL upon MD trajectories developed a method able to extract useful information to reveal distinct ligand characteristics
and molecular factors and ultimately discriminate GPCR structure and function with high accuracy on the test set (> 98%) (Plante et al.,
2019). On another example, a SVM prediction model was developed to estimate if a ligand is a GPCR’s agonist or antagonist showing an
accuracy of 86.5% (Zhu et al., 2011). Although the dataset was specific of 5-HT1A Receptor (5-HT1AR), this approach may be applied
to other GPCR receptors. Another study compared several ML models with other ligand-based VS methods and showed that DNN and RF
were able to enhance GPCR agonists prediction even with less compounds in the training set (Tsou et al., 2020). In an effort to generate
a method able to extract more precise information than simply agonist/antagonism classification, Wu et al., firstly used weighted DL for
molecular fingerprinting and then used a RF algorithm to assess ligand bioactivity (Wu et al., 2018). The model achieved an average
root-mean square error of 1.33 and a correlation coefficient of 0.80 (Wu et al., 2018). The metabotropic glutamate receptor 1 is a GPCR
target for neuropathic pain treatments with a druggable allosteric site that, when blocked, is unable to complete the receptor response. A
VS approach to detect allosteric modulators, molecules that bind to a protein at a location different to the binding site (May et al., 2007),
in metabotropic glutamate receptor 1 was conducted using structural models derived from homology modeling and MD. Compounds from
several libraries were selected based on known positive and negative antagonists and classified with a NB model. Selected ligands were
docked into the protein target binding site and binding modes were calculated and used to improve inhibitory activities (Jang et al., 2016).

Throughout this section we demonstrated how VS is often used in CADD approaches focusing in a single GPCR. However, only a few
are based on ML methods, which opens new venues of research, such as the automatization of new target identification given a pool of
drugs. This has been explored by Ru et al. that developed a model which incorporates a RF classifier to rank putative new drug-target pairs
(Ru et al., 2020).

4.6 ADMET prediction

From the first tests to final approval, getting a single drug to the market takes a long time and involves many resources (Sacks et al., 2018).
However, only a few drug candidates that reach clinical trials are approved for human use, representing a substantial waste of time and
money (Lysenko et al., 2018). Most of the issues related to this enormous failure rate in drug development are associated with undesirable
pharmacokinetics and toxicity. Therefore, it has been widely accepted that ADMET properties should considered in the early stages of drug
discovery to increase drug development success, especially later on during the clinical phase (Wu et al., 2020). Moreover, post-marketing
safety issues have led to several drug withdrawals and unexpected mortality and morbidity concerns boosting the need to apply ADMET
prediction even after drug approval (Basile et al., 2019).

Computational approaches emerged as crucial tools to evaluate ADMET properties in a cheaper but still efficient way (Basile et
al., 2019). Several ADMET-related databases, which incorporate pharmacokinetics and toxicity parameters can be used for shape and/or
pharmacophore screening to obtain further information about bioactivity on similar models that match the input query compound (Wu et
al., 2020). Furthermore, databases like ADME Database (Shang et al., 2017), SuperToxic (Schmidt et al., 2008), PKKB (Cao et al., 2012),
and DSSTox (Williams et al., 2017) were reported as reliable and comprehensive sources for training and development of ML models for
ADMET prediction, namely to predict drug metabolites and toxicity, which are ultimately responsible for drug efficacy and safety (Basile
et al., 2019; Litsa et al., 2020).

Traditionally, several in silico ADMET approaches tend to establish a relationship between different molecular descriptors and ADME
properties by applying statistical models or ML algorithms, which includes ANN, DT, kNN, and SVM (Shen et al., 2010). Among them,
SVM is one of the most applied algorithms for building ADMET prediction models. One example of SVM algorithms application is the
widely used SwissADME tool, a free web tool able to assess small molecules’ pharmacokinetic profile, alongside their physicochemical
properties and drug-likeness (Daina et al., 2017). Other methodologies were applied to study the ADMET profile of drug candidates,
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particularly its toxicity, by testing several drug features combined with target-based predictions and QSAR studies. QSAR models were
mainly applied to assess several drug safety endpoints, such as Lethal Dose 50% (LD50), tissue-specific toxicity, and skin and eye irritation
(Patlewicz and Fitzpatrick, 2016). PrOCTOR (Gayvert et al., 2016) and TargeTox (Lysenko et al., 2018) are two examples of freely
target-based toxicity prediction tools based on QSAR models. On the one hand, PrOTOR combines the target-based features with the drugs’
chemical features and drug-likeness properties to generate a RF-based classifier that differentiates FDA approved drugs from Failure To
Thrive (FTT) ones, ultimately predicting compounds that are likely to fail (due to toxicity issues) during clinical trials. Besides predicting
tolerable toxicity, this model gives insights into the chemical and target-based properties able to foster or prevent toxicity (Gayvert et al.,
2016). On the other hand, TargeTox combines a network-based approach with a gradient boosting classifier to predict drug toxicity. This
model considers the information about drug’s on- and off-targets and off-targets, as well as functional impact and biological network data,
to generate a protein networks’ distance metric, since that neighboring biological molecules display similar functional roles. Therefore,
authors assumed that toxicity effects can be confined to a specific network region (Lysenko et al., 2018). The creation of a protein network
and the combination of several pharmacological and functional features make TargeTox a good ML classifier for toxicity prediction. Unlike
other approaches, TargeTox can not only generate protein network data but also integrate pharmacological and functional features into a
ML classifier able to predict toxicity. However, the limited information about all possible bound proteins could potentially compromise the
effectiveness of TargeTox (Lysenko et al., 2018).

Specific ML-based models for metabolism prediction were also developed in recent years due to its recognized impact on the
pharmacokinetics and pharmacodynamics of xenobiotics and their derivatives (Litsa et al., 2020). However, most of these models
have a limited scope, coverage, and performance. In order to overcome this issue, a freely available software package, BioTransformer
(Djoumbou-Feunang et al., 2019), which associates a ML with a knowledge-based approach, was developed allowing both metabolism
prediction and compound identification. Another interesting tool, MetaTrans, consists of a learning-based technique to predict human
metabolites of small molecules. A transfer learning approach was applied by first using chemical reactions’ data to pre-train a transformer
model, after which it was fined-tuned using a human metabolic reactions’ dataset from freely available databases, which includes
metabolism not only of xenobiotics but also of endogenous molecules and comprises all enzyme classes’ spectrum (Litsa et al., 2020). An
ensemble model combining the output of several fined-tuned models and considering different metabolites was then built. Authors showed
that their method displayed an equivalent performance in comparison with other drugs metabolite prediction approaches, such as SyGMa
(Ridder and Wagener, 2008), GLORYx and BioTransformer, considering the major enzyme families screened. Furthermore, it seems able
to identify metabolites using fewer common enzymes (Litsa et al., 2020).

The ADMET prediction tools reported above can be applied in an undifferentiated way for almost all drug candidates, including GPCRs
ligands. It is noteworthy to highlight that Mansouri et al. reported two QSAR model approaches involving 18 GPCR cell-free HTS assays
(Mansouri and Judson, 2016). Several software and genetic algorithms were then employed to calculate and select the best molecular
descriptors used for the development of ML models. This strategy included as a first step the development of classification models to
distinguish active and inactive chemicals to ultimately rank them considering target Molecular Initiating Events (MIE) of Adverse Outcome
Pathways (AOPs). Afterward, a regression model was generated to predict the potency of active chemicals was performed. In both tasks
several model-fitting methods like SVM and kNN were applied (Mansouri and Judson, 2016).

5 GPCR characterization and selection

Although GPCR characterization and feature representation is necessary for CADD, it is also required for a number of other AI-based tasks
involving GPCRs. In this section we explore some of the main features that can be used to represent target protein information.

5.1 Target features

The development of ML models requires features that can represent and accurately describe the full dataset. When considering GPCRs
proteins, these features can be attained by different methods, depending on data availability. Structural data is less abundant than
sequence-based data; however, their use to train ML models’ can improve their performance.

Sequence-based features are extracted from the protein sequence, and comprise a wide array of information, such as amino-acid
properties, whole-protein sequence features, and conservation information. When considering amino-acid properties for sequence-based
feature extraction, information such as the known composition of the amino-acids (e.g., number of sulfur atoms, number of carbon
atoms, presence of aromatic rings, etc.) can be used. Experimentally determined values (e.g., pKa values, secondary structure propensity
and average accessible area) in particular those available at the Biological Magnetic Resonance Data Bank (Ulrich et al., 2008) are
also commonly used. These features characterize each amino-acid of the protein individually or when using window-based features
an overall environment of each amino-acid (Krallinger et al., 2005; Preto and Moreira, 2020). Whole-sequence protein features
are descriptors common to all amino-acids of the system, but that complement the variability introduced by single amino-acid level
analysis. Furthermore, these features can be particularly useful to characterize Protein-Protein Interactions (PPI) as they provide thorough
characterizations of the protein chains (Cao et al., 2013; Rehman et al., 2013; Xie et al., 2013; Xiao et al., 2015; Chen et al., 2018).
Features encompassing conservation information presume the calculation of a Multiple Sequence Alignment (MSA), which takes the
target protein sequence as input and aligns it with other known protein sequences. Several tools were developed and fine-tuned for this
purpose, such as Clustal Omega (Sievers and Higgins, 2014), Basic Local Alignment Search Tool (BLAST) and Psi-BLAST (Database
resources of the National Center for Biotechnology Information, 2018). Upon these alignments, a PSSM can be calculated, and
used to score every amino-acid position according to its conservation, depending on its accordance with the remaining aligned protein
sequences. The conservation scores for each amino-acid are valuable features, as highly conserved residues tend to be more relevant in
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both protein structure and function. This information allows the PSSM to represent structural information and as such, albeit being
sequence-based, methods, provide meaningful contributions to overall prediction models (Marks et al., 2011; Preto et al., 2018), and in
particular to GPCR-ligand DTI predictors (Hu et al., 2016b; Shi et al., 2019; Li et al., 2019b). A more recent approach successfully uses
representation learning to automatically extract the most significant characteristics of GPCR protein sequences and express them as features
(Cruz-Barbosa et al., 2018). Differently, other approaches focus on minimizing the noise of less relevant features using methods such as
wrapper feature selection (Redkar et al., 2020).

However, researchers should take into account that if structural data is available and easy to use, it is generally more reliable than
sequence-based partly as it also comprises sequence-based information (Cross, 2018; Jastrzębski et al., 2019). Some approaches can
take the raw atom coordinates and process them inside DL architectures, whereas others can add a prior step in which structural features
are abstracted from the coordinates before they are subject to prediction tasks. The construction of feature vectors from contact matrices
between the amino-acids and physicochemical distance matrices is one of the approaches that was already applied to GPCRs (Eo et al.,
2009).

5.2 GPCR classification

Various GPCR classification systems were proposed so far, considering different criteria, such as structural and ligand binding (Bockaert
and Pin, 1999), phylogenetics (Fredriksson et al., 2003), amino-acid composition (Chou and Elrod, 2002), ligand-specific features
(Okuno et al., 2006), and proteins’ physicochemical properties (Davies et al., 2007). Over the last years, ML was extensively used to aid
GPCRs classification, to better understand these receptors and assist drug discovery, developing new and more selective drugs with fewer
side effects (Cobanoglu et al., 2011).

Many of the methods used for GPCR classification are based on SVMs algorithms (Zhu et al., 2011; Nie et al., 2015; Hu et al.,
2016a; Shen et al., 2017). However, other methods deploy different approaches. For example, Kumari et al. used the domain predictions
from five different software as input to all classifiers present (DT J48, Bagging, Naïve Bayes (NB) and Bayes Net) in order to classify
GPCRs (Kumari et al., 2009). In another work, Cobanoglu et al. developed the GPCRBind method, which classifies Class A GPCRs
family through sequence-derived motifs that specify the different subfamilies by identifying the critical ligand interaction sites (Cobanoglu
et al., 2011). This method makes use of TFI-DF for motif characterization and DT to select the motifs. More recently, CNN was
used in conjunction with TM techniques to perform GPCR classification (Man Li et al., 2017). Alternatively to the previous methods,
GPCR-MPredictor uses a genetic algorithm to construct an ensemble of classifiers (SVM, KNN, PNN, and J48) for GPCR classification
into family, subfamily, sub-subfamily, and subtypes with over 80% accuracy for every level (Naveed and Khan, 2012). Additionally, RF
was used to correctly classify GPCRs that had been previously misclassified (Shkurin and Vellido, 2017).

5.3 Importance of pathway analysis

GPCRs participate in many intracellular signaling pathways that are known to trigger several cellular and physiological consequences.
Several studies have shown increasing evidence that drugs acting over the same GPCR have different physiological effects, since they
modulate different intracellular signaling pathways (Kenakin, 2019). Therefore, the stimulation of a pathway by a certain drug has
important implications (Diez-Alarcia et al., 2019). Indeed, there are multiple signaling pathways activated by a single receptor due to the
multiplicity of G proteins known for a variety of receptors that provide one mechanism for this type of activation (Yang et al., 2020).

The key importance of pathway mapping is being explored in recent years. For example, a model developed by Diez-Alarcia et al.,
seems to determine the probability of a molecule to interact with a different GPCR considering pathway information. This method combines
concepts from Perturbation Theory (PT) and ML. For a practical case, the authors focused on the prediction of pharmacological compounds
with affinity for Serotonin 5-HT2A Receptor (5-HT2AR) (Diez-Alarcia et al., 2019). The results of the predictive and experimental
experiences indicated that some drugs, formerly defined as selective 5-HT2AR agonist, antagonist, or inverse agonist, are not so specific
for this receptor and could demonstrate intrinsic activity different to that previously stated. The conclusions for the 5-HT2AR displayed
that this computational approach could help to design new antipsychotic drugs with better efficacy and tolerability profiles (Diez-Alarcia
et al., 2019).

6 Other areas of AI application to GPCRs

While most AI applications were developed to facilitate in silico drug development and design in terms of HTS, there are also other
illustrations in the GPCR field where AI was particularly useful.

6.1 Database construction

For instance, the DAKB-GPCRs database was explicitly developed to compile research of GPCRs involved in Drug Abuse (DA) (Chen
et al., 2019). The chemogenomic knowledgebase contains information about DA-related protein targets (258 proteins in total, 86 of them
are GPCRs), small molecules, and algorithms for data analysis and visualization (Chen et al., 2019). Since the structural resolution of
DA-related GPCRs has stagnated (only 29 out of 52 published structures in the last 18 years are relevant (Xiang et al., 2016)) homology
modeling, and MDs were very helpful to build accurate models. Within the DAKB-GPCRs database, the accuracy and diversity of such
models’ conformations were further optimized by pre-screening them against a training set of GPCR active and inactive ligands after
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MDs, using tools such as HTDocking, TargetHunter, NGL, and ANN. As output, for example, a spider plot can be generated to visualize
and analyze the data (Chen et al., 2019).

6.2 Structural modeling improvement

Another extremely challenging area in the GPCR field is attaining a particular 3D-structure resolution (either by X-ray crystallization or
Cryo-EM). The flexible nature of GPCRs and their ability to quickly switch between different conformational states (apo-state, active
agonist-bound, antagonist-bound, inactive) makes them difficult candidates for protein purification. Consequently, most of this protein
family structures (87%) remain unsolved (Muk et al., 2019). The knowledge about a target’s structure is, however, crucial for SBDD.
The most profitable method for structure solvation is finding thermostabilizing mutants suitable for the crystallization process (Tate and
Schertler, 2009; Muk et al., 2019). The principle of thermostabilization of GPCRs via point mutations has helped to solve more than 30
structures (Popov et al., 2019) by using either systematic alanine scanning (Errey et al., 2015), protein evolution (Schütz et al., 2016) or
a combination of both. Therein lies the challenge (and the costs) for determining the suitable combination of mutations. To avoid intensive
laboratory labor, computational applications have helped to accelerate the process. A study by Muk et al. made use of four different ML
approaches (RF, cost-sensitive RF, adaptive boosting and gradient boosting) to improve the method of thermostabilized mutant GPCRs via
systematic alanine scanning mutations (Muk et al., 2019). Their method combines sequence-, structure-, and dynamics-based molecular
properties of GPCRs that recapitulate their stability to predict thermostable mutations ahead of experiments. Similar approaches were also
developed, for example, the GPCRdb (Munk et al., 2019; Popov et al., 2019) construct design tool and the CompoMug (Popov et al.,
2018), which used information about known thermostabilizing point mutations of any GPCR and applies it to the target of interest.

Besides the application of ML-methods to improve the process of structure determination of GPCRs, in silico 3D-modeling has
become indispensable over the years and is continuously improving with the increasing numbers of solved X-ray crystal structures
and computational techniques. Many algorithms were already employed to describe and predict the membrane-embedded alpha-helical
polytopic nature of GPCRs (Yang et al., 2013). Mostly, the TransMembrane Helix domain topology (TMH), such as inter-TMH residue
contacts, TMH-TMH interactions and residue-residue contact patterns (crucial for ab initio protein folding) have proven to be appropriate
targets for ML predictions (Yang et al., 2013). Published methods propose predicting such information from the primary sequence by
either Correlated Mutation Analysis (CMA) and/or ML-based methods (Yang et al., 2013). Some of these examples include TMHit (Lo et
al., 2009), MemBrain (CMA + ML-based method (Yang et al., 2013)), PSIPRED (Buchan and Jones, 2019), MEMSAT3 (Jones, 2007),
DeepMetaPSICOV (Kandathil et al., 2019) and many applications from the ZhangLab (https://zhanglab.ccmb.med.umich.edu/research/)
such as GPCR-I-Tasser (Zhang et al., 2015b).

6.3 GPCR stabilization and modeling

As it was already highlighted, modeling MPs is still very challenging compared to soluble proteins (Ray et al., 2010; Almeida et al., 2017).
Many standard sequence-based methods for model quality evaluation (not based upon ML) were initially developed for water-soluble
proteins but can also be applied to MPs (Forrest et al., 2006; Ray et al., 2010). Indeed, methods such as ProQ (Wallner and Elofsson,
2006), Rosetta (Rohl et al., 2004), and many more were developed in the last years to evaluate such structure prediction models. ProQ
can generate many models either by using multi-template alignments or a hybrid template generated from the several individual templates
(Wallner and Elofsson, 2006), while Rosetta uses a different approach by sampling different regions of the conformational space (Rohl et
al., 2004). For the best model’s discrimination an ideal scoring function is the output of such methods, measuring the distance between the
model and the native structure correlating between score and quality (Ray et al., 2010). Available scoring functions can be split into three
categories: physics, knowledge and learning-based (Ray et al., 2010). Physics scoring functions describe the interaction between atoms
as accurately as possible; typical examples are molecular mechanics force fields such as CHARMM (Brooks et al., 1983) or AMBER
(Weiner et al., 1984). Knowledge-based scoring function (based upon the Boltzmann device) derives a probability distribution from native
structures features (Sippl, 1990; Lüthy et al., 1992; Samudrala and Moult, 1998; Zhang and Kim, 2000; Ray et al., 2010). Lastly,
learning-based functions such as ANNs or SVMs are trained to distinguish between correct and incorrect models based on structural
features to predict the actual quality of a given model (Martinez et al., 1991; Fain et al., 2002; Wallner and Elofsson, 2003; Pawlowski
et al., 2008; Ray et al., 2010). Nevertheless, for GPCRs, only some methods focus on the general problem of predicting the correctness of
different parts of a structural model, rather than just evaluating the global model (Wallner and Elofsson, 2006). Moreover, insertion into
the lipid bilayer environment is an additional peculiarity, which most predictors do not address. The developers of ProQRes and ProQM
(Ray et al., 2010), tried to include in their scoring function all relevant parameters for membrane-specific properties such as topology and
Z-coordinate prediction as well as the grade of conservation and sequence profile information.

More than 200 receptors have known ligands, either peptides or small molecules, which enable them to perform their biological
function, although, for almost 100 receptors, the ligand remains unknown (orphan GPCRs) (Foster et al., 2019). Despite the undeniable
importance for orphan GPCRs, such ligands’ discovery is transverse to all GPCRs mainly due to their potential as a therapeutic target.
In silico approaches can be applied to predict the peptide-receptor combination correctly, and the prediction of endogenous peptides
originated from proteolytic sites in proteins (Foster et al., 2019). Active endogenous peptides are usually the result of Post-Translational
Modifications (PTMs) to inactive precursors, which often carry an arginine as the first amino-acid in their N-terminus (Kliger, 2010),
are highly conserved, and located between cleavage sites (Foster et al., 2019). Shiraishi et al. successfully integrated computational
and experimental approaches to neuropeptides and receptors interactions (Shiraishi et al., 2019). An SVM model was used to obtain
Peptide Descriptors (PDs) from chemical and sequence data of ligand-receptor pairs. These PDs were double-optimized using Genetic
Algorithm-based Feature Selection (GAFS) to improve the result independently of the species, making the neuropeptide-GPCR pairs
prediction with
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their method suitable for any species. Of the 29 pairs predicted in silico, 12 were validated by experimental methods, 11 of which were
specific for the species under study. The phylogenetic tree analysis also revealed previously unknown interactions between neuropeptides
and GPCRs, paving the way for future research. Similarly, Foster et al. also used an integrative approach that benefited from a first stage of
computational prediction tool for peptide ligands and receptors before experimental validation to complement the ligand-GPCR signaling
system (Foster et al., 2019). From previously described peptide ligands, they concluded that 67% regulate cellular functions through
interaction with GPCRs, identifying several relationships where, on average, each GPCR is regulated by 2.9 peptides with higher affinity
and potency levels. For the prediction of peptide ligands from the human proteome, the authors used a RF classifier obtained from similar
length and evolutionary conservation values of previously described peptides that match the precursor signal peptide and cleavage sites.
After experimental studies, the authors reported a 17% increase in known interactions of the human peptidergic signaling network along
with 74% of the peptides being validated as developing receptor-dependent responses (Foster et al., 2019).

6.4 GPCR dimerization

In general, GPCR dimerization’s influence during the receptor’s life cycle was already summarized in several publications (Terrillon
and Bouvier, 2004; Barreto et al., 2020a, 2020b; Preto et al., 2020). It can be pinpointed in three stages: ontogeny (localization),
membrane-specific actions (ligand-promoted regulation, pharmaceutical diversity, signal transduction), and internalization. Ontogeny
ensures the correct folding and maturation of the receptors and, consequently, allows cell surface delivery (Bulenger et al., 2005;
Lopez-Gimenez et al., 2007). In contrast, the GPCR oligomerization may also anticipate limited receptor maturation and cell surface
delivery by causing ER-retention (Janovick et al., 2007; Lopez-Gimenez et al., 2007). For the internalization process
dimer −/oligomerization can promote the co-internalization of both receptors after stimulation of only one. By choice, an oligomeric
structure may also prevent agonist-induced internalization of the targeted receptor (Terrillon and Bouvier, 2004). Co-internalization
can also be associated with cross-desensitization of the signaling activities (Terrillon and Bouvier, 2004). Although the maturation and
internalization process of GPCRs is of potential interest, the physiological consequences remain to be determined. In a nutshell, the cause
for heterodimerization events at these two stages are due to naturally occurring mutations, which are of pathophysiological relevance
(Lopez-Gimenez et al., 2007).

The relevance of GPCR-oligomers has increased over the last few years as more disease-specific heteromers are being identified (Gupta
et al., 2010; Rozenfeld et al., 2011; Gomes et al., 2013; Barreto et al., 2020a, 2020b). Hence, it is now widely accepted that highly dynamic
GPCR networks exist and that the monomer’s functions such as ligand binding affinity and signaling may be altered through oligomer
formation (Terrillon and Bouvier, 2004; Barreto et al., 2020a, 2020b). This paradigm shift from basic signal transduction towards a
more holistic and multifactorial view on GPCRs challenges rational drug design (Terrillon and Bouvier, 2004). Therefore, computational
studies (including AI approaches) on GPCR oligomerization are necessary to understand the disease mechanism and support experimental
studies to reveal novel pathways for treating GPCR-linked illnesses (Nemoto et al., 2016). At the plasma membrane, a GPCR-complex
can either be a target for dynamic regulation of ligand-binding, promote or inhibit ligand binding cooperativity or potentiating, attenuating
downstream signaling or even changing G protein selectivity (Terrillon and Bouvier, 2004). For these kinds of PPI, several ML-based
methods and web servers for the prediction of their interfaces, such as WHISCY (de Vries et al., 2006) and ISIS (Ofran and Rost, 2007),
are well-established and were reviewed by Barreto et al. (2020a, 2020b). However, not all were developed explicitly for GPCR dimer
interface prediction and their modulation. Until today, there is not a method that covers the complexity of oligomeric systems, and as such,
these innovative ML-based methods may provide strategic prediction tools (Barreto et al., 2020a, 2020b).

6.5 Combining molecular dynamics with artificial intelligence

The increasing number of GPCRs available structures, in particular with intracellular partners G-Proteins and Arrestins, and the
technological advances in computational power allows for bigger systems and longer timescales (microseconds) MD simulations, which
created a “big data” problem in their analysis (Díaz et al., 2019). The currently reported integration of MD simulations and ML algorithms
shows promising results (Almeida et al., 2017; Plante et al., 2019). For example, Plante et al. presented an ML approach to analyze
GPCR-ligand MD simulations (Plante et al., 2019) using 5-HT2A and D2 receptors as study cases. The atomic coordinates calculated
throughout the simulations were converted into RGB code to form an image that was readable by a DNN-based pipeline. This novel
approach successfully classified GPCR conformations by ligand class (full, partial, and inverse agonist), and allowed authors to identify
the structural motifs that undergo conformational changes for each type of molecule studied (Plante et al., 2019).

The Marta Filizola group recently published another ML/MD protocol to better estimate kinetic properties of (un)binding of a
ligand to GPCR. The rate of dissociation of a drug is an important predictor of its in vivo efficacy. However, the timescale of drug
dissociation is around the minute, which would be computationally inefficient to simulate. Enhanced sampling methods, such as infrequent
metadynamics (used in Filizola’s group work) were proposed to reduce simulation time required to observe drug dissociation. Nevertheless,
these methods require identifying a Reaction Coordinate (RC) capable of successfully describing the dissociation process, which is an
incredibly challenging task in a complex system such as GPCR. Filizola’s group reported a possible solution to this problem by using
features extracted from a short, unbiased MD as an initial dataset that was fed into a pipeline that used state of the art ML methods for
dimensionality reduction with Automatic Mutual Information Noise Omission (AMINO). Furthermore, it used Reweighted Autoencoded
Variational Bayes for Enhanced sampling to help determine the optimal Reaction Coordinate for infrequent metadynamics (RAVE). This
protocol successfully estimated two prototypical opioid receptor drugs’ kinetic rates at a reduced computational cost while granting atomic
resolution of transitional structures throughout the unbinding pathway (Lamim Ribeiro et al., 2020).
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7 R&D companies

Between 1985 and 2005, 91% of FDA approved drugs were associated with a patent detained by the private sector (Sampat and
Lichtenberg, 2011). However, almost half of these patents cited a public research paper or patent (Sampat and Lichtenberg, 2011), which
means that the private sector is leveraging the generated knowledge from the public sector to patent more improved and adapted ideas to
meet the market’s needs. This somewhat symbiotic relationship denotes the importance of valuing both the public and the private research.
Although the private sector clearly dominates the development, the research part is still largely driven by the academia. Table 3 shows a
group of companies that developed, adapted, or enhanced computational methods or pipelines, that can be used to better study GPCRs.

8 Concluding remarks

In the present chapter, we reviewed over 60 works that deploy AI-based methods to improve GPCR characterization/prediction of function
and/or structure. Many of these works were associated with DTI prediction, which is not surprising since this task is still cumbersome
and far from being resolved. However, their study remains very promising, as it would trigger a whole new landscape of drug design and
development.

Indeed, ML application in GPCRs is still in its embryo form; however, the deployment of similar techniques to soluble proteins validates
and boosts their usage to this clinically relevant class of MPs.
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NuMedii Repurpose of FDA approved GPCR related drugs

for small cell lung cancer
Jahchan et al. (2013)

PharmCADD Prediction of 3D structures of proteins http://pharmcadd.com/pharmulator-2/
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Glossary

Artificial intelligence An interdisciplinary wide-ranging branch of computer science concerned with building smart machines
capable of performing assignments that typically require human task-accomplishing skills.
Computer-aided drug design Comprises a wide range of theoretical and computational methods to reduce the time and resource
bottlenecks involved in drug design and discovery.
Deep learning A subset of Machine Learning (ML) that makes use of Artificial Neural Network (ANN). These networks mimic their
biological counterpart (brain neurological networks) and have been explored through diverse architectures and problems.
Drug-target interaction The physical and chemical interaction that occurs between a small ligand (drug) and a protein target.
Ideally, its modulation can lead to pharmaceutical solutions to biomedical problems.
G protein-coupled receptors A superfamily of MPs that mediate a vast array of biological processes constituting the target of
around 35% of all pharmaceutical drugs in the market.
Machine learning The usage of statistical and logical tools, in conjunction with computers, to deploy AI methods and optimize
task-solving processes without explicitly programming the computer to do so.
Orphan receptors GPCRs without known endogenous ligand or physiological function. The finding of endogenous ligands and
physiological function is called deorphanization, since it allows the inclusion of said GPCR on the appropriate family.
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Abstract 

DrugTax is an easy-to-use Python package for small molecule detailed characterization. It extends a previously 
explored chemical taxonomy making it ready-to-use in any Artificial Intelligence approach. DrugTax leverages small 
molecule representations as input in one of their most accessible and simple forms (SMILES) and allows the simul-
taneously extraction of taxonomy information and key features for big data algorithm deployment. In addition, it 
delivers a set of tools for bulk analysis and visualization that can also be used for chemical space representation and 
molecule similarity assessment. DrugTax is a valuable tool for chemoinformatic processing and can be easily inte-
grated in drug discovery pipelines. DrugTax can be effortlessly installed via PyPI (https:// pypi. org/ proje ct/ DrugT ax/) or 
GitHub (https:// github. com/ Morei raLAB/ DrugT ax).
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Introduction
PubChem [1] registers over 111 million compounds 
and 278 million substances (August 2022). According 
to Drugbank [2] there are 2725 approved drugs, among 
11,937 possible drugs. ChEMBL [3] reports over 2.2 mil-
lion compounds and 14,000 drugs. The abundance of 
drugs or drug-like compounds is evidently overwhelm-
ing, which is often problematic, when considering 
automatized approaches.

The surge of Artificial Intelligence (AI) and its sub-
field Machine Learning (ML) to tackle problems involv-
ing drugs or, overall, small ligands has been significant 
in the last few years [4]. For this purpose, it is advanta-
geous to be able to provide a deeper understanding of the 
drugs’ characteristics while also being able to numeri-
cally describe them [5]. Feature extraction is a focus 

when considering ML-based approaches, as it is a crucial 
and necessary step for any algorithms to be able to dis-
tinguish between the different patterns within the data. 
Under the scope of drug discovery, several packages have 
been developed to this end. Open Babel [6] is a broad 
example, providing a set of chemical tools to describe 
and manipulate drugs and other small molecules. More 
recently, packages such as Mordred [7] or ChemmineR 
[8] have also been developed. Alternatively, a different 
type of approaches can also be used for ML processing, 
such as the ones based on graph [9, 10] and voxel-based 
[11] drug representations. The chemical characterization 
of small molecules is a cornerstone for further under-
standing and essential for bulk data approaches, and as 
such we explored the usage of this type of knowledge 
for data grouping and feature extraction, some of the 

Graphical Abstract
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characterizations stemming from the root biochemical 
definitions [12].

Our new developed Python package, DrugTax, follows 
the definitions made available by ChemOnt and Classy-
fire [13]. The Classyfire protocol [13] is very useful for 
small molecule taxonomy classification as it performs a 
levelled classification in 11 different levels (Kingdom, 
SuperClass, Class, SubClass, etc.), yielding over 4800 dif-
ferent categories. We also explored the chemical ontol-
ogy (ChemOnt), developed by the same authors, which 
allows the classification of the small molecules solely 
by rule-based steps. However, these protocols still pre-
sented some shortcomings: (i) the API, although properly 
documented, is faulty in bulk submissions; (ii) although 
both the browser and the API are available, the Chem-
Ont code for small molecule taxonomic classification is 
not accessible, limiting the users to using the authors’ 
API; and finally, (iii) while the same-level categories are 
not necessarily mutually exclusive, Classyfire [13] yields a 
single classification for each compound. This means that 
molecules belonging to more than one superclass, are 
overlooked, leading to major oversights of information 
when considering multiple molecules’ comparison. These 
shortcomings are particularly relevant if the research’s 
main aim is to group small ligands according to their 
characteristics.

DrugTax solves that problem by allowing the user to 
install and inspect the code that generates the small mol-
ecules classes in an easy-to-use package. DrugTax pro-
vides the prior classification between the two possible 
kingdoms, organic and inorganic, and, respectively, their 
26 and 5 superclasses. These superclasses are returned in 
the form of a list, thus allowing overlapping superclasses. 
Subsequently, DrugTax displays UpSet plots [14], which 
are ideal for identifying and inspecting large volumes of 
intersecting sets to provide the user an approach to fur-
ther tailor the groupings to their needs. Finally, DrugTax 
provides an option to use features derived from the taxo-
nomic analysis up until superclasses. This innovation can 
be promptly used for ML purposes or simply small mol-
ecule data visualization.

Methods and implementation
DrugTax is centered around a Python object class that 
takes as input a Simplified Molecular Input Line Entry 
System (SMILES) [15] and computes several necessary 
steps for the upcoming kingdom and superclass assign-
ment. If a SMILES representation is not provided, Drug-
Tax will default to download its isomeric form from a 
provided name. All Code Snippets (C.S.) can be found in 
Additional file  1. Figure  1 illustrates molecules belong-
ing to the 31 superclasses that will be listed next. Organic 

molecules are highlighted in green, while inorganic mol-
ecules are shown in red.

DrugTax class, helper functions and variables
Prior to starting the calculations, a few variables (C.S.1—
Halogens, metals and group-15/nitrogen atoms lists) 

Fig. 1 Graphical representation of each of the 31 superclasses. 
Organic molecules are highlighted in green, while inorganic 
molecules are shown in red. The molecules depicted are: 
organoheterocyclic-imidazole (i); organosulphur-glutathione (ii); 
lipid molecule-behenic acid (fatty acid) (iii); allene-fucoxanthin 
(iv); benzenoid-benzene hexacarboxylic acid (v); 
phenylpropanoid-phenylalanine (vi); organic acid-butyric 
acid (vii); alkaloid-morphine (viii); organic salt-acetate (ix); 
organohalogen-acetyl chloride (x); organometallic-ferrocene (xi); 
organic nitrogen-pyrrole-2-carboxylate (xii); nucleotide-guanine 
(xiii); organic oxygen-ethanol (xiv); organophosphorus-diethyl 
phosphonate (xv); lignans and neolignans-matairesinol (xvi); 
organic polymer-starch (xvii); hydrocarbon-octane (xviii); 
hydrocarbon derivative-ethanol (xix); organic anion-phosphate 
(xx); organic cation-choline (xxi); organic zwitterion-ammonium 
propionate (xxii); carbene-dichlorocarbene (xxiii); organic 
1,3-dipolar-nitrone molecule (xxiv); organopnictogen-N-(4-phenyla
mino-quinazolin-6-yl)-acrylamide (xxv); acetylide-lithium acetylide 
(xxvi); homogenous metal - cerium with mixed metals (xxvii); 
homogenous non-metal-noble gas helium (xxviii); mixed metal/
non-metal-potassium nitrate (xxix); inorganic salt-sodium chloride 
(xxx); miscellaneous inorganic-cyanide (xxxi)
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helper functions were constructed (C.S.2—To retrieve 
only ordered atom sequence and C.S.3—To allow atom 
rings identification). Furthermore, two functions were 
made available for upcoming feature extraction: one 
allows for the count of characters on SMILES (C.S.4), 
while the other initializes an empty dictionary of super-
class feature data (C.S.5). Finally, the DrugTax class 
object itself is initialized with the computation of sev-
eral useful characteristics (C.S.6 – DrugTax class object 
initialization).

Kingdoms: organic and inorganic
The general rule to assess whether a compound is 
organic, or inorganic depends on the existence of at 
least one carbon atom, in which case it is categorized as 
an organic compound. There are a few exceptions. For 
example, some compounds, although containing carbon 
atoms, are nonetheless, considered inorganic, e.g., isocy-
anide/cyanide, thiophosgene, carbon diselenide, carbon 
monosulphide, carbon disulphide, carbon subsulphide, 
carbon monoxide, carbon suboxide and dicarbon mon-
oxide. The code accessible in C.S.7 allows the discrimi-
nation between the two possible kingdoms. Subsequently 
the matching superclasses will be called, in accordance 
with C.S.6.

Organic compounds
As previously mentioned, an in accordance with Classy-
Fire [13], DrugTax considers 26 possible superclasses for 
organic compounds, listed below and for which the code 
to compute them from the basic SMILES is displayed in 
Additional file 1.

Organoheterocyclic
According to the Nomenclature of Organic Compounds 
“Organic heterocyclic systems contain one or more foreign 
elements such as oxygen, sulphur, or nitrogen in addition 
to carbon” [16]. As such, we considered organohetero-
cyclic compounds those which contain a ring with least 
one carbon atom and one non-carbon atom (C.S.8). The 
organoheterocyclic superclass is illustrated with an imi-
dazole molecule in Fig. 1-i.

Organosulphur
According to Arya et  al. [17], “Organosulphur com-
pounds  are organic molecules that contain sulphur and 
are associated with the pungent odors” [17], and as such, 
we identified organosulfur compounds as those with at 
least one carbon–sulphur bond (C.S.9). The organosul-
phur superclass is depicted with a glutathione in Fig. 1-ii.

Lipids
According to the definition by Jones [18], “Lipids may be 
classified as a mixed group of substances with the com-
mon characteristics of solubility in organic solvents”. This 
group of biological molecules can be further split into 
simple lipids (i), such as fats—neutral esters of glycerol 
with satured and unsaturated acids; compound lipids 
(ii) consist of a fatty acid, an alcohol and at least one 
group containing atoms such as phosphorus or nitrogen; 
derived lipids (iii) are fatty acids that stem from simple or 
compound lipids by means of hydrolysis.

As seen above, the chemical definition of lipids is quite 
broad. Within DrugTax implementation, we narrowed it 
down to fatty acids and their derivatives, as well as sub-
stances related biosynthetically or functionally to these 
compounds. This corresponds to the occurrence of car-
boxyl group as well as a carbon chain at least four car-
bons long, regardless of chain saturation (C.S.10). These 
criteria were driven by literature assessment, in agree-
ment with Aslan and Aslan, 2017 definition [19]. Behenic 
acid (fatty acid) is shown in Fig. 1-iii.

Allenes
“Allenes  are  organic compounds  in which one  car-
bon  atom has  double bonds  with each of its two adja-
cent carbon centres” in accordance with IUPAC Gold 
Book allenes entry [20]. The definition includes both the 
hydrocarbon molecules and their derivatives obtained by 
substitution (C.S.11). The allenes superclass is depicted 
with a fucoxanthin in Fig. 1-iv.

Benzenoids
According to Gutman and Babić [21], benzenoids are 
aromatic compounds containing one or more benzene 
rings, formed solely by carbon atoms. The code for ben-
zenoid superclass attribution can be consulted at C.S.8. 
Benzene hexacarboxylic acid, an example, is represen-
tated in Fig. 1-v.

Phenylpropanoids and polyketides
According to Zhang and Stephanopoulos [22], “The phe-
nylpropanoids are a family of organic compounds with 
an aromatic ring and a three-carbon propene tail and are 
synthesized by plants from the amino acids phenylala-
nine and tyrosine” [23]. Regarding polyketides, Korman 
et  al. says: “Polyketides  are a large class of structurally 
diverse, acetate derived natural products that exhibit a 
wide range of bioactivities.” [24]. As such, phenylpropa-
noids and polyketides are organic compounds that are 
synthesized either from the amino acid phenylalanine 
(phenylpropanoids) or the decarboxylative condensa-
tion of malonyl-CoA (polyketides). Phenylpropanoids are 
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aromatic compounds based on the phenylpropane skel-
eton. Polyketides usually consists of alternating carbonyl 
and methylene groups (beta-polyketones), biogenetically 
derived from repeated condensation of acetyl coenzyme 
A (via malonyl coenzyme A) (C.S.12). The phenylpropa-
noids and polyketides superclass is depicted with a phe-
nylalanine in Fig. 1-vi.

Organic acids and derivatives
According to Richter et al. [25] “Organic acids are weak 
acids with  pKa values that range widely from as low as 
3 (carboxylic) to as high as 9 (phenolic)”. Furthermore, 
according to Papagianni 2011, “Organic acids contain 
one or more carboxylic acid groups, which may be cova-
lently linked in groups such as amides, esters, and pep-
tides.” Although we are aware that there are different 
definitions, some of which consider organic acids with-
out a carboxyl group [26], we considered organic acids 
those with carboxyl groups (C.S.13). The organic acids 
superclass is depicted using butyric acid as an example in 
Fig. 1-vii.

Alkaloids
According to Kurek, “Alkaloids are a huge group of natu-
rally occurring organic compounds which contain nitro-
gen atom or atoms (amino or amido in some cases) in 
their structures. These nitrogen atoms cause alkalinity 
of these compounds” [27]. DrugTax classifies small mol-
ecules as alkaloid it exists nitrogen atom(s) and they have 
a negative net charge (C.S.14). The alkaloid superclass is 
depicted with a morphine molecule in Fig. 1-viii.

Organic salts
Organic compounds consist of an assembly of cations 
and anions, of which one must be organic. According to 
Seçken, Nilgün, “Organic salts, however, are compounds 
that are formed from at least one anion and one cation. 
Their anions are organic acid based” [28] (C.S.15). Ace-
tate molecule was used to exemplify this superclass in 
Fig. 1-ix.

Organohalogen compounds
According to Roberts and Caserio. “The general term 
of "organohalogen" refers to compounds with covalent 
carbon-halogen bonds” [29]. As such, by listing the hal-
ogen atoms in C.S.1, using the code below it is possible 
to identify organohalogens (C.S.16). The organohalogen 
compounds superclass is depicted with an acetyl chloride 
in Fig. 1-x.

Organometallic compounds
According to Abbot et  al. the existence of at least 
on metal–carbon allows the classification into 

Organometallic compounds [30]. Given this definition, 
DrugTax identifies organometallic compounds using the 
same code as for organohalogens (C.S.16) but accessing 
the metals list instead (C.S.1). The organometallic com-
pounds superclass is depicted with ferrocene in Fig. 1-xi.

Organic nitrogen compounds
According to Moreno and Peinado, “Nitrogen com-
pounds  can be classified as mineral or organic. (…) 
Organic compounds, in contrast, are carbon and hydro-
gen compounds that contain a nitrogen atom” [31]. In 
the context of DrugTax, organic nitrogen compounds are 
simply organic compounds that contain nitrogen atoms. 
As such, we identify nitrogen atoms upon kingdom attri-
bution completion (C.S. 17). Pyrrole-2-carboxylate, an 
example of this superclass, can be found in Fig. 1-xii.

Nucleosides and nucleotides
According to Sparkman et  al. “Nucleosides  consist of a 
purine or a pyrimidine base and a ribose or a deoxyribose 
sugar connected” [32]. Nucleotides, on the other hand, are 
defined by Joseph, A. as “A nucleotide is a subunit of DNA 
or RNA that consists of a nitrogenous base (A, G, T, or C 
in DNA; A, G, U, or C in RNA), a phosphate molecule, 
and a sugar molecule (deoxyribose in DNA, and ribose in 
RNA)” [33]. Considering these definitions, nucleotides 
are simply nucleosides with phosphate groups. As such, 
to identify nucleosides and nucleotides is necessary to 
encounter any combination of cytosine, adenine, gua-
nine, thymine, uracil with either ribose or deoxyribose 
(C.S.18). The nucleosides and nucleotides superclass are 
represented with guanine in Fig. 1-xiii.

Organic oxygen compounds
As shown by Lee and Meyer [34], the quantification of 
oxygen in organic compounds can be detrimental in 
characterizing said compounds. DrugTax also identifies 
whether the input drug has oxygens or not (C.S.17). The 
organic oxygen compounds superclass is illustrated with 
ethanol Fig. 1-xiv.

Organophosphorus compounds
According to Müller “Organophosphorus com-
pounds with phosphorus–carbon multiple bonds provide 
a rich and fascinating coordination chemistry” [35]. By 
identifying phosphorus in an organic compound (C.S.17), 
we can recognize organophosphorus compounds. The 
organophosphorus compounds superclass is depicted 
with diethyl phosphonate Fig. 1-xv.

Lignan and neolignans
Sang and Zhu states: “Lignans  form a group of phenolic 
compounds with a backbone of two phenylpropanoid 
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(C6C3) units” [36]. According to this definition, Drug-
Tax identifies lignans and neolignans according to the 
occurrence of either p-propyphenol or phenylpropane 
(C.S.19). The lignans and neolignans superclass is shown 
with matairesinol Fig. 1-xvi.

Organic polymers
Yadav and Sinha states that organic polymers are long, 
chained macromolecules composed of many repeat-
ing  monomer  units” [37]. As such, DrugTax identifies 
repeating patterns in the molecules of the organic king-
dom to identify organic polymers (C.S.20). The organic 
polymers superclass is depicted with starch Fig. 1-xvii.

Hydrocarbons
According to Enerijiofi “Hydrocarbons  are a group of 
chemical organic compounds composed of carbon and 
hydrogen” [38]. In this case, if the input molecule has not 
atoms besides carbon and hydrogen, DrugTax will clas-
sify the molecule as a hydrocarbon (C.S.21). The hydro-
carbons superclass is depicted with octane Fig. 1-xviii.

Hydrocarbon derivatives
Extending from the definition of Enerijiofi, hydrocarbon 
derivatives are organic compounds derived from hydro-
carbon in which there are atoms different from carbon 
and hydrogen. DrugTax uses the same function (C.S.21) 
to identify both hydrocarbons and hydrocarbon deriva-
tives. The hydrocarbon derivatives superclass is por-
trayed with ethanol Fig. 1-xix.

Organic anions
According to Sekine et  al.:”Organic anions are chemi-
cally heterogeneous substances possessing a carbon back-
bone and a net negative charge” [39]. As such, DrugTax 
accounts identifies as organic cations the organic mol-
ecules with a negative net charge (C.S.22). The organic 
anions superclass is showed with phosphate Fig. 1-xx.

Organic cations
In contrast with Sekine et al.’s definition of organic ani-
ons, organic cations carry a net positive charge. As such, 
the same process can be applied (C.S.22), this time con-
sidering an overall positive net charge. The organic cati-
ons superclass is shown with choline Fig. 1-xxi.

Organic zwitterions
According to Hadjesfandiari and Parambath: “Zwitteri-
ons  contain both positive- and negative-charged groups, 
with an overall neutral charge“ [40]. Considering this def-
inition, DrugTax leverages the same approach of the pre-
vious two superclasses (C.S.22), for organic cations and 
anions. However, in this case, it is important to highlight 

that zwitterions are not merely organic compounds 
without a charge. They must have an equal number of 
negative and positive charges. The organic zwitterions 
superclass is depicted with ammonium propionate in 
Fig. 1-xxii.

Carbenes
Savin states: “A carbene is a neutral divalent carbon spe-
cies containing two electrons that are not shared with 
other atoms” [41]. As such, DrugTax identifies carbenes 
as organic molecules with unpaired electrons at a carbon 
atom (C.S.23). The carbenes superclass is depicted by 
dichlorocarbene in Fig. 1-xxiii.

Organic 1,3‑dipolar compounds
The IUPAC Compendium of Chemical Terminology 
defines dipolar compounds as “Electrically neutral mol-
ecules carrying a positive and a negative charge in one of 
their major canonical descriptions” [42]. Further along, it 
extends the definition to 1,3-dipolar compounds as “those 
in which a significant canonical  resonance  form can be 
represented by a separation of charge over three atoms” 
[42]. According to this definition, DrugTax identifies 
organic 1,3-dipolar compounds if they simultaneously 
possess positive and negative charges. However, the net 
charge should be neutral, and the compound must have 
one atom separating the atoms with the opposing charges 
(C.S.24). Nitrone molecule was chosen as an example, 
and it is depicted in Fig. 1-xxiv.

Organopnictogen compounds
IUPAC defines pnictogens as an atom belonging to group 
15 of the periodic table, which include nitrogen, phos-
phorus, arsenic, antimony and bismuth [43]. To iden-
tify organopnictogens, DrugTax leverages the list of the 
group 15 atoms (C.S.1) and checks whether there are any 
bounds between these atoms and carbons (C.S.25). The 
organopnictogen superclass is depicted with N-(4-phe-
nylamino-quinazolin-6-yl)-acrylamide in Fig. 1-xxv.

Acetylides
According to the IUPAC Compendium of Chemical 
Terminology, acetylides obey the following principles: 
“Compounds arising by replacement of one or both 
hydrogen atoms of acetylene (ethyne) by a metal or other 
cationic group. E.g.,  NaC≡CH  monosodium acetylide. 
By extension, analogous compounds derived from termi-
nal  acetylenes,  RC≡CH” [44]. By using the list of metal 
atoms (C.S.1), DrugTax identifies acetylides as organic 
compounds with a triple covalent bond between two car-
bon atoms, with at least one of them, bounded to a metal 
atom (C.S.26). Lithium acetylide is portrayed as an exam-
ple of this superclass in Fig. 1-xxvi.
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Inorganic
As previously mentioned, and in accordance with Classy-
Fire [13], DrugTax considers five possible superclasses 
for inorganic compounds, listed in the next subsections. 
As these definitions are overall quite straightforward and 
elementary, we will present equally simple definitions.

Homogenous metal compounds
Homogenous metal compounds are inorganic com-
pounds that contain only metal atoms. These atoms, 
however, are not necessarily all atoms of the same metal. 
The list of metals was retrieved from C.S.1. The code to 
identify homogenous metal compounds can be found at 
C.S.27. The homogenous metal superclass is illustrated as 
cerium with mixed metals Fig. 1-xxvii.

Homogenous non‑metal compounds
Homogenous non-metal compounds are inorganic 
compounds that contain only non-metal atoms. The 
list of metals was retrieved from C.S.1. The code to 
identify homogenous non-metal compounds can be 
found at C.S.28. As an example, gas helium is shown in 
Fig. 1-xxviii.

Mixed metal/non‑metal compounds
Mixed metal/non-metal compounds are inorganic com-
pounds that can contain simultaneously metal and non-
metal atoms. The list of metals was retrieved from C.S.1. 
The code to identify homogenous non-metal compounds 
can be found at C.S.29. Potassium nitrate is depicted as 
an example in Fig. 1-xxix.

Inorganic salts
The superclass of inorganic salts consists of inorganic 
compound with one or more charges, either negative or 
positive ones. The code to identify inorganic salts can be 
found at C.S.30. The inorganic salts superclass is depicted 
with sodium chloride in Fig. 1-xxx.

Miscellaneous inorganic compounds
The identification of miscellaneous inorganic compounds 
is dependent on the previous four inorganic superclasses. 
If a given compound does not fit any of these super-
classes, it is considered a miscellaneous inorganic com-
pound. Cyanide (Fig. 1-xxxi) was chosen to illustrate this 
superclass.

DrugTax bulk analysis and plotting tools
One of the main purposes of this work was to allow bulk 
analysis of chemical properties of drugs to enable proper, 
tailored, and comprehensive categorization of small 
ligands. With that in mind, DrugTax has an additional 
tool for bulk ligand analysis, which makes use of kingdom 

and superclass attribution to perform categorization 
of small molecules. These categories account for mul-
tiple superclasses, in the cases in which this is possible. 
Firstly, it was added a short functionality to fetch the iso-
meric SMILES from the drug name, by using pubchempy 
(C.S.31). Then, using C.S. 1–30, the different superclasses 
for each ligand are listed (C.S.32).

By retrieving summary data from the input list of 
SMILES, DrugTax uses individual small ligand informa-
tion to generate a fast characterization tool of small mol-
ecule datasets. Furthermore, by making use of UpSetPlot 
[14], DrugTax can depict many intersecting sets (in the 
form of small ligand superclasses), which is often limited 
by more conventional forms of visualization. The plots 
are generated from the summary information previously 
retrieved and can be tuned to avoid close to empty super-
class aggregations (C.S.33).

Results and case study
To exemplify the usage of DrugTax, we developed a short 
approach that assembles a dataset focused on drugs 
associated with a variety of known viruses. Firstly, we 
performed a query using PUG-REST (Power User Inter-
face–Representational State Transfer) [45], a web inter-
face of PubChem [1] that allows the programmatic access 
of information of chemical compounds present in the 
database. The requests to the server are made through 
URLs (Uniform Resource Locators). To comply with 
PUG-REST’s request volume limit, 100 compounds are 
fetched at a time, while the total amount of compounds 
to be analyzed must be specified by the user. This param-
eter ultimately affects the size of the resulting dataset. 
The compounds are scraped by the iterating over the list 
of CIDs (Compound ID).

Another parameter that must be specified by the user 
are the keywords related to the dataset one wants to cre-
ate. These keywords must be present in the more relevant 
bioassays titles, in this case, the keywords were chosen 
after looking at the most frequently appearing terms in 
the titles of Journal of Virology [46] studies (accessed on 
the 29th of July 2022). The chosen keywords affect the 
size, diversity, and quality of the dataset, and so a good 
selection is key. It is also to note that these keywords are 
case sensitive and can also be present inside a word. The 
used keywords were: DENV, HIV, H1N1, virus, viral, 
Viral, SARS, Virus, HCV, influenza, Influenza, HSV, 
HHV, EBOV, MERS. This query was performed over 
700.000 compounds.

To build a dataset relevant in the settings of both a bio-
logical problem and ML implementation, it was relevant 
to narrow the compounds according to their activity. As 
such, we selected only compounds that were featured 
in biological activity studies. To fulfill these criteria, we 
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explored the information related to bioassays, regarding 
our compounds, in PubChem [1]. Bioassays are analyti-
cal methods to calculate the potency of chemical com-
pounds in biological beings, making them a good source 
of experimentally proven data that can be accessed easily 
through PUG-REST [45]. We retrieved the correspond-
ing bioassays for each compound.

Regarding the bioassays that were relevant for Drug-
Tax’s purpose a selection took place, respecting the fol-
lowing conditions:

• Exclusive to the compound: The study must have the 
compound as the only studied chemical (an activity 
value is presented).

• Related to the input keywords: The study title must 
have at least one of the keywords introduced by the 
user.

• Conclusive: The result of the bioassay must be either 
“Active” or “Inactive”, any other results like “Unspeci-
fied” or “Inconclusive” were excluded.

• Target protein: There must be an ID of a protein tar-
get.

After performing this selection, our dataset was 
reduced to 10.567 unique compounds, targeting 367 
unique proteins. However, several bioassays can involve 
the same protein-compound pair, and therefore were 
subsequently removed. As the activity values can vary, 
a pair was only considered as active if more than 50% of 
the studies indicate so, the same applies to the inactive, 
but if it is exactly 50% the pair was taken as inconclusive 
and removed. This analysis was performed by replac-
ing the activity values by numbers (1 for active and 0 for 
inactive). As such, we simultaneously consider the posi-
tively reported interactions (active) and their counterpart 
(inactive). The surge of ML-based approaches further 

stressed out the need to report both positive and nega-
tive results, giving rise to new research terms like Struc-
ture Inactive Relationships (SIR), which complements 
the more standard Structure Activity Relationships 
(SAR) approaches [47]. After performing this final step 
of pre-processing, the dataset still tallied a total of 10.556 
unique compounds and 367 unique proteins.

Finally, it was necessary to retrieve these compounds 
in a usable format, for which we considered SMILES. A 
request was conducted PUG-REST [45] returning the 
isomeric SMILES string of the compound using the CID. 
Achieving a list of 10.556 SMILES representing unique 
virus-related compounds, these were tested using our 
new developed package—DrugTax. Running the Drug-
Tax class on the compounds, their object representa-
tion, including superclass categorization and DrugTax 
features did not exceed 10 s, on a common portable lap-
top (16  Gb RAM and 11th Gen Intel Core i7-11370H, 
3.30  GHz CPU). After retrieving the computed data on 
table format, we proceeded with the bulk analysis and 
plotting devices of DrugTax, yielding the UpSetPlot [14] 
in Fig.  2. As expected, most of the compounds belong 
to the organic kingdom, although a few exceptions were 
observed in the form of inorganic salts and/or mixed 
metal/non-metal inorganic compounds. The most recur-
ring superclass was hydrocarbon derivatives, with few 
hydrocarbons present (organic molecules containing only 
carbon and hydrogen). The most populated aggregation 
of superclasses were organic molecules that fit the super-
classes: hydrocarbon derivatives, organoheterocyclic, 
organic oxygen, organic nitrogen and organopnictogens.

Applications
DrugTax was developed to simplify molecule charac-
terization. In particular, we deliver a comprehensible 
molecule categorization as well as clear and humanly 

Fig. 2 UpSetPlot displaying the bulk analysis of 10.567 unique compounds related to virus research
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interpretable features, which yields a set of simple and 
fundamental level applications. For example, Drug-
Tax package could be applied to generate similar-
ity searches, chemical space visualization, clustering, 
taxonomy-property relationships, among others. The 
results could then be combined with different easy-
to-implement visualization tools. For instance, for 
similarity search, a hierarchical clustering plot could 
capture the stratified difference between the various 
molecules. Likewise, for chemical space visualization, 
by using DrugTax features and projecting the feature 
vectors into two dimensions with Principal Component 
Analysis (PCA) or the more recent Uniform Manifold 
Approximation and Projection (UMAP), users could 
then produce different scatterplots colored by taxo-
nomic kingdom or superclass.

Due to its easy deployment and installation, DrugTax 
is a tool whose potential can unfold extensively.

Conclusions
DrugTax exhibits very fast performance with an easy-
to-use interface available on PyPI (https:// pypi. org/ proje 
ct/ DrugT ax/) and GitHub (https:// github. com/ Morei 
raLAB/ DrugT ax). It extends on the work of Classyfire 
[13] with novel features oriented towards data science, 
ML and AI solutions. Its heavily focused on interpretable 
pharmacological data and features, key for the scientific 
community, as well as the Pharma sector. DrugTax offers 
flexible solutions in an intuitive setting that explores the 
possibilities of SMILES representations for ML and AI 
solutions on a data-centric setting.
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Abstract

Background: In cancer research, high-throughput screening technologies produce large amounts of multiomics data from different
populations and cell types. However, analysis of such data encounters difficulties due to disease heterogeneity, further exacerbated by
human biological complexity and genomic variability. The specific profile of cancer as a disease (or, more realistically, a set of diseases)
urges the development of approaches that maximize the effect while minimizing the dosage of drugs. Now is the time to redefine the
approach to drug discovery, bringing an artificial intelligence (AI)–powered informational view that integrates the relevant scientific
fields and explores new territories.

Results: Here, we show SYNPRED, an interdisciplinary approach that leverages specifically designed ensembles of AI algorithms, as
well as links omics and biophysical traits to predict anticancer drug synergy. It uses 5 reference models (Bliss, Highest Single Agent,
Loewe, Zero Interaction Potency, and Combination Sensitivity Score), which, coupled with AI algorithms, allowed us to attain the ones
with the best predictive performance and pinpoint the most appropriate reference model for synergy prediction, often overlooked in
similar studies. By using an independent test set, SYNPRED exhibits state-of-the-art performance metrics either in the classification
(accuracy, 0.85; precision, 0.91; recall, 0.90; area under the receiver operating characteristic, 0.80; and F1-score, 0.91) or in the regression
models, mainly when using the Combination Sensitivity Score synergy reference model (root mean square error, 11.07; mean squared
error, 122.61; Pearson, 0.86; mean absolute error, 7.43; Spearman, 0.87). Moreover, data interpretability was achieved by deploying the
most current and robust feature importance approaches. A simple web-based application was constructed, allowing easy access by
nonexpert researchers.

Conclusions: The performance of SYNPRED rivals that of the existing methods that tackle the same problem, yielding unbiased results
trained with one of the most comprehensive datasets available (NCI ALMANAC). The leveraging of different reference models allowed
deeper insights into which of them can be more appropriately used for synergy prediction. The Combination Sensitivity Score clearly
stood out with improved performance among the full scope of surveyed approaches and synergy reference models. Furthermore,
SYNPRED takes a particular focus on data interpretability, which has been in the spotlight lately when using the most advanced AI
techniques.

Keywords: ensemble learning, interpretability, omics, biophysics, drug synergy, cancer

Background
Cancer, a heterogeneous group of diseases, is one of the leading
causes of mortality and the most significant barrier to increasing
life expectancy worldwide. The International Agency for Research
on Cancer estimates that, by 2040, approximately 30.2 million new
cancer cases and 16.3 million deaths will be reported, mainly due
to the population’s growth and aging [1]. One of the significant
contributors to this disease’s global burden is the development of
therapy resistance and, consequently, tumor relapse. Drug resis-
tance in cancer is a multifactorial problem driven by the tumor
microenvironment and genetic and nongenetic/epigenetic mech-
anisms that, along with cell plasticity, contribute to tumor hetero-
geneity [2]. In clinical settings, this problem is minimized with a
combination of drugs administered together or in sequence (i.e.,
polytherapy). Targeting multiple components of different or inter-

connected cancer pathways is an efficient strategy to block vital
biological processes [3, 4].

Drug combinations with a synergistic effect (i.e., when the to-
tal therapeutic effect of both drugs is greater than the expected
additive monotherapy effect) [5] were successfully developed and
applied in the treatment of different types of tumors, such as hu-
man epidermal growth factor receptor 2–positive breast cancer
[6], chronic myeloid leukemia [7], prostate cancer [8], or BRAF-
mutated tumors [9]. Nevertheless, this simultaneous administra-
tion can also result in a reduced therapeutic effect and possi-
ble toxicity (designated antagonism) or in the same beneficial ef-
fect when compared with the expected additive monotherapy ef-
fect (additivity) [5]. The experimental identification of success-
ful synergistically effective combinations is a well-known time-
consuming and expensive task. Therefore, there is still a signifi-
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cant need for efficient and user-friendly computational methods,
available in easy to use interfaces, to complement and speed up
the traditional approaches by predicting the best synergistic drug
combinations [10, 11].

In the past years, the development and improvement of high-
throughput technologies and computational tools boosted the
use of large volumes of multiomics data (e.g., genomic, tran-
scriptomic, proteomic) essential to dissect and uncover the com-
plex molecular signatures of cancer. Machine learning (ML) al-
gorithms have attracted particular attention for their ability to
learn new associations and extract valuable insights from this
type of data. A few ML models based on extreme gradient boost-
ing, random forest, elastic nets, support vector machine, and
naive Bayes were already developed to predict the best combi-
nation of anticancer drugs by the integration of omics data with
chemoinformatic properties of drugs or network information of
their targets [12–15]. Likewise, deep learning (DL) implemented
via deep neural networks (DNNs) was particularly useful in deal-
ing with the high multidimensionality of omics data in super-
vised and unsupervised contexts. DL classification and regression
models such as AuDNNsynergy [16], DeepDDS [17], DeepSynergy
[18], DeepSignalingSynergy [19], Matchmakers [20], TranSynergy
[21], or the work by Xia and colleagues [22] were recently devel-
oped for drug combination prediction. Nearly all the surveyed
works developed drug synergy prediction models based upon a
single reference model, which is in most cases the Loewe refer-
ence model [14, 16–18, 20, 21]. Currently, there is a wide scope of
well-studied available reference models, including the Bliss inde-
pendence [23], highest single agent (HSA) [24], Loewe additivity
[25, 26], and zero interaction potency (ZIP) [27]. Furthermore, re-
cently Malyutina et al. [15] developed the Combination Sensitiv-
ity Score (CSS), which measures drug combination synergy using
their IC50. As such, this led us to the question of whether the de-
velopment of a novel prediction approach should be based solely
upon a single reference model. Besides, most of the available web
interfaces such as DECREASE [28] or DrugComb [29] require for
synergy prediction the upload of a full or partial mandatory dose–
response matrix (experimentally determined), which hinders its
systematic use by the scientific community and handicaps its
usefulness.

To overcome the current problems found in the field, we devel-
oped SYNPRED (SYNergy PREDiction), a collection of in silico en-
semble classification and regression models that considers sev-
eral synergy references models: Bliss, Loewe, HSA, ZIP, and CSS.
It was developed by integrating multiomics features of cell lines
and phenotypic and biophysical data, particularly physicochem-
ical and structural features of drugs. SYNPRED displays a good
predictive performance and inherently addresses the issue at a
broader and more profound angle than the existing approaches,
which generally focus on either classification or a single regres-
sion task and typically use a single synergy reference model. We
made available the stand-alone deployment at https://github.c
om/MoreiraLAB/synpred, which allows the user the opportunity
to undergo bulk prediction with SYNPRED. Additionally, for the
first time, a user-friendly web-based application was assembled
and made freely available online at http://www.moreiralab.com
/resources/synpred/ to predict drug combinations, requiring only
the upload of the 2 drugs’ simplified molecular-input line-entry
system (SMILEs) to be tested. This interactive platform will al-
low users with different backgrounds, from scientists to clini-
cians, to test, reproduce, and validate our models and data. The
workflow used for the development of SYNPRED is depicted in
Fig. 1.

Data and Methods
Experimental drug combination phenotypic data
Drug combination phenotypic data were acquired via bulk-
download from the largest-to-date dataset from National Can-
cer Institute—A Large Matrix of Anti-Neoplastic Agent Combina-
tions (NCI ALMANAC) through https://wiki.nci.nih.gov/display/N
CIDTPdata/NCI-ALMANAC [30]. To this date, the dataset includes
phenotypic data of tested cancer cell lines (growth percentage)
of 105 unique drugs approved by the US Food and Drug Admin-
istration (FDA). These drugs were tested in combination against
61 cell lines from 9 cancer types currently included in the NCI
[31, 32], comprising a total of 311,466 drug pair/cell line combi-
nations. Drug sensitivity assays included in NCI ALMANAC were
performed at the NCI’s Frederick National Laboratory for Cancer
Research, the Stanford Research Institute, and the University of
Pittsburgh. Briefly, for each assay, cells were cultivated for 48 hours
in a 3 × 3 or a 5 × 3 concentration matrix (different concentra-
tion values for each drug in combination) and the endpoint de-
termined by Sulforhodamine B or CellTiter-Glo [30]. From these
records, the authors retrieved the cell growth percentage at each
drug concentration point, which corresponds to the percentage
of growth of the cell lines in the presence of each combination,
yielding a final viability assessment.

Combination scores and class definition
The phenotypic data from high-throughput drug combination
screens were retrieved from DrugComb [29]. DrugComb extends
its synergy metrics calculations from “SynergyFinder” [33], which
leverages the percentage of cell growth included in the dataset to
assess the degree of combination for each pair of drug concen-
trations by using several synergy reference models. As such, only
the most well-studied synergy reference models described in the
literature were included as they were the only ones that met the
criteria of characterizing the effects of a drug pair on a cell line
with a final single synergy score. This approach narrowed down
our options to the 4 most well-known synergy reference models:
Bliss independence (Equation 1) [23], Loewe additivity (Equation 2)
[25, 26], HSA (Equation 3) [24], and ZIP (Equation 4) [27]. In addi-
tion to the mentioned synergy reference models, we also used the
CSS metric [15], a higher sensitivity score [29].

yBliss = y1 + y2 − y1y2 (1)

Bliss independence model: yBliss is the Bliss response, y1 is the
drug 1 response, and y2 is the drug 2 response.

yLoewe = Emin + Emax
( x1+x2

m

)λ

1 + ( x1+x2
m

)λ
(2)

Loewe additivity model: yLoewe is the Loewe response, Emin is the
minimum drug response, Emax is the maximum drug response,
m is the dose that produces a midpoint effect between Emin and
Emax, λ is the shape parameter indicating the slope of the curve,
x1 is the drug 1 dose, and x2 is the drug 2 dose.

yHSA = max (y1, y2) (3)

HSA model: yHSA is the HSA response, y1 is the drug 1 response,
and y2 is the drug 2 response.

yZIP =
( x1

m1

)λ1

1 + ( x1
m1

)λ1 +
( x2

m2

)λ2

1 + ( x2
m2

)λ2 −
( ( x1

m1

)λ1
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m1

)λ1 ∗
( x2
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)
(4)
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Figure 1: SYNPRED workflow summary. Green: Dataset construction. The National Cancer Institute—A Large Matrix of Anti-Neoplastic Agent
Combinations database (phenotypic data) and the Cancer Cell Line Encyclopedia (CCLE) (multiomics data) were used for this purpose. Four reference
models (Bliss, HSA, Loewe, ZIP) in addition to the CSS were used to quantify the combination degree and retrieve a full agreement between all metrics.
Orange: Feature extraction and data preprocessing. Included normalization and dimensionality reduction using autoencoder or principal component
analysis (PCA). Blue: Grid search and prediction model development using a training set. Red: Model evaluation using different classification and
regression metrics in an independent test set and 3 different scenarios: (i) leave cell out dataset, (ii) leave drugs out dataset, and (iii) leave drug
combinations out dataset.

ZIP model: yZIP is the ZIP response, x1 is the drug 1 dose, x2 is
the drug 2 dose, m1 is the dose that produces a midpoint effect
for drug 1, m2 is the dose that produces a midpoint effect for drug
2, λ1 is the shape parameter indicating the slope of the curve for
drug 1, and λ2 is the shape parameter indicating the slope of the
curve for drug 2.

Having computed Bliss, HSA, Loewe, ZIP, and CSS, a binary clas-
sifier was first developed to identify the type of combinatory ef-

fect present in each drug pair–cell line sample, where the val-
ues above the threshold (0, as defined for each metric by Syner-
gyFinder [33]) (https://synergyfinder.fimm.fi/synergy/synfin_doc
s/) were defined as synergistic, and the remaining ones were clas-
sified as nonsynergistic. The dataset used for classification train-
ing considered full-agreement combination assessment (i.e., we
only kept the instances on which combination classification was
the same across the 4 previous reference predictors). For the
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dataset used, this process yielded 29,779 synergistic samples and
9,029 nonsynergistic samples. For the regression model deploy-
ment, we used the values attained directly from DrugComb to
each synergy reference model (Bliss, HSA, Loewe, ZIP) as well as
CSS. Most synergy reference model values were in similar scales
(Loewe = [−116.63, 86.69], ZIP = [−36.08, 66.66], HSA = [−81.75,
64.29], Bliss = [−77.07, 78.65]) (Fig. 2, Figs. W1–W6 of the SYNPRED
webserver). CSS stood in the interval [−54.05, 99.84], albeit with
larger interquartile distances than the synergy reference models.

Drug molecular descriptors
Each drug included in NCI ALMANAC was analyzed to extract
its physicochemical and structural features. A SMILE representa-
tion of the drugs was acquired from PubChem [34]. SMILEs were
then used to mine molecular descriptors using the Python pack-
age “Mordred” (Version 1.1.2) [35]. In total, an array of 1,613 nu-
meric features of 43 different categories was retrieved, making a
2-dimensional molecular description of the drugs. Feature arrays
comprising nonnumerical attributes or displaying zero variance
were deleted. This preprocessing left 586 features describing each
drug included in the NCI ALMANAC, distributed across 28 cate-
gories (Table 1). The resulting features were subjected to normal-
ization by removing the mean and scaling to unit variance with
scikit-learn’s StandardScaler [36].

Omics data of cancer cell lines
Omics data (expression, copy number variation, methylation,
global chromatin profiling, metabolomics, microRNA, proteomic
profiling) describing the cancer cell lines were acquired via
bulk download from the Cancer Cell Line Encyclopedia (CCLE)
(https://sites.broadinstitute.org/ccle/) [37]. The number of cell
lines included in the CCLE varies depending on the type of
omics data available at the time. Correspondence of cell line
IDs between the NCI ALMANAC and CCLE was performed ac-
cording to data available at the Swiss Institute of Bioinformatics
Cellosaurus website [38]. According to the affected tissue, anno-
tations acquired through Cellossaurus split the CCLE cell lines
into 21 different cancer types. In agreement with the original
publications [37, 39], expression data were obtained through
RNA sequencing and processed to obtain level expression in
transcripts per million by the expectation-maximization algo-
rithm (file: CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz).
Copy number variation (CNV) data were acquired from the
Affymetrix SNP6.0 Arrays (file: CCLE_copynumber_byGene_2013–
12-03.txt.gz). Copy numbers were normalized by the most similar
HapMap normal samples [40]. Segmentation of normalized log2

(CN/2) ratios was achieved using the circular binary segmen-
tation algorithm [37, 41]. Methylation data were derived by
quantifying CpG islands using Reduced Representation Bisulfite
Sequencing (file: CCLE_RRBS_tss_CpG_clusters_20181022.txt.gz).
Global chromatin profiling was attained using multiple reac-
tion monitoring for 42 combinations of histone marks (file:
CCLE_GlobalChromatinProfiling_20181130.csv). Metabolomics
data were acquired in parallel with global chromatin profiling
by reporting the abundance measures of 225 metabolites (file:
CCLE_metabolomics_20190502.csv). MicroRNA associated with
cancer dependencies was correlated, regarding 734 microRNAs,
with the Achilles gene dependency dataset. Protein profiling was
measured with Reverse Phase Protein Arrays for 213 antibodies
(file: CCLE_RPPA_20181003.csv) [39].

Dimensionality reduction of omics data
Data were normalized by removing the mean and scaling to unit
variance with scikit-learn’s StandardScaler [36]. Due to the omics
data’s high complexity, we performed dimensionality reduction
to minimize the noise introduced in the dataset by highlighting
the essential features. The datasets already described were used
to build and train a multilayer perceptron (MLP) autoencoder, an
unsupervised artificial neural network (ANN) with a typical “hour-
glass” architecture, which is often used to perform dimensional-
ity reduction in vast and high-dimensional datasets such as the
ones observed with omics data [42–44]. This type of MLPs usu-
ally consists of 3 parts: an encoder that abstracts the input into
hidden variables (i.e., a latent-space representation), a bottleneck
layer that holds the smallest hidden layer (HL) (for purposes of
dimensionality reduction, this is the layer that defines the size of
the reduced dataset), and a decoder that reconstructs the origi-
nal input data from the hidden data [45, 46]. Seven autoencoders,
one for each of the CCLE feature blocks, were developed by using
Keras with a TensorFlow for graphics processing unit (GPU) (Ver-
sion 2.3.1) backend [47]. Each of the autoencoders comprised 7 lay-
ers, of which 5 were HLs. The input and output layers follow the
number of available features in all cell lines, as displayed in Ta-
ble 2. The number of nodes within the bottleneck layer of each of
the 7 autoencoders (used for extraction of the encoded features)
corresponds to the autoencoder’s final number of features. The
2 HLs in each of the encoder and decoder sections vary in size
according to the number of samples and features available (Sup-
plementary Table S1). In this stage, all models used Adam [48] as
an optimizer function with a learning rate of 0.001. Rectified lin-
ear unit (ReLU) activation function was used in all layers. Mean
square error (MSE) was used as a loss function. The models were
trained for 1,000, 250, or 100 epochs, depending on the dataset size
(Supplementary Table S2). After training, each autoencoder’s bot-
tleneck layer was used to perform dimensionality reduction of the
omics data according to Table 2.

Principal component analysis (PCA), a commonly used method
for dimensionality reduction [49], was also applied in the same
datasets as the autoencoder, for which 25 principal components
(PCs) were defined. It means that by using PCA, each dataset was
transformed to yield only 25 features, totaling 175 features to de-
scribe each unique cell line. As shown in Table 2, each feature
block from CCLE had its variance explained in a range from 0.89
to 0.99. Since the 7 blocks were used simultaneously for each sam-
ple, each cell line is thoroughly described by the components ex-
tracted with the PCA. Missing values (in both autoencoder and
PCA) were processed by either dropping the sample entirely or re-
placing the missing values with zero.

Model evaluation and performance metrics
After data acquisition and preprocessing, we gathered all
datasets, and to evaluate the results in the most unbiased man-
ner possible, we randomly isolated 3 datasets considering differ-
ent scenarios:

i) Leave cell out dataset: 3 randomly chosen cell lines belong-
ing to different tissue types (regression dataset: 13,810 com-
binations; classification dataset: 1,396 synergistic and 429
nonsynergistic samples after processing the 13,810 combi-
nations for full agreement) (for the tissue type classification,
see Fig. W1 of the SYNPRED webserver).

ii) Leave drugs out dataset: 5 drugs with the majority belonging
to different hierarchical clusters (regression dataset: 25,993
combinations; classification dataset: 2,934 synergistic and

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac087/6717722 by guest on 27 Septem

ber 2022



SYNPRED | 5

Figure 2: Box plot representing the distribution of synergy scores (y-axis) with respect to the 5 reference models: Bliss, HSA, Loewe, ZIP, and CSS
(x-axis). The black boxes represent the difference between the upper 75% and the lower 25% quartiles (interquartile range); the horizontal orange line
is the median; the whiskers are the lower and upper values that are not outliers or extremes (not represented as some of these values are off range).

Table 1: Number of features according to the molecular descrip-
tor category of Mordred. Features are categorized as Energetic (E),
Pharmacological (P), Structural (S), or Miscellaneous (M—in case
of evaluating characteristics of multiple fields).

Number of features per descriptor category
E Acidity/Basicity 2 S Information Content 36
P ADME 3 S Molecular

Complexity
1

S Aromatics 2 P Molecular Operating
Environment

51

S Atom Count 16 S Molecule Graph 5
S Atom-Bond

Connectivity
2 S Path Count 21

M Autocorrelation 180 E Polarizability 2
S Bond Count 9 S Ring Count 66
E Atomic Orbitals 10 S Rotatable Bonds 1
S Chirality 38 S Topological Charges 21
S Constitutional 14 S Topological Index 7
E Energy State 68 S Topological Polar

Surface Area
2

S Fragment
Complexity

1 S Walk Counts 21

S Framework 1 S Weight 2
S Hydrogen Bonds 2 M Wildman–Crippen 2

622 nonsynergistic samples after processing the 25,993 com-
binations for full agreement) (for drug hierarchical cluster-
ing, see Fig. W8 of the SYNPRED webserver).

iii)Leave drug combinations out dataset: 5 drug combinations
(regression dataset: 360 combinations; classification dataset:
74 synergistic and 6 nonsynergistic samples after processing
the 360 combinations for full agreement).

After extracting the datasets for validation, we split the remain-
ing data into training and test sets on an 80/20 ratio (Supple-
mentary Table S3). As such, the training dataset was composed of

Table 2: Number of features pertaining to the omics data and the
corresponding amount for both the autoencoder and the principal
component analysis (PCA) processing

Omics data

Number
of

available
cell lines

Number
of

available
features

Number
of

features
after au-

toencoder

Number
of

features
after PCA

Explained
variance

(PCA)

Expression 1,019 57,820 1,156 25 0.89
Copy number
variation

1,043 23,316 466 0.91

Methylation 843 56,146 1,122 0.92
Global chromatin
profiling

897 42 21 0.99

Metabolomics 928 225 112 0.99
MicroRNA 954 734 73 0.95
Proteomics 899 214 107 0.93

195,996 combinations to be used for regression tasks that, upon
full agreement processing, yielded 20,291 synergistic and 6,419
nonsynergistic samples for classification tasks. The test set was
composed of 48,999 combinations to be used for regression tasks,
which, upon full agreement processing, yielded 5,084 synergis-
tic and 1,553 nonsynergistic samples for classification tasks. The
described data splitting was performed before any model train-
ing, thus ensuring all the prediction models’ performance evalua-
tion is deployed on the same data. The binary classification mod-
els were evaluated through accuracy (acc), precision (prec), recall
(rec), area under the receiver operating characteristic (AUROC),
and F1-score as previously described [50]. The regression models
were evaluated through the root mean square error (RMSE), mean
squared error (MSE), mean absolute error (MAE) [51], Pearson and
Spearman correlation coefficients [52].
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Development of ML models
Neural networks with Keras
The classification and regression neural networks were fully de-
veloped using Keras with a TensorFlow (Version 2.3.1) backend
[47]. Weights were updated using the Adam optimizer [48] and a
learning rate of 0.0001 along 125 epochs with binary cross-entropy
(classification) and MSE (regression) as the loss functions. All the
HLs were connected through ReLU activation, while the output
layer was subject to sigmoid (classification) or linear activation
(regression). As an initial approach, we performed a grid search for
parameter optimization using 5% of the training set, fully detailed
in the “Parameter optimization” section. The best-performing pa-
rameters were further selected, and used to train the models with
the complete train dataset.

ML algorithms with scikit-learn
The datasets presented in this work were also trained with the
most commonly used algorithms for synergy prediction tasks,
namely, random forest (RF) [53], extreme randomized trees (ETC)
[50, 54], support vector machines (SVMs) [55], stochastic gradient
descent (SGD) [56], k-nearest neighbors (kNNs) [57], and extreme
gradient boosting (XGBoost) [58]. The RF, ETC, SVM, SGD, and kNN
models were built using the Python package “SciKit Learn” (Ver-
sion 0.22.1) [36]. The XGBoost model was built using its dedicated
package for Python (available at the Python Package Index as “xg-
boost”) [58]. These 6 algorithms were also subject to grid search for
parameter optimization using 5% of the training set as described
in the “Parameter optimization” section, with the best ones used
to train the models with the full dataset.

Parameter optimization
To properly perform parameter optimization in all the algorithms
described, a grid search was performed using in-house scripts
for Keras DL models and scikit-learn’s GridSearchCV with 3-fold
cross-validation (for ML algorithms with scikit-learn). We used 5%
of the training set [59], a value in agreement with subset usage for
parameter optimization [60], since using the full training dataset
would exponentially increase an already long task. For each of
the Keras classification and regression DL models, we performed
grid search with 192 runs with parameters covering the 4 avail-
able dimensionality reduction datasets (PCA, PCA_drop, autoen-
coder, autoencoder_drop), 12 different network architectures, and
4 different dropout rates (0.00, 0.25, 0.50, 0.75) (Supplementary Ta-
ble S4). In the case of each of the 6 classification and regression
ML models trained with scikit-learn, we used 820 runs, including
different parameters and dataset combinations (Supplementary
Table S5). Finally, for the 6 possible targets (full agreement, Bliss,
HSA, Loewe, ZIP, and CSS), we trained each of the 6 ML models with
the best corresponding performing parameters. We then assessed
the best-performing architectures and dropout rates for the DL-
based models. For each of the possible evaluation metrics, we then
trained the best-performing parameters, which can lead to a dif-
ferent number of DL-based models depending on the synergy ref-
erence model used due to parameter overlap.

Ensemble algorithms
After selecting the previous best-performing models, we replaced
the outliers with the average of the remaining prediction values.
For some tasks, a few of the individual predictors had notably bad
performance (mostly SGD and kNN). As such, we considered out-
liers the synergy prediction values above or below 10 times the
average of the remaining prediction values; this was necessary to

allow the ensemble neural networks to converge. These predic-
tion values were used to constitute a new feature representation
of the samples that could undergo ensemble model training. The
ensemble models were first subjected to a new grid search for pa-
rameter optimization (Supplementary Table S6), taking the target
probability of the selected algorithms as features, ultimately de-
veloping a neural network that worked as an ensemble method.
This neural network had a learning rate of 0.0001, trained for
3 epochs, and used the Adam optimizer [48] and binary cross-
entropy and MSE for classification and regression, respectively, as
the loss functions. All the HLs were connected through ReLU ac-
tivation, while the output layer was subject to sigmoid or linear
activation for classification and regression, respectively. The best-
performing ensemble models were trained with the prediction-
based feature space.

Feature contribution
To understand what were the top contributors for accurate pre-
dictions, we assessed their predictive power. For that, we needed
first to break down the process of assessing feature contribution
into 2 stages due to the dimensionality reduction of cell lines. First,
since the best-performing dimensionality reduction approach was
the PCA, we considered the explained variance by each of the fea-
tures concerning the respective PC. This information was then ex-
tracted as an attribute from the PCA object using scikit-learn [36].
Second, we used the eli5 package [61], with Python deployment, to
assess the final feature weight by deploying permutation impor-
tance [53], a method that allows iterative exclusion of each of the
features, to assess its contribution to the predictive model. The
permutation importance was deployed on the test set because it
would not be possible to assess the feature contribution under un-
biased conditions if the training set had been used. However, it is
worth noting that this evaluation occurs after all model training;
hence, it does not influence the test results.

Benchmark
Benchmarking synergy prediction protocols is a very complicated
process. As reviewed by Zagidullin et al. [29], the datasets avail-
able completely differ in the amount of information used, with
DrugComb [29] assembling the most important ones (ALMANAC
[30], ONEIL [62], FORCINA [63], CLOUD [64]). As shown by Kumar
and Dogra [65], most authors used NCI ALMANAC data to train
and the Loewe additivity synergy reference model [14, 16–18, 20,
21]. Furthermore, comparison to the available methodologies im-
plies that authors adapt the published proposed DL architectures
as these are not easily applied or not available in GitHub or similar
platforms (e.g., pruning the data due to unavailability of a certain
data modality, or changing the loss function to turn a model into
a regressor).

As such, we followed a multistep approach to benchmark our
pipeline:

i) Comparison of DL architectures and simpler ML algorithms
(RF, ETC, SVM, SGD, kNN, and XGBoost models) with ensem-
ble approaches in 4 different test scenarios.

ii) DeepSynergy [18] architecture implementation and compar-
ison using our independent test set and validation sets as
this is one of the most common approaches. As described in
the original study, we retrained a model using 2 hidden lay-
ers, the first with 8,192 and the second with 4,096 neurons.
Furthermore, 2 dropout layers were added, the first with a
0.2 rate and the second with a 0.5 rate. The activation func-
tion used between the hidden layers was a hyperbolic tan-
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gent, and on the output layer, linear activation was used. This
DeepSynergy implementation was trained over 250 epochs
with a learning rate of 0.00001 and an Adam optimizer.

iii)Comparison with published methods for synergy calcula-
tions using both regression (12 models) and classification (13
models) approaches as reviewed by Kumar and Dogra [65].

iv)Comparison of our regression approaches to algorithms for
which the training dataset was clearly available to make
sure the comparison would be as fair as possible. As such,
we compared to the Matchmakers’ algorithm [20] using
the adapted DrugCombo (retrieved from Matchmakers’ [20]
GitHub) and NCI ALMANAC complete datasets, which, in
turn, enables us also to compare with DeepSynergy [18] and
TreeCombo [12] as these were also evaluated by the authors
[20]. Upon the data considered, we performed our own fea-
ture extraction, as described in the SynPred pipeline. Thus,
the comparison is now possible between the full methods,
of which the feature extraction is a part, enabling us to com-
pare with the values reported by the authors.

Web-based application interface implementation
The SYNPRED prediction models were implemented in a web-
based application at http://www.moreiralab.com/resources/syn
pred/. The website’s plots and front-end were constructed with
plotly [66] and Flask [67], both freely available Python packages,
on a framework that uses an in-house adaptation of Javascript,
CSS, and HTML scripts. All the back-end hosting was mediated
with Flask [67].

Results and Discussion
Measuring feature importance for model
development
To understand the importance of each group of included features
for the final model performance and to attain a more interpretable
model, we analyzed each of the individual models with permuta-
tion importance. We perceived that more complex models, partic-
ularly DL-based models with different architectures, tend to make
more extensive use of the omics-based features to over 70% of the
total feature contribution (Figs. W9–W12 of the SYNPRED web-
server). Contrarily, simpler models, such as kNN and SGD, made
almost exclusive use of the drug features (above 90%) (Figs. W16
and W18 of the SYNPRED webserver). Other non-DL-based mod-
els made variable (between 20% and 80%) usage of the omics fea-
tures (Figs. W13–W15 and W17 of the SYNPRED webserver). This
observation highlights the importance of DL models to take full
advantage of omics data for capturing the complexity of each can-
cer profile, thus improving drug pair–cell line combinations pre-
dictions. The advantages of using these algorithms when dealing
with multidimensional omics data, particularly the great flexibil-
ity of DL architectures, were also previously emphasized [68].

We then looked for a possible biological relevance of the top 5
genes in each group of the most critical multiomics features to
understand if genes contributing more to the prediction models
were also implicated in tumorigenesis. Of the 15 ranked genes
from expression, methylation, and CNV variations, all of them
are used as prognostic cancer markers or have a role in tumor
progression and treatment (Table 3). These data suggest that our
models, especially DNNs, are likely to capture the most relevant
information for each group of multiomics features for synergis-
tic drug combinations. The remaining ranked genes organized by
each ML model’s best-contributing features are presented in in-

teractive Sankey diagrams on the website landing page (Figs. W9–
W18).

Tuning and choosing the best ML parameters
An appropriate choice of the best model parameters should al-
ways be performed, as ML performance and training time are
deeply affected by them. With that in mind, we used a grid
search approach to test a comprehensive array of parameters
and dataset combinations, including parameters for several ML
methods, a comprehensive set of DL configurations, and prepro-
cessing setups, as described above. Regarding the preprocessing
datasets, autoencoder datasets performed worse in the training
sets and slightly worse for the test set. These results led us to
discard them as there was no benefit to the increased training
time caused by the significantly higher dimensionality. We pro-
ceed with the dataset in which PCA was used for dimensional-
ity reduction and replacing the missing values with 0, as these
approaches performed better for most grid search runs [80, 81]
(Supplementary Table S3).

SYNPRED models for drug combination
prediction
After selecting the best parameters for both DL with Keras and ML
with scikit-learn, we trained models with the full training set ac-
cording to the parameters in the best grid search performing met-
rics. The best individual models were used to attain each sample
prediction to make the final ensemble for the 5-synergy reference
model plus the full agreement. The final models were then evalu-
ated in the test set and 3 different scenarios: leave cell out, leave
drugs out, and leave drug combinations out, by attaining differ-
ent classification (Supplementary Table S7) or regression (Supple-
mentary Tables S8–S12) evaluation metrics.

Classification model performance. Prior to ensemble development,
the best independent performing model was XGBoost with the fol-
lowing parameters: alpha = 0.25, max_depth = 6, n_estimators =
100. After ensemble, our final full-agreement SYNPRED comprised
4 DL-based and 6 ML-based models, attained with a DL architec-
ture with 3 hidden layers of size 100 and a dropout rate of 0.60.
When applied in an independent test set, our ensemble model
displayed better performance (accuracy = 0.85, precision = 0.91,
recall = 0.90, AUROC = 0.80, and F1-score = 0.90) than any other
classic ML or DL models, including reference ones such as SVM,
RF, or XGBoost frequently used for synergy prediction classifica-
tion tasks (Table 4, Supplementary Table S7) [13, 14, 82]. In the
3 independent scenarios, the full-agreement ensemble SYNPRED
achieved higher precision values by returning the most relevant
results than any other of the individual models. However, we saw
a significant drop in the leave cells, drugs, and drug combinations
out datasets.

Regression model performance. Concerning the 5 regression tasks
(Table 5), CSS (Supplementary Table S12) stands out—in either the
metrics or the datasets considered—while the remaining 4 (ZIP,
HSA, Bliss, and Loewe) (Supplementary Tables S8–S11) followed
closely behind. Although in agreement with the presented data,
this is unexpected considering the literature on the subject, which
mainly uses Loewe. Indeed, historically, Loewe has been systemat-
ically chosen as the target regression reference model [14, 16–18,
20, 21]. For most cases in which this happens, there is no compari-
son with the remaining reference models. The few available com-
parative studies are mainly done outside the synergy prediction
spectrum and somewhat under the scope of analyzing provided
drug combination dose–response matrix data [33, 83]. By deploy-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giac087/6717722 by guest on 27 Septem

ber 2022



8 | GigaScience, 2022, Vol. 11, No. 1

Table 3: Permutation importance of the top 5 proteins associated with expression, methylation, and CNV features as well as their
associated biological relevance

Type of
feature Protein name Protein description Biological relevancea

Expression TMSB4X Thymosin beta-4 X-linked Prognostic marker in renal cancer (unfavorable)
MTCO2 Mitochondrially encoded cytochrome

c oxidase II
Prognostic marker in liver cancer (favorable)
and pancreatic cancer (favorable)

MT-RNR2 Mitochondrially encoded 16S rRNA Associated with survival outcomes in patients
with cancer [69]

MT-CO3 Mitochondrially encoded cytochrome
c oxidase III

Prognostic marker in pancreatic cancer
(favorable) and liver cancer (favorable)

COX6C Cytochrome c oxidase subunit 6C Associated with breast cancer, thyroid tumors,
uterine cancer, prostate cancer, and esophageal
cancer [70], although not reported as
prognostic

Methylation C11ORF52 Chromosome 11 open reading frame
52

Associated with lung cancer [71], although not
reported as prognostic

NPY1R Neuropeptide Y receptor Y1 Prognostic marker in breast cancer (favorable)
TMBIM6 Transmembrane BAX inhibitor motif

containing 6
Prognostic marker in renal cancer (favorable),
head and neck cancer (unfavorable), and breast
cancer (unfavorable)

C2CD4D C2 calcium-dependent domain
containing 4D

C2CD4D-AS1 overexpression contributes to the
malignant phenotype of lung adenocarcinoma
cells [72], although not reported as prognostic

EDNRB Endothelin receptor type B Prognostic marker in renal cancer (favorable)
CNV UTY Ubiquitously transcribed

tetratricopeptide repeat containing,
Y-linked

Associated with cutaneous melanoma, bladder
urothelial carcinoma, B-cell lymphoma, small
cell lung cancer, oligodendroglioma,
chondroblastic osteosarcoma, and cutaneous
melanoma [73, 74], although not reported as
prognostic

MACROD2 Mono-ADP ribosylhydrolase 2 Associated with growth of intestinal tumors
[75], although not reported as prognostic

WWOX WW domain containing
oxidoreductase

Prognostic marker in renal cancer (favorable)
and breast cancer (unfavorable)

DAZ2 Deleted in azoospermia 2 Associated with oligozoospermia [76], which is,
in turn, highly associated with testicular cancer
[77], although not reported as prognostic

KANK1 KN motif and ankyrin repeat domains
1

Upregulating Kank1 gene inhibits human
gastric and lung cancer progress [78, 79],
although not reported as prognostic

aThe protein description and biological importance were retrieved from the Human Proteins Atlas (https://www.proteinatlas.org/) and the Human Gene Database
(https://www.genecards.org/). When this information was not listed in these databases, we presented the study that supports the biological relevance. Favorable
and unfavorable are related to gene/protein contribution for cancer progression.

Table 4: Best results obtained for the classification ensemble
model

Subset used for
evaluationa Accuracy Precision Recall AUROC F1 score

Test 0.85 0.91 0.90 0.80 0.90
Leave cells out 0.37 0.89 0.13 0.55 0.22
Leave drugs out 0.33 0.86 0.13 0.53 0.22
Leave drug
combinations out

0.24 1.00 0.21 0.61 0.35

aThe final model had a dropout rate of [0.4] and an architecture of [10, 10, 10].

ing an unbiased data-driven selection of the model, SYNPRED em-
pirically assesses how realistically viable is the representation of
5 of the most common synergy reference models against a real bi-
ological dataset. Zagidullin et al. [29] have already pointed to the
value of such agglomerative approaches.

Table 5: Best results obtained for the regression ensemble models,
considering the test dataset

Synergy
reference
model RMSE MSE Pearson MAE Spearman

CSS 11.07 122.61 0.86 7.43 0.87
Loewe 10.58 111.92 0.71 6.49 0.68
Bliss 4.35 18.92 0.71 3.07 0.59
HSA 4.09 16.70 0.73 2.86 0.64
ZIP 3.86 14.87 0.70 2.74 0.66

The results of our best final ensemble regression model (CSS)
outperformed all the individual predictors when evaluated in the
test dataset and leave drug combinations out scenario, one of
the most challenging ones (Table 5). Regarding correlation met-
rics and comparing to the literature standards [ 84], CSS achieved
strong Pearson values (0.86 on the test and 0.74 on the leave cells
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out dataset). Concerning scale-depending performance metrics,
the CSS had 11.07 and 13.63 RMSE on the test and leave cells out
datasets, respectively. Considering that CSS values range within
[−54.05, 99.84], our predictor was able to determine CSS synergy
values with low error (Fig. 3). A similar pattern was exhibited by
the Loewe ensemble predictor (Fig. 4).

Benchmark
We benchmarked our pipeline following a multistep approach as
described in the Methods section:

i) Comparison of the best-performing individual DL and ML al-
gorithms with the ensemble approaches for each prediction
task—Supplementary Tables S7 to S12

ii) DeepSynergy [18] architecture implementation and compar-
ison using our independent test set and validation sets—
Supplementary Table S13

iii)Comparison with published methods for synergy calcula-
tions as reviewed by Kumar and Dogra [65]—Supplementary
Table S14

iv)Comparison of our regression approaches to Matchmak-
ers’ algorithm [20], DeepSynergy [18], and TreeCombo [12]—
Supplementary Tables S15 and S16

Regarding (i), ensemble/aggregation of algorithms consistently
outperforms or stands very close to the best individual pre-
dictors. XGBoost and extreme randomized trees were typically
the second-best predictors. These results showcase how SynPred
leverages previous information on algorithms such as TreeCombo
[12] (which uses an individual XGBoost algorithm) or DeepSyn-
ergy [18], which is, in essence, the literature parent of several of
the neural networks with conic architecture we used. In fact, in
(ii) (Supplementary Table S13), it can be seen that the DeepSyn-
ergy [18] implementation on SynPred’s pipeline behaves similarly
to other DNN approaches in SynPred. These are good performers
but unable to beat the ensemble algorithms.

When comparing the reported performance for algorithms in
their own settings (iii), as reviewed by Kumar and Dogra [65], once
again we need to take into account a very broad array of circum-
stances, such as algorithms, datasets (filtered or postprocessed),
and synergy reference models (Supplementary Table S14). The
high possible combination of factors that leads to the final meth-
ods’ performance is huge, and therefore this comparison has to
be conducted with a limited few.

For instance, SynPred’s highest performer predictor is the CSS
predictor. However, it is impossible to justly compare our results to
predictors that only focus on the Loewe synergy reference model.
However, when considering the most recurring synergy reference
model (Loewe), although SynPred shows lower Pearson and Spear-
man correlations, it also presents much lower errors (RMSE and
MSE) compared to the best remaining algorithms. All these re-
sults highlight the need to consider different synergy reference
models, which although not used before, were already suggested
to be a valuable approach [29].

Finally (iv), we conducted closer comparisons (although still
not optimal) with performances presented in Supplementary Ta-
ble S15 and Supplementary Table S16. Regarding Supplementary
Table S15, SynPred was run against Matchmakers’ [20] processing
of DrugComb [29]. Upon doing this, both CSS and Loewe predictors
from SynPred stood very close to the performance of Matchmak-
ers [20], which is remarkable since this was the dataset used by the
authors [20] to train the model. When inspecting Supplementary
Table S16, in which the predictors were deployed upon NCI AL-

MANAC [85] (the dataset used in this study), SynPred stands out
in all the synergy reference models with Pearson and Spearman
correlation performance increments between 30.51% and 42.37%,
as well as between 36.36% and 56.36%, respectively. Although MSE
metrics are particularly hard to compare between datasets and
methods, significant improvements were also observed.

Web-based application description
The classification and regression models for predicting the type
of combinatory effect in drug pair–cell line samples are available
as a web-based application at http://www.moreiralab.com/resou
rces/synpred/. All the 11 described single models are deployed
on user submission, as well as the ensemble approach. The user
needs to submit 2 drugs as input in the ∗.smile format and se-
lects from a drop-down menu, the primary body site correspond-
ing to the tested cancer cell lines. The drugs are then subject to
feature extraction by Mordred and a standard preprocessing (fea-
ture elimination and normalization) as thoroughly described in
the Methods section. The output, displayed in a downloadable
heatmap, is the drug combination prediction effect for each of the
individual cell lines calculated with the ensemble classification
and regression models and using 5 synergy reference models (ZIP,
HSA, Bliss, Loewe, CSS) plus the full-agreement metric. Further-
more, the final tally of synergistic queries predicted by all models
based on the prediction values is also displayed in the last column
(“Synergy Votes”). This additional option facilitates the visualiza-
tion of the type of combinatory effect between the 2 drugs and
aims at strengthening the value of the prediction due to the lack
of consensus between the different synergy reference models. The
results are returned to the provided e-mail and displayed on the
submission webpage (as shown in Fig. 5). Additionally, users can
assess, explore, and visualize through different plots as well as ex-
port a summary of the synergy scores (calculated using ZIP, Bliss,
HSA, Loewe, and CSS synergy reference models) by cell line used
to develop the original dataset of SYNPRED. To our knowledge, this
is the first webserver that can predict new drug synergy combina-
tions without the need of uploading a partial or full dose–response
matrix. This feature is an advantage compared with other models
implemented in webservers that need these types of data for drug
combination response prediction [ 28, 29].

Conclusions
Synergistic anticancer drug combinations are a powerful tool to
help tackle cancer drug resistance since they can simultaneously
target multiple key molecules or pathways. The rational design
of combination therapies is warranted to improve the efficacy, al-
though this is a well-known time-consuming and expensive task.
In recent years, ML algorithms’ applicability for drug repurposing
or novel drug design has been essential to demonstrate the im-
portance of in silico methodologies to help overcome this problem.
Some classification [13, 14, 17] and regression [16, 18–22] models
using ML and omics data for predicting drug synergy combina-
tions were already developed. However, the fittingness of the pre-
viously developed algorithms is sometimes hindered by using a
single reference model (e.g., Bliss, Loewe, HSA, ZIP, or CSS) or by
the difficulty in applying these models to new unseen data, since
these are not straightforward to implement and require advanced
bioinformatics skills. Our study leads to an innovative approach
by highlighting the importance of choosing an appropriate syn-
ergy reference model, and explores how this choice influences
the final predictor performance. Given the different sensitivity ob-
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Figure 3: Circular bar plot representing the model’s evaluation metrics for the CSS synergy reference model. (A) Model performance Pearson values
evaluated in the test dataset. (B) Model performance RMSE values evaluated in the test dataset. (C) Model performance Spearman values evaluated in
the test dataset. (D) Model performance MAE values evaluated in test dataset.

served between these reference models in evaluating the degree of
combination, a more comprehensive and rigorous approach that
leverages all metrics to predict drug synergy is an asset.

This study introduced a new synergy prediction model, SYN-
PRED, that combines comprehensive multiomics data of cancer
cell lines with physicochemical and structural features of drugs.
This work is one of the first that takes 5 different synergy ref-
erence models (Bliss, HSA, Loewe, ZIP, and CSS) and uses one of
the most comprehensive and balanced databases regarding the
synergistic–nonsynergistic distribution, the NCI ALMANAC. Our
top-ranked classification and regression models, an ensemble de-
veloped with the best machine learning models, achieved state-
of-the-art performance to predict synergistic drug combinations
in an independent dataset. The best-performing prediction model
in SYNPRED is, undoubtedly, CSS (RMSE, 11.07; MSE, 122.61; Pear-
son, 0.86; MAE, 7.43; Spearman, 0.87). However, we advise the
users to considers the aggregate of results, albeit with a higher
focus on CSS. We included a “Voting classifier” output that tal-
lies the results of the 6 predictors to aid the user’s interpreta-
tion of the results. If more than 5 predictors yield a positive re-
sult, the submission sample is likely to be synergistic, while if
it is only 1 or lower, it is likely to be nonsynergistic. Besides, we
provide the complete workflow for a standalone deployment in
our GitHub coupled with a freely available and easy-to-use web-
server (http://www.moreiralab.com/resources/synpred/) that re-
quires only 2 drugs’ SMILEs as inputs, thus alleviating the need

for uploading a conventional and laborious dose–response ma-
trix. SYNPRED can be a valuable tool to the scientific and med-
ical community for drug repurposing or in silico discovery of new
anticancer drug combinations.

Additionally, given the importance of multiomics data in cell
line classification and therapy response, we combined all the
available multiomics features in the CCLE database to explore
their contribution to model development. The knowledge mined
from this analysis demonstrates the capacity of different ML mod-
els to deal with multiomics data, with DL algorithms being much
more able to learn and leverage this complex type of features.
We found that the most ranked proteins in each of the most
contributing multiomics features are important cancer biomark-
ers or have a role in tumorigenesis, demonstrating DNN models’
capacity to capture their significance and use this information
for the final model development. In the future, we expect to in-
clude protein–protein interactions data and network analysis to
improve the model performance, aiming to identify drug combi-
nations with potential new targets across different cell lines.

Availability of Supporting Source Code and
Requirements
Project name: SYNPRED

Project homepage: https://github.com/MoreiraLAB/synpred
Operating system(s): Linux, Mac OS X, Windows
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Figure 4: Circular bar plot representing the model’s evaluation metrics for the Loewe synergy reference model. (A) Model performance Pearson values
evaluated in the test dataset. (B) Model performance RMSE values evaluated in the test dataset. (C) Model performance Pearson values evaluated in
the leave cells out dataset. (D) Model performance RMSE values evaluated in the leave cells out dataset.

Figure 5: Example of the SYNPRED output prediction. Green colored cells represent a synergistic prediction, while red colored cells represent the
nonsynergistic ones.

Programming language: Python and R
Other requirements: Python 3.8.2 or higher, R 3.6.3 or higher
License: GPL-3.0
Biotools: Synpred
RRID: SCR_022693

Data Availability
SYNPRED is a free, open-source, web-based application avail-
able at http://www.moreiralab.com/resources/synpred/ without
any login or registration requirements. The source code of the
web-based application implementation is deposited in the GitHub
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repository (https://github.com/MoreiraLAB/synpred) to allow the
stand-alone use of the application and further integration and
comparison with other models. The code is fully developed in
Python and R languages; hence, it can be deployed fully without
charge. The multiomics data included in this study are available
at the corresponding references mentioned in the main text. Sup-
porting data and an archival copy of the code are also available
via the GigaScience database GigaDB [89].

Additional Files
Supplementary Table S1. Conditions for dimensionality reduc-
tion with autoencoders. Hidden and bottleneck layers definition
according to the number of features.
Supplementary Table S2. Conditions for dimensionality reduc-
tion with autoencoders. Number of epochs of the autoencoder
training according to either the number of samples or number of
features.
Supplementary Table S3. Final datasets to be subjected to train-
ing.
Supplementary Table S4. Grid search combination parameters
using 5% on the training set with deep learning algorithms.
Supplementary Table S5. Grid search combination parameters
using 5% on the training set with non–deep learning algorithms.
Supplementary Table S6. Grid search combination parameters of
the ensemble neural network.
Supplementary Table S7. Final metrics of the classification mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using full-agreement synergy values.
Supplementary Table S8. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the Bliss synergy reference model.
Supplementary Table S9. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the HSA synergy reference model.
Supplementary Table S10. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the Loewe synergy reference model.
Supplementary Table S11. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the ZIP synergy reference model.
Supplementary Table S12. Final metrics of the regression mod-
els evaluated in an independent test set and 3 different scenarios
(leave cell out, leave drugs out, and leave drug combinations out)
using the CSS synergy reference model.
Supplementary Table S13. DeepSynergy [86] reimplementation
on the dataset that yielded the best results for SynPred (with PCA
preprocessing and missing values replacement with 0), against the
synergy reference model the original work targeted—Loewe.
Supplementary Table S14. Comparison of final metrics of the
classification and regression models of SynPred to the methods
reviewed by Kumar and Dogra [65].
Supplementary Table S15. Comparison of the performance of
SynPred and other recent algorithms, according to their re-
spective reporting metrics upon deployment in DrugCombo
[87].
Supplementary Table S16. Comparison of the performance of
SynPred and other recent algorithms, according to their re-

spective reporting metrics upon deployment in NCI ALMANAC
[88].
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Chapter 4: Conclusions

The work in this thesis branched out in four main sets of results, unified around the goals and

application of drug design and development. Two of these sets of results were focused on protein

targets and aimed to improve the knowledge and tools available to characterize them all the way

from amino acid to MP oligomer levels. The third set of results aimed at characterising drugs on an

explainable setting while keeping open the option for bulk processing. Finally, the last set of results

pertained tackling of a broad-encompassing subject directed centred on drug combination synergy

prediction in cancer cell lines.

HS prediction from protein sequence-only data was conducted using state-of-the-art ML algo-

rithms and delivered excellent results, opening the gates for in-depth protein characterization in

low-information settings.

• Despite a low amount of available data samples, it was possible to build a HS/NS predictor

using only protein-sequence data.

• Building a DL predictor with the available data yielded promising preliminary results.

• The robustness of SPOTONE emerged from a thorough treatment and splitting of the dataset,

the usage of ERT and the exclusion of whole protein sequence features, leaving only residue-

specific sequence-based features.

• Outstanding performance of the method: AUROC (0.83), accuracy (0.82), recall (0.82), pre-

cision (0.91) and f1-score (0.85).

• Its competitiveness performance against the best structural based predictors is complemented

with the high versatility of using only sequence-based features prediction, which allows a

much wider application in a variety of biological problems.

Membrane protein dimer characterizationwas thoroughly performed, providing information co-

herent with literature findings and new global insights on the subject. The results in this thesis also

unveiled a hub for curated and newly generated MP data.

• MPs have a higher content of hydrophobic and aromatic residues, which contribute to the

accuracy of ML models developed for predicting protein–protein binding sites.

• Glycine, Alanine and Serine (GAS) residues are significantly enriched at the MPs core and

non-interfacial surface locations, in comparison to interfacial surface. These small residues

are the strong driving force for membrane folding and favour thermodynamic interactions with

the lipid bilayer. In contrast, charged residues are typically excluded from the MPs interface.

• Evolutionary conservation was shown to be lower for the surface, followed by the interface

and then the protein core. The core and the interface of MPs are the most conserved regions,

granting necessary structural stability at specific PPIs.
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• Furthermore, b-factor values are lower for interfacial residues compared to non-interfacial

surface ones, indicating that residues participating in PPIs are usually less motile.

• Aromatic residues are much more prone to establish close intermolecular atomic contacts at

short distance than other residues. Coupled with and non-polar residues, they show a high

number of hydrophobic contacts. This is, partly, due to certain types of interactions exclu-

sive, or preferred, to them. Phenylalanine and tyrosine establish π–π stacking, T-stacking and
cation–π interactions in different dimers. Cation–π interactions are also particularly relevant

for arginine.

• MENSAdb is the first comprehensive resource dedicated explicitly to exposing the evolution-

ary and physicochemical features of dimeric MP structures.

Drug Characterization unfolded under a data-centric approach, while privileging feature inter-

pretability and biological meaning.

• Taxonomic characterization of chemical compounds is delivered in the form of novel features

oriented towards data science, ML and AI solutions. There is a heavy focus on interpretable

pharmacological data and features, key for the scientific community, as well as the Pharma

sector.

• Bulk small ligand analysis is provided, which makes use of kingdom and superclass attri-

bution to perform small molecules’ categorization. These categories account for multiple

superclasses, in the cases in which this is possible.

• DrugTax retrieves summary data from an input list of drugs and uses individual small ligand

information to generate a fast characterization tool of small molecules. Furthermore, by mak-

ing use of up-to-date visualization tools, it can depict many intersecting sets (in the form of

small ligand superclasses), which is often limited bymore conventional forms of visualization.

• The test case yielded a list of 10.556 unique virus-associated compounds. Through bulk anal-

ysis, most of the compounds belonged to the organic kingdom. The most recurring superclass

was hydrocarbon derivatives, with few hydrocarbons present. Themost populated aggregation

of superclasses were organic molecules that fit the combination of superclasses: hydrocarbon

derivatives, organoheterocyclic, organic oxygen, organic nitrogen and organopnictogens.

• DrugTax simplifies molecule characterization and presents comprehensible molecule catego-

rization aswell as clear and interpretable features, which yields a set of simple and fundamental

level applications. For example, it could be applied to generate similarity searches, chemical

space visualization, clustering, taxonomy-property relationships, among others.

• Due to its easy deployment and installation, DrugTax is a tool whose potential can unfold

extensively. It also exhibits very fast performance with an easy-to-use interface available on

PyPI and GitHub.

Drug Combination synergy prediction in cancer lines was tackled on an in depth-protocol that

traverses through omics data, feature interpretability, the most recentML approaches and a thorough

- literature-aware – protocol, delivering a final, usable, and useful prediction tool.
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• This study introduced a new synergy prediction model, SYNPRED, that combines compre-

hensive multi-omics data of cancer cell lines with physicochemical and structural features of

drugs. This work is the first that takes five different synergy reference models (Bliss, HSA,

Loewe, ZIP, and CSS) and uses one of the most comprehensive and balanced databases re-

garding the synergistic/non-synergistic distribution, the NCI-ALMANAC.

• When comparing the reported performance for algorithms in their settings it is necessary

to consider a very broad array of circumstances, such as prediction models, datasets, and

synergy reference models. The high possible combination of factors that leads to the final

methods’ performance is huge, and therefore comparisons must be careful and avoid narrow-

mindedness.

• Six final predictors were built, one for classification (full – agreement between the five dif-

ferent synergy reference models) and five for regression tasks. Furthermore, the final tally

of synergistic queries predicted by all models based on the prediction values is also provided

in the form of “Synergy Votes”. This facilitates the visualization of the type of combinatory

effect between the two drugs and aims at strengthening the value of the prediction due to the

lack of consensus between the different synergy reference models.

• The top-ranked classification and regression models, ensembles developed with the best ML

models, achieved state-of-the-art performance to predict synergistic drug combinations in an

independent dataset. The best-performing prediction model in SYNPRED is, undoubtedly,

CSS (RMSE, 11.07; MSE, 122.61; Pearson, 0.86; MAE, 7.43; Spearman, 0.87). However, it

is advisable to consider the aggregate of results, albeit with a higher focus on CSS.

• For the classification task, the final ensemble full-agreement SYNPRED comprised 4 DL-

based and 6 ML-based models. When applied in an independent test set, the ensemble model

displayed better performance (accuracy = 0.85, precision = 0.91, recall = 0.90, AUROC =

0.80, and F1-score = 0.90) than any other classic ML or DL models, with the best individual

performing model being XGB. However, there was a significant drop in the leave cells, drugs,

and drug combinations out datasets.

• When comparing performance with predictors deployed upon NCI ALMANAC (the dataset

used in this study), SYNPRED stands out in all the synergy reference models with Pearson

and Spearman correlation performance increments between 30.51% and 42.37%, as well as

between 36.36% and 56.36%, respectively. Although MSE metrics are particularly hard to

compare between datasets and methods, significant improvements were also observed.

• More complex models, particularly DL-based models with different architectures, tend to

make more extensive use of the omics-based features to over 70% of the total feature con-

tribution. Contrarily, simpler models made almost exclusive use of the drug features (above

90%). Other non-DL-based models made variable (between 20% and 80%) usage of the omics

features. This observation highlights the importance of DL models to take full advantage of

omics data for capturing the complexity of each cancer profile, thus improving drug pair–cell

line combinations predictions.
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• Of the 15 ranked genes from expression, methylation, and Copy Number Variation (CNV),

all of them are used as prognostic cancer markers or have a role in tumour progression and

treatment. These data suggest that our models, especially DNNs, are likely to capture the most

relevant information for each group of multi-omics features for synergistic drug combinations.

• To our knowledge, this is the first web server that can predict new drug synergy combinations

without the need of uploading a partial or full dose–response matrix. This feature is an advan-

tage compared with other models implemented in webservers that need these types of data for

drug combination response prediction.

Despite the already large but still increasing investment in drug design and development, there are

still many venues for growth, many of which inevitably through trial and error. During my thesis

I focused on some of the cornerstones of drug design and development, making heavy use of the

availableML tools to address both the targets and the drugs, as well as a specific problem of interest.

In short, this resulted in the following contributions:

• Increased protein characterization at multiple levels.

• Deepened small molecule insights.

• A concrete solution for the drug combination synergy in cancer cell lines problem.

It is also worth mentioning that all the conducted research was adequately made available for repli-

cation and generated multiple tools that will allow its continued contribution to the field.
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