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Abstract

eizure prediction concerns a multidimensional time-series problem that typi-

cally performs continuous sliding window analysis and classification. Cur-

rent state-of-the-art methods using the electroencephalogram signal are

based on Machine Learning (ML) models that are mainly black boxes, weakening
the trust of clinicians for high-risk decisions. Despite decades of research, few de-
vices/systems underwent clinical trials and/or are commercialised, where these do
not use the most recent approaches, such as neural networks, to their full potential.
The absence of explanations for black-box models, especially when they fail, makes

researchers and clinicians question and mistrust their use, thus raising scepticism.

The main objective of this thesis is to make a step forward concerning more
effective communication within multidisciplinary teams, which required the joint
work of engineering domain techniques, such as signal processing and ML, with tools
from social sciences. The analysed patient data comprises scalp recordings provided

by the EPILEPSIAE database. This thesis comprises three main contributions.

The first is a sociological study of this research field. Based on the literature,
a qualitative study was made to find social barriers concerning the clinical applica-
tion of seizure prediction algorithms. Two tools were used: while Grounded Theory
allows the draw of hypotheses from data, Actor-Network Theory considers that tech-
nology shapes social configurations and interests. A social network was obtained,
describing this research field ecosystem and proposing research guidelines for clini-
cal acceptance. The most relevant conclusion is the need for model explainability,
but not necessarily intrinsically interpretable models. Due to general scepticism,
patient safety reasons, and purposely vague legislation on black-box algorithms for
high-risk decisions, many authors advocate using only transparent models, limiting
their performance and potential. Nevertheless, according to the study conducted in

this thesis, researchers may develop robust prediction models, including black-box
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systems, to some extent, as long as they can deliver human-comprehensible expla-
nations. This contribution highlights a path, by using model explainability, on how

to allow the use of more computationally robust models.

The second contribution is an evolutionary seizure prediction framework whose
output is a logistic regression model. The framework identifies the best set of five fea-
tures (widely explored in the literature) while automatically searching for the preictal
period and accounting for patient comfort. It provides patient-specific and patient-
general interpretable insights, which might be helpful in better understanding seizure
generation processes and explaining the algorithm’s decisions. This methodology was
quasi-prospectively tested on continuous data, comprising recordings from 93 pa-
tients with several types of focal and generalised epilepsies. Performed above chance
was achieved for 32% of patients. The results were compared with a seizure surro-
gate predictor and a control method based on a typical ML pipeline (pre-processing,
feature extraction, classification, and post-processing). The obtained findings may

evidence the need for patient-specific methodologies.

The third contribution is the evaluation of model explainability by data scientists
and epilepsy specialists. Three ML methodologies containing different model trans-
parency levels were developed: a logistic regression, an ensemble of fifteen Support
Vector Machines, and an ensemble of three Convolutional Neural Networks. Each
methodology was quasi-prospectively evaluated in 40 patients. Patients with high
and low performances were chosen to develop explanations. These were presented,
during interviews, to data scientists working in healthcare and clinicians from an
epilepsy refractory centre. The interviews were analysed and resulted in five lessons
leading to better communication of ML models from researchers to clinicians. The
most significant finding was that the goal of explainability is not merely to explain
the system’s decisions but to improve the system itself by questioning the assump-
tions it is based on. It is hard to understand and interpret brain dynamics even
using simple models with state-of-the-art features. In this study, it was possible to
conclude that designing several models that explicitly deal with changes in signal

dynamics helps develop a complete problem formulation and improve explainability.

Since these contributions used data from pre-surgical monitoring conditions, the
obtained findings should be interpreted as proofs of concepts. These methodologies

must be replicated in studies using ultra-long-term recordings which concern real-life
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conditions.

Keywords: Epilepsy, Seizure Prediction, Electroencephalogram, Interpretability,

Explainability, Machine Learning
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Resumo

previsao de crises epilépticas é um problema de andlise e classificacao
de janelas consecutivas ao longo do tempo. Os métodos existentes, que
usam o sinal electroencefalografico, contém maioritariamente mode-
los de Machine Learning (ML). Como estes lidam com dados multidimensionais,
tornam-se caixas negras, nao oferecendo confianca aos clinicos em decisoes de alto
risco. Apesar de décadas de investigagao, poucos dispositivos chegaram a um ensaio
clinico ou foram comercializados onde, abordagens mais recentes (como redes neu-
ronais) acabam por nao ser totalmente exploradas. A auséncia de explicagdes para
modelos considerados caixas negras, especialmente quando estes falham, aumenta o

cepticismo dos clinicos.

O principal objectivo desta tese é desenvolver solugoes que permitam uma melhor
comunicacao para equipas multidisciplinares que trabalhem em previsao de crises
epilépticas, o que requereu o trabalho conjunto de dominios da engenharia, como
processamento de sinal e ML, com ferramentas das ciéncias sociais. Usaram-se os
dados electroencefalograficos de escalpe da base de dados EPILEPSIAE. Esta tese
divide-se em trés contribui¢bes principais.

A primeira contribuicdo é um estudo sociolégico onde, com base na literatura,
se tentou encontrar as barreiras sociais existentes na area de previsdo de crises.
Usaram-se duas ferramentas: Teoria Fundamentada, que permitiu desenvolver hipéteses
a partir dos dados recolhidos, e Teoria Actor-Rede, que considerou o papel activo da
tecnologia ao moldar configuragoes sociais. Obteve-se uma rede social que descreve
o ecossistema desta area de investigagdo, propondo-se directrizes para acelerar o
processo de aceitacao clinica de modelos matematicos. A conclusdo mais relevante
é: apesar de ser necessario explicar os modelos, estes nao precisam de ser intrin-
secamente interpretaveis. E possivel desenvolver modelos com um certo grau de

complexidade, desde que consigam explicar as suas decisoes de forma humanamente
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compreensivel. Devido ao cepticismo e motivos baseados numa legislagdo ainda
vaga, muitos investigadores advogam o uso exclusivo de modelos interpretaveis, o
que pode limitar a performance e o potencial desta tecnologia. Esta contribui¢ao
mostra um caminho possivel, através da explicabilidade, para permitir a aplicagdo

clinica de modelos computacionalmente mais complexos.

A segunda contribuicdo é uma metodologia evolucionaria de previsdo de crises
que devolve um modelo de regressao logistica interpretavel. Esta metodologia iden-
tifica o melhor conjunto de cinco preditores enquanto procura o periodo pré-ictal
e considera o conforto do doente. Ao fornecer conhecimento especializado para
cada doente e generalizado para todos os doentes, pode contribuir para um melhor
entendimento acerca do processo de geracao de crises e das decisoes de cada mod-
elo. Testou-se esta metodologia quase-prospectivamente em dados continuos, per-
tencentes a 93 doentes que sofrem de varios tipos de epilepsias focais e generalizadas.
Esta metodologia teve significAncia estatistica para 32% dos doentes através de uma
analise surrogate, e foi comparada com um método de controlo baseado na literatura
(pré-processamento, extrac¢ao de caracteristicas, classificacao, pds-processamento).
Os resultados evidenciam a necessidade de desenvolver diferentes metodologias para

diferentes modelos.

A terceira contribuicdo consistiu na avaliacdo de explicabilidade de modelos por
parte de especialistas em ML e epilepsia. Desenvolveram-se trés metodologias de ML:
uma regressao logistica, um sistema de voto de 15 Support Vector Machines, e um
sistema de voto de trés Redes de Convolucao Neuronais. Testaram-se as metodolo-
gias quase-prospectivamente em 40 doentes. Seleccionaram-se doentes com alta e
baixa performance para se desenvolverem explicagoes acerca dos respectivos mode-
los. Estas explicagbes foram apresentadas, em entrevista, a cientistas de dados que
trabalham em problemas clinicos e a clinicos de um centro de epilepsia refractaria.
Da andlise das entrevistas, resultaram cinco licbes para melhorar a comunicagdo
de modelos de ML. A descoberta mais significativa foi que o objectivo da expli-
cabilidade nao é s6 explicar as decisées do sistema, mas melhorar a metodologia
em si. Foi ainda importante reforcar que, apesar de se terem utilizado preditores
clinicamente intuitivos e conhecidos do estado da arte juntamente com modelos sim-
ples, foi dificil interpretar os resultados e obter conhecimento acerca das dindmicas

cerebrais. Pode-se atingir um aumento da explicabilidade ao desenvolverem-se, em
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paralelo, sistemas que lidem explicitamente com mudangas nas dindmicas cerebrais
que ajudem a obter uma definicdo mais completa do problema.

Como estas contribui¢ées usaram dados de monitorizagdo pré-cirtrgica, os re-
sultados obtidos deverdo ser interpretados como uma prova de conceito. Estas

metodologias deverao ser replicadas com dados de longa duragao da vida real.

Keywords: Epilepsia, Previsao de Crises, Electroencefalograma, Interpretabilidade,

Explicabilidade, Machine Learning
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Chapter 1

Introduction

he last four decades have seen significant advances in seizure prediction us-

ing the Electroencephalogram (EEG) signal. Prediction models must deal

with the inherent complexity of epilepsy and its seizures, where their deci-

sions might significantly impact the patients’ lives. Thus, researchers must improve

communication strategies to explain the models’ decisions, particularly to patients

and clinicians. This chapter addresses the need for compelling explanations con-

cerning the mathematical models’ decisions. On that basis, it traces the main goals
of this thesis.

1.1 Motivation

Epilepsy is one of the most common neurological diseases. While prevailing in
approximately 1% of the world population, it affects people of all ages and con-
ditions [Ihle et al., 2012]. The occurrence of apparently unpredictable seizures is
the most severe aspect, impacting the lives of patients and caregivers. While deliv-
ering Anti-Epileptic Drugs (AEDs) has a success rate of 70% in achieving seizure
control, Drug-Resistant Epilepsy (DRE) patients require other strategies, such as
seizure prediction, to improve their lives [Jette and Engel, 2016, Cloppenborg et al.,
2016, Klatt et al., 2012]. Without proper seizure control, the life of a patient with
DRE is significantly affected due to not only discrimination and stigma but also
to economic reasons regarding health care needs, premature and/or sudden death,
loss of productivity, depression, and anxiety [Fiest et al., 2017, Jones and Thomas,
2017, Devinsky et al., 2016, Laxer et al., 2014].

Seizure prediction is a promising research field as it offers several solutions. The
design of a warning device that timely anticipates a seizure, by analysing the EEG
in real-time, may allow the patient to take action for seizure suppression (by ad-
ministering rescue medication) and/or to minimise its effects (by taking preventive
measures against accidents). It is also possible to integrate a prediction model

in a closed-loop system that automatically performs neuromodulation to suppress
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seizures [Kuhlmann et al., 2018b, Freestone et al., 2017, Mormann et al., 2007]. Re-
searchers have proven that these solutions are possible in real life, with the Neu-
rovista’s Seizure Advisory System Feasibility Study (NCT01043406) [Cook et al.,
2013] and the Responsive Neurostimulation System (RNS) Long-Term Treatment
(NCT00572195) [Sun and Morrell, 2014] clinical trials, for instance. However, not
all patients from the Neurovista clinical trial reached the final phase, and, in those
who did, not all achieved good performance. Although the use of the RNS® System
significantly reduced seizure occurrence, complete seizure suppression was not pos-
sible. Also, these systems are highly invasive, demanding high monetary costs and

multidisciplinary teams, which may not be accessible in all countries [Engel, 2016].

1.1.1 The importance of explaining decisions

Nowadays, seizure prediction encompasses mainly the development of Machine Learn-
ing (ML) models using multidimensional time-series data. As a result, seizure pre-
diction models are often considered highly complex black-box models. The absence
of explanations for black-box models’ decisions, especially when they fail, leads
researchers and clinicians to question and mistrust their use, thus raising scepti-
cism [Freestone et al., 2017]. If one tries to explain a model’s decision, particularly
when it failed (why it missed a seizure or raised a false alarm), it might convince a
clinician that it brings added value [Molnar, 2019, Lage et al., 2019, Doshi-Velez and
Kim, 2017]. Additionally, focusing on explaining these models’ decisions can also
provide ways of understanding how to improve methodologies.

Explaining models’ decisions is vital for any clinical problem, as it can be under-
stood when analysing the 2018 General Data Protection Regulation (GDPR) [Good-
man and Flaxman, 2017, Doshi-Velez and Kim, 2017] and the 2021 European Union
Medical Device Regulation (EU MDR) [Beckers et al., 2021, Majety et al., 2021] for
European citizens and the European economic space. GDPR ’s article 22 presents
the first steps toward legislation on algorithm explainability for high-risk decisions
based on personal data. It provides patients with the right to have an explanation
for any algorithm decision. Also, it gives them the right to question those decisions.
The 2021 EU MDR also promotes the delivery of model explanations.

1.1.2 Seizure prediction limitations

Seizure prediction is a research field whose success is severely affected by the hetero-
geneity of seizures and epilepsies, a significant data imbalance resulting from the rare
occurrence of seizures, and Concept Drift (CD) [Kuhlmann et al., 2018b,Baud et al.,
2018,Karoly et al., 2017, Freestone et al., 2017, Gadhoumi et al., 2016a]. It is possible
to outline several reasons that may explain the lack of adequate performance for all
patients, where the failure of applying current EEG-based approaches to real-life

may be related to the quality of databases. Although some contain continuous and
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long-term recordings, these require context information such as epilepsy type, focus
location and lateralisation, vigilance state, medication, and others to deepen current

knowledge on the seizure generation process [Kuhlmann et al., 2018b].

Current state-of-the-art methods focus on supervised learning techniques that
distinguish chunks of chronological information as either seizure-free (interictal)
state or pre-seizure (preictal) state [Kuhlmann et al., 2018b, Mormann et al., 2007].
Correct labelling of the preictal interval is critical to achieving good performance.
This interval is one of the fundamental aspects of seizure prediction, with literature
providing evidence of its existence. A consensus regarding an optimal preictal period
was not achieved, with authors reporting different optimal values [Kuhlmann et al.,
2018b, Bandarabadi et al., 2015a]. Studies attempting to determine the preictal
interval verify that this transitional stage varies from subject to subject and from
seizure to seizure within patients, which explains the tendency to develop patient-

tailored prediction algorithms [Kuhlmann et al., 2018b, Freestone et al., 2017].

1.2 Goals and contributions

The main objective of this thesis is to provide novel solutions for ML seizure pre-
diction models in such a way that it contributes to its interpretation and thus allow
more effective communication within multidisciplinary teams, namely among data
scientists and clinicians. This thesis required the joint work of engineering domain
techniques, such as signal processing and ML, with tools from social sciences to han-
dle the complexity of this communication. The used dataset comprises recordings
provided by the European Epilepsy Database [Klatt et al., 2012]. Since all data was
recorded during pre-surgical monitoring, the findings herein should be interpreted
as proof of concept. This research can bring added value to future studies proposing

ML models based on data acquired in real-life conditions.

This investigation can be subdivided into three main contributions, described in

the following subsections.

1.2.1 Studying the seizure prediction research ecosystem

The first part of this thesis concerns a sociological study of this research field. De-
spite being useful for clinicians and patients to understand this ecosystem, this
study is directed to researchers so that they can develop prediction approaches with
a higher chance of clinical acceptance. Thus, this study proposed some guidelines
to improve clinical acceptance of seizure prediction algorithms. Although some re-
searchers implicitly use these guidelines, there is added value in explicitly addressing
and discussing them. A research field’s social network was also created, along with

an interactive presentation to illustrate this ecosystem better.
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1.2.2 Interpretable evolutionary algorithms

The second part of this thesis presents a patient-specific methodology for scalp EEG
seizure prediction, tested quasi-prospectively, which returns a classification model
with high transparency and requires low-computational power. The model is a
logistic regression that uses five features widely explored in the literature. This
methodology uses Evolutionary Algorithms (EA), which are based on a population
of individuals (points in the search space) and are inspired by natural evolution.
They are helpful for direct search, optimisation, and ML problems. Briefly, the
individuals, defined by a set of features that best performed in seizure prediction,
survived and proliferated. Then, further analysis of the obtained solutions was
performed to search for patient-specific and patient-general behaviours. It was also
possible to address patient comfort during data acquisition by assessing the selected

electrodes (number and spatial distribution in the scalp).

1.2.3 Explaining Machine Learning prediction models

The third part of this thesis concerns the explainability evaluation of different ML
methodologies with different levels of transparency. For each methodology, predic-
tion performance was quasi-prospectively obtained. Then, patients with good and
poor performances were chosen to explain the models’ prediction decisions. The
developed explanations were presented (in interviews) to data scientists working on
clinical problems and clinicians working in an epilepsy refractory centre. These in-
terviews were analysed and discussed, resulting in five lessons that lead to better

communication of ML models to clinicians.

1.3 Thesis Outline/Structure

The remainder of this thesis proposal is structured as follows.

Chapter 2 provides background information related to epilepsy, the EEG signal,
an introduction to the field of seizure prediction and ML explainability.

Chapter 3 presents a literature overview on EEG seizure prediction and EEG-
based models’ explainability, while presenting major current limitations.

Chapter 4 analyses the seizure prediction social ecosystem, along with the ob-
tained social network and proposed guidelines.

Chapter 5 presents the development of interpretable EAs for EEG seizure pre-
diction.

Chapter 6 describes the explainability study for different ML approaches, from
intrinsically interpretable models to black-box ones.

Chapter 7 concludes this thesis by outlining its main findings and highlighting

their added value. It also presents future directions.
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1.4 Scientific contributions

During this thesis, several contributions to epilepsy seizure prediction research were
made. These comprise publications as main-author and co-author in international
journals, participating in international and national conferences, as masters’ degree
theses co-advisor, and participation in science communication sessions to the general
public. These are enumerated here.

Educational and scientific contributions in other research fields were also made.
These include giving classes and workshops to students, invited speaker and attendee
in summer schools, science communication activities to the general public, masters’
theses advising, and publications in international journals (see Appendix A for full

detail on these contributions).
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S41598-021—82828-7(2021)

J2 Pinto, M. F., Coelho, T., Leal, A., Lopes, F., Dourado, A., Martins, P.,
Teixeira, C. A.. "Interpretable EEG seizure prediction using a multiobjec-
tive evolutionary algorithm”, Scientific Reports, 12, 4420, DOI: 10.1038/
s41598-022-08322-w (2022).

J3 Pinto, M. F., Leal, A., Lopes, F., Pais, J., Dourado, A., Sales, F., Martins,
P., Teixeira, C. A.. ”On the clinical acceptance of black-box systems for EEG
seizure prediction”, Epilepsia Open, DOI: 10.1002/epi4. 12597 (2022).

J4 Leal, A., Pinto, M. F., Lopes, F., Bianchi, A. M., Henriques, J., Ruano, M.
G., Carvalho, P., Dourado, A., and Teixeira, C. A.. "Heart rate variability

analysis for the identification of the preictal interval in patients with drug-

resistant epilepsy”, Scientific Reports 11, 5987, DOI: 10.1038/s41598-021-85350-y

(2021).

J5 Lopes, F., Leal, A., Medeiros, J., Pinto, M. F., Dourado, A., Diimplemann,
M., Teixeira, C. A.. ”Automatic Electroencephalogram Artifact Removal using
Deep Convolutional Neural Networks”, IEEE Access 9 149955-149970, DOI:
10.1109/ACCESS.2021.3125728(2021)

J6 Lopes, F., Leal, A., Medeiros, J., Pinto, M. F., Dourado, A., Diimplemann,
M., Teixeira, C. A.. "Ensemble Deep Neural Network for Automatic Clas-
sification of EEG Independent Components”, IEEE Transactions on Neural
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Systems and Rehabilitation Engineering 30 559-568, DOI: 10.1109/TNSRE.
2022.3154891 (2022).

J7 Lopes, F., Leal, A., Medeiros, J., Pinto, M. F., Dourado, A., Diimplemann,
M., Teixeira, C. A.. "EPIC: Annotated epileptic EEG independent compo-
nents for artifact reduction”, Scientific Data 9 512, DOI: https://doi.org/
10.1038/841597-022-01524-x (2022).

1.4.2 Articles under preparation to be submitted to international

journals

J8 Pinto, M. F., Batista, J., Leal, A., Lopes, F., Oliveira, A., Dourado, A.,
Sales, F., Martins, P., Teixeira, C. A.. "Explaining Machine Learning models
for EEG seizure prediction”, Manuscript under preparation to be submitted to
a scientific journal (2022).

J9 Leal, A., Curty, J., Lopes, F., Pinto, M. F., Oliveira, A., Sales, F., Ruano,
M. G., Carvalho, P., Dourado, A., Henriques, J., and Teixeira, C. A.. “Un-
supervised EEG Preictal Interval Identification in Patients with Drug-resistant
Epilepsy.” Pre-print. DOI: https://www.researchsquare.com/article/rs-1905838/
vl (2022).

J10 Leal, A., Martinho, B., Lopes, F., Pinto, M. F., Sales, F., Bianchi, A.M.,
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Interval Labelling with Supervised Learning May Improve Seizure Prediction

Models”, Manuscript under preparation to be submitted to a scientific journal
(2022).
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C1 Pinto, M. F., Leal, A., Lopes, F., Dourado, A., Martins, P., and Teixeira, C.
A.. ”Can we explain how Machine Learning Models predict seizures? Towards
an appropriate explainability of EEG seizure prediction models” in Interna-
tional Conference for Technology and Analysis of Seizures, 2022 (ICTALS
2022).
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1.4.4 Master’s degree theses co-advisoring

M1

M2

M3

M4

M5

Coelho, T.. "EEG Epilepsy Seizure Prediction: A Multi-Objective Evolution-
ary Approach”, Master Thesis dissertation, Universidade de Coimbra (2020).

Tavares, M.. "EEG Epilepsy Seizure Prediction: the Post-Processing Stage as
a Chronology”, Master Thesis dissertation, Universidade de Coimbra (2021).

Oliveira, A. C.. "Sleep-Awake cycle evaluation from long-term EEG data: as-
sessing the impact in epilepsy seizure prediction”, Master Thesis dissertation,
Universidade de Coimbra (2021).

Pontes, E. D.. ”Concept-Drifts Estimation for EEG Epilepsy Seizure Predic-
tion”, Master Thesis dissertation, Universidade de Coimbra (to be finished in
2022).

Batista, J.. ”On the development of EEG seizure prediction methodologies
aimed at clinically acceptance”, Master Thesis dissertation, Universidade de
Coimbra (to be finished in 2022).

1.4.5 Science communication to the general public

Gl

G2

G3

”An Evolutionary Framework for Rare-Event Prediction Problems with Ma-
chine Learning”, in Data Science Portugal (DSPT) meetup #68, Coimbra
(2019).

”Can your artificial intelligence algorithm predict epileptic seizures and explain
it to a doctor?”, 3 Minute-Thesis Competition (3MT) from the University of
Coimbra (2020).

” Anticipating and disarming epileptic seizures: utopia or future?”, in Interna-
tional Science Festival (FICA), Oeiras, Lisbon (2021).

1.4.6 Awards and distinctions

Al

A2

A3

The abstract "Can we explain how Machine Learning Models predict seizures?
Towards an appropriate explainability of EEG seizure prediction models” was
considered one of the top-ranked abstracts in the ICTALS 2022 conference.

The paper ”A personalized and evolutionary algorithm for interpretable EEG
epilepsy seizure prediction”, from Scientific Reports, is in the 2021 Top 100 in
Neuroscience. More specifically, it was the 32"4 most downloaded paper from

all the neuroscience articles published in 2021 in Scientific Reports.

The pitch ”Can your artificial intelligence algorithm predict epileptic seizures
and explain it to a doctor?” was the winner of the 3MT competition in the
University of Coimbra (2020).






Chapter 2
Background concepts

his chapter introduces the main background concepts. Section 2.1 presents

a brief notion of epilepsy and seizures. Section 2.2 describes the Elec-
troencephalogram (EEG) signal along with its materialisation in neuro-
physiology and epilepsy. Section 2.3 details the current treatment and therapeutics
options. Section 2.4 provides a brief introduction to the theoretical concepts behind
seizure prediction. Section 2.5 presents some concept drifts important for seizure
prediction and section 2.6 provides a summary of explainability and interpretability
concepts. Finally, section 2.7 provides a summary and discussion of the background

key concepts.

This thesis also requires understanding Evolutionary Algorithms (EA) and qual-
itative research tools, such as Grounded Theory (GT) and Actor-Network Theory.
As it may be more intuitive, these are briefly introduced during their use in chapters

4 and 5, respectively.

2.1 Epilepsy and seizure concepts

Epilepsy has a worldwide prevalence of 1% and is one of the most common neu-
rological diseases with profound physical, psychological, and social consequences.
Recurrent and typically brief episodes, known as seizures, characterise this dis-
ease [Van Mierlo et al., 2014, Tasemidis, 2003].

Excessive electrical discharges in cells from one or more brain parts are responsi-
ble for causing seizures, ranging from the briefest lapses of attention or muscle jerks
to severe and prolonged convulsions. These may differ in frequency and severity,
ranging from less than one per year to several per day. The clinical manifestations
of seizures may present many forms which depend on the affected areas, includ-
ing auras, tonic-clonic movements, impairment, or loss of consciousness [Van Mierlo

et al., 2014, Bautista and Glen, 2009, Fisher et al., 2005].
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2.1.1 Definition of epilepsy and seizures

According to the International League Against Epilepsy (ILAE) in 2005 [Fisher
et al., 2005], epilepsy and an epileptic seizure could be defined as presented in Boxes

1 and 2, respectively.

Box 1 - Definition of epilepsy according to the 2005 ILAE Task Force
[Fisher et al., 2005].

“Epilepsy is a disorder of the brain characterised by an enduring predisposition to
generate epileptic seizures, and by the neurobiologic, cognitive, psychological, and so-
ctal consequences of this condition. The definition of epilepsy requires the occurrence

of at least one epileptic seizure.”

Box 2 - Definition of seizure according to the 2005 ILAE Task Force
[Fisher et al., 2005].

“An epileptic seizure is a transient occurrence of signs and/or symptoms due to

abnormal excessive or synchronous neuronal activity in the brain.”

More recently, in 2014, the ILAE proposed an operational clinical definition of
epilepsy [Fisher et al., 2014] to be applied in diagnostics, which can be seen in Box 3.
This new practical definition aims to raise awareness among clinicians to the risk of
recurrence after a single unprovoked seizure, which may enable an earlier treatment

start.

Box 3 - Operational clinical definition of epilepsy according to the 2014
ILAE Task Force [Fisher et al., 2014].

According to this update, epilepsy is a disease of the brain defined by any of the

following conditions:
o at least two unprovoked (or reflex) seizures occurring 24h apart;

o one unprovoked (or reflex) seizure and a probability of further seizures similar
to the general recurrence risk (at least 60%) after two unprovoked seizures,

occurring over the next ten years;

o diagnosis of an epilepsy syndrome.

2.1.2 Classification of seizures and epilepsies

In 2017, the ILAE also updated the framework for classification of the epilep-
sies [Scheffer et al., 2017] and the operational classification seizures types [Fisher
et al., 2017] (see Figure 2.1). Three stages comprise the framework for the classifi-
cation of epilepsies: (i) seizure type, (ii) epilepsy type, and (iii) epilepsy syndrome.
The diagnostic process may include the assessment of medical history and physical

examination. Classification according to seizure type may be the maximum level
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Figure 2.1: ILAE 2017 classification of epilepsies. Adapted from [Scheffer et al., 2017].

for diagnosis as there may be no access to video-EEG and neuroimaging examina-
tion [Elger and Hoppe, 2018].

This new classification incorporates aetiology along each stage, emphasising the
need to consider it at each step as it often carries significant treatment implications.
Despite being generally unknown, aetiology can be divided into several categories:
structural, genetic, infectious, metabolic, and immune. Comorbidities such as learn-
ing, psychological, and behavioural problems are also important factors to consider
for patient management [Devinsky et al., 2018, Scheffer et al., 2017, Fisher et al.,

2014]. This thesis did not explore aetiology influence and comorbidities.

2.1.2.1 Seizure types

An epilepsy diagnosis starts by discovering the type of seizures a patient suffers from,
which concerns how and where they begin in the brain. A seizure can be classified
into focal, generalised or unknown [Devinsky et al., 2018, Scheffer et al., 2017], as
seen in Figure 2.2.

Limiting a clinical and EEG onset moment to one cerebral hemisphere is pos-
sible in focal seizures. In contrast, with generalised seizures, both hemispheres are
involved. A generalised onset is characterised by the “engagement of bilateral net-
works” which may not be necessarily symmetric. Possible subcategorisation for both
focal and generalised seizures concerns the prominent symptom during a seizure into
motor or non-motor. It is still possible to classify a seizure in terms of awareness of
self and the environment. Regarding awareness, it is classified as Focal Onset Aware
(FOA) or as Focal Onset Impaired Aawareness (FOIA). Also, there is the particular
case of Focal to Bilateral Tonic-Clonic (FBTC). These often lead to tonic (body
stiffness) and clonic (jerking movements) symptoms. Although their onset is limited

to one hemisphere, they quickly propagate to another brain region [Devinsky et al.,
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Figure 2.2: ILAE 2017 classification of seizure types. Clinicians may use a basic (in bold)
or an expanded seizure classification, which depends on their expertise in diagnosing and
treating epilepsy. Adapted from [Devinsky et al., 2018, Fisher et al., 2017].

2018, Scheffer et al., 2017].

It is essential to mention generalised tonic-clonic seizures, a type of seizure in-
volving the entire body, also known as grand mal seizures. The terms seizure,
convulsion, or epilepsy are often associated with generalised tonic-clonic seizures as
it is the most common seizure type [Kodankandath et al., 2020]. When defining a
precise onset localisation is impossible, the seizure onset is classified as unknown.

Even though the ILAE does not have classification guidelines for more aspects,
it is common and useful to analyse and label other related factors to provide con-
text information [Fisher et al., 2017]. This thesis often stratifies patients by their
vigilance state at the time of the seizure (awake, REM, nonREM stages I, II, III,
or IV), the seizure onset place in terms of brain lobes (frontal, temporal, central,

occipital, and parietal), and in terms of hemispheres (left, right, and bilateral).

2.1.2.2 Epilepsy type

The next step identifies the type of epilepsy based on the patient’s seizures. It as-
sumes the patient has epilepsy based on the 2014 definition and includes an unknown
category when the clinician does not have enough information. Furthermore, there
is a large complexity associated with an epilepsy type as each category includes

multiple types of seizures. As one can see with Figure 2.1, there are four types of
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epilepsies [Devinsky et al., 2018, Scheffer et al., 2017]:

e Focal: include unifocal and multifocal disorders and seizures that involve one
hemisphere. A patient with focal epilepsy can have different types of seizures.
The most frequent are FOA, FOIA, focal motor, focal non-motor, and FBTC

ones. The interictal EEG often contains focal epileptiform discharges.

o Generalised: seizures start on both hemispheres. It is characterised by a spike-
wave activity on the EEG, and the most frequent seizure types are absence,

myoclonic, atonic, tonic, and tonic-clonic ones.

e Combined Generalised and Focal: characterised by having generalised and
focal seizures where the interictal EEG shows generalised spike-wave and focal

epileptiform discharges.

Concerning focal epilepsies, Temporal Lobe Epilepsy (TLE) is the most common
type and is characterised by focal seizures which arise in the temporal lobe. TLE can
be further divided into mesial, neocortical, or lateral. This fact is essential since the
majority of patients diagnosed with mesial TLE become resistant to Anti-Epileptic
Drugs (AEDs) and, therefore, are referred to resective surgery [Anyanwu and Mo-
tamedi, 2018, Varsavsky et al., 2011]. Since this work concerns the exploration of
the EPILEPSIAE database [Klatt et al., 2012], solely constituted by patients in
presurgical monitoring, the majority of the studied patients has TLE.

2.1.2.3 Epilepsy syndrome

An epilepsy syndrome consists of a cluster of characteristics that incorporates seizure
types, EEG, and imaging features which tend to occur together. Furthermore, age
at onset and remission, seizure triggers, diurnal variation, and others can also be
considered. It is worth noting that there is no formal classification of syndromes by
the ILAE [Scheffer et al., 2017].

Identifying an epilepsy syndrome may help determine the underlying causes of
seizures and help decide which medication a patient should take, thus serving a
different purpose such as guiding epilepsy treatment. This identification is crucial
as some syndromes demonstrate seizure aggravation with the incorrect anti-seizure
medication, which can be avoided with the appropriate diagnosis [Gayatri and Liv-
ingston, 2006].

2.1.3 Seizure clusters

Despite not being listed in the ILAE classification, a seizure cluster is a relevant
phenomenon known for acute repetitive seizures within short interictal intervals
(hours or minutes). In the literature, it is frequent to report seizure clusters as

consecutive seizures within a determined period, which varies from study to study.
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This is particularly important for patients in presurgical monitoring and seizure
prediction [Jafarpour et al., 2019, Mormann et al., 2007], as it will be seen in the

Treatment and Therapeutics (2.3) and Seizure Prediction (2.4) sections.

2.2 EEG

The EEG captures the brain electrical activity in a time series. This activity is
the result of the potential voltage of the summed excitatory and inhibitory po-
tentials produced by brain cells and their geometrical disposition [Mporas et al.,
2015, Alotaiby et al., 2014, Iasemidis, 2003]. The acquisition of the EEG signal is
performed by placing electrodes (electrical sensors) in the scalp (scalp EEG) or inside
the skull (Invasive Electroencephalogram (iEEG)). It is the most efficient medical
imaging tool to analyse the characteristics of this neurological disorder [Medithe
and Nelakuditi, 2016]. The EEG is a nonlinear and nonstationary signal, considered
complex and challenging to interpret [Acharya et al., 2013].

The number of electrodes and the correspondent localisation determine the sig-
nal spatial resolution, while the sampling frequency determines the time resolution.
Although other neuroimaging techniques may have a better spatial resolution, the
EEG provides the best temporal resolution of the cortical function. The heterogene-
ity of clinical manifestations is related to the different seizure-engaged brain areas
which suffer such discharges. The EEG has been used for presurgical evaluation,

continuous monitoring, and diagnosis [Feyissa et al., 2021].

2.2.1 EEG activity

The EEG captures two types of potentials (see Figure 2.3): oscillations and tran-
sients.

Oscillations can be described as rhythmic fluctuations caused by mechanisms
within individual neurons or interactions between them. Based on this, the macro-
scopic neural oscillations are usually characterised in terms of frequency band activ-
ity: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma
(30-128 Hz) that can be divided in sub-bands [Wang et al., 2018, Bandarabadi et al.,
2015b,Adeli et al., 2007]. These are associated with different human activities. Delta
oscillations are associated with deep sleep, while theta rhythms are observed during
drowsiness, creative inspiration, and deep meditation. Alpha waves are the most
proeminent brain rhythm, usually observed over the occipital lobe. Beta oscillations
usually appear not only during mental and cognitive tasks but also in anxious and
alert states, especially in the frontal and central brain regions. Gamma oscillations
are rare and are usually clouded in the presence of muscle artefacts, particularly
with scalp EEG [Sanei and Chambers, 2007].

Transients can be normal or abnormal. Normal ones are related to sleep poten-
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Figure 2.3: EEG activity. Adapted from [Sanei and Chambers, 2007].

tials and biological artefacts such as eye blinking, cardiac, and muscular impulses. As
the amplitude of these artefacts is significantly larger compared to regular activity,
expert knowledge is required to interpret the EEG signal. Environmental artefacts
can also be found. The most common are the 50 or 60 Hz ground frequency, intra-

venous therapy, and momentary changes in the electrode impedance [Oliveira et al.,
2016].

Abnormal transients can be divided into epileptiform and non-epileptiform ac-
tivity and focal or diffuse. A focal epileptiform activity represents fast, sharp, and

synchronous potentials in a significant number of neurons in a discrete brain re-
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gion. This activity is sometimes present in interictal periods and may indicate that
a given region predisposes to seizure-generation processes. Generalised epileptiform
discharges are synchronous and are present in the entire brain, suggesting a gener-
alised epilepsy [Owolabi et al., 2018, Medithe and Nelakuditi, 2016].

2.2.1.1 Scalp EEG

Scalp EEG, or simply EEG, is the most common brain signal as it is minimally
invasive. Each electrode records the potential difference from its region to a reference
electrode and represents a channel. Usually, electrodes are placed according to the
International 10-20 system on the scalp using a conductive gel to decrease impedance
(see Figure 2.4.a) [Wennberg, 2011, Varsavsky et al., 2011, Jurcak et al., 2007].
There are three possible montages: i) bipolar (Figure 2.4.b), where the reference
electrode is adjacent to each electrode, ii) the referential (Figure 2.4.c), where one
electrode is selected as a reference for all, and the average, that has as reference the
average potential of all electrodes. Each montage may allow a different analysis, as
the reference selection influences the results due to artefacts in different channels
[Anastasiadou et al., 2019, Varsavsky et al., 2011, Nunez and Srinivasan, 2006].
Detecting the electrical activity from specific structures within the cortex, such
as mesial temporal regions, interhemispheric frontal lobe, lobe structures, and tha-
lamus, is very difficult. In addition, low amplitude fast oscillations in the beta

and gamma bands are often contaminated by extracranial (mainly muscle) arte-

L 10%.;
- Nasion

Fp1 Fp2

B L T
.. e, A

20%

a) b) c)
Figure 2.4: Through pre-amplifiers, the EEG electrodes transform ionic current into an
electrical one, which is recorded over time. EEG 10-20 electrode placement (a), where 19
electrodes plus one for grounding are placed at 10%, 20%, 20%, 20%, 20% and 10% from inion
to nasion along its length. Recently, the international placement systems have renamed four
electrodes: T3 to T7, T4 to T8, T5 to P7 and T6 to P8. Letters correspond to the brain lobe
where the electrode is placed (F: frontal, T: temporal, P: parietal or posterior temporal, O:
occipital, and A: auricular). The numbers assigned to electrodes increase with the distance
to the midline. The left and right sides are indicated by odd and even numbers, respectively.
The electrodes in the midline are identified with the suffix ”z”. Regarding montages, it is
possible to see a bipolar (b) and a referential one (c). Adapted from [Varsavsky et al., 2011].
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facts, as these tend to be less synchronous over large cortex regions [Wennberg,
2011, Varsavsky et al., 2011].

Concerning ambulatory conditions [Biondi et al., 2022], there are already several
acquisition systems using scalp EEG that try to provide higher patient comfort, such
as flexible printed electrodes around the ear [Debener et al., 2015] or using a limited
number of electrodes in the head [Zhang et al., 2022, Nasseri et al., 2020].

2.2.1.2 iEEG

EEG can also be recorded invasively, which is particularly useful to determine the
focus hemisphere in TLE or in frontal lobe epilepsy, where the spread of abnor-
mal discharges from one frontal lobe to the other occurs rapidly. Invasive EEG is
performed using i) intracranial electrodes that record information directly from the
brain or ii) subscalp electrodes, which are subcutaneously implanted between the
scalp and the bone [Duun-Henriksen et al., 2020] (see Figure 2.5).

There are three types of intracranial electrodes: subdural strips, subdural grids,
and depth electrodes. These are useful to study seizure onset and propagation, where
they can be used independently or in combination. Subdural electrodes (grids and
strips) require a craniotomy, which is the surgical removal of part of the bone from
the skull to expose the brain, to be placed over the cortex surface and, therefore,
allow the recording of the Electrocorticographic (ECoG).

With depth electrodes, one can record the brain activity from deeper brain
structures, such as the hippocampus, amygdala, orbitofrontal and medial occip-
ital regions. These are implanted through stereotactic surgery, a form of surgical
intervention that uses a three-dimensional coordinate system to locate a small target
inside the body [Osorio et al., 2016, Jayakar et al., 2016, Spencer et al., 2015]. This
signal acquisition is named as Stereoelectroencephalography (SEEG). Since these
methods are invasive, the associated risks are higher, where the two major ones are
haemorrhage (prevalence rate of 4% per electrode) and infection (infection rate of
3%) [Taussig et al., 2015, Noachtar and Rémi, 2009).

Subdural electrodes
(craniotomy implantation)

Depth electrodes
(stereotactic implantation) //

a) b) c) d)
Figure 2.5: Several invasive EEG electrodes: examples of electrode placement for subdural
and depth electrodes (a), a subdural electrode grid (b) and a strip one (c¢), and subscalp
electrodes (d). Adapted from [Duun-Henriksen et al., 2020, Grande et al., 2020, Health,
2017).
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When comparing intracranial to scalp EEG, the signal-to-noise ratio of the for-
mer is higher as the number of intermediate layers between the neural tissue and
electrodes is reduced. This difference is reflected in the number of muscle artefacts
which is reduced when using iEEG. However, it may be more difficult and not ethi-
cal to place intracranial electrodes in a broader brain region than strictly necessary.
Thus, despite presenting a higher spatial resolution than the scalp EEG, iEEG may
not capture large-scale synchrony as the case of alpha-band activity [Noachtar and
Rémi, 2009, Spencer et al., 2015].

Subscalp electrodes comprise a new generation of electrodes as these have the
potential to advance treatment, diagnosis, and management of epilepsy for long
periods with lesser associated risks. These are implanted subcutaneously via mini-
mally invasive surgery. The subscalp placement removes the need for electrode care,
avoids skin abrasions, and secures a stable and low-impedance recording. Compared
to standard scalp EEG, subscalp EEG has a reduced spatial resolution, which an
result in lower sensitivity for focal abnormalities [Duun-Henriksen et al., 2020, Weis-
dorf et al., 2019].

2.3 Treatment and therapeutics

The first line of treatment for patients with epilepsy is the administration of AEDs.
When medication fails in achieving seizure freedom, other options are possible, such
as resective surgery, neurostimulation, dietary therapies, and warning devices. These
are essential as patients’ continuous exposure to seizures can significantly reduce
their quality of life. Patients with uncontrolled seizures tend to present neurologic
impairment, namely memory loss, anxiety, and depression [Engel, 2016]. Addition-
ally, due to the unpredictability of seizures, patients might suffer severe injuries
related to falls and loss of consciousness, which reinforces social stigma [Devinsky
et al., 2018, Laxer et al., 2014].

2.3.1 Antiepileptic drugs and drug-resistant epilepsy

AEDs’ goal is to change the balance between excitation and inhibition that charac-
terises epilepsy, which results from hyper excitatory or hypersynchronous neuronal
activity. Currently, about 30 AEDs attempt to control seizures by dampening ex-
citatory mechanisms, modulating voltage-gated ion channels, or boosting inhibitory
mechanisms [Wang and Chen, 2019].

Currently, medication is not effective for about one-third of patients. When drug
administration is unsuccessful, patients are diagnosed with Drug-Resistant Epilepsy
(DRE). In Box 4, one can see the formal diagnostic criteria, defined by the ILAE. It is
important to note that seizure freedom consists in ceasing all types of seizures for one

year or three times the interseizure interval observed before treatment [Kwan et al.,
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2010]. Although new AEDs have been developed over the years, the proportion of
patients with DRE remained similar. The side effects provoked by medication have
decreased [Wang and Chen, 2019, Engel, 2016].

Most patients with DRE are not referred to epilepsy centres where a multidisci-
plinary team could evaluate them. For instance, less than 1% of patients are referred
to an epilepsy centre in the United States of America. Furthermore, for those who
are, there is an average gap of 20 years between seizures’ onset and referral date,
which increases the probability of irreversible damage. It is worth stressing that
the mortality rate for DRE is 5-10 times higher than the one of the general popula-
tion [Engel, 2016].

Box 4 - Diagnostic criteria for DRE (as defined by the Task Force of the
ILAE in 2010 [Kwan et al., 2010]).

“Drug-resistant epilepsy may be defined as failure of adequate trials of two toler-
ated and appropriately chosen and used antiepileptic drugs schedules (whether as

monotherapies or in combination) to achieve sustained seizure freedom.”

2.3.2 Surgery

When medication fails, resective surgery may be the option for achieving seizure
control. Surgery is the most effective way to control seizures in drug-resistant focal
epilepsies by resecting the portion of the brain responsible for generating seizures,
also known as the epileptogenic zone. Not all patients may undergo this surgery. Its
success depends on identifying the epileptogenic zone, which must be limited to a
small area. In order to evaluate the possibility of performing the resective surgery,
patients undergo presurgical monitoring [Engel Jr, 2018, Engel Jr, 2015, Ryvlin et al.,
2014].

During presurgical monitoring, patients are submitted to AEDs withdrawal and
sleep deprivation to increase seizure occurrence and to reduce the hospital stay du-
ration [Devinsky et al., 2018, Engel Jr, 2018], where clinicians expect to observe
seizures with the same onset characteristics. Nevertheless, there may be some draw-
backs since AEDs tapering may trigger generalised tonic-clonic seizures in patients
that previously did not experience seizures of this type. It also may increase the risk
of having seizure clusters that lead to severe damage. Due to this, sleep depriva-
tion and medication are introduced with care and using established protocols [Kirby
et al., 2020, Rathore and Radhakrishnan, 2015].

In order to localise and delineate the epileptogenic zone, clinicians use a mul-
timodal approach: long-term video-EEG, structural Magnetic Resonance Imaging
(MRI), and a neuropsychological evaluation. With this information, patients un-
dergo resective surgery if: i) the different approaches present coherent findings, ii)

there is a well-defined epileptic region, and iii) there is a reasonable risk-benefit
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ratio [Engel Jr, 2018, Rathore and Radhakrishnan, 2015]. Figure 2.6 depicts this

process.

When this process fails to identify or delineate the epileptogenic region, other
signals can be acquired, such as Magnetic Source Imaging (MSI), functional MRI,
Single-Photon Emission Computed Tomography (SPECT), and Positron Emission
Tomography (PET). With these, clinicians verify if there is a chance of generating a
testable hypothesis regarding the epileptogenic zone. In a positive case, the patient
will undergo intracranial EEG acquisition, cortical stimulation, and mapping. If the
epileptogenic zone can be localised and resected, the patient will undergo surgery
[Rathore and Radhakrishnan, 2015].
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Establish drug-resistance
Rule out pseudo-resistance
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Counsel for surgical treatment
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Figure 2.6: Flow chart depicting the usual process of presurgical evaluation and selection
for surgery. Blue boxes are common processes for all patients. Green represents the best case
scenario, yellow the intermediate scenario, and orange the worst one. Adapted from [Rathore
and Radhakrishnan, 2015].
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After surgery, in patients with TLE, the seizure-free rate within 10 years varies
among studies [Ryvlin et al., 2014], from 49% [De Tisi et al., 2011] to 83% [Murphy
et al., 2010] of patients achieving seizure-freedom. Advances in neuroimaging tech-
niques lead to an improvement in this treatment option. The eligibility criteria have
widened, and surgery is now available for more patients. It is also important to note
that many patients decline presurgical monitoring. These refusals may be due to
misconceptions and fears both from clinicians and patients [Engel Jr, 2018, Ryvlin
et al., 2014].

2.3.3 Neurostimulation

Neurostimulation can be offered after confirming a patient’s ineligibility to undergo
resective surgery. It consists in implanting a device that delivers electrical pulses to
peripheral nerves or specific brain areas of the central nervous systems to prevent
potential seizures. This option is palliative as only a reduced portion of patients
become seizure-free for more than one year [Ryvlin et al., 2021, Rincon et al., 2021,
Bigelow and Kouzani, 2019, Boon et al., 2018, Krishna et al., 2016].

Current neurostimulation techniques can be divided into invasive and noninva-
sive, depending on the need to perform surgery for implantation. They can also
be categorised into open and closed-loop when a scheduled or responsive interven-
tion is considered, respectively. Invasive strategies are the most used, and include
Vagus Nerve Stimulation (VNS), Deep Brain Stimulation (DBS), and Responsive
Neurostimulation System (RNS). Noninvasive options concern transcutaneous vagus
nerve stimulation, trigeminal nerve stimulation, and transcranial magnetic stimula-
tion [Ryvlin et al., 2021, Rincon et al., 2021, Bigelow and Kouzani, 2019, Boon et al.,
2018]. However, these are not clinically validated. To better understand how VNS,
DBS, and RNS strategies work, see Figure 2.7, which provides an intuitive vision
of the neurostimulation brain targets and primary anatomical pathways, and Table
2.1, which presents a comparison between the three solutions.

VNS was the first approved neuromodulation therapy. It started as an open-
loop strategy, stimulating the left vagus nerve within a defined rhythm, typically 30
seconds every 5 minutes. Now, it works as a closed-loop system that delivers stimulus
upon predefined heart rate change patterns, believed to trigger a seizure generation
process [Ryvlin et al., 2021]. VNS procedure is extracranial; therefore, its surgery
is less risky, with tolerable side effects. Also, it is possible to use a specific magnet
to either stop the device or deliver a single stimulation [Ryvlin et al., 2021, Ryvlin
et al., 2014, Laxer et al., 2014].

DBS delivers a scheduled stimulus of one minute every five minutes to the An-
terior Nucleus of the Thalamus (ANT), assumed to contribute to seizure generation
significantly. Compared to VNS, its procedure involves more risks as it requires

brain surgery to place intracranial electrodes and chest surgery to insert a pulse
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Figure 2.7: Approved neurostimulation therapies for DRE, also showing the brain targets
for each neuromodulation approach according to sites of stimulation and known primary
anatomical pathways. Source: [Ryvlin et al., 2021].

generator [Rincon et al., 2021, Laxer et al., 2014]. Although exact action mecha-
nisms are not fully known, high-frequency stimulation can regulate abnormal brain

impulses and disrupt epileptic networks [Rincon et al., 2021, Bigelow and Kouzani,

2019, Markert and Fisher, 2019].

Table 2.1:

Approved neuromodulation therapies for epilepsy with implantable devices

[Ryvlin et al., 2021, Bigelow and Kouzani, 2019, Schulze-Bonhage, 2019].

VNS ANT-DBS RNS
Tarcet Left vagus nerve Anterior nucleus Ictal onset zone
& vagus nerv of the thalamus (cortex)

Stimulation type

Data collected

Age
Type of seizures
Epileptogenic focus or foci
Short-term infection rate

Long-term infection rate

Material dysfunction

Other frequent adverse
events during first year

50% responder rate at
1 year
Seizure free at 2 years
of follow up

Open-loop; or
heart rate responsive
closed-loop; or
on demand
Therapy activations;
prone position; heart rate
Children> 4 years
and adults
Focal and generalised
Non-localisable,
multifocal, or not
resectable
1% at 3 months
Not available

1%

29% hoarseness;
12% paraesthesia;
8% shortness of breath;
8% cough
37%

0%

Open-loop

Local field potentials via
live streaming in clinic

Adults

Focal
Bitemporal,
multifocal, or
non-localisable
Not available
13% at 10 years

8% lead replacement

18% paraesthesia;
11% implant site pain;
15% depression;
13% memory complaints;
4% headache

43%

13%

Ictal intracerebral
EEG responsive
closed loop

Seizure frequency;
EEG ictal discharge

Adults
Focal

Bitemporal or
eloquent focus

3% at 3 months
12% at 9 years
5% lead damage
or revision
9% dysesthesia or
paraesthesia; 16% implant
site pain; 3% depression;
4% memory complaints;
11% headache

44%

9%
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RNS is a closed-loop system that stimulates the cortex directly in up to two
epileptogenic regions. It is necessary to implant a neurostimulator along with depth
electrodes or cortical strip leads, able to read EEG to detect seizure generation
activity patterns through a threshold-based model. EEG features capture changes
in amplitude, frequency, and rhythmicity [Ryvlin et al., 2021, Laxer et al., 2014, Sun
and Morrell, 2014].

Although Table 2.1 presents a comparison between VNS, ANT-DBS, and RNS,
there are no studies that compare these techniques directly in a randomised form.
Several parameters may significantly difficult the comparison of strategies, as in the
case of trial design, stimulation parameters, and medication. Despite there may
be a lack of consensus across epilepsy centres on which strategy to adopt and how
[Ryvlin et al., 2021, Rincon et al., 2021, Markert and Fisher, 2019, Schulze-Bonhage,
2019, Boon et al., 2018], the literature suggests a higher performance in ANT-DBS
and RNS when compared to VNS. The VNS is the most available treatment as
it is considerably less invasive and thus provides the most favourable risk/benefit
ratio [Ryvlin et al., 2021, Laxer et al., 2014].

The responder rate is a common measure of epilepsy therapy efficacy, defined as
the percentage of patients achieving >50% reduction in seizure frequency during a
specified period. At one year, a responder rate of 37%, 43% and 44% were reported
for VNS, ANT-DBS, and RNS, respectively. Other efficacy values can be found
in the literature, and a substantial part may present a high risk of bias [Ryvlin
et al., 2021]. In addition to the presented risks and adverse events presented in
Table 2.1, all these options need a battery replacement, resulting in frequent clinical
appointments to adjust parameters [Ryvlin et al., 2021]. Several concerns have also
arisen in the closed-loop response of the RNS system [Sun and Morrell, 2014], as
there are reports of an overresponsive behaviour where the majority of interventions
may be unnecessary. It may be possible that the overresponsiveness of VNS and
RNS may arise from frequent stimulation that drives long-term neuromodulation
rather than from detecting pre-seizure activity [Schulze-Bonhage, 2019, Markert and
Fisher, 2019].

2.3.4 Rescue medication

Rescue medication also plays a vital role in epilepsy as it may: i) provide seizure
freedom when combined with AEDs; ii) reduce the continuous intake dose of AEDs
and, therefore, reduce its long-term side effects; and iii) stop seizure clusters and
prolonged seizures [Beniczky et al., 2021,Baud et al., 2020, Gainza-Lein et al., 2017].
The drugs used as rescue medication for epilepsy are benzodiazepines due to their
rapid effect. These should be used as an acute treatment due to their long-term
adverse secondary effects, strong addiction, and habituation [Riss et al., 2008].

Diazepam rectal gel was the first and only benzodiazepine approved by the Food
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and Drug Administration (FDA), for several years, as a rescue medication for sei-
zure cluster treatment outside the hospital, mainly for children’s use. Currently,
intranasal and buccal routes have been developed since they are more accessible
and, thus, less invasive. Midazolam nasal spray is used in patients older than 11
years, and diazepam nasal spray for patients older than six. In Europe, Buccal mida-
zolam was approved for treating prolonged seizures in children and teenagers [Cloyd
et al., 2021, Bouw et al., 2021]. Table 2.2 shows the different options for emergency

medication, along with its route, peak effect level, and time to take effect.

2.3.5 Warning devices

Intervention devices have been explored for epilepsy management, particularly for
seizure detection. The ability to continuously monitor a biosignal and to swiftly
detect/predict a seizure, followed by raising an alarm, may provide the patient or
caregiver enough time to minimise seizure consequences or to allow the intake of
rescue medication [Beniczky et al., 2021, Nasseri et al., 2020]. These are designed
to integrate algorithms that analyse long-term signals and generate alarms while
excluding data segments containing artefacts. Several new EEG acquisition systems
are now available including UNEEG SubQ, EpiMinder Subscalp, and Byteflies Sen-
sor Dots [Baud et al., 2022]. Besides the EEG signal, researchers also consider other
noninvasive signals due to patient comfort, such as accelerometry, electrodermal
activity, photoplethysmography, electromyography, body temperature, and electro-
cardiography [Nasseri et al., 2020, Gadhoumi et al., 2016b, Ramgopal et al., 2014].
This is now possible due to devices [Brinkmann et al., 2022] such as Empatica E4,
Fitbit Charge HR, and Fitbit Inspire, for example.

The NeuroVista Seizure Advisory System [Cook et al., 2013] is one of the most
relevant warning devices (NCT01043406) developed for seizure prediction. A phase I
clinical trial was performed on 15 patients with medically refractory epilepsy for two

years. This system used intracranial electrodes that recorded the EEG to monitor

Table 2.2: Rescue medication options approved for treatment outside the hospital [Cloyd
et al., 2021,Bouw et al., 2021, Wolf et al., 2012,Boddu and Kumari, 2020, Boddu and Kumari,
2020].

Time to take
Drug Route offect Peak level Approval
FDA in 1997
for seizure clusters

European Union in 2011

Diazepam Rectal 5-10 minutes 10-45 minutes

Midazolam Buccal <5 minutes 20-30 minutes . .
for prolonged seizures in non-adults
FDA in 2019
Midazolam Intranasal <10 minutes  15-120 minutes for seizure clusters in patients
older than 11 years
FDA in 2020
Diazepam Intranasal <5 minutes >60 minutes for seizure clusters in patients

older than 5 years
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the brain continuously and gave the patients a likelihood of seizure occurrence.
The advisory system comprises three main components: leads of electrodes, an
implantable telemetry unit, and the personal advisory pad. The leads were placed
according to the patients’ epileptogenic zone. Then, they were tunnelled down
the neck to the telemetry unit and implanted in the chest. This telemetry unit
transmitted wireless information to the pad like a pager.

This study was the first to demonstrate a real possibility for prospective seizure
prediction using ambulatory EEG data. Firstly, there was a model training phase,
where only the best-performing patients continued to the advisory phase. Periodic
retraining was found necessary over time to maintain or improve performance. The
patients’ response to the advisory system was not homogeneous, which could be
explained by the high variability of seizure warning times. Patients with the lowest
proportions of time in high seizure likelihood claimed to be satisfied and benefited
from it. Another interesting finding of this study was that the seizure events reported
by patients significantly differed from the ones captured by the EEG, which may
raise doubts concerning the use of patient diaries as a gold standard for evaluating
the success of any therapeutic procedure in epilepsy [Gadhoumi et al., 2016b].

Lastly and very importantly, the advisory system used Machine Learning (ML)
models that were not entirely transparent and, thus, black boxes. The fact that the
authors have used black-box models in the clinical trial is a critical topic that this

thesis will deeply address in chapter 4.

2.4 Seizure Prediction

Seizure prediction is the focus of this thesis. This scientific area aims to build a
tool to read online data and timely inform the patient about an upcoming seizure
occurring on a well-defined future time window after a specific horizon [Assi et al.,
2017, Osorio et al., 2016, Gadhoumi et al., 2016a, Mormann et al., 2007].

It is possible to divide the EEG from a patient with epilepsy in different periods
in time, as seen in Figure 2.8: a preictal period, which precedes the seizure; the ictal
period corresponding to the seizure; the postictal period, which follows the seizure;
and finally, the interictal period, found in between the postictal and the preictal of
consecutive seizures.

In seizure prediction, it is vital to differentiate the interictal period from the
preictal one, which relies on correctly identifying seizure biomarkers that capture
the transition from a seizure-free state to a seizure. The preictal period is the most
challenging interval to annotate as there is no recurrent pattern, which concerns the
primary difficulty in seizure prediction. It is associated with significant heterogeneity
from patient to patient and from seizure to seizure. For this reason, patient-specific
models have proven to be more successful than general models [Kuhlmann et al.,
2018b, Freestone et al., 2017, Mormann et al., 2007].
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Figure 2.8: Example of an EEG signal where it is possible to visualise the different brain
states (interictal, preictal, ictal, and postictal) concerning a seizure. Source: [Cui et al.,
2018].

2.4.1 Seizure onset

It is fundamental to obtain, along with the EEG, annotations of the seizures’ onset.
In presurgical monitoring conditions, these are obtained with video-EEG. There are
two onsets: i) the EEG onset, which concerns the moment where significant changes
in the EEG are observed; and ii) the clinical onset, which concerns the appearance
of the first symptoms, derived from the neurophysiological alterations. Prediction
algorithms usually consider the EEG onset, as these models are based on the EEG
signal. The clinical onset may not always be identified [Osorio et al., 2016, Varsavsky
et al., 2011, Mormann et al., 2007].

2.4.2 Lead seizure

Authors need to analyse a considerable number seizures to obtain confidence in the
prediction results. It is also necessary to handle seizure clusters, as the prediction
models are developed by considering seizures as independent events. Authors usually
only try to predict the first seizure of a seizure cluster, called a lead seizure [Chen and
Cherkassky, 2020]. As there is no consensus regarding the seizure cluster definition,
authors tend to choose a minimum seizure-free interval to claim that the further
seizure is an independent event. The selection of this interval usually concerns
the need for having a reasonable number of seizures. Studies have considered lead
seizures as consecutive seizures separated by, at least, 1 hour [Stirling et al., 2021b],
1.5 hours [Alvarado-Rojas et al., 2014}, 2 hours [Meisel et al., 2020, Meisel and Bailey,
2019], 4 hours [Nasseri et al., 2021], 4.5 hours [Lopes et al., 2021], 5 hours [Karoly
et al., 2017], and 8 hours [Cook et al., 2013].
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2.4.3 Detection vs prediction

A similar research field is seizure detection, where authors may attempt to inform
about the occurrence of a seizure in the very last moments of preceding the seizure (in
the order of seconds), which still allows a swift intervention, such as neurostimulation
triggered through closed-loop systems. Seizure prediction, however, offers a more
extended period for preparing for the seizure and minimising consequences (from
minutes to hours). Authors also use seizure detection for other applications as it
has proven helpful in identifying the seizure focus and performing a semi-automatic
inspection of seizures’ EEG-onset under clinicians’ supervision [Bialer et al., 2017,
Ramgopal et al., 2014, Mormann et al., 2007].

2.4.4 Forecasting vs prediction

Seizure forecasting is a parallel area that gained significant interest. When com-
pared to seizure prediction, it shifts away from whether a seizure occurs or not
(preictal state) to identify periods of a high probability of seizure occurrence (proic-
tal state) [Baud et al., 2020, Dumanis et al., 2017]. In other words, while prediction
develops classifiers capable of distinguishing interictal/preictal chunks of EEG data
over time, forecasting relates to a probabilistic view, where a momentary seizure risk
can be assessed by tracking cycles related to EEG activity. These cycles may con-
cern probing cortical excitability [Dell et al., 2019] or interictal epileptiform activity
(epileptic spikes, high-frequency oscillations, or rhythmic bursts of high-amplitude
oscillations) [Proix et al., 2021, Maturana et al., 2020, Baud et al., 2018].

One of the significant limitations of prediction and other EEG epilepsy-related
research area is its focus on fast aspects ast aspects of the EEG time series at the
expense of a poor understanding of slow variable keys that might also explain a
transition to an ictal state. It is worth noting that this tendency might be explained
by the excellent temporal resolution of the EEG signal. Thus, besides the paradigm
change to a proictal state, forecasting also shifts its time horizon from minutes to
days. Although Concept Drift (CD) may influence prediction success, they may play
a more prominent role in forecasting since the proictal state might be forecasted on a
scale of hours to days by tracking multiday and circadian cycles while accounting for
seizure frequency and sleep dynamics [Proix et al., 2021, Maturana et al., 2020, Baud
et al., 2018]. CDs are deepened in Background section 2.5 and in the State of the

art section 3.2.

2.4.5 Seizure prediction characteristic

In the early 2000s, several methodologies had already been proposed for EEG sei-
zure prediction, but proper evaluation and comparison were hard as no recognised
criteria existed. It was also challenging to assess whether the performance of an

algorithm was sufficient for clinical application. Summarily, a prediction method
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analyses chronological windows of EEG, where it timely raises alarms that allow an

intervention.

Based on this, [Winterhalder et al., 2003] proposed in 2003 the seizure prediction
characteristic, which is a framework to evaluate seizure prediction methods based
on clinical, behavioural, and statistical considerations. The evaluation was based
on two metrics adapted to an alarm system: seizure sensitivity and False Prediction
Rate per hour (FPR/h). Furthermore, it also accounts for other two concepts:
Seizure Prediction Horizon (SPH) and Seizure Occurrence Period (SOP). SPH is
the time interval that a prediction tool guarantees for the patient to prepare for the
forthcoming seizure, constituting a zero probability of seizure occurrence. In other
words, it corresponds to the period between the fired alarm and the beginning of
SOP. It is also known as Intervention Time (IT). SOP is the period where a seizure
is expected to occur. Thus, an alarm is considered correct (a true positive) when
the seizure occurs during the SOP period. Suppose an alarm is fired and no seizure
occurs within the considered SOP. In that case, the alarm is considered false (a false

positive) (see Figure 2.9 for an example).

The SOPs found in the literature range from minutes to hours [Mormann et al.,
2007], which constitutes a sensitive matter as it can significantly impact the perfor-
mance of the algorithms in the patient’s life and, naturally, in the chosen interven-
tion. If the used SOP is tremendously long, it may not be helpful. For instance,
when simply envisioning a warning system, a SOP of eight hours may be useless if
a given patient has three seizures per day, as the used algorithm will not techni-
cally make any prediction despite accurately anticipating all seizures. Furthermore,
adjusting the parameters of a prediction methodology may be arduous, as higher
sensitivity values may increase the FPR/h. The selection of acceptable parameters
must consider all factors simultaneously. Too many false alarms may lead a patient
to ignore the warning system or lead to side effects of unnecessary interventions and,

consequently, worsen a helplessness situation [Mormann et al., 2007].

Due to this, the increase of sensitivity is questionable at the expense of a high

FPR/h. The same problem happens with SPH and SOP as large intervals may lead

Seizure onset
Model output

Alarm Threshold

»

Time

Figure 2.9: An example of a true alarm in a seizure prediction methodology, while pre-
senting the SPH and SOP concepts. Adapted from [Winterhalder et al., 2003].
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to psychological stress and anxiety. In contrast, the SPH must provide enough time
for intervention and to self-prepare to minimise the consequences of a seizure [Schel-
ter et al., 2007, Mormann et al., 2007, Winterhalder et al., 2003]. Summarily, to
allow intervention, a proper prediction methodology must be associated with rea-
sonable SOP and SPH periods. These systems must predict the majority of seizures
to provide confidence to the patient and present a low value of false predictions to

minimise the effects of too many unnecessary interventions.

2.4.5.1 Performance assessment

Based on the seizure prediction characteristics, two fundamental metrics arise from
the standard machine learning sensitivity and specificity measures. If seizure predic-
tion would be a classic machine learning problem, the binary classification of interic-
tal/preictal samples would be evaluated by accessing sample sensitivity (SSsampie in
Equation 2.1) and sample specificity (SPsgmpie in Equation 2.2), as shown in Figure
2.10. Despite these may not truly access the evaluation of an alarm system, many
authors use them, along with Receiver Operating Characteristic (ROC) curve, to
solely demonstrate the discriminative potential of developed classifiers to classify
independent segments of EEG data [Kuhlmann et al., 2018b, Mormann et al., 2007].

TP

SSsample = TP+ FN’ (2.1)
TN

SPsample = TN + Fp’ (22)

Seizure sensitivity and FPR/h are adjusted to the context of an alarm system
in a time-series signal. Intuitively, one could envision the preictal period as the
interval where the anticipating method must raise the alarm. If it triggers an alarm
during the interictal period or the SPH period, it is a false alarm [Gadhoumi et al.,
2016b, Winterhalder et al., 2003].
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Figure 2.10: Confusion matrix for assessing sample seizure prediction.



30 CHAPTER 2. BACKGROUND CONCEPTS

Seizure sensitivity (SS in Equation 2.3) is obtained through the ratio between
the number of true alarms and total analysed seizures. The FPR/h (Equation 2.4)
is calculated by the number of false alarms divided by the period during which the
model can raise a false alarm (Ajpterictar), namely the interictal period [Winterhalder
et al., 2003]. Since each triggered alarm has associated a given SPH and a SOP, no
further alarms can be raised during that period. This period is named as refractory
period (Aspr + Asop), and needs to be discarded from the FPR/h denominator.
This operation also helps to compare models from different methodologies as not
all authors use refractory periods in their systems [Mormann et al., 2007]. Figure
2.11 illustrates how these metrics are calculated. Additionally, it is important to
note that the FPR/h metric might be particularly useful as it concerns a specificity-
related measure that allows the clinician to understand/or study what might be
the patient complacency toward false interventions. For example, when developing
a warning system, a high rate of false alarms may lead the patient to increased
anxiety levels and, inevitably, to lose confidence in the device [Schulze-Bonhage
et al., 2010, Schelter et al., 2008]. In the case of a neurostimulation closed-loop
system, there may be a higher tolerance toward false alarm interventions [Sun and
Morrell, 2014]. Thus, the accepted performance values might change depending on
the intervention.

#true alarms

S8 = (2.3)

#seizures

# false alarms
Ainterictal - #false alarms(ASPH + ASOP) ‘

FPR/h = (2.4)

Ideally, the performance of a seizure prediction model would be a sensitivity of
one (all seizures predicted) and a null FPR/h (no false alarms raised). This sce-
nario has proven difficult over the years, where a trade-off between these metrics
has been reported. Again, for the specific case of a warning in presurgical moni-
toring, [Winterhalder et al., 2003] proposed a maximum FPR/h of 0.15, according
to patients’ mean seizure occurrence rate in these conditions (3.6 seizures per day).
As patients with DRE during regular daily life have a mean seizure rate of three
per month, one can compute a maximum FPR/h of 0.0042. Again concerning a
warning system, most patients claimed the need for a minimum of a 0.90 sensitivity

performance [Schulze-Bonhage et al., 2010].

2.4.5.2 Statistical validation

Another critical aspect of seizure prediction is statistical validation: a developed
model must overperform, with statistical significance, a predictor based on chance-
level [Assi et al., 2017, Mormann et al., 2007]. The two most widely used approaches
concern unspecific predictors [Schelter et al., 2008, Winterhalder et al., 2003], and
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Figure 2.11: Example of the obtained seizure prediction characteristic performances, where
alarms are triggered whenever a model output crosses a defined threshold. Three perfor-
mances are presented, one for each defined threshold (T3, T, and T3). This example also
demonstrates the trade-off between seizure sensitivity and FPR/h. Adapted from [Winter-

halder et al., 2003].

the surrogate analysis [Andrzejak et al., 2009, Schelter et al., 2008].

Unspecific predictors

[Winterhalder et al., 2003] proposed a method in which alarms are triggered ran-

domly without using any information from the EEG signal. Firstly, it is possible

to calculate the probability of occurring an alarm p during a small interictal time

interval I, as described by Equation (2.5):
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p=FPR/hxI. (2.5)

For a longer time interval W, the probability P of at least one alarm to occur

can be calculated with Equation (2.6):

P=1-(1-FPR/hxI) " ~1— e FPR/MW gor [ < W. (2.6)

For W = SOP, it represents the sensitivity of a random prediction method as
it constitutes the probability of at least one alarm being raised during the seizure
occurrence period. FPR/h values over 0.15 [Winterhalder et al., 2003] are not ready
for clinical application.

Later, [Schelter et al., 2008] also proposed an unspecific analytic predictor, known
as the random predictor, which is based on a homogenous Poisson process for false
predictions. At any single sampling point of a feature extracted from a time series,

the probability of raising an alarm is given by Equation (2.7):

FP
N?

where F'P is the number of false alarms, and N is the number of samples. When

Ppoiss = (27)

considering a time period with equal duration to SOP and that the product of
FPR/h with SOP is considerably smaller than one, the probability P from (2.6) of

raising at least one alarm within SOP can be approximated to Equation (2.8):

Pr1—e FPEIMW ~ FPR/h x SOP. (2.8)

The previous equation assumes that the patient is not under continuous warning.
The probability P forms the basis for a significance level that will assess if the
sensitivity, SS(FPR/h, SOP), of a prediction algorithm under test outperforms the
one from a random predictor.

Furthermore, this statistical method considers the analysis of more than one
seizure, where it also increases random prediction performance by using more elec-
trodes (d). The latter is due to the false prediction rate, which is usually not the
same for all channels. Therefore, including more channels and/or measures leads to
increased seizure prediction by chance. When using ML models, there is only one
prediction output and one FPR/h, as the correspondent methods can use multidi-
mensional inputs to obtain a single-dimension output (d=1). In this context, d >1
is used when several predictions are run simultaneously. Thus, the probability of
predicting at least k of K seizures is described in the form of an cumulative binomial

distribution, as in Equation (2.9):

d

kN :
Pbinom(kaaP):l_ Z<‘>P](1—P)K_]
J
1
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Then, the critical value to test statistical significance is calculated with Equation
(2.10):

_argmazi{ Poinom (k, K, P) > a}

o x 100%. (2.10)

In sum, the random predictor’s advantage lies in its analytic expression, which
does not require the EEG signal and is therefore computationally light. Neverthe-
less, it is based on a homogeneous Poisson process and thus, assumes a homogeneous
distribution of false alarms over time, which may not allow dealing with some sei-
zure dynamics such as seizure non-random occurrence induced by CDs or medication
withdrawal. Additionally, beating the random predictor may be significantly chal-
lenging for a low number of tested seizures, which may be a problem as seizures
are rare events and methodologies tend to be patient-specific. To better understand
the random predictor behaviour, Figure 2.12 shows the variation of its sensitivity

regarding SOP duration and number of tested seizures k.
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Figure 2.12: Example of the random predictor sensitivity behaviour, towards an increase
in the number of seizures (above) and SOP duration (below). For (above), a SOP of 40
minutes was used, and for (below) k = 10 seizures were used. In both cases, a significance
alpha of 0.05 was used.
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Surrogate analysis

Surrogate time series analysis is a strategy based on Monte Carlo simulations devel-
oped from constrained randomisations of the original seizure times, sharing specified
properties of the original data. Then, the surrogate performance is assessed and
compared with the developed method’s performance. If the developed method out-
performs the surrogate one with statistical significance, it is possible to claim that
the new method performs better than chance. Surrogate-based techniques have the
advantage of being more flexible, particularly when the assumptions made by the
random predictor are not reasonable, such as the false alarm occurrence following
a Poisson distribution [Schelter et al., 2008, Mormann et al., 2007]. When using
these strategies, it is essential to pay special attention to their implementation, as
they allow the testing of different null hypotheses [Andrzejak et al., 2009, Andrzejak
et al., 2003].

There are two major strategies: seizure-times surrogates [Andrzejak et al., 2003]
and measure-profile surrogates [Kreuz et al., 2004]. In the first, original seizure times
are replaced with random times, assuming the maintenance of the inter-seizure-
interval distribution (random permutation of inter-seizure-intervals). In the second,
original measure profiles are randomised so that no feature is related to the true
predictive power of the seizure predictor, which can be performed using the simu-
lated annealing technique. A significant drawback of this approach is its demanding
computational power [Schelter et al., 2008]. For this thesis, a surrogate time-series

analysis was the chosen strategy for statistical validation, as depicted in Figure 2.13.

2.4.5.3 Postprocessing

Since the developed classifiers are trained to make classifications on independent
EEG segments, there is a need to handle the temporal relations between each classi-
fier output. It would also be unrealistic to consider the raw output of the classifier as
a fair alarm generator: is it unlikely to classify all samples correctly, and it is very
common to encounter noise in online data, particularly during long-term record-
ings [Assi et al., 2017, Teixeira et al., 2014b]. In order to prevent these problems,
postprocessing methods are often applied, such as the Kalman filter [Park et al.,
2011, Chisci et al., 2010] and the Firing Power [Teixeira et al., 2012].

The Kalman filter underlying idea consists in the estimation of the states sy
of a linear dynamic system at instant k, where y; denotes the measured variable,
and wy and zj are zero-mean white noise vectors (Equation (2.11)). An alarm is
raised whenever the Kalman filter output is classified as a preictal sample. Also,
new alarms can only be raised when the output crosses the zero-threshold in an

ascending way [Teixeira et al., 2012].
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Figure 2.13: Example of the used seizure-times surrogate analysis. Original seizure times
and random permutation of inter-seizure intervals in such a way to maintain its seizure
occurrence frequency. Adapted from [Schelter et al., 2008].

1 T,
Sk+1 = Sk + Wy
1 . (2.11)
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The Firing Power method [Direito et al., 2017, Teixeira et al., 2014b] (see Figure
2.14) applies a moving average filter to the output of the binary classifier, where
its window size is the same as the SOP duration. In other words, the Firing Power
provides, over time, a measure of the ratio of samples classified as preictal within
a window with a duration equal to the considered preictal period. It is possible to
mathematically describe this moving average filter as shown in Equation 2.12, where

7 is the filter window, fp[n] the Firing Power output at instant n:

v e}

T

fpn] (2.12)

When O [k] = 1, the sample k was classified as preictal, while when O [k] = 0 the
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Figure 2.14: Visual representation of the Firing Power. A low-pass filter is applied to the
chronological model classifications. An alarm is raised when a certain threshold is passed,
followed by a refractory period.

was classified as interictal. fp[n] ranges from zero to one, where an alarm is raised
when its value is above a determined threshold (Equation 2.13). The higher the
threshold is, the more conservative the alarm generator will be. It is also common

to use a refractory period of SOP+SPH duration after each alarm.

alarm 1 n| > threshold,
{ f fpln) > 213

no alarm if otherwise.

Although several authors have reported using the Firing Power technique in
their studies [Direito et al., 2017, Bandarabadi et al., 2015b, Teixeira et al., 2014b],
no optimal threshold was determined. When compared with the Firing Power, the

Kalman filter produces more false positives [Assi et al., 2017, Teixeira et al., 2012].

2.5 Concept drifts

An essential aspect of EEG seizure prediction is CDs: the concept of interest may
depend on some hidden context that is not given explicitly in the form of predictive
features [Lu et al., 2018, Tsymbal et al., 2008]. Additionally, the central assumption
with CDs is that the underlying mechanisms that generate new data are unknown to
the learner and, thus, unpredictable. In the absence of such knowledge, it is desired
that the trained classifier can handle such changes in concepts over time [Hoens
et al., 2012].
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Changes in the brain dynamics due to daily-life habits, medication, stress sit-
uations, and others can induce significant changes in relevant features and data
distribution (see Figure 2.15) [Baud et al., 2020, Kuhlmann et al., 2018b, Freestone
et al.,, 2017]. As the majority of EEG databases comprise presurgical monitor-
ing data, patients suffer anti-seizure medication withdrawal and sleep deprivation,
which affects the circadian rhythm and the sleep-wake cycles. These changes are
visible when comparing the mean seizure frequency between presurgical monitor-
ing and real-life [Winterhalder et al., 2003], or when analysing the tendency to have
seizures at periods of sleep transition (going to sleep or waking up) [Kuhlmann et al.,
2018b, Freestone et al., 2017].

According to the cycle duration, rhythms can be considered circadian, ultradian,
or multidien, as seen in Box 5. Circadian rhythms consist of 24-hour cycles associated
with physiological changes, such as the sleep-wake cycle, hormonal production, body
temperature, heart rate, and blood pressure. Ultradian cycles include the non-REM-
REM, which lasts about 90 minutes. Multidien cycles can be weekly, half-weekly,
or last several weeks, where its influence on seizure prediction has been studied as
well [Khan et al., 2018, Karoly et al., 2016].

Box 5 - Definition of circadian, multidien and ultradian rhythms (from
[Khan et al., 2018]).

Circadian rhythm: “A biological rhythm is considered to be a circadian rhythm
if it meets three criteria: the rhythm should have an endogenous free-running (ap-
proximately) 24 h period, should be entrainable (i.e., be capable of phase reset by
environmental cues and synchronisation to the 24 h day), and should exhibit temper-

ature compensation.”
Multidien rhythm: “Refers to rhythms with a time period covering several days.”

Ultradian rhythm: “Refers to rhythms with periods of less than 24 h; ultradian

rhythm cycles can occur with a frequency of more than once per day.”

Sudden drift Incremental drift Gradual drift Reoccuring drift

5 -0 00 9 o -0

=]

3

2

B

2

8

a s rve -@- @

Time
Examples of CDs Permanent brain lesions Medication Medication . "
Circadian rhythm

in epilepsy Electrode degradation due to falls widthdrawal widthdrawal

Figure 2.15: Different types of CDs and their possible translation for the specific case of
epilepsy seizure prediction, including presurgical monitoring conditions. Adapted from [Lu
et al., 2018, Gama et al., 2014].
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2.5.1 Sleep-wake cycle

The sleep-wake cycle causes the most significant alteration of behavioural and phys-
iological states, as sleeping occupies about one-third of human life and is essential to
preserve physical and mental health. Sleep is a reversible physiological phenomenon
that, compared to wakefulness, reduces mobility, conscience, and responsiveness [Tri-
pathy et al., 2020, Chokroverty, 2017].

Sleep is divided into two stages: Non-Rapid Eye Movement (NREM) and Rapid
Eye Movement (REM), where the latter cyclically follows the first. Each sleep cycle
lasts from 90 to 110 minutes. Adults experience four to six cycles during normal
sleep, as in Figure 2.16. The REM stage is characterised, in the EEG, by low-
amplitude mixed-frequency signals and beta and theta rhythms. According to the
American Academy of Sleep Medicine [Rosenberg and Van Hout, 2013], the NREM
phase is divided into three substages: N1 (mainly theta and some delta frequencies
and vertex waves), N2 (K-complexes and sleep spindles), and N3 (slow-wave activity,
delta rhythms) [Berry et al., 2012, Chokroverty, 2009].

2.6 Explaining models’ decisions

With the rise of ML in real-world applications, where healthcare and epilepsy sei-
zure prediction are not exceptions, specific criteria need to be assured due to patient
safety requirements. It is necessary to develop high-performing models under rig-
orous conditions and understand them in a human-comprehensible manner. It is
possible to list four main reasons that justify the need for developing a more pro-

found comprehension of the constructed models:

1st half of the night: early sleep 2nd half of the night: late sleep

Wake

NREM
2
N

11 pm midnight lam 2am 3am 4am 5am 6am 7 am
Figure 2.16: An example of a hypnogram that shows the sleep stages in a healthy human
within eight hours of sleep. N3 is the longest stage in the early cycles while REM stage
increases in each cycle. Adapted from [Blume et al., 2015].
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e There is a significant scepticism on ML since these algorithms deal with multi-
dimensional inputs and tend to create black-box models. Although clinicians
may trust the models when making the right decisions, they may mistrust
them when they fail. No model is infallible [Kuhlmann et al., 2018b, Freestone
et al., 2017].

e Seizure prediction requires multidisciplinary efforts, where effective communi-
cation is necessary between clinicians, researchers, and patients. The clinician
must be aware of the models’ limitations to make the best decision for the
patient. The patient also needs to feel safe as these interventions may increase
existing anxiety and fear [Molnar, 2019, Goodman and Flaxman, 2017, Doshi-
Velez and Kim, 2017].

e As the EEG is a complex signal, not easy to understand, and optimal pre-
seizure biomarkers remain unknown, ML may identify patterns that in long-
term data are not perceptible by humans. These need to be explained to
clinicians [Chiang et al., 2022, Freestone et al., 2017].

e There is a need for further understanding due to incompleteness in problem
formalisation. In specific problems, such as seizure prediction, it is desired not
only to predict seizures but also to understand why. A correct prediction may
partially solve the original problem, as it is desired to have a more profound
knowledge of the brain to help develop better AEDs and improve other neuro-
modulation techniques [Molnar, 2019, Miller et al., 2017, Doshi-Velez and Kim,

2017], for instance.

In fact, current legislation already demonstrates the need to guarantee the users’
safety, as demonstrated by the article 22 (see Box 6) of the General Data Protection
Regulation (GDPR), known as Right to an explanation [Goodman and Flaxman,
2017]. This article elevates the importance of algorithm explainability for high-risk
decisions based on personal data. It emphasises the need for providing patients with
the right to have an explanation for any algorithm decision and gives them the right

to question those decisions.

Box 6 - The article 22 of the GDPR [Goodman and Flaxman, 2017].

“The data subject shall have the right not to be subject to a decision based solely on
automated processing, including profiling, which produces legal effects concerning him

or her or similarly significantly affects him or her.”

Additionally, understanding models’ decisions also help to guarantee critical cri-
teria concerning ML use in real-life: i) fairness, the reassurance that there is no dis-
crimination associated with the predictions towards protected groups; ii) robustness,

the ability to maintain the same performance levels when submitted to variations of
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the input or parameters; and iii) causality, that the model prediction perturbations

will also be observed in the real-world system [Doshi-Velez and Kim, 2017].

2.6.1 Interpretability and explainability

In the last years, despite a new scientific area known as interpretability or explain-
ability has emerged, the need for further understanding ML models is not exactly
new. It has always been present to some extent. Over the years, many efforts
have been made to provide simple models with few intuitive features, particularly
sparse linear and logistic regression models and low-depth decision trees [Siddiqui
et al., 2020,Mohseni et al., 2006], as these enable accessible communication between
researchers and clinicians.

With the advent of big data and the exponential increase of computational power
over the years, more complex models have more potential to lead to better perfor-
mances. The area of ML interpretability /explainability arose due to a need for
retrieving knowledge of such models [Molnar, 2019, Alkan et al., 2005]. It is impor-
tant to evidence the distinction between the terms interpretability and explainabil-
ity [Gleaves et al., 2020, Gilpin et al., 2018]. Although they may appear synonyms,
these have evolved to consider different aspects.

Interpretability concerns a system’s ability to show its logic so that a human
can predict a future output by only analysing the input. In other words, it offers
the simplicity of understanding the model intrinsically so that it is effortless for a
human to know the result of a new prediction. Algorithms like k-Nearest Neighbours
(kNN), logistic regression, and low-depth decision trees are considered to develop
interpretable models. While simple models might lose essential relations, resulting
in unsatisfactory performance values, increasing the number of features may increase
complexity and consequent loss of interpretability [Molnar, 2019, Gilpin et al., 2018,
Kim et al., 2016].

Explainability concerns the ability of a model to explain its reasoning and be-
haviour in human terms, where it is not necessary to comprehend the underlying
mechanisms of the model [Gleaves et al., 2020, Molnar, 2019, Gilpin et al., 2018]. Ex-
plainability techniques emphasise understanding a single or set of decisions and not
how the model operates intrinsically. Despite one can explain a model’s decision by
simply providing an interpretable model, it is possible to provide explanations with
non-interpretable models. Achieving interpretability is a way to ensure explainabil-

ity, but not the only one.

2.6.2 What is an explanation

The necessary explanations might differ from problem to problem, where in several
cases interpretability is still required [Gilpin et al., 2018]. When exploring explana-

tions for a given problem, the following question is vital: is explainability enough
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to ensure applicability in a clinical environment, or is it also required to obtain
interpretability? Typically, interpretability is required when medical knowledge is
advanced and already performs at a satisfactory level. In those cases, clinicians can
more easily ensure patient safety. Explainability is fundamental when dealing with
complex underlying knowledge, where humans may not detect such patterns. In
these cases, it may be required a model with a complex internal structure [Miller,
2019, Gilpin et al., 2018].

The discussion on the definition of an explanation might be tricky and complex,
entering the field of philosophy and linguistics where an explanation can be an
exchange of beliefs [Molnar, 2019, Miller, 2019, Miller et al., 2017]. In this thesis, an
explanation answers a "why question”: why did the model behave in such a way? A
good explanation is when one can no longer keep asking why [Molnar, 2019, Gilpin
et al., 2018, Miller et al., 2017].

2.6.3 Taxonomy

Methods for explainability can be classified according to several criteria (see Figure
2.17): i) post-hoc or intrinsic, ii) their interpretation results, iii) model-specific or
model-agnostic, and iv) local or global [Molnar, 2019].

Intrinsic/post-hoc classification concerns the analysis of developed models. While
intrinsic explanations directly analyse the developed models, post-hoc strategies ap-
ply other methods to analyse the model after training.

The most common form of classifying explainability methods is according to their
interpretation results. According to these criteria, it is likely to find explainability

methods grouped in the following form:

o Feature summary statistics and visualisation: depend on the developed clas-
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the model after training and their visualisation methods that solely sample or a small set o
interpret determined neighbouring ones
N o models
N e —)
Intrinsic interpretable Model internals ) Global when explaining
methods concern simple Model-agnostic tools can the entire model
models: short decision be used for any model and behaviour
trees, few decision rules, (" Data points includes all ) are applied post-hoc . J
and sparse linear models methods that return data

points, either existent or
created, to provide
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Figure 2.17: The taxonomy of explainability methods. These can be categorised according
to different criteria: intrinsic or post-hoc, the interpretation of results, model-specific and
agnostic, and their explanation range.
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sification model. Examples of summary statistics can be feature importance
or feature interaction values [Inglis et al., 2022]. Some of these can also be
visualised, where presenting them in a table might not be intuitive. Partial
dependence plots [Greenwell et al., 2018] or accumulated local effects [Ap-
ley and Zhu, 2020] are curves that show, for a chosen feature, the average
outcome [Molnar, 2019]. Other examples are Shapley Values [Strumbelj and
Kononenko, 2014].

e Model internals is also the case of interpreting intrinsically interpretable mod-
els. In fact, the distinction between model internals and feature summary
statistics might be blurred. Weights in linear models or the learned tree struc-
ture are clear examples of it [Molnar, 2019]. Nevertheless, not all cases over-
lap: model internals are significantly used for interpreting convolutional neu-
ral networks, namely the visualisation of feature detectors through saliency
maps [Shrikumar et al., 2017, Zeiler and Fergus, 2014, Simonyan et al., 2013].

e Data points: includes all methods that return data points, either existent or
created, to provide explanations. One example is counterfactual explanations
[Wachter et al., 2017] which find the most similar data points that change
the predicted outcome. In other words, a counterfactual explanation describes
a causal situation in the form: ”if X had not occurred, Y would not have
occurred” [Molnar, 2019]. Other cases include identifying relevant points for
the obtained outcome, such as influential instances [Koh and Liang, 2017,Cook,
1977]: samples when its deletion from training data considerably changes the
predictions from the models, and the detection of important local points using

approximate models [Lin et al., 2019].

e Intrinsically interpretable models: it is possible to interpret black-box models
by approximating them for all points (globally) or a determined region (lo-
cally), using an intrinsically interpretable model. The latter allows an interpre-
tation by inspecting model internals or feature summary statistics. Some ex-
amples are Local Interpretable Model-Agnostic Explanations (LIME) [Ribeiro
et al., 2016] for text and tabular data.

Explanation methods can also be categorised into model-specific or model-agnostic.
Model-specific include the methods that solely interpret determined models, such
as saliency maps for neural networks [Shrikumar et al., 2017, Zeiler and Fergus,
2014, Simonyan et al., 2013] or, naturally, interpretations concerning intrinsically
interpretable models as these are specific. Model-agnostic tools can be used for any
model and are applied post-hoc. As these do not have access to the model logic,
they focus on establishing relations between input and output pairs [Molnar, 2019].

Finally, it is also possible to categorise an explanation model according to its

range on the dataset. It can be local if it explains a single sample or a small set of
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neighbouring ones, or global when explaining the entire model behaviour. In Table

2.3, one can see a list of explainability methods and their categorisation.

2.6.4 Evaluation

Explanations need to be evaluated, which can be performed according to two criteria:
interpretability and completeness [Gilpin et al., 2018]. The interpretability goal
concerns the tie to the user’s cognition, knowledge, and biases: descriptions need to
be simple enough and use meaningful vocabulary so that the user understands the
provided explanations. Completeness concerns how well the provided explanations
accurately describe the system. The more complete an explanation is, the easier it
is for the user to predict the system behaviour in more situations.

One of the many challenges in ML explainability is creating explanations that
are simultaneously accurate and easy to interpret. Usually, the most interpretable
explanations tend to lose predictive power. Evaluating explanations requires par-
ticular attention, as human evaluations may imply a strong bias towards simple
descriptions. Explanations may lead to systems that tend to be more persuasive
than transparent, which may lead to ethical issues by oversimplifying and mislead-
ing the user. Authors suggest a tradeoff between interpretability and completeness
by making a curve from maximum interpretability to maximum completeness [Gilpin
et al., 2018, Herman, 2017].

The evaluation of explanations at the interpretability level can be performed at

Table 2.3: A list of explainability methods, along with its classification according to the
different taxonomy criteria.

Intrinsic Interpretation Model-specific Local
or post-hoc results or model-agnostic or global
Feat Intrinsicall;
- cature Model Data ntrinsica Ly . .
Intrinsic Post-hoc summary . . Interpretable Specific Agnostic Local Global
e internals points
statistics Models
Decision Rules X X X X
Decision tree b'e b'e X b'e X
Sparse Linear and Logistic
Regressions and b'e b'e X X X
Generalised Linear Models
kNN model X b X X
Partial Dependence . . < .
Plot
Accumulated Local < < « <
Effects
Feature Interaction b'e X X X X
Permutation Feature
X X X X
Importance
Global Surrogate X X X X
Prototypes and
L X X X X
Criticisms
Individual Conditional
X X X X

Expectations
LIME X X X X X
Counterfactual
Explanations
Shapley Values X X
SHapley Additive

exPlanations x x * *
Network Dissection b'e b'e b'e x
Saliency Maps X X X X
Adversarial Examples X X b'e X
Influential Instances X X X
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Figure 2.18: The three levels of explanations evaluation concerning interpretability.
Adapted from [Doshi-Velez and Kim, 2017].

three levels, as observed in Figure 2.18: application, human, and function [Molnar,
2019, Gilpin et al., 2018, Doshi-Velez and Kim, 2017].

The application-level tests explanations provided to human specialists regarding
the actual task. This level aims to understand how efficiently the created expla-
nations help specialists complete their tasks. It the most challenging as it requires
several exceptionally trained people. The human-level tests explanations in simpli-
fied applications (without jeopardising their core) in humans that are not experts.
This level may help represent explanations to patients and, naturally, may also help
to handle a possible lack of specialists for application-level evaluations. Lastly, the
function level uses a formal and a priori definition of interpretability to analyse the
explanations without involving humans. This level is the most tested as it does not
require humans for testing, and many authors that develop ML methods tend to do

it intrinsically when searching for model transparency.

2.7 Summary

Epilepsy is characterised by a significant clinical heterogeneity concerning seizures,
type of epilepsy, and epilepsy syndromes. A seizure can be characterised by ini-
tial signs/symptoms, awareness, and epileptic focus localisation. The most common
epilepsy syndrome is the TLE which is characterised by seizures with temporal
lobe focus. DRE patients, which do not achieve sustained seizure freedom through
medication, are the focus of seizure prediction as they are exposed to the physical
and social implications of the unpredictability of seizures. These patients are often
subjected to monitoring for weeks/months to evaluate their condition before un-
dertaking surgical interventions, which explains why most databases comprise data
acquired during this period.

The brain’s electrical activity can be captured by the EEG which is the primary
physician tool, although its morphology is not fully understood. There are two types
of acquisitions of EEG: scalp and intracranial. While iEEG has a higher signal-to-
noise ratio and captures more trustfully high-frequency band activity, it is an invasive

method, presenting a considerable risk of infection/haemorrhage. EEG activity can
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be characterised by oscillations or transients. Oscillations are rhythmic patterns,
while transients are sharp and can be categorised into normal and abnormal. Within
normal transients, they are related to eye blink and muscle impulses, among other
normal body functions, while the abnormal can be related to epileptic activity. Not
all detected epileptic activity can anticipate seizures. It is necessary to analyse all
types of EEG activity to make more accurate predictions.

In seizure prediction, authors divide the EEG signal concerning seizures into
interictal, preictal, postictal, and ictal, which is fundamental for supervised learning
and evaluating the methodologies’ performance. Its goal is to detect the preictal
period and anticipate seizures by timely raising alarms. Each alarm is associated
with an occurrence period (SOP) and an intervention time (SPH). However, as the
preictal period represents a transitional stage that varies within patients and seizure
episodes, it can be challenging to detect this interval.

A proper evaluation for an alarm system should assess seizure sensitivity and
FPR/h. A proper methodology must have an adequate SPH and SOP to allow
a given intervention in real-life. Statistical validation should also be conducted
where performing above chance is a minimum requirement. As in any other rare-
event prediction task within a time series, proposed approaches must deal with data
imbalance and concept drifts. The most common presurgical monitoring concept
drifts are the circadian cycle, sleep-wake cycle, and medication tapering.

Explaining prediction models’ decisions is a fundamental task to allow clinical
acceptance by reassuring patient safety and dealing with ML scepticism. Further-
more, as the EEG is a complex signal, there is the possibility to show clinicians
patterns not previously identified as seizure predictive. It is also desired to have a
more profound knowledge of the brain to help develop better AEDs and improve

other neuromodulation techniques. A good explanation answers a "why” question.






Chapter 3

State of the Art

his chapter provides an overview of the state of the art in seizure prediction

over the past ten years, mainly based on the Electroencephalogram (EEG)

signal. Section 3.1 presents the most common framework. Section 3.2

describes the application of concept drifts in prediction. Section 3.3 presents an
overview in explainability of EEG-based models. Lastly, section 3.4 summarises the

state-of-the-art key concepts and provides final reflections.

3.1 Seizure Prediction

Current seizure prediction algorithms have a common framework that consists of
signal acquisition, preprocessing, feature extraction, feature selection, classification,
regularisation, and performance evaluation, as schemed in Figure 3.1. These steps

can be summarised as follows:

Signal preprocessing enhances the EEG quality and extracts signal information

through sliding time-window analysis.

o Feature extraction and selection collect characteristics that are expected to be

sensitive to the detection of pre-seizure generation mechanisms.

o Classification consists of training Machine Learning (ML) models with the

previously selected features to identify periods as either interictal or preictal.

e Regularisation smooths the classification output by not considering isolated

classifications and provides them temporal meaning.

Despite a common framework, the variety of possibilities is significantly large,
explaining the heterogeneity of existing approaches. The absence of a gold standard

algorithm also contributes to this.

47
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Figure 3.1: Common framework of prediction algorithms. Adapted from [Assi et al., 2017].

Differences in Deep Learning approaches

With the increase of computational power and available data over the years, more
advanced ML models can be explored, as in the case of Deep Learning (DL) models.
These models also can handle raw data by automatically performing preprocessing
and feature engineering, able to enhance classification [Kuhlmann et al., 2018b,
Freestone et al., 2017]. Due to this, several modifications can be made to the common
framework, as seen in Figure 3.2 where three alternatives are presented.

The most straightforward alternative (A in Figure 3.2) is to provide the raw input
(which can have a low processing level) to a DL model and retrieve the classification
output throughout the sequence analysis. In this case, the model is responsible for
signal processing (artefact removal, noise reduction, and filtering), feature engineer-
ing, and classification [Viana et al., 2022,Pal Attia et al., 2022,Xu et al., 2020, Zhang
et al., 2019, Truong et al., 2018, Tsiouris et al., 2018].

Instead of using raw data as input, some authors previously perform feature
extraction and provide the obtained measures to the models (B in Figure 3.2). In this
case, the model is expected to focus on dimensionality reduction, feature selection,
and classification [Stirling et al., 2021b]. Lastly, some authors use these models as
feature engineering by extracting the obtained coefficients, which are provided to
another classifier (C in Figure 3.2) [Usman et al., 2021b,Daoud and Bayoumi, 2019].

3.1.1 Signal acquisition

Table 3.1 shows an overview of the used data in seizure prediction studies over the
last ten years. Although this analysis mainly concerns the EEG signal, other signals
are included, such as blood volume pulse, accelerometry, electrodermal activity,
and sleep [Stirling et al., 2021b, Nasseri et al., 2021]. These studies highlight a
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Figure 3.2: Possible variations to the common framework of prediction algorithms when
using DL approaches. Green represents the use of DL models. Adapted from [Assi et al.,
2017].

possible paradigm change resulting from the emergence of seizure forecasting and
the possibility of acquiring recordings during more extended periods (several months
or even years per patient), which require more comfortable strategies to acquire
physiological information.

In an early stage, studies were mainly based on local databases acquired from
patients undergoing evaluation for epilepsy surgery, as the case of the EPILEPSIAE,
Freiburg, and CHB-MIT databases. These are still used.

[Cook et al., 2013] published the first study using the Neurovista database, con-
taining chronic Invasive Electroencephalogram (i(EEG) (up to two years per patient).
This data was then used in several studies, such as [Kiral-Kornek et al., 2018], where
the three worst-performing patients were used in a Kaggle Competition [Kuhlmann
et al., 2018a]. Due to comfort issues, other ultra-long-term databases are aris-
ing through wrist-worn bands and smartwatches. These studies are more likely
to be successful: they use more data, study concept drifts, and provide higher
patient comfort. Additionally, other EEG databases are arising, such as the one
from SeizelT2 [Zhang et al., 2022] (NCT04284072) clinical trial, and using subscalp
EEG, such as the clinical trial from King’s College London (NCT04061707), and
the Zealand University Hospital [Weisdorf et al., 2019]. Other databases are related

to another Kaggle contest comprised of dogs and humans [Xu et al., 2020, Truong
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years.
Patients
Study Database (Aggregated analysed time) Signal Electrodes
No. of Seizures
[Viana et al., 2022] ALz (5946;1 's) Subeut; EEG
A C By KCL’s clinical trial 82%5 ubcutancous -
ZUH 6
[Pal Attia et al., 2022] b s . (409 days) Subcutaneous EEG -
KCL’s clinical trial
N.A.
23
sman et al., 1b) -M ays calp -
U: 1., 2021t CHB-MIT 27 d: Scalp EEG
198
1 BVP
[Stirling et al., 2021b] Personal (13.5 years) Smartwatch
1493 Sleep stages
6 ACC
[Nasseri et al., 2021] NeuroPace (4 years) BVP, EDA Wrist-worn band
278 TEMP
. 5 dogs + 22 .
Kaggle iEEG dataset - . iEEG
[Xu et al., 2020] CHB-MIT (1.85 1&»41;5{ days) Scalp EEG -
22
nang et al., -M - calp -
Zh 1., 2019] CHB-MIT Scalp EEG
182
Freiburg 13413430 . ,
[Truong et al., 2019] CHB-MIT (12.95+8.7+120 days) S‘Tg’EE(E( 6,22, 19
EPILEPSIAE 59+64+261 )
8
[Daoud and Bayoumi, 2019] CHB-MIT ) Scalp EEG -
43
15
[Kiral-Kornek et al., 2018] NeuroVista (16.29 years) iEEG 16
2817
12
[Tsiouris et al., 2018] CHB-MIT (40 days) Scalp EEG -
185
Freiburg 28 + 2 dogs + 6 - .
[Truong et al., 2018] CHB-MIT (13+8.7+26 days) SL{;EEECE(' 6,22, 19
Kaggle (AES) 59+64+48 !
3
uhlmann et al., 2018a] Neurovista 42 days i 16
Kuhl 1 N 442 day: EEG
211
9
[Karoly et al., 2017] Neurovista (10.35 years) iEEG -
1458
216 F7, FZ, F8, T5, PZ, T6
[Direito et al., 2017] EPILEPSIAE (697t days ) S(,«;E»E%EG 6 random
1206t 6 in focal region
24 P
[Bandarabadi et al., 2015b] EPILEPSIAE (150t days) Scalp BEG 3 in focal region and
183t iEEG 3 far from local region
5 dogs
ssi et al., 2015 aggle - i 1i
A 1., 2015 Kaggle (AES EEG 6
44
10 Scalp EEG 3 in focal region and
[Rasekhi et al., 2015] EPILEPSIAE (58 days) e L ocat fesion an
86 iEEG 3 far from local region
278 . F7, FZ, F8, T5, PZ, T6
[Teixeira et al., 2014b] EPILEPSIAE (2031 days) bu%lp FEC 6 random
iEEG . .
2702 6 in focal region
53
[Alvarado-Rojas et al., 2014] EPILEPSIAE (531 days) iEEG -
558
2 3 in focal region and
[Moghim and Corne, 2014] Freiburg (24 days) iEEG 3 far from local region
10 Scalp EEG 3 in focal region and
[Rasekhi et al., 2013] EPILEPSIAE (31t days) ar N o oeatres .
16t iEEG 3 far from local region
1
[Rabbi et al., 2013] EPILEPSIAE (1.5 days) iEEG 2
7
15
[Cook et al., 2013] Neurovista (=~ 16 years) iEEG 16

1392

AES stands for American Epilepsy Society. CHB-MIT for the Children’s Hospital Boston
from the Massachusetts Institute of Technology, ZUH for Zealand University Hospital, and
KCL for King’s College London. In analysed time and seizures, ”t” stands for testing data.
BVP, ACC, EDA, and TEMP stand for blood volume pulse, accelerometry, electrodermal
activity, and temperature.
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et al., 2018].

Electrode selection

Despite the majority of scalp EEG databases being acquired within the 10-20 system,
some authors do not use all electrodes to simulate a real-life application and to
increase patient comfort. While some use all available electrodes [Usman et al.,
2021b, Zhang et al., 2019, Daoud and Bayoumi, 2019, Tsiouris et al., 2018], others
choose six where three belong to the focal region and the remaining are placed far
from it [Bandarabadi et al., 2015b,Rasekhi et al., 2015, Rasekhi et al., 2013]. Others
focused only on electrodes from the focal region [Direito et al., 2017, Teixeira et al.,
2014b]. These choices lead to different assumptions that are worth investigating.
For instance, by choosing random electrodes, one assumes the seizure generation
processes can be captured in any brain location. By choosing three electrodes near
the focal region and three far from it, the authors assume that it is necessary to relate
information from the focus lobe to other brain regions without using all possible
electrodes. When only electrodes from focal regions are used, the assumption is that
the activity of the focal region is enough to capture a seizure-generation process. No
assumption has proved to be the best, while it is intuitive that using all electrodes

available may provide more information.

3.1.2 Preprocessing

Signal preprocessing aims to enhance the EEG quality and extract information. As
the main objective is to construct a method to receive and process online data, the
chosen methods must consider their real-life feasibility. The first step comprises
data segmentation by window analysis. Then, some other options can be performed
as denoising, filtering, artefact removal, and decomposition [Direito et al., 2017,
Bandarabadi et al., 2015b, Assi et al., 2015, Rasekhi et al., 2015, Teixeira et al.,
2014b, Rabbi et al., 2013, Rasekhi et al., 2013, Park et al., 2011, Chisci et al., 2010].

Then, one must define the preictal period, Seizure Occurrence Period (SOP),
and Seizure Prediction Horizon (SPH). These steps are not necessarily included in
this stage as they can be handled in the classification tasks. Nevertheless, they are
presented here as they should be considered at the beginning of the study, so that
this choice does not influence the performance of the ML model. Figure 3.3 presents
a general pipeline for the signal preprocessing stage.

Table 3.2 provides a general overview of the authors’ decisions concerning signal
preprocessing. Summarily, denoising, filtering, and artefact removal are steps where
most studies do not concentrate significant efforts, as the EEG is a complex signal
and hard to understand. Using these intense preprocessing strategies carries the risk

of losing relevant brain information.
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Table 3.2: Overview of the signal preprocessing steps, preictal period, and SPH duration

over the last ten years.

Sliding
Study window
. 1 min
[Viana et al., 2022] No overlap
[Pal Attia et al., 2022] ! min
No overlap
[Usman et al., 2021Db] 295
No overlap

5s and 1 min

[Stirling et al., 2021b] No overlap

[Nasseri et al., 2021] 1s and 4s
20s

[Xu et al., 2020] No overlap
5s

[Zhang et al., 2019] No overlap
28s

[Truong et al., 2019] No overlap
. 5s

[Daoud and Bayoumi, 2019] No overlap
[Kiral-Kornek et al., 2018] 5

No overlap
L 5s

[Tsiouris et al., 2018] No overlap
30s

[Truong et al., 2018] No overlap

0Os to 10min

[Kuhlmann et al., 2018a]

60s
[Karoly et al., 2017] 50% overlap
[Direito et al., 2017] No of/serlap
[Bandarabadi et al., 2015b] o8
No overlap
[Assi et al., 2015] - Of;rlap
[Rasekhi et al., 2015] No oiserlap
Lo 5s
[Teixeira et al., 2014b] No overlap
. 5s
[Alvarado-Rojas et al., 2014] No overlap
] 5s and 9s
[Moghim and Corne, 2014] No overlap
5s

[Rasekhi et al., 2013] No overlap

10 seconds
50% overlap
5s
No overlap

[Rabbi et al., 2013]

[Cook et al., 2013]

0 to 50% overlap

Filtering

0.5-48Hz band-pass and 25Hz low-pass filters
40dB attenuation filter
0.5-48Hz band-pass filter
40dB attenuation filter
Empirical Mode Decomposition

Butterworth band-pass filter
Hilbert transform

5th-order Butterworth band-pass filter
5-50Hz
Band-pass filters as notch filters
47-53Hz and 97-103Hz

Octave-wide digital and notch filters
8Hz-128Hz

Notch-Filters
DC removed

1-140Hz band-pass filter
50Hz notch filter

50Hz notch filter

50Hz notch
0.5 - 180Hz band-pass

50Hz notch filter

50Hz notch filter

8th-order Butterworth filter
in bands of interest from 0.5Hz to 140Hz
Hilbert transform

Artefact removal with EEGLAB

50Hz notch filter

60Hz notch
0.5 - 100Hz band-pass
Octave-wide digital and notch filters
8Hz-128Hz

Preictal
Period

1 hour
1 hour
32 min

1 hour and 24 hours
1 hour

30 min
30 min
30 min
60 min
15 min
15, 30, 60, 120 min
30 min
55 min
30 min
10:10:40 min
10:10:40 min
60 min
10:10:40 min

10:10:40 min

60 min

5 min

10:10:40 min

15, 30, 45 min

minutes to hours

SPH

5 min

15 min

5 min

5 min

5 min

5 min

1 min

10s

5s
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Figure 3.3: Flowchart of a common signal preprocessing pipeline. Required steps are in
green. Defining the preictal period is required when using a supervised learning approach.

Data segmentation

The EEG signal must be segmented into small windows to extract features chrono-
logically to simulate an online time-series analysis. This window length has varied in
the literature, generally ranging from 2 to 60 seconds, where five seconds is the most
adopted interval. This interval has as objective a contextual meaning according to
EEG clinical characteristics.

Due to the number of electrodes, sampling frequency, and the recording dura-
tion, the choice of window length and overlap percentage considers computational
efforts and execution speed, along with a compromise between capturing specific
patterns and stationarity assumptions [Bandarabadi et al., 2015b, Teixeira et al.,
2014b, Rasekhi et al., 2013, Park et al., 2011, Chisci et al., 2010].

Denoising, filtering, and artefact removal

This step generally removes the powerline interference, bandpass filtering, and ab-
normal transients, considered artefacts. Frequency decomposing into the frequency
bands of interest or wavelet decomposition can also be considered filtering and arte-
fact removal methods, as other activity patterns besides EEG oscillations may be
removed [Moghim and Corne, 2014, Park et al., 2011, Adeli et al., 2007].

Authors have differed in the bandpass filter cut-off frequencies. Generally, they
remove low-frequency components below 0.5 Hz, considered breathing artefacts, and
high-frequency components, considered noise. The limit for high frequencies varies
since many researchers have found discriminative ability with these [Zhang et al.,
2019, Kiral-Kornek et al., 2018, Assi et al., 2017, Bandarabadi et al., 2015b, Rabbi
et al., 2013, Cook et al., 2013].



54 CHAPTER 3. STATE OF THE ART

Although not explicit, many authors do not put much effort into this stage due to
the underlying assumption that signal decomposition, feature extraction, and data
model adaptation may be robust to noise and artefacts in the classification stage.

Signal decomposition can also be considered part of the feature extraction process.

Preictal period duration, SOP, and SPH

An optimal preictal duration has not been found so far. Authors have adopted fixed
periods comprising 2, 20, 30, 60, or even 240 minutes. These can either be previously
fixed for all patients [Viana et al., 2022, Pal Attia et al., 2022, Nasseri et al., 2020,
Zhang et al., 2019, Kiral-Kornek et al., 2018, Truong et al., 2019, Kuhlmann et al.,
2018a, Karoly et al., 2017, Alvarado-Rojas et al., 2014] or defined with a grid-search
procedure [Direito et al., 2017, Rasekhi et al., 2015, Teixeira et al., 2014b, Rasekhi
et al., 2013, Rabbi et al., 2013]. Other possible solutions can be further applied to
prediction, such as unsupervised learning to determine the preictal labels [Miiller
et al., 2022, Leal et al., 2021].

SPH duration is often omitted in studies [Usman et al., 2021b, Xu et al., 2020,
Daoud and Bayoumi, 2019, Kiral-Kornek et al., 2018, Tsiouris et al., 2018, Ban-
darabadi et al., 2015b, Rasekhi et al., 2015, Rasekhi et al., 2013]. The latter is
a significant limitation of the correspondent studies. It represents an unrealistic
scenario in real-life applicability, as it is unclear if there is a time to render an

intervention.

3.1.3 Feature extraction

Feature extraction is the most heterogeneous step, where no specific type of features
has been determined as optimal. These usually aim at capturing one of the following
behaviours that concern a change in a pre-seizure state [Assi et al., 2017, Rasekhi
et al., 2013, Mormann et al., 2007]: i) an increase in energy caused by electrical
discharges in the brain; ii) a shift in spectral power from lower to higher frequencies;
and iii) an increase of neuronal synchronisation.

This step can be performed on a single (univariate) or multi-channel basis (bi-
variate or multivariate). The single-channel analysis selects a given electrode and
is mainly based on local activity measures. Multi-channel provides more informa-
tion as it incorporates the information from two or more electrodes [Assi et al.,
2017, Gadhoumi et al., 2016b].

Features can also be classified into linear or nonlinear, where several studies
addressed their differences in performance. No conclusion can be drawn as results
were conflicting [Harrison et al., 2005, Mormann et al., 2005, McSharry et al., 2003].
Additionally, nonlinear features may not be suited to online processing as their
computational cost is higher [Assi et al., 2017, Park et al., 2011].
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Figure 3.4: A common feature extraction categorisation in terms of linearity and uni/bi/-
multivariate analysis into linear univariate, nonlinear univariate, linear bi/multivariate, and
nonlinear bi/multivariate features, with some examples.

Grouping features according to linear /nonlinear and univariate/bivariate /multi-
variate is often seen to organise feature extraction, as presented in Figure 3.4.

Table 3.3 presents a feature extraction overview of linear and nonlinear univari-
ate and multivariate measures. The set of chosen studies shows that linear univariate
features are more common than nonlinear univariate ones. These measures are pre-
ferred because they are computationally lighter and easier to interpret. Multivariate
measures generally require more computational power.

Concerning DL models, some authors use them to perform feature engineering
that may be independent of classification. It is not uncommon to see researchers
using Convolutional Neural Networks (CNN) to extract features, followed by clas-
sification using Long Short-Term Memory (LSTM) networks as these handle time
directly [Usman et al., 2021b, Daoud and Bayoumi, 2019]. When the goal is to
understand more about the underlying problem, it may be preferable to extract
hand-crafted features compared to automatically extracted ones.

The most adopted features can be categorised into linear univariate, nonlinear
univariate, linear bi/multivariate, and nonlinear bi/multivariate. A description of

these features can be found in Appendix B



Table 3.3: Overview of the used features from seizure prediction over the past ten years.

Linear univariate features Nonlinear univariate features Linear bi/multivariate features Nonlinear bi/multivariate features
angy Spectral . g . Dynamic . . Mean
Study Other SEUREl Rorn T s D o, GADND  Dmeoeliniem ARISEmEED R emeee WS oo moes meo Correlation Dyl s Spndwany
moments modelling parameters time and Chaos  exponent length entrainment
related Index Coherence
[Viana et al., 2022] M‘S‘"F“'F;‘":S\m X
[Pal Attia ctal, 202] o B X
From raw data .
[Usman et al., 2021b] to STET X
HR features
[Stirling et al., 2021b] Time of the day
Sleep features
Raw data
[Nasseri et al., 2021] HR
Time of the day
[Xu et al., 2020] Raw data
From raw data
[Zhang et al., 2019] to CSP
From raw data
[Truong et al., 2019] to STFT X
[Daoud and Bayoumi, 2019] Raw data
From raw data
[Kiral-Kornek et al., 2018] to Spectograms X
Time of the day
[Tsiouris et al., 2018] Raw data
[Truong et al., 2018] from :}[‘”F%a‘a X
[Kuhlmann et al., 2018a] X X X X X X X X X X X
[Karoly et al., 2017] X X X
[Direito et al., 2017] X X X X X X X
[Bandarabadi et al., 2015b] X X
[Assi et al., 2015] X X x
[Rasekhi et al., 2015] X X X X X X x X
[Teixeira et al., 2014b] X X X X X X X
[Alvarado-Rojas et al,, 2014] 5% ieraction
[Moghim and Corne, 2014] X X X X X X
[Rasckhi et al., 2013] X X X X X X x
[Rabbi et al., 2013] X X x

[Cook et al., 2013]

X X X
STF stands for Short-Time Fourier Transform, FFT for Fast-Fourier Transform, TOD for Time Of the Day, HR for Heart Rate, CSP for Common Spatial
Patterns, and HFO for High-Frequency Oscillations.
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3.1.4 Feature selection

Extracting many features creates a high-dimensional space that needs to be reduced
due to the cost of training with the entire feature dataset. Additionally, using a small
number of features may improve classification performance as it avoids overfitting.
Some features may be redundant, while others can even confound and degrade clas-
sifier performance as their discriminative power is not so effective as others.

The rationale behind any feature selection method is to maximise relevance by
selecting features with higher discriminative power while minimising similarity by
deleting redundant features. ReliefF [Moghim and Corne, 2014], minimum nor-
malized difference of percentiles, maximum Difference Amplitude Distribution his-
tograms (mDAD) [Bandarabadi et al., 2015a] and minimum Redundance Maximum
Relevance (mRMR) [Assi et al., 2017, Rasekhi et al., 2015, Bandarabadi et al., 2012]
are some methods adopted in prediction studies.

Genetic Algorithms (GAs) are also used and tend to replicate the principles of bi-
ological evolution: start from an initial and random population where the strongest
will combine to survive and adapt to their external environment. Several strate-
gies have been used, varying in the selection method, genetic structure, and fitness
function [Assi et al., 2015, Direito et al., 2011,D’Alessandro et al., 2003].

Furthermore, one can adopt an alternative strategy through dimensionality re-
duction, such as Principal Component Analysis (PCA) [Acharya et al., 2013, Assi
et al., 2017], able to transform high-dimensional data into a low-dimensional orthogo-
nal feature subspace. Each of the orthogonal features is a principal component. The
eigenvalues of the data covariance matrix then provide the order of the principal
components.

In DL approaches, reduction is performed either by convolutional layers [Usman
et al., 2021b, Xu et al., 2020, Truong et al., 2019] or through autoencoders [Daoud
and Bayoumi, 2019].

3.1.5 Classification

A prediction model is trained to distinguish preictal and interictal samples based
on the extracted features. Authors have explored several models, where a transition
from Support Vector Machiness (SVMs) [Assi et al., 2017] to CNNs [Kuhlmann
et al., 2018b, Freestone et al., 2017] and LSTMs [Viana et al., 2022, Pal Attia et al.,
2022, Usman et al., 2021b, Nasseri et al., 2021, Daoud and Bayoumi, 2019, Tsiouris
et al., 2018] has been observed. Other classifiers have been employed, such as random
forests and decision trees [Stirling et al., 2021b, Kuhlmann et al., 2018a, Cook et al.,
2013], k-Nearest Neighbourss (kNNs) [Cook et al., 2013], and generalised linear
models [Stirling et al., 2021b, Karoly et al., 2017]. In Table 3.4, one can see an
overview of classification and performance evaluation steps.

An existing problem in training a model is the data imbalance, as interictal sam-
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Table 3.4: Overview of the classification, regularisation, performance, and statistical vali-
dation over the past ten years.

Stud Training data Classification Perf Statistical
uey (testing data) (regularisation) erlormance Validation
S Initial 1/3 of data LSTM SS5=0.73 5in 6 (0.83)
N G el 2H02E) (last 2/3 of data) 1h smooth TiW=0.34 Surrogate analysis
. k-fold cross validation LSTM SS=0.54 4in 6 (0.67)
[Pal Attia et al., 2022] with patients 1h smooth TiW=0.33 Surrogate analysis
k-fold cross validation ; SS=0.93
[Usman et al., 2021b] with seizures CNN+LSTM SP—0.92 No
e Retraining and testing LSTM+Random Forest+Log Reg P 11 in 11 (1.00)
[Stirling f al., 2021b] chronologically and iteratively (Kalman Filter) AUC=074 Random Forecast
— First 2/3 of data LSTM _ 5in 6 (0.83)
[zl 6 lly 202 (last 1/3 of data) (Kalman Filter) Ac=0E Random Predictor
80% samples . SS=0.96
[Xu et al., 2020] (20% samples) CNN FPR/h=0.07 No
o Leave-One-Out _ 51 in 56 (0.91)
s et il 20ike) with seizures G, CININ, TN AUC=0Ei Hanley-McNeil AUC test
Leave-One-Out CNN SS=0.92 Statistical comparison
P C
[Zhang et al., 2019] with seizures (Kalman Filter) FPR/h=0.12 between methods
[Daoud and Bayoumi, 2019] Lﬁ:’f S(Zi“;z‘slt CNN, Bi-LSTM prf/;%ggm . No
. o First 2 months . SS=0.69 15 in 15 (1.00)
[Kiral-Kornek et al., 2018] (remaining duration) CNN FPR/h=0.00 Random Predictor
[Tsiouris et al., 2018] K-fold with recordings LSTM FPSS;?—QOQO? No
Leave-One-Out CNN S$S=0.79 28 in 31 (0.90)
[Truong et al., 2018] with seizures (Kalman Filter) FPR/h=0.14 Random Predictor
Training GLMs, SVM, CNN AUC=0.75
ititiassim i il 20036 and testing clips Ensembles, Boosting, Trees FPR/h=0.58 e
[Karoly et al., 2017] (DagaQ}OéO(?I-li[;?ds) L((]jilit::lﬁig f)efsif)n TS:V:—OOMZ]J Tilnqun:z(‘if(-(ll'?)(rjidi('tor
- 2~ 3 seizures / patient SVM S$5=0.38 24 in 216 (0.11)
[IDeeiem i etk 0T (Remaining seizures) (Firing Power) FPR/h=0.20 Random Predictor
. First 3 seizures / patient SVM SS=0.76 23 in 24 (0.96)
andarabadi et z 5
[Bandarabadi et al., 2015b] (Remaining seizures) (Firing Power) FPR/h=0.10 Random Predictor
. 80% segments SS=0.85
[Assi et al., 2015] L SVM, ANFIS No
(Remaining segments) SP=0.80
. First 3 seizures / patient SVM SS=0.61 5in 10 (0.50)
5
[Rasckhi et al., 2015] (Remaining seizures) (Firing Power) FPR/h=0.11 Random Predictor
. . 2 - 3 seizures / patient SVM, ANN SS=0.74 Statistical comparison
i i el B0 (Remaining seizures) (Firing Power) FPR/h=0.28 between methods
First 4 seizures / patient . “ 8 e .
. o ) . e Thresholding SS=0.68 7in 53 (0.13)
[Alvarado-Rojas et al., 2014] - and (a};o]]:::itnilfglili:irzi)ddtd (Kalman Filter) FPR/h=0.33 Random Predictor
. 10-fold cross validation SS=0.91 . L
[Moghim and Corne, 2014] with 70%,/30% samples SVM SP=1.00 Unspecific predictors
s First 3 seizures / patient SVM S55=0.74
[Rasckhi et al., 2013] (Remaining seizures) (Firing Power) FPR/h=0.15 No
i 1 seizure / patient S5=0.80
[Rabbi et al., 2013] (6 ey ANFIS FPR/h—0.46 No
[Cook et al., 2013] First 4 months kNN+Decision Tree S$5=0.61 9 in 10 (0.90)
. e (Remaining duration) (Smoothing) Tiw=0.23 Time-matched predictor

ples are significantly more abundant than preictal ones. Authors have tackled this
issue either by: i) balancing the data [Bandarabadi et al., 2015b, Teixeira et al.,
2014b, Rasekhi et al., 2013, Direito et al., 2017] by discarding some of the interic-
tal samples; ii) adapting the classifiers and transforming them into cost-sensitive
to handle these imbalances [Assi et al., 2017, Park et al., 2011], or iii) artificially
generating new preictal samples through strategies such as generative adversarial
networks (GANs) [Truong et al., 2019].

Data partition strategies

Several data partition methods have been adopted. Authors should not use segments
from the same ictal-related event for training and testing as a clear bias may exist.
For instance, by choosing random samples for training and testing in a time series,
one is very likely to obtain high performance. This performance overestimation can

happen since the trained model learned with neighbouring samples from the tested
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ones.

The chosen partition method necessarily leads to different assumptions. Some
authors [Acharya et al., 2013, Bandarabadi et al., 2012] choose a determined num-
ber of seizures from all patients for training while the remaining are used in the
test phase. Others may also choose some patients for training and the remaining
for testing. With these strategies, researchers assume that seizure generation pro-
cesses are not patient-specific. This strategy has been abandoned over time due to
unsatisfactory results and due to the great patient heterogeneity [Kuhlmann et al.,
2018b, Freestone et al., 2017]. Most studies used patient-tailored methods (see Table
3.4) where a model is trained and tested within each patient data [Direito et al.,
2017, Moghim and Corne, 2014, Rabbi et al., 2013].

Authors assume the necessity to use the first seizures for training and the re-
maining for testing [Teixeira et al., 2014b, Alvarado-Rojas et al., 2014, Teixeira
et al., 2012]. Studies performed with ultra-long-term recordings (lasting at least
months for each patient) assume concept drifts, where authors deal with them di-
rectly by periodically retraining their classifiers [Nasseri et al., 2021, Kiral-Kornek
et al., 2018, Cook et al., 2013].

SVMs

SVMs can produce nonlinear decision boundaries and are known to have good gen-
eralisation capabilities, as they can transform the feature space into a higher-order
one to linearise the data [Assi et al., 2017, Rasekhi et al., 2015, Teixeira et al.,
2014b, Rasekhi et al., 2013].

The linearisation is implicitly done using kernel functions and vector operations
where the Gaussian Radial Basis Function (RBF) is one of the most used kernels for
handling nonlinear problems. By considering ¢ the scale parameter that is related
to the Gaussian width, and z and 2’ two different feature vectors in the original
input, the RBF can be defined as in Equation 3.1:
—|lz — 2’|

K(w,a') = exp(—"

). (3.1)

This operation replaces each point in the feature space by the gaussian of the
squared euclidean distance from support vectors. Two scale parameters need tuning;:
o and the soft margin C. The latter controls the trade-off between margin-width

maximisation and misclassified samples minimisation [Scholkopf et al., 1997].

The possibility of linearising the feature space and analysing the obtained sup-
port vectors make the SVM attractive from an interpretability point of view. Nev-
ertheless, it is worth remembering that (as with any other classifier) if the number

of features becomes too large, interpretability might be lost.
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CNNs

CNNs are DL models originally built for image classification and thus, handle input
positions explicitly. In addition, by transforming the image RGB property into a
time series one, it is possible to handle the time dimension explicitly. It is also
common to transform the time series raw data into a spectrogram through the Fast
Fourier Transform (FFT) or wavelet decomposition [Usman et al., 2021b, Zhang
et al., 2019, Truong et al., 2019, Truong et al., 2018]. Based on this, authors have the
opportunity to handle EEG seizure prediction as a more powerful visual time series
while accounting for electrodes positions and their relation [Xu et al., 2020, Sun
et al., 2018, Khan et al., 2017].

The architectures of these networks can vary. Authors typically stack several
convolutional layers, as these build feature maps through kernel filtering operations.
These layers are then followed by pooling ones, responsible for learning features from
the previously obtained maps. After these layers, it is possible to use classification
layers. Dropout layers are also crucial as they prevent overfitting since these net-
works may overfit the training data due to their significant number of parameters.
These layers set the output of random units to zero during training [Khan et al.,
2017].

LSTMs

LSTMs are a type of Recurrent Neural Networks (RNNs) comprised of special units,
named gates, that control (by learning the respective weights) input, output, and
recurrent connections. As LSTMs have internal memory accumulated through se-
quential input and analysis, their analysis does not rely on a fixed window, which
is an advantage when compared to CNNs [Sun et al., 2018]. Again, as DL models,
these can be difficult to interpret and are prone to overfitting, thus requiring large
amounts of data [Daoud and Bayoumi, 2019, Tsiouris et al., 2018, Schirrmeister et al.,
2017].

3.1.6 Performance assessment

Lastly, a developed methodology must be evaluated according to a given set of met-
rics. Despite the seizure prediction characteristic [Winterhalder et al., 2003] advises
using seizure sensitivity, False Prediction Rate per hour (FPR/h), and statistical
validation, such as surrogate analysis or unspecific random predictors, not all au-
thors follow this strategy. Although using the Area Under the Curve (AUC) [Stirling
et al., 2021b, Nasseri et al., 2021, Truong et al., 2019], sample specificity, and sample
sensitivity [Usman et al., 2021b, Assi et al., 2015] may provide valuable information
concerning the classifier performance, these may not be adequate to understand
how the correspondent system would fit into real-life where an intervention might
be expected. Other authors [Viana et al., 2022, Pal Attia et al., 2022, Daoud and
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Bayoumi, 2019, Cook et al., 2013, Karoly et al., 2017] shift from prediction to fore-
casting, where in that case, it is plausible the use of the Time in Warning (TiW)
metric instead of presenting the FPR/h.

It is possible to observe that performance is severely influenced by the used
database, where greatest heterogeneity in results can be observed for the EPILEP-
SIAE database [Direito et al., 2017, Rasekhi et al., 2015, Alvarado-Rojas et al.,
2014, Teixeira et al., 2014b]. This variance may occur due to the considerable number
of patients in this database (278). Authors typically make a patient selection based
on the signal quality (low presence of noise and artefacts), epilepsy type, number
of seizures, and lead seizure criteria. Patient number in these studies ranges from
1 [Rabbi et al., 2013] to 278 patients [Teixeira et al., 2014b]. CHB-MIT appears to
be the database with the highest performance and homogenous results [Usman et al.,
2021b, Xu et al., 2020, Zhang et al., 2019] and thus, perhaps making questionable
its use to demonstrate predictive power of new methods. Nevertheless, contrarily
to EPILEPSIAE and Neurovista databases, CHB-MIT is a free and open-access
database.

Ultralong-term databases, such as the Neurovista [Kiral-Kornek et al., 2018,
Karoly et al., 2017, Cook et al., 2013], Neuropace-derived [Nasseri et al., 2021], and
others [Stirling et al., 2021b] appear to be the ones that might bring more realistic
performances and thus, worth analysing towards the possibility of one day developing

a commercial prediction device.

3.2 Concept drifts

The influence of Concept Drifts (CDs) in seizure prediction has been studied over the
years. As mentioned in chapter 2, medication withdrawal in presurgical monitoring,
circadian and sleep-wake cycles, implanting a neurostimulation device, or a sudden
brain lesion may influence cerebral dynamics. Different strategies can be considered
to handle each type of CDs. A gradual or reoccurring drift might be handled by
training several classifiers, one for each concept. For incremental drifts, one might
retrain a classifier over time. Lastly, there is also the possibility to use concept
states (such as sleep-wake state, time of the day, and others) as additional features
[Diimpelmann, 2019].

Authors have dedicated efforts to identify cyclic patterns related to seizure oc-
currence in different temporal scales: circadian, multidien, and circannual. Firstly,
these cycles have been explored by assessing the seizure frequency obtained from pa-
tient seizure diaries. Depending on the patient, there is a higher seizure occurrence
within certain times of the day, month, and year. Then, by analysing ultralong term
recordings, patterns have been identified [Rao et al., 2021, Karoly et al., 2021]. Table
3.5 shows the results for the most important studies on seizure cycles.

Seizure diaries have been used to capture patterns of seizure cycles, where the
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Table 3.5: Studies on seizure occurrence cycles.
Study Patient data Seizure cycle prevalence
Analysing only EEG Seizures:

85 patients using the RNS System;
Analysing both EEG Seizures and diaries:
186 patients using the RNS System;
Analysing Seizure diaries only:

194 patients

Circadian: 89% of patients;
Multidien: 60% of patients;
Circannual: 12% of patients

[Leguia et al., 2021]

Circadian in: 86% of patients;
Multidien in: 93% of patients;
Seizures often occur during the rising phase
of multidien interictal epileptiform activity
rhythms

EEG seizures:

[Baud et al., 2018] 37 patients using the RNS System

EEG Seizures: 12 patients from NeuroVista
study (during 2 years); Seizure diaries
1118 patients from SeizureTracker
(during 9 years)

Circadian in at least: 80% of SeizureTracker
patients and 92% of Neurovista patients;
Circaseptan: between 7% and 21% of patients

[Karoly et al., 2018]

Circadian pattern: higher seizure frequency
between 7am and 10am, and lower
overnight. Multidien pattern: higher seizure
frequency during the work days comparing
to the weekend

Seizure diaries: 10186 patients (up to

[Ferastracaru et al., 2018] during 8 years) from SeizureTracker

simplest strategy consists in analysing patient diaries. Nowadays, there is the pos-
sibility to use online diaries, such as the SeizureTracker [Fisher et al., 2012] and
mobile applications. However, one must consider that those seizure diaries made by
patients and caregivers must be carefully interpreted, as these are subjected to nat-
ural limitations and biases. Consequently, chronic-EEG systems may significantly
improve the number of identified seizures. In fact, the NeuroVista study [Cook et al.,
2013] showed significant differences concerning electroencephalographic seizures and

annotated seizures in patient diaries [Brinkmann et al., 2021, Rao et al., 2021].

By using long-term EEG signals, authors verified a circadian cycle influence
ranging from 86% to 92% of patients [Karoly et al., 2018, Baud et al., 2018, Leguia
et al., 2021]. The sleep-wake cycle has also proven to model seizure cycles, as there
are peaks related to sleep-wake transitions. There may exist a mutual influence
between circadian cycles and the sleep-wake states [Rao et al., 2021]. It is relevant
to note that seizures do not occur in all circadian cycles. These cycles do not
necessarily lead to seizures but rather increase their occurrence probability [Karoly
et al., 2021].

Interictal epileptiform activity may also influence seizures. This patient-specific
cycle has a multidien periodicity, where seizures occur during the rising phase. This
activity can be, in part, be modulated by circadian and sleep-wake cycles [Karoly
et al., 2021, Khan et al., 2018, Baud et al., 2018].

The information above can be used to improve prediction performance. [Schel-
ter et al., 2006] analysed the obtained false predictions for both awake and sleep
states in two prediction models (one trained with dynamic similarity index and
another with mean phase coherence). They verified that 86% and 68% of false
predictions occurred during sleep. [Karoly et al., 2017] compared the results of an
electrocorticography-based logistic regression model, a circadian probability, and

a combined electrocorticography and circadian model. The addition of circadian
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information (the combined model) maximised performance across different metrics.

3.3 Explainability

A Google Scholar search was conducted using the following terms: ”explainability” or
“interpretability” along with "EEG seizure prediction”, "EEG epilepsy”, or "EEG”.
A reduced number of explainability studies concerning seizure prediction, seizure
detection or classification, and other EEG-related tasks were also included. The
majority of studies opted for DL models. Table 3.6 summarises the obtained results.

Attention mechanisms are one of the most used strategies [Phan et al., 2022,
Priyasad et al., 2021,Baghdadi et al., 2021,Briden and Norouzi, 2021,Mansour et al.,
2020], which aim at reproducing the concept of cognitive attention. Summarily, by
focusing on few but relevant objects, cognitive attention allows humans to position
themselves towards relevant stimuli and respond to them. In the DL case, authors
include attention mechanisms as components of the developed network architecture,

which focus more on the small but essential part of the data. While some authors

Table 3.6: An overview of explainability studies using the EEG signal, mainly for epilepsy-
related tasks.

Study Task Classifier Explainability Methods
[Moghaddam et al., 2022] Seizure Prediction SVM Spatial coherence
L Classification of seizures into . Permutation
[Lo Giudice et al., 2022] Epileptic or Psychogenic Non-Epileptic CNN Entropy
Seq2Seq Model Attention

[Phan et al., 2022 Sleep stage identification

(RNN) scores
[Dissanayake et al., 2021b] Seizure Prediction GDL Graph visualisation
Seizure Detection .
[Tang et al., 2021] and Classification GNN Occlusion maps
NN
[Dissanayake et al., 2021a] Seizure Prediction . ¢ SHAP
Siamese Networks
. . . . Attentive fusion model Attention
[Priyasad et al., 2021] Seizure Classification with CNN mechanisms
. Seizure Detection Attention-based Attention
[Baghdadi et al., 2021] and Classification Deep LSTM mechanisms
Classification between tonic-clonic SVM (linear and RBF) .
[Naze et al., 2021] and absence seizures RF and DT Feature importance
[Gabeff et al., 2021] Seizure Detection CNN Gradient ascendent

[Briden and Norouzi, 2021]
[Lee et al., 2020]
[Zhang et al., 2020]
[Mansour et al., 2020]

[Thomas et al., 2020]
[Uyttenhove et al., 2020]
[Hossain et al., 2019]

[Vilamala et al., 2017
[Schirrmeister et al., 2017]

[Wang et al., 2017]

Classifying
anxiety levels
Sleep stage
identification

Seizure Detection
Seizure Detection

Seizure Detection
Detection of Epilepsy

Seizure Detection

Automated Sleep Stage Scoring

EEG Decoding and
Visualisation

Detection of Epilepsy

SHAP
Squeeze-and-Excitation
Network

CNN

Attention Scores

Extract representative
patterns
Adversarial learning Attention-based
framework CNN

CNN, Bi-LSTM, Attention Attention
Network and FC layers mechanisms
Bottleneck Analysis of latent
Network Architecture features
t-VGG Network Grad-CAM
CNN Network correlation

maps (visualisation)
VGGNet using

transfer learning Sensitivity maps
Network correlation
maps (visualisation)
SVM, RF, C4.5, Rule-based
SVM+RF, SVM+C4.5 explanations

ConvNets

GDL stands for Geometric Deep Learning, GNN for Graph Neural Networks, RNN for
Recurrent Neural Networks, RF for Random Forest, DT for Decision Tree, FC for Fully
Connected, and VGG for Visual Geometry Group.
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use these strategies to obtain the most relevant brain regions [Priyasad et al., 2021,
Baghdadi et al., 2021, Zhang et al., 2020], others find the most crucial features
[Mansour et al., 2020].

Other techniques, such as sensitivity maps [Vilamala et al., 2017] and occlusion
maps [Tang et al., 2021] are also used to highlight the most discriminative parts
of the input. Occlusion maps are developed by systematically occluding different
portions of the input image and monitoring the classifier output. When objects
are important, their occlusion in the input significantly lowers the probability of
the correct class obtained in the softmax layer. Gradient-weighted Class Activation
Mapping (Grad-CAM) [Uyttenhove et al., 2020] is also a possibility, which explores
the last convolutional layer to weight the relevance of each neuron. The final output
is a heatmap highlighting the input data that positively influenced the classification.

SHapley Additive exPlanations (SHAP) values are also common. They are de-
signed to understand how the input is related to the output, namely the importance
of given input parts/features [Gabeff et al., 2021]. It is also possible to use this
strategy to determine channel importance [Dissanayake et al., 2021a]. Other ways
to determine features’ significance are permutation feature importance [Naze et al.,
2021] and through permutation entropy [Lo Giudice et al., 2022].

Some authors develop graphic explanations which attempt to unravel hidden
patterns in the brain, namely connectivity measures [Moghaddam et al., 2022, Dis-
sanayake et al., 2021b]. Others correlated the obtained patterns with the spatial
distribution of band power features as these may have an intuitive meaning for clin-
ical purposes [Thomas et al., 2020, Hossain et al., 2019, Schirrmeister et al., 2017].
There is also the possibility of using clinically characteristic waveform shapes to
pre-train the networks to reinforce the use of distinctive patterns [Lee et al., 2020].

Lastly, [Wang et al., 2017] employed rule-based classifiers. More specifically, an
ensemble learning approach extracted a set of human-comprehensible rules from an

SVM model, providing explanations for the model’s decisions.

3.4 Final reflections

A typical seizure prediction study comprises the steps of signal acquisition, prepro-
cessing, feature extraction, feature selection/reduction, classification, regularisation,
and performance evaluation. These steps are performed through sliding window
analysis, where the classification commonly concerns a binary classification model
that distinguishes preictal from interictal EEG segments. The introduction of DL
allows the possibility of automatically performing feature engineering and prepro-
cessing from raw data while handling time dependencies intrinsically. These models
have a higher potential for achieving high performance. However, they can be no-
toriously tricky to interpret, especially when compared with traditional ML models

fed with a reduced number of features.
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Despite recent advances in signal acquisition and ultra-long-term recordings,
several authors still use datasets acquired in presurgical monitoring, which concerns
a few weeks of data per patient. This may happen as a substantial quantity of
ultra-long-term continuous data is not publicly available and presurgical evaluation
needs to be performed for incoming Drug-Resistant Epilepsy (DRE) patients.

Feature engineering tasks present substantial heterogeneity among studies where
several measures and complex classifiers may obtain higher performance at the ex-
pense of losing interpretability. Linear univariate features are one of the most used
as they are fast to compute. It may be necessary to develop efforts to explain model
decisions to clinicians in a more accessible way. Current efforts are mainly directed
to DL approaches, which attempt to provide the importance of brain region (chan-
nels), patterns of brain connectivity, and correlations with band-waves activit, which
may be intuitive to clinicians.

Despite the preictal period varies between patients and seizures from the same
patients, authors have adopted fixed periods. It is defined as a point-of-no-return
concerning a seizure, where an optimal duration has not been found. As the brain
may have mechanisms to stop seizure generation processes, it may be more suited
to define a seizure susceptibility state than a point-of-no-return one. Consequently,
a shift from prediction to seizure forecasting has been observed over recent years.
This vision is also more suited to handle recent findings regarding seizure occurrence

cycles and the influence of circadian, multidien, and circannual CDs.






Chapter 4
Seizure Prediction Ecosystem

his chapter is a sociological study of the seizure prediction research field.

Section 4.1 presents the study context. Section 4.2 details the used meth-

ods and materials. Section 4.3 provides the results in the form of a social

network and research guidelines. Lastly, section 4.4 discusses the obtained findings
and limitations, and provides final reflections. The content of this chapter is based

on a journal article published in Epilepsia Open [Pinto et al., 2021b].

4.1 Study context

Although seizure prediction research started in the 1970s through Electroencephalo-
gram (EEG) analysis [Gadhoumi et al., 2016b, Mormann et al., 2007, lasemidis,
2003], few predictive devices [Cook et al., 2013] and closed-loop systems [Sun and
Morrell, 2014] have been clinically approved for clinical trial. Additionally, these
were based on the ”detection of features alone” (line-length, bandpass, and energy-
related) [Freestone et al., 2017], which may be less robust than current state-of-the-
art approaches [Gadhoumi et al., 2016a]. An overview of current research uncovers
the existence of major multidisciplinary barriers [Kuhlmann et al., 2018b, Kuhlmann
et al., 2018b,Gadhoumi et al., 2016a]. For instance, to develop a trustful, robust, and
commercial solution, one needs to handle expectations and beliefs from all actors
of this ecosystem: technology and data scientists, clinicians, industry, legislation,
ethics, and patients [Kuhlmann et al., 2018b, Goodman and Flaxman, 2017, Ram-
gopal et al., 2014, Schulze-Bonhage et al., 2010].

This chapter inspects the seizure prediction literature to understand the social
difficulties, where this analysis was based on Grounded Theory (GT) [Chapman
et al., 2015] and Actor-Network Theory [Cresswell et al., 2010]. GT is a standard
methodology applied in qualitative research where researchers draw hypotheses from
data: unlike most quantitative methods, data collection is not part of a process to
test a pre-existing hypothesis. Thus, GT’s method consists in the identification and

iterative refinement of relevant subjects from data [Chapman et al., 2015, Boyatzis,
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1998]. Actor-Network Theory’s main characteristics focus on inanimate entities and
subsequent effects on social processes. Technology emerges from social interests and
configures social interactions instead of handling technology as an external force.
Actor-Network Theory can be useful for studying information technology imple-
mentations in healthcare settings [Cresswell et al., 2010].

A social network [Scott, 1988] that describes the relations between all actors
is presented here. Encapsulation allowed the network to deliver a more general
overview while deepening technical aspects that can be accessed individually. Fur-
thermore, exploring this ecosystem helped unravel paths that may lead to a higher
chance of clinical acceptance. Trust plays a fundamental role in increasing the num-
ber of clinically approved studies and subsequent commercial devices. The absence
of an explanation for black-box decision models, especially when they fail, makes
researchers question and mistrust their use, thus raising scepticism. This is why
some authors argue for using only interpretable models [Rudin, 2019].

However, for the specific case of seizure prediction, the obtained findings argue
that efforts should focus on explainability (and not necessarily on intrinsically in-
terpretable models) as it is sufficient to reinforce trust, patient safety, ethics, and
compliance with applicable law and industry standards. Explainability may be the
critical aspect that allows the entrance of promising Deep Learning (DL) approaches
in clinical practice, as these hold great potential. Note that, as mentioned in the
Background chapter (section 2.6), interpretability and explainability are different
concepts [Gilpin et al., 2018]. While the former regards the extent to which a sys-
tem output can be predicted by a given input, which is clear by using intrinsically
interpretable models with a reduced set of features, explainability concerns how to
explain the decisions made.

By providing a social understanding and guidelines for effective communica-
tion between actors, this work contributes toward new clinically trusted method-
ologies, particularly for the work of those who develop software seizure prediction
approaches, so that they have a higher chance of clinical acceptance. Conversely, it
may also help clinicians to understand this research area. Although the academic
community may have implicitly used these guidelines for several years, their for-
malisation may be interesting and valuable. Many concepts developed here may
also be applied to other healthcare areas where built devices implement algorithms

developed from clinical data.

4.2 Materials and methods

The methodology comprises five stages (see Figure 4.1). Firstly, the selection of stud-
ies from the literature. This selection considered relevant studies that addressed
seizure prediction models, patients’ points of view, legislation, and algorithm ex-

plainability.
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1. Choosing initial 3. Network 5. Guidelines
literature Refinement Development
Selection of studies from the Iterative refinement of the relations with

Development of four major

literature that addressed prior knowledge derived from seizure guidelines to help authors guiding
prefiict'it»:n models, patif-.\nts, prediction experience, Iand enc.apsulation their research towards clinically
legislation, and algorithm of the actors and relations until reaching approved studies.

explainability. saturation.

-,
—
== N @ ®
== ! 3 ; &
2. Network 4. Network
Creation Study
Iterative analysis of the initial literature Based on the obtained network,
and construction of a social network until discussion about the future of seizure
actors and relations saturated. When prediction research and patient device
emerging actors and relations were cited in application in the real world, while
other articles, these were also analysed. raising questions about it.

Figure 4.1: The five-stage methodology followed in this work. Icons obtained from [Freepik,
2021a, Freepik, 2021b,Icon, 2021, Becris, 2021a, Becris, 2021b].

Secondly, based on the latter, the development of a social network model oc-
curred until reaching saturation or, more specifically, until there was not possible to
find more actors or relations. Additionally, when actors and relations emerged from
referenced studies in the selected papers, those were inspected to certify that satura-
tion occurred. Thirdly, the social network was refined with prior knowledge derived
from seizure prediction. Fourthly, the obtained network was studied to discuss the
future of seizure prediction and possible devices for patients. In this discussion,
several questions were listed. Other topics and studies also arose in this discussion
with all authors and reviewers, which led to select more papers (see the Appendix
C to understand how all papers were selected). Finally, developing four guidelines

was crucial for the faster progress toward new clinically accepted studies.

4.2.1 Choosing initial literature

The starting materials were the published literature on seizure prediction, as this
research field has almost 46 years of existence. Three surveys [Kuhlmann et al.,
2018b, Freestone et al., 2017, Mormann et al., 2007] were chosen, which provided
an overall vision of past, present, and future of seizure prediction. These present a
critical view of the area. Additionally, a survey [Ramgopal et al., 2014] on seizure
detection and prediction devices, and an article presenting Drug-Resistant Epilepsy
(DRE) patients’ view on seizure intervention devices [Schulze-Bonhage et al., 2010]
were also selected. Finally, a book on interpretable Machine Learning (ML) [Molnar,
2019], available online, was chosen. This last selection is due to a prior awareness of
the importance of interpretability /explainability. These materials were analysed in

the order they are referenced in this paragraph. From all the stages, this is the one



70 CHAPTER 4. SEIZURE PREDICTION ECOSYSTEM

(choosing the initial literature) that may lead to greater discussion among seizure

prediction experts.

4.2.2 Network creation

A social network was created because it provides a power model for social structure.
The concept of a network here is a set of points (actors, which can be individuals or
collective) connected by lines (relations). The goal was to describe these relations
and explain the patterns found. Constructing a network is not a theoretically-neutral
task, as it depends on the intellectual judgement of the researcher [Scott, 1988]. The
literature analysis was based on GT and Actor-Network Theory to help structure
the network development. Some of the iterations of the developed network are found
in Appendix D.

GT is an inductive process that has contributed to a broad acceptance of qual-
itative methods in several social sciences [Chapman et al., 2015]. Its fundamental
premise is that researchers must develop a theory from empirical data. Its overall
process consists of the codification of gathered data and identification of emerging
themes, and consequent development throughout further data collection [Charmaz
and Belgrave, 2007]. Coded data are commonly short statements or words that
capture the meaning of phrases and are used to index data and group ideas.

Additionally, concepts of Actor-Network Theory were simultaneously used with
GT. Thus, GT was not used to search traditional themes but rather to search for
socio-technical actors and their relations. With these, a social network was built.
The GT analysis was iterative and performed until reaching saturation. More par-
ticularly, it stopped when new actors or relations were not found [Chapman et al.,
2015].

Although GT develops theories from rigorous data gathering, the research pro-
cess requires a certain sensitivity [Davey and Adamopoulos, 2016, Chapman et al.,
2015]. It is relevant to stress that the researcher’s experience heavily influences the
data codification and the emergence of themes and ideas. Therefore, the main crit-
icism of this theory is the possible introduction of bias, given that truly inductive
analysis may not be achievable. This work is limited by prior knowledge. Due to this,
note the existing background experience in developing ML pipelines for healthcare,
particularly in seizure prediction [Chapman et al., 2015].

Actor-Network Theory is a sociological approach to understand humans and their
interaction with technology in specific settings. Its main characteristic is symmetry,
which treats equally human and non-human objects [Troshani and Wickramasinghe,
2014]. It is a framework based on the following concepts [Cresswell et al., 2010,
Wickramasinghe et al., 2007]: i) actors, the participants in the network which are
human and non-human objects; ii) heterogeneity, each actor’s importance is given by

the web of relations; iii) quasi-objects, the successful outcomes which pass from actor
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to actor within the network; iv) punctualisation, a similar concept to abstraction in
object-oriented programming, referred here as encapsulation; v) obligatory passage
point, situations that have to occur for all actors to satisfy the interests of the
network; and vi) irreversibility, wherein healthcare is not likely to occur due to the
importance of developing robust and effective studies to maintain patient safety.
At its heart, Actor-Network Theory tackles the notion of an organisational iden-
tity [Wickramasinghe et al., 2007]. It was used to guide this analysis to investigate,
understand, and explain the processes that influence and lead to the development of
clinically approved studies for seizure prediction [Iyamu and Mgudlwa, 2018]. Some
criticisms [Cresswell et al., 2010] on Actor-Network Theory are that it may be too
descriptive. Moreover, it fails to deliver any definitive explanation or approach that
best handles the studied actors and relations. Another limitation is that it fails to
handle human intentions, morals, backgrounds, and previous experiences of human
actors. This was one of the reasons why highlighting the importance of explain-
ability. A given explanation will depend on these, and, although intentions, morals,
and backgrounds were not tackled directly, rigorous explainability evaluation on the

application and human levels might account for them (as performed in chapter 6).

4.2.3 Network refinement

After the social network reached saturation, a complex structure with many actors
and relations was obtained. The network could not be delivered in that form as it
was not intuitive. The network was refined based on prior seizure prediction experi-
ence. This process was also motivated by the mentioned dependence on researcher
sensitivity and punctualisation (encapsulation). It is believed that the existing inex-
perience in social sciences could have derived some of these problems. These could
have been overcome differently by experienced researchers in social sciences, as they
have a higher understanding of Actor-Network Theory stages [Wickramasinghe et al.,
2007], such as inscription, translation, and framing.

As previously stated in this paper, certain relations were redefined, such as those
concerning brain assumptions, confounding factors, performance, and trust. These
refinements were performed until reaching saturation. Actors were also grouped in
colours concerning themes found to be intuitive: signal acquisition and life-related
(blue), studies (orange), people and exchanging beliefs (yellow), prospective applica-
tions (green), and brain dynamics that trigger seizures and how to capture its data
(red).

4.2.4 Network study

Then, the network was discussed to make it robust and detect possible conflicts,
irregularities, and missing actors/relations. Note that Actor-Network Theory inves-

tigates the description of the relations, how a network comes to being, and how it
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temporarily holds. The addition or removal of an actor significantly affects the net-
work. Thus, it may fail when dealing with changes by focusing on a stable situation.
As the seizure prediction experience from authors contributes to this work, the
outcome might differ among researchers. Others may include different initial articles
and perform differently on data codification, network refinement, and encapsulation.
Additionally, it is relevant to remember that the network is permanently evolving
as the social reality is constantly changing and is complex [Cresswell et al., 2010].
The assumptions made on brain dynamics were also discussed until reaching a
consensus due to their particular importance. Finally, based on the social network,
a discussion on probable paths for seizure prediction future was made, where several

questions arose.

4.2.5 Guidelines development

At last, four consensual guidelines were developed that may lead to progress in
this area. These were based on the obtained network, its development, and seizure

prediction future discussion.

4.2.6 Interactive presentation

In the end, an interactive presentation was developed, which can be accessed in
https://onlinelibrary.wiley.com/doi/full/10.1002/epi4.12597 in Support-
ing Information. It allows the reader to explore the ecosystem and understand better
the network’s encapsulation. A simplified version of a seizure prediction product pro-
cess is also presented there, from presurgical monitoring acquisition until prospective
application development. Also, the reader is allowed to explore the whole ecosystem

interactively.

4.3 Results

This section presents a summarised version of the seizure prediction ecosystem and
the proposed guidelines. In Appendix E, the social network is provided in full
detail. It is relevant to note that encapsulation aspects, other details, and a step-
by-step product design explanation are presented more intuitively in the interactive
presentation. The reader is allowed to explore the whole ecosystem interactively.
This section also focuses on the findings related to clinical trials, explainability, and

interpretability.

4.3.1 Seizure prediction ecosystem

Figure 4.2 depicts the obtained social network, which describes the relations between
actors. Actors (x) and relations (z-y) are named with numbers and grouped in

colours to provide a better understanding. This section will explain these relations
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while deepening parts that require more detail. In the end, this section provides

guidelines to help authors design their research.

The ecosystem begins with a DRE patient (1). Years after being diagnosed with
DRE, a patient is referred to an epilepsy centre to undergo presurgical monitoring
(5). The EEG signal (4) is acquired to inspect brain activity to localise the epileptic
focus. If easily localised, removing the epileptic region is a possible solution [Engel,
2016, Mormann et al., 2007]. This data will be stored and constitute retrospec-
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tive data (7). The majority of databases available to perform academic studies (8)
concerns presurgical monitoring conditions.

Studies try to capture and understand brain dynamics to predict seizures (8- -4).
Inevitably, researchers make several assumptions (Appendix F for more information)
when designing a new study. These may result from the used mathematical mod-
els, available data and other limitations, or even reflect the researcher’s knowledge
concerning brain dynamics (8--4). These studies must also envision a real appli-
cation scenario by simulating a prospective scenario (8--15). Thus, studies must
then comply with some requirements (9), have appropriate design parameters (10)
concerning the real application, propose a discriminative model (11), and discuss
its performance (12). Model design (19) is one of the most explored topics (which
includes here preprocessing, feature extraction, and model training). A model can
be characterised according to computational complexity (18) and abstraction level
(20).

To start a clinical trial, trust (13) is necessary. Data scientists and clinicians
need to find a given methodology trustworthy. There is a need to ensure patient
safety, model robustness, and avoid bias. High performance is a necessary condition
(12—13), but it is not enough. It is also needed to explain the developed model’s
decisions (19—13) to ensure safety and model effectiveness. Note that, for the par-
ticular case of seizure prediction, although it is required to know how to explain the
model’s decision, it may not be necessary to use intrinsically interpretable models,
as seen in the following sections with the Neurovista Advisory System [Cook et al.,
2013].

For clinical trials, this work argues the possibility of using complex prediction
models, including black-box systems to some extent, as long as authors provide ef-
forts to avoid data bias, ensure patient safety, and explain their models’ decisions.
Furthermore, explanations not only increase trust and mitigate scepticism on ar-
tificial intelligence algorithms, but they can also deliver new knowledge on brain
dynamics (19- -4).

Concerning legislation (17), the 2018 General Data Protection Regulation (GDPR)
also promotes the delivery of model explanations (not necessarily intrinsically inter-
pretable models). Current legislation should be seen as a reinforcement of safe
methodologies that considers patients’ needs and well-being (13—17). When data
scientists and clinicians trust the proposed methodology, the ethics committee can
accept a clinical trial (13—3). Patients are invited to participate in clinical trials
(16—3) in this case.

After the ethics committee’s approval and patients’ agreement to volunteer, a
clinical trial starts. The prospective data (14) later becomes retrospective (7) and
is used in an indefinite number of studies. During the acquisition of the prospective
data and by timely anticipating seizures, it is possible to apply an intervention in

real-time. To do this, researchers must guarantee that the false-positive interven-
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tions are not harmful to the patient (16—15). The intervention must also comply
with industry standards and safety measures (17). It must have fast processing, no

hardware problems, and easy placement and removal.

4.3.2 Studies guidelines

By describing and discussing all relations, four guidelines were inferred that might
help authors guide their research on seizure prediction. Figure 4.3 depicts a produc-
tion process of a hypothetical device. Firstly, authors perform studies with retrospec-
tive data, evaluating performance and the quality of given explanations. Clinicians
and data scientists trust models’ decisions when these are human-comprehensible,
also increasing the confidence of the volunteering patients. In this case, an ethics
committee may have strong reasons to approve a prospective study with an inter-
vention system. Finally, the built device reaches its goal: to improve the life of DRE
patients.

The first guideline (G1) concerns undertaken assumptions on brain dynamics,
which differ between studies due to available data and used methodology. Authors
should state their assumptions regarding brain dynamics before presenting the math-
ematical tools used in data analysis. Experienced researchers may understand what
is at stake. However, others may benefit from the assumption statement by gaining
faster insight, enabling easier comparison among studies, and understanding lim-
itations. For instance, authors claim that tackling confounding factors increases
performance, but believing in a direct causal relation may be naive. Reducing con-
founding factors does not increase performance per se but rather improves the ex-

perimental design and study requirements by improving assumed brain dynamics

Ethical Retrospective Explanation Signal Patient
Committee Data Acquisition
Signal Academic Trust Prospective
Acquisition Studies Data
Pre-Surgical Performance Clinicians Prospective
Monitoring and Ethics Application
Committee
3 2 5 19 13 3 2 14 15 16

Gl

Clearly state all
undertaken brain
dynamics
assumptions

Figure 4.3: A product process for a seizure prediction prospective application, while show-
ing the obtained guidelines concerning designing academic studies.
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(8- -4), namely in model design and problem definition. Similarly to confounding
factors, aspects such as problem definition and system design parameters encounter
the same problem.

The second guideline (G2) concerns stating the prospective applications envi-
sioned with the designed experiment (8--15). It helps readers and authors under-
stand what is at stake concerning system parameters, data type, and envisioned
intervention. For instance, most seizure prediction studies report optimal Seizure
Occurrence Period (SOP) periods for 30-60 minutes. Nevertheless, the RNS®system
is programmed to make electrical discharges up to 5000 ms [Sun and Morrell, 2014].
For closed-loop systems, these SOP intervals are too long to deliver an effective in-
tervention. Additionally, many authors use short Seizure Prediction Horizon (SPH)
intervals in scalp EEG studies [Assi et al., 2017]. In these cases, an SPH of 10 seconds
or even 1 minute is not enough for taking action after an alarm, such as reaching a
secure place or taking rescue medication. For example, diazepam rectal gel (the only
Food and Drug Administration (FDA) drug approved for seizure cluster and which
might be tested as prevention) takes 5-10 minutes to work [Dreifuss et al., 1998]. In
comparison, oral diazepam or lorazepam takes 15 minutes [Foundation, 2020]. This
guideline would stimulate discussion regarding study limitations, as well.

The third guideline (G3) is related to using methodologies that have been clini-
cally approved as a gold standard for comparison. Reporting only sensitivity, speci-
ficity, and prediction above chance level might be limited, as these metrics strongly
depend on data and may not explicitly show progress. Authors should compare
their approaches with the ones already clinically approved. This comparison should
not only be based on performance but also explainability. The latter leads to the
essential guideline (G4): researchers should focus on explainability (19) to promote
trust among experts. It would be interesting to, at least, present a concrete example
of model decisions throughout time. This way, it would demonstrate how a model
could explain its predictions to an expert as a data scientist/clinician (application

level) and a patient (human-level).

4.3.3 The importance of how explaining decisions

After a proper studies comparison, one can ask what a good performance is or even
inquire about the minimum performance that justifies the design of a clinical trial.
A proper methodology is one which researchers trust. In literature, trust seems to
be represented by literature convergence and reproducibility, where studies report
high performance (12—13) and comply with consensual study requirements (9- -
13). By analysing data from longer recordings and/or a higher number of patients,
trust increases as the testing data are more likely to represent real-life conditions

[Kuhlmann et al., 2018b].

High-level abstraction models may potentially handle complex dynamics but re-
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quire strong efforts toward providing explanations (19--20). Current clinical knowl-
edge of physiology should be the source of explanations and the basis for new findings
(19- -4). As an explanation is an exchange of beliefs [Lombrozo, 2006], its acceptance
may differ among patients, clinicians, and data scientists.

Although a given methodology eventually makes incorrect decisions, researchers
can still trust it if one can explain its decisions (19—13). A great scepticism concern-
ing ML and high-level abstraction models may be due to the difficulty in delivering
explanations about models’ decisions [Molnar, 2019]. Although authors and/or clin-
icians are more willing to trust black-box models when they make correct decisions,
wrong ones lead to mistrust because there is no human-comprehensible explana-
tion [Freestone et al., 2017].

The phase IV Neuropace RNS®system [Sun and Morrell, 2014] (NCT00572195)
can use up to two independent detections, which are highly configurable and ad-
justed by the physician, which ensures patient safety. Each detection performs a
threshold decision based on a given extracted feature (line-length, bandpass, and
area) by comparing the current analysis window with another considered to have
interictal activity. This is the most explainable and straightforward strategy that
is possible to obtain. One can fully understand the underlying mechanisms be-
hind each decision. The phase I NeuroVista Seizure Advisory System [Cook et al.,
2013] (NCT01043406) is more complex, using a preprocessing step, extracting sim-
ilar and intuitive features (line-length, Teager-Kaiser energy, and average energy),
and training a ML model that produced a measure of seizure-risk which concerns
a seizure-susceptibility state. This model uses as input the best 16 features (from
a set of 16 channels X 6 filter/normalisation options X 3 analysis methods), and it
involved ten layers (creating different decision surfaces), being inspired in k-Nearest
Neighbours (kNN) and decision tree classifiers, where each layer considers a differ-
ent seizure-risk related to its proximity to a seizure event. This algorithm is more
complex and not fully transparent. In other words, researchers do not understand
its underlying mechanisms, despite using kNN and decision tree classifiers (which
may be intrinsically interpretable when using a reduced set of features). Calculating

210 partitions (de-

seizure risk in a 16-dimension feature space further divided into
cision surfaces) is not human-comprehensible. Nevertheless, the extracted features
are clinically intuitive, and the model decision can produce a human-intuitive out-
put explanation of the obtained seizure risk. It simultaneously compares the current
analysis window with several data distributions whose time proximity to a seizure
(and therefore, seizure risk) is considered. Performing multiple data-distribution
classifications may be more robust to data bias and noise. The authors also ensured
patient safety: firstly, they accessed model performance on pre-acquired patient-
specific data and secondly, only patients with satisfactory performance received the
advisory system.

These two clinical trials demonstrate that, despite all the scientific community
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efforts to develop complex models and consequent increase in performance, it may
be necessary for a fully explainable model to provide trust. Additionally, the Sei-
zure Advisory System clinical trial demonstrates the possibility of using models
that are not necessarily intrinsically interpretable, as long as they produce human-
comprehensible explanations while ensuring patient safety, handling data bias, and

achieving model robustness.

4.4 Discussion

Despite useful for clinicians and patients to understand this ecosystem, this study is
directed to researchers who develop prediction approaches to have a higher chance
of clinical acceptance. Providing a comprehensible overview of all the ecosystems
was difficult due to the author’s data science/clinical background. Hence the nat-
ural bias/emphasis on academic studies. Although this work’s limitations toward
qualitative research tools have already been mentioned, it is relevant to stress its
importance in the discussion as it constitutes a study limitation. For future work,
interviews may be performed to provide possible paths and sub guidelines from the
obtained ones. Appendix G presents a series of questions that arose from describing
this ecosystem and may be desirable to tackle.

Regarding guidelines, G'1 improves methodology comparison while delivering a
deeper understanding of study limitations to clinicians (regarding assumptions on
the underlying physiological mechanisms). For instance, it is interesting to note
that, despite most authors with retrospective data using the preictal concept as
a point of no return, the two clinically approved studies use seizure susceptibility
instead, which shows potential for seizure forecasting. Forecasting is different from
prediction, as it shifts away from whether a seizure will occur or not and focuses
instead on identifying periods of a high probability of seizure occurrence [Dumanis
et al., 2017]. Despite this study’s particular emphasis on seizure prediction, these
guidelines and conclusions can be adapted and, thus, hold for seizure forecasting
(see Appendix H).

G2 increases the author’s comprehension of the limitations of signal acquisition
methods and patient consequences associated with the obtained specificity. Further-
more, increases in model performance at the cost of developing systems with unreal
parameters may be questionable [Assi et al., 2017, Gadhoumi et al., 2016a]. Although
large seizure occurrence windows may translate into higher performance, the inter-
val to accept true alarms is larger. For the case of a warning system, researchers
need to consider the levels of stress and anxiety induced on patients or the conse-
quences of frequent intake of rescue medication [Gainza-Lein et al., 2017, Scheepers
et al., 2000, Tasker, 1998]. There is also the need to understand how /if closed-loops
intervention systems can be used with significantly long occurrence periods [Sun

and Morrell, 2014]. Authors develop methodologies that may lack practical applica-
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tion by only considering an increase in performance as one of the primary research
goals. Although some studies may have a primary goal of increasing knowledge on
brain dynamics, researchers should clearly state limitations towards real applica-
tion. Based on this, authors should be advised to study the patient consequences
that arise from a given seizure intervention system by defining a maximum number
of false alarms. For a warning device, the literature has pointed to a maximum of
0.15 in False Prediction Rate per hour (FPR/h) [Winterhalder et al., 2003] and a
minimum of 90% sensitivity [Schulze-Bonhage et al., 2010]. For more details and to
better understand what an acceptable performance for a clinical setting could be,

see the Appendix I.

Legislation and industry standards can be understood as keepers of best practices
on patient safety and trust among all actors. A holistic understanding of trust,
explainability, and performance when developing a seizure prediction methodology
may be crucial for this ecosystem. In 2007, [Mormann et al., 2007] declared that
algorithms were still too limited in performance to justify enrolling in clinical trials
using responsive stimulation. Although this paper is one of the most influential
in seizure prediction, the first clinical trial (a warning system) [Cook et al., 2013]
started only three years later, in March 2010 and was published in 2013. With this,
it is possible to claim the following: despite some authors advocating performance
limitations to justify clinical trials, these were performed in the past and continue
to be. Thus, a limited performance to justify a clinical trial may be misleading.
Clinical trials continue to be performed (as in the case of SeizelT2, which ended
in 2021) because researchers and ethical committees find them necessary, existing a
favourable benefit /risk ratio. There is an ongoing necessity to perform clinical trials,
especially to avoid publication bias. In the literature, it is easy to find prediction
performances that are overestimated as authors, in some cases, only report the best
results. When a methodology appears promising, it must be tested in different

datasets and contexts.

Moreover, the first clinical trial using responsive stimulation (phase III RNS®System
Pivotal Study, NCT00264810) started in 2005, leading to the phase IV clinical
trial (RNS®System LTT study, NCT00572195) that started in 2006. All current-
generation of clinically approved studies and intervention devices use the detection
of features alone [Freestone et al., 2017], which demonstrates the importance of ex-
plainability. Other examples are present in the literature that arose during discussion
as in 2014, [Teixeira et al., 2014a] tested the Brainatic, which is a real-time scalp
EEG-based seizure prediction system, approved by the Clinical Ethical Committee
at the Centro Hospitalar e Universitario de Coimbra. They computed 22 univariate
features per electrode and used non-interpretable models, such as support vector
machines, multilayer perceptron, and radial basis functions neural networks. Based
on this, increased performance cannot be the single criteria for a favourable ethics

committee decision. These examples show the existence of room for improvement,
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possibly by exploring more complex but still explainable systems. For instance, the
RNS®system might benefit from a more robust approach to capture dynamics before
a point of no return [Mormann et al., 2007]. Towards this, more studies, such as
the one by [Sisterson et al., 2020], need to be performed to assess the algorithm
effectiveness of responsive neurostimulation. Conclusively, as these methods have
been clinically accepted and since a gold-standard comparison method is missing,
they should be used for performance comparison and decision explanation.

Computational power has increased in recent years, allowing DL approaches in
several areas. Seizure prediction is no exception [Freestone et al., 2017, Nurse et al.,
2016]. As these approaches, along with rigorous preprocessing [Freestone et al., 2017]
have a higher potential to handle brain dynamics, and as intrinsically interpretable
models may not be required to undergo a clinical trial, there is an urgent demand
for developing explainability methods that work on top of black-box models.

There might be a tendency to argue that requiring an explanation will limit
the model’s performance (hypothetically 12—19). However, explanations may en-
hance the model’s functioning by tackling the incompleteness of problem formalisa-
tion. In medical contexts, for example, a correct decision only solves the problem
partially [Molnar, 2019, Doshi-Velez and Kim, 2017], which may also be context-
dependent, as ethical issues may arise (e.g., choosing between saving a life and pro-
longing the suffering of a patient). Researchers want to simultaneously deepen brain
dynamics understanding, detect data bias, and improve model robustness. There-
fore, it is important to understand possible trade-offs between potentially related
aspects that might not be easily recognised. When considered in an explanation, all
of these improve understanding, which represents a way to promote patient safety
and increases the chance of social acceptance concerning ML use [Doshi-Velez and
Kim, 2017, Schirrmeister et al., 2017].

4.4.1 Translation to other healthcare problems

Despite being oriented to seizure prediction, obtained guidelines and relations may
be easily translated to different healthcare problems. Other conditions may benefit
from a real-life intervention, such as the case of deep brain stimulation in Parkin-
son’s disease [Okun and Foote, 2010]. Computer-aided diagnosis/prognosis software
tools face similar problems on ethics, explainability, and trust, given the high risk
associated with model decisions in healthcare.

These guidelines and methodology can be applied to other healthcare settings us-
ing computer-assisted diagnosis/prognosis. However, guideline G4 may differ among
situations. When predicting hospital mortality after acute coronary events, for ex-
ample, there are established score models and, therefore, using intrinsically inter-
pretable models might be required to integrate existing clinical knowledge [Granger

et al., 2003] better. In the case of seizure prediction, obtaining interpretability can
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become even more complex because (a) there is no clinical annotation on the pre-
ictal period [Mormann et al., 2007] and (b) the EEG is still far from being fully
understood [Kuhlmann et al., 2018b, Freestone et al., 2017]. Therefore, it might be
hard to replicate a methodology as there is no standardised protocol to identify the
preictal period manually. When discussing case studies with clinicians on the EEG
signal, it has been observed that they often tend to point to/annotate spikes-and-
wave discharges, activity increase, and rapid changes in the signal morphology and
associate these with seizure events or seizure susceptibility.

A possible way "to engage in the clinical discussion” would be by using com-
plex models, such as Convolutional Neural Networkss (CNNs) to capture complex
dynamics and then, by delivering (pointing) to the EEG-detected events that were
considered for a given decision. This type of explanation could be performed by,
for example, Local Interpretable Model Agnostic Explanations [Ribeiro et al., 2016],
and should be evaluated beforehand at the application level of explainability by
discussing these detected events with clinicians. This way, researchers might try to
emulate the process of analysis of the EEG of an epileptic patient typically con-
ducted by a clinician. Using such models may also unravel new patterns (EEG
morphologies) that have not yet been associated with epileptic manifestations.

Indeed, the body can be envisioned as a black-box system. In the case of an-
tidepressants, for example, there is still no explanation for the delayed effect of
antidepressant drugs and what neurochemical changes reverse the many different
symptoms of depression and anxiety [Harmer et al., 2017]. In short, researchers
know the inputs (medication) and the outputs (the change in the patients). They
do not fully understand the underlying mechanisms. These drugs are widely used

because they are effective and have a favourable risk-benefit balance.

4.4.2 Study limitations

The most significant limitation was the patient role, as it did not properly include
their agency. The academic community is still far from understanding what it is
like to be a patient: the patients’ expectations are largely different from those of
clinicians and data scientists. There must be a stronger awareness of the active role
that a patient can have in the future.

The case of Dana Lewis and Hugo Campos are examples where the patients might
be able to track their data, analyse it, and, therefore, better control their closed-loop
systems [Lewis, 2019,Chu et al., 2016]. Dana Lewis created the "Do-It-Yourself Pan-
creas System” (#DIYPS), founded the open-source artificial pancreas system move-
ment (#OpenAPS), and advocates patient-centred, -driven, and -designed research.
She created #DIYPS to make her continuous glucose monitor alarms louder and
developed predictive algorithms to timely forecast necessary actions in the future

(https://diyps.org/about/dana-lewis/). Hugo Campos was diagnosed with hyper-
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trophic cardiomyopathy: a disease in which the heart muscle becomes abnormally
thick, which can be fatal. He received an implantable defibrillator, a device that
electrostimulates the heart in case of dangerous arrhythmias. After losing his health
insurance, he bought a pacemaker programmer on eBay and learned how to use it
with a two-week course. Hugo Campos is now a data liberation advocate and leader
in the e-patient movement (https://medicinex.stanford.edu/citizen-campos/).
Article 22 of GDPR provides patients the right to have an explanation for any
algorithm decision and to question those decisions. The complexity of these issues
is worth noting, as this study presents an oversimplification. Patient accountability

and its relation to clinical accountability will undoubtedly be discussed in the future.

4.4.3 Final reflections

The application of ML and the consequent requirements on interpretability /explain-
ability depend on the context and available medical knowledge. For seizure predic-
tion, this work argues the clinical use of DL if researchers put efforts into ensuring pa-
tient safety in each study and clinical trial stage. When ensuring a good risk-benefit
balance for the patient and human-comprehensible explanations are provided, with
patients willing to volunteer, it may even be unethical to limit new methodologies.

Future work should tackle the most relevant questions that arose during the
previous stage by undergoing interviews with clinicians, data scientists, lawyers,

and patients.



Chapter 5

Interpretable evolutionary

algorithms

his chapter concerns the use of Evolutionary Algorithmss (EAs) to develop

Machine Learning (ML) models that are easy to explain. This chapter

also shows how to obtain knowledge on the brain that might be useful to

clinicians. Although the previous chapter 4 concludes that intrinsically interpretable

models may not be necessary to achieve trust and due to existing scepticism on

black-box models, it is desired to understand their potential. Section 5.1 presents

the study context. Section 5.2 details the used methods and materials. Section

5.3 provides the prediction results and how to extract brain knowledge. Lastly,

section 5.4 discusses the obtained findings and limitations, and provides some final
reflections.

The content of this chapter is based on two journal articles published in Scientific
Reports [Pinto et al., 2022, Pinto et al., 2021a]. The presented methodology, discus-
sion, and results are primarily based on the [Pinto et al., 2022] article. The 2022 pa-
per can be interpreted as an extension of the [Pinto et al., 2021a] article. The code for
both articles is available at the Github page https://github.com/MauroSilvaPinto.

5.1 Study context

The most common seizure prediction ML pipeline has two main limitations. Firstly,
feature selection is commonly based on the discriminating power of each feature
individually, or by using wrappers and embedded methods that address synergies
but require a large computational power [Assi et al., 2017, Mormann et al., 2007].
Secondly, this framework is modular and composed of independent stages. Feature
selection is usually not based on the final seizure prediction performance but rather
on distinguishing preictal from interictal independent windows of fixed size. There-
fore, the interaction between stages is not handled. Additionally, a fixed sub-set of

electrodes and features are often considered at a given time instant, not allowing the
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evaluation of lagged values of corresponding features, i.e., not considering temporal
dynamics. Also, the choice of a fixed preictal period follows a grid search approach
of different periods, e.g., 2, 20, 30, 60, or even 240 minutes [Moghim and Corne,
2014, Park et al., 2011].

More recently, Deep Learning models, such as Recurrent Neural Networks (RNNs),
Long Short-Term Memorys (LSTMs) and Bi-LSTM, were introduced in seizure pre-
diction [Khan et al., 2017, Mirowski et al., 2008]. Due to their underlying mech-
anisms, they are more suitable for time-series analysis than traditional classifiers.
Despite the theoretical potential of these models to handle brain dynamics and the
existence of notable efforts to retrieve interpretable insights (where the Electroen-
cephalogram (EEG) signal is no exception [Schirrmeister et al., 2017, Schirrmeister
et al., 2017]), some clinicians may not be willing to make high-stake decisions based
on them [Rudin, 2019]. Low-complexity algorithms with interpretable insights (as
the ones using intrinsically interpretable models), able to provide a deeper under-
standing of the ictogenesis process, may be favoured over others [Gagliano et al.,
2019, Kuhlmann et al., 2018b, Freestone et al., 2017].

To tackle interpretability, synergy concerning features, and interaction between
all pipeline stages, a solution may lie in constructing a search algorithm that selects
a reduced set of computationally efficient and widely used features. This search
algorithm should select features by looking at the pipeline as a whole and not as a
sequence of independent stages. This work proposes an EA to handle this problem,
as these algorithms have become effective for several tasks such as direct search,
optimisation, and machine learning problems [Eiben and Smith, 2003]. They can be
seen as population-based search algorithms that mimic natural evolution by evalu-
ating individuals’ quality through evolution operators (crossover and mutation) and
a fitness function. A population is a group of individuals, where each one is rep-
resented by a point in the search space. The fittest individuals, evaluated by their
fitness function values, tend to survive and propagate the genetic material by repro-
ducing or mutating [Bartz-Beielstein et al., 2014, Eiben and Smith, 2003, Mitchell
and Taylor, 1999].

This study concerns a patient-specific search algorithm aiming at seizure predic-
tion while automatically trying to discover the preictal period based on evolutionary
computation. Each individual in the EA population is a set of five features. Simply
put, the set of features (individuals) that best perform in seizure prediction using
a logistic regression classifier (fitness function) survive and proliferate, while the re-
maining die and do not contribute to propagating their genes, similarly to natural
selection. From a technical ML point of view, this method uses the predictive power
of a set of features and their synergy. From an interpretability point of view, it
tries to provide a deeper understanding of the seizure generation processes by giving
results that can be interpretable and by assessing gene interaction using the aprior:

algorithm, a classical association rule method [Borgelt and Kruse, 2002]. Patient
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comfort was also studied by assessing the electrodes that provide discriminative in-
formation. Higher patient comfort was assumed when promoting solutions that do
not require many electrodes (minimise the number of used electrodes) and focusing
on a particular brain region (minimise the number of analysed lobes). Towards that
end, the developed EA is multi-objective as it searches for the best trade-off between
seizure prediction performance and patient comfort.

This methodology was tested, in a quasi-prospectively approach, using data from
93 patients from the EPILEPSIAE database [Klatt et al., 2012, Ihle et al., 2012]
with several types of focal (temporal, frontal, occipital, and central) and generalised
epilepsy. The envisioned real-life application concerns a patient-specific EEG scalp
system with up to five electrodes to ensure patient comfort. Its preictal period ranges
from 30 to 75 minutes, with an intervention time of 10 minutes for each prediction. It
gives the patient sufficient time to avoid accidents and/or rescue medication intake.
This methodology was compared with a control method, which is an adaptation
from previous seizure prediction studies [Direito et al., 2017, Cook et al., 2013], to

better compare the obtained performance.

5.2 Materials and methods

This work concerns a patient-specific approach, where the following procedure was
applied to each patient: data preprocessing, feature extraction, training and testing,
as depicted in Figure 5.1.

The raw EEG data of each patient was filtered and segmented into non-overlapping
5-second windows from which features were extracted. Next, the first three chrono-
logical seizures were used as input to the Multiobjective Evolutionary Algorithm
(MOEA), followed by the selection of the individuals (set of five features and corre-
spondent preictal period) from the Pareto-front (made of three objectives) with the
best trade-off between objectives (sample sensitivity, sample specificity, and patient
comfort). Then, these five MOEA output features and correspondent preictal peri-
ods were tested with the remaining seizures and compared with the seizure prediction
method used as control. Since some parts of the MOEA are stochastic (initialisation
and evolution operators), a different set of Pareto-optimal solutions can be obtained
for each execution. Consequently, 30 MOEA executions were performed for each
patient. Then, a phenotype study was performed for all patients to understand the
predictors’ decision mechanisms and infer about possible patients’ seizure generation
processes.

Concerning the MOEA output features, note that these were based on the con-
cept of feature construction [Sondhi, 2009, Motoda and Liu, 2002, Liu and Motoda,
1998]. In this work, first-level features concern the ones directly extracted from the
EEG. Then, the second-level ones, which constitute the MOEA phenotype, were

computed by windowing and applying a mathematical operator to these features.
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Figure 5.1: Flowchart of the proposed seizure prediction MOEA for each patient, com-
prising data processing, feature extraction, training, testing, performance evaluation and
phenotype study.

Henceforth, first-level features are referred as features and second-level features as

hyper-features.

5.2.1 Dataset

The patient selection criteria were: i) patients having a minimum of four lead seizures
separated by periods of at least 4.5 hours; ii) patients with EEG scalp recordings,
placed according to the 10-20 system and using a sampling frequency of at least
256 Hz; iii) patients with no more than one hour of EEG data missing for each
seizure. All the analysed data were collected while patients were at the clinic under
presurgical monitoring.

The use of this data for research purposes has been approved by the Ethical Com-
mittee of the three hospitals involved in the development of the database (Ethik-
Kommission der Albert-Ludwigs-Universitdt, Freiburg; Comité consultatif sur le
traitement de l'information en matieére de recherche dans le domaine de la santé,
Pitié- Salpétriere University Hospital; and Comité de Etica do Centro Hospitalar e
Universitario de Coimbra). All methods were performed following the relevant guide-
lines and regulations. Informed written patient consent from all subjects and/or
their legal guardian(s) was obtained to participate. Informed consent was obtained
from all subjects and/or their legal guardian(s) for online open-access publication.

Appendix J provides more information regarding the selected patients.

5.2.2 Preprocessing and feature extraction

All patient data were downsampled to 256 Hz, segmented into 5-second non-overlapping
windows, and filtered with: i) a 50 Hz fourth-order notch filter (to remove the power-
line interference) and ii) a fourth-order Butterworth high-pass filter with a cut-off

frequency at 0.5 Hz (to remove the DC component and minimise motion artefacts).
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Twenty-four linear univariate features were extracted for each time window in
each electrode, 2. These are widely used in the literature [Bulusu et al., 2021, Assi
et al., 2017, Direito et al., 2017, Gadhoumi et al., 2016b, Teixeira et al., 2014b,Rasekhi
et al., 2013] and fast to compute. To understand each feature a priori expected
added value, see Appendix B. It is also important to note that several features would
be of interest [Stacey et al., 2020, Jacobs et al., 2018, Assi et al., 2017, Gadhoumi et al.,
2016b,Bai et al., 2015, Kramer and Cash, 2012, Kramer et al., 2010]. These were not
used as they are not univariate (it would be required to extract a considerably large
number of features for each electrode) and are computationally heavier.

In the time domain, the first four statistical moments (mean, variance, skewness
and kurtosis) and the three Hjorth parameters (activity, mobility and complexity)
were extracted. As for the frequency domain, the following features were extracted:
the relative spectral power of the delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), beta
(13-30Hz), low-gamma (30-79Hz), and high-gamma (79-128Hz) bands, the spectral
edge frequency at three different cut-off percentages (50%, 75%, and 90%), and the
energy of each wavelet coefficient (D1 to A8, using the Daubechies 4 mother wavelet
(db4)).

As the frequency limit of gamma activity is not consensual among the scientific
community, and its division into high-gamma and low-gamma is not uncommon [Jia
and Kohn, 2011], it was decided to divide it. Additionally, the gamma band powers
may likely contain muscle artefacts as these recordings are extracranial. Therefore,
gamma-band powers may not be fully considered as EEG features since these may
represent physiological markers that predict seizures. Some authors [Bandarabadi
et al., 2015b] report the difficulty of removing artefacts without eliminating good

information; therefore, they may use raw signals.

5.2.3 Multi-objective evolutionary algorithm

Figure 5.2 depicts the employed MOEA, based on the Non-dominated Sorting Ge-
netic Algorithm IT (NSGA-II) [Deb et al., 2002]. Firstly, the MOEA was randomly
initialised with a fixed-size population of 100 individuals. Each individual (set of five
hyper-features and a preictal period) is encoded by a chain of characters (genotype),
which is further translated, from the problem context to the problem-solving space,
leading to a possible solution (phenotype).

Then, each individual is evaluated according to the fitness functions, which are
two measures related to seizure prediction performance (sample sensitivity and sam-
ple specificity) and another for patient comfort (based on the used electrodes and
lobes). Based on the individuals’ fitness values and their spatial spread, two steps are
performed: i) ranking the individuals using non-dominated sorting and the crowd-
ing distance [Deb et al., 2002], and ii) choosing half of the individuals (parents) to

reproduce (variation operators) by using binary tournament selection (parent selec-
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Figure 5.2: (a) The proposed MOEA configuration, (b) Pareto-front definition, and (c) the
Decision Maker selection on the Pareto-front for selecting the individuals after the MOEA
execution, where (b) and (c) reflect a problem formulated to simultaneously maximise all

the objectives: two on seizure performance (sample sensitivity and sample specificity) and
another on patient comfort.

tion) until generating 100 offspring. As variation operators, a recombination with a
rate of 0.90 (90% of times, two parents produced an offspring) and a mutation with
a rate of 0.015 (1.5% of offspring suffered a mutation) were used. This mutation
rate was based on the number of genes per individual. Then, the individuals with
the best rank and higher spread among parents and offspring were selected. These
comprise the next generation of individuals. Evolution occurred over 50 generations.
After the last generation, from the individuals with the best trade-off between the
three fitness functions (Pareto-front or non-dominated individuals), only those with
a seizure prediction performance higher than a determined threshold are saved.
Appendix K provides more information on the MOEA and a detailed explanation
of the non-dominated sorting and crowding distance. Since a reduced computational
time is needed to attain real-time applicability, this work was aimed for a fast con-
vergence while achieving adequate solution diversity. Thus, that was the reason for
opting for NSGA-II. Although this strategy may not usually produce an optimal so-
lution, it is believed to approximate the global optimum within a reasonable amount
of time [Deb et al., 2002, Cormen et al., 2001]. Each execution lasted approximately
two hours on a machine equipped with an Intel Core i5-3230M 2.6GHz processor,

8GB of RAM, running on macOS Mojave 10.14.6 and using Python 3.7 on Spyder
4.0.1.
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5.2.3.1 Encoding and variation operators

Figure 5.3.a) shows the idea behind genotype. A population is comprised of a group
of individuals, where each is constituted by five hyper-features. Each hyper-feature
is encoded with 13 genes: nine for the first-level feature (active feature group, active
time feature, active frequency feature, active frequency band feature, statistical
moment, Hjorth parameter, relative spectral power, wavelet coefficient energy, and
spectral edge frequency), and a delay (minutes of a given feature before the preictal

period), electrode, mathematical operator, and window length.

The mapping from genotype to phenotype consists in: i) finding the first-level
feature that will be decoded to the phenotype for each hyper-feature, using the men-
tioned nine genes (as shown in Figure 5.3.b)); ii) constructing each hyper-feature
by windowing the decoded first-level feature from the given electrode within the
window length gene and, afterwards, by applying the respective mathematical op-
erator; and iii) placing each hyper-feature chronologically in a timeline using the
delay gene, according to the preictal period. This allows analysing a sequence of
events with a given interval instead of the traditional analysis of feature alterations
in that same interval. Since the preictal period is now included in the genotype, the
MOEA also automatically searches for the optimal one. After constructing the five
hyper-features and placing them chronologically, it is possible to evaluate a pheno-
type using the fitness function by performing a typical seizure prediction pipeline
(sliding window analysis, classification, and regularisation). See Appendix L for an

example of genotype-phenotype mapping.

Figure 5.3.c) shows all possible values for each gene, along with its neighbour-
hood. The latter is necessary to apply the variation operators, recombination, and
mutation. The neighbourhoods were designed by considering the relationship be-
tween gene values (see Appendix N for more details on neighbourhood definition).
Mutation, interpreted as a unitary step that will cause a random and unbiased
change [Eiben and Smith, 2003], occurs in the following form for an individual (see
Figure 5.3.d)): either one of the hyper-features or the preictal period gene is chosen
randomly. When one of the hyper-features is chosen, one gene of that hyper-feature
is then chosen randomly to mutate. If the preictal period gene is selected, its value
will mutate. The remaining hyper-features and genes continue unaltered. Recombi-
nation is a stochastic operator that combines genetic information from two parents

(individuals) into one or more offspring [Eiben and Smith, 2003].

After selecting two parents to reproduce, this operator performs the recombina-
tion of all paired hyper-features. Thus, hyper-feature pairing is the first step and,
then, the recombination operator works at the hyper-feature gene level. Each off-
spring gene value is obtained by choosing a random one belonging to the shortest
path between the correspondent two-parent gene values (see Appendix M for more

details concerning evolution operators and an example for each).
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Figure 5.3: (a) Illustrated scheme of genotype. A population is comprised of a group
of individuals, where each one is constituted by five hyper-features. Each hyper-feature is
encoded with thirteen genes: nine for the first-level feature, delay, electrode, mathematical
operator, and window length. (b) Active feature decoding, or in other words, how to decode
the first-level feature from the genotype. (c¢) Gene’s neighbourhood and all possible values
for each gene, allowing the application of variation operators.

5.2.3.2 Fitness function

Figure 5.4 depicts the evaluation of each individual, which is performed iteratively
(retraining the logistic regression classifier with new seizures) using the metrics typ-
ically used in seizure prediction. The seizures evaluated by the MOEA are referred
to as validation seizures. After the MOEA, the same procedure is used to test new
seizures, referred to as testing seizures (Figure 5.4.a). Thus, for each validation/test-

ing seizure, the hyper-features and labels were extracted from the previous seizures
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through sliding-window analysis using a 1-minute step. Lastly, the feature set was
standardised with z-scoring.

Then, the standardised features were used to train a classifier that balances sam-
ples according to a class weight inversely proportional to its frequency of occurrence.
The chosen classifier was the logistic regression as it is an intrinsically interpretable
model with low computational requirements [Molnar, 2019]. Next, a similar process
was applied to the validation/testing seizure using all the parameters (mean and
standard deviation for z-scoring) and models obtained from training.

Then, the Firing Power [Teixeira et al., 2012] regularisation technique was ap-
plied to smooth the classifier output and to make it more robust to noise. The latter
works as a moving-average filter such that when a given threshold is exceeded, it
triggers an alarm. It was decided not to include the Firing Power threshold in the
MOEA genotype as it would be another parameter to tune and increase computa-
tional time. Therefore, a reasonable value of 0.7 was defined without any tuning.

The seizure prediction models were evaluated using three metrics. Two of them
are based on seizure prediction performance: sample sensitivity SSsgmpie (Equation
2.1) and sample specificity SPsampie (Equation 2.2).

The third metric, Pcf, is related to patient comfort and concerns the number of
different electrodes and their position on the scalp concerning lobes. It was assumed
that more comfort to the patient (Pcf) could be provided by promoting solutions
that do not require a large number of electrodes (Ngjectrodes) and that focus on a
particular region of the brain (minimise the number of analysed lobes Njypes). This
last metric was computed according to the following Equation, where the term 1.25

is just a normalisation factor so that its range is [0, 1]:

N, N,
PCf _ 125(1 B electrodes X 1V Lobes ) (51)
Nelectrodes X 5featu7"es

This way, it is obtained a Pcf = 1 when only one electrode is used (Ngjectrodes = 1

and Npopes = 1). When five electrodes from different five lobes are used (Nejectrodes =
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5 and Npopes = 5), a Pef = 0 is obtained. This aims to minimise the number of
electrodes and the number of used lobes to maximise comfort. It is worth noting
that there were other possibilities to handle spatial closeness, such as computing
the total distance of each electrode to the remaining ones in the form of a graph.
Nevertheless, this option was chosen to understand a possible relation concerning
brain lobes.

After each MOEA execution has been completed, a Decision Maker (DM) was
implemented to select which individuals from the set of Pareto-optimal solutions will
be used in the testing phase. The DM selects individuals with a sufficiently high
fitness score for the seizure prediction objectives (sample sensitivity and specificity)
to use for testing. This restriction was implemented because even though the MOEA
finds solutions corresponding to the analysis of a low number of electrodes/lobes,
some of these Pareto-optimal solutions may present inadequate classification perfor-
mance within the training set. Thus, a minimum fitness threshold of 0.9 was set for
SSsampie and S Psgpmpie metrics. When no solutions could be selected within a run,
the threshold was decreased further to 0.8 to guarantee the selection of at least one

individual. No minimum threshold was defined for patient comfort.

5.2.3.3 Training, testing, statistical validation, and performance com-

parison

In a real-life application, the MOEA would only be executed once, where it would
select one individual from the Pareto-optimal set to predict new seizures. There is
a need to understand how stochasticity affects performance. Thus, the MOEA was
executed 30 times for each patient and then tested on unseen data. The testing
phase was performed using the same pipeline for the fitness function (see Figure
5.4.b.) where it was also included a refractory period that follows an alarm with the
duration of the preictal time. These periods were excluded from the False Prediction
Rate per hour (FPR/h) metrics so that there was only considered the period during
which false alarms can be triggered [Mormann et al., 2007].

The models’ performance was assessed by calculating seizure sensitivity SS
(Equation 2.3) and FPR/h (Equation 2.4). Then, a Surrogate analysis [Andrze-
jak et al., 2003] was performed to understand if the methodology was performing
above the chance level. These metrics were also obtained for a control method in-
spired by a common machine learning prediction approaches, particularly in the
work of [Cook et al., 2013]. Although the methods were built based on data from in-
tracranial electrodes, it is the most relevant clinical trial that used an ML approach
on a warning device. See Appendix P for more details on the control method.

The obtained patient models were statistically validated as follows: a method
performs above the chance level when its seizure sensitivity is higher than the sur-

rogate one, with a statistical significance of «=0.01 using a one-tailed t — test. It
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was also verified if the set of validated patients had statistical significance in the
same way as [Alvarado-Rojas et al., 2014]. Considering a statistical significance of
a=0.05, the probability of observing for at least i of I (patient-models) executions

that outperformed the surrogate predictor was given by:
L1\ |, .
Pbinom(iala 04) = Z (,)oﬂ(l —a)(l_]). (52)
— \ j
j=t

5.2.3.4 Phenotype study

A phenotype study was performed to analyse the overall independent influence of
each gene value on the population. Thus, a binary value (0 or 1) was assigned for each
gene value that corresponds to its presence in a hyper-feature. The presence binary
value was calculated for all hyper-features from selected Pareto-optimal individuals
(see Appendix O for more details and mathematical formulation).

However, these metrics cannot provide information on interaction, i.e., informa-
tion regarding which features always appear in the presence of others. Therefore,
it was also implemented the apriori algorithm [Borgelt and Kruse, 2002] that aims
at finding frequent patterns in the obtained phenotypes (association learning). By
using association rules, the goal was to find subsets of gene values frequently appear-
ing together and, therefore, have a high probability of describing seizure generation

processes.

5.3 Results

This section is divided into two subsections. The first presents the results for the
MOEA and control method, and the second, the phenotype study.

5.3.1 MOEA and control method performance

Figure 5.5 depicts the results for the testing seizures, both for the MOEA and the
control method, along with patient stratification. Colour represents seizure sensi-
tivity (0-1), while the diamond-shaped marker represents the patient models that
outperformed the surrogate predictor, or in other words, performed above chance.
The MOEA performed above chance for 30 patient models (32%), while the
control method validated 33 patients (35%). By inspecting Figure 5.5 and the test
results in full detail (see Appendix Q), it is possible to see that the MOEA obtained
lower sensitivities and lower FPR/h values when compared to the control method.
Although the MOEA obtained six models that were statistically validated while
presenting an adequate FPR/h (<0.15 [Winterhalder et al., 2003]), high sensitivity
is missing for claiming its use in real-life. However, the control method presented
models for eight patients (202, 3300, 6000, 8902, 21902, 26102, 1310803, 1322803)
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Figure 5.5: The test performance of all patient models, for the MOEA and the control
method. Colour represents the seizure sensitivity, while the diamond shape means that the
models performed above the chance level. On the top line (Strat.), patient stratification
is presented concerning seizure classification (*, Focal Onset Aware (FOA) or Focal Onset
Impaired Aawareness (FOIA)/focal to bilateral tonic-clonic seizures), sleep stage at seizure
onset (+, awake/sleep), type of epilepsy (., focal/generalised) and annotated activity pattern
(x, rhythmic/non-rhythmic), and seizure focus that is lobe-specific (temporal (T), frontal
(F), central (C), parietal (P), occipital (O)). Patients in bold achieved performance above-
chance for either the MOEA or the control method.

with maximum sensitivity and adequate FPR/h. Nevertheless, it is worth noting
that seven of these patients only had one seizure for testing, while patient 8902 had

two.

It is important to mention that these methods might be overfitted (overesti-
mated) to the training seizures, as the training results are considerably higher than
testing. While the average fitness in the validation seizures (Appendix Q) was
0.9740.02 for sample sensitivity and 0.9640.02 for sample specificity, for testing, the
MOEA obtained an average seizure sensitivity of 0.16+£0.11 and an average FPR/h
of 0.21+0.08. Concerning patient comfort (Appendix Q), it is worth noting that the
ideal scenario of having only one electrode was not achieved in any patient model.
In fact, the patient comfort objective ranged from 0.50+0.19 (patient 111902) to
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Table 5.1: Test results for the overall set of patients (sensitivity, FPR/h, and ratio of
patients performing above chance, both for the MOEA and the control method), and for
stratified sets of patients. Stratification concerned patients with the following criteria: i) fo-
cal epilepsy patients (seizure focus in only one hemisphere), ii) generalised epilepsy patients
(seizure focus in more than one hemisphere), iii) temporal lobe epilepsy patients (seizure
focus only in the temporal lobe), iv) patients whose seizure focus is not lobe-specific, v)
patients suffering only from FOA/FOIA seizures, vi) patients whose surgery was offered
(localised focus), vii) patients whose surgery was not offered (not localised focus), viii) pa-
tients that only experienced seizures while awake., and ix) patients with pre-seizure activity
annotated as rhythmic by clinicians.

MOEA Control
. . Number of Patients performing Patients performing
Slitiiention Patients 5B HERA above chance (0-1) =5 HER/L above chance (0-1)
Focal Epilepsy 55 0.15+0.12  0.2140.08 0.33 0.31+0.39  0.67+0.92 0.35
Generalised Epilepsy 33 0.1740.11  0.21+0.09 0.33 0.35+0.37  2.18+7.13 0.36
Temporal Lobe Epilepsy 61 0.164+0.12 0.2240.09 0.30 0.324+0.40 1.54+5.30 0.33
Non-specific lobe 21 0.154+0.08 0.214+0.06 0.38 0.384+0.37 1.01+2.31 0.48
Only FOA or FOIA seizures 59 0.174+0.12  0.2240.07 0.39 0.28+0.38 0.82+1.57 0.31
Localised focus 49 0.1540.10  0.22+0.08 0.31 0.28+0.36  0.66+0.91 0.29
No localised focus 44 0.154+0.12 0.20+0.08 0.30 0.37+0.39 2.18+6.33 0.45
Awake-only onset seizures 29 0.16£0.09  0.21%0.07 0.31 0.33£0.38  1.05£2.04 0.38
Rhythmic activity only 59 0.15+£0.11  0.22+0.09 0.29 0.32£0.36  1.54+5.45 0.37
Overall 93 0.16+£0.11  0.214+0.08 0.32 0.32+0.38 1.31+4.43 0.35

0.86+0.11 (patient 10962). Thus, the MOEA opted for three to four electrodes to
capture pre-seizure brain dynamics.

Table 5.1 shows test results for the set of patients and patient stratification. This
stratification was based on seizure classification FOA or FOIA only), seizure activity
(only rhythmic), vigilance state at seizure onset (awake only), seizure focus in one
hemisphere/more than one hemisphere (focal/generalised epilepsy), temporal lobe
epilepsy, seizure focus not restricted to a single lobe, and concerning surgery decision
(localised /not localised). Due to the small number of patients, other stratified groups
were not considered. For example, there were only seven patients available with
frontal lobe epilepsy. In the stratification regarding seizure classification, activity,
and vigilance state at seizure onset, a patient was selected if a given criterion was
met both in the training and testing seizures.

Seizure classification and the patients with a seizure focus in non-specific lobes
were the only criteria that considerably improved the percentage of validated patient
models (39% and 38%, respectively) for the MOEA. Moreover, in the FOA or FOIA
seizures stratified groups, the ratio of validated patient models was higher on the
MOEA methodology than on the control.

5.3.2 Phenotype study

The patients’ phenotype was analysed to demonstrate the MOEA potential to un-
ravel pre-seizure knowledge. This subsection presents a phenotype study for all
patients, which explores gene importance (Figures 5.6 and 5.7). The results indi-
cate that most solutions were obtained from three electrodes across two lobes and
localised in two regions (three regions were considered: left and right hemispheres
and the central part).

An additional analysis was also performed (see Figure 5.8): the inspection of the
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Features study for all Patients
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Figure 5.6: Phenotype feature study for all patients. The presence of gene values is
presented in blue. The simultaneous presence of different gene values is presented in orange.
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Figure 5.7: Phenotype temporal and spatial study for all patients. The presence of tem-
poral (window length and time instant) and spatial (electrode, lobe, and hemisphere) gene
values are presented in blue. The simultaneous presence of different gene values is presented
in orange.
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Spatio-temporal most common gene solutions, within each patient,
for all Patients
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Figure 5.8: The most common gene solutions, for each patient, for all patients concerning

the number of simultaneously used different electrodes, lobes, regions, window lengths, and
delays. The most common preictal period for each patient is also presented.

most common solutions within each patient, particularly the obtained preictal period
and the number of different electrodes, lobes, regions, window lengths, and delays.
With this analysis, it is possible to confirm that most patients had a set of three
electrodes, two lobes, and two regions as the most common solution. Moreover, no
patient had the same window length for all features and used at least three delays.
The most common preictal periods were 50 and 55 minutes, despite some presenting

a 60- or a 45-minute one.

Additionally, gene interaction was studied by showing which gene values appear
along with other gene values and how to present them intuitively. Figure 5.9 (a)
represents the gene presence (red colourmap) and gene interaction (gray colourmap),
and (b) represents brain connectivity. Gene interaction was calculated using the
apriori algorithm [Borgelt and Kruse, 2002]: first, frequent associations were found
between gene values, and then the association lift measure [Borgelt and Kruse,
2002] was used to map interaction strength. Lift ratios larger than 1.00 were used,
which means that the two association items are more likely to appear together than
separated. The larger a lift ratio is, the more significant is a given association rule.
Brain connectivity was computed using association rules between electrodes and

association lifts higher than 1.0.

The most important features were Spectral Edge Frequency (SEF) 75, Hjorth
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Figure 5.9: Gene interaction study for all patients. (a) Gene presence (red colourmap)
and gene interaction (grey colourmap) in a chord diagram plotted using MNE Python li-
brary [Gramfort et al., 2013]. Gene presence is the ratio of times a given gene is present.
Gene interaction is given by summing the association lift measures calculated with the apri-
ori algorithm and then normalised to a 0-1 scale. (b) Brain connectivity was plotted using
the Nilearn Python library, and the 10-20 system electrodes were converted to the MNI
coordinates [Okamoto et al., 2004]. Node size corresponds to the electrode presence, while
edge colour and thickness provide connection strength (association lift). Node colour repre-
sents brain lobes (blue: frontal, orange: central, green: parietal, black: occipital, and red:
temporal). Apriori algorithm parameters: minimum support of 0.07, minimum confidence
of 0.10, and minimum lift of 1.00.

Mobility / Variance, and skewness. These features have the highest gene presence and
present the highest number of strong interactions. The same gene interaction study
was conducted for the electrodes (with a prevalence of C3, C4, CZ, PZ, and Fz)
and preictal periods (prevalence of 45 to 75-minute intervals). Concerning window
length, all windows were present in phenotype, with a higher frequency observed

for the 10- and 15-minute windows. Gene interactions between feature-to-feature,
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electrode-to-electrode, and window-to-window genes were also found. The most
robust relations were observed for the window-to-window gene interactions.

These findings demonstrate the importance of simultaneously analysing differ-
ent time windows. It is possible to obtain a similar conclusion by inspecting Figure
5.7, where the MOEA chose different delays about 99% of the times and 99% of
the times concerning different window lengths. Electrode-to-electrode interactions
were also observed, which can be interpreted as a manifestation of brain connec-
tivity. Some connections arise across the central, frontal, and parietal lobes. The
whole-brain state’s importance demonstrates the difficulty of finding a good set of
predictive features while providing maximum patient comfort (minimising the num-
ber of electrodes and restricting electrode placement region). In the case of this
work, in addition to having patient comfort as an objective of the MOEA, it was

considered pertinent to inspect brain activity across different lobes and hemispheres.

5.4 Discussion

Despite the control method being marginally better than the proposed MOEA in
terms of validated patients, it is believed that the MOEA has potential and brings
added value. It is interesting to verify that only nine patients had both methodolo-
gies (MOEA and control) performing above chance. It was possible to find statisti-
cally validated models for 54 patients (58%). Of these 54 patients, 21 (/38) were
only validated by the MOEA. These results suggest the need to vary the selected
features and classification models and use significantly different methodologies in a
complementary way to capture patient-specific pre-seizure patterns. Moreover, from
the 33 validated patients by the control method, six (1328603, 1325603, 1308503,
109602, 98102, 71802) presented an FPR/h>1.50, and ten patients presented an
FPR/h>1.00 (1328903, 1328603, 1325603, 1308503, 109602, 98102, 73002, 71802,
71102, 50802). In the MOEA, no patient presented a mean FPR/h higher than
0.37, although the sensitivity values were significantly lower. Lastly, the obtained
model from the control methodology is a random forest with several features, ranging
from 3 to 20 features. In fact, the average number of used features was 9.2546.26.
The MOEA only uses five features for computational reasons, limiting the number
of electrodes to five.

Although the evaluation metrics of the MOEA evaluation metrics differ from
the testing ones, high sample performance leads to high seizure sensitivity and low
FPR/h. This evidence can be explained due to confounding factors, as the used
database concerns patients under presurgical monitoring submitted to medication
withdrawal to study the epileptic focus. When exploring the obtained results, there
is an interesting relation between the number of tested seizures and validated patient
models. While there was computed a negative correlation coefficient (p = —0.15)

when analysing the control method, an almost null coefficient (p = —0.01) for the
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MOEA was obtained. These results suggest that retraining the logistic regression
after a new seizure occurs might improve seizure performance. This strategy intrin-
sically assumes that the MOEA selected features can deal with new concept drifts,
and that is why the fitness function is based on iterative training. It is believed these
results would be more significant by iteratively running the MOEA to update the
set of selected features instead of just training the logistic regression with upcoming
tested seizures. By re-selecting new features, it would better handle concept drifts.
This strategy was not performed due to computational costs.

Nevertheless, performing MOEA update for each new upcoming seizure can be
considered for real-time applications, as running one execution of the MOEA takes
approximately two hours, more than twice shorter than the analysed inter-seizure
independence interval (4h30min). This methodology was only tested once, and there
was no attempt to improve results. It was also decided to keep a 10-minute interven-
tion time [Winterhalder et al., 2003] to provide the patient sufficient time to prepare
for a seizure. This period is also compatible with the intake of diazepam rectal
gel (the only FDA drug approved for seizure cluster and which might be tested for
prevention) that needs 5-10 minutes to take effect [Dreifuss et al., 1998].

There are some studies presenting seizure prediction models developed that use
EPILEPSIAE [Bandarabadi et al., 2015b, Teixeira et al., 2014b, Alvarado-Rojas
et al., 2014, Rasekhi et al., 2013]. Some works [Bandarabadi et al., 2015b, Teix-
eira et al., 2014b, Rasekhi et al., 2013] cannot be directly compared to the proposed
methodology, as they developed several models and presented the best ones based
on testing results, which do not correspond to real-life performance. The study
from [Alvarado-Rojas et al., 2014] is comparable with this methodology due to the
following: i) model selection was not based on testing performance but on training
data only; ii) it contains 53 patients (in total 531 days and 558 clinical seizures);
and iii) they used a threshold classifier, which is intuitive, despite the use of fea-
tures that may be difficult to understand from a clinical point of view. Their results
outperformed in seizure sensitivity (= 0.66), but the MOEA was better in terms of
FPR/h (= 0.33) and performance above chance level for a higher ratio of patients
(7/53 ~ 0.13). The proposed methodology is also more intuitive: each model uses a
binary decision based on a threshold (logistic regression) and comprises five widely-
used and intuitive features. [Direito et al., 2017] also allows a good comparison, as
it reports the analysis of the largest group of patients from EPILEPSIAE (218 pa-
tients). Their work also outperformed in sensitivity (0.39), but statistical validation
was achieved for about 11% of the patients. Nevertheless, it is worth noting that
they used a random predictor [Schelter et al., 2006] to perform statistical validation
instead of the surrogate analysis.

It is worth noting that the obtained performance is still far from being ideal for a
real-time application, despite the ratio of validated patient-specific prediction mod-

els remaining similar to the first published paper from this methodology [Schulze-
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Bonhage et al., 2010]. It is worth noting that three patients (16202, 60002, 98202)
of [Pinto et al., 2021a] were discarded in [Pinto et al., 2022], as the correspondent
recordings presented significant gaps of missing data (over one hour). In terms of
sensitivity, the results were also not satisfactory. Concerning FPR/h, the new results
were better. Due to this, these models might not fully capture the complexity of the
seizure generation processes. Results also changed within the same patient when
comparing both works. Patient 55202 is one example: it presented significant EA
results, but not with the MOEA. The first 60% of seizures were used in [Pinto et al.,
2021a] to train the algorithm, and the last 40% were used for testing. In [Pinto et al.,
2022], since it was desired to have more testing seizures, the first three seizures were
used to train the algorithm, and the remaining ones were tested. Patient 55202 has
eight seizures. Therefore, the first EA was trained with five seizures and tested with
three seizures, while the MOEA was trained with three seizures and tested with five.
Performance may increase from having more seizures as training data.

The use of Deep Learning (DL) may theoretically yield improved results by
enabling more complex and hence less intrinsically interpretable models, however,
at the cost of losing clinical interpretation [Freestone et al., 2017]. Furthermore, the
statistical validation method limits these study comparisons with this work. All of
the studies mentioned above use the random predictor [Schelter et al., 2006] while
this study used a surrogate predictor. The latter is flexible, and it adapts better
to the data. Moreover, the choice of the surrogate predictor was bounded by the
considerable number of models obtained for each patient and the small number of
tested seizures per patient. Having few seizures to test the models can significantly
discourage using a random predictor [Mormann et al., 2007, Andrzejak et al., 2003].

As previously mentioned, efforts were made toward building models to be ap-
plied in a real-time scenario, using a 10-minute intervention time and extracranial
recordings. This work focused on scalp EEG as it was desired to understand the
importance of the whole brain state and not only the seizure onset zone. This might
explain that this study of many different types of epilepsy has the same outcome as
the earlier study of temporal lobe epilepsy only. It is worth stressing that iteratively
re-selecting the features by executing the MOEA periodically would consider a dy-
namic epileptic network rather than a static one, which may produce more insights
into the brain dynamics [Kuhlmann et al., 2018b].

5.4.1 Added value

This work aims to comply with current legislation, specifically with the 2018 Gen-
eral Data Protection Regulation (GDPR) for European citizens and the European
economic space. One of the proposed seizure prediction model’s main advantages is
exploring the obtained phenotype to find patients’ preictal patterns.

Including the patient comfort metric has theoretically allowed obtaining more
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comfort EEG configurations for most patients. Since it was obtained a set of three
electrodes for 68 patients (73%) and a set that uses two lobes for 86 patients (92%),
it is possible to claim that patient comfort was relevant within the MOEA. Never-
theless, the used strategy for patient comfort might not be the best. The optimal
way to conclude about the comfort relevance would be the following: i) execute the
MOEA for all patients without the comfort objective, ii) by performing the pheno-
type same study on the number of the electrodes and lobes, and iii) by comparing
the obtained output. It is worth noting that not all MOEA solutions present the
same set of electrodes within each patient. Thus, one can choose one configuration
that was not the most common within the obtained solutions as long as it provides
more comfort and maintains its performance levels. To better understand the rele-
vance of the number of chosen electrodes and lobes, one can visualise a histogram
for all solutions, for all patients, on this paper’s GitHub page. Five examples (pa-
tients 1200, 12702, 55202, 81402, and 1319203) are also presented in Appendix S.
An overall study can also be seen in Figure 5.8, developed using the mode operator
(most frequent value) for each patient. Five patients were chosen as these cases
represent all found case scenarios concerning the electrode/lobe topic. Additionally,
when analysing the number of occupied regions (left hemisphere, central part, right
hemisphere), the majority of occupied regions is two. This limitation must be ad-
dressed in the future by including a factor that minimises the number of occupied

regions in the patient comfort objective.

The impact of patient comfort was analysed on performance. For each pa-
tient, two scatter plots were made to access the patient comfort impact: i) scat-
terplot(comfort, sensitivity) and ii) scatterplot(comfort, FPR/h). The Pearson cor-
relation coefficient between comfort and sensitivity and between comfort and FPR /h
was also computed to assess this impact. Null correlation values were obtained for
sensitivity and FPR/h when analysing the overall correlation between all patients.
However, it was possible to find several case scenarios by analysing each patient sep-
arately. For 33% of patients, overall performance increased with more comfortable
electrode configurations. For 32% of patients, overall performance was maintained,
and for 35% of patients, overall performance decreased with more comfortable con-
figurations. It was considered a sensitivity increase/decrease with comfort when the
correlation between sensitivity and comfort was higher/lower than 0.10/-0.10. When
the absolute correlation value was lower than 0.10, performance was considered to
be maintained despite the used electrode configuration. A similar rationale was ap-
plied to FPR/h: it was considered a significative sensitivity increase/decrease with
comfort when the correlation between sensitivity and comfort was higher /lower than
-0.10/0.10.

A decrease in performance was expected, and maintenance could be expected.
Nevertheless, an increase in performance was not expected. This increase could

be due to the overfitting of configurations using more electrodes. By using fewer
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electrodes, model generalisation may be more easily achieved. Thus, it may be
possible to conclude that, for some patients, the most comfortable configurations
may be used as performance is not negatively affected. The analysis for each patient
can be found on this paper’s Github. Appendix T shows some examples (patients
1500, 58602, and 21602).

5.4.2 Study limitations

Due to computational speed, it was only used the last four hours of data before each
training seizure. This is the most significant limitation of this methodology, as it
is strongly advised [Mormann et al., 2007] to use all available data from training
seizures. Using all available data would increase interictal data representativity
and identify and deal with reoccurring confounding variables. Also, the remaining
parameters, such as the 1-minute step and number of used features, were reasonably
chosen based on the computation time, without any tuning on the test results. Even
though the results may be low in terms of sensitivity and FPR/h, they concern
presurgical monitoring of long-term data without preprocessing, except filtering.

It is also essential to discuss the obtained preictal periods. All patients presented
a similar preictal period of around 50 minutes. All solutions’ preictal periods were
analysed from all patients. Appendix R presents some examples for patients 21602,
21902, 30802, and 32502, which had, as mean preictal period, the following values,
respectively: 49.914+9.55, 51.4049.55, 51.734+8.31, and 53.14+8.70 minutes. The
most frequent preictal period (the mode) for each patient is also presented. The
MOEA can find solutions for many possible preictal periods in all patients. However,
when analysing the most frequent one (the mode) for each patient, it can range from
35 to 60 minutes (see Figure 5.8). An overall can also be seen in Figure 5.8, developed
using the mode operator (most frequent value) for each patient.

It may be desirable to have a specific preictal period for each patient. However,
choosing an MOEA solution may also be helpful based on the patient preferences
concerning a trade-off between performance and the preictal period. More extended
preictal periods may bring better performances but may also cause considerable
stress. It is believed these findings are a built-in bias. One hypothesis may be that
the preictal period changes the number of samples belonging to each class (preictal,
interictal) in problems with high-class imbalance (as is the case of seizure prediction),
and thus sensitivity and specificity might be significantly affected. As sensitivity and
specificity are metrics used in the MOEA, it is very likely the existence of a built-in
bias during the search procedure of the algorithm that drives the preictal period
towards values that optimise different trade-offs between sensitivity and specificity
through class balancing.

Also, 31 of the used patients had only one seizure for testing. This study tried to

make a good compromise between data quality and the number of patients, which
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resulted in 93 patients. Due to data constraints, it is difficult to perform a seizure
prediction study, particularly patient-specific, with such a high number of patients.
If the minimum number of seizures was raised to five, 31 patients would have been
discarded, representing a third of all used patients. On average, there were tested
2.57 seizures per patient.

Lastly, using five electrodes may result in several patients’ severe undersampling
of the underlying cortex. However, this work is not the first to tackle patient comfort
by limiting the number of electrodes. In contrast, other authors have used three
to six electrodes to experiment with different configurations [Direito et al., 2017,
Bandarabadi et al., 2015b, Teixeira et al., 2014b].

5.4.3 Final reflections

This work contributed to epilepsy seizure prediction by providing a complete pipeline
for patient-specific prediction while addressing concerns regarding patient comfort
through electrode placement on the scalp. More importantly, it shows that there
is potential to develop different strategies for improving ML model communication
to clinicians. Although this study used an intrinsically interpretable model (logistic
regression), authors can choose any black-box model with this methodology as the
phenotype study allows to retrieve knowledge from any selected model.

This study includes 93 patients with several types of focal epilepsies and gen-
eralised epilepsy, but the data concerns presurgical monitoring conditions. Due to
time constraints in the clinic, patients suffer medication reduction and sleep depri-
vation, which may induce more seizures that may not be representative of daily-life
events [Freestone et al., 2017]. To truly access seizure prediction performance, it
is necessary to replicate this study on ultra long-term recordings collected during
the patients’ daily life, such as the collected data from the Neurovista prediction
challenge [Kuhlmann et al., 2018a] and in a proper field test. These two steps would
answer how far this methodology may perform and how to apply it to a medical
device at home. Concerning patient outcomes, it is worth noting the awareness of
these limitations.

The access to more computational resources may improve this methodology, for
example, by enabling the increase of the number of features and/or the test of more
complex classifiers. However, one must be careful with publication bias by report-
ing higher performances, as these may result from a test set optimisation. Also,
these improvements will increase the execution time of the MOEA, which should
be kept to a reasonable period. A higher runtime may imply the redefinition of
some parameters, such as the number of generations and population size. Changing
these aspects will not influence the application of the association rules, which can
retrieve information about gene importance and interactions. It is believed that this

methodology may significantly benefit from information regarding concept drifts,
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such as medication intake and circadian cycles [Kuhlmann et al., 2018b].






Chapter 6

Explaining Machine Learning

prediction models

his chapter concerns how to explain Machine Learning (ML) models for
Electroencephalogram (EEG) seizure prediction and how to evaluate the
developed explanations with clinicians and data scientists, from Deep
Learning (DL) models to intrinsically interpretable ones. This chapter resulted
in five lessons to help researchers explain their models to clinicians. Section 6.1
presents a study context. Section 6.2 details the used methods and materials. Sec-
tion 6.3 provides the obtained lessons and how to apply them. Lastly, section 6.4
discusses the obtained findings and limitations, and provides final reflections.
The content of this chapter is under preparation to be submitted to a scientific

journal. The code for this study is available at https://github.com/MauroSilvaPinto.

6.1 Study context

Despite explanations having a sociological component [Molnar, 2019, Doshi-Velez
and Kim, 2017], current ML studies on EEG explainability lacked rigorous validation
as they did not formally evaluate how the created explanations helped specialists
complete their tasks. Explanations are an exchange of beliefs that help to answer
a "why” question when one can no longer keep asking why [Miller, 2019, Molnar,
2019, Gilpin et al., 2018, Miller et al., 2017].

In this chapter, to properly evaluate and understand what may be the most
critical model explanations for EEG seizure prediction, three ML solutions with dif-
ferent levels of complexity were developed and quasi-prospectively evaluated. Then,
patients were selected to construct different explanations for their model decisions.
Explanations were presented to ML experts (data scientists working on clinical prob-
lems) and clinicians (neurologists and EEG technicians working in an epilepsy re-
fractory centre).

Results showed that current explanation methods are insufficient to understand
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brain dynamics, even when using intrinsically interpretable models with few widely
used features. As clinicians cannot detect pre-seizure patterns several minutes be-
fore seizures, the goal of explainability is not merely to explain model decisions but
to help improve the system. Explainability allows researchers to design hypotheses
regarding physiology and model behaviour that help develop a complete problem
formulation. Even when pre-seizure underlying mechanisms are unknown, one ob-
tains more trust in the models when testing the developed hypotheses, and they still

stand.

6.2 Materials and methods

The used methodology comprises three main steps: i) developing ML methodolo-
gies, ii) developing explanations, and iii) evaluating explanations. Summarily, three
different pipelines were developed with different degrees of transparency: a class-
weighted logistic regression model, a voting ensemble of 15 Support Vector Ma-
chiness (SVMs), and a voting ensemble of three Convolutional Neural Networkss
(CNNs). Then, patients with high and low performances were selected to develop
explanations about their models’ functioning and decisions. The interviews were
performed by showing the developed explanations and asking open-ended questions
about them to scientists working in healthcare and clinicians (neurologists and EEG
technicians) working in an epilepsy refractory centre. The interviews were analysed
using Grounded Theory (GT), which was vital to understand model explanations
and their significance in EEG seizure prediction research. The findings were sum-

marised in five lessons by interpreting the emerged themes and ideas.

6.2.1 Dataset

From the EPILEPSIAE database [Klatt et al., 2012,Ihle et al., 2012], 40 patients
with Drug-Resistant Epilepsy (DRE) were selected (23 males and 17 females, aged
39.42+15.87 years) from the Universitatsklinikum Freiburg in Germany. In total,
this dataset contains 224 seizures (120 for training and 104 for testing), 3254 hours
of training data (= 4.52 months), and 1402 hours of testing data (=~ 1.95 months).
The patient selection criteria were: i) patients with temporal lobe epilepsy, as it
concerns the most common type of focal epilepsy [Rubboli and Gardella, 2019];
ii) a minimum of four lead seizures separated by periods of at least 4h30; and iii)
EEG scalp recorded with a sampling frequency of 256 Hz. Electrodes were placed
according to the 10-20 system. The data were collected while patients were in
the clinic for presurgical monitoring. The Ethical Committee approved the use
of this data for research purposes of the three hospitals involved in the database
development (Ethik-Kommission der Albert-Ludwigs-Universitét, Freiburg; Comité

consultatif sur le traitement de 'information en matiére de recherche dans le domaine
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de la santé, Pitié- Salpétriere University Hospital, and Ethics Committee of the
Coimbra University Hospital).

All methods were performed following the relevant guidelines and regulations. In-
formed written patient consent from all subjects and/or their legal guardian(s) was
obtained to participate. Informed consent was obtained from all subjects and/or
their legal guardian(s) for online open-access publication. See Appendix U for de-

tailed information on the selected patients.

6.2.2 Developing ML methodologies

The three methodologies use the rationale from Figure 6.1. A CNN developed with
EPILEPSIAE database [Lopes et al., 2021] preprocessed the raw EEG recordings.
Then, univariate linear features were extracted from time and frequency domains
within five-second sliding windows without overlap. For the frequency domain, the
following features were extracted: relative spectral power bands (delta (0.5-4Hz),
theta (4-8Hz), beta (8-13Hz), alpha (13-30Hz), gamma band 1 (30-47Hz), gamma
band 2 (53-75Hz), gamma band 3 (75-97Hz), and gamma band 4 (103-128 Hz)), the
ratio between these bands, spectral edge frequency and power at 50%. For the time
domain, the following features were extracted: the four statistical moments (mean,
variance, skewness, kurtosis), Hjorth parameters (activity, mobility, complexity),
and decorrelation time. The energy of the wavelet coefficients (from D1 to D8,
using the db4 mother wavelet) was also extracted. More details on the extracted
features and expected added value can be found in Appendix B.

All methodologies were patient-specific, where each patient’s first three chrono-
logical seizures were selected for training (preictal period estimation, standardisa-
tion, class balancing, feature selection, and model training) and the remaining ones
for testing (as in Figure 6.1). A grid search was used to obtain the preictal period
(30 to 60 minutes in steps of 10) [Assi et al., 2017, Mormann et al., 2007]. For testing
seizures, it was also applied the Firing Power [Teixeira et al., 2012] to smooth model
predictions over time, where an alarm threshold of 0.7 was reasonably defined [Pinto
et al., 2022,Pinto et al., 2021a]. After each alarm, a refractory period of equal length
to the preictal period was applied. Performance was evaluated [Winterhalder et al.,
2003] by calculating seizure sensitivity (S5, Equation 2.3) and False Prediction Rate
per hour (FPR/h) (Equation 2.4) and performing a surrogate analysis [Andrzejak
et al., 2003]. A seizure prediction horizon [Winterhalder et al., 2003] of 10 minutes
was used to allow patient intervention.

The most straightforward methodology used a Logistic Regression, where the
classes’ weight was balanced in inverse proportion to their frequency (the preictal
class has more weight as it contains fewer samples than the interictal one). The
F-test [Kramer, 2016] was used for feature selection. This methodology was de-

terministic. Two stochastic methodologies were also developed: one using a voting
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Figure 6.1: A general overview of this study’s work for all three developed methodologies.
Part a) presents the general strategy for the entire study. Part b) details the training and
testing phases of the ML pipeline. Steps represented by grey dashed bordered boxes and
grey text (feature extraction, selection, and standardisation) are performed only for the
methodologies that include the SVM and the logistic regression models.

system of 15 SVMs and another a voting system of three CNNs. These two were bal-
anced by randomly selecting samples from equally spaced segments over the signal
to get a representative set of the interictal period. Before the training of ensemble of
SVMs, a stochastic forest of trees for feature selection [Kramer, 2016] was also used.
The CNNs used five-second preprocessed windows as input. Feature extraction was
coded in MATLAB R2018b. The remaining steps were coded with Spyder 4.0.1 and
Python 3.7. All ML functions are from scikit-learn. For the CNNs, TensorFlow
and Keras libraries were also used. See the Appendix V for complete details on all

pipelines, including the CNNs’ architecture.

6.2.3 Developing explanations

After assessing performance, some patients with the following performances were
selected: 1) high SS and low FPR/h, ii) high SS and high FPR/h, iii) low SS and
high FPR/h, and iv) low SS and low FPR/h. It was believed that these represent
the whole dataset. By only analysing a reduced number of patients, it was possible

to conduct interviews and deepen explanations. It would not be possible to provide
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detail on all patients as that would take too many hours per interview. Figure
6.2 depicts an overview of all developed graphical explanations, presented in the
interviews.

In the interviews, clinical information was provided, such as seizure onset times,
seizure classification, EEG brain activity pattern and vigilance state at seizure on-
set. On the feature level, the following explanations were presented: i) beeswarm
summary plots of SHAP Values [Lundberg and Lee, 2017] (Figure 6.2.b)), which
displayed an information-dense summary of how the features impacted the model’s
output; ii) Partial Dependence Plots (PDPs) [Friedman, 2001] and Individual con-
ditional expectation (ICE) [Goldstein et al., 2015] plots (Figure 6.2.c)), which de-
scribed the interaction between target response and each input feature; and also iii)
logistic regression coefficients (Figure 6.2.d)), for the logistic regression model. The
chosen electrodes and features’ expected behaviour were also discussed.

A feature-based explanation, inspired by calibration [Vuk and Curk, 2006] and
scatter plots, was developed (Figure 6.2.e)). While a calibration curve plots the
average predicted probability in each bin (x-axis) against the ratio of positive pre-
dictions (y-axis), here, the feature value (x-axis) was plotted against its probability
of seizure occurrence (Firing Power value y-axis). In this plot, interictal and preic-
tal samples were coloured differently to inspect features’ separability. This way, this
plot allowed to visually inspect the classifier behaviour on discriminating individual
interictal and preictal windows, and to observe their temporal relation due to the
Firing Power values.

The remaining explanations focused on the time series. The Firing Power was
plotted along with a sleep/awake detector [Oliveira, 2021], interictal and preictal
periods, raised alarms and time-stamps (Figure 6.2.f)). These plots provided insights
into classifier dynamics concerning circadian and sleep-wake cycles and changed
their configuration concerning each used model. For the logistic regression model,
the Firing Power was plotted in black. For the 15 SVMs and three CNNs, all
models’ Firing Power were plotted in grey and the voting decision in black. Then,
for moments considered to be of interest (Figure 6.2.g)), the respective points were
plotted over the Firing Power scatter plots and provided counterfactual explanations
[Wachter et al., 2017]. Counterfactual explanations are intuitive as these describe a
causal situation in the form of ”if X had not occurred, Y would not have occurred”
[Molnar, 2019]. These explanations were computed by finding the slightest change
in each feature that modified the prediction.

For the CNN, Local interpretable model-agnostic explanations (LIME) [Ribeiro
et al., 2016] were used to show the points in the EEG time series that made the
neural network classify some segments as preictal (Figure 6.2.h)). These explana-
tions were only shown to clinicians as their analysis requires EEG expert knowledge.
Although clinicians cannot identify brain patterns that lead to seizures several min-

utes beforehand, it was assumed they might provide a physiological interpretation
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Figure 6.2: The developed explanations for each patient. The selected features were
shown and discussed: their expected added value and brain localisation (a). Each feature’s
SHapley Additive exPlanations (SHAP) value was presented (b), as well as the ICE and
PDP (c). Regression coefficients were shown for the logistic regression model (d). A Firing
Power scatter plot was also presented (e), where the y-axis represents a seizure probability
occurrence (Firing Power) and the x-axis the feature value. The preictal samples are in
blue, and the interictal ones are in grey. The Firing Power plot over the signal (f). This plot
also shows the sleep/awake patient state and raised alarms. From all signals, some moments
that deserved more attention were chosen, mostly false alarms and seizures that the models
failed to predict. These moments were analysed (g) by inspecting the correspondent points
on the Firing Power scatter plot and developing counterfactual explanations. When using
the CNN;, in points of interest, Local Interpretable Model-Agnostic Explanations (LIME)
was used to inspect the points that led the network to classify the signal as preictal (h).
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of the algorithm behaviour, which might correlate with pre-seizure brain dynamics.
All explanations were developed with Spyder 4.0.1 and Python 3.7, along with

sci-kit learn, shap, and lime packages.

6.2.4 Evaluating explanations

The developed explanations were shown during interviews while asking open-ended
questions. These were shown first to ten data scientists to guarantee that any
technical question was addressed. Then, with their feedback, the set of explanations
was redefined and presented to ten clinicians. The interviews were audio recorded.
The interview script can be found in Appendix X and the presentation slides of the
interviews are provided in the Github page. After transcribing and anonymising
them into text, the audio files were deleted. All the interviewees agreed to be
recorded. The transcribed interviews were analysed using GT, an inductive process
broadly used in qualitative methods for social sciences [Chapman et al., 2015]. GT
was not used to search traditional themes but to understand how researchers can
provide convincing and adequate explanations that allow a clinical translation of
these algorithms. Obtained findings are summarised in lessons, as it was believed
to best convey the important information.

Note that, despite ten interviewees for each group (data scientists and clinicians)
may appear to be a small number, qualitative studies may not require large num-
bers due to the saturation principle. A strategy based on GT stops when reaching
saturation or, in other words, when no more emerging themes and relations can be
found [Vasileiou et al., 2018].

6.3 Results

Table 6.1 presents the seizure prediction results for the entire set of patients and
patients selected to develop explanations. In Appendix W, the complete results are

provided. The obtained five lessons are now explained, each in a different subsection.

6.3.1 Explain your system at different levels

Researchers should divide and order their explanation reasoning into levels according
to an increasing granularity or, in other words, from feature and model levels to

explaining specific events.

o Feature level: show and discuss important features, namely their expected
added value, time-window, and correspondent electrode. Also, show each fea-
ture’s model influence quantitatively. Feature influence was provided through
beeswarm summary plots of SHAP values, PDP and ICEs. The regression

coeflicients were also analysed for the logistic regression model. The models’
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Table 6.1: Overall prediction results for the three ML pipelines. The patients that we
selected for developing explanations are also present.
Model Patient SS (0-1) FPR/h Above chance
Overall  0.13+£0.26 0.404+0.46 5 in 40 (0.125)

Logistic 8902 1.00 0.11 Yes
Regression 93402 1.00 0.50 Yes
101702 0.00 0.71 No
402 0.00 0.00 No

Overall 0.17£0.28 0.87+1.11 7 in 40 (0.175)
Ensemble 53402 1.00 0.22 Yes
of 15 SVMs 59102 0.00 0.52 No
46702 0.00 0.00 No

Overall  0.04+0.10 0.18+0.26 3 in 40 (0.075)
Ensemble 8902 0.50 0.00 Yes
of 3 CNNs 23902 0.00 1.65 No
32702 0.00 0.00 No

hyperparameters, such as the support vectors from the trained SVM, could

have also been analysed, as suggested during the interviews.

e Model level: show how well the model differentiates independent data sam-
ples. Graphical explanations are more appealing than only providing fitting
metrics and confusion matrixes. An adapted version of calibration and scat-
ter plots was depicted to present the data points’ geometric distribution and

model discrimination behaviour.

e Overall system functioning: provide a visual overview of the system func-
tioning across time and integrate complementary information. Besides provid-
ing performance metrics, such as SS and FPR/h, a visual overview provided
more information, such as the alarm distribution and the Firing Power over
time. Information such as the sleep-wake cycle and time-stamps was also pro-

vided, which helped to interpret classifier decisions.

e System functioning over specific moments: provide deeper explanations
concerning potentially decisive moments. Explanations about all moments
could not be inspected as the used recordings were long. People tend only
to pay attention and inspect some moments, particularly when models fail: i)
false alarms, ii) not predicted seizures, or iii) Firing Power peaks that almost

led to false alarms.

6.3.2 Discussing features is important

Discussion about the extracted and selected features occupied a significant part
of the interviews’ time. Several data scientists asked for more clinical knowledge
concerning these features. Also, many wanted to visualise the time plots of some

features, particularly spectral bands’ relative powers.
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Spectral bands’ relative power was the most discussed feature. Although these
were the most appropriate measures to discuss with clinicians, there were differences
in their conceptualisation between data scientists and clinicians. While clinicians
obtain spectral band power by visually inspecting the EEG and looking for spikes,
ripples, and other abnormal transients, data scientists use mathematical tools, such
as Fourier decomposition. Despite these differences in their computation concern-
ing the clinician interpretation, spectral bands’ relative power enables extracting
relevant information from long-term recordings.

Figure 6.3.b) depicts the importance of discussing features. It shows the selected
features and their influence on patient 8902 for the logistic regression model. As one
can see, gamma band-related measures appeared in five out of the seven selected
features. Clinicians found this suspicious as scalp EEG does not fully capture gamma
rhythms. Thus, this predominance of gamma features might be explained by the
presence of artefacts. The following hypothesis was discussed: patient 8902 presents
movement jerks caused by EEG pre-seizure dynamics. Note that this was just a
hypothesis as there was no access to video-EEG. The subsection Making and testing
patient-specific conjectures shows how this hypothesis was tested without accessing

video-EEG.

6.3.3 Time plots are the most intuitive explanations

Only showing time plots is not enough, but they are great for raising questions and
hypotheses. By inspecting the time plots in Figure 6.3, some patterns were observed,
allowing to present hypotheses to clinicians (as explanations).

For example, one may try to explain the false alarm (moment B) after midnight
before seizure #4 from patient 8902 by inspecting Figure 6.3.a). When visualising
the Firing Power from 8am until midnight, despite presenting a relatively small peak
of 0.40 (moment A), it was verified that the system was far from raising an alarm.
Afterwards, the Firing Power presented a monotonically increase until reaching a
maximum peak value of 1.0 (moment C) during the preictal period. After midnight,
the system raised a false alarm (moment B) when it reached a value of 0.7. Despite
being a false alarm, this behaviour was considered normal in the light of the preictal
period assumption: a transitional stage between seizure-free brain activity and a
seizure, able to be captured from an EEG background analysis [Pinto et al., 2022,
Scheffer et al., 2009, Litt et al., 2001]. All interviewees accepted that the system
raised a false alarm because this brain transition may have started minutes earlier
than the interval considered when training the model.

By visualising the data from seizure #4 of patient 93402 (Figure 6.3.c)), three
distinct patterns of alarms over time were identified: between midnight and 6am
(red circles), around mid-day (yellow circles), and around 6pm (green circles). Ad-

ditionally, in this patient, both testing seizures occurred between midnight and 6am
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Figure 6.3: Examples of explanations for the logistic regression model. The time-series
explanation (a) and the corresponding feature regression coefficients (b) are presented for
the seizure #4 of patient 8902. The Firing Power and one feature (wavelet energy of the
decomposition level 5 from electrode O5) are plotted over time for seizure #4 of patient 93402
(c). By inspecting each feature individually, very straightforward relations were observed
between the models’ decisions and the corresponding feature. Each coloured circles represent
similar signal activity captured at the same time of day (different colors corresponding
to repeating patterns showing at different times of the 24h day), possibly evidencing the
influence of circadian rhythms. Time series explanations are also presented when no alarm
was raised, for seizures #4 (d) and #5 (e) of patient 402.

(seizure #4 at 01:35 and seizure #5 at 06:10), which fit into the red cluster. The fol-
lowing hypothesis was presented: these false alarm clusters suggest the existence of
periods of brain susceptibility to seizures, which may not always lead to seizures. This
rationale is a paradigm shift from prediction to forecasting [Dumanis et al., 2017],
which intuitively appeared during interviews. A Firing Power increase over days
was observed in the yellow and green circles, which suggests an effect of medication
tapering, as told by one clinician. These hypotheses might explain the occurrence
of false positives.

Other hypotheses arose when observing the time plots. In patient 8902, could

the selected gamma-related features (Figure 6.3.b)) be related to sleep-wake states?

There are significant differences as the wake EEG contains more muscle artefacts
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than the sleep one, which might introduce a strong bias.

When inspecting Figures 6.3.d) and 6.3.e) (seizures #4 and #5 from patient
402), one may hypothesise that around the waking up time, there is a higher risk
of seizure (both testing seizures occur at waking up). For these cases, the logistic
regression model never raised any alarm (see Table 6.1).

All these explanations are merely hypotheses and must be tested. Testing the
developed hypothesis is one of the major topics of this paper, which concerns the

last lesson.

6.3.4 Interictal and preictal concepts differ between data scientists

and clinicians

For a clinician, the preictal period is often considered a fast spontaneous phenomenon
that might last for less than one second and start some seconds before the seizure
onset. Data scientists’ strategy of classifying consecutive windows followed by reg-
ularisation [Teixeira et al., 2012] while trying to capture a transitional background
state into a seizure one does not hold the clinicians’ notion of seizure generation.

Also, the interictal period is considered by data scientists as the period between
postictal and preictal periods of subsequent seizures. To clinicians, it concerns the
periods that are not postictal, preictal, or ictal, and that necessarily contains abnor-
mal epileptiform activity. In other words, not all data considered by data scientists
as interictal matches the one which is considered by clinicians.

Understanding these differences is extremely important, as ML model develop-
ment is based on the provided data. Data scientists deliver data samples to ML
algorithms, in which a sample is usually a 5-second window or features computed in
that window. Each window is labelled as either preictal or interictal. Then, the ML
algorithm trains a model that best discriminates these data samples. Furthermore,
other technical aspects also need to be considered. Although the data scientists’
preictal period may be more extended than the clinicians’ one (a fixed period of
usually several minutes until some hours before a seizure), it is still a rare event
causing an extreme data imbalance. Also, although this approach is established in
literature, it is hard for clinicians to understand that data scientists must define a
fixed preictal period for each patient.

Figure 6.4 shows the ensemble of SVMs for patients 53402, 46702, and 59102.
These plots show a strong agreement between the ensemble voting (black line) and
each SVM’s decisions (grey lines). Each SVM model was different as the feature
selection and data balance steps were stochastic operations. Clinicians and data
scientists were asked if this similarity was a good sign. The data scientists were quite
satisfied since the SVM output was reasonably coherent between each execution.
Clinicians were not consensual, and they tended to refrain from answering due to

the data scientists’ concept of interictal period.
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Figure 6.4: Plot of the ensemble of SVMs’ decisions over time for different patients: patient
53402 seizure #4 (a), patient 46702 seizure #4 (b), and patient 59102 seizure #5 (c). Each
SVM decision is in grey, and the ensemble voting system is in black.

6.3.5 Making and testing conjectures is the solution to explain a
ML model decision when there is no solid physiology ground-

ing

If clinicians cannot explain pre-seizure mechanisms several minutes (or even hours
[Litt et al., 2001]) before seizure onset, data scientists will probably not be the ones
doing it as they cannot provide a clinician-comprehensible answer. One clinician
stated a critical idea: ”until proven otherwise, everything is an artefact”, which may
be essential to understanding the utility of explainability. For seizure prediction, the
goal of explainability is not merely to explain decisions but to develop hypotheses
based on physiology mechanisms, which must be tested. When researchers reject the
null hypotheses, they gain insight and trust. If the models fail, study assumptions
must be reviewed and the used methodologies and explanations redesigned, leading
to a more complete problem formalisation. The loop continues until one can trust

the obtained methods. This rationale is depicted in Figure 6.5.

Develop a ML Develop valuate E.
mode. Explanations and develop hypothesis Test your answers
Train a ML Select patients From the explanations
model according to criteria ask questions Try to make your
methodology to fail
Evaluate Create explanations Develop hypothesis 2
Performance for the model decisions as possible answers

A

Improve the problem
formalisation
Change assumptions in
your work

You obtain
trust from your
models

Does the mode!
stand?

Figure 6.5: The workflow process of explaining ML models.
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6.3.5.1 Making and testing patient-specific conjectures

As mentioned, patient 8902’s logistic regression model achieved high performance
using several gamma-related features, which provoked scepticism as scalp EEG was
used and, therefore, it would be difficult to capture gamma activity. Two hypotheses
arise about the gamma features: i) there might be predictive power in the gamma
features related to the GABAergic system and a high-frequency synchrony increase,
or ii) gamma-related features might have captured muscle artefacts as patient 8902
presented muscle jerks which resulted from pre-seizure dynamics. Concerning hy-
pothesis i), it cannot be stated and tested because there are no intracranial EEG

recordings from this patient, to compare it.

Concerning hypothesis ii), there is the possibility of visually inspecting the EEG
windows where gamma spectral-band power is significant to gain some insight, but
that would be arduous due to the necessity of experts to analyse hours of data. It
would also be possible to search for tools that classify signal segments into arte-
facts, noise, or EEG-related phenomena, which would also take time. Here, a faster
strategy was followed. To understand the gamma-band contribution, the logistic
regression models were retrained six times where, for each time, one of the following
features was used: spectral-band power features from either delta, theta, beta, or al-
pha bands, signal’s time variance, and signal’s total band power. Time variance was

used to understand if time-frequency features could also capture similar dynamics.

For seizure #4 (Figure 6.6.a)), all spectral bands, total spectral power, and time
signal variance had a similar discriminatory capacity. With seizure #5 (6.6.b)),
despite the majority of the features’ models presenting a similar morphology, there
were differences. Delta, theta, and total power models would raise more false alarms,
while gamma and alpha bands would not raise any. The beta band power and time
variance presented differences in their Firing Power dynamics, where the first often
exceeded the alarm threshold. These findings mitigated some of the gamma-band
features’ scepticism, and the muscle-jerk hypothesis was rejected. As the same
patterns appeared in most spectral bands, total spectra, and within the temporal
domain, they suggest a general EEG background change [Scheffer et al., 2009, Litt

et al., 2001] due to pre-seizure dynamics.

For patients 93902 and 402, hypotheses related to circadian and sleep-wake cycles
could be constructed, respectively. Nevertheless, there is the need to use more data
to test these hypotheses. As these hypotheses could not be tested, they cannot be
truly stated. However, one may include other strategies to speed up this process: the
clinicians pointed out their curiosity to understand how the models would behave
when patients performed daily activities, such as eating, getting up, and scratching
their heads. This rationale relates to trying to make the methodology fail. If there
was a way to guarantee that the models would not confound these activities with

a pre-seizure state, trust would increase. Also, when developing methods to detect
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Figure 6.6: Patient 8902’s Firing Power time plots for different logistic regression models for
both testing seizures (a and b). The black line represents the original model, the remaining
concern logistic regression models trained with only a determined spectral band power, total
band power, or the signal time variance.

such activities, one may better understand the circadian cycle’s influence.

6.3.5.2 Making and testing patient-general conjectures

Hypotheses were also developed and tested from the entire set of patients. By
inspecting all patients’ Firing Power plots using the logistic regression model, several
patients presented, for at least one seizure, one of the following scenarios: i) the
model could not predict a seizure, but one could trust its behaviour when inspecting
the time plot; or ii) the model’s Firing Power behaviour was poor, but one could find
a sleep-wake transition in the preictal period, suggesting a sleep-wake cycle influence
(as patient 402 in Figure 6.3). There were 14 and 21 patients for the first and second
scenarios. Additionally to patient 93402, there were four more patients (59102,
95202, 109502, 112802) (Figure 6.3) where false alarms cycles occurred within similar
periods in consecutive days, suggesting a circadian-cycle influence. See Appendix Y
for examples to better understand these cases and the Github page for all patients’
time plots.

Lastly, clinicians asked about a possible performance bias towards patients whose

training and testing seizures occurred around similar times of the day. Thus, a fore-
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casting rationale was applied to the logistic regression models, where high seizure-
risk warnings corresponded to Firing Power values over the alarm threshold. These
were then compared to a circadian forecasting algorithm that only used circadian
information. This procedure was only performed for the logistic regression models
for simplicity reasons. For each tested seizure, the circadian algorithm raised high
seizure-risk warnings from 30 minutes before to 30 minutes after each seizure train-
ing onset time (see Appendix Z for an illustration of this algorithm). By comparing
seizure sensitivities and Time in Warning (TiW), it was verified that the EEG-based
models outperformed the circadian forecasting ones in both metrics. The EEG-based
models obtained a sensitivity of 0.29 and a TiW of 1h32, while the circadian fore-
casting obtained a sensitivity of 0.15 and a TiW of 2h52. Moreover, six EEG-based
patient models presented simultaneously higher sensitivity and lower TiW values.
See Appendix Z for the full comparison results between the two approaches.

All the counts in this subsection have statistical significance based on accumu-
lative binomial distribution tests («=0.05) [Pinto et al., 2022, Pinto et al., 2021a,
Alvarado-Rojas et al., 2014]. The complete statistical analysis is detailed in Ap-
pendix Y.

6.4 Discussion

Although state-of-the-art features were used to characterise the EEG signal, iden-
tifiy manifestations of the pre-seizure state, and inspect the models’ Firing Power,
these explanations were insufficient to understand brain dynamics of seizure genera-
tion. ML explainability might not be the proper tool to understand the EEG, which
justifies research efforts on developing specific strategies to make their models fail.
It is difficult for clinicians to reject the developed models when they hold against a
systematic conjecture testing. Thus, authors should be conservative in their expla-
nations and base model development on an iterative refutation algorithm when the
underlying physiologic mechanisms are unknown.

This reasoning relates to Karl Popper’s falsification theory, in which conjecture
and attempted falsification should drive model development [Taran et al., 2021,Forde
and Paganini, 2019, Shahar, 1997]. It is essential to review these concepts as re-
searchers tend to intrinsically demonstrate that seizure prediction is possible solely
based on testing models. In other words, current studies test the research hypothesis
directly, relying on inductive reasoning instead of trying to reject a null hypothe-
sis. Although inductive logic is valuable and practical, it is prone to confirmation
bias, easily achieved in ML problems due to overfitting and overtesting. Curiously,
the problem of induction, initially stated in David Hume’s Uniformity of Nature
Assumption [Wilkinson, 2013], stands until today.

The lack of understanding on the ictogenesis process was addressed by showing

the EEG to clinicians. During the interviews, the EEG segments marked as relevant
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were shown to them along with the data samples that the CNNs found relevant
in predicting seizures. This task was challenging as clinicians could not find any
pattern. Very often, the CNN model selected some points as relevant and, some
seconds after, did not select similar points. Thus, the CNN classifier did not use
criteria that followed a neurologist’s rationale. A long-term EEG monitorisation
may not lead to a higher understanding of the ictogenesis process. However, it can
be beneficial to capture factors that may influence a higher susceptibility to seizures
(seizure forecasting [Stirling et al., 2021a, Karoly et al., 2020, Karoly et al., 2017]).

For the case of seizure prediction, this work proves that a transparent model, such
as the case of a logistic regression, may not lead to more convincing explanations than
the ones using more complex models. No clinician raised any issue concerning model
transparency when presenting the SVM and CNN classifiers, which might be due to
the mentioned lack of EEG ictogenesis-related knowledge. Despite the literature is
heading toward more complex models [Pinto et al., 2021b, Kuhlmann et al., 2018b,
Freestone et al., 2017], there is the need to stress this finding as some authors
advocate against the use of such models due to their black-box nature [Rudin, 2019]
or due to the General Data Protection Regulation (GDPR) Right to an Explanation
(article 22) [Goodman and Flaxman, 2017, Kaminski, 2019], which is still purposely

vague.

Explaining seizure prediction models led to considering each case scenario indi-
vidually. Different hypotheses were considered for each patient, where their conjec-
ture testing was made differently. When verifying all patients’ time plots, typical
model behaviours were found, which may be a consequence of epilepsy’s clinical
heterogeneity. Also, for a significant number of patients, the EEG-based models
outperformed (in both terms of SS and TiW) the circadian forecasting models. Al-
though the used data does not concern real-life, this finding confirms the added

value of developing EEG-based prediction approaches for some patients.

6.4.1 Translation to other healthcare problems

This work may translate to other ML healthcare applications, particularly EEG-
related, where physiological mechanisms that generate an event to be predicted
are not fully understood. For instance, predicting hospital mortality after acute
coronary events [Valente et al., 2021, Granger et al., 2003] might require a higher
degree of transparency as there are established score models grounded on a clinical
rationale. Some lessons might need further adaptation to each problem, where these
can be stated in a generalised form. For example, there is possible to translate the
conceptual difference between interictal and preictal periods to:carefully review the

used rationale to label data into categories and discuss it with clinicians.
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6.4.2 Study limitations

This work had several limitations. It is hard to provide extensive examples of some
conjecture testing strategies, as the used data comprised presurgical monitoring
conditions. Some explanation hypotheses require new testing data and extensive
recording periods to capture many specific events. Although hypotheses have been
made about circadian and sleep-wake cycles’ influence, which the literature supports
[Stirling et al., 2021a,Karoly et al., 2020, Karoly et al., 2017], there is not sufficient
data to confirm it. It would also be valuable to have access to video-EEG and to
find more patients presenting a clear EEG-background transition from a baseline to
pre-seizure activity, as patient 8902.

Counterfactual explanations did not reveal to be fundamental but are essential
in many applications, as they are gaining prominence within technical, legal, and
business circles for ML [Verma et al., 2020, Barocas et al., 2020, Wachter et al., 2017].
This study might have failed to apply counterfactual explanations as these were used
to explain changes in EEG dynamics that influenced the models’ decisions. These
explanations were not pertinent as patients cannot change their brain dynamics.
Counterfactual explanations tend to be more useful when the user can intervene in
the decision, such as a bank decision on a loan: if you had done X, you would have
got the loan. Nevertheless, they might be helpful in forecasting when analysing a
large quantity of data and accessing information the patient can control, such as
medication, sleeping, eating, and other daily activities.

Our lessons result from GT’s iterative and emergent observation and analysis.
As GT is not suited for verification/falsification of preexisting propositions [Timonen
et al., 2018,Cho and Lee, 2014], authors are invited to perform similar methodologies
(including other ML healthcare problems and data types). Due to a mostly data
science and epilepsy background, there is the need to recognise an increased difficulty

in using qualitative research tools [Doshi-Velez and Kim, 2017].

6.4.3 Final reflections

Clinicians do not fully understand EEG pre-seizure mechanisms occurring several
minutes before a seizure; nevertheless, it was possible to provide more or less con-
vincing explanations for certain model decisions without requiring fully transparent
models.

For predicting seizures and other healthcare ML-related events where clinical
apriori knowledge is limited, explainability is not about simply explaining decisions
but improving the developed models, reviewing used assumptions and, thus, gaining
trust. Basing model development on an iterative refutation algorithm might promote
trust while dealing with a lack of clinical grounding.

For future work, there is the need to repeat this methodology in ultra-long term

recordings from real-life, such as the study from [Cook et al., 2013]. Other case sce-
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narios may be found with ultra-long term data and confirm (or reject) the reported
ones. Only a long-term analysis will tell if these explanation methods remain effec-
tive when inspecting days and months of data. There is also the need to consider
interviewing patients to understand their perspectives, relation to devices, and how

to help them deal with the devices’ predictions in cases of failure.



Chapter 7

Conclusions

In this thesis, efforts were made to improve the communication between clinicians
and researchers and highlight possible paths to clinical translation. This challenge
was faced by using a multidisciplinary approach, which joined engineering domain
techniques with tools from the social sciences. From the three main contributions,
it was possible to retrieve some conclusions.

Based on the analysis of the seizure prediction ecosystem study, four guidelines
were proposed for a higher chance of clinical acceptance, where authors should: i)
state their assumptions regarding brain dynamics before presenting the mathemati-
cal tools used in data analysis; ii) state the prospective applications envisioned with
the designed experiment; iii) use methodologies that have been clinically approved
as a gold standard for comparison; and iv) focus on explainability to promote trust
among clinicians and other data scientists. The guideline that concerns explainabil-
ity was considered the most important.

The development of an evolutionary framework, whose output is an intrinsically
interpretable model, leads to a way to extract patient-specific and patient-general
knowledge. Although the models’ performance was not acceptable for clinical trans-
lation, this methodology may inspire other approaches to extract knowledge and
predict rare events from time series. If researchers wish to use this methodology,
they may only need to adapt the genotype and the fitness function.

A formal evaluation of explainability towards clinical and data science special-
ists, which ranged from intrinsically interpretable models to black-box ones, allowed
to verify that, when a priori knowledge is limited, the goal of explainability is not to
make decisions merely but to improve the developed models, review used assump-
tions and, thus, gain trust. Basing model development on an iterative refutation
algorithm might give trust while dealing with a lack of clinical grounding.

Seizure prediction heads towards acquiring ultra-long-term FElectroencephalo-
gram (EEG), enabled by recent technology, such as the UNEEG SubQ [Duun-
Henriksen et al., 2020, Weisdorf et al., 2019], the ByteFlies Sensor Dots [Nasseri
et al., 2020], Epiminder [Stirling et al., 2021c], Percept PC [Gregg et al., 2021],
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and RNS system [Sun and Morrell, 2014]. The rationale of this thesis passed by
anticipating future problems of researchers having access to this type of data since,
for this work, there was no opportunity to access such data. Naturally, there is the
need to adapt and test all developed methodologies in ultra-long-term recordings
from real life. Other case scenarios may be found with this data which may confirm
(or reject) the reported ones. Authors should explore and integrate information con-
cerning concept drifts and cyclical variables, such as medication intake, circadian
cycles, sleep, multidien cycles, and daily activities [Baud et al., 2022, Karoly et al.,
2020, Kuhlmann et al., 2018b, Baud et al., 2018, Dumanis et al., 2017].

The developed methodologies should have also involved interviews with lawyers
and patients to understand better this research area and the future implications of
prediction and forecasting devices. Understanding the patients’ perspectives towards
these devices, particularly their reaction to when they fail and how to maintain trust,
may figure a tremendous challenge [Baud et al., 2022, Bruno et al., 2018, Schulze-
Bonhage et al., 2010].

Researchers are transitioning from prediction horizons of minutes (prediction) to
probabilistic horizons of hours or days (forecasting) [Proix et al., 2021,Karoly et al.,
2020]. Nevertheless, in terms of application to the patient, one might still need to
choose a threshold to perform an intervention. Interventions will change concerning
the horizon. With forecasting, patients might plan their lives around or undergo a
short cycle of benzodiazepine intake instead of a single intake when using prediction
(or combining both forecasting and prediction). There is the need to conduct studies
on both approaches to compare them to understand the benefit-risk ratio, patient
resilience against false interventions and, most importantly, their reaction to when
these systems fail [Baud et al., 2022].

Despite inherent difficulties in conducting science and the need to have the means
to perform research, authors need to understand their significant bias towards people
living in rich and western countries [Taylor and Rommelfanger, 2022, Maina et al.,
2021]. In low-income countries, a routine-EEG or other exams (such as Magnetic
Resonance Imaging (MRI) a Computed Tomography (CT) scan) may be a luxury
that the majority of people cannot afford or may not even be available [Maina
et al., 2021, McLane et al., 2015]. Despite these difficulties, devices for epilepsy
management will need to become accessible in such countries. The long and winding

road, as coined by [Mormann et al., 2007], continues.
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Appendix A

Other Contributions

During this thesis, I have also worked as an invited assistant professor in the Infor-
matics Engineering Department of the University of Coimbra. I have also studied
the prediction of Multiple Sclerosis disease progression using Machine Learning (ML)

models. This chapter shows some of these parallel contributions.

Invited teaching assistant

P1 Teaching assistant in the Informatics Systems course, namely the laboratory
classes, which were taught to Biomedical Engineering and Physics Engineer-
ing students in the following academic years: 2019/2020, 2020/2021, and
2021/2022.

Articles in International Journals

J11 Pinto, M. F. Oliveira, H., Batista, S., Cruz, L., Pinto, M., Correia, 1.,
Martins, P., Teixeira, C., "Prediction of disease progression and outcomes in
multiple sclerosis with machine learning”, Scientific Reports 10, 21038, DOI:
10.1038/s41598-020-78212-6 (2020).

Master’s degree theses co-advisoring

J6 Oliveira, H.. "Evaluation and Prediction of Multiple Sclerosis Disease Pro-

gression”, Master Thesis dissertation, Universidade de Coimbra (2020).

J7 Sousa, M.. ”On the Explainability of Multiple Sclerosis Disease Progression
Models”, Master Thesis dissertation, Universidade de Coimbra (2021).

J8 Baiao, J.. ”On the Short-Term Prediction of Multiple Sclerosis Disease Pro-
gression”, Master Thesis dissertation, Universidade de Coimbra (to be finished
in 2022).

159


10.1038/s41598-020-78212-6

160

APPENDIX A. OTHER CONTRIBUTIONS

Summer and Training Schools

S1

S2

Invited Speaker: ”On the deconstruction and limitations of machine learn-
ing approaches to predict Multiple Sclerosis progression in real-life scenarios”,
PMSMatTrain Research Summer, 25-27 May in Denmark (2021).

Participation in COST Action CA15140 Training School: Improving Applica-
bility of Nature-Inspired Optimisation by Joining Theory and Practice (ImApp-
NIO), Coimbra (2019).

Science communication to the general public

G4

G5

G6

Pinto, M., "Poeta professor de educacao fisica”, Douda Correria (2021). A

poetry book about science.

The "Introduction to JAVA programming language” and "Introduction to Ma-
chine Learning” workshops were given for several student associations, namely:
Biomedical Engineering National Student Association (ANEEB), Junior En-
terprise for Science and Technology (JEST), Students’ Association of the
Physics Department of several universities, such as the University of Lisbon,
the University of Minho, and the University of Coimbra. These were all given
between 2020 and 2021.

Participation in the summer ”jeKnowledge Academy 2022” to talk to high
school students about ethical issues in using artificial intelligence, as well as
current research in epilepsy EEG seizure prediction and prediction in multiple

sclerosis disease progression.



Appendix B

Features description

This chapter provides a brief overview of the most extracted features from the state-
of-the-art, and also provides a more detailed description of the used features for the
Multiobjective Evolutionary Algorithm (MOEA) (chapter 5) and the explainability
(chapter 6) studies. It is worth noting that, in these studies, only linear univariate
features were used.

Linear features are mathematical techniques that use the signal’s phase/fre-
quency and amplitude information and comply with the linearity property. When
one extracts linear features, assumes the quasi-stationarity of the Electroencephalo-
gram (EEG) signal within each time window from the data segmentation step in the

signal pre-processing stage.

Linear univariate measures

Within time-domain features, the first four statistical moments (mean, variance,
skewness, kurtosis) characterise the amplitude distribution of the EEG time se-
ries [Kuhlmann et al., 2018a, Direito et al., 2017, Rasekhi et al., 2015, Teixeira et al.,
2014b]. These are simple, light to compute, and can also be applied to other charac-
teristics besides the electrical amplitude, as in the case of spectral information [Di-
reito et al., 2017, Assi et al., 2017]. The skewness is zero for symmetric amplitude
distributions and non-zero for asymmetric distributions. The kurtosis measures the
relative peakedness or flatness of an amplitude distribution [Mormann et al., 2007].
These statistical measures have shown significant changes during the preictal period
compared to the interictal state [Rasekhi et al., 2013, Mormann et al., 2005]. A
decrease in the variance and an increase in the kurtosis were observed in the preic-
tal period when compared with interictal based data [Teixeira et al., 2014b, Aarabi
et al., 2009].

Hjorth parameters concern activity, mobility, and complexity, which are mea-
sures of mean power, root-mean-squared frequency, and root-mean-square frequency
spread, respectively. These detect an intensification of brain activity which leads to

an increase of energy [Kuhlmann et al., 2018a, Direito et al., 2017, Rasekhi et al.,
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2015, Teixeira et al., 2014b, Moghim and Corne, 2014]. Authors have reported a
significant increase in the mobility and complexity of the EEG during the preictal
period [Rasekhi et al., 2013, Mormann et al., 2005].

Auto-regressive models and decorrelation time [Kuhlmann et al., 2018a, Direito
et al., 2017,Rasekhi et al., 2015, Teixeira et al., 2014b, Rasekhi et al., 2013] have been
used to inspect neural synchronisation. Auto-regressive models are used to model
the EEG, where authors have used either the modelling coefficient values as features
or the modelling error as a result of a seizure-generation process [Chisci et al., 2010].
Decorrelation time uses the autocorrelation function to find repeating patterns or
identify the fundamental frequency hidden by its harmonic frequencies. Decorrela-
tion time concerns the first zero-crossing of the autocorrelation function and provides
information concerning the typical time scale of the data variability. This function
can also be interpreted to measure signal stochasticity as a zero decorrelation time
value means that a given signal is purely stochastic (white noise). Authors found
that a decrease in the decorrelation time may detect a preictal period [Rasekhi et al.,
2013, Mormann et al., 2005].

For capturing shifts from low to high frequencies, authors use features in the
frequency domain. Several authors have decomposed the EEG into frequency bands
(delta, theta, alpha, beta, and gamma) and computed their relative power. These
are the most used features [Kuhlmann et al., 2018a,Direito et al., 2017, Rasekhi et al.,
2015,Bandarabadi et al., 2015b, Assi et al., 2015, Teixeira et al., 2014b, Moghim and
Corne, 2014, Rasekhi et al., 2013] and can be calculated by firstly computing the
Power Spectral Density (PSD) of the time series within a time window. It is essential
to mention that the calculation of the PSD assumes the signal in each window is
short enough to be considered quasi-stationarity and long enough to capture the
brain’s low-frequency activity. Authors have reported that brain activity increases or
decreases at specific frequency bands before seizures, where there may be a transfer
of power from the lower to the higher frequencies [Bandarabadi et al., 2015b, Teixeira
et al., 2014b, Rasekhi et al., 2013, Mormann et al., 2005]. For example, [Mormann
et al., 2005] showed a decrease in Delta band power, coupled with a relative power
decrease in the other sub-bands. [Bandarabadi et al., 2015b] showed that relative
combinations of sub-band spectral powers across channel pairs might be used for
tracking gradual changes preceding seizures.

Wavelet transform is a time-frequency domain transform that can be an alter-
native to the Fast Fourier Transform (FFT) as it decomposes the signal in different
resolution levels according to different frequency ranges [Kuhlmann et al., 2018a, Di-
reito et al., 2017, Teixeira et al., 2014b, Rasekhi et al., 2013]. In other words, wavelets
provide a time-variant decomposition adapted to the signal, capturing minor details
and sudden changes by providing higher frequency resolution for lower frequencies
and higher time resolution to higher frequencies. With the signal decomposed, it is

possible to compute several measures using the wavelet coeflicients, as in the case of
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signal energy. By computing the energy of the signals originated by the decomposi-
tion, a measure of the energy in different frequency ranges can be achieved [Teixeira
et al., 2014b, Rasekhi et al., 2013, Gadhoumi et al., 2013].

Usually, most EEG signal’s power is within the frequency band from 0 Hz up to
40Hz [Mormann et al., 2007]. Spectral edge frequency (SEF) is the measure that
indicates the frequency below x per cent of the overall signal power is contained
and is frequently used in seizure prediction [Direito et al., 2017, Teixeira et al.,
2014b, Rasekhi et al., 2013, Mormann et al., 2005]. As the existence of a power
transfer from low to high frequencies has been reported during the preictal stage,

SEF may also be capable of capturing these dynamics.

Nonlinear univariate measures

The correlation dimension, the largest Lyapunov exponent, and the dynamic sim-
ilarity index are frequent features derived from dynamic systems theory [Moghim
and Corne, 2014, Mormann et al., 2005]. Chaotic measures can help explain brain
dynamics as the EEG is a noisy and nonstationarity time series. Theoretically, a
reduction of chaos may indicate impending seizures, as the predictability of brain
dynamics tends to increase before a seizure. All these measures tend to capture the
brain synchrony increase occurring before seizures. Additionally, seizures may be
unexplainable using concepts of linear dynamics as these sometimes may be caused
by external inputs [lasemidis, 2003]. Nevertheless, nonlinear features may be too
computationally expensive to be applied online [Assi et al., 2017].

The correlation dimension of a signal [Grassberger and Procaccia, 1983, Grass-
berger, 1983] measures the space dimension occupied by signal samples and is one of
the various methods for fractal dimension assessment. Mathematically speaking, it
provides an estimation of the complexity of attractors. The correlation sum quanti-
fies the probability that two vectors of the state space trajectory lie within a given
distance from each other.

According to the chaos theory, a system predictability is sensitive to the initial
state conditions. The exponential divergence or convergence of nearby trajectories
in the state space reflects the chaos inherent to a system [Moghim and Corne, 2014,
Tasemidis, 2003]. The Lyapunov exponent [Kuhlmann et al., 2018a, Moghim and
Corne, 2014, Mormann et al., 2005] is a measure of the system’s chaotic behaviour
as it quantifies the exponential divergence of two state-space trajectories that start
close to each other. It can be computed by fitting an exponential regression.

Entropy [Teixeira et al., 2012] measures the regularity and the unpredictability
of fluctuations over the EEG data. As a synchronous brain state characterises a
seizure, entropy has been reported to detect changes from the interictal state to the
preictal one.

Dynamic Similarity Index [Rabbi et al., 2013, Le Van Quyen et al., 1999] mea-
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sures the similarity between segments of the EEG. It quantifies the difference in
dynamics between a reference interictal EEG segment and a sliding window. The
reference window is known to be considerably far from any seizure, containing the
typical characteristics of the interictal activity. From it, one extracts nonlinear
characteristics that are computed using time-delay embedding. Then, to each run-
ning window, the exact nonlinear characteristics are extracted. When the difference
in these windows surpasses a given threshold, it is assumed to detect the preictal

period.

Linear bivariate and multivariate measures

Bivariate and multivariate features characterise interactions between different re-
gions of the brain and, therefore, different electrodes. As the preictal stage is a
spatio-temporal complex state and seizures are known to be electrical discharges
due to brain synchronisation, these features can capture and quantify this state [Assi
et al., 2017, Rabbi et al., 2013].

The most used features are the maximum linear cross-correlation and multivari-
ate autoregressive models, which are bivariate measures. Maximum cross-correlation
measures the linear synchronisation of two electrode channels where a normalised
value is obtained [Mormann et al., 2003]. When close to one, channels present a
similar profile with a possible time lag. Other measures are possible, such as ra-
tios between different spectral band powers [Bandarabadi et al., 2015b, Bandarabadi
et al., 2015a).

Independent Component Analysis (ICA) [Oja and Hyvarinen, 2000] is another
strategy for a signal decomposition where it assumes that each measured signal is
a linear combination of independent signals and decomposes multidimensional data
into statistically independent components. The components can be used to extract
features. ICA can also be used for denoising [Assi et al., 2017, Acharya et al., 2013].

Nonlinear bivariate and multivariate measures

Bivariate and multivariate nonlinear measures have also been employed. By inspect-
ing information in several electrodes simultaneously, these aim to capture synchrony
changes using similarity and mutual information measures. One of the most used is
mean phase coherence [Kuhlmann et al., 2018a, Rabbi et al., 2013, Mormann et al.,
2005] that aims to quantify phase synchronisation between two channels. Dynamic
entrainment [lasemidis et al., 2004] aims to quantify the nonlinear behaviour of two
electrode signals, which requires the estimation of the largest Lyapunov exponent,

over time, for each analysed channel.



Appendix C

Ecosystem paper route

Here is presented how all the social network literature, from chapter 4, was selected.
Table SC.1 shows the references derived from the initial literature. Table SC.2
shows the papers selected due to the social network discussion with the research

team. Google Scholar was the only used search engine.

Table C.1: The selected papers from the initial literature selection. As displayed, some of
the papers referenced in these studies were also selected.
Authors Topic
[Mormann et al., 2007] Critic vision on seizure prediction
[Freestone et al., 2017] Critic vision on seizure prediction
[Kuhlmann et al., 2018b] Critic vision on seizure prediction

How it was selected
Initial literature
Initial literature
Initial literature

[Molnar, 2019]
[Schulze-Bonhage et al., 2010]
[Ramgopal et al., 2014]

ML Interpretability
Patients vision on devices
Survey on devices

Initial literature
Initial literature
Initial literature

[Winterhalder et al., 2003] Academic studies Mormann et al. 2007
[Schelter et al., 2006] Academic studies Mormann et al. 2007
[Andrzejak et al., 2003] Academic studies Mormann et al. 2007
[Cook et al., 2013] Neurovista Clinica Trial Freestone et al. 2017
[Sun and Morrell, 2014] The RNS System Freestone et al. 2017
[Gadhoumi et al., 2016a] A review of methods Freestone et al. 2017
[Nurse et al., 2016] Real-life processing chip Freestone et al. 2017

[Karoly et al., 2017]
[Baud et al., 2018]
[Doshi-Velez and Kim, 2017]

[Lombrozo, 2006] Explainability / Trust Molnar C. 2019
[Ribeiro et al., 2016] Explainability Molnar C. 2019
[Lage et al., 2019] Explainability Molnar C. 2019
[Friedman, 2001] Explainability Molnar C. 2019
[Goldstein et al., 2015] Explainability Molnar C. 2019
[Apley and Zhu, 2020] Explainability Molnar C. 2019
[Ribeiro et al., 2018] Explainability Molnar C. 2019
[Sundararajan and Najmi, 2020] Explainability Molnar C. 2019
[Lundberg and Lee, 2017] Explainability Molnar C. 2019
[Back et al., 2020] Explainability Molnar C. 2019
[Szegedy et al., 2013] Explainability Molnar C. 2019
[Kim et al., 2016] Explainability Molnar C. 2019
[Cook, 1977] Explainability Molnar C. 2019
[Goodman and Flaxman, 2017] GDPR Article 22 Doshi-Velez et al. 2017
[Wachter et al., 2017] Explainability Doshi-Velez et al. 2017

Concept drifts
Concept drifts
Explainability evaluation

Kuhlmann et al. 2018
Kuhlmann et al. 2018
Molnar C. 2019
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Table C.2: The selected papers from the initial literature selection.

APPENDIX C. ECOSYSTEM PAPER ROUTE

the papers referenced in these studies were also selected.

As displayed, some of

Search Procedure

Authors Topic Discussion with or Search String
[Engel, 2016] Pre—S.urg.l cal Team members Shown by team member
Monitoring
[Becker et al., 2020] Seizel T2 clinical trial Team members Shown by team member
[Lewis, 2019 Patient/Legislation Team members Shown by team member
[Chu et al., 2016] Patient /Legislation Team members Shown by team member
Pre-Surgical “epilepsy presurgical
[Rathore and Radhakrishnan, 2015] re S.urg.l ca Medical team CPHepsy presurglca‘ﬁ
Monitoring evaluation flowchart
[Ben-Menachem, 2002] Pros-pecthlve Medical team VEGUTIEE stl}}lulatlon
Applications epilepsy
[Boon et al., 2007] Pros'pect.lve Medical team deep bra'ln stlr{lulatlon
Applications epilepsy”
. . . Prospective . ”deep brain stimulation
Foundation Epilepsy [Foundation, 2020] Applications Medical team FDA approval”

[Scheffer et al., 2017]
[Jafarpour et al., 2019]

[Tasker, 1998]

[Gainza-Lein et al., 2017]
[Scheepers et al., 2000]
[Dreifuss et al., 1998]
[Foundation, 2020]
[Assi et al., 2017]
[Debener et al., 2015]
[Teixeira et al., 2014a]
[Sisterson et al., 2020]

[Schirrmeister et al., 2017]
[Islam et al., 2020]
[Beckers et al., 2021]

[Majety et al., 2021]

Brain Dynamics

Brain Dynamics

Emergency medication

Emergency medication
Emergency medication
Emergency medication
Emergency medication
A review of methods
Signal acquisition
Real-life application
Testing the RNS
Explainability in
Deep Learning

Signal preprocessing

Prospective
Applications
Prospective
Applications

Medical team

Medical team

Medical team

Medical team
Medical team
Medical team
Medical team
Data science team
Data science team
Data science team
Data science team

Data science team

Data science team

Reviewers

Reviewers

"TLAE epilepsy classification”
“epilepsy seizure clusters
definition”

"status epilepticus emergency
treatment”

“rescue medication epilepsy”
"seizure rescue medication”
"rectal diazepam gel epilepsy”
Searched in Epilepsy.com
Shown by team member
Shown by team member
Developed by the team
“evaluating the RNS system”

Shown by team member

"EEG seizure prediction
ambulatory preprocessing”

”"EU medical device regulation”

”EU medical device regulation”




Appendix D

Ecosystem social network

iteration and refinement details

The ecosystem social network iterations and refinement details, from chapter 4, are
presented here.

Figures D.1-D.5 concern major iterations of the social network construction. Fig-
ure D.5 concerns the complex network obtained before refinement and encapsulation.
Please note that some actors’ names and numbers have been modified during the
refinement stage.

During the network discussion, it was decided to add more details to some
parts, as the explanation case. Evaluation levels, explanation range, and expla-
nation strategies were added, which were found in Interpretable Machine Learning
book [Molnar, 2019] and in related articles [Doshi-Velez and Kim, 2017]. Techno-
logical requirements and commercialisation were also detailed. The following were
included: i) hardware aspects, such as recharging, heating, placement and removal,
maintenance, price, client support, and fast processing, that can be found in [Ram-
gopal et al., 2014}, and ii) information regarding General Data Protection Regu-
lation (GDPR) article 22 that can be found by analysing [Doshi-Velez and Kim,
2017] and [Goodman and Flaxman, 2017]. The GDPR is a good refinement case,
which concerns an actor found during the inspection of related articles within the
initial ones [Molnar, 2019] until reaching saturation. It was also decided to high-
light possible seizure interventions found in several initial papers [Kuhlmann et al.,
2018b, Freestone et al., 2017, Ramgopal et al., 2014]. For the case of seizure in-
terventions that deliver anti-epileptic drugs, this work got input from the clinician
authoring this study regarding rescue medication such as diazepam. He advised
us to search for epilepsy seizure rescue medication and stressed the importance of
epilepsy clinical heterogeneity, which was also considered. Clusters of seizures (4.5)
did not appear in the iteration models as they were included only in the system
requirements. This was a codification limitation of this work which was successfully

corrected by discussing the network among all authors of this study.
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Figure D.3: Social network iteration after analysing [Kuhlmann et al., 2018b] and related
articles.
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Figure D.4: Social network iteration after analysing [Ramgopal et al., 2014] and related

articles.
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Figure D.5: Social network iteration after analysing Interpretable Machine Learning book

[Molnar, 2019] and related articles. Technical aspects on explainability evaluation and range

are not present simply due to the figure size.






Appendix E

The seizure prediction

ecosystem

The seizure prediction ecosystem (the obtained network from chapter 4) is presented
here in full detail, describing the relations between actors.

Actors (z) and relations (z-y) are named with numbers and grouped in colours
to provide a better understanding. This section will explain these relations while
deepening parts that require more detail. In the end, guidelines are provided to help
authors design their research. An interactive version as Supplementary Material is

also available, which allows a free exploration and may be more intuitive.

Real life and Presurgical Monitoring

This ecosystem begins with the real life of an epileptic patient (1). Years after
being diagnosed with Drug-Resistant Epilepsy (DRE), a patient is referred to an
epilepsy centre to undergo presurgical monitoring (5). The latter evaluates brain
electrical activity (4) to localise the epileptic focus. If easily localised, removing
the epileptic region is a possible solution [Engel, 2016, Mormann et al., 2007]. To
perform this evaluation, one must perform signal acquisition (2), being the EEG the
most commonly used signal (2-4). To acquire and study this data, patient consent
(16—3) and an ethical justification (3) are required. In this case, there is a strong
motivation. Please note that this is a simplification of the presurgical monitoring
process. The following subsection provides a more detailed explanation.

Despite presurgical monitoring is not as frequent as desired, happening for less
than 1% of DRE patients, most studies are performed using presurgical monitoring
data. Therefore, this data may not represent real-life (2—5): the patient is in a
controlled environment [Kuhlmann et al., 2018b, Freestone et al., 2017]; the patient
body may take time to adapt to the acquisition material (as initial data may need to
be discarded) [Cook et al., 2013]; clinicians suppress medication to increase seizure

occurrence frequency; and the short period, typically, a couple of weeks of clinic
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admission and signal recording [Baud et al., 2018, Alotaiby et al., 2014] may mask the
influence (1- -5) of day-to-day confounding factors (6- -4), such as stress, circadian

and ultradian rhythms.

Most databases comprise presurgical monitoring recordings, which correspond
to retrospective data (7) that authors can indefinitely use in academic studies (8).
To collect prospective data during a clinical trial in a real-life scenario (2—14), it is
also necessary to find sufficiently strong and ethical motivation, which is discussed
later. Briefly, prospective studies require a significantly higher patient complacency,
involve longer periods, demand additional resources, and include higher risks for
the patient. Prospective data then becomes retrospective (14- -7) [Kuhlmann et al.,
2018b, Freestone et al., 2017].

Presurgical monitoring details

Presurgical monitoring aims to successfully localise, and delineate the extension of
the epileptogenic zone, ideally followed by a surgery to remove it. Towards this, clin-
icians begin the patient analysis with a multimodal approach: long-term Electroen-
cephalogram (EEG) and video recording, structural MRI, and neuropsychological
evaluation. With this information, patients undergo resective surgery if: i) different
approaches present coherent findings, ii) there is a well-defined epileptic region, and

iii) there is a reasonable risk-benefit ratio.

When this process fails to identify and/or delineate the epileptic region, other
signals can be acquired, such as magnetic source imaging (MSI), functional MRI,
SPECT, and PET. With these, clinicians verify if there is a chance of generating a
testable hypothesis regarding the epileptogenic zone. In a positive case, the patient
will undergo intracranial EEG acquisition, cortical stimulation, and mapping. If the
epileptogenic zone can be localised and resected, the patient will undergo surgery.
Otherwise, antiepileptic drugs, ketogenic diet, or neurostimulation are the possible
current solutions [Rathore and Radhakrishnan, 2015].

In the literature, one can find different studies using data acquired during presur-
gical monitoring collected using both scalp EEG and [Assi et al., 2017, Mormann
et al., 2007]. Thus, when comparing EEG seizure prediction among different types
of EEG, it is relevant to understand and consider the situation that leads to the

Invasive Electroencephalogram (iIEEG) acquisition.

One must not forget that a patient is referred to a level 3 or 4 epilepsy centre to
do presurgical monitoring only after being diagnosed as drug-resistant, which can
take many years after diagnosis, often too late to prevent irreversible damage cause
by seizures. In fact, in the USA, fewer than 1% of DRE patients are examined by a
multidisciplinary epilepsy team [Engel, 2016].
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Brain Dynamics

Brain dynamics (4) play a fundamental role in predicting seizures. Ictogenesis is
known for leading to a hyperexcitability state that increases brain synchronisation
(see Figure E.1). Thus, the EEG (4.1.1) is the most used signal. It can be acquired
using scalp or iEEG, each one addressing different assumptions on brain dynamics
and therefore being more compatible with specific applications [Ramgopal et al.,
2014, Mormann et al., 2007].

Scalp EEG obtains electrical activity from all surface regions, which is more suit-
able for handling the network theory (4.2.1): the latter proposes that seizures may
arise from abnormal activity that results from a large-scale functional network and
spans across lobes and hemispheres [Mormann et al., 2007]. Still, scalp EEG requires
significant patient complacency as they cause stigma and discomfort. One can also
expect frequent signal artefacts and noise. Its intervention application could be a
warning system to reduce seizure consequences, which may be the most affordable
option and, therefore, the one that requires fewer resources [Ramgopal et al., 2014].
Although iEEG has a higher signal-to-noise ratio and can be used to develop closed-
loop intervention systems, patients may suffer from haemorrhage, device movement

or infection, among others [Sun and Morrell, 2014]. Authors commonly focus on
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Figure E.1: Details on the relations between actors concerning brain dynamics. Non-major
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brain activity belonging to a given region, generally the epileptic focus (4.2.2). In
fact, authors assume it is possible to predict seizures by only inspecting the epilepto-
genic area. Furthermore, the SeizelT2 clinical trial [Becker et al., 2020] also explores
EEG behind the ear that brings higher patient comfort, and [Debener et al., 2015]
developed an EEG-ear array which demonstrated feasibility for long-term record-
ings. Other recent approaches, such as Minder from Epiminder and UNEEG, also
capture EEG dynamics in given regions. However, these are invasive, and thus, side
effects may be more severe.

Other sources of information (4.1.2) can be used to explore changes in brain
dynamics (e.g., MRI) and also alterations in other non-neurological physiological
parameters occurring during preictal interval [Kuhlmann et al., 2018b]. For example,
the cardiovascular dynamics regulated by the autonomous nervous system can be
captured by the electrocardiogram, which has been proven to carry complementary
information for seizure prediction. Hence the growing belief that the analysis of
multimodal data may provide improved results [Kuhlmann et al., 2018b]. In fact,
multiple confirmations that the same dynamics may be present at different scales and
biosignals (4.3) might enhance explainability and, therefore, increase trust (19—13),
as mentioned in the following sections.

Moreover, the large clinical heterogeneity associated with epilepsy (4.4) also
promotes current research to deepen understanding of this disease. Different types
of epilepsy characterise several types of epilepsy syndromes. Clinicians distinguish
epilepsy types according to the types of seizures, clinical history, EEG data and
imaging features. Furthermore, several co-morbidities may arise, such as intellectual
and psychiatric dysfunction [Scheffer et al., 2017]. Seizure generating mechanisms
are specific for each patient, and each type of seizure [Kuhlmann et al., 2018b,
Freestone et al., 2017, Assi et al., 2017], even though the source of spiking activity,
for example, remains unclear [Mormann et al., 2007]. Additionally, it has been
suggested that brain hyperexcitability induces a time dependency on seizures that
leads to the occurrence of clusters of seizures (4.5) [Kuhlmann et al., 2018b, Freestone
et al., 2017]. This aspect turns the ictogenesis process more complex and challenging

to understand [Jafarpour et al., 2019].

Academic Studies

Academic studies attempt to discover relevant brain dynamics by, under some re-
quirements, finding optimal signal processing strategies, predictive characteristics
(further referred to as features), and accurate models (8--4). The majority uses
retrospective data because of its availability. In such cases, findings should be inter-
preted as a proof-of-concept to demonstrate that some methodologies may be more
suitable, even though they still need to be tested in a real context [Kuhlmann et al.,

2018b]. It is advised to inspect Figure E.2 to obtain more details on academic stud-
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ies. Inevitably, researchers make several assumptions (see ”Assumptions” section in
this document for more information) when designing a new study. These may result
from the used mathematical models, available data and other limitations, or even
reflect the researcher’s knowledge concerning brain dynamics (8- -4).

Authors attempt to predict seizures by assuming the existence of the preictal
period. The latter is the transition between the normal brain state (interictal pe-
riod) and a seizure (ictal period). It is possible to define the preictal period in two
different ways (8.1). One approach assumes it as a point of no return (8.1.1), leading
necessarily to a seizure [Mormann et al., 2007]. Another method is to envision it
as a period of brain susceptibility (8.1.2) where a hyperexcitable state may not lead
to a seizure [Freestone et al., 2017, Cook et al., 2013]. These hypotheses influence
the experimental design significantly, as it may be more difficult to have a ground
truth or, in other words, correct labelling on brain hyperexcitability when no seizure
occurred. Thus, despite limiting the understanding of brain dynamics, the point of
no return is commonly used in academic studies.

Studies have requirements (9), which constitute established assumptions among
peers on data representativity of either real life or a trustful proof-of-concept. By

fulfilling these requirements, authors assume the best possible simulation of a real
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context. The testing data requirements are: long term recordings (9.1), continuous
data without manually removing any segments due to noise or artefacts (9.2), a
minimum number of seizures to allow for training and testing of the models (9.3),
rigorous patient selection criteria (9.4) where no patient was discarded based on
performance, and models tested in unseen data (9.5) [Kuhlmann et al., 2018b, Gad-
houmi et al., 2016a, Mormann et al., 2007].

It is relevant to note the existence of two types of studies (8.2): characterisation
(8.2.1) and prediction (8.2.2) [Mormann et al., 2007]. In the first, authors try to
find predictive models and/or features that capture a distinct behaviour between
a normal brain state and the preictal period. However, the prediction potential
should be further evaluated by integrating this information into a seizure prediction
methodology (8.2.1—8.2.2) and observing the obtained performance. Prediction
studies are the ones that simulate a real-life scenario and are designed to deliver
timely interventions (8- -15). Therefore, these are the most reported in the literature
and are the ones this work focus on here.

When considering a seizure intervention, system design parameters (10) have a
significant role [Mormann et al., 2007, Winterhalder et al., 2003]. An alarm must be
interpreted considering a Seizure Occurrence Period (SOP, 10.1), where a seizure is
expected to occur, and a Seizure Prediction Horizon (SPH, 10.2), that guarantees
time for an intervention. Furthermore, methodologies have converged for patient-
specific algorithms (10.3) as authors have proven the existence of individual epileptic
biomarkers. This influences study requirements (9- -10), as patient-specific strategies
require a higher minimum recording duration (10.3—9.1) and a higher minimum
number of seizures per patient (10.3—9.3). Finally, authors also must state the
used seizure independence concept [Freestone et al., 2017] or, in other words, the
minimum period necessary to assume that seizures have no relation (10.4). Due to
brain excitability, consecutive seizures may occur in a short period. These create
a cluster where the first seizure is the leading (and independent) one. It influences
the number of independent seizures per patient (10.4—9.3) and limits the amount of
data used. Note that there is no definition/rule to consider a seizure independent,
representing another difficulty regarding brain dynamics (4). Additionally, it is
worth noting that authors in prediction studies with presurgical monitoring data
tend to use shorter periods [Assi et al., 2017] for defining seizure independence

compared to a real-life scenario [Jafarpour et al., 2019].

Model Design

Figure E.3 shows detail concerning the design of mathematical prediction models.
Seizure prediction entails the analysis of time series, which is typically initiated by
segmenting into sliding windows. Thus, a seizure prediction model (11) might be

able to distinguish brain states (interictal or preictal) throughout time. This model



179

Computational
Complexity

10 9
Design B,
Parameters -
4 8 15
- Studies Application
13 11.1.1
Computational

£ Trust Modelling
2%
=}
28 1.1 11.1.2
g3
22
3 Z Model Control Theory
g2
32
ES 1.1.3
S 6
< Machine
a .
2 2 Learning
3§
ERS]
Eo
2s 18
Sy
T2
s
S &
33

ithe higher the
complexity,
‘the higher its
‘abstraction

: 20

Abstraction
Level

17

article 22, GDPR 2018 and

Regulations

Figure E.3: Details on the relations between actors concerning model design. Non-major
actors are inside boxes.

is a mathematical approach (11.1), which uses strategies from different domains,
such as computational modelling (11.1.1), control theory (11.1.2), and the most
common, machine learning (11.1.3), among others [Kuhlmann et al., 2018b, Assi
et al., 2017, Gadhoumi et al., 2016a, Mormann et al., 2007].

Before training a model, authors may preprocess (11.2) the signals to remove
noise while maintaining the frequencies of interest, and then they extract predictive
features (11.3) [Assi et al., 2017, Gadhoumi et al., 2016a]. These two steps may
be optional as more complex mathematical models have the theoretical potential to
handle raw signals. A model, especially a machine learning one, can be distinguished
by its abstraction level (20). Briefly, higher abstraction methods may intrinsically
perform signal preprocessing (20--11.2) and feature extraction (20--11.3). Another
relevant factor is computational complexity (18), where higher abstraction levels
usually require higher processing power for algorithm development (18--20). This
can be an arising problem for real applications (17—18), as low computational re-

quirements may be necessary [Kuhlmann et al., 2018b, Freestone et al., 2017].

Although not mentioned directly, by choosing a given preprocessing method, fea-
ture, and model, a researcher may be undertaking several assumptions on a physio-
logical signal. Therefore, when constructing a pipeline, this work challenges authors
to inspect them. Here is a list of questions one can ask: inside the chosen window

length, can the, is the signal considered stationary, does it have noise, is it the result
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of linear interactions? Are the assumed brain dynamics simple or complex? Do they
involve interactions? Although these may not change the experimental design, they

can improve discussion and consequent comparison.

Performance

Performance is one of the most discussed aspects in seizure prediction studies (see
Figure E.4). A promising methodology is naturally associated with model perfor-
mance, which increases trust in the correspondent study (12—13). Sensitivity (12.1)
corresponds to the ratio of correctly predicted seizures. Specificity (12.2) quantifies
the number of false positives and is commonly obtained by counting the number of
false alarms per hour [Gadhoumi et al., 2016a, Mormann et al., 2007, Winterhalder
et al., 2003]. Statistical validation (12.3) [Kuhlmann et al., 2018b, Schelter et al.,
2006, Andrzejak et al., 2003] has the goal of understanding if performance is above
chance level as there is a trade-off between sensitivity and specificity (12.1--12.2).
In other words, this validation makes it possible to understand if the model’s per-
formance results from identifying random phenomena in the biosignals rather than
seizure-related patterns. This aspect becomes more relevant considering that seizure
prediction is a rare-event problem with a considerable imbalance between interictal
and preictal intervals.

Some researchers suggest presenting an overall performance by computing the
area under the receiver operating characteristic curve (relating false positive rate and
true positive rate) [Kuhlmann et al., 2018b, Winterhalder et al., 2003]. However, the
results can be interpreted according to the envisioned clinical application, specifically
by considering patient intervention consequences (16—12.2). For instance, when
considering the use of a warning system during presurgical monitoring, a maximum
value of 0.15 FPR/h [Mormann et al., 2007, Winterhalder et al., 2003] has been
considered as the upper limit of false alarms that cause bearable/tolerable levels of
stress and anxiety.

Studies comparison (12.4) enables researchers to find acceptable methodologies
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in different datasets and contexts while handling publication bias (12.4.1). This
may occur when using retrospective data while trying several methodologies. When
authors only report the best results and do not interpret failures as advances, their
studies show overestimated performances or, in other words, overfitting to data
[Kuhlmann et al., 2018b, Assi et al., 2017].

A proper comparison of studies requires more than comparing similar metrics.
Authors are strongly recommended to use statistical validation to prove that the
developed models overcome a random predictor in terms of performance [Mormann
et al., 2007]. Nevertheless, it would be appropriate to compare results with a gold
standard methodology applied in the same conditions [Kuhlmann et al., 2018b].

Trust and Explainability

After a proper studies comparison, one can ask what a good performance is or even
inquire about the minimum performance that justifies the design of a clinical trial.
A proper methodology is one which researchers trust. In literature, trust seems to
be represented by studies reporting high performance (12—13) and complying with
consensual study requirements (9--13). By analysing data from longer recordings
and/or a higher number of patients, trust increases as the testing data are more
likely to represent real-life conditions [Kuhlmann et al., 2018b].

Although a given methodology eventually makes incorrect decisions, authors can
still trust it if they can explain its decisions (19—13). A great scepticism concerning
machine learning and high-level abstraction models may be due to the difficulty in
delivering explanations about models’ decisions [Molnar, 2019]. Although authors
and/or clinicians are more willing to trust black-box models when they make correct
decisions, wrong ones lead to mistrust because there is no human-comprehensible
explanation [Freestone et al., 2017].

Trust should be a matter of concern when one designs a study. High-level ab-
straction models may have the potential to handle complex dynamics but require
strong efforts toward providing explanations (19- -20). Current clinical knowledge of
physiology should be the source of explanations as well as the basis for new findings
(19- -4). As an explanation is an exchange of beliefs [Lombrozo, 2006], its acceptance
may differ among patients, clinicians, and data scientists. To better understand trust
and explainability, there is the need to inspect Figure E.5.

Explainability evaluation (19.1) is required. It is possible to evaluate an expla-
nation on three levels: application (19.1.1), where it must satisfy an expert (e.g. a
clinician and a data scientist); human (19.1.2), where it must explain the decision to
a person with no field knowledge (e.g. a patient); and proxy (19.1.3) by establishing
concrete criteria (e.g. the depth of a decision tree). The proxy level is the one
requiring fewer resources. Nevertheless, it should be used with great care when a

model has not proved its quality in delivering explanations, both at the application



182 APPENDIX E. THE SEIZURE PREDICTION ECOSYSTEM

Acad

Studies
4
ustP® " 10 9
p\ana\\o“?dmg © L ; System Design )
efNe o acc.ca s a‘\“ Model Design P Requirements
gbra“‘ ci\Jg '\(\c‘a"‘52
\S
ca(‘\\oi‘\edge
higﬁér the abstraction level, :
more difficult it may be its 19 13 12
i lanati .
Abstraction expananen iz Explanation Trust <——  Performance
Level i
NO® e
. e\’\‘,\a(e‘: A2
ada“\oe s[rategl_
e o e
19.1
SIS 19.2.1 19.2.2
Evaluation and Intrinsicall
Measures InterpretabIVe Feature
19.1.1 1913 Model Statistics
Amlw_licatlion Proxy Level 19.2.3 19.2.4
evel
19.1.2 Model Agnostic Example Based
Method Expl. i
Human Level

Figure E.5: Details on the relations between actors concerning trust and explainability.
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and human levels [Molnar, 2019, Doshi-Velez and Kim, 2017].

There are several strategies [Molnar, 2019, Lage et al., 2019] to retrieve an expla-
nation which can be grouped in: i) intrinsically interpretable models (19.2.1) with
a reduced set of features (such as decision trees, generalised linear models, k-NN,
among others); ii) feature statistics (19.2.2) summary and visualisation; iii) agnostic
methods (19.2.3), which work on top of developed models [Sundararajan and Na-
jmi, 2020, Apley and Zhu, 2020, Ribeiro et al., 2018, Lundberg and Lee, 2017,Ribeiro
et al., 2016, Goldstein et al., 2015]; and iv) example-based (19.2.4) by represent-
ing determined samples and showing the model decision [Béck et al., 2020, Wachter
et al., 2017, Kim et al., 2016, Szegedy et al., 2013]. The explanation range is also
a topic of concern. It is local (19.3.1) when it only explains a given decision for a
sample and respective neighbourhood [Molnar, 2019]. If it explains all samples, it
is global (19.3.2).

Note that a possible relation between patient and trust (16—13) was not con-
sidered, as it concerns the algorithm design solely. Additionally, any connection
between patient and explanation (16—19) was not mentioned directly, despite con-
sidering that a patient has the right to an adequate explanation concerning the
device decisions. In fact, such rights are covered on article 22 from 2018 General
Data Protection Regulation (GDPR) [Goodman and Flaxman, 2017,Doshi-Velez and
Kim, 2017, Wachter et al., 2017]. In this case, an explanation and trust concern field

experts, such as data scientists and clinicians. Nevertheless, patient comfort, trust
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and a proper explanation are fundamental. Therefore, this work implicitly included
these on the relation from the patient to the ethics committee (16—3), represented
by the act of volunteering. When a patient volunteers, he/she demonstrates trust in
researchers and clinicians, having already shown commitment to his/her well-being

and ensured an adequate explanation.

Prospective Data and Applications

A methodology can be clinically approved (3—2 and 2—14) after years of research
when it becomes trustworthy to experts and patients are willing to volunteer. Studies
are trustworthy when they report high performance and good explainability while
fulfilling all data requirements. It is possible to inspect details concerning prospective
applications with Figure E.6.

Ideally, studies using retrospective data envision and open the way to the en-
rollment in potential prospective scenarios (8- -15) [Ramgopal et al., 2014, Mormann
et al., 2007]. It is also possible to undergo a clinical trial without any seizure inter-
vention, as it happens with the ongoing SeizelT2 clinical trial (NCT04284072) and
the ongoing Epiminder clinical trial (ACTRN12619001587190) to develop Minder.
These studies may not achieve the goal of disarming a seizure yet, but they provide
valuable data for authors, which may be seen as a good compromise between patient
safety and research progress. Furthermore, from a non-prediction perspective, these
studies can also improve the standard of care for people with epilepsy.

A prospective application has an intervention mechanism (15.1), which could be
integrated in a closed-loop system, as is the case of vagus nerve stimulation (15.1.1)
[Ben-Menachem, 2002], responsive cortical stimulation as with the RNS®system
(15.1.2) [Sun and Morrell, 2014], or deep brain stimulation (15.1.3) [Boon et al.,
2007]. The last was recently approved by the FDA [Foundation, 2018] and encom-
passes two ongoing trials (NCT03900468, NCT02076698). An alternative could be
a warning system (15.1.4) designed to minimise seizure consequences [Ramgopal
et al., 2014, Mormann et al., 2007] and/or taking seizure rescue medication, as ben-
zodiazepines (15.1.5) [Gainza-Lein et al., 2017, Scheepers et al., 2000, Tasker, 1998].
Selecting an adequate intervention strategy is complex and must account for patient
complacency and consequences (16—15).

It is interesting to reflect on the ideal scenario [Mormann et al., 2007]. The devel-
opment of a constant and effective intervention (15.2), such as chronic or scheduled
stimulation from implantable devices, without any side effects (stress and anxi-
ety, prolonged exposure to medication) and device-related problems (infection, in-
tracranial haemorrhage, tissue reaction, skin erosion, lead migration, among others)
would change the paradigm. Academic prediction studies would focus on increasing
knowledge of brain dynamics (15.2—8) as there was no need to investigate an-

other prospective application. Given the quantity of today’s limitations, this may
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be utopic. However, it may be relevant to stress the purpose of seizure prediction
research.

Naturally, device manufacturers must obey industry standards and regulations
(17—15) related to hardware safety aspects (15.2), such as recharging and low-
energy consumption (15.2.1), heating (15.2.2), placement and removal (15.2.3), and
maintenance (15.2.4). Other factors, equally important, concern an affordable price
(15.3) and permanent client support (15.4). Consequently, the design of the models
should consider the use of fast processing methods allowing its integration in small
devices (17.1) [Kuhlmann et al., 2018b, Ramgopal et al., 2014]. It is essential to
mention that considerable advances have been made in these devices, which is the

case of IBM’s neuromorphic TrueNorth chip [Nurse et al., 2016] that already allows
for the deployment of deep learning models.
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The price may be fundamental to the industry. Electrostimulation by implant-
ing iEEG electrodes is currently considered the most promising strategy, as both
Responsive Neurostimulation System (RNS) system and Neurovista’s system used
iEEG [Kuhlmann et al., 2018b, Freestone et al., 2017, Cook et al., 2013, Mormann
et al., 2007]. However, these may demand higher human and monetary resources
than presurgical scalp EEG monitoring, which is already inaccessible to a large part
of DRE patients. In the United States of America (USA), for example, fewer than
1% of DRE patients are examined by a multidisciplinary epilepsy team. Besides,
several only have access to level 3 or 4 epilepsy centres many years after onset, of-
ten too late to prevent irreversible damage caused by seizures [Engel, 2016]. Thus,
by focusing immediate efforts on low-cost and accessible warning systems followed
by rescue medication intake, it may be possible to reach considerably more DRE
patients.

The 2018 GDPR [Goodman and Flaxman, 2017] (17.2) and the 2021 European
Union Medical Device Regulation (EU MDR)) [Beckers et al., 2021] (17.3), for Eu-
ropean citizens and European economic space, are also an important aspect. Article
22 presents the first steps towards legislation on algorithm explainability for high-
risk decisions based on personal data (17—19). Thus, standards and regulations

orientate authors toward patient safety (16—17).






Appendix F

Assumptions on a prediction

study

The most common assumptions used in the seizure prediction field, concerning the
ecosystem study from chapter 4, are presented here.

Assumptions are a crucial part of any study in any scientific field. Researchers
often need to make assumptions about the world. The authors may use a different
perspective and, therefore, different assumptions depending on the study question.
In established areas, such as the seizure prediction field, authors may consider several
assumptions that are not stated directly or not addressed properly in the discussion
section. These assumptions may subconsciously be considered part of the public
domain, particularly among peers. For non-experienced researchers, this may be a
critical aspect.

Although there is the need to make assumptions to solve a problem, these should
be periodically reviewed. Table SF.1 presents the major assumptions often adopted
by authors. These concern the used data, signal acquisition, problem definition,
types of studies, requirements, system parameters, and model design. Note that
this list might not be complete as other topics can be missing, e.g., assuming a
postictal period (a brain refractory period) or defining a period of adaptation of the
brain to the seizure prediction device hardware.

Finally, an author must pay attention to all the assumptions made to verify
if there are inconsistencies. For example, with an Invasive Electroencephalogram
(iEEG), electrostimulation is usually the envisioned intervention. Thus, as the Re-
sponsive Neurostimulation System (RNS) system performs discharges up to 5000
ms, Seizure Occurrence Period (SOP) periods must be short. If an author uses
scalp EEG instead, a warning system is the envisioned intervention. Thus, Seizure
Prediction Horizon (SPH) periods must be significant to allow an intervention or
medication intake followed by time to take effect.

There are assumptions concerning the used mathematical tools that must be

accounted for, as well. These can be related to preprocessing, feature extraction,

187



188 APPENDIX F. ASSUMPTIONS ON A PREDICTION STUDY

and/or model training. For example, when using only a deep convolutional neural
network, authors assume that the algorithm can automatically train a robust model
while learning discriminative features and dealing with noise.

Another example regarding feature selection: by using filtering methods (such
as the absolute value of Pearson correlation), researchers assume that features have
independent discriminative power and, therefore, choose the features with the high-
est discriminative power. The best feature is chosen with a regularisation method
(such as the LASSO regression) instead of the individual best. With a regularisation
method, authors also account for the interaction between features by choosing the
group with the highest discriminative power (these may not have a high individual
discriminative power). Thus, biologically speaking, regularisation methods assume
the possibility of existing more complex interactions in the brain when compared to

filtering methods.
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Table F.1: Major assumptions on seizure prediction studies. Others are also possible,
especially the ones concerning mathematical operations.

Approach

Assumption

Data

Using presurgical monitoring data

Presurgical monitoring data is either representative of real-life
or constitutes a good proof-of-concept of it.

Signal Acquisition

Scalp EEG

Seizure generation mechanisms may occur in any place of the
brain. Supports the network theory. A warning device is
envisioned.

Intracranial iEEG

Seizure generation mechanisms can be detected by inspecting
only a given region, usually the epileptogenic focus. An
invasive application, such as electrostimulation, is envisioned.

Other EEG method

The used method is more suited for a real application (as patient
comfort) while ensuring effective performance.

Other physiological signals

Problem definition

The used method is more suited to a real application (providing
more comfort to the patient) while capturing non-neurological
seizure related dynamics. For example, the ECG signal.

Preictal period

There is a point of no return in the brain after a seizure
will always occur.

Using seizure susceptibility

There is a brain susceptibility period where hyperexcitability
and synchronisation are probable. It may not lead to a seizure.

Fixed preictal period

All seizures are generated in an equal window of time.

Study types

Characterisation

A good performance represents a proof-of-concept for
potential use in a prediction study.

Prediction

A good performance constitutes a proof-of-concept for
potential use in a clinical application.

Study Requirements

Long-term continuous recordings,
and testing in unseen data

These conditions represent a good proof-of-concept of a real
application scenario.

Number of Seizures

System Parameters

The number of seizures is enough to represent real-life or to
constitute a good proof-of-concept.

Patient-specific models

Seizure generation mechanisms vary among patients.

Not using patient-specific models

Seizure generation mechanisms are similar among patients.

Specific models for each stage
of circadian and or multidian rhythms

Circadian and or multidian rhythms influence seizure
generation mechanisms.

Using the same model for all stages
of circadian and or multidian rhythms

Circadian and or multidian rhythms do not influence seizure
generation mechanisms.

Specific models for specific epilepsy
syndromes, epilepsy types, medication,
and so forth

The selected factors influence seizure generation mechanisms.

Using the same model for all epilepsy
syndromes, epilepsy types, medication,
and so forth

The selected factors do not influence seizure generation
mechanisms.

SOP and SPH

Seizure generation mechanisms occur necessarily within the
period determined from SOP+SPH to SPH, before seizure onset.

SOP

The used seizure occurrence period has an adequate duration
to make an intervention effective.

SPH
Model Design

The used seizure prediction horizon allows time enough to
render the envisioned intervention possible.

Preprocessing

The acquired signals have artefacts and noise that can be
removed with preprocessing.

Feature Extraction

It is possible to extract more robust measures of signal
dynamics that characterize a pre-seizure state.

Mathematical model training

It is possible to develop a mathematical model that
discriminates a normal brain state and a pre-seizure one.







Appendix G

Questions about the seizure

prediction future

The questions made about the future of seizure prediction, concerning the ecosystem

study from chapter 4, are presented here.

Explanations and trust

Explanations help detect data bias while increasing the robustness of the seizure
prediction models. They are important to improve patient safety. They also help
to mitigate scepticism regarding machine learning methodologies. Based on this,
the following questions appeared, which must be handled by data scientists and

clinicians:

1. Which are the concerns on explainability when designing seizure prediction
models for prospective testing? Are clinicians sceptic about how the models
work? Or are they afraid to compromise patients’ safety? Do clinicians and
data scientists have different needs concerning human-comprehensible expla-

nations, or are these equal?

2. When compromising patient safety is the only main problem with non-human
interpretable systems, do data scientists need to work on delivering deep ex-
planations of the ictogenesis process? Or can they opt to improve some other
parts of their methodology, e.g., increasing model robustness against data bias

and noise?

Explanations and clinical approval

The need for explanations may justify that all clinically approved studies, such
as the phase IV Neuropace Responsive Neurostimulation System (RNS) system
(NCT00572195) and the phase I NeuroVista Seizure Advisory System (NCT01043406),

use algorithms with features that are clinically intuitive [Freestone et al., 2017].
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These two clinical trials demonstrate that, despite all the literature efforts put
into developing complex models and consequent increase in performance, it may
be necessary for a fully explainable model to provide trust. Secondly, the Sei-
zure Advisory System clinical trial demonstrates the possibility of using models
that are not necessarily intrinsically interpretable, as long as they produce human-
comprehensible explanations while ensuring patient safety, handling data bias de-
tection, and dealing with model robustness. Based on this, the following questions

arose, which must be handled between data scientists and clinicians:

4. If those new approaches have satisfactory performance on the application and

human levels, can they be used?

5. Do researchers need a human-comprehensible explanation when the algorithm
is being used in real-time? Or do they need it only at certain moments, as
with raised alarms and incorrect decisions? This may handle the fact that
data scientists tend to trust model decisions when they are correct and only
tend to inspect errors. In fact, when training a machine learning model, the

training algorithm minimises misclassified samples’ errors.

6. Can counterfactual explanations be interesting? Counterfactual explanations
are very human-friendly and used widely by humans in daily life because they
can answer a "why” question. This question can be formulated [Molnar, 2019]
as: what is the slightest change to the features that would change the predic-

tion from alarm to no-alarm?

7. The used features in these studies [Sun and Morrell, 2014, Cook et al., 2013|
(line-length, bandpass, and energy-related measures) are clinically intuitive,
and many others have been widely used in the literature, such as decorrela-
tion time, Hjorth parameters, relative spectral power, wavelet decomposition,
auto-correlation measures, auto-regressive modelling coefficients, and entropy.

Which ones could also be used in a clinical trial?

8. These studies have used clinically intuitive features as input in the decision
models. With the proper guarantee of model robustness, data bias detection,
and patient safety, could Deep Learning approaches, with raw data as input,
be used in clinical trials to perform feature extraction automatically? In a
positive scenario, would the authors’ methods need to explain which features
were extracted by the Deep Learning model, or could an explanation just show

the relevant data points for a given decision?

Patients and real-applications

In a survey [Schulze-Bonhage et al., 2010] on Drug-Resistant Epilepsy (DRE) pa-

tients concerning seizure prediction devices, patients expressed their preference for
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an invasive solution. Acceptable performance concerned high values, with an SOP

of 10 minutes, which, by inspecting literature, is currently not achievable, to the

best of this thesis’ knowledge. This study was mostly a fixed questionnaire with

few open questions on these parameters (Seizure Occurrence Period (SOP), Seizure

Prediction Horizon (SPH), and minimum performance) and preferences. For exam-

ple, what would be an acceptable SOP duration? The options were: 10 minutes, 30

minutes, 1 hour, 3 hours, or more than 3 hours. The possibility of biasing answers

is significant, which must be stressed. These led us to several questions which must

be handled by data scientists, clinicians, and patients:

8.

10.

11.

Could researchers obtain a different patient point of view with the same sub-
jects if they undergo a different approach, such as open questions only followed

by a grounded theory analysis?

Despite their preferences, do patients have the financial resources to acquire
a seizure intervention device? Can the study be biased towards people with
significant money resources? Do patients know the success rate of such ap-
plications? Are they truly aware of all possible consequences and problems
(infections, haemorrhage) with implantable invasive systems and their chance
of happening? Moreover, the latter may lead to even higher monetary and

psychological costs.

Concerning scalp Electroencephalogram (EEG), few patients are willing to
use long term acquisition systems. Should researchers make efforts in other
formats of EEG scalp acquisition, such as the two-electrode system from
SeizelT2 [Becker et al., 2020] or the ear-EEG array [Debener et al., 2015]7
Or should they focus on other signals, despite having a lower theoretical po-
tential, such as the electroencephalogram (ECG)? For instance, smartwatches
are more comfortable and can record a one-channel ECG. Are these strong
reasons to promote enrolling in long-term clinical trials using these devices
instead? They certainly allow more comfort and mitigate stigma, but their

prediction performance might be not as good.

Patients claim to accept, as minimum performance and SOP duration, values
that are not achievable, at least yet, in literature [Kuhlmann et al., 2018b,Free-
stone et al., 2017, Mormann et al., 2007] (10 minutes of SOP, minimum sen-
sitivity of 90%, and very low False Prediction Rate per hour (FPR/h), simul-
taneously [Schulze-Bonhage et al., 2010]). If they knew more about current
research, could they change their minds? Regarding an invasive solution with
electrostimulation, is it relevant to have a low false alarm rate if electrical stim-
uli may not represent great harm? Note that in this case, additional problems

of device heating or energy consumption are being excluded.
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12. Should authors investigate the maximum false alarm rate that a patient can
hold without large physical and/or psychological consequences (due to too
much electrostimulation or medication intake) concerning all intervention sys-

tems? Is there another alternative to evaluate specificity quality?

The only commercial intervention device: The RNS system

The RNS system reduces seizure frequency over time. Nevertheless, patients still
suffer seizures. Thus, the following question appeared, addressed to clinicians and

data scientists:

13. Why do patients continue to have seizures? When a patient suffers a seizure,
are these devices acting too late, during points of no return, or are they not
detecting any preictal activity at all? Efforts have already been made towards
a proper system evaluation [Sisterson et al., 2020]. Would these electrostim-
ulation systems benefit from using more robust algorithms to predict these

sooner, or are there seizures that brain electrostimulation can not disarm?



Appendix H

Ecosystem’s guidelines

extrapolation to forecasting

The possible extrapolation of the ecosystem study guidelines (from chapter 4) to
seizure forecasting is presented here.

Despite this study’s emphasis on seizure prediction, these guidelines and conclu-
sions can be adapted and, thus, hold for seizure forecasting. Here, there are some
adaptions to the guidelines that one may need to perform when performing a seizure

forecasting study.

e Guideline 1: deciding to perform prediction or forecasting is already undertak-
ing determined assumptions on brain dynamics, which should be highlighted

in every study.

e Guideline 2: in seizure forecasting, researchers also need to envision a de-
termined intervention (warning device, neuromodulation, cortical stimulation,
rescue medication) to understand if the obtained system can be applied to

real-life and how it will affect the patient (physically and mentally).

e Guideline 3: shifting from seizure forecasting to seizure prediction, at the lights
of machine learning and in practical terms, might be a change in labels or to
a regression problem. Even in the theoretical absence of clinically developed
methodologies for forecasting, one can adapt the existing prediction machine

learning methodologies to the appropriate labels.

e Guideline 4: forecasting methodologies also need to focus on explainability to

promote trust among experts.
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Appendix I

An acceptable performance in a
prediction study for a clinical

setting

The discussion about the accepted performance for a clinical setting, concerning
chapter 4, is presented here.

An accepted performance for the clinical setting might depend on the chosen
application. In terms of sensitivity, the minimum justifiable level might be subjec-
tive. However, in the paper that seeks the Drug-Resistant Epilepsy (DRE) Patients’
views on seizure prediction devices [Schulze-Bonhage et al., 2010], patients claim a
minimum of 90% performance for sensitivity. So that might be a reasonable limit
to account for in warning devices.

However, researchers must not forget the limitations of defining this value for
other applications, such as neurostimulation. Due to how the way the Responsive
Neurostimulation System (RNS) system works, it is impossible to measure sensi-
tivity performance. Nevertheless, although it may provoke too many stimulation
interventions, it significantly reduces the seizure rate in many patients. Thus, it is
clinically accepted.

The False Prediction Rate per hour (FPR/h) also depends on the chosen appli-
cation. This value must be adapted to the envisioned intervention due to patient
complacency.

For warning devices, there is a maximum established FPR /h value of 0.15 [Win-
terhalder et al., 2003] in pre-surgical monitoring that was calculated using their
mean seizure rate in those conditions. Researchers can adapt that FPR/h value to
real life by using the mean seizure frequency in those conditions.

When a neurostimulation intervention is envisioned, one must study the maxi-
mum intervention rate that a patient can hold without causing significant damage.
When envisioning a rescue medication, such as benzodiazepines, one needs to under-

stand the drugs’ pharmacokinetics, their long-term side effects, and the maximum
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frequency and dose intake.



Appendix J

MOEA study’s patient data

The metadata about all analysed patients in chapter 5 is presented here.
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Table J.1: Patient information. For each patient, it is presented its EPILEPSIAE ID, the number of seizures used for training and testing and their
recording duration, seizure focus (as lobe-subegion-side, frontal lobe (f), temporal lobe (t), central lobe (¢), occipital lobe (o), parietal lobe (p), mesial
subregion (m), basal subregion (b), polar subregion (p), right side (r), left side (1), and bilateral (b)), the annotated activity pattern (unclear (?), rhythmic
sharp waves (s), rhythmic alpha waves (a), rhythmic delta waves (d), rhythmic theta waves (t), rhythmic beta waves (b), repetitive spiking (r), cessation
of inter-ictal activity (c), amplitude depression (m), low amplitude fast activity (1)), seizure classification (unclassified (UC), Focal Onset Aware (FOA),
Focal Onset Impaired Awareness (FOIA), Focal to Bilateral Tonic-Clonic (FBTC)), sleep stage at onset (awake (A), sleep stage I (1), I (2), III (3), IV (4)

and REM (R)), and surgery decision (performed (s), offered but not performed (o), not offered (n), and invasive monitoring required (i)).

. #Seiz. Rec. Seizure X Vigilance
Patient ID Sex . . Focus Surgery .. Seizure
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Appendix K

MOEA’s configuration details

The details about the Multiobjective Evolutionary Algorithm (MOEA) configura-

tion, from chapter 5, are presented here.

Once every individual has been evaluated, parents are selected to reproduce and
generate offspring. In this study, considering a population of N individuals, a group
of N/2 parents are selected and are recombined until N offspring are produced. The
offspring is then subjected to mutation (with a given probability, just as before for
recombination), and a replacement strategy is put in place to select the N individuals
that will make up the following generation. To do these steps, firstly, there is the

need to rank the population, where non-dominated sorting was used.

For each individual, its rank is equal to the number of individuals dominating
it plus one (e.g. all nondominated individuals are assigned rank 1). Afterwards,
a fitness value was assigned by interpolating from the best individual (rank 1) to
the worst (rank n < N) within each rank. In other words, this strategy itera-
tively searched for all the non-dominated solutions in the population that have not
been labelled as belonging to a previous front. After labelling that new front, a
front counter was incremented, and the process was repeated until all solutions were

ranked.

Afterwards, the individuals within each rank were sorted according to the crowd-
ing distance, corresponding to the average side length of a cuboid defined by its
nearest neighbours in the same front [Deb et al., 2002]. In essence, the larger the
crowding distance is, the fewer solutions occupy the vicinity of a given individual.
It is computed, for each objective m, in the following manner: sort individuals ac-
cording to their fitness score f, assign an infinite value to boundary solutions (so
that they are always selected), and compute the distance measure for the remaining
solutions as given by Equation K.1. The overall crowding distance was calculated

as the sum of the distance values concerning each objective.

F+ D = (= D)

fmam _ fmzn
m m

Fi) = (K.1)
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210 APPENDIX K. MOEA’S CONFIGURATION DETAILS

For parent selection, the population was ranked using non-dominated sorting,
and then, within each rank, individuals were sorted by the crowding distance (the
higher it was, the better rank they were assigned to). Parents were then chosen using
binary tournaments and reproduced until IV offspring were generated. Concerning
the replacement strategy, there was used an elitist approach. Firstly, after evaluating
the newly created offspring, the 2N individuals (current generation and offspring)
were ranked with non-dominated sorting. Then, entire fronts were added into the
new generation, starting from the rank 1 individuals, followed by rank 2, and so on,
until a new set could no longer be accommodated. This last set of solutions was
then sorted according to the crowding distance, and the better ones were chosen to

fill out the rest of the new population.



Appendix L

MOEA’s genotype-phenotype

mapping example

A genotype-phenotype mapping example concerning the Multiobjective Evolution-
ary Algorithm (MOEA) from chapter 5 is presented here.

Suppose that for a 10-minute Seizure Prediction Horizon (SPH), a given indi-
vidual is represented by three (not five for simplicity reasons) hyper-features, whose
codification is presented in Table L.1.

The genotype-phenotype mapping transforms an individual’s genotype into a set
of hyper-features extractor that can perform sliding time-window analysis. The first
three decoding steps consist in: i) finding the features that will be decoded to the
phenotype; ii) constructing the hyper-features using the decoded features and the
remaining genes; and iii) placing the hyper-features chronologically and adjusting
the preictal period.

Concerning step i), for hyper-features A and B, the decoded features belong to
the frequency domain due to their active feature domain gene value ("Frequency”).
Hyper-feature A is decoded into a band relative power, namely alpha band due to the
active frequency feature (band feature) and active frequency band feature (relative
power). Hyper-feature B is decoded into SEF 50% due to the active frequency feature
(spectral edge feature). Hyper-feature C is decoded into skewness, due to the active
feature domain ("Time”) and active time feature (statistical moment) gene values.
This step is shown in L.1, more specifically in red.

Concerning step ii), the selected features, alpha band, SEF50%, and skewness,
will now be collected for constructing hyper-features A, B, and C from electrodes
Cz, O1 and T6, in windows of 15, 5 and 1 minutes, respectively. All possible
window lengths are multiples of 5 seconds as the features were beforehand extracted
in windows of 5 seconds. Then, to these windows, the correspondent mathematical
operator is applied: the variance, the mean, and the integral for hyper-features A,
B, and C, respectively.

Concerning step iii), each hyper-feature temporal position is obtained by adding
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Table L.1: Example of an individual genotype. In this example, an individual is composed
by only three hyper-features and not five, due to simplicity reasons. Each hyper-feature
comprises twelve genes: active feature domain, active time feature, active frequency feature,
active frequency band feature, statistical moment, hjorth parameter, relative band power,
wavelet energy, spectral edge frequency, mathematical operator, electrode, window length,
and delay.

Gene A B C
Domain Frequency Frequency Time
. Statistical Hjorth Statistical
Time
moment parameter moment
Frequenc Band Spectral Band
4 Y division edge division
Frequency band  Relative Wavelet Wavelet
feature power energy energy
Statistical Kurtosis Mean Skewness
moment
Hjorth . . - .
parameter Activity Mobility ~ Complexity
Relative band Alpha High Theta
power gamma
Wayvelet DI D7 AT
energy
Spectral
edge 5% 50% 90%
frequeny
ki e Variance Mean Integral
operator
Electrode Cz 01 T6
Wlnd(.)w length 15 5 1
(minutes)
Delay 30 10 20
(minutes)
Preictal Period
. 30
(minutes)

the correspondent delay to the preictal period gene. This gene allows analysing
of a sequence of instants instead of only one instant. Additionally, it also allows
adapting the preictal period duration, as it is determined by calculating the temporal
distance from the first chronological hyper-feature to seizure onset. For a better
understanding, this step is demonstrated in L.1, more specifically in orange.

Then, by setting the decoded hyper-features chronologically concerning the used
preictal period, it is possible to perform label (preictal /interictal) and hyper-feature
extraction through sliding-window analysis both in training and testing seizures for

fitness function evaluation, as depicted in SL.2.
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Active Feature  Active Time Active Active Hjorth  Rel.band Wavelet Math Window
N q frequency SEF Electrode Delay
Domain Feature Moment  Parameter ~ power  energy Operator Length
feature band feature
l | l | ¢ decoded Feature +30 minutes
- isti Band i . o
Hyper-Feature Frequency Statistical L Relative Kurtosis | Activity Alpha D1 75%  Variance Cz 1_5 39
A Moment division power min min
L | decoded Feature ¢ 30 minutes
Hyper-Feature Hjorth Spectral Wavelet High
Yp Frequency " P Mean Mobility J D7 50% Mean o1 5 19
B parameter edge energy gamma min min
| l | ¢ decoded Feature +30 minutes
Hyper- Feature . Statistical Wavelet
YP Time Band Complexy Theta A7 90% §§ Integral T6 1 29
C Moment division energy min min
*
variance(alpha i skewnes . . SPH
I = '"'eg”‘(& Preictal Period
—
I ] I | |
75 5 45 30
60 10 5 .
70 0 gene value preictal period Seizure

Time before a seizure (minutes)

Figure L.1: The first three steps of decoding the genotype into the phenotype: i) decoding
the dominant feature (in red); ii) constructing the hyper-features using the decoded feature
and the remaining genes (in the timeline); iii) determining the hyper-features temporal
position and finding the preictal period (in orange).
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Figure L.2: With the hyper-features ordered chronologically, it is possible to perform
feature extraction for a time-moving analysis and to label instants as belonging to the

preictal/interictal period.






Appendix M

MOEA’s evolution operators

details and example

The mutation and the recombination operators concerning the Multiobjective Evo-

lutionary Algorithm (MOEA), from chapter 5, are presented here.

M.1 Mutation operator details and example

Mutation, interpreted as a unitary step that will cause a random and unbiased
change [Eiben and Smith, 2003], occurs in the following form for an individual:
either one of the hyper-features or the preictal period gene is chosen randomly. When
one of the hyper-features is chosen, one gene of that hyper-feature is then chosen
randomly to mutate. If the preictal period gene is selected, its value will mutate.
The remaining hyper-features and genes continue unaltered. Recombination is a
stochastic operator that combines genetic information from two parents (individuals)
into one or more offspring [Eiben and Smith, 2003].

The gene selection, despite random, is made by considering a weighted prob-
ability according to its neighbourhood: a gene’s probability of being selected is
proportional to its number of possible neighbourhood values. The higher the num-
ber of possible values (number of neighbours) for a gene, the higher its probability of
being selected for mutation. Thus, the gene ¢ probability selection g(i) is computed
as in (M.1), where G is the number of genes and Ny (i) the gene respective number

of neighbours:

. Ny (i)
5t S NN ()

To perform a unary step, the mutation operator will act differently depending

(M.1)

on the gene and its value since different genes have different neighbourhoods. One
can understand all gene neighbourhoods as graphs: time instants, window-length

and wave feature domains are graphs where the connected nodes have ordered val-

215



216APPENDIX M. MOEA’S EVOLUTION OPERATORS DETAILS AND EXAMPLE
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Figure M.1: How the mutation operator works in one individual.

ues. Mathematical operator and non-wave features are graphs where each node is
connected to all nodes. Thus, a mutation can be interpreted as a random change
from a gene node to a neighbouring one, randomly chosen.

This section provides an example using an individual. The mutation operator
occurs in the following form, as illustrated in M.1: one of the hyper-features that
composes the individual is chosen randomly (hyper-feature C), and then one gene of
that hyper-feature is chosen randomly to mutate (electrode gene). Mutation will per-
form a random change from the current gene value node (T6) to one of its neighbours
(T4, P4, C4, 02), in this case, to the T4 gene value. The remaining hyper-features

and remaining genes from the mutated hyper-feature remain the same.

M.2 Recombination operator details and example

Recombination is a stochastic operator that combines genetic information from two
parents (individuals) into one or more offspring [Eiben and Smith, 2003]. After
selecting two parents to reproduce, this operator performs the recombination of all
paired hyper-features. Thus, hyper-feature pairing is the first step and is performed
by calculating their Manhattan distances and matching the closest ones. The dis-
tance between two hyper-features equals the number of steps needed to go from one
value to another by taking the shortest path. By representing D(f,, f;) as the dis-
tance between the hyper-features f, and f; where a is the index of the fixed feature
from one parent and ¢ the feature index that iterates the other parent F' number
of features, the matched feature index m will be given by equation (M.2). Thus,
features f,, and f, match.

m = argmin D(f,, fi),1 <i < F. (M.2)
i

D(fa, fi) can be described as the summation of all gene Manhattan distances,
where G is the number of genes from an feature and d( f,,, f5,) is the distance between

two i gene values from features f, and f, presented in equation (M.3).
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G

D(fas fo) = > d(fass f5,), 1 <i < G. (M.3)

i=1

After the hyper-feature matching operation finishes, the recombination operator
works at the hyper-feature gene level. Consequently, each offspring gene value was
obtained by choosing a random node belonging to the shortest path between the cor-
respondent two-parent gene values. The distance between two gene values equals the
number of steps needed to go from one value to another by taking the shortest path.
Due to computational simplifications, the feature matching step did not consider
the total distance of the minimum components as it used a greedy approach. More
specifically, one of the parents was selected, and for each feature in his genotype,
the closest feature from the other parent was matched. This was done iteratively,
which means that if a feature was already matched with a previous component, it
could not be used, even if a lower D(f,, f;) was obtained with the new matching.

This section provides an example between two hyper-features concerning recom-
bination at the hyper-feature gene level. Thus, in this stage, hyper-features from
both parents were already paired. M.2 illustrates the recombination operation con-
cerning one of the paired hyper-features (orange and red), where each gene is recom-
bined (the same process is then repeated with all paired hyper-features). The new
gene value is a random node between the shortest path of the two-parent gene nodes.
When several possible paths are possible, as in the case of the electrodes, one of the
shortest paths is, beforehand, randomly chosen. The recombined hyper-feature is

presented in green.

Electrodes

Parent 1 Parent 2 Statistical Moments Delay Rel. spectral power
Paired Paired
Hyper-Feature A Hyper-Feature A @
Window Length
(minutes)
(other genes) (other genes) e
Beta Band Delta Band 1- Recombine all
genes from the two Skew

Skewness Kurtosis hyper-features.
Integral Mean v @

Mathematical Operators

T6 cz 2- The new gene ’\
value is a random (@
3- Obtain a new hyper-feature,
comprised of all recombined gene

1 minute 10 minute node between the
values.

OO0
0[0l00/0

3
shortest path of the @ @
10 minutes 30 minutes two parent gene

nodes.

Offspring
Paired I (other genes) I Alpha Band I Skewness
Hyper-Feature A

Mean I c4 I 5 minutes I 25 minutesl

Figure M.2: An example of how the recombination operator work at the hyper-feature
gene level. The genotype of the parents’ hyper-features is presented in orange and red, while
green represents the recombined hyper-feature.






Appendix N

MOEA’s neighbourhood detalils

The details concerning the Multiobjective Evolutionary Algorithm (MOEA) estab-
lished neighbourhoods, from chapter 5, are presented here.

Window length and time instant genes have a straightforward ordering, as their
values correspond to increasing/decreasing discrete time intervals. Electrodes’ neigh-
bourhood is based on their scalp position. As there is no decreasing/increasing rela-
tionship among the mathematical operators (mean, median, variance, integral), all
genes were considered neighbours of each other.

However, the extracted features can be divided into several groups and sub-
groups, as seen in Fig. 3.b). Firstly, they can be divided concerning their time/fre-
quency domain. Then, time-domain features can be divided into statistical moments
(ordered by their n-th moment: mean, variance, skewness, kurtosis) or into Hjorth
Parameters (ordered by their n-th moment: activity, mobility, complexity).

Frequency-domain features can be divided into spectral edge features (ordered
by the frequency: 50%, 75%, and 90%) or frequency band ones. Frequency band
features can be divided into relative spectral power bands (ordered by their frequency
range: delta, theta, beta, alpha, low-gamma, high-gamma) and the energy from
wavelet decomposition levels (ordered by their decomposition levels: D1, D2, D3,
D4, D5, D6, D7, and D8). Please note that the used overall division might lead
to discussion, as wavelet transforms may be considered forms of time-frequency
representations and not solely belonging to the frequency domain. Nevertheless, it
was believed that these features are conceptually similar to relative power spectral
bands.
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Appendix O

Mathematical formulation of
the MOEA phenotype study

The mathematical formulation of the Multiobjective Evolutionary Algorithm (MOEA)
phenotype study, from chapter 5, is presented here.

As Evolutionary Algorithmss (EAs) are associated with random components (in
this case: initialisation, parent selection, and evolution operators), it is possible to
obtain, for each execution, a different solution (set of hyper-features) with similar
performance. Thus, performing a phenotype study aims to understand the overall
influence of each gene value concerning the obtained hyper-features.

For a given hyper-feature j, a simple approach can study each decoded gene
individually. It is possible to calculate the gene presence using Equation (O.1) by
assigning to a binary value (1/0) considering the gene value presence in a hyper-

feature.

1, if gene = value.
presence(gene, value) = . (0.1)
0, otherwise.

Then, by applying the previous equation for all F' hyper-features that compose
an individual, one obtains the correspondent gene value presence for an individ-
ual. After this, one can compute the correspondent normalised gene value presence
Presence(value) for all individuals I, as demonstrated in Equation (O.2), respec-
tively. As 30 executions were performed, and as each individual is composed of 5

hyper-features, I = 30, F' = 5, and G gene values (which depends on the gene):

1z
Presence(value) = 7 Z max {presence(gene;j,,value)|j =1,..., F;k=1,...,G}.
i=1
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Appendix P

MOEA study’s control method

The developed control methodology that was developed to evaluate the performance
of the Multiobjective Evolutionary Algorithm (MOEA), from chapter 5, is presented
here.

The existing clinical trial inspired this control method that deals with EEG sei-
zure susceptibility detection, namely the Seizure Advisory System Feasibility Study
(NCT01043406) [Cook et al., 2013] and other previous works, such as [Direito et al.,
2017]. Its development was merely inspired and not fully reproduced to simplify the
process.

The Neurovista Advisory System used a patient-specific layered structure, in-
cluding filtering, feature extraction, and classification. Input signals were filtered by
octave-wide digital filters, from 8Hz to 128Hz range. Notch filters were also option-
ally available. The signals were firstly segmented where they extracted the average
energy, Teager-Kaiser energy, and line-length into windows of 5 seconds, and, sec-
ondly, these features were normalised. This output resulted in 288 features, as these
resulted from the combination of 16 available Invasive Electroencephalogram (iEEG)
input channels, 6 filter /normalisation options, and 3 available features. The 16 best
performing features are selected during training using a backward elimination fea-
ture selection method based on Hilbert-Schmidt Independence Criterion (BAHSIC).
The selected features were used to train a classification model inspired by two types
of classification models, decision trees and a k-nearest neighbours (kNN). A given
feature vector was classified by using several decision surfaces.

Simply put, the input was first compared to the first decision surface to determine
the binary side of the surface where the point was on. Then, a new decision surface
is selected to perform a second surface comparison depending on the previous binary
answer. This process continues until reaching a total of ten decision layers. Thus, the
feature space was divided into 2'° partitions. The used surfaces were chosen during
training. To each, it was assigned a relative measure of seizure risk concerning their
time distance to a seizure event. The training phase used a hold-out or cross-fold

validation method to get the required configuration parameters. Then, the classifier
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output was filtered and thresholded to prevent rapid changes and, thus, be robust
to noise.

This work’s extracted features replaced the advisory system’s filtering/decom-
position and feature extraction processes. This way, the same data was used for
the MOEA and control method. Then, the best set was selected from all possible
combinations of features and electrodes. Feature selection was based on two phases:
using two filter methods [Dash and Liu, 1997] and an embedded one. Concerning the
filter methods: firstly, there were selected the best 100 features with Pearson’s linear
correlation coeflicient and secondly, the best 25 with Receiver Operating Character-
istic (ROC)’s Area Under the Curve (AUC). Then, the wrapper method Recursive
Feature Elimination (RFE) was used to select an optimal set of features. The filter
method had the objective of substantially decreasing the number of features and
thus computational power, as it would take the RFE a substantially long period to
compute.

There are two important configuration options when using the RFE: the used
algorithm to help select the features (the estimator) and the number of features. For
the estimator, there was used a linear Support Vector Machines (SVM) [Direito et al.,
2011]. For the number of features, the first three chronological seizures were used
for a grid-search (3, 5, 7, 10, 15, 20 features) that optimises the Sample Sensitivity
(Sss) and Sample Specificity (Sgp): /Sss * Ssp (also named here as fitness).

The grid search was used to find the best preictal period (30, 35, 40, 45, 50,
55, 60 minutes). For the grid search, there was used a 3-fold as in [Direito et al.,
2017]: fold 1 used seizures #1 and #2 for training, and #3 for validation; fold 2 used
seizures #1 and #3 for training, and #2 for validation; and fold 3 used seizures #2
and #3 for training, and #1 for validation. The remaining seizures comprised the
testing group. Please note that there was used the RFE with the SVM estimator
instead of a backward feature elimination based on the BAHSIC criterion, as its
code implementation was more easily available on Python scikit-learn library.

The classification model was adapted: a Random Forest was used since the one
from the advisory system consists of an ensemble of many individual decision tree
classifiers. Each decision tree is trained with different data distributions. Thus,
it was intended to mimic the ten layer structure along with the different decision
surfaces by using the random forest algorithm. In testing, it was also implemented
the Firing Power to smooth the output over time, with a similar threshold value to
the MOEA approach (0.7). Refractory periods were also used. This methodology is

patient-specific.



Appendix Q

MOEA’s study full results

The control method and Multiobjective Evolutionary Algorithm (MOEA) seizure

prediction results for all patients, from chapter 5, are presented here.

Table Q.1: The results for all patients from the MOEA study.

Training Testing Control Method
D Preictal Fitness # Pareto SS (0-1) Surrogate SS (0-1) Surrogate Above
(min) (SS/SP/Comf.)  Front Ind. FPR/h SS (0-1) FPR/h SS (0-1) chance
0.96+0.05
102 48.44+9.32 0.9440.06 1671 g'ziig'iz 0.1940.05 g'(l)g 0.07+0.26 MOEA
60.60+0.18 : : :
0.98:£0.03 0.00+0.06 1.00
202 51.41+7.14 0.9840.03 2569 : : 0.1240.09 : 0.074+0.25  Control
0.1440.09 0.00
0.7340.16
DO 0.12+40.15 0.50
500 51.5349.60 0.9940.01 2354 : : 0.15+0.06 : 0.384+0.48 -
0.184+0.06 0.28
0.63+0.18
0.95:£0.05 0.084+0.26 0.00
1200 50.0247.52 0.95-0.05 1092 0424i0'22 0.1640.15 0'33 0.2040.40 -
0.5740.19 ’ ’ ’
0.98-+0.02
1500 49.46+8.08 0.99-£0.02 2503 g‘ggig';i 0.2240.13 8'83 0.00+0.00 =
0.71-£0.18 : ’ :
0.96:£0.04 0.12+0.32 0.00
1600 50.0+7.63 0.9740.03 1801 : : 0.03+0.06 : 0.4340.50 MOEA
0.0440.07 1.19
0.67+0.19
DR 0.1940.19 0.00
2100 47.13+8.26 0.95-£0.06 1452 : : 0.1840.08 : 0.03+0.18 o
0.2440.11 0.05
0.70+0.18
0.96-0.04 )
2300 50.65+7.2 0.96-£0.02 1558 g‘ggiggé 0.1940.12 8'22 0.5340.50 -
0.7440.13 ’ ’ ’
0.9640.04
3300 50.86+9.44 0.96+0.03 1908 g'izig'ﬁ 0.20+0.12 ;'gg 0.1740.37 glotEAl
0.6940.16 : : : ontro
0.9740.04
4500 50.30+9.63 0.96+0.04 1727 0.18:4£0.38 0.2440.11 0.00 0.43+0.50 -
0.33+0.16 0.69
0.75+0.14
DOT=ED0A 0.1240.21 0.00
5800 45.84+46.52 0.9740.03 2090 : : 0.2440.13 : 0.15+0.36 o
0.35+0.15 0.21
0.7240.15
0.974+0.03
6000 52.99+9.36 0.964+0.03 1900 0.1340.34 0.1940.10 1.00 0.234+0.42  Control
0.2240.11 0.00
0.7340.15
0.97+0.03
7200 50.38+8.5 0.97-+0.03 2207 g'giigié 0.31+0.20 8'38 0.00+0.00 =
0.72+0.15 : : :
0.93:£0.06 0.18+0.27 0.00
8100 47.04+7.48 0.9040.06 937 ' : 0.14+0.06 ' 0.02+0.13 MOEA
0.1840.06 0.06
0.6840.16
D=L 0.2040.27 1.00
8902 51.174+9.08 0.95+0.06 1154 : : 0.24+0.08 : 0.054+0.22 Control
e 0.16+0.09 0.00
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0.98+0.04

11002 52.94410.65 0.9840.03 2507 0.0040.03 0.2040.13 0.00 0.1740.37 -
0.27+0.19 0.31
0.694-0.19
0.92+0.06
11502 48.1749.45 0.8940.03 930 g‘ﬁig'gi 0.1540.04 ?'gg 0.3140.46 -
0.7140.14 ’ ’ ’
0.99+0.02
12702 53.8+7.61 0.99+0.02 2499 0.16:£0.17 0.16+0.05 0.33 0.18+0.38  Control
0.21+0.06 0.43
0.86+0.15
DLEEIDIE 0.164+0.14 0.00
21602 49.9149.55 0.9740.03 1896 ’ ’ 0.2740.06 ’ 0.084-0.28 -
0.3240.09 0.21
0.704-0.16
0.95+0.04
21902 51.40+9.55 0.9540.04 1457 0.00+0.07 0.134+0.08 1.00 0.20+0.40 Control
0.18+0.12 0.00
0.67+0.19
ORI 0.174+0.26 0.50
22602 51.74+7.82 0.96+0.03 2030 0'10i0.08 0.17+0.07 0'00 0.10+£0.30  Control
0.754+0.14 : . :
0.9740.03
23902 50.33410.39 0.964-0.03 2120 g'gzig'éi 0.2340.13 2'22 0.4340.50 -
0.6740.17 ’ ’ o
AHFESRAL 0.13+0.33 1.00
26102 49.1147.34 0.91+0.05 684 : : 0.2440.10 ' 0.174+0.37 Control
0.34+0.11 0.00
0.63+0.15
0.98:+0.03 0.1940.22 0.60
30802 51.73+8.31 0.9740.05 1919 ! : 0.20+0.06 ! 0.34+0.48 Control
0.19+0.07 0.32
0.64+0.17
DR 0.1240.18 0.33
32502 53.1448.70 0.98+0.02 2570 0'35i0'13 0.27+0.08 0'91 0.1740.37  Control
0.76+0.14 : : :
0.97:£0.03 0.25+0.31 0.50
46702 51.05+8.08 0.96+0.03 1794 ! : 0.1940.12 ! 0.45+0.50 MOEA
0.28+0.19 0.67
0.72+0.17
AHLESRAE 0.03+0.13 0.50
50802 50.36+7.44 0.98+0.02 2221 : . 0.15+0.07 ! 0.204+0.40 Control
0.22+0.09 1.45
0.7240.17
0.92:£0.07 0.0840.10 0.60
51002 51.7547.26 0.9240.07 575 0‘1si0'09 0.16+0.11 1'84 0.6840.47 -
0.7640.13 ’ ' '
0.984-0.03
52302 51.048.17 0.9840.02 2499 g'giig'?z 0.1640.10 8'88 0.004:0.00 -
0.7540.14 ’ : ’
0.98+0.03
0.30+0.33 0.50 MOEA
53402 53.73+7.61 . . 2447 0.20+0.06 0.02+0.13
+ 0.97:0.03 0.26+0.06 + 0.03 + Control
0.71+0.14
DLEENE 0.18-+0.16 0.00
55202 53.2649.34 0.9540.04 1352 : : 0.2140.05 ’ 0.1240.32 -
0.2340.06 0.08
0.6940.17
0.98:+0.03 0.0540.21 1.00
56402 53.2316.88 0.96+0.04 2105 ! ’ 0.124+0.10 ! 0.27+0.44 Control
0.14+0.10 0.36
0.75+0.16
0.9740.03
58602 52.354+11.14 0.9740.03 1369 8'2218'13 0.2340.11 g'ig 0.2140.41 -
0.7240.15 ’ : ’
0.9840.03
63502 48.1549.05 0.9740.03 2374 0.10£0.21 0.1340.07 0.50 0.48+0.50 -
0.1440.06 2.43
0.6440.18
D= 0.0840.19 0.50
64702 54.8547.57 0.9640.03 2008 ’ ’ 0.1340.08 ’ 0.3840.49 -
0.1440.07 0.76
0.704-0.18
0.96+0.04
70302 46.97+8.51 0.93+0.06 570 0.1340.10 0.18+0.06 0.43 0.194+0.39  Control
0.26+0.06 0.25
0.64+0.15
0.98+0.03
70902 48.34+7.79 0.98+0.02 1930 OTir=E0:Aly 0.1340.07 - 0.28+0.45 Control
0.21+0.10 0.88
0.71+£0.20
0.97:£0.03 0.11+0.21 1.00
71102 51.8346.08 0.974+0.03 2090 ' : 0.18+0.08 ' 0.62+0.49 Control
0.1940.12 1.22
0.744+0.19
DR 0.0540.14 0.50
71502 47.6247.58 0.934+0.06 1451 : : 0.1440.06 : 0.3340.47 -
0.164+0.07 10.14
0.62+0.16
0.95:£0.04 0.1240.21 0.50
71802 51.7148.48 0.96+0.04 1164 : . 0.17+0.07 : 0.30+£0.46 Control
0.2140.08 10.63
0.70+£0.20
0.98+0.02
73002 51.07+9.61 0.99+0.02 2560 DAL 0.14+0.08 1.00 0.20+0.40 Control
0.17+0.08 1.30

0.65+0.18
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0.974+0.03

75102 50.25+8.93 0.974+0.03 1924 0.19:40.26 0.20+0.08 0.50 0.234+0.42 Control
0.24+0.09 0.66
0.6940.18
D= 0.1940.17 0.00
75202 49.45+8.64 0.9840.02 2225 0'14i0'05 0.15+0.06 0'17 0.07+0.25 MOEA
0.65+0.18 : : :
0.9440.06
79502 47.62+10.08 0.8740.06 1231 0.21:£0.17 0.15+0.07 0.25 0.22+0.41 MOEA
0.18+0.08 0.87
0.69+0.17
DLEEINIP 0.0440.13 0.00
80602 52.1249.73 0.9940.02 2230 : : 0.1040.05 : 0.03+0.18 -
0.1240.04 0.14
0.76-+0.15
0.96:£0.04 0.1040.20 0.00
80702 50.654+8.26 0.9540.05 1580 ’ ’ 0.1540.07 ’ 0.0040.00 -
0.1440.08 0.00
0.73+£0.18
0.9840.02
81402 50.58+8.10 0.9940.02 2110 g'i;ig'ig 0.16+0.05 g'gﬁ 0.08+0.27 glotEAl
0.8040.11 : : : ontro
0.96:£0.04 0.42+0.40 0.00
85202 52.024+11.45 0.96+0.04 1389 ' : 0.21+0.09 ' 0.32+0.46 MOEA
0.25+0.13 3.82
0.67+0.18
CHOGEIEE 0.40+0.32 0.00
92102 48.98+7.10 0.96+0.03 1595 : : 0.18+0.07 ' 0.374+0.48 MOEA
0.2740.07 2.37
0.704+0.16
0.99:40.02 0.1140.21 0.00
93402 50.3148.29 0.9940.02 2524 0‘32:l:0'08 0.2540.10 0'00 0.0040.00 -
0.8240.10 ’ ' '
D= 0.37+0.28 0.00
93902 48.66+7.89 0.9540.04 1852 0.23i0.15 0.20+0.10 2'28 0.47+0.50 MOEA
0.66+0.20 : : :
0.984+0.03
94402 48.764+9.0 0.9640.03 1748 0.13:4£0.16 0.2440.07 0.00 0.4840.50 -
0.3640.13 1.42
0.74+0.15
BLOEMIE 0.09+0.14 0.00
95202 50.41410.48 0.95+0.03 1144 : : 0.13+0.06 : 0.00+0.00 -
0.1640.06 0.02
0.66-+0.17
0.98:£0.02 0.16+0.18 0.00
96002 50.7247.60 0.9940.02 2725 0‘22i0'06 0.16+0.05 0'30 0.1440.35 -
0.81+0.16 ’ ' ’
0.9740.04
98102 51.01+8.16 0.9340.05 1194 g'?iig'ig 0.11+0.06 g'ig 0.22+0.41 g/IOtEAl
0.6540.19 : : : ontro
0.98-+0.03
100002 51.65+9.36 0.9840.03 2472 0'13i0'19 0.1840.05 0.00 0.10+0.30 -
0.2740.06 0.15
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Appendix R

MOEA study’s preictal period

discussion

Some examples of the preictal periods’ histograms concerning chapter 5 are presented
here. More specifically, patients 21602, 21902, 30802, and 32502 are presented,
which had, as mean preictal period the following values, respectively: 49.91+9.55,
51.4049.55, 51.73+8.31, and 53.14+£8.70 minutes. In the GitHub page of the paper,
one can find these histograms for all patients. The most frequent preictal period (the
mode) is also presented for each patient. The Multiobjective Evolutionary Algorithm

(MOEA) can find solutions for many possible preictal periods in all patients.

Pre-ictal Periods for Patient 21602, Mode= 45
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Figure R.1: The obtained preictal periods, for all MOEA solutions, for patient 21602.
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Pre-ictal Periods for Patient 21902, Mode= 60
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Figure R.2: The obtained preictal periods, for all MOEA solutions, for patient 21902.
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Figure R.3: The obtained preictal periods, for all MOEA solutions, for patient 30802.



231

Pre-ictal Periods for Patient 32502, Mode= 50
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Figure R.4: The obtained preictal periods, for all MOEA solutions, for patient 32502.






Appendix S

MOEA study’s electrodes and

lobes discussion

Some examples of the number of different electrodes and lobes histograms concerning
chapter 5 are presented here. More specifically, patients 1200, 12702, 55202, 81402,
and 1319203 are presented, which had, as most common set (mode) of electrodes
and lobes the following values, respectively: 4 and 3; 2 and 1; 3 and 2; 2 and 2; and
4 and 2. On the GitHub page of this paper, one can find these histograms for all
patients. These findings evidence the relevance of the patient comfort metric in the
Multiobjective Evolutionary Algorithm (MOEA).

Number of Electrodes and Lobes from Patient 1200, Elec. Mode= 4, Lobe Mode= 3
0.5

0.4 A

0.3 1

0.2 1

Occurrence Ratio (0-1)
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Figure S.1: The obtained electrode and lobe study, for all MOEA solutions, for patient

1200. On the left, the number of different electrodes. On the right, the number of different
lobes.
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Number of Electrodes and Lobes from Patient 12702, Elec. Mode= 2, Lobe Mode=1
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Figure S.2: The obtained electrode and lobe study, for all MOEA solutions, for patient

12702. On the left, the number of different electrodes. On the right, the number of different
lobes.

Number of Electrodes and Lobes from Patient 55202, Elec. Mode= 3, Lobe Mode= 2
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Figure S.3: The obtained electrode and lobe study, for all MOEA solutions, for patient
55202. On the left, the number of different electrodes. On the right, the number of different
lobes.
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Number of Electrodes and Lobes from Patient 81402, Elec. Mode= 2, Lobe Mode= 2
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Figure S.4: The obtained electrode and lobe study, for all MOEA solutions, for patient
81402. On the left, the number of different electrodes. On the right, the number of different
lobes.

Number of Electrodes and Lobes from Patient 1312903, Elec. Mode= 4, Lobe Mode= 2
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Figure S.5: The obtained electrode and lobe study, for all MOEA solutions, for patient
1312903. On the left, the number of different electrodes. On the right, the number of
different lobes.






Appendix T

MOEA’s impact of comfort in

performance

The impact of patient comfort on performance, from chapter 5, is presented here.
Three cases are possible: an increase (patient 1500), a maintenance (patient 21602),

or a decrease (patient 58602).

Patient 1500
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Figure T.1: The impact of comfort in performance for patient 1500. The overall perfor-
mance increased.
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Patient 21602
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Figure T.2: The impact of comfort in performance for patient 21602. The overall perfor-
mance was maintained.

Figure T.3: The impact of comfort in performance for patient 58602. The overall perfor-
mance decreased.
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Appendix U

Patient information from the

explainability study

The metadata about all analysed patients in chapter 6 is presented here.

Table U.1: Patients’ information from the explainability study.

. #Seiz. Rec. Seizure .
Patient Sex (Train/ d ti Lat Surgery tivit Seizure
T o
ID AA G uration decision Gy classification
Test) (hours) pattern
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Table U.1 continued from previous page
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Appendix V

Machine Learning pipelines

from the explainability study

More details on the used Machine Learning pipelines for the three methodologies
of the chapter 6, including the Convolutional Neural Networks (CNN) architecture,
are presented here.

A grid search was performed with training seizures during training to find the
preictal period (from 30 to 60 minutes). For the logistic regression and the Sup-
port Vector Machiness (SVMs) pipeline, the search for the & number of selected
features was included. For the logistic regression, the best k features were selected
through the F-test, a filter method that calculates the ratio between variances val-
ues [Venkatesh and Anuradha, 2019]. For the SVMs, an embedded forest of trees
was used for selecting the best set of features for the following reasons: i) it is
computationally light when compared to other embedded methods, and ii) since it
is stochastic, it adds another layer of complexity which it was desired to retrieve
explanations from complex methodologies. Finally, in the SVMs pipeline, the C
cost-value was also searched.

Table V.1 summarises the grid search components of all pipelines.

Table V.1: Grid search components for each pipeline.

R Preictal Period k features C value
Pipeline .
(30-60 minutes) (3,5,7,10,15,20,30) (2**c, where c:-10:2:10)
Log. Reg X X
SVMs X X X
CNNs b

For each set of search parameters (preictal period, number of features, and C

value) and each of the three training seizures, a fitness value was obtained by using

the geometric mean of sample sensitivity and sample specificity:/SSsampte * S Psampie-
The geometric mean of each seizure was computed as follows: training seizures #1
and #2 and validating #3, training seizures #2 and #3 and validating #1, and
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training seizures #1 and #3 and validating #2. Then, the three geometric means
were averaged to get the fitness value of a given set of search parameters. The set
having the highest fitness value was then selected.

Figures V.1, V.2, and V.3 show the full details of all pipelines. For the logistic re-
gression feature selection, ANOVA F-test, scikit-learn’s Select K Best(f_classif, k =
n_features) function was used. For the feature selection in the SVMs pipeline, scikit
learn’s function RandomForestClassifier with maz_depth=10, random _state=42,
n_estimators=100) was used. There were also used linear_model.LogisticRegression
and svm.LinearSV C functions from scikit-learn to train the logistic regression and

SVM models.
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Figure V.1: Logistic regression model pipeline.

Grid Search for Preictal Period (30:5:60 minutes), k selected features (3,5,7,10,15,20,30), and C cost-value (2**(-10:2:10))
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Figure V.2: Ensemble of the SVMs pipeline.

V.0.1 CNN architecture

This subsection provides the network architecture. A graphical version is depicted
in Figure V.4.Three distinct convolutional parts were developed, each constituted
by two convolutional 2D layers. The use of three convolutional components was
a common architecture found in the literature [Usman et al., 2021a, Usman et al.,
2020,Daoud and Bayoumi, 2019]. Filter size and values were found with an a priori
grid search procedure. Convolutional layers with stride were used instead of max
pooling layers as it would help the model learn automatically to reduce dimension-

ality instead of just performing a fixed operation.
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Figure V.3: Ensemble of the CNNs pipeline.

After each convolutional part, a 2D spatial dropout layer was applied along with
an activation layer and batch normalisation. The dropout ratio was high (0.50)
to avoid overfitting. Spatial dropout was used instead of regular dropout since
pixels localisation is essential. In other words, neighbouring pixels correlate with
each other as there is a spatial relationship. Therefore, spatial dropout drops entire
feature maps instead of just one element, which helps the model to generalise. Batch
normalisation layers are for stabilising training by re-centring and re-scaling. Swish
[Ramachandran et al., 2017] activation function was used instead of Rectifier Linear
Units (ReLU) to handle the dying neuron effect (when many ReLU neurons output
a zero value, which may mainly happen to a learned negative bias).

A global average pooling 2D layer was used, followed by a dropout layer and a
densely-connected layer. Lastly, it was used a softmax layer to convert the vector of

values to a probability distribution.
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Figure V.4: CNN architecture. Conv2D stands for 2D Convolutional layer, SD2D(0.5)
stands for 2D Spatial dropout layer with 0.5 dropout ratio, A(Sw) stands for Activation layer
with swish function, BN stands for Batch Normalisation layer, D(0.5) stands for Dropout
layer with 0.5 dropout ratio, A(So) stands for Activation layer with softmax function.






Appendix W

Seizure prediction results from

the explainability study

The seizure prediction results for all patients, for all methodologies, from chapter 6

are presented here.

Table W.1: Prediction results for the logistic regression model. SS stands for Seizure
Sensitivity and FPR/h for False Positive Rate per Hour. Performance above chance was
analysed using surrogate analysis. Patients selected for explanations are written in bold.

Patient Preictal Period AFeatures SS FPR/h Above
ID (minutes) chance
402 60 20 0.00 0.00 0
8902 35 7 1.00 0.11 1
11002 30 7 0.00 0.78 0
16202 30 30 0.00 0.03 0
21902 50 10 0.00 0.00 0
23902 55 15 0.50 1.35 0
26102 60 30 0.00 0.00 0
30802 60 5 0.20 0.40 0
32702 30 7 0.50 0.06 1
45402 35 20 0.00 0.71 0
46702 40 20 0.00 0.00 0
50802 30 10 0.00 0.28 0
52302 55 30 0.00 1.01 0
53402 50 20 0.00 0.32 0
55202 55 3 0.20 0.55 0
56402 30 10 0.00 0.53 0
58602 30 3 0.00 0.54 0
59102 45 30 0.50 1.05 0
60002 45 7 0.00 0.13 0
64702 50 3 0.00 0.56 0
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Table W.1 continued from previous page

75202 35 30 0.00 0.04 0
80702 50 30 0.33 0.28 1
85202 30 20 0.00 0.11 0
93402 30 3 1.00 0.50 1
93902 95 ) 0.00 0.13 0
94402 55 30 0.00 0.80 0
95202 35 15 0.00 0.37 0
96002 35 3 0.25 0.69 0
98102 35 20 0.00 0.13 0
98202 35 30 0.00 0.02 0
101702 60 30 0.00 0.71 0
102202 60 3 0.00 0.05 0
104602 45 30 0.00 0.40 0
109502 40 20 0.00 2.32 0
110602 50 10 0.50 0.32 1
112802 30 3 0.33 0.75 0
113902 55 30 0.00 0.06 0
114702 45 30 0.00 0.00 0
114902 35 10 0.00 0.00 0
123902 35 3 0.00 0.00 0

Table W.2: Prediction results for the ensemble of SVM models. SS stands for Seizure
Sensitivity and FPR/h for False Positive Rate per Hour. Performance above chance was
analysed using surrogate analysis. Patients selected for explanations are written in bold.

Patient Preictal Period Above
#Features SS FPR/h

ID (minutes) chance
402 60 30 0.00 0.00 0
8902 30 30 0.00 0.27 0
11002 30 10 0.00 3.93 0
16202 30 20 0.00 0.07 0
21902 45 15 0.00 0.28 0
23902 55 10 0.00 1.34 0
26102 60 30 0.00 0.10 0
30802 60 5 0.40 0.38 0
32702 30 20 0.00 0.12 0
45402 30 15 0.00 1.13 0
46702 60 30 0.00 0.00 0
50802 30 30 0.00 0.17 0
52302 60 3 0.00 1.13 0
53402 60 3 1.00 0.22 1



55202
56402
58602
59102
60002
64702
75202
80702
85202
93402
93902
94402
95202
96002
98102
98202
101702
102202
104602
109502
110602
112802
113902
114702
114902
123902

Table W.2 continued from previous page

30
30
30
60
30
50
20
45
60
30
45
30
45
95
60
30
30
60
55
60
45
45
60
45
30
30

15
15
3
15
30
3
30
30
7

15
30
20
15
30

W W ot W w

0.20
0.00
0.00
0.00
0.33
0.00
0.00
0.33
0.50
0.50
0.00
0.00
0.00
0.00
1.00
0.00
0.50
0.00
0.50
0.00
0.50
0.00
0.67
0.00
0.25
0.00

1.11
3.83
0.00
0.52
0.67
1.02
0.11
0.44
0.52
0.77
0.13
1.29
0.12
1.52
0.14
4.14
1.56
0.39
1.49
0.65
0.70
3.01
1.44
0.04
0.21
0.00
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Table W.3: Prediction results for the ensemble of CNN models.
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SS stands for Seizure

Sensitivity and FPR/h for False Positive Rate per Hour. Performance above chance was
analysed using surrogate analysis. Patients selected for explanations are written in bold.

Patient Preictal Period SS  FPR/h Above
ID (minutes) chance
402 60 0.00 0.00 0

8902 60 0.50 0.00 1
11002 60 0.00 0.00 0
16202 60 0.25 0.08 1
21902 60 0.00 0.00 0
23902 30 0.00 1.65 0
26102 30 0.00 0.10 0
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Table W.3 continued from previous page

30802 30 0.20 0.48 0
32702 50 0.00 0.00 0
45402 40 0.00 0.00 0
46702 30 0.00 0.10 0
50802 40 0.00 0.10 0
52302 60 0.00 0.00 0
53402 20 0.00 0.09 0
55202 60 0.00 0.07 0
56402 40 0.00 0.11 0
58602 40 0.00 0.05 0
59102 20 0.00 0.40 0
60002 50 0.00 0.20 0
64702 40 0.00 0.34 0
75202 30 0.00 0.16 0
80702 40 0.00 0.21 0
85202 30 0.50 0.37 1
93402 30 0.00 0.57 0
93902 45 0.00 0.13 0
94402 40 0.00 0.04 0
95202 30 0.00 0.08 0
96002 60 0.00 0.00 0
98102 40 0.00 0.00 0
98202 50 0.00 1.30 0
101702 30 0.00 0.10 0
102202 60 0.00 0.00 0
104602 40 0.00 0.08 0
109502 30 0.00 0.00 0
110602 50 0.00 0.00 0
112802 50 0.00 0.00 0
113902 30 0.00 0.11 0
114702 50 0.00 0.04 0
114902 30 0.00 0.07 0
123902 30 0.00 0.00 0




Appendix X

Interview script from the

explainability study

Details about the interviews script concerning chapter 6 are presented here.
During the presentation to the interviewees, they were allowed to ask questions
about any technical aspects or more details. These interviews were organic and
informal. Thus, some questions were only asked when the interviewees had not
spoken about some topics.
The following list shows some of the questions asked when the participants did
not mention these topics beforehand. These topics were not discussed necessarily in

this order.

e« What do you think about the presented features?
e Do these features give you enough information?

e What do you think about the sequence of explanations? What do you think

about their grouping and order?

e What do you think about the provided explanations? Which ones were more

useful? Which ones were less useful?
o Are all these explanations too many?

o What do you think about the explanations about false alarms (patients 8902
and 93402)7

e« What do you think about providing circadian and sleep-wake cycle informa-

tion?

¢ What do you think about analysing the different 15 Support Vector Machiness
(SVMs)’ curves?
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e Is there any issue or mistrust related to the models when we go from logis-
tic regression for an ensemble of SVMs or Convolutional Neural Networkss
(CNNs)?

e What are the limitations of the presented explanations?

e Would you like to have any other explanation?

In the end, the participants were always asked if they wanted to say anything

else before finishing the interview.



Appendix Y

General patient analysis from

the explainability study

The different typical cases, which were found during Firing Power and Concept

Drifts (CDs) inspection in chapter 6 are presented here. Additionally, the statistical

validation strategy for counting these methods is also presented here.

Y.1

Cases with good Firing Power but failed in predic-

tion

Patient 30802, Seizure 8

1.0
awake -

0.8 1

0.6 1

0.4 1

Q Q Q Q Q
‘00"0 O o O 0 ‘00"0 ‘00"0 .00'9 AQ,Q*Q .
A0 AL A e A% 20 20 o©"

Figure Y.1: Seizure #8 of patient 30802. No alarm was raised during the preictal period
due to the refractory period of each alarm. When analysing all available hours from that
seizure, Firing power only started to rise when the patient went to sleep. Thus, all false
alarms are close to each other and occur in the last four hours before the seizure onset.
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Lo Patient 50802, Seizure 5
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Figure Y.2: Seizure #5 of patient 50802. A clear firing power peak and two false alarms
before the preictal period. Nevertheless, the classifier behaviour was good as these events
occur relatively close to the seizure, and no other alarms occurred before in a near interval
(no other alarms until about 17 hours before).
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Y.2 Circadian-cycle influence in alarms and seizures

1.0
awake -—?
0.8 1 T
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Figure Y.3: Seizure #4 of patient 112802. A false alarm cycle on two consecutive days:
from 6am to 6pm. On the third day consecutive day, a seizure occurs after 6am.

1o Patient 112802, Seizure 5
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Qe Nl Q2 S S A A A e

Figure Y.4: Seizure #b5 of patient 112802. This seizure also occurs within the same cycle
lasting from 6am to 6pm.
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Patient 112802, Seizure 6
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Figure Y.5: Seizure #6 of patient 112802. A shorter cycle is observed in this case: from
midday to 4 pm. Then, the next day, a seizure occurs during the morning. All seizures and
the majority of false alarms occurred during the mentioned cycle.
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Y.3 Sleep-wake transition possible influence

Patient 95202, Seizure 5
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Figure Y.6: Seizure #5 of patient 95202. Visible influence of sleep-wake transitions. it
is possible to see an influence on these transitions with small firing power peaks. When
reaching almost midnight, a seizure occurred.
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Y.4 Statistical validation

It was necessary to find a way to verify when a certain number of patients having
a determined characteristic had statistical significance. In other words, when it was
superior to a theoretical chance-level value.

A binomial distribution [Edwards, 1960] was used to model the number of suc-
cesses in a sample of size n drawn with replacement from a population of size N.
The binomial distribution may be a good approximation for an N much more ex-
tensive than n. The binomial distribution is the basis for the binomial test of sta-
tistical significance. The used of the binomial distribution was inspired in previous
works [Pinto et al., 2022, Pinto et al., 2021a, Alvarado-Rojas et al., 2014], including
the Multiobjective Evolutionary Algorithm (MOEA) chapter from this thesis.

Thus, to understand if the number of patients i) whose Electroencephalogram
(EEG) forecasting was better/equal/worsen than the circadian forecasting or ii)
whose circadian cycle influenced alarms and seizures, the cumulative binomial dis-
tribution (binomedf) was used to verify the maximum number of successes given by
chance-level. As the probability of success of these events was unknown, a p=0.05
was reasonably assumed. By looking for a significance a=0.05 and assuming a
p=0.05, a number of successes whose probability was under 0.025 was looked for
due to a Bonferroni correction [Weisstein, 2004] (inspired from multiple comparison
testing). Although multiple comparison tests were not performed, this correction
was still applied due to the p value.

By inspecting Figure Y.7, it was considered that four successes out of 40 were
the maximum regarding chance level. More than four successes were considered to
be above chance.

Concerning patients with at least one seizure presenting one determined char-
acteristic (good firing power but did not predict the seizure or predictive sleep-
wake transitions when the EEG model failed), some adaptations were made to this
method. For each patient, there was the need to account for the possibility of oc-
curring a particular characteristic in at least one seizure due to luck (by chance).
Thus, for each patient, a p=0.05 was assumed and the probability of having success
in at least one seizure by chance was calculated. The n was the number of tested
seizures per patient. An average interpatient probability of 0.123 was obtained.

In Figure Y.8, an example was provided for a patient with three tested seizures,
where a probability of success (by chance) is 0.142.

By using a similar rationale to the one in Figure Y.7, including an additional
factor in the Bonferroni correction (probability should be lower than 0.0125), with
n=40, x=0:1:40, and p=0.123, Figure Y.9 was obtained. By inspecting this figure,
nine successes out of 40 are the maximum regarding chance level. More than nine

successes were above chance.
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y=1-binomcdf(x=0:1:40,n=40,p=0.05)
for y(5)=0.014 and y(6)=0.003
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x=Number of at least n events

Figure Y.7: Graph used to access statistical significance where y=1-binomedf(x,n,p). Y
is the obtained probability (0-1), binomcdf is the cumulative binomial distribution, n is the

number of patients (40), p is the probability of success, and z is a vector from 0 to 40 with
step 1.

y=1-binomcdf(x=0:1:seizures,n=seizures,p=0.'0.05")
in this case: seizures=3 and y(0)=0.142
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Figure Y.8: Graph used to access statistical significance where y=1-binomedf(x,n,p). Y
is the obtained probability (0-1), binomecdf is the cumulative binomial distribution, n is the
number of seizures in this patient, p is the probability of success (0.05), and z is a vector
from 0 to the number of seizures (3, in this case) with step 1. The obtained probability is
y(0)=0.142.
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y=1-binomcdf(x=0:1:40,n=40,p=0.1230)
for y(9)=0.020 and y(10)=0.007

Probability (0-1)

0 2 4 6 8 10 12 14
x=Number of at least n events

Figure Y.9: Graph used to access statistical significance where y=1-binomcdf(x,n,p). Y
is the obtained probability (0-1), binomcdf is the cumulative binomial distribution, n is the
number of patients (40), p is the probability of success(0.123), and z is a vector from 0 to
the number of patients (40) with step 1.



Appendix Z

Models’ comparison with a

circadian forecasting algorithm

An illustration of the circadian forecasting algorithm and complete results from the
forecasting algorithms, from chapter 6, are presented here.

The circadian forecasting algorithm only used circadian information: for each
tested seizure, the circadian algorithm raised high seizure-risk warnings from 30

minutes before to 30 minutes after each seizure training onset time.

Training seizures

30 min § 30 min 30 min § 30 min 30 min | 30 min

00h00 23h59 Circadian cycle

High-risk of seizure

00h00 23h59 C(Circadian cycle

Testing seizures

00h00 Forecasted Missed Missed Forecasted 23h59 Circadian cycle

seizure seizure seizure seizure

Alarm % Seizure

Figure Z.1: An example of the circadian forecasting algorithm.

A forecasting rationale also was applied to the logistic regression models, where

high seizure-risk warnings corresponded to Firing Power values over the alarm
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Table Z.1: The comparison of the EEG-based forecasting algorithm with a circadian fore-
casting algorithm.

Seizure sensitivity Time under warning (TiW)

Patient Circadian EEG Circadian Circadian EEG > Circadian EEG EEG time

model model > EEG = EEG Circadian model model <Circadian
402 0.00 0.00 0 1 0 3h00 0h00 1
8902 0.50 1.00 0 0 1 2h47 1h16 1
11002 0.00 0.00 0 1 0 3h00 1h46 1
16202 0.00 0.00 0 1 0 2h31 0h19 1
21902 0.00 0.00 0 1 0 3h00 0h00 1
23902 0.00 1.00 0 0 1 2h59 11h22 0
26102 0.00 0.00 0 1 0 2h40 0h00 1
30802 0.00 0.80 0 0 1 2h18 14h45 0
32702 0.00 0.50 0 0 1 2h09 0h25 1
45402 1.00 0.00 1 0 0 3h00 1h45 1
46702 0.50 0.00 1 0 0 3h00 0h00 1
50802 0.00 0.00 0 1 0 3h00 2h31 1
52302 0.00 0.00 0 1 0 3h00 2h36 1
53402 0.00 1.00 0 0 1 3h00 1h38 1
55202 0.40 0.80 0 0 1 3h00 16h26 0
56402 0.00 0.00 0 1 0 2h56 2h10 1
58602 0.33 0.00 1 0 0 3h00 2h47 1
59102 0.00 1.00 0 0 1 3h00 24h08 0
60002 0.00 0.00 0 1 0 2h22 3h29 0
64702 0.00 0.50 0 0 1 3h00 6h41 0
75202 0.00 0.00 0 1 0 3h00 0h43 1
80702 0.33 0.33 0 1 0 3h00 3h24 0
85202 0.00 0.50 0 0 1 3h00 0h31 1
93402 0.00 1.00 0 0 1 3h00 8h06 0
93902 0.00 0.33 0 0 1 3h00 0h55 1
94402 0.00 0.25 0 0 1 3h00 5h54 0
95202 0.00 0.25 0 0 1 2h07 8h18 0
96002 0.00 0.25 0 0 1 2h36 14h43 0
98102 0.00 0.50 0 0 1 3h00 1h16 1
98202 0.00 0.00 0 1 0 3h00 Oh14 1
101702 0.50 0.50 0 1 0 3h00 7h28 0
102202 0.50 0.00 1 0 0 3h00 1h09 1
104602 0.00 0.00 0 1 0 3h00 1h47 1
109502 1.00 0.00 1 0 0 3h00 16h38 0
110602 0.00 0.50 0 0 1 3h00 4h15 0
112802 0.00 0.66 0 0 1 3h00 21h35 0
113902 0.33 0.00 1 0 0 3h00 0h46 1
114702 0.40 0.00 1 0 0 3h00 0h00 1
114902 0.00 0.00 0 1 0 3h00 1h46 1
123902 0.00 0.00 0 1 0 2h14 0h00 1

Average SS Relative frequency Average TiW Relative frequency
0.15 0.29 0.18 0.40 0.420 02h52 01h32 0.62

threshold. These were then compared to the circadian forecasting algorithm, that

only used circadian information.
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