
Carlos André Seara da Silva

ROBOT NAVIGATION IN
HIGHLY-DYNAMIC ENVIRONMENTS

Master’s Dissertation in MEEC, supervised by Professor
Doctor Lino Marques and Doctor Sedat Dogru and presented
to the Department of Electrical and Computer Engineering of

the Faculty of Science and Technology of the University of
Coimbra

September 2022

Robot Navigation in Highly-Dynamic

Environments

Carlos André Seara da Silva

September of 2022

Robot Navigation in Highly-Dynamic

Environments

Supervisors:

Lino José Forte Marques

Sedat Dogru

Jury:

Manuel Marques Crisóstomo

Ana Cristina Barata Pires Lopes

Lino José Forte Marques

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

September of 2022

Acknowledgements

In this short text, I would like to thank everyone who, directly or not, contributed to not

only this work, but to the entirety of my academic journey.

First of all, I would like to thank my supervisors, Prof. Dr. Lino Marques and Dr.

Sedat Dogru for all their guidance, help and encouragement during this last year, as well

as for the opportunity to work on something that interests me so much, as is the area of

mobile robotics. A very special thank you to Dr. Sedat Dogru in particular, without whose

expertise and willingness to assist, teach and help me in anyway possible, I’m certain this

work would not have been concluded.

To my parents and my brother, the biggest thank you possible for all the unconditional

support throughout all my life and for giving me the possibility of being here, right now,

writing this text. To my brother in particular, I would like to thank for being the best friend

I could ask for, and for his willingness to participate in the testing of this work even though

it must have been an insufferable process.

I would like to thank all my friends as well for always being there, for the good times,

the bad times, and for the times to come. I cherish you all very much.

Finally, I would like to thank my great friend Stitch for his infinite love and appreciation.

He will not read this, for he is a dog, but he also is an amazing friend and companion. Thank

you, buddy.

iii

Resumo

Os robôs móveis autónomos têm vindo a evoluir ao longo dos anos, tendo progredido de

máquinas de propósito único usadas em ambientes isolados e destinadas puramente a robôs,

para máquinas de elevada complexidade que coexistem e interagem com os seres humanos nos

seus ambientes naturais. Estes robôs têm visto a sua presença aumentar significativamente

em várias áreas de aplicação, com especial destaque para a crescente aceitação e importância

dos robôs industriais em ambiente fabril e dos robôs de serviços em áreas públicas. Este tipo

de ambientes, em que o robô pode vir a encontrar obstáculos em lugares inesperados sendo,

portanto, obrigado a re-planear o seu trajeto de acordo com o movimento dos mesmos, são

considerados ambientes dinâmicos. É, portanto, importante garantir que os robôs têm a

capacidade de navegar de forma segura e sem colisões em ambientes dinâmicos, algo que

é possível através dum planeamento de trajeto que leva em consideração o movimento dos

obstáculos.

Esta dissertação apresenta uma nova abordagem para a prevenção de colisões com ob-

stáculos dinâmicos, em particular seres humanos, levando em consideração aquelas que, de

acordo com o seu movimento, serão as suas posições futuras. A nossa abordagem gera um

mapa de grelhas de ocupação, representado como um mapa de custos, de acordo com estas

posições futuras, melhorando-o através da aplicação de restrições de índole social e por fim

usando o algoritmo A* para encontrar um caminho sem colisões e socialmente aceitável. O

uso do algoritmo A* não é vinculativo, podendo ser utilizados outros algoritmos de planea-

mento de caminhos. Neste método levamos em consideração o movimento dos obstáculos

para prever a área que o robô deve evitar num futuro próximo de modo a não colidir com

um obstáculo, ao invés de assumir um ambiente estático. A nossa abordagem também incor-

pora a incerteza associada à estimativa do movimento dos obstáculos nos custos atribuídos

às celulas do mapa de custos. Asseguramos ainda que os caminhos planeados não causam

embaraço ao movimento dos obstáculos, levando o robot a descrever uma trajetória mais

aceitável do ponto de vista social através da inflação do custo das células do mapa de custos

v

pertencentes à área situada ao longo da direção de movimento do obstáculo.

A solução proposta foi validada através de simulações e de experiências usando o hardware

real, isto é, uma plataforma robótica. Em ambos os casos, foram testados cenários nos quais

a ocorrência de colisões seria certa senão pela capacidade do robô de as evitar. Os resultados

obtidos demonstram que a aplicação de estratégias de atribuição de custos que não levem

em consideração o movimento dos obstáculos não são viáveis para a navegação em ambientes

dinâmicos. Em forte contraste, os testes realizados a capacidade da nossa abordagem de,

na maioria dos casos, evitar colisões e levar o robô a executar trajetórias socialmente mais

aceitáveis, passando por trás dos obstáculos quando adequado.

Abstract

Autonomous mobile robots have evolved from single purpose machines used in isolated,

custom built robot-specific environments, to complex multi-purpose machines interacting

with humans in their natural environments. The presence of such robots has also increased

in many application areas, with industrial robots in factories and service robots in public

areas becoming more and more important and accepted. These environments, where the

robot may find obstacles in unexpected locations and need to replan its path in accordance

with their motion, are considered dynamic environments. Is is, therefore, important to

assure that robots are capable of navigating in a safe and collision-free manner in dynamic

environments through adequate path planning that takes into consideration the motion of

the obstacles.

This dissertation presents a novel dynamic obstacle avoidance approach, aiming to avoid

particularly humans, taking into account their future poses as predicted by their motion.

The approach generates an occupancy map, represented as a costmap, in accordance with

the future poses, improves it with social constraints, and uses A* to find a collision free and

socially acceptable path. However, the approach is not limited to A*, it can use other path

planning algorithms when required. We take into account the motion of the obstacles to

predict the area that the robot should avoid going through in the future in order to prevent

a collision, instead of assuming a static environment. Our approach also incorporates the

uncertainty in the estimate of the obstacles’ motion into the costs assigned to the cost-map.

We ensure that the generated paths do not hinder the obstacle’s motion and lead the robot

through a socially more acceptable trajectory by inflating the costs of the costmap cells

located along the obstacle’s moving direction.

The proposed solution was validated through both simulation and real-world experiments

where collisions would be bound to happen unless the robot had the ability to avoid them.

Results show that cost assignment techniques that do not account for the motion of the ob-

stacles are not reliable for navigation in dynamic environments. In contrast, our experiments

vii

revealed our approach to be able to, on most cases, avoid collisions and lead the robot to

perform more socially acceptable trajectories by passing the obstacles through their backs

when appropriate.

Contents

Acknowledgements iii

Resumo v

Abstract vii

List of Acronyms xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Goals and Contributions . 2

1.3 Document Overview . 2

2 Background 3

2.1 Robot Navigation: Basic concepts . 3

2.1.1 Perception . 4

2.1.2 Mapping . 5

2.1.3 Localization . 6

2.1.4 Path planning . 7

2.1.5 Motion Control . 9

2.1.6 Costmaps . 10

2.2 ROS and its Navigation Stack . 10

2.3 Robot Navigation in Dynamic Environments 14

ix

3 Methods 17

3.1 Overview . 17

3.2 Perception block . 18

3.2.1 LiDAR readings filtering . 19

3.2.2 Clustering . 20

3.2.3 Circle fitting . 22

3.2.4 Obstacle to track assignment . 23

3.2.5 Kalman filter update . 24

3.3 Cost-map update block . 26

3.3.1 Determining possible collision time 27

3.3.2 Cost assignments in the costmap . 28

3.4 Implementation . 31

4 Experimental Work and Discussion of Results 33

4.1 Metrics . 33

4.2 Simulations . 33

4.2.1 Setup . 34

4.2.2 Results and Discussion . 34

4.3 Real-World Experiments . 42

4.3.1 Setup . 42

4.3.2 Results and Discussion . 42

5 Conclusions and Future Work 49

6 Bibliography 51

x

List of Acronyms

ABC Artificial Bee Colony.

ACO Ant Colony Optimization.

AMCL Adaptive Monte Carlo Localization.

APF Artificial Potential Field.

BIT Batch Informed Trees.

DBSCAN Density Based Spatial Clustering of Applications with Noise.

DEEC Departamento de Engenharia Eletrotécnica e de Computadores.

DWA Dynamic Window Approach.

EA Evolutionary Algorithms.

GA Genetic Algorithms.

LiDAR Light Detection and Ranging.

MCL Monte Carlo Localization.

MSE Mean Squared Error.

OMPL The Open Motion Planning Library.

PRM Probabilistic Roadmap.

PSO Particle Swarm Optimization.

ROS Robot Operating System.

xi

RRT Rapidly-exploring Random Tree.

SLAM Simultaneous Localization and Mapping.

VO Velocity Obstacle.

xii

List of Figures

2.1 Flow diagram of the robot navigation loop with a static global map of the

environment . 4

2.2 Example of an occupancy grid map. Black cells represent occupied space,

grey cells represent free space and the white area represents unexplored space.

Taken from [20] © 2010 IEEE . 6

2.3 Example of a layered costmap. Each layer is responsible for a different func-

tionality, allowing for a set of different contextual behaviors to be achieved.

Taken from [61] © 2014 IEEE . 11

2.4 Structure of the ROS Navigation Stack. Taken from [67] 13

3.1 Block diagram describing one iteration of the proposed approach 18

3.2 Block diagram describing one iteration of the perception block 18

3.3 A diagram showing a LiDAR reading. L is the sensor’s position (mounted on

the robot) and the grey circle represents the robot’s footprint. XL and YL

comprise the LiDAR’s frame of reference, while P1 is the point to which the

reading corresponds to. 19

3.4 Block diagram describing one iteration of the cost-map update process . . . 27

3.5 Evolution of the cost-map of the obstacle using the proposed approach (a)

Obstacle’s footprint. (b) Obstacle’s footprint after applying the Gaussian in

equation 3.23. (c) Obstacle’s footprint after inflating the frontal area (equa-

tion 3.25) (d) The final costmap assignment, resulting from fusion of b and

c. 29

3.6 A diagram showing the frontal area of the dynamic obstacle. B is the ob-

stacle’s position and the grey circle represents its footprint. The frontal area

corresponds to the dashed semicircle, whose radius would theoretically be

infinite. Point C is situated in the obstacle’s frontal area, while C’ is not . . 30

xiii

4.1 The three testing scenarios used in the simulations. The arrows indicate the

direction of motion of the obstacles. 35

4.2 Screenshots of the key frames of test number 10 on the first simulation scenario

using the proposed approach. On top are screenshots from Gazebo, while the

bottom ones are from RViz . 37

4.3 Screenshots of the key frames of test number 1 on the second simulation

scenario using the proposed approach. On top are screenshots from Gazebo,

while the bottom ones are from RViz . 39

4.4 Screenshots of the key frames of test number 13 on the third simulation sce-

nario using the proposed approach. On top are screenshots from Gazebo,

while the bottom ones are from RViz . 41

4.5 Pictures of the hardware used for the real-world experiments 43

4.6 Screenshots of the key frames of test number 2 on the first real-world scenario

using the proposed approach. On top are screenshots from the recorded video,

while the bottom ones are from RViz . 44

4.7 Screenshots of the key frames of test number 1 on the second real-world sce-

nario using the proposed approach. On top are screenshots from the recorded

video, while the bottom ones are from RViz 46

4.8 Screenshots of the key frames of test number 1 on the third real-world scenario

using the proposed approach. On top are screenshots from the recorded video,

while the bottom ones are from RViz . 47

xiv

List of Tables

4.1 Simulation results obtained on the first scenario 36

4.2 Simulation results obtained on the second scenario 38

4.3 Simulation results obtained on the third scenario 40

4.4 Results obtained on the first real-world scenario 43

4.5 Results obtained on the second real-world scenario 45

4.6 Results obtained on the third real-world scenario 46

xv

1 Introduction

1.1 Context and Motivation

Autonomous mobile robots have evolved from single purpose machines used in isolated,

custom built robot-specific environments, to complex multi-purpose machines interacting

with humans in their natural environments [1]. The presence of such robots has also increased

in many application areas, with industrial robots in factories and service robots in public

areas becoming more and more important and accepted. It is, therefore, important to assure

that robots are capable of navigating in a safe and collision-free manner through adequate

path planning in dynamic environments [2].

Common robot navigation in dynamic environments usually does not take into account

the motion of the obstacles over time, as the term dynamic obstacles is frequently used

to refer to unforeseen obstacles and not necessarily moving ones. This can lead to erratic

navigational behavior, because the robot must change its planned path frequently due to the

assumption that the obstacles are not moving [1]. That is the case with, for example, the

approach proposed by Ghorbani et al. [3], as well as with Zeng et al. [4], and with the solution

for dynamic environment navigation introduced by Hossain and Ferdous [5]. There are also

some approaches that, while explicitly considering the obstacle’s motion, work mainly on a

local scale. That is the case, for example, with the modified Dynamic Window Approach

[6]. Although this allows the robot to navigate safely, these approaches’ reactive rather than

predictive nature can once again lead to inconsistent planning due to their limited scope [7].

Therefore, theese approaches are more adequate for navigation in unknown environments

than for situations where the robot has information about the structure of the environment,

as can often be assumed to be the case in indoor navigation.

1

1.2 Goals and Contributions

The main goal of this work is the development of a robot navigation strategy tailored for

use in dynamic environments. We propose a novel dynamic obstacle avoidance approach,

aiming to avoid particularly humans, taking into account their future poses as predicted

by their motion. The approach generates an occupancy map, represented as a costmap, in

accordance with the future poses, improves it with social constraints, and uses A* to find a

collision free and socially acceptable path. However, the approach is not limited to A*, it

can use other path planning algorithms when required. We take into account the motion of

the obstacles to predict the area that the robot should avoid going through in the future in

order to prevent a collision, instead of assuming a static environment. Our approach also

incorporates the uncertainty in the estimate of the obstacles’ motion into the costs assigned

to the cost-map. We ensure that the generated paths do not hinder the obstacle’s motion

and lead the robot through a socially more acceptable trajectory by inflating the costs of

the costmap cells located along the obstacle’s moving direction.

This work was developed in the scope of the UltraBot project, giving origin to an article [8]

to be published in the Proceedings of the Fifth Iberian Robotics Conference (ROBOT2022).

1.3 Document Overview

The structure of this dissertation and content of each chapter are the following:

• Chapter 2 presents the reader with some essential concepts for understanding the

robot navigation problem, introduces the Robot Operating System (ROS) and per-

forms a review of the existing works on robot navigation in dynamic environments;

• Chapter 3 presents and explains our approach to costmap construction, starting

with the perception-related processes executed in order to extract meaningful infor-

mation for the cost assignment process;

• Chapter 4 contains experimental results, obtained both through simulations and

real-world experiments. A discussion on these results and their meaning is also held

in this chapter;

• Chapter 5 reflects upon the overall results of this work and proposes some im-

provements to be made in future work.

2

2 Background

In this chapter we present the basic concepts associated with robot navigation and how

interconnected they are in that process, introducing some seminal works focused on each of

them. The reader is also introduced to the Robot Operating System (ROS) and given a brief

explanation of its building blocks and utilities. Finally, a discussion regarding the existing

approaches to robot navigation in dynamic environments is presented as well, substantiated

with brief analyses of some important works on this topic.

2.1 Robot Navigation: Basic concepts

Autonomous navigation refers to the manner in which a robot finds its way in the en-

vironment it is integrated in, relying solely on its decisions and not on the intervention or

control of an external agent, such as a human [9]. This decision process is controlled by the

a priori knowledge the robot may have regarding the environment in the form a map, the

sensory information it acquires through a perception process, depending as well on the goal

position or series of positions it is desired to reach. [10].

The navigation problem can then be generally summarized into four different subtasks

[11] (Fig. 2.1) [12]:

• Localization - Answers the “where am I?” question, i.e., determines the robot’s

pose relative to the environment;

• Mapping - Answers the “What does the world look like?” question [13], i.e., pro-

vides the robot with a useful representation of its surroundings;

• Path planning - Answers the “how should I get there?” question, i.e., what is the

most adequate path that allows the robot to reach its goal;

• Motion control - Moves the robot along the calculated path, i.e., generates velocity

commands that allow it to achieve the desired path.

3

Information
Extraction

Sensing

Sensor data

Path Execution

Acting

M
o

ti
o

n
Co

n
tr

ol

P
er

ce
p

ti
o

n

Localization and
Local Map Building

Path Planning

Static Map of the
Environment

Relevant Sensory Information Path

Environment

Velocity Commands

Robot Pose and Local Map

Figure 2.1: Flow diagram of the robot navigation loop with a static global map of the environment

It is clear that the three first elements require the robot to have the ability to acquire

meaningful information regarding its surroundings in real-time. This process of acquisition

is named perception and comprises one of the backbones of autonomous navigation.

In this section we present and explore these key components, starting with perception,

and show their interconnection in the navigation process. A larger emphasis is given to path

planning because it is the element most directly connected to the subject of this dissertation.

2.1.1 Perception

Perception can be defined as the ability of a system to acquire knowledge about its

environment [10]. This is achieved through the use of sensors for data acquisition, which

then requires further processing to be transformed into useful information.

Sensors can be, in a simplistic manner, classified as either proprioceptive or exterocep-

tive, depending on whether they acquire data relative to internal state of the robot or the

surrounding environment [10].

Although proprioceptive sensors, such as wheel encoders, are useful for the localization

4

task, navigation depends mostly on information regarding the robot’s surroundings, which

enables the system to react in a timely and adequate fashion to occurrences in the environ-

ment, e.g. the appearance of unforeseen obstacles. It is, therefore, very common for mobile

robots to be equipped with laser rangefinder devices [14] or with vision sensors, such as

depth cameras [15, 16].

2.1.2 Mapping

Mapping can be defined as the process in which a robot uses the information collected

in the perception process to enhance its knowledge of the surrounding world through the

construction of a map, i.e., a physical model of its environment [17]. This process represents

a challenge due to a number of factors, the most notable of which are [18]:

• Size - The larger the environment in comparison to the robot’s perceptual range

the more difficult it becomes to build an accurate and coherent map;

• Noise in perception and actuation - The noisier the sensors and the less accurate

the actuators, the more difficult mapping becomes as the sources of information

regarding the environment and the robot’s movement are less trustworthy;

• Perceptual ambiguity - The more homogeneous an environment is, the harder it

becomes to differentiate between different locations;

• Closing the loop - Loop closure refers to situations where the robot may have

followed different paths leading to the same initial point, which can erroneously

lead to two different maps corresponding to the same physical area.

One of the most popular environment representation methods are occupancy grid maps

(Fig. 2.2). In an occupancy grid map the environment is tesselated into cells, creating a

discrete approximation of space where each cell stores a probabilistic estimate of its state

[19], i.e, the probability of being occupied.

In a way, the mapping process happens in every iteration of the navigation loop, using

the data obtained in the perception process, from which results a dynamic map of the robot’s

immediate surroundings, i.e, a local map. However, it is also useful for the robot to keep a

larger scope record of the environment, particularly of its static elements, e.g. its structure.

Such a map can be termed a global map and only needs to be acquired once due to its static

nature.

5

Figure 2.2: Example of an occupancy grid map. Black cells represent occupied space, grey cells
represent free space and the white area represents unexplored space. Taken from [20] © 2010 IEEE

A very widely adopted approach to global map building is SLAM. SLAM stands for

Simultaneous Localization and Mapping and, as the name suggests, allows the robot to

construct a map of its environment while simultaneously localizing itself in relation to it,

thus making SLAM a significantly more difficult challenge than simply localizing the robot in

relation to a known map or mapping with known poses [18]. There exist SLAM approaches

for the construction of both 2D [21] and 3D [22] maps using laser rangefinder sensing devices,

as well as using vision sensors, in what is typically called Visual SLAM [23] [24].

2.1.3 Localization

The localization problem refers to the robot’s ability to determine its pose in the environ-

ment at a given moment in time in relation to some form of environmental representation,

i.e., a map [18]. It is one of the key elements of robot navigation, as it becomes much more

difficult for the robot to traverse safely in its environment if it does not accurately know

where it is, making it also harder for the system to reach its goal positions, given that it has

no way of accurately comparing its current pose to the desired one.

The localization process is, in its different approaches, supported by both the knowledge

of the environment the robot may have and the information gathered by its sensors. Sensors

may be exteroceptive, acquiring information regarding the environment, or proprioceptive,

which gather data regarding the internal state of the such robot, such as wheel encoders, that

allow the robot to determine an estimate of how much it has moved, i.e, perform odometry.

Odometry can also be performed using other type of exteroceptive sensory devices, such as

vision sensors, in what is usually designated visual odometry [25] [26].

6

One of the most widely used methods for mobile robot localization [27] is Monte Carlo

Localization [28]. MCL uses a particle filter [29] to estimate the robot’s pose,where each

particle corresponds to a possible pose. As the robot moves, the particles are updated to

reflect the new robot’s state prediction. Eventually, they should converge to the system’s

correct position and orientation [18].

2.1.4 Path planning

Path planning is concerned with finding a path that will lead the robot to its target.

Typically, there will be a multitude of paths that allow the robot to achieve its goals.

However, a path planner will look for a path that is optimal according to some criterion,

such as distance, safety, or computation time [9].

Path planning approaches can be divided into two categories, based on the level of knowl-

edge regarding the environment they require or take into account: global path planning and

local path planning [30].

Global path planning techniques use a map of the environment, typically one that has

static elements regarding the environment’s structure and is periodically updated with newly

discovered information such as dynamic obstacles. This map is used to compute a complete

path from the robot’s starting point to its goal position [2]. Thanks to its knowledge of the

environment, the robot can assure, depending on the global planning method, the optimality

of the generated path in accordance to established metrics, although the search for an optimal

path undoubtedly increases the computational complexity of the process [31].

Global path planning algorithms can be split into three categories [2]:

• Graph search-based algorithms - Graph search-based path planning algorithms

transform the path planning problem into a graph search one, in a two-step process:

first, a connectivity graph is built based on the environment’s map; then, a graph

search is performed, where the computation of an optimal solution is executed [10].

They give guarantees in terms of finding a path if one exists, i.e. are complete, and

of path optimality, assuming that the available map has an adequate resolution.

This need for high enough map resolution comprises one of the downsides of graph

search-based algorithms, given that their ability to generate a path and its quality

are highly reliant on the map’s resolution. Besides, their performance degrades in

high dimensional environments [32]. Some of the most notorious graph search-based

path planning approaches include Dijkstra’s algorithm [33] and A* [34];

7

• Sampling-based algorithms - Sampling-based path planning algorithms attempt

to capture the connectivity of the environment through sampling, i.e., only a subset

of points and their connectivity is evaluated, in contrast to graph search-based ap-

proaches, where all possibilities are assessed. This kind of approach is advantageous

in the sense that it allows for fast performance even in difficult path planning prob-

lems; However, they give no guarantee regarding the optimality of the generated

path or of even actually finding a path if one exists. This means that they are not

necessarily complete, at least if not given sufficent runtime, which may in some cases

be infinite [32]. Some of the more widely used sample-based planning algorithms are

[2, 32] are Probabilistic Roadmap (PRM) [35, 36, 37], Rapidly-exploring Random

Tree (RRT) [38] and its variants [39] and Batch Informed Trees (BIT) [40] and its

evolutions [41];

• Evolutionary algorithms - Evolutionary Algorithms (EA) are population-based

algorithms that mimic or use mechanisms involved in natural evolution for approxi-

mation and optimization of a solution [42]. A population is composed of individuals,

which are possible solutions for the problem at hand and which are evaluated on their

fitness according to a quality function. As in natural evolution, fitter individuals

are more likely to survive and are therefore preferred by EA [43]. These individuals

become the seed for the next generation of the population, undergoing a number

of modification operations that mimic genetic changes [43], such as recombination

and mutation [44]. These new candidates are evaluated through the aforementioned

quality function and compete with the old ones based on their fitness. This process

is iterated until a solution with the desired quality is found or a computational limit

is reached [44]. EAs typically employed in global path planning include [2] Genetic

Algorithms (GA) [45], Ant Colony Optimization (ACO) [46], Artificial Bee Colony

(ABC) [47] and Particle Swarm Optimization (PSO) [48].

Local path planning techniques, as the name suggests, work on a more local scale, both

in spatial and temporal terms, when compared to global planners, meaning that they may

only use a fraction of the map or even rely solely on the sensory information gathered

during navigation for its planning process [9, 31]. They can, therefore, be considered more

reactive approaches in comparison to the more deliberative character associated with global

planning. Furthermore, the fact that the planning is done at a smaller scope decreases the

computational complexity of the process, thus improving its computational performance.

8

These sort of approaches often bridge the gap between path planning and motion control [2],

meaning that the planning may be done directly in the velocity space rather than through

the use of a map as is the case with global planning, which once again highlights the short

temporal horizon considered in the planning process.

There is a wide variety of local path planning methods, which makes them harder to

categorize as was done with the global planning techniques. In light of this, the categorization

of the most popular methods will be done as classic approaches and newer ones, such as soft

computing based approaches.

Some of the classic approaches [49] to local path planning include Artificial Potential

Field (APF) [50, 51] based approaches, methods that apply the Velocity Obstacle (VO)

[52, 53, 54] and ones based on the Dynamic Window Approach (DWA) [55, 6, 56]:

• Artificial Potential Field - The APF approach is essentially a reactive strategy,

in which the system’s goal is assigned an attractive potential, while obstacles have a

repulsive potential. The sum of all forces allows the robot to determine the moving

direction and velocity to adopt.

• Velocity Obstacle - The VO concept is used in velocity space based planning. It

consists in establishing a forbidden velocity cone related to a certain obstacle, which

in a given instant contain all the velocities that, if adopted by the robot, would lead

to a collision with said obstacle, taking into account its velocity profile. Choosing a

velocity outside that cone allows the robot to avoid the collision.

• Dynamic Window Approach - DWA involves the sampling of possible angular

and linear robot velocities. The trajectories resulting from the adoptance of these

velocities over a short interval of time are determined and rated based on, for ex-

ample, their safety and proximity to the goal. The velocities leading to the highest

rating trajectory are then adopted by the robot.

There has also been a strong focus in recent years in research on the application of soft

computing techniques to local path planning [57], particularly concerning the use of fuzzy

logic [58] and neural networks [59] based approaches.

2.1.5 Motion Control

Robot motion control is related to the actual execution of a path or plan by a robot.

That means, it consists on the translation of a path or instruction to velocity commands

9

that the robot can execute. This process depends on the model that governs the robot’s

motion, i.e. differential drive model [60], and the kinematic constraints it may be subject

to, based on which a robot is generally classified as holonomic or non-holonomic, depending

on whether or not it can move freely in every one of the physical dimensions it operates in.

As explained in 2.1.4, the matter of motion control is usually directly addressed in local

path planning techniques.

2.1.6 Costmaps

Costmaps are a type of grid-based environment representation typically used in robot

navigation which can be seen as an evolution from the previously presented occupation grid

maps [61], where instead of probabilities of occupation, cells store traversal cost values.

While costmaps can be used solely for identifying unknown, free and occupied spaces, they

allow for far richer cost assignments representing navigational soft constraints [61] to be

made, such as regarding the traversability of the terrain [62] or social constraints [63, 1].

Using a single, monolithic costmap can, however, lead to some information loss regarding

the origin of the data, which can create problems in the cost update process. Consider, for

example, a robot equipped with two 2D LiDAR sensors placed at different heights which

also possesses a static occupation grid map of the environment. Situations may arise where

an obstacle of limited height, e.g. a vase, is present at a location marked as free on the

static map, and that is only detected by one of the sensors due to the difference of height in

their placement. This could potentially lead an occupied area to be marked as free on the

costmap and vice versa.

Lu et al. [61] proposed a layered approach to costmap construction (Fig. 2.3) to address

the shortcomings of monolithic costmaps. Each layer handles the data relative to a specific

functionality, e.g social constraints, or to specific information sources, e.g a static map. The

data for each of the layers is accumulated into the master costmap, in an ordered update

process, i.e., the order and way in which the layers are superimposed onto each other is

arbitrarily defined.

2.2 ROS and its Navigation Stack

Robot Operating System (ROS) is a flexible and widely used open-source framework for

the development of robot software. It offers a ready-to-use collection of tools, libraries and

10

Figure 2.3: Example of a layered costmap. Each layer is responsible for a different functionality,
allowing for a set of different contextual behaviors to be achieved. Taken from [61] © 2014 IEEE

conventions that aim to simplify the creation of varied, complex and robust robot behaviors

and its replication across a wide variety of robotic platforms [64] allowing the developer to

abstract away from the specificities of the hardware. The fundamental building blocks of

ROS are nodes, messages, topics and services.

Nodes are processes that perform computation tasks [65]. ROS is designed with system

modularity in mind, meaning that a single system is typically comprised of many nodes.

These nodes are contained in packages, and while a package can be composed of multiple

nodes, there is no obligation of executing all of a package’s nodes simultaneously.

Nodes communicate with each other through messages. ROS provides a large number of

message types that are adequate for the different types of information a node may be trying

to transmit, also allowing for the creation of custom message types. Messages can also be

composed of other messages and arrays of other messages [65].

Nodes don’t communicate with each other directly. Rather, they publish their messages

to topics, in what assumes the form of broadcast communication. The nodes interested in

the information published in a certain topic will subscribe to it, without a limit to how

many topics a node can simultaneously subscribe to. There may also be multiple concurrent

publishers for a single topic, although, generally, publishers and subscribers are not aware

of each others’ existence [65].

Although the topic communication model is quite flexible, it is not appropriate for syn-

11

chronous transactions that certain nodes may require. To address this, ROS introduces

services. Services can be considered very simple nodes whose execution can be called upon

by other nodes. They follow a strict structure, being defined by a string name and a pair of

messages: one for the request and one for the response. Unlike what happens with topics,

where multiple nodes may publish information to the topics, only one node can advertise a

service with a particular name, i.e., there cannot be two nodes providing two homonymous

services.

One of the most enticing features of ROS is the collection of nodes it offers for robot nav-

igation, aptly named the Navigation Stack1 (Fig. 2.4). In very broad terms, the Navigation

Stack’s role is to generate safe and feasible control inputs for a mobile robot given a goal

pose by processing data from various sources, such as odometry, sensors and a map of the

environment [66]. Therefore, this requires nodes that can handle each of elements of robot

navigation presented in 2.1.

For localization, the most widely used package is amcl2 (Adaptive Monte Carlo Localiza-

tion), which is an implementation of a variation of the Monte Carlo Localization introduced

in 2.1.3.

There are as well multiple packages for mapping that implement different SLAM algo-

rithms, such as gmapping3 and slam_karto4.

ROS Navigation Stack employs both a global path planner and a local path planner.

The global planner generates a path to the goal, while the local planner is responsible for

the actual execution of said plan, therefore assuming more the role of a motion controller

than a path planner. Among the available global planners for ROS are carrot_planner5

and global_planner6, which has implementations of both A* and Dijkstra’s algorithm.

Libraries such as OMPL7 also offer a multitude of implementations of sampling-based

global planning algorithms. As for local planners, or, perhaps, more correctly termed mo-

tion controllers, some of the available packages for ROS are base_local_planner8 and

dwa_local_planner9, which is an implementation of the previously discussed Dynamic

Window Approach.

1http://wiki.ros.org/navigation
2http://wiki.ros.org/amcl
3http://wiki.ros.org/gmapping
4http://wiki.ros.org/slam_karto
5http://wiki.ros.org/carrot_planner
6http://wiki.ros.org/global_planner
7https://ompl.kavrakilab.org
8http://wiki.ros.org/base_local_planner
9http://wiki.ros.org/dwa_local_planner

12

The Navigation Stack employs layered costmaps to guide the path and motion planning

processes. Some of the available layers include the static layer, which handles the costs

related with the static map of the environment, the obstacle layer, which processes sensory

information to mark the locations of detected obstacles in the costmap, and the inflation

layer, whose role is to create new costs around the obstacles which allow the costmaps

to account for the robot’s dimensions. These costmaps are handled by costmap_2D10

package.

The functioning of all these parts is orchestrated by the move_base11 package, an

element that is essentially the brain of the Navigation Stack.

ROS also provides tools for data visualization and troubleshooting, such as rviz12,

rqt_tf_tree13 and rqt_graph14. rviz is a 3D visualization tool that, in a way, allows

the user to see the robot’s perception of its environment. It can reproduce a lot of differ-

ent information, such as the environment’s map, a 3D model of the robot and it’s pose, as

well as the sensory information captured by the system, displaying data originated from, for

example, cameras and LiDARs. rqt_tf_tree provides a graphic interface that allows the

user to visualize the interconnections between the different frames of reference present in

the robot, such as a sensor’s reference frame and the robot’s own frame of reference, being

particularly useful for troubleshooting. rqt_graph presents a graph-like representation of

the currently running nodes and the interconnections they may establish through the topics

they publish or subscribe to, which can be convenient for troubleshooting.

Figure 2.4: Structure of the ROS Navigation Stack. Taken from [67]

10http://wiki.ros.org/costmap_2d
11http://wiki.ros.org/move_base
12http://wiki.ros.org/rviz
13http://wiki.ros.org/rqt_tf_tree
14http://wiki.ros.org/rqt_graph

13

2.3 Robot Navigation in Dynamic Environments

Out of all the concepts related to robot navigation presented in 2.1, it is clear that path

planning is the one that requires special care in order to accomodate the challenges that

come with navigating in an environment where the obstacles may be moving.

There are many approaches to robot path planning in dynamic environments. Neverthe-

less, plenty of them do not account for the motion of obstacles over time, treating them as

static entities. This leads to inconsistent and incoherent behavior from the robot when faced

with moving obstacles, e.g. people. Therefore, it is important to add a predictive component

to the path planning process.

The velocity obstacles concept presented by Fiorini et al [52] proposes a method of

planning in the velocity space that accounts for the relative velocity of the robot and the

obstacle to establish a forbidden velocity cone containing the set of robot velocities that would

lead to a collision. Van Den Berg et al. [53] extended this work through a generalization of

the VO concept which addresses the difficulty of applying the Velocity Obstacle approach to

kinematically constrained robots. However, both of these approaches, and eventually other

approaches based on planning in velocity space, find their collision avoidance capabilities

constrained by the short-time planning horizon inherent to motion control when compared

to path planning based techniques.

There has been strong interest in the past few years in research on the application of

soft computing techniques to robot path planning [57], particularly using fuzzy logic and

neural networks. Nasrinahar et al. [58] proposed a fuzzy logic based planning approach

that effectively seeks to differentiate static and dynamic obstacles, establishing different

behavior rules for each. However, there appears to be no actual integration of data regarding

the obstacle’s speed into the behavior decision process. Furthermore, rule-based planning

methods can somewhat limit the robot’s ability to react to dynamic obstacles due to the finite

set of behavioral rules it adheres to, which coupled with the fact that the obstacle’s motion

is not taken into consideration, can cause some inconsistent behavior in the robot. Singh

et al. [59] present a neural network based path planning solution that explicitly addresses

the matter of moving obstacles. In each iteration the robot’s workspace is divided into 5

equal segments each of 30°with a predefined length. They determine whether or not each

segment is blocked by an obstacle or how long it would take for an obstacle to enter the

area covered by the segment. This time (which is 0 if the segment is blocked by a static

obstacle), calculated for each of the segments, is input to a neural network, which will select

14

the segment the robot should progress through, as well as the speed to be adopted. As

with the approaches previously presented, there is the downside that collision avoidance is

achieved by changing the speeds rather planning a full path, as well as the time and the data

that is necessary to train the network.

In the field of social robotics there are some very interesting approaches to be consid-

ered as well. Kollmitz et al. [1] introduce a layered cost-map based approach to socially

aware robotic navigation, which uses a social cost model to represent the social preferences

of humans based on a Gaussian distribution. They have a static layer where costs related

to the environment (e.g. the structure of the environment) are assigned and multiple dy-

namic layers where the assignment of costs is done accordingly to the previously mentioned

probability distribution. Each dynamic layer represents one instance of the predicted human

trajectory from time step i until step (i + 1). This approach provides interesting results,

however, large memory requirements arise from large maps, fine space or time resolutions

or a large prediction look-ahead. Yang et al. [68] propose in their work a formulation of a

Gaussian function that models the individual space around a character in a virtual environ-

ment that can be applied to robot planning in the presence of moving obstacles. It enlarges

the character’s footprint according to its status, particularly when it is moving, as there is

an inflation of the character’s individual space along its moving direction.

15

16

3 Methods

3.1 Overview

The cost-map based navigation approach proposed in this dissertation focuses on dynamic

obstacles and can be integrated with most of the existing path planning techniques that rely

on cost-maps. We take into account the motion of the obstacles, assuming a linear motion

model, as well as their footprints, which are approximated by a circle, to predict the area that

the robot should avoid going through in order to prevent a collision. We also incorporate the

uncertainty in the estimate of the obstacles’ motion into the cost assignment process, while

ensuring that the generated paths do not hinder the obstacles’ motion, conditioning them

into assuming a more socially acceptable character through the inflation of the cost-map

cells located along the obstacles’ moving direction.

This method requires detection, tracking and knowledge of the obstacle’s position, veloc-

ity and footprint radius. To obtain this information, we also present a perception method

tailored for use with a 2D LiDAR.

The solution developed in this work can be, therefore, divided into two blocks/stages:

• Perception block - Given the 2D LiDAR readings and a 2D Occupation Grid map

of the environment, performs obstacle detection, tracking and velocity and radius

estimation;

• Cost-map update block - Given the obstacle’s position, velocity and radius, pre-

dicts the area that the robot should avoid going through in order to prevent a

collision and marks it in the cost-map.

These two blocks are executed sequentially on each iteration of the method (Fig. 3.1).

17

Figure 3.1: Block diagram describing one iteration of the proposed approach

3.2 Perception block

This block is responsible for detecting the obstacles and estimating their positions, ve-

locity and radius (Fig. 3.2). This is achieved through the use of the Kalman filter [69], where

the measurements correspond to obstacles’ position and radius determined purely through

the combined use of the LiDAR readings and the environment’s occupation grid map that,

as previously mentioned, is presumed to be available. As explained in 3.1, the obstacles are

assumed to move according to a linear motion model, i.e., with constant velocity.

Figure 3.2: Block diagram describing one iteration of the perception block

18

3.2.1 LiDAR readings filtering

A 2D LiDAR sensor returns a set of N readings at a frequency f , where the value of

N is dictated by the sensor’s aperture angle and angular resolution and f is an intrinsic

parameter of the sensor, which is also characterized by its minimum and maximum range.

Each individual reading is represented in polar coordinates and so is composed of an angle

ϕ and a distance ρ. ϕ represents the angle formed between the line segment that connects

the sensor to the point in the real world that the reading corresponds to and the LiDAR’s

frame of reference X axis, while ρ is the length of said line segment (Fig. 3.3).

Figure 3.3: A diagram showing a LiDAR reading. L is the sensor’s position (mounted on the
robot) and the grey circle represents the robot’s footprint. XL and YL comprise the LiDAR’s frame
of reference, while P1 is the point to which the reading corresponds to.

Not all the of the readings returned by the sensor are necessarily valid ones. For example,

when a reading corresponds to a point situated further away than the LiDAR’s maximum

range, its ρ may assume an invalid value or a value larger than the maximum range. In

these cases, the reading must be discarded. An analogous situation occurs when the reading

corresponds to a point whose distance to the sensor is smaller than its minimum range. This

is the first and simplest stage of filtering, after which what remains is a set of Nv readings.

Given that an occupation grid of the environment is available, we can analyze it in order

to find out what readings concern parts of the environment, e.g. walls, and subsequently

discard them, and what readings are useful and may correspond to dynamic obstacles. To

achieve this it is crucial to have both the map and the LiDAR data in the same frame of

reference, which will be the map’s The first step in this process is to convert the LiDAR

readings from polar to cartesian coordinates (in the LiDAR’s reference frame). This is a

19

very simple procedure, which requires but the direct application of the following equations:

LPix = ρi cos ϕi (3.1)
LPiy = ρi sin ϕi (3.2)

where i = 1, 2, ..., Nv. Transforming these points from the sensor’s reference frame to the

map’s coordinate system implies the application of a transformation matrix M
L T , which

essentially represents the map’s coordinate system in the sensor’s frame of reference:

MPi = M
L T · LPi, i = 1, 2, ..., Nv (3.3)

Each of the points MPi is then individually evaluated using the occupation grid map.

A square, centered on the map cell to which the currently analyzed point MPi belongs

to, is established. If any cell belonging to said square is marked as occupied, the point
MPi is discarded. This procedure allows accounting for possible small errors in the robot’s

localization, in the map and in the LiDAR readings, all of which are rather natural and

bound to happen. The length of the square’s side is a key parameter in this process. A very

small value may be unable to deal with inaccuracies in the aforementioned factors, while a

very large one will render the filtering process ineffective, because too many points will be

discarded. An obvious case of this would be the detection of an obstacle close to a wall. The

readings corresponding to it would be thrown away due to their proximity to the wall and

the excessive square side length. At the end of this procedure we are left with a final set of

Nf points, where 0 ≤ Nf ≤ Nv.

3.2.2 Clustering

The previously filtered points must be clustered in order to be interpreted as parts of

individual entities, i.e., obstacles. To achieve this we decided to apply the DBSCAN [70]

algorithm, as we concluded that its characteristics, such as little sensitivity to noise/outliers

in the data, affordable computational complexity and, most importantly, the fact that it

doesn’t require previous knowledge of the number of clusters in the data [71], made it an

adequate choice for the task at hand.

DBSCAN algorithm is a density-based clustering algorithm, meaning that it attempts to

group together segments of 2D data based on the proximity between a minimum number of

points according to an arbitrarily defined distance measure, such as the Euclidean distance

20

[72] we adopt in this work. These two factors are actually the only two parameters of the

algorithm:

• MinP ts - The minimum number of points required to form a cluster;

• E - The maximum allowed distance between two points for them to be considered

neighbors and, therefore, possibly part of the same cluster.

These two parameters allow the classification of the analyzed points into three different

categories:

• Core points - Points that have MinPts or more points situated at a distance equal

to or less than E ;

• Border points - Points that can be reached from a core point but have less than

MinPts situated at a distance equal to or less than E ;

• Noise - Points that cannot be reached from a core point.

In each iteration of the algorithm, the first step is randomly selecting a point A which

hasn’t previously been analyzed. If said point is a core point, then a cluster is formed

containing this point’s neighbors and, if they too are core points, their neighbors as well. In

case the selected point is not a core point, then it is labeled as noise, although it can later

become a border point if it is found to be reachable from a core point. At the end of this

process we will have Ncl clusters, each one considered to be a dynamic obstacle. All the

points classified as noise are eliminated.

The choice of the MinPts and E parameters is highly dependent on the context of

application. In the case of our work, given that we intend to identify moving obstacles

which are quite likely to be human beings, the height at which the 2D LiDAR is placed is

extremely important. If the sensor is relatively close to the floor, the readings obtained will

correspond to a person’s legs. This means that there will be a small number of points that

belong to a possible cluster, requiring a lower value for MinPts. Furthermore, it would not

be recommendable to set a very small value for E , because that could lead to two different

clusters relative to the same person, one corresponding to each of the person’s legs. If the

LiDAR is placed at a person’s torso height, then these parameters aren’t so critical to the

success of the algorithm. There will be a larger number of readings that correspond to

the person to be detected, leading to a wider range of adequate values for MinPts. These

readings would also be closer together than in the previously discussed scenario, diminishing

the strictness in the choice of E .

21

3.2.3 Circle fitting

The clusters obtained in the previous step will have an arbitrary shape. For example, if

the target is a person directly facing the robot, then the LiDAR readings that regard that

person will, assuming that the sensor is placed at torso height, very likely form a line segment

or at best an arc. This means that the resulting clusters’ shapes may not necessarily reflect

the obstacle’s real morphology or be able to properly convey its dimensions.

To overcome this, we chose to approximate the obstacle’s footprint by a circle. For

this purpose, we use Coope’s circle fitting method [73]. Coope transforms the nonlinear

circle fitting problem into a linear least squares problem through variable substitution, thus

reducing the mathematical complexity of determining a solution and increasing its robustness

to outliers when compared to a nonlinear least squares approach.

Consider the following equation of a circle:

(x − cx)2 + (y − cy)2 = r2 (3.4)

where (x, y) are the coordinates of a point belonging to said circle, and (cx, cy) are the

coordinates of its center. This can be rewritten as:

x2 + y2 = 2xcx + 2ycy + r2 − c2
x − c2

y (3.5)

Applying the following variable substitution to 3.5

A = 2cx

B = 2cy

C = r2 − c2
x − c2

y

(3.6)

we get the following formulation

Ax + By + C = x2 + y2 (3.7)

Applying this to all the points we wish to fit a circle to, which in our case are the

points belonging to a cluster, (cx, cy) and r can be determined through linear least squares

approximation. This procedure must be applied individually to each of the previously defined

Ncl clusters.

22

After this procedure, and in order to account for a possible failure in the filtering process

presented in 3.2.1, the resulting circles are first evaluated in terms of their dimensions. It is

quite unlikely that the robot will encounter a dynamic obstacle with very large or very small

dimensions, at least in an indoor environment. It is then plausible to assume that both those

cases are result of a failure in the LiDAR reading filtering process. To solve this we apply

both a minimum, rmin, and a maximum, rmax, radius threshold to the obtained circles. Any

circle whose radius lies outside this range is discarded.

The circles that remain after the radius based filtering are then subject to another stage

of evaluation focused on the mean squared error between the distance from the estimated

circle center to the cluster points and the estimated circle radius. If this MSE is larger than

a preset MSEthresh threshold, the circle is discarded. This stage of filtering is effective in

situations where a cluster erroneously corresponds to an environmental element, e.g. a wall,

whose shape could hardly be approximated by a circle in an accurate manner. At the end

of this stage we will have Ncirc obstacles, 0 ≤ Ncirc ≤ Ncl.

3.2.4 Obstacle to track assignment

Having identified the dynamic obstacles present in the environment at a certain moment,

it is crucial to be able to match them with the ones detected in previous iterations. In this

process, each obstacle is analyzed individually, and therefore it must be executed for all of

the obstacles detected in an iteration.Let i denote the perception block’s current iteration

and i − 1 the previous one. In keeping with this notation, Ncirci−1 denotes the number

of obstacles detected in the previous iteration, i − 1, while Ncirci
refers to the number of

obstacles detected in the current iteration i.

The procedure starts with the calculation of the distance of the present iteration’s cur-

rently analyzed obstacle Oi
j, j = 1, 2, ..., Ncirci

to all of the obstacles detected in the previous

iteration i − 1 that haven’t been matched yet. An initial correspondence is established be-

tween the i − 1 iteration obstacle Oi−1
k , k = 1, 2, ..., Ncirci−1 whose distance to Oi

j is minimal.

Therefore, it is assumed that Oi−1
h and Oh

j are the same obstacle, which will be referred to

by only Oi
j. Given that the perception cycle is executed at the same frequency f at which

the LiDAR readings are returned, it is not plausible that an obstacle traveled a significant

distance in the interval between sensor updates. Therefore, the initial match is only kept if

the distance traveled by obstacle Oi
j over successive iterations i − 1 and i, dOi

ji−1,i
, is infe-

rior to a preset threshold dmax. Previous iteration obstacles that are matched with current

23

iteration ones are flagged as so.

A buffer is maintained for storing the obstacles that aren’t matched for a maximum of

5 iterations. These are then reused in the tracking process as part of the previous iteration

obstacle group until they are matched or deleted from the buffer.

3.2.5 Kalman filter update

Each of the Ncircles detected obstacles will keep a Kalman filter used for velocity estima-

tion, as well as for refining both its radius and position estimation, which can fluctuate due

to the lack of stability associated with the LiDAR readings over time (e.g, the number of

readings corresponding to a certain obstacle may vary, which in turn may cause the circle

fitting algorithm to estimate a different center and radius for the same obstacle in different

iterations).

The Kalman filter is a recursive algorithm used for estimating the state of a process or

system, usually modeled in state-space format, given the measurements of its states obtained

over time [74]. It allows to reduce the uncertainty associated with the states’ estimates

through a weighted fusion of the information given by system’s model and the obtained

measurements.

The process model describes the evolution of the system’s states from time step k − 1 to

time step k and is governed by the linear stochastic difference equation

xk = Ak−1xk−1 + Buk−1 + wk−1 (3.8)

where Ak−1 is the state transition matrix at time step k − 1, which relates the state at

k − 1 to the state at step k, B is the control-input matrix, which relates the control input

u to the state x and wk−1 is the process noise vector, characterized by a zero-mean normal

distribution, wk−1 ∼ N (0, Q).

The measurement vector zk contains measurements of the system’s states at time step k

and is characterized by

zk = Hxk + vk (3.9)

where H is the measurement matrix, relating the states to the measurement vector zk,

and vk is the measurement noise vector, which follows a zero-mean normal distribution,

vk ∼ N (0, R), independent from that of process noise’s probability distribution.

It must be noted that although the covariance matrices Q and R should reflect the statis-

24

tical properties of the process and measurement noise respectively, in real world applications

these matrices are sometimes only partially known or even not known at all. In some cases,

they may be difficult to determine because the noises may not follow a Gaussian distribution.

Therefore, they must be approximated and tuned by the user based on their knowledge and

confidence in the process model and in the measurements fed to the filter.

The Kalman filter can then be divided into two stages: prediction and correction. In

the prediction stage, the Kalman filter uses the previous time step’s k − 1 state and error

covariance estimates to determine an a priori estimate of both elements for the current time

step k, as shown in the following set of equations

x̂-
k = Ak−1x̂

-
k−1 + Buk−1 (3.10)

P -
k = Ak−1Pk−1A

T
k−1 + Q (3.11)

where x̂-
k and P -

k are, respectively, the a priori state and error covariance estimates.

In the correction stage, the Kalman filter uses feedback in the form of the measurement

vector zk to refine the a priori estimates. This process is guided by the confidence attributed

to the process model and the measurements, which is reflected in the predefined Q and R

matrices, respectively. The equations for this stage are

Kk = P -
k HT (HP -

k HT + R)−1 (3.12)

x̂k = x̂-
k + Kk(zk − Hx̂k) (3.13)

Pk = (I − KkH)P -
k (3.14)

where Kk is the Kalman gain and x̂k and Pk are the a posteriori estimates of the state and

error covariance respectively, all relative to time step k.

Given our goal of estimating the obstacle’s velocity, as well as improving its position and

radius estimate, the state vector x for an obstacle A is

x =
[
P T

A vT
A rA

]T

(3.15)

where PA = [PAx , PAy]T is the obstacle’s position and is equal to [cx, cy]T , vA = [vAx , vAy]T

is its velocity vector and rA the estimated radius.

Assuming, as mentioned in 3.1 a linear motion model for the obstacles, i.e. that they

25

move with a constant velocity vector, the state transition matrix Ak−1 assumes the form

Ak−1 =



1 0 ∆t 0 0

0 1 0 ∆t 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(3.16)

where ∆t is the time interval that elapsed from time step k − 1 to k and depends on the

frequency f of the LiDAR, which typically assumes a value of 10 Hz or higher.

In our case, B is naturally 0. Since the only states we have measures of are the position

and the radius, H assumes the following form

H =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 (3.17)

Matrix Q is a diagonal matrix, i.e., it is assumed that the noises affecting the states are

statistically uncorrelated between themselves, and the same applies to matrix R.

Q =



σ2
Px

0 0 0 0

0 σ2
Py

0 0 0

0 0 σ2
vx

0 0

0 0 0 σ2
vy

0

0 0 0 0 σ2
r


(3.18) R =


σ2

zPx
0 0

0 σ2
zPy

0

0 0 σ2
zr

 (3.19)

3.3 Cost-map update block

This block, which is summarized in Fig. 3.4, starts by estimating the possible future

collision time. It then uses the estimates of the obstacle’s dimensions and velocity together

with a social constraint to update the costmap, which eventually may be used by, for example,

an A* planner to find the shortest path. The costmap update process is iterative. It is

executed at a frequency f, high enough to ensure that constant velocity assumption is valid

for each iteration.

26

Figure 3.4: Block diagram describing one iteration of the cost-map update process

3.3.1 Determining possible collision time

Let agent A be the robot and agent B be a dynamic obstacle, eventually a human. Let

P⃗k(t) and v⃗k respectively denote the 2D position and speed of agent k at time t. Therefore,

assuming constant speed for a small duration of time 1/f , the positions of the robot and

the dynamic obstacle at time t1, which is close to t0, can be estimated with the following

equations:

P⃗A(t1) = P⃗A(t0) + (t1 − t0) · v⃗A (3.20)

P⃗B(t1) = P⃗B(t0) + (t1 − t0) · v⃗B (3.21)

Taking into account that the agents have a non-zero footprint, collision between agents

A and B means their trajectories get closer than a threshold in the future. This can be

determined by checking the evolution of the Euclidean distance, dAB(t) = ∥P⃗A − P⃗B∥ ,

between the two. Therefore, given equations (3.20) and (3.21), one can determine the instant

t from an initial time t0 when the two agents will be at their closest, denoted by tmin, by

solving ∂dAB(t)
∂t

= 0 for t, which leads to the following equation:

tmin = − (PAx (t0)−PBx (t0))·(vAx −vBx)+(PAy (t0)−PBy (t0))·(vAy −vBy)
(vAx −vBx)2+(vAy −vBy)2 (3.22)

27

The previously presented condition does not ensure that there will, in fact, occur a

collision between the robot and the obstacle at time tmin, but, in any case, allows the robot

to keep its distance from the obstacles found during navigation. Situations may arise where

tmin does not assume valid values (e.g. when A and B are moving away from each other,

tmin will be negative). In those cases the obstacle is to be represented in the cost-map at its

current position, so we set tmin to 0. It is also desirable to define a temporal threshold on

tmin so as to limit how far into the future we are willing to look for possible collisions. We

set this threshold to 10 seconds.

Generally, tmin will be much larger than 1/f . However, tmin is prone to change when v⃗A

or v⃗B change, therefore it is calculated at a constant rate f , to ensure a cost assignment that

is consistent with the most recent and only information available regarding the state of the

agents.

3.3.2 Cost assignments in the costmap

The cost assignment process takes into consideration an estimate of the obstacle’s position

and associated uncertainty, as well as its size and social constraints. In light of this, we divide

the cost assignment into three different stages.

1) Obstacle footprint cost assignment: With tmin found using (3.22), −→
PB(tmin)) can be

determined using (3.21). Then, a circle centered on −→
PB(tmin) with the estimated obstacle

radius is marked on the cost-map, by assigning the maximum cost possible to all of the cells

that belong to it (Fig. 3.5a).

2) Enlarging the obstacle’s footprint using a Gaussian distribution: Let σ2
PBx

and σ2
PBy

denote the variances of the x and y components of the obstacle’s current position estimate.

A Gaussian probability distribution of −→
PB(tmin) can be established with the following prob-

ability density function:

f(x, y) = exp
 − [x − PBx(tmin)]2

2σ2
PBx

−
[y − PBy(tmin)]2

2σ2
PBy

 (3.23)

where (x,y) are the coordinates of a point C in the map reference frame. This Gaussian

distribution is convolved with the obstacle’s footprint, leading to a cost-map that conveys

the uncertainty associated with the estimated −→
PB(tmin) (Fig. 3.5b).

3) Cost inflation of the obstacle’s frontal area: The area immediately in front of a moving

28

(a) (b) (c) (d)

Figure 3.5: Evolution of the cost-map of the obstacle using the proposed approach (a) Obstacle’s
footprint. (b) Obstacle’s footprint after applying the Gaussian in equation 3.23. (c) Obstacle’s
footprint after inflating the frontal area (equation 3.25) (d) The final costmap assignment, resulting
from fusion of b and c.

obstacle should be avoided both to reduce the awkward feeling it may cause in a human,

and to avoid the possibility of the human reacting to an obstacle passing through the front.

So no paths planned by the robot should cross that region. A way to force the robot’s path

planner to not consider this forbidden space in its planning process is to assign its cells a high

cost in the cost-map. To attain this, we use a Gaussian function based on the formulation

introduced by Yang et al. [68], with the difference that we modify the base (preset) variances

based on the estimated velocity of the obstacle rather than a fixed value, in an approach

very much alike the one adopted by De Rose et al. [75]. This only applies to situations

where a collision is bound to happen. Otherwise, the planned path will be whatever the

planner generates, without considering whether to pass through the front or the back of the

obstacle.

Consider a point C in the map reference frame, whose displacement vector from −→
PB(tmin)

is −−→
BC = (BCx, BCy) (Fig. 3.6). It is easily perceivable that if the absolute value of the

angle θ formed between the −−→
BC and v⃗B is equal to or less than 90°, i.e., cos θ ≥ 0, then C

is situated in the obstacle’s frontal area. The value of cos θ can be determined through the

concept of vector dot product, leading to the following equation:

cos θ = vBx · BCx + vBy · BCy

∥v⃗B∥ · ∥
−−→
BC∥

(3.24)

The formulation adopted for the Gaussian that returns the cost to be assigned to an arbitrary

point C is the following:

f(C, PB(tmin)) = A exp

−

(
∥
−−→
BC∥ · cos θ

)2

2σ2
x

−

(
∥
−−→
BC∥ · sin θ

)2

2σ2
y

 (3.25)

29

Figure 3.6: A diagram showing the frontal area of the dynamic obstacle. B is the obstacle’s
position and the grey circle represents its footprint. The frontal area corresponds to the dashed
semicircle, whose radius would theoretically be infinite. Point C is situated in the obstacle’s frontal
area, while C’ is not

where A is an amplitude parameter that corresponds to the maximum possible cost on the

costmap. σ2
x and σ2

y are the diagonal entries of the Gaussian’s covariance matrix Σ and

essentially control the shape formed by the inflated costmap cells in the context of a local

reference frame centered at −→
PB(tmin) whose X-axis is oriented in the direction of v⃗B and

whose Y-axis can be determined through the application of the right hand rule, knowing

that its Z-axis points outwards from the costmap.

The modification of σ2
x and σ2

y is guided by the following heuristic:


σ2

x = (1 + r)σ2
xbase

σ2
y = (1 − r

2)σ2
ybase

(3.26)

where σ2
xbase

and σ2
ybase

are preset values that help define the shape assumed by the costmap

markings and r is a ratio between the magnitude of v⃗B and a predefined maximum speed,

vmax, that allows control of the dimensions of the forbidden area according to the magnitude

of obstacle’s velocity:

r = ∥v⃗B∥
vmax

(3.27)

σ2
xbase

should be set to a significantly larger value than σ2
ybase

in order achieve higher costs

in the cells situated in the direction of the obstacle’s motion.

30

3.4 Implementation

The methods presented in this chapter were implemented for use with the ROS Noetic

distribution1. The costmap update block is integrated into ROS Navigation Stack in the

form of a costmap layer plugin for the costmap_2d package. The perception block is

implemented as a standalone node, which subscribes the topic to which the LiDAR readings

are published to and then publishes the information relative to the detected obstacles to the

/Obstacles topic. In order to be able to publish the obstacle information to the /Obstacles

topic two different message types were created:

• obstacle - This message carries information regarding an obstacle, namely its cur-

rent position estimate and associated variance, radius, velocity estimate and an

unique ID;

• obstacleArray - This message is comprised of an array of obstacle messages.

For every other aspect of robot navigation we rely on the default ROS nodes mentioned in

2.2. It should, however, be noted that we do not use the move_base package, but rather the

move_base_flex2 package, which is an enhanced and more flexible version of move_base.

One of the biggest advantages of the move_base_flex package over move_base is the

power it gives to the user for controlling the navigation process. In particular, it allows

the user to trigger the global path planning process when desired, instead of relying on a

fixed-rate planning. This factor led to the decision of using the move_base_flex package,

because being able to replan when convenient would allow us to mitigate “indecisiveness” in

the planned paths, as well as reduce computational load. In order to determine when a path

would need to be replanned we developed the plannerTrigger node. This node evaluates

the number of the detected obstacles in each obstacleArray message, as well as their

predicted future positions. If the number of detected obstacles changes or if the predicted

future position for one obstacle changes more than a preset distance threshold, changemax,

the global planner is triggered. The changemax parameter is extremely important, because

if it assumes a very small value the path will constantly be replanned and if it assumes a

very large value the path won’t be replanned as frequently as it should. Through multiple

experiments we found that the ideal value for this parameter is 0.2 m.

1http://wiki.ros.org/noetic
2http://wiki.ros.org/move_base_flex

31

32

4 Experimental Work and Discussion

of Results

4.1 Metrics

In order to evaluate our work and compare its performance to that of other approaches,

some clear and relevant metrics must be defined. We use three different metrics for this

purpose:

• Occurrence of collision (Coll.) - Whether or not the robot collided with any of

the obstacles. The most critical of the three adopted metrics;

• Minimum distance to obstacles (dmin) - The minimum distance, in meters, that

separated the center of the robot from the center of any of the obstacles present in

the scenario during its traversal from its starting position to its goal. The second

most important metric, as the robot passing too close to a person will reduce the

human’s sense of comfort;

• Elapsed Time (T) - The time, in seconds, it took for the robot to go from its

starting position to its goal (not considering the in-place rotation performed by the

robot after achieving the goal position in order to attain its goal pose). The least

important of three metrics here presented, but still relevant as it is not desirable for

the robot to take extremely long to reach its goals.

4.2 Simulations

In this section we present and analyze some simulation results obtained using the pro-

posed approach on three different scenarios with a growing difficulty level. These results

are compared to the robot behavior observed when using the ROS Navigation Stack default

33

configuration (using ROS Obstacle Layer), which in every iteration of the costmap update

process assumes obstacle staticity, i.e, the obstacles are marked in the costmap exactly where

they are in each instant without considering their motion.

4.2.1 Setup

All simulations were conducted using the open-source simulation platform Gazebo and

ROS Noetic. As previously explained, our approach is integrated into the ROS Navigation

Stack in the form of a costmap plugin. Additionally, we use the default Global Planner

(using the A* algorithm) and the DWA Local Planner.

The robotic platform adopted for these tests was the Pioneer 3-DX, a differential drive

robot with an approximate radius of 20 cm. It is equipped with a 2D LiDAR device, with a

range of 10 m, an aperture angle of 260° and a resolution of 1°.

Three scenarios are considered (Fig. 4.1), with the number of dynamic obstacles perform-

ing pre-recorded straight-line trajectories without any sort of obstacle avoidance, i.e., acting

as dynamic obstacles, increasing from the first to the third scenario. In the first scenario,

the robot faces two dynamic obstacles. The number of obstacles increases to three in the

second scenario and to four in the third scenario, with each obstacle moving at an average

speed of approximately 0.76 m/s and reaching a top speed of 0.85 m/s. Across all scenarios,

the point the robot tries to reach is the starting position of obstacle 2, which is presented in

Fig. 4.1.

All three scenarios were tested 15 times using both the proposed approach and the one

adopted by ROS Navigation Stack default configuration, in order to obtain a set of results

that cover a wide array of possible outcomes. When applying our approach, global path

planning was triggered by changes in the obstacles’ predicted future poses as explained

in 3.4. With the Navigation Stack default configuration (using ROS Obstacle Layer), the

planning was triggered at a constant rate of 8 Hz.

4.2.2 Results and Discussion

First Scenario

The results presented in Table 4.1 reveal that the adoption of a costmap construction

strategy where the motion profile of the dynamic obstacles is not taken into account is

hardly adequate for a scenario bearing any resemblance to what a robot may face in the real

34

(a) First scenario (b) Second scenario (c) Third scenario

Figure 4.1: The three testing scenarios used in the simulations. The arrows indicate the direction
of motion of the obstacles.

world. Even though this scenario is not particularly complex or challenging, the usage of

ROS standard approach to costmap construction led to a 100% collision rate on the 15 tests

executed for this scenario, while our approach assured that the robot never crashed into any

obstacle.

However, looking at the minimum distances registered in each execution present in 4.1a,

and considering that the footprint of the robot platform used can be approximated by a circle

with a radius of roughly 0.2 m, one can conclude that our approach does not always keep

a distance from obstacles that can be considered socially comfortable or acceptable. This

is particularly critical in the eleventh test, where the robot passed an obstacle at a center-

to-center distance of 0.4145 m, meaning that a collision was extremely close to happening.

These instances where the performance is weaker are mostly due to the perception part of

the method proposed in this dissertation. Particularly, inaccuracies in the velocity estimates

of the obstacles can cause significant changes in their predicted critical future poses, which in

turn leads to excessive path replanning. These constant changes in the path to follow cause

the robot to not actively avoid the obstacles and show some “indecisiveness” until the planned

path stabilizes. However, when that happens, the distance of the robot to an obstacle may

already be smaller than what would be required for the creation of a path with the desired

properties. That is the case with test number 11. In terms of the desired behavior, that

is, the robot’s ability to perform a socially acceptable navigation by not passing through

the front of obstacle 1, which moves perpendicularly to the robot, our approach produced

to positive results. Out of all the tests performed in this scenario, only in the first scenario

did the robot pass through the front of obstacle 1, although keeping a safe distance thanks

to the inflation of the costs of the cells located in the moving obstacle’s frontal area. In

every other instance, the robot passed obstacle 1 through its back and then passed obstacle

2 through the right.

In figure 4.2 we present the key frames of run number 10 using our approach. Figures 4.2a

35

and 4.2e portray the beginning of the simulation scenario. The path planned (the green line

in fig. 4.2e) assumes a shape close to a straight line because the obstacles are not yet moving.

In the phase of the simulation presented in figures 4.2b and 4.2f, the velocity estimates of

the moving obstacles have become stable and accurate enough, as visible in the costmap cost

assignment (Fig. 4.2f) relative to each of the two obstacles. This allows the path planned to

both avoid the obstacles and pass through the back of obstacle 1, as desired. In figures 4.2c

and 4.2g, the path is slightly readjusted due to some changes in the predicted future critical

poses of obstacles 1 and 2, but largely maintains its previous shape. Finally, in figures 4.2d

and 4.2h the robot has already successfully avoided the moving obstacles and is free to head

toward its goal.

Run T (s) dmin(m) Collision

1 13.738 0.5289
2 15.260 0.5736
3 16.239 0.8270
4 14.748 0.8363
5 13.615 1.0078
6 14.401 0.6501
7 17.253 0.7750
8 17.008 0.9096
9 16.355 0.6075
10 15.248 1.0032
11 14.504 0.4145
12 16.385 1.0249
13 15.893 0.8918
14 14.110 1.1551
15 14.767 0.5535

Average 15.368 0.7839 —
σ 1.256 0.2194 —

Coll. % — — 0

(a) Results using the proposed approach

Run T (s) dmin(m) Collision

1 18.912 0.3628 X
2 20.365 0.3598 X
3 19.612 0.3615 X
4 41.850 0.3481 X
5 44.294 0.3238 X
6 34.996 0.3516 X
7 21.094 0.3576 X
8 20.860 0.3569 X
9 20.356 0.3720 X
10 21.413 0.3628 X
11 20.854 0.3348 X
12 19.601 1.3660 X
13 33.982 0.3485 X
14 45.495 0.3394 X
15 22.237 0.3623 X

Average 27.061 0.3539 —
σ 10.005 0.0130 —

Coll. % — — 100

(b) Results using ROS default configuration

Table 4.1: Simulation results obtained on the first scenario

36

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Screenshots of the key frames of test number 10 on the first simulation scenario using
the proposed approach. On top are screenshots from Gazebo, while the bottom ones are from RViz

Second Scenario

Analysis of the results presented in Table 4.2 reveal that the general paradigm identified

in the results from the first scenario is still present here: costmap construction assuming

that all obstacles are static does not perform well in environments populated with dynamic

obstacles. Once again, with ROS Navigation Stack default configuration, we get a 100%

collision rate. However, with our approach, we only got 2 collisions in 15 repetitions of

the scenario, which translates to a collision rate of 13.33%. This is a downgrade from the

performance registered in the first scenario, owing to the increased difficulty of this one.

The minimum center-to-center distances registered in each execution do not always as-

sume values as large as would be desirable. The cause of this is, as concluded in the first

scenario, the perception method, which tends to take a bit longer than it ideally should

to determine a stable and correct velocity estimate for the obstacles. As a consequence,

excessive path replanning tends to occur, creating a navigational behavior marked by an

“indecisiveness” of sorts regarding the path to follow, e.g., whether to go through the left or

the right. The larger number of obstacles in this scenario makes it all the more challenging

for the perception process due to the obstacle occlusions that inevitably happen.

Considering solely the actual behavior of the robot, one can safely state that, in this

37

Run T (s) dmin(m) Collision

1 16.208 1.0518
2 15.210 0.6064
3 15.507 0.5082
4 13.746 1.1215
5 20.535 0.3942 X
6 15.748 0.4157
7 15.733 0.5011
8 15.607 0.9125
9 15.001 0.7925
10 14.480 0.8967
11 14.900 0.7453
12 22.392 0.3986 X
13 19.119 0.9067
14 14.986 0.5468
15 15.540 0.7078

Average 16.369 0.7003 —
σ 2.497 0.2409 —

Coll. % — — 13.33

(a) Results using the proposed approach

Run T (s) dmin(m) Collision

1 57.385 0.3587 X
2 46.356 0.3521 X
3 25.483 0.3538 X
4 15.979 0.3865 X
5 15.997 0.3887 X
6 25.305 0.3454 X
7 44.979 0.3508 X
8 16.872 0.3864 X
9 24.270 0.3488 X
10 47.552 0.3355 X
11 42.994 0.3655 X
12 58.574 0.3364 X
13 20.004 0.3683 X
14 34.771 0.3380 X
15 22.618 0.3363 X

Average 32.582 0.3567 —
σ 15.419 0.0187 —

Coll. % — — 100

(b) Results using ROS default configuration

Table 4.2: Simulation results obtained on the second scenario

scenario, it is both satisfactory and in accordance with what was desired and expected.

Except for the two tests where collisions happened, the robot always passed through the

back of both obstacles 1 and 3, although sometimes a bit closer than it should (run number

6).

In figure 4.3 we present the key frames of run number 1 using our approach. Figures

4.3a and 4.3e portray the beginning of the simulation scenario. The path planned (the green

line in fig. 4.3e) assumes a shape close to a straight line because the obstacles are not yet

moving. In the phase of the simulation presented in figures 4.3b and 4.3f, it is clear that

the velocity estimates of the moving obstacles, while not as accurate as would be desirable,

are good enough to condition the path planning process into collision avoidance. The black

circles in figures 4.3c and 4.3g correspond to previous instances where the perception block

momentarily lost track of obstacles 2 and 3, though it was able to quickly recover. Finally,

in figures 4.3d and 4.3h the robot has already successfully avoided obstacles 1 and 2 and has

38

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Screenshots of the key frames of test number 1 on the second simulation scenario
using the proposed approach. On top are screenshots from Gazebo, while the bottom ones are
from RViz

a stable path guiding it through the back of obstacle 3 as intended, beingfree to head toward

its goal. Once again, the black dots correspond to moments when the perception block failed

its task. Particularly, its difficulties handling occluded obstacles become abundantly clear.

Obstacle 1 is occluded by obstacle 2 and, therefore, completely lost track of, its presence in

the costmap being represented at its formerly predicted critical future position.

Third Scenario

In terms of the occurrence of collisions, this scenario brings similar results to the ones

presented for the first and second scenarios. The robot’s behavior, however, becomes some-

what degraded in this case. Although in most of the tests using our approach the robot

did not collide with any obstacles, it frequently suffered from more severe “indecisiveness”

in comparison to the two previous scenarios. This means that it was not uncommon for the

robot to perform an in place rotation (one of ROS predefined recovery behaviors) right after

starting its movement due to the instability of the generated paths.

The large number of obstacles in this scenario makes it all the more challenging for the

perception process due to the obstacle occlusions that inevitably happen. Predicting an

39

Run T (s) dmin(m) Collision

1 17.114 0.8435
2 31.323 0.3602 X
3 33.648 0.3549 X
4 22.007 0.4568
5 21.416 0.4378
6 19.236 1.0093
7 17.991 0.9410
8 35.065 0.3791 X
9 16.276 0.8381
10 18.622 0.7545
11 16.509 0.7225
12 17.888 1.2506
13 17.129 1.3056
14 16.710 0.7853
15 16.124 0.6963

Average 21.137 0.7424 —
σ 6.587 0.3062 —

Coll. % — — 20

(a) Results using the proposed approach

Run T (s) dmin(m) Collision

1 20.245 0.3580 X
2 15.245 0.3623 X
3 16.627 0.3855 X
4 45.988 0.3152 X
5 16.853 0.3698 X
6 23.598 0.3554 X
7 22.214 0.3370 X
8 31.933 0.3228 X
9 15.351 0.3562 X
10 29.104 0.3631 X
11 30.238 0.3232 X
12 19.743 0.3741 X
13 16.978 0.3716 X
14 26.986 0.3673 X
15 17.222 0.3615 X

Average 23.222 0.3549 —
σ 8.447 0.0208 —

Coll. % — — 100

(b) Results using ROS default configuration

Table 4.3: Simulation results obtained on the third scenario

obstacle’s current position when it is not visible can be done relying solely on its previous

position and the velocity estimate. Given that the velocity estimate can be far from perfect,

this prediction is bound to be quite inaccurate. This creates a significant problem when the

occluded obstacle becomes visible again, as its predicted and real positions can be largely

different, thus making the system unable to match the observed obstacle to a previously

known one. This means that the costmap may at times have the same obstacle marked

twice in different places, something that indeed happened frequently in this scenario and

hindered the path planning process. In figure 4.4 we present the key frames of run number

13 using our approach. Given that the first planned path is similar across all three scenarios,

we decided to not include it here. Figures 4.4a and 4.4e represent the instant where a second

path is planned. The planning of this new path is triggered by the changes in the obstacles’

predicted future critical positions, which happen due to the improvement of the obstacles’

velocity estimates. Figure 4.4f reveals a lack of accuracy in the direction of obstacle 2’s

40

velocity estimate. There, the area of the costmap corresponding to the future position of

obstacle 2 is marked near obstacle 1’s current position, when the correct placement for

it would be roughly the same as in figure 4.4e (by the center of the scenario, pointing

downwards). Despite this, the planned path is safe for the robot, although it would not

pass obstacle 3 through its back. In figures 4.4c and 4.4g a very different path is planned

from the ones present in figures 4.4e and 4.4f. This is a case of the “indecisiveness” of

the robot’s behavior that was mentioned earlier, causing the robot to stop for some brief

moments. Finally, figures 4.4d and 4.4h portray the moment when a new, correct path is

planned, which the robot follows to its goal. The difference between figures 4.4g and 4.4h lies

essentially on the new predicted critical position for obstacle 3. Since the robot had stopped

for some moments, it gave time for obstacle 3 to travel a far enough distance so that a path

could be planned for the robot to go through its back.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Screenshots of the key frames of test number 13 on the third simulation scenario using
the proposed approach. On top are screenshots from Gazebo, while the bottom ones are from RViz

41

4.3 Real-World Experiments

4.3.1 Setup

The differential drive robotic platform used for these experiments was a modified Nomadic

Technologies Scout robot, with a radius of approximately 20cm (fig. 4.5a) equipped with an

an OrangePi computer running Linux. In terms of sensory devices, except for proprioceptive

sensors such as wheel encoders, it is equipped with only a SICK TIM551-2050001 2D LiDAR

(fig. 4.5b) with an aperture angle of 270°, an angular resolution of 1°, a working range

of 0.05 m to 10 m and a scanning frequency of 15 Hz. The OrangePi is used solely for

running the ROS nodes of the drivers for the robot’s motors and for the LiDAR. All the

other computationally heavier nodes, such as the ones related to the work developed in this

dissertation and the default ones used by ROS for robot navigation are executed on a laptop

equipped with an AMD Ryzen™ 4600H CPU (6 cores, 12 threads at a base clock of 3.0

GHz) and 16 GB of RAM.

Three scenarios, repeated 5 times each, were tested using our approach, all of them

involving the robot and a human who performs a simple trajectory without trying to avoid

the robot. The objective is, naturally, for the robot to avoid a collision and keep a comfortable

distance from the human. The first scenario is a collision at a crossing scenario, where the

robot is faced with a human moving perpendicularly to the path the robot is following.

The second scenario is a face to face collision scenario, where the robot and the human are

moving in opposite directions. The third scenario is an overtaking scenario, where the robot

finds a human moving slowly in the same direction of the robot and must overtake it. All

tests were performed in the second floor of the DEEC, in the area between the S and R

towers (visible behind the robot in figure 4.5a).

4.3.2 Results and Discussion

The metrics used here are still the same ones presented in 4.1. However, it must be taken

into account that, unlikely what happened in the simulations, in the real-world experiments

we have no ground truth data regarding the obstacles’ positions. This means that in order

to calculate the minimum distance between the robot and an obstacle we had to rely on the

estimated positions of the obstacles. Therefore, this metric will certainly incorporate some

level of uncertainty due to the imperfections in the obstacles’ position estimate. Furthermore,

42

(a) Differential drive Scout robot (b) SICK TIM551-2050001 2D LiDAR

Figure 4.5: Pictures of the hardware used for the real-world experiments

the elapsed time metric may also lose some relevance here, due to the difficulty of perfectly

repeating the starting and goal positions of the robot in every test. As such, the more

relevant metrics here are certainly the minimal distance to obstacle, dmin and the occurrence

of a collision.

First Scenario

Run T (s) dmin(m) Collision

1 19.854 0.6166
2 25.639 0.7389
3 25.218 0.7665
4 22.774 0.6185
5 22.615 0.7563

Average 23.220 0.6890 —
σ 2.331 0.0837 —

Coll. % — — 0

Table 4.4: Results obtained on the first real-world scenario

The results presented in table 4.4 reveal that the desired behavior was achieved, avoiding

a collision while also keeping a socially comfortable distance from the human. It should be

43

noted that, while not perceivable based on the results presented on the table, in an initial

stage of each test there was some indecisiveness in the planned paths due to fluctuations

of the predicted critical future pose of the human. However, unlike what happened in the

simulations, it did not hinder the robot’s motion nor did it force it to stop, because the

predicted critical future pose quickly stabilized. The biggest difficulties with this scenario

were being able to time correctly the beginning of the human’s motion and figuring out the

speed at which the person should walk, due to the limited space available in the area used

for testing. Starting to move too early or too late, as well as walking too briskly or too

slowly, would cause the predicted critical position to lie outside the robot’s path, thus not

creating the need for the robot to avoid a collision.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Screenshots of the key frames of test number 2 on the first real-world scenario using
the proposed approach. On top are screenshots from the recorded video, while the bottom ones
are from RViz

Figure 4.6 portrays the key moments of test number 2 in this scenario. In figures 4.6a

and 4.6e, the human is extremely close to the wall and is yet to start moving. Therefore, the

planned path goes almost straight to the robot’s goal. Figures 4.6b and 4.6f show the moment

when the human starts moving and its critical pose is predicted, triggering path replanning.

In figures 4.6c and 4.6g the human’s velocity estimate has been improved and stabilized,

thus altering the predicted critical pose, which in turn causes a new path to be planned. In

figures 4.6d and 4.6h the moment when the robot is at its closest to the person and free to

reach its goal is portrayed. Comparing it to 4.6c and 4.6g one concludes that the predicted

44

Run T (s) dmin(m) Collision

1 24.318 0.5650
2 22.370 0.6394
3 22.565 0.4235
4 23.656 0.4579
5 25.234 0.5073

Average 23.365 0.5186 —
σ 1.205 0.0860 —

Coll. % — — 0

Table 4.5: Results obtained on the second real-world scenario

future position of the human was correct. These figures showcase the previously explained

difficulty of correctly timing the start of human motion, because although the original path

would eventually pass too close to the human, a collision wouldn’t happen. Figure 4.6h also

reveals an erroneously detected obstacle. This happened due to the considerable error in the

robot’s localization, particularly in its orientation, that was verifiable by the end of the test.

Second Scenario

The results presented in table 4.5 reveal, in comparison with the ones in table 4.4, that

in this scenario the robot had a tendency to pass closer to the human than in the first one.

This is something that we noticed during the experiments as well. Considering that the

robot has a radius of approximately 20 cm, this means that in the worst of the runs, the

minimum distance to the human was of approximately 22cm. This is a safe distance but not

a particularly comfortable one, even though these points of minimal distance occur when the

robot is already side-by-side with the human and not on its front anymore. Nevertheless,

the path replanning when the robot detects the human and estimates its speed happens in

a timely manner.

In figure 4.7 we present some of the key frames of run number 1 using our approach.

In figures 4.7a and 4.7e, there are not enough LiDAR readings of the human for him to

be considered an obstacle. Therefore, the planned path goes almost straight to the robot’s

goal. Figures 4.7b and 4.7f show the moment when the human is detected as an obstacle.

Since there isn’t a velocity estimate yet, the human’s costmap assignment is done on his

current position and a new path is calculated. In figures 4.7c and 4.7g we can see that

the future critical position of the human has been determined and thus path replanning

45

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Screenshots of the key frames of test number 1 on the second real-world scenario
using the proposed approach. On top are screenshots from the recorded video, while the bottom
ones are from RViz

occurred. Figures 4.7d and 4.7h portray the instant when the robot and the human are side

by side. It is clear that human’s position estimate introduced in figure 4.7g was accurate, for

the human’s cost assignment covers the same as it did in figure 4.7g. It is also perceivable

in figure 4.7h that, as in the previous scenario, a nonexistent obstacle is detected due to the

problems in the localization of the robot.

Third Scenario

Run T (s) dmin(m) Collision

1 27.391 0.6778
2 29.656 0.5335
3 27.972 0.4861
4 27.774 0.6070
5 30.312 0.6411

Average 28.929 0.5891 —
σ 1.250 0.078 —

Coll. % — — 0

Table 4.6: Results obtained on the third real-world scenario

46

The paradigm in this scenario’s results doesn’t differ much from what was observed in

the first two scenarios. It should be noted that the elapsed time increases in comparison

to both of the other two scenarios, because in the beginning, before overtaking, the robot

moves behind the slowly walking human, causing it to take more time to reach the goal.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8: Screenshots of the key frames of test number 1 on the third real-world scenario using
the proposed approach. On top are screenshots from the recorded video, while the bottom ones
are from RViz

In figure 4.8 we present a set of 4 crucial frames from both a recorded video of run number

1 and a screen recording of RViz. Just as in the results presented for the first scenarios, the

first pair of images, figures 4.8a and 4.8e, portray a moment when the robot’s path is still

unimpeded by the human. In figures 4.8b and 4.8f is already in front of the robot, walking at

a very slow speed, and a path has been planned that contemplates an overtaking maneuver

by the robot. Figures 4.8c and 4.8g intend to show the robot following the previously planned

path and thus overtaking the human at a safe lateral distance. Finally, in figures 4.8d and

4.8h the robot is in the final stages of the overtaking process. A slightly different path

has been planned since figures 4.8c and 4.8g, one which guarantees that the robot will very

progressively pass to the front of the human, instead of immediately moving to that area.

47

48

5 Conclusions and Future Work

This dissertation presents an approach to costmap based robot navigation in dynamic

environments. Specifically, our technique takes into account the motion of an obstacle to

predict the area that the robot should avoid going through in the future in order to prevent

a collision, instead of assuming a static environment. Our approach also incorporates the

uncertainty in the estimate of the obstacles’ motion into the cost assigned to the costmap.

We ensure that the paths generated by the path planner of choice do not hinder the obstacle’s

motion and lead the robot through a socially more acceptable trajectory through the inflation

of the costs of the costmap cells located along the obstacle’s moving direction. The proposed

method was integrated into the ROS Navigation Stack as a costmap plugin, i.e, a costmap

layer. Because our approach requires specific information regarding the obstacles, such as

their estimated position and its associated variance, the approximate radius of their footprint

and an estimate of its velocity, we also present a perception solution tailored for use with

LiDAR devices.

The results presented in this dissertation lead us to determine that cost assignment

approaches that do not take into account the motion of dynamic obstacles are not adequate

for real-world scenarios, given their 100% collision rate in the experiments we performed.

In both the simulations and the real-world experiments our approach was able to, most of

the times, avoid collisions, although the distance kept from the obstacles was not always

as large as would be desirable. We also found that our approach consistently produced the

desired navigational behavior, i.e., the planned paths tended to pass through the back of the

obstacles when appropriate.

The work developed in this dissertation leaves some room for improvement. The percep-

tion block revealed itself to be the weakest link of this work and could be largely enhanced

through the use of a camera. In fact, the use of a camera would not only improve the per-

ception block but also provide the cost assignment block with a richer set of information

regarding the obstacles, especially considering that humans are the dynamic obstacles most

49

likely to be encountered by a robot. This richer set of information could also be useful for

the incorporation of more social constraints onto the cost assignment process, which could

result in a navigational behavior more compliant with social etiquette.

50

6 Bibliography

[1] Marina Kollmitz, Kaijen Hsiao, Johannes Gaa, and Wolfram Burgard. Time Dependent

Planning on a Layered Social Cost Map for Human-Aware Robot Navigation. In 2015

European Conference on Mobile Robots (ECMR), pages 1–6. IEEE, 2015.

[2] Kuanqi Cai, Chaoqun Wang, Jiyu Cheng, Clarence W. De Silva, and Max Q.-H. Meng.

Mobile Robot Path Planning in Dynamic Environments: A Survey. 2021.

[3] Amin Ghorbani, Saeed Shiry, and Ali Nodehi. Using Genetic Algorithm for a Mo-

bile Robot Path Planning. In 2009 International Conference on Future Computer and

Communication, pages 164–166. IEEE, 2009.

[4] Junjie Zeng, Rusheng Ju, Long Qin, Yue Hu, Quanjun Yin, and Cong Hu. Navigation

in Unknown Dynamic Environments Based on Deep Reinforcement Learning. Sensors,

19(18):3837, 2019.

[5] Md Arafat Hossain and Israt Ferdous. Autonomous Robot Path Planning in Dynamic

Environment Using a New Optimization Technique Inspired by Bacterial Foraging Tech-

nique. Robotics and Autonomous Systems, 64:137–141, 2015.

[6] Marija Seder and Ivan Petrovic. Dynamic Window Based Approach to Mobile Robot

Motion Control in the Presence of Moving Obstacles. In Proceedings 2007 IEEE Inter-

national Conference on Robotics and Automation, pages 1986–1991. IEEE, 2007.

[7] Jiyu Cheng, Hu Cheng, Max Q.-H. Meng, and Hong Zhang. Autonomous Navigation

by Mobile Robots in Human Environments: A Survey. In 2018 IEEE International

Conference on Robotics and Biomimetics (ROBIO), pages 1981–1986. IEEE, December

2018.

[8] Carlos A. Silva, Sedat Dogru, and Lino Marques. (Accepted) Mobile Robot Navigation

in Dynamic Environments Taking Into Account Obstacle Motion in Costmap Construc-

tion. In Danilo Tardioli, Vicente Matellán, Guillermo Heredía, Manuel F. Silva, and

51

Lino Marques, editors, ROBOT 2022: Fifth Iberian Robotics Conference. ROBOT 2022.

Advances in Intelligent Systems and Computing. Springer.

[9] Maja J Mataric. The Robotics Primer. MIT Press, 2007.

[10] Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to

Autonomous Mobile Robots. MIT Press, 2011.

[11] Francisco Rubio, Francisco Valero, and Carlos Llopis-Albert. A Review of Mobile

Robots: Concepts, Methods, Theoretical Framework, and Applications. International

Journal of Advanced Robotic Systems, 16(2):1729881419839596, 2019.

[12] John J Leonard and Hugh F Durrant-Whyte. Mobile Robot Localization by Tracking

Geometric Beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382,

1991.

[13] Cyrill Stachniss. Robotic Mapping and Exploration, volume 55. Springer, 2009.

[14] Yi Cheng and Gong Ye Wang. Mobile Robot Navigation Based on Lidar. In 2018

Chinese Control and Decision Conference (CCDC), pages 1243–1246. IEEE, 2018.

[15] Joydeep Biswas and Manuela Veloso. Depth Camera Based Indoor Mobile Robot Lo-

calization and Navigation. In 2012 IEEE International Conference on Robotics and

Automation, pages 1697–1702. IEEE, 2012.

[16] Sukkpranhachai Gatesichapakorn, Jun Takamatsu, and Miti Ruchanurucks. ROS Based

Autonomous Mobile Robot Navigation using 2D LiDAR and RGB-D Camera. In 2019

First International Symposium on Instrumentation, Control, Artificial Intelligence, and

Robotics (ICA-SYMP), pages 151–154. IEEE, 2019.

[17] Sebastian Thrun et al. Robotic Mapping: A Survey. Exploring Artificial Intelligence

in the New Millennium, 1(1-35):1, 2002.

[18] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press,

2005.

[19] Alberto Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation.

Computer, 22(6):46–57, 1989.

52

[20] Kwangro Joo, Tae-Kyeong Lee, Sanghoon Baek, and Se-Young Oh. Generating Topolog-

ical Map from Occupancy Grid-Map using Virtual Door Detection. In IEEE Congress

on Evolutionary Computation, pages 1–6. IEEE, 2010.

[21] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved Techniques for

Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics,

23(1):34–46, 2007.

[22] Kruno Lenac, Andrej Kitanov, Robert Cupec, and Ivan Petrović. Fast Planar Surface

3D SLAM using LiDAR. Robotics and Autonomous Systems, 92:197–220, 2017.

[23] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. OpenVSLAM: A Versatile Visual

SLAM Framework. In Proceedings of the 27th ACM International Conference on Multi-

media, MM ’19, page 2292–2295, New York, NY, USA, 2019. Association for Computing

Machinery.

[24] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and

Juan D Tardós. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–

Inertial, and Multimap SLAM. IEEE Transactions on Robotics, 37(6):1874–1890, 2021.

[25] Mohammad O.A. Aqel, Mohammad H Marhaban, M. Iqbal Saripan, and Napsiah Bt.

Ismail. Review of Visual Odometry: Types, Approaches, Challenges, and Applications.

SpringerPlus, 5(1):1–26, 2016.

[26] Huangying Zhan, Chamara Saroj Weerasekera, Jia-Wang Bian, and Ian Reid. Visual

Odometry Revisited: What Should Be Learnt? In 2020 IEEE International Conference

on Robotics and Automation (ICRA), pages 4203–4210, 2020.

[27] Yen-Cheng Kung, Chen-Chien J Hsu, and Wei-Yen Wang. Monte Carlo Localization

Incorporating an Error Correction Vector for Mobile Robot. In ICSSE, pages 306–318,

2015.

[28] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localization for Mobile

Robots. In Proceedings of the 1999 IEEE International Conference on Robotics and

Automation, volume 2, pages 1322–1328. IEEE, 1999.

[29] Maarten Speekenbrink. A Tutorial on Particle Filters. Journal of Mathematical Psy-

chology, 73:140–152, 2016.

53

[30] B.K. Patle, Ganesh Babu L, Anish Pandey, D.R.K. Parhi, and A. Jagadeesh. A Review:

On Path Planning Strategies for Navigation of Mobile Robot. Defence Technology,

15(4):582–606, 2019.

[31] Anis Koubaa, Hachemi Bennaceur, Imen Chaari, Sahar Trigui, Adel Ammar, Mohamed-

Foued Sriti, Maram Alajlan, Omar Cheikhrouhou, and Yasir Javed. Introduction to

Mobile Robot Path Planning. In Robot Path Planning and Cooperation, pages 3–12.

Springer, 2018.

[32] Mohamed Elbanhawi and Milan Simic. Sampling-Based Robot Motion Planning: A

Review. IEEE Access, 2:56–77, 2014.

[33] Edsger W Dijkstra et al. A Note on Two Problems in Connexion with Graphs. Nu-

merische Mathematik, 1(1):269–271, 1959.

[34] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[35] L. Kavraki and J.-C. Latombe. Randomized Preprocessing of Configuration Space for

Path Planning: Articulated Robots. In Proceedings of IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS’94), volume 3, pages 1764–1771. IEEE,

1994.

[36] Nancy M Amato and Yan Wu. A Randomized Roadmap Method for Path and Ma-

nipulation Planning. In Proceedings of IEEE International Conference on Robotics and

Automation, volume 1, pages 113–120. IEEE, 1996.

[37] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic

Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE Trans-

actions on Robotics and Automation, 12(4):566–580, 1996.

[38] Steven M LaValle et al. Rapidly-Exploring Random Trees: A New Tool for Path

Planning. 1998.

[39] Sertac Karaman and Emilio Frazzoli. Sampling-Based Algorithms for Optimal Motion

Planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

[40] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Batch Informed

Trees (BIT): Sampling-based Optimal Planning via the Heuristically Guided Search

54

of Implicit Random Geometric Graphs. In 2015 IEEE International Conference on

Robotics and Automation (ICRA), pages 3067–3074. IEEE, 2015.

[41] Sanjiban Choudhury, Jonathan D Gammell, Timothy D Barfoot, Siddhartha S Srini-

vasa, and Sebastian Scherer. Regionally Accelerated Batch Informed Trees (RABIT*):

A Framework to Integrate Local Information into Optimal Path Planning. In 2016

IEEE International Conference on Robotics and Automation (ICRA), pages 4207–4214.

IEEE, 2016.

[42] Thomas Bartz-Beielstein, Jürgen Branke, Jörn Mehnen, and Olaf Mersmann. Evo-

lutionary Algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 4(3):178–195, 2014.

[43] Xinjie Yu and Mitsuo Gen. Introduction to Evolutionary Algorithms. Springer Science

& Business Media, 2010.

[44] Agoston E Eiben and James E Smith. What Is an Evolutionary Algorithm? In Intro-

duction to Evolutionary Computing, pages 25–48. Springer, 2015.

[45] Yanrong Hu and Simon X Yang. A Knowledge Based Genetic Algorithm for Path Plan-

ning of a Mobile Robot. In IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA’04, volume 5, pages 4350–4355. IEEE, 2004.

[46] Rui Wang, Jinguo Wang, and Na Wang. Robot Global Path Planning Based on Im-

proved Ant Colony Algorithm. In Proceedings of the 3rd International Conference on

Material, Mechanical and Manufacturing Engineering, pages 946–949. Atlantis Press,

2015.

[47] Hong Liu, Bin Xu, Dianjie Lu, and Guijuan Zhang. A Path Planning Approach for

Crowd Evacuation in Buildings Based on Improved Artificial Bee Colony Algorithm.

Applied Soft Computing, 68:360–376, 2018.

[48] Alaa Tharwat, Mohamed Elhoseny, Aboul Ella Hassanien, Thomas Gabel, and Arun

Kumar. Intelligent Bézier Curve-Based Path Planning Model using Chaotic Particle

Swarm Optimization Algorithm. Cluster Computing, 22(2):4745–4766, 2019.

[49] Purushothaman Raja and Sivagurunathan Pugazhenthi. Optimal Path Planning of

Mobile Robots: A Review. International Journal of Physical Sciences, 7(9):1314–1320,

2012.

55

[50] Johann Borenstein and Yoram Koren. Real-Time Obstacle Avoidance for Fast Mobile

Robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5):1179–1187, 1989.

[51] Seyyed Mohammad Hosseini Rostami, Arun Kumar Sangaiah, Jin Wang, and Xiaozhu

Liu. Obstacle Avoidance of Mobile Robots using Modified Artificial Potential Field Algo-

rithm. EURASIP Journal on Wireless Communications and Networking, 2019(1):1–19,

2019.

[52] Paolo Fiorini and Zvi Shiller. Motion Planning in Dynamic Environments Using Velocity

Obstacles. The International Journal of Robotics Research, 17:760–772, July 1998.

[53] David Wilkie, Jur van den Berg, and Dinesh Manocha. Generalized Velocity Obstacles.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

5573–5578, St. Louis, MO, USA, October 2009. IEEE.

[54] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and Roland

Siegwart. Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots.

In Distributed Autonomous Robotic Systems, pages 203–216. Springer, 2013.

[55] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The Dynamic Window Approach

to Collision Avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

[56] Piyapat Saranrittichai, Nattee Niparnan, and Attawith Sudsang. Robust Local Obsta-

cle Avoidance for Mobile Robot Based on Dynamic Window Approach. In 2013 10th

International Conference on Electrical Engineering/Electronics, Computer, Telecommu-

nications and Information Technology, pages 1–4. IEEE, 2013.

[57] Mohammed Algabri, Hassan Mathkour, Hedjar Ramdane, and Mansour Alsulaiman.

Comparative Study of Soft Computing Techniques for Mobile Robot Navigation in an

Unknown Environment. Computers in Human Behavior, 50:42–56, September 2015.

[58] Amir Nasrinahar and Joon Huang Chuah. Intelligent Motion Planning of a Mobile

Robot with Dynamic Obstacle Avoidance. Journal on Vehicle Routing Algorithms,

1:89–104, November 2018.

[59] Ngangbam Herojit Singh and Khelchandra Thongam. Neural Network-Based Ap-

proaches for Mobile Robot Navigation in Static and Moving Obstacles Environments.

Intelligent Service Robotics, 12(1):55–67, 2019.

56

[60] Gregor Klancar, Andrej Zdesar, Saso Blazic, and Igor Skrjanc. Wheeled Mobile Robotics:

From Fundamentals Towards Autonomous Systems. Butterworth-Heinemann, 2017.

[61] David V Lu, Dave Hershberger, and William D Smart. Layered Costmaps for Context-

Sensitive Navigation. In 2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 709–715. IEEE, 2014.

[62] David D Fan, Ali-Akbar Agha-Mohammadi, and Evangelos A Theodorou. Learning

Risk-Aware Costmaps for Traversability in Challenging Environments. IEEE Robotics

and Automation Letters, 7(1):279–286, 2021.

[63] Rachel Kirby, Reid Simmons, and Jodi Forlizzi. COMPANION: A Constraint-

Optimizing Method for Person-Acceptable Navigation. In RO-MAN 2009-The 18th

IEEE International Symposium on Robot and Human Interactive Communication, pages

607–612. IEEE, 2009.

[64] Morgan Quigley, Brian Gerkey, and William D Smart. Programming Robots with ROS:

A Practical Introduction to the Robot Operating System. " O’Reilly Media, Inc.", 2015.

[65] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, Andrew Y Ng, et al. ROS: an Open-Source Robot Operating System. In

ICRA Workshop on Open Source Software, volume 3, page 5. Kobe, Japan, 2009.

[66] Kaiyu Zheng. ROS Navigation Tuning Guide. In Robot Operating System (ROS), pages

197–226. Springer, 2021.

[67] Setup and Configuration of the Navigation Stack on a Robot, 2018. [Online; Available

at http://wiki.ros.org/navigation/Tutorials/RobotSetup; accessed 31-August-

2022].

[68] Fangkai Yang and Christopher Peters. Social-Aware Navigation in Crowds with Static

and Dynamic Groups. In 2019 11th International Conference on Virtual Worlds and

Games for Serious Applications (VS-Games), pages 1–4. IEEE, 2019.

[69] Rudolph Emil Kalman. A New Approach to Linear Filtering and Prediction Problems.

Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[70] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A Density-based

Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceed-

57

http://wiki.ros.org/navigation/Tutorials/RobotSetup

ings of the Second International Conference on Knowledge Discovery and Data Mining

(KDD-96), volume 96, pages 226–231. AAAI Press, 1996.

[71] Dongkuan Xu and Yingjie Tian. A Comprehensive Survey of Clustering Algorithms.

Annals of Data Science, 2(2):165–193, 2015.

[72] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. DB-

SCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM

Transactions on Database Systems, 42(3):1–21, July 2017.

[73] Ian D Coope. Circle Fitting by Linear and Nonlinear Least Squares. Journal of Opti-

mization Theory and Applications, 76(2):381–388, 1993.

[74] Greg Welch, Gary Bishop, et al. An Introduction to the Kalman Filter. 1995.

[75] Matteo De Rose, Marina Indri, and Gianluca Prato. LiDAR-based Dynamic Path

Planning of a Mobile Robot Adopting a Costmap Layer Approach in ROS2. Master’s

thesis, Polytechnic University of Turin, 2019.

58

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Goals and Contributions
	1.3 Document Overview

	2 Background
	2.1 Robot Navigation: Basic concepts
	2.1.1 Perception
	2.1.2 Mapping
	2.1.3 Localization
	2.1.4 Path planning
	2.1.5 Motion Control
	2.1.6 Costmaps

	2.2 ROS and its Navigation Stack
	2.3 Robot Navigation in Dynamic Environments

	3 Methods
	3.1 Overview
	3.2 Perception block
	3.2.1 LiDAR readings filtering
	3.2.2 Clustering
	3.2.3 Circle fitting
	3.2.4 Obstacle to track assignment
	3.2.5 Kalman filter update

	3.3 Cost-map update block
	3.3.1 Determining possible collision time
	3.3.2 Cost assignments in the costmap

	3.4 Implementation

	4 Experimental Work and Discussion of Results
	4.1 Metrics
	4.2 Simulations
	4.2.1 Setup
	4.2.2 Results and Discussion

	4.3 Real-World Experiments
	4.3.1 Setup
	4.3.2 Results and Discussion

	5 Conclusions and Future Work
	6 Bibliography

