

Tiago Moisés Jacob Dinis

IFRIEND

IoT Platform for non-intrusive monitorization

of elderly people

Thesis submitted to the University of Coimbra for the Master’s degree in

Electrical and Computer Engineering, Specialization in

Telecommunications.

Supervisors:

Prof. Dr. Jorge Sá Silva (University of Coimbra)

Prof. Dr. André Rodrigues (Polytechnic of Coimbra)

 October 2022

ii

iii

This work was developed in collaboration with:

Department of Electrical Engineering University of Coimbra

iv

v

vi

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece

que os direitos de autor são de pertença do autor da tese e que nenhuma citação

ou informação obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on the condition that anyone who

consults it is understood to recognize that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published without

proper acknowledgment.

vii

Acknowledgments

This work was conducted under the guidance of Prof. Dr. Jorge Sá Silva and

Prof. Dr. André Rodrigues, to whom I must express my gratitude for all the support

and constant presence, throughout this project. I must also show my gratitude

toward Marcelo Fernandes for all the companionship, support, and guidance in this

project. I extend my gratitude to all my friends and colleagues, which toasted me

over the years with joy, happy moments, and friendship.

viii

ix

Resumo

Atualmente, as plataformas eHealth estão a ser cada vez mais utilizadas e

desenvolvidas para melhorar a precisão no diagnóstico e tratamento, para uma

observação mais personalizada do estado de saúde dos pacientes e para processar

a informação em tempo-real usando tecnologias como WiFi, Artificial Inteligence,

Chatbots e Internet Of Things. Atualmente existe rede WiFi na maior parte dos

espaços públicos e privados. Por isso, aumenta a facilidade de conexão dos

dispositivos e a integração de IoT na sociedade, principalmente na área da saúde. O

objetivo deste projeto é desenvolver uma plataforma inovadora de monitorização

sem fios através de WiFi, baseada numa app. Esta tecnologia baseia-se nas

alterações que o corpo humano provoca nas ondas eletromagnéticas utilizadas em

comunicações por WiFi. Essas alterações irão ser analisadas através do Channel

State Information (CSI) entre dois dispositivos WiFi (Router e Access Point). O foco

do nosso projeto é feito na deteção da frequência cardíaca, da frequência

respiratória e na localização/atividade do paciente. O projeto iFriend vai permitir a

monitorização inteligente do estado de saúde de idosos que sofrem de insuficiência

renal, sendo primariamente testado em estudantes das Universidades de Coimbra,

Alcalá, Extremadura e, como objetivo final, em ambiente real com pacientes do

Hospital Príncipe das Astúrias. Esta monitorização irá ser feita através de duas

aplicações, uma para smartphone e outra para smartwatch, ambas desenvolvidas

em Xamarin (desta forma suportando dispositivos Android e iOS) para gerir e

supervisionar as atividades do dia a dia dos idosos e para recolher alguns dos dados

vitais destes. E, por fim, para complementar e agrupar os dados recolhidos foi

desenvolvido um Dashboard onde os enfermeiros e responsáveis de saúde irão

poder analisar, em tempo “quase-real” e em historial, a informação sobre os

pacientes.

x

Abstract

Nowadays eHealth platforms are being increasingly used and studied to

improve accuracy in diagnosis and treatment, for a more personalized view of a

patient’s health status and to process information in real-time using technologies

such as WiFi, Artificial Intelligence, Chatbots, and Internet of Things. Currently, there

are WiFi networks in most places, public and private. Therefore, it increases the ease

of connecting devices and integrating devices IoT in society, especially in healthcare.

The objective of this project is to develop an innovative wireless monitoring

platform over WiFi with IoT validation, based on an app. This technology is based on

the changes that the human body causes to electromagnetic waves of the WiFi

network. These changes will be detected by analyzing the Channel State Information

(CSI) between two WiFi devices (Router and Access Point) and the respiration rate

validated with a respiration belt. The focus of our work is based on the heart rate,

respiratory rate, and location/activity of the patient. This project will allow

intelligent monitoring of the status of the health of elder people, especially those

suffering from insufficient kidney function. Being initially tested on students from

the Universities of Coimbra, Alcalá, and Extremadura, and as a final goal, in a real

environment with patients at the Príncipe of Asturias’s Hospital. In addition to this

monitoring, there will be a smartphone and smartwatch app, both developed in

Xamarin, which supports both Android and iOS devices to manage and supervise the

day-to-day activities of the elderly. And finally, develop a dashboard where nurses

and healthcare professionals of the institutions will access “real-time” data and see

the historical information of the patient.

xi

List of Acronyms

AP Access Point.

API Application Programming Interface.

CPS Cypher-Physical System.

DB Database.

DTO Data Transfer Object.

GE's Generic Enablers.

HITLCPS Human-in-the-Loop Cypher-Physical Systems.

HTTP Hypertext Transfer Protocol.

ID Identification.

IoT Internet of Things.

JSON JavaScript Object Notation.

LINQ Language Integrated Query.

MAC Media Access Control.

NDK Native Development Kit.

NLP Natural Language-Programming.

OS Operating System.

REST Representational State Transfer.

RF Radio Frequency.

UI User Interface.

URL Uniform Resource Locator.

VGS Version Control System.

VM Virtual Machine.

xii

List of Figures

Figure 1: Number of connected devices installed base worldwide from 2019 to 2030 (in billions) [6] 6

Figure 2: Control loop for a HITLCPS. ... 8

Figure 3: CSI amplitude of four subcarriers over time when a person is asleep [9]. .. 10

Figure 4: FIWARE Architecture [14] ... 12

Figure 5: Git Workflow .. 13

Figure 6: Overall architecture of the system .. 17

Figure 7: Vital Sign WiFi monitorization ... 18

Figure 8: View of the smartphone application main page .. 19

Figure 9: Wear Application Architecture .. 22

Figure 10: Dash overall architecture [21] ... 23

Figure 11: WearData model for the Wear database ... 31

Figure 12: AccuracyData model for the Accuracy database .. 31

Figure 13: Wear app screen ... 32

Figure 14: Dash Communication Architecture ... 34

Figure 15: View of the live graphic of the heart rate measured by the WiFi devices ... 36

Figure 16: Live graphic of the breathing rate measured by the WiFi devices and the respiration belt 37

Figure 17: Live Estimation Tab with smart devices crucial information... 38

Figure 18: Heart Rate graphics of the two types of devices .. 39

Figure 19: Breathing Rate graphics of the two types of devices ... 40

Figure 20: Smartphone daily activity ... 41

Figure 21: Smartwatch daily metrics .. 42

Figure 22: Sleep Activity .. 42

Figure 23: Daily habits ... 43

Figure 24: Graphic with the 3 scenarios tested for the battery .. 46

Figure 25: Application battery usage ... 47

Figure 26: Graphic with the 3 scenarios tested for the accuracy of the heart rate sensor 50

List of Tables

Table 1: Requirement's parameters .. 24

Table 2: Battery life tests for 10 seconds (on) and 30 seconds (off) ... 45

Table 3: Battery life tests for 20 seconds (on) and 60 seconds (off) ... 45

Table 4: Battery life tests for 20 seconds (on) and 120 seconds (off).. 45

Table 5: Accuracy tests for 10 seconds (on) and 30 seconds (off) ... 49

Table 6: Accuracy tests for 20 seconds (on) and 60 seconds (off) ... 49

Table 7: Accuracy tests for 20 seconds (on) and 120 seconds (off) ... 49

file:///C:/Users/tiago/Desktop/Tese_V3.docx%23_Toc116048733
file:///C:/Users/tiago/Desktop/Tese_V3.docx%23_Toc116048734
file:///C:/Users/tiago/Desktop/Tese_V3.docx%23_Toc116048735
file:///C:/Users/tiago/Desktop/Tese_V3.docx%23_Toc116048737

xiii

Contents

Acknowledgments ..vii

Resumo ...ix

Abstract ... x

List of Acronyms ..xi

List of Figures ... xii

List of Tables .. xii

Contents .. xiii

1 - Introduction ... 1

1.1 Context.. 1

1.2 Objectives ... 2

1.3 Thesis Structure ... 3

1.4 Materials and Methodology .. 4

2 - State-Of-Art .. 5

2.1 Concepts .. 5

2.1.1 Internet-of-Things ... 5

2.1.2 Cyber-Physical-Systems ... 7

2.1.3 Human in the Loop Cyber-Physical Systems .. 8

2.1.4 Tracking vital signs using WiFi networks .. 9

2.2 Technologies used ... 11

2.2.1 Android ... 11

2.2.2 FIWARE ... 12

xiv

2.2.3 Git - Version Control System ... 13

2.2.4 Xamarin ... 14

2.2.5 Dash ... 14

3 - System Overview ... 15

3.1 Contextualization ... 15

3.2 Description of the project .. 16

3.3 General Architecture .. 17

3.3.1 FIWARE Architecture .. 20

3.3.2 Wear App Architecture ... 21

3.3.3 Dash Architecture ... 22

3.4 Requirements ... 24

3.4.1 Functional Requirements .. 24

3.4.2 Non-Functional Requirements .. 27

4 – System Development .. 29

4.1 Smartwatch Application ... 29

4.1.1 Data Acquisition ... 29

4.1.2 Communication .. 30

4.1.3 Storage ... 31

4.1.3 Display .. 32

4.2 Dash Application .. 32

4.2.1 Callbacks and Data Processing .. 32

4.2.2 Communication .. 33

4.2.3 Layout .. 34

5 - Tests and Results.. 44

5.1 Battery Life ... 44

5.2 Sensor’s accuracy ... 48

6 - Conclusion and Future work .. 51

6.1 Conclusion .. 51

xv

6.2 Future work .. 52

Bibliography ... 53

Appendices .. 56

List of Permissions.. 57

1 - Introduction

1

1 - Introduction

1.1 Context

The permanent monitorization of the health state has been an area of interest

for the past few years in research, namely the study of efficient ways to monitor

elderly people, provide them with the best healthcare, and facilitate the gathering

of data. This monitoring is normally done by measuring the vital signs of the patient

such as heart and respiration rates. One of the areas that have been thriving and

taking advantage of this evolution of permanent monitoring is elderly healthcare.

Specifically for this type of population, the use of the technology that currently exists

isn’t properly easy to use and implement. The way this technology is implemented

can be usually very intrusive to this type of people for many reasons. As they aren’t

used to it or the tools that are being used interfere too much with their daily habits

which becomes a challenge of another level such as comfortability and adaptability.

One way to counteract this dynamic is to provide ways to support the maintenance

of the quality of life of the elders. The longer people can remain mobile and care for

themselves, the lower the cost of long-term care to families and society. Our project

aims to provide a user-friendly way for elderly people to self-manage their general

health and for their healthcare professionals and caregivers to monitor their health

status with greater accompaniment and data precision.

1 - Introduction

2

1.2 Objectives

 One of our main objectives for this project is, precisely, to smoothly bring and

adapt this type of technology, referred on the last section, to personally take care

of elder people. For that, uninterrupted remote monitoring can be a solution of

“passive wireless sensing”, so that to avoid the necessary direct contact with the

patient that is currently being done in an obstructive way. The iFriend project

started last year whereas the mobile app is being developed by my colleague José

Ramos and the part of monitoring the signal vitals through WiFi’s Channel State

Information is being done by my colleague Guilherme Lemos.

 With that in mind, my objective was to develop a smartwatch application to

complement the data collected by the smartphone app and the WiFi monitoring

system.

 Develop the Dashboard which is the main tool responsible for showing all the data

collected by all the devices and that allows the health professional to check the

health status of the patient. Whether viewing historical information or the “almost

live” information it enables the doctor to have a more insightful, permanent

knowledge and awareness of the medical record.

 Finally, my goal is to assure the continuation of the project so that can be grouped

with the work of the other universities and make possible the implementation in a

more real ambiance which is a hospital or nursing homes.

1. Introduction

3

1.3 Thesis Structure

This master thesis is structured into six chapters: Introduction, State of the Art,

System Overview, System Development, Tests/Results, and Conclusions/Future work:

 The first chapter serves as an introduction to the project, presenting the context

in which it is inserted and the main objectives it had. This chapter is also presented

a quick overview of the technologies used and the methodology.

 The second chapter, it is presented an overview of the state of the art.

 The third chapter is focused on the overall system development, that is the system

architecture and its components, where it is given a general overview of all the

system components, the smartwatch application iFriendWear, and the dashboard.

And it is presented a general requirements overview for my part of the project.

 The fourth presents the development of the system and all its components as

well as the several steps the project undertakes.

 The fifth focuses on testing and validation of the system, namely on the wear

application.

 The sixth chapter is dedicated to the conclusions taken from this project as

well as an overview of future work and open challenges.

1. Introduction

4

1.4 Materials and Methodology

In this section, we state how the project was planned and developed

throughout its duration and the materials we used to achieve its completion. The

requirements and architecture of this project were previously designed so it could

follow the evolution of the technologies used. Maintaining enough documentation to

accompany the development of the project and the collaboration of our direct

partners. Although, with the advances in the project some points were raised, and

the plan had to be adopted. The iFriendWear app was made on JetBrains Rider [1] in

Xamarin and tested on a smartwatch (Motorola Moto 360SP with a battery of 300 mAh

capacity, Bluetooth 4.0, a Qualcomm Snapdragon 400 with 1.2 GHz quad-core

processor, Adreno 305 with 450MHz graphics unit and an optical heart rate monitor

amongst the other basic sensors of a smartwatch) provided by the University. The

Dashboard was designed and developed on JetBrains IntelliJ PyCharm[2] in Python.

In this project, we used the Scrum [3] methodology. This methodology consists of

doing several iterations in the project, to obtain a product that adapts itself to the

evolutions of the market. That is, instead of focusing only on planning at the start

and moving to the next phase of development only when the previous one is finished,

we work with Sprints. Sprints are iterations of the project; they usually take from 2

to 3 weeks and follow the same phases as a normal software development plan, build,

test and review. An example of a potential Sprint can be, for example, the redesign

of the User Interface of the Dashboard. At the start of every Sprint, we plan the

requirements to make the small implementations of this Sprint, in the build we

develop those changes, then test them and at the end of the Sprint, we review

those changes. At the end of every Sprint, we should have a potentially shippable

product, that we can choose to deploy or not. At the end of one Sprint, we evaluate the

project, and start a new iteration (Sprint), if one is needed. This methodology is very

simple and makes the development of software easier since sometimes it is hard to

have a full image of the final product right from the start. Also, as a form of

communication, we utilized Slack [4], which allowed us to separate the different projects

in different channels. This way we were able to send and share relevant information

with the members of each project, we could also create topics for specific problems and

find faster solutions this way. Skype [5] was used to do the weekly meetings to state the

work done in the previous week and plan the work for the week ahead.

2. State-of-Art

5

2 - State-Of-Art

In this section, we will introduce some of the concepts used during the

development of this project, as well as some of the fundamental technologies applied.

2.1 Concepts

In this section, we address some of the concepts and paradigms used throughout

the project. These concepts were fundamental for all phases of the development, and

as such we think that a summary of them should be made.

2.1.1 Internet-of-Things

The Internet of Things (IoT) describes the network of physical objects – “things”

– that are embedded with sensors, software, and other technologies to connect and

exchange data with other devices and systems over the internet. These devices range

from ordinary household objects to sophisticated industrial tools. With more than 10

million connected IoT devices today, experts are expecting this number to grow up to

16 million in 2025 and 25 million in 2030 [6].

Over the past few years, IoT has become one of the most important technologies

of the 21st century. Now that we can connect everyday objects—kitchen appliances,

cars, thermostats, baby monitors—to the Internet via embedded devices, seamless

communication is possible between people, processes, and things.

Through low-cost computing, the cloud, big data, analytics, and mobile

technologies, physical things can share and collect data with minimal human

intervention. In this hyperconnected world, digital systems can record, monitor, and

adjust each interaction between connected things. The physical world meets the digital

world—and they cooperate.

2. State-of-Art

6

Figure 1: Number of connected devices installed base worldwide from 2019 to 2030 (in billions) [6]

 A collection of recent advances in several different technologies has made

the idea of IoT more practical:

 Access to low-cost, low-power sensor technology. Affordable and reliable

sensors are making IoT technology possible for more manufacturers.

 Connectivity. A host of network protocols for the Internet has made it easy to

connect sensors to the cloud and other “things” for efficient data transfer.

 Cloud computing platforms. The increase in the availability of cloud platforms

enables both businesses and consumers to access the infrastructure they need

to scale up without having to manage it all.

 Machine learning and analytics. With advances in machine learning and

analytics, along with access to varied and vast amounts of data stored in the

cloud, businesses can gather insights faster and more easily. The emergence of

these allied technologies continues to push the boundaries of IoT, and the data

produced by IoT also feed these technologies.

 Conversational artificial intelligence (AI). Advances in neural networks have

brought natural-language processing (NLP) to IoT devices (such as digital

personal assistants Alexa, Cortana, and Siri) and made them appealing,

affordable, and viable for home use.

2. State-of-Art

7

2.1.2 Cyber-Physical-Systems

Cyber-physical systems (CPSs) are built from, and depend upon, the seamless

integration of computational algorithms and physical components. These systems

combine digital and analog devices, interfaces, sensors, networks, actuators, and

computers with the natural environment and with human-made objects and structures.

Just as the Internet has transformed the way people interact with information, cyber-

physical systems are transforming the way people interact with the physical world. At

the same time, the scale and inherent heterogeneity of these systems pose tremendous

engineering challenges [7]. New technological approaches are needed to formalize their

design, manage and control them in a scalable, efficient, and secure way, and ensure

their usability. The components and domains that compose the CPS area are increasingly

used to build user-friendly environments that can:

 Monitor the health of patients at home or a hospital, though wearable sensors or

non-intrusive environmental monitors, to ensure that sub-optimal vital signs are

recognized early, and emergencies are responded to immediately.

 Deliver integrated public transport and safe, efficient road traffic systems. Time

spent traveling can be reduced if travelers have simple, cost-effective ways to

switch travel modes with integrated tickets that are accepted across independent

transport providers and up-to-date, accurate information on where there are

currently jams or backlogs, and where in the network there is spare capacity not

being used.

 Secure cost-effective, traceable food supplies. Distributed sensors, vehicles, and

complex decision-making support software are needed in agriculture to allow

farmers to achieve the best possible yield in return for their investments and to

react to conditions on the ground, whilst CPSs could be deployed throughout the

food chain to ensure that our food supplies are traceable.

 Provide secure and energy-optimized buildings. Going beyond simple

temperature and humidity sensors, smart homes and offices of the future will use

varied data inputs such as weather forecasts and knowledge about the time of day,

season, and building usage to provide comfortable environments with minimum

energy consumption.

2. State-of-Art

8

2.1.3 Human in the Loop Cyber-Physical Systems

Human-in-the-loop cyber-physical systems (HiLCPSs) comprise a challenging and

promising class of applications with immense potential for impacting the daily lives of

many people. A typical HiLCPS consists of a loop involving a human, an embedded

system (the cyber component), and the physical environment. The embedded system

augments a human’s interaction with the physical world. A HiLCPS infers the user’s

intent by measuring human cognitive activity through body and brain sensors. The

embedded system in turn translates the intent into robot control signals to interact with

the physical environment on the human’s behalf via robotic actuators. Finally, the

human closes the loop by observing the physical world interactions as input for making

new decisions. Examples of HiLCPSs include brain-computer interfaces (BCIs), controlled

assistive robots, and intelligent prostheses [8].

HiLCPS applications offer benefits in many realms— for example, the population

of functionally locked-in individuals would benefit tremendously from such systems.

Because these individuals cannot interact with the physical world through their

movement and speech, they often must rely heavily on support from caregivers to

perform fundamental everyday tasks, such as eating and communicating. A HiLCPS could

aid in restoring some autonomy by offering alternative interfaces to the cyber-physical

environment for interaction, communication, and control.

Figure 2: Control loop for a HITLCPS

2. State-of-Art

9

2.1.4 Tracking vital signs using WiFi networks

Tracking human vital signs of breathing and heart rates during sleep is important

as it can help to assess the general physical health of a person and provide useful clues

for diagnosing possible diseases. Traditional approaches (e.g., Polysomnography (PSG))

are limited to clinic usage. Recent radio frequency (RF) based approaches require

specialized devices or dedicated wireless sensors and are only able to track breathing

rate. The traditional way to monitor vital signs during sleep requires a patient to perform

hospital visits and wear dedicated sensors, which are intrusive and costly. The obtained

results may be biased because of the unfamiliar sleeping environments in the hospital.

Moreover, it is difficult, if not possible, to run long-term sleep monitoring in clinical

settings. Thus, a solution that can provide non-invasive, low-cost, and long-term vital

signs monitoring without requiring hospital visits is highly desirable. This solution aims

to perform continuous long-term vital signs monitoring at low cost and without the

requirement of wearing any sensor. It is possible to track breathing and heart rates

during sleep by using off-the-shelf WiFi, exploiting fine-grained channel information,

Channel State Information (CSI) [9]. This is the method that was used within our project

for the part of the wireless system.

Using channel state information has significant implications on how fine-grained

minute movements can be captured for vital signs monitoring. Compared to the

traditional RSS, which only provides a single measurement of the power over the whole

channel bandwidth, the fine-grained CSI provides both amplitude and phase information

for multiple OFDM subcarriers. For instance, mainstream WiFi systems such as 802.11

a/g/n are based on OFDM where the relatively wideband 20MHz channel is partitioned

into 52 subcarriers. Due to the frequency diversity of these narrowband subcarriers, the

multipath effect and shadow fading at different subcarriers may result in a significant

difference in the observed amplitudes. This means that a small movement in the physical

environment may lead to a change of CSI at some subcarriers, whereas such change may

be smoothed out if we examine the signal strength over the whole channel bandwidth.

2. State-of-Art

10

Figure 3: CSI amplitude of four subcarriers over time when a person is asleep [9]

Analyzing the CSI at each subcarrier thus provides a great opportunity to capture

the minute movements from not only breathing but also heartbeats. Figure 3 shows the

CSI amplitude of four subcarriers (i.e., subcarriers 1, 7, 19, and 28) extracted from a

laptop in an 802.11n network over time when a person is asleep. His bed is in between

an AP and the laptop 3 meters apart. The person does not carry any sensor in his body.

We observe that the CSI amplitude of these four subcarriers exhibits an obvious periodic

up-and-down trend. Such a pattern could be caused by the person’s breathing during

sleep. This observation strongly suggests that it is possible to achieve device-free fine-

grained vital signs monitoring by leveraging the CSI from off-the-shelf WiFi devices.

2. State-of-Art

11

2.2 Technologies used

Because the main components of my part of the project are the Xamarin

application and the Dashboard web application, the most used technology was Android

[10], FIWARE for the communication processes, Git as our version controller, and Plotly

Dash.

2.2.1 Android

Android is an Operating System (OS) designed especially for mobile devices.

It is based on the Linux Kernel [11] and is designed by Google. This OS is made to

run on devices with a touchscreen, like smartphones, and the main interaction with it is

through touch gestures it also has a virtual keyboard for text inputs. When the

System started it was only designed for Smartphones and Tablets but over the years

new versions of the OS appeared, such as the Android TV for Smart TVs, Android

Auto for cars, and Android Wear [12] for smartwatches. The last one is used in this

project and so it requires further explanation.

Android Wear as the name indicates was meant to be used in items that

people wear, but until this day it is only used in Smartwatches. This OS is for small

devices, with even smaller screens, and was designed to be used without hands, that

is, almost all the features are available using voice command. We can also interact

with it through gestures like swipes and clicks and the newer version of this OS,

Android Wear 2.0, comes with a virtual keyboard for text input. Android Wear was

made to work as a complement to the Smartphone; with it, we can see notifications with

a glance at the wrist instead of having to draw our phone from our pocket. But these

devices are also designed for fitness and sports purposes and are embedded with some

sensors that are not available for Smartphones, like the heart rate sensor and the

pedometer sensor. This OS is, as stated before, based on Linux Kernel but it also runs

a Java Machine (JVM) developed especially for these devices. The main

programming language used in the development of Android apps is Java, but it is

also very common to use languages like C++ and C# with the Native Development

Kit (NDK).

It is an open-source technology, and it is the most used mobile platform in the

world. In addition to it, the Android platform has also a large community of developers

and many third-party libraries with good documentation that facilitates the

development of apps.

2. State-of-Art

12

2.2.2 FIWARE

FIWARE is an open-source initiative that works toward building a set of standards

to develop Smart applications for different domains such as Smart Cities, Smart Ports,

Smart Logistics, Smart Factories, and others. Smart Applications require collecting data

from different sources about what is going on that is relevant to the application at any

moment, what we refer to as “context information”. Current and historic context

information is then processed, visualized, and analyzed at a large scale, thus producing

the expected intelligent behavior.

It promotes a standard that describes how to collect, manage and publish context

information, and additionally adds certain elements that allow exploiting collected data.

Such a standard doesn’t exist today, and it would be instrumental in building a Digital

Single Market for Smart Applications where apps/solutions can be ported from one

customer to another without major changes. It also solves multiprotocol communication

in multisensory networks. It offers a solution to the diversity in IoT protocol and

languages and translates the information gathered from the sensors into a common

language [13].

FIWARE is based on a library of components called Generic Enablers (GEs) that are

meant to implement Application Programming Interface (API)s. GEs offer reusable and

commonly shared functions “as a Service". Through APIs, GEs allow developers to put

into effect functionalities making programming much easier by combining them.

GEs are classified into seven technical chapters: Cloud Hosting, Data/Context

Management, Architecture of Applications/Services Ecosystem and Delivery

Framework, Interface to Networks and Devices, Security, Internet of Things Enablement,

and Advanced Web-based User Interface.

Figure 4: FIWARE Architecture [14]

2. State-of-Art

13

2.2.3 Git - Version Control System

The use of Version control systems (VGS) is one of the best practices for software

development. These systems allow us to store all the developed software remotely to

ensure the project's continuation and prevent any drawbacks in case of computer

malfunction. But this tool's capabilities go beyond the repository functionalities. They

also allow us to keep track of all the changes on the project files, letting us know when

the files were changed and by whom, and even what section of the file. This helps

prevent several errors and save time as it is very easy to make a rollback in the project

when something undesirable happens [15]. Other functionalities also include the

merging and branching of projects allowing us to keep different versions of the same

software, for instance, we can keep a stable version on a branch while working on new

functionalities in a different branch of the project.

The version control system used during this project was a local instance of GitLab.

Using a local instance, with authentication assured that all the applications and code

were secured and private.

In our case, the version control system is also the team management tool. Allowing

us to keep track of everyone's work, as well as coordinate the work of the different

project members. Creating issues, be it for debugging or for new tasks, allow us to keep

track of the work that had to be done.

Figure 5: Git Workflow

2. State-of-Art

14

2.2.4 Xamarin

So Xamarin is a developer’s tool for cross-platform mobile application

development acquired by Microsoft in 2016 and it’s built for mobile applications in

Android, iOS, and Windows. It has the bindings for all the platform SDKs for Android and

iOS; these are easy to use and navigate and provide robust compile-time type checking

allowing the development of more error-free and higher-quality applications. The

platform provides facilities to apply high-level language libraries directly. Allowing to use

of wide arrays of third-party codes, Xamarin has project binding capabilities that let us

tie Java libraries or native Objective-C by using declarative syntax. All Xamarin

applications are developed in the C#, as it is a modern language that features more

dynamic functional constructs like parallel programming, lambdas, LINQ, and more [16].

Like all cross-platform development tools, it eliminates the need to employ

additional developers to create apps for other operating systems. In addition, it can

reduce maintenance costs as a single team can do the troubleshooting after

deployment. This mobile development tool is part of Microsoft’s open-source .NET

platform. This means that it is free and has strong community support.

2.2.5 Dash

Dash is the original low-code framework for rapidly building data apps in Python,

R, Julia, and F# (experimental). Started as a public proof-of-concept on GitHub 2 years

ago, written on top of Plotly.js and React.js, it is ideal for creating analytical web

applications with emphasis on data analytics, data exploration, visualization, modeling,

instrument control, and reporting. Through a couple of simple patterns, abstracts away

all the technologies and protocols that are required to build a full-stack web app with

interactive data visualization [17].

Dash apps are rendered in the web browser. They can be deployed to VMs or

Kubernetes clusters and then share through URLs since they’re viewed in the web

browser. The web servers run on Flask and communicate via JSON packets over HTTP

requests. Flask is widely adopted by the Python community and deployed in production

environments everywhere. Dash components are Python classes that encode the

properties and values of a specific React component and that serialize as JSON. This

toolset uses dynamic programming to automatically generate standard Python classes

from annotated React prototypes. The components are user-friendly as they come with

automatic argument validation, docstrings, and more. Since the Dash application is

stored in the frontend (web browser) it allows it to be used in a multitenant setting

where multiple users can have independent sessions while interacting with the Dash

app at the same time.

3. Overall System

15

3 - System Overview

In this chapter, we present the system in an overall way. In the first section,

we present the contextualization and description of the project, and in the second

section, the architecture of the system and its components separately. In the last

section, we present the requirements for this part of the project.

3.1 Contextualization

The iFriend has as its main objective to monitor, assist and improve the health

and daily life of elder people. With this solution, it is possible to better understand the

day-to-day of elderly people and try to prevent some bad habits that may lead to

worsening their health condition of them or prevent some emergencies.

Currently, older people don’t have regular and constant monitoring or check-up

on their healthcare mostly because of misinformation, access difficulties, or lack of

technology that can help track them. The increased risk of health diseases associated

with natural aging, health behaviors, social isolation, or side effects from medications,

are some factors that can contribute to the risk of cardiac arrest or respiratory problems

in this type of population. By controlling these factors by monitoring them, it would be

possible to achieve health improvement and a better understanding of them. In this

application, a HITLCPS architecture is implemented, where seniors are included in it,

making them the first actuators to change their behavior. It is also important that seniors

are willing to participate in the process and improve with it because in many cases, the

main problem is to change some of the behavioral habits that they have, that is not the

most suitable for a healthy life.

3. Overall System

16

3.2 Description of the project

iFriend is a HITLCPS system that uses 3 sets of devices, to monitor the vital signs

(heart rate and breathing rate) and the daily life of elderly people.

This set of devices, described in detail in section 3.3, is composed of the

monitorization through a WiFi network (Channel State Information using both time and

frequency) between a router and an AP (which will be settled in each senior’s division)

and the breathing rate validated with a Go Direct respiration belt (with a response time

of 50 ms, maximum chest circumference of 140 cm, with a wireless connection through

Bluetooth or wired connection through USB cable) [18]. It is also composed of a mobile

application to monitor the elder’s daily activity and help them track their habits and a

smartwatch application that will help to validate the heart rate measured by the WiFi

monitoring system. The main goal is to improve the health of the elderly, facilitate the

work for the health responsible and improve their access to better health services.

This system monitors the seniors continuously, 24 hours a day, to gather the best

data and analyses, and deliver them to health responsible. The CSI’s data, the

smartphone, and the smartwatch sensor's data are retrieved and sent to the FIWARE in

real-time or when a connection to the Internet is available. After the data is retrieved

from the FIWARE with specific time intervals is processed and shown in the Dashboard

to the doctor or health responsible. As said earlier this overall monitorization system will

keep track of the vital signs but it will as well help the seniors improve their health habits

through the mobile application that has an interactive display for them to interact and

keep track of their habits and health routine. The simple smartwatch application and the

Dashboard will be explained in more detail in Chapter 4., as well as the processing of the

information, what data is being retrieved, and how we made data acquisition.

3. Overall System

17

3.3 General Architecture

The general architecture of the overall system is shown in figure 5. It is

characterized by all the mechanisms that allow the structure to integrate the system

HITLCPS as well as the acquisition and processing of the data by the WiFi monitorization

devices, respiration belt, smartphone and smartwatch, and finally, all the information

collected is shown on the dashboard web application.

Figure 6: Overall architecture of the system

Firstly, this system has the vital sign WiFi monitorization through the Channel

State Information (both time and frequency) collected by the connection between an

Access Point and a Router using an RF link.

The basic idea of this system is to track vital signs during sleep by capturing the

unique patterns embedded in WiFi signals. As illustrated in Figure 7, the system takes as

input time-series CSI amplitude measurements, which can be collected at an off-the-

shelf WiFi device by utilizing existing WiFi traffic or system-generated periodic traffic (if

network traffic is insufficient) during people’s sleep. The data is then processed to filter

out the CSI measurements that contain sleep events (e.g., going to bed and turn over)

or large environmental changes such as people walking by via Coarse Sleep Event

Detection and Filtering. The measurements belonging to the regular sleep events can be

further classified into detailed events such as going to bed, getting off bed, and

turnovers. Moreover, our work is based on the fact that the breathing and heart rates

of resting people have different frequency ranges (e.g., breathing rate ranges from 10

to 37 bpm, and heart rate ranges from 60 to 80 bpm). This useful information leads us

to work on different frequency bands of the CSI measurements for accurate vital signs

estimation.

3. Overall System

18

Figure 7: Vital Sign WiFi monitorization [9]

The core components of our system are Breathing Rate Estimation and Heart

Rate Estimation. After coarse sleep event detection and data filtering, based on the

different frequency information embedded inside the CSI measurements, the input is

fed into Breathing Rate Estimation and Heart Rate Estimation respectively. In particular,

the lower frequency information of the CSI measurements is processed by the Breathing

Rate Estimation component. Our system first performs Data Calibration and Subcarrier

Selection to preprocess the data and select only the subcarriers sensitive to minute

human body movements (i.e., subcarriers with large variances). We then develop two

methods, Breathing Cycle and PSD-based K-means Clustering, to estimate the breathing

rate for single and two-person in-bed scenarios respectively. PSD denotes power

spectral density. Following a similar principle, PSD-based K-means Clustering can be

easily extended to handle the case of estimating breathing rates for multiple people

simultaneously given the number of people under study is known. The higher-frequency

information of the CSI measurements is fed into the Heart Rate Estimation component.

The heart rate is then derived in the frequency domain by examining the peaks in power

spectral density (PSD) of CSI measurements.

This is our most important part of monitorization because we are using

innovative technology, as we can see from the explanation above. Which is being

developed by my colleague Guilherme Lemos.

3. Overall System

19

Secondly, we have a smartphone application that will allow the senior to follow

his daily habits like medication, meals, or medical issues, and track his sleep routine or

activities. This application is being developed by my colleague José Ramos and it will

have a smartwatch as a companion application which is explained in the 3.3.2 section.

Figure 8: View of the smartphone application main page

This system uses FIWARE as a cloud-based module that implements the storage

capabilities and allows communication between all the devices, the smartphone is also

where all states are inferred and where the actuation is made through notifications and

messages. The smartwatch is the only device that doesn’t communicate directly with

FIWARE, because of its architecture. This model is based on entities and attributes. Each

entity has its type and it is represented by the attributes, using the JSON format.

3. Overall System

20

3.3.1 FIWARE Architecture

The FIWARE is our back-end component that implements the storage and

communications capabilities normally seen in mobile applications systems. In this

implementation there are used 4 General Enablers: ORION, CYGNUS, KEYROCK, and

COMET, with different functions [19]:

 ORION is a context broker that allows to create of context. More precisely it allows to

create of virtual entities to represent objects in the real world or even people.

These entities are like classes: they have a type, a specific id, and attributes.

However, unlike classes these entities can have different attributes even if they

are of the same type; for example, in our case study, some entities of the type

WearData can have the attribute heart rate while others may not have it,

depending on if the senior in the case has a smartwatch or not. This is of course

a must-have capability in an IoT architecture where we want to create a

connection between the sensors and the applications that consume the

information. For this purpose, this module implements a Representational State

Transfer (REST) API, which allows us to create, update and delete entities or

attributes. Although this module allows us to create entities and save their

attributes, it is only able to store the last instance of that data. That is if we

update an attribute value, the module only retains the last value. To save data

for historic context we need to implement other modules such as the CYGNUS

and the COMET.

 CYGNUS module is responsible for coordinating the storage of the data. That is,

in this module we can create subscriptions from the entities to a specific third-

party storage system, such as MongoDB [20] or MySQL [21], creating this way a

historic view of that data. These subscriptions are made by type, and after the

subscription is made, for a specific type, whenever an entity of that type is

created, updated, or altered the CYGNUS automatically saves those changes to

the third-party database to which the subscription was made.

 KEYROCK is an authentication module that manages all the other module's

accesses, which is by creating accounts we can restrict the access of certain

information and functionalities to certain accounts. This allows us to solve

several issues with users' access to networks, applications, and services, also this

way we can secure the data and assure privacy. This module implements a single

sign-on service, which is the user’s credentials (email and password), these are

the same in all modules and are hosted inside of this module. When the user

signs, he is given an Access Token that is then used in the requests he makes to

3. Overall System

21

the remain modules. Those modules query then the KEYROCK, to validate the

user request, before allowing the user to change or access any data.

This is a very important module since the privacy of the data is one of the main

requirements of this project and with this module, we can prevent personal data

from leaking to third parties, or even from being accessed by users who shouldn't

have access to them.

 COMET module is a short-time history, in charge of managing the historical

context information, storing and retrieving it. This module implements REST APIs

to communicate with the ORION and with third parties. The API used to

communicate with external applications was developed to facilitate the

retrieving of data with time context, it allows us to aggregate the data by time

or even query specific time intervals. The API also allows us to aggregate data

with sums or by occurrence (to discrete values, like strings). This module is from

where we get most of the data in the application, and as such that makes it a

very important component to keep the platform working. This module also

addresses the requirements for storing information in the project as well as the

requirements to have information contextualized in time.

3.3.2 Wear App Architecture

The architecture of the iFriendWear application, which I developed, is like a

mobile app that has a thread to handle the graphic display and background services to

handle the more complex tasks. From figure 8, we can see that the architecture is more

minimal with just two background services. This architecture allows us to have an

application where the display is not affected by the tasks that are running in the

background. The Main service takes care of the sensor’s and context’s information

acquisition, and the Wear Service handles the communication with the smartphone. It

was also necessary to have a database on the smartwatch to ensure that no data is lost

before being sent to the Smartphone. The background thread handles the more

complicated tasks like business logic, HTTP communication, data storage, or even

repetitive tasks like sensor data retrieval.

As the main goal of this app is to help with the monitorization of the vital signals

and the activity of the seniors, the frontend of this app is very simple and just displays

the last heart rate taken and the number of steps taken during that day. On the backend,

it has a background service that is constantly running while the app is open that monitors

the heart rate and the steps, and saves the data on the local database.

3. Overall System

22

Figure 9: Wear Application Architecture

3.3.3 Dash Architecture

The architecture of the Dashboard is based on the usual Dash Plotly architecture

that has minimal interaction between the modules and extensibility with each module,

where each one has a specific functionality: web-based client; visualization

management, and data analysis modules. This architecture permits the optimization of

each component independently by separate groups with appropriate skill sets resulting

in a flexible, extensible, and efficient dashboard. The need for a close synchronization

between the client module and the back-end visualization management module. For this

to work correctly it has a web framework than can support the modules, seamless

communication, ease of use, and a strong open-source community for future

development and extensions. The python-based web framework Flask is minimalistic,

interactive, flexible, and extensible. Plus, visualization tools like Plotly are supported

exhaustively by Flask. It gives maximum flexibility and control due to granular tuning for

customization and makes no assumptions about how data is stored, thus becoming a

viable choice for a wider spectrum of applications [22].

3. Overall System

23

Figure 10: Dash overall architecture [22]

1. View: The main requisite of this dashboard is to present all the information

retrieved about the patient to the health professional. This client module

only has display components and barely any user interaction. It’s a multi-

page app in which all the components are reusable. It has a hidable sidebar

that is independent of the main view that loads the pages that are mainly

divided into 2 tabs: one for “Live Metrics” and the other for “Historical

Record”. These components are very important for a clear view of the

patient’s information, so it must be also easy to identify all the different

aspects of the medical record. For this, there are presented some simple

graphics for every variable that is being measured in the patient’s daily life

through the various devices used in this project. The various elements of this

module are supported using HTML and CSS.

2. Model: Functionally, this is an important module, which handles several

tasks: visualization generation – using either base data or computed results

– from the analysis module or from directly the 2 servers that were designed

to expose two APIs that return the data through the querying requests. These

APIs establish a connection with two main databases (MongoDB and MySQL)

that have all the data sent from all the devices stored.

3. Overall System

24

3. Controller: This module is responsible for the analysis of some data that is

being gathered by the WiFi monitorization through the Channel State

Information like heart rate and breathing rate and needs to be filtered and

smoothed to show this information in the most readable and clearable way

to the doctor.

3.4 Requirements

In this section, we present wear and dashboard applications, with functional and

non-functional requirements.

Parameters Parameter’s Description

Priority

Must: the requirement is essential to the project.

Should: the requirement is important to the project,

but the system should work without it.

Could: not implement requirements that won’t affect

the implementation of the important requirements.

Will: not implemented requirements for the project,

considered as future work.

Description Overall exposure of the requirement.

Actors Systems that intervene with the application.

Pre-

Conditions

Conditions necessary to the requirement functionality.

Events Flow
Description of the actions that an actor needs to fulfill

to get the expected outcome.

Expected

Outcome

The expected result from the action.

Table 1: Requirement’s parameters

3.4.1 Functional Requirements

3.4.1.1 Wear Application

 Intro

 Priority: Should.

 Description: The application should present an intro with a reference to the

University of Coimbra.

 Actors: The user.

3. Overall System

25

 Pre-Conditions: None.

 Event-flow: The user clicks the application’s icon from the smartwatch’s menu,

and the application starts and shows the Main screen.

 Expected outcome: The screen shows a new activity with the text “Made by the

University of Coimbra”. The screen then changes to the Main screen after 5

seconds.

 Sensors

 Priority: Should.

 Description: The application must collect all the information needed from the

sensors and process it to present it to the user.

 Actors: The user.

 Pre-Conditions: The user must give all the requested permissions.

 Event-flow: The user either clicks accepting or not accepting options.

 Expected outcome: If the user accepts to give the permissions, then it’s

presented on the Main screen. If the user doesn’t accept to give the permissions

the application closes.

 Store Information

 Priority: Must.

 Description: The application must be able to store information until a connection

with the respective smartphone is available.

 Actors: None.

 Pre-Conditions: None.

 Event-flow: When the information is gathered from the sensors it is stored on a

local database on the smartwatch and remains there until it is sent to the

Smartphone.

 Expected outcome: If there’s no connection available, the application stores the

sensor's information on a database in the smartwatch. When the information is

sent to the smartphone whether, via Bluetooth or WiFi, the information that has

been sent is deleted from the smartwatch’s database.

 Main Screen

 Priority: Must.

 Description: The application must be able to show the information updated and

with accuracy.

 Actors: None.

3. Overall System

26

 Pre-Conditions: None.

 Event-flow: After the user gives the right permissions, the information is

gathered from the sensors, and it is presented to the user’s screen.

 Expected outcome: If there’s information being collected, it’s presented on the

screen with the last heart rate measured and the number of steps taken that

day. If there’s no information being retrieved from the sensors it is presented

the last heart rate and the number of steps is stored in the database.

3.4.1.2 Dashboard Application

 Main Screen

 Priority: Must.

 Description: The application must be able to present a responsive/hidable

sidebar with multi-page options and the respective tab information.

 Actors: None.

 Pre-Conditions: Must have Internet access.

 Event-flow: After the user access the respective URL of the Medical Dashboard,

it must present with the Main Screen.

 Expected outcome: The screen shows all the information depending on which

sidebar option and tab are selected by the user. It must show all the information

on the screen according to the language selected.

 Sidebar Options

 Priority: Must.

 Description: The application must be able to show the information depending

on which option the user selected.

 Actors: User.

 Pre-Conditions: None.

 Event-flow: After the user selects the option on the sidebar, it’s presented with

a new page depending on the option that contains 2 tabs.

 Expected outcome: When the user chooses one option on the sidebar, it should

refresh the screen except for the sidebar and present the tabs and information

corresponding to the option selected.

 Live Metrics Option

 Priority: Must.

 Description: The application must be able to refresh the page and show the

information regarding the patient.

3. Overall System

27

 Actors: User.

 Pre-Conditions: Live option is selected, the patient is selected, the tab is

selected, and the measure button is selected on the corresponding tab.

 Event-flow: After the user chooses the Live option on the sidebar, the patient,

and the tab, should be presented with the live information regarding these

options.

 Expected outcome: If the “Vital Sign Estimation” tab is selected and after the

button is pressed, it should present live metrics of the heart rate and breathing

rate of the patient, which are being measured by the WiFi Signal (CSI) and

respiratory belt. If the “Daily Information” tab is selected and the “Measure”

button is pressed, it should be presented the last Location, Activity, Heart Rate,

Number of steps taken, and the clinical problems during the last day, that were

measured by the smartphone and smartwatch applications.

 Historical Record Option

 Priority: Must.

 Description: The application must be able to refresh the page and show the

information regarding the patient.

 Actors: User.

 Pre-Conditions: Historic option selected, the patient selected, tab selected, and

date selected on the corresponding tab.

 Event-flow: After the user chooses the Historic option on the sidebar, the

patient, the tab, and the date, should be presented with the historical record of

the patient for that specific date.

 Expected outcome: If the “Vital Sign Estimation” tab is selected and after the

interval date is chosen, it should present the historical graphics of the heart rate

and breathing rate of the patient, those vital signs were measured by the WiFi

Signal (CSI) and respiratory belt. If the “Daily Information” tab is selected and the

date is selected, it should be presented the pie graphics for Activity, Location,

and Number of Steps (smartphone) during the day selected, a line graphic with

heart rate measured during that day, and the number of steps (smartwatch), a

sleep graphic, information of Meals, Medication and how free time was spent,

and, finally, the clinical problems that the patient had during that day.

3.4.2 Non-Functional Requirements

These requirements are common to most smartwatch applications and

dashboard applications. Most of them can be solved by implementing good design

patterns. The non-functional requirements are very important in the development of an

3. Overall System

28

application because sometimes the fact of missing one of these requirements is enough

for the user to delete or not use the application anymore.

 Accessibility: Determines if all users can utilize the application, this

means that the application should not suffer from limitations to the

number of connected users.

 Performance: Shouldn’t affect the battery life too much, the memory or

the internet connection of the smartwatch, or the browser used.

 Privacy: All data collected must remain private and secure.

 Support: Should be supported by most of the Android devices or main

browsers currently on the market.

 Usability: The application must have a pleasing UI and features that are

important to the users, and more importantly should be easy to use.

 Functionality: The most important function of any app is the user’s ability

to navigate it. Users understand how to use them intuitively, and most

menu items are always with a tapping of the thumb or mouse.

Accessibility is a requirement of the system and not of the wear application. The

FIWARE itself handles accessibility. The good design of the FIWARE ensures that the

system is always accessible independently of the number of connect users. Plus, the

Flask server allows the Dashboard to handle thousands of requests for dynamic content

at once.

The performance is handled using background services to perform the more

complex tasks as was explained in section 3.3. By implementing background services,

we are freeing the UI thread and ensuring a more responsive application.

The privacy of the data collected from the application is ensured by the offline

wear database. Furthermore, the data is only stored on the smartwatch for short

periods. After is sent to the smartphone, the data is encrypted before being sent to

MongoDB through the FIWARE system.

Our application is supported by all devices with an Android version greater than

4.0.3. To ensure this compatibility is necessary to use some older APIs and classes that

Android has deprecated.

Usability of the application is also a big requirement nowadays because users

are becoming more demanding about the aesthetics of the applications, and it needs to

be easy to use and understand for the health responsible. We took that into account

when we were developing the application and tried to implement an interesting and

usable UI, especially on the dashboard application. Some examples of that are the

intuitive graphics, the navigation sidebar and tabs, and the theme of the application.

4. Development

29

4 – System Development

In this chapter, we explain the development of my part in the system. We start

by explaining the smartwatch development followed by the dashboard application

development.

4.1 Smartwatch Application

The smartwatch application serves as a companion for the mobile application

and as a way of validating the data the is being collected by the smartphone and the

WiFi devices. In this section, we explain in detail the development of the wear

application and we can divide the development of the application into 4 sections: the

acquisition, the communication, the storage, and the display user interface of the

application.

4.1.1 Data Acquisition

The smartwatch application only makes the acquisition of 2 values from the

sensors:

 Heart Rate

 Step Count

To make this acquisition we created a service called ValuesCollector that is

constantly running in the background after the user opens the application. This service

implements the Handler class and the ISensorEventListener interface that allows us to

know when a value of a sensor is changed, and the accuracy of the samples collected by

it. By using the SensorManager class we can register this listener to the desired sensors;

in our case the heart rate sensor and the step count sensor. We have a listener that is

triggered every time a registered sensor or its accuracy is changed. This listener saves

the sensor’s updated value on a variable and the last value of those 20 seconds of

collecting values is stored in a local smartwatch’s database. This was made because the

sensors take a certain amount of time to adjust and be at their highest accuracy. So,

following this, we set the values collected to only accept the highest accuracy readings

on a scale of 3 qualities(Low, Medium, and High)

2 timer functions allow us to only have the sensors registered for 20 seconds,

which means that there’s only going to be collected data from the sensors during those

4. Development

30

20 seconds and after those, we unregister the sensors, and another timer to set the

interval of 2 minutes that determines the time that the sensor will be turned on again.

This was set after a sequence of battery tests that are going to be covered in chapter 5.

The physical sensors are sensors that are implemented in the smartwatch’s

hardware. To obtain the values of the smartwatch’s sensor the Android OS provides an

API. This API has classes dedicated to managing the sensor acquisition, as referred to

before the SensorManager class. This class allows us to retrieve the values of all the

sensors of the smartwatch. The acquisition follows the following steps:

1. Get the sensor manager instance from the application context, through the

method GetSystemService().

2. Get the required sensor from the sensor manager through the

GetDefaultSensor() and refer to the parameter for the specific type of sensor.

3. Use the SensorEvent on OnSensorChanged() default method of the Service

Handler where it is all the code that needs to run when that sensor value

changes.

These steps need to be replicated in every sensor we want to use. As was stated

before these SensorEvents are triggered by the change of a sensor value. This event

returns an object from the SensorEvent class. It has four attributes that can be retrieved

- which are: accuracy, sensor type, timestamp, and the value from the sensor. Using

these four attributes we can gather a lot of information that allows us to build the most

robust data possible.

4.1.2 Communication

The intended architecture for the Android wear does not allow us to connect the

smartwatch directly to the Internet. This happens because the device manages the WiFi

and Bluetooth connections automatically, to improve battery life. Once the device is

connected to the smartphone by Bluetooth, it disconnects the WiFi to save the battery,

unless it is charging. This of course would not allow us to send data when the

smartwatch and the smartphone are close to each other (most of the time).

For this reason, we must use Android Wear Message API. To implement it on the

smartwatch we use a timer inside the class ValuesCollector that reads, every 5 minutes,

the database and tries to send the data to an available device. To send the data, we have

a class called MessageSender in which we start a new service, which extends the

IntentService class. This service uses the Capabilities API to make a scan for nodes (

devices connected to the smartwatch, normally with Bluetooth) that have the desired

capability. Once the API finds one, the service starts sending the saved instances of data

4. Development

31

to the smartphone. When an instance of the data is sent to the smartphone it is also

deleted from the smartwatch’s DB. Once the smartphone receives the data it is stored

on the smartphone’s wear database and is ready to be sent to the MongoDB database.

4.1.3 Storage

 We have two databases on the smartWatch with two models related to the data

that is being collected: the WearData model and AccuracyData. Each database has its

correspondent model:

Figure 11: WearData model for the Wear database

As can be seen from figure 10 we save the heart rate and the step count on the

WearData model. We also save the timestamp, because we need to record when these

values were collected to help with the view of the graphics on the dashboard application

and to ensure that we can relate the wear data with smartphone data.

Figure 12: AccuracyData model for the Accuracy database

The AccuracyData model was designed especially for the wrist detector and

accuracy tests, which are directly connected to the battery tests. For this, we save the

accuracy of each heart rate value which is only stored if the accuracy of the sample

collected is in the Medium or High category, and the time at each value was collected.

4. Development

32

4.1.3 Display

The display of the smartwatch application is very simple for two main reasons.

The first one is because this is going to be worn by people that don’t use or have

knowledge of technologies; and the second one is because this application was

developed and designed for testing reasons, as stated before to validate the data

collected by the other devices used in this project. The display on the watch is small and

for that, we can’t display a lot of information. So, for that, we opted for a simple layout

where we can see from figure 12, the name of the application and the 2 sensors in real-

time, with a symbol representing each of the two values and the actual value above it.

Figure 13: Wear app screen

4.2 Dash Application

In this section, the dashboard’s development details are explained, including 3

sections: Callbacks and Data Processing, Communication, and Layout/Dashboard.

4.2.1 Callbacks and Data Processing

Callbacks are functions that are automatically called by dash whenever an input

component’s property changes, to update some property in another component, the

output. These callbacks were divided into two groups:

 HrBrCallbacks are specifically designed to set the callbacks for the

graphics that contain the information (heart rate and breath rate) from

the respiration belt and the WiFi devices. In this section, Callbacks were

developed first with the processing of the data that is being collected by

4. Development

33

the devices referred to before and then to construct the layout for the

graphics of the two variables stated before.

 AppDataCallbacks were developed to set the callbacks for all the other

graphics and information on the dashboard that doesn´t require any data

processing, like the heart rate graphic of the wear application or the

activity recorded by the smartphone.

The data processing was made on the UtilsHr where the vital signs estimation is

done, only for the information collected by the WiFi devices:

1. Firstly, the CSI information from the WiFi devices is retrieved from the

server “vital_wifi_server” through a GET request;

2. The data retrieved will get through a set of data processing procedures

like smooth, identify the sub-carrier of the CSI wave, remove the fake

peaks and then filter, to be presented with clearness on the graphics,

where both heart rate and breath rate are presented.

As for the respiration belt, the only variable that is being measured live (breath

rate) is directly sent and fetched from the same server thought a different GET request,

and no data processing is needed because we already have the values and related times

stored there.

4.2.2 Communication

Regarding communication, it is made by queries that go inside HTTP requests,

which relate to two microservices (servers) with just the function of exposing 2 APIs that

establish the connection with the two main databases (MongoDB and MySQL). So, the

connection isn’t directly made with the databases, which allows the APIs to facilitate the

retrieving of data with time context, which permits us to aggregate the data by time or

even query specific intervals. It also addresses the requirements for storing information

in the project as well as the requirements to have information contextualized in time,

which is crucial for the monitoring of senior people.

These two servers are divided into one that has the function to get the

information from the MySQL database with the CSI data and respiration rate which is

being collected by the WiFi devices and the respiration belt, respectively, and the other

server is responsible for getting all the other data which includes the smartphone and

smartwatch’s data.

The second server is part of the COMET module which implements a REST API to

communicate with the ORION and with third parties (like the iFriend application),

composing a FIWARE Ecosystem with several microservices.

4. Development

34

These requests are made on the requestUtils class and most of them are GET

requests with the user ID as the main and common parameter. For the retrieval of the

data, we organize it by the time that was acquired to make a sequential graphic which

is called inside the respective Callback and presented on the app layout.

Figure 14: Dash Communication Architecture

It is important to mention that all the data that is being measured is sent to the

two main databases and then retrieved through the APIs. The live metrics are not exactly

real-time due to the dependency of having a WiFi connection and the delay of the data

transfer.

4.2.3 Layout

The dashboard layout was designed through the conditions of satisfaction that

Madrid’s hospital provided us and to have a simple and clear visual for the health

responsible to consult plus with all the data of the patient right in front of him/her. The

dashboard is composed of the principal elements which are the sidebar and the tabs:

o Sidebars give users quality, valuable information that might not otherwise fit on

the page or with the content. It adds a call-to-action button above the fold and

leads to relevant pages easily. The sidebar can be presented or collapsed with a

button to increase the view of the page. It has the selection of the patient, the

three options of navigation links plus the list to choose the language of the page:

4. Development

35

 The select dropdown allows the user to choose between a list of all

patients that use the project devices;

 The three navigation options are: “Live”, “History”, and “About” (which

contains information and a description about the project and its

sponsors), each of these navigation links is a newly loaded page with the

respective content;

 Finally, the select dropdown with the list of languages that the website

supports which are English and Spanish.

o Tabs are on the loaded pages of the options “Live” and “History” and are divided

into “Vital Sign Estimation” and “Daily Information”. These layout elements are

the most common in dashboards and allow the user to travel with ease between

diverse types of information which turns the experience of navigating and

consulting the dashboard much better and smoother. It acts as the highest-order

sections or categories, and they are powerfully broad so the user can gradually

channel into the user interface to access more specific content without having

to scan all the available contents that the page has to offer at once.

4.2.2.1 Live

As mentioned before, the “Live Page” is divided into two tabs, “Vital Sign

Estimation” and “Daily Information”:

 The “Vital Sign Estimation” is dedicated to the almost “real-time” collected data

from the WiFi devices and the respiration belt. So, in practice, the patient is

wearing the respiration belt and the WiFi devices are installed in the evaluation

room, so the data can be gathered and automatically be seen by the doctor on

his screen:

4. Development

36

As we can see, we have each point of the heart rate collected on the CSI of the

WiFi devices and the time that it was measured. Because this is a live graphic, the user

can start and stop the measure whenever he/she desires, and the graphic will

increase/construct itself if the measure is being done. At the same time, the average

heart rate is presented below the graphic.

Figure 15: View of the live graphic of the heart rate measured by the WiFi devices

4. Development

37

This graphic shows the breath rate collected by the information on the CSI of the

WiFi devices and the respiration belt. As we can see on the right side of the graphic it is

the identification of the two types of measuring: “estimation” (blue line) made by the

WiFi monitoring system and the “real” (red line) value validated by the respiration belt.

Below the graphic is the average breath rate measured during the time interval for each

type of device.

Figure 16: Live graphic of the breathing rate measured by the WiFi devices and the respiration belt

4. Development

38

 The Daily Information tab is dedicated to the “almost live” information about the

smart device's data, where we gather the most vital information (activity,

location, heart rate, number of steps taken so far) and present the last value

taken of each one those elements:

4.2.2.2 History

For this page option, there is the same choice of tabs because the options pages

are related to each other in terms of the type of data they treat and present. Just to

differentiate from the Live page, we decided to design a different background color for

each page to distinguish better which page the user is navigating.

This page was designed to present to the user the global information of the

patient, with that he can evaluate the patient’s health and get an overview of his medical

record. This allows the doctor to have full information about the patient even before he

goes to the medical appointment:

Figure 17: Live Estimation Tab with smart devices crucial information

4. Development

39

 The “Vital Sign Estimation” on the “History” option is the tab where we can see the

data related to the gathering of data that the WiFi devices and the respiration belt

measured during a specific time. This time can be chosen with a date and an interval

of time. After that, there are presented two sets of graphics, one for the heart rate

and the other for the breath rate:

Figure 18: Heart Rate graphics of the two types of devices

In the figure above, we can see the Interval of time chosen by the user and the

graphic of the heart rate measured by the WiFi devices (blue line) and the smartwatch

(gray line), with the respective averages below. In theory, the two graphics should

overlap each other because the values measured should be the same at each point. But

as we can see they are not overlapped, as they differ by about 11 bpm at each point.

This happens because there is a difference in the accuracy of the sensor of the

smartwatch and the information retrieved on the CSI of the WiFi devices, as the

information that goes on the CSI is an estimation of the real value. In future work, the

4. Development

40

accuracy of the heart rate measured in the CSI will be improved and, hopefully, this will

make the two graphics overlap each other.

As the continuation of the tab on the page, we have the graphics of the breath

rate, with respiration belt (blue line) and WiFi devices (gray line) data measured during

the time interval selected, and below the respective averages. Identical to the heart rate

graphics, the CSI information is an estimation of the real values which origins a

difference of about 6 rpm between each point of the two graphics, being the respiration

belt graphic the truthful data, and our guide. As has been said before, these CSI

measures still need improvements to reach the desired line, which will overlap the

respiration belt one.

Figure 19: Breathing Rate graphics of the two types of devices

4. Development

41

 Regarding the “Daily Information”, this tab is the most complete one in terms of the

overall information and daily record. In this tab, the user selects the day, and then it

is presented with all the information that is being collected from the smartphone

application and the smartwatch application. All this information will help the health

responsible to detect any problem regarding the symptoms that the patient has

been feeling, track the senior’s activity throughout the day, or view his/her sleep

routine:

Figure 20: Smartphone daily activity

4. Development

42

Figure 21: Smartwatch daily metrics

Figure 22: Sleep Activity

4. Development

43

Figure 23: Daily habits

For the activity, localization, and free time layouts, we opted for circle graphics

which can show all types of information with percentages, making it easier to analyze.

Then, in figure 20, we can see a graphic of the heart rate of the selected day in which

the user can see the graphic by the hour or by minute, to have an overall or detailed

view of the data measured, and the number of steps taken during that day and the

difference (in red) to the last 7 days average of steps per day taken with the smartwatch.

Figure 21 presents in a graphic the heart rate during sleep of the patient. This

allows for to detection of spikes or exceedingly small intervals in which the heart can

stop or skip a beat; this is quite common in elder people with heart problems. After in

figure 22, there are the food and medication habits are tracked by the patient on the

smartphone application.

5. Tests and Results

44

5 - Tests and Results

As I had the work of developing the smartwatch application, one of the objectives

was to improve and make sure that the application’s battery life was extended, and that

the accuracy of the data was robust.

For this, I made some tests on the battery life and sensors of the smartwatch,

being these tests made at home, with myself wearing the smartwatch and keeping track

of these two major variables in the development of the iFriend Wear application.

5.1 Battery Life

One of the major requirements in the wear applications is low battery

consumption, especially in the area of health monitoring. As the sensors need to be

available most of the time, the battery will drain a bit faster than usual.

So, since the beginning of the project, we took that into account and tried to

develop the application in a way that did not affect the normal use of the watch.

As mentioned in the 1.4 section, the smartwatch used for these tests was the

Motorola Moto 360SP with a battery of 300 mAh capacity, which gives up to more than

a full day of battery life based on an average user profile that includes both usage and

standby. The battery performance depends on network configuration, signal strength,

operating temperature, features selected, voice, data, and other application usage

patterns.

For these tests, we tried to approximate, as much as we could, the real ambient

that is going to be implemented which is almost “no usage”, since it is a monitoring

application, at the ambient temperature and with only the Bluetooth turned on because

this is the form of connection used to send the smartwatch’s data to the Smartphone

companion connected. These tests were made with the application running to see how

much of the battery life would be affected by the background services and the time of

sensors being turned on.

5. Tests and Results

45

As was mentioned in the 4.1 section, the way of testing the battery life was to

change the time that the sensors were turned on (Ton) and the time interval between

measures (sensors turned off (Toff)), so the tests were divided into 3 scenarios of time

intervals:

 Ton: 10 seconds

 Toff: 30 seconds

Date Total test duration
time

% of battery used

18/06/2022 8 hours 33

19/06/2022 10 hours 52

20/06/2022 10 hours 49

21/06/2022 14 hours 65

22/06/2022 16 hours 79

23/06/2022 16 hours 74

Table 2: Battery life tests for 10 seconds (on) and 30 seconds (off)

 Ton: 20 seconds

 Toff: 60 seconds

Date Total test duration
time

% of battery used

25/06/2022 8 hours 31

26/06/2022 8 hours 29

27/06/2022 16 hours 59

28/06/2022 22 hours 79

29/06/2022 24 hours 91

30/06/2022 24 hours 94

Table 3: Battery life tests for 20 seconds (on) and 60 seconds (off)

 Ton: 20 seconds

 Toff: 120 seconds

Date Total test duration
time

% of total battery
used

10/07/2022 8 hours 25

11/07/2022 8 hours 28

12/07/2022 16 hours 55

13/07/2022 16 hours 52

14/07/2022 24 hours 81

15/07/2022 24 hours 85

Table 4: Battery life tests for 20 seconds (on) and 120 seconds (off)

5. Tests and Results

46

As we can see, the differences between each table reflect the improvement of

the battery life of the device just by increasing the time that the sensors were turned

off. There’s an average decrease, for a test duration of 8 hours, of the percentage of

battery drained of about 9% from just the increase of the disconnecting sensors time

interval from 30 to 60 seconds and 11% from 60 to 120 seconds. And for the test

duration of 24 hours, there was a decrease of 6.5%, in the percentage of battery drained,

from increasing the time interval that the sensors were disconnected from 30 to 60

seconds and 10.3% from 60 to 120 seconds.

Figure 24: Graphic with the 3 scenarios tested for the battery

There was also made a graphic for the battery consumption per hour, in which

we can see that there was a decrease in the life battery draining of about 1% by the hour

from scenario 1 to scenario 2 and a decrease of about 0.4% by the hour from scenario 2

to scenario 3, as we can see on figure 22.

2.5 %

3.0 %

3.5 %

4.0 %

4.5 %

5.0 %

5.5 %

Scenario 1 (10-30) Scenario 2 (20-60) Scenario 3 (20-120)

Smartwatch app battery consumption per hour

max min average

5. Tests and Results

47

These “manual” tests were made to see, as well, what would be the ideal time,

during the day, for the sensors to be turned on, which reflects on how many samples of

heart rate were taken, to be able to present a consistent and solid graphic to the health

professional. This is fairly connected with the accuracy sample tests that will be

addressed in the next section.

Figure 25: Application battery usage

5. Tests and Results

48

5.2 Sensor’s accuracy

The accuracy tests were developed and made while the battery life tests were

made. These tests had the purpose of having the most accurate possible measurement

of the heart rate and steps, by working with the property SensorStatus which gives the

state of the sample’s accuracy measured by the sensor of the smartwatch. The

SensorStatus has the following constants: AccuracyLow, AccuracyMedium,

AccuracyHigh, NoContact, and Unreliable. The first three constants are represented on

a scale of 3 the level of accuracy of the sample being the lowest accuracy where

calibration with the environment is needed, AccuracyMedium means the sensor is

reporting data with an average level of accuracy, and calibration with the environment

may improve the readings, and, finally, the highest accuracy means that the sensor is

reporting with maximum accuracy. NoContact means that the values returned by the

sensor cannot be trusted because the sensor had no contact with what is measuring

(meaning that the smartwatch is not on the user’s wrist). The Unreliable constant means

that the values returned by the sensor cannot be trusted and calibration is needed, or

the environment doesn’t allow readings.

With these constants, we can set the sensor to only accept and save the readings

that we want. So, for these tests, the sensor will only allow readings with the highest

accuracy. In theory, we could also accept Medium accuracy readings but after testing

these types of readings, we concluded that it was taking false readings, especially when

the watch was on the wrist. So, by excluding all the non-high readings of the sensor, we

made sure that the data that was being measured was solid and accurate, and that the

watch was on the user’s wrist. I would like to note that the accuracy of the step counter

sensor was the highest constantly, so this specific sensor wasn’t tested.

Regarding the heartbeat sensor, as was mentioned before, the accuracy readings

were made at the same time as the battery life tests were made, so the duration time

of each test was the same and for the same time intervals of section 5.1.

5. Tests and Results

49

Our objective was to find how many samples with High accuracy were obtained

during the duration of each test and how many samples were taken, on average, during

each time the sensors were online. The time interval variables were the time that the

sensors were turned on (Ton) and the time interval between measures (sensors turned

off (Toff)), so the tests were divided into 3 groups of time intervals:

 Ton: 10 seconds

 Toff: 30 seconds

Date Total test duration
time

Accuracy High

18/06/2022 8 hours 198

19/06/2022 10 hours 316

20/06/2022 10 hours 310

21/06/2022 14 hours 460

22/06/2022 16 hours 510

23/06/2022 16 hours 567

Table 5: Accuracy tests for 10 seconds (on) and 30 seconds (off)

 Ton: 20 seconds

 Toff: 60 seconds

Date Total test duration
time

Accuracy High

25/06/2022 8 hours 238

26/06/2022 8 hours 254

27/06/2022 16 hours 859

28/06/2022 22 hours 1985

29/06/2022 24 hours 2095

30/06/2022 24 hours 2130

Table 6: Accuracy tests for 20 seconds (on) and 60 seconds (off)

 Ton: 20 seconds

 Toff: 120 seconds

Date Total test duration
time

Accuracy High

10/07/2022 8 hours 301

11/07/2022 8 hours 231

12/07/2022 16 hours 620

13/07/2022 16 hours 698

14/07/2022 24 hours 1330

15/07/2022 24 hours 1612

Table 7: Accuracy tests for 20 seconds (on) and 120 seconds (off)

5. Tests and Results

50

Figure 26: Graphic with the 3 scenarios tested for the accuracy of the heart rate sensor

After the analysis of the graphic in figure 26, we can conclude that by increasing

the Ton interval from 10 to 20 seconds, we increased the number of samples taken

during the day, and by increasing the Toff from 60 to 120 seconds we decrease the

number of samples taken during the day which makes sense because the sensor will be

turned on fewer times for the same time interval.

The sensor works in a way that when the surface and environment are constant

during a big period, the sensor readings will stabilize, and on that time interval it’s when

it reads most samples with the highest accuracy. So, when the sensor stabilizes, for a

Ton of 10 seconds, it reads on average 2 samples per time interval. And, for a Ton of 20

seconds, it reads on average 3.5 samples per time interval. This led us to the conclusion

that the ideal Ton would be 20 seconds.

2.5

12.5

22.5

32.5

42.5

52.5

62.5

72.5

82.5

92.5

102.5

Scenario 1 (10-30) sec. Scenario 2 (20-60) sec. Scenario 3 (20-120) sec.

NUMBER OF SAMPLES WITH HIGH
ACCURACY PER HOUR

max min average

6. Conclusion and Future Work

51

6 - Conclusion and Future

work

6.1 Conclusion

With this project, we aimed to create a system that could monitor the senior’s

daily health habits, improve their lives and help the health responsible to better analyze

the health situation of each patient. For that, we used the concepts of HITLCPS and WiFi

monitorization and explored the concepts of IoT, CPS, and mobile/wear sensing. With

those concepts, we evaluated how we could use them to create such a system, which

we tried to make most completely.

With all these concepts we were able to develop a complex system to deliver the

best information and tools for senior monitoring, which is very helpful in many fields,

especially healthy ones. The main and innovative tool is WiFi monitorization which will

provide a non-intrusive way of measuring the vital signs with the help of the smartwatch

application and activity of each person with a simple system that still needs a lot of

improvements, but it will have great success in the future. With the mobile application,

the user will be able to track their habits which will be easily related to the rest of the

information that is being collected.

We can conclude that in the end, the main objectives of this project were all

accomplished and, we believe, with the advance and improvements that will be made

this system can be easily implemented in real cases, like the one we have planned.

Also, I can conclude with certainty that this project had also a great improvement

in my personal development, whether with all the concepts that I’ve learned but also

gave me a lot of work ethic, which I believe will help me in the future.

6. Conclusion and Future Work

52

6.2 Future work

As it was mentioned before, this project still needs some improvements to be

implemented in a real situation. With the work of other Universities, hopefully, we can

reach the main goal which is testing this system with real patients in a hospital.

Regarding the WiFi monitorization, as it was shown in the 4.2.3 section, the

accuracy of the data that is being measured is not where we wanted it to be, but by

using the respiration belt and the smartwatch as our guides, we can reach solid values

that will reflect the real ones. This will allow the system to be much more accurate and

ready to be implemented because it’s all about the correct monitoring of the patient.

And of course, these results will impulse the vital sign WiFi monitorization to other

implementations like multi-room presence detection.

As for the smartwatch application that was developed, some things still need

some work and improvement:

 Adding the activity recognition through the sensors of the device will allow us to

better tell what type of activity the person is doing - this will help as well to

corroborate the data that is being measured whether by the smartphone as well

as the WiFi devices.

 Another thing that can be added to the equation is the blood oxygen levels, also

known as SpO2, which will be measured through the smartwatch sensors, which

will be added as one of the major variables being collected for the vital signs,

especially by helping with the readings of the breathing rate of the patient.

 Since this app is developed in a cross-platform architecture (Xamarin), the iOS

application still needs to be developed and improved in the future.

Our dashboard application is nearly complete but still needs some things that

can be improved and tested before being deployed, like the connections with the

servers that can be made through some performance or health check testing. Also, we

need to improve our security, by retrieving the data through DTO, encrypting all the

data, and applying authentication/access control. Another thing that needs to be

improved, which is one of the most necessary ones, is the live tab of daily information

since our data is not received and shown in “real-time” because there’s a layer of delays

regarding the communication, especially because it is required Internet connection to

send the data to the main database.

In conclusion, the improvements above will require some extra work and

research but once implemented will allow this project to be implemented on real

patients.

Bibliography

53

Bibliography

[1] “Rider: The Cross-Platform .NET IDE from JetBrains.” https://www.jetbrains.com/rider/

(accessed Sep. 07, 2022).

[2] “PyCharm: the Python IDE for Professional Developers by JetBrains.”

https://www.jetbrains.com/pycharm/ (accessed Sep. 07, 2022).

[3] “What Is Agile Scrum Methodology? - businessnewsdaily.com.”

https://www.businessnewsdaily.com/4987-what-is-agile-scrum-methodology.html

(accessed Sep. 07, 2022).

[4] “Where work happens | Slack.” https://slack.com/ (accessed Sep. 07, 2022).

[5] “Skype | Stay connected with free video calls worldwide.” https://www.skype.com/en

(accessed Sep. 07, 2022).

[6] “Number of Internet of Things (IoT) Connected Devices Worldwide 2022/2023:

Breakdowns, Growth & Predictions - Financesonline.com.”

https://financesonline.com/number-of-internet-of-things-connected-devices/ (accessed

Sep. 07, 2022).

[7] “What are Cyber-Physical Systems? | Cyber-Physical Systems Research Center.”

https://cps.soe.ucsc.edu/ (accessed Sep. 07, 2022).

[8] G. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir, “The future of human-in-the-loop

cyber-physical systems,” Computer (Long Beach Calif), vol. 46, no. 1, pp. 36–45, 2013,

doi: 10.1109/MC.2013.31.

[9] J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng, “Tracking vital signs during sleep

leveraging off-the-shelf WiFi,” in Proceedings of the International Symposium on Mobile

Ad Hoc Networking and Computing (MobiHoc), Jun. 2015, vol. 2015-June, pp. 267–276.

doi: 10.1145/2746285.2746303.

[10] “Android | A plataforma que redefine tudo o que é possível.”

https://www.android.com/intl/pt_pt/ (accessed Sep. 07, 2022).

[11] “Linux Foundation - Decentralized innovation, built with trust.”

https://www.linuxfoundation.org/ (accessed Sep. 07, 2022).

[12] “Wear OS Smartwatches.” https://wearos.google.com/#uniquely-you (accessed Sep. 07,

2022).

[13] “FIWARE, the standard that the IoT needs | TM Forum.”

https://www.tmforum.org/press-and-news/fiware-standard-iot-needs/ (accessed Sep.

07, 2022).

[14] “Build your own IoT platform with FIWARE enablers | FIWARE.”

https://www.fiware.org/2015/03/27/build-your-own-iot-platform-with-fiware-

enablers/ (accessed Sep. 08, 2022).

[15] K. Hinsen, K. Läufer, and G. K. Thiruvathukal, “Essential tools: Version control systems,”

Comput Sci Eng, vol. 11, no. 6, pp. 84–91, Nov. 2009, doi: 10.1109/MCSE.2009.194.

[16] “What is Xamarin? - Xamarin | Microsoft Docs.” https://docs.microsoft.com/en-

us/xamarin/get-started/what-is-xamarin (accessed Sep. 07, 2022).

Bibliography

54

[17] “🌟 Introducing Dash 🌟. Create Reactive Web Apps in pure Python | by plotly | Plotly

| Medium.” https://medium.com/plotly/introducing-dash-5ecf7191b503 (accessed Sep.

07, 2022).

[18] “Go Direct® Respiration Belt - Vernier.” https://www.vernier.com/product/go-direct-

respiration-belt/ (accessed Oct. 10, 2022).

[19] “Developers Catalogue | FIWARE.” https://www.fiware.org/catalogue/ (accessed Sep.

08, 2022).

[20] “MongoDB: The Developer Data Platform | MongoDB | MongoDB.”

https://www.mongodb.com/ (accessed Sep. 07, 2022).

[21] “MySQL.” https://www.mysql.com/ (accessed Sep. 07, 2022).

[22] “Dash is Deeper than Dashboards. The missing link that makes Python a… | by Layne

Sadler | Better Programming.” https://betterprogramming.pub/dash-is-deeper-than-

dashboards-5ab7414f121e (accessed Sep. 07, 2022).

[23] “Manifest.permission | Android Developers.”

https://developer.android.com/reference/android/Manifest.permission (accessed Sep.

08, 2022).

[24] “Request app permissions | Android Developers.”

https://developer.android.com/training/permissions/requesting (accessed Sep. 09,

2022).

Bibliography

55

Appendices

56

Appendices

A. List of Permissions

57

A

List of Permissions

 In this appendix, we present a list of all the permissions used by the wear

application [23] as well as an explanation as to why we use each one of them [24]. We

are aware that some of these permissions raise privacy issues and as such, we believe

that the transparency of why and how we used them is very important.

 INTERNET: This permission is necessary to access the Internet from the

application. We may need this permission to communicate with the smartphone

to send the wear data if requested.

 ACCESS WIFI STATE: To get the list of the configured networks, the WiFi needs

to be turned on. This makes it easier to find a connection if one is needed.

 ACCESS_FINE_LOCATION: It allows to access the precise location of the user.

This permission isn’t being currently used, but we pretend to add location as part

of the monitorization in future work.

 ACTIVITY_RECOGNITION: This permission is necessary to use the Google Activity

Recognition API.

 FOREGROUND_SERVICE: It shows a status bar notification so that users are

actively aware that the app is performing a task in the foreground and is

consuming system resources.

 BATTERY_STATS: It allows to verify the state of the battery. This permission was

specifically used for the battery tests.

 BODY_SENSORS: Allows the application to access data from sensors that in this

case, we use to measure the heart rate.

https://developer.android.com/develop/ui/views/notifications

	Acknowledgments
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	Contents
	1 - Introduction
	1.1 Context
	1.2 Objectives
	1.3 Thesis Structure
	1.4 Materials and Methodology

	2 - State-Of-Art
	2.1 Concepts
	2.1.1 Internet-of-Things
	2.1.2 Cyber-Physical-Systems
	2.1.3 Human in the Loop Cyber-Physical Systems
	2.1.4 Tracking vital signs using WiFi networks

	2.2 Technologies used
	2.2.1 Android
	2.2.2 FIWARE
	2.2.3 Git - Version Control System
	2.2.4 Xamarin
	2.2.5 Dash

	3 - System Overview
	3.1 Contextualization
	3.2 Description of the project
	3.3 General Architecture
	3.3.1 FIWARE Architecture
	3.3.2 Wear App Architecture
	3.3.3 Dash Architecture

	3.4 Requirements
	3.4.1 Functional Requirements
	3.4.1.1 Wear Application
	3.4.1.2 Dashboard Application

	3.4.2 Non-Functional Requirements

	4 – System Development
	4.1 Smartwatch Application
	4.1.1 Data Acquisition
	4.1.2 Communication
	4.1.3 Storage
	4.1.3 Display

	4.2 Dash Application
	4.2.1 Callbacks and Data Processing
	4.2.2 Communication
	4.2.3 Layout
	4.2.2.1 Live
	4.2.2.2 History

	5 - Tests and Results
	5.1 Battery Life
	5.2 Sensor’s accuracy

	6 - Conclusion and Future work
	6.1 Conclusion
	6.2 Future work

	Bibliography
	Appendices
	List of Permissions

