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Abstract

The ability to transfer energy efficiently in wireless inductive charging systems
hinges on the characterization of the mutual inductance between the transmitter
and receiver coils. In the context of the charging of electric vehicles, this parameter
is significantly influenced by the relative positioning of the vehicle and the transmit-
ting coil. Hence, the precise determination of the mutual inductance yields various
advantages, particularly in terms of optimization of the alignment between the ve-
hicle and the transmitting coil, thereby improving the system efficiency. Within
this framework, algorithms grounded in Artificial Intelligence techniques emerge as
promising solutions.

This research work revolves around the estimation of the mutual inductance in
a wireless inductive power transfer system using a series-series-series topology, im-
plemented in Simulink. The system output represents a typical battery charger,
ranging from 500 W to 3000 W, during the initial charging phase,i.e., when the
battery is discharged. To estimate this parameter, an artificial neural network was
developed and implemented. This document provides a comprehensive account of
the entire process involved in the implementation of this artificial intelligence model,
with particular focus on feature extraction from the analysed system and data nor-
malization. Given the characteristics of the system, the feature selection process
was guided by two essential criteria: significant variation with vehicle misalignment
and no variation for different charging power levels.

Through the conducted analysis, it was determined that the most suitable vari-
ables for this purpose are the amplitudes of the harmonic components relative to
the measured variables on the coil of the receiver side.

In the pursuit of creating a robust artificial intelligence model, efforts were di-
rected at minimizing the size of the training dataset, utilizing only approximately
1% of the available data. The performance of the developed artificial neural network
was evaluated in two distinct scenarios, depending on whether the training data was
derived from signals with or without white noise. Upon the analysis of the results,
it was verified that the largest estimation error observed was approximately 3%,
occurring at a charging power of 500 W. Hence, it can be inferred that the proposed
artificial neural network exhibits the capability to accurately estimate the value of
mutual inductance in this type of system.

Keywords: Power electronics, inductive power transfer system, mu-
tual inductance estimation, artificial intelligence, deep learning, artificial
neural networks.





Resumo

A capacidade de transferência de energia nos sistemas de carregamento indutivo
sem fios é dependente da indutância mútua medida entre a bobina transmissora
e recetora que, por sua vez, no contexto do comportamento indutivo sem fios de
véıculos elétricos apresentará uma forte dependência da posição relativa entre o
véıculo e a bobina transmissora. Como tal, a determinação, com rigor, da indutância
mútua trará diversos benef́ıcios, nomeadamente no que diz respeito à atuação sobre
a referida posição relativa entre o véıculo e a bobina transmissora, aumentando deste
modo a eficiência do sistema. No âmbito desta temática, os algoritmos baseados em
técnicas de inteligência artificial surgem como soluções viáveis.

O trabalho desenvolvido propõe a estimação da indutância mútua de um sistema
de transferência de potência indutivo sem fios com a topologia série-série-série, im-
plementado em Simulink. A sáıda deste sistema representa um carregador t́ıpico
de baterias, variável entre 500 W e 3000 W, na primeira fase de carregamento,
ou seja quando a bateria se encontra descarregada. Para estimar este parâmetro,
recorreu-se ao desenvolvimento e implementação de uma rede neural artificial. Deste
modo, neste documento é apresentado em detalhe todo o processo relacionado com
a implementação de um modelo de inteligência artificial, nomeadamente no que diz
respeito à extração de caracteŕısticas intŕınsecas do sistema em análise, também
denominadas de ”features”, e à normalização dos dados. Dadas a natureza do sis-
tema, o processo de seleção das features teve em conta dois requisitos essenciais,
sendo estes a variação acentuada com o desalinhamento do véıculo e a ausência de
variação quando a potência de carregamento é alterada.

Através da análise realizada chegou-se à conclusão que as variáveis mais suscet́ıveis
de serem utilizadas para este fim, seria a amplitude dos harmónicos relativos a
grandezas medidas do lado da bobina recetora.

Tendo como objetivo o desenvolvimento de um modelo de inteligência artificial
robusto e com potencialidades para ser implementado num sistema real, decidiu-se
limitar, ao máximo, a quantidade dos dados de treino, tendo sido para tal apenas
utilizado cerca de 1% dos dados dispońıveis. O desempenho da rede neural artificial
desenvolvida foi testado em duas situações distintas, estando estas relacionadas com
o facto dos dados de treino terem sido obtidos a partir de sinais com e sem rúıdo
branco. Após a análise dos resultados, verificou-se que o maior erro de estimação
da indutância mútua obtido foi de aproximadamente 3% para uma potência de
carregamento de 500 W. Posto isto, é posśıvel inferir que a rede neural artificial
proposta tem a capacidade de estimar o valor de indutância mútua corretamente.

Palavras-chave: Eletrónica de potência, sistema de transferência de
potência indutivo, estimação da indutância mútua, aprendizagem pro-
funda, redes neurais artificiais.
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Chapter 1

Introduction

In the context of electric vehicles (EVs), inductive power transfer (IPT) systems
have a significant room for improvement so that in a near future this technology can
be implemented in large scale, facilitating the usability of an EV. In this chapter it
will be presented a brief contextualization as well as the limitations associated to
IPT systems and how the employment of an artificial intelligence (AI) model can
actively contribute to the optimization of power transfer capabilities.

1.1 Contextualization of Wireless Charging

IPT is an idea based on wireless power transfer. This concept was discovered in
the end of the 19th century, more specifically in 1891, by the famous scientist Nikola
Tesla [1–4]. He verified that by connecting an AC current source to a primary coil,
it will produce an alternating magnetic field, as expressed by the Ampere law. In
these conditions, if a secondary coil is near the primary coil, and so, affected by the
alternating magnetic field, a voltage is induced in it, and a current will flow throw it
if the circuit is closed, according to the Faraday law [5]. In Figure 1.1 it is possible
to see an illustration of the principle that allows inductive power transfer.

Figure 1.1: Representation of the principle of inductive power transfer [6].

However, the applicability of this new technology was limited due to the large
currents measured in the secondary coil. Later on, more precisely in the 1980’s,
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thanks to various contributions, the interest for inductive power transfer returned
with the advent of power electronic switches that worked at high switching frequen-
cies [7]. This opened the door to new possibilities in terms of applications. In recent
times, this concept is applied in various ways like in factory automation, lighting,
medical devices, security systems among others [8]. Nevertheless, the majority of
the interest from the scientific community spread toward a specific area, the au-
tomotive industry, mostly in wireless battery charging systems for EVs [9]. The
allocation of resources was justified by the significant advantages IPT systems of-
fered. This charging method, since it is capable of providing power transfer without
any contact between the coils, offers several associated benefits, including galvanic
isolation, absence of user interaction [10] and protection under adverse weather con-
ditions [11], guaranteeing a more convenient way to use the vehicle. Therefore, there
are essentially two types of wireless charging systems [1], [9], [12]:

1. Static Wireless Charging Systems

2. Dynamic Wireless Charging Systems.

The working principle of these two types of wireless charging systems is similar,
the only difference being, as the names suggest, the way how the charging process
is accomplished. Typically, the structure consists of two magnetic couplers, a trans-
mitter pad, commonly known as primary coil, and a receiver pad, also acknowledged
as secondary coil. The transmitter pad is placed under the ground, while the re-
ceiver pad is installed beneath the EV chassis. A block diagram illustrating this
system is shown in figure 1.2.

Figure 1.2: Simplified illustration of a wireless charging system for EVs [13].

1.2 Motivations

As a system that enables wireless power transfer, it has its limitations in terms
of dependence on the coupling factor of the magnetic couplers. According to the
Faraday law of electromagnetic induction, the induced voltage on the receiver pad
depends on the rate of change of the magnetic flux that traverses it [14].
Generally, the coupling factor decreases from the nominal operating conditions when
a misalignment between the transmitter and receiver pads occurs. This results in a
decrease not only of the mutual inductance but also in the output power. Conse-
quently, the overall efficiency of the system will decrease too. Specially in the case
of EVs, the misalignments are unavoidable, due to possible horizontal, longitudinal
or vertical displacements [15]. In Figure 1.3 is shown a graphic representation of the
direction established for the misalignments in this document.
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Figure 1.3: IPT system for static charging application - adapted from [10].

Moreover, for contextualization purpose, another characteristic of IPT systems
that can influence the behavior of the system is the configuration of the coils. In
[9] a comparison was made between an IPT system using two coil configurations,
double D pad (DDP) and bipolar pad (BPP). This comparison consisted on ob-
serving the results of mutual inductance between the transmitter and receiver pads
and also output power of the system. This experiment was done under various of
misalignments when a current of 20 A flowed through the transmitter pad. Figure
1.4 displays the power transfer capability of these magnetic couplers under situa-
tions of misalignment. In this case in specific it was measured the uncompensated
power since it was used coreless structures to reduce costs. Thus it can be concluded
that misalignments between the transmitter and receiver pads does indeed imply a
reduction of the overall system efficiency.

(a) mz misaligment (b) my misalignment

(c) mx misalignment

Figure 1.4: Uncompensated power for DDP-DDP and DDP-BPP magnetic couplers
for different vertical 1.4a, longitudinal 1.4b and horizontal 1.4c misalignments re-
spectively - adapted from [9].
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The presented background of IPT systems, regarding the influence of misalign-
ments on the power output of the system and also on the mutual inductance is
crucial, since acknowledges the idea that knowing the value of mutual inductance
for a given condition of misalignment can directly contribute to the optimization of
the charging process. The value of mutual inductance can be obtained through an
estimation process, which includes possibilities such as mathematical and AI mod-
els. AI models have emerged as a superior solution, therefore, the proposal of an AI
model capable of estimating the value of mutual inductance, using data from the
receiver side is presented. Furthermore, the access to the output of the AI algorithm
information will enable the correction of the position of the vehicle, optimizing the
charging process.

Given this brief contextualization of the proposed work, the next section will
outline the main objectives to be achieved in this dissertation.

1.3 Objectives

The work developed along this dissertation has been intended to reach the fol-
lowing objectives:

⋄ Understand the working principle and limitations of IPT systems.

⋄ Adjust the simulation model to a more realistic approach.

⋄ Comprehend the advantages associated to the estimation of mutual induc-
tance.

⋄ Get a contextualization of the coverage that AI has in power electronics field
of investigation, more specifically regarding the IPT systems.

⋄ Select the best suited features to characterize the behavior of the IPT system.

⋄ Understand the influence of data normalization, feature selection and dataset
dimensions in the performance of the AI model.

⋄ Choose the best suited AI solution for this matter.

⋄ Develop a robust model that could have the potential to be used in a real-world
scenario.

1.4 Structure of the Document

The developed work in this thesis is organized in six chapters, starting by Chapter
1 which introduces the research background, contextualizes the motivations and
outlines the objectives intended to be achieved.

Chapter 2 presents a detailed analysis of IPT systems, especially regarding the
characteristics attended for the development of this work. Furthermore, it also
presents possible mathematical approaches for estimating mutual inductance as well
as an overview of AI concerning the algorithms available and the typical tasks in
power electronics field of investigation. This chapter also provides a literature review
showcasing the possibilities available to implement AI algorithms in IPT systems
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for regression purposes. Receiver pad position, mutual inductance between the
transmitter and receiver pads, load resistance and coupling coefficient are examples
of parameters that can be estimated in IPT systems.

Chapter 3 focuses on presenting in detail the IPT system used for this work.
Moreover, it also introduces to the process of feature selection and consequent
dataset generation.

Chapter 4 is devoted to unveil the proposed AI model and a careful analysis of
the performance of the model under different situations.

At last, Chapter 5 depicts the main conclusions of this work and lists some
research topics for future work in this field of investigation.





Chapter 2

AI Algorithms in IPT Systems

This chapter aims to present the theoretical principles that underlie the subjects
explored in this work along with a comprehensive literature review on AI algorithms
employed within IPT systems. Therefore, in a first instance it will be presented the
fundamentals of a conventional IPT system, the existent mathematical methods for
estimating mutual inductance, an overview of AI algorithms within the field of power
electronics research and also useful concepts for the employment and testing of AI
algorithms. At last the literature review will focus on the potential implementations
of AI algorithms in IPT systems, particularly in the context of regression tasks.

2.1 Mutual Inductance in IPT Systems

To successfully implement an AI model that is able to predict the mutual induc-
tance of a IPT system it is crucial to first understand the conditions of operation of
these systems. Hence, Figure 2.1 shows the circuit associated to a conventional IPT
system for EVs, where Lt and Lr correspond to the self inductance of the trans-
mitter and receiver side, respectively, and Ct and Cr are related to the resonant
capacitances of the transmitter and receiver sides, respectively. On the other hand,
the M symbol refers to the mutual inductance between the transmitter and receiver
pads, which depends on the distance between them, the angle of the receiver pad
and also the number of turns and permeability of each pad [16].

Figure 2.1: Representation of a conventional IPT system circuit.

The output power and consequently the efficiency of an IPT system are depen-
dent on the misalignment between the transmitter and receiver pads and, thus, on
the mutual inductance. In a conventional IPT system the output power can be
characterized as (2.1):

Pout = w · I2t · k2 · Lt ·Q, (2.1)
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where w is the angular frequency of the power supply, It corresponds to the rms
value of the current in the transmitter pad coil, Lt is the self-inductance of the
transmitter pad, Q refers to the quality factor of the receiver circuit and k is the
coupling factor and it is given by (2.2).

k =
M√
Lt · Ls

, (2.2)

where Ls refers to the self-inductance of the receiver pad.
Therefore, considered the formal relationship between these variables, some de-

velopments were made to mitigate the decrease of efficiency with the misalignments.
These type of circuits are highly non-linear due to the presence of resonant elements
in the circuit, so there was the need to ensure the operation at resonance to boost
the power transfer capability.

Taking a closer look to the elements of the circuit and their purpose, it can be ob-
served that the transmitter and receiver coils have the corresponding resonant filters
where their natural frequency f0 must be equal to the ac power source frequency f ,
provided by the high frequency inverter. In these conditions f0 = f which ensures
the operation at resonance. Typically, this is achieved by adding appropriate in-
ductors and capacitors, either in series or in parallel, depending on the circuit that
is being analysed, to the circuitry of each magnetic coupler. This way, the input
impedance of the circuit will be purely resistive, i.e., the voltage and current will be
in phase [4, 5]. These resonant filters can be implemented using different topologies
as illustrated in Figure 2.2.

(a) Series-series Topology (b) Series-parallel Topology

(c) Parallel-parallel Topology (d) Parallel-series Topology

Figure 2.2: Resonant topologies - adapted from [5].

Moreover, working at resonance keeps the switching losses of the IGBTs of the
inverter at a minimum, thus, ensuring that the maximum power transfer capability
is achieved. Also, to increase the power transfer capabilities, it is recommended that
the system operates at high frequency [17], contributing to circuit miniaturization



2.1. Mutual Inductance in IPT Systems 9

[9]. In some cases, depending on the power level of the components, the switching
frequency can be in the range of hundreds of kHz [18].

Nevertheless, it is also important to note that when analyzing the circuit at
resonance, the magnetic couplers are replaced by dependent voltage sources, as
displayed in Figure 2.3. This is possible because each coil senses the magnetic flux
of both itself and the other coil.

Figure 2.3: Representation of the magnetic couplers with dependent voltage sources.

In this representation:

V rt = −j · w ·M · ir (2.3)

V tr = j · w ·M · it, (2.4)

where it and ir represent the currents of transmitter and receiver side, respectively.

In addition, regarding the subject of mutual inductance estimation, there are
different mathematical approaches possible, including the ones that only need in-
formation of the receiver or transmitter sides. Therefore, the estimation of this
parameter is highly dependent on the configuration of the circuit. In [19], since the
circuit has a DC-DC buck converter included, the number of parameters needed for
the calculation of the mutual inductance will increase significantly as demonstrated
in (2.5):

M =
VDCDBReqsin(

π
2
Di) +

√
D2

BV
2
DCR

2
eqsin

2(π
2
Di)− 4VLrT (rr +Req)

2VL
, (2.5)

where VDC corresponds to the output voltage of the rectifier, DB is the duty ratio
of the DC-DC buck converter placed after the rectifier, Req is the equivalent resis-
tance seen from the rectifier, Di corresponds to the duty ratio of the high frequency
inverter, VL match the nominal load voltage and finally rT and rR relate to the
resistance of the transmitter and receiver coils, respectively.

Furthermore, in [20] the mathematical estimation of the mutual inductance has
the purpose of being implemented in real-time for a dynamic wireless charging sys-
tem. Conventionally, the mutual inductance can be estimated by (2.6):

M =
V1,0 +

√
V 2
1,0 − 4rtIr(V2 + rrIr)

2Irw
, (2.6)

where V1,i corresponds to the RMS voltage of the transmitter side and Ir is the
fundamental component of the current of the receiver side. Additionally, to reduce
the noise effect introduced by the power electronics devices, it was proposed that the
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mutual inductance should be estimated by a recursive least square filter. A similar
approach was also employed in [21].

In [22], a different strategy is followed with respect to mutual inductance esti-
mation for a dynamic wireless charging system. It is proposed an IPT system with
three receiver coils where the estimation of the mutual inductance will be based on
the structure parameters of the magnetic couplers and also on the amplitude of the
magnetic flux density. As a result the process of mutual inductance estimation is
divided in three main steps:

1. Run a simulation program and obtain the amplitude of the magnetic flux
density, Bz−max, and the shape-parameter, σ.

2. Determine the value of each calculation-coefficient according to the parameters
of the receiver.

3. Calculate the mutual inductance value using (2.7).

M =
ψm

Ip
=

2τ

π
· Bz−max

It
· kx · kl · kw ·NR · kN · q · kd · kc, (2.7)

where τ is the distance between each receiver coil, It refers to the RMS value of
the current in the transmitter coil, kx, kl and kw are coefficients that describe the
functional relationships between mutual inductance and the position of the receiver,
the length of the receiver coil and the width of the receiver coil, respectively, NR is the
number of turns of the receiver coil, kN corresponds to the coefficient that describe
the functional relationship between mutual inductance and the number of turns of
the receiver coil, q, is the number of receiver coils, kd is relative to the coefficient
used to describe the functional relationship between the mutual inductance and
the center distance between the receiver coils and finally kc is referred to the core
coefficient.

Furthermore, in [23] it is presented an energy transfer control method based on
the estimation of the load and mutual inductance of a segmented dynamic wireless
power transfer system with four transmitter pads. Similar to the previous citation,
the procedure of mutual inductance estimation can be separated into five main
procedures:

1. Measurement of the voltage in each transmitter resonant capacitance, the cur-
rent in each transmitter coil, the phase between them and the phase difference
between the referred current and each inactivated transmitting coil.

2. Calculation of the reflected impedance from each transmitter coil and also the
coefficient between the real and imaginary part of the input impedance of the
rectifier.

3. Calculation of the input impedance of the rectifier and its normalized value.

4. Calculation of the equivalent impedance of both the receiver and rectifier sides.

5. Calculate the mutual inductance associated to each transmitter pad, according
to:
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Mk =
|Zr|
ω

√
Rf1c

Re(Zs)
, (2.8)

where k represents the number of the transmitter pad (1 ≤ k ≤ 4), Zs is the
equivalent impedance of the secondary side and Rfkc is the reflected impedance
from transmitter k.

Thus, by analysing the possibilities of mutual inductance estimation with mathe-
matical approaches it becomes evident that because these models require a substan-
tial amount of information about the IPT systems and the relationships between the
parameters are significantly nonlinear, this will lead to a high computational cost
and long calculation times. Subsequently, an AI model has the potential to get a
better fit concerning the estimation of the mutual inductance owing to the capability
of adjustment to different configurations of IPT systems and also the faster delivery
of results with less need of computational power.

2.2 Overview of AI Algorithms in Power Elec-

tronics

The inception of computing in the 1950s marked a turning point in the develop-
ment of algorithms with the ability to autonomously and intelligently perform tasks
across various domains. These algorithms started to be recognized as AI algorithms
[24].

Taking as an example the specific case of power electronics field, as mentioned in
[25], AI algorithms have been applied in three particular life-cycle phases of power
electronics: control, maintenance and design. Not only it can be implemented in
various domains as it can also be applied in diverse ways. Essentially, AI at its
simplest form, is a field, which combines computer science and robust datasets, to
enable problem-solving [26], therefore, being the ability of a digital computer or
computer-controlled robot to perform tasks commonly related with intelligent being
[27]. is a vast concept and encompasses two major subcategories [28] as illustrated
in Figure 2.4.

Figure 2.4: Relation between AI, ML and DL.
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1. Machine Learning: Algorithms with the ability to learn from data and
make decisions from it without explicit programming, although it may still be
necessary human intervention for some unwanted behaviors. These algorithms
can be classified into various ways, as displayed in Figure 2.5.

Figure 2.5: Types of machine learning [29].

As it can be observed, there are four major categories of ML. According to
[30]:

Supervised Learning: Consists in techniques that rely on training datasets con-
taining labeled data. The training phase allow the ML algorithm to develop
an inferred function to foresee the pretended output values. This way, when
deployed with a new set of data, it is able to provide results and then compare
them with the expected ones so that it can identify errors.

Unsupervised Learning: In this case, the ML algorithms only have the purpose
of deducing a function that is capable to find hidden patterns in unlabeled
data.

Semi-supervised Learning: These ML techniques lie between the ones pre-
sented previously, in a manner that considers two types of data, labeled and
unlabeled. The labeled data is provided in a smaller quantity compared to the
unlabeled data, thus its goal is to provide the essential characteristics of the
data through the labeled data.

Reinforcement Learning: This learning method relies on trial and error, i.e.,
an agent interacts with the environment thorough actions, receiving, conse-
quently, rewards and penalties. Accordingly, the system can identify the ideal
behavior in a specific circumstance.

2. Deep Learning: It uses networks to learn, adapt and reach decisions without
human intervention. Similar to ML, DL can be segmented into three main
categories, supervised learning, unsupervised learning and hybrid learning,
also known as semi-supervised learning [31]. The description provided for these
learning methods also applies to DL. In Figure 2.6 is displayed the ramification
of each type of learning into the different DL techniques commonly used for
that purpose.
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Figure 2.6: Types of deep learning [32].

Nonetheless, due to the fast development of AI algorithms in the past years, these
subcategories of AI have extended to various domains, depending on the application
[33]:

⋄ Natural Language Processing: Refers to a domain of AI where the algo-
rithm learns to understand and generate human language;

⋄ Robotics: Although it is considered a recent domain of AI, it has been es-
tablished that it associated with the design and development of machines that
can perform tasks without human intervention;

⋄ Expert Systems: An AI algorithm is classified inside the domain of expert
systems, when it is developed using a knowledge base and a set of rules to
mimic the decision-making process of humans in a particular field, being also
capable of providing explanations for its decisions.

Considering that IPT systems are part of the power electronics field and in agree-
ment with [25], there are four tasks where AI is essential in this field of investigation,
being them:

1. Classification: With this regard, the training set is prepared with labeled
input data, i.e., data with the correspondent discrete class. Within this topic,
it is associated mainly to maintenance purposes, including anomaly detection
and fault diagnosis.

2. Data Structure Exploration: This function has the purpose of data clus-
tering, density estimation and data compression. These features have the
purpose of, respectively:

⋄ discover groups of similar data within the dataset;

⋄ determine the distribution of data within the input space;

⋄ project high-dimensional data down to low-dimensional data for feature
reduction.
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3. Optimization: In this case, the network is designed to find an optimal so-
lution based on the given objective. This process is done based on different
boundaries, equalities or inequalities that the solutions have to fulfill. In power
electronics, this function is often used in design tasks, i.e., when it is necessary
to find the optimal parameters that satisfy the previous established design
constraints.

4. Regression: Lastly, the goal of regression is to find a relation between the
input and the target values. Thus, the model will be able to predict one or
more continuous target variables for a set of input values. In this field of
investigation, these models are frequently deployed into intelligent controllers.
It is particularly useful in situations like in the analysis of the input electrical
signals and estimation of the best fitting output control variable.

In [25], it has also been stated that, according to Figure 2.7, the majority of
the tasks of AI in the power electronics field of investigation predominantly involve
regression and optimization. More specifically, considering all applications of AI
in power electronics, 33.3% correspond to optimization and 58.4% correspond to
regression.

Figure 2.7: Sankey diagram of AI methods and applications in each phase of the
life-cycle of power electronic systems [25].

Nevertheless, independently of the AI technique used, when applied to power
electronics in general, signal processing emerges as an exceptional tool. In this
context, for the specific case of regression tasks, there is a process with three main
steps [34] that are recommended to be followed to successfully achieve the best
possible results. Figure 2.8 displays a flowchart of the learning process.

In alignment with the flowchart displayed in Figure 2.8, the evaluation of the
performance of the model usually is associated with the analysis of metric trends
during the testing phase. This approach is preferred as the outcome of the metrics
in the training phase can be inconclusive owing to potential overfitting1 concerns.
Essentially, a good metric must provide reliability, sensitivity to sudden changes in
data, interpretability and also clear information about the error distribution. In pre-
vious works [35][36] it has been pointed out that no isolated metric can outperform

1It happens when the model can perform well with the training data but fails to generalize to
unseen data.
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Figure 2.8: Block diagram of the learning process - adapted from [34]

the remaining ones in every category mentioned beforehand, so it is recommended to
always use more than one metric to get a better understanding of the performance of
the model. Consequently, for regression tasks [37–41], the metrics commonly used
are presented next, where yi corresponds to the real value, ŷi corresponds to the
predicted value, i is the number of the sample and n is the total number of samples.

⋄ Mean Absolute Error (MAE)

The MAE metric provides a measure of the average absolute prediction error
and is useful when the objective relies on reducing the magnitude of the errors.
It is considered a more robust metric compared with MSE and RMSE.

MAE =
1

n

n∑
i=1

|ŷi − yi|. (2.9)

⋄ Mean Absolute Percentage Error (MAPE)

To overcome the lack of sensitivity of MAE to large or small errors, MAPE
provides a percentage measure of the average prediction error, making this
metric better in terms of interpretability.

MAPE =
1

n

n∑
i=1

|ŷi − yi|
yi

. (2.10)
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⋄ Coefficient of Determination (R2)

This metric offers a clarification into how the model fits the given data. The
higher the R2 value is, the better fit the model has to the data, so, it can
give an idea of the proportion of variation between the target and predicted
variables.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
. (2.11)

As shown in Figure 2.8, if the performance of the model does not meet the require-
ments it becomes necessary to tune the hyperparameters. If the model that is being
trained is a Neural Network (NN), some of the hyperparameters that can be tuned
are:

⋄ Activation Functions: Influence the ability of the network to approximate
target functions [42].

– Logistic Sigmoid: It is mostly used in models that work with probabilities
[43] or with classifications, because the output value of this function is
between 0 and 1. An overview of the output of this function is presented
in figure 2.9a.

f(x) =
1

1 + e−x
. (2.12)

– Tanh Sigmoid: In addition to the logistic function, it can map nega-
tive values, providing an output that is zero centered. In Figure 2.9b is
presented an overview of this function.

f(x) =
2

1 + e−2x
− 1. (2.13)

– ReLu: This activation function has the particularity of transforming all
input values that are negative into zero. In Figure 2.9c is displayed the
characteristics of this function.

f(x) =

{
x, x ≥ 0

0, x < 0
(2.14)

(a) Logistic sigmoid activa-
tion function

(b) Hiperbolic tangent ac-
tivation function

(c) ReLu activation func-
tion

Figure 2.9: Activation functions commonly used.
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⋄ Epochs: The number of epochs defines how many times the model will iterate
through the entire training set and so, how many times the parameters of the
model will be updated [44]. The greater the number of epochs, the greater
the risk of leading to overfitting, however a small number of epochs can lead
to underfitting.

⋄ Learning Rate: The learning rate is defined as the step size at which the
parameters of the model are updated during the training process. Typically
the learning rate becomes an issue when numerous training samples are pro-
vided and, consequently, the underlying system becomes incapable of valuable
generalization [45].



18 Inductive Power Transfer Systems

2.3 AI Algorithms for Parameter Estimation in

IPT Systems

There is no doubt that over the past years, IPT systems and AI are two hot top-
ics among the research community. The particular reason for such circumstances,
is that they have numerous advantages. On one hand, while AI has been applied
in systems around us for the past decades [24], in present days there is growing
recognition of its utility and value due to the diverse fields it can encompass, espe-
cially in power electronics [25]. On the other hand, the IPT systems have garnered
increase attention due to the continuous growth of interest in wireless charging for
EV batteries [15]. Therefore, this section will provide a concise overview of the key
AI methodologies applied in the field of IPT systems. It will also delve into the
significant advancements made in leveraging AI in IPT systems and showcase its
potential across domains such as design optimization of IPT systems and parameter
estimation. Table 2.1 presents an overview of this literature review regarding the
parameters estimated and the AI models used for each application.

Table 2.1: Applications of AI algorithms for parameter estimation in IPT systems

References Parameter Estimation AI Model

[46] Mutual inductance ANN

[47] Design parameters of IPT
structure

ANN

[37] Self and mutual
inductances

ANN

[48] Quality Factor ANN

[38] Mutual inductance, load
impedance

RFR

[34]
Load impedance, power

transfer, coupling
coefficient

RF, DT, SVM, Adabooster
with DT, XGboost

[49] Mutual inductance RFR

[50] Load impedance, resonant
frequency

RFR

[51] Position of receiver pad ANN, SVM

[52] Position of receiver pad ANN

[53] Position of receiver pad ANN

[54] Mutual inductance, load
impendace, self-inductance

ANN

[55] Position of receiver pad ANN

[56] Power transfer Not specified

[57] Ferrite core structures LSTM

[58] Ferrite core structures LSTM
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AI models are essentially known for the ease on how they can establish relations
between different types of data that, when compared with mathematical solutions,
are considerable superior in terms of computational cost and execution time. In
[46], the article focused the attention on building a deep learning network as the
framework of uncertainty quantification to posteriorly compare its performance with
the calculation results of a classic Monte Carlo algorithm. In that work, the objec-
tive was to design the WPT system for an EV using a DL network. Firstly, it was
verified that the power transfer efficiency, η, is greatly affected by the spatial offset
of the coils, meaning horizontal and longitudinal offsets, ∆x and ∆y, respectively,
the angle of the receiver coil, α, and also the height between them d. Additionally,
parameters of the compensation circuit can impose strong uncertainty in transfer
efficiency as well, such as the equivalent resistance of the primary loop, rt, the
equivalent resistance of the secondary loop, rs and also the load resistance, Req. To
reach the established goal, the authors decided to divide the NN into three distinct
parts where each part was a DNN model. This way, the quantification of the WPT
efficiency uncertainty is obtained. The first part of the NN consists of six fully con-
nected layers with 4, 64, 100, 32 and 1 neurons from front to back, respectively, as
well as one batch normalization layer where the number of input features is set to
100. It gets as inputs the spatial variables, ∆x, ∆y, α and d and has the goal of
estimating the mutual inductance. The second part of the NN is used to extract the
essential feature of rt, rs and Req. It is composed by a single fully-connected layer
with 3 neurons. Finally the third part of the NN takes M as well as the extracted
features from rt, rs and Req as inputs to obtain as output the transfer efficiency
η. It consists of five fully-connected layers with 4, 64, 32 , 16 and 1 neurons from
front to back, respectively, and also a dropout layer, that similarly to the batch nor-
malization layer, has the purpose of avoiding overfitting. Additionally, this design
optimization of a WPT system was based on an enhanced version of the Aquila Op-
timization (AO) algorithm, often used to solve many multi-objective optimization
problems. The conventional optimization process of the AO algorithm is divided
into five phases: initialization of the population, global exploration, local explo-
ration, global exploitation and local exploitation. However, the authors found that
there were still some limitations in the stage of population initialization and global
exploration phases so it was proposed that the first phase of population initialization
would be based on chaos mapping so that the phenomenon of uneven distribution
of population was avoided. On the other hand, adaptive inertia weight was imple-
mented to prevent that in the first exploratory stage, the AO algorithm could not
balance the global search ability and the local search ability. After experimental
analysis, the proposed Deep Neural Network (DNN) model was able to acquire ef-
ficient quantification of uncertainty, i.e., by enhancing the WPT structure of the
system through the implementation of the improved multi-objective AO algorithm,
the range of fluctuation in WPT efficiency was reduced by 65.4%. This optimiza-
tion approach increased the probability of achieving higher levels of power transfer
efficiency, due to the fact that the mean transfer efficiency increased by 25.7% as it
can be verified in Figure 2.10. Additionally, compared with the classic Monte Carlo
algorithm, the estimation time was reduced by 800%. Although the implementation
of this solution was noticeably more complex than other approaches, the results
clearly demonstrate the benefits that AI brings to the optimization algorithms.
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(a) Power transfer efficiency before opti-
mization

(b) Power transfer efficiency after optimiza-
tion

Figure 2.10: Comparison of the power transfer efficiency under variation of the
horizontal and longitudinal offsets before and after 2.10a the optimization 2.10b
[46].

Still, considering the field of investigation of WPT systems design optimization,
two approaches are introduced in [47], one that allows the reduction of the training
time and another that helps improving the input values of the network. The input
variables that are taken into consideration are: X-direction length of the transmitter
coil, Y-direction length of the transmitter coil, X-direction width of the transmitter
coil, Y-direction width of the transmitter coil, length of the edge of the transmitter
coil, distance between adjacent transmitter coils, length of the receiver coil winding,
number of turns of the transmitter coil and the number of turns of the receiver coil.
The approach that contributes to the reduction of training time is related with the
reduction of Artificial Neural Network (ANN) training data collection time. This is
applied to the estimation of the magnetic flux. The conventional method calculates
the value of the magnetic flux when an arbitrary current flows through an arbitrary
number of turns of the transmitter and receiver coils. Contrarily, the reduction of
training data is possible due to the fact that the calculation of the stray magnetic
flux is done separately, with the superposition of the magnetic fluxes created by
one-turn receiver coil and one-turn transmitter coil, when a current of 1 A flows
throw them. This allows the ANN to predict the value of the magnetic flux for any
combination of turns and currents. Thus, it is more efficient to train the ANN in
these conditions. In what improving the input values of the network is concerned a
method based on the ANN and also on a genetic algorithm (GA) was proposed. The
primary objective of this work is to predict the magnetic characteristics of the WPT
system by using (randomly) as inputs of the network the ten previous presented
design variables. Typically, among a large number of design points, those which
satisfy twelve design criteria are chosen. Conventionally this method is challenging
because many unnecessary design points, that don’t fulfill the requirements, are
predicted from random input values. Contrarily, the GA explores the input value
space to identify the region that yields the desired design points fulfilling all twelve
design criteria. This way, the ANN exhibits superior effectiveness in producing the
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desired output values by leveraging this knowledge. Based on the input variables
admitted range, the combination of an ANN and the GA was trained to output the
twelve design criteria of various parameters. This training process relied on six main
steps:

1. Random values are assigned to each design variable and input into the FEM
simulator.

2. The FEM simulator utilizes the input design variables to calculate the corre-
sponding magnetic characteristics.

3. The ANN learns the nonlinear relationship between coil dimensions and mag-
netic characteristics.

4. The fixed trained ANN receives the input design variables.

5. The network generates a large number of design points as outputs.

6. From this extensive set of design points, the optimal design point that satisfies
all the predefined design criteria is identified.

Finally, the optimized ANN was composed by eight neurons on the input layer, due
to the fact that the number of turns in the transmitter and receiver coils is equal
to one, and ninety neurons on the output layer. Then, between these layers there
are two hidden layers each with hundred neurons. Each neuron has an activation
function that must be chosen according to the purpose of the model. Therefore, both
the weights and the bias of each neuron are optimized. Subsequently, after defining
a specific design specification for the DIPT system, it was analysed the performance
of the network, including the validation error and the training error. It was verified
that in a certain point the validation error tends to increase, but the training error
continues to decrease. This is tendentially related to the overfitting phenomenon,
where the network can only have a good performance with the training data. To
prevent this from happening, the authors decided to stop the iterative calculations
before the validation error started to increase as observed in Figure 2.11.

Figure 2.11: Prediction error with respect to the number of iterative calculations
[47].

Regarding the verification process, it was demonstrated that the network had a
remarkable performance. Comparing the results with the Finite Element Method
(FEM) analysis, the error percentage ranged from 0.5% to 7%, corresponding to
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the self inductance of the transmitter coil and stray magnetic field, respectively.
Considering the results obtained with circuit simulation, the error percentage varied
between 0.3% and 10.2% and it was relative to the transmitter coil voltage and the
output power, respectively. In terms of experimental results, the error percentage
varied from 0.5% to 29.9%, reflecting the self-inductance of the transmitter coil and
coil losses, respectively. In Figure 2.12 is shown the predicting performance, in
experimental environment, of this network regarding the output power.

Figure 2.12: Measured and predicted output power with respect to the receiver
position (Moving speed: 6 km/h) [47].

On the other hand, AI can be greatly useful in the calculation of certain pa-
rameters of the circuit, based on the given structural information of it. Referring
to a conventional WPT system design, the self-inductance of both transmitter and
receiver coils and also the mutual inductance are the most important electrical pa-
rameters since they affect the resonance frequency, quality factor, and power transfer
efficiency [37]. The goal is to obtain the inductances for various structures. The
data referring to the design parameters is pre-processed and modeled, to be used as
training data. To achieve this, a DNN composed of five inputs (coil outer diame-
ter, spacing between coils, coil wire pitch, coil inner diameter and spacing between
coil and ferrite) and two outputs (self-inductance and mutual inductance) that were
obtained using a field solver was implemented. In terms of model structure, it is
composed by two hidden layers with 512 neurons each one activated by a Relu func-
tion. To analyse the network performance, it was chosen the mean squared error
(MSE) as loss function and the mean absolute error (MAE) as the merit function
2. Additionally, the chosen optimization algorithm was Adam and the learning rate
was equal to 0.0001. The training phase was accomplished in 1000 epochs and the
data was shuffled before each trial. The authors decided to divide the data only
into train and validation data, excluding the testing data. Similar to what was
presented in [47], the authors chose to stop the learning phase if the MSE of the
validation data did not decrease a hundred times in a row. This algorithm was
implemented in Python using Keras libraries, and the input parameter sets con-
sisted of combinations of 5 coil outer diameters, 4 to 7 spacings between coils, 5
coil wire pitches, 1 to 3 coil inner diameters and 5 spacings between coil and ferrite,

2Merit Function: when associated with optimization problems, it has the purpose of analysing
if the input data represents a solution to the problem or not, based on the output value [59].
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combining in a total of 1735 possible samples of data. The results were promising,
obtaining a maximum error for self-inductance and mutual inductance of 7.09% and
9.47%, respectively, and 0.92% and 1.36% for MAEs, concerning the self and mutual
inductances, respectively.

Moreover, AI models can also be useful to characterize the quality factor in spiral
coil designs for wireless power transfer systems [48]. This charging system operates
in the MHz frequency range. Typically the operation in this frequency range can be
advantageous due to the absence of requirement of magnetic cores to enhance the
magnetic flux of the IPT system, which leads to the elimination of the losses in the
magnetic cores and therefore the reduction of system weight [60]. The quality factor
of the wireless power transfer system is given by (2.15), where Xeq corresponds to
the equivalent reactance, Req is the equivalent resistance, Lt and rt correspond to
the inductance and resistance of the coil, respectively and Cpar is related to the
parasitic capacitance3.

Q =
Xeq

Req

=
w(Lt − Cparr

2
t − CparL

2
tw

2)

rt
(2.15)

The spiral coil characteristics used for the training and evaluation phases was col-
lected through the Ansys-Q3D simulator. These characteristics included the outer
diameter (Do), the inner diameter (Di), the number of turns (N), pitch size (p) and
the wire thickness (wt) and all of them had specific range of values. The collected
data was divided into three datasets, where the first dataset was used only in the
training phase and the second and third datasets had the purpose of evaluating the
model. The first dataset contained a total of 19874 samples, where each samples
was inside the range established for each coil characteristic. The second dataset
contained a total of 1091 samples that were disjoint from the samples of the first
dataset although had the same range, whereas the third dataset was composed of
287 samples that were computed as a 5%-15% difference from the minimum and
maximum ranges of the first dataset. The model consisted on a feed forward neural
network (FFNN) with three hidden layers with 64, 128 and 32 neurons, respectively,
and a ReLu activation function. Additionally, the authors chose the ADAM opti-
mizer, a learning rate of 0.001 and the MSE as the loss function. Before the training
phase, the data was preprocessed. Firstly, to ensure that the difference between the
features was as even as possible, the data went through a normalization process.
Plus, the first dataset was randomly shuffled into eight training datasets, where
the first part had 10% of the total samples, the second part 20% and so on. The
remaining data was used for validation purposes. It was concluded that the bigger
the training set was, the better results would be obtained in terms of quality factor.
Finally, when the model was tested with the second and third datasets, it had an
accuracy of approximately 93%, which proved the efficiency of the AI model. An
illustration of the model performance is presented in Figure 2.13.

3The parasitic capacitor is considered in this range of frequencies because it induces a parasitic
self-resonance in the coil.
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(a) Quality factor of the spiral coil with
number of turns variance

(b) Quality factor of the spiral coil with
pitch variance

Figure 2.13: Comparison of the quality factor of the spiral coil proposed by Ansys-
HFSS, Ansys-Q3D and the ML model under number of turns 2.13a and pitch vari-
ance 2.13b [48].

Still concerning the parameter estimation, in [38] AI is employed to estimate not
only the mutual inductance between the transmitter and receiver pads, but also
the load resistance. Typically, the series-series-compensated IPT system is abun-
dantly used in parameter identification problems, and in this case it is not any
different since it enables the estimation of mutual inductance and load resistance
at the transmitter side simultaneously. By inspecting the equivalent expressions
of the load resistance and also the mutual inductance, it was possible to conclude
that they can be acquired from the transmitter side simultaneously. Nevertheless,
because the system is operating at a resonant frequency, these expressions will be-
come unreasonable. Therefore, by using a front-end parameter estimation method
at sub-resonant frequencies, it has been pointed that parameters of the system like
the self inductance, the capacitor and the equivalent series resistance of coil on both
the primary and secondary sides, are exceedingly sensitive for the mutual induc-
tance and load resistance estimation near the resonant frequencies. Consequently,
from the mutual inductance and the load resistance expressions, when operating at
resonant frequencies, it can be concluded that these parameters are interrelated, so
they cannot be estimated simultaneously. Moreover, in heavy load conditions, a
slight parameter variation will cause high estimation errors. All things considered,
the proposed Random Forest Regression is an accurate algorithm to handle a high
number of input features, ensuring good estimation performance and also a good
generalization error under forest building process. As a result of the target variables
being interrelated, the models that estimate them had to be trained separately, one
corresponding to mutual inductance estimation and the other to load resistance
estimation. The most viable features were the voltage and current harmonics of
the transmitter pad, because they were the ones that varied less, considering the
operating frequency of the system. Regarding the experimental verification phase,
the features were measured using a high-definition oscilloscope. All the data was
obtained at the resonant frequency, indicating that this method does not affect the
system operation. Cross-validation was the method used in training phase, allowing
the evaluation and the adjustment of the model, in light of models performance.
Subsequently the data went throw a process of normalization and also elimination
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of outliers. Regarding the network tuning performance, ntree4 and mtry5 were two
crucial parameters to optimize the model. By evaluating the performance of several
combinations, it was concluded that the optimal values of these parameters were
ntree = 60 and mtry = 1. The metrics of the model were analysed in two distinct
situations:

1. The input data included higher-order harmonic voltages and currents.

2. The input data only included fundamental harmonics.

It was inferred that the case where the training data included high-order harmonics
could improve significantly the models accuracy. The proposed model outperformed
the traditional scheme by a significant margin. It achieved an error of 3.11% in
mutual inductance estimation, surpassing the 5.05% error rate of the traditional
method. Similarly, in load resistance estimation, the proposed model achieved an
error of 3.65%, outperforming the 7.76% error of the traditional proposal.

Moreover, in [34] was proposed a ML approach which aims to estimate the power
delivered to the receiver pad. It is also proposed a method to identify if the transmit-
ter pad should be turned on or off based on the system efficiency as well as a method
to estimate the load resistance and the coupling coefficient. This was accomplished
by leveraging only on measurements obtained from the transmitter pad. The paper
selected the LCC-S compensation topology to allow the supply of constant current
independently of the load. Regarding the procedure on transmitter activation and
deactivation, it was assumed that when the receiver is distant from the transmitter,
i.e., the load resistance is very high, the efficiency of the system will be low so the
transmitter should be turned off. When the opposite happens, the transmitter coil
should be activated. In what refers to the ML approach, it is identical to the ones
presented before, apart from the fact that the training data is generated using LT-
spice simulation tool. Nevertheless, it is also worth noting that the input variables
corresponded to the first five harmonic current components and the RMS value of
the current that flows in the transmitter coil. Regarding the target variables, the
output power, the load resistance and the coupling coefficient were the candidates
to be estimated individually. To reach the best performance possible ML regression
models like random forest, decision tree, support vector machine, adabooster with
decision tree and XGboost were tested, because in this particular scenario, the au-
thors found ML models to be more suitable than NNs or DL models, primarily due
to the limited information available in the dataset, which posed challenges for train-
ing more intricate networks. The training set was composed by measurements of the
input variables, concerning the admissible airgap and misalignment distance. The
profile between the output power and the input current presents two visible regions,
being one of them where the output power is directly proportional to the input
current (region where the transmitter pad should be turned on) and the other one
where the output power drops drastically with the decreasing of the input current
(region where the transmitter pad should be turned off). Referring to the coupling
coefficient and load resistance estimation, a frequency domain approach took place.

4number of trees in the forest (small value of ntree increases the models error and a large value
increases computing time and memory consumption).

5minimum sample size of split neurons which it can limit the conditions for further division of
sub-trees.
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As input data of coupling coefficient estimator model, the amplitude and phase of
the fundamental component and third harmonic components of the input current,
the RMS value of the input current as well as the estimated output power were
considered. Consequently, each feature impact was analysed. To achieve this, three
distinct cases were considered, where in each case the skit-learn random forest re-
gression algorithm was used to find the features that had the greater impact in the
model training [61]. It was concluded that the estimated output power had the high-
est importance in all the cases and also that the higher the number of features the
best the model will perform. To estimate the load resistance, a similar approach was
introduced, however, it was added to the input data a new feature, the estimated
coupling coefficient. In this case the amplitude of the third harmonic component
of the input current had the greater influence in training of the model. Analysing
the results, the random forest algorithm was the best predicting the output power
with an average accuracy of 88%. Conversely the adabooster with decision tree was
the best performing regression model estimating the load resistance and coupling
coefficient, with accuracies of 88% and 92%, respectively. A comparison between
the actual and predicted values of these variables is illustrated in figure 2.14. This
ML model had also the best estimation performance regarding the position of the
receiver.

Figure 2.14: Actual and predicted 2.14a coupling coefficient and 2.14b load resis-
tance for different test points from adabooster with decision tree model [34].

Regarding the mutual inductance estimation, in [49] is proposed a random forest
regression model, where the input parameters are the amplitude of the fundamental
component, third, fifth and seventh harmonics of the current and voltage of the
transmitter side, which were measured at the resonant frequencies, which limited
the utility of the model to only during the power transfer process. Equally to
previous citations, the data went through a preprocessing phase where bad data
was eliminated and the remaining was normalized. The quality factor of the model
and the RMS errors of the estimated mutual inductance over the average mutual
inductance were the metrics chosen by the authors to analyse the model performance.
The parameters of the model were tuned regarding its performance. Consequently,
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the obtained average estimation error and standard deviation of the estimation error
were equal to 2.55% and 4.04%, respectively.

Conversely, in order to maximize the efficiency tracking of a wireless power trans-
fer system due to the existence of situations of low load receiving efficiency, in [50]
it is proposed a random forest regression model to predict and stabilize the variable
load impedance by also predicting the proper resonant frequency for each situation.
Regarding the collection of data phase, the authors implemented a variable load
circuit where to change the impedance it was only needed to modify the duty ratio
and the reactance of the controller. Typically, when a misalignment between the
transmitter and receiver pads occurs, the reflected impedance form the secondary
side will affect the parameters of the primary side, resulting in drift of the reso-
nance and natural frequencies. The features chosen by the authors relied on the
receiver voltage, input power, output power, coil distance, receiver frequency and
the actual impedance change of the circuit, which in the majority of the cases would
be difficult to obtain. In what the validation of the model is concerned, the con-
clusions of the authors were not objective which made the analysis of the results
difficult to interpret, although it was observed that the impedance prediction was
fairly accurate.

Furthermore, ML models can likewise be implemented with the goal of predict-
ing the receiver position in a system with multi-transmitters in order to control the
switching criterion of the transmitter pads [51]. However, due to some punctual limi-
tations like determining the longitudinal displacement of the receiver pad so that the
transmitter pad could work as intended, two ML models were proposed to estimate
this value and subsequently compared regarding their performance. The input data
for both ML models consisted on the distance between the pads, the current of the
primary side and also the efficiency of the system. These data was collected through
ANSYS and MATLAB simulations, regarding a previously established interval of
values for each variable. One ML model was a back propagation (BP) algorithm.
The proposed structure was a network containing an input layer, a hidden layer
and an output layer, with 3, 11 and 1 neurons, respectively, each of them composed
by a sigmoid activation function. The second purposed ML algorithm was a sup-
port vector regression (SVR), however during the tuning of this model, particular
attention was taken to some parameters like the kernel function, in order to avoid
problems concerning data calculation. Therefore, a radial basis function (RBF) was
chosen. By analysing the performance of these models in simulation environment,
the estimation accuracy as well as the relative error presented acceptable results,
which meant that all the necessary conditions to the transmitter pads reach the
optimal working mode were gathered. Referring to the experimental verification, it
was verified the existence of an interval of values where the estimation was not as
accurate as pretended, so there was the need to increase the density of the train-
ing data. With this modification the obtained results were promising, getting an
error reduction of approximately 50%. When the switching control was applied, the
efficiency of the system was around 90±2%, which resulted on an increase of 10%
compared with the situation without switching control. Thus, it was demonstrated
that the system operates in resonance before and after the switching, validating the
analysis made previously.

Further addressing the misalignment estimation in dynamic wireless power trans-
fer systems, in [52] it is proposed a magnetic field-based method to achieve this
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objective. It can be asserted that ANNs, although was one of the first conceived AI
models, it continues to deliver good performance for a wide range of WPT applica-
tions which was the reason why the authors employed it. The proposed system con-
sists in an EV that is equipped with four sensing coils, including the main receiver
coil that is attached under the center of the EV. Essentially the three remaining
coils are placed under the front bumper and as the EV moves they will measure
the magnetic field produced by the transmitter pads and afterwards misalignment
is estimated based on the voltage induced in each sensing coil. An illustration of
this WPT in particular is presented in Figure 2.15.

Figure 2.15: Three-dimension view of the relative position between the EV chassis,
Rx pad, sensing coils, and transmitter pads [52].

The variation of the three components of the magnetic field regarding the mis-
alignment was tested and it was observed that the By field component was the most
reliable to generate a more accurate lateral misalignment estimation. In Figure
2.16 is displayed the characteristic of the variation of the By field component under
misalignments.

Figure 2.16: Three-dimension view of the magnetic field flux density above a trans-
mitter pad [52].
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The proposed approach was divided in to five distinct sections:

1. Sensing: Composed by the four sensing coils that measure the magnetic field.

2. Filtering: Due to the existence of switching harmonics emitted by the high
frequency inverter.

3. Sampling: Using a TMS320F28027 microcontroller, the rms values of four
signals are sampled.

4. Processing Communication: In this section it was chosen to employ a
Raspberry Pi to perform the ANN calculations.

5. Communication: After the calculation of the misalignments, the communi-
cation is established using two-wire CAN communication.

The proposed ANN has three layers, one input layer that corresponds to the
signals from the three sensors, a hidden layer with 4 neurons and a output layer that
consists on the lateral and vertical misalignment values. It is worth mentioning that
the structure of the network is suppose to be simple since it will make predictions
in real-time while the EV is moving. The achieved results were promising for the
reason that the estimation of the lateral and vertical misalignment had an error of
approximately 1.9% and 3.8%, respectively.

It is also possible to estimate the lateral misalignment of the receiver pad via the
utilization of the information from the DC-link current. In [53], it was recognized
a pattern in a specific region which implied that the lateral misalignment of the
receiver pad decreases the profile of the DC-link current. Also, by increasing the
current from the transmitter side it was verified that it is possible to compensate the
decrease of energy transferred with the misalignment. Therefore a time-series ANN
was implemented to estimate the value of the lateral misalignment based on this
statement. For implementation purposes, the considered RMS value of the current
from the transmitter side was 70 A in a perfectly aligned condition. Additionally,
two sensors were placed in the front of the transmitter pad in order to estimate the
vehicle speed while enabling the controller to energize the same pad at the right
moment with the reference current of 70 A. Basically, the controller has to detect a
null-point of current. When this point is passed, the trained ANN starts receiving
the data sampled of the DC-link current. Depending on the dimension of the region
where the pattern was recognized, the ANN will only have that window margin to
output a value of lateral misalignment, which in a real-world scenario where the
vehicle is moving at 17 km/h, equals to a window of 40 ms. The network was
constituted by three layers. An input layer with the data samples from the DC-link
current, the value of its integral and also the speed of the vehicle, a hidden fully-
connected layer with 10 neurons and an output layer with the value of the lateral
misalignment. It was concluded that the implementation of this model would result
in a 32% improvement of transferred energy. Alternatively the authors could have
opt to implement a LSTM network, that is a widely implemented DL model when
it comes to time series tasks [62].

Concerning the possible applications of ANN in IPT systems, in [54] it is proposed
a model that estimates the load, self-inductance of the transmitter and receiver side
and mutual inductance between the coils based on the information from the input
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current and the transmission distance of the system. This model consists in a five
layer fully-connected NN. The first layer is the input layer where the features are
fed into the network, the three following layers are hidden layers with 32, 64 and 32
neurons, respectively, and the fifth layer is referred to as the output layer where are
produced the final predictions based on the computational operations performed in
the hidden layers. To train the network, a random 80% of the extracted data was
selected while the test phase was based on the remaining 20%. The results obtained
were promising as the maximum identification error for the self-inductance, mutual
inductance and load was of 0.08%, 2.66% and 2.45%, respectively.

Moreover, in [55] it is also compared the performance of two ML approaches.
One is the random forest (RF) and the other is, like it was also presented in the
previous citation, a DNN. Unlike the previous citation, that the charging platform
was to be used on static conditions for automated guided vehicles [51], in this case
it was studied in simulation environment the performance of the aforementioned
ML models with one and two receiver pads, however the goal kept the same, i.e.,
maximize the power transfer efficiency by configuring the activation pattern of the
different transmitter pads. Firstly, the authors opted to create an online receiver
position estimator to predict, between a matrix of possibilities, the position of the
pad. For this, the performance of the RF and the DNN models was compared.
The RF algorithm was based on Scikit-Learn, regarding the input features. The
output corresponded to one value from the given input matrix. Conversely, the
DNN had the ability of predicting the exact coordinates of the receiver pad. In
terms of structure, the best performing DNN was the one with four hidden layers,
each with 512, 512, 512 and 256 neurons, respectively. Then, by deploying the
generated data to an offline model, it was possible to obtain an activation pattern
for the transmitter pads. The results with one receiver showed that both methods
have good prediction accuracy, reaching values between 94% and 96%. On the other
hand, the results with two receiver pads showed that the RF model fails to predict
the receiver position correctly, apart from the DNN model that is able to predict
the parameter accurately.

It can also be advantageous to implement AI in IPT systems with the goal of
controlling the output power of the WPT system, mitigate the efficiency decline
caused by impedance variations when physical displacement of the receiver pad
happens [56]. To control the output power, first it was purposed a ML model
with multi-nominal classification and softmax classification, with the purpose of
estimation the coupling coefficient due to the fact that this is a crucial parameter
regarding power variation. The training data for this model was acquired in a
simulation environment. Subsequently, the system was implemented experimentally
and the model of coupling coefficient estimation was deployed in a Raspberry Pi
board. Under displacement situations, when inspecting the behavior of the output
voltage, the ML model provided an improvement of 92.5% to stabilize its value in
comparison to the typical voltage control.

Alternatively there are also proposals of AI implementation in IPT systems con-
cerning the optimization of the magnetic coupling itself through the design of new
structures of ferrite cores [57, 58].

This literature review on the estimation of different parameters of IPT systems
revealed that a scientific basis have been established on this behalf. Self and mu-
tual inductance, coupling coefficient, load resistance, position of the receiver pad,
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power transfer and quality factor of the coils are examples of parameters that have
been estimated through AI models. Typically, the AI implementation relies on ML
models or ANNs. Although some authors refer to DNNs as models difficult to un-
derstand and hard to train due to the necessity of a large dataset, the capacity to
adapt to highly non-linear situations, such as the estimation of mutual inductance,
continues to be the reason why DL is considered the best approach. Moreover, to
the best of the knowledge acquired, there has not been any approach that utilized
harmonic components measured from the secondary side as training data. Normally,
the training data relied on measurements from the transmitter side or even on struc-
tural parameters of the coils, which would be challenging to acquire in a real-world
application. Additionally, the articles that purpose AI models for parameter estima-
tion in a dynamic IPT system configuration are still highly affected by the speed of
the EV. As so, this factor constitutes a significant barrier for the scientific commu-
nity to overcome in order to enhance the performance of these estimation models.
Nevertheless, establishing the proposed solution required overcoming various chal-
lenges. The initial simulation model was conceived with a resistance as the output.
As one of the main objectives of this dissertation was to develop a robust AI model
that could have potential to be used in a real-world scenario, it became necessary
to modify the output configuration to grant the AI model access to a more realis-
tic system behavior. However, since the objective of this dissertation was not the
implementation and adjustment of an additional power electronic converter, it was
decided to add a control system able to reproduce the best as possible, the behav-
ior of a battery charger, based on parameters like the output voltage and pretended
charging power. Since the results from this approach are not as accurate as those re-
trieved from a simulation model with a proper DC-DC converter and a battery pack
implemented in the output of the system, these adjustments undoubtedly represent
future improvements to pursue.





Chapter 3

IPT System under Analysis

The following chapter have the intent of introducing the object system of analysis
as well as the AI model that was implemented to fulfill the established objectives.
The chapter starts with the presentation of the IPT system configuration in detail,
its characterization plus the sizing of the various elements of the circuit and their
relationships. Further, in a section dedicated to the dataset generation and feature
selection, it will be analysed the behavior of the system under different conditions
which will actively contribute to the process of data collection and feature extraction.

3.1 IPT Power System

As the name suggests, this section has the purpose of presenting in detail the
IPT system topology, including the equations that rule its electric circuit and also
the procedures to collect the necessary data to train the AI model.

3.1.1 Series-Series-Series Topology

Following what was mentioned in Chapter 2, there are different possible config-
urations for resonant topologies of IPT systems. Thus, it is of great relevance to
study of the equations that rule the different topologies available to comprehend
the behavior of the IPT system under misalignment conditions. With this reason-
ing in mind, next it will be presented a detailed explanation why in this work a
series-series-series topology was chosen over a simpler series-series topology.

Firstly, it is worth noting that, unlike the topologies presented in Figure 2.2, this
configuration has two magnetic couplings instead of just one. By taking a closer
look to a series-series topology circuit, presented in Figure 3.1 it is possible to verify
that, at the resonance frequency, (3.1) corresponds to the secondary side impedance
and (3.2) is referred to the reflected impedance on the primary side, which depends
on several parameters like the number of turns of the transmitter and receiver coils,
the distance between them and also the angle of the receiver coil.

Zsec = jωLr +
1

jωCr

+Req (3.1)

Zref =
ω2
0M

2

Req

+ j0. (3.2)

33
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Figure 3.1: Series-Series topology.

In [5], a simulation model was developed to test the behavior of an IPT system
with different resonant power converter topologies under misalignments. In Figure
3.2 is displayed the considered simulation circuit.

Figure 3.2: Series-series simulation circuit [5].

Moreover, the values of each element of the circuit are shown in Figure 3.3.

Figure 3.3: Series-series simulation parameters [5].

Furthermore, to evaluate the behavior of the primary-side of the resonant con-
verter in two limit conditions: no-coupling (absence of receiver) and full coupling
(transmitter and receiver pads perfectly aligned), considering two different settings,
charging and no-charging (fully-charged battery). Thus, three operating regions
were selected:

⋄ Region 1: The EV is approaching the transmitter pad, therefore the magnetic
coupling is zero, i.e., M = 0.
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⋄ Region 2: The EV achieves perfect alignment with the transmitter pad, thus
the mutual inductance reaches its maximum value. In this region the battery
is in charging state.

⋄ Region 3: In this case the battery is fully charged meaning that is in a
no-charging state.

Focusing on the behavior of the series-series topology, Figure 3.4 it is presented
the obtained results for the current that flows in the transmitter-side.

Figure 3.4: Series-series topology transmitter-side current for different operating
conditions [5].

By observing Figure 3.4 it is clear that the current in the transmitter-side tends
towards infinity when in a no-coupling condition. This phenomenon occurs due to
the reflected impedance that approaches zero in this condition. As a result, the input
impedance of the circuit becomes very low, since it corresponds to a series between
an LC circuit and the resistive component of the inductor wire. Thus, although in a
real-world scenario it would contribute to a weight gain, it was necessary to prevent
the current of the transmitter-side from increasing without bound, leading to the
introduction of an additional magnetic coupling before the transmitter pad.

Subsequently, the series-series-series topology will be presented in detail next
[10][63]. To accomplish this, Figure 3.6 presents the equivalent circuit of the topology
used.

Figure 3.5: Equivalent circuit of a SSS IPT system - adapted from [63].

The letters attributed to each variable intend to indicate the zone of the system
it relates to. Letters p and s refer to the first magnetic coupling, including the
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associated resonant tanks, whereas letters t and r are related to the second magnetic
coupling also including the elements of the resonant compensation. Thus, Lp, Ls,
Lt and Lr are referred to the self-inductances of the respective magnetic coupling,
the capacitors of each resonant tank are represented as Cp, Ct and Cr. Additionally,
rp, rs, rt and rr denote the equivalent resistance of the inductors of the respective
magnetic coupling andReq represent the equivalent resistance of the rectifier together
with the batteries and corresponding charger.

In this configuration, if the on-board converter is operating continuously, the
output voltage of the high frequency inverter, represented in Figure 3.6

Figure 3.6: H-bridge high frequency inverter - adapted from [10],

can be replaced by its fundamental component (FC), V 1, where its RMS value
can be given by:

|V 1| = VDC
2
√
2

π
cos

(α
2

)
, (3.3)

where α corresponds to the phase shift control angle established by the drivers and
VDC is the average DC link voltage. Alternatively, by applying the Kirchoff laws it
can be obtained the voltage equations of each mesh of the IPT circuit:

V 1 = rp · Ip + j · w
((

Lp −
1

w2 · Cp

)
Ip −Mps · I t

)
(3.4)

0 = (rs + rt) · I t + j · w
((

Ls + Lt −
1

w2 · Ct

)
· I t −Mps · Ip −Mtr · Ir

)
(3.5)

0 = (Req + rr) · Ir + j · w
((

Lr −
1

w2 · Cr

)
· Ir −Mtr · I t

)
, (3.6)

where Lps and Ltr correspond to the mutual inductance between the transmitter
and receiver of the first and second magnetic coupling, respectively, wp, wt and wr

are the natural angular frequencies of the resonant tanks.
To complete the characterization of the circuit, by solving the mathematical

expressions previously presented, it is possible to deduce the equations that rule the
behavior of the current in each mesh of the circuit.

Ip =
V 1

Zp + ZrIN

(3.7)
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I t = Ip
j · w ·Mps

Zt + ZrOUT

(3.8)

Ir = I t
j · w ·Mtr

Zr +Req

. (3.9)

For simplification purposes, the equivalent impedances of each resonant tank, in
(3.7), (3.8) and (3.9) were replaced by variables Zp, Zt and Zr, respectively, thus
obtaining:

Zp = rp + j · w · Lp

(
1−

w2
p

w2

)
(3.10)

Zt = (rs + rt) + j · w · (Ls + Lt)

(
1− w2

t

w2

)
(3.11)

Zr = rr + j · w · Lr

(
1− w2

r

w2

)
. (3.12)

Besides the equivalent impedances of each resonant tank, there is also the reflected
impedance of one side of the magnetic coupling referred to the other side. In (3.7),
(3.8) and (3.9), these were expressed as ZrIN and ZrOUT , where ZrOUT corresponds
to the reflected impedance from the receiver side into the transmitter side, while
ZrIN represents the reflected impedance of the secondary side of the first magnetic
coupling into its primary side.

ZrIN =
V sp

Ip
=

w ·M2
ps(Zr +Req)

Zt(Zr +Req) + w2 ·M2
tr

(3.13)

ZrOUT =
V rt

I t
=

w2 ·M2
tr

Zr +Req

. (3.14)

3.1.2 Simulation Model

The complete IPT system under analysis was implemented in Simulink. The
simulation model is presented in Figure 3.7, where the first magnetic coupling is
referred to as an isolation transformer because in reality it isolates the primary side
from the effect of the reflected impedance from the secondary-side, as explained in
section 3.1.1.

Figure 3.7: Simulation model of the series-series-series IPT system under analysis.

Just like with any other electrical circuit, the parameterization of the elements
of a IPT system is crucial as it will be explained subsequently. Therefore, Table 3.1
represents the system specifications of the most relevant elements of this circuit.

The operation of the circuit at the resonance point is dependent on the parame-
terization of the reactive elements of the circuit. Thus, considering that the
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Table 3.1: Simulation Parameters.

Parameter Value

Ts 0.1 µs

VDC 100 V

f 20 kHz

Vak 0.700 V

Lp 41.780 µH

Ls 42.290 µH

Lt 45.750 µH

Lr 60.200 µH

Mps 30.270 µH

Mtr 16.680 µH

Cp 1.516 µF

Ct 0.720 µF

Cr 1.052 µF

Cout 6400 µF

rp,s,t,r 0.100 Ω

values of the self-inductance of each coil were measured, (3.15) allows to calculate the
values of the capacitors and guarantees the operation of the circuit in this condition
[11][63, 64].

f =
1

2 · π
√
Lp · Cp

=
1

2 · π
√

(Ls + Lt) · Ct

=
1

2 · π
√
Lr · Cr

. (3.15)

Additionally, the value of the capacitor, Cout, was increased until the overshoot
of the output voltage did not surpass 2-3% of the value in steady state.

Another essential topic that needs coverage is the method through which was
possible, in simulation environment, to define the variation of the mutual induc-
tance of the second magnetic coupling, based on real-world measurements. The
first magnetic coupling, based on its purpose, is referenced to as an isolation trans-
former, so the mutual inductance is kept constant. As represented in Figure 3.7, the
magnetic coupling between the transmitter and receiver coils was replaced by two
controlled voltage sources. In Simulink, these blocks can generate a voltage that is
driven by an input signal. Considering vrt and vtr as the imposed voltage to the
primary and secondary side, respectively, the control inside the subsystem ”Voltage
Source Control” has the function of guaranteeing the following conditions:

vrt = −Ltr ·
dir
dt

(3.16)
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vtr = Ltr ·
dit
dt
, (3.17)

which entails knowing the mutual inductance value.

In the pursuit of acquiring the needed data, ensuring a reliable source, i.e., a
realistic representation of the IPT system in a simulation environment, an existing
prototype of the system was used. It is constituted by a medium density fiberboard
(MDF) structure, a stepper motor, and a screw thread shaft connected to the motor,
which enables the movement of a platform housing the receiver pad. The stepper
motor was controlled by Mach 3 software which was developed by Newfangled So-
lutions LLC. This allowed to define, with increments of 10mm, the longitudinal
position of the receiver pad within an interval spanning from -250 mm and 250 mm
from the center of the transmitter pad. The horizontal position of the platform of
the transmitter pad was adjusted manually, between 0 mm and 175 mm, with incre-
ments of 25 mm. There was also the possibility of adjusting the airgap between the
transmitter and receiver pads within the range of 48 mm and 108 mm with incre-
ments of 20 mm. Additional information about the prototype and its components
is depicted in Appendix A.

Thus, by using an LCR meter, i.e., an electronic device designed for measuring
inductance (L), capacitance (C) and resistance (R), the self-inductance of the trans-
mitter pad (Lt), the self-inductance of the receiver pad (Lr), as well as the total
inductance obtained through the series (LT+) and anti-series (LT−) connections,
were measured. Figure 3.8 illustrates the connections established for measuring
these parameters.

(a) L3 measurement connec-
tions

(b) L4 measurement connec-
tions

(c) LT+ measurement connec-
tions

(d) LT− measurement connec-
tions

Figure 3.8: Self inductance and total inductance measurement connections.

Consequently, by employing (3.18) and (3.19), it was possible to obtain the values
of the mutual inductances, M+ and M−, which were calculated through different
associations of the coils for each chosen position of the pads [9].
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M+ =
LT+ − Lt − Lr

2
(3.18)

M− =
Lt + Lr − LT−

2
. (3.19)

Theoretically, the values of M+ and M− are expected to be identical. However
due to potential imprecisions from the measurement device, or slight variations
in the positioning during the measurements, there were some discrepancies in the
experimental results. As such, the determining factor for choosing one curve over the
other was based on selecting the curve with fewer negative values at its extremity.

Consequently, upon gathering all the measurements within the regions of interest,
a comprehensive three-dimensional table was constructed, encompassing the values
of mutual inductance which resulted in the plot observed in Figure 3.9.

Figure 3.9: Mutual inductance for an airgap of 48 mm.

This data was subsequently given as input to a Simulink lookup table block,
enabling the possibility of extracting the mutual inductance value for any given
point of interest, considering the range of values available. This block performs n-
dimensional interpolation using one of various algorithms available. Considering the
characteristic of the curve presented in figure 3.9, notably, there are zones where it
is suppose to exhibit a sine pattern, however due to the chosen increments it can be
observed a flattening effect. Consequently, the cubic spline algorithm demonstrated
a more subtle variation of mutual inductance between points so it was deemed the
suitable choice for this work.

Finally, in order to emulate the output of a conventional battery charger, a
controlled current source was integrated into the system. A block diagram of this
control system is displayed in Figure 3.10.

The imposed current consider as a factor the power output of the charger. This
allows the output current to adapt according to the power demand, guaranteeing
that the output of the system aligns with the characteristics of a standard battery
charger in a current control stage, which is the first stage when charging a discharged
battery.
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Figure 3.10: Block diagram of the control system of the ”current source control”
block.

3.2 Dataset Generation and Feature Selection

Considering the process of dataset generation and feature selection a careful
analysis of the IPT system was carried out in this section. This analysis encompassed
the verification of both the operation limits of the IPT system and the measured
variables that fulfilled the requirements for successfully estimate the value of mutual
inductance. Given the characteristics of the simulation circuit, the AI model must be
capable of estimating accurately the value of mutual inductance under misalignment
and charging power variations. Furthermore, it will be presented the normalization
process of the acquired data.

3.2.1 Dataset Generation

The transmitter and receiver coils were assembled with the same 280 mm of width
and 195 mm of length. Recapping what was stated in subsection 3.1.2 regarding the
operation of the system, the output current is dependent on the output voltage and
the charging power defined by the user. Hence, to set up the group of the admitted
misalignment positions, referred in this document as grid of misalignments, two
criteria must be met:

1. Ensuring a higher number of misalignment positions in regions where the mu-
tual inductance has a non linear characteristic in order to accurately test the
performance of the AI model.

2. The boundaries of the grid are based on the operation limits of the IPT system.

The control system of the output current was developed to emulate the behavior
of a back-end DC-DC converter where the value of charging power established by the
user is maintained constant independently of the level of misalignment. Therefore,
the referred boundaries were established based on the behavior of the output current,
since this parameter is dependent on the charging power chosen by the user and
output voltage that will be directly proportional to the mutual inductance between
the magnetic couplers [15]. This means that, when the transmitter and receiver pads
are misaligned a decrease on the output voltage will be verified. Thus, in conditions
where it is required a high value of charging power and the vehicle is considerably
misaligned the system may not operate properly. Subsequently, it was determined
that, since the output voltage was the only parameter that could be constrained in
order to guarantee a minimum of 500 W of charging power at the position of greater
misalignment, the limit positions would need to be selected accordingly. Besides, an
additional criteria to have in account is the fact that, theoretically, the behavior of
the mutual inductance is symmetrical, regarding the direction of the misalignment
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[15], thus it is only necessary to extract measurements from misalignment positions
in one quadrant. Considering that mx is the horizontal misalignment and my is the
longitudinal misalignment, the grid was formed by:

⋄ mx = [0, 2, 4, 6, 8, 10, 12.5, 15, 20, 30, 40, 50];

⋄ my = [0, 5, 10, 15, 20, 25, 30, 35, 40];

The considered misalignment positions are illustrated in Figure 3.11 where in the
positions of perfect alignment and greater misalignment it was measured a mutual
inductance of 15.83 µH and 5.5 µH, respectively.

Figure 3.11: Grid of misalignment positions.

3.2.2 Feature Selection

Feature extraction, also called Feature Engineering [65], is certainly one of the
most important procedures to achieve high performance AI models, since essentially,
consists on extract relevant information from raw data [66]. Since this work con-
sists on the development of an AI model to predict the value of mutual inductance,
the goal is to find the most suitable parameters, i.e., features, for training the AI
model and, consequently, predict the target variable (mutual inductance). There-
fore, there are some criteria to have in account. Firstly, the chosen features must
have a pronounced variation when a misalignment occur and secondly the opposite
must happen when the charging power varies. This means that this model must
be able to predict the mutual inductance value as accurately as possible for all the
misalignments within the grid and also under all the allowed charging powers.

On account of being in a simulation environment, it is simple to include measuring
sensors in the circuit. Figure 3.12 shows the points on the circuit where voltages
and currents were measured.

With this information settled, one of two procedures was possible:

1. Use waveform data, i.e., the waveforms of signals to extract relevant features
to train the AI model.

2. Use data from the harmonic components of voltages and currents, since there
are various reactive components in the circuit.
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Figure 3.12: Measuring points in the simulation model implemented.

The method applied for features analysis consisted essentially on extract data
from different positions of misalignment and under different charging powers. All
the data management was done using MATLAB.

Waveform Analysis

To examine potential features from the waveforms of the measured signals in the
circuit, data was extracted under the following conditions:

⋄ Misalignment positions:

Figure 3.13: Considered misalignment positions.

From the available grid of misalignments, the three positions illustrated in
figure 3.13 were selected. The choice was based on the fact that horizontal
misalignments can provide a more pronounced insight into the variation of
mutual inductance when compared to longitudinal misalignments, which do
not induce as significant variations.

⋄ Charging Power: 100 W, 200 W, 300 W, 400 W, 500 W.

The analysis of the waveforms took place in a incipient phase of the work, as
such, a lower set of charging powers was initially tested.
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After extracting the data, an analysis of the waveforms referred to the vari-
ables measured in the circuit was conducted. With the information retrieved from
these possibilities it was possible to formulate an idea of the operation of the sys-
tem under low and high charging powers due to the reproducibility of behavior of
the system. The transmitter side measurements indicated one of two possibilities.
On one side, the amplitude of the waveform increased with both misalignment and
charging power, as observed in case of voltage v1. On the contrary, although this
phenomenon was anticipated due to the operation conditions of the SSS topology,
the amplitude of the waveform of current ipri remained constant despite the mis-
alignment and charging power variations, which is not the intended behavior for the
required features. In Figure 3.14 and Figure 3.15 this can be verified by observing
the waveform of voltage v1 and current ipri under misalignment and charging power
variations, respectively.

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.14: v1 waveforms under charging power variations in position 1 (3.14a), 2
(3.14b) and 3 (3.14c).

The measurements of the secondary side demonstrated an identical behavior in
the way that all waveforms changed its amplitude with both misalignment and
charging power variation. Figure 3.16 illustrates the waveform of the voltage v5
under misalignment and charging power variations.

Observing figure 3.16a and 3.16b in detail it can be verified that for low charging
powers, namely, 100 W, 200 W and 300 W there is some voltage drops. Therefore,
these results contributed to reach the conclusion that the waveforms are not reliable
as features of this IPT system.

As an enlightenment, since the AI models that are more frequently used and
offer the best results when analysing waveforms patterns are the LSTM networks,
its choice is not suitable for this work. In what wireless charging is concerned, this
type of networks have been applied mostly to detect foreign objects [67, 68].
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(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.15: ipri waveform representation under charging power variations in position
1 (3.15a), 2 (3.15b) and 3 (3.15c).

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.16: v5 waveform representation under charging power variations in position
1 (3.16a), 2 (3.16b) and 3 (3.16c).
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Amplitude of Harmonics

To make this analysis as succinct as possible, the data was extracted under the
following conditions:

⋄ Misalignment: The same positions as displayed in Figure 3.13.

⋄ Charging Power: 500 W, 1000 W, 1500 W, 2000 W, 2500 W, 3000 W.

The amplitude of the harmonics was obtained through a function implemented
in MATLAB, that has as inputs the vector of the signal to be analysed and the time
vector. With this information, the function outputs one vector with the frequency,
one with the amplitude and other with the phase of the different components of the
signal. Since the input signal do not have any imaginary component, the frequency
vector that the function returns is comprehended between 0 and Fs/2 Hz, where Fs

is the sampling frequency. To find the amplitude of the harmonics it was decided
to use the flat top window, the particular reason that among all the windowing
functions, it is the one that gives the real amplitude of the signal [69].

Moreover, it was decided to go up to 3000 W of charging power, since when the
pads are approximately aligned, the system is able to deliver this power. Nonethe-
less, under these conditions, the process of selecting the most suitable harmonics as
features for the AI model was divided in three main steps:

1. Compare the amplitude of the different harmonics, including the fundamental
component, for the chosen charging powers;

2. Select the harmonic components that presented similar amplitude for all charg-
ing powers and had the greater influence, in terms of amplitude, in the signal
under analysis;

3. Verify if the selected harmonic components exhibit a noticeable variation in a
event of a misalignment occurrence and opt for those that demonstrate such
variations. However, although the amplitude of some harmonic components is
not the same across different charging power levels, the percentage variation for
each charging power under misalignment variations exhibits a similar pattern.

In first place, it will be taken a closer look to the signals measured in the trans-
mitter side followed by the signals measured in the receiver side. The conducted
analysis revealed that the variations of the amplitude of the harmonics of some pa-
rameters is similar. Therefore, next it will be presented the variation of the ampli-
tude of both fundamental and harmonic components under different charging power
and misalignment values. Regarding the measurements of the transmitter side, it
will be showcased the analysis referred to voltage v3. Since for the transmitter side
measurements, the results were similar, Appendix B.2 contains the analysis of the
remaining parameters of the circuit.
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Voltage - v3

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.17: Representation of the amplitude of the fundamental component and
higher-order harmonics components of voltage v3 in positions 1 (3.17a), 2 (3.17b)
and 3 (3.17c), respectively, under charging power variations.

From figures 3.17a, 3.17b and 3.17c, it can be observed a pronounced discrepancy
of amplitudes regarding the fundamental component, which indicates that these
parameter is not a good feature. Moreover, it was decided to analyse the behavior of
the amplitude of the third and fifth harmonics, since the amplitude of the remaining
higher-order harmonics is noticeably low.

(a) Amplitude of the third harmonic (b) Amplitude of the fifth harmonic

Figure 3.18: Representation of the amplitude of the third 3.18a and fifth 3.18b har-
monics components of voltage v3 under misalignment and charging power variations.

Figures 3.18a and 3.18b demonstrate that these parameters are also not poten-
tial features, due to the fact that they have a minor variation under misalignment
situations. Therefore, the next step will involve an analysis of the signals referred
to the receiver pad.
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Voltage - v4

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.19: Representation of the amplitude of the fundamental component and
higher-order harmonics components of voltage v4 in positions 1 (3.19a), 2 (3.19b)
and 3 (3.19c), respectively, under charging power variations.

Applying a similar analysis as the one made previously conduct to the fact that,
considering the characteristic of the amplitude of the fundamental and higher-order
harmonic components under charging power variations, the most suitable parame-
ters are the amplitude of the third and fifth harmonics. Furthermore, figure 3.20
serves the purpose of depicting how these parameters react under situations of mis-
alignment.

(a) Amplitude of the third harmonic (b) Amplitude of the fifth harmonic

Figure 3.20: Amplitude of the third 3.20a and fifth 3.20b harmonic components of
voltage v4 under misalignment and charging power variations.

Figures 3.20a and 3.20b confirm that the amplitude of the third and fifth har-
monics of the voltage v4 meet the necessary conditions to be features.
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Voltage - v5

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.21: Amplitude of fundamental and higher-order harmonic components of
the voltage v5 in position 1 (3.21a), 2 (3.21b) and 3 (3.21c), respectively, under
charging power variations.

(a) Amplitude of the FC (b) Amplitude of the third harmonic

(c) Amplitude of the fifth harmonic

Figure 3.22: Amplitude of fundamental component 3.22a, third 3.22b and fifth 3.22c
harmonics of the voltage v5 under misalignment and charging power variations.
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In the case of the amplitude of the fundamental and higher-order harmonics
components of voltage v5 it is needed to refer to Table B.22 where it can be observed
objectively the values of the amplitudes. Table B.22 shows that the discrepancy is
only verified for a situation of 500 W, which indicates that these parameters fulfill
the first requirement.

Figures 3.22a, 3.22b and 3.22c confirm that these parameters satisfy the last
requirement for feature selection.

Current - isec

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.23: Amplitude of fundamental and higher-order harmonics component of
the current isec in position 1 (3.23a), 2 (3.23b)and 3 (3.23c), respectively, under
charging power variations.

Figure 3.24: Amplitude of the third harmonic of the current isec under misalignment
and charging power variations.

A discrepancy on the amplitude of the fundamental component of the current isec
is identified which as previously stated is not intended. Therefore, the amplitude of
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the third harmonic is the only parameter chosen, due to the fact that the amplitude
of the fifth harmonic and beyond are considerably low.

Given the characteristic observed in figure 3.24 it can be concluded that this
parameter also fulfills the requirements of the feature selection.

Reactive Power

In figure 3.12 it is referenced that through the voltage v5 and the current isec
the reactive power was calculated. In what the calculation of the amplitude of the
harmonic components is concerned, equations 3.20 and 3.21 were implemented:

Sf =
v5f√
2
∗ isecf√

2
(3.20)

Qf = Sf ∗ sin(θv − θi), (3.21)

where f is the frequency of the harmonics, Sf is the amplitude of the harmonics of
the apparent power, v5f and isecf are the amplitudes of the harmonics of the voltage
v5f and current isecf , respectively, θv and θi are the phases of the harmonics of the
signals v5 and isec, respectively, and Qf is the amplitude of the harmonics of the
reactive power.

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure 3.25: Amplitude of the fundamental and higher-order harmonic components
of the reactive power in position 1 (3.25a), 2 (3.25b)and 3 (3.25c), respectively,
under charging power variations.

Identically to the parameter priorly analysed, the fundamental component of the
reactive power does not fulfill the first requirement of the feature selection due to
the high discrepancy under charging power variations. Hence, it was only chosen
the amplitude of third harmonic to be further analysed.
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Figure 3.26: Amplitude of the third harmonic of the reactive power under misalign-
ment and charging power variations.

Synthesizing the information from this detailed analysis, the features that are
more suitable for the purpose of this work are:

⋄ Amplitude of the 3rd harmonic of voltage v4;

⋄ Amplitude of the 5th harmonic of voltage v4;

⋄ Amplitude of the fundamental component of voltage v5;

⋄ Amplitude of the 3rd harmonic of voltage v5;

⋄ Amplitude of the 5th harmonic of voltage v5;

⋄ Amplitude of the 3rd harmonic of current isec;

⋄ Amplitude of the 3rd harmonic of the reactive power.

3.2.3 Data Normalization

A crucial step before training any AI model is without doubt the pre-processing
of data, which includes removing outliers and normalization procedures, which helps
improving the nature of the information [70]. Normalization by itself, is the process
where the attributes of the dataset are categorized to increase the bond between
them, making the dataset more flexible [71].

For this application in particular, the data was extracted for different values of
charging power and misalignments. Since the AI model to be implemented must be
able to predict the value of mutual inductance for various misalignments indepen-
dently of the charging power value, the data must be normalized for a specific value
of charging power. The objective of the developed AI model is to operate in a wide
range of charging powers without the need for training for each charging power in
particular. Hence, joining the fact that, in a real-world scenario, it is preferable for
the AI model to estimate the value of mutual inductance correctly in systems that
operate at a higher charging power, it was decided to normalize the data for 2000
W.

Thus, the procedure of normalization consisted on collecting the maximum value
of each feature when the charging power of the system was 2000 W. Consequently,
by employing (3.22) all the values of each feature were normalized. In this equation
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nf,c,p refers to the normalized value for a given feature f , charging power c and
misalignment position p, max(vf,2000) corresponds to the maximum value among
all misalignment positions of a given feature when the system works at 2000 W of
charging power and vf,c,p is the real value of a given feature for a specific charging
power and misalignment position.

nf,c,p =
max(vf,2000)− vf,c,p

max(vf,2000)
. (3.22)

Furthermore, it was necessary to multiply the value of mutual inductance by a
factor of 106 to ensure the proper functioning of the AI model.





Chapter 4

Implemented AI Model and
Results

This chapter will focus mainly on the presentation of the chosen AI model along
with the obtained results across different scenarios as well as with the improvements
applied to the algorithm during testing phase.

4.1 AI Model

The estimation of mutual inductance is a highly non linear and complex task
to attain with mathematical models. As presented in section 2.2 there are plenty
AI models available for regression tasks, however as cited in [48] ML models are
reliable as long as the data samples available appropriately represent the end-to-end
relationship, whereas the DL networks yield exceptional performance in classification
and regression tasks [72] without the constraints of ML models [28] since it has the
ability of adaptation.

With that said, it was decided to implement Multi-Layer-Percepton that is ba-
sically a fully connected multi-layer neural network [73]. This AI model has been
widely employed in IPT systems [37, 48, 51–55, 57, 74–77] due to its high reliability
and performance on fulfilling regression tasks.

Figure 4.1 illustrates the structure of the ANN implemented in this work. To
reach this configuration, the performance of the network was tested under different
combinations. In a first instance it was evaluated with a lower number of neurons
and subsequently with a higher number of hidden layers and neurons.

The inputs of the ANN represent the values of each feature that were selected
according to the requirements identified in section 3.2.2. The output corresponds to
the predicted mutual inductance value. The NN to be able to compute an output
value with the information available by the features needs to be composed of multiple
layers. These layers are usually known as fully-connected layers since each layer has
a defined number of neurons that are fully-connected between the layers of the
network, i.e., each node of one layer of the neural network is connected to every
node of the next layer [57].

Essentially, this connection between neurons can be formally expressed as pre-
sented in (4.1)[48], where zl,i denote the output of the i-th neuron in the l-th layer,

σ(·) is a non-linear activation function, ⟨·, ·⟩ represents the inner product, Θ
(l)
i is

the weight vector for the i-th neuron in the l-ih hidden layer, ul refers to the input

55
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Figure 4.1: Graphic representation of the implemented ANN structure.

vector of the l-th layer and finally b
(l)
i denotes the bias term.

zl,i = σ
(〈

Θ
(l)
i , ul

〉
+b

(l)
i

)
. (4.1)

Briefly, (4.1) characterizes the transition of knowledge between the fully-connected
layers. However the main objective of a ANN is to minimize the error between its
output and the target output. For this purpose there are various loss functions that
can be implemented including, RMSE, MSE, among others. This is accomplished
by giving a defined number of inputs and outputs to the network and consecutively
along the course of the training phase the weights and biases of each neuron are ad-
justed until a predefined condition is met [57, 73], which depends on the optimizer
1 that is being used.

The NN was implemented in MATLAB software, using the fitrnet function that
allows to implement a FFNN. This function was employed with the following pa-
rameters:

⋄ Predictor Data: Refers to the data used for training. The network was pa-
rameterized with the objective of achieving a good performance while requiring
minimal training data, that in this case refers to the positions of misalignment.

⋄ Response Data Refers to the target variable related to the training data.

⋄ Layer Sizes: Allows to define the size (number of neurons) and the quantity of
fully-connected layers. The implemented network consisted of four layers: an
input layer, two fully-connected layers, one with 1024 neurons and another
with a single output and finally the output layer that corresponds to the
predicted response values.

⋄ Activations: The activation function can be defined, which in this case was
the logistic sigmoid shown in section 2.2.

1Optimizers are algorithms used to modify weights and biases in order to reduce the value of
the loss function [78].
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⋄ Validation Patience: It affects the duration of training. The training stops
if the validation loss is greater than or equal to the minimum validation loss
computed so far, a defined number of consecutive occurrences. This parameter
was set to 100.

These parameters were attributed by trial and error, depending on the performance
of the network.

4.2 Analysis of Results

The performance of the ANN is going to be tested under different conditions:

⋄ The training data is extracted from simulations where signals are devoid of
interference.

⋄ The amplitude of the fundamental and harmonic components are obtained
from signals with white noise.

The primary objective of the implemented model is to predict the mutual induc-
tance value with minimal training requirements. In simpler terms, it aims to achieve
this with as few information from misalignment positions as possible, simulating a
real-world scenario where network training can be more straightforward, thus bol-
stering the robustness of the model. To analyse the performance of the ANN the
tests presented in table 4.1 where conducted.

To analyse the performance of the network through all the test situations three
metrics were selected: MAE, MAPE and R2. Table 4.2 presents the performance of
the network when trained with information from the two positions of misalignment
illustrated in Figure 4.2.

Figure 4.2: Misalignment positions considered for training the network.

The results presented clearly indicate a significant decline in the performance of
the network for charging powers exceeding 2000 W and falling below 1500 W. To
overcome this, the performance of the network was tested for different configura-
tions, however the results did not improve. Consequently, it was necessary to take
a different approach. Despite the metrics selected in section 3.2 appeared as opti-
mal solutions, it is important to acknowledge that each feature contributes uniquely
to the training process of the network. This implies that some features could po-
tentially have counterproductive effects on the performance of the network. In a
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Table 4.1: Conducted tests and respective descriptions.

Test Order Description

1st Test

Normalization: 2000 W

Features:

- v34, v
5
4

- vFC
5 , v35, v

5
5

- i3sec

- Q3

Number of positions: 2

Noise: No

2nd Test

Normalization: 2000 W

Features:

- v34, v
5
4

- vFC
5 , v35, v

5
5

- i3sec

Number of positions: 2

Noise: No

3rd Test

Normalization: 2000 W

Features:

- v34, v
5
4

- vFC
5 , v35, v

5
5

- i3sec

Number of positions: 8

Noise: No

4th Test

Normalization: 2000 W

Features:

- v34, v
5
4

- vFC
5 , v35, v

5
5

- i3sec

Number of positions: 9

Noise: Yes

practical situation one sensor can measure all the harmonic components of one sig-
nal, therefore it is beneficial to analyze the performance of the network when it
is trained recurring to the information of one signal at a time. Since the metric
R2 is conclusive enough about the accuracy of the network, Table 4.3 presents the
performance of the network under the different conditions of training.
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Table 4.2: Metrics of ANN when trained with data normalized for a 2000 W charging
power from the misalignment positions illustrated in Figure 4.2.

Charging

Power (W)

Metrics

MAE MAPE (%) R2

500 1.7500 15.0166 0.6086

1000 1.0825 8.5072 0.8388

1500 0.4960 3.9510 0.9651

2000 0.3014 2.8317 0.9769

2500 0.9784 7.7771 0.8585

3000 1.5186 11.5341 0.6615

Table 4.3: R2 Metric - Contribution of each signal when the ANN is trained with data
normalized for a 2000 W charging power from the misalignment positions illustrated
in Figure 4.2.

Charging

Power (W)

R2

v4 v5 i3sec Q3

500 0.6066 0.4609 0.8436 0.2277

1000 0.8465 0.7612 0.9478 0.6228

1500 0.9643 0.9273 0.9898 0.9105

2000 0.9866 0.9893 0.9854 0.9328

2500 0.9041 0.9399 0.9296 0.6417

3000 0.7564 0.8125 0.8463 0.1551

The results in Table 4.3 prove a the poor performance of the network when
it relies only on the amplitude of the 3rd harmonic of the reactive power. This
implies that it is not beneficial to define this parameter as a feature. As a result,
its removal translated into an improvement in the performance of the network as it
can be verified in Table 4.4.

Despite the advancements made towards the best possible performance there is
still one parameter that can be modified, the positions of misalignment used for the
training of the network. Therefore, a more precise analysis is required.

In Figure 4.3, it can be observed the performance of the network in a different
perspective. It allows a clear comparison between the predicted values of mutual
inductance and the true value of the mutual inductance for each situation of mis-
alignment. Essentially, points on the reference line indicate correct predictions.

By inspecting the behavior of the network it can be concluded that from 8 µH
onwards there is a clear divergence between the predicted mutual inductance and
the real mutual inductance value, which suggests that the network needs more in-
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Table 4.4: Metrics - Without the contribution of the amplitude of the 3rd harmonic
of reactive power.

Charging

Power (W)

Metrics

MAE MAPE (%) R2

500 1.6917 15.0094 0.6299

1000 1.0166 8.0878 0.8569

1500 0.4859 3.8393 0.9672

2000 0.1968 1.9191 0.9867

2500 0.7903 6.2707 0.9066

3000 1.2618 9.5551 0.7650

Figure 4.3: Comparison between predicted and real values of mutual inductance
- data normalized for a 2000 W charging power from the misalignment positions
illustrated in Figure 4.2.

formation to achieve a better performance. Thus, it was decided to provide to the
network with the information obtained for the misalignment positions illustrated in
Figure 4.4. The positions are identified with numbers between 1 and 5, where:

⋄ Number 1: Position of maximum value of the mutual inductance (aligned po-
sition).

⋄ Number 2: Positions where it was measured a value of mutual inductance
between 15 µH and 15.5 µH.



4.2. Analysis of Results 61

⋄ Number 3: Positions where was measured a value of mutual inductance be-
tween 12 µH and 12.5 µH.

⋄ Number 4: Positions where was measured a value of mutual inductance be-
tween 8 µH and 8.5 µH.

⋄ Number 5: Position of minimum value of the mutual inductance.

Figure 4.4: Misalignment positions used for ANN training.

This resulted in a training data of 8 out of 108 possible samples. The metrics
and the concrete comparison between the predicted mutual inductance and the real
mutual inductance are presented in Table 4.5 and Figure 4.5, respectively.

Table 4.5: Metrics - 2000 W Normalization and 8 misalignment positions for the
train dataset.

Charging

Power (W)

Metrics

MAE MAPE (%) R2

500 0.2575 2.5675 0.9886

1000 0.1421 1.1794 0.9966

1500 0.0660 0.5118 0.9992

2000 0.0227 0.1820 0.9999

2500 0.0370 0.2762 0.9997

3000 0.0536 0.3835 0.9993

Given that the results obtained translated into an error inferior to 1%, it is fair
to infer that the performance of the network is acceptable, accomplishing this way
one of the predetermined objectives.

4.2.1 Influence of Noise

In this section it is intended to test the robustness of the network against noisy
signals. In other words, previously the training and testing data was obtained
through clean data, i.e., signals without any interference, from the simulation envi-
ronment, while now the training data was acquired thorough signals with noise. It
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Figure 4.5: Test phase performance - 2000 W Normalization and eight misalignment
positions for train data.

was added to each signal extracted from the simulations white noise with 5% of the
amplitude of the respective signal. The obtained data is referred in this document
as noisy data. To obtain similar results to the ones presented with no noise, it was
necessary to add to the training data an additional misalignment position where the
value of mutual inductance stood in a range between 15 µH and 15.5 µH.

Hence, the metrics and the comparison between the real and predicted values of
mutual inductance are presented in table 4.6 and in Figure 4.6, respectively.

Table 4.6: Metrics of ANN when trained with noisy data normalized for a 2000 W
charging power from the nine misalignment positions.

Charging

Power (W)

Metrics

MAE MAPE (%) R2

500 0.2921 2.6821 0.9873

1000 0.1652 1.3152 0.9958

1500 0.0760 0.5763 0.9990

2000 0.0186 0.1539 0.9999

2500 0.0370 0.2745 0.9997

3000 0.0551 0.3923 0.9992

Table 4.6 demonstrates that similarly to the previous situation, the estimation
capability of the presented network is accurate with an error percentage also inferior
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Figure 4.6: Predicted Mutual Inductance value VS Real Mutual Inductance value
for all charging powers situations with noise introduction.

to 1%. This is only reasonable to affirm considering the tests conducted in this work.
An additional possibility was to test the performance of the network in misalignment
positions out of the boundaries established in the misalignments grid.

Additionally, it is important to note that the research was carried out in a com-
puter equipped with an Intel Core i7-8750H, 16 GB of RAMmemory and an NVIDIA
GeForce RTX 1050 Ti graphics card. The training phase with clean and noisy data
was completed after approximately 200 epochs for each dataset, resulting in a pro-
cess that lasted around 2 seconds.





Chapter 5

Conclusion and Future Work

5.1 Conclusions

Given the several advantages of using wireless charging systems in EVs, such
as the ability to provide power transfer without physical contact between the coils,
galvanic isolation, absence of user interaction and protection under adverse weather
conditions, it guarantees a more convenient way to use the vehicle. Therefore, it is of
true relevance embark on the path that allows the optimization and improvement of
IPT systems. To this end, after understanding the benefits of AI and with the aim of
contributing to this evolution, this dissertation proposed the implementation of an
AI model to estimate the mutual inductance under misalignment conditions between
the transmitter and receiver pads. This is a crucial parameter with the capability of
maximizing the power transfer, therefore the importance to be estimated accurately.

As analyzed in the literature review, there are various AI models that could be
implemented to this end, such as random forest regression, support vector machines,
decision trees, ANNs, among others. Nonetheless, in the development of this work,
it was only tested the performance of an ANN.

The parameterization of the network along with the selection of features more
suitable for this application, was determined through a trial and error phases, based
on the performance of the network. Considering the charging powers admitted by the
IPT system, it is recognized that in a real-world wireless charging scenario, optimal
AI model performance at higher charging powers is preferable. Nevertheless, the
proposed configuration manages to deliver good estimation performance across the
entire range of charging powers. To accomplish this, it was chosen as features the
variables that have a pronounced variation during misalignment occurrences while
maintaining minimal variation when the charging power varies. Consequently, the
chosen features include the amplitude of the harmonic components of three signals:
the amplitude of the third and fifth harmonic of the voltage measured in terminals
of receiver pad, the amplitude of the fundamental component, as well as, of the
third and fifth harmonic of the voltage measured in receiver pad after the capacitor
of the resonant tank referred to the receiver pad and finally the amplitude of the
third harmonic of the current measured in the receiver pad.

Upon analyzing the results, it was concluded that a high number of features is
not a necessary condition for achieving an improved performance of the network.
There are cases where additional features can worsen the accuracy of the neural
network. In this work, the addition of the amplitude of the third harmonic of the
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reactive power is a clear example of this statement, since without its contribution
the accuracy of the model increased by approximately 15%, 6%, 1%, 1%, 6% and
18% for charging power levels of 500 W, 1000 W, 1500 W, 2000 W, 2500 W and
3000 W, respectively.

To further verify the robustness of the network, training data was derived from
clean and noisy signals. In the first case, the highest observed error was 2.57%
occurring at a charging power of 500 W. Similarly, the highest error for the second
situation was 2.68% also at a charging power of 500 W. It is also worth to mention
that the training phase was concluded in approximately 2 seconds, which is primarily
due to the fact that the neural network only contains two hidden layers and the
training dataset is noticeably reduced. Therefore its implementation does not entail
a high computational cost.

Thus, these results clearly imply that the proposed model can effectively estimate
the value of the mutual inductance under misalignment and charging power vari-
ations, subsequently contributing to the maximization of the power transfer. Fur-
thermore, it can be concluded that given the circumstances of the training phase,
especially regarding the dimension of the dataset, the proposed ANN is a well suited
solution for this purpose, even when comparing with other ML models.

5.2 Future Work

Considering the conducted research and the diverse applications of AI, the follow-
ing suggestions are presented to further expand and optimize IPT systems through
AI:

⋄ Incorporate a buck-boost converter and a battery in the output of the simula-
tion model. Train and verify the performance of the AI model under various
state-of-charge conditions of the battery.

⋄ Deploy the developed network in an identical experimental setup to validate
its performance under real-world conditions.

⋄ Extend the implementation of the network to dynamic IPT systems under
diverse resonant topologies.

⋄ Broaden the capabilities of the network by training it to predict other relevant
circuit parameters beyond mutual inductance such as the exact position of the
receiver pad.
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Appendix A

SSS IPT System details

This appendix presents in greater detail the IPT system used for the measure-
ments of the mutual inductance. An overview of the used prototype is displayed in
Figure A.1.

Figure A.1: Overview of the IPT prototype.
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The transmitter and receiver pads were installed into the prototype with the
same dimensions and shared the same bipolar topology. Each coil within the pad
has 10 turns. Figure A.2 provides a visual representation of the transmitter pad.

Figure A.2: Transmitter pad.

As referred in Section 3.1.2 the values of self and mutual inductances were mea-
sured by an LCR meter. This particular device is displayed in Figure A.3.

Figure A.3: LCR BK PRECISION 889A.



Appendix B

Feature Extraction

This appendix reveals the remaining detailed data that served as a foundation
to derive the conclusions mentioned in section 3.2.

B.1 Waveform Analysis

This section serves the purpose of supporting the analysis carried out, with wave-
forms of the remaining signals from transmitter and receiver sides.

B.1.1 Voltage v2

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure B.1: v2 waveform representation under charging power variations.
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B.1.2 Voltage v3

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure B.2: v3 waveform representation under charging power variations.

B.1.3 Current iin

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure B.3: iin waveform representation under charging power variations.
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B.1.4 Voltage v4

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure B.4: v4 waveform representation under charging power variations.

B.1.5 Current isec

(a) mx = 0 and my = 0 (b) mx = 20 and my = 0

(c) mx = 50 and my = 0

Figure B.5: isec waveform representation under charging power variations.
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B.2 Amplitude of harmonic components under charg-

ing power variations

Moreover, this appendix section will objectively present the tables and respective
graphs that referred to both chosen and remain variables.

B.2.1 Voltage v1

Table B.1: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v1 under charging power variations: mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 146.90 170.41 205.32 250.44 306.14 375.45

40000 50.91 50.89 50.87 50.85 50.83 50.80

60000 27.03 27.02 27.02 27.02 27.01 27.01

80000 18.74 18.74 18.74 18.74 18.74 18.73

100000 14.41 14.41 14.41 14.40 14.40 14.40

120000 11.72 11.72 11.72 11.72 11.72 11.72

140000 9.89 9.89 9.89 9.89 9.89 9.89

160000 8.55 8.55 8.55 8.55 8.55 8.55

Table B.2: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v1 under charging power variations: mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 145.02 170.76 210.60 266.23 346.92 392.94

40000 50.66 50.65 50.63 50.61 50.58 50.56

60000 26.99 26.99 26.99 26.98 26.98 26.97

80000 18.73 18.73 18.73 18.72 18.72 18.72

100000 14.40 14.40 14.40 14.40 14.40 14.40

120000 11.72 11.72 11.72 11.72 11.72 11.72

140000 9.89 9.89 9.88 9.88 9.88 9.88

160000 8.55 8.55 8.55 8.55 8.55 8.55
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Table B.3: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v1 under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 145.62 231.40 231.40 231.40 231.40 231.40

40000 50.29 50.25 50.25 50.25 50.25 50.25

60000 26.94 26.93 26.93 26.93 26.93 26.93

80000 18.71 18.71 18.71 18.71 18.71 18.71

100000 14.39 14.39 14.39 14.39 14.39 14.39

120000 11.71 11.71 11.71 11.71 11.71 11.71

140000 9.88 9.88 9.88 9.88 9.88 9.88

160000 8.55 8.55 8.55 8.55 8.55 8.55

(a) (b)

(c)

Figure B.6: Amplitude of the fundamental component, third and fifth harmonics of
the voltage v1 under misalignment and charging power variations.
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B.2.2 Voltage v2

Table B.4: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v2 under charging power variations : mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 186.90 195.74 211.25 234.09 265.28 307.19

40000 19.87 19.95 20.03 20.13 20.23 20.36

60000 11.54 11.58 11.63 11.67 11.73 11.79

80000 8.19 8.21 8.24 8.28 8.31 8.36

100000 6.36 6.38 6.41 6.43 6.46 6.49

120000 5.22 5.23 5.25 5.27 5.29 5.32

140000 4.43 4.45 4.46 4.48 4.49 4.51

160000 3.86 3.87 3.88 3.90 3.91 3.93

Table B.5: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v2 under charging power variations : mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 185.30 195.13 213.15 242.14 289.23 317.83

40000 21.00 21.07 21.16 21.26 21.40 21.47

60000 12.08 12.12 12.16 12.22 12.29 12.33

80000 8.54 8.57 8.60 8.63 8.68 8.71

100000 6.63 6.65 6.67 6.69 6.73 6.75

120000 5.42 5.44 5.46 5.48 5.51 5.52

140000 4.60 4.61 4.62 4.64 4.66 4.68

160000 3.99 4.00 4.02 4.03 4.05 4.06
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Table B.6: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v2 under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 183.78 222.39 222.39 222.39 222.39 222.39

40000 22.74 22.89 22.89 22.89 22.89 22.89

60000 12.93 13.01 13.01 13.01 13.01 13.01

80000 9.10 9.16 9.16 9.16 9.16 9.16

100000 7.04 7.09 7.09 7.09 7.09 7.09

120000 5.75 5.78 5.78 5.78 5.78 5.78

140000 4.86 4.89 4.89 4.89 4.89 4.89

160000 4.21 4.24 4.24 4.24 4.24 4.24

Figure B.7: Amplitude (in volt) of fundamental component, third and fifth harmon-
ics of the voltage v2 under misalignment and charging power variations.



84 Feature Extraction

B.2.3 Voltage v3

Table B.7: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v3 under charging power variations : mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 186.98 194.11 208.01 229.44 259.47 300.42

40000 28.04 28.08 28.12 28.16 28.20 28.26

60000 12.93 12.96 13.00 13.04 13.09 13.14

80000 8.66 8.69 8.71 8.74 8.78 8.82

100000 6.58 6.60 6.62 6.643 6.67 6.70

120000 5.34 5.35 5.37 5.39 5.41 5.43

140000 4.50 4.52 4.529 4.544 4.56 4.58

160000 3.91 3.92 3.928 3.940 3.95 3.97

Table B.8: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v3 under charging power variations : mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 188.78 196.30 212.21 239.18 284.38 312.23

40000 28.54 28.58 28.61 28.66 28.72 28.75

60000 13.37 13.40 13.44 13.48 13.54 13.57

80000 8.98 9.01 9.04 9.07 9.11 9.14

100000 6.83 6.85 6.87 6.89 6.93 6.95

120000 5.53 5.55 5.56 5.58 5.61 5.63

140000 4.66 4.67 4.69 4.70 4.73 4.74

160000 4.04 4.05 4.06 4.07 4.09 4.10
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Table B.9: Amplitude (in volt) of the fundamental and higher-order harmonic com-
ponents of voltage v3 under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 192.94 225.21 225.21 225.21 225.21 225.21

40000 29.32 29.38 29.38 29.38 29.38 29.38

60000 14.06 14.13 14.13 14.13 14.13 14.13

80000 9.50 9.55 9.55 9.55 9.55 9.55

100000 7.22 7.27 7.27 7.27 7.27 7.27

120000 5.85 5.88 5.88 5.88 5.88 5.88

140000 4.92 4.95 4.95 4.95 4.95 4.95

160000 4.25 4.27 4.27 4.27 4.27 4.27
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B.2.4 Current iin

Table B.10: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current iin under charging power variations : mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 10.21 19.10 28.81 39.55 51.72 66.13

40000 4.84 4.83 4.82 4.81 4.79 4.78

60000 1.48 1.48 1.48 1.48 1.47 1.47

80000 0.73 0.73 0.72 0.72 0.72 0.72

100000 0.43 0.43 0.43 0.43 0.43 0.43

120000 0.29 0.29 0.28 0.28 0.28 0.28

140000 0.20 0.20 0.20 0.20 0.20 0.20

160000 0.15 0.15 0.15 0.15 0.15 0.15

Table B.11: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current iin under charging power variations : mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 10.31 19.70 30.43 43.28 60.39 69.79

40000 4.70 4.69 4.68 4.67 4.65 4.64

60000 1.45 1.45 1.44 1.44 1.44 1.43

80000 0.71 0.71 0.71 0.71 0.71 0.70

100000 0.42 0.42 0.42 0.42 0.42 0.42

120000 0.28 0.28 0.28 0.28 0.28 0.28

140000 0.20 0.20 0.20 0.20 0.20 0.20

160000 0.15 0.15 0.15 0.15 0.15 0.15
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Table B.12: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current iin under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 12.25 35.91 35.91 35.91 35.91 35.91

40000 4.48 4.46 4.46 4.46 4.46 4.46

60000 1.40 1.39 1.39 1.39 1.39 1.39

80000 0.69 0.69 0.69 0.69 0.69 0.69

100000 0.41 0.41 0.41 0.41 0.41 0.41

120000 0.27 0.27 0.27 0.27 0.27 0.27

140000 0.19 0.19 0.19 0.19 0.19 0.19

160000 0.14 0.14 0.14 0.14 0.14 0.14

Figure B.8: Amplitude of the fundamental component, third and fifth harmonics of
the current iin under misalignment and charging power variations.
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B.2.5 Current ipri

Table B.13: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current ipri under charging power variations : mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 33.20 32.96 32.70 32.41 32.09 31.70

40000 2.22 2.21 2.19 2.18 2.16 2.14

60000 0.63 0.63 0.62 0.62 0.61 0.61

80000 0.30 0.30 0.30 0.30 0.29 0.29

100000 0.18 0.18 0.18 0.17 0.17 0.17

120000 0.12 0.12 0.12 0.11 0.11 0.11

140000 0.08 0.08 0.08 0.08 0.08 0.08

160000 0.06 0.06 0.06 0.06 0.06 0.06

Table B.14: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current ipri under charging power variations : mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 33.20 32.94 32.66 32.31 31.85 31.60

40000 2.05 2.04 2.02 2.01 1.99 1.97

60000 0.58 0.58 0.58 0.57 0.57 0.56

80000 0.28 0.28 0.28 0.28 0.27 0.27

100000 0.17 0.16 0.16 0.16 0.16 0.16

120000 0.11 0.11 0.11 0.11 0.11 0.11

140000 0.08 0.08 0.08 0.08 0.07 0.07

160000 0.06 0.06 0.06 0.06 0.06 0.06
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Table B.15: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current ipri under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 33.14 32.51 32.51 32.51 32.51 32.51

40000 1.78 1.76 1.76 1.76 1.76 1.76

60000 0.51 0.51 0.51 0.51 0.51 0.51

80000 0.25 0.24 0.24 0.24 0.24 0.24

100000 0.15 0.14 0.14 0.14 0.14 0.14

120000 0.10 0.10 0.10 0.10 0.10 0.10

140000 0.07 0.07 0.07 0.07 0.07 0.07

160000 0.05 0.05 0.05 0.05 0.05 0.05

Figure B.9: Amplitude of the fundamental component, third and fifth harmonics of
the current ipri under misalignment and charging power variations.
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B.2.6 Voltage v4

Table B.16: Amplitude (in volt) of the fundamental and higher-order harmonic
components of voltage v4 under charging power variations : mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 127.54 253.60 393.28 548.39 724.50 932.99

40000 25.81 24.97 24.05 23.04 21.89 20.53

60000 13.68 13.22 12.71 12.15 11.52 10.77

80000 9.48 9.16 8.81 8.42 7.97 7.45

100000 7.29 7.04 6.77 6.47 6.12 5.72

120000 5.93 5.73 5.50 5.26 4.98 4.65

140000 5.00 4.83 4.64 4.44 4.20 3.92

160000 4.33 4.18 4.02 3.84 3.63 3.39

Table B.17: Amplitude (in volt) of the fundamental and higher-order harmonic
components of voltage v4 under charging power variations : mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 151.95 314.42 501.42 725.56 1024.32 1188.48

40000 21.06 20.06 18.93 17.57 15.76 14.77

60000 11.20 10.65 10.02 9.27 8.27 7.72

80000 7.76 7.38 6.94 6.42 5.72 5.33

100000 5.97 5.67 5.33 4.93 4.39 4.09

120000 4.86 4.62 4.34 4.01 3.57 3.33

140000 4.09 3.89 3.66 3.38 3.01 2.81

160000 3.54 3.37 3.17 2.93 2.60 2.43
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Table B.18: Amplitude (in volt) of the fundamental and higher-order harmonic
components of voltage v4 under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 365.18 1188.30 1188.30 1188.30 1188.30 1188.30

40000 9.00 4.63 4.63 4.63 4.63 4.63

60000 4.78 2.36 2.36 2.36 2.36 2.36

80000 3.31 1.62 1.62 1.62 1.62 1.62

100000 2.55 1.24 1.24 1.24 1.24 1.24

120000 2.07 1.01 1.01 1.01 1.01 1.01

140000 1.74 0.85 0.85 0.85 0.85 0.85

160000 1.51 0.73 0.73 0.73 0.73 0.73

Table B.19: Amplitude (in volt) of the third and fifth harmonics of voltage v4 under
misalignment and charging power variations

mx (mm) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

v34

0 25.81 24.97 24.05 23.04 21.89 20.53

20 21.06 20.06 18.93 17.57 15.76 14.77

50 9.00 4.63 4.63 4.63 4.63 4.63

v54

0 13.68 13.22 12.71 12.15 11.52 10.77

20 11.20 10.65 10.02 9.27 8.27 7.72

50 4.78 2.36 2.36 2.36 2.36 2.36
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B.2.7 Voltage v5

Table B.20: Amplitude (in volt) of the fundamental and higher-order harmonic
components of voltage v5 under charging power variations : mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 64.45 62.25 59.87 57.23 54.24 50.71

40000 21.48 20.73 19.92 19.03 18.02 16.82

60000 12.89 12.44 11.96 11.42 10.81 10.09

80000 9.21 8.89 8.54 8.16 7.72 7.21

100000 7.16 6.91 6.64 6.35 6.01 5.61

120000 5.86 5.66 5.44 5.19 4.92 4.59

140000 4.96 4.79 4.60 4.40 4.16 3.89

160000 4.30 4.15 3.99 3.81 3.61 3.37

Table B.21: Amplitude (in volt) of the fundamental and higher-order harmonic
components of voltage v5 under charging power variations : mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 52.81 50.21 47.25 43.71 38.99 36.40

40000 17.59 16.71 15.71 14.51 12.91 12.03

60000 10.55 10.03 9.43 8.70 7.75 7.22

80000 7.54 7.16 6.73 6.22 5.53 5.16

100000 5.86 5.57 5.24 4.84 4.30 4.01

120000 4.80 4.56 4.29 3.96 3.52 3.28

140000 4.06 3.86 3.63 3.35 2.98 2.78

160000 3.52 3.35 3.15 2.91 2.59 2.41
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Table B.22: Amplitude (in volt) of the fundamental and higher-order harmonic
components of voltage v5 under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 22.61 11.18 11.18 11.18 11.18 11.18

40000 7.51 3.62 3.62 3.62 3.62 3.62

60000 4.50 2.17 2.17 2.17 2.17 2.17

80000 3.22 1.55 1.55 1.55 1.55 1.55

100000 2.50 1.21 1.21 1.21 1.21 1.21

120000 2.04 0.99 0.99 0.99 0.99 0.99

140000 1.73 0.84 0.84 0.84 0.84 0.84

160000 1.50 0.73 0.73 0.73 0.73 0.73

Table B.23: Amplitude of the third and fifth harmonics of voltage v5 under mis-
alignment and charging power variations

mx (mm) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

vFC
5

0 64.45 62.25 59.87 57.23 54.24 50.71

20 52.81 50.21 47.25 43.71 38.99 36.40

50 22.61 11.18 11.18 11.18 11.18 11.18

v35

0 21.48 20.73 19.92 19.03 18.02 16.82

20 17.59 16.71 15.71 14.51 12.91 12.03

50 7.51 3.62 3.62 3.62 3.62 3.62

v55

0 12.89 12.44 11.96 11.42 10.81 10.09

20 10.55 10.03 9.43 8.70 7.75 7.22

50 4.50 2.17 2.17 2.17 2.17 2.17
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B.2.8 Current isec

Table B.24: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current isec under charging power variations: mx = 0 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 16.25 33.23 51.81 72.37 95.68 123.27

40000 1.72 1.68 1.64 1.59 1.53 1.47

60000 0.53 0.51 0.50 0.48 0.47 0.44

80000 0.26 0.25 0.24 0.24 0.23 0.22

100000 0.15 0.15 0.14 0.14 0.13 0.13

120000 0.10 0.1 0.10 0.09 0.09 0.08

140000 4.96 4.79 4.60 4.40 4.16 3.89

160000 4.30 4.15 3.99 3.81 3.61 3.37

Table B.25: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current isec under charging power variations : mx = 20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 19.79 41.45 66.22 95.87 135.38 157.08

40000 1.37 1.33 1.27 1.21 1.13 1.08

60000 0.42 0.41 0.39 0.37 0.34 0.33

80000 0.21 0.20 0.19 0.18 0.17 0.16

100000 0.12 0.12 0.11 0.11 0.10 0.09

120000 0.08 0.08 0.08 0.07 0.07 0.06

140000 0.06 0.06 0.05 0.05 0.05 0.04

160000 0.04 0.04 0.04 0.04 0.03 0.03
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Table B.26: Amplitude (in ampere) of the fundamental and higher-order harmonic
components of current isec under charging power variations : mx = 50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 48.25 157.08 157.08 157.08 157.08 157.08

40000 0.59 0.40 0.40 0.40 0.40 0.40

60000 0.18 0.12 0.12 0.12 0.12 0.12

80000 0.09 0.06 0.06 0.06 0.06 0.06

100000 0.05 0.03 0.03 0.03 0.03 0.03

120000 0.04 0.02 0.02 0.02 0.02 0.02

140000 0.03 0.02 0.02 0.02 0.02 0.02

160000 0.02 0.01 0.01 0.01 0.01 0.01

Table B.27: Amplitude of the 3rd harmonic of current isec under misalignment and
charging power variations

mx (mm) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

i3sec

0 1.72 1.68 1.64 1.59 1.53 1.47

20 1.37 1.33 1.27 1.21 1.13 1.08

50 0.59 0.40 0.40 0.40 0.40 0.40
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B.2.9 Reactive Power

Table B.28: Amplitude (in volt-amp reactive) of the fundamental and higher-order
harmonic components of Reactive Power under charging power variations : mx = 0
and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 99.36 91.53 83.28 74.50 64.97 54.27

40000 -18.46 -17.41 -16.29 -15.10 -13.81 -12.34

60000 -3.39 -3.19 -2.98 -2.76 -2.51 -2.24

80000 -1.18 -1.11 -1.04 -0.96 -0.88 -0.78

100000 -0.55 -0.51 -0.48 -0.44 -0.40 -0.36

120000 -0.30 -0.28 -0.26 -0.24 -0.22 -0.19

140000 -0.18 -0.17 -0.16 -0.14 -0.13 -0.12

160000 -0.11 -0.11 -0.10 -0.09 -0.08 -0.08

Table B.29: Amplitude (in volt-amp reactive) of the fundamental and higher-order
harmonic components of Reactive Power under charging power variations : mx =
20 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 69.85 65.16 57.39 48.51 37.36 31.56

40000 -12.08 -11.09 -10.01 -8.79 -7.27 -6.50

60000 -2.23 -2.04 -1.84 -1.61 -1.32 -1.18

80000 -0.78 -0.71 -0.64 -0.56 -0.46 -0.41

100000 -0.36 -0.33 -0.30 -0.26 -0.21 -0.19

120000 -0.20 -0.18 -0.16 -0.14 -0.12 -0.10

140000 -0.12 -0.11 -0.10 -0.08 -0.07 -0.06

160000 -0.08 -0.07 -0.06 -0.05 -0.04 -0.04
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Table B.30: Amplitude (in volt-amp reactive) of the fundamental and higher-order
harmonic components of Reactive Power under charging power variations : mx =
50 and my = 0

Frequency (Hz) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

20000 12.29 4.26 4.26 4.26 4.26 4.26

40000 -2.22 -0.72 -0.72 -0.72 -0.72 -0.72

60000 -0.41 -0.13 -0.13 -0.13 -0.13 -0.13

80000 -0.14 -0.04 -0.04 -0.04 -0.04 -0.04

100000 -0.07 -0.02 -0.02 -0.02 -0.02 -0.02

120000 -0.04 -0.01 -0.01 -0.01 -0.01 -0.01

140000 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01

160000 -0.01 0.00 0.00 0.00 0.00 0.00

Table B.31: Amplitude of 3rd harmonic of reactive power under misalignment and
charging power variations

mx (mm) 500 W 1000 W 1500 W 2000 W 2500 W 3000 W

Q3

0 -18.46 -17.41 -16.29 -15.10 -13.81 -12.34

20 -12.09 -11.09 -10.01 -8.79 -7.27 -6.50

50 -2.24 -0.72 -0.72 -0.72 -0.72 -0.72
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