

Margarida de Carvalho Nogueira Amaro

INTELLIGENT COLLABORATIVE ROBOTICS

FOR STEEL MOLD POLISHING

Dissertation in Integrated Master’s in Electrical and Computer

Engineering, supervised by Professor Dr. Rui Pedro Duarte
Cortesão and presented to the Department of Electrical and

Computer Engineering.

September 2023

Margarida de Carvalho Nogueira Amaro

INTELLIGENT COLLABORATIVE ROBOTICS
FOR STEEL MOLD POLISHING

Dissertation in Integrated Master’s in Electrical and Computer Engineering,

Supervised by Dr. Rui Pedro Duarte Cortesão and presented to

the Department of Electrical and Computer Engineering

September 2023

i

Intelligent Collaborative Robotics for Steel Mold Polishing

”I became insane with long intervals of horrible sanity.”

Edgar Allan Poe

ii

iii

Acknowledgments

I would like to express my deepest appreciation to Prof. Rui Cortesão. For acceptingme

as his mentee and for guiding me through all the exhausting process of constructing this

thesis. I’d like to acknowledge Prof. Paulo Peixoto for his guidance in machine learning,

in which I had no background.

Special thanks to my friends, the ones walking by my side since elementary school and

the ones university gave me, for lifting my spirit when down.

I would like to express my deepest gratitude to my parents, Pedro and Florinda, my

sisters, Mafalda and Joana, and my favorite aunt, Fátima, for never giving up on me and

helping me throughout my life.

iv

v

Resumo

A crescente procura pela utilização de objetos de plástico tem promovido a utilização

de moldes no seu fabrico e produção. Numa indústria que parece estar limitada apenas

pela imaginação humana, os moldes permitem a produção em massa de objetos de plás-

tico. A produção em massa permite reduzir o custo dos objetos de plástico, contribuindo

deste modo para um maior crescimento das necessidades desta indústria. Neste contexto,

a qualidade do objeto de plástico é fortemente dependente da qualidade do molde. Por

conseguinte, a criação de moldes de alta qualidade a baixo custo é uma exigência da in-

dústria. Neste contexto, o polimento é um processo crítico no fabrico de moldes, uma

vez que é uma tarefa tipicamente conduzida por operadores humanos especializados, com

custos elevados ao longo do tempo.

Nesta tese de mestrado, propõe-se a utilização de Redes Neuronais com Memória de

Longo e Curto prazo para abordar o problema do polimento de moldes. Este tipo de redes

neuronais profundas são especificamente concebidas para previsão de séries temporais,

sendo adequadas para caracterizar a habilidade humana. Estas redes conseguem captar

o padrão humano do polimento, gerando referências treinadas para aplicações robóticas.

Neste trabalho é utilizado o robô Panda, da Franka Emika, para executar polimentos ba-

seados na demonstração humana. A impedância do robô é controlada tendo em conta a

dinâmica de interação do braço humano.

Palavras-chave: Memória de longo e curto prazo, Redes Neuronais Profundas, Apren-

dizagem Máquina, Arquitetura de Controlo de Impedância, polimento de moldes.

vi

vii

Abstract

Mold relevance in the plastic industry has increased over the years due to the high stan-

dards of modern societies. The use of molds allows the mass production of a great variety

of objects for our daily lives. In this context, the quality of plastic objects greatly depends

onmold characteristics. Therefore, creating high qualitymoldswith low cost is an industry

demand. Polishing is a critical process in mold fabrication since it is typically conducted

by specialized operators. Mold polishing is a time consuming task, that accounts for an

important part of the mold cost.

In this thesis, a Long Short TermMemory (LSTM) Neural Network (NN) is proposed to

address the problem of robotic-assistedmold polishing. This type of DeepNeural Network

(DNN) is specifically designed for time series forecasting, being appropriate to represent

human skills. This work uses a Panda robot, from Franka Emika, to execute polishing

tasks based on human demonstration. The robot impedance is designed taking into account

human arm interaction dynamics.

Keywords: Long Short TermMemory, DeepNeural Network,Machine learning, Impedance

Control Architecture, mold polishing.

viii

ix

Contents

List of Figures xv

List of Tables xxx

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Structure of the Document . 4

2 State of the Art 5

2.1 Control Architecture . 5

2.2 Human Transfer Skill . 8

2.3 Neuronal Networks . 9

3 Methodology 12

3.1 Panda Robot . 12

3.1.1 Equipment Overview . 14

3.1.2 Communication Modes . 14

3.1.3 Control Architecture . 17

3.2 Neural Networks . 18

3.2.1 LSTM . 22

3.2.2 Parameters and Hyperparameters 25

3.2.3 LSTM Model . 27

x

Contents

3.2.3.1 Environment . 27

3.2.3.2 Data Collection . 27

3.2.3.3 Data Processing . 28

3.2.3.4 Model . 32

4 Results 37

4.1 LSTM . 37

4.1.1 Univariate Vanilla Architecture 37

4.1.2 Univariate Stacked Architecture 40

4.1.3 Multivariate Vanilla Architecture 48

4.1.4 Multivariate Stacked Architecture 50

4.2 Findings and Result Discussion . 55

4.3 Demonstration Mold Used for Testing 55

4.4 Simulation of the Polishing Process . 55

4.5 Real Life Polishing . 58

5 Conclusion and Future Work 60

5.1 Future Work . 61

6 Appendix A Complementary Results

7 Appendix B Complementary Results

Bibliography

xi

xii

Acronyms

Greatest Common Divisor (GCD)

Least Common Multiple (LCM)

Computer Numerically Controlled (CNC)

Long Short Term Memory (LSTM)

State-of-the-Art (SOTA)

Learning from Demonstration (LfD)

Bi-Directional Long Short Term Memory (BI-LSTM)

Deep Neural Network (DNN)

Autoregressive Integrated Moving Average (ARIMA)

Degrees of Freedom (Dof)

Franka Control Interface (FCI)

Robot Operating System (ROS)

Universal Robot Description Format (URDF)

Artificial Neural Network (ANN)

Neural Network (NN)

Feedforward Neural Networks (FNN)

Recurrent Neural Network (RNN)

xiii

Intelligent Collaborative Robotics for Steel Mold Polishing

Stochastic Gradient Descent (SGD)

Rectified Linear Unit (ReLu)

Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)

Mean Absolute Error (MAE)

Adaptive Moment Estimation (Adam)

Root Mean Square Propagation (RMSprop)

Stochastic Gradient Descent with Momentum (SGDM)

xiv

List of Figures

3.1 Panda robot provided by Franka Emika [1]. 13

3.2 The set up of the Panda Robot [1]. 14

3.3 Desk top interface of Panda robot. 15

3.4 The schematic overview of the FCI [1]. 16

3.5 Panda robot simulation on Gazebo. 16

3.6 Control architecture formold polishing. ACartesian impedance controller

with posture optimization, where Cartesian positioning is the primary task

and posture optimization is performed in the null-space [2]. 17

3.7 The schematic of a perceptron. It receives an input x, which is a vector

with three components, though three input cells, and generates an output

which is a single value. Note that θ is a hyperparameter that needs to be

provided [3]. 19

3.8 A simplified comparative illustration of an ANN and RNN architecture [4]. 20

3.9 Basic backpropagation [5]. 21

3.10 The repeating model of an RNN [6]. 22

3.11 The repeating model of an LSTM [6]. 23

3.12 Structure of an LSTM unit [7]. 24

3.13 Input data of x coordinates of pattern one for LSTM with only one input

feature. 29

3.14 Input data of y coordinates of pattern one for LSTM with only one input

feature. 29

3.15 Input data of x and y coordinates of pattern one for LSTM with two input

features. 29

xv

Intelligent Collaborative Robotics for Steel Mold Polishing

3.16 Input data of x coordinates of pattern two for LSTM with only one input

feature. 30

3.17 Input data of y coordinates of pattern two for LSTM with only one input

feature. 30

3.18 Input data of x and y coordinates of pattern two for LSTM with two input

features. 30

3.19 Vanilla LSTM diagram. 33

3.20 Stacked LSTM diagram with two hidden layers. 33

4.1 Diagram of LSTM with a Vanilla architecture. 38

4.2 Univariate Vanilla LSTMoutput for x points of pattern one with 200 time step, 70

epochs, 16 for batch size, 512 neurons in the hidden layer, train-test split ratio of

90-10%, tangent as activation function and Adam as optimizer. Image (a) refers

to the open loop output while (b) to closed loop output. The blue line is the input

of the trained NN and the red line is the output. 41

4.6 Diagram of LSTM with a Stacked architecture, with two hidden LSTM

layers. 41

4.3 Univariate Vanilla LSTM output for y points of pattern one with 200 time step,

70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split

ratio of 90-10%, tangent as activation function and Adam as optimizer. Image

(a) refers to the open loop output while (b) to closed loop output. The blue line

is the input of the trained NN and the red line is the output. 42

4.4 Univariate Vanilla LSTM output for x points of pattern two with 200 time step,

70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split

ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Image

(a) refers to the open loop output while (b) to closed loop output. The blue line

is the input of the trained NN and the red line is the output. 43

xvi

List of Figures

4.5 Univariate Vanilla LSTM output for y points of pattern two with 200 time step,

70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split

ratio of 90-10%, ReLu as activation function and Adam as optimizer. Image (a)

refers to the open loop output while (b) to closed loop output. The blue line is

the input of the trained NN and the red line is the output. 43

4.7 Univariate Stacked LSTM output for x points of pattern two with 200 time step,

70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio

of 90-10%, tangent as activation function and RMSprop as optimizer. Image (a)

refers to the open loop output while (b) to closed loop output. The blue line is

the input of the trained NN and the red line is the output. 46

4.8 Univariate Stacked LSTM output for y points of pattern two with 200 time step,

70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio

of 90-10%, tangent as activation function and RMSprop as optimizer. Image (a)

refers to the open loop output while (b) to closed loop output. The blue line is

the input of the trained NN and the red line is the output. 46

4.9 Univariate Stacked LSTM output for x points of pattern two with 200 time step,

70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split

ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Image

(a) refers to the open loop output while (b) to closed loop output. The blue line

is the input of the trained NN and the red line is the output. 47

4.10 Univariate Stacked LSTM output for y points of pattern two with 200 time step,

70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split

ratio of 90-10%, ReLu as activation function and Adam as optimizer. Image (a)

refers to the open loop output while (b) to closed loop output. The blue line is

the input of the trained NN and the red line is the output. 47

4.11 Multivariate Vanilla LSTM open loop output for x and y points of pattern

one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

andAdam as optimizer. Where the blue solid line is the input of the trained

NN and the red line is the output. 49

xvii

Intelligent Collaborative Robotics for Steel Mold Polishing

4.12 Multivariate Vanilla LSTM close loop output for x and y points of pattern

one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

andAdam as optimizer. Where the blue solid line is the input of the trained

NN and the red dashed line is the output. 50

4.13 Multivariate Vanilla LSTM open loop output for x and y points of pattern

two with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and Adam as optimizer. Image (a) refers to the open loop output while (b)

to closed loop output. The blue solid line is the input of the trained NN

and the red line is the output. 51

4.14 Multivariate Stacked LSTM open loop output for x and y points of pattern

one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

andAdam as optimizer. Where the blue solid line is the input of the trained

NN and the red line is the output. 53

4.15 Multivariate Stacked LSTM close loop output for x and y points of pattern

one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

andAdam as optimizer. Where the blue solid line is the input of the trained

NN and the red line is the output. 53

4.16 Multivariate Stacked LSTM open loop output for x and y points of pattern

two with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and Adam as optimizer. Image (a) refers to the open loop output while (b)

to closed loop output. Where the blue solid line is the input of the trained

NN and the red line is the output. 54

4.17 Demonstration mold used for testing and simulation purposes. 56

4.18 RVIZ simulation of the mold and robot Panda. 56

4.19 MatLab CAD visualization of the mold. The perpendicular inside the cho-

sen area are represented by the blue vector. 57

xviii

List of Figures

4.20 RVIZ simulation of Panda robot performing the polishingmovements gen-

erated by the LSTM. 57

4.21 Visual representation of Panda robot performing polishing task. From

time step 1 to 2 the robot moves to a point in the mold to start the pol-

ishing process. In time step 3 to 7 the robot performs the polishing patter

generated by the LSTM. 58

4.22 Robot movements performed in the mold during the process of polishing

a patter generated by LSTM multivariate vanilla architecture with ReLu

activation fucntion and Adam optimizer of pattern one. 59

4.23 Robot movements performed in the mold during the process of polishing

a patter generated by LSTM multivariate vanilla architecture with ReLu

activation fucntion and Adam optimizer of pattern two. 59

6.1 Univariate Vanilla LSTM close loop output for x points of pattern onewith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

6.2 Univariate Vanilla LSTM close loop output for x points of pattern onewith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

6.3 Univariate Vanilla LSTM close loop output for x points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and Adam as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

xix

Intelligent Collaborative Robotics for Steel Mold Polishing

6.4 Univariate Vanilla LSTM close loop output for x points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and RMSprop as optimizer. Where the blue line is the input of the trained

NN and the red line is the output. .

6.5 Univariate Vanilla LSTM close loop output for x points of pattern onewith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, tangent as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

6.6 Univariate Vanilla LSTM close loop output for y of pattern one with with

200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

6.7 Univariate Vanilla LSTM close loop output for y points of pattern one with

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

6.8 Univariate Vanilla LSTM close loop output for y points of pattern one with

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, ReLu as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

6.9 Univariate Vanilla LSTM close loop output for y points of pattern one with

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, ReLu as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

xx

List of Figures

6.10 Univariate Vanilla LSTM close loop output for y points of pattern one with

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, tangent as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

6.11 Univariate Stacked LSTM close loop output for x points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

6.12 Univariate Stacked LSTM close loop output for x points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

6.13 Univariate Stacked LSTM close loop output for x points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and Adam as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

6.14 Univariate Stacked LSTM close loop output for x points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and RMSprop as optimizer. Where the blue line is the input of the trained

NN and the red line is the output. .

6.15 Univariate Stacked LSTM close loop output for x points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

xxi

Intelligent Collaborative Robotics for Steel Mold Polishing

6.16 Univariate Stacked LSTM close loop output for y points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

6.17 Univariate Stacked LSTM close loop output for y points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

6.18 Univariate Stacked LSTM close loop output for y points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and Adam as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

6.19 Univariate Stacked LSTM close loop output for y points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and RMSprop as optimizer. Where the blue line is the input of the trained

NN and the red line is the output. .

6.20 Univariate Stacked LSTM close loop output for y points of pattern one

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

6.21 Multivariate Vanilla LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

xxii

List of Figures

6.22 Multivariate Vanilla LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

6.23 Multivariate Vanilla LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, ReLu as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

6.24 Multivariate Vanilla LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tengent as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

6.25 Multivariate Vanilla LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

6.26 Multivariate Stacked LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

6.27 Multivariate Stacked LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

xxiii

Intelligent Collaborative Robotics for Steel Mold Polishing

6.28 Multivariate Stacked LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, ReLu as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

6.29 Multivariate Stacked LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

6.30 Multivariate Stacked LSTM close loop output for x and y points of pattern

one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.1 Univariate Vanilla LSTMclose loop output for x points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

7.2 Univariate Vanilla LSTMclose loop output for x points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

7.3 Univariate Vanilla LSTM close loop output for x points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and Adam as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

xxiv

List of Figures

7.4 Univariate Vanilla LSTMclose loop output for x points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, tangent as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

7.5 Univariate Vanilla LSTMclose loop output for x points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, tangent as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

7.6 Univariate Vanilla LSTMclose loop output for y points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

7.7 Univariate Vanilla LSTMclose loop output for y points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, sigmoid as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

7.8 Univariate Vanilla LSTM close loop output for y points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and RMSprop as optimizer. Where the blue line is the input of the trained

NN and the red line is the output. .

7.9 Univariate Vanilla LSTMclose loop output for y points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, tangent as activation function and

Adam as optimizer. Where the blue line is the input of the trained NN and

the red line is the output. .

xxv

Intelligent Collaborative Robotics for Steel Mold Polishing

7.10 Univariate Vanilla LSTMclose loop output for y points of pattern twowith

with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer, a train-test split ratio of 90-10%, tangent as activation function and

RMSprop as optimizer. Where the blue line is the input of the trained NN

and the red line is the output. .

7.11 Univariate Stacked LSTM close loop output for x points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

7.12 Univariate Stacked LSTM close loop output for x points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.13 Univariate Stacked LSTM close loop output for x points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and RMSprop as optimizer. Where the blue line is the input of the trained

NN and the red line is the output. .

7.14 Univariate Stacked LSTM close loop output for x points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

7.15 Univariate Stacked LSTM close loop output for x points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

xxvi

List of Figures

7.16 Univariate Stacked LSTM close loop output for y points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

7.17 Univariate Stacked LSTM close loop output for y points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.18 Univariate Stacked LSTM close loop output for y points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the

hidden layer, a train-test split ratio of 90-10%, ReLu as activation function

and RMSprop as optimizer. Where the blue line is the input of the trained

NN and the red line is the output. .

7.19 Univariate Stacked LSTM close loop output for y points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

7.20 Univariate Stacked LSTM close loop output for y points of pattern two

with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.21 Multivariate Vanilla LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

xxvii

Intelligent Collaborative Robotics for Steel Mold Polishing

7.22 Multivariate Vanilla LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.23 Multivariate Vanilla LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, ReLu as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.24 Multivariate Vanilla LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

7.25 Multivariate Vanilla LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.26 Multivariate Stacked LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

7.27 Multivariate Stacked LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, sigmoid as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

xxviii

List of Figures

7.28 Multivariate Stacked LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, ReLu as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

7.29 Multivariate Stacked LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and Adam as optimizer. Where the blue line is the input of the

trained NN and the red line is the output.

7.30 Multivariate Stacked LSTM close loop output for x and y points of pattern

two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons

in the hidden layer, a train-test split ratio of 90-10%, tangent as activation

function and RMSprop as optimizer. Where the blue line is the input of

the trained NN and the red line is the output.

xxix

List of Tables

4.1 RMSE errors for Univariate Vanilla LSTM for x and y points of pattern

one trainedwith 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, for different activation

functions and optimizer. 38

4.2 MSE errors for Univariate Vanilla LSTM for x and y points of pattern one

trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, for different activation

functions and optimizer. 38

4.3 MAE errors for Univariate Vanilla LSTM for x and y points of pattern one

trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, for different activation

functions and optimizer. 39

4.4 RMSE errors for Univariate Vanilla LSTM for x and y points of pattern

two trainedwith 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, for different activation

functions and optimizer. 39

4.5 MSE errors for Univariate Vanilla LSTM for x and y points of pattern two

trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, for different activation

functions and optimizer. 39

xxx

List of Tables

4.6 MAE errors for Univariate Vanilla LSTM for x and y points of pattern two

trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in

the hidden layer, a train-test split ratio of 90-10%, for different activation

functions and optimizer. 40

4.7 RMSE errors for Univariate Stacked LSTM for x and y points of pattern

one trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons

in both the hidden layers, a train-test split ratio of 90-10%, for different

activation functions and optimizer. 41

4.8 MSE errors for Univariate Stacked LSTM for x and y points of pattern

one trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons

in both the hidden layers, a train-test split ratio of 90-10%, for different

activation functions and optimizer. 44

4.9 MAE errors for Univariate Stacked LSTM for x and y points of pattern

one trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons

in both the hidden layers, a train-test split ratio of 90-10%, for different

activation functions and optimizer. 44

4.10 RMSE errors for Univariate Stacked LSTM for x and y points of pattern

two trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons

in both the hidden layers, a train-test split ratio of 90-10%, for different

activation functions and optimizer. 44

4.11 MSE errors for Univariate Stacked LSTM for x and y points of pattern

two trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons

in both the hidden layers, a train-test split ratio of 90-10%, for different

activation functions and optimizer. 45

4.12 MAE errors for Univariate Stacked LSTM for x and y points of pattern

two trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons

in both the hidden layers, a train-test split ratio of 90-10%, for different

activation functions and optimizer. 45

xxxi

Intelligent Collaborative Robotics for Steel Mold Polishing

4.13 RMSE, MSE and MAE errors for Multivariate Vanilla LSTM for x and y

points of pattern one trained with 200 time step, 70 epochs, 16 for batch

size, 1024 neurons in the hidden layer, a train-test split ratio of 90-10%,

for different activation functions and optimizer. 48

4.14 RMSE, MSE and MAE errors for Multivariate Vanilla LSTM for x and y

points of pattern two trained with 200 time step, 70 epochs, 16 for batch

size, 1024 neurons in the hidden layer, a train-test split ratio of 90-10%,

for different activation functions and optimizer. 49

4.15 RMSE, MSE and MAE errors for Multivariate Stacked LSTM for x and

y points of pattern one trained with 200 time step, 70 epochs, 16 for batch

size, 1024 neurons in the hidden layer, a train-test split ratio of 90-10%,

for different activation functions and optimizer. 52

4.16 RMSE, MSE and MAE errors for Multivariate Stacked LSTM for x and

y points of pattern two trained with 200 time step, 70 epochs, 16 for batch

size, 1024 neurons in the hidden layer, a train-test split ratio of 90-10%,

for different activation functions and optimizer. 52

xxxii

xxxiii

1
Introduction

In this work, the implementation of a Long Short Term Memory (LSTM) Neural Net-

work (NN) is proposed to predict polishing movements. In this chapter the motivation

for this dissertation is described, as well as its objectives and contribution. Also, a brief

background to the subject of mold and die fabrication processes is proposed. Moreover,

this chapter describes the document structure and organization.

1.1 Background

Plastic industry is one of the world’s fastest growing industries, ranked as one of the few

billion-dollar industries. Almost every product that is used in daily life involves plastic

usage and most of these products may be produced by plastic injection molding methods

and techniques [8]. Molding is the processes used for the mass production of a large

number of consumer products [9]. In the context of the plastic industry, in which the plastic

objects are produced using molds, injection molding has been a challenging process for

many manufacturers and researchers aiming to develop products to meet requirements at

the lowest cost [10].

Besides the plastic industry also glass container fabrication uses molds for mass produc-

tion of objects. The uses of molds allows the full automation of plastic and glass industries,

thus largely increasing the production of this type of objects. In some cases, the reproduc-

tion of some art pieces, like sculptures, may be done using molds. The process of plastic

injection using molding is well known as the manufacturing technique to produce at low

cost, objects with complex geometry and various shapes [8].

1

Intelligent Collaborative Robotics for Steel Mold Polishing

Injection molding machines are specialized plastic molding machines, in which a ther-

moplastic material is used. With this method, the thermoplastic material is melted by heat-

ing, and subsequently pushed into the mold cavity by a high pressure injection process.

In this way, a variety of shapes of plastic products are formed by holding the injection

pressure for a determined time, followed by a certain period of time for cooling [11]. The

plastic injection molding process may be characterized by four significant stages. These

stages are known by filling, packing, cooling and ejection. This fabrication process of

plastic injection molding begins with feeding the resin mixed with the appropriate addi-

tives from a container to the heating/injection device [8]. This stage is named the “filling

stage” in which the mould cavity is filled with a polymer melted at a pre-determined in-

jection temperature. After the filling of the mold cavity, the “packing stage” follows. In

this stage additional melted polymer is packed into the cavity using higher pressures to

compensate the expected shrinkage of the cooler solidified polymer. This stage is fol-

lowed by the “cooling stage” where the mould is cooled until it reaches a point where it is

sufficiently rigid to be ejected. In the last stage the mould is opened and the part ejected.

This last stage is appropriately named the “ejection stage” [8].

A number of characteristics of the products obtained formmolding are dependent on the

mold itself. The main characteristic affected by the mold quality, is the outside appearance

of the produced objects. Also the product functionality is very dependant on the mold

quality and fabrication technique [9]. Building high quality molds is therefore a very

relevant topic when addressing mold fabrication industries. In this context, one of the

most relevant mold characteristics to improve molded objects is the quality of the mold

polishing. The mold polishing consists of removing surface roughness and irregularities

from the mold surfaces that contact with the material being molded [9].

The polishing technique is therefore one of the most relevant parts of these object fab-

rication. Mold polishing is a technique that must be executed with precision, since a mold

that may look smooth to naked eye may cause irregularities in the produced plastic object.

A defective polishing may produced objects that look worn out and present a defected

appearance in the final product, thus causing a decrease in the final product quality and

increasing the possibility of consumer rejection of the produced objects. On the other

2

1. Introduction

hand, if a mold is too well polished it may lead to vacuum formation between the mold

and the plastic object causing their separation to be difficult [12].

The polishing process is usually conducted manually by human operators accounting

for 37% to 50% of the total time needed to produce a mold [13] [14]. The fact that is

conducted by human labor makes the process of polishing time consuming. This process

exposes the specialized workers to high levels of noise as well as high concentration of

metallic dust. Promoting the appearance of ”vibration white finger” syndrome, caused

by the vibration of the polishing tools after years of exposure. Another characteristic

problem of polishing processes is the difficulty in maintaining the polishing tool stable

for long periods of time [13] [14]. Furthermore, some companies have difficulties finding

skilled workers to perform the polishing task with the desired quality [14].

Currently, the polishing process in the mold industries is still conducted manually since

it’s not possible to achieve the same levels of quality with automatic processes. In this

context, the skilled worker may decide where to apply more or less pressure in the mold,

as opposed to the autonomous system, that only can follow pre-established sequences [12].

Pre-estabelished sequences are naturally limited and therefore may only be used in a re-

duced number of molds. Complex geometry molds are difficult to polish by robots that

execute programmed sequences.

The motivation for this dissertation emerges from the need to automate the polishing

process in the mold industry. The automation of this process, even partially, may allow

the industry to produce molds faster, thus meeting consumer demand and better fulfilling

the aim of Industry 4.0 concept. This dissertation aims at studying and investigate how a

robotic armmay perform thework of a humanworker, in the process of polishing ametallic

part. This way, it may be possible to address the problems identified in this section, namely

workers’ health issues.

1.2 Objectives

This work aims at developing an automated mold polishing process. This dissertation

objective is to develop strategies to help skilled operators in the mold polishing process.

3

Intelligent Collaborative Robotics for Steel Mold Polishing

With this idea in mind, this work aims at using a Panda robot arm in the mold polishing

process. Also, the objective of this work is to study the use of Neural Networks, to predict

and reproduce human movements for mold polishing processes. A demonstration and

demo of the developed work will be carried out.

1.3 Contributions

This study proposes an Long Short Term Memory (LSTM) Neural Network (NN) to

code human skills associated with polishing tasks. The designed LSTM drives a robotic

arm for autonomous operation.

1.4 Structure of the Document

This document is structured as follows:

• State of the Art (Chapter 2) - Identifies control architectures for robot manipulation,

focusing on human-robot transfer skills techniques and the growing use of Neural

Network to execute human daily activities.

• Methodology (Chapter 3) - Describes the equipment, tools and techniques that have

been used in the development of this work. Also the Cartesian Impedance control

architecture for the robot manipulation is described. Moreover, an introduction to

Neural Network, focusing on the learning algorithm developed to generate polishing

patterns, is proposed. The methodology used to process the data is presented.

• Results (Chapter 4) - Results of several LSTM Neural Network, with different con-

figurations, to generate polishing patterns, are presented. The best identified pat-

terns are tested in simulation environment before being reproduced with the Carte-

sian Impedance control architecture Panda robot.

• Conclusion and Future Work (Chapter 5) - Improvement suggestion to consider in

a future work.

4

2
State of the Art

This chapter presents a literature review on control architectures for robot manipula-

tors, human robot skill transfer and of Neural Network. In Section 2.1, the identified

literature on control architectures for improving robot movements based on human be-

havior is presented. This literature review was made aiming at better understanding the

control architecture for human-robot skill transfer. Section 2.2 analyses literature in the

area of human demonstration for robotics demonstration. In Section 2.3 the topic of Neu-

ral Network to solving problems of forecasting time series is addressed, including the use

of LSTMs.

2.1 Control Architecture

One striking characteristic of the proposals for future factories is related to the idea of

bringing humans close to robots [2] at the same workplace. The aim is to promote an ef-

ficient collaboration between human and robots in the production process. The proposed

future manufacturing processes are integrated in the general designation of Industry 4.0,

which includes contributions of Cyber-Physical Systems or The Internet of Things [2].

However, although robots have been successfully used in many tasks and their operations

have been considered safe, more complex processes aren’t conducted by robots alone due

to their reduced cognitive capabilities. Therefore, the combination of human cognitive

capabilities with robot collaborative skills allows not only to work together in partial un-

familiar environments but also to collaborate with other agents for accomplishing a com-

mon goal [2]. During the last four decades, the problem of control and motion planing in

5

Intelligent Collaborative Robotics for Steel Mold Polishing

repetitive and burdensome task, such as polishing, have been studied and researched by

both industry and academy [2].

The first approach for automatic mold polishing was done with Computer Numerically

Controlled (CNC) machines. These machines have a remarkable position accuracy and

the ability to simultaneously adjust trajectory, posture and force during the polishing pro-

cess [13]. However, the limited working space of CNCs requires the process of mold pol-

ishing to be divided into several steps and also imposes a limit on the size of the mold part

to be polished [13]. Furthermore, molds with complex geometries require specific fixtures

and unique techniques and movements. Recently, due to its advantages when compared to

CNCs machines, the topic of robotic machining and finishing has been the subject of re-

search of both industry and academy. Robotized machine and finishing methods, present

lower costs, greater flexibility, and the ability to integrate actuators and sensors namely

by using different types of grippers [13]. In addition, industrial robots work with various

types of parts, of varying sizes and with complex geometries without the need for specific

accessories. Thus, industrial robots have become an effective and economical solution in

subtractive manufacturing industries for objects with complex geometric shapes regard-

less of the workspace [13].

In Claudio Gaz et al. [15], the authors propose an architecture for a robot which has the

capability of sharing the work space with a human worker, without requiring any mutual

contact or coordinated actions. The objective is to have a user operating the robot in

complex geometry situations of mold, being the manipulation made directly with physical

contact and not by an interface. With a three layer architecture, where the intermediate

layer allows for coexistence, since it has the ability to prevent collisions in real time, i.e.,

by monitoring the workspace with cameras and sensors or RGB-Depth devices (which

allows to have pixel-to-pixel depth information). The collaboration between the human

operator and the robot corresponds to the top layer, where the robot performs complex

tasks in direct contact with the human. The assignments are performed with exchange of

forces/torques activated by communications such as gestures, voices and direct physical

contact with the robot. Collision detection and reflex reaction is implemented in the lower

layer without the use of sensors. A model-based scheme that monitors the generalized

6

2. State of the Art

momentum of the robot. while the robot secures the mold for manual polishing, forces and

movements performed by the human operator are reflected in the robot structure, from the

gripper to the joints.

Zhou Shenghao e Song Jinchun [16] propose the implementation of a position-based

impedance control system to aid human interaction with automobiles. To build a viable

application of the interaction between the two it is necessary to control not only themotion,

but also the forces of the interaction of the vehicle with the surrounding environment. In a

system with human-robot interactions it is necessary to consider the control properties of a

human operator as well as the accuracy and performance of the system control, to achieve

a natural interaction between the two. This article focuses on admittance and impedance

control. The first method is widely used since a position control interface is available

in every robotic system. The other method requires a joint torque or joint impedance

interface.

Wei Hu et al. [17] propose the use of impedance control to solve the interaction problem

for a robotic manipulator. Impedance control not only gets the position or force trajectory,

but involves regulating the impedance of the robot end-effector that relates position to

force. The biggest problem with impedance control is in situations where it cannot deliver

enough power due to non-linear inputs. That can be caused by magnitude constraints

and the precise input rate. Thus, it is necessary to design an impedance control that can

compensate for the inputs to maintain the stability of the robot.

Hélio Ochoa and Rui Cortesão [2] propose a computed-torque architecture for an assisted

polishing robot. The goal is to transfer the polishing techniques and skills from the human

operator to the robot, so that techniques taught to a given model can be performed on

a model with different characteristics. The control strategy used is impedance control

in task space with posture optimization. The goal with impedance control is to assign a

predetermined dynamic behavior in the presence of external interactions, coinciding with

the dynamics of a mass-spring-damper system.

7

Intelligent Collaborative Robotics for Steel Mold Polishing

2.2 Human Transfer Skill

Robot capabilities and the development of ”intelligent machines” has not been able to

keep up with the advances in computer technology. This disparity is mainly caused by the

difficulty in formalising intelligent human behavior and decision making processes into

algorithms [18]. Human perform everyday tasks, such as visual processing, manipulation

and mobility with relative ease. However, robots can’t duplicate this performance ade-

quately. Although humans are successfully performing these tasks, they have difficulties

describing them [18]. Therefore, studies have been carried out on learning models for the

transfer of techniques from humans to robots [18].

Rui Wu et al. [19] propose a framework for transferring the movements of skilled work-

ers to a variable impedance model. A simplified real-time 3D model of the end-point of

the human arm is proposed based on the regular operations of humans and the effects of

antagonistic muscle contractions and is calculated based on experimental results. A tele-

demonstration method for variable impedance skill transfer is then build by calculating

the proposed model in real time. The data can be automatically classified by changing the

tutor’s arm impedance, and a modular Learning fromDemonstration (LfD) method is used

to learn the data for different purposes. By focusing on the operating habits of humans,

this model helps tutors conveniently adjust the robot’s impedance direction and divide the

tasks into several stages.

In [20] a technique to capture movements of specialized operators used in polishing

processes studied in [2] is deepened. The methodology proposed in [20] is based on de-

tecting the position/torque of the robot to: 1) Capture a specific technique/movement from

operators; 2) Transfer that technique to a robotic system for autonomous execution, i.e.

LfD. A Cartesian impedance control is used with posture optimization, where the operator

technique is coded by parameters and reference positions. The robot posture is optimized

by keeping its joints at values near the center. In order to collect information about the

movements made by the workers, the co-manipulation mode in gravity compensation is

used. While the free-hand mode allows the force associated with the polishing task to be

captured. In this case, the robot impedance control has a rigid design while the operator

8

2. State of the Art

applies forces that are captured by torque sensors on the joints. Motion and force patterns

cannot be captured at the same time since in co-manipulation mode part of the reaction

forces are absorbed by the human arm. To test the proposed method a mold with complex

geometry is used, where task generalization is designed, analyzed and performed for sur-

faces in 3 dimensions with different shapes. Additionally, mold polishing was performed

with different polishing stones in order to validate the human-robot technique transfer

approach.

2.3 Neuronal Networks

Machine Learning, a branch of artificial intelligence, is playing an increasingly impor-

tant role in the world of science [21]. The development of several areas, such as bioin-

formatics, physics, mathematical analyses, among others, requires intelligence methods

to enrich the content of these disciplines [21]. Artificial Intelligence has been study with

greater intensity both academically and commercially, since it allows the resolution of

everyday problems. In [22], a method was developed to predict car traffic flow using

Machine Learning and image processing algorithms. This methods has been applied to

self-driving cars. Machine Learning can also be applied to predict the health state of pa-

tients in an intensive care unit [23]. Within the context of this work, Machine Learning

may also be applied during the polishing process of molds. Specifically, it may be applied

to molds with diverse and complex geometries.

Arif Istiake Sunny et al. [6] proposes the use of two popular models of Recurrent Neu-

ral Network for forecasting of stock price gains, thus attracting attention of the financial

world by this technology. In this case, stock price prediction may be a relevant factor to

increase investor interest in the company’s market stocks. A number of proposed uses

of Recurrent Neural Network apply LSTM and Bi-Directional Long Short Term Mem-

ory (BI-LSTM) models. Motivated by the expanding use of Deep Learning Algorithms

to forecast future patterns in different time series applications, hidden structures may be

discovered to forecast stock prices. Time series forecasting is a demanding area of re-

search due to its enormous potential in different applications such stock price forecasting,

business planing, weather forecasting, resource allocation and numerous others.

9

Intelligent Collaborative Robotics for Steel Mold Polishing

Karim Moharm et al. [24] presents the deep learning algorithms, LSTM and BI-LSTM

using different configurations and different activation functions to evaluate the experi-

ments and predict the provisional trend of wind speed. The accurate forecast of wind

speed is critical in the integration of renewable factors in electric power grid stability,

scheduling and planing. Recently, the cleaner production of electrical energy, has gained

a lot of attention because of the increased concerns on environmental pollution and the

need to reduce the use of non-renewable sources. Wind energy represents a solid clean re-

newable energy source. However, the stochastic intermittent behavior of wind represents

a challenge for this type of energy source management. Hence, the accurate foretelling of

the wind speed and relatively wind power can enhance the grid operation. Effective wind

energy prediction, results in low-cost efficient and safer operation of the grid. The more

accurate wind prediction, the more reliable and efficient power dispatch, energy storage

systems, and effective power transmission, may be implemented.

Peng Kaibei et al. [25] proposes a short-term passenger flow in urban rail transit pre-

diction model based on an improved LSTM. This approach, is proposed to solve the tradi-

tional Neural Network model problem to predict complex nonlinear data. Using scientific

methods to analyse and predict the future trends of passenger flow, is helpful for managers

to grasp the evolution trend of passengers in a timely manner and reasonably allocate ser-

vice resources of stations. With the development of artificial intelligence and the rise of

big data, intelligent computing and Machine Learning methods are gradually applied to

various application scenarios and achieving good results.

Still within the context of traffic management in intelligent transportation systems, Di-

lantha Haputhanthri and AdeeshaWijayasiri [7] propose LSTM based deep learning mod-

els with different architectures to understand the best forecasting model. In this work, a

LSTM model, an encoder-decoder LSTM model, a convolution neural network LSTM

(CNN-LSTM) model and a Convolution LSTM (Conv-LSTM) model are designed and

developed. Short-term traffic forecasting has become a major asset in the field of real-

time traffic management and transportation planning. Traffic volume forecasting can be

utilized in optimizing routing strategies and journey planning to reduce traffic congestion

and accidents. Long Short Term Memory is one of the commonly used Deep Learning

10

2. State of the Art

techniques, designed specifically for time series forecasting, by employing memory sta-

tus and feedback connections, unlike standard feed-forward networks.

11

3
Methodology

Chapter 1 describes a number of open issues in the mold polishing industry. The intro-

ductory chapter illustrates this work’s motivation and frames the guidelines for this thesis.

In chapter 2 a number of recent literature identified proposals involving control architec-

ture, transfer of skill human-robot and Deep Learning structures for regression problems

have been described. This chapter, in Section 3.1, describes the experimental setup by

introducing and describing the Panda Robot. Followed by a description of the control

architecture used to control the Panda Robot. In Section 3.2, an introduction on Neural

Network as an approach to the problem of time series forecasting applied to automatic

mold polishing is presented. Moreover, hyperparameters and other NN parameters are

analysed to evaluate DNN the performance. Activation functions and optimizers algo-

rithms are discussed and presented as well.

A time series is a discrete or continuous sequence of observations that depends on time.

Time series analysis involves working with time based data in order to make predictions

about the future [26]. Traditionally, time series forecasting has been dominated by linear

methods like Autoregressive IntegratedMoving Average (ARIMA), however they present

a number of limitations. Machine learning methods may be effective on more complex

time series forecasting problems [27].

3.1 Panda Robot

The robotic arm Panda, illustrated in Figure 3.1, was developed by Franka Emika, a

German company, focused on bringing human and robots close together.

12

3. Methodology

Figure 3.1: Panda robot provided by Franka Emika [1].

The robotic arm is considered a collaborative robot, also known as cobot, that as the

name suggests, work well together with human operators. These robots are ”sensible”

and aware of their surrounding environment, consequently they don’t need to be in cages

and the risk of accidents is reduced. Cobots tend to be small, light and easy to assemble.

With human arm-like complexity, that enables sensitive manipulation and force-enabled

applications, enabling it to mimic human-like, dexterity-based skill sets [1].

The robot was designed to be user friendly with a easy setup and an intuitive interface

that doesn’t requires prior knowledge of programming, the Franka Emika Robot System

includes the arm and its control. The robot has 7 Degrees of Freedom (Dof) with torque

sensors in each joint, that allows for adjustable stiffness/compliance and advanced torque

control. The provided end-effector is a 2-finger gripper with exchangeable fingertips, that

is integrated with the software of the Franka Emika Robot System. The gripper has an

opening up to 80mm, that allows it to lift 3kg with a continuous force of 70N [1].

The version of the robot used is the Panda Research since it is the version advised for

testing control architectures and algorithms [1].

13

Intelligent Collaborative Robotics for Steel Mold Polishing

Figure 3.2: The set up of the Panda Robot [1].

3.1.1 Equipment Overview

Figure 3.2 illustrates the set up of the Panda Robot. In case of emergencies the stop

device, located between the controller and the internet supply, can safely removes the

supply from the robot. At the base of the arm is located the external enabling device

(connectort X4). It will activate Panda robot and programs may be iniciated via Desktop,

the web-based interface. The external activation device is connected at the base of the

Arm (socket X3), in order to consciously authorize movements of the arm from outside

the safety area. The Arm is connected via a connection cable to the Control. In order to

program the robot via Desktop, the interface device is connected at the base of the arm

(socket X5). Otherwise, to program the Panda Robot via Franka Control Interface (FCI),

the network Ethernet interface on the front side of the Control should be used [1].

3.1.2 Communication Modes

The Panda Research version allows the user to communicate with the robot with two

possible ways, either by using the web application Panda Desk or the Franka Control In-

terface. The robot’s Desktop interface can be accessed from a web browser, Figure 3.3.

Simply connect to the robot using an Ethernet cable to establish communication allowing

14

3. Methodology

Figure 3.3: Desk top interface of Panda robot.

the manipulation of the Panda arm. Desk allows to create tasks. Tasks consists of chrono-

logical sequence of apps. That is, building blocks that describes the basic capabilities of

Panda, such as ”grip”, ”put down”, or ”push button” [1].

Franka Emika develop Franka Control Interface as a solution to control and program

the Panda robot. This interface allows for real-time, low-level bidirectional connection to

the robot’s arm and hand, view Figure 3.4. The FCI enables direct control of the robot and

provides its current status. The package consists of a C++ program library named libfranka

and franka_ross, in Robot Operating System (ROS) interface with ROS Control, includes

Universal Robot Description Format (URDF) models, detailed 3D meshes of the robot

and end-effector, allowing visualizations for simulation environments [1].

Libfranka is the implementation of the client side of the FCI, enabling the connection

on client applications via standard Ethernet to a Panda with activated FCI. It handles the

network communication with Control and provides interfaces to execute non-real time

commands to control the hand and configure arm parameters. It also executes real time

commands to run user 1 kHz control loops. Allows to read the robot state to get sensor

data at 1 kHz. And can access the model library to compute user desired kinematic and

dynamic parameters [1].

15

Intelligent Collaborative Robotics for Steel Mold Polishing

Figure 3.4: The schematic overview of the FCI [1].

The franka_ros is distributed with a Gazebo package, allowing for a robot simulation

that is an essential tool, see Figure 3.5. The simulation makes it possible to rapidly test

algorithms, design robots, perform regression testing and train system using realistic sce-

narios.

Figure 3.5: Panda robot simulation on Gazebo.

16

3. Methodology

3.1.3 Control Architecture

The scheme of the Cartesian Impedance Control with Posture Optimization is presented

in Figure 3.6 [1]. In this figure the impedance control is highlighted. As inputs we have the

current and desired position aswell as the current and desired orientation. This formulation

is used to compute the position and orientation error. In the end-effector frame, the error

is filtered with proportional, integral and derivative factors in order to obtain the force of

the task space. The torque to perform the task is thereafter computed by multiplying the

Jacobian by the force.

Figure 3.6: Control architecture for mold polishing. A Cartesian impedance controller
with posture optimization, where Cartesian positioning is the primary task and posture
optimization is performed in the null-space [2].

The Cartesian space allows for a description of the robot pose. In this descriptio, the

position and orientation of the end-effector are the main focus. Movements in Cartesian

space allow the exact tracking of predefined paths in space, such as straight lines. The

17

Intelligent Collaborative Robotics for Steel Mold Polishing

changing of position is called translation, while the changing of orientation is named ro-

tation [1].

Impedance describes the robot resistance to movement, being represented by a mass-

damper-spring system. This behavior description may be used to safely interact with the

surrounding environment, for example by preventing damage of nearby fragile objects.

Spring designed allows impedance shaping, an ability similar to the human arm, which

codes muscle activation to adapt compliant movements depending on the situation. This

ability boosts robustness when executing tasks [1].

3.2 Neural Networks

Artificial Neural Network (ANN) is a commonly used technique to replicate the human

brain behavior. Artificial Neural Network (ANN) have the capability to adapt their op-

eration to stochastic uncertainties. These networks inputs are usually expressed as time

series data, that is with data that depend of time variables [4].

Neural Network (NN) are appropriate implementations for approximation, classifica-

tion and also prediction problems [28]. Deep Neural Network has learning capabilities

for both straight and non-linear time series. For this reason Deep Neural Network are

considered a relevant option for forecasting time series sequences [29].

AnANNcan be seen as a structure of neurons or cells with connectedwith each other [3].

Each neuron can be understood as a mathematical function whose inputs are a set of values

given by previous cells. The neuron thus calculates an output value that is conducted to

the next neuron in the network [3]. The inputs and outputs of the network are a different

types of neurons that have no predecessors or successors, working as input and output

interfaces of the ANN [3]. The connections between neurons have associated weights

that are changed during the process of training. During this processes the strength of the

weights increases or decreases [3]. These concepts are illustrated in Figure 3.7 that shows

an example of the simplest neural network: a perceptron neuron [3].

A more complex NN is the feedforwrd, that in the most simple scenery, have 3 layers,

on input layer, a hidden layer and an output layer. The number of neurons in the input layer

18

3. Methodology

Figure 3.7: The schematic of a perceptron. It receives an input x, which is a vector with
three components, though three input cells, and generates an output which is a single value.
Note that θ is a hyperparameter that needs to be provided [3].

is dependent of the number of features or attributes to fed to the NN. Once, the number

of features effects the network complexity, therefore more or less neurons are necessary.

The number of neurons of the output layer is dependent on the prediction or classified

items. In the hidden layers, the mathematical expression of the neurons compute non-

linear transformations on the input data [26].

The neurons have a threshold value and an activation function. Neurons are activated

if the input values are bigger than a threshold. In this case, the output is then computed

through the activation function which is then transferred to the next layer in the network.

The activation function maintains the output of the neuron between values 0 to 1, or -1 to

+1 [26].

The majority of ANNs are supervised learning, where a set of input-output pairs are

used to teach the NN so it can predict new outputs from completely new inputs. Supervised

learning has two main phases: training and predicting. During training, the input-output

pairs from a dataset are used to teach the network until it matches the patterns of input-

output [3].

The dataset is divided into two subsets: traing and test datset [3]. The training dataset

uses most of the input–output pairs and is used during the training of the ANN, that is to

change the weights of the neurons [3]. The test dataset is used after the training process,

with the object of evaluate the ANN performance and therefore study its accuracy [3].

The loss is a metric to monitor the quality of the training process and the overfitting,

19

Intelligent Collaborative Robotics for Steel Mold Polishing

that is the situation in which the ANN is to fitted to the training dataset that is incapable

of generalization and can’t make good predictions for new data [3]. The loss is the sum

of the error produced for each parameter in the dataset, the closest to 0 the best [3].

Contrary to FeedforwardNeural Networks (FNN), in Recurrent Neural Network (RNN),

the neurons have connections to neurons in the next layers as well as the previous ones,

that is with backpropagation links [3]. Therefore, the neurons depend on their input state

and internal state [4]. In the backpropagation process the neurons output are given back

into the network, causing the ANN to remember information previously received. This

kind of neurons are named memory cells [3]. It is therefore used for the study of time se-

ries predictions [4]. Figure 3.8 from [4] illustrates the difference between a feedforward

ANN and an RNN in a simplified way [4].

Figure 3.8: A simplified comparative illustration of an ANN and RNN architecture [4].

Basic backpropagation is often implemented in supervised learning tasks. In supervised

learning, an artificial neural network is transform so that its actual output (P) becomes

close to target outputs (Y) for a training set which contains Tpatterns. They focuses in

changing network parameters so that there is no overfitting. Supervised learning is mainly

used in pattern recognition problems. In basic backpropagation, the values of weights

are initialized with arbitrary values [5]. Next, the outputs (Y) and the errors E(t) are

calculated for the set of weights. Then the derivative of E of all the weights is computed,

as represented by the dotted lines in Figure 3.9. The weights are adjusted to decrease

the error, by decreasing or increasing the values of weights accordingly. This process is

repeated until the weights and the errors settled down [5].

20

3. Methodology

Figure 3.9: Basic backpropagation [5].

The objective is to find the weights and biases that minimize the error function. By

using the gradient descent to update the weights and biases interactively to minimize the

overall network error. The weights parameters are interactively modified in the direction

of the gradient until minimum is reached [26].

In traditional gradient, the all input data is used to calculate the gradient at each iter-

ation. For larger datasets, redundant computations are calculated because gradients for

very similar examples are recomputed before parameter updates [26].

Stochastic Gradient Descent (SGD) often converges to a solution much faster then the

traditional gradient, because of the lack of redundancy. SGD an example is randomly

selected to update the parameters and move the direction of the gradient at each iteration.

The size of the steps to reach the minimum by the gradient descent algorithm is given by

the learning rate. With a large learning rate the network may learn very quickly, however

the network can miss the global minimum therefore being incapable of learning. On the

other hand, a lower learning rate takes longer to find the optimum value [26].

Momentum is another method that can be used to help find the local minimum faster.

Taking a value between 0 and 1, it adds this value of the previous weight updates to the

current one. With a high value for the momentum parameter the training time may be

reduce and may help the network not getting trapped in a local minima. However, a high

value for the momentum may increase the risk of overshooting the global minimum. This

21

Intelligent Collaborative Robotics for Steel Mold Polishing

is escalated with a combination with a high learning rate. On the other hand, setting the

momentum parameter with a low value may cause the model to be trapped in a local

minimum [26].

3.2.1 LSTM

RNN’s architecture are specifically designed for processing problems with sequential

data using its internal memory states. These networks, also support feedback connections

for backpropagation mechanisms unlike standard feedforward networks [7]. However,

RNNs may suffer from problems of vanishing gradient [3].

Figure 3.10: The repeating model of an RNN [6].

Vanishing gradient problems come to light when a cell has to remember information for

long periods of time. This problem tends to transpired when training a Neural Network us-

ing gradient-based learning methods and backpropagation, stopping a weight from chang-

ing its value [4]. This becomes a problem because the computations uses finite-precision

numbers [4].

Long Short Term Memory NN are a specific type of RNN composed by LSTM cells

that were specifically designed to solve the problem of the vanishing gradients [3] by

allowing gradients to flow unchanged [4]. Eventhough, LSTM can remember better than

their predecessors they aremore computational expensive because of the increased number

of operations and complexity of its propagation function [3].

22

3. Methodology

Figure 3.11: The repeating model of an LSTM [6].

LSTMs are widely use in the case of large problems, more specifically in the case of

time series prediction. LSTM neuron has gate units and memory cells, that allows to

recollect data over a period of time [6].

Cell states store recently expired information inside the memory cells. When the data

arrives to a memory cell, the output is controlled through cell state combination, that is

refreshed afterwards. If any other information is received by the memory cell it will be

used to process the output plus the new cell state. LSTM default conduct is to remember

information for long periods of time [6].

The core of the LSTM neural network is the addition of memory neurons and gate units.

It allows for a slower rate of information loss and an enchanting of the information storage

because the information in the earlier time units can also be transferred to the later time

unit [25].

LSTM uses three gates to regulate the flow of information into and out from a cell [4].

Figure 3.12 illustrates a common LSTM neuron or a unit that is composed of a cell, in-

put gate, output gate and forget gate. The cell memorizes the feedback values over time

intervals and the gates control the information flow in and out of the cell [7].

23

Intelligent Collaborative Robotics for Steel Mold Polishing

Figure 3.12: Structure of an LSTM unit [7].

Each of the gates in Figure 3.12 can be think about as standard neurons in a feedforward

network inwhich the activation of a weighted sum is calculated. The calculated activations

are it, ot, and ft for the input gate, output gate, and forget gate, respectively. The activation

of the gates ft, it and ot are calculated for a time step t using the activation of the cell at

t − 1 (ct−1) according to the equations 3.1, 3.2 and 3.3 [7].

ft = σ(Wfxt + Ufht−1 + bf) (3.1)

it = σ(Wixt + Uiht−1 + bi) (3.2)

ot = σ(Woxt + Uoht−1 + bo) (3.3)

Here, the W and U represents the weights of the input and the recurrent connections of

the input gate (i), output gate (o), forget gate (f) or the memory cell (c). Finally, ct and ht

are calculated using equations 3.4, 3.5 and 3.6 [7].

ct = tanh(Wcxt + Ucht−1 + bc) (3.4)

24

3. Methodology

ct = ft ⊗ ct−1 + it ⊗ ct (3.5)

ht = ot ⊗ tanh(ct) (3.6)

Here, σ represents the sigmoid function and in both Figure 3.12 and the equations, ⊗

denotes the element-wise multiplication. Furthermore, the upward output, ht usually goes

through another activation function, which is then considered as the output of the unit [7].

Gate is an approach to control whether the data can enter into the cell state, or not.

Gate is a combination of a sigmoid function, and a point-wise multiplication process.

The sigmoid function can generate any number from zero to one. This value controls the

passage of data in a way that an estimated zero signifies ”do not pass anything” while an

estimated one signifies ”pass everything”. For LSTM model, different gates are used to

pass our recently experienced data from one cell to another cell. These gates are known

as update gate, forget gate, and output gate [6].

These cells are used to control the memory of LSTM model. Here in LSTM, both the

activation values and candidate values were used. Thus, LSTM generates two outputs

from the cell, one is the activation, and another is the candidate value. The data is passed

through the level line which is the highest point of Figure 3.11. This level line is termed

as cell state [6].

3.2.2 Parameters and Hyperparameters

A Neural Network model has two types of coefficients, the parameters and the hyper-

parameters. Parameters are those coefficients whose values change during the learning

process as the model gets optimized with the objective of reducing the errors. An ex-

ample of such coefficients are weigths and bias. Moreover, hyperparameters are those

coefficients that are manual given to the network depending on the optimization strategy

and are never updating during the training process [30]. Choosing the right hyperparame-

ters has a critical impact on the performance of the network [3]. Depending on the problem

25

Intelligent Collaborative Robotics for Steel Mold Polishing

in question and the dataset being used a different configuration of hyperparameters is re-

quired, rending each situation unique. Therefore, the task of choosing the this values is a

challenging [31].

There are two main approaches for hyperparameter optimization: manual and auto-

matic. In the manual approach, hyperparameters optimization is made by experts, who

interprets how the hyperparameters affect the performance of the model, changing ac-

cordingly. Automatic hyperparameter optimization methods are difficult to apply due to

their high computational cost and time consuming problems [32].

Automatic algorithmic approaches range from simple Grid search and Random search

to more sophisticated model-based approaches. Grid search explores all possible com-

bination of hyperparameters values to find the global optima, therefore being very time

consuming process. Random search algorithms, which are based on direct search meth-

ods, are easy to implement. However, these algorithms are converged slowly and take a

long time to find the global optima [32].

DNN models require many hyperparamters to be set for learning [33]. The hyperpa-

rameters needed to be considered in this study are as follows:

1. Train-test split ratio;

2. Number of hidden layers;

3. Number of neurons in the hidden layer;

4. Number of epochs;

5. Optimization algorithm;

6. Learning rate in optimization algorithm;

7. Momentum in optimization algorithm;

8. Loss function;

9. Weight initialization;

10. Activation function;

26

3. Methodology

11. Batch size;

12. Time steps.

For a DNN to learn patterns the same input-output pairs from the traing dataset are feed

to the model several times during the process of learning. Each time the complete traing

dataset passed thougth the network an epoch is completed [3].

In each epoch, the training dataset is randomly shuffled and split into batches of input–

output pairs that are passed through the ANN. Each time a batch is passed, an iteration is

completed [3].

3.2.3 LSTMModel

3.2.3.1 Environment

The development of Long Short Term Memory Neural Network in this thesis was done

with MatLab. The Deep Learning Toolbox provides a framework for designing and im-

plement Deep Neural Network to perform classification and regression on images, time

series and text data. It was also use Google Colabboratory, also know as Colab. Colab

allows to write and execute arbitrary python code through the browser, and is specially

well suited for machine learning and data analysis. Using the open source TensorFlow

library for machine learning.

3.2.3.2 Data Collection

In [20] the robot is placed in gravity compensation for the specialized operator to be

able to manipulate it. The user handles the robot, which has an end-effector that is similar

to the polishing tool used by human operators. As the user performs the polish operation

the position (x, y, z) are being recorded into a file text. The capture motion was performed

in a horizontal plane, since it was more comfortable for human demonstration.

The free-hand mode of the robot in [20] enables to capture human force patterns as-

sociated to the task, by direct manual polishing of a small surface attached to the robot

end-effector. In this case, robot impedance control has rigid design and human applied

forces are captured by joint torque sensing. Position and force patterns for polishing can

27

Intelligent Collaborative Robotics for Steel Mold Polishing

therefore be study for human to robot skill transfer. Force and position patterns cannot be

capture simultaneously since in co-manipulation mode part of reaction forces are absorbed

by the human arm. There is a high frequency noise filtering for both position and force

data, using a first-order low pass filter with 100Hz cut off frequency.

Two different patterns were captured by the robot and used to train the Neural Network

of this work.

3.2.3.3 Data Processing

The raw data was capture in intervals of 1 millisecond. Creating a sequence of points

dependent of variable time. Therefore, establishing the problem of this thesis as a time

series problem. The data was capture in relation to the robot Panda, being the origin in

the base.

Considering the control architecture of the robot is an impedance control, that is, the

robot force is indirectly manipulated by position (z coordinate) it is not necessary to gen-

erate new z coordinates from the LSTM. Once the z coordinates values given to the robot

are the mold position. Therefore, the values study in this thesis are of x and y coordinates.

Data is captured at a frequency of 1Hz, while the human arm has a bandwidth of 4-6 Hz.

Within this context, removing data allows faster Deep Neural Network training without

compromising the output. Hence, for pattern one NN 50 successive points of every 51

point blocks are removed from the original dataset. The obtained datasets are illustrated

in Figures 3.13 and 3.14 for LSTM with only one feature. Figure 3.15 illustrates the pro-

cessed dataset for two input feature LSTM. Pattern two removes instead 30 successive

points of every 31 point blocks from the original dataset. These sets are illustrated in Fig-

ures 3.16 and 3.17 for LSTMwith only one feature and Figure 3.18 for two input features.

To ensure smoothness of robot movements the LSTM generated data are interpolated be-

fore being fed to the Panda robot. Pattern one has an interpolation of 50 points and pattern

two of 30 points.

Data normalization is performed to ensure equal weights for all inputs. Without normal-

ization, higher values get favored during training thereby skewing the results and rendering

28

3. Methodology

 0.51

 0.515

 0.52

 0.525

 0.53

 0.535

 0.54

 0.545

 0.55

 0 100 200 300 400 500 600 700 800 900

x
C

oo
rd

in
at

es

Time steps

X

X Points of Pattern One

Figure 3.13: Input data of x coordinates of pattern one for LSTM with only one input
feature.

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

 0.28

 0 100 200 300 400 500 600 700 800 900

y
C

oo
rd

in
at

es

Time steps

Y

Y Points of Pattern One

Figure 3.14: Input data of y coordinates of pattern one for LSTM with only one input
feature.

 0.23

 0.235

 0.24

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

 0.28

 0.51 0.515 0.52 0.525 0.53 0.535 0.54 0.545 0.55

y
C

oo
rd

in
at

es

x Coordinates

Pattern

Pattern One

Figure 3.15: Input data of x and y coordinates of pattern one for LSTM with two input
features.

29

Intelligent Collaborative Robotics for Steel Mold Polishing

 0.521

 0.522

 0.523

 0.524

 0.525

 0.526

 0.527

 0.528

 0.529

 0.53

 0 100 200 300 400 500 600 700 800 900

x
C

oo
rd

in
at

es

Time steps

X

X Points of Pattern Two

Figure 3.16: Input data of x coordinates of pattern two for LSTM with only one input
feature.

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0 100 200 300 400 500 600 700 800 900

y
C

oo
rd

in
at

es

Time steps

Y

Y Points of Pattern Two

Figure 3.17: Input data of y coordinates of pattern two for LSTM with only one input
feature.

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.521 0.522 0.523 0.524 0.525 0.526 0.527 0.528 0.529 0.53

y
C

oo
rd

in
at

es

x Coordinates

Pattern

Pattern Two

Figure 3.18: Input data of x and y coordinates of pattern two for LSTM with two input
features.

30

3. Methodology

the output unreliable [4].

Time series data can be transformed in supervised learning, by using previous and the

current time steps to create a input-output set. Given that the order between the observa-

tions are preserved [27].

The number of previous time steps used in the input-output set is called the window

width or size of the lag. This sliding window is the basic for how any time series dataset

can turn into a supervised learning problem [27].

Before the data enters the LSTM one last transformation is required. Since the NN in

question receives as input a three dimension structure composed of the following array

[Samples, Time Steps, Features] [27].

• Samples: One sequence is one sample. A batch is comprised of one or more sam-

ples [27];

• Time Steps: One time step is one point of observation in the sample. One sample is

comprised of multiple time steps [27];

• Features: One feature is one observation at a time step. One time step is comprised

of one or more features [27].

For the example of a sequence of points such [1 2 3 4 5 6 7 8 9] with a lag window (time

step) of 3, a supervised dataset is as follows:

X y

[1 2 3] [4]

[2 3 4] [5]

[3 4 5] [6]

[4 5 6] [7]

[5 6 7] [8]

[6 7 8] [9]

The previous three time steps are the inputs (X) and the next time step is the output

31

Intelligent Collaborative Robotics for Steel Mold Polishing

(y) of the supervised learning problem. There is no previous values that can be used to

predict the first three values in the sequence. Also, there is no next values to predict for the

last three values in the sequence. In this case, the array [Samples, Time Steps, Features]

corresponds to [6, 3, 1].

3.2.3.4 Model

When there is multiple variables measured over time, that is more than one feature as

input, it is called multivariate architecture. When only one variable is measured over time,

only one feature, it is called univariate. Multivariate data is often more harder to work with

and more difficult to model [27]. Considering the existence of two features, coordinates

x and y, the problem can be faced with a multivariate LSTM or two univariate LSTM

networks, one for each feature, x and y.

When the model only has a single hidden layer followed by an output layer it is said

the model has a Vanilla architecture as illustrated in Figure 3.19. When the model has

multiple hidden layers stacked one on top of the other it is called a Stacked architecture

as shown in Figure 3.20. The less hidden layers the model has the less complex and more

fast the calculus is. However, adding hidden LSTM layer can overcome the problem

of overfitting. Therefore, a compromise must be made [27]. However, having a more

complex model, with several hidden layers or a high number of neurons per layer, can add

noise and increase the likelihood of overfitting [34].

In a simple Neural Network with only one hidden layer it may be harder to improve an

approximation at one point without making it worse elsewhere given that the interactions

between the neurons is global. However, with an architecture of two hidden layers the

outcome of the neurons are isolated and the approximations are made in different regions

that can be adjusted without effecting each other [35].

A dense layer follows the last LSTM layer to condense its output to the prediction value.

Hence, the output dimension of the NN with dense layer is equal to the number of features

as input. The dense layer has a linear activation function and is fully connected to the last

LSTM layer [36].

32

3. Methodology

Figure 3.19: Vanilla LSTM diagram.

Figure 3.20: Stacked LSTM diagram with two hidden layers.

33

Intelligent Collaborative Robotics for Steel Mold Polishing

Activation Function

Activation functions is a hyperparameter that affects the Artificial Neural Network crit-

ically, by deciding whether or not a neuron will be activated. Therefore, assisting the

network in learning complex patterns existent in the input data and allowing the introduc-

tion of non-linearity in the Neural Network [37] [38].

Three common activation function are studied and compered in this work, they are

sigmoid function, tanh function and Rectified Linear Unit (ReLu) function.

Sigmoid Function: This function has a range between 0 to 1, given by equation 3.7.

This is also called as logistic or squashing function [39].

f(x) = 1
(1 + e−x)

(3.7)

Tanh Function: This function is used in problems of voice recognition and natural lan-

guage processing with RNN. With scale between -1 to 1 and zero-centered [39].

f(x) = ex − e−x

ex + e−x
(3.8)

ReLu Function: Frequently used in deep learning applications, given by equation 3.9.

When compared with Sigmoid and Tanh activation function has generally better perfor-

mance. The ReLu doesn’t compute the divisions and exponentials, thus the computation

speed is higher [39].

f(x) = max(0,x) (3.9)

Loss Function

The Neural Network error is known as loss. The loss function is the procedure used for

measuring how distant the NN predictions are of the test dataset [39] [38]. Mean Squared

Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are

three loss functions chosen as the criteria to evaluate the prediction performance in this

34

3. Methodology

study.

MSE = 1
T

T∑
i=1

(x̂t − xt)2 (3.10)

RMSE =

√√√√ 1
T

T∑
i=1

(x̂t − xt)2 (3.11)

MAE = 1
T

T∑
i=1

|xt − x̂t| (3.12)

Where T is the number of test set samples, xt, refers to the real value of the forecasting

point, and x̂t, is the corresponding predicted value [40].

Optimizer Algorithm

The goal in learning process is to minimize the loss function and produce better results

by adjusting the weights and biases. Optimization algorithms plays an essential part in

improving the learning process [37] [41]. The learning process of a Deep Neural Net-

work may be described as an optimization problem whose objective is to find the global

optimum by a training trajectory and fast convergence using gradient descent algorithms.

Therefore, choosing an inappropriate optimization algorithm can lead the network to re-

side in a local minima during training, and thus not achieving any advances in the learning

process [37].

Two optimizer algorithms studied in this thesis that are recurrently used are Adaptive

Moment Estimation (Adam) and Root Mean Square Propagation (RMSprop).

A commonly used optimizer is Stochastic Gradient Descent, already described above

in Section 3.2. A more computational faster optimizer when compered to traditional func-

tions is the Root Mean Square Propagation (RMSprop), which uses momentum to find

minimums of the loss fucntion. The use of momentum enables previous batches of gradi-

ent descent to take the network to a minimum faster [38].

Adam is a commonly used optimizer algorithm that is a combination of RMSprop and

Stochastic Gradient Descent with Momentum (SGDM) [42]. A significant advantage of

35

Intelligent Collaborative Robotics for Steel Mold Polishing

Adam is the use of exponential moving average of the gradients as momentum term in-

stead of the gradients itself like in SGDM, and uses a parameter update that is similar to

RMSprop with an added momentum term [41][42].

Adam is simple to implement, computational efficiency, with small memory require-

ments and rescales the diagonal of the gradient. Behaving efficiently with large problems

in terms of data and/or parameters. The empirical results show that Adam works well

in practice and has advantages over other stochastic optimization methods [40]. Thus,

making the LSTM model have a accurate prediction higher than other optimizers [40].

36

4
Results

In this chapter, the results obtained from the implementation of the methodology de-

scribed in Chapter 3 are presented. With the aim of achieving the best possible generated

pattern for polishing a predetermined mold, a number of LSTMs with different hyperpa-

rametes and parameters, were developed and investigated. The results are evaluated based

on the loss function and the capacity to replicate a similar polishing pattern. Moreover,

a description of the mold and the polishing areas chosen for test in both simulation and

real life are presented. A demonstration of the Panda robot polishing the mold, when fed

the neural network generated pattern, in both simulation and real life environment, is also

presented.

4.1 LSTM

4.1.1 Univariate Vanilla Architecture

An LSTM with a Univariate Vanilla architecture is shown in the diagram of Figure 4.1.

In this architecture, the NN is implemented with only one LSTM layer and only one input

feature. This architecture was trained separately for both x and y points of both recorded

patterns, with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden

layer and a train-test split ratio of 90-10%. Tables 4.1, 4.2 and 4.3, illustrate the RMSE,

MSE and MAE errors, respectively, for x and y points for different activation functions

and optimizers for pattern one. Minimal errors are achieved both x and y coordinates,

with tangent as an activation function and RMSprop as the optimizer. And tables 4.4, 4.5

and 4.6, illustrate the RMSE, MSE and MAE errors, respectively, for x and y points for

37

Intelligent Collaborative Robotics for Steel Mold Polishing

different activation functions and optimizers for pattern two. Minimal errors are achieved

both x and y coordinates, with ReLu as an activation function and RMSprop and Adam,

respectively, as the optimizer.

Figure 4.1: Diagram of LSTM with a Vanilla architecture.

activation/optimization X points Y points
Sigmoid/Adam 0.1224 0.0828

Sigmoid/RMSProp 0.1365 0.1687
ReLu/Adam 0.0426 0.0699

ReLu/RMSProp 0.0566 0.0746
tanh/Adam 0.0492 0.0675

tanh/RMSProp 0.0410 0.0632

Table 4.1: RMSE errors for Univariate Vanilla LSTM for x and y points of pattern one
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer,
a train-test split ratio of 90-10%, for different activation functions and optimizer.

activation/optimization X points Y points
Sigmoid/Adam 0.0153 0.0071

Sigmoid/RMSProp 0.0186 0.0285
ReLu/Adam 0.0018 0.0051

ReLu/RMSProp 0.0033 0.0057
tanh/Adam 0.0025 0.0049

tanh/RMSProp 0.0017 0.0042

Table 4.2: MSE errors for Univariate Vanilla LSTM for x and y points of pattern one
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer,
a train-test split ratio of 90-10%, for different activation functions and optimizer.

Figure 4.2 upper image and 4.3 upper image illustrate the open loop forecast, that is the

predictions of the next time step using only the test dataset, of x and y points, respectively,

for the best achieved results with univariate vanilla architecture, for pattern one as input.

In both figures the blue line represents the test dataset and the red line is the forecast output.

Moreover, in Figure 4.2 bottom image and 4.3 bottom image the closed loop forecast is

shown. Specifically, these figures show the prediction of the subsequent time step by

using previous prediction as input. The figures show the best achieved results with this

architecture for both x and y points of pattern one, respectively. The blue line represents

38

4. Results

activation/optimization X points Y points
Sigmoid/Adam 0.0793 0.0483

Sigmoid/RMSProp 0.1289 0.1557
ReLu/Adam 0.0269 0.0423

ReLu/RMSProp 0.0435 0.0492
tanh/Adam 0.0335 0.0346

tanh/RMSProp 0.0301 0.0359

Table 4.3: MAE errors for Univariate Vanilla LSTM for x and y points of pattern one
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer,
a train-test split ratio of 90-10%, for different activation functions and optimizer.

activation/optimization X points Y points
Sigmoid/Adam 0.1049 0.0719

Sigmoid/RMSProp 0.1959 0.1341
ReLu/Adam 0.0648 0.0361

ReLu/RMSProp 0.0641 0.0481
tanh/Adam 0.0679 0.0387

tanh/RMSProp 0.0771 0.0444

Table 4.4: RMSE errors for Univariate Vanilla LSTM for x and y points of pattern two
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer,
a train-test split ratio of 90-10%, for different activation functions and optimizer.

activation/optimization X points Y points
Sigmoid/Adam 0.0111 0.0053

Sigmoid/RMSProp 0.0385 0.0180
ReLu/Adam 0.0043 0.0015

ReLu/RMSProp 0.0041 0.0024
tanh/Adam 0.0047 0.0016

tanh/RMSProp 0.0059 0.0019

Table 4.5: MSE errors for Univariate Vanilla LSTM for x and y points of pattern two
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer,
a train-test split ratio of 90-10%, for different activation functions and optimizer.

the test dataset and the red line represents the forecast pattern. The results for the remaining

activation function and optimizer combinations for pattern one may be found in Appendix

A, in Figures 6.1 through 6.10.

While figure 4.4 upper image and 4.5 upper image illustrate the open loop forecast of x

and y points, respectively, for the best achieved results with univariate vanilla architecture,

for pattern two as input. In both figures the blue line represents the test dataset and the red

line is the forecast output. Moreover, in Figure 4.4 bottom image and 4.5 bottom image

39

Intelligent Collaborative Robotics for Steel Mold Polishing

activation/optimization X points Y points
Sigmoid/Adam 0.0639 0.0286

Sigmoid/RMSProp 0.1759 0.1241
ReLu/Adam 0.0412 0.0181

ReLu/RMSProp 0.0474 0.0322
tanh/Adam 0.0439 0.0201

tanh/RMSProp 0.0541 0.0304

Table 4.6: MAE errors for Univariate Vanilla LSTM for x and y points of pattern two
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer,
a train-test split ratio of 90-10%, for different activation functions and optimizer.

the close loop forecast is shown. The figures show the best achieved results with this

architecture for both x and y points of pattern two, respectively. The blue line represents

the test dataset and the red line represents the forecast pattern. The results for the remaining

activation function and optimizer combinations for pattern two may be found in Appendix

B, in Figures 7.1 through 7.10.

Different values of time steps were study in this work. For values under 200 time

steps, the LSTM was unable to retain key characteristics of the train dataset and there-

fore couldn’t reproduce a suitable polishing pattern. Higher values of time steps increased

the NN complexity, without a corresponding result improvement. Also, higher values for

epochs and the number of neurons in the hidden layer increase the complexity of the NN

and thus requiring more training time.

4.1.2 Univariate Stacked Architecture

An LSTM with a Univariate Stacked architecture is show in Figure 4.6 diagram. This

NN has one LSTM layer and only one feature for input. This architecture was trained

separately for both x and y points of both recorded patterns, with 200 time step, 70 epochs,

16 for batch size, 512 neurons in both hidden layers and a train-test split ratio of 90-10%. In

Tables 4.7, 4.8 and 4.9, the RMSE,MSE andMAE errors are presented, respectively, for x

and y points of pattern one for different activation functions and optimizers. The best result

for x coordinates are achieved with tangent as the activation function and RMSprop as the

optimizer. While for y coordinates the best results are obtained with the tangent activation

function and the Adam optimizer. Tables 4.10, 4.11 and 4.12 illustrate the RMSE, MSE

40

4. Results

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 50 100 150 200
x

C
oo

rd
in

at
es

Time steps

Test Dataset
Tanh / Adam

Open Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecastint

(b)

Figure 4.2: Univariate Vanilla LSTM output for x points of pattern one with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, train-test split ratio of 90-10%, tangent
as activation function and Adam as optimizer. Image (a) refers to the open loop output while (b)
to closed loop output. The blue line is the input of the trained NN and the red line is the output.

and MAE errors, respectively, for x and y points of pattern two for different activation

functions and optimizers. Minimal errors are achieved for both x and y coordinates with

ReLu as an activation function and RMSprop and Adam, respectively, as the optimizer.

Figure 4.6: Diagram of LSTMwith a Stacked architecture, with two hidden LSTM layers.

activation/optimization X points Y points
Sigmoid/Adam 0.0746 0.0746

Sigmoid/RMSProp 0.1967 0.1748
ReLu/Adam 0.0575 0.0699

ReLu/RMSProp 0.0659 0.0811
tanh/Adam 0.0565 0.0651

tanh/RMSProp 0.0552 0.0699

Table 4.7: RMSE errors for Univariate Stacked LSTM for x and y points of pattern one
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in both the hidden
layers, a train-test split ratio of 90-10%, for different activation functions and optimizer.

41

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

(b)

Figure 4.3: Univariate Vanilla LSTM output for y points of pattern one with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio of 90-10%, tangent
as activation function and Adam as optimizer. Image (a) refers to the open loop output while (b)
to closed loop output. The blue line is the input of the trained NN and the red line is the output.

42

4. Results

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

x
Co

or
di

na
te

s

Time steps

Test Dataset
ReLu / RMSprop

Open Loop Forecasting

(a)

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
Co

or
di

na
te

s

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

(b)

Figure 4.4: Univariate Vanilla LSTM output for x points of pattern two with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio of 90-10%, ReLu
as activation function and RMSprop as optimizer. Image (a) refers to the open loop output while
(b) to closed loop output. The blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

y
Co

or
di

na
te

s

Time steps

Test Dataset
ReLu / Adam

Open Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
Co

or
di

na
te

s

Time steps

Test Dataset
ReLu / Adam

Closed Loop Forecasting

(b)

Figure 4.5: Univariate Vanilla LSTM output for y points of pattern two with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio of 90-10%, ReLu
as activation function and Adam as optimizer. Image (a) refers to the open loop output while (b)
to closed loop output. The blue line is the input of the trained NN and the red line is the output.

43

Intelligent Collaborative Robotics for Steel Mold Polishing

activation/optimization X points Y points
Sigmoid/Adam 0.0058 0.0090

Sigmoid/RMSProp 0.0387 0.03081
ReLu/Adam 0.0033 0.0051

ReLu/RMSProp 0.0044 0.0067
tanh/Adam 0.0033 0.0045

tanh/RMSProp 0.0031 0.0051

Table 4.8: MSE errors for Univariate Stacked LSTM for x and y points of pattern one
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in both the hidden
layers, a train-test split ratio of 90-10%, for different activation functions and optimizer.

activation/optimization X points Y points
Sigmoid/Adam 0.0463 0.0630

Sigmoid/RMSProp 0.1725 0.1420
ReLu/Adam 0.0388 0.0419

ReLu/RMSProp 0.0527 0.0566
tanh/Adam 0.0381 0.0351

tanh/RMSProp 0.0416 0.0431

Table 4.9: MAE errors for Univariate Stacked LSTM for x and y points of pattern one
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in both the hidden
layers, a train-test split ratio of 90-10%, for different activation functions and optimizer.

activation/optimization X points Y points
Sigmoid/Adam 0.0975 0.0719

Sigmoid/RMSProp 0.2261 0.0921
ReLu/Adam 0.0645 0.0346

ReLu/RMSProp 0.0609 0.0612
tanh/Adam 0.0747 0.0429

tanh/RMSProp 0.0748 0.0439

Table 4.10: RMSE errors for Univariate Stacked LSTM for x and y points of pattern two
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in both the hidden
layers, a train-test split ratio of 90-10%, for different activation functions and optimizer.

Figures 4.7 upper image and 4.8 upper image illustrate the open loop forecast of x and

y points, respectively, of pattern one for the best achieved results for a Stacked LSTM.

In both figures, the blue line represents the test dataset and the red line is the forecast

output. Moreover, in Figure 4.7 bottom image and 4.8 bottom image, the close loop fore-

cast is shown for the best achieved results with this architecture for both x and y points,

respectively, of pattern one. The blue line represents the test dataset and the red line repre-

sents the forecast pattern. The results for the remaining activation function and optimizer

44

4. Results

activation/optimization X points Y points
Sigmoid/Adam 0.0096 0.0031

Sigmoid/RMSProp 0.0530 0.0086
ReLu/Adam 0.0042 0.0013

ReLu/RMSProp 0.0037 0.0037
tanh/Adam 0.0057 0.0019

tanh/RMSProp 0.0057 0.0020

Table 4.11: MSE errors for Univariate Stacked LSTM for x and y points of pattern two
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in both the hidden
layers, a train-test split ratio of 90-10%, for different activation functions and optimizer.

activation/optimization X points Y points
Sigmoid/Adam 0.0577 0.0280

Sigmoid/RMSProp 0.2006 0.0700
ReLu/Adam 0.0360 0.0178

ReLu/RMSProp 0.0427 0.0514
tanh/Adam 0.0515 0.0242

tanh/RMSProp 0.0536 0.0278

Table 4.12: MAE errors for Univariate Stacked LSTM for x and y points of pattern two
trained with 200 time step, 70 epochs, 16 for batch size, 512 neurons in both the hidden
layers, a train-test split ratio of 90-10%, for different activation functions and optimizer.

combinations may be found in Appendix A, in Figures 6.11 through 6.20.

Figures 4.9 upper image and 4.10 upper image illustrate the open loop forecast of x and

y points, respectively, of pattern two for the best achieved results for a stacked LSTM.

In both figures, the blue line represents the test dataset and the red line is the forecast

output. Moreover, in Figure 4.4 bottom image and 4.10 bottom image the close loop

forecast is shown for the best achieved results with this architecture for both x and y

points, respectively, of pattern two. The blue line represents the test dataset and the red

line represents the forecast pattern. The results for the remaining activation function and

optimizer combinations may be found in Appendix B, in Figures 7.11 through 7.20.

Increasing the number of hidden layers would create a higher complexity of the NN,

thus, being more time consuming during the training process.

45

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 50 100 150 200
X

C
oo

rd
in

at
es

Time steps

Test Dataset
Tanh / RMSprop

Open Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

X
Co

or
din

ate
s

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

(b)

Figure 4.7: Univariate Stacked LSTM output for x points of pattern two with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio of 90-10%, tangent
as activation function and RMSprop as optimizer. Image (a) refers to the open loop output while
(b) to closed loop output. The blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Y
Co

or
din

ate
s

Time steps

Test Dataset
Tanh / Adam

Open Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
Co

or
din

ate
s

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

(b)

Figure 4.8: Univariate Stacked LSTM output for y points of pattern two with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio of 90-10%, tangent
as activation function and RMSprop as optimizer. Image (a) refers to the open loop output while
(b) to closed loop output. The blue line is the input of the trained NN and the red line is the output.

46

4. Results

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

x C
oo

rd
ina

tes

Time steps

Test Dataset
ReLu / RMSprop

Open Loop Forecasting

(a)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x C
oo

rd
ina

tes

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

(b)

Figure 4.9: Univariate Stacked LSTM output for x points of pattern two with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio of 90-10%, ReLu
as activation function and RMSprop as optimizer. Image (a) refers to the open loop output while
(b) to closed loop output. The blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120 140 160 180 200

y C
oo

rd
ina

tes

Time steps

Test Dataset
ReLu / Adam

Open Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y C
oo

rd
ina

tes

Time steps

Test Dataset
ReLu / Adam

Closed Loop Forecasting

(b)

Figure 4.10: Univariate Stacked LSTM output for y points of pattern two with 200 time step, 70
epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split ratio of 90-10%, ReLu
as activation function and Adam as optimizer. Image (a) refers to the open loop output while (b)
to closed loop output. The blue line is the input of the trained NN and the red line is the output.

47

Intelligent Collaborative Robotics for Steel Mold Polishing

4.1.3 Multivariate Vanilla Architecture

An LSTM with a Multivariate Vanilla architecture is show in the diagram of Figure

4.1. This NN is implemented with only one LSTM layer and two features for input. This

architecture was trained with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in

the hidden layer and a train-test split ratio of 90-10%. In Table 4.13 are shown the RMSE,

MSE and MAE errors for x and y points of pattern one for different activation functions

and optimizes. The best results for both x and y coordinates of pattern one, thus showing

the minimal error, where achieved with ReLu as an activation function and Adam as the

optimizer.

activation/optimization RMSE MSE MAE
Sigmoid/Adam 0.0805 0.0066 0.0454

Sigmoid/RMSProp 0.2536 0.0782 0.2596
ReLu/Adam 0.0496 0.0026 0.0242

ReLu/RMSProp 0.0617 0.0039 0.0419
tanh/Adam 0.0574 0.0034 0.0333

tanh/RMSProp 0.0570 0.0033 0.0376

Table 4.13: RMSE, MSE and MAE errors for Multivariate Vanilla LSTM for x and y
points of pattern one trained with 200 time step, 70 epochs, 16 for batch size, 1024 neurons
in the hidden layer, a train-test split ratio of 90-10%, for different activation functions and
optimizer.

Table 4.14 illustrates the RMSE, MSE and MAE errors for x and y points of pattern two

for different activation functions and optimizes. The minimal error obtain for x and y

coordinates of pattern two where achieved with ReLu as an activation function and Adam

as the optimizer.

Figure 4.11 illustrates the open loop forecast for the best achieved results with Mul-

tivariate Vanilla LSTM for points of patter one as input. This figure shows a blue line

that represents the test dataset and the dashedt red line that represents the forecast out-

put. Moreover, in Figure 4.12 the close loop forecast is shown. The figure shows the best

achieved results with this architecture. The blue line represents the test dataset and the red

line represents the forecast pattern. The results for the remaining activation function and

optimizer combinations may be found in Appendix A, in Figures 6.21 through 6.25.

48

4. Results

activation/optimization RMSE MSE MAE
Sigmoid/Adam 0.0854 0.0074 0.0489

Sigmoid/RMSProp 0.3019 0.0912 0.2807
ReLu/Adam 0.0488 0.0025 0.0254

ReLu/RMSProp 0.0612 0.0038 0.0455
tanh/Adam 0.0540 0.0030 0.0314

tanh/RMSProp 0.0539 0.0029 0.0351

Table 4.14: RMSE, MSE and MAE errors for Multivariate Vanilla LSTM for x and y
points of pattern two trained with 200 time step, 70 epochs, 16 for batch size, 1024 neurons
in the hidden layer, a train-test split ratio of 90-10%, for different activation functions and
optimizer.

 0
 50

 100
 150

 200-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

ReLu/Adam
Test Dataset

Time steps

X Coordinates

Y Coordinates

Open Loop Forecasting

Figure 4.11: Multivariate Vanilla LSTM open loop output for x and y points of pattern
one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer, a
train-test split ratio of 90-10%, ReLu as activation function andAdam as optimizer. Where
the blue solid line is the input of the trained NN and the red line is the output.

49

Intelligent Collaborative Robotics for Steel Mold Polishing

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
ReLu/Adam

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 4.12: Multivariate Vanilla LSTM close loop output for x and y points of pattern
one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer, a
train-test split ratio of 90-10%, ReLu as activation function andAdam as optimizer. Where
the blue solid line is the input of the trained NN and the red dashed line is the output.

Figure 4.13 upper image illustrates the open loop forecast for the best achieved results

with Multivariate Vanilla LSTM for points of patter two as input. This figure shows a blue

line that represents the test dataset and the red line represents the forecast output. More-

over, in Figure 4.13 bottom image the close loop forecast is shown. The figure shows the

best achieved results with this architecture. The blue line represents the test dataset and the

red line represents the forecast pattern. The results for the remaining activation function

and optimizer combinations may be found in Appendix B, in Figures 7.21 through 7.25.

Increasing the number of neurons in the hidden layer would create a higher complexity

of the NN, thus, being more time consuming during the training process.

4.1.4 Multivariate Stacked Architecture

An LSTMwith aMultivariate Stacked architecture is show in the diagram of Figure 4.6.

In this case the NN has two LSTM layers and two features for input. This architecture was

trained with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer

and a train-test split ratio of 90-10%. In Table 4.15 illustrated the RMSE, MSE and MAE

errors for x and y points of pattern one for different activation functions and optimizers.

The minimal errors for both x and y coordinates, are achieved with ReLu as an activation

function and Adam as the optimizer.

50

4. Results

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5 2

Y
Co

or
din

at
es

X Coordinates

Test Dataset
ReLu / Adam

Open Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y
Co

or
din

at
es

X Coordinates

Test Dataset
ReLu / Adam

Close Loop Forecasting

(b)

Figure 4.13: Multivariate Vanilla LSTM open loop output for x and y points of pattern
two with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer, a
train-test split ratio of 90-10%, ReLu as activation function and Adam as optimizer. Image
(a) refers to the open loop output while (b) to closed loop output. The blue solid line is
the input of the trained NN and the red line is the output.

51

Intelligent Collaborative Robotics for Steel Mold Polishing

activation/optimization RMSE MSE MAE
Sigmoid/Adam 0.1094 0.0123 0.0719

Sigmoid/RMSProp 0.3055 0.0936 0.2555
ReLu/Adam 0.0458 0.0022 0.0221

ReLu/RMSProp 0.0747 0.0056 0.0556
tanh/Adam 0.0533 0.0029 0.0319

tanh/RMSProp 0.0604 0.0037 0.0374

Table 4.15: RMSE, MSE and MAE errors for Multivariate Stacked LSTM for x and y
points of pattern one trained with 200 time step, 70 epochs, 16 for batch size, 1024 neurons
in the hidden layer, a train-test split ratio of 90-10%, for different activation functions and
optimizer.

While Table 4.16 illustrated the RMSE, MSE andMAE errors for x and y points of pattern

two for different activation functions and optimizers. The minimal errors for both x and y

coordinates, are achieved with ReLu as an activation function and Adam as the optimizer.

activation/optimization RMSE MSE MAE
Sigmoid/Adam 0.1135 0.0131 0.0766

Sigmoid/RMSProp 0.3292 0.1097 0.2767
ReLu/Adam 0.0482 0.0024 0.0251

ReLu/RMSProp 0.0847 0.0072 0.0669
tanh/Adam 0.0561 0.0033 0.0359

tanh/RMSProp 0.0644 0.0042 0.0461

Table 4.16: RMSE, MSE and MAE errors for Multivariate Stacked LSTM for x and y
points of pattern two trained with 200 time step, 70 epochs, 16 for batch size, 1024 neurons
in the hidden layer, a train-test split ratio of 90-10%, for different activation functions and
optimizer.

Figure 4.14 illustrates the open loop forecast for the best achieved results with Multi-

variate Stacked LSTM for points of pattern one as input. This figure shows a blue line that

represents the test dataset and the red line that represents the forecast output. Moreover,

in Figure 4.15 the close loop forecast is shown. The figure shows the best achieved results

with this architecture. The blue line represents the test dataset and the red line represents

the forecast pattern. The results for the remaining activation function and optimizer com-

binations may be found in Appendix A, in Figures 6.26 through 6.29.

52

4. Results

 0
 50

 100
 150

 200-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

ReLu/Adam
Test Dataset

Time steps

X Coordinates

Y Coordinates

Open Loop Forecasting

Figure 4.14: Multivariate Stacked LSTM open loop output for x and y points of pattern
one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer, a
train-test split ratio of 90-10%, ReLu as activation function andAdam as optimizer. Where
the blue solid line is the input of the trained NN and the red line is the output.

 0 100 200 300 400 500 600-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
ReLu/Adam

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 4.15: Multivariate Stacked LSTM close loop output for x and y points of pattern
one with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer, a
train-test split ratio of 90-10%, ReLu as activation function andAdam as optimizer. Where
the blue solid line is the input of the trained NN and the red line is the output.

Figure 4.16 upper image illustrates the open loop forecast for the best achieved results

with Multivariate Stacked LSTM for points of pattern two as input. This figure shows a

blue line that represents the test dataset and the red line that represents the forecast out-

put.Moreover, in Figure 4.16 bottom image the close loop forecast is shown. The figure

shows the best achieved results with this architecture. The blue line represents the test

dataset and the red line represents the forecast pattern. The results for the remaining acti-

vation function and optimizer combinations may be found in Appendix B, in Figures 7.26

53

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5 2

Y
Co

or
din

at
es

X Coordinates

Test Dataset
ReLu / Adam

Open Loop Forecasting

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y
Co

or
din

at
es

X Coordinates

Test Dataset
ReLu / Adam

Close Loop Forecasting

(b)

Figure 4.16: Multivariate Stacked LSTM open loop output for x and y points of pattern
two with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer, a
train-test split ratio of 90-10%, ReLu as activation function and Adam as optimizer. Image
(a) refers to the open loop output while (b) to closed loop output. Where the blue solid
line is the input of the trained NN and the red line is the output.

54

4. Results

through 7.28.

4.2 Findings and Result Discussion

The obtained results suggest that Sigmoid activation functions present poor perfor-

mance when compared to ReLu and tangent ones. Poor performance is specially iden-

tifiable when Sigmoid functions are combined with RMSprop optimizers.

For univariate architecture scenarios that only use one input feature, the x coordinate

presents better behaviour with RMSprop optimizers while the y coordinate performs better

with Adam optimizers.

Moreover, ReLu and Adam function combinations show best performance with a mul-

tivariate architecture.

Better quantitative results were obtained (i.e., lower errors) with only one hidden layer

for multivariate architectures. Nevertheless, stacked architectures (i.e., multiple hidden

layers) provided good qualitative results as shown in Figures 4.12 and 4.15 for pattern

one and Figures 4.13 (b) and 4.16 (b) for pattern two.

4.3 Demonstration Mold Used for Testing

For simulation and testing purposes a mold was used, as illustrated in Figure 4.17. The

mold has a combination of flat and curved surfaces. Also gradient slope surfaces form the

geometry of the mold where the developed algorithm was tested. Figure 4.18 shows the

mold CAD model that allows for visual representation on RVIZ.

4.4 Simulation of the Polishing Process

MatLab was used to chose the areas to test the performance of the LSTM and retrieve

the square to the surface. Figure 4.19 shows a chosen areas for test purposes.

The perpendicular of the chosen areas are retrieved because the robot end-effector ori-

entation during the polishing process should be square to the mold, illustrated by the blue

55

Intelligent Collaborative Robotics for Steel Mold Polishing

Figure 4.17: Demonstration mold used for testing and simulation purposes.

Figure 4.18: RVIZ simulation of the mold and robot Panda.

vectors in Figure 4.19. The desired orientation of the end-effector during the polish pro-

cess is given by the following equation

Rd = RmRt (4.1)

where (Rm) is the mold rotation and (Rt) is the polishing pattern rotation. (Rt) is chosen

depending on mold form.

The plane is defined by four points from the mold. From the given four points, only three

56

4. Results

Figure 4.19: MatLab CAD visualization of the mold. The perpendicular inside the chosen
area are represented by the blue vector.

are selected to compute the normal of the plane to be polished.

Figure 4.20 shows the RVIZ simulation of the Panda robot polishing pattern generated

by the LSTM.

Figure 4.20: RVIZ simulation of Panda robot performing the polishing movements gen-
erated by the LSTM.

57

Intelligent Collaborative Robotics for Steel Mold Polishing

4.5 Real Life Polishing

Figure 4.21 illustrates a polishing task carried out by the robot Panda on the demonstra-

tion mold, using pattern one.

Figure 4.21: Visual representation of Panda robot performing polishing task. From time
step 1 to 2 the robot moves to a point in the mold to start the polishing process. In time
step 3 to 7 the robot performs the polishing patter generated by the LSTM.

The movement drawn by the robotic arm in the mold is represented in Figure 4.22, where

it´s visible the polishing pattern generated by the LSTM in Figure 4.12.

During the polishing process the wear of the stone provokes a decrease in the applied

forced by the robot and, therefore, a decrease quality of the polishing. To counter this

effect the stiffness of the robot may be manually increased during the polishing process

58

4. Results

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.44 0.445 0.45 0.455 0.46 0.465 0.47 0.475 0.48

y
C

oo
rd

in
at

es

x Coordinates

Robot Path

Pattern Made by Robot

Figure 4.22: Robot movements performed in the mold during the process of polishing a
patter generated by LSTMmultivariate vanilla architecture with ReLu activation fucntion
and Adam optimizer of pattern one.

 0.1

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.14

 0.42 0.422 0.424 0.426 0.428 0.43 0.432 0.434 0.436 0.438

y
C

oo
rd

in
at

es

x Coordinates

Robot Path

Pattern Made by Robot

Figure 4.23: Robot movements performed in the mold during the process of polishing a
patter generated by LSTMmultivariate vanilla architecture with ReLu activation fucntion
and Adam optimizer of pattern two.

by increasing the values of Kp in the z axes.

59

5
Conclusion and Future Work

The main purpose of this thesis is to further develop an autonomous polishing system

for plastic molds. This work develops a nn architecture to address the polishing process

of steel molds, which are commonly used in the growing plastic industry. Consumer sat-

isfaction demands that plastic objects are rapidly produced in large quantities, without

noticeable flaws. Within this context, high quality mold production plays an important

role to guaranty objects with high standards. Polishing process are critical in mold fabri-

cation enabling to achieve high quality plastic objects.

In this work, Long Short Term Memory (LSTM) Neural Network were used to gener-

ate several polishing patterns. The data for Deep Neural Network training was obtained

by recording specialized polishing human operator motions. A number of LSTMs were

studied and analysed, including different hyperparameter and architecture designs to ob-

tain desired results. The influence of the number of time steps, neurons, hidden layers and

epochs in NN behaviour have been studied. Additionally, the relevance of NN activation

functions and optimizers also have been investigated.

From the obtained results, several relevant NN characteristics have been identified. The

more neurons the network has - that is the more complex it is - the more time it requires to

complete training. Therefore, the number of neurons per layer and the number of hidden

layers were chosen making a compromise between satisfactory results and small train-

ing times. Multivariate architecture networks took considerable more time to train than

univariate ones, as expected since the multivariate architecture has the double of input

parameters. The hyperparameter time step value has a key impact on network output.

When the time steps are under 200, the Neural Networks are not able to reproduce well

60

5. Conclusion and Future Work

desired polishing patterns. Higher time step values increase network complexity with-

out result improvement. The sigmoid activation function had in general bad performance

when compared with tangent and ReLu functions, especially when combined with the

RMSprop optimizer. For univariate architecture networks the coordinate x has better re-

sults with RMSprop optimizer while the y coordinate performed better with Adam. The

ReLu activation function combined with Adam optimizer presents the best results for both

studied patterns with a multivariate architecture, i.e., with two input features. Moreover,

for multivariate architecture with only one hidden layer were observed better quantita-

tive results. Nevertheless, multivariate stacked architectures provided better qualitative

results.

The best NN results were fed into a Franka Emika Panda robot arm. A polishing task

has been carried out in to demonstration mold polishing. The robot has an impedance

control architecture to replicate human arm movements.

5.1 Future Work

The currently implemented process doesn’t take into account polishing tool’s wear. An

autonomousmechanismmust therefore be implemented as futurework to take into account

tool’s wear. By increasing the stiffness of the robot and by changing the z coordinates of

the end-effector is one solution to tackle this problem.

61

6
Appendix A Complementary Results

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 6.1: Univariate Vanilla LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / RMSprop

Closed Loop Forecasting

Figure 6.2: Univariate Vanilla LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / Adam

Closed Loop Forecasting

Figure 6.3: Univariate Vanilla LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and Adam as optimizer. Where the
blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

Figure 6.4: Univariate Vanilla LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

Figure 6.5: Univariate Vanilla LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function andRMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 6.6: Univariate Vanilla LSTM close loop output for y of pattern one with with 200
time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-test split
ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where the blue
line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / RMSprop

Closed Loop Forecasting

Figure 6.7: Univariate Vanilla LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / Adam

Closed Loop Forecasting

Figure 6.8: Univariate Vanilla LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and Adam as optimizer. Where the
blue line is the input of the trained NN and the red line is the output.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

Figure 6.9: Univariate Vanilla LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

Figure 6.10: Univariate Vanilla LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function andRMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 6.11: Univariate Stacked LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 100 200 300 400 500 600

X
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / RMSprop

Closed Loop Forecasting

Figure 6.12: Univariate Stacked LSTM close loop output for x points of pattern one
with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 100 200 300 400 500 600

X
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / Adam

Closed Loop Forecasting

Figure 6.13: Univariate Stacked LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and Adam as optimizer. Where the
blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

X
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

Figure 6.14: Univariate Stacked LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

X
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

Figure 6.15: Univariate Stacked LSTM close loop output for x points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 6.16: Univariate Stacked LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / RMSprop

Closed Loop Forecasting

Figure 6.17: Univariate Stacked LSTM close loop output for y points of pattern one
with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / Adam

Closed Loop Forecasting

Figure 6.18: Univariate Stacked LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and Adam as optimizer. Where the
blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

Figure 6.19: Univariate Stacked LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

Y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

Figure 6.20: Univariate Stacked LSTM close loop output for y points of pattern one with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function andRMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

 0 100 200 300 400 500 600-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Sigmoid/Adam

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.21: Multivariate Vanilla LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

 0 100 200 300 400 500 600-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Sigmoid/RMSprop

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.22: Multivariate Vanilla LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2.5-2
-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
ReLu/RMSprop

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.23: Multivariate Vanilla LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Appendix

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Tanh/Adam

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.24: Multivariate Vanilla LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, tengent as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Tanh/RMSprop

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.25: Multivariate Vanilla LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, tangent as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Sigmoid/Adam

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.26: Multivariate Stacked LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

 0 100 200 300 400 500 600-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Sigmoid/RMSprop

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.27: Multivariate Stacked LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

Appendix

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2.5-2
-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
ReLu/RMSprop

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.28: Multivariate Stacked LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Tanh/Adam

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.29: Multivariate Stacked LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, tangent as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

 0 100 200 300 400 500 600-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2-1.5-1
-0.5 0
 0.5 1
 1.5 2

Test Dataset
Tanh/RMSProp

Time steps

X Coordinates

Y Coordinates

Closed Loop Forecasting

Figure 6.30: Multivariate Stacked LSTM close loop output for x and y points of pattern
one with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, tangent as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

7
Appendix B Complementary Results

-3

-2

-1

 0

 1

 2

 3

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 7.1: Univariate Vanilla LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / RMSprop

Closed Loop Forecasting

Figure 7.2: Univariate Vanilla LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / Adam

Closed Loop Forecasting

Figure 7.3: Univariate Vanilla LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and Adam as optimizer. Where the
blue line is the input of the trained NN and the red line is the output.

Appendix

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

Figure 7.4: Univariate Vanilla LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-4

-3

-2

-1

 0

 1

 2

 3

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

Figure 7.5: Univariate Vanilla LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function andRMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 7.6: Univariate Vanilla LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Simgoid / RMSprop

Closed Loop Forecasting

Figure 7.7: Univariate Vanilla LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

Figure 7.8: Univariate Vanilla LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

Figure 7.9: Univariate Vanilla LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

Figure 7.10: Univariate Vanilla LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function andRMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 7.11: Univariate Stacked LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Appendix

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / RMSprop

Closed Loop Forecasting

Figure 7.12: Univariate Stacked LSTM close loop output for x points of pattern two
with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
ReLu / RMSprop

Closed Loop Forecasting

Figure 7.13: Univariate Stacked LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

Figure 7.14: Univariate Stacked LSTM close loop output for x points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

x
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

Figure 7.15: Univariate Stacked LSTM close loop output for x points of pattern two
with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, tangent as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / Adam

Closed Loop Forecasting

Figure 7.16: Univariate Stacked LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Sigmoid / RMSprop

Closed Loop Forecasting

Figure 7.17: Univariate Stacked LSTM close loop output for y points of pattern two
with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
RLu / RMSprop

Closed Loop Forecasting

Figure 7.18: Univariate Stacked LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / Adam

Closed Loop Forecasting

Figure 7.19: Univariate Stacked LSTM close loop output for y points of pattern two with
with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a train-
test split ratio of 90-10%, tangent as activation function and Adam as optimizer. Where
the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

y
C

oo
rd

in
at

es

Time steps

Test Dataset
Tanh / RMSprop

Closed Loop Forecasting

Figure 7.20: Univariate Stacked LSTM close loop output for y points of pattern two
with with 200 time step, 70 epochs, 16 for batch size, 512 neurons in the hidden layer, a
train-test split ratio of 90-10%, tangent as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Sigmoid / Adam

Close Loop Forecasting

Figure 7.21: Multivariate Vanilla LSTM close loop output for x and y points of pattern
twowith with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Sigmoid / RMSprop

Close Loop Forecasting

Figure 7.22: Multivariate Vanilla LSTM close loop output for x and y points of pattern
two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y
C

oo
rd

in
at

es

X Coordinates

Training Dataset
ReLu / RMSprop

Close Loop Forecasting

Figure 7.23: Multivariate Vanilla LSTM close loop output for x and y points of pattern
twowith with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Tanh / Adam

Close Loop Forecasting

Figure 7.24: Multivariate Vanilla LSTM close loop output for x and y points of pattern
twowith with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, tangent as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Tanh / RMSprop

Close Loop Forecasting

Figure 7.25: Multivariate Vanilla LSTM close loop output for x and y points of pattern
two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, tangent as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Sigmoid / Adam

Close Loop Forecasting

Figure 7.26: Multivariate Stacked LSTM close loop output for x and y points of pattern
twowith with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, sigmoid as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Sigmoid / RMSprop

Close Loop Forecasting

Figure 7.27: Multivariate Stacked LSTM close loop output for x and y points of pattern
two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, sigmoid as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

Appendix

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -3 -2 -1 0 1 2

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
ReLu / RMSprop

Close Loop Forecasting

Figure 7.28: Multivariate Stacked LSTM close loop output for x and y points of pattern
twowith with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, ReLu as activation function and RMSprop as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Tanh / Adam

Close Loop Forecasting

Figure 7.29: Multivariate Stacked LSTM close loop output for x and y points of pattern
twowith with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden layer,
a train-test split ratio of 90-10%, tangent as activation function and Adam as optimizer.
Where the blue line is the input of the trained NN and the red line is the output.

Intelligent Collaborative Robotics for Steel Mold Polishing

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Y
C

oo
rd

in
at

es

X Coordinates

Test Dataset
Tanh / RMSprop

Close Loop Forecasting

Figure 7.30: Multivariate Stacked LSTM close loop output for x and y points of pattern
two with with 200 time step, 70 epochs, 16 for batch size, 1024 neurons in the hidden
layer, a train-test split ratio of 90-10%, tangent as activation function and RMSprop as
optimizer. Where the blue line is the input of the trained NN and the red line is the output.

Bibliography

[1] Panda’s Instruction Handbook. April 2020.

[2] H. Ochoa and R. Cortesão, “Control architecture for robotic-assisted polishing tasks

based on human skills,” in IECON 2019 - 45th Annual Conference of the IEEE In-

dustrial Electronics Society, vol. 1, pp. 630–637, 2019.

[3] S. L. Loli Burgueño, Jordi Cabot and S. Gérard, “A generic lstm neural network

architecture to infer heterogeneous model transformations,” in Software and Systems

Modeling, vol. 21, pp. 139–156, 2022.

[4] C. Bergström and O. Hjelm, “Impact of time steps on stock market prediction with

lstm,” 2019.

[5] P. Werbos, “Backpropagation through time: what it does and how to do it,” Proceed-

ings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[6] M. A. Istiake Sunny, M. M. S. Maswood, and A. G. Alharbi, “Deep learning-based

stock price prediction using lstm and bi-directional lstm model,” in 2020 2nd Novel

Intelligent and Leading Emerging Sciences Conference (NILES), pp. 87–92, 2020.

[7] D. Haputhanthri and A. Wijayasiri, “Short-term traffic forecasting using lstm-based

deep learning models,” in 2021Moratuwa Engineering Research Conference (MER-

Con), pp. 602–607, 2021.

[8] V. Santhosh and K. R. Babu, “Design and wrapage analysis of plastic injection

mould,” in National Conference on Challenges in Research & Technology in the

Coming Decades (CRT 2013), pp. 1–5, 2013.

Intelligent Collaborative Robotics for Steel Mold Polishing

[9] Y. Choi, J. Shin, H. Choi, and S. Lee, “Quality management system for web-based

collaboration in mold amp; die industry,” in The 40th International Conference on

Computers Indutrial Engineering, pp. 1–6, 2010.

[10] S. Chen and W. Lai, “Control system software design of injection molding machine

based on neural network,” in 2011 Second International Conference on Mechanic

Automation and Control Engineering, pp. 1119–1122, 2011.

[11] A. Tellaeche and R. Arana, “Machine learning algorithms for quality control in plas-

tic molding industry,” in 2013 IEEE 18th Conference on Emerging Technologies &

Factory Automation (ETFA), pp. 1–4, 2013.

[12] “Moldes injeções plásticos.” http://moldesinjecaoplasticos.com.br/, june

2017.

[13] A. E. K. Mohammad, J. Hong, and D. Wang, “Design of a force-controlled end-

effector with low-inertia effect for robotic polishing using macro-mini robot ap-

proach,” Robotics and Computer-Integrated Manufacturing, vol. 49, pp. 54–65,

2018.

[14] M. Tsai, J.-L. Chang, and J.-F. Haung, “Development of an automatic mold polishing

system,” IEEE Transactions on Automation Science and Engineering, vol. 2, no. 4,

pp. 393–397, 2005.

[15] C. Gaz, E. Magrini, and A. De Luca, “A model-based residual approach for human-

robot collaboration during manual polishing operations,” Mechatronics, vol. 55,

pp. 234–247, 2018.

[16] Z. Shenghao and S. Jinchun, “Impedance control for vehicle driving with human

operation under unstructured environment,” in 2011 International Conference on

Internet Computing and Information Services, pp. 159–162, 2011.

[17] W. He, Y. Dong, and C. Sun, “Adaptive neural impedance control of a robotic manip-

ulator with input saturation,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 46, no. 3, pp. 334–344, 2016.

http://moldesinjecaoplasticos.com.br/

Bibliography

[18] M. Nechyba andY. Xu, “Human skill transfer: neural networks as learners and teach-

ers,” in Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots

and Systems. Human Robot Interaction and Cooperative Robots, vol. 3, pp. 314–319

vol.3, 1995.

[19] R. Wu, H. Zhang, and J. Zhao, “Robot variable impedance skill transfer and learn-

ing framework based on a simplified human arm impedance model,” IEEE Access,

vol. 8, pp. 225627–225638, 2020.

[20] H. Ochoa and R. Cortesão, “Impedance control architecture for robotic-assistedmold

polishing based on human demonstration,” IEEE Transactions on Industrial Elec-

tronics, vol. 69, no. 4, pp. 3822–3830, 2022.

[21] M. Lu and F. Li, “Survey on lie group machine learning,” Big Data Mining and

Analytics, vol. 3, no. 4, pp. 235–258, 2020.

[22] G. Meena, D. Sharma, and M. Mahrishi, “Traffic prediction for intelligent trans-

portation system using machine learning,” in 2020 3rd International Conference on

Emerging Technologies in Computer Engineering: Machine Learning and Internet

of Things (ICETCE), pp. 145–148, 2020.

[23] M. A. Ahmad, E. A. T. Rivera, P. M. Murray, E. M. Carly, P. M. Anita, and A. Tere-

desai, “Machine learning approaches for patient state prediction in pediatric icus,” in

2021 IEEE 9th International Conference on Healthcare Informatics (ICHI), pp. 422–

426, 2021.

[24] K. Moharm, M. Eltahan, and E. Elsaadany, “Wind speed forecast using lstm and bi-

lstm algorithms over gabal el-zayt wind farm,” in 2020 International Conference on

Smart Grids and Energy Systems (SGES), pp. 922–927, 2020.

[25] K. PENG, W. BAI, and L. WU, “Passenger flow forecast of railway station based

on improved lstm,” in 2020 2nd International Conference on Advances in Computer

Technology, Information Science and Communications (CTISC), pp. 166–170, 2020.

[26] N. D. Lewis, Deep Time Series Forecasting with Python: An Intuitive Introduction

to Deep Learning for Applied Time Series Modeling. Paperback, 2016.

Intelligent Collaborative Robotics for Steel Mold Polishing

[27] J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with

MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.

[28] V. A. Shterev, N. S. Metchkarski, and K. A. Koparanov, “Time series prediction

with neural networks: a review,” in 2022 57th International Scientific Conference on

Information, Communication and Energy Systems and Technologies (ICEST), pp. 1–

4, 2022.

[29] M. M. Panda, S. N. Panda, and P. K. Pattnaik, “Exchange rate prediction using ann

and deep learning methodologies: A systematic review,” in 2020 Indo – Taiwan

2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan

ICAN), pp. 86–90, 2020.

[30] A. Jaisswal and A. Naik, “Effect of hyperparameters on backpropagation,” in 2021

IEEE Pune Section International Conference (PuneCon), pp. 1–5, 2021.

[31] N. Gorgolis, I. Hatzilygeroudis, Z. Istenes, and L. �. G. Gyenne, “Hyperparameter

optimization of lstm network models through genetic algorithm,” in 2019 10th Inter-

national Conference on Information, Intelligence, Systems and Applications (IISA),

pp. 1–4, 2019.

[32] B. Nakisa, M. N. Rastgoo, A. Rakotonirainy, F. Maire, and V. Chandran, “Long

short termmemory hyperparameter optimization for a neural network based emotion

recognition framework,” IEEE Access, vol. 6, pp. 49325–49338, 2018.

[33] S. Hwangbo, S. I. Kim, U. Cho, Y.-S. Song, and T. Park, “Identification of hyperpa-

rameters with high effects on performance of deep neural networks: application to

clinicopathological data of ovarian cancer,” in 2019 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM), pp. 1982–1987, 2019.

[34] B. Cha, Y. Cha, S. An, E. Jeon, S. Park, and J. Kim, “Experimental design for multi-

task deep learning toward intelligence augmented visual ai,” in 2021 International

Conference on Information and Communication Technology Convergence (ICTC),

pp. 1735–1737, 2021.

Bibliography

[35] D. L. Chester, “Why two hidden layers are better than one,” in 1990 International

Joint Conference on Neural Networks (IJCNN), pp. 265–268, 1990.

[36] A. Rose andM. Grotjahn, “Lstm based time-series prediction for optimal scheduling

in the foundry industry,” in 2022 International Joint Conference on Neural Networks

(IJCNN), pp. 1–8, 2022.

[37] M. H. Essai Ali, A. B. Abdel-Raman, and E. A. Badry, “Developing novel activa-

tion functions based deep learning lstm for classification,” IEEE Access, vol. 10,

pp. 97259–97275, 2022.

[38] J. Pomerat, A. Segev, and R. Datta, “On neural network activation functions and

optimizers in relation to polynomial regression,” in 2019 IEEE International Con-

ference on Big Data (Big Data), pp. 6183–6185, 2019.

[39] S. Kavitha, N. Sanjana, K. Yogajeeva, and S. Sathyavathi, “Speech emotion recog-

nition using different activation function,” in 2021 International Conference on Ad-

vancements in Electrical, Electronics, Communication, Computing and Automation

(ICAECA), pp. 1–5, 2021.

[40] Z. Chang, Y. Zhang, and W. Chen, “Effective adam-optimized lstm neural network

for electricity price forecasting,” in 2018 IEEE 9th International Conference on Soft-

ware Engineering and Service Science (ICSESS), pp. 245–248, 2018.

[41] R. Llugsi, S. E. Yacoubi, A. Fontaine, and P. Lupera, “Comparison between adam,

adamax and adamw optimizers to implement a weather forecast based on neural net-

works for the andean city of quito,” in 2021 IEEE Fifth Ecuador Technical Chapters

Meeting (ETCM), pp. 1–6, 2021.

[42] S. Y. ŞEN and N. ÖZKURT, “Convolutional neural network hyperparameter tun-

ing with adam optimizer for ecg classification,” in 2020 Innovations in Intelligent

Systems and Applications Conference (ASYU), pp. 1–6, 2020.

	List of Figures
	List of Tables
	Introduction
	Background
	Objectives
	Contributions
	Structure of the Document

	State of the Art
	Control Architecture
	Human Transfer Skill
	Neuronal Networks

	Methodology
	Panda Robot
	Equipment Overview
	Communication Modes
	Control Architecture

	Neural Networks
	LSTM
	Parameters and Hyperparameters
	LSTM Model
	Environment
	Data Collection
	Data Processing
	Model

	Results
	LSTM
	Univariate Vanilla Architecture
	Univariate Stacked Architecture
	Multivariate Vanilla Architecture
	Multivariate Stacked Architecture

	Findings and Result Discussion
	Demonstration Mold Used for Testing
	Simulation of the Polishing Process
	Real Life Polishing

	Conclusion and Future Work
	Future Work

	Appendix A Complementary Results
	Appendix B Complementary Results
	Bibliography

