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Resumo

Com o aumento da intensidade de fenómenos climáticos extremos, como a seca, o risco de in-

cêndios florestais tornou-se ainda maior. Uma ferramenta fundamental para mitigar os riscos

apresentados por essas condições cada vez mais comuns é a gestão do perímetro florestal,

que envolve a remoção de materiais altamente inflamáveis, como ramos e arbustos mortos -

uma tarefa frequentemente negligenciada devido à falta de recursos e ao perigo envolvido.

Os avanços na navegação autónoma criam a oportunidade de automatizar esse processo de

limpeza com virtualmente nenhum recurso humano, equipando o veículo com sensores ca-

pazes de fornecer uma compreensão do ambiente para navegação e implantação segura de

atuadores que permitem a identificação e remoção de material combustível. A precisão da

tarefa de perceção é de extrema importância e muitas vezes impossível de ser alcançada com

apenas um único sensor, sendo assim importante usar sensores auxiliares, como IMU, GPS,

etc. Para realizar a navegação autónoma em ambientes florestais, dada a variedade de estru-

turas observáveis nessas áreas, que muitas vezes não possuem características fixas como em

ambientes urbanos (por exemplo, passeios, passagens para peões) e superfícies construídas

para fins de navegação, é necessária uma análise única para determinar se a navegação pode

ou não ser realizada ao longo do caminho enfrentado. Esta análise visa obter uma medida

de traversability e é realizada levando em consideração vários elementos, como a rugosidade,

inclinação, elevação e as próprias limitações do veículo.

Nesta dissertação, é apresentado um método de análise de traversibilidade que utiliza

uma nuvem de pontos 3D obtida de um sensor LIDAR e dados de localização de GPS e

IMU para distinguir zonas onde a passagem é possível/impossível, usando parâmetros como

inclinação e elevação entre superfícies. O método foi submetido a vários testes em ambientes

florestais para os quais não havia testes documentados, e o seu desempenho foi avaliado em

diferentes ambientes florestais e com diferentes sensores. Os resultados são apresentados e

analisados no documento.

Palavras-Chave: análise de travessia; LIDAR; deteção multimodal; robótica florestal
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Abstract

With the increasing intensity of extreme climate phenomena such as drought, the risk of for-

est fires has become even greater. A key tool for mitigating the risks posed by these increas-

ingly common conditions is forest perimeter management, the removal of highly flammable

material such as branches and dead shrubs – a task often neglected due to the lack of re-

sources and the danger involved. Advances in autonomous navigation create the opportunity

to automate this cleanup process with virtually no human resources by equipping the vehicle

with sensors capable of providing an understanding of the environment for navigation and

safe deployment of actuators that enable identification and removal of combustible material.

The accuracy of the perception task is of paramount importance and often impossible to

achieve with just a single sensor, so it is important to use auxiliary sensors such as IMU,

GPS, etc. To perform autonomous navigation in forest environments, given the variety of

observable structures in these areas, which often do not have fixed features as in urban

environments (e.g., curbs, crosswalks) and surfaces constructed for navigation purposes, a

unique analysis is required to determine whether or not navigation can be performed along

the faced path. This analysis aims to obtain a measure of traversability and is performed

taking into account various elements such as roughness, slope, elevation and the vehicle’s

own limitations.

In this dissertation, a method of traversability analysis is presented that uses a 3D point

cloud obtained from a LIDAR sensor and localization data from GPS and IMU to distinguish

zones where traversability is possible/impossible, using parameters such as slope and eleva-

tion between surfaces. The method was subjected to various tests in forest environments

for which there were no documented tests, and its performance was evaluated in different

forest environments and with different sensors. The results are presented and analyzed in

the document.

Keywords: Terrain Traversibility Analysis; LIDAR; Multimodal Sensing; Forestry Robotics
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1 Introduction

1.1 Motivation and Context

In recent years, the alarming increase in the frequency and intensity of forest fires has cast

a shadow over ecosystems, communities, and landscapes around the world, highlighting the

urgent need to address this pressing environmental challenge. Statistics from the European

Forest Fire Information System (EFFIS) show that of all the fires in Europe in 2022, 17,000

fires resulted in a burned area of more than 30 ha, and that these incidents represent only a

small fraction of the total [6].

The data show that 85% of these fires occur in the Mediterranean region. Five of EU-

MED countries - Portugal, Spain, France, Italy, and Greece - have data available in EFFIS

for a longer period of time. Of these countries, Portugal is particularly noteworthy, as 35%

of the fires and 39% of the area burned in the last 30 years belonged to Portuguese forests

[7].

The impact of forest fires reaches different sectors:

• Economy - Destruction of forested areas leads to economic losses in sectors ranging

from logging to forest tourism to agriculture, leading to an increase in unemployment

that promotes migration from rural areas, which in turn promotes accumulation, which

in turn promotes new fires.

• Environment - Forest fires are the cause of species extinction and the emission of gasses

into the atmosphere, leading to an increase in global warming.

Wildfire risk can be described as the sum of the magnitude of wildfire risk in a given

area and the potential impact on citizens. As a major component of risk, wildfire risk is

associated with several factors, including weather and climate conditions that can affect the

likelihood of ignition or subsequent fire behavior. Although they do not always appear in

fire risk definition systems, 90% of wildfires are caused by human activities [1] and occur in
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the WUI - Wildland Urban Interface where human activities are more present (see Figure

1.1, 1.2). These fires fall into the category of most dangerous to the public, but the larger

burn areas are in forests in less densely populated areas where there is no forest monitoring

[8].

Figure 1.1: Vulnerable population distribution by proximity to wildland fuels.[1]

According to reports from Portuguese authorities, the causes are mostly criminal in

nature, but also include negligence in activities such as uncontrolled campfires or flying

sparks from heavy machinery [9] [10].

Of the possible measures to prevent forest fires and their effects, such as awareness cam-

paigns, improving vegetation resilience, and others, one of the most effective is to promote

regular "cleaning" of forests to reduce the accumulation of fuel through pruning, mowing,

raking, and removal [11]. This task is not easy because, despite the introduction of measures

such as education or laws on forest management, most of the land is owned by non-industrial

private companies and it is difficult to make the process as professional and efficient as pos-

sible, since the owners may not agree with the measures planned for their land [12].

Research has shown that forest debris such as brush, scrub, and pine needles are highly

combustible and promote the spread of fires and that it is necessary to maintain forest

areas by reducing the accumulation of fuel. The big problem is that this work requires high

investment, focusing on attracting labor for this purpose, which is a difficult task due to the

demanding and dangerous work [9].

Work in the forestry sector involves a high risk of injury, which accounts for the majority

of occupational accidents [13]. This is due to the high loads, exposure to the environment

and the use of power tools and machines, which make the work more efficient, but also more

risky, causing problems in the muscular and auditory system, back injuries, as well as many

3



Figure 1.2: WUI - Orange, Fires intersecting WUI are marked in blue, Fires not intersecting

marked in red [1]

other occupational accidents resulting from the use of said tools [7][14].

Among the various tools available for this type of work, mulchers are increasingly rec-

ognized as one of the most efficient methods for maintaining forest areas. They allow the

shredding of various types of fuel material, which is then spread on the ground as mulch.

This conversion leads to a potential reduction in fire spread by reducing the available oxy-

gen supply in this dense fuel. Research also shows that mulch can be helpful in restoring a

burned area.

Given these reasons and the increasing development and availability of better solutions,

it is imperative to complete this important task using the most efficient and safest processes,

with one of the options being to apply the technology using robotic forestry [15]. To take

full advantage of this category of tools, said robots must be able to navigate autonomously.

For this, a perception module that can determine the regions to be cleaned and navigated

is essential [16]. In this work, we address the navigation problem, i.e., the robot’s ability to

4



respond to the perceived environment and move from the initial state to a desired target state.

A core component for solving the navigation problem is the analysis of the traversability of

the terrain, which provides information for path planning and obstacle avoidance, where the

information about obstacles is determined by their characteristics and the constraints of the

robot.

1.2 Objectives

The main objectives of this thesis are:

• Select and implement a baseline terrain traversibility analysis (TTA) method.

• Examine a number of different graded forest datasets (off-road, park, forest) and eval-

uate and document performance of the selected method in each scenario.

1.3 Main Contributions

Contributions provided by this work include:

• Performance evaluation of the selected TTA method - Most of the TTA methods pro-

posed in the literature deal with autonomous navigation in urban environments. In this

work, we evaluated several of them and selected the one that seemed most suitable for a

forestry environment. We tested it on three different datasets to prove their suitability

for different application scenarios. We also conclude that different LiDARs with dif-

ferent point cloud densities and acquisition patterns can be used without significantly

degrading performance.

• Multi-dataset testing - Tests were performed on different datasets recorded from dif-

ferent locations and with different sensory conditions. The specifics of the various

landscape features encountered are documented.

• Identification of the method limitations - We highlight the challenges of the selected

method in creating traversability maps that take into account the unique characteristics

of forested areas.

• Suggestions for improvement - Propose some solutions to address the identified prob-

lems and improve the performance of the method in forest environments.
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1.4 Outline

The Outline of this document is as follows :

• Chapter 1 provides the motivation and context of this work and explains the purpose

of this type of work in fire prevention.

• Chapter 2 presents related work in traversability analysis using various strategies and

sensors, and introduces the most commonly used methods to accomplish this task.

• Chapter 3 analyzes the chosen method in detail and shows what happens at each step

until the final result is obtained.

• Chapter 4 presents and describes the datasets used for the evaluation of the proposed

method, their specifics and the results obtained, and analyzes the peculiarities found

in the behavior of the method in the scenarios studied.

• Chapter 5 focus on the conclusions drawn after the development of the work and

provides suggestions for methods that can be used to improve the performance of the

algorithm on some of the challenges found during the tests.

6



2 State of Art and Background

2.1 State of Art

The present chapter is focused on the study of the state of the art regarding terrain traversabil-

ity analysis, with special focus in off-road and forest environments.

2.1.1 Multimodal Sensing

Since precise positioning is one of the vital components for autonomous execution of tasks

by mobile robots, and these are becoming more sophisticated as robot technology develops,

it is no longer possible to fulfill every application with a single sensor.

There was a time when 2D LIDAR was the main choice for less demanding navigation and

positioning - in structured interior environments - as it offered high accuracy with minimal

data volume.

With the increasing availability of computing power, 3D LIDAR gained popularity as it

offered point clouds with better matching methods and better stability for matching between

frames. In addition to these improvements, developments brought the ability to integrate

information from other popular sensors such as odometers and image sensors, which are used

in many fields such as unmanned driving, autonomous robot navigation, and others.

On the other hand, SLAM systems require accurate position and orientation data that

cannot be obtained from a single sensor:

• Dependence of vision on initialization and sensitivity to illumination drift cause insta-

bility.

• Sparse data from LIDAR makes positioning in more complex, unstructured scenes(e.g.

forest environments) easy to get out of hand.

• Odometry information becomes invalid due to rapid movement and long-term error

accumulation.
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In forestry or off-road applications, uneven movement often occurs, leading to distortion

of localization data. To mitigate this problem, several auxiliary sensors, such as inertial

measurement units (IMU), global positioning system (GPS) and ultra-wideband (UWB)

sensors, can be added to the localization system [17].

2.1.2 Terrain Traversability Analysis

Terrain sensing is one of the most challenging problems in field robotics. A robot is often

confronted with scenes of varying complexity when navigating the terrain, so the ability to

classify the surrounding terrain is a key property of intelligent unmanned ground vehicles

(UGVSs) [18]. Terrain traversability analysis adresses two different problems:

• Safety - identifying traversable areas in the robot’s upcoming potential path, avoiding

collisions and unrecoverable states [19][18].

• Efficiency - operating in an optimal state, determining appropriate and efficient paths

while considering simultaneously defined priorities such as risk, fuel consumption, and

time [20] and considering vehicle kinematics and non-holonomic constraints [18].

Although traversability analysis does not yet have a firm formal definition in the robotics

community [19], we conclude from the various sources that it is correct to say that TTA

measures the ability of the vehicle to traverse a terrain region, taking into account the

characteristics of the terrain and the capabilities of the robot. This analysis is then translated

into a cost map of said terrain and can then be applied in various path planning approaches

such as Roadmaps or Potential Fields [20].

The analysis can include data from multiple sensors and sensor types, either separately

or combined [19].

• Exteroceptive Sensors - The sensors most commonly used for traversability analysis,

consisting primarily of visual cameras and LIDAR capture data about the upcoming

terrain to assess the traversability value when interpreted [18].

• Propriocetive sensors - Self-sensing sensors [21] simultaneously characterize the ter-

rain as the robot traverses it or learn the robot’s behavior by analyzing terrain cells

previously observed remotely through exteroceptive sensors. This analysis enhances

the robot’s understanding of the terrain’s shape, terramechanical properties, and their

impact on the robot’s state, including speed and orientation. Examples of such sensors

include IMUs, accelerometers, RTK , GPS, and others.
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In structured environments such as the normal urban environment where autonomous

vehicles are increasingly common, there are many distinguishable geometric elements that

help classify an area as clear or occupied by an obstacle and infer whether a particular path

is a viable option for reaching a determined goal and thus stereo vision is a cost-effective

and reliable method for information retrieval.

On the other hand, in unstructured environments, using RGB data to perform traversabil-

ity analysis could be a good option, as there is already some work on performing semantic

segmentation in camera images not only of urban but also of off-road or forest environments

[22] [23].It is imperative to interpret beyond the geometric classification, e.g., classify sparse

vegetation as non-traversable as it is often traversable or even denser vegetation that the

deployed vehicle can actually pass and provide more options for efficient paths[24].

Nevertheless, problems such as color shifts and weather-related illumination changes pose

a major challenge to the use of color-based classification approaches.

Given these limitations, this task usually relies on data from LIDAR point clouds, which,

despite their limitations (sparse points and being an active sensors that require more en-

ergy and generate more measurement noise [25]), are resilient when confronted with adverse

conditions such as varying surface textures and light shifts, and provide a good range mea-

surement and reliable data over a long distance. The increasing availability of these sensors

and the resulting drop in price make them an option to count on.

Other approaches can even use data from other sensors such as RADAR or combine some

of the mentioned with others.

2.2 Terrain Semantic Segmentation

Valada et al. [23] proposed an approach using a system that worked with RGB, near in-

frared (NIR), and depth data and evaluated semantic segmentation with their UpNet ar-

chitecture based on deep convolutional neural networks (DCNNs) with two main compo-

nents: contraction and expansion. In contrast to UNet [26], UpNet uses the 13-layer VGG

[27] architecture as the foundation on the contraction side. The expansion side consists of

five up-convolutional upfold refinement segments that refine the coarse segmentation masks

generated by the contraction segment. Each up-convolutional refinement consists of one up-

sampling layer followed by a convolution layer. This network was trained on various inputs

in the dataset, identified the optimal inputs, and then fused them. This fusion improved the

results of both unimodal approaches, even in the most extreme environments. The addition
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of NIR data provides better detection of chlorophyll in vegetation compared to monocular

cameras and provides better discrimination of obstacles in the environment [28].

2.3 Bayesian Inference

Shan et al. [29] presents a solution to the sparse data problem that often occurs when data

is acquired as a point cloud. The navigation environment is treated as an elevation map,

and each cell of the discretized grid map that lies within a user-defined distance thresh-

old is assigned an elevation value using Bayesian kernel elevation regression. The training

data, consisting of LIDAR scans and the estimated elevation map, allows the inference of

a traversability value (using a weak forced prior for the Bayesian method) for cells that lie

within the distance threshold to be calculated. This threshold is defined based on the map

resolution so that inference is performed only for the neighboring cells of the cell, allowing

the remaining cells to be computed by BGK-derived traversability inference and reducing

the required computational power. This method had good results in urban environments,

but was not properly evaluated in the forest. Therefore, this method was chosen and is

discussed in more detail in Section 4 of this document.

2.4 Camera and LIDAR traversability Map Fusion

Sock et al. [2] fused LIDAR and camera data to overcome the usual problems of classifying

unstructured elements using only the LIDAR point cloud, and computed two independent

traversability maps. The camera traversability map divided the image into blocks that were

classified as traversable/non-traversable. This served as the basis for an support vector

machine [30] classifier, which was fed with the appropriate features and converted into a

probability value for the remaining images. The LIDAR map uses the acquired data to

create a 2.5D elevation grid map, compares the elevation difference (slope) between cells, and

then converts it to a traversability value using an exponential function with experimentally

determined parameters. The resulting map is created by a Bayesian fusion of the two maps

generated from data from both sensors after a spatial and temporal alignment (see Figure

2.1).
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Figure 2.1: Fusion of LIDAR (Geometric Information) and RGB Camera (Texture and

Colour Information) Traversability map [2].

2.5 Bayesian Integration in Fused Map

Zhou et al. [31] improved the results of the above two methods. In their approach, LiDAR

data and camera images are combined to generate a comprehensive terrain map. LiDAR

data provides depth information, while the camera images offer visual details. By merging

these two data sources, the authors aim to create more accurate and informative terrain

maps, enhancing a robot’s ability to assess the terrain it encounters. LIDAR creates the

elevation map by directly extracting the ground returns and using them in the elevation

map using a Kalman filter [32] to process the overlapping data of successive scans. Starting

from the elevation map already obtained, the traversability analysis begins with the calcu-

lation of the traversability cost and the assignment of a value for each grid cell with three

geometric features commonly used for this task: Slope, Elevation, and Roughness. The final

traversability value is determined using Bayes’ rule to combine the traversability by LIDAR

and the RGB sensor. This method showed a clearer traversability map with a similar run-

time, but requires annotated data, which we are assuming is not available in our case. A

summarized look at the reffered approaches is presented in Table 2.1.
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Table 2.1: Overall view of methods with similar objectives to ours.

Author Focus Method Sensors Output Open- Strengths/

-Source Weaknesses

Valada

et. al

[23]

Forest UpNet

and

DCNN

RGB,

NIR,

Depth

Feature

Map/

Seg-

mented

Image

x Needs

Anotated

Data

Shan et.

al[29]

Urban/Off-

road

BGK,

2.5D

Elevation

Grid Map

LIDAR 2D Grid

Traversabil-

ity Map

* Only

Needs

LIDAR

data

Sock et.

al[2]

Off-road 2.5D

Elevation

Grid Map,

SVM

LIDAR,

CCD

2D Grid

Traversabil-

ity Map

x Combines

Sensors

Needs

Annotated

data

Zhou et.

al[31]

Urban/Off-

road

GANav LIDAR,

RGB

2D Grid

Traversabil-

ity Map

x Needs

Annotated

Data

2.6 Background

This section focuses on some work developed in the past that is the cornerstone of some

state of the art methods, with emphasis on the chosen method.

2.6.1 LIDAR Odometry and Mapping (LOAM)

Unlike applications where only the LIDAR moves (rotates) to capture the environment and

measurement errors are constant with distance, accurate mapping in applications that require

movement of the sensor itself requires knowledge of the sensor position throughout the scan

[3].
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LOAM - LIDAR Odometry and Mapping splits the SLAM problem into high frequency

odometry to estimate LIDAR velocity and a slower process of mapping to register and match

the point cloud (see Figure 2.2), allowing real-time mapping and updating of sensor position

with higher precision after performing point cloud features matching.

Figure 2.2: LOAM Flow Diagram [3]

LOAM functioning has been improved over the time in many ways. SLOAM [33] uses

semantic features instead of geometric ones, making it a good option in unstructured envi-

ronments but requiring annotated datasets. LEGO-LOAM [34] brings in label matching to

further improve object matching between scans, while F-LOAM [35] outperforms the other

methods in this category in terms of runtime.

For LIDAR with a smaller FOV that provide fewer observations for each feature, such as

most solid-state LIDAR, problems arise, such as motion blur due to the constantly rotating

LIDAR with non-repetitive sampling, which invalidates continuous feature matching between

frames LOAM-LIVOX [36] addresses this problem with good results by implementing point

selection and iterative pose optimization.

2.6.2 Range Image

The projection of a 3D LIDAR point cloud into a 2D image greatly simplifies the process

of analyzing neighboring points. The lines of the range image can be obtained in a variety

of ways. LIDAR such as Velodyne’s use different laser channels, with each beam exiting

in a "fan" pattern and diverging by a certain angle (vertical resolution) that provides the

vertical field of view of the sensor (see Figure 2.3). To achieve the 360º horizontal FOV, the

sensor rotates around the vertical axis of the scanner [37]. Each channel is associated with

a value ID stored in the ring field of each point in the point cloud, and this value addresses

the image row [37]. In other capturing architectures, row attribution can be done based on

the said elevation angle (see Figure 2.4) and sensor parameters given by the manufacturer

[38].
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V erticalAngle = atan2

(
z√

x2 + y2

)
(2.1)

Figure 2.3: The "Fan" capture pattern. The divergence between beams multiplied by the

number of channels gives the vertical FOV while the rotation around the sensors’s vertical

axis allows a 360º horizontal FOV [4] .

Figure 2.4: Difference between Row Attribution by channel ID (top) and elevation angle

(bottom) [5].

2.6.3 Occupancy Grid Mapping

An occupancy grid map consists of a 2D grid composed of equal cells, where each cell stores

quantitative information that distinguishes free or occupied areas of the robot operating

environment. This is achieved by each cell storing a probability value of being occupied
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[39] after evaluating readings from its sensors. Such maps play a crucial role in mobile robot

applications, as they are of great help in tasks such as navigation, path planning, localization,

and collision avoidance [40]. When a ground truth occupancy grid is available, each cell can

be analyzed to determine the performance of the created grid [41]. In this case, the process

is simplified by binarizing the value of the cells into occupied or free and evaluating the 4

logical states: Occ - Occ, Occ - Free. Free- Occ, Free - Free [42].

Predicted Class

Actual Class Occupied Free

Occupied True Positives (TP) False Positives (FP)

Free False Negatives (FN) True Negatives (TN)

Table 2.2: Confusion Matrix of the possible readings of the grid when compared to ground

truth

2.6.4 Sparse data in 3D point clouds

The problem of sparse data often occurs in 3D LIDAR because they produce noisy [43] and

sparser images compared to dense RGB images [44]. The terms "dense" and "sparse" are

easily defined if we consider the world as a discretized grid.

In sparse data, many of these cells are empty, while dense point clouds contain data points

in most cells [44] (see Figure 2.5). The occurrence of sparse data is not only inconvenient for

similarity computation, but also for other applications such as object tracking or obstacle

detection [45] (see Figure 2.6).

2.6.5 Bayesian Kernel Inference

Gaussian processes are probabilistic models that have proven useful in machine learning, as

they allow for modeling functions and making predictions by defining a distribution over an

arbitrary function, assigning each input point a random variable that follows a multivariate

Gaussian distribution and providing a way to model uncertainty over functions along with

the output value.

A Gaussian process is fully described by its mean function m(x) and its covariance func-

tion k(x, x′) [46] with this second component often referred to as the kernel function. The

goal of the kernel function is to define the existing correlation between the function values
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Figure 2.5: Height image extracted from the point cloud from a Velodyne HDL-64E. LIDAR

data sparsity - void space between points, discontinuity in the scan, highlighted on the top

right corner - happens even in high-end LIDAR.

Figure 2.6: Occupancy grid from the sparse LIDAR point cloud (left image) and after

applying inference (right image). The raw point cloud leaves many cells with unknown data

that can’t be used for path planning as the occupied/free state of that spaces is unknown.

at different input points and thus quantify the output changes of the function relative to the

input changes.

Different kernel functions can have different relationships, ranging from periodic behavior

to abrupt changes, and it is important to find the best kernel for a given dataset. To

determine the most appropriate kernel, a Bayesian method is used in which prior distributions

are assigned to the kernel’s hyperparameters (random variables), which are then updated

using the posterior distributions, with uncertainty reflecting the kernel’s ability to describe

the data.

16



2.6.6 Path Planning

Advances in autonomous navigation have enabled operations that require a lot from humans,

such as agriculture [47] or others that pose a high risk of danger, such as mining [48] or

underwater exploration [49].

Spontaneously, the components of this problem are the robot and its dynamics, the

environment, and the initial and goal states. Many distinguishable solutions have been

developed using different methods (see Table 2.3).

Artificial potential field methods such as VFF [50], VFH [51] and others let the robot

endure the effect of the combined repulsive forces of obstacles, gravity and the target. This

category offers a lower computational cost while being efficient in collision avoidance, but is

subject to the risk of finding a local solution and being "trapped" in it.

Graph search algorithms such as Visibility Graphs [52] graphs that connect lines starting

and ending at the vertices of visible obstacles to create a road map connecting the start

and end positions, and then search for the shortest path, or Voronoi diagrams [53] that plot

equidistant lines between the nearest obstacles to show the possible paths and add lines to

connect this graph to the start and end positions.

Sampling-based algorithms simplify the search space by discretizing the continuous en-

vironment and connecting the sampled points that lie in a free space. Since there is no prior

description of the obstacle space, the entire space is searched by a collision detector to check

whether a particular robot position is in a free or occupied space.

Rapidly-exploring random tree (RRT) [54], randomly searches points around the robot

position, keeping the points that are in free space and creating nodes in those points and

attemping to connect to the initial node, creating one first edge. The process is repeated,

incrementing the nodes and edges that differ from the previous ones, and ends when the

node in the target region is created and connected, allowing extraction of a start-goal path.

Probabilistic roadmap (PRM) [55] starts by taking the sampled points, creating the nodes

on all of them that belong to the free space, and then creating the connections that form

the roadmap between not all of them, but only those that are within a user-defined radius

of each other. The algorithms can be improved, e.g., by setting a limit on the number of

connections attempted or by using k-nearest neighbors to select candidate nodes.
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Table 2.3: Overall view of path planning methods.

Cathegory Name Method

Artificial Potential

Fields

Virtual Force Field (VFF)

[50]

Repulsing Forces From

Obstacles and Target

Artificial Potential

Fields

Vector Field Histogram

(VFH) [51]

Repulsing Forces From

Obstacles and Target

Graph Search Visibility Graphs [52] RoadMap from obstacle

vertices

Graph Search Voronoi Diagrams [53] RoadMap Between

Obstacles

Sampling Based Rapidly-Exploring Random

Trees (RRT) [54]

Incrementing Edges To

Nodes In The Free Space

Sampling Based Probabilistic Roadmap

(PRM) [55]

Incrementing Edges To

Nodes In The Free Space
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3 Traversability Map Computation

In this chapter, the chosen method will be examined in more detail and its pipeline, as shown

in Figure 3.1, will be presented. The algorithm chosen to perform the proposed traversability

analysis was the one by Shan et.al [29]. This method was public available and also met our

objectives. The lack of annotated forest datasets was not a problem for this algorithm, as it

uses a LIDAR point cloud as input and does not rely on semantic segmentation.

This method takes as input a point cloud and odometry/localization information and

produces an elevation map augmented with inferred cells to resolve the LIDAR sparsity.

Elevation and occupancy values are then assigned to the map cells, defining the cells as

traversable or non-traversable. By applying filters, which will be discussed, and from the

data of this map, it becomes possible to create the occupancy grid that generates the cost

map that allows the robot to perform autonomous navigation (see Figure 3.1).

The authors of the original paper presented a qualitative evaluation of their method.

However, the scenarios chosen were mainly urban and, as such, not as challenging as the

forested areas, so further evaluation is needed.

Sparse
Filtered
Cloud

LIDAR PCL

Cloud Processing

Odometry Data

Projection into Range Image

Transformed Cloud (Filter Flagged
Intensity)

Image Filtering Curb FilterSlope Filter

Elevation Map building

Map registration - Points to Grid
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Cell FilteringStep Height
Filter
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Assigned
Elevation
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Occupancy

BGK Elevation Inference
on Void Locations
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Planning

Elevation Map

Map Update- KF Updated
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Map
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Occupancy Grid

Figure 3.1: Flow chart of the presented TTA method.
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3.1 LEGO-LOAM - Point Projection

The first step in any TTA method is always to register the successive LiDAR scans/RGB-D

information to a common 3D representation. Range images are a good solution because they

allow feature extraction. Our main goal, traversability analysis, also requires the detection

of certain features to distinguish traversable / non-traversable terrain. LEGO-LOAM [34]

takes the LIDAR point cloud and the position of the robot and computes the range using

the well-known 3D distance formula with the coordinates of the sensor [xs, ys, zs] and the

point [xp, yp, zp]. Each point stores X, Y, and Z coordinates for its position, as well as

an intensity value that measures the reflectivity of the surface providing a descriptor for

different materials. The calculated distance then replaces the actual intensity value of the

point (see Figure 3.2). In this way, a distance image similar to the one shown in Figure 2.4

is created, simplifying the process of calculating distances between points since the intensity

measurement is used for the entire calculation.

Distance =
√
(xs − xp)2 + (ys − yp)2 + (zs + zp)2 (3.1)

Figure 3.2: Point Cloud with intensity points before (left image) and after the intensity

change for the range image (right image). Intensity depends on distance to origin but also

on surface properties. In the left image we can notice bigger intensity values on leaves that

are more distant from the sensor than tree trunks that are closer.
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3.2 Filters

In this stage of the processing pipeline, traversability analysis is mainly based based on the

following parameters:

• Slope

• Step Height

• Curbs

Since LIDAR loses precision in areas such as intensity the farther the points are from the

sensor, filters are applied only within a user-defined, appropriate distance threshold.

When analyzing the point cloud and applying the filters, if the conditions that the fil-

ter looks for to flag the points as part of obstacles are met, the respective point intensity

is changed to 100 for the points under consideration, flagging them as obstacles for the

traversability. This is also taken into account for the elevation map. In this case, the eleva-

tion map is nothing more than a point cloud downsampled from the original LIDAR scan,

in the form of square points (cells) with features resulting from the points coordinates -

elevation - and intensity values - occupancy.

3.2.1 Slope Filter

Another fundamental terrain caracteristic to assess traversability is slope [56]. Navigating

steep terrain is much more energy consuming. By going through the point cloud and analyz-

ing defined narrow regions of interest and checking the variance over the three coordinates of

the first and last points of the region, one can determine the steepness of the selected area.

Slope = atan2

(
∆z

∆x2 +∆y2

)
(3.2)

3.2.2 Step Height Filter

Due to the kinematic limitations of the robot, abrupt changes in height between areas are

not always traversable, and accurate detection of the occurrence of these features is critical.

Downsampling the 3D point cloud into cells allows the creation of an elevation map [57],

dividing the world into a 2D grid of uniformly sized cells that store information about the

occupied area. In this case, one of the stored fields is the minimum and maximum height
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observed in each cell. By evaluating the height difference δz within a cell, we can classify

this area as an obstacle or free space, depending on the known capabilities of the robot used.

Taking this into account, we can define a threshold for δz, beyond which the intensity I of

the cell will be changed.

δz = zmax− zmin (3.3)

I =

100, if δz > HeightLimit

0, if δz < HeightLimit
(3.4)

3.2.3 Curb Filter

Curbs are essential features that distinguish passable paths from undesirable navigation

areas [37]. Their usefulness is emphasized in urban scenarios where 90º deviations may

occur between the expected vehicle navigation area and restricted areas such as sidewalks.

However, in forested areas, it is also common to come across some recognizable man-made

paths, created with the intention of driving on them, when driving between raw, deep forest

sections. Curb detection is critical because they often serve to delineate trails from the rest

of the landscape, and most vehicles are unable to traverse these drastic elevation changes,

or they could be damaged by them.

To check for the presence of curbs in the terrain, a region of interest is defined and

the variation in range within adjacent points is computed, checking for monotonicity and

distance between points. The curb filter works similarly to the step filter in that it looks for

distance variation between neighboring regions, but it works by analyzing a smaller range

of the immediately neighboring points, rather than all the points that a cell in the elevation

map contains. Another difference is that it checks for variation in the elevation gradient

between neighboring locations by analyzing a monotonicity in the elevation variance [58].

The results of this filter’s application can be seen in Figure 3.3. Most curbs are detected on

the path’s borders where vegetation abruptly appears.
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Figure 3.3: Elevation map showing differences in curb filter application. On the left image -

no curb filter applied, right image - filter applied. The differences in the application of this

filter are mainly on the borders between the human modified path and the deep forest.

3.3 Cloud Occupancy and Elevation Predicition - Bayesian

Generalized Kernel Inference

To simplify the calculation of the traversability map, the data obtained from the previous

filters are used to classify the cells of the elevation map as obstacles or free areas. If the cell

is marked as an obstacle, the intensity of all points within the cell will be changed to the

respective value for obstacle or free space, as mentioned before.

To address the problem of sparse data in the point cloud from LIDAR, grid cells are cre-

ated and assigned near the cells created with previous point observations by predicting their

height and occupancy with Bayesian kernel inference. This also increases the smoothness

and generation speed of the height map.

This process begins by using the known 2D coordinate data, obtained from the data of

the points observed by LIDAR, to compute a covariance matrix with value k(x∗, xi) and

the known data about the height and occupancy yi within the cells, to obtain an inference

kernel that will form the basis for the inference. A training dataset that includes the already

observed points will serve as priors in the Bayesian process to predict the occupancy and

height of the other cells. The next step of the process is to apply the sparse kernel function

given by the sum k̄(x∗) of all values in the covariance matrix to obtain a prediction ȳ(x∗) of

the height and occupancy of the cell, by translating each of them respectively into:

• Elevation - The z coordinate of the cell - the height in the 2.5D elevation map
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• Ocupation - An intensity value for the cell :

100, if occupancy > 0.5

0, if occupancy < 0.5

k̄(x∗) =
N∑
i=1

k(x∗, xi) ȳ(x∗) =
1

k̄(x∗)

N∑
i=1

(k(x∗, xi) · yi)

Figure 3.4: Pipeline of Bayesian inference process. Sparse 3D data results in an incomplete

elevation map completed with inferred cells that are part of the calculation of the traversabil-

ity map in place of useless void data.

3.4 Occupancy Update

Occupancy grid maps describe the environment in which the robot moves in cells of equal

size. Each cell stores the probability value that it is occupied, providing information about

where obstacles are located and which paths can be considered for navigation [39]. In this

case, the input data is the filtered grid cells whose intensity has already changed, so a

probability-based approach is used to calculate the occupancy value. Each cell of the grid

starts with an occupancy value of 0.5 as long as there is no data on it yet. However, when

the point cloud of the environment is processed and the elevation map is created, the values

are updated based on the intensity information stored on the grid cells.

If a cell was previously marked with an intensity with a value of 100, it will have a higher

priority value for the probability of occupancy given by the parameter p, and the log odds

of occupancy will then be calculated as follows

log odds = ln

(
p

1− p

)
(3.5)

Then the logistic regression equation is used to convert to a probability value.

occupancy =

⌈
100×

(
1− 1

1 + exp(log_odds)

)⌉
(3.6)

The goal in creating the occupancy grid is to compute a cost map. Cost maps are used

by path planning algorithms to avoid obstacles and choose energy efficient paths for the

vehicle. This allows for an increase in range and endurance, which increases effectiveness in
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long-term missions such as forest clearing in our case. It is important to know the occupancy

value of each location because the first criterion for traversable is the absence of an obstacle.

To increase the efficiency, the occupancy values are discretized. Cells with an occupancy

probability above a defined threshold are considered occupied (occupancy = 100) while cells

with occupancy values below this threshold are considered free cells (occupancy = 0).

Figure 3.5: RGB image on the left, Elevation Map with obstacle cells in red and the clear

path in white in the center. Occupancy grid on the right side. For occupied cells, the

total occupancy value (1) appears in black on the grid, free cells are white, while unknown

locations that have not been measured appear in gray as the occupancy data keeps the

original value of 0.5.

3.5 Elevation Update - Kalman Filter

To update the cell elevation, a Kalman filter is applied to include new measurements. The

equations of the filter are shown below. The current stored elevation value is represented

by µt−1 and the predicted value by µt, the current elevation variance σt−1 and the predicted

variance σt, the process error ϵt, the measurement noise ξt, which depends on the distance δ

between the laser and the point, and a confidence factor ρ that is larger or smaller propor-

tional to the times the point was observed, kt the Kalman gain, µ̂t and σ̂t the elevation value

and the variance after prediction respectively, µ∗
t the measured z-coordinate of the point.
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µt = atµt−1

σt = a2tσt−1 + ϵt

ξt = δ ∗ ρ

kt =
σtct

ctσt+ξt

µ̂t = µt + kt(µ
∗
t − ctµt)

σ̂t = (1− ktct)σt

(3.7)

’a’ and ’c’ are parameters for the filter’s prediction and measurement update models. These

can have any value and their optimal combination is difficult to determine analytically. After

some testing, they were finally left at 1, which gave the best results.

3.6 Traversability Map Building

After all the steps described above, it is possible to create and update the elevation grid

map. The information about the elevation and occupancy of each cell will be updated as

more observations are obtained, so that a map can be created in dynamic environments.

Figure 3.6: Occupancy grid after the first and second rounds to the Choupal dataset. More

observations lead to changes in elevation and occupancy data. The map obtained after the

second lap is much closer to the expected.
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3.7 Cost map and autonomous navigation

With the occupancy grid in place, we can now create a cost map and initiate trajectory

planning.

In our approach, the elevation map characterizes the environment by treating each cell

as a potential state or pose. Our main goal is to find an optimal path that connects these

states while minimizing the associated costs.

To achieve this, we use the probabilistic roadmap technique (PRM), a proven method for

navigating unpredictable environments. The PRM workflow begins by generating random

configurations, each representing a potential state. These configurations are then connected

to their neighboring counterparts based on criteria such as k nearest neighbors or a specified

distance threshold. Together, these connections form a roadmap that serves as our navigation

guide.

In this process, each potential configuration corresponds to a node. These nodes are

placed within the cells of the elevation map. It is important that the placement of the nodes

occurs simultaneously with the creation of the elevation map to ensure that the elevation of

each node remains up to date as the elevation map changes.

In the next step, the connections between the nodes are made by rectilinear segments

called edges. Both the height differences and the distances between cells are evaluated based

on a threshold set by the user. When these criteria, which include height and distance,

are met, an edge is created. This edge then becomes a valid path segment that potentially

contributes to the overall path for transitioning between nodes and ultimately reaching the

destination. Our map is constantly updated as new measurement data is acquired. In cases

where elevation changes and nodes are no longer neighbors, we immediately remove the

corresponding edges.

Once the potential paths are identified, our planning process towards the target node

begins, followed by an optimization phase. First, the system searches for the node closest

to the robot’s current position, while simultaneously checking the surrounding nodes for

potential cost improvements. Once the lower cost node is identified, the robot is instructed

to navigate to its next destination to continue its path. The search for the next destination

is based on a queue and Dijkstra’s algorithm [59], which works similarly to a breadth-first

search. Our goal is not to identify the nodes with the most edges, but to identify the node

closest to the destination to ensure that the shortest path is returned.
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Figure 3.7: PRM Flow Chart.

Figure 3.8: From left to right: RGB image, elevation map with PRM, and cost map of the

scene. Obstacles and obstacle boundaries are marked with higher costs, which are taken into

account during planning.
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4 Performance Evaluation

This work is part of the SAFEFOREST project with the goal of finding the best approach for

traversability analysis that can be implemented on the INGENIARIUS Ranger (see Figure

4.5). Ideally, we would apply this method online with the vehicle in a forest environment.

However, it is not easy to gain access to a vehicle that weighs tons and bring it into our

desired test environment.

With this in mind, the performance of the TTA method was evaluated offline. Three

different datasets with different characteristics were selected. The criteria for selecting the

datasets were the diversity of the environment and the presence of LIDAR scans as well as

localization data provided by reliable sensor devices.

The evaluation was performed were performed using ROS melodic on Ubuntu 18.04 in a

setup with 16GB RAM, an Intel Core i7-6700 CPU and a NVIDIA RTX 3060 GPU, which

allowed us to process all input data in real-time. Rosbag files provided by each dataset

included LIDAR point clouds used as input, RGB images used for visual confirmation, and

localization data important for scene reconstruction.

Table 4.1 gives an overview of the datasets used in terms of:

• LIDAR Quality - Quality of the LIDAR scan considering the number of points per

scan and the horizontal FOV.

• Forest representativeness - Environments classified as forest do not have a strict defi-

nition and can vary to a significant degree. The evaluation of this parameter is based

on the task of forest cleanup, with the ideal environment being a scenario surrounded

by living or dead trees and moving in a completely unworked terrain.
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Table 4.1: Evaluation and description of the studied datasets. * Low Grade on the parameter,

** Medium Grade on the parameter, *** Excellent Grade on the parameter.

Author LIDAR

Quality

Forest Repre-

sentativity

Odometry Notes

RELLIS 3D *** * INS

(GPS+IMU)

BEST LIDAR,

Less Exigent

Environment,

Annotated

FRUC

CHOUPAL

* ** RTAB-Map Cheap LIDAR,

Limited FOV,

Not Annotated

INGENIARIUS

RANGER

TRIALS

** *** INS

(GPS+IMU)

Tilted LIDAR,

Cropbox, Not

Annotated

4.1 RELLIS 3D-Dataset

Rellis 3D is a comprehensive collection of multimodal data acquired in an off-road envi-

ronment containing 6,235 pixel-wise image annotations and semantic labels for 13,556 full

LiDAR point cloud scans. This dataset was acquired at the Rellis campus of Texas AM

University.

The dataset contains complete sensor data in ROS bag format, consisting of RGB camera

images, high quality LIDAR point clouds, stereo imagery, and an inertial navigation system

(INS) with high precision GPS measurements and IMU data.

The dataset is labeled for cathegories that are of interest in forestry, such as: Trunk, log,

tree, pile, mud, grass or bush, and others.

This dataset does not include navigation in "deep" forests with tall trees and canopies,

and should give us an indication of the algorithm’s performance in an off-road environment.

The input used to evaluate traversability is the point cloud acquired by the Velodyne HDL-

30



32E, a LIDAR sensor capable of acquiring data in a horizontal 360º FOV, which allows for

a greater number of observations of all cells that remain in view after traversing, resulting

in a more accurate and dense elevation map construction.

While this dataset effectively delineates the forest components and the path with minimal

overlap, an interesting observation stands out: Certain segments of the free path appear to

contract, a phenomenon not entirely consistent with the corresponding RGB images. This

narrowing can be attributed to the presence of hanging objects in the trees. Although

these objects do not obstruct the path, they are detected as extensions of the obstacles that

delineate the path boundaries. The RGB images and corresponding elevation maps of the

dataset in question can be seen in Figure 4.1, with this phenomenon clearly visible in the

data in the bottom two rows of the figure.
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Figure 4.1: RELLIS 3D dataset - The left column shows the recording environment, a hiking

trail surrounded by trees on both sides, with the corresponding elevation maps in the right

column. In the 2 bottom rows we can see a narrowing of the free path in the elevation map,

not visible in the RGB image, caused by hanging objects on the trees.
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4.2 Choupal FRUC Dataset

The next dataset was produced by our colleagues in FRUC and was recorded in the Choupal

National Woods in Coimbra [60]. This dataset contains a map-referenced localization pub-

lished as a ROS message of type /navmsgs/odom. This message can be used to register

sensor data in a fixed coordinate system and contains several important features in forestry

robotics like trees, bushes, trunks, etc.

The 3D LIDAR point cloud was acquired using a solid-state Livox MID -70 LIDAR,

an inferior device compared to the LIDAR used in other datasets, providing fewer points

per scan. On the other hand, a different non-repeating petal scan pattern that improves

reconstruction results is used (see Figure 4.2).

Figure 4.2: Livox Mid LIDAR petal capture pattern in the left image. On the right, we can

see the area targeted by 3 consecutive LIDAR scans. Each scan covers a new area.

This LIDAR has not proven to be the most accurate for traversability in a difficult forest

context. Due to the lack of a 360º horizontal FOV, the number of observations for each

cell is lower than for the mechanical LIDAR and therefore the inference process is not as

accurate due to the lower confidence factor of the Kalman filter to update the map with new

readings.
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Figure 4.3: Livox Point Cloud on the left and elevation mapping with traversability data

output on the right. Unexpected cells with obstacles match with locations with branches

along the path. The red circles on the left present locations where canopi is above the trail.

The same locations were classified as obstacles in the elevation map and are highlighted with

yellow circles.

Nevertheless, the recorded dataset includes two laps around the same circuit, providing

more observations and mitigating this problem, obtaining more satisfactory results for the

inference and update on the map (see Figure 4.4). Another challenge of the smaller horizontal

FOV is that only one side of the obstacle is observed. In urban environments, there is usually

no valid path behind cells that are considered obstacles here (e.g., walls, sidewalks). In

forested environments, trees are indeed obstacles, but most likely, there is traversable space

behind them. When only one side of the tree is observed, the cells behind it rely solely on

inference using data from the observed surface of the tree and the nearest clear space and

the elevation of the space between the two is the average of the two locations.

An already familiar phenomenon is observed within the results obtained from this dataset.

Certain areas that one would expect to be part of a clear path are instead designated as

non-traversable. While this discrepancy may not be immediately evident when examining

the RGB data, due to the sensor’s positioning, a closer analysis of the point cloud reveals

that these unexpected non-traversable areas align with locations where tree canopies overlap

the path. This discovery confirms that we are grappling with the hanging object problem,

as illustrated in Figure 4.3.
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Figure 4.4: RGB image of the scene on the left and elevation map on the right. The elevation

map is able to distinguish the path cells as less elevation and describe large obstacles, such

as the tree on the right side of the image, which is seen as a high object on the far side of

the elevation map. Traversability classification is accurate and corresponds the appearance

of the path seen in the camera images on the elevation map.
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4.3 Ingeniarius Ranger Trials

The final dataset was acquired by Ingeniarius, a company member of the SAFEFOREST

project consorcium, at its HQ in Alfena, Portugal. This dataset contains RGB-D camera

data, LIDAR point clouds acquired from a VLS-16 LIDAR with the already reffered "fan"

acquisition pattern that allows a 360º FOV, IMU and GPS data.

The goal of these experiments was to obtain a multimodal dataset to assess traversability,

either by segmenting RGB images, LIDAR data, or both.

The sensors were mounted on the Ingeniarius Ranger, a heavy tracked vehicle based on a

Bobcat and equipped with a mulcher to remove burning material - objects that burn easily,

such as dead trees, bushes, or leaves.

Figure 4.5: Ranger Trials - The Ranger is a tracked vehicle equipped with a mulcher for

forest cleanup and sensors for autonomous navigation. At the top of the platform, the

LIDAR sensor is aligned with the top of the end effector.

To make this cleaning task more efficient, the robot must move autonomously in forest

areas. As for data collection LIDAR, the setup consists of 2 sensors, one of which is mounted

on the front of the Ranger near the end effector that performs the mulching of the identified

fuel. Due to the ability of the VLS-16 LIDAR to acquire data in a horizontal 360º FOV,

the input point cloud containing the ambient reconstruction data must be filtered with a

crop box that omits points corresponding to the platform structure that has a fixed position

relative to the LIDAR sensor. If these readings were kept, the sensor would constantly take

into account the presence of an obstacle above the ground and change the elevation map due

to the presence of a hanging object, which would affect the elevation values of the cells in
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Figure 4.6: LIDAR point cloud of the experimental site, which includes both rear and front

LIDAR. The tilt of one of the sensors allows more data to be collected from objects at higher

altitudes, such as tree canopies, providing a satisfactory reconstruction of the environment.

front of the trajectory, the traversability classification in the region where the end effector

ends and the ground begins, with a large elevation variation on the cells in these areas(see

Figure 4.7.

Another process affected is path planning, as the PRM must be set to consider links

between nodes that are close enough to each other to balance the efficiency of the path, the

computational power required (if it is too close, it must process more edges), and the path

options (larger edges could be invalidated by an obstacle that can be easily bypassed with a

small deviation).

Another particularity of the sensor setup, is the 30º tilt of the front face LIDAR, which

changes the range of the point capture area. In the front direction of the sensor, the de-

tection range is reduced because it is directed towards the ground, the closest "object". In

the backward direction, the tilt allows for greater point acquisition at height, enabling the

capture of details in tree canopies.

It has been shown that the point cloud from the tilted LIDAR does not perform well

with the proposed traversability mapping algorithm(see Figure 4.8. The excessive number of

points belonging to canopies and other hanging objects leads to large changes in the observed

cells of the elevation map where traversability is evaluated by perceiving obstacles that are

in fact inexistent for most vehicles. In addition, the detection of points at higher heights

affects the inference of cell height, resulting in many cells being rated as occupied and non
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Figure 4.7: The need to filter the point cloud around the ranger. The points corresponding

to the surface of the platform would affect the elevation map, leading to the detection of

obstacles at the boundary between the sides of the platform and the ground due to the

difference in elevation.

Figure 4.8: Ranger Trials - the left image shows the map with the front tilted LIDAR, the

right image shows the map with the back LIDAR, almost parallel to the ground. Larger

z-coordinates of the canopy points cause the map with the tilted LIDAR to have larger

elevation values within the cell and disparities between cells.

traversable, as the height difference between points in the same cell is too large (see Figure

4.9) .
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Figure 4.9: The left column shows RGB images of the trials site with the corresponding

elevation maps shown on the right column. The Tilted Referential represents the front

facing LIDAR aligned with the movement of the robot (direction of the red axis) and the

Referential that points in the opposite direction is the back side LIDAR.
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4.4 Hanging Obstacles Correction - Point Cloud Filtering

The fact that this method is based on a 2.5D representation of the world has remarkable

implications. This approach offers computational advantages by reducing complex 3D en-

vironments to a 2D grid. However, it also brings limitations when it comes to accurately

capturing certain features of the environment.

In the case of forest environments, a common challenge arises from the presence of hang-

ing objects. Trees with meter-high canopies or branches often influence the cells of the

elevation map to which points from these hanging objects are assigned. This influence leads

to significant height differences within the affected cells. These variations result from the

2.5D approach of the method, where the map cells are positioned based on the X and Y

coordinates of the observed points and their height is determined by assigning the maximum

Z value within each cell.

This event causes the traversability assessment to incorrectly classify the cell as an ob-

stacle. In fact, for ground vehicles, we only need to look for obstacles that are between the

ground and the height of the vehicle, since there is no risk of colliding with obstacles above.

By determining the height of the vehicle, we can discard all points above the vehicle and

perform the same analysis with greater confidence.

In the proposed datasets, all LIDAR sensors were on the platform on which they were

mounted. This means that we could consider filtering points with a z greater than 0 with

respect to the sensor’s coordinate system.

The first dataset did not contain many hanging objects along the expected clear path,

but filtering still allows us to see the differences caused by discarding points from small

objects that protruded into the road (see Figure 4.10).

The Choupal dataset provided us with a good basis for the study because it contained

several tree canopies that crossed the path. By filtering these points (see Figure 4.11), the

obstacles appeared more clearly on the elevation map and the classification of traversability

was more accurate because broad tree canopies did not blur the obstacle (in the majority

trees) and open space boundaries (see Figure 4.12).

The most striking differences occurred in the Ingeniarius data et. Trimming the readings

above a certain height (see Figure 4.13) (this time above the X-axis, since the tree tops

appear in that direction due to the orientation of the LiDAR) limited the range of the sensor,

preserving only the front LIDAR limited distance measurements, but the improvement in

precision was remarkable.

40



Figure 4.10: Occupancy grid of the RELLIS 3D path. The left image is result of the original

cloud. On the right image, the point cloud was cropped in Z to the sensor’s height. Shrinkage

on the path (occupied edges in some places) due to hanging objects was eliminated.

Figure 4.11: The acquired point cloud is cropped at the height of the sensor (left image)

because it is mounted on top of the platform. The bottom parts of the trees are better

defined and improve the elevation map (right image).

Figure 4.12: Choupal dataset global elevation map before (left) and after filtering (right).

The free path that is shown is now closer to the expected.

However, due to the terrain in which the data was captured, a portion of untreated forest

with bushes surrounding the trees, and due to the limited field of view, precision was limited

as the flagged obstacles spread out from the bushes (see Figure 4.14).
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Figure 4.13: Front LIDAR from the Ingeniarius dataset before (left image) and after filtering

(right image). The canopies that are behind and higher than the sensor are removed, leaving

only data from the regions in front of the sensor and on the sides.

Figure 4.14: Ingeniarius Elevation map with Front LIDAR point cloud was entered, which

also shows part of the point cloud from the back LIDAR. During the trial, a person walked

next to the ranger. The drift of the LIDAR readings of this moving object allows us to see

the trajectory performed in the form of the red line above the elevation map (left image).

As expected, the trajectory corresponds mostly to open areas and crosses cells calculated as

occupied in zones with denser canopy. On the right image, the elevation map is isolated.

To solve this problem, we increased the resolution of the map by reducing the cell length

by half. This allowed us to achieve an improvement in distinguishing between obstacles and

free space as seen in Figure 4.15.
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Figure 4.15: Same content as in the previous figure, with the algorithm running with half-

length cells. Occupied and free cells are now easier to distinguish, as we can confirm by the

simpler visualization of the trajectory through the drift captured by the back LIDAR.
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5 Conclusion and Future Work

Having completed our work, we conclude that the proposed objectives have been met.

First, we conclude that the selected TTA method worked well for the data available to us.

In order to perform this test in different environments, our only option for traversability anal-

ysis was to input LIDAR data, because although RGB data are available in most datasets,

annotated data are required to evaluate traversability with the segmentation methods, and

these are difficult to find.

We also show that the proposed method, already proven in urban environments, can also

be successfully applied in forested environments, albeit with some adjustments.

All three datasets studied were rich in forest features, leading to the conclusion that

despite the differences, the most salient features are found in the perceived paths, ranging

from off-road trails to man-made paths to wild space in deep forest.

Other differences included the height of trees, the presence of tree canopy above the

observed path, or the ability to detect the entire surface of the obstacle, which depended on

the FOV of the dataset LIDAR. One can also conclude that the proposed method can be

seamlessly applied to different sensory setups with acceptable results.

Despite the good results provided by the method even in forest environments, improve-

ments are needed to achieve optimal analysis and navigation. To further improve this

method, some problems or non-ideal aspects should be addressed:

• Hanging Objects - In forest landscapes, trees have many hanging objects that do not

hinder navigation, such as branches or leaves that are above the robot’s body. Since

this method evaluates traversability in cells, we may have points in a cell with free

traversable space, but we may also encounter points of these objects that enter the

calculation for the height value of the cell and classify the free space as occupied due

to the large difference between the minimum and maximum height of the points in

the cell. Solutions such as those investigated in this work are only partially suitable,

since clipping the point cloud is not ideal, because data is lost, and the resolution of
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the elevation map can only be increased to a certain degree, since computational costs

increase with the number of cells.

• Morphological Operators - When navigating off-road, the platform and its sensors shake

more than in urban environments, leading to misjudgments in some cells and their

classification, invalidating paths that should be invalid/valid. On the other hand, using

an analysis based on LIDAR can cause problems with certain LIDARs if the obstacles

do not have structured geometric features. A tree trunk could appear incomplete if the

LIDAR does not have a 360º FOV, and sparse data could result in missing classification

on one side of the obstacle that is considered clear on the other side, which does not

have real data, only inferred data. Even if LIDAR has the ideal FOV and can detect

all sides of the obstacle, an empty area is left in the middle because LIDAR is not able

to penetrate surfaces. If the empty area is surrounded, there are no valid paths on that

location but it can become a problem if gaps appear, which is not unlikely to happen

due to the sparsity of the data.

Figure 5.1: Scanning only one side of the object will result in an incorrect estimate of

occupancy. If obstacles are classified as free space, they may be considered a good path

option by the planner, resulting in collisions or requiring replanning after a close position is

reached that allows more accurate measurements. In the lower left portion of the blue ring

in the elevation map (right image), we see the side of the tree that was captured by the RGB

image. Right next to it, the space is wrongly classified as free, which means that PRM edges

are allowed inside the tree.
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In urban environments, this is usually not the case because the effects are more clearly

defined or easier to observe - if you are driving on a street, there are defined curbs,

the surrounding buildings have recognizable walls, the cars are on the same street level

and their tops can be easily observed, the poles are thin enough to fill a cell that takes

into account the LIDAR readings.

To solve this problem, morphological operators such as erosion, dilation, opening and

closing can be useful. These operators are usually used in computer vision applications

that use images. Even if we do not use images, the input to the path planning node

is the occupancy grid, which can be seen as an image in which each pixel has a value

of 0 and is white (free) or has a value of 1 and is black (occupied). With the proper

resolution of the grid, we can use, for example, erosion to remove an isolated occupied

point from the path, since it is most likely not an obstacle, or use dilation to mark free

cells surrounded by occupied cells as part of the obstacle.

• Online Testing - The analysis of the algorithm was based on the results of offline

data that had been previously acquired and stored. The performance of the entire

process of acquiring, processing, and performing inference is important for the proposed

application and may vary with the requirements of an online test.
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