

Alexandra Eugénia Ferreira Garcia Monteiro

SERIOUS GAME FOR STATIC BICYCLE

Dissertation in the context of the Master of Science in Electrical
and Computer Engineering, Specialization in Computers,

Subspecialization in Computational Learning, supervised by Prof.
Dr. António Paulo Mendes Breda Dias Coimbra and Prof. Dr. João
Paulo Morais Ferreira and presented to the Faculty of Sciences

and Technology, Department of Electrical and Computer
Engineering.

July 2023

Serious Game for Static Bicycle

Supervisors:

Professor Doutor António Paulo Mendes Breda Dias Coimbra (ISR, DEEC)

Professor Doutor João Paulo Morais Ferreira (ISR, ISEC)

Jury:

Prof. Dr. Mahmoud Tavakoli

Prof. Dr. Mário João Simões Ferreira dos Santos

Prof. Dr. António Paulo Mendes Breda Dias Coimbra

Dissertation submitted in partial fulfilment for the degree of Master of Science in Electrical

and Computer Engineering.

Coimbra, July 2023

This project was developed with the cooperation of:

Universtity of Coimbra

Electrical and Computing Engineering Department

Instituto de Sistemas e Robótica

Acknowledgements

This dissertation was conducted under the guidance of Prof. Dr. António Paulo Coimbra,

Prof. Dr. João Paulo Ferreira and Prof. Dr. Manuel Crisóstomo, to whom I express my

sincere gratitude for support and orientation throughout this project. To my friends, a big

thank you for sparing time to help me with my tests and for the company when I needed

them. But most of all, to my family for their love and understanding throughout all the ups

and downs. The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT) for

the financial support to the project UIDB/00048/2020.

i

Resumo

A capacidade motora dos membros inferiores é crucial para a realização de tarefas diárias.

Com o crescente número de população envelhecida, obesidade e doenças relacionadas, existe

cada vez uma maior necessidade de desenvolvimento de novos métodos para melhorar a mo-

bilidade da população. A reabilitação física desempenha um papel crucial na recuperação

destas doenças, embora a falta de consistência possa prejudicar o processo de recuperação. A

criação de ambientes cativantes tem-se revelado uma ferramenta importante na consistência

ao longo do percurso de reabilitação. Considerando que a Plataforma de Desenvolvimento

em Tempo Real, Unity, permite o desenvolvimento de projetos 3D em tempo real, esta tese

apresenta um método inovador para o desenvolvimento destes ambientes. O objetivo princi-

pal deste trabalho é desenvolver um jogo sério para uma bicicleta estática motorizada, que

possa ser utilizado durante o processo de reabilitação, permitindo ao utilizador uma exper-

iência imersiva e a possibilidade de escolher entre diferentes modos de exercício adequados

às suas necessidades individuais. Inicialmente, foi elaborado um documento de requisitos

técnicos, onde foram apresentadas as principais diretrizes para o jogo sério. Posteriormente,

foi criado um modelo da bicicleta em Blender, para atingir uma interação mais realista.

Adicionalmente, foi também desenvolvida a possibilidade de alterar o campo de visão, bem

como três modos de jogo diferentes. Por fim, procedeu-se à criação de menus bem como,

a possibilidade de regular as configurações durante o decorrer do exercício. Devido a cir-

cunstâncias externas, os testes com a bicicleta estática real não puderam ser realizados. No

entanto, um comando para video jogos foi utilizado para simular as várias entradas da bi-

cicleta estática com o objectivo de garantir que o jogo pudesse ser testado e avaliado para

atender aos requisitos desejados.

ii

Abstract

The motor capacity of the lower limbs is essential to perform daily tasks. With the rising

numbers of demographic ageing, obesity and related diseases, there is an increasing need for

developing new methods to improve the mobility of the population. Physical rehabilitation

plays a crucial role in the recovery from these illnesses, although a lack of consistency can

be detrimental to the recovery process. The creation of captivating environments has been

shown to be an important tool in maintaining consistency throughout rehabilitation. Con-

sidering that Unity Real-Time Development Platform allows its users to build real-time 3D

projects, this thesis presents an innovative method for the development of these environ-

ments. The main objective of this work is to develop a serious game for a motor-assisted

static bicycle, that can be used during the rehabilitation process, allowing the user to have

an immersive experience and the possibility of choosing between different modes of exer-

cise adequately to their individual needs. Initially, a technical requirement document was

elaborated, where the main guidelines for the game were presented, afterwards, a model of

the bicycle was created in Blender, to achieve a more realistic interaction. Additionally,

the possibility to alter the field of view was also developed, as well as three different game

modes. Finally, the game menus were created as well as the possibility of adjusting the

settings during the course of the exercise. Due to external circumstances, tests with the real

static bicycle could not be performed. However, a game controller was used to simulate the

various inputs of the static bicycle to ensure that the game could be tested and evaluated

to meet the desired requirements.

iii

Keywords

Serious game; Rehabilitation; Static bicycle; Unity; Physiotherapy; Mobility.

iv

Contents

Acknowledgements i

Resumo ii

Abstract iii

Keywords iv

List of Acronyms viii

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Main Goals of this Dissertation . 1

1.3 Document Overview . 2

2 Background 3

2.1 Main causes of mobility issues and rehabilitation 3

2.2 Related work . 4

2.3 Game engines . 9

3 Game Development 12

3.1 Unity’s Input System . 12

3.2 Game modes and physics of motion . 19

3.2.1 The different game modes . 19

3.2.2 Rigid body and colliders . 19

3.2.3 Wheel Collider component . 23

vi

3.2.4 Bicycle control scripts . 29

3.2.5 Game menus and data management 37

4 Experimental Validation 43

4.1 Usability Questionnaires . 43

4.2 Correctness of the game . 47

5 Conclusions 51

5.1 Future Work . 51

vii

List of Acronyms

2D Two-Dimensional

3D Three-Dimensional

CVA Cerebrovascular Accidents

FND Motor Functional Neurological Disorder

CF Cystic Fibrosis

PEP Positive Expiratory Pressure

PC Personal Computer

UCD User-Centered Design

LWJGL Lightweight Java Game Library

VR Virtual Reality

USB Universal Serial Bus

HID Human Interface Device

SDK Software Development Kit

SUS System Usability Scale

UI User interface

PS3 PlayStation 3

viii

List of Figures

2.1 Scenes from the serious game [22]. 4

2.2 The three-dimensional scheme of the application Adapted from [22]. 5

2.3 PEP device with connector for the PC [23]. 6

2.4 RehaLabyrinth Architecture, Adapted from [24]. 7

2.5 RehaLabyrinth Level Overview [24]. 8

2.6 Serious game example for lower limb rehabilitation [25]. 9

3.1 Sequence of events that occur when a user sends input [27]. 13

3.2 Workflow - Direct [27]. 13

3.3 Workflow - Embedded Actions [27]. 14

3.4 Workflow - Actions Asset [27]. 14

3.5 Workflow - PlayerInput Component [27]. 15

3.6 Action Map and respective actions. 16

3.7 PS3 Controller Inputs for the serious game. 16

3.8 Initializing the action map in the script. 17

3.9 Action callback phases - Unity example [30]. 18

3.10 Four different types of GameObject: an animated character, a light, a tree,

and an audio source [35]. 20

3.11 Components needed to create a cube, [35]. 20

3.12 Game objects hierarchy. 21

3.13 Game objects components. 21

3.14 Bicycle’s sphere collider and bicycle model. 22

3.15 Bicycle frame with collision mesh. 23

3.16 Collision mesh component saddle example. 23

3.17 Vehicle representation as a rigid body actor with the shapes of the chassis and

wheels [41]. 24

ix

3.18 Vehicle representation as a group of sprung masses, M1 and M2 [41]. 25

3.19 Suspension raycasts and limits [41]. 25

3.20 a) Wheel collider component default values. b) Wheel collider component

altered values. 28

3.21 Wheel sideways and forward friction [42]. 28

3.22 Wheel friction curve [42]. 29

3.23 Wheel components in the inspector (left) and declared in the scrip, (right). . 29

3.24 Function required to update the wheel mesh’s position and rotation. 30

3.25 Function required to control the steering of the bicycle. 30

3.26 Function required to update the handlebar rotation. 31

3.27 Function required to control the bicycle’s balance. 32

3.28 Function required to accelerate and brake. 33

3.29 Calculation of the force exerted in normal bicycle mode. 33

3.30 Calculation of the force exerted in leg compensation mode. 34

3.31 Function required to accelerate and brake, constant velocity mode. 34

3.32 Main camera and respective components. 35

3.33 Initialization of the action map in the "Player view" script. 35

3.34 Range of values established for the rotation around the x-axis and y-axis. . . 35

3.35 Conditions used to occur the rotation around the y and x-axis respectively. . 36

3.36 Conditions used to control the amount of rotation around the y and x-axis

respectively. 37

3.37 Scriptable object class script. 38

3.38 Scriptable object asset. 38

3.39 Scriptable object declaration and attributions, with weight and resistance

examples. 39

3.40 Unity UI options. 39

3.41 Main menu and respective "on click" events. 40

3.42 Game mode menu and options menus. 40

3.43 Script for updating the slider text. 41

3.44 Slider component with "on value changed" event for the scriptable object

variable height. 42

3.45 Pause menu and timer. 42

4.1 Participant age statistics. 46

x

4.2 Participants gender statistics. 47

4.3 Unity’s coordinate system. 47

4.4 Values of force, velocity and altitude at level one for a 100 seconds ride. . . . 48

4.5 Values of force, velocity and altitude with resistance at level five for a 100

seconds ride. 49

4.6 Values of force, velocity and altitude with resistance at level ten for a 100

seconds ride. 49

xi

List of Tables

2.1 Summary of game engine survey[26]. 11

4.1 Example of the SUS questionnaire. 45

4.2 Results of the SUS questionnaire. 46

xii

1 Introduction

1.1 Context and Motivation

The increasing life expectancy and sedentary lifestyle have caused an impact on the

overall health of the population [1], [2].

As a result, motor impairments are becoming common, many of which, diminish an indi-

vidual’s quality of life, causing an inability to carry out various tasks essential to maintaining

an independent lifestyle[3].

Some of these pathologies cause a discrepancy in the mobility of each limb, making it

necessary to train each member individually, to achieve an effective outcome.

One of the most effective treatments is physiotherapy, this form of treatment has been

shown to be a great tool for gaining back mobility and overall improvement of the life quality

of these patients. [4], [5].

Despite the many positive aspects of physiotherapy, there are still some setbacks in this

form of medical rehabilitation. Taking into account that for physical rehabilitation to be

effective patients need various sessions during a long period of time, this type of commitment

can be hard to achieve for many individuals.

A critical factor in improving exercise adherence is through an interactive environment,

for example, a video game. The development of an interactive 3D game environment, using

Unity’s software, that can address patients’ needs is not only beneficial to keep patients

motivated but has also the advantage of offering different modes of exercise tailored to each

patient’s unique condition.

1.2 Main Goals of this Dissertation

The main goal of this work is the development of a 3D serious game for a motor-assisted

static bicycle, that allows the user to choose between three different modes and adjust values

1

such as resistance and weight according to their characteristics. More specifically, the steps

to achieve this goal were:

• Conduct research on the current state of the art, in the fields of physical rehabilitation

and serious games,

• Incorporate into Unity a playStation 3 (PS3) control as an input to better simulate

the static bicycle responses,

• Develop a virtual representation of a bicycle that behaves similarly to a real-world

bicycle, excluding the aspect of falling to the sides when standing still,

• Develop game menus that allow the patient to save his data and adapt the game

variables to their specific case, for example, weight, height and level of resistance,

• Demonstrate that the mechanics of the serious game function correctly, and that the

interface is user-friendly.

1.3 Document Overview

This document is structured as follows. A literature review of mobility, physiotherapy

and previous projects on this theme is performed in Chapter 2. Afterwards, in Chapter

3, the development of this work is explained in detail, the choice of software, along with

different steps to reach the final outcome, that take into account the different modes of

the motor-assisted static bicycle. The development is tested in Chapter 4, which presents

the experimental setup and results. Finally, Chapter 5 presents a reflection upon the overall

success of this work, proposing a number of potential lines of future work in order to improve

the current prototype.

2

2 Background

2.1 Main causes of mobility issues and rehabilitation

It is important to understand what are the main causes of mobility issues in the popu-

lation, contributing factors, and how these problems can be overcome. Mobility issues have

a major impact on a person’s quality of life [3], [6]. People with these disabilities are more

likely to be unemployed, have higher healthcare-related costs, and present a greater risk of

hospitalizations [7].

The ageing of the population, obesity and sedentarism are possible factors contributing

to mobility disability[8], [9]. These factors do not cause mobility problems directly, however,

they place a person at a higher risk for accidents and developing diseases, compromising his

ability to move.

Some of the diseases that can affect mobility are:

• Neurological disorders that leave patients with motor sequels such as cerebrovascu-

lar accidents (CVA) [4], Parkinson’s disease [10], multiple sclerosis, motor functional

neurological disorder (FND) a common cause of persistent and disabling neurological

symptoms[11],

• Musculoskeletal health conditions, for example, Rheumatoid arthritis, Osteoarthritis,

Carpal tunnel syndrome, Fibromyalgia and many others [12],

• Conditions that can lead to amputations, type 2 diabetes, type 1 diabetes [13], periph-

eral arterial disease, malignant tumours, trauma [14],

• Long periods of hospitalization and bedrest orders, especially in older generations [15].

The main form of treatment for these conditions is physiotherapy. This type of therapy

has shown promising results in improving mobility, for example in the case of a CVA, even if

rehabilitation is started late after a stroke, mobility improvements are achieved [16]. Patients

that suffered from trauma also showed an improvement in mobility after rehabilitation [5].

3

Other conditions such as Ankylosing Spondylitis [17], trauma [5], chronic multiple scle-

rosis [18] also have shown improvements from physiotherapy.

This work can be beneficial in prolonging physiotherapy’s benefits, one of the biggest

downsides of this type of rehabilitation is the amount of time required to achieve results,

and the consistency needed to maintain said results[19]. Video games promote treatment ad-

herence and motivate the patients to continue the treatment in the medium or long term.[20].

2.2 Related work

To improve the development of this work, research was conducted on serious games.

According to Tarja Susi et al. [21] the definition of a serious game is "a digital game

that is used for purposes other than mere entertainment", this concept is applied to a broad

spectrum of application areas, e.g. healthcare, military, educational and industry. One of

the goals of this type of game is to motivate the patients during the physical therapy process,

as the treatment can be repetitive and tedious.

For example "A Serious Game for Rehabilitation of Neurological Disabilities" [22], indi-

cates that, typically, the exercises recommended by physiotherapists for patients that suffer

from motor disabilities caused by neurological issues, are "repetitive and boring", due to the

long duration of the and the repetitive nature of these physical therapy treatments, which

leads to a lack of motivation and abandonment of the treatment. Consequently, pleasant en-

vironments are designed to help motivate patients to persevere until the end of their therapy,

which raises their odds of success in recovery.

Figure 2.1: Scenes from the serious game [22].

4

In this particular case, research was done on the most common and transversal exercise,

for various neurological diseases to then chose the ones that were able to be monitored by

image processing techniques, the game was then designed to be adapted to these types of

exercises and made simple enough so that the players do not lose interest, due to difficulty

or lack of understanding.

The game is built in Unity 3D which allows integration with the Microsoft Kinect software

development kit, permitting the control of the Microsoft Kinect sensor used to monitor

and detect physical therapy movements. This project was developed in Unity 3D, and the

programming languages used were Javascript and C#. The graphic modelling scenarios,

characters and objects were developed in Unity 3D, Blender and iClone.

This game was also developed with physiotherapists in mind, therefore a three-dimensional

structure was created for health professionals and researchers (see Fig. 2.2). All information

shared between the three-dimensional structures is stored in a remote server and is accessed

through the Internet. The first area consists of the game itself, from the selection of players

to the levels and rankings of players. In the back office, oriented to health professionals,

the physiotherapist creates the profile of patients and defines rehabilitation for each one of

them. The health workers can see the evolution of their patients, and record notes, among

other functionalities. Furthermore, the back office for researchers is objectively prepared to

make a statistical analysis of the evolution of each patient.

Figure 2.2: The three-dimensional scheme of the application Adapted from [22].

A similar concept was implemented in [23], an effective method of removing mucus build-

up in the lung of sufferers of chronic lung diseases such as cystic fibrosis (CF) is positive

expiratory pressure therapy (PEP). Despite this, this form of treatment can be difficult to

5

use on children and teenagers, causing stressful situations and conflict. The hardware used

is the PEP device, widely available. The innovation created was the connector to the PC

and the games that can be controlled through air pressure (see Fig.2.3). Furthermore, the

platform created can track engagement and patient scores, providing additional motivation

for players to keep participating in each game through the competitive ranking of the team’s

performance. In addition, the games are able to collect important information such as the

duration of gameplay and litres of air exhaled by each user. This type of data can be useful

for:

• Monitoring patient’s evolution throughout therapy, and consequently optimising their

treatment,

• Academic research,

• User insight to enhance the platform.

Figure 2.3: PEP device with connector for the PC [23].

Similar projects were created to aid in treating patients that suffered from a stroke. One

such example is [24]. Following a CVA patients frequently relate partial paralysis or balance-

related problems. Usually, rehabilitation training relies on strength and balance exercises.

As a result, balance plates were chosen as training devices. However, "patients often report

lack of motivation, especially when training at home". The design of this game was based on

a user-centred design (UCD) approach, which takes into account the development process

around the end users, in this case, the patients. In addition, the physiotherapist’s input was

6

added to better understand the needs and problems of the patients, and improve the overall

outcome.

The software used was Java Server Faces, JavaScript and Slick2D, a 2D game library

based lightweight java game library (LWJGL), developed under the BSD-License. This

framework offers interfaces for OpenGL, OpenAL and includes libraries for game controllers.

The hardware used to complement the game was the Wii Fit Plus package including the Wii

Fit Balance Board. Because it is based on a relatively stable and fixed low platform, and it

is easy to set up.

This application can help patients throughout the rehabilitation process, because its

development is centred around the patient’s individual needs and his relationship with the

physiotherapist. Furthermore, because of computer-supported monitoring during physiother-

apy, this application is also a helpful tool for physiotherapists alike, by delivering objective

feedback on a patient’s progress throughout the rehabilitation process. The "RehaLabyrinth-

Patient" application is running locally on a computer. After the rehabilitation session, the

collected data is sent to the web service and stored in the database. Moreover, the web

service has an interface for various operations such as: "creating a report on the patient’s

rehabilitation progress", "Highscore list" and others. For the physiotherapist, there’s a

web interface named "RehaLabyrinthTherapist" that offers full access to all the database

patient’s stored data (see Fig. 2.4).

Figure 2.4: RehaLabyrinth Architecture, Adapted from [24].

The main goal of this application, "RehaLabyrinth" (see Fig. 2.5), is to overcome chal-

lenges caused by a lack of motivation during the exercises, by providing modifiable and

individual setups of balance training, whilst offering a competitive environment by creating

7

the possibility of achieving bonus points upon mastering a variety of mazes. In doing so

therapeutic tasks become more exciting for the patient, helping the patient achieve better

results.

Figure 2.5: RehaLabyrinth Level Overview [24].

Finally, [25] focuses mainly on obtaining patient data such as biometric data, for example:

Angle velocities, the distance between feet, left right feet usage frequency.

As well as medical records and scores during the serious game-based training, usage

frequency and execution time for exercises.

One of the main benefits of this type of serious game is in the hardware used, Kinect v2

motion sensing sensor. This technology has a "higher accuracy in human body detection"

making it a perfect candidate for physiotherapy scenarios. It can provide data associated

with the patient joint position and training location. This type of information can be then

analyzed in correspondence with the selected rehabilitation game. Furthermore, with the

mobile application, connected to Kinect frameworks, the physiotherapist can follow their

patients from anywhere, thus reducing the therapist’s work and allowing the patients to

train at home.

This serious game was developed using the Unity 3D game engine, to ensure that it

was possible to build different virtual reality (VR) scenarios (see Fig. 2.6). For each type

of patient, this gives the patient the possibility of following the movement of the action

performed by an avatar. Or, depending on the type of rehabilitation, play the game that

focuses on training individual body parts.

8

Figure 2.6: Serious game example for lower limb rehabilitation [25].

2.3 Game engines

In this section of the work, there will be a discussion about game engines, firstly, it is

important to understand why these engines were created and how they work, before debating

the advantages and disadvantages of each one.

In the early stages of the video game industry, each game had to be programmed from

scratch due to hardware limitations. Later on, with the advancement of hardware and the

need for faster game development cycles, the concept of game engines emerged. A game

engine is a reusable software layer that allows the separation of general game concepts from

game components (levels, graphics, etc.).

The first video games created were coded from scratch as a "singular entity, with no rela-

tion to previous games", for example game platforms, such as the Atari or the Commodore

at the beginning of the 80’s, created their games this way. It wasn’t until the mid-90’s

that the first video game engines started to appear, due to the popularity of 3D first-person

shooter games like "Doom" and "Quake". By 1998, releases such as "Quake III" and Unreal

were already being designed, completely separating the engine from the content, as well as,

separating game-specific rules and data from their basic and abstract concepts.

9

The definition of a game engine is a software framework primarily designed for the devel-

opment of video games. Its main goal is to "abstract common video game features allowing

for code and game asset reuse in different games". As a result, these are some of the typical

functionalities found in a game engine:

• Input handling,

• Scene graph,

• Rendering for 2D and 3D graphics,

• Game loops,

• Sounds,

• Scripting,

• Memory management,

• Process threading,

• Animation for models,

• Physics engine, with collision detection.

Game engines have been keeping a broad definition, in the sense that their features and

workflow vary from one another. Most industry-level engines are greatly flexible and pow-

erful, making it possible to create any type of game across a number of different platforms.

Besides making games available across other platforms, another major goal is optimising

developers’ productivity by using high-end programming languages such as C#, Java and

Python (see Table 2.1).

10

Table 2.1: Summary of game engine survey[26].

Game Engine
Game gender &

Renderer
Publishing Target

Starting Price for

Commercial Usage
Scripting Language

Supported

Platforms

Unity Generic 2D / 3D

Windows; OSX; Linux;

PlayStation; Xbox; Wii;

iOS; Android; BlackBerry;

Windows; Phone; Browsers

Free C#
Windows; OSX;

Linux

Unreal Engine Generic 2D / 3D

Windows; OSX;

PlayStation; Xbox; iOS;

Android; Browsers

Free C++
Windows; OSX;

Linux

CryEngine Generic 3D

Windows; OSX; Linux;

PlayStation; Xbox;

Wii;iOS;Android

€9.90/month C++ or Lua
Windows; OSX;

Linux

Torque Generic 2D / 3D Windows; OSX; iOS Free
TorqueScript,

Similar to C++

Windows; OSX;

Linux

Flixel Generic 2D Flash; iOS; Android Free ActionScript 3
Windows; OSX;

Linux

GameMaker: Studio Generic 2D
Windows; OSX; Linux;

iOS;Android;Windows
Free or $99.99

Visual Programming

Language or Game

Maker Language

Windows; OSX;

Linux

Construct 2 Generic 2D HTML5 €99.99
Visual Programming

Language and JavaScript

Windows; OSX;

Linux

Stencyl Generic 2D
Windows; OSX; Linux;

iOS;Android;Flash

Free, 99/year,

or 199/yeat

Visual Programming

Language

Windows; OSX;

Linux

Visionaire Studio 2D Adventure
Windows; OSX; Linux;

iOS; Android
€49 Not required

Windows; OSX;

Linux

eAdventure 2D Adventure
Windows; OSX; Linux;

Browsers
Free Not required

Windows; OSX;

Linux

RenPy 2D Visual Novel Windows; OSX; Linux Free Python
Windows; OSX;

Linux

RPG Maker 2D RPG Windows $69.99 Not required
Windows; OSX;

Linux

Phaser Generic 2D Browsers Free JavaScript
Windows; OSX;

Linux

Turbulenz Generic 2D / 3D Browsers Free JavaScript
Windows; OSX;

Linux

In conclusion, after reviewing the literature on diseases that compromise mobility, other

serious games and available game engines, the Unity game engine was chosen to develop

this work, mainly because of its ability to create 2D and 3D games alike, the wide range of

platforms it can develop games for and the ability to export for fifteen different platforms

and all major browsers. In addition, Unity also has a notably good price point, being free

to use for indie developers. The ability to create simple scenes via its visual editor and

continuously integrating new features made this engine a great tool.

11

3 Game Development

3.1 Unity’s Input System

The motor-assisted static bicycle is being improved by another student, because of this,

it is not available for testing. Therefore, a PS3 game controller was used to simulate the

various inputs of the system. Unity supports two separate input systems, an older version,

which is built-in to the editor and is called the "Input Manager", and a newer one called

"Input System Package".

This later version allows the usage of any kind of input device to control Unity content,

and it was created with the intent to replace "Unity’s classic Input Manager". As a result,

the installation of the newer input system was crucial for this project since it allows the

integration of the PS3 controller [27], as well as the possibility of supporting any device

which implements the universal serial bus (USB) human interface device (HID) specification.

Even if devices don’t have specific layouts implemented in the input system it is possible to

manually remap the controls [28].

The input system offers four different ways of workflow, and the developer can choose

the one that better suits the type of project being developed. To better understand how the

different workflows operate, firstly an overview of the concepts and terms used to describe

them is required [29]. These basic concepts and terms refer to the steps in the sequence

of events that occur when a user sends input to a game or app. The Input System offers

features which implement these steps, or they can be altered by the developer to suit their

project better (see Fig. 3.1).

12

Figure 3.1: Sequence of events that occur when a user sends input [27].

The four types of workflows are "Direct", "Embedded Actions", "Action Asset" and

"PlayerInput Component". The "Direct workflow" is the easiest and fastest way to set up

the input system, although it is not recommended for projects with multiple types of input or

platforms. Because "Direct workflow" reads values directly from the devices in the C# script

(see Fig. 3.2), unlike the other options available, it is harder to keep code organised since

"there is no abstraction between the code and the values generated by a specific device".

Figure 3.2: Workflow - Direct [27].

"Embedded Actions" create an additional layer of abstraction between the methods and

the device bindings compared to Direct workflow, as it allows the programmer to create an

"InputAction class". In this way there’s no need to specify what each control should do in

the code explicitly, instead, this is defined within the "InputAction class", where the actions

are bound to the controls and respond to the values or states within the code. The actions

display in the script’s inspector, and allow their configuration in the editor (see Fig. 3.3).

13

Figure 3.3: Workflow - Embedded Actions [27].

The third way of using the input system is "Actions Asset" [30]. This was the workflow

chosen for this project. This way there’s no need to define actions directly in the script.

Alternatively, the script references an "Input Actions Asset" which defines each action.

Consequently, the data that defines the actions are kept separate from the "GameObjects"

which should respond to the actions. All action definitions are stored as a single asset

file, separate from project scripts and "prefabs" [31] thus making it simpler to manage

conceptually. This can be useful for bigger projects where multiple people need to work on

different parts of the project. Compared to "Embedded Actions", "Actions Asset" allows

the developer to group actions into Action Maps and Control Schemes.

Action Maps are a way to group related actions together, where each map relates to a

different situation. For example, there can be an action map for character movement, with

actions called "walk", "run", "jump", and "crouch". The Control Schemes, also defined in

an Action Asset, allow the developer to specify which bindings belong to the control schemes

that are defined. This is useful when a game has multiple input devices.

Figure 3.4: Workflow - Actions Asset [27].

Finally, the developer can use "Actions Asset and PlayerInput Component". This work-

14

flow provides the highest level of abstraction. The Player Input component allows the de-

veloper to make connections between the actions defined in an "Actions Asset" and C#

methods in the "MonoBehaviour scripts", using the user interface (UI) [32] in the inspector.

There’s no need to write additional code to create these connections. This way the methods

are called when the user performs an input action. Compared with the previous workflow

code example, even though this method requires less code, it does require more setup in the

Editor and could make debugging more difficult because the connections between the code

and the action are not hard-coded.

Figure 3.5: Workflow - PlayerInput Component [27].

In this project, an action map called "Gameplay" was created, (see Fig. 3.6). The

actions "MoveBikeL" and "MoveBikeR", are bonded to the left and right thumbsticks, the y

component of both the left and right thumbsticks represents the input force of the left, and

right leg respectively and the x component of the left thumbsticks represents the direction

in which the bicycle steering is headed (see Fig. 3.7). In addition a way for the user to

view the scene around them was implemented, the actions intended for this purpose are

"Xleft", "Xright", "Yup" and "Ydown" these are bound to the buttons on the right side

of the controller, "Xleft" corresponds to Player can look to the left, "Xright" corresponds

to Player can look to the right, "Yup" corresponds to Player can look to the up, "Ydown"

corresponds to Player can look to the down (see Fig.3.7). Furthermore, a way for the player

to stop the movement was added with the action called "Brake" and this is bound to the

L1 button of the PS3 controller (see Fig. 3.7). All these actions are of the type "Value",

this means that all the controls bound to an action are continuously monitored. Afterwards,

the values from the control actuated to be the control driving the action, are reported in

callbacks.

15

Figure 3.6: Action Map and respective actions.

Figure 3.7: PS3 Controller Inputs for the serious game.

Following the creation of the action map, the actions need to be initialised in the C#

script within the "Awake function" since it is a function used to initialize any variables or

game state before the game starts and it is called only once during the lifetime of the script.

Considering the script named "Normal Bicycle" that controls the bicycle movement as an

example (see Fig. 3.8), it is possible to see how the actions are initialized. First, "FL", "FR"

(meaning "force exerted by the left leg", "force exerted by the right leg" respectively) and

"brakes", are the names of the variables that are going to receive the output values of the

actions inputs. Because the actions "MoveBikeL" and "MoveBikeR" are bound to the PS3

controller thumbsticks these, are going to receive a "Vector2" value since each thumbstick

emits two values ranging from -1 to 1, corresponding to the x coordinate and the y coordinate.

"Vector2" is a two-value vector. In this context, the y coordinate of "FL" and "FR" is going

16

to be used as the measurement of the force exerted by the left and right leg respectively,

whereas the x component of "FL" is used to steer the bicycle.

An action by itself doesn’t represent an actual response to input, an action informs the

code that a certain type of input has occurred, and consequently, the code needs to respond

to this information [30]. There are several ways to do this, and as such the option chosen

was the "started, performed, and cancelled callback" (see Fig. 3.9). Every action has a set

of different phases, in response to an input:

• Disabled, meaning the action is disabled and can’t receive input,

• Waiting, the action is enabled and is actively waiting for input,

• Started, the "Input System" has received input that started an interaction with the

action,

• Performed, an interaction with the action has been completed,

• Canceled, an interaction with the action has been cancelled.

To read the current phase of an action, it is necessary to use the "InputAction.phase" (see

Fig. 3.9). Each callback receives an "InputAction.CallbackContext" structure, which holds

context information that can be used to query the current state of the action and to read

out values from controls that triggered the action (InputAction.CallbackContext.ReadValue)

[30].

Figure 3.8: Initializing the action map in the script.

17

Figure 3.9: Action callback phases - Unity example [30].

18

3.2 Game modes and physics of motion

3.2.1 The different game modes

Taking into account the different needs of each patient, and having a better ability to

integrate said conditions, the serious game for the static bicycle has three different game

modes.

The first game mode intends to replicate the behaviour of a standard bicycle, being the

only difference not falling to the sides when the user stops pedalling. In order to move, the

user must exert force on the pedals continuously; consequently, the more force applied to

each pedal, the greater the bicycle velocity will be.

The second game mode is constant velocity, which means the user does not need to

exert force on the pedals for the bicycle to move. The bicycle continues to move during the

duration of the exercise which makes the pedals move alongside.

The last game mode can compensate for one or both legs in case the user has any

mobility issues that compromise the strength of one leg compared to the other or doesn’t

possess enough strength in either one of the legs to make the pedals move evenly. Besides

the compensation, this mode behaves the same way as the first game mode.

Additionally, the user is able to choose the direction in which the bicycle is headed, stop

the bicycle movement by pressing the brakes at any given time, and can change the "camera

view" to look around the scenario. These characteristics are present in all three game modes.

In addition, some variables can be adjusted, for example, there are ten levels of resistance of

the pedals that the user can choose according to their individual needs, in all the different

game modes. In the particular case of constant velocity, the user can choose the desired

velocity of the bicycle for the exercise. The weight of the player also has an impact on the

bicycle movement and is registered at the beginning of the game.

3.2.2 Rigid body and colliders

In order to better understand how the bicycle movement was made to replicate a real

bicycle, firstly, it is crucial to understand Unity’s important classes [33]. One such example

is the class "GameObject". This class represents anything which can exist in a "Scene". In

turn, a "Scene" is simply the environment in which it is possible to work with content in

Unity [34].

19

Game objects can be characters, props, scenarios, lights etc (see Fig. 3.10). On their own,

they do not do anything, consequently, they work as containers for functional components,

that control how the game objects look and behave.

Figure 3.10: Four different types of GameObject: an animated character, a light, a tree, and

an audio source [35].

Components exist in order to give a game object the properties it needs to reach a desired

outcome. By adding different combinations of components to a game object it is possible to

create different types of game objects. For example, if a light component is added to a game

object a light source appears in the scene. On the other hand, if the object is a cube the

components needed to create it are "Mesh Filter" and "Mesh Renderer" to draw the surface

of the cube, then a "Box Collider", so the object can have a volume and in turn physics (see

Fig. 3.11). Furthermore, developers can create their own components by writing a script

and attaching it to the desired game object.

Figure 3.11: Components needed to create a cube, [35].

20

In the first game mode, an empty game object called "First person player" was created,

this game object is the parent of the bicycle model and the main camera. In this way,

the movement of the bicycle and the camera are synchronized (see Fig. 3.12). Then, the

components "Rigid Body", "Sphere Collider" and a control script called "Normal Bike Mode"

were added to the parent object (see Fig. 3.13).

Figure 3.12: Game objects hierarchy.

Figure 3.13: Game objects components.

A rigid body component allows the game object to behave according to Unity’s built-in

physics engine calculations [36]. In this way, it is possible to ensure that objects respond to

collisions and accelerate correctly while being impacted by gravity and various other forces.

Instead of using the default "Transform" properties (position, rotation and scale of an object)

[37], the game object movement can be controlled by simulated physics forces and torque.

Additionally, the rigid body component offers a range of properties to the game object such

as mass, drag, angular drag, "use gravity", "is kinematic", "interpolate" and many others.

Moreover, it is possible to monitor the rigid body’s behaviour, through the properties of

speed, velocity, angular velocity, local center of mass, inertia tensor, world center of mass and

sleep state. These components contain data about the rigid body and can only be altered

21

via script although it is not recommended. These values should only be altered by applying

forces through the physics system [38].

For the game object to be affected by collisions correctly the physical boundaries of its

rigid body component must be defined as well as its mass, [39]. Therefore, it is required

to add collider components to the game object, such as wheel colliders and mesh colliders

to create the collision response, and a collider associated with the same game object as the

rigid-body, so a center of mass can be created.

In this case, a sphere collider was chosen to create the center of mass of the bicycle, which

possesses the weight of the player and the bicycle frame combined. This sphere was placed

in the coordinates (0, 1, 0), x, y and z respectively, in relation to the bicycle’s local axis

system. Although the wheels have a set mass of 2 kg each, the mass of the person using the

bicycle and its body distribution change for each individual. In addition, it is impossible to

determine how each person positions their body on the bicycle, which can alternate multiple

times during the course of the exercise. All these factors can alter the center of mass, that’s

why this set of coordinates was chosen (see Fig. 3.14).

Figure 3.14: Bicycle’s sphere collider and bicycle model.

Moreover, a mesh collider component [40] was also added to some parts of the bicycle

body (see Fig. 3.15). This, however, does not affect the center of mass in any way, only

providing collision detection to the bicycle’s frame. Additionally, the convex property was

enabled, which allows the mesh collider to collide with other meshes in the environment (see

Fig. 3.16).

22

Figure 3.15: Bicycle frame with collision mesh.

Figure 3.16: Collision mesh component saddle example.

3.2.3 Wheel Collider component

Unity offers a variety of collider components one of which is the "wheel collider". This

type of collider is designed specifically for grounded vehicles, as it possesses built-in collision

detection, wheel physics, and a slip-based tire friction model. The wheel collider component

is powered by "PhysX 3 Vehicles SDK" [41]. This algorithm models vehicles by grouping

sprung masses, each one of the masses represents a suspension line with associated wheel

and tire information. Furthermore, the complementary representation of these groupings

of sprung masses is a rigid-body actor whose mass, center of mass, and moment of inertia

precisely match those of the sprung masses and their coordinates (see Fig. 3.17).

23

Figure 3.17: Vehicle representation as a rigid body actor with the shapes of the chassis and

wheels [41].

The mathematical formula used to calculate the suspension and tire forces is based on

the relationship between the rigid-body vehicle representations and sprung masses which can

be formalized with the rigid-body center of mass equations:

M = M1 +M2 (3.1)

Xcm = (M1 ·X1 +M2 ·X2) / (M1 +M2) (3.2)

where M is the rigid body mass, Xcm is the rigid body center of mass offset, M1 and M2 the

sprung masses. X1 and X2 are the sprung mass coordinates in actor space (see Fig. 3.18).

The results of these equations are forces that are then applied to the "PhysX SDK" rigid-

body representation in the form of a modified velocity and angular velocity. Additionally,

the interactions between the rigid-body actor and other objects in the scene as well as its

global position are managed by the "PhysX SDK".

24

Figure 3.18: Vehicle representation as a group of sprung masses, M1 and M2 [41].

The vehicle’s update initiates with a raycast of each suspension line. The raycast is

positioned at the top of the wheel at maximum compression and cast downwards along

the direction of the suspension line to a position slightly below the bottom of the wheel

at maximum droop (see Fig. 3.19). The aggregation of the suspensions forces from each

compressed or elongated spring is computed and added to the rigid-body actor. Furthermore,

the force bearing down on the wheel is computed by the suspension force, which is used to

calculate the wheel forces that will be generated in the contact plane and then added to

the aggregate force to be applied to the rigid-body actor. Its transform is then modified

accordingly in the next "PhysX SDK" update. This computation is dependent on a number

of factors such as friction, wheel rotation speed, steering angle, rigid-body momentum and

camber angle.

Figure 3.19: Suspension raycasts and limits [41].

Additionally, "PhysX" vehicles are collections of sprung masses and support a wide range

25

of drive models. The torsion clutch is placed at the center of the driver model, which connects

the engine and the wheels by forces resulting from differences in rotational speeds at either

side of the clutch. The engine, modelled by a rigid-body with a single degree of rotational

freedom and pure rotational motion, is powered directly by the accelerator pedal and is

placed on one side of the clutch, whereas, on the other side are wheels, the gearing system

and the differential. The wheels are grouped to the clutch through the differential, this

allows the calculation of the effective rotational speed of the other side of the clutch, which

is computed directly from the gearing ratio and the rotational speed of the wheels. Just like

in a typical car, this model naturally enables engine torques to propagate to the wheels and

wheel torques to propagate back to the engine.

The wheel collider component possesses its own set of properties [42], some examples are:

• Mass, the mass of the wheel expressed in kilograms,

• Radius, the radius of the wheel, measured in local space,

• Wheel damping rate, the value of damping applied to a wheel,

• Suspension distance describes the maximum extension distance of wheel suspension,

measured in local space, the suspension always extends downwards through the local

Y-axis as it moves along the local up vector of the rigid body from the coordinate of

the wheel center at maximum spring elongation to the coordinate of the wheel center

at maximum spring compression. It is expressed in metres,

• Force app point distance, this parameter defines the point where the wheel forces will

apply. This is expected to be in metres from the base of the wheel at rest position

along the suspension travel direction. When forceAppPointDistance = 0 the forces

will be applied at the wheelbase at rest. A better vehicle would have forces applied

slightly below the vehicle’s centre of mass,

• Center, the center of the wheel in object local space,

• Suspension spring, the suspension attempts to reach a Target Position by adding spring

and damping forces,

• Spring, the spring force attempts to reach the target position. A larger value makes

the suspension reach the target position faster,

26

• the damper, dampens the suspension velocity, a larger value makes the suspension

spring move slower,

• Target Position is the suspension’s rest distance along suspension distance that sets

the rest coordinate of the wheel to the mid-point between the suspension at maximum

elongation and maximum compression,

• Forward and sideways friction, properties of tire friction when the wheel rolls forward

and sideways.

Since the wheel collider component is mainly targeted for the simulation of cars, some

alterations were done to the default values (see Fig. 3.20).

First, the mass of each wheel was changed from 20 kg to 2 kg since the average weight

of a bicycle wheel ranges from 1 kg to 2 kg [43]. The radius was adapted to fit the size of

the bicycle model tires, 0.35 m. These were designed to have a 0.7 m diameter, the standard

size of bicycle wheels. Then the suspension distance was shortened to 0.08 m, within the

standard values range since bicycles have a shorter suspension distance compared to cars.

The wheel dampening rate was kept at 0.25, and the force app point distance of the wheels

changed to 0.35 m, the center, to avoid undesired behaviours such as jittering, moving along

the surface without input, or falling [44]. The suspension spring values were altered as well

since the weight of the bicycle can never reach the weight of a car frame. The spring value

was changed from 35000 N·m to 35 N·m. Usually, the first value corresponds to a 1500 kg

car body, while the bicycle plus the player weight only reaches a maximum of 150 kg. The

damper value was set at 4.5 N·s and the target position was set at 0.1 because 0.5 is the

default value which matches the behaviour of a regular car’s suspension.

Furthermore, the forward and sideways friction values were maintained (see Fig. 3.21)

in order to create an adequate wheel friction curve. It is possible to see the "Extremum

Slip/Value" which is the curve’s "extremum" point, "Asymptote Slip/Value" is the curve’s

"asymptote" point and stiffness which corresponds to the multiplier for the "extremum"

value and "asymptote" value which changes the stiffness of the friction. If the stiffness value

is set to zero the friction from the wheel will be completely disabled, for that reason the

default value is one.

27

Figure 3.20: a) Wheel collider component default values. b) Wheel collider component

altered values.

Figure 3.21: Wheel sideways and forward friction [42].

The wheel friction plot takes as an input value of tire slip and returns a force as output.

Before reaching the extremum point, the slipping of the tire is negligible; after that point

slipping occurs, too much is not desirable and can make the bicycle fall or not be able to

28

stop when need be, hence the need to keep these values balanced (see Fig. 3.22).

Figure 3.22: Wheel friction curve [42].

3.2.4 Bicycle control scripts

The wheel colliders do not roll or turn. The objects that have the wheel collider attached

should permanently be fixed relative to the vehicle itself. Nevertheless, it is possible to create

a graphical representation of the wheels turning and rolling [42].

In order to achieve this result the wheel meshes and the wheel colliders were set up in

different game objects. Additionally, the creation of a function to update the wheel mesh’s

transform was required (see Fig. 3.24). This function was named "UpdateWheel", and

receives as inputs the wheel collider component as well as the wheel mesh transform (see

Fig. 3.23).

Figure 3.23: Wheel components in the inspector (left) and declared in the scrip, (right).

The public method "GetWorldPose", obtains the world space position of the wheel col-

lider, in the form of a 3D vector, and rotation angle in the form of a quaternion, whilst

considering the steering angle, ground contact and suspension limits [40]. Afterwards, this

data is transferred to the wheel mesh’s transform, which will acquire these values for position

and rotation, since this function updates one wheel mesh at a time, it was called twice (see

Fig. 3.24).

29

Figure 3.24: Function required to update the wheel mesh’s position and rotation.

For the player to be able to steer the bicycle a function named "Steer" was created. This

function receives as inputs the horizontal component of "FL" as mentioned previously on

3.1, "maxangle", which is the maximum angle in degrees that the bicycle can rotate around

the local y-axis, and "smoothing", the interpolation value which can range from 0 to 1 and

set at 0.5.

To calculate the new angle of steering an interpolation function "Mathf.LerpAngle" [45],

which calculates the linear interpolation between two angles is used. The first parameter

is the current steering angle value, and the second parameter is the product between the

maximum steering angle and the horizontal component of "FL". This interpolation will be

done by a smoothing value of 0.5, which is the third parameter. Afterwards, the updated

steering angle will be applied to the front wheel’s steering angle (see Fig. 3.25).

Figure 3.25: Function required to control the steering of the bicycle.

When the bicycle changes its course, not only the front wheel has to turn but also

30

the bicycle’s handlebar and its body. For that, a function named "UpdateHandlebar" was

created. This function will update the local rotation of the handlebar by a quaternion

function, "Quaternion.Euler", which returns a 3D vector with x degree rotation around

the x axis, for the first coordinate, a y degree rotation around the y axis for the second

coordinate and lastly, a z degree rotation around the z axis for the third coordinate [46].

In this particular case, the only rotation needed is the one around the y axis. As such, the

first and third coordinates were maintained, whilst the second coordinate is updated by the

steering angle, calculated by the previous function.

Figure 3.26: Function required to update the handlebar rotation.

Since the wheel collider component is targeted mainly for four-wheel vehicles an addi-

tional function was needed to maintain the equilibrium of the bicycle. This was achieved

by checking the values of the steering angle to confirm if the bicycle is straight or turning

and controlling the amount of rotation around the z-axis. First, a 3D vector, which contains

the rotation of the first-person player (see section 3.2.2) in degrees was created, then the

amount of laying done by the player, "targetlayingAngle", is calculated by the product of

the maximum steering angle and the horizontal input.

If the first-person player velocity magnitude is less than 1, this indicates the bicycle is

close to being still, consequently, the laying amount will be calculated with the function

"Mathf.LerpAngle" [45], which will be an interpolation between the laying amount and

0. Afterwards, the rotation in degrees of the first-person player around the z-axis will be

updated to the laying amount previously calculated.

If the current steering angle, formerly calculated by the function "Steer", ranges between

−0.5 and 0.5, means the bicycle is not turning. As such, the rotation of the player will not

be updated. Nevertheless, the laying amount will still be calculated as it was previously.

Finally, when turning occurs, the new value for the laying amount will be calculated by

"Mathf.LerpAngle", an interpolation between the laying amount and "targetlayingAngle",

then the center of mass of the rigid body will be altered in the y-axis by the value stored in

a 3D vector called "CenterOfGravity" that contains the coordinates of the sphere collider,

which acts as the center of mass of the first-person player. Furthermore, the rotation in

31

degrees of the first-person player around the z-axis will be updated to the laying amount

calculated (see Fig. 3.27).

Figure 3.27: Function required to control the bicycle’s balance.

For the bicycle to accelerate and brake a function named "Accelerateandbrake" was

added. This function will take as input the force exerted by the player on the bicycle pedals,

a variable named "TotalForce".

The wheel collider property "motorTorque" [42], allows a simulation of torque on the

wheels of a vehicle in newtons. As such, the "TotalForce" was used applied to the back

32

wheel of the bicycle via this property. In addition, a property named "brakeTorque" allows

for the simulation of brakes in newtons. Consequently, an if statement was used to check if

the brake button was being pressed or not (see section 3.1). If pressed, the brakes of both

wheels are given the double of the player’s mass to stop the bicycle’s movement, otherwise,

this value will be 0 (see Fig. 3.28).

Figure 3.28: Function required to accelerate and brake.

Since there are three different game modes, the variable that makes the calculations for

the "TotalForce" are different in each one. For example, in the normal bicycle mode, the

force will be the average of the forces exerted by both legs, multiplied by the rigid body’s

mass, the conjunction of the players and the bicycle’s frame masses, which in turn will be

multiplied by a factor of 0.1 and gravitational acceleration. The factor was chosen due to the

fact the values received by the inputs vary between −1 and 1 (see Fig. 3.29). The calculation

of the average force of each leg was chosen, since the legs are out of phase from each other,

and only exert force for each half-cycle.

Figure 3.29: Calculation of the force exerted in normal bicycle mode.

33

In the second mode, leg compensation, an if statement is used to check which leg is in

need of compensation. The total force calculations will occur as follows for the right and left

leg respectively:

Totalforce =


(
FR
2

+
(
FL
2

· Comp
))

+ FL
2

if right leg is in compensation(
FL
2

+
(
FR
2

· Comp
))

+ FR
2

if left leg is in compensation
(3.3)

where Totalforce is the sum of the force exerted on both pedals, FR is the force ex-

erted by the right leg, FL is the force exerted by the left leg and Comp is the amount of

compensation needed.

In this way, a percentage of the force exerted by the healthy leg is used as compensation

for the damaged one, similarly to the previous mode the force value will also be multiplied

by the rigid body mass, gravitational acceleration and a factor of 0.1 (see Fig. 3.30).

Figure 3.30: Calculation of the force exerted in leg compensation mode.

Finally, for the constant velocity mode, the values of the leg inputs are not taken into

account, since the goal of this mode is for the bicycle to move at constant velocity independent

of the force exerted on the pedals. Consequently, the velocity is decided at the beginning

of the game and the player can only steer the bicycle, brake, look around, and pause.

To simulate a constant velocity a torque will be applied to the "motorTorque" and the

"brakeTorque", just like previously (see Fig. 3.31).

Figure 3.31: Function required to accelerate and brake, constant velocity mode.

34

Independently from the game modes, the player can always look around the scene for a

more immersive experience to simulate this, a script component named "Player view" was

added to the main camera (see Fig. 3.32).

Figure 3.32: Main camera and respective components.

This script uses "Xleft", "Xright", "Yup" and "Ydown" as inputs, (see section 3.1), (see

Fig. 3.33) and creates values for the maximum rotation around the x and y axis. Since

Euler angles only range from 0 to 360 degrees, the values establish for the rotation around

the x-axis were 25 degrees upwards and 335 degrees downwards. For the rotation around the

y-axis, the values were 50 degrees to the right and 310 degrees to the left (see Fig. 3.34).

Figure 3.33: Initialization of the action map in the "Player view" script.

Figure 3.34: Range of values established for the rotation around the x-axis and y-axis.

35

Afterwards, the local rotation of the camera in degrees around the x and y axis was

stored in "xRotation" and "yRotation" respectively. Additionally, an if statement was used

to check if the amount of rotation is within the limits previously established. If the values

were indeed within the y-axis range of values and "xleft" is pressed, then "Vector3 down",

a shorthand for writing V ector3(0,−1, 0) is used and, consequently, the camera rotates to

the left. On the other hand, if "xright" is pressed "Vector3.up", a shorthand for writing

V ector3(0, 1, 0), is used, making the camera rotate to the right. This process is repeated

for the rotation around the x-axis, with the range of values mentioned previously (see Fig.

3.35).

Figure 3.35: Conditions used to occur the rotation around the y and x-axis respectively.

The player can press the button until reaching the maximum amount of rotation. To

avoid going outside the range defined other conditions were added. Taking the rotation

around the y-axis as an example, if the value stored in "yRotation" ranges from 50 to 180

degrees. Then a "Vector3 down" is used to counteract the movement, making it impossible

to go past the desired range of values.

Also if the value stored in "yRotation" is within the range 180 to 310 degrees, "Vector3

36

up" is used to go in the opposite direction of the movement and, consequently, stop the

rotation. These conditions were repeated for the rotation around the x-axis as well (see Fig.

3.36).

Figure 3.36: Conditions used to control the amount of rotation around the y and x-axis

respectively.

3.2.5 Game menus and data management

For the game to function correctly each mode has to be contained in different game scenes

[47], so it is possible to work with different variables, scenarios and goals. Furthermore, this

asset makes it possible to have game menus and settings.

When working with different scenes, there’s a need to save the player’s data when switch-

ing between them, for example, changing from the main menu to one of the game modes.

One way of achieving this is by using scriptable objects, which are data containers that store

large amounts of data, independently of class instances. All "prefabs" are able to access

the scriptable object’s data, avoiding duplicated values which reduces the project’s memory

usage [48].

In this project, a scriptable object class was created to save player data such as weight,

height, game resistance, the percentage of leg compensation, constant velocity value, and

which of the legs is in need of compensation, left or right (see Fig. 3.37). Then a scriptable

object asset named "Player Data SO" was generated from the previous script (see Fig. 3.38).

37

Figure 3.37: Scriptable object class script.

Figure 3.38: Scriptable object asset.

To access the data from the scriptable object through the script, firstly, the creation of

a scriptable object variable is needed, in this case, named "Player Data SO", afterwards, it

is possible to attribute the data values to the desired game variables. For example, the data

containing the weight value was attributed to the rigid body mass, and the data containing

the value for resistance was attributed to the rigid body’s drag, which simulates the decay

38

rate of a rigid body’s linear velocity [38]. The base value for resistance was set a 0.5, and

according to the behaviour of the game, the incrementation had to be done in decimal values,

making the resistance range from 0.5 to 1.5, as such, the resistance levels were divided by

ten (see Fig. 3.39).

Figure 3.39: Scriptable object declaration and attributions, with weight and resistance ex-

amples.

In order to obtain the data values for the scriptable object to store, game menus were

created, where the players have the ability to choose the desired game mode and adapt it

according to their needs.

For this, the Unity UI package was used [32]. This package allows for the creation of

canvas buttons and many other interfaces that compose a game menu (see Fig. 3.40).

Figure 3.40: Unity UI options.

The main menu is composed of the tile of the game, play and quit buttons. The button

component possesses the "onclick" event which allows the activation of scripts or game

39

objects. This makes it possible to "jump" between different menus on the same scene (see

Fig. 3.41).

Figure 3.41: Main menu and respective "on click" events.

When the play button is pressed the player will be redirected to the game mode menu.

There, it is possible to choose the desired game mode and adjust the options accordingly

(see Fig. 3.42).

Figure 3.42: Game mode menu and options menus.

Each options menu has slider components. These have minimum and maximum values

40

attributed to each, to be able to display the value of the slider changing as it is used, a script

that gets the value of the slider and updates the slider’s text with the value in the form of

a string was created. This script is used in all the menu sliders (see Fig. 3.43).

Figure 3.43: Script for updating the slider text.

Furthermore, the slider component allows for the usage of "on value changed" event.

This makes it possible to store the value of the slider into its scriptable object corresponding

variable (see Fig. 3.44).

41

Figure 3.44: Slider component with "on value changed" event for the scriptable object

variable height.

Additionally, during the game, the player can pause the exercise and alter the resistance

level, at any given time. A timer is also available to monitor the duration of the exercise

(see Fig. 3.45).

Figure 3.45: Pause menu and timer.

42

4 Experimental Validation

Several experiments were carried out in order to:

• Demonstrate that the serious game is user-friendly for a wide range of users,

• Demonstrate that the serious game functions correctly according to the physics engine.

4.1 Usability Questionnaires

In order to evaluate the usability of the serious game, and to have a better perspective

for future improvements and developments, usability questionnaires were carried out.

This method of evaluation was chosen since this type of survey allows for the collection

of large amounts of data at a relatively low cost.

In favour of selecting the most favourable questionnaire for this work, extensive research

on twenty-four different usability questionnaires was done [49]. The usability questionnaires

analyzed were the following:

• Questionnaire for User Interface Satisfaction (QUIS),

• Technology Acceptance Model questionnaire (TAM),

• After-Scenario Questionnaire (ASQ),

• Computer System Usability Questionnaire (CSUQ),

• Post-Study System Usability Questionnaire (PSSUQ),

• Software Usability Measurement Inventory (SUMI),

• System Usability Scale (SUS),

• Purdue Usability Testing Questionnaire (PUTQ),

• Website Analysis Measurement Inventory (WAMMI),

43

• Usefulness, Satisfaction and Ease of use (USE),

• Expectation Ratings (ER),

• Website Usability Evaluation tool (WEBUSE),

• Usability Magnitude Estimation (UME),

• Mobile Phone Usability Questionnaire (MPUQ),

• Single Ease Question (SEQ),

• Website Evaluation Questionnaire (WEQ),

• Subjective Mental Effort Question (SMEQ),

• Usability Metric for User Experience (UMUX),

• Standardized Universal Percentile Rank Questionnaire (SUPR-Q),

• Design-oriented Evaluation of Perceived usability (DEEP),

• Turkish-Computer System Usability Questionnaire (T-CSUQ),

• Usability Metric for User Experience-LITE (UMUX-LITE),

• Speech User Interface Service Quality questionnaire (SUISQ),

• Alternate Usability (AltUsability).

Firstly, the type of user interface or system the questionnaire is meant to evaluate was

taken into account. This led to the exclusion of the surveys targeted for mobile phone appli-

cations, websites, information-intensive web systems interactive voice response applications,

websites of the governmental organizations and information systems.

Then the level of reliability was taken into account. As well most have "very high levels of

reliability ranging between 0.9 and 0.97" [49], although, some present levels lower than 0.90

while others don’t have precise Cronbach alpha values. Consequently, these were excluded.

Analysing the questionnaires left, even though "CSUQ" and "ASQ" have high levels of

reliability, 0.95 and 0.96 respectively, they have a limited amount of items compared to the

other surveys which, in turn, can make them unreliable. Furthermore, another important

factor is the category of the questionnaire. These consist of post-study questionnaires, used

at the end of a study, post-task questionnaires for evaluation used at the end of each task or

44

scenario in a usability study and questionnaires developed solely to evaluate web applications.

For the context of this work, the category most adequate is the post-study questionnaires

which consist of "SUMI", "PSSUQ" and "SUS". The questionnaire "SUS" (see Table.4.1) is

a fast and common method of evaluating software, being the fastest questionnaire to converge

on the correct conclusion producing reliable results across multiple sample sizes, frequently

used by a large number of usability studies, and referenced in over 600 publications [49]. As

a consequence, this was the questionnaire chosen to evaluate this serious game.

Table 4.1: Example of the SUS questionnaire.

In order to evaluate the responses of the participants, the SUS score must be calcu-

lated [50]. The formula used to calculate the score is as follows: Firstly the odd-numbered

questions generate a positive response, while even-numbered questions generate a negative

response, thus their score value has to be inverted. Then answers are recorded with values

ranging from one to four, and the resulting points of the ten questions are added, which can

result in a maximum value of forty. To create a scale up to one hundred, the user’s points

are multiplied by 2.5. Finally, this procedure is repeated for all the user’s scores which are

then averaged. Resulting in the following mathematical expression:

SUS =
(
lim
n→10

∑
(x2n−1 − 1) + lim

n→10

∑
(5− x2n)

)
· 2.5 (4.1)

where n is the number of the question, 2n represents the even questions, 2n−1 represents

the odd questions, and x is the score of the question (see Table 4.2).

45

Table 4.2: Results of the SUS questionnaire.

The final score for the SUS questionnaire was 78.64. Any score above 68 is considered

above average [49].

Another parameter that can be evaluated, is learnability, which correlates to questions 4

and 10 and can be calculated by adding the average of the scores of both questions. Since

these generate a negative response, their scores must be subtracted to five. Then the result

is multiplied by 12.5, which will result in a number between 0 and 100.

Learnability = 12.5 · ((5− x4) + (5− x10)) (4.2)

where x4 is the score of the fourth question and x10 is the score of the tenth question.

The learnability result was 80.75, which is a positive result.

The participants of this questionnaire were divided by age and gender as follows (see Fig.

4.1 and Fig. 4.2):

Figure 4.1: Participant age statistics.

46

Figure 4.2: Participants gender statistics.

4.2 Correctness of the game

In order to evaluate the performance of the serious game, important values were registered

and analysed graphically. The values chosen for this purpose were: the force exerted by the

player on the pedals in newtons, the velocity of the rigid body in m/s and the altitude of the

bicycle in meters, which is given by the "y" coordinate values, since in Unity’s coordinate

referential, this coordinate represents the "up" direction (see Fig.4.3).

Figure 4.3: Unity’s coordinate system.

However, unlike the other values, the velocity of the rigid body couldn’t be extracted

directly, since this value is in the form of a 3D vector which contains the velocity along each

one of the axis coordinates. To obtain the magnitude of the velocity vector, the following

equation was applied:

v =
√

v2x + v2y + v2z (4.3)

47

where v is the magnitude of the velocity vector, vx is the velocity in the x coordinate, vy

is the velocity in the y coordinate and vz is the velocity in the z coordinate.

These values were registered during periods of 100 seconds, for three different levels of

resistance, levels one, five and ten and with the mass of the rigid body at 79 kg, and in

the same trajectory. We will analyse the effects of the resistance levels on the bicycle’s

performance, and observe if the bicycle behaves correctly on different levels of force and

altitude. For the resistance: level of one, the graphic obtained is as follows (see Fig.4.4).

Figure 4.4: Values of force, velocity and altitude at level one for a 100 seconds ride.

In this graphic, it is possible to observe, at a horizontal path, the velocity’s magnitude

and the force exerted on the pedals are proportional to one another, as can be seen at the

interval of 80 to 90 seconds. As the amount of force rises so does the velocity. On the other

hand, the velocity’s magnitude and the altitude gradient behave in the opposite way which

can be observed in the time interval from 35 to 45 seconds, where the altitude rises and for

an almost constant amount of force, the velocity decreases.

It can also be seen that when the altitude presents a negative slope the velocity’s vector

magnitude increases even if the force exerted on the pedals is zero, which can be seen from

seconds 45 to 53.

48

Figure 4.5: Values of force, velocity and altitude with resistance at level five for a 100 seconds

ride.

With the resistance at level five, (see Fig.4.5), the bicycle behaves similarly to the lower

resistance, although some differences can be observed. For example, the velocity’s vector

magnitude is lower compared to the former example, reaching a maximum of 2.7 m/s com-

pared to the previous value of 3.9 m/s for similar values of the pedal’s force.

Additionally, for the same time period, the highest peak of the altitude is at approx-

imately 70 seconds whereas in the previous graphic, it was at approximately 50 seconds,

meaning the length of the path travelled by the bicycle was shorter.

Figure 4.6: Values of force, velocity and altitude with resistance at level ten for a 100 seconds

ride.

49

Finally, with the resistance level at ten (see Fig.4.6), the maximum value for the veloc-

ity’s vector magnitude was 1.8m/s, showing a decrease in speed for similar force values, as

intended. Moreover, the maximum velocity achieved at the negative slope of the altitude

line is much lower compared to the previous versions.

To conclude, in all of these examples, it is possible to observe a coherent behaviour

between the variables displayed on the three graphics, as well as the evident effect of the

resistance levels on the velocity of the bicycle and therefore the time needed to travel the

route.

50

5 Conclusions

This dissertation presents a method of motivating and assisting patients during the course

of physical rehabilitation therapy. After researching the state of the art in the fields of

physiotherapy and serious games, Unity was chosen as the main developing tool for this

work.

In the presented serious game, the users can choose between three distinct working modes,

and personalize their workout experience, by adapting the game functionalities to their

unique case.

During experimental validation, in order to evaluate the performance and usability of this

work, a SUS questionnaire was carried out which achieve positive scores in both usability and

learnability metrics. Also, a graphical evaluation was performed which showed the correct

response of the bicycle model in relation to different inputs and slope of terrain. For lower

resistance or in the presence of a negative slope relative to the altitude line, the magnitude of

the velocity vector increased, whereas, in the presence of a positive altitude slope or higher

resistance level selected the velocity decreased. It is also possible to obverse that the higher

the amount of force exerted the higher the velocity.

5.1 Future Work

This work can still be improved in different ways. One such example would be the creation

of bigger and different gaming scenarios, for example, city environments, beach environments

and others. Since these advances require a higher processing capacity, this functionality was

not possible to be implemented due to hardware limitations.

In addition, access to a database that stores patient information and possesses a network

connection which would allow fluent communication between the user and the physiotherapist

could be a possible improvement as well.

Finally, the most crucial improvement would be the connection of this serious game to the

51

motor-assisted static bicycle it was designed for, this would allow for better testing options

and, consequently, fine-tuned upgrades.

52

Bibliography

[1] M. Forhan and S. V. Gill, “Obesity, functional mobility and quality of life”, Best Prac-

tice & Research Clinical Endocrinology & Metabolism, vol. 27, no. 2, pp. 129–137,

2013.

[2] M. Rantakokko, M. Mänty, and T. Rantanen, “Mobility decline in old age”, Exercise

and sport sciences reviews, vol. 41, no. 1, pp. 19–25, 2013.

[3] M. Mollaoğlu, F. Ö. Tuncay, and T. K. Fertelli, “Mobility disability and life satisfaction

in elderly people”, Archives of gerontology and geriatrics, vol. 51, no. 3, e115–e119,

2010.

[4] I. G. Van De Port, G. Kwakkel, I. Van Wijk, and E. Lindeman, “Susceptibility to

deterioration of mobility long-term after stroke: A prospective cohort study”, Stroke,

vol. 37, no. 1, pp. 167–171, 2006.

[5] S. Calthorpe, E. A. Barber, A. E. Holland, et al., “An intensive physiotherapy program

improves mobility for trauma patients”, Journal of Trauma and Acute Care Surgery,

vol. 76, no. 1, pp. 101–106, 2014.

[6] D. Zidarov, B. Swaine, and C. Gauthier-Gagnon, “Quality of life of persons with lower-

limb amputation during rehabilitation and at 3-month follow-up”, Archives of physical

medicine and rehabilitation, vol. 90, no. 4, pp. 634–645, 2009.

[7] E. Jones, J. Pike, T. Marshall, and X. Ye, “Quantifying the relationship between in-

creased disability and health care resource utilization, quality of life, work productivity,

health care costs in patients with multiple sclerosis in the us”, BMC health services re-

search, vol. 16, no. 1, pp. 1–9, 2016.

[8] A. Bracke, G. Domanska, K. Bracke, et al., “Obesity impairs mobility and adult hip-

pocampal neurogenesis”, Journal of experimental neuroscience, vol. 13, p. 1 179 069 519 883 580,

2019.

54

[9] H. K. Vincent, K. R. Vincent, and K. M. Lamb, “Obesity and mobility disability in

the older adult”, Obesity reviews, vol. 11, no. 8, pp. 568–579, 2010.

[10] M. Matinolli, J. Korpelainen, R. Korpelainen, K. Sotaniemi, V.-M. Matinolli, and

V. Myllylä, “Mobility and balance in parkinson’s disease: A population-based study”,

European Journal of Neurology, vol. 16, no. 1, pp. 105–111, 2009.

[11] G. S. Gilmour, G. Nielsen, T. Teodoro, et al., “Management of functional neurological

disorder”, Journal of Neurology, vol. 267, pp. 2164–2172, 2020.

[12] S. Tyson and L. Connell, “The psychometric properties and clinical utility of measures

of walking and mobility in neurological conditions: A systematic review”, Clinical re-

habilitation, vol. 23, no. 11, pp. 1018–1033, 2009.

[13] R. E. Pecoraro, G. E. Reiber, and E. M. Burgess, “Pathways to diabetic limb ampu-

tation: Basis for prevention”, Diabetes care, vol. 13, no. 5, pp. 513–521, 1990.

[14] P. A. Lazzarini, S. R. O’Rourke, A. W. Russell, D. Clark, and S. S. Kuys, “What

are the key conditions associated with lower limb amputations in a major australian

teaching hospital?”, Journal of foot and ankle research, vol. 5, pp. 1–9, 2012.

[15] C. J. Brown, R. J. Friedkin, and S. K. Inouye, “Prevalence and outcomes of low mobility

in hospitalized older patients”, Journal of the American Geriatrics Society, vol. 52,

no. 8, pp. 1263–1270, 2004.

[16] D. T. Wade, F. M. Collen, G. F. Robb, and C. P. Warlow, “Physiotherapy intervention

late after stroke and mobility.”, British Medical Journal, vol. 304, no. 6827, pp. 609–

613, 1992.

[17] J. Viitanen, J. Suni, H. Kautiainen, M. Liimatainen, and H. Takala, “Effect of physio-

therapy on spinal mobility in ankylosing spondylitis”, Scandinavian Journal of Rheuma-

tology, vol. 21, no. 1, pp. 38–41, 1992.

[18] C. Wiles, R. Newcombe, K. Fuller, et al., “Controlled randomised crossover trial of the

effects of physiotherapy on mobility in chronic multiple sclerosis”, Journal of Neurology,

Neurosurgery & Psychiatry, vol. 70, no. 2, pp. 174–179, 2001.

[19] D. K. A. Singh, N. A. Mohd Nordin, N. A. A. Aziz, B. K. Lim, and L. C. Soh, “Effects

of substituting a portion of standard physiotherapy time with virtual reality games

among community-dwelling stroke survivors”, BMC neurology, vol. 13, no. 1, pp. 1–7,

2013.

55

[20] R. López-Liria, D. Checa-Mayordomo, F. A. Vega-Ramırez, A. V. Garcıa-Luengo,

M. Á. Valverde-Martınez, and P. Rocamora-Pérez, “Effectiveness of video games as

physical treatment in patients with cystic fibrosis: Systematic review”, Sensors, vol. 22,

no. 5, p. 1902, 2022.

[21] T. Susi, M. Johannesson, and P. Backlund, “Serious games: An overview”, 2007.

[22] T. Martins, V. Carvalho, and F. Soares, “A serious game for rehabilitation of neu-

rological disabilities: Premilinary study”, in 2015 IEEE 4th Portuguese Meeting on

Bioengineering (ENBENG), IEEE, 2015, pp. 1–5.

[23] A. Oikonomou and D. Day, “Using serious games to motivate children with cystic fibro-

sis to engage with mucus clearance physiotherapy”, in 2012 Sixth International Con-

ference on Complex, Intelligent, and Software Intensive Systems, IEEE, 2012, pp. 34–

39.

[24] R. Baranyi, R. Willinger, N. Lederer, T. Grechenig, and W. Schramm, “Chances for

serious games in rehabilitation of stroke patients on the example of utilizing the wii

fit balance board”, in 2013 IEEE 2nd International Conference on Serious Games and

Applications for Health (SeGAH), IEEE, 2013, pp. 1–7.

[25] D. Ferreira, R. Oliveira, and O. Postolache, “Physical rehabilitation based on kinect se-

rious games”, in 2017 Eleventh international conference on sensing technology (ICST),

IEEE, 2017, pp. 1–6.

[26] A. Andrade, “Game engines: A survey”, EAI Endorsed Transactions on Serious Games,

vol. 2, no. 6, 2015.

[27] Unity, Input system, introduction, https://docs.unity3d.com/Packages/com.

unity.inputsystem@1.5/manual/index.html.

[28] Unity, Supported input devices, https://docs.unity3d.com/Packages/com.unity.

inputsystem@1.5/manual/SupportedDevices.html.

[29] Unity, Input system, workflows, https://docs.unity3d.com/Packages/com.unity.

inputsystem@1.5/manual/Workflows.html.

[30] Unity, Input system, actions, https://docs.unity3d.com/Packages/com.unity.

inputsystem@1.5/manual/Actions.html.

[31] Unity, Unity, prefabs, https://docs.unity3d.com/Manual/Prefabs.html.

56

https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/SupportedDevices.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/SupportedDevices.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/Workflows.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/Workflows.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/Actions.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.5/manual/Actions.html
https://docs.unity3d.com/Manual/Prefabs.html

[32] Unity, Unity core packages, unity ui, https://docs.unity3d.com/Manual/com.

unity.ugui.html.

[33] Unity, Important classes, https://docs.unity3d.com/Manual/ScriptingImportantClasses.

html.

[34] Unity, Scenes, https://docs.unity3d.com/Manual/CreatingScenes.html.

[35] Unity, Gameobjects manual, https://docs.unity3d.com/Manual/GameObjects.

html.

[36] Unity, Rigidbody physics, https://docs.unity3d.com/Manual/rigidbody-physics-

section.html.

[37] Unity, The transform component, https://docs.unity3d.com/Manual/class-

Transform.html.

[38] Unity, Rigidbody component reference, https://docs.unity3d.com/Manual/class-

Rigidbody.html.

[39] Unity, Rigidbody collision, https://docs.unity3d.com/Manual/rigidbody-configure-

colliders.html.

[40] Unity, Mesh collider component reference, https://docs.unity3d.com/Manual/

class-MeshCollider.html.

[41] NVIDIA, Physx 3 vehicles sdk, https://docs.nvidia.com/gameworks/content/

gameworkslibrary/physx/guide/Manual/Vehicles.html.

[42] Unity, Wheel collider component reference, https://docs.unity3d.com/Manual/

class-WheelCollider.html.

[43] P. Minarik, How much do road bike wheels weigh? data from more than 400 wheelsets,

https://www.cyclistshub.com/road-bike-wheels-statistics/#:~:text=Road.

[44] Unity, Wheel collider, force app point distance, https://docs.unity3d.com/ScriptReference/

WheelCollider-forceAppPointDistance.html.

[45] Unity, Important classes, mathf, https://docs.unity3d.com/Manual/class-Mathf.

html.

[46] Unity, Quaternion, "quaternion.euler", https://docs.unity3d.com/ScriptReference/

Quaternion.Euler.html.

[47] Unity, Scenes, https://docs.unity3d.com/Manual/CreatingScenes.html.

57

https://docs.unity3d.com/Manual/com.unity.ugui.html
https://docs.unity3d.com/Manual/com.unity.ugui.html
https://docs.unity3d.com/Manual/ScriptingImportantClasses.html
https://docs.unity3d.com/Manual/ScriptingImportantClasses.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/rigidbody-physics-section.html
https://docs.unity3d.com/Manual/rigidbody-physics-section.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/rigidbody-configure-colliders.html
https://docs.unity3d.com/Manual/rigidbody-configure-colliders.html
https://docs.unity3d.com/Manual/class-MeshCollider.html
https://docs.unity3d.com/Manual/class-MeshCollider.html
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.html
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Vehicles.html
https://docs.unity3d.com/Manual/class-WheelCollider.html
https://docs.unity3d.com/Manual/class-WheelCollider.html
https://www.cyclistshub.com/road-bike-wheels-statistics/##:~:text=Road
https://docs.unity3d.com/ScriptReference/WheelCollider-forceAppPointDistance.html
https://docs.unity3d.com/ScriptReference/WheelCollider-forceAppPointDistance.html
https://docs.unity3d.com/Manual/class-Mathf.html
https://docs.unity3d.com/Manual/class-Mathf.html
https://docs.unity3d.com/ScriptReference/Quaternion.Euler.html
https://docs.unity3d.com/ScriptReference/Quaternion.Euler.html
https://docs.unity3d.com/Manual/CreatingScenes.html

[48] Unity, Important classes, "scriptableobject", https://docs.unity3d.com/Manual/

class-ScriptableObject.html.

[49] A. Assila, H. Ezzedine, et al., “Standardized usability questionnaires: Features and

quality focus”, Electronic Journal of Computer Science and Information Technology,

vol. 6, no. 1, 2016.

[50] K. Betteridge, What every uxc client should know about sus scores, https://www.

bentley.edu/centers/user-experience-center/what-every-client-should-

know-about-sus-scoresl.

58

https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://www.bentley.edu/centers/user-experience-center/what-every-client-should-know-about-sus-scoresl
https://www.bentley.edu/centers/user-experience-center/what-every-client-should-know-about-sus-scoresl
https://www.bentley.edu/centers/user-experience-center/what-every-client-should-know-about-sus-scoresl

	Acknowledgements
	Resumo
	Abstract
	Keywords
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Main Goals of this Dissertation
	1.3 Document Overview

	2 Background
	2.1 Main causes of mobility issues and rehabilitation
	2.2 Related work
	2.3 Game engines

	3 Game Development
	3.1 Unity's Input System
	3.2 Game modes and physics of motion
	3.2.1 The different game modes
	3.2.2 Rigid body and colliders
	3.2.3 Wheel Collider component
	3.2.4 Bicycle control scripts
	3.2.5 Game menus and data management

	4 Experimental Validation
	4.1 Usability Questionnaires
	4.2 Correctness of the game

	5 Conclusions
	5.1 Future Work

