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Resumo

A gestão do tráfego automóvel está cada vez mais presente no nosso quotidiano, abrangendo

áreas como vigilância e fiscalização em portagens, bem como radares de velocidade média,

que têm ganhado maior destaque recentemente em Portugal. Esses sistemas dependem de

algoritmos de re-identificação automóvel, que tradicionalmente se baseiam na deteção de

matrículas. No entanto, eles podem falhar facilmente quando as matrículas estão ilegíveis

ou incorretas. Neste cenário, métodos baseados na extração de características visuais dis-

tintivas de veículos ganham relevância, sendo essas características frequentemente chamadas

de impressão digital do veículo. Esta analogia com as impressões digitais humanas deve-se

à singularidade das características e à sua capacidade de distinguir veículos de forma única,

assim como as impressões digitais são únicas para cada indivíduo. Estas dividem-se em duas

categorias: características endógenas ao veículo canónico, como a cor e a forma, e caracterís-

ticas mais específicas, exógenas ao veículo canónico, como desgaste e danos específicos, selos

e adesivos. A combinação dessas características permite a identificação precisa do veículo,

idealmente em qualquer perspetiva que possa aparecer em imagens.

Esta dissertação tem como objetivo identificar elementos que compõem o segundo con-

junto de características únicas, o que pode ser comparado com a deteção de anomalias em

ambientes industriais. No entanto, aplicar os métodos deste dominio ao nosso problema pode

ser desafiador, devido às variações na posição do veículo, qualidade da câmera e ângulo de

visão nas imagens.

Para atingir esse objetivo, explorámos principalmente duas vertentes: técnicas de apren-

dizagem supervisionada e abordagens não supervisionadas. Ambas visam extrair as regiões

da imagem que representam características únicas do veículo-alvo, que não estão presentes

na sua forma canónica. Essa segmentação de pixels pode ser usada posteriormente para criar

idealmente uma impressão digital do veículo.

Como resultado desta dissertação, são apresentadas três soluções que satisfizeram os ob-

jetivos estabelecidos. A primeira solução é semi-supervisionada, combina uma reconstrução,
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não supervisionada, da imagem canónica do veículo com uma U-Net supervisionada para

segmentação. A segunda solução, também semi-supervisionada, incorpora uma componente

de "fraca supervisão", utilizando uma entrada multi-escala para classificação de píxeis no

mapa de segmentação final com a ajuda de um classificador. Este método inclui ainda uma

componente de reconstrução para regularizar a aprendizagem do modelo. A terceira solução

é uma abordagem multi-estágio totalmente não supervisionada, que incorpora um estágio de

reconstrução da imagem canônica do veiculo com um estágio de transferência de estilo de

maneira a aprimorar esta reconstrução da imagem canônica para ser usada no estágio final

de segmentação pixel a pixel.

As soluções propostas foram validadas em dois datasets (Veri-Wild [1] e VehicleID [2])

do estado da arte, e os resultados relatados confirmaram sua adequação ao problema em

questão.

Keywords: Deteção de anomalias, Re-identificação de veiculos, Impressões Digitais de

Veículos, Aprendizagem supervisionada e não supervisionada

iv



Abstract

The management of automobile traffic is becoming increasingly present in our daily lives,

encompassing areas such as surveillance and monitoring at toll booths, as well as average

speed cameras, which have gained greater prominence recently in Portugal. These systems

rely on automatic vehicle re-identification algorithms, which traditionally rely on license

plate detection. However, they can easily fail when license plates are illegible or incorrect.

In this scenario, methods based on extracting distinctive visual features of vehicles become

relevant, with these features commonly referred to as the vehicle fingerprint. This analogy

to human fingerprints is due to the uniqueness of these characteristics and their ability to

uniquely distinguish vehicles, much like fingerprints are unique to each individual. These

features can be divided into two categories: those inherent to the canonical vehicle, such as

color and shape, and more specific features external to the canonical vehicle, such as vehicle

damage, advertisement layouts, and stickers. The combination of these characteristics allows

for precise vehicle identification, ideally from any perspective that may appear in images.

This dissertation aims to detect elements that make up the second set of unique charac-

teristics, which can be compared to anomaly detection in industrial environments. However,

applying methods from this field to our problem can be challenging due to variations in

vehicle position, camera quality, and viewing angles in the images.

To achieve this goal, we will primarily explore two avenues: supervised learning tech-

niques and unsupervised approaches. Both aim to extract image regions representing unique

features of the target vehicle that are not present in its canonical form. This pixel segmen-

tation can be used later to ideally create a vehicle fingerprint.

As a result of this dissertation, three solutions that have successfully achieved the estab-

lished objectives are presented. The first solution is semi-supervised, combining an unsuper-

vised canonical vehicle image reconstruction with a supervised U-Net for segmentation. The

second solution, also semi-supervised, incorporates a weak supervised component, utilizing
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a multi-scale input for pixel classification with the aid of a classifier. It further includes a

reconstruction component to regulate the model’s learning. The third method is a fully unsu-

pervised multi-stage approach, which incorporates a tailored canonical image reconstruction

stage with a style transfer stage to enhance the canonical image reconstruction used for the

pixel-wise segmentation stage.

The proposed solutions were validated on two datasets (Veri-Wild [1] and VehicleID [2])

from the state-of-the-art, and the results reported confirmed their adequacy to the problem

at hand.

Keywords: Anomaly detection, Vehicle Re-identification, Vehicle Fingerprints, Super-

vised and Unsupervised learning
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"Aim for the moon. If you miss, you may hit a star."

— W. Clement Stone
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1 Introduction

1.1 Motivation

The subject matter of this dissertation was introduced to the computer vision labora-

tory by the company AtoBe, Mobility Technology, SA, a Portuguese tolling and mobility

technology provider. The intention was to develop a solution that could add another level

of vehicle recognition on top of the current license plate recognition systems for utilization

in toll enforcement situations. The intention behind this addition was to address scenarios

where license plate recognition systems lose effectiveness, such as when license plates are

exchanged between vehicles or when they are damaged and become illegible. This new layer

was designed to extract vehicle-related information in such situations, ensuring that incorrect

attributions and credits to individuals could be avoided. To accomplish this, the proposed

solution aimed to identify distinct attributes of a vehicle, referred to as vehicle fingerprints.

These attributes could then be employed in subsequent stages to recognize the same vehicle

across different cameras, including those at other toll booths, adding an additional level of

discriminant identifiers/descriptors for each target vehicle.

The process of attempting to "re-identify" a vehicle in different images or perspectives

can be linked to a vehicle "Re-identification" problem, where characteristics of the vehicle are

extracted to provide an identifier that distinguishes the target vehicle from others, including

those of the same model. However, in this approach, the "re-identification" process may

focus on vehicle elements that are not necessarily unique, which is not ideal in our case.

Obtaining a vehicle fingerprint can be a complex task as each image captured can have

a different perspective of the vehicle. This means that the method used to obtain these

fingerprints must be able to understand the underlying canonical structure of a vehicle, and

not just the distribution of pixels in the images.

In this work, we have categorized the characteristics that form the vehicle fingerprint

into two distinct subsets:
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1. Generic characteristics: These are shared by multiple vehicles, particularly those be-

longing to the same model. Examples include the car color, headlight model, and

chassis shape;

2. Unique characteristics: These are additional features that are not part of the standard

configuration of a typical vehicle. They are considered deviations from the canonical

form of the vehicle. These deviations, often referred to as "abnormalities", can en-

compass a wide range of variations in terms of color and shape. Unique characteristics

may include scratches, stickers, advertising layouts, tuning elements, and various other

modifications.

In our work, we assumed that vehicle fingerprints consist primarily of characteristics

belonging to the subset of unique characteristics. This approach, which involves visually

observing and identifying abnormal elements in the canonical form of the vehicle, draws

similarities to industry practices used to inspect products and detect abnormal characteristics

as indicators of defects. In this context of product inspection and anomaly detection (AL),

such deviations are also referred to as anomalies because they are not intended to be present

in the final product, because they result from manufacturing errors. However, within our

specific context, "vehicle anomalies" denote elements that have been either added to or

modified in the canonical form of the vehicle.

On a different note, it is worth highlighting that the data used in industry inspections dif-

fers significantly from the data available for vehicle fingerprint detection, as can be deducted

by observing the samples in figure 1.1.

2



Figure 1.1: Samples taken from available datasets for industry anomaly detection (MVTec

[4]) and vehicle Re-Identification (VehicleID [2] and VeriWild [1]).

The inspection industry typically deals with more standardized data, where the back-

ground remains consistent, and the target objects are presented in a finite number of poses.

In contrast, vehicle fingerprint detection involves real-world scenarios, resulting in a more

diverse and varied dataset. The data collected for vehicle fingerprint detection includes

vehicles in different environments, lighting conditions, camera angles, and various other fac-

tors that contribute to the complexity and challenges of the problem. Therefore, while some

foundational principles from industry inspection techniques can be applicable, it is necessary

to adapt and develop novel approaches specifically tailored to the unique characteristics and

complexities of vehicle fingerprint detection in real-world scenarios.

As mentioned earlier in this section, we have identified two research fields that share

similarities with the issue at hand. However, to the best of our knowledge, there is no

dedicated research field addressing the specific problem we are dealing with. This necessitates
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the adoption of models from other fields, which may or may not offer viable solutions to our

problem.

1.2 Goals and Contributions

The primary objective of this work is to identify and detect the distinctive characteristics

of a vehicle, which can be utilized to create a vehicle fingerprint. Ideally, this fingerprint will

enable accurate identification of the target vehicle.

In the course of this study, various methods, primarily derived from the field of industry

inspection, were employed to address the problem at hand. The exploration began with

the utilization of supervised learning techniques and gradually progressed towards an unsu-

pervised learning approach. At each stage, the architectures were evaluated and analyzed,

comparing them to one another in order to determine the most effective method for solving

our problem.

As a result of this dissertation we achieved three solutions that try to solve the problem

at hand, specifically, two semi-supervised and one unsupervised solution.

The first semi-supervised solution follows a two-stage architecture. In the first stage,

which is unsupervised, a residual image is created by taking the difference between the

original image and a reconstruction generated by an AutoEncoder (AE). In the second

stage, this residual image is concatenated with the original image and input into a U-Net to

produce the segmentation map.

The second semi-supervised solution adopts a patch-based architecture with two branches.

An encoder estimates the mean and variance of an image patch, and these parameters are

used in both branches. In one branch, these parameters, along with multi-level feature maps

from the encoder, are fed into a classifier to make inferences about the specific patch. In

the other branch, the mean and variance define a distribution from which a latent vector is

sampled and then decoded to generate the original image patch. This latter branch serves

as a regularization mechanism for the encoder’s learning.

The unsupervised solution is based on a three-stage architecture. In the first stage,

a GAN-like architecture is employed to reconstruct the original image without anomalies,

albeit with reduced image quality. In the second stage, a style transfer network is applied

to the reconstruction from the first stage in an attempt to introduce more details, resulting
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in a non-anomalous image with a higher level of detail than the fisrst stage reconstruction.

The final stage involves comparing the results obtained from the previous stages to calculate

the segmentation map. To summarize, the contributions of this work encompass:

• Adaptation and development of various architectures to address the specific problem

at hand. This involves modifying existing architectures or creating new ones tailored

to the task of vehicle fingerprint detection;

• Development of three fully functional novel solutions that can identify and extract

non-canonical elements from vehicles.

• Reporting and evaluation of the performance of existing architectures on real-world

complex data. This includes analyzing how these architectures behave when applied

to more challenging and diverse datasets, providing insights into their effectiveness and

limitations;

• Evaluation of the semantic segmentation map generated by the employed methods.

This involves assessing the quality and accuracy of the segmentation maps produced

by the used techniques, contributing to the understanding of their performance in

capturing and delineating vehicle characteristics.

The mentioned contributions collectively enhance the understanding and advancement

of the field of anomaly detection and vehicle fingerprint extraction. Furthermore, these

methods can be applied in other fields, such as safety and risk assessment, where accurate

anomaly detection and identification play a crucial role.

1.3 Document Structure

The document is organized into five distinct chapters, which include:

• Related Works: Comprehensive review of relevant state-of-the-art works in the fields

of image-based anomaly detection, Vehicle Re-Identification (Vehicle Re-Id), and se-

mantic segmentation algorithms. Discussion on the differences of the Vehicle Re-

Identification and anomaly detection strategies. These works serve as baseline ref-

erences for this dissertation;
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• Background: Description of some fundamental methodologies employed as baselines

for certain methods presented in the Related Works section.

• Methodology: Description of the methodologies used in the study. Various ap-

proaches, ranging from supervised to unsupervised learning algorithms, were employed.

The focus of this chapter is on transitioning from a supervised baseline architecture to

an unsupervised one.

• Discussion and Results: Review and discussion of the achieved results, as well as

comments on the trade-offs associated with the proposed methods. Additionally, it

includes a comparative analysis of metrics across all mentioned methods.

• Conclusion: Provides a summary of the overall work, highlighting the potential con-

tributions of the developed methods. It also offers proposals to enhance future research

in the field.
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2 Related Works

The central objective of this dissertation is to identify and detect distinctive characteristics

of vehicles that differ from the vehicle in its canonical form. In other words, this work aims

to pinpoint "anomalous" elements that deviate from the standard configuration of a vehicle.

To address this objective, extensive research was conducted, examining multiple baselines

and techniques prior to the implementation stage. However, as mentioned in Section 1.1, to

the best of our knowledge, there is no research field dedicated to solving our specific problem.

Therefore, in this chapter, we will conduct an in-depth review of the current literature and

the latest advancements in fields that share characteristics with our problem, namely, the

fields of anomaly detection and vehicle re-identification.

2.1 Vehicle Re-identification

Vehicle re-identification (vehicle re-ID) is a specialized field within computer vision that

addresses the challenging task of recognizing and tracking vehicles across different cameras

and locations. Vehicle re-identification (re-ID) seeks to develop robust and precise methods

capable of matching vehicles across various camera views and perspectives, allowing for

reliable tracking and monitoring.

As outlined in the work of Hongbo Wang et al. [5], the landscape of vehicle re-identification

methods can be categorized into distinct groups, based on their underlying methodologies:

• Methods based on traditional machine learning: These techniques focus on

utilizing traditional machine learning algorithms to perform vehicle re-identification.

The main approach within this category is to extract and compare local features from

vehicles, such as color histograms, textures, or shape descriptors. For these descrip-

tors, methods like the scale-invariant feature transform [6] (SIFT), the Histogram of

Oriented Gradient [7] (HOG), and the Local Binary Pattern [8] (LBP) are commonly
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used. However, it is important to note that these extracted features may not always

exhibit strong robustness against variations in illumination and viewpoint. As a result,

many researchers have shifted their focus to newer realms of the field, particularly those

that harness deep learning techniques. A representative example of work adopting this

strategy can be found in [9];

• Methods based on local features: In this category, the focus is on employing

Convolutional Neural Networks (CNNs) to leverage local features from vehicles for the

purpose of re-identification. Local features are the primary focus in modern algorithms,

as early researchers concentrated on global features, utilizing the entire image to derive

a feature vector for image retrieval, which resulted in accuracy bottlenecks, especially

when dealing with vehicle images that exhibit high similarity. Some works relevant to

this subject can be consulted in [10] and [11];

• Methods based on representation learning: This category is characterized by

approaches that aim to learn a more meaningful representation of vehicle data through

deep neural networks. These representations consist of multiple layers of non-linear

transformations applied to the input data. This process aims to generate abstract and

meaningful representations that can be effectively utilized by subsequent models to

make accurate inferences. By training these networks on large datasets, they can pro-

duce a valid representation of the data, enabling other models, like classifiers or other

predictors to use this useful information. Some works that follow this methodology

can be verified in [12], [13] and [14];

• Methods based on metric learning: Within this category, the emphasis is on

learning suitable distance metrics for gauging the similarity between pairs of vehicle

images. These methods train networks to ensure that images depicting the same vehicle

occupy closer positions in the learned embedding space than images of different vehicles.

Such techniques strive to enhance the precision of re-identification. Triplet loss and

contrastive loss are frequently employed methods in metric learning-based approaches,

guiding the learning process. Some examples of studies that use contrastive losses

(siamese networks) and triplet losses can be consulted in [15], [16], [17] and [18];

• Methods based on unsupervised learning: Unsupervised learning methods en-

deavor to derive representations of vehicle images without reliance on labeled data.

These methods often involve clustering or generative techniques to group similar ve-
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hicles together or generate realistic and diverse images. Variational AutoEncoders

(VAE) and generative adversarial networks (GANs) exemplify the methods utilized for

unsupervised learning in vehicle re-identification. Some examples can be found in [19]

and [20];

• Methods based on attention mechanism: This category spotlights methods that

integrate attention mechanisms, enabling the network to emphasize pertinent sections

of vehicle images for re-identification. These techniques identify discriminative regions

within images and assign varying degrees of significance to different portions during

the matching process. This approach enhances the model’s ability to handle variations

in viewpoint, pose, and occlusions. This category is divided into two branches: one

involving hard attention, which focuses on a single specific part of the input data, and

the other utilizing soft attention, which assigns different weights to all parts of the

input, enabling a more distributed focus. Some relevant approaches in this field can

be consulted in [21], [22] and [23];

• Other re-id methods: This category encompasses various other methods that do not

fit explicitly into the above categories. These might include hybrid approaches that

combine multiple techniques, domain adaptation methods that adapt models trained

on one dataset to another, and ensemble methods that combine the outputs of multiple

models to improve overall performance. An illustrative example is the work by Zhou et

al. [24], which capitalized on the strengths of CNNs and LSTMs to master transforma-

tions across different vehicle viewpoints. Another case is the study by Khorramshahi

et al. [25], who used a pipeline architecture that included a Variational AutoEncoder,

a feature extractor and a fully connected layer. This model was trained using a combi-

nation of triplet loss on the extracted features and cross-entropy loss on the outcomes

generated by the fully connected layer (classifier).

Through our research, we established that Re-Identification methods encompass diverse

approaches, frequently employing activation maps to visually highlight the regions where

the model is concentrating its attention. These activation maps enable the visualization of

the locations from which essential vehicle characteristics for re-identification are extracted.

Illustrations of Re-Identification heat maps are depicted in Figure 2.1. These heat maps

are generated using Gradient-weighted Class Activation Mapping (Grad-CAM), explained

in Chapter 3, and are derived from the last convolutional layer of a pre-trained Resnet-50
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model used as a backbone (example in [26]) to perform a "part-level feature extraction",

with the learning process of deep networks and the aggregation of part-level discriminative

features.

Figure 2.1: Illustrative heat maps obtained from a Re-Identification Network as shown in

[26].

As depicted in Figure 2.1, the activation maps frequently emphasize characteristics that

lack distinctiveness. In other words, these activation maps often contain elements that are

common to the canonical form of the vehicle. This renders them less suitable for our specific

problem, as we aim solely to extract unique characteristics from the target vehicle. Due to

this aspect of re-id models, we explored alternative approaches within the domain of anomaly

detection.

2.2 Anomaly localization vs Anomaly segmentation

To initiate the exploration of techniques aimed at addressing our research problem, it is

essential to analyse the multiple types of outputs that are available from anomaly detection

models. Defining the specific types of result we aim to obtain sets a clear direction and pro-

vides a framework for evaluating and selecting appropriate methodologies. After conducting

a preliminary research, two promising techniques that are particularly relevant to the prob-

lem were identified: object detection/localization and segmentation. These techniques are

briefly described below:

• Anomaly Localization (AL): Anomaly localization focuses on precisely determining

the spatial location of specific anomalies within an image. It aims to identify the

bounding box or precise coordinates of the target anomaly of interest, enabling accurate

localization and subsequent analysis;

• Anomaly Segmentation (AS): Anomaly segmentation is a technique that involves

partitioning an image into meaningful regions or segments based on certain criteria.
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It aims to assign a label to each pixel, categorizing them into distinct regions. This

approach allows for fine-grained analysis and identification of specific areas within a

given image.

Figure 2.2: Examples of anomaly localization/detection and segmentation.

After meticulous examination of the problem and further research, it has become clear

that the issue at hand is closely related to the domain of anomaly segmentation. This

association stems from the fact that segmentation techniques can generate more precise

masks that possess the adaptability to conform to various shapes, ensuring precise coverage of

the target region. This enhanced accuracy in mask creation contributes to the development of

a more refined vehicle fingerprint. Consequently, harnessing the capabilities of segmentation

methods holds the potential to significantly augment the accuracy and efficacy of identifying

and characterizing distinctive vehicle attributes.

Given our objective to classify individual pixels within an image as either anomalous

or non-anomalous, opting for semantic segmentation proves to be the more fitting strategy

for our present challenge. This decision notably simplifies the task, reducing its complex-

ity to a binary classification problem encompassing just two categories: anomalous and

non-anomalous. Moreover, this technique is extensively employed in industrial product in-

spection, aligning well with our intended goals.

2.3 Anomaly detection

Anomaly detection, as the term implies, entails the identification of patterns or instances

that notably deviate from the expected or normal behavior within a given dataset. As elu-
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cidated in 2.2, our primary objective extends beyond mere detection to encompass the seg-

mentation of the "anomalous" regions. Throughout this chapter, when we mention anomaly

detection, we are also alluding to the segmentation of the "anomalous" regions.

As mentioned in Chapter 1, the methods employed in anomaly segmentation can be

broadly categorized into two main branches of machine learning: supervised and unsuper-

vised learning.

2.3.1 Supervised Learning

Supervised learning is a fundamental and widely used branch of machine learning that

plays a crucial role in solving a wide range of real-world problems. It is a learning paradigm

in which an algorithm learns from labeled training data to make predictions or infer rela-

tionships between input features and output labels. By leveraging the power of labeled data,

supervised learning enables the development of models that can accurately generalize and

make predictions on unseen or future data instances.

Methods based on supervised learning are widely employed in diverse domains, showcas-

ing their broad applicability in today’s world. These methods find applications in various

fields, including finance, healthcare, image recognition, natural language processing, and

recommendation systems, among others. The versatility of supervised learning allows for ef-

fective solutions to a wide range of tasks, such as regression for predicting continuous values

and classification for assigning discrete labels or categories.

However, it is important to note that the successful implementation of supervised learning

techniques heavily relies on extensive human annotation or classification of the data used as

labels. This annotation process involves human experts who meticulously assign the correct

labels to the training data. The accuracy and quality of these labels directly impact the

performance and generalization ability of the supervised learning models.

In the domain of anomaly detection for industry inspection, there exists a wealth of

datasets that are specifically curated for this purpose. These datasets are characterized by

extensive and high-quality annotations, often comprising training data that is free from any

anomalies. These curated datasets serve as valuable resources for training anomaly detection

models, allowing them to learn the patterns and characteristics of normal, non-anomalous

samples.
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However, tackling the problem at hand can be more challenging compared to industry

inspection scenarios. In this case, the availability of suitable public datasets specifically

tailored for vehicle anomaly detection is limited. It is not easy to find publicly accessible

datasets that not only contain vehicles but also have the data organized in a manner con-

ducive to the detection of anomalies. Moreover, the presence of annotated anomalies within

these datasets is particularly scarce.

In the anomaly detection field researchers are increasingly pursuing unsupervised ap-

proaches, as these models have the capability to detect previously unseen anomalies. Achiev-

ing such identification is more challenging for a supervised model unless it has been trained

on similar samples. In our pursuit of effective supervised approaches, we have diverted our

research efforts towards a closely related field, specifically the domain of vehicle damage

detection and segmentation.

Zhang et al. introduced an interesting approach in [27], using a Mask Region-Based

Convolutional Neural Network (Mask R-CNN). In this method, they employ a pre-trained

ResNet50 model followed by a Feature Pyramid Network (FPN) to extract features and

generate corresponding feature maps. These feature maps are used to generate candidate

regions (regions of interest, or ROI) through a Region Proposal Network (RPN). A softmax

classifier is then used for binary classification of foreground and background. Next, the

feature map and the last remaining ROI are processed through the RoIAlign layer to create

fixed-size feature maps for each ROI. The workflow then splits into two branches, one for

object classification and frame regression through a fully connected layer, and the other for

pixel-level segmentation using a full convolution network (FCN).

Another method introduced by Parhizkar et al. in [28] involves the use of two simple

patch-based CNNs. The first CNN is responsible for detecting different portions of the car,

while the second CNN focuses on identifying damages in the patches classified as part of the

car’s body. In this approach, each CNN extracts feature maps from three different sources:

the original image, the image resulting from applying the Local Binary Pattern operation to

the original image, and the image derived from the Local Directional Number (LDN) pattern

operation. These feature maps are then concatenated in a channel-wise manner within each

CNN and subsequently fed into a fully connected layer to make the final inference.

The same authors introduced another similar method in [29]. In this approach, a patch-

based convergent two-branch network is employed for damage segmentation. Two patches of

different sizes, both centered on the same pixel, are extracted. Each of these patches is then
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processed through a separate branch. Subsequently, the two final feature maps obtained

from these branches are concatenated in a channel-wise fashion. This concatenated feature

map is then passed through a fully connected layer to make an inference about the pixel of

original image that correspond to the center pixel of the input patches.

In the following sections, we will discuss certain supervised and semi-supervised strategies

that we found particularly interesting. While some are not directly related to "anomaly

detection," they can serve as a valuable baseline for implementing or enhancing our methods.

Anomaly segmentation using classifier-based approaches

Convolutional Neural Networks (CNNs) have revolutionized the field of computer vision

by providing powerful tools for image analysis and pattern recognition. CNNs excel at auto-

matically learning and extracting relevant features from input images. These networks serve

as adaptable feature extractors and classifiers, capable of generating meaningful descrip-

tors from images or image components. These descriptors can be used to make inferences

regarding the presence of anomalies in objects or images.

A lot of these approaches try to classify each image or image patch into two different

classes, one representing the normal and other representing the abnormal. In the process of

predicting the class of an image, a precise way to locate the anomalous localization through a

segmentation mask is needed. To solve this, integrating Grad-CAM, explained in Section 3,

with classifiers offers a viable solution. This integration not only provides class information

but also enables for a detailed spatial localization of the regions that affect the model’s

inference.

A recent example of a technique utilizing Grad-CAM for anomaly detection has been

introduced by Jain et al. in [30], depicted in Figure 2.3. This approach aims to detect

abnormalities in gastrointestinal tracts using a Wireless capsule endoscopy (WCE). The

model consists of a CNN classifier equipped with an attention mechanism, which determines

whether an image is normal or possesses one of three categories of abnormal regions. If the

image is categorized as having one of these three abnormalities, the results from a SegNet [31]

and a variant of GradCAM (Grad-CAM++) are combined through an intersection operation

to obtain the final mask.
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Figure 2.3: Diagram of the architecture proposed by Jain et al. in [30].

It is worth mentioning that while the SegNet network also needs to be trained with

respective segmentation labels to the problem at hand, the Grad-CAM strategy does not

require training. It only requires a trained model to extract activations when provided with

a specific image.

Although the Grad-CAM techique is widely used, other researchers developed alternative

approaches to obtaining the segmentation map of an image involves dividing the image into

multiple small patches and making predictions for each patch. The predictions for the

individual patches are then attributed to the corresponding areas/pixels in the segmentation

map, resulting in a comprehensive representation of the segmented regions within the image.

This patch-based segmentation approach is also widely applied in anomaly detection tasks,

where it allows for the identification of abnormal elements within the image by learning

what a normal patch descriptor is like. This approach enables the system to flag patches

that deviate significantly from the norm.

An example of this method was presented by Roy et al. in [32], depicted in Figure 2.4, for

the automatic classification of histopathological breast images. Their classification system

comprises two different modes: "one patch in one decision" (OPOD) and "all patches in one

decision" (APOD). In the OPOD mode, the class of each patch is predicted, and if all the

extracted patches have the same class label, that label is the final prediction for the entire

image. In the APOD mode, the class label of each extracted patch is determined as in the

OPOD mode, and a majority voting scheme is used to make the final decision about the

class label of the image.
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Figure 2.4: Patch-wise classification diagram proposed by Roy et al. in [32]. The left

diagram illustrates the OPOD method and its training flow: (i.a) Input Images, (i.b) Patch

extraction and augmentation of input images, (i.c) Annotated class labels of the patches,

(i.d) Model training, (i.e) Test image, (i.f) Patch extracted from the input image, (i.g) Patch

label prediction by the trained patch-based classifier. The right diagram depicts: (ii.a) Patch

labels of an image predicted using the OPOD technique, (ii.b) Image label prediction based

on patch class majority voting using the APOD method.

Anomaly Segmentation using an improved U-Net

Nowadays, U-shaped Networks (U-Net) stands out as one of the most frequently used

supervised methods for segmentation tasks due to its simplicity, but there is still room

for further optimization. Researchers have put efforts into improving the U-Net model by

making modifications to its middle layers or by enriching the model with additional input

information. An example of the latter approach can be seen in [33], depicted in Figure 2.5,

where the U-Net receives a unique input, formed by the channel-wise concatenation of the

original image and a residual image. This residual image is obtained by taking the difference

between the original image and a reconstruction obtained from an AutoEncoder. This AE

is trained separately in a unsupervised way, this is because the inputs also serve as labels,

making the objective of the AE to reconstruct the original image.
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Figure 2.5: Diagram of the pipeline employed for the U-net model in [33].

On another note, this method can be considered semi-supervised in nature because its

pipeline is divided into two components: one unsupervised, represented by the AE, and the

other supervised, represented by the U-Net. However, it is worth noting that extensive labels

are still required, similar to what would be needed for training a conventional U-Net model.

Multi-Modal Anomaly Detection

This semi-supervised method was developed as a solution for the field of mobile robots, in

[34]. The architecture, depicted in Figure 2.6, aims to classify each individual frame into four

distinct situations or classes: normal, row collision, untraversable obstacle, and traversable

obstacle. To achieve this, the model employs a classifier in the form of a fully connected

network that receives a combination of multi-modal inputs, including a high-dimensional

input like LiDAR and a low-dimensional input modality such as wheel encoders.

During training, the model consists of two branches: the normal classifier and an addi-

tional branch with a Decoder. The Decoder is utilized to regularize the final model, enabling

it to learn more meaningful features. This regularization process enhances the model’s ability

to capture relevant patterns and improve its overall performance.
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Figure 2.6: Supervised VAE architecture proposed by Tianchen Ji et al. in [34].

While originally designed for robotics, this model holds potential utility in comparing

metrics across all methods, especially those that are supervised. Its versatility allows for

a broader assessment of performance, enabling meaningful comparisons across different ap-

proaches and aiding in the evaluation of the supervised techniques in various domains.

On a different note, this method is categorized as semi-supervised in nature, because

of the fact that one branch is supervised (comprising of a classifier), while the other is

unsupervised (comprising of a decoder). It is important to note that despite this semi-

supervised framework, extensive labels are still essential for training the classifier effectively.

2.3.2 Unsupervised Approaches

Unsupervised learning is a key branch of machine learning, dealing with unlabeled data.

Unlike supervised learning that relies on labeled examples for predictions, unsupervised learn-

ing algorithms aim to discover patterns, relationships, and structures within data without

explicit guidance (does not use labels). Through techniques such as clustering, dimensional-

ity reduction, and generative modeling, unsupervised learning empowers the model to extract

meaningful representations from complex and unannotated datasets. This approach finds

applications in various fields, including anomaly detection, data visualization, and natural

language processing, offering valuable insights and opportunities for knowledge discovery

from raw data.

In the field of anomaly detection, it is possible to distinguish the following five main

branches:
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• Feature-embedding based Approaches: These methods rely on the comparison

of deep embedding features extracted from target and normal images. Typically, these

models use networks that are pre-trained on large-scale datasets like ImageNet [35] or

employ self-supervised learning methods. This approach can be categorized into two

main types: "Knowledge Distillation-based Methods" and "Deep Feature Modeling-

based Methods."

1. Knowledge Distillation-based Methods : In this category, a popular approach

is the student-teacher framework, which aims to improve the embedding of deep

features. For instance, Bergmann et al. introduced a method in [36] where a

teacher network, trained on a vast dataset of natural images, educates multiple

students until they can replicate the descriptor output of the teacher. During

inference, the teacher and student responses are analyzed. If an unseen data point

is processed by both the teacher and the student, their responses will diverge, and

the student’s response will exhibit a greater variance than usual.

2. Deep Feature Modeling-based Methods : These methods first construct a

feature space for input images and then perform measurements or comparisons of

these features using feature modeling. These computations can involve techniques

like clustering, probability distribution fitting, or learning models. A noteworthy

example of this approach was presented by Cohen et al. in [37], where they

introduced an alignment-based method for detecting and segmenting anomalies

within images. Their method constructs a feature pyramid using a pre-trained

Wide-ResNet50 model and utilizes these feature maps to identify the K nearest

anomaly-free images.

• Reconstruction-based Approaches: These approaches employ AutoEncoders or

generative models to reconstruct input data. During training, these models learn

to accurately reconstruct normal data instances, with anomalies resulting in poorer

reconstructions. Researchers have continually refined this type of architectures since

its initial use in anomaly segmentation in medical images [38] and its application in

industrial anomaly detection with the first convolutional AutoEncoder [39]. These

refinements include:

1. Improving the network structure : Innovations such as the introduction of

skip connections have enhanced the architecture. One notable example is Skip-

19



GANomaly [40], which employs an encoder-decoder convolutional neural network

with skip connections to comprehensively capture the multi-scale distribution

of normal data in high-dimensional image space. Across evaluations on various

datasets from different domains and complexities, skip connections have provided

more stable training and achieved numerically superior results compared to the

vanilla AutoEncoder.

2. Constraining the representation of latent space : Several strategies have

been devised to control the encoding of latent space, including:

(a) Memory banks implement a form of dictionary learning to replace the origi-

nal latent space representation. For instance, Gong et al. [41] introduced a

model that employs memory banks for anomaly detection. The memory bank

module in this model acts as a matrix where each element resembles a word

in dictionary learning, encoding defect-free sample features. During training,

only a limited number of "words" are utilized for reconstruction, aligning each

matrix element with specific rows. Consequently, normal samples are indexed

to the most analogous elements, resulting in accurate reconstruction. Mean-

while, the difference between abnormal samples and their reconstructions is

amplified, yielding a higher anomaly score.

(b) Clustering is another technique to enhance model discrimination. Yang et al.

[42] proposed a feature clustering module that boosts the discriminability of

encoded features in the latent space, consequently improving the reconstruc-

tion accuracy of texture background images.

(c) Modeling features of the latent space is an effective way to constrain repre-

sentations. In [43], a discrete latent space probability model was estimated

using a deep auto-regressive model named PixelSail. This model identifies

latent input space regions deviating from the normal distribution during the

detection stage. Specifically, the deviation code is resampled from the normal

distribution and decoded to produce a restored image closest to the anoma-

lous input. The anomaly region is then determined by comparing the restored

image with the anomaly image.

(d) New Loss Function: Bergmann et al. [44] pioneered the utilization of the

structural similarity (SSIM) metric in image reconstruction. Unlike pixel-wise

comparisons, SSIM loss takes into account a region’s brightness, contrast, and
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structural details. When compared to L2 loss, SSIM loss notably enhances

the performance of anomaly localization in textured datasets. In [45], a novel

multi-scale gradient magnitude similarity (MSGMS) loss was introduced, fo-

cusing on the structural distinctions in reconstruction. The MSGMS loss is

formulated by computing the gradient images of both the original and recon-

structed images. Nakanishi et al. [46] developed a novel loss function called

the weighted frequency domain (WFD) loss, which shifts the computation of

reconstruction loss from the image domain to the frequency domain. Other

losses also have been gaining traction, namely the use of pre-trained networks

to compute the perceptual loss. These losses involve comparing the feature

maps extracted from the network when provided with both the input image

and the reconstructed image. These feature maps may be derived from vari-

ous layers of the pre-trained loss network. An example of this can be found

in the research conducted by Pihlgren et al. in [47], where an "AlexNet"

is employed to calculate the loss or error between the original image and a

reconstructed image generated by a Variational AutoEncoder.

• Generative-based Approaches: These approaches emerged as solutions to address

the limitations of AutoEncoder-based methods, especially their subpar reconstruction

performance. Generative models aim to capture the data distribution based on non-

anomalous samples from the training dataset and subsequently employ this learned

model and distribution to generate or model new data.

Since generative models are designed to generate normal samples, any disparity be-

tween the generated or reconstructed samples and the input data signifies the abnormal

region. Techniques falling under this category can be further categorized into:

1. Variational AutoEncoder (VAE): Introduces a prior distribution for normal

samples in the latent space, which is typically a multidimensional standard normal

distribution. This transformation signifies that the encoder’s output no longer

solely represents the latent space but rather an estimated distribution. Hence,

this approach falls under the category of modeling latent space features within

AutoEncoder-based methods. This model introduces an additional loss function

to the standard AutoEncoder losses, evaluating the dissimilarity between the esti-

mated distribution and the prior distribution, often using Kullback-Leibler (KL)

divergence loss. The first implementation of this method in industrial anomaly
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detection was pioneered by Matsubara et al. in [48]. Following this initial imple-

mentation, researchers explored various mechanisms to achieve more fine-grained

results. These mechanisms include:

(a) Attention-based : Liu et al. [49] introduced a novel approach to create VAE

visual attention utilizing gradient-based attention computation. The proce-

dure for generating the attention map bears similarities to grad-CAM [50].

More specifically, it involves deriving weight coefficients by computing gradi-

ents of the latent space variable in relation to the final layer’s feature maps

from the encoder. The resultant attention map is subsequently generated by

applying these weights to the feature map of the last encoder layer.

(b) Gradient-based methods : Dehaene et al. [51] introduced the gradient descent-

based VAE. As evidenced by the reconstructed images in [51], the gradient

descent-based approach produces reconstructions of higher quality compared

to the vanilla VAE.

2. Vanilla GAN: Schlegl et al. [52] were the pioneers in applying GANs to localize

anomalies. In this approach, the generative network G receives randomly sampled

data points from the latent space as input, and its objective is to generate outputs

that closely resemble the real samples in the training set. On the other hand, the

discriminative network D is tasked with distinguishing between the outputs of the

generative network and real samples, aiming to maximize this differentiation. The

overall loss function comprises two components: the reconstruction loss for G and

the feature difference loss for D. The disparity between the generative network’s

output and the input image defines the anomalous regions.

3. GAN combined with AE: (GAN): In the case of the vanilla GAN, a single image

is used as input during the inference stage, necessitating frequent iterations to find

the optimal latent space vector for the desired output. To address this limitation,

several joint AE-structured GAN methods have been introduced. These methods

aim to improve the GAN’s efficiency and effectiveness by combining it with an

AutoEncoder. Here are some approaches within this category:

(a) Improving the input of generator G : Instead of using randomly sampled data

from the latent space as input, the generator G takes a real defect-free image

as input. Consequently, G is transformed into a complete encoding-decoding

structure. This modification is akin to employing a discriminator (DSC) D
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in the image reconstruction process to distinguish between real defect-free

samples and reconstructed samples. Balzategui et al. [53] employed this

GAN-based AE approach.

(b) Improving the generator G : Akcay et al. [54] proposed the GANomaly net-

work, which includes an additional encoder following the AutoEncoder, form-

ing an "encode-decode-encode" structure. The discrepancy between the out-

put of the second encoder and that of the first encoder is used to evaluate

whether the input is anomalous.

(c) Improving the discriminator D : This enhancement is typically achieved by

employing multiple discriminators to bolster the GAN network’s discrimi-

native capacity. Zhang et al. [55] introduced DefGan, which designs an

additional branch for the reconstructed image through a latent space pitting

operation and weight sharing. This branch contributes to a new discrimina-

tive loss, alongside the original input image.

4. Style transfer networks : These are learning models that merge the content of

one input image with the style of another image domain to generate new data

samples. Style information can be acquired through training datasets or directly

extracted from other images, with the latter method typically used for multi-style

networks like Adaptive Instance Normalization (AdaIN) [56] based networks. An

example of the first type of style transfer is CycleGAN, which utilizes multiple

GANs to establish mappings between different feature domains, making imple-

mentation more accessible. The CycleGAN framework comprises four CNNs,

including two generators and two discriminators. While the generators aim to

learn the mapping between respective domains, the discriminators distinguish

between real and synthesized images within a single image domain. Typically,

the CycleGAN-based approach involves two different domains, and some works

employing this method for anomaly detection can be found in [57] and [58].

5. Normalizing Flow (NF): Unlike previously introduced generative models that

struggle to estimate accurate data likelihoods, normalizing flows [59] are neural

networks specialized in learning transformations between data distributions and

well-defined densities [60]. In the forward pass, data is projected into a latent

space to precisely calculate likelihoods for the data, considering the predefined

latent distribution. Conversely, data sampled from the predefined distribution
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can be mapped back into the original space, enabling data generation. For the

anomaly segmentation task, the anomaly region is determined by measuring the

distance between the feature of the test image and the estimated distribution

of defect-free images. Additional examples include the CFLOW-AD model by

Gudovskiy et al. in [61], which is based on conditional normalizing flow, the CS-

Flow (cross-scale normalizing flow) model proposed by Rudolph et al. in [62],

and the most recent Fastflow model introduced by Yu et al. in [63]. The Fastflow

model shares a similar detection principle with previous works but incorporates

a 2D flow design based on "3x3" and "1x1" convolutions.

• Self-Supervised Learning-based Approaches: These models employ a method

of acquiring visual features from unlabeled images and subsequently applying these

features to the pertinent visual task. This approach in anomaly detection can be

categorized into two main branches:

1. Proxy tasks : These methods place a relative emphasis on the advancement of

the pretext task. The pretext task can take various forms, but its essence lies in

predicting or recovering concealed regions or attributes within an input image.

Recently, this approach has branched into the following methods:

(a) Image inpainting : Self-supervision through image inpainting follows a similar

principle as previous methods focused on image reconstruction or genera-

tion, albeit with a distinct name. It empowers the network model to mend

flawed synthetic images, enabling it to reconstruct normal sample areas and

fix abnormal regions. This approach has the capacity to restore analogous

abnormal regions during the testing phase. Initially, defective images were

generated by introducing random noise; for example, Nakazawa et al. [64]

utilized synthesized noisy images for anomaly detection.

(b) Relative position prediction: In contrast to earlier models that primarily fo-

cus on the mapping between input and output, an alternative method eval-

uates the spatial information of neighboring patches. A notable example

is PatchSVDD [65], which incorporates a self-supervised technique for fea-

ture extraction. It initially divides the image into 3×3 patch regions and

arranges the eight blocks surrounding the central image block sequentially.

Subsequently, the model’s encoder is trained to extract informative features,
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enabling the subsequent classifier to accurately predict the relative positions

of the patches.

(c) Attribute restoration: This approach is distinguished by its utilization of hid-

den attributes within the image rather than masked areas. These attributes

typically encompass factors such as color and orientation. Fei et al. [66] in-

troduced an attribute restoration network that transforms the conventional

reconstruction task into a restoration task. It initially modifies specific at-

tributes of the input (e.g., removing color, altering orientation, etc.) prior to

subjecting the image to an AutoEncoder for reconstruction.

2. Contrastive learning : Primarily focused on network design, this approach en-

hances the network by learning shared features among similar instances while dis-

cerning distinctions among dissimilar instances. Haan et al. [67] directly applied

contrastive predictive coding (CPC) [68] for the purpose of anomaly detection

and segmentation in images. It divides the image into patches, treating each row

of patches as distinct time steps. During the testing phase, the test image block

is compared to a randomly selected block from an anomaly-free image to compute

the contrast loss function, specifically InfoNCE (NCE stand for Noise-Contrastive

Estimation). The current image block is classified as an abnormal region when it

exceeds a certain threshold. Further works in this domain include an approach

presented by Zheng et al. in [69], which adapts the existing technique called

SimSiam (Simple Siamese representation) [70] for anomaly detection purposes.

Another model, which is a variant of the SimSiam network, was introduced by

Chen et al. in [71] under the name SimCLR (Simple framework for Contrastive

Learning of visual Representations). Both of these architectures aim to harness

the contrastive properties mentioned earlier.

• One-Class Classification-based Approaches: These techniques identify anoma-

lous regions by partitioning the image into patches and categorizing them as either

abnormal or normal based on their divergence from typical patterns observed in the

normal class during training. This category often employs methods such as One-class

Support Vector Machine (OCSVM) [72] and Deep Support Vector Data Description

(Deep SVDD) [73].

All of the mentioned methods were compared to assess their respective advantages and

disadvantages. A summarized version of this information can be found in Table 2.1.
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Table 2.1: Compiled advantages and disavantages of the referred methods, collected from

[74].

Type Taxonomy Methods Strengths Weaknesses

Feature

embedding-

based

Knowledge dis-

tillation

- The problem is transformed

into a direct feature comparison

among various networks.

Easy to be disturbed by the

choice of which layer to use for

knowledge distillation.

Knowledge dis-

tillation

- Abundant semantic information

is incorporated via the pre-

trained model.

Memory demands are relatively

substantial, and the design of

feature modeling necessitates

meticulous attention, signifi-

cantly affecting localization out-

comes.

Reconstruction-

based

Improvement

of network

structure

Skip layers Use of a skip layer to improve

reconstruction quality.

Reconstruction often

encounters challenges in

datasets with complex textures

or objects.

Feature pyra-

mid

Well-suited for detecting anoma-

lies at multiple scales.

Constraining

the

representation

of latent space

Memory banks Reduces the strong generaliza-

tion capacity of the AutoEn-

coder (AE) network.

Determining the optimal

constraint parameters can be

challenging, and it is

constrained by the impact of

pixel-level comparisons.

Clustering The objective is to group effec-

tive information for latent rep-

resentation.

Modeling fea-

tures

Constrains the distribution of

the latent space to a specific dis-

tribution.

New loss

function

SSIM [44] Incorporates luminance, con-

trast, and structural information

into the loss function.

Localization effect has not been

significantly improved

compared with the original loss.

MSGMS [45] Incorporating image gradient in-

formation into the loss function.

WFD [46] Transforming the image to the

frequency domain for loss calcu-

lation.

Perceptual

loss based on

pre-trained

networks [47]

Introduces additional error in-

formation at each network layer.

The Localization effect is not as

effective when compared to the

original loss.

Generative

model-based

VAE Attention-

based

The anomaly map is generated

through derivation, not recon-

struction.

The localization result of the

anomalous region is imprecise

or coarse.

Gradient-based Variations in loss values during

training can serve as a feature

for identifying anomalous data.

GAN Improving the

input

Employs GAN and its

modifications for enhancing the

ability of image reconstruction

or generation.

Challenges include high training

costs, potential generator

instability, and poor generation

performance in normal areas of

the image, leading to false

detections.

Improving the

generator G
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Generative

model-based

GAN Improving the

discriminator

D

Employs GAN and its

modifications for enhancing the

ability of image reconstruction

or generation.

Challenges include high training

costs, potential generator

instability, and poor generation

performance in normal areas of

the image, leading to false

detections.

NF CFLOW-AD

[61]

Capable of estimating accurate

data likelihoods for normal

samples.

The model requires meticulous

design, and the design criteria

differ from those of a standard

CNN.

CS-Flow [62]

Fastflow [63]

Self-supervised

learning-based

Proxy tasks Image inpaint-

ing

Synthetic or simulated abnormal

data.

A gap between the simulated

anomaly and the real anomaly.

Relative posi-

tion prediction

Consider the spatial information

of the neighborhood patch.

Correlations between neighbor-

ing patches are often absent in

many images, especially those

containing complex objects.

Attribute

restoration

Using image attributes, such as

color and orientation.

Effect of attribute and direction

on anomaly location is limited.

Contrast

learning

CPC [67] Using similarity to distinguish

between normal and abnormal.

The localization results are

susceptible to interference, such

as variations in imaging

conditions.

SimSiam [69]

SimCLR [71]

One-Class

Classification-

based

- OCSVM [72] Can be used for pixel-wise

comparisons.

Semantic information about

subtle abnormal regions might

be overlooked.

Deep SVDD

[73]

Table 2.4: Continuation of compiled advantages and disavantages of the referred methods,

collected from [74].

Upon examining Table 2.1, it is evident that each method comes with its own set of advan-

tages and disadvantages. Nevertheless, the reconstruction, generative, and self-supervised

approaches have captured our attention due to their ability to generate a data sample with-

out abnormalities (canonical vehicle) from an abnormal data sample (non-canonical vehicle).

In the following sections, we will delve deeper into some of these approaches and methodolo-

gies that we found intriguing, and some of them have even been used as baselines in certain

solutions for the problem at hand.

Unsupervised Generative Adversarial Network-Based Method

As GANs typically require a substantial amount of normal data (non-anomalous data),

as discussed in Section (3), we shifted our focus to patch-based GANs. These GANs utilize

image patches as their input data. In our search, we came across an interesting technique

developed by Wang et al. in [54]. Their approach involves a generator and a discriminator

that operate on image patches. The generator takes image patches and tries to reconstruct
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them. Throughout this process, two encodings are created, one from each of the image

patches: the original and the reconstructed patch. The discriminator, designed with a

structure similar to the encoders, aims to correctly discern whether the image was generated

or not. During the training phase, the model is exposed to a dataset comprising numerous

multiscale image patches. These patches are randomly sampled from various levels of a

Gaussian pyramid. This random sampling strategy is employed to ensure size invariance

when detecting anomalies, as anomalies can vary significantly in size.

In the inference stage the generator is fed an whole image deconstructed in patches.

After the processing by the generator model, two segmentation maps are created, one by

calculating the image residual (difference of the original and reconstructed image) and other

by thresholding, following the Equation 2.1, the difference of each encoding that corresponds

to a certain image patch. This last segmentation mask is not made pixel wise, but patch wise,

which leads the mask to have a certain resolution that depends on the patch size. This last

segmentation is basically a local difference analysis, i.e. each local patch is only compared

with its correspondent counterpart and not the whole image. During the inference stage, the

generator is provided with an entire image divided into patches. Subsequently, the generator

processes the image, generating two segmentation maps. One is obtained by calculating

the image residual, which represents the difference between the original and reconstructed

images. The other segmentation map is derived by applying a thresholding process, based

on Equation 2.1, to the differences between all the encodings, each one corresponding to a

specific image patch. It is worth noting that this segmentation map is not pixel-wise but

patch-wise, and its resolution is determined by the patch size. Essentially, this segmentation

method entails a localized difference analysis, where each local patch is compared only with

its corresponding patch, on the original and reconstructed images.

Ir,cmask =

 1, if ||f r,c
i − f r,c

o ||2 > ϵ

0, otherwise
(2.1)

where r = (1, 2, ...,M/m) and c = (1, 2, ..., N/n). (M,N) and (m,n) denote the size of the

whole image and the image patch, respectively. (r, c) represents the appointed image patch

in the mask image Imask. ϵ represents the adjustable fix threshold.

After obtaining both segmentation maps or masks, they are combined through a sim-

ple element-wise multiplication (Hadamard product) followed by a thresholding step. The

thresholding process utilizes the mean and variance of the residual image to adapt the thresh-

old according to the requirements of the segmentation maps. This process can be consulted
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in equation 2.2.

Iresult =

 1, if Iresidual ⊙ Imask > µ+ γ · σ

0, otherwise
(2.2)

where ⊙ denotes the element-wise multiplication operation, often referred to as the Hadamard

product. Meanwhile, µ and σ correspond to the mean and standard deviation of the residual

image Iresidual, respectively. The parameter γ serves as a tunable factor that regulates the

sensitivity of the thresholding method.

A more comprehensive overview of the method can be visualized in Figure 2.7.

Figure 2.7: Overview of the patch extraction process from the Gaussian pyramid in (i).

Schematic representation of the method’s pipeline in (ii).

Image inpating using an U-Net

Image inpainting is a technique that focuses on the task of filling in missing or corrupted

parts of an image in a visually coherent manner. These type of algorithms use the sur-

rounding context and existing image content to generate and integrate new pixel values into

the regions that require restoration, ensuring that the completed image maintains its overall

visual integrity.

In this section, we will discuss a contemporary approach to image inpainting that lever-

ages the U-Net architecture. In addition to its applications in segmentation, as previously

mentioned in Section 2.3.1, models of this type can also serve as more proficient AutoEn-

coders for tasks such as image reconstruction and inpainting., as exemplified by Zavrtanik
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et al. in [75]. Their method entails randomly removing patches in a grid pattern from the

original image and then inputting these images with the missing patches into the U-Net.

The U-Net model strives to deduce the information that should exist in the missing patches.

To ensure that the method remains size invariant, allowing it to detect anomalies of varying

sizes, each original image is processed four times using different patch sizes (2, 4, 8, and 16).

In each run, three images with missing patches are created in a way that the missing patches

added up reconstruct the total image. A more comprehensive view of the method’s pipeline

can be consulted in Figure 2.8.

Figure 2.8: Overview of the "Reconstruction by Inpainting for Visual Anomaly Detection"

(RIAD) method developed by Zavrtanik et al. in [75]. Stage 1 involves the removal of image

patches, creating three complementary images. In the second stage, these images are input

into the model, which provides the reconstruction of the removed patches. In the third stage,

the images are combined, and inference is performed.

The U-Net model is trained with a reconstruction objective, utilizing reconstruction loss

terms such as the Mean Squared Error (MSE) loss, in Equation 2.3, structural similarity

index (SSIM) , in Equation 2.4, and Multi-scale gradient magnitude similarity (MSGMS),

in equation 2.5. The MSE primarily compares the raw pixel values between the input and

target images, assuming pixel independence, which is often inaccurate. To address this

limitation, the authors also employ the SSIM term, which assesses the perceptual differences

between the images, capturing factors like contrast, brightness, and structural details. To

further enhance the robustness of the final loss expression, the MSGMS term is used, which

compares the magnitude of image gradients between the original and reconstructed images

30



at multiple image scales.

LMSE(x, y) =
1

C ·H ·W

C∑
k=1

H∑
i=1

W∑
j=1

(x(k, i, j)− y(k, i, j))2 (2.3)

where C, H, and W represent the number of channels, height, and width of both images,

respectively, and (k, i, j) encompasses all possible pixel indices.

LSSIM(x, y) =
(2 · µxµy + c1)(2 · σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.4)

where µx and µy represent the mean of the input image, denoted as x, and the reconstructed

image, represented as y, respectively. Similarly, σ2
x and σ2

y represent the variance of x and

y, while σxy is the covariance between x and y. c1 and c2 are two variables introduced to

stabilize the division when the denominator is small.

LMSGMS(x, y) =
1

4

4∑
l=1

1

Nl

Hl∑
i=1

Wl∑
j=1

1−GMS(xl, yl)i,j (2.5)

where Hl and Wl are the height and width of the image and Nl the number of pixels at

scale l. The xl and yl are the original and the reconstruction images at scale l respectively.

GMS(xl, yl)i,j is the value, calculated using equation 2.6, of the GMS map of yl and xl at

pixel (i, j).

GMS(x, y) =
2g(x)g(y) + c

g(x)2 + g(y)2 + c
(2.6)

where c is a constant ensuring numerical stability and helps with mediating the response

in noisy areas. The x and y are the original and the reconstruction images. And g(.)

corresponds to the calculation of gradient magnitude map.

The combined final loss equation is as follows:

L(x, y) = λ1LMSGMS + λ2LSSIM + LMSE (2.7)

where λ1 and λ2 are the individual loss weights.

During the inference stage, each image undergoes processing for the specified patch sizes.

In each iteration, three images with missing patches of the specified size are generated. These

images are then fed into the model, which creates another three images where the missing

data has been reconstructed. The final set of images is then combined, and the anomaly

map is calculated based on the MSGMS expression 2.9, using Equation 2.8.

GA(I, Ir) =
1

Nk

∑
k∈K

1H×W − (MSGMS(I, Ir) ∗ fsf×sf ) (2.8)
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where fsf×sf is a mean filter of size (sf × sf ) used for smoothing, ∗ is the convolution

operation, and 1H×W is a matrix of ones of size H×W . MSGMS(I, Ir) is the MSGMS map

generated from I and Ir .

MSGMS(x, y) =
1

4

4∑
l=1

1

Nl

Hl∑
i=1

Wl∑
j=1

GMS(x, yl)i,j (2.9)

The terms in this equation were already defined along Equation 2.5.

Some preliminary results of the RIAD reconstruction can be consulted in Figure 2.9.

Figure 2.9: Examples of the RIAD method’s results for the same example at various patch

sizes. Each row, from top to bottom, displays the model’s response to images with removed

patches of sizes 8, 16, and 32. The first three columns show the raw responses, and the last

column depicts the combination of all three images per patch size.

Unsupervised Two-Stage Anomaly Detection

In their work [76], Yunfei Liu et al. introduced a novel approach with a dual objective:

generating images of superior quality compared to a standard variational AutoEncoder, while

simultaneously incorporating its distribution learning capability. To achieve this, the authors

employed a two-stage method:

• In the first stage, an Impression Extractor Network (IE-Net) is used to extract an

anomaly-free impression, m, from the input, x. This network, resembling a convolu-

tional AutoEncoder, is trained on anomaly-free data and incorporates additional loss
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terms, including KL-divergence and discriminator loss, beyond the normal reconstruc-

tion loss term. This stage results in a more rough/crude reconstruction of the input

image.

• In the second stage, a style transfer network is implemented to refine the previous

stage’s result and add more details. Additionally, the network generates an interme-

diate Naïve impression, m̂, mimicking the appearance of the IE-Net’s output, which

further aids in distinguish anomalies.

A comprehensive overview of the described architecture can be referenced in Figure 2.10.

Figure 2.10: Diagram of the "Unsupervised Two-stage Anomaly Detection" (UTAD) model

introduced by Liu et al. in [76].

Examples of the model reconstruction obtained by the authors in [76] are available for

reference in Figure 2.11.

Figure 2.11: Examples of results extracted from [76].

33



As evident from the examples shown in Figure 2.11, this method produces reconstructions

of the inputs that rival the distribution learning of variational AutoEncoders while main-

taining the high level of detail found in other methods, such as convolutional AutoEncoders

or even GANs.

2.4 Strategy Selection and Discussion

As mentioned earlier, unsupervised solutions are gaining prominence across various ma-

chine learning domains, including anomaly detection. Their appeal lies in their capacity to

classify unseen data samples accurately. This particular attribute holds significant impor-

tance in our problem domain, primarily because vehicle fingerprints exhibit an extensive

range of variations. This diversity makes it exceedingly challenging to construct a labeled

dataset substantial enough to train a supervised model capable of achieving the same level

of generalization as an unsupervised model trained on a smaller dataset.

For our unsupervised models, we have decided to pursue the "Unsupervised Two-Stage

Anomaly Detection" method, mentioned in Section 2.3.2. This choice is driven by its re-

liance solely on the quality of the reconstruction, and the flexibility it offers in training the

impression and style transfer networks separately. This separation allows for more precise

fine-tuning of each architecture.

Additionally, we will be utilizing the image inpainting network, as presented in Section

2.3.2, to evaluate its performance in comparison to other architectures. We haven not further

developed this model because its final performance depends on factors such as patch size and

the number of images in the reconstruction process. If the patch size is smaller than the size

of the anomalous regions, the reconstruction may still contain anomalies, and if the patch

size is too large, it can negatively impact the reconstruction quality, affecting the overall

model performance.

In the field of supervised models, we were aware from existing literature that the U-Net

model is one of the simplest and most reliable choices, and we employed it as a baseline

for comparison. In order to verify the possible performance that can be squeeze from the

U-Net architecture we also followed the solution presented in [33], where the U-Net’s in-

put is changed to include more information. In this line of research we also aim to adapt

the "Multi-Modal Anomaly Detection" method outlined in Section 2.3.1 to the anomaly

detection domain.
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3 Background

In this chapter, we will present some foundational methodologies necessary to provide a

better understanding of some of the solutions presented in the content of the ’Methodology’,

in section 4.

3.1 Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) introduced by Selvaraju et al.

in [50], emerged as a solution to address the transparency challenge inherent in deep learning

models. Understanding the rationale behind their decisions can be intricate. In essence,

Grad-CAM enables us to visualize the regions of an input image that played a pivotal role

in a deep learning model’s decision-making process. Whether the task involves identifying

abnormalities in vehicle images or detecting irregularities in medical scans, Grad-CAM offers

a unique window into the neural network’s decision-making.

At its core, Grad-CAM relies on the gradients of the model’s output with respect to its

internal feature maps. Here is a simplified breakdown of how it works:

1. Feedforward Pass: During the forward pass, the neural network processes the input

image and computes feature maps at different layers.

2. Calculating Gradients: Grad-CAM computes gradients of the class score (the pre-

diction score for a specific class) with respect to the feature maps.

3. Weighted Sum of Feature Maps: These gradients highlight which regions in the

feature maps are most relevant for making predictions. Grad-CAM then computes a

weighted sum of these feature maps, emphasizing the most influential regions.

35



4. Heatmap Visualization: The resulting heatmap, which reflects the importance of

different regions in the image, is overlaid on the original image. This heatmap shows

which areas of the input image contributed the most to the final prediction. An example

of a Grad-CAM generated heatmap can be consulted in Figure 3.1.

Figure 3.1: Example of Grad-CAM Segmentation, taken from multiple levels of a pre-trained

Resnet-50 used as backbone in [26]. The rows represent from top to bottom are, the second,

third and forth layer of the network.

Enhancing the transparency and interpretability of deep learning models, Grad-CAM

serves as a valuable tool for researchers, enabling its use as a segmentation tool. Moreover,

Grad-CAM can enhance classifier model performance by integrating class prediction with

segmentation labels. This integration offers the model a richer understanding of the target

solution for the given problem, effectively enhancing the backpropagation process.

It is worth noting that Grad-CAM finds extensive utility in the domain of image seg-

mentation, and it has also gained traction in vehicle Re-Id as a potent visualization tool for

extracting activation maps from operational models, in order to confirm that the model is

focusing are indeed distinctive of each vehicle.

3.2 U-Net

This type of architecture was proposed by Ronneberger et al. and was initially designed for

biomedical image segmentation tasks. Since then, it has revolutionized the field of Computer

Vision, particularly in the branches focused on segment and inpaint images.
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Figure 3.2: Example of the U-Net architecture proposed by Ronneberger et al. in [77].

As depicted in Figure 3.2, the U-Net architecture, shaped like the letter "U," incorporates

skip connections that bridge the encoder and decoder paths, enabling the fusion of multi-

scale contextual information. This unique design empowers the model to capture both local

and global features, enhancing its proficiency in producing high-quality segmentation maps.

3.3 Autoencoders

Autoencoders are fundamental and versatile neural network architectures widely used in

the domain of unsupervised learning. Their main objective is to learn efficient representations

of input data by compressing it into a lower-dimensional latent space and then trying to

reconstruct it back to its original form. Comprising an encoder and a decoder, autoencoders

enable self-supervised learning, where the input data serves as its own label during training.

These networks have found applications in various fields, such as data compression, anomaly

detection, and image denoising.

Moreover, the necessity for these networks to learn comprehensive and intricate repre-

sentations of all features to improve image reconstruction further reinforces their significant

role in advancing representation learning and bolstering data comprehension.

For the current problem, our investigation focused on two main types of autoencoders:
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• Convolutional autoencoders: These exclusively employ convolutional layers in their

architecture, with the encoder, bottleneck, and decoder comprising blocks composed of

convolutional layers. A visual representation of the convolutional autoencoder pipeline

can be found in Figure 3.3;

Figure 3.3: Diagram of a typical convolutional autoencoder. Taken from [78].

• Variational autoencoders: After mapping the input image to the latent space us-

ing the encoder, this type of autoencoder further maps the latent space vector to a

distribution (e.g., normal distribution) through mean and variance calculations. It

then samples a vector from this distribution, which serves as input for the decoder to

generate the final reconstructed image. A more comprehensive view of a variational

autoencoder is depicted in Figure 3.4.

Figure 3.4: Diagram of a typical variational autoencoder. Taken from [79].
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The results of the autoencoders illustrated in Figures 3.3 and 3.4 are more prominently

displayed in Figure 3.5.

Figure 3.5: Reconstructed examples of the two types of autoencoders using an example

image.

Upon analyzing the reconstruction characteristics of both models, as shown in Figure

3.5, and conducting extensive research on autoencoder applications in anomaly detection

[80, 81, 82], it becomes evident that the variational autoencoder (VAE) outperforms the

convolutional autoencoder in anomaly detection. This superiority stems from the VAE’s

capacity to capture and model data distributions in the latent space. While both autoencoder

types excel in reconstruction tasks, the VAE’s integration of probabilistic sampling and

generative modeling offers a more comprehensive comprehension of normal data variations,

enhancing its ability to detect anomalies. Using its generative capabilities, the VAE generates

diverse samples and boosts sensitivity to rare and irregular instances, thereby achieving

superior performance in anomaly detection. Consequently, the VAE emerges as the preferred

choice for this context, serving as an advantageous tool to address the problem at hand.

While the VAE emerges as the preferred choice for such problems, it is not without

its limitations. As depicted in Figure 3.5, the reconstructed image from the variational

autoencoder exhibits fewer high frequencies, leading to a slightly blurred appearance. This

characteristic posed challenges when comparing it with the original image, requiring a further

investigation and potential solutions to address this issue effectively.

3.4 Generative Adversarial Networks

GANs are a powerful and revolutionary type of network within the field of deep learning.

Introduced by Ian Goodfellow et. al in [83], GANs are a class of generative models that learn
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to generate realistic data by leveraging a two-player adversarial setup. The network con-

sists of a generator, responsible for synthesizing data samples, and a discriminator, aimed at

distinguishing between real and generated data. Both components engage in a competitive

learning process, where the generator attempts to create increasingly convincing samples,

while the discriminator strives to become more adept at discerning between real and fake

data. This adversarial interplay results in the gradual improvement of the generator’s ca-

pacity to produce realistic data. A simple diagram of a typical GAN is depicted in Figure

3.6.

Figure 3.6: Diagram of a typical GAN. Taken from [3].

While GANs have gained popularity in the domain of anomaly detection [84], they may

not be well-suited for the present problem. These architectures often demand a substantial

number of normal (non-anomalous) samples for effective training, which, in the current

context, may not be feasible to obtain.
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4 Methodology

As mentioned in Chapter 1, the primary objective is to identify elements that have been

added to the vehicle after its fabrication, i.e. those that are not part of its canonical config-

uration. To accomplish this, we adopted an approach to the problem that started with the

exploration of fully supervised methods and then transitioned to fully unsupervised tech-

niques. This approach provided us valuable insights into the comparative performance of

supervised methods against unsupervised ones.

4.1 Supervised methods

This section delves deeper into the supervised branch of anomaly detection, encompassing

a technique already widely employed in computer vision’s segmentation domain, and also a

more recent method typically applied in the field of mobile robotics.

4.1.1 Anomaly Segmentation using an improved U-Net

In an attempt to improve the image segmentation process using the U-Net model, a new in-

put data strategy was used, depicted in Figure 4.1, inspired by the findings presented in [33],

as referenced in the section 2.3.1. This approach involved the channel-wise concatenation of

the original image with a residual image, which was generated by subtracting the original

image from a reconstruction produced by a autoencoder. In contrast to the original work,

which utilized a convolutional autoencoder, our approach involves the use of a variational

autoencoder. This decision comes from the observation that autoencoder reconstructions

tend to also reproduce the abnormalities of the vehicle, which harms our objective. This

replication leads to small values in the region of the residual map that represent the abnor-

mality, thereby motivating our choice. To compare reconstructions generated by different

types of autoencoders, please refer to Section 3.2.
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The implemented variational autoencoder architecture is the same as implemented in

Section 4.2.1 for impression extraction.

The U-Net architecture was deployed following the description in Section 2.3.1, primarily

aiming to detect anomalous elements, i.e. the non-canonical components, found in any given

vehicle. This approach directly generates an anomaly map, like other methods with a more

extensive/expensive pipelines. In this map, each pixel corresponds to a value indicating

the likelihood of an anomaly being present in that specific pixel. Typically, higher values

represent a higher level of model certainty regarding the presence of an anomaly. These

anomaly maps are subsequently subjected to thresholding using various techniques, resulting

in the creation of a binary mask that consists of only two values: zeros and ones, contrasting

with the continuous values in the initial anomaly map.

Figure 4.1: Diagram of the proposed improved U-Net.

The implemented U-Net architecture employs convolutional layers with a 3x3 kernel

size and a padding of 1, utilizing the Rectified Linear Unit (ReLU) activation function.

Additionally, batch normalization layers were incorporated after each convolutional layer to

aid the model in achieving the desired performance.
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The U-Net architecture, depicted in Figure 4.2, is composed of two main components,

that have a symetric architecture to each other, a encoder and a decoder.

The encoder comprises of four down blocks, each composed of two convolutional layers

(with normalization and activation functions) and a max pooling layer (2x2 kernel). The

feature maps from each down block are saved for later use in the decoder.

The decoder consists of four up blocks, with a similar architecture as the down blocks,

but with upsampling layers, that use bilinear interpolation (transpose convolution is not

used, because of the generated checkerboard artifacts explained in [85]) instead of max

pooling. Before entering an up block, the features of the corresponding down block and the

skip connections are combined via channel-wise concatenation. This combination strategy

helps the model capture both local and global features from the input image. Summation

is considered in some cases, but in our research, we found that models using summation for

combination can face challenges in back-propagation during training, as discussed in [85].

Figure 4.2: Detailed U-net architecture overview.

The U-Net model is trained using binary cross-entropy loss, as outlined in Equation 4.1.

This loss function treats each pixel as a data point belonging to either class 1 or class 0.

BCE =
1

N

N∑
n=1

yn·log(xn) + (1− yn)·log(1− xn) (4.1)

In Equation 4.1, the notation xn represents the model’s inferences on the input data, and

yn corresponds to the labels associated with this data. Additionally the N represents the

number of samples in the dataset.
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4.1.2 Multi-level Anomaly Segmentation

As mentioned in Section 2.3.1, the architecture proposed in [34] was originally designed

to address a specific challenge in the field of mobile robotics. To adapt this architecture

for our problem, several modifications were necessary, depicted in Figure 4.3. Instead of

processing the entire image in a single inference step, we opted to divide the image into

multiple patches and perform inferences on each patch. As we lacked multi-modal sensor

inputs, we devised an alternative approach, that rather than using sensor data, incorporated

feature vectors extracted from various levels of the encoder network. This strategic choice

allows the classifier to receive diverse views and scales of the input data, providing valuable

assistance in addressing more complex challenges, as is the case in the problem we are

currently tackling.

To augment the training dataset and introduce scale invariance to our model, we ex-

tracted patches from images at various scales. To maintain a well-balanced dataset, for

each "anomalous" patch extracted, we also extracted a random image patch that did not

contain an anomaly. This ensured an equal number of positive ("anomalous") and nega-

tive ("non-anomalous") samples. The patch extraction process was designed such that each

patch could be associated with a specific pixel in the input image. In other words, if a patch

was classified as "anomalous," it signified that the center pixel of that patch was located

within an "anomalous" region. During the inference stage, every valid pixel, defined as a

pixel situated at least half of the patch size away from any image margin, would generate a

patch to be processed by the model.

Recognizing that altering the patch size could lead to complications, as it would affect the

model’s feature map sizes, we opted to maintain a fixed patch size (33) and instead applied

downsampling and upsampling to the entire image. This approach effectively replicated the

effects of using smaller or larger patch sizes. With a larger patch size or smaller image size,

more information about the patch was available, whereas a smaller patch size or larger image

size provided less information about the patch.
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Figure 4.3: Diagram architecture of the Multi-level Patch anomaly detector proposed. In-

spired by the architecture in [34].

The encoder module , depicted in Figure 4.4, comprises four fundamental blocks, one

squeeze excitation block, and four linear layers. A fundamental block consists of two convo-

lutional layers (with a kernel size of 3, stride of 1, and a padding of 1), along with batch

normalization and ReLU activation. At the end of each block, the original input of the block

is added to the outcome of the convolutional layers, forming a skip connection. The squeeze

excitation block is composed of an adaptive average pooling layer, followed by two linear

layers. The first layer utilizes ReLU as its activation function, while the final layer employs

a sigmoid activation. The primary purpose of this block is to dynamically assign weights to

the features within the model. The features that contribute to better discrimination by the

model are assigned higher weights in this block. Towards the end of the encoder module,

there are two linear layers, each with its corresponding batch normalization and ReLU acti-

vation function. These layers serve to transform the flattened features from the model into

a vector, representing these features within the latent space. Following this, separate linear

layers are employed to estimate the mean and variance of this latent vector space.
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Figure 4.4: Proposed encoder architecture.

With a clear understanding of the encoder module, it is time to shift our focus to another

critical component: the decoder, depicted in Figure 4.5. Unlike some symmetric autoencoder

architectures, the decoder in our framework does not mirror the structure of the encoder

(asymmetrical autoencoder). Instead, it comprises two linear layers and four convolutional

layers (with a kernel size of 3 and padding 1), interpolated with bilinear upsampling op-

erations to restore the original image dimensions. Each of these layers is accompanied by

batch normalization for stability, and ReLU serves as the activation function for all layers

except the final one. In the last layer, we utilize a sigmoid activation function to ensure that

the pixel values are confined within the range of 0 to 1, aligning with our reconstruction

objective.
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Figure 4.5: Proposed decoder architecture.

With the variation autoencoder part of the model explained, lets dive into the aggregation

block and classifier block.

The aggregation block’s primary function is to reshape the three feature blocks originating

from the multiple levels of the encoder into vectors of uniform size. This is achieved by

independently passing each input through distinct convolutional layers with ReLU activation

functions and a kernel size of 1. The purpose of this operation is to harmonize the number of

channels in each feature map. Subsequently, adaptive average pooling is applied, resulting

in a channel-wise vector, which can be transformed into a simple vector by flattening the

resultant data. This results in three vectors of the same size, which are subsequently used

as input data for the classifier.

The classifier, on the other hand, receives a concatenated vector comprising the mean,

variance, and the three vectors yielded from the aggregation block. This classifier is structured

as a straight forward fully connected network, composed of five sequential linear layers, each

with its corresponding batch normalization and ReLU activation function—except for the

final layer, which employs a sigmoid activation function. This choice serves to confine the

output values within the two classes: 0 (indicating no anomaly present) and 1 (indicating

the presence of an anomaly). For a more detailed view of the classifier and aggregation block

architectures, consult the diagram in Figure 4.6.
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Figure 4.6: Proposed classifier architecture.

In summary, the model pipeline consists of a variational encoder that provides the mean

and variance of the input data. Following this, the model branches into two components:

• Decoder branch: This serves as a regulator to ensure the extraction of meaningful

features. It takes a latent space vector, sampled from the normal distribution defined

by the encoder’s mean and variance, with the goal of reconstructing the original image

patch.

• Classifier branch: This aims to infer whether a patch is anomalous (1) or not (0).

Three feature blocks from multiple levels of the encoder are extracted and transformed

into vectors of the same size. These vectors are concatenated with the final mean and

variance from the encoder, forming the input for the classifier, which tries to make the

appropriate classification decision.

This architecture necessitates three loss terms, each related to a specific branch of the

model, and to the encoder’s learned distribution. First, the inclusion of a Kullback–Leibler

divergence term, in Equation 4.3, ensures that the encoder learns to extract features that
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converge to a distribution close to the target distribution. Secondly, a reconstruction

term, in Equation 4.4, plays a crucial role in enabling the decoder to learn how to decode

the sampled latent vector while also serving as a regularizer for the feature extraction process

of the encoder. For this purpose was selected the mean square error, in Equation 4.4. Lastly,

a Binary Cross Entropy (BCE) term, in Equation 4.2, is essential to train the classifier,

enabling it to distinguish between the concatenated vector capable of describing an anomaly

and the one that does not signify the presence of an anomaly.

BCESUM =
N∑

n=1

yn·log(xn) + (1− yn)·log(1− xn) (4.2)

In this context, the symbols xn, yn, and N respectively stand for the model’s predictions,

the associated labels, and the total number of available samples.

KLSUM =
1

2

M∑
m=1

(µ2
m + σ2

m − log(σ2
m)− 1) (4.3)

MSESUM =
C∑

k=1

H∑
i=1

W∑
j=1

(Io(k, i, j)− Ir(k, i, j))
2 (4.4)

In equation 4.3, M represents the dimension of the latent space Z (Z ∈ RM), with the

mean denoted as µ = [µ1, ..., µM ], and the covariance matrix as
∑

= diag(σ2
1, ..., σ

2
M). These

parameters are re-parameterized through sampling from a standard multivariate Gaussian

distribution, ϵ ∼ N(0, IM) (where IM is the identity matrix of size M × M). This re-

parameterization is performed using the equation Z = µ +
∑ 1

2 ·ϵ. In equation 4.4, the

symbols IO and Ir refer to the original image and the reconstructed image generated by the

model, respectively. The indices (k, i, j) denote possible pixel combinations. Moreover, the

variables C, H, and W correspond to the number of channels, height, and width of both

images. The final model loss can be seen in 4.5.

Loss = MSESUM +KLSUM + α ·BCESUM (4.5)

where, α assumes the role of a tunable parameter that offers the flexibility to define the

model’s objective. Adjusting the value of α impacts the balance between classification and

reconstruction objectives. If α is set too high, the model prioritizes classification, resulting in

compromised reconstruction quality and subsequent inadequate regularization. Conversely,

when α is set too low, the model becomes excessively focused on reconstruction, neglecting

the imperative task of accurate classification.
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4.2 Unsupervised methods

This section delves into the unsupervised solutions of anomaly detection, which has gained

significant attention recently due to its capability to work without costly annotations. Models

in this category can typically identify anomalous regions without prior knowledge of what

the anomaly looks like. This aspect of these models is particularly valuable because, in the

context of the problem at hand, we seek a method capable of distinguishing all types of

abnormalities to the canonical form of each vehicle. Towards this objective, the following

section references a recent method that has demonstrated promising results within the same

unsupervised domain.

4.2.1 Unsupervised Two-Stage for Vehicle Anomaly Detection

As mentioned in Section 2.3.2 of this dissertation, a particularly interesting solution is

the technique devised by Yunfei Liu et al in [76], primarily due to the impressive outcomes

they reported in their research. The approach comprises a two-module pipeline, consisting

of an Impression Extractor Network and a Style Transfer Network. These networks were

modified to more effectively address the specific challenge at hand. For a more comprehensive

understanding of the model’s architecture, detailed information is provided in the subsequent

chapters.

Impression extractor network

The Impression Extractor Network, depicted in Figure 4.7, employs a convolutional au-

toencoder as its backbone. In this architecture, the encoder (Em) transforms the input image

into a feature map, while the decoder (Dm) tries to convert this feature map back into an

image resembling the original input. In this setup, the generated feature map is also chan-

neled into a fully connected network, which estimates the mean and standard deviation of

the data. This distribution’s parameters contribute to a loss term during training, ensuring

that the convolutional autoencoder aims not only to reconstruct the original image but an

approximation. Moreover, this distribution is utilized for data sampling within the discrim-

inator. The discriminator processes both a feature map and an image as input. On one

hand, the discriminator takes the original image, paired with the corresponding feature map

extracted from the encoder (Em). Given their intrinsic relationship, the expected outcome
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from the discriminator in this situation is True. On the other hand, the discriminator is

also employed to assess a randomly selected image from the data batch and a feature map

sampled from the learned distribution. In this case, an anticipated outcome is False, as their

association is comparatively weaker.

Figure 4.7: The IE-Net architecture which includes an encoder EM , a discriminator T, and

a decoder DM . During training, the components within the dashed box are employed for

impression extraction. Taken from [76].

The encoder architecture, depicted in Figure 4.8, is composed of interleaved inception

blocks [86] along with Max pooling operations. The decoder shares a similar initial structure,

featuring inception blocks [86] alternated with UpSampling layers that employ nearest neigh-

bor upsampling. However, the decoder culminates in two convolutional layers succeeded by

a sigmoid activation function, serving to constrain pixel values between 0 and 1. The initial

convolutional layer employs a kernel size of 3 and is equipped with a reflected padding of size

1, while the subsequent convolutional layer has a kernel size of 1, responsible for reducing

the channel count to 3 (representing RGB channels).
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Figure 4.8: IE-Net autoencoder architecture, proposed in [76].

Inception blocks, depicted in Figure 4.9, consist of parallel convolutional layers with vary-

ing kernel sizes, encompassing convolutions of sizes 1, 3, and 5. Following each convolution

is a batch normalization layer and a Leaky ReLU activation function (with a negative slope

of 0.1). Additionally, a parallel branch features a max pooling operation with a kernel size

of 3 applied to the input. Each branch also incorporates padding to ensure that the output

feature maintains the input feature’s size, even during the max pooling process. In the latter

operation, a convolutional layer with a kernel size of 1 is introduced to control the number

of channels. Crucially, all sub-blocks within the inception block culminate in uniform dimen-

sions concerning width, height, and channel count. These outputs are then concatenated,

significantly increasing the network’s capacity to detect features across varying scales.
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Figure 4.9: Diagram of the architecture of an inception block, from [86].

The discriminator, depicted in Figure 4.10, consists of two merging branches: one involves

an average pooling layer with a kernel size of 2 followed by five convolutional layers, while the

other receives the "extracted feature map" from the encoder. The convolutional layers all

possess a kernel size of 4 with padding of 1 and a stride of 2. Additionally, they are equipped

with Batch Normalization and ReLU activation functions, except for the final convolution

that lacks normalization or activation. After merging or concatenating the results from both

branches, the resultant feature map undergoes processing by a fully connected block, which

comprises four linear layers. All these layers are accompanied by Batch Normalization and

ReLU activation, except the last one, which exclusively incorporates a Sigmoid function after

its operation.

Figure 4.10: IE-Net classifier architecture.
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To train the final impression extraction network, three primary loss terms are necessary.

The first involves the reconstruction loss between the final image and the input image, using

the L1 Loss. The second term is the Kullback–Leibler divergence term, which guides the

model to approximate the target distribution (normal distribution). Lastly, the discriminator

loss ensures the discriminator becomes proficient at distinguishing between matching and

non-matching feature maps and images. For this purpose, the binary cross-entropy operation

was applied.

MSE =
1

C ·H ·W

C∑
k=1

H∑
i=1

W∑
j=1

(Io(k, i, j)− Ir(k, i, j))
2 (4.6)

KL =
1

2 ·M

M∑
m=1

(µ2
m + σ2

m − log(σ2
m)− 1) (4.7)

DSC = −log(T (x,EM(x)))− log(1− T (x̃, z̃)) (4.8)

The Equations 4.6 and 4.7 have already been explained along with the Equations 4.4

and 4.3, respectively. The sole distinction between these two sets of equations lies in the

utilization of the mean in one set and the sum in the other to characterize the error. In

Equation 4.8, the symbol T represents the discriminator, x stands for the input image, EM

denotes the encoder, x̃ represents a shuffled version of x, and z̃ ∈ N (µ, σ2). The total loss

is the sum of all the terms discussed above, as defined in Equation 4.9.

Loss = λ1 ·MSE + α ·KL+DSC (4.9)

where λ is a term to make the model training objective more flexible, the bigger it is the

model will focus more on the reconstruction, and α is the KL factor, that controls how the

model aproximates the target distribution, also referred in Section 4.1.2.

The final model applied to our problem generated the images depicted in Figure 4.11.
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Figure 4.11: Inputs images are displayed in the first row, while the corresponding recon-

structions generated by the IE-Net model are showcased in the second row.

As evident from the images depicted in Figure 4.11, the model not only generates impres-

sions of the input data but also tends to replicate certain exogenous details of the original

image. To address this issue, we identified that an effective approach would involve fusing

the output of a variational autoencoder with that of the IE network.

The proposed architecture of the variational autoencoder, depicted in Figure 4.12, shares

similarities with the autoencoder within the IE net, consisting of an encoder and decoder.

The encoder is composed of four convolutional layers with a kernel size of 4, padding of 1,

and a stride of 2, facilitating the downsampling of the features. After these convolutional

layers, a dropout layer with a dropout probability of 0.3 is applied, followed by a linear layer

that converts the flattened feature map resulting from the convolutions into the intended

latent space. Subsequently, two parallel linear layers are employed to estimate the mean and

variance of the generated latent space vector. All convolutional and linear layers are equipped

with batch normalization and ReLU activation functions, except for the layers responsible for

estimating the mean and variance. The decoder is comprised of 2 linear layers followed by 4

convolutional layers, interspersed with bilinear upsampling layers. The convolutional layers

possess a kernel size of 3 and padding of 1. All layers are equipped with batch normalization

and ReLU as their activation functions, except for the final layer which employs a Sigmoid

activation function to ensure pixel values are confined within the range of 0 to 1. It is

important to note that the decoder does not receive the mean and variance estimated in the

encoder. Instead, it receives a sampled vector from the distribution determined by the mean

and variance.
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Figure 4.12: Proposed Variational Autoencoder architecture.

The model is trained using a loss function composed of two terms. The first term involves

the reconstruction of the input and the output of the model, using the mean squared error

operation as indicated in equation 4.4. The second term utilizes the Kullback–Leibler diver-

gence, as specified in equation 4.3, to encourage the model to learn the target distribution.

For these terms, the sum versions presented in Equations 4.4 and 4.3 were employed. The

final expression of the loss can be referred to in Equation 4.10.

LossV AE = MSESUM + α ·KLSUM (4.10)

where, α serves as a parameter that determines the primary objective of the model’s training.

A larger value of α will encourage the model to closely approximate the target distribu-

tion, while a smaller value will lead the model to mimic the input image to a greater extent.

Some examples of the results generated by the VAE model can be observed in Figure 4.13.

Figure 4.13: Images provided as inputs are depicted in the first row, while the resulting

reconstructions produced by the VAE model are exhibited in the second row.
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After training both models, to join both outputs the expression 4.11 is used.

I = WV AE · IV AE +WIE · IIE (4.11)

where, IV AE and IIE represent the reconstructed images from the variational autoencoder and

the original impression extractor, respectively. The weights WV AE and WIE are normalized

(summing to 1) and are utilized to fine-tune the resulting image. If WV AE is given more

weight, the image might become excessively blurry with weakened edges. Conversely, if

WIE carries more weight, the image could appear overly detailed, potentially incorporating

anomalies. Final outcomes of this procedure are depicted in figure 4.14.

Figure 4.14: The first row showcases the images used as inputs, while the second row displays

the resulting reconstructions generated by the IE-Net + VAE models with WV AE set to 0.8.

Style transfer network

The main purpose of this phase, as highlighted in Section 2.3.2, is to enhance the im-

pression obtained from the previous stage. This involves imbuing the initially extracted

impression, which possesses limited details and edges, with the details necessary to approxi-

mate the original image. To accomplish this objective, a style transfer network, depicted in

Figure 4.15, was implemented. The architecture incorporates two autoencoders: one endeav-

ors to transform the impression into the original image, while the other aims to transform

the original image into impressions. This approach enables the model to grasp the invertible

mapping between the input image and the impression, which proves beneficial for making

inferences during the subsequent inference stage. Additionally, an Encoder is included to

extract the style vector from both the original image and the reconstructed image.
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Figure 4.15: The Expert-Net architecture encompasses a detail extractor ES, two encoders,

and two decoders. It learns the invertible mapping between impressions and images. Adapted

from [76].

Both encoders share the same architecture, depicted in Figure 4.16, comprising of three

standard convolutions followed by one residual block. The initial convolution has a kernel

size of 7 with a padding of 3 and a stride of 1. The subsequent two convolutions serve to

downsample the feature map, employing a kernel size of 4, padding of 1, and stride of 2

for this purpose. Following the downsampling, the feature map is input to a residual block,

consisting of two convolutional layers (with a kernel size of 3, padding of 1, and stride of

1). Upon executing their operations, the output of these layers is summed with the input to

the block. The utilization of such blocks is common for enhancing model performance and

addressing challenges related to vanishing gradients and degradation during training. The

convolutional layers are succeeded by an Instance Normalization layer and ReLU as their

activation function, except for the last one within the residual block, which does not have an

activation function.
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Figure 4.16: Architecture of the content encoder proposed in [76].

The decoders also employ an identical architecture, depicted in Figure 4.17, mirroring

that of the encoder. However, in this scenario, the residual blocks include both normalization

and AdaIN layers, while the standalone convolutions incorporate layer normalization. The

last convolution lacks any normalization layer. All convolutions utilize the ReLU activation

function, except for the final one, which employs a sigmoid function to confine pixel values

between 0 and 1.

Figure 4.17: Architecture of the decoder proposed in [76].

The style encoder is constructed with 5 convolutional layers, succeeded by an adaptive

average pooling operation that aims to condense each channel into a single value. Subse-

quently, a convolutional layer with a kernel size of 1 is applied to regulate the number of

channels in the final output. The initial convolution features a kernel size of 7, padding of

3, and stride 1, while the subsequent 4 convolutions possess a kernel size of 4, a padding of

1, and a stride of 2 to downsample the feature map.
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An additional element that complements the style encoder is a fully connected network.

While the style encoder produces a condensed vector representing the target style, this latter

network endeavors to expand this vector into one vector that contains the concatenated

vectors for means and variances, to be used in AdaIN. Comprising solely three linear layers,

this network lacks normalization and employs ReLU as the activation function, except for

the final layer, which has no activation function. The resulting vector from this network

follows this format:

OutMLP = [µ1, ..., µn, σ1, ..., σn]
T (4.12)

In this equation, the terms represented by µ correspond to the means, while the terms

represented by σ correspond to the standard deviations. The variable n signifies the size of

the vector, deliberately aligned with the parameters in the decoder.

The output vector from the fully connected network, depicted in 4.12, is subsequently

inputted into the AdaIN normalization layers within the decoder. The AdaIN normalization

plays a pivotal role in the style transfer procedure. The definition of AdaIN can be found

in Equation 4.13.

AdaIN(k, γ, β) = γ(
k − f(k)

g(k)
) + β (4.13)

where, k represents the activation of the preceding convolutional layer, f(.) and g(.) sig-

nify channel-wise mean and standard deviation. Additionally, γ and β denote parameters

produced by an Multilayer Perceptron (MLP) when the style vector is introduced as input.

Importantly, the style vector is exclusively extracted during the transformation from the

impression, denoted as m, to the reconstruction x̂. Conversely, when transitioning from

the original image, represented as x, to the impression, a random style vector is injected to

ensure that the decoding process outcome remains unaffected by this vector.

During training, the reconstructed images (x̂ and m̂) and the reconstructed style vector

(ŝ) are constrained to the input images (x and m) and the original style vector (s), through

a L1 loss, respectively. These loss terms can be refereed in Equations 4.14, 4.15 and 4.16.

Lx =
C∑

k=1

H∑
i=1

W∑
j=1

|x(k, i, j)− x̂(k, i, j)| (4.14)

Lm =
C∑

k=1

H∑
i=1

W∑
j=1

|m(k, i, j)− m̂(k, i, j)| (4.15)
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Lstyle =
M∑

m=1

|s(m)− ŝ(m)| (4.16)

In equations 4.14 and 4.15, C, H, and W represent the number of channels, height, and

width of the images, respectively, and (k, i, j) represent the possible combinations of image

pixels. In equation 4.16, M represents the size of the style vector.

After training, examples of the generated images can be observed in Figure 4.18.

Figure 4.18: The top row displays the input images, the second row presents the impressions

generated by IE-NET + VAE, and the bottom row exhibits the outcomes of the style transfer

process.

As depicted in figure 4.18, the resulting images lack the anticipated level of detail as orig-

inally suggested in the source article [76]. We believe that the primary reason behind this is

the complexity of the data involved in this problem, and the utilized loss functions might not

have provided adequate information for effective weight adjustments during backpropagation

operations. To address this, we introduced a new loss term employing a pre-trained VGG-19

network to extract feature maps across various levels of the network, thereby proposing a

perceptual loss term. The new loss term takes the form presented in Equation 4.17.

LV GG =
∑
l

ϕl(x, x̂) + ϕl(m, m̂) (4.17)

where, ϕ(·) denotes the feature distance, also known as perceptual distance, which quantifies

the L1 distance of features within a pre-trained VGG-19 network.
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The final expression for the model’s loss can be found in equation 4.18.

Loss = Lx + Lm + Lstyle + LV GG (4.18)

With this change done to the loss function, after trained we obtained better results as can

be observed in Figure 4.19.

Figure 4.19: The initial row showcases the input images, the following row displays the

impressions generated by IE-NET + VAE, and the bottom row illustrates the results of the

style transfer process.

During the inference stage, the standard process, as proposed in [76], involves utilizing

a pre-trained VGG-19 to extract feature maps from various network levels. This is followed

by calculating the L1 norm on the feature maps of x and x̂, m and m̂, as well as x and m.

The expression representing this process can be found in Equation 4.19.

e(x, x̂,m, m̂) =
∑
l

λe
l (ϕl(x, x̂) + ϕl(m, m̂) + ϕl(x,m)) (4.19)

where λe
l represents a weight assigned to the outcome of each VGG layer. The meanings of

the terms ϕ(.) and l have been previously elucidated in Equation 4.17.

To convert the anomaly error map, e, into a segmentation mask, the following process is

employed:

y(i, j) =

1, if e(i, j) > α

0, otherwise
(4.20)
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where, the indices i and j pertain to the pixel positions in the error map denoted as e, while

α serves as a threshold value for anomaly segmentation.

While the original work [76] achieved promising outcomes, competing with other leading

algorithms in the anomaly segmentation domain, our results, depicted in Figure 4.20, were

less satisfactory. The generated results exhibited a significant number of false positives, and

there were instances where prominent anomalies were not adequately highlighted in the final

output.

Figure 4.20: The top row highlights the input images, the second row reveals the raw VGG-

19 feature map disparities, the subsequent row demonstrates the final segmentation masks

created using a threshold of 0.5, and the last row presents these masks superimposed on the

original images for improved visualization.

In order to try to get a improved anomaly error map, we proposed instead of a pre-trained

VGG-19 use a pre-trained Resnet18 network to get the perceptual error. We also altered the

expression to calculate this error. The expression can be consulted in 4.21.

e(x, x̂,m, m̂) =
∏
l

λe
l (ϕl(x, x̂) + ϕl(m, m̂) + ϕl(x,m)) (4.21)
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The terms within this expression have already been elucidated in 4.19, yet now ϕ(.) is a

function involving the pre-trained ResNet18 network.

As evident from Figure 4.21, the primary alteration lies in replacing the summation of

the results from each network level with a product. This adjustment was made to mitigate

the introduction of unnecessary noise into the final result, a drawback often associated with

the summation operation. The segmentation process remains identical, as illustrated in 4.20.

The resultant segmentation masks are more clean, with less false positives or noise. Some

examples can be consulted in the figure 4.21.

Figure 4.21: In the initial row, the input images are showcased. In the following row, the

raw Resnet18 feature map differences are presented. The subsequent row illustrates the final

segmentation mask generated with a threshold of 0.3. Finally, the last row exhibits these

masks overlaid on the original images, for better visualization.
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5 Experiments and discussion

In this chapter, we will evaluate the performance of various tests conducted on the pro-

posed methods. This evaluation is crucial for determining the optimal parameters for each

model, leading to the best possible performance. To ensure consistency in the evaluation of

results, all models were consistently trained and assessed using an RTX 3090 graphics card.

Evaluation Metrics

To assess and compare the different methods, we employed a range of evaluation metrics,

that include the following:

• Mean pixel accuracy per image (Acc), as defined in equation 5.1.

• Mean Dice Coefficient (or F1Score) per image, calculated according to equation 5.2.

• Mean Intersection over Union (IoU), computed using equation 5.5.

• Mean Area under the Receiver Operating Characteristic curve (AuROC), determined

by the equation 5.6.

Pixel accuracy gauges the percentage of correctly classified pixels in an image, offering

a generalized evaluation of results, but it may not be definitive for distinguishing between

segmentation methods. The F1 Score calculates the harmonic mean between precision and

recall scores, providing a balanced measure when choosing between precision and recall. It

strikes a balance between high false-positive and false-negative rates. The IoU score measures

the relationship between the intersection and union of segmented areas, offering insight into

the model’s effectiveness in distinguishing target regions from the background. While all

metrics presented so far require a threshold to derive the associated segmentation mask,

the AuROC score serves to assess model performance independently of the threshold. It

accomplishes this by constructing a curve using multiple thresholds and calculating false

positive rates for each resulting anomaly mask.
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For assessing the reconstruction quality of the variational autoencoder and style transfer

network, three metrics will be used: the L1 norm, the Mean Squared Error (MSE), and the

Structural Similarity Index (SSIM). These metrics serve to evaluate the closeness between the

reconstructed images and the input images. The L1 norm quantifies the absolute difference

between the reconstructed and input images, offering a raw measure of dissimilarity. The

MSE calculates a difference metric that penalizes larger disparities in the results, placing

more emphasis on significant deviations. The SSIM metric takes into account perceptual

differences between two similar images, considering not only pixel-wise value differences

but also perceptual characteristics. Collectively, these metrics provide a comprehensive

evaluation of how faithfully the reconstructed images match the original input images.

The pixel-wise accuracy can be calculated using the following expression:

Accuracy =
1

N

N∑
n=1

TPn + TNn

Total Predictions
(5.1)

The F1-Score can be calculated as follows:

F1Score =
1

N

N∑
n=1

2 ·Recalln · Precisionn

Recalln + Precisionn

(5.2)

where Recall and Precision are defined as:

Recalln =
TPn

TPn + FNn

(5.3) Precisionn =
TPn

TPn + FPn

(5.4)

The intersection over union (IoU) can be computed using the equation:

IoU =
1

N

N∑
n=1

Intersectionn

Unionn

=
1

N

N∑
n=1

TPn

TPn + FPn + FNn

(5.5)

The area under the receiver operating characteristic (AuROC) curve is represented by

the following equation:

AuROC =
1

N

N∑
n=1

∫ 0

1

TPRn(FPRn) dFPRn (5.6)

It is important to note that computer systems cannot calculate this directly, and these same

systems must make a discrete approximation. In the same expression, TPR (true positive

rate) and FPR (false positive rate) are calculated as follows:

TPR =
TPn

TPn + FNn

(5.7) FPR =
FPn

FPn + TNn

(5.8)
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In the above equations, TPn, FPn, TNn, and FNn represent the "true positives", "false

positives", "true negatives", and "false negatives" of an image n, respectively. N denotes

the total number of samples or images in the test set.

In this chapter, we will also introduce specific loss equations that played a significant

role in training our models. These equations will be used to compare the performance of our

models against others trained with different loss variations.

Datasets

In order to train our models a large collection of vehicle images was requisite. To achieve

this, we fused two datasets: VERI-WILD [1] and VehicleID [2]. This composite dataset

comprises a total of 638,077 vehicle images. It encompasses 416,314 images of 40,671 vehicles

extracted from the VERI-WILD dataset, as well as 221,763 images belonging to 26,267

vehicles from the VehicleID dataset. Primarily intended for vehicle re-identification purposes,

these datasets share similar characteristics. They are composed of natural vehicle images

captured in real-world scenarios, often from various angles on actual roads. Each dataset

provides two key perspectives: one capturing the frontal portion of the vehicle and another

focusing on the rear part. Within these perspectives, there can be variations where the

side of the vehicle is more prominently visible or not. Furthermore, due to their origin in

real-world settings, the images remain susceptible to various environmental factors. These

include changes in brightness corresponding to different times of day, potential obstructions

in the camera’s field of view (like vegetation), and atmospheric phenomena such as rain or

fog.

Comparative examples from both datasets are available in figures 5.1 and 5.2.

Figure 5.1: Sampled images from the Veri-Wild dataset [1].
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Figure 5.2: Sampled images from the VehicleID dataset [2].

To train the supervised methods, a subset of a limited dataset consisting of 323 labeled

images will be used. Specifically, 223 images will be allocated for training purposes. Some

samples of this dataset can be consulted in figure 5.3. Examples of samples from this dataset

are available in figure 5.3.

Figure 5.3: Sampled images from the compiled dataset. The first row holds the original

images, and the second row holds the labels of the samples in the same column.

To evaluate the effectiveness of all the proposed methods, 100 of the aforementioned

labeled images will be employed to compute essential metrics. It is important to emphasize

that these metrics will be computed for both supervised and unsupervised methods using the

same set of images for a consistent evaluation. Particularly, in the case of the unsupervised

methods, the test images are sourced from other data sources. This ensures that the model

has not encountered these images during its training. Importantly, these test images possess

characteristics similar to the training set, as the model is tailored to work specifically with

vehicles captured from particular perspectives. It is important to note that the annotations
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in the test dataset are not extensive and lack precision, as demonstrated by the samples in

figure 5.3. These annotations predominantly consist of multiple polygons rather than highly

detailed markings. However, they provide sufficient information to facilitate a comparison

of the performance of various models.

5.1 Canonical Vehicle Reconstruction

Our strategy began with a series of experiments using a variational autoencoder as a foun-

dational reference point for various architectures, or even as a pathway to enhance existing

ones. The primary goal of these preliminary investigations was to achieve a satisfactory

performance from the VAE. Specifically, we aimed for the model to reconstruct the original

image while excluding various details that might be perceived as anomalies, such as stickers

or scratches. However, it is important to acknowledge that the quality of reconstructions

is inherently constrained in this type of network. This limitation stems from the data’s

bottleneck, where a 256x256 pixel image (with three RGB values each) is compressed into a

latent vector. Subsequently, this vector is transformed into mean and variance parameters

that define a distribution. Consequently, the reconstruction process tends to compromise

high-frequency edges, leading to a significant amount of errors. Nonetheless, the data distri-

bution learning aspect of these networks remains valuable and can be effectively integrated

into other methods.

To optimize the performance of the model, two critical values need to be tuned: the

parameter α in the Kullback–Leibler divergence loss term 4.10 and the dimension of the

latent space. Additionally, the choice of the reconstruction loss term is also a parameter

that requires evaluation. In this regard, two other reconstruction loss terms, namely the

L1 norm and the SSIM error, were considered. It is important to highlight that the other

training hyperparameters remained consistent throughout, including a batch size of 64 and

a learning rate of 0.001 for 50 epochs. The performance of the model under various settings

for these three variables can be observed in Table 5.1.
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α

latent space size

training loss

Metrics

L1 MSE SSIM

α = 0.1

latent space size = 256 0.067669 0.011368 0.560986

training loss = MSE

α = 1

latent space size = 256 0.069631 0.012573 0.540283

training loss = MSE

α = 0.1

latent space size = 4096 0.059282 0.008910 0.600667

training loss = MSE

α = 0.1

latent space size = 256 0.069182 0.013941 0.536752

training loss = L1

α = 0.1

latent space size = 256 0.082236 0.017302 0.578675

training loss = SSIM

Table 5.1: Evaluation metrics of various tests conducted to calibrate the variational autoen-

coder and ensure optimal performance. The top two results per metric are emphasized.

From the experiments conducted and reported in table 5.1, additional to the evaluation

metrics, some model outputs were extracted for a quality evaluation of reconstruction quality.

Some examples are presented in Figure 5.4.
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Figure 5.4: Sample output Images from the tests presented in table 5.1. The top row displays

the original input images, while the following three rows correspond to the results in the same

order as shown in the table.

The metrics outlined in table 5.1 and the visual examples provided in Figure 5.4 highlight

the significance of the KL factor, α, on VAE’s performance. It is observed that if α is set

too high, the model becomes overly concerned with representing the learned distribution

rather than the target vehicle. To balance this trade-off, we maintained the KL factor,

α, at 0.1. Regarding the size of the latent space, it is evident that a larger latent space

enables the model to incorporate more intricate details into the outputs. However, the

advantages of expanding the latent space are accompanied by increased computational costs
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and diminishing returns. In consideration of these factors, we opted to maintain a latent

space representation with a vector size of 256. Concerning the selection of the reconstruction

loss term, it is evident that all options exhibit comparable relative performance. Thus, we

decided to maintain the Mean Squared Error (MSE) loss term.

An important consideration is that this model requires a substantial dataset for effective

training. If the dataset is too small or does not accurately represent the testing dataset, the

reconstruction process may approximate the learned distribution of a vehicle rather than

accurately capturing the characteristics of the target vehicle. Some outcomes derived from

training the VAE model on a limited dataset can be observed in figure 5.5.

Figure 5.5: Images in their original input form are displayed in the top row, while the second

row showcases the output reconstructions produced by the VAE model trained on a limited

dataset of 30,000 images.

5.2 U-Net based Supervised Solution

To obtain optimal performance with the aforementioned model, a comprehensive series

of tests was undertaken to determine the most suitable training parameters for the U-Net

network. Throughout these tests, a consistent batch size of 4, a learning rate of 0.001, and

a binary cross-entropy loss term were maintained. To enhance the model’s effectiveness,

several strategies were employed:

• Input Data Variation: A diverse range of input data combinations were explored.

Specifically, attempts were made to integrate the residual, generated by calculating

the difference between the original image and the reconstruction obtained from a VAE

specified in 5.1, with the original image. This was done to assess whether the inclusion
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of this additional information would yield a significant performance improvement. Ad-

ditionally, data augmentation techniques were applied, involving transformations such

as vertical and horizontal flips, as well as random adjustments in saturation and hue.

• Loss Expression Modification: Multiple terms were introduced into the loss expression

to evaluate the potential for substantial performance enhancements. Various terms

were incorporated, including a dice loss term 5.9, an IoU loss term 5.10, and a consis-

tency loss 5.11.

DiceLoss = 1− 2 · ypred ∩ y

ypred + y
(5.9)

IoULoss = 1− ypred ∩ y

ypred ∪ y
(5.10)

where ypred represent the model’s predictions and y are the respective labels.

ConsistencyLoss = UNet(x)− T−1(UNet(T (x))) (5.11)

where UNet is the U-Net model, T and T−1 are the geometric transformations and inverse

geometric transformations, to be applied to the input image x.

Some metrics of performed tests can be consulted in Table 5.2.
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Test

Number
Loss type

Type of input data

Metrics

Accuracy F1 Score IoU AuROC

1
Loss = BCE

Input = (Original, Residual)
0.966830 0.1429 0.135455 0.777572

2
Loss = BCE

Input = Augmented(Original, Residual)
0.969462 0.357115 0.302803 0.927475

3
Loss = BCE + Dice

Input = (Original, Residual)
0.967503 0.145738 0.127717 0.830162

4
Loss = BCE + Dice + IoU

Input = (Original, Residual)
0.967911 0.226513 0.203750 0.830579

5
Loss = Consistency(BCE + Dice + IoU)

Input = Augmented(Original, Residual)
0.970599 0.304158 0.283810 0.940015

6
Loss = Consistency(BCE)

Input = (Original, Residual)
0.964441 0.114485 0.106060 0.736113

7
Loss = Consistency(BCE)

Input = Original
0.963121 0.343424 0.280434 0.920186

8
Loss = Consistency(BCE)

Input = Residual
0.949601 0.276302 0.198167 0.895606

Table 5.2: Metrics obtained from a range of tests conducted to identify optimal parameters

for the U-Net model, ensuring its peak performance. The metrics include accuracy, F1 Score,

and IoU scores computed from masks generated using a threshold of 0.3.The top result per

metric are emphasized.

Complementary mean Receiver Operating Characteristic (ROC) curves generated by the

executed tests can be consulted in Figure 5.6.
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Figure 5.6: Mean ROC curves generated by the multiple tests.

Upon examining table 5.2, it becomes evident that augmenting the dataset offers a

promising approach for enhancing model performance, albeit at the expense of longer train-

ing times due to the increased number of data samples. Moreover, the addition of the dice

loss term results in a slight improvement in the overall model performance, while the incor-

poration of the IoU term yields a significant performance boost. Interestingly, no discernible

enhancement is observed with the application of the consistency loss across the performed

tests. Regarding the optimal input data type, reference to 5.2 reveals an unexpected out-

come where the best result is achieved using only the original image. This observation leads

us to deduce that the inclusion of the residual concatenated with the input image introduces

excessive unnecessary data into the model, potentially diminishing its overall performance.

Results obtained solely from tests utilizing the original image as input can be observed

in Figure 5.7.
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Figure 5.7: The displayed outcomes are derived from the U-Net tests. The initial row

portrays the label masks superimposed on the original images. The second row showcases

the normalized (for visualization) raw output generated by the model. Finally, the last row

presents the thresholded mask, overlaid on the original images, using a threshold of 0.3.

5.3 Multi-level based Supervised Anomaly Detection

For this suggested supervised approach, two parameters required optimization: the input

patch size, which determines the amount of information the model processes per image patch,

and the parameter α in Equation 4.5, which determines the primary objective of the model,

either classification (via the classifier branch) or reconstruction (via the decoder branch).

Rather than having the model adapt to different input patch sizes, we standardized

the input patch size to 33. To simulate other patch sizes, we employed upsampling or

downsampling of the original image from which the patches are extracted. It is worth

mentioning that each valid pixel (separated from edges by half the patch size) generates a

corresponding patch associated with that pixel.

In order to find the best parameters some test were conducted, where some metrics can

be found in the Table 5.3.
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Test Parameters Metrics

Number α / Isize Accuracy F1 Score IoU AuROC L1 MSE SSIM

1
α = 0.001

Isize = 128
0.977175 0.600337 0.443142 0.894990 0.056324 0.010807 0.541821

2
α = 0.001

Isize = 256
0.985903 0.720033 0.580209 0.942992 0.065286 0.012251 0.479412

3
α = 0.001

Isize = 512
0.986415 0.722688 0.579753 0.955051 0.049826 0.006266 0.543518

4
α = 0.01

Isize = 256
0.985541 0.714907 0.567391 0.946874 0.078542 0.016137 0.416141

5
α = 0.0001

Isize = 256
0.985315 0.708680 0.561583 0.948580 0.059182 0.010215 0.509128

Table 5.3: Metrics assessed for multiple image sizes (parameter Isize) and the model’s objec-

tive control parameter, α, for both branches of the model. The left four columns represent

classifier metrics, while the right three columns pertain to decoder metrics.

Complementary mean ROC curves generated by the executed tests can be consulted in

Figure 5.8.

Figure 5.8: Mean ROC curves generated by the multiple tests.

The tests evaluated in 5.3 generated the outputs presented in figure 5.9 for the same

input image.
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Figure 5.9: Examples of output examples derived from the models that yielded the metrics

in each row of Table 5.3. The columns follow the same order as the models in the table.

The upper row presents label masks superimposed on input images, followed by the raw

model outputs in the second row. The third row exhibits the model outputs overlaid on

their corresponding input images, and the last row highlights the decoder reconstructions.

The results presented in Table 5.3 indicate that a smaller patch size leads to improved per-

formance. However, this advantage is counterbalanced by increased computational demands,

ranging from 50,176 patches with a 256-image size to 230,400 patches with a 512-image size,

resulting in extended processing times. Additionally, the classifier results in Figure 5.9 re-

veal that the outcomes for image sizes of 256 and 512 exhibit minimal variability, as inferred

with the obtained metrics in 5.3. It is also notable that the smaller patch size (image size

of 512) is more prone to infer a positive pixel between non-positive ones, due to the reduced

information within the patch. Considering the marginal performance gain, between both

image sizes/patch sizes, in relation to the expended resources, this trade-off does not appear

justified.

Furthermore, as anticipated, a larger value of α and a smaller image size (bigger patch

size) correlate with poorer decoder reconstruction, while a smaller α and a bigger image size
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(smaller patch size) correspond to a better decoder reconstruction, as can also be confirmed

by the observation of the results in the figure 5.9. It is noteworthy that the decoder branch

primarily functions as a means of regularizing the classifier and does not significantly in-

fluence the final output. Consequently, the decoder metrics serve to offer insights into the

impact of α, rather than to determine the optimal model configuration. Reconstructions

from the decoder for various α values can be visualized in Figure 5.9. In this context, the

center pixel of each patch is associated with the corresponding valid pixel in the final image.

Non-valid pixels are copied from the original image to prevent interference with the eval-

uation metrics. The poor image reconstruction quality is because the model reconstructs

the image patch by patch which can lead to discontinuities, when the patches are stiched

together.

Additional outcomes from the model, that originated the evaluation metrics in the second

row of 5.3, are available in Figure 5.10. This model was trained with a batch size of 64 and

a learning rate of 0.001, during 10 epochs.
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Figure 5.10: The model’s outputs shown with varying input images. The top row features

label masks superimposed on input images, followed by the raw results of the model in the

second row. The third row displays the model’s results overlaying their respective input

images, and the final row showcases the decoder reconstructions.

5.4 Unsupervised Two-Stage Vehicle Anomaly Detection

In this method, we concentrated our testing efforts on each of the three key stages within

the model’s pipeline. These stages encompass impression extraction, style transfer, and the

final generation of segmentation masks through segmentation techniques.

5.4.1 Impression extraction

In the initial stage, there is no specific evaluation metric to judge the quality of an impres-

sion. The primary goal of this stage is to extract an impression that contains only the main

traits of the vehicle, without the unique elements in the input image. As the purpose is to

filter information from the input image, it is natural for a smaller reconstruction error not to
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necessarily signify a better outcome. For instance, an impression might exhibit a relatively

high reconstruction error, yet it could still contain information that contributes to a more

effective reconstruction in the subsequent style transfer phase.

To derive a satisfactory impression in this stage, the IE-Net requires fine-tuning, specifi-

cally for the KL factor parameter (α) and the reconstruction weight (λ) featured in the loss

expression (Equation 4.9). From the conducted tests, it emerged that there is no single fixed

value for both parameters. Instead, it was determined that a balance between these terms

is essential to achieve a high-quality impression. Examples of test results can be observed

in Figure 5.11.

Figure 5.11: Results generated by the IE-Net model for various input images are displayed

in each column, with the original images showcased at the top. The rows correspond to

different sets of parameters (λ and α) used in the conducted tests.

The observations from Figure 5.11 emphasize that the λ and α parameters should not

be significantly distant from each other. Additionally, the λ parameter, governing the re-

construction objective, must be equal to or greater than α. This ensures the model can
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produce a high-quality impression and not function like a standard variational autoencoder.

Moreover, in the third row of the image, we can examine the model’s performance when the

loss terms are set too low for effective learning within the same number of epochs as used

for the other models.

It is worth mentioning that all models in the tests were trained from scratch using a

batch size of 16 and a learning rate of 0.0001 for 10 epochs.

As the IE-Net impression still retains excessive vehicle details, a decision was made to

combine its output with the output of a variational autoencoder through a weighted sum,

as defined in Equation 4.11. In this final phase of impression generation, the weights WV AE

and WIE still require fine-tuning. The results of these tests can be consulted in Figure 5.12.

Figure 5.12: Outcomes of merging the IE-Net and VAE outputs through a weighted sum

for various input images. The first row showcases the original images, while the subsequent

rows display the fusion results along with the corresponding weights used.

As depicted in Figure 5.12, the fusion with the VAE output significantly enhances the

model’s ability to eliminate anomalies. Since the IE-Net generates high-quality reconstruc-

tions that retain edges with a certain level of detail, the resulting impression benefits from

a blend of these desirable attributes, aligning with our intended outcome.
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5.4.2 Style transfer

During this intermediate stage, the goal is to reconstruct the original input image from

the image impression. Hence, to assess the model’s performance, standard reconstruction

metrics are employed. In these tests, we aimed to enhance the performance of the original

model adopted from [76]. To achieve this, we introduced a VGG-19 based loss, as outlined

in 4.2.1. The evaluation metrics for both the old and newly trained models are available in

Table 5.4.

Parameters x Metrics m Metrics

Loss L1 MSE SSIM L1 MSE SSIM

Loss = L1 0.064683 0.011728 0.580240 0.034401 0.002666 0.859604

Loss = L1 + VGG 0.076862 0.013204 0.570093 0.037406 0.002787 0.881369

Table 5.4: Metrics comparing the same model with and without the VGG loss term, for both

target reconstructions (x and m).

Some example results taken from the conducted tests can be consulted in Figure 5.13.
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Figure 5.13: Results generated by the style transfer network, both with and without VGG

perceptual loss during training. Each row, from top to bottom, showcases the original

images (x), the impressions (m), the reconstructions of the original image, (x̃) and the

reconstructions of the impressions (m̃). The leftmost three columns exhibit results from

the model trained without VGG perceptual loss, while the rightmost three columns depict

results from the model trained with VGG perceptual loss.

As evident from the metrics presented in Table 5.4, the inclusion of the VGG perceptual

loss term leads to a slight increase in error when reconstructing the original image, while

the error remains relatively consistent when reconstructing the impression. However, upon

examining the results in Figure 5.13, it becomes apparent that there is an enhancement in

image quality. This phenomenon can be attributed to the fact that the network utilizing

the VGG loss tends to remove or replace certain vehicle structures that may deviate slightly

from the original image, thus increasing the overall error. Additionally, it is observable that

the model without the VGG loss encounters difficulties in accurately delineating the edges

of elements within the vehicle, as exemplified by the rims of the vehicles in the Figure 5.13.

In these style transfer networks, it is not uncommon for a higher error to be associated

with improved image quality. This is because the style transfer network possesses a degree

of flexibility in deciding which elements to retain and which to modify.

It is worth noting that both models were trained with identical hyperparameters, featur-

ing a batch size of 8 and a learning rate of 0.001.
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5.4.3 Pixel-based Anomaly Detection

In this concluding stage, the aim is to generate the final segmentation mask. In this final

stage, we conducted tests using both the original model and the modifications proposed by

us in Section 4.2.1. These modifications entail utilizing a pre-trained ResNet network instead

of a pre-trained Vgg network to extract multi-level feature maps. The obtained results are

available for reference in Table 5.5.

Test Parameters Metrics

Number Extractor Network Accuracy F1 Score IoU AuROC

1 Vgg-19 0.875278 0.147578 0.083650 0.836480

2 Resnet18 0.961838 0.131332 0.125201 0.873034

Table 5.5: Evaluation metrics of the two segmentation techniques used.

Complementary mean ROC curves generated by the executed tests can be consulted in

Figure 5.14.

Figure 5.14: Mean ROC curves generated by the multiple tests.

Sample results from both segmentation techniques are available in Figures 5.15 and 5.16

for reference.
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Figure 5.15: Results achieved via the segmentation technique using multi-level Vgg-19 feature

maps. The top row displays the original images, the second row presents the raw outputs

of the technique, and the final row showcases the thresholded masks with a threshold set at

0.5.

Figure 5.16: Outcomes obtained through the segmentation technique using multi-level

Resnet18 feature maps. The top row contains the original images, the second row dis-

plays the raw outputs of the technique, and the final row exhibits the thresholded masks

with a threshold set at 0.3.
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As evident from the results presented in Table 5.5 and by comparing the examples in

Figures 5.15 and 5.16, it is clear that segmentation using the pre-trained Resnet18 network

outperforms the Vgg Network. This superiority arises from the significantly higher occur-

rence of false positives with the Vgg Network, which is apparent in the disparities between

the two sets of figures (Figures 5.15 and 5.16). This difference is also reflected in the IoU

metric in the table, where the Vgg Network generates more positive inferences. Consequently,

the union of segmented areas is larger, resulting in a decreased IoU metric value. This effect

is further demonstrated by the disparity in accuracy between the two techniques. The F1

Score is higher with Vgg due to the high recall (a metric needed to calculate the F1 Score),

as can be taken by the Equation 5.2. This elevated recall is achieved because of the lower

number of false negatives, as can be deducted by the Equation 5.4, which is favored by the

technique, particularly in inferring positive pixels.

5.5 Final comparison

In this final section, we carried out a thorough comparison between the best-performing

models from our developed methods and other state-of-the-art approaches. A comprehensive

table displaying the evaluation metrics for all these methods can be found in Table 5.6.

Methods
Metrics

Accuracy F1 Score IoU AuROC

U-Net 0.969462 0.357115 0.302803 0.927475

Multi-level

Anomaly Detection
0.986415 0.722688 0.579753 0.955051

Unsupervised two-stage

Anomaly Detection
0.961838 0.131332 0.125201 0.873034

RIAD 0.956058 0.051057 0.053011 0.710642

GANomaly 0.960916 0.042923 0.026026 0.561780

Table 5.6: Overview of the evaluation metrics derived from the proposed multiple models

and selected state-of-the-art methods.

As indicated in Table 5.6, the supervised models exhibit the most favorable results. How-

ever, it is essential to acknowledge that achieving these outcomes required substantial label
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annotations. Nonetheless, it is worth noting that these models were trained with a relatively

small dataset, consisting of only 223 samples. Moreover, in the case of the "Multi-Modal

Anomaly Detection" approach, the dataset comprises patches of various scales, effectively

expanding the training sample pool. Regarding the unsupervised methods, the modifications

we introduced to the "Unsupervised Two-Stage Anomaly Detection" approach have signifi-

cantly enhanced its performance compared to the original method. However, it is important

to note that in unsupervised models, it becomes challenging for the model to exclusively

identify elements considered abnormal in the context of a canonical vehicle, as opposed to

elements eliminated by the reconstruction process. For instance, vehicle exterior door han-

dles might be mistakenly flagged as anomalies. This additional complexity in distinguishing

between intended anomalies and unintended variations adds a level of difficulty for the un-

supervised model to approximate the performance achieved by supervised methods, where

the target regions for anomalies are explicitly defined.
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6 Conclusion

The aim of this dissertation was to explore various strategies for detecting irregular el-

ements in a vehicle’s canonical form. To accomplish this, we began our research within

the field of supervised anomaly detection and gradually transitioned towards the domain of

unsupervised anomaly detection methods.

The supervised models generally exhibited superior performance, primarily due to their

reduced rate of false positives compared to the unsupervised methods. However, it is crucial

to acknowledge that these supervised models heavily rely on extensive label annotations,

and their effectiveness is contingent upon the quantity and representativeness of the training

data. Another noteworthy point is that all vehicles inherently possess elements that deviate

from their canonical forms, such as stickers or stamps on the windshield. This introduces

an imbalance in the dataset, potentially causing the model to detect anomalies even when

they do not align with the labels. To mitigate this issue, additional samples of canonical

vehicles (e.g., vehicles fresh off the factory assembly line) would be necessary. Alternatively,

employing video game engines or 3D rendering tools to generate normal samples of the

vehicles could offer a solution. It is important to emphasize, however, that data labeling

would still be required in these approaches.

In the unsupervised methods, a notable issue was the presence of numerous false posi-

tives. This occurred because the model lacked knowledge of the target regions that indicate

abnormal elements in a vehicle. This challenge was aggravated by the fact that the recon-

struction of the canonical vehicle, utilized by almost all the models, introduced errors. These

errors further complicated the model’s task since it had to contend with two types of errors:

those associated with elements added to the canonical cars and those stemming from the

differences between the reconstructed and the original vehicle. The unsupervised methods

are also reliant on training data to make accurate inferences. One significant challenge in

this context is the absence of a canonical vehicle dataset since, as mentioned earlier, all

vehicles exhibit abnormalities. To enhance the performance of unsupervised models, the

89



creation of a substantial dataset of canonical vehicles is necessary. For this purpose, the

techniques mentioned earlier, such as obtaining normal samples during the supervised stage,

can be employed to generate a dataset consisting of vehicles without any abnormalities. The

dataset must be extensive because these methods require a large volume of data to acquire

a robust representation.

After conducting numerous tests throughout this dissertation, two primary solutions

have been developed. One is a supervised solution, while the other is unsupervised. These

solutions effectively identify and extract non-canonical elements from vehicles and exhibit

the highest performance within their respective categories of supervised and unsupervised

learning.

6.1 Future Work

To enhance our methods, which rely on feature extraction and feature encoding, we can

explore the utilization of other state-of-the-art techniques for feature extraction. For exam-

ple, Vision Transformers (ViT) have gained significant traction in vehicle re-identification

(as exemplified in [87]) and anomaly detection (as demonstrated in [88]). Considering ViT-

based AutoEncoders, as showcased in [89], could also be a promising avenue to achieve

higher-quality reconstructions and consequently a better anomaly detection performance.

Moreover, to enhance both branches of our methods, we could employ techniques for

the removal of unwanted data from the original images. This would help focus the model’s

attention solely on the vehicle regions of interest. One approach could involve background

removal from the images, allowing only the vehicle region to influence the final outcome.

On a more particular note, in order to enhance our proposed unsupervised architec-

ture, a more proficient approach to extracting the impression would be necessary. Rather

than training a variational autoencoder and an IE-Net network separately, a fusion of both

architectures could be implemented to directly generate an impression.
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