

Pedro Miguel Cera Ramos dos Santos

SKELETON BASED HUMAN ACTIVITY

PERFORMANCE EVALUATION IN

TELE-REHABILITATION

Dissertação no âmbito do Mestrado em Engenharia Eletrotécnica

e de Computadores, Especialização em Computadores orientada

pelo Professor Doutor Paulo José Monteiro Peixoto e apresentada

ao Departamento de Engenharia Eletrotécnica e de Computadores

da Faculdade de Ciências e Tecnologias da Universidade de

Coimbra.

Julho de 2023

Skeleton Based Activity Performance

Evaluation in Tele-Rehabilitation

Pedro Miguel Cera Ramos dos Santos

Coimbra, July 2023

Skeleton Based Activity Performance

Evaluation in Tele-Rehabilitation

Supervisor: Professor Dr. Paulo José Monteiro Peixoto

Co-Supervisor: Professor Dr. João Luís Ruivo Carvalho Paulo

Jury:

Prof. Dr. Paulo José Monteiro Peixoto

Prof. Dr. Paulo Jorge Carvalho Menezes

Prof. Dr. António Paulo Mendes Breda Dias Coimbra

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, July 2023

Acknowledgements

The elaboration of this Master’s Thesis consisted of a long journey that included numer-

ous challenges and obstacles along the way, which were only overcome with the support and

contribution of several people indispensable to the realization of this dream.

Therefore, I want to express my utmost gratitude and appreciation to all those who,

directly or indirectly, allowed and contributed to the completion of this Dissertation, as well

as to my academic and personal development.

Firstly, I would like to express my gratitude to my advisor, Professor Dr. Paulo José

Monteiro Peixoto, from the Department of Electrical Engineering and Computers at the

University of Coimbra, for all the guidance, encouragement, availability, knowledge imparted,

and for all the ideas and suggestions proposed to bring this project to a successful outcome.

Thank you, Professor, for the opportunity to carry out this thesis and for fostering in me

the pursuit of knowledge and a critical mindset.

I also want to express my gratitude, in equal measure, to Dr. João Luís Ruivo Carvalho

Paulo for his availability and daily guidance demonstrated in the laboratory work, his in-

credible patience, and the encouragement provided, which never allowed discouragement to

set in. I am grateful for all the knowledge imparted during these months.

To the ISR (Institute of Systems and Robotics of the Department of Electrical Engi-

neering and Computers of the University of Coimbra) and the entire team that is part of

this institute, I would like to express my gratitude for the welcoming and support provided

throughout the completion of this project.

To the entire Alpha Soure 2023 team, from the parish of Soure, especially Table 4, I want

to express my gratitude for coming into my life during this stage. Thank you all for bringing

more balance and lightness to my life and for becoming family to me.

To my family, I am grateful for all the support and kindness they have always shown me,

my mother and my two aunts Maria Teresa and Cristina whom unconditionally supported

me in the toughest times. Although all the gratitude in the world is not enough to thank

ii

them for everything they have done for me, I especially want to thank my grandparents

for their support, encouragement, patience, motivation, dedication, and for all the sacrifices

they have made for me to reach this point. I will be forever grateful to you!

To my esteemed friends, those, be they far or near, and those from childhood who helped

me with these hurdles. A special thanks to my colleague and close friend Miguel Ângelo

Soares Cerveira Varandas, who helped me with this thesis and provided a constant source

of laughter.

Lastly, I need to thank my girlfriend Catarina, who for the last 9 years gave me a new

focus in life. For all the support she gave me, the laughs and the tears, for walking besides

me however steep and ragged the road may be. Thank you for helping me to find a purpose

in life.

iii

Resumo

O ramo de aprendizagem computacional, ou machine learning, tem sido alvo de bastantes

avanços e investimentos tanto do ponto de vista académico bem como em prol da indústria

e serviços. Desenvolvimentos e investigação de novas ideias e definições nesta área têm sido

uma ocorrência semanal. Estes progressos surgem maioritariamente pelo investimento em

aprendizagem profunda (deep learning). Os modelos de aprendizagem profunda, alicerçam-

se nas arquiteturas de redes neuronais artificiais, que por si, são modelos computacionais

inspirados pela estrutura e função do cérebro humano. Estes modelos consistem de várias

camadas de neurónios artificiais que são "capazes" de aprender automaticamente e extrair

representações hierárquicas dos dados de entrada. Com isto, esta tese propõe-se a implemen-

tar um sistema, para a avaliação do movimento esqueleto humano para análise da correção

da execução de exercícios de prevenção de comorbidades musculo-esqueletais com base em

sistemas de aprendizagem computacional. Este sistema avalia as capacidades do estado da

arte na avaliação de um esqueleto virtual. Para esse fim o método separa-se em duas tarefas

de avaliação diferentes, sabendo à ‘priori’ que o movimento tende a repetir-se e a ser uma

sequência temporal.

O primeiro é uma rede neuronal recorrente bidirecional (LSTM) com mecanismos de

auto-atenção (self-attention) de modo a conseguir distinguir entre um exercício bem feito de

outro mal feito. O segundo é uma proposta mais ousada, uma rede que permite a predição

do movimento tendo em consideração uma sequência contextual. Este método, baseia-se no

simples facto de que um esqueleto humano e as suas ligações entre articulações são muito bem

codificadas por grafos. Logo a rede a utilizar é uma versão que tem em conta as mudanças

espaço-temporais de um grafo, que permite a avaliação da evolução temporal e da interação

destas com as juntas. Assim opta-se pela utilização de Redes de Neuronais de Convolução de

Grafos, visto que esta, garante a extração de características, features, e outras representações

dos grafos, conferindo assim, a análise de uma ampla gama de grafos e tarefas.

iv

Vários datasets de movimento humano são utilizados, entre eles, o conhecido Human3.6M

[1] em formato 3D Cartesiano e 3D Euler, AMASS [2] em formato 3D Cartesiano e por fim

um dataset não aberto ao público que advém de outro projeto "The PROZIS Challenge". O

primeiro método, para reconhecimento de ações, é um dos melhores da literatura, apresenta

uma accuracy de 96% na classificação da correção da execução de exercícios. Os métodos de

predição do movimento são capazes de criar predições fidedignas quando apresentados com

um bom contexto, em ações lineares com repetição, como andar ou correr. Estes conseguem

prever até 1 segundo ou 30 frames a 30Hz sem uma grande acumulação de erro.

Por fim estes métodos são sujeitos a uma bateria de testes e comparados com os demais

da literatura, apresentam resultados bastante promissores e com feedback visual ilustrador

dos erros e da correção do movimento.

Keywords: Machine Learning, Deep Learning, Skeletal Landmarks, Action Recognition,

Motion Prediction, Sequence Analysis, Recurrent Neural Networks, Graph Neural Networks.

v

Abstract

The field of machine learning, has been the subject of significant advances and investments,

both from an academic standpoint and in support of industry and services. Developments

and research of new ideas and definitions in this area have been a weekly occurrence. These

advancements largely arise from investments in deep learning. Deep learning models are

based on artificial neural network architectures, which themselves are computational models

inspired by the structure and function of the human brain. These models consist of multi-

ple layers of artificial neurons that are "capable" of automatically learning and extracting

hierarchical representations from input data.

With this in mind, this thesis aims to implement a system for evaluating human skeleton

movement for prevention exercises of various muscle-skeletal comorbidities based on compu-

tational learning systems. This system assesses the state-of-the-art capabilities in evaluating

a virtual skeleton. For this purpose, the proposed method is divided into two different evalu-

ation tasks, knowing a priori that the movement tends to repeat and be a temporal sequence.

The first method is a bidirectional recurrent neural network with self-attention mechanisms

to distinguish between well-executed and poorly executed exercises. The second method is a

more ambitious proposal: a network that allows movement prediction considering a contex-

tual sequence. This method is based on the simple fact that a human skeleton and its joint

connections are well-encoded by graphs. Therefore, the network used is a version that takes

into account the spatio-temporal changes of a graph, enabling the evaluation of temporal

evolution and the interaction of joints. Thus, the use of Graph Convolutional Neural Net-

works is chosen, as they ensure the extraction of features and other graph representations,

allowing the analysis of a wide range of graphs and tasks.

Various human motion datasets are used, including the well-known Human3.6M dataset

[1] in Cartesian 3D and Euler 3D formats, AMASS dataset [2] in Cartesian 3D format, and

finally, a non-public dataset provided by the work made by another project, "The PROZIS

vi

Challenge". The first method, for action recognition, is one of the best in the literature,

achieving an accuracy of 96% in classifying exercise execution correctness. The motion

prediction methods are capable of generating reliable predictions when presented with good

context, particularly in linear repetitive actions such as walking or running. They can predict

up to 1 second or 30 frames at 30Hz without significant error accumulation.

Finally, these methods undergo a battery of tests and are compared with others in the

literature, presenting very promising results and providing illustrative visual feedback on

errors and motion correction.

Keywords: Machine Learning, Deep Learning, Skeletal Landmarks, Action Recognition,

Motion Prediction, Sequence Analysis, Recurrent Neural Networks, Graph Neural Networks.

vii

"We know it will be hard, we expect it to be long..."

— Sir Winston, Churchill

Contents

Acknowledgements ii

Resumo iv

Abstract vi

List of Acronyms xiv

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Motivation and Context . 1

1.2 Problem Formulation . 2

1.3 Objective . 2

1.3.1 A Note on Machine Learning . 3

1.4 Human to Machine Locomotion Representation 5

1.4.1 Joint Representation . 5

1.4.2 Pose Modelling . 5

1.4.3 Temporal Variability . 6

1.5 System Goals . 8

1.6 Document Outline . 8

2 Background 9

2.1 Machine learning . 9

2.1.1 Brief History of Machine Learning . 9

2.2 Recurrent Neural Networks . 12

2.2.1 The Recurrent Neural Network Architecture 12

x

2.2.2 Long-Short-Term Memory Networks 19

2.2.3 Attention Mechanisms . 22

2.2.4 Common Attention Mechanisms . 24

2.3 Graph Neural Networks . 28

2.3.1 Architecture and Pipeline of the Typical GNN 28

2.3.2 The Convolutional GNN . 31

3 Related Work 35

3.1 Human Motion Models . 35

3.1.1 RNN Based Classification . 35

3.1.2 Recent improvements . 37

3.1.3 RNN Based Prediction . 38

3.1.4 Graph Based Motion Prediction . 41

3.1.5 Considerations on the Transformer Architecture 42

3.2 Skeleton Parameterization . 44

3.2.1 Exponential Mapping and Lie Algebra 44

4 Developed Work 47

4.1 Pipeline of the Proposed Approach . 47

4.1.1 Experimental Datasets . 48

4.2 Action Recognition . 48

4.2.1 Coskun’s Self Attentive LSTM . 49

4.3 Motion Prediction . 53

4.3.1 Space-Time-Separable Graph Convolutional Network 53

4.3.2 Spatio-Temporal Separable Convolutions and Self-Attention 55

4.3.3 Spatial-Temporal Anchor-based Sampling 56

4.3.4 Training . 62

5 Results and Discussion 65

5.1 Metrics and Evaluation . 65

5.2 Evaluation of the Baseline Methods . 67

5.2.1 Evaluation of Coskun’s Attentive LSTM 67

5.2.2 Evaluation of STARS and STS-GCN 69

5.3 Results . 72

5.3.1 The PROZIS Challenge Dataset . 72

xi

5.3.2 Action Recognition . 72

5.3.3 Motion Prediction and Feedback . 73

6 Conclusion and Future Work 79

6.1 Future Work . 80

A Lie Group Theory and Exponential Maps 98

xii

xiii

List of Acronyms

AI Artificial Inteligence

ANN Artificial Neural Network

AMASS Archive of Motion Capture As Surface Shapes

BiLSTM Bidirectional Long-Short Term Memory

BPTT Backwards Propagation Through Time

CNN Convolutional Neral Network

ConvGNN Convolutional Neural Network

DCT Discrete Cosine Transform

DGN Deep Generative Models

DL Deep Learning

DTW Dynamic Time Warping

EM Euclidean Matching

FN False Negative

FP False Positive

FPR False Positive Rate

GAT Graph Attention Network

GCN Graph Convolutional Network

GNN Graph Neural Network

xiv

IESTGCN Interaction-Enhanced Spatial-Temporal Graph Convolutional

Network

IID Independent and Identically Distributed random variables

INPACT Intelligent Platform for Autonomous Collaborative

Telerehabilitation

ISR Institute of Systems and Robotics

JPE Join Position Error

LNLSTM Layer Normalized Long-Short Term Memory

LSTM Long-Short Term Memory

ML Machine Learning

MLP Multi-Layered Perceptron

MMD Maximum Mean Discrepancy

MPJPE Mean Per Joint Position Error

NCA Neighbourhood COmponents Analysis

NMI Normalised Mutual Information

R and D Research and Development

ReLU Rectified Linear Unit

RNN Recurrent Neural Networks

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

SRNN Structural Recurrent Neural Network

ST Spacio-Temporal

STARS Spatial-Temporal Anchor-based Samplin

STSGCN Space-Time Separable Graph Convolutional Network

xv

TN True Negative

TP True Positive

TPR True Positive Rate

xvi

List of Figures

1.1 Spine analysis system’s user feedback [16] . 3

1.2 Virtual joint representation of the human body. 6

1.3 Differences Between Euclidean Matching and Dynamic Time Warping [38]. . 7

1.4 Simple RNN and its unfolding through time, writing as a network for the

complete sequence [39] . 7

2.1 Range of Simple RNNs . 12

2.2 Similar to 1.4, this Figure shows the unfolded state of a RNN layer and the

connections between recurrent units [54]. 13

2.3 Common types of activation functions. 15

2.4 Differentiable Function [57]. 16

2.5 Non-Differentiable Function [57]. 16

2.6 Convex and Non-Convex Function [57]. 16

2.7 LSTM Cell [64] . 20

2.8 Unrolled Bidirectional LSTM [67] . 22

2.9 The attention mechanism computes a linear combination over values vi via

attention pooling, where weights are derived according to the compatibility

between q and ki [64] . 23

2.10 Multi-head attention involves concatenating multiple heads and subsequently

linearly transforming them [64]. 26

2.11 Comparison of the CNN, RNN and Self Attention architectures [64] 27

2.12 Conversion of nodes to feature vectors in a GNN [78] 29

2.13 Architecture of a GNN [78] . 30

3.1 Measurement of the similarity to a query sequence (Walking) as per [88] . . 35

3.2 Motion prediction [24].

. 35

xvii

3.3 LSTM3LR architecture . 39

3.4 ERD based on the LSTM3LR architecture. 39

3.5 Fragkiadaki et al.’s work in RNNs for motion recognition [23], [105] 39

3.6 Martinez et al. implementation of short time prediction [23] 40

3.7 Learnt joint relations following a kinematic tree and other connections between

joints [25] . 42

3.8 An example spatio-temporal graph in the human activity context [26] 42

4.1 High level pipeline of the proposed method. 48

4.2 Coskun et al.’s Network. [88] a) the architecture itself. and b) the attention

based model that uses layered normalization 50

4.3 Pipeline of the STS-GCN according to Sofianos et al. [25] 53

4.4 Spatial-Temporal AnchoR-based Sampling [102] 57

4.5 The optimization process involves the joint optimization of anchors and net-

work parameters [102] . 58

4.6 Combination of ST anchors, sampled noise with the backing STGCN [102] . 60

5.1 The F1 scores and Normalized Mutual Information of 3 of the best baselines

and Coskun et al.’s method MMD-NCA [88] 68

5.2 Attention mechanism in play [88] . 68

5.3 Results for an experiment in the conditions above stated in 4.2.1 75

5.4 Sequence of 25 images in a walking exercise 76

5.5 Sequence of 25 walking frames proving the importance of historic context . . 78

xviii

List of Tables

2.1 Notable Advancements in AI and ML, by [48] 11

2.2 Comparison of Complexity, Sequential Operations and Maximum Path Length

as per Vaswani et al. and Aston Zhang et al. [64], [70] 27

5.1 Comparison of the FPR . 67

5.2 Comparative analysis of the obtained results. 70

5.3 Average Comparison between multiple methods. 71

xix

1 Introduction

Advances in technology and computing capabilities have led to the search for digital

solutions to address inherent human ills. Usually, the digitalization of medicine refers to the

transformation of analogue storage systems, i.e. paper-based, networked electronic patient

record systems [3]. However, this view of digitalization is incomplete.

In general, digitalization is and has become a very important innovation in all areas

of daily life [4], [5]. The greatest impact of digitalization in the 21st century has focused

on the influence of digital innovations in medicine and physical well-being [4], [6]. Some of

these innovations will have minimal impact on society, while others will have a huge impact

[4], [7] that can be considered technological game changers.

1.1 Motivation and Context

Medical care has developed at an unprecedented pace. The large amount of infor-

mation and data, as well as their reliability, lead to a change in the interaction between the

patient and the medical professional [4]. Physiotherapy, as one of the areas of healthcare,

can be improved through digitalisation, which allows for better collaboration between the

two parties mentioned above, as well as a significant improvement in the quality of life of

patients [8]–[11].

As a rule, participation in physiotherapy and rehabilitation measures is essential [12]

for post-operative recovery or even as treatment for various musculoskeletal diseases [12].

However, the presence of a professional for all rehabilitation interventions may sometimes

not be feasible or economically justifiable [12], [13]. Thus, current health care systems

(despite some steps taken during and after the Covid 19 pandemic) continue to be based

on rehabilitation programmes in which a first phase of treatment is provided in person in

special facilities under the direct supervision of a health professional. In the second phase,

the patient is advised to perform rehabilitation exercises in an external environment, usually

1

at home [14].

1.2 Problem Formulation

The incidence of musculoskeletal problems is increasing due to an inactive lifestyle

and an ageing population. As a result, the demand for rehabilitation services to maintain

people’s mobility and functionality is increasing. However, the provision of continuous care

is a challenge for health systems and places a social, economic and psychological burden on

patients and their families. Telerehabilitation is a potential solution that allows individuals

to take control of their condition and improve their overall well-being. This approach offers

significant cost savings by eliminating travel expenses, in-person therapy sessions, absen-

teeism and medication. It also allows for more frequent training sessions from the comfort

of home, promotes motivation through personalised programmes and incorporates interac-

tive elements such as serious games to increase treatment adherence. The effectiveness of

telerehabilitation is scientifically proven and shows comparable or even better results than

conventional interventions [15].

1.3 Objective

Due to the periodic nature of movement and exercises, some assumptions can be

made. The exercises tend to be repetitive, of unknown lengths and data quantity.

This project is part of a bigger project (INPACT) of the Institute of Systems and

Robotics (ISR), which aims to create a cost-effective and to facilitate access to rehabilitation

services and ensure greater equity within a portable station, which also has an impact on

shortening waiting lists. It allows for the development of a telerehabilitation platform with a

user interface that suggests exercises pre-configured remotely by a therapist. The proposed

system monitors the user’s performance and provides real-time feedback. It is innovative

in that it provides holistic visual perception of the user’s body movements, without the use

of markers and with an autonomous ability to analyse performance using machine learning

techniques. The information obtained for each user is centralised in the cloud, allowing

autonomous temporal analysis of the user’s performance over multiple rehabilitation sessions

and the generation of alerts to the therapist whenever there is a deviation from the plan [15].

Due to the need to provide feedback internally and externally in the context of physiotherapy

and rehabilitation, the comprehensive Intelligent Platform For Autonomous Collaborative

2

Telerehabilitation (INPACT) project was created.

Nevertheless, the INPACT project will also try to improve on the existing state

of the art by implementing new and novel machine learning technologies such a motion

prediction feature using skeleton based data and a spinal curvature assessment, using a 3D

mesh character allowing a precise fit to the back regions, as show in Figure 1.1 [16], [17].

(a) (b)

(c) (d)

Figure 1.1: Spine analysis system’s user feedback [16]

This work aims to be at the local backend part of the project. More specifically, as

the title suggests, evaluating the "goodness" of movements with the help of a virtual skeleton

using robust Machine Learning (ML) solutions and outputting a set of parameters that can

be used to provide feedback to the user. Thus, this thesis will not focus on the skeleton

extraction and front end of the project, even if some general guides will be given throughout

the rest of this document. Thus, the input is assumed as being an already extracted skeleton

and through the use of ML methods, relevant metrics and feedback will be provided to the

user, Such as an overall metric score of the goodness of the execution or even a representation

of this movement through time.

1.3.1 A Note on Machine Learning

Pertaining to the previously made assumptions, ML approaches are one of the best

choices for human movement and sequence analysis. Thus, compared to other traditional

3

methods, ML has some advantages:

• Automatization: ML algorithms can analyse large volumes of video data automatically,

without the need for manual intervention.

• Scalability: ML models can scale to analyse vast amounts of video data.

• Adaptability: ML models can adapt and learn from new data, allowing them to im-

prove their performance over time. As more video data becomes available, machine

learning models can continuously update and refine their understanding, leading to

better analysis results.

• Pattern recognition: Probably the most important aspect, ML excels at recognizing

patterns in video data. Convolutional Neural Networks (CNNs), a popular class of ma-

chine learning models for image and video analysis, are designed to detect and classify

visual patterns. These models can detect objects, track movement, recognize actions,

and even understand complex scenes, surpassing the capabilities of many traditional

methods.

• Real-time analysis: ML models can be optimized to perform video analysis in real-time

or near real-time. In most cases, the inference process takes less time to execute than

its traditional counterpart, possibly allowing for a real time analysis or at least a faster

inference process [18].

In general, within the spectrum of artificial neural networks (ANNs), convolutional

neural networks (CNNs) and recurrent neural networks (RNNs) have been the best choice

within the spectrum of artificial neural networks (ANNs) for image processing and sequence

analysis though there are novel architectures and other approaches rising in usage.

CNNs are similar to traditional ANNs in that they consist of neurons that self-optimise by

updating the weights along with the extraction layers for the features, through an algorithm

called backpropagation. In practise, each neuron receives an input signal needed for oper-

ation (scalar non-linear function). By default, CNNs are coupled with image classification

models [19].

4

1.4 Human to Machine Locomotion Representation

Man has perfected the prediction and analysis of the evolution of the world around

him over millions of years. How are we able to make short-term predictions about the

evolution of various environmental phenomena? Be it catching falling fruit or shooting clay

for fun. How do boxers know when to dodge a punch? This short-term prediction is an

amazing aspect of human physiology.

For these and many other reasons pertaining to this thesis, a machine must adapt

its behaviour and focus its attention on certain parts when interacting with humans [20].

Therefore, digital human pose representation is essential, as shown in the Figure 1.2, skeleton-

based pose representations are inherently attractive due to their comparatively small number

of variables, as they are robust to changes in viewpoint, scale, movement speed and real-time

performance [20]–[22].

1.4.1 Joint Representation

Most systems for parameterising the human body for a digital skeleton use one of

four forms: Cartesian 2D or 2D joint angles, Cartesian 3D coordinates and 3D angles. These

are usually calculated based on an RGB image. Then, using computer vision algorithms or

neural networks, these skeletal key-points, or joints, are extracted as a 2D model or as a 3D

estimation of the 2D model. However, Julieta Martinez et al. [23] applies a transformation

into residuals where velocity can be useful, using frequency to help with periodic motion. Wei

Mao et al. [24] also use a discrete cosine transform (DCT), which is excellent for analysing

periodic motion [25]. Ashesh Jain et al. [26] and Zhenguang Liu et al. [20] used novel

approaches using Lie algebra parametrisations in exponential maps.

1.4.2 Pose Modelling

To represent poses and describe human movement, more orthodox methods follow

mathematical models of representation that fall into one of two categories: Top-down ap-

proaches, which introduce latent states to describe the temporal dynamics of movements,

and bottom-up approaches, which use local features to represent movements [12]. Tradi-

tional methods in the first category include Kalman filters, hidden Markov models or even

Gaussian mixed models [12], [20], [29]–[31]. These methods are not the "be-all and end-all"

of motion representation and have some drawbacks, in the case of Kalman to linearise the

5

(a) Keypoint capture in a human silhouette [27]. (b) Skeleton keypoint representation of human in

a RGB image [28].

Figure 1.2: Virtual joint representation of the human body.

transitions between latent states or the assumption of simple structures of the latent states

themselves, i.e. Hidden Markov. Bottom-up approaches rely on the extraction of local

features in order to use predefined criteria in identifying key points, postures or statistics

derived from these (average, median, standard deviation). This limits the ability to deal

with temporal variations within the data [12], [32]–[34].

1.4.3 Temporal Variability

Time series prediction is a very important area of research because many types of

data change along the time axis. In the classical models of ML, the feature engineering is

done manually, and the parameters are optimised considering the domain model [35]. There-

fore, there are some clever matching techniques between temporal sequences, i.e. Euclidean

Matching (EM) and Dynamic Time Warping (DTW), the latter being the more popular of

the two due to its point-to-point matching compared to one-to-one matching via EM [36]–

[38]. DTW is thus used to check similarities between two temporal sequences with variable

length and variable speed, as illustrated in Figure 1.3 [37], [38].

Nevertheless, there have been advances in deep learning and machine learning algo-

rithms that have enabled the processing of time series. As the number of layers increases, the

complexity of the Artificial Neural Network also increases, commonly referred to as "deep

learning" [39], [40]. In general, the layers in ANNs consist of simple non-linear units. The

higher the number of layers, the more abstract the data representation and the suppression

of unwanted variability [39], [40].

Recurrent Neural Networks, (RNNs) are ANNs with recurrent connections that are

6

Figure 1.3: Differences Between Euclidean Matching and Dynamic Time Warping [38].

Figure 1.4: Simple RNN and its unfolding through time, writing as a network for the complete

sequence [39]

capable of modelling sequential data for sequence recognition or prediction [39], [41]. Struc-

turally (Figure 1.4), the hidden states of a recurrent unit act as the "memory" of the network

and the state of the layer is determined by the previous layer [40], [42]. Thus, this type of

network can chop and process past signals over time, map an input sequence to the output

at the current time step, and predict the sequence at the next time step [39], [41], [42].

7

1.5 System Goals

As aforementioned, the proposed system will use a ML approach that should be

capable of processing a large quantity of skeleton-parameterized sequences, thus some re-

quirements can be defined:

• Analysis of sequences of varying lengths.

• Providing a robust model capable of detecting execution errors.

• Implementation of novel ways to qualify movement accuracy.

• Capable of giving visual feedback and other metrics for the evaluation of movement.

1.6 Document Outline

The document is split in 6 main chaptersI In this first chapter, the requirements are

outlined, and the problem formulated, as well as the proposal for the solution found.

In the second chapter, an overview of the machine learning base methods will be

given, and how these methods influence the chosen direction of this work’s pipeline.

The third chapter consists of a description of the methods of the state-of-the-art, as

well as their pros and cons.

The fourth chapter focuses on the detailed inner workings the selected architectures

for this thesis as well as giving a needed insight on data parameterization and preprocessing

After this, in the fifth chapter, both the quantitative and qualitative results of the

methods will be described as well as the datasets used for the extracted quality metrics.

Lastly, chapter six is used for the presentation of the conclusions drawn from the

extracted metrics and other qualitative features, as well as some notes about the future work

to enhance or improve the current methods.

8

2 Background

This chapter will give a theoretical overview of the state-of-the-art architectures

used in some common Machine Learning algorithms and the reasoning behind them. Due to

the broad spectrum of possible solutions, some approaches were purposely left out, during

the early stages of the project.

2.1 Machine learning

ML consists of a branch in the field of artificial intelligence based on the use of

statistical models to make predictions. This is usually described as a form of predictive

analysis, where the function of the computer is to learn a task without being explicitly

programmed to perform it [14]. In general, ML algorithms use empirical data and analyse

it based on algorithms for minimising nonlinear error functions [12], [43].

2.1.1 Brief History of Machine Learning

In this half of the twenty-first century, due to many factors, including ever-expanding

computational capabilities, ML is a tool to harness technologies around artificial intelligence

because of its learning and decision-making capabilities [44]. As Zhou notes [45], ML is a

product of AI studies in the late 1940s, 1950s and 1970s, when it was ambiguously thought

that machines could become intelligent if they could think logically. According to Hebb

[46], machine learning is based on the interaction between brain cells, on neuron excitation

and neuron communication [44]. Hebb’s model can be described as a way to change the

relationship between neurons (nodes) [44]. This relationship can be strengthened when two

neurons are activated simultaneously or weakened when they are activated separately, the

strength of this so-called relationship is known in the literature as “weight” [19], [44], [47].

In the 1950s, Arthur Samuel of IBM developed an algorithm for playing checkers.

This algorithm used a scoring function that attempted to measure the probability of win-

9

ning and chose its next move using a min-max strategy [44]. In 1957, psychologist Frank

Rosenblatt, working at Cornell Aeronautical Laboratory, developed the first perceptron using

Hebb’s model of brain cell interaction and Arthur Samuel’s work. The software developed

for the IBM 704 was used for image recognition [44]. In the Table 2.1 there can be found a

timeline of some achievements of research in artificial intelligence.

10

Year Contributor(s) Contribution

1873 Alexander Bain Introduction of Neural Groupings, early

models of neural networks

1943 McCulloch and Pitts MCP Model. The ancestor of ANNs

1949 Donald Hebb Hebbian learning rule, the foundation of

modern NNs

1958 Frank Rosenblatt Introduction of the first proto-perceptron

1974 Paul Werbos Introduction of backpropagation

1980 Teuco Kohonen Introduction of the Self Organizing Map

1980 Kunihiko Fukushima Introduced Neocogitron (proto-

Convolutional NN)

1982 John Hopfield Introduction of the Hopfield Network

1985 Hilton and Sejnowski Introduction of the Boltzmann machine

1986 Paul Smolensky Introduction of Harmonium (Restricted

Boltzmann machine)

1986 Michael I. Jordan Definition and introduction of the Recurrent

Neural Network

1990 Yan LeCun Introduction of LeNet, confirmation of the

possibility of deep neural networks

1997 Schuster and Paliwal Introduced Bidirectional RNNs

1997 Hochreiter and Schmidhu-

ber

Introduction of LSTM

2006 Geoffrey Hinton Introduction of Deep Belief Networks

2009 Salakhutdinov and Hinton Introduction of Deep Boltzmann Machines

2012 Geoffrey Hinton Introduction of Dropout

2013 Graves Introduction of Stacked LSTMs

2015 Mikolov Structurally constrained RNN

2017 Jing Introduction of Gated orthogonal recurrent

units

Table 2.1: Notable Advancements in AI and ML, by [48]

11

2.2 Recurrent Neural Networks

Recurrent Neural Networks have, since the mid-’90s, been the foci of a good deal

of research and development teams [49]. RNNs are a part of supervised training models

with closed loop (feedback) connections, designed to learn time-varying data and sequences

[39], [49]–[51]. RNNs have been applied to a varied list of problems. By the late ’80s, some

partially recurrent networks were published by many researchers of renown, like Rumelhart,

Hinton and Williams to learn strings of characters [49]. Since then, RNNs have been used in

countless topics, like object tracking, data forecasting and other time-sensitive minimization

tasks.

2.2.1 The Recurrent Neural Network Architecture

Traditional RNN consists of three layers. The input, the recurrent layer and the

output layer. The output of the last time step is used as the input of the current time step

[39], [52]. The input layer has N inputs, where each input is a sequence of vectors through

discrete time, such as {..., xt−1xt, xt+1, ...}, whence xt = (x1, x2, ..., xN) [39], [52], [53]. Thus,

according to Jain and Medsker, [49], RNN architectures range from fully connected and

partially connected (Figure 2.1), the latter being used to learn strings of characters in the

early ’80s, hence the focus of this thesis will be on the former. Thus, in a fully connected

(a) Simple fully connected RNN [49] (b) Simple partially connected RNN [49].

Figure 2.1: Range of Simple RNNs

RNN, the input units are connected to the hidden layer, with the connections parameterised

by a weight matrix WU [39], [53], [54]. The connections from the hidden to hidden layer

are parameterised by the weight matrix WW and finally the connections from the hidden to

the output layer are mapped by WV . These weights WU,W,V are shared across different time

12

steps [39], [54].

Hidden layers and Recurrent Units

The hidden layer has M recurrent units ht = {h1, h2, ..., hm} connected by recurrent

links. It is important to note that initialising each hidden unit with small but non-zero

elements can improve the stability and performance of the network[39], [53], [54]. The space

Figure 2.2: Similar to 1.4, this Figure shows the unfolded state of a RNN layer and the

connections between recurrent units [54].

state, or “memory” is defined by the hidden layer as the following equations:

ht = fH(ot) (2.1)

Given that:

ot = WU xt + WW ht−1 + bh (2.2)

fH() being the activation function of the hidden layer, and bh the bias vector of the hidden

units. Thus, the output layer, having P units where, yt = (y1, y2, ..., yP), connected to the

output layer through weighted connections WV computed as:

yt = fO(WV ht + bo) (2.3)

Here, fO() is the activation function of the output layer, assuming the same thought

process, bo being the output layer bias [39], [49], [52]–[54]. Since the pairs input-target are

sequential through time, the above equations need to be consequently repeated over finite

time steps t = 1, ..., T . The general steps to follow are:

1. Initialize the weight matrices WU,W,V , following a random distribution bias, with small

non-zero values.

2. Forward propagation to calculate predictions.

13

3. Compute the loss.

4. Backpropagation to calculate the gradients.

5. Update the weight matrices based on the computed gradients.

6. Repeat steps 2-5 through each time step.

The equations 2.1 and 2.3 show that RNNs make use of non-linear, time iterable

state equations [39], [49], [52]–[54]. At each time step, a prediction is made and passed

between the hidden states and the output layer, as shown in the equations 2.1 and 2.2, ht is

calculated using the current input and the hidden state of the previous time step [54]. These

hidden states summarise the unique necessary information of past states across multiple time

steps [39]. RNNs use simple non-linear activation functions for all units. This enables the

modelling of complex dynamics [39], [49], [54].

Activation Function

Regardless of how many hidden layers a network has, if the activation function is

linear, these multiple “linear” hidden layers behave like a single hidden layer [41]. The most

commonly used activation functions include the rectified linear unit (ReLU), the sigmoid

function and the hyperbolic tangent and some others as shown in Figure 2.3. The sigmoid

function, a known activation function, takes a real value and “squeezes” it into the range [

0,1] [39], [53], [54]. The sigmoid is usually used in the output layers, where a cross entropy

function is used. The hyperbolic tangent (tanh), is a scaled version of the sigmoid [39].

These are defined as:

tanh(x) =
e2x − 1

e2x + 1
(2.4)

and

σ(x) =
1

1 + e−x
(2.5)

or

σ(x) =
tanh(x

2
) + 1

2
(2.6)

ReLU is also a very common function, due to its simplicity and fast computing time, even

though it is open-ended for positive input values [39]. it is defined as:

y(x) = max(x, 0) (2.7)

The activation function depends on the type of data, i.e. the sigmoid function is normally

used in networks where the output is between 0 and 1. However, the sigmoid and hyperbolic

14

tangent functions saturate very quickly and can cause problems with the vanishing gradient,

leading to unstable dynamics in the gradient updates [52], [53], [55]. Therefore, the ReLU

activation function can lead to sparser gradients and significantly accelerate the convergence

of the stochastic gradient descent [41], [56].

Figure 2.3: Common types of activation functions.

However, ReLU does not perform well when paired against a large gradient flow. As

the weight matrix grows, neurons may remain inactive during training [56].

Learning Methods and Gradient Descent

The focus of any neural network is to minimise/maximise a particular function

through an optimisation method. Gradient descent is a very popular and simple method to

find the local minimum/maximum. In ML and Deep Learning (DL) this method is used to

find the local minimum of a given loss function [41], [57]. Most other optimisation methods

are based on the concept of gradient descent. Thus, in most gradient descent algorithms, an

initial point must be chosen, and the algorithm is performed as follows:

wk = wk−1 − α∇g(wk−1) (2.8)

where α is the step size or more commonly known as the learning rate and wk−1, the current

position which paired with the next step, wk denotes the direction to follow and g(), the

multivariate differentiable function in a neighbourhood of the point wk−1. This minimization

must follow the first-order optimality condition, as shown in equation 2.9 [41], [58]. The first

derivatives of a function are always zero at the function’s minima. This happens because

15

minima are naturally found at the bottom of valleys where the tangent line or hyperplane

touching the function is completely flat, resulting in a slope of zero.

Since the derivative or gradient at a specific point provides information about this

slope, the values of the first derivatives serve as a useful means of identifying minimum values

of a function g(), in the case of N being one at any point w [58].

Figure 2.4: Differentiable Function [57]. Figure 2.5: Non-Differentiable Function [57].

Figure 2.6: Convex and Non-Convex Function [57].

For the gradient descent algorithm to work, the objective function must be differ-

entiable and convex. This means that the function must have a derivative for every point

in its entire range and be a univariate function. The line segment connecting two points

must lie on or above the curve and must not cross it, some examples are given in Figure 2.6.

Meaning that the function to optimise has more than one minimum.

∇g(w) = 0N x 1 (2.9)

As mentioned earlier, other common optimisers are improved versions of the basic gradient

descent method. One step in improving the optimiser is to add momentum, a method that

attempts to slow the rate of descent near the optimum to avoid overshooting. Therefore, some

very common functions are based on Nesterov momentum, such as the SGD optimization

function [58].

The Nesterov Momentum can be defined as:

mk = βmk−1 − α∇g(wk−1) (2.10)

Improving the basic gradient descent by computing the approximate gradient of the next

position. Producing faster convergence, normally used in the Stochastic Gradient Descent

16

(SGD), with Nesterov momentum updates mk−1, for the current step and mk for the next

time step [41], [58], [59]:

wk = wk−1 +mk (2.11)

Another common algorithm is the Adagrad (Adaptative Learning Rate). This method does

not use momentum, so it is simpler compared to SGD. Adagrad bases itself on the usage of

different learning rates for each parameter base on iteration [59]. The reasoning behind this

is that different learning rates are needed when dealing with data of different sparsity [58],

[59]. Adagrad can be described by the following equations:

sk = sk−1 +∇g(wk−1)⊗∇g(wk−1) (2.12)

wk = wk−1 − α∇g(wk−1)⊘
√
sk + e (2.13)

Adding to the previous notation, s, denotes the sum of the sum of all the previous

time step’s squared values of the gradient and e a small number to avoid division by zero.

As shown in the Adagrad equations, the goal is to reduce the gradient vector along the

steepest dimensions. Solving the gradient descent problem, where the steepest slope does

not necessarily point to the global optimum [58]. This changes the learning rate as the sum

of the previous gradient square increases after each step [58], [59].

A small improvement of Adagrad is RMSprop, which avoids the effect of monoton-

ically decreasing the learning rate by adding the hyperparameter β which is the decay rate

[58], thus, RMSprop can be defined:

sk = βsk−1 + (1− β)∇g(wk−1 ⊗∇g(wk−1) (2.14)

Another widely used improvement to the gradient descent algorithm is the Adam

optimisation function. Adam stands for Adaptative Momentum Estimation and combines the

notion of momentum with that of Adagrad, or more precisely an improvement of Adagrad

(RMSprop) [58]. Adam is an extension of Adagrad and attempts to solve for decreasing

learning rates by using exponentially weighted averages, i.e. instead of calculating the sum

of all past squared gradients in t time steps, the window size is constrained and the average

of the gradients of said window is calculated [59]. Therefore, the Adam optimiser is described

as follows:

mk = βmk−1 − (1− β)∇g(wk−1) (2.15)

sk = βsk−1 + (1− β)∇g(wk−1)⊗∇g(wk−1) (2.16)

17

m̂k =
mk

1− βk
1

(2.17)

ŝk =
sk

1− βk
2

(2.18)

wk = wk−1 + αm̂k ⊘
√
ŝk + e (2.19)

where β1 is the momentum decay hyperparameter and β2 the scaling decay. More-

over, m and s are then bias corrected as per equations 2.17 and 2.18. There are even other

optimisation methods, such as Newton’s method, which takes into account not only the

gradient but also the curvature. Since this work focuses on networks based on first-order

optimisation algorithms, second-order optimisation functions are not presented.

Loss Function

So what is a loss function? The loss function evaluates the performance of the

network by comparing the output yt with the desired objective zt. Some of the loss functions

are shown in the below equations [39]:

Loss : L(y, z) =
T∑
t−1

Lt(yt, zt) (2.20)

LeastSquares : L(y, z) =
1

2
(zt − yt)

2 (2.21)

CrossEntropy : L(y, z) = −ytlog(zt) (2.22)

The total loss function is calculated as the sum of the individual losses at each time step

[39], [58], [60]. The choice of the loss function depends on the problem at hand. Commonly

used loss functions include Euclidean and Hamming distances for forecasting real values and

the cross entropy applied to the probability distribution of outputs for classification tasks

[39], [58], [60].

Forward Pass

At each time step during the forward pass, the hidden layer, ht (as per previous

notation), of the network receives an external input and also considers its activation from

the previous time step across all dimensions. The combination of the input and the previous

activation of the hidden layer is sequentially fed into the network based on the input sequence.

As a result, the network stores the resulting hidden layer activation [39], [54], [58]. In this

way, the network propagates the current input signal further and allows it to flow through

18

the different layers. The activation of the current context, at layer is then used in the process

[49].

The forward pass can then be described by the following equations:

at = b+WWht−1 +WUxt (2.23)

ht = fa(at) (2.24)

ot = c+WV ht (2.25)

ŷt = softmax(ot) (2.26)

Thus, for a given sequence of input values x paired with a sequence of target values y, the

total loss is calculated by summing the losses over all time steps. In this case, the outputs

ot are passed through the softmax function (if used) to produce a vector ŷ representing the

probabilities of the output. The loss L is then determined as any of the existing loss functions

of the true target yt given the inputs received [54].

Backward Pass

The process of calculating gradients involves two passes. A forward propagation pass

from left to right, followed by a backward propagation pass from right to left (as shown in the

Figure 2.2). The runtime for this process is O(n), and cannot be reduced by parallelisation

because the forward propagation graph inherently requires sequential computation. Each

time step builds on the previous one, so it must be computed in the correct order. The

states computed during the forward pass must be stored until they are used again in the

backward pass, resulting in a memory cost of O(n). This back-propagation algorithm, with a

cost of O(n), is called back-propagation through time (BPTT). Due to the parameters shared

across all time steps, the gradient at each output depends not only on the computations of

the current time step, but also on the computations of the previous time steps [49], [54].

2.2.2 Long-Short-Term Memory Networks

Recurrent connections in neural networks can improve performance by exploiting

their ability to capture sequential dependencies [61], [62]. However, the effectiveness of these

connections is often limited by the training algorithms used for RNNs [39], [62]. Many ex-

isting models have problems with exploding or vanishing gradients during training, leading

to difficulties in learning long-term dependencies in sequential data. Special models have

19

been developed to overcome this challenge, the most popular being long short-term mem-

ory (LSTM) RNNs. The LSTM is widely recognised as an efficient solution for mitigating

the problems associated with vanishing and exploding gradients [39], [61]. In LSTM, the

structure of the hidden units is modified to incorporate memory cells that are controlled by

gates. These gates regulate the flow of information to the hidden neurons and hold impor-

tant extracted features from previous time steps [39], [61], [62]. This thesis will not discuss

all variants of LSTM, i.e. S-LSTM or even Stacked and Grid-LSTM. An insight into the

inner workings of the standard architecture is given and deepened by the introduction of

bidirectional LSTM, which is relevant to this work.

The Standard Architecture of an LSTM

The standard LSTM cell according to Hochreiter & Schmidhuber [63] typically con-

sists of input, forget and output gates as well as a memory cell activation component, as

shown in the Figure below 2.7.

Figure 2.7: LSTM Cell [64]

These gates receive activation signals from various sources and regulate the activa-

tion of the cell through certain multipliers. By using these gates, the LSTM can effectively

prevent the rest of the network from changing the contents of the memory cells over mul-

tiple time steps. Compared to normal RNNs, LSTM networks are able to maintain signal

integrity and propagate errors over much longer sequences. This property allows LSTM

networks to handle data with complicated and distinct dependencies, making them very

effective in various domains where sequence learning is involved [39], [61], [63], [64].

Suppose there are k hidden units, a stack size of n and d inputs. The input xt ∈ Rn×d

and the corresponding hidden state of the previous time step ht−1 ∈ Rn×k. The gates in the

current time step t are the input gate identified as gi
t ∈ Rn×k, the forget gate as gf

t ∈ Rn×k,the

20

cell gate as gc
t ∈ Rn×k and the output gate go

t ∈ Rn×k [62]–[65]. The gates can thus be

described as follows:

gi
t = σ(WIgixt +WHgiht−1 +Wgcgig

c
t-1 + bgi) (2.27)

gf
t = σ(WIgfxt +WHgfht−1 +Wgcgfg

c
t-1 + bgf) (2.28)

As in the previous RNN section, WIgi and WIgf are the weight matrices for the

input layer to the input gate and the input layer to the forget gate respectively, WHgi and

WHgf are the weight matrices from the hidden state to the input gate and from the hidden

state to the forget gate. Finally, Wgcgi and Wgcgf represent the weight matrices from the cell

activation to the input gate and the cell activation to the forget gate. It goes without saying

that bgo,f are the biases of both the input gate and the forget gates [39], [62], [64], [65].

gc
t = gi

ttanh(WIgcxt +WHgcht−1 + bgc) + gf
tg

c
t-1 (2.29)

As for the cell activation gate, WIgc and WHgc are the weight matrices from the input layer

and hidden state to the cell gate respectively, bgc is the cell gate bias [39], [62], [64], [65].

Thusly, the output gate, go
t is defined as:

go
t = σ(WIgoxt +WHgoht−1 +Wgcgog

c
t + bgo) (2.30)

Where, similarly to the input and forget gates, WIgo and WHgo are the matrices connecting

the input layer and hidden state to the output layer, Wgcgo the weights between cell activation

and outputs and bgo the biases [39], [62], [64], [65]. Finally, the hidden state is defined as:

ht = go
t tanh(g

c
t) (2.31)

It is necessary to note that the operations between gates are Element wise operations using

the Hadamard product operator (⊙).

Bidirectional LSTM

In a bidirectional LSTM (BiLSTM), two separate models are used instead of just

one. The first model learns the input sequence as it is presented, while the second model

learns the inverse of that sequence [66]. This network needs not only the past context but

also the future context for the reversed layer. Having two trained models, poses the need to

merge or combine them in some way to use their complementary information.

So, in summary, the BiLSTM introduces an additional LSTM layer that works in

the opposite direction, effectively reversing the flow of information in the input sequence, as

21

Figure 2.8: Unrolled Bidirectional LSTM [67]

per Figure 2.8. This means that the input sequence is processed in the opposite direction in

the additional LSTM layer. Then the outputs of the two LSTM layers are combined using

various methods, such as averaging, summation, multiplication or concatenation [66], [67].

2.2.3 Attention Mechanisms

Deep learning uses attention mechanisms to help the model focus on the most im-

portant segments of the input data when making predictions. In many scenarios, the input

data is very large and complicated, making it difficult for the model to process all the data

effectively. Attention mechanisms allow the model to selectively prioritise the crucial aspects

of the inputs that contribute most to prediction accuracy, while disregarding the less relevant

components. This capability improves the predictive accuracy of the model and the overall

performance [68].

In many Deep Learning models, data is processed by passing it through multiple

layers of neural networks. These networks consist of many interconnected nodes organised

into layers. Each node processes the data and passes it on to the next layer. In this way, the

model can extract increasingly complex features from the data as it traverses the network

[64], [68], [69]. However, as the data traverses these layers, it can become increasingly

difficult for the model to identify the most important information [64], [69], [70]. Attention

mechanisms have been introduced to address this limitation. In attention-based models, the

model can selectively focus on certain parts of the inputs when making predictions [68]–[70].

Queries, Attention, and Databases

In most conventional networks, the input data must have a well-defined size. Most

Convolutional Neural Networks are tuned to a fixed input shape, i.e. ImageNet as an input

size of 224× 224 pixels. For most RNNs, the same happens [64], [70]. There are some tricks

22

to mitigate the problems associated with this restriction. For example, in Natural Language

RNNs where each variable size is accounted for by processing one token at a time sequentially

or by using special convolution kernels [64], [70], [71]. Therefore, with longer sequences, the

networks have a hard time remembering everything they have already processed.

A good way to demonstrate attention, as [64] says, is to compare it to a database

(D), which, in layman’s terms, is a collection of keys (k) and values (v). For a given query

(q), only a single value can be represented by a single key. Therefore:

• Queries q, operate in (k,v) pairs, are to be valid regardless the size of D.

• The same query qi can receive different answers, according to the contents of D.

• The “code” being executed in D can be simple.

• D needs not to be simplified in order to make the operations effective.

Thus, the database can be defined as D = {(k1, v1), ..., (km, vm)} of m tuples of keys and

values denoted by a query q. Attention can be defined as:

Attention(q,D) =
m∑
i=1

α(q, ki)vi (2.32)

Whence α(q, ki) ∈ R(i = 1, ...,m) are scalar attention weights. This operation, as shown in

2.32 is commonly referred to as attention pooling, Figure 2.9. The term "attention" is given

to this operation because it focuses specifically on the terms with significant weights (i.e.,

large weights).

Figure 2.9: The attention mechanism computes a linear combination over values vi via

attention pooling, where weights are derived according to the compatibility between q and

ki [64]

23

Consequently, the attention over D produces a linear combination of values found in

the database. In essence, this encompasses the aforementioned example as a unique scenario

where all weights except one are zero. Though there are some special cases:

• α(q, ki) are non-negative. The output of the attention mechanism is contained in the

convex cone spanned by the values vi.

• α(q, ki) form a convex combination,
∑

i α(q, ki) = 1 and α(q, ki) ≥ 0 ∀ i. The most

common setting in deep learning.

• One of the weights α(q, ki) of the database is 1, while the others are 0. akin to a

traditional database query.

• all weights are equal (α(q, ki) = 1
m

∀ i). Amounting to averaging across the entire

database. Also known as average pooling.

The strategy to ensure that the weights sum to 1 is to normalize them (equation 2.33) and

to ensure they are non-negative, exponentiation can be used (equation 2.34).

α(q, ki) =
α(q, ki)∑
j α(q, ki)

(2.33)

α(q, ki) =
exp(α(q, ki))∑
j exp(α(q, ki))

(2.34)

This operation is present in all Deep Learning frameworks and provides desirable properties

such as differentiability and a non-vanishing gradient, which are crucial for a model. However,

it is important to note that the attention mechanism mentioned above is not the only option

available. Some other options are shown below. The really impressive thing is that the code

required to perform operations on an extensive set of keys and values, called a query, can

be kept remarkably tight. This property makes it desirable for a network layer, as it does

not require numerous parameters to learn. Equally convenient is the fact that Attention can

effortlessly work with databases of any size without having to change the operations of the

Attention pool [64], [70].

2.2.4 Common Attention Mechanisms

The attention mechanism above is not the only one. There are many more mecha-

nisms of attention. A short overview will be given.

24

Attention Pooling

The attention pooling mechanism is a technique used in Deep Learning models to

assign weights or importance to different elements within a given set. It involves calculating

a similarity score between a query and each element in the set and then using these scores to

determine how much attention or focus to give to each element [72]. Considering Nadaraya

and Watson’s [73], [74] approach as a kernel density classification and regression problem,

its estimators rely on a similarity kernel α(q, k) that relates queries to keys [64], [72]. Some

common kernels are:

α(q, k) = exp(−1

2
||q − k||2) (2.35)

α(q, k) = 1 if ||q − k|| ≤ 1 (2.36)

α(q, k) = max(0, 1)− ||q − k||) (2.37)

Regardless of the kernel used, all of them lead to the following equation 2.38, for both

regression and classification tasks. If, in case of regression with observations of (xi, yi) for

features and the respective labels. vi = yiare scalars and ki = xi are vectors. In case of

a classification task, one-hot-encoding can be performed on yi to obtain vi. The query q

denotes the location where f should be evaluated [64], [72].

f(q) =
∑
i

vi
α(q, ki)∑
i α(q, k)

(2.38)

Multi-Headed Attention

According to Aston Zhang et al. [64], in order to improve the present model, it

may be beneficial to enable the attentional mechanism to integrate insights from different

behaviours of the same attentional mechanism, given the same set of queries, keys and values.

This includes capturing dependencies with different ranges (i.e. shorter and longer ranges)

within a sequence. Therefore, it may be advantageous for our attention mechanism to share

different subspaces for representing queries, keys and values.

To achieve this goal, queries, keys and values can be individually transformed using

h different linear projections that are learned independently, rather than singular attention

pooling. Then, these h projected queries, keys and values are simultaneously input to the

attention pooling. Finally, the outputs of h attention pooling processes are concatenated and

further transformed by an additional learned linear projection, resulting in the final output

(Figure 2.10).

25

Figure 2.10: Multi-head attention involves concatenating multiple heads and subsequently

linearly transforming them [64].

The implementation of multi-head attention can be formally described given a query

q ∈ Rdq , a key and a value k ∈ Rdk , v ∈ Rdv and the corresponding attention head

hi (i1, ..., h). It can be defined as:

hi = f(W q
i q,W

k
i k,W

v
i v) (2.39)

where W (q)
i ∈ Rpq×dq ,W (k)

i ∈ Rpk×dk ,W (v)
i ∈ Rpv×dv and f is the attention pooling. The output

of the multi-head attention is another transformation via learnable parameters W (o)
i ∈ Rpo×do

of the concatenation of the heads.

Wo

h1

...

hh

 ∈ Rpo (2.40)

Thus,

MultiHead(Q,K, V) = Concat(h1, ..., hh)Wo (2.41)

where each head is given by the equation 2.41. With this design, each head can attend to

distinct sections of the input, allowing for the expression of more intricate functions beyond

a basic weighted average [64], [70].

Self Attention

Self-attention is used to map a sequence of variable length x1, ..., xn to another

sequence of the same length, y1, ..., yn where xi, yi ∈ Rd [64], [70]. These are normally the

hidden layers within a standard encoder or decoder. Thus, the sequence yi is described as:

yi = f(xi, (x1, x1), ..., (xn, xn)) ∈ Rd (2.42)

To use self-attention, there are some considerations on the desired data to use.

The first factor is the total computational complexity per level. The second factor is the

26

Layer Type Complexity Sequential Operations Max Path Length

Self Attention O(n2 · d) O(1) O(1)

Recurrent O(n · d2) O(n) O(n)

Convolutional O(k · n · d2) O(1) O(logk(n)

Table 2.2: Comparison of Complexity, Sequential Operations and Maximum Path Length as

per Vaswani et al. and Aston Zhang et al. [64], [70]

degree of parallelisation possible, which is determined by the minimum number of sequential

operations required. The third factor is the distance between remote dependencies within

the network. The ability to learn such dependencies is crucial in sequence implementation

tasks. An important aspect that affects this ability is the length of the paths that signals

must travel between different positions in the input and output sequences. The shorter these

paths are, the easier it is to learn long-range dependencies [70], [75]. Hence, the maximum

path length between any two input and output positions in networks (Figure 2.11) comprising

various layer types are also compared [64], [70], [75].

Figure 2.11: Comparison of the CNN, RNN and Self Attention architectures [64]

Comparing the computational complexity, sequential operations and maximum path

lengths in the mapping of a sequence of n tokens to another of the same length, where each

input/output is represented by a d -dimensional vector, between normal convolutional net-

works, recurrent networks and self-attention. As indicated in the table 2.2, a self-attention

layer makes connections between all positions with a fixed number of sequentially executed

operations, while a recursive layer requires O(n) sequential operations. In terms of computa-

tional complexity, self-observation layers are faster than recurrent layers when the sequence

length n is smaller than the representation dimensionality d [64], [70]. In summary, both

27

CNNs and Self-Attention benefit from parallel computations and Self-Attention has the

shortest maximum path length. Nevertheless, the quadratic computational complexity over

sequence length makes Self-Attention excessively slow for extremely long sequences [64], [70].

2.3 Graph Neural Networks

The progress of Deep Learning in various fields is due, in part, to the continued

advancement of computational resources such as GPUs, the abundance of large-scale train-

ing data, and the ability of Deep Learning to effectively extract underlying representations

from Euclidean data [76]. Although Deep Learning is able to capture hidden patterns in

Euclidean data, there is a growing demand for applications for data represented in graphs.

The complexity of graph data has posed significant difficulties for current machine learning

algorithms. Due to the irregular nature of graphs, nodes can vary in size and have no partic-

ular order. In addition, nodes within a graph can have a varying number of neighbours, thus,

making certain crucial operations challenging to compute [76], [77]. Before talking about

Graph Neural Networks (GNNs), it is essential to define a graph. In computer science, a

graph is a data structure consisting of vertices (nodes) and edges. The nodes represent

the entities and the edges represent the relationships between them [76], [77]. A graph can

therefore be defined as G(V,E). Let vi ∈ V denote a node and {eij(vi, vj) ∈ E} the edge

pointing from vi to vj. The adjacency of a node can be defined as N(v){u ∈ V |(v, u) ∈ E}.

And the adjacency matrix A (n× n) with Aij1 if eij ∈ E and Aij0 if eij /∈ E. The graph

is attributed, with X input attributes, where X ∈ Rn×d is a node feature matrix with

xv ∈ Rd representing the feature vector v [76].

Graph theory, tries to define the notion of Node Embedding, which involves mapping

nodes to a low-dimensional embedding space (instead of the actual dimension of the graph).

This mapping ensures that similar nodes within the graph are positioned close to one another

in the embedding space by defining encoders for the nodes which convert the feature vectors

(Figure 2.12).

2.3.1 Architecture and Pipeline of the Typical GNN

The general pipeline of a GNN usually starts with the search for a graph structure.

There are two different scenarios, a structural and a non-structural one. The structural

scenario implies that the structure of the graph is explicit to the application, i.e. molecules,

28

Figure 2.12: Conversion of nodes to feature vectors in a GNN [78]

physical systems, knowledge graphs, etc. In non-structural scenarios, graphs are implicit

and must be created from the task at hand [76]. It is then necessary to specify the type and

scale of the graph that can be described by these orthogonal categories (can be combined)

[77]:

• Directed/Undirected: In directed graphs, edges have a specific direction, indicating a

flow of information from one node to another. This directed nature of edges provides

additional information compared to undirected graphs. In undirected graphs, each

edge can be considered as two directed edges, with information potentially flowing in

both directions.

• Homogeneous/Heterogeneous: In homogeneous graphs, nodes and edges have the same

type, while in heterogeneous graphs, nodes and edges have different types. The types

assigned to nodes and edges are of great importance in heterogeneous graphs and

should be carefully considered.

• Static/Dynamic: A graph is said to be dynamic if either the input features or the

topology of the graph change over time. It is crucial to handle time information

carefully and consider it appropriately in dynamic graphs.

Regarding the scale, there is no concise metric to classify the graphs. The criterion changes

according to the speed and memory of the devices they are run in [76], [77], [79]. One should

also design the loss function according to the task and training setting.

• Node-level: Node-centric tasks revolve around nodes and include various goals such as

node classification, node regression and node clustering. Node classification is about

29

assigning nodes to specific classes, while node regression aims to predict continuous

values for each node. On the other hand, node clustering focuses on partitioning nodes

into different groups where nodes with similar characteristics are grouped.

• Edge level: Edge-centric tasks consist of edge classification and link prediction. In

these tasks, the model must classify different types of edges or predict the presence or

absence of an edge between two specific nodes.

• Graph-level: Graph-level tasks include graph classification, graph regression and graph

matching. These tasks require the model to learn representations of entire graphs to

perform tasks such as categorising graphs, predicting continuous values for graphs, or

determining graph similarities and correspondences.

Therefore, with the task type and the training setting (Supervised, Semi-supervised or Un-

supervised) a specific loss function for the task can be designed [76], [77], [79], [80].

Figure 2.13: Architecture of a GNN [78]

A typical architecture of a GNN model comprises three main modules.

• Propagation Module: The propagation module transfers information between nodes

so that aggregated information can include feature-based and topological details. The

convolution operators and recurrent operators are commonly used in propagation mod-

ules to aggregate information from neighbouring nodes. In addition, the Skip Connec-

tion operation is used to gather information from previous node representations and

mitigate the problem of over smoothing.

• Sampling module: For large graphs, it is often necessary to use sampling modules to

perform propagation efficiently. These sampling modules are usually integrated into

30

the propagation module and enable effective graph propagation while coping with the

computational demands of large-scale graphs.

• Pooling Module: When there is a requirement to obtain representations of higher-level

sub-graphs or graphs, pooling modules become essential for extracting information

from individual nodes. These pooling modules enable the aggregation of node-level in-

formation to derive meaningful representations of larger sub-graphs or complete graphs

[76], [77], [79].

To this end, by using these modules, a standard Graph Neural Network (GNN) model

can be built. Which can be shown by the middle section of the Figure 2.13, depicting a

representative architecture of the GNN model.

2.3.2 The Convolutional GNN

There are two main types of GNNs, namely the convolutional GNNs and the recur-

rent GNNs. In this paper, we will focus on convolutional GNNs because they can generalise

the convolution operation from lattice data to graph data [79], which will be of great use in

this thesis.

The main goal of Convolutional GNNs (ConvGNNs) is to generate a representation

of a node, v, by aggregating its features with those of its neighbours, xv and xu, where

u ∈ N(v). ConvGNNs stack multiple graph convolutional layers to extract a high-level

representation of the nodes [76], [77], [79]. These systems solve the issue of cyclic interde-

pendencies by using a fixed number of layers, with each layer having different weights. This

architecture allows ConvGNNs to effectively handle cyclic dependencies [76]. ConvGNNs

can be divided into two different categories: spectral-based and spatial-based [76], [77], [79],

[80].

Spectral-Based ConvGNNs

Spectral-based approaches define graph convolution by adopting filters based on

graph signal processing principles. In this context, the graph convolution operation is un-

derstood as a means of removing noise from graph signals [76], [77], [79]–[81]. These are

based on graph signal processing, assuming that graphs are undirected [76], [81]. The graph

Laplacian matrix of an undirected graph is described as LIn − D
1
2AD

1
2 , where D is the

diagonal matrix of node degrees, Dij

∑
j(ai,j). Since the Laplacian is symmetric, positive

31

and semi-defined [81], it can be factorised as LUΛuT , where U(u0, u1, ..., un − 1) ∈ R is

the ordered eigenvalue matrix and Λ is the diagonal matrix of eigenvalues Λijλi. The eigen-

values of the normalised Laplacian form an orthonormal space U tUI [76], [77], [80], [81]. In

graph signal processing, the signal x is transformed using the graph Fourier transform F ,

the convolution operation is performed and the signal is transformed back using the Fourier

inverses.

F(x) = UTx

F−1(x) = Ux
(2.43)

and the graph convolution of the signal x with a filter g ∈ Rn can be described as:

x ∗ g = F−1(F(x)⊙F(g))

= U(UTx⊙ UTg)
(2.44)

where ⊙ denotes the elementwise product and a filter g as gθ = diag(utg). The equation

2.44 can be further simplified as:

x ∗ gθ = Y gθU
Tx (2.45)

as Bruna et al. [82] states, one must assume the filter is a set of learnable parameters and

considers signals with multiple channels. Thus, the graph layer of a spectral CNN can be

defined as:

Hk
i,j = σ(

fk−1∑
i=1

UΘk
i,j U

THk-1
i,j) (j = 1, 2, ..., fk) (2.46)

where the diagonal filter matrix of learnable parameters is assumed as gθ = Θk
i,j, k the layer

index, Hk−1 ∈ Rn×fk−1 the input graph signal, H0 = X, fk−1 the number of input channels.

There are many improvements of this type of network like the Chebyshev spectral

CNN (ChebNet), which approximates the filter by Chebyshev polynomials of the matrix

of eigenvalues, and the CayleyNet which further applies the Cayley polynomials to capture

narrow frequency bands [76], [77], [81], [82].

Spatial-Based ConvGNNs

Spatial-based define graph convolutions by information propagation, analogous to

the convolutional operation of a conventional CNN on an image, this method defines graph

convolutions based on the node’s spatial relations [76], [77]. The basic spatial approach

defines convolutions directly on the graph based on its topology. The difficulty arises when

defining convolution operations with differently sized neighbourhoods while maintaining the

32

local invariance of CNNs [76], [77], [81]. Hence, there are various methods to describe the

convolutions. One of the simpler ways to do this is by using Duvenaud et al. [83] Neural

FPs, which use different weight matrices for nodes with different degrees [76], [83]:

t = ht
v +

∑
u∈N(v)

ht
u

ht+1
v = σ(tW t+1

|N(v)|)

(2.47)

where W t+1
|N(v)| is the weight matrix for nodes of |N(v)| at layer t + 1. Unfortunately, this

method cannot be applied to large-scale graphs.

The Neural Network for Graphs (NN4G) [84], is probably the first work towards

Spatial-based ConvGNNs. NN4G employs a compositional neural architecture with inde-

pendent parameters at each layer to learn the mutual dependency among graph elements.

The architecture is incrementally constructed to extend the neighbourhood of a node. Graph

convolutions in NN4G are accomplished by directly summing up the neighbourhood informa-

tion of a node. Additionally, NN4G incorporates residual connections and skip connections

to retain and memorize information throughout each layer. Accordingly, the next layer node

states can be described as [76], [84]:

hk
v = f(W kTxv +

k−1∑
i=1

∑
u∈N(v)

ΘkThk-1
u) (2.48)

where f(·) is the activation function and h0
v = 0. Written in matrix form, it is defined as:

Hk = f(XW k +
k−1∑
i=1

AHk−1Θk) (2.49)

Another improvement is the Attention-based spatial approaches, which have been

successfully used in many sequence-based tasks [70], [85], [86].

The graph attention network (GAT) [87], incorporates the attention mechanism

into the propagation step, which is a characteristic of this approach. It calculates the hidden

states of each node by attending to its neighbours, utilizing a self-attention strategy. The

hidden state of a node can be defined as:

hk
v = σ(

∑
u∈Nv∪v

αk
v uW

khk-1
u) (2.50)

αk
v u = softmax(LeakyReLU(aT [W khk-1

v ||W khk-1
u])) (2.51)

softmax = σ(z)i =
ezi∑K
j=1

fori = 1, ..., K and z = (z1, ..., zk) ∈ RK (2.52)

33

Summarily, the weight matrix, denoted as W, represents the linear transformation applied

to each node. Additionally, a refers to the weight vector of a single-layer MLP (Multilayer

Perceptron). The softmax function guarantees that the attention weights, when summed,

equal one across all neighbours of the node v. Additionally, GAT (Graph Attention Network)

incorporates multi-head attention to enhance the model’s ability to capture complex patterns

and relationships.

34

3 Related Work

The main focus of this thesis will be on architectures capable of learning and process-

ing time sequences without the need for a time warping methods like previously mentioned.

Therefore, this thesis will focus mainly on Two distinct types of architectures (RNNs and

GNNs) in two different tasks. Action recognition (a classificatory task) and motion predic-

tion (estimation task).

3.1 Human Motion Models

Human motion models are mathematical or computational representations that aim

to capture and simulate the movement patterns and behaviours of human beings. These

models can describe various aspects of human motion, including locomotion, gestures, pos-

tures, and interactions with the environment. Human motion models are commonly used

in fields such as computer animation, robotics, biomechanics, virtual reality, and motion

analysis to simulate, analyse, or predict human movements.

3.1.1 RNN Based Classification

Figure 3.1: Measurement of the similarity to

a query sequence (Walking) as per [88]

Figure 3.2: Motion prediction [24].

When comparing human poses over a series of frames, determining the similarity

between two sequences of poses or motion is a challenging problem. This is because human

35

motion tends to exhibit varying patterns across different sequences, resulting in specific pose

configurations appearing at different time points, even for the same type of human motion

[88]–[90]. In the Figure 3.1, the provided sequences represent two actions that fall within the

same class. Additionally, these sequences exhibit variations in length, meaning they consist

of a different number of frames.

In addition, these sequences also vary in length, meaning they can have a different

number of frames. This aspect further complicates the establishment of a universal similarity

measure. However, despite the challenges, accurately estimating the similarity between

human poses across a sequence is an essential step in various human motion analysis tasks,

including action retrieval and recognition [88]–[91].

Metric learning and human motion

Traditional methods utilized for comparing human motion sequences typically rely

on estimating the L2 displacement error or using Dynamic Time Warping (DTW). The

L2 displacement error calculates the squared distance between corresponding joints in two

sequences at a specific time instant. However, as Martinez et al. [23] demonstrated, this

measure often overlooks the unique motion characteristics, as a repeated constant pose in

a sequence may erroneously be considered a better match to a reference sequence than a

visually similar motion with distinct temporal evolution [23], [88]. In contrast, as shown by

Keogh et al. and Vintsyuk [92], [93], Dynamic Time Warping (DTW) attempts to address

this issue by warping the two sequences through compressions or expansions, aiming to

optimize the alignment between local poses. However, DTW can encounter challenges in

accurately estimating similarity when there are minor temporal variations in the motion

dynamics, such as small variations in peaks and plateaus demonstrated by Keogh et al.’s

work [88], [93].

According to Coskun et al. [88], early works on time series metric learning measure

the similarity as a two-step method [94], [95]. Initially, the model identifies the optimal

alignment between two time series and subsequently calculates the distance using the aligned

series. Typically, this alignment is determined using the DTW transform, where all possible

alignments are evaluated and ranked based on a manually designed local metric [88], [94],

[95]. These approaches suffer from two primary limitations. On the one hand, the models

are very complex, with a big O notation of O(n2). On the other hand, and probably the

most important, the local metric struggles to capture relationships within high-dimensional

36

data [88]. In order to tackle these issues, recent studies have concentrated on finding a

low-dimensional embedding that can effectively measure the distance between time series

[20], [96]–[98]. However, the objective of metric learning is still the same. In essence, the

objective is to acquire an embedding for human motion sequences that enables a similarity

metric to be established between two sequences of human motion, X and Y where:

X := {x1, ..., xn}

Y := {y1, ..., ym}
(3.1)

In which, xt and yt represent the poses at time-step t. These can be expressed as the

Euclidean distance squared in the embedding space:

d(f(X), f(Y)) = ||f(X)− f(Y)||2 (3.2)

where f(·) is the learned embedding function that maps the variable length sequence, and

d(·, ·) the squared Euclidean distance [88].

3.1.2 Recent improvements

Deep metric learning methods began with Siamese architectures [88], [96], [97] that

minimize a contrastive loss[88], [99]. This loss function, f, works by minimizing the squared

Euclidean distance d(f(X), f(Y)). The aim is to learn an embedding for human motion

sequences that minimizes the similarity metric when X and Y belong to the same category,

and otherwise, maximizing it:

Lcontrastive = (r)
1

2
d+ (1− r)

1

2
[max(0, αmargin − d)] (3.3)

where r ∈ {1, 0} indicates whether X and Y belong to the same category or not, and

αmargin determines the margin between samples from different categories. During the training

process, the contrastive loss function penalizes cases where samples from different categories

are closer than the threshold α and when samples from the same category have a distance

greater than zero. However, this equation indicates that the contrastive loss only considers

pairwise relationships between samples, thereby partially leveraging the relative relationships

among categories [88].

The FaceNet architecture [100], proposes the utilization of triplet loss for learning

facial embeddings in tasks such as facial recognition and verification. It demonstrates supe-

rior performance compared to contrastive loss in feature learning. However, the process of

searching for hard-negative samples becomes computationally inefficient as the training set

37

and the number of different categories increase. Subsequently, recent research has mainly

concentrated on meticulously constructing batches and utilizing all samples within the batch.

Triplet learning is more effective in utilizing these relationships by considering three samples

simultaneously, where the first two belong to the same category and the third belongs to a

different category. Recent research has demonstrated that leveraging the relative relation-

ships among categories is crucial for achieving a high-quality learned embedding [88], [99].

The triplet loss imposes an alpha distance on embedding samples from the same category

compared to samples from a different category. Let X,X+ and X− be three human motion

samples [88], [101]. Then:

Ltriplet = max(0, ||f(X)− f(X+)||2 − ||f(X)− f(X−)||2 + αmargin) (3.4)

where X,X+ are the same category samples and X− the sample from a different category.

Normally in the literature, X is commonly known as the anchor and X+, x− the positive

and negative samples respectively [88], [101]–[104].

One issue with triplet loss is the parameterization of αmargin. This can be over-

come using Neighbourhood Components Analysis (NCA) as per Roweis et al. [104] can be

described as:

LNCA =
exp(−||f(X)− f(X+)||2)∑

x− ∈C exp(−||f(X)− f(X−)||2)
(3.5)

where C represents all the categories except the one of the positive sample [88], [104]. In

an ideal scenario, when considering triplets of samples, it is expected that samples from the

same category will be clustered together in the embedding space. Nevertheless, studies have

revealed that the majority of formed triplets do not provide informative training signals,

and exploring all possible triplet combinations is not feasible. Consequently, the model will

be trained using only a limited number of informative triplets [88], [100]. Thus, most recent

networks for action recognition tend to work on these principles of loss and embedding.

3.1.3 RNN Based Prediction

The task of learning statistical models of human motion is challenging due to factors

such as high dimensionality, non-linear dynamics, and the stochastic nature of human move-

ment [23]. RNNs are neural network models designed to handle sequential data by utilizing

recurrent connections that connect the neural activations at consecutive time steps [105].

Consequently, these networks seem to be good candidates for motion estimation (Figure

3.2).

38

Motion Generation and Modelling

The generation of realistic human motion using probabilistic models trained on

motion capture data has previously been explored within the domains of computer graphics

and machine learning [105]. The majority of research has concentrated on expanding latent-

variable models that adhere to state-space equations, such as hidden Markov models. These

approaches explore the balance between model capacity and inference complexity. Non-

linear motion prediction can also be achieved using Gaussian Processes Dynamical Models,

which also facilitate the learning of temporal dynamics through expectation maximization

[20], [23], [24], [105]–[107].

Figure 3.3: LSTM3LR architecture Figure 3.4: ERD based on the LSTM3LR ar-

chitecture.

Figure 3.5: Fragkiadaki et al.’s work in RNNs for motion recognition [23], [105]

While these models have demonstrated their effectiveness in capturing simple mo-

tions, they often fall short compared to deep learning models when dealing with more com-

plex motions and longer prediction tasks. RNNs have, for motion prediction, proven to be

very successful in sequence-to-sequence (Seq2Seq) tasks. Fragkiadaki et al. [105] proposed

two architectures (Figure 3.5): LSTM-3LR and Encoder-Recurrent-Decoder (ERD). Both

models utilize concatenated LSTM units, but the latter incorporates non-linear space en-

39

coders for data preprocessing. Fragkiadaki et al. [105] also acknowledges that, during the

inference process, the network tends to accumulate errors and generate unrealistic human

motion rapidly. As a solution, they suggest gradually introducing noise to the input during

the training phase [23], [105], [107].

In a more recent architecture, Jain et al. [26] presented a new method called struc-

tural RNNs (SRNNs). This approach involves utilizing a manually constructed graph that

represents the semantic knowledge of the RNN. By doing so, a bi-layer architecture is cre-

ated, where each individual RNN unit is assigned to parts of the data that are semantically

similar. Additionally, the authors incorporated a noise scheduling technique introduced by

Fragkiadaki et al. [23], [24], [105].

Also, a noteworthy mention is the introduction of the exponential map parame-

terization of each joint in a kinematic tree. This was achieved using code provided in the

Human 3.6M dataset, by Ionescu et al. and Jain’s preprocessing [1], [26]. This parameter-

ization of the lie group theory managed to yield better results than the normal Cartesian

joint representation.

Figure 3.6: Martinez et al. implementation of short time prediction [23]

Martinez et al. [23], improved this concept by using a (Seq2Seq) architecture which

addresses the short-term prediction as the search for a function that maps an input sequence

to an output sequence [23]. Seq2seq employs a dual network setup: an encoder network which

accepts the inputs and generates an internal representation (Figure 3.6), and a decoder

network that utilizes the internal state to generate a prediction based on the maximum

likelihood estimate [23], [108]. One advantage of this architecture is that the training process

40

closely resembles the protocol used during testing, particularly in terms of the encoding-

decoding procedure [23].

3.1.4 Graph Based Motion Prediction

As previously stated in the background section, GCNs extend the convolution op-

eration to data that is structured according to a graph [106].

Graphs have emerged as a suitable option for depicting the human body, predomi-

nantly created manually by capitalizing on the inherent arrangement of the kinematic tree

and encoded through Graph Convolutional Networks (GCN) [25], [26], [106], [107], [109]. Yan

et al.’s [109] approach involves learning the adjacency matrix of the graph, but it remains

confined to the connectivity of the kinematic tree [25]. In more recent studies, researchers

have investigated the interconnection of all joints, enabling the learning of graph edges [25],

[106]. Similarly, this approach allows the training process to determine the graph’s connec-

tivity and edge weights in a data-centric manner.

Sofianos et al.[25], complemented by the work of Szegedy et al. and Bütepage

et al. [110], [111] proposes the usage of separable convolutions. The aim is to separate the

processing of cross-channel correlations and spatial correlations by utilizing 1x1 convolutional

filters for the former and channel-wise spatial convolutions for the latter. This approach

involves using depthwise separable convolutions, which assume that the cross-channel and

spatial correlations can be sufficiently decoupled. Therefore, it is considered more favourable

not to combine them in the mapping process [25], [110], [111].

Consequently, as shown in Figure 3.7, a sample of the spatial and temporal adjacency

matrices, As (left) and At (right). The red dots represent the human body joints of the

Human3.6M dataset [1] where the learnt joint-joint relations mainly follow the kinematic

tree, but also manage to denote some long-term connections (foot-foot or foot-hand). The

matrix At demonstrates the transfer of information from preceding to subsequent frames,

indicated by higher absolute values located in the bottom-left region.

With GNNs still in mind, Sirui et al. [102], developed an anchor-based spatial-

temporal network. This network incorporates the crucial understanding that forthcoming

movements are not entirely arbitrary or unrelated to one another. Instead, they possess

deterministic characteristics aligned with physical laws and human body limitations while

continuing patterns from past movements (Figure 3.8). To illustrate, the network anticipates

that certain future motions will share deterministic changes in velocity or direction, although

41

Figure 3.7: Learnt joint relations following a kinematic tree and other connections between

joints [25]

their magnitudes may vary stochastically [102].

Figure 3.8: An example spatio-temporal graph in the human activity context [26]

3.1.5 Considerations on the Transformer Architecture

It is noteworthy to mention why the ever-so-popular transformer architecture wasn’t

chosen. Transformers have been very popular among natural language applications and some

computer vision tasks. Due to the problem at hand, the usage of a joint-based skeleton in

a kinetic tree context, graph networks are a natural choice for this. These encode the

tree via a learnable adjacency matrix of the graph, exploring all the interconnected joints,

allowing for the network to learn a data-driven graph connectivity and edge weights [25].

If the movement data can be naturally represented as a graph, GNNs may be a better

choice due to their ability to model the relationships and dependencies between entities. On

the other hand, if the movement data can be effectively framed as a sequential sequence,

42

Transformers can be suitable, leveraging their ability to capture long-range dependencies

and global contextual information. It is important to consider the specific characteristics of

the data and experiment with both architectures to determine which one performs better for

the given movement prediction task [112]–[115]. Thus, some characteristics of graph neural

networks for motion prediction are:

• GNNs are well-suited for movement prediction when the data can be represented as a

graph, such as tracking objects in a scene or predicting the movement of nodes in a

network.

• GNNs can capture the dependencies and relationships between entities in the graph,

allowing them to model the dynamics and interactions that influence movement pat-

terns.

• GNNs can incorporate information from the local neighbourhood of each node, taking

into account the spatial context and previous movements of neighbouring entities.

• GNNs have been successful in various movement prediction tasks, including pedestrian

trajectory prediction, vehicle trajectory prediction, and animal movement analysis [25],

[87], [112], [113], [116].

The transformer architecture for movement prediction:

• Transformers are commonly used for sequential data, such as natural language text

or time series data. If the movement data can be framed as a sequential sequence,

Transformers can be applied.

• Transformers effectively capture long-range dependencies and model complex patterns

in sequential data, which can be relevant for movement prediction. They also excel in

tasks where contextual information and global dependencies across the sequence are

crucial, such as language modelling and machine translation.

• Transformers have been adapted for trajectory prediction tasks by converting the move-

ment data into a sequential format and using self-attention mechanisms to capture

temporal dependencies [117]–[119].

43

3.2 Skeleton Parameterization

Before going into a detailed analysis of the proposed method’s architecture and

pipeline, a brief summary of the data space needs to be given, for there are two main

approaches with their pros and cons. Basic 3D XYZ Cartesian and 3D ZXY Exponential

map format.

A more detailed overview of the Lie Theory can be found in the Appendix A.

3.2.1 Exponential Mapping and Lie Algebra

Exponential mapping is a mathematical technique used to represent rotations or

transformations in a compact and efficient manner. It is particularly useful for representing

human motion in robotics and computer graphics [120]. In exponential mapping, a rota-

tion or transformation is represented as an exponential function of a special kind of matrix

called "Lie group". Lie algebra captures the infinitesimal rotational displacements or ve-

locities associated with the rotation. The exponential function "maps" the Lie algebra to

the corresponding rotation or transformation in the Lie group. By using it, rotations can

be interpolated linearly between different poses or motion states. This allows for smooth

and natural-looking transitions between poses, making it suitable for motion prediction and

animation [20], [120], [121]. Hence, for human motion prediction, lie algebra and exponential

mapping have some benefits:

• Provides a compact and efficient way to represent the motion of a human body. It

uses a minimal number of parameters to describe the pose or movement, which makes

it suitable for storing and sharing motion data.

• Allows for linear interpolation between different poses or motion states. This linearity

property makes it easier to generate smooth and natural-looking transitions between

poses, which is desirable in motion prediction.

• Describes smooth continuous transformations. Human body movements can be repre-

sented as transformations on a manifold, and the use of exponential mapping allows

for a consistent and accurate representation of these transformations.

• compatible with the underlying kinematics of human motion. It accurately represents

the rotational movements of joints and the constraints imposed by the skeletal struc-

ture. This makes it well-suited for modelling and predicting human motion.

44

• Provides numerical stability when performing computations involving rotations or

transformations. It avoids singularities and numerical instabilities that can arise with

other representations, such as Euler angles, quaternions, or rotation matrices [20],

[120]–[124].

Even though there are a lot of advantages to the usage of exponential mapping, there are

some valid points against its use. Two of the more valid arguments are the associated

complexity in data transformation and the non-intuitivity of the parameters:

• According to the literature [121], [124], exponential maps require complex mathemat-

ical operations and transformations which are difficult to implement and understand.

Bound to this, the implementation of forward and inverse kinematics are not easy tasks

to implement, requiring a lot of previous knowledge and assumptions like the distance

between points.

• The parameters themselves used in exponential maps do not have a direct physical

correspondence. Due to the lack of intuitive mapping, the motions become hard to

interpret and even harder to manipulate in the representation without the help of

forward and inverse kinematic functions.

Another downside of the exponential map is the increased need for computational power and

complexity. As aforementioned, these transformations require some level of computational

power. Thus, the computation of the transformations and interpolations can be expensive,

especially when dealing with medium to large amounts of data.

45

46

4 Developed Work

In the previous two chapters, an overview of the literature pertaining to human

motion detection and human action recognition was given, as well as the reasoning and the

basics of how the models of these architectures work. The highlighted studies in the Related

Work chapter show that there have been some attempts to predict and classify movement in

the machine learning and computer vision fields in the span of a decade, but there are some

inherent difficulties associated with it.

From the aforementioned architectures, the most successful in the short to medium

term prediction have been the Graph Neural Networks, these have an easier time converting a

kinematic tree to the graph notation for motion prediction. Jointly, the proposed method also

incorporates an LSTM-based action recognition model capable of high-accuracy prediction

of a given sequence.

4.1 Pipeline of the Proposed Approach

The whole of the approach narrows down to three main actions to take, as seen

in Figure 4.1. First, there is the need to convert a sequence of images into a sequence of

parameterized virtual, joint-based skeletons. This can be achieved by many off-the-shelf

estimators like MediaPipe or OpenPose.

After obtaining the skeleton representation in a 3D Cartesian point cloud or vectors

of 3D Euler angles, the goal is to estimate the short-term prediction of the next T frames

(5 to 20 frames) with the help of an average model that is capable of consistently estimate

the correct next few poses with no temporal interference, i.e. the speed of the exercise

should not matter to the next T frames. The network should be able to compensate the

differences in speed. It is expected that the model can not be inferred in real time due to

the lack of computational power in most common machines. The predicted poses will then

be compared with the ground-truth (the observed poses of the patient in the next T frames)

47

Figure 4.1: High level pipeline of the proposed method.

and the Euclidean distance between the real and predicted joints calculated to give feedback

to the user. Finally, a action recognition classification model will be inferred to give the

feedback of the overall exercise (Well done, Not well done).

4.1.1 Experimental Datasets

For training and testing, a few datasets were used. The Human3.6M [1] which has

a great baseline of poses for action recognition with 32 joints denoting 17 scenarios already

parameterized in 3D Cartesian poses, 3D Euler and raw angles provided by a Vicon Nexus

mocap system. Another great dataset also used was the AMASS dataset [2].

Finally, we used a dataset from previous work done by the ISR, back in 2019, called

"The PROZIS challenge" project in partnership with the company PROZIS [125], [126].

The dataset has some fitness workout exercises which are annotated with several types of

possible errors. Unfortunately, this dataset was parameterized to skeleton joints but with no

additional information on joints indexes or the corresponding kinematic tree, so it was just

used for action recognition tasks where the visualization was not needed.

4.2 Action Recognition

For the action recognition aspect of the developed work, Coskun et al.’s [88] approach

of a BiLSTM with a self attention mechanism was chosen. This method already had some

internal research made on it by previous INPACT work.

48

4.2.1 Coskun’s Self Attentive LSTM

Some of the basics of the inner workings of the most common action recognition

networks were already given in the related work and background sections. Coskun’s approach

takes some inspiration on some already discussed topics like Neighbourhood Components

Analysis (NCA), BiLSTMs and attention mechanisms and improves on them. One of the

first improvements was on the loss function used. As previously mentioned, this architecture

uses a variation of NCA, based on the Maximum Mean Discrepancy (MMD).

MMD-NCA

As Coskun et al. [88] states, MMD, calculates the divergence between two distinct

distributions, p and q. It does so by considering the dissimilarities of the average embeddings

in Hilbert spaces. This can be expressed as follows:

MMD[k, p, q]2 = ||µq − µp||2 = Ex,x′ [k(x, x′)]− 2Ex,y[k(x, y)] + Ey,y′ [k(y, y
′)] (4.1)

where x and x′ are drawn independent and identically distributed random variables (IID)

from p while y and y′ are IID from q while k represents the kernel function and E the

expectation operator.

k(x, x′) =
K∑
q=1

kσq(x, x
′) (4.2)

In the equation 4.2 kσq denotes a Gaussian kernel with a bandwidth parameter σq, while K

denotes the hyperparameter, number of kernels. If the expected values are replaced by the

given samples, then:

MMD[k,X, Y]2 =
1

m2

m∑
i=1

m∑
j=1

k(xi, x
′
j)−

2

mn

m∑
i=1

m∑
j=1

k(xi, yj) +
1

n2

m∑
i=1

m∑
j=1

k(yi, y
′
j) (4.3)

Where X := {x1, ..., xm} is the sample set from p and Y := {y1, ..., yn} the sample

set from q, thus, the equation 4.3 allows the measurement of the distance between the

distribution of the two sets. The loss function is designed then to encourage the network

to minimize the gap between the distribution of anchor samples and positive samples, while

simultaneously maximizing the gap with the distribution of negative samples. Rewriting the

NCA equation (3.5) in a different form when considering a specified quantity of N anchor-

positive sample pairs, as {(X1,
+
1), ..., (XN ,

+
N)} and N×M negative samples from M different

categories C = {c1, ...cM} as {-
c1,1, ..., X

-
c1,N, ..., X

-
cM,N} then:

LMMD−NCA =
exp(−MMD[k, f(X), f(X+)])∑M
j=1 exp(−MMD[k, f(X), f(X -

cj)])
(4.4)

49

whence X and X+ denote motion samples belonging to the same category, whereas Xcj

represents samples from the category cj ∈ C. The single update includes M distinct negative

classes that are randomly selected from the training data.

The MMD-NCA loss, proposed by Coskun et al. [88], effectively reduces the overlap

between category distributions in the embedding. Simultaneously, it ensures that samples

from the same distribution are kept as close as possible.

Architecture

Figure 4.2: Coskun et al.’s Network. [88] a) the architecture itself. and b) the attention

based model that uses layered normalization

As presented in Figure 4.2, the model consists of two distinct parts, the BiLSTM and

the attention mechanism the author’s reasoning to use LSTMs is to overcome the vanishing

gradient problem of RNNs, showing that LSTMs can, indeed, capture long term dependencies

better.

Layer normalization

According to Coskun et al. and other authors [127]–[129], batch normalization is a

key player in the triplet model’s accuracy. Nevertheless, the direct implementation of LSTM

architectures may lead to a reduction in the accuracy of the model [88], [130]. Consequently,

Coskun et al. [88] proposed the usage of layer normalized LSTMs. Looking back at the

equations of the background’s LSTM section (2.2.2) and assuming that n steps of motion

X = (x1, ..., xn) are given, a simpler version of the layer normalized LSTM can be described

by the following equations:

gi
t = σ(WIgixt +WHgiht−1 + bgi) (4.5)

50

gf
t = σ(WIgfxt +WHgfht−1 + bgf) (4.6)

go
t = σ(WIgoxt +WHgoht−1 + bgo) (4.7)

gc
t = g ⊙ i

ttanh(WIgcxt +WHgcht−1 + bgc) + gf
t ⊙ gc

t-1 (4.8)

gm
t =

1

H

H∑
j

gc,j
t , vt =

√√√√ 1

H

H∑
j

(gc,j
t − gm

t)2 (4.9)

ht = go
t ⊙ tanh(

γ

vt
⊙ (gc

t − gm
t) + β) (4.10)

In this case, gc
t and ht−1 represent the cell memory and the cell state from the previous time-

step. Once again, xt denotes the input, this time assumed as a human pose at time-step t.

And as previously mentioned, σ(·) and the Hadamard ⊙ product represent the element-wise

sigmoid function and the element-wise product, H denotes the hidden units in the LSTM,

W, γ and β are learned while γ and β have the same dimension of ht. Contrary to the

standard LSTM, the hidden state ht is calculated by the normalization of gc
t.

The Self-Attention Mechanism

A self-attention mechanism proposed by Zhouhan et al. [131] was implemented.

Thus, In the context of human motion sequences, certain poses convey more information

than others in an intuitive manner. As a result, the self-attention mechanism is employed

to assign a score to each pose within the sequence. To be precise, the assumption is made

that the sequence of states, denoted as S = {h1, ..., ht} determined from a motion sequence

X, which consists of n time-steps. Accordingly, the scoring function can be described as:

r = Ws2tanh(Ws1S
T) and ai = −log(

exp(ri)∑
j exp(ri,j)

) (4.11)

where r has values in the range of [0,1] and is used to give different weights to ai. Embedding

ai each time-step is weighted in the attention score SC = r ·a. Moreover, Ws1,s2 are a weight

matrix and a weight vector forming the attention module [88], [131], [132].

Implementation

As previously described in the Figure 4.2. The model consists of three main branches,

each one consisting of an attention based, layer normalized BiLSTM or LNLSTM. the LNL-

STM does a forward and backward pass through the whole given sequence, therefore results

can not be inferred in real-time. Let st = [st,f , st,b] such that st,f =
−−−−−−−→
LNLSTM(wt, xt) for

t ∈ [0, N] and st,b =
−−−−−−−→
LNLSTM(wt, xt) for t ∈ [N, 0].

51

In n time steps of an input sequence X, S(s1, sn) is calculated, where st is the

concatenated output of the forward and backward passes of the LNLSTM with H (default

at 128) hidden units. The BiLSTM is then linked to the dropout function and the batch

normalisation function. The output is passed to an attention layer, which produces a fixed

size output. After the attention layer, the network is terminated by the following sequence of

structures: {fully connected(320), dropout, batch normalisation, fully connected(320), batch

normalisation, fully connected (128), batch normalisation and l2 Norm}, where the dropout

is limited to 0.5. Except for the last fully connected layer (FC), rectified linear units (ReLU)

are applied to all FC layers. The self-attention mechanism used in this implementation is

based on the approach described by Zhouhan et al [131]. For the scoring function in the

attention mechanism, Ws1 ∈ R200×10 and Ws2 ∈ R10×1. Finally, random orthogonal matrices

are used in this model to initialise all squared weight matrices, while the remaining matrices

are initialised with a uniform distribution with a mean of zero and a standard deviation of

0.001, as per Coskun et al. [88]. The parameter γ is initialised with zeros and the parameter

β is initialised with ones according to equation 4.10.

Training

For this step, the previous dataset from "The PROZIS Challenge" [125], [126] of

several workout annotated exercises with extra annotations for the errors in video format

was used. In previous work within the INPACT project and using this dataset, the virtual

skeletal landmarks were extracted and fixed at the hip joint, labelled with different sections,

i.e. up and down phases of a squat, and saved as multiple .JSON files. These files were then

divided into two different categories for further processing (correctly performed exercises and

exercises with execution errors). As the exercises varied in length, they were subsampled

for length or, if the length of the sequence was below the desired threshold, padded or

interpolated data was added. The data were split into training, validation and test sets,

using a batch size of 32 samples (which proved, empirically, sufficient for our purposes).

The model used an Adagrad optimiser that minimised the binary cross-entropy

function for binary classification with a starting learning rate of 0.001, and a scheduler that

gradually reduced the learning rate by a factor of 0.8, with a patience of 7 epochs and a total

of about 1000 sequences to train. Using an Nvidia RTX 2060 GPU, each epoch took about

4.2 seconds to train. Most training sessions were tested with a number of epochs between

300 and 1000, to test convergence. Most sessions reached the convergence plateau before the

52

500th epoch.

4.3 Motion Prediction

To further quantify the evaluation of the human movement in a rehabilitation set-

ting, another framework was proposed, a network that could estimate or predict the next x

frames, based on an average model, to then compare them to the ground truth, allowing the

feedback to be at the joint level and not just an overall scoring function. To this effect, two

graph based networks were chosen.

4.3.1 Space-Time-Separable Graph Convolutional Network

This graph-based approach involves encoding observed body joint coordinates from

input images, followed by using a space-time representation to predict future joint coordi-

nates. The encoding process is performed using the proposed Space-Time Separable Graph

Convolutional Network (STS-GCN), which captures the interaction between body joints over

time and focuses on space-time dynamics, as illustrated in Figure 4.3. The decoding of future

coordinates is performed with a Temporal Convolutional Network (TCN) [25].

Figure 4.3: Pipeline of the STS-GCN according to Sofianos et al. [25]

53

Problem Formalization

Following the work of Sofianos et al. [25] the task involves analysing the body pose

of an individual by examining the 3D coordinates or angles of their V joints over a span of T

frames. The goal is to subsequently forecast the V body joints for the upcoming K frames.

Let the 3D joint vector xx,k represent the joint v at time-step k. The motion history

of the poses denoted by the tensor, Xin = [X1, X2, ..., XT] which can be used to build the

matrices of the 3D coordinates, Xi ∈ R3×V for the time sequence i = 1, ..., T . The goal

is to predict the next K Xout = [XT+1, ..., XT+K]. A graph is created by encoding the

motion history tensor, representing the interactions among all body joints throughout the

observed frames. Accordingly, the graph can be denoted G = (V , E), with TV nodes i ∈ V ,

which represent the body joints across the whole time sequence. The edges (i, j) ∈ E

are represented by a spatial-temporal adjacency matrix Ast ∈ RV T×TV , connecting the

interactions of the joints at all times [25].

Graph Convolutional Network

As aforementioned, spatio-temporal can be easily encoded by a Graph Convolutional

Network f(X⟩\,A,W). The input layer to a convolutional layer l is the tensor Hl ∈ RCl×V×T

that encodes the V joints in T time-steps. C l denotes the input dimensionality of H l. In the

first layer, HL = §in and C l=3. The graph convolutional layer l outputs Hl+1 ∈ RCl+1×V×T

expressed by the following equation:

Hl+1 = σ(Ast−lHlW l) (4.12)

where Ast−l ∈ RV T×TV is the spacial-temporal adjacency matrix of l, and the trainable

graph convolutional weights of l, W l ∈ RCl×Cl+1 , projecting each graph node C l to C l+1 and

σ denotes the activation function.

Spatio-Temporal Separable Convolutions

The STS-GCN as proposed by [25] draws inspiration from the interplay between

the temporal progression and spatial connections of joints, emphasizing the significance of

joint-joint and time-time interactions. The dynamics of human pose involve three distinct

types of interactions: joint-joint, time-time, and joint-time. While STS-GCN accommodates

all three interactions, it restricts the joint-time cross-talk to a minimum. To capture the

interplay of joints over time, the model utilizes a single spatio-temporal encoding GCN that

54

relates the three types of relations. The bottlenecking of space-time cross-talk is achieved by

decomposing the space-time adjacency matrix into separate spatial and temporal adjacency

matrices Ast = AsAt. thus convolutional layer l can be described as:

Hl+1 = σ(As−lAt−lHlW l) (4.13)

Here, the same notation of the equation 4.12, except that As−lAt−l is the factorised adjacency

matrix of the plane l. The interaction of the joints is determined by the adjacency matrix

As ∈ RV×V , which represents the complete relations between the joints by trainable matrices

of size V × V at each time point (with a total of T such matrices). Similarly, the temporal

relations are defined by the adjacency matrix At ∈ RT×T , which consists of trainable T ×

T matrices representing the complete temporal relations for each of the V Joints.

Equation 4.13 illustrates a single layer of the (GCN) that captures the interplay

between spatial and temporal aspects of body dynamics. By employing a factorized space-

time matrix, the model effectively limits the exchange of information across space and time,

resulting in a reduction of model parameters. As a result, there is a significant improvement

in the forecasting performance.

4.3.2 Spatio-Temporal Separable Convolutions and Self-Attention

Rewriting the GCN equation as shown in 4.12 with the Einstein summation, omitting

the layer l, with the projection matrix W and the non-linearity of the activation function

for better clarity:

AstH =
∑
vm

Ast
wkvm Hvmc (4.14)

where Ast ∈ RV T×TV and H ∈ RC×V×T , and indexing spatial joints as v, w = 1, ..., V

and time-steps m, k = 1, ..., T . Rewriting the corresponding part of the space-time separable

convolution (STS-GCN) equation 4.13, with the Einstein summation, while, once again,

omitting W and the activation function, σ:

As(AtH) =
∑
v

As
wkv(

∑
m

At
kvmHvcm) =

∑
v

At
wkvHt

kvc (4.15)

the notation for equation 4.13 applies for equation 4.15, where there are indicated indexes

for As ∈ RV×V , for each of the time-steps and At ∈ RT×T , for each of the joints as

v, w = 1, ..., V for the spatial joints and m, k = 1, ..., T for the times-steps [25].

55

Decoding the future coordinates

The convolutional layers, which are responsible for the temporal dimension, take

the encoded observed body dynamics and use them to estimate the future 3D coordinates

or angles of the body joints. In this process, the observed images are mapped to the future

horizon and the estimates are refined through a multi-layer architecture.

Training

For the training of this architecture, the loss function minimized the error in relation

to the ground truth through Mean Per Joint Position Error (MPJPE), denoted as:

LMPJPE =
1

V (T +K)

T+K∑
k=1

V∑
v=1

||x̂vk − xvk||2 (4.16)

with x̂vk ∈ R3 denoting the predicted coordinates of the joint v in the time-step k and

xvk ∈ R3 is the corresponding ground truth [25].

For this method, the Human3.6M dataset [1] was used, both after Jain et al.’s [26]

conversion of 3D Euler angles to exponential map and using raw Cartesian coordinates, with

the skeleton’s articulations being capped at maximum of 22 joints.

As Sofianos et al. [25] stated, the encoding is built by 4 layers of STS-GCN, each

layer has a batch normalization function and residual connections. An Adam optimizer was

used with a learning rate of 0.001 decaying by a factor of 0.1 with patience of 5 epochs and a

batch sizer of 256. Training 30 epochs on an Nvidia RTX 2060 took between 20–30 minutes.

4.3.3 Spatial-Temporal Anchor-based Sampling

This method is an improved version of the earlier STS-GCN by Sofianos et al. [25]

and other work by Martinez et al. and Jain et al. [23], [26], by using deep generative mod-

els to produce a manifold prediction. Multi-level Spatial-Temporal AnchoR-based Sampling

(STARS) as in Figure 4.4, developed by Sirui et al. [102] and whose main insight is that future

movements are not completely random or unrelated. They have certain predictable charac-

teristics that are influenced by physical laws and the limitations of the human body. They

also tend to follow patterns that have been created by previous movements. To illustrate,

some imminent movements may have expected changes in speed or direction determined by

common factors, while their exact magnitude may vary randomly.

56

Figure 4.4: Spatial-Temporal AnchoR-based Sampling [102]

Problem Formalization

According to the notation of Sirui et al. [102], an input sequence Th with the 3D

coordinates of V joints describing each pose, X[x1, ..., xTh
]T , xi inRV×C0 , where C03 denotes

the 3 dimensions, K Output sequences of length Tp, denoted Ŷ1, ..., ŶK and the single ground

truth, denoted Y . The focus is on predicting a sequence K that is as close as possible to

the ground truth, and these K sequences are as diverse as possible and represent a realistic

future movement [102].

As the Figure 4.5 shows, this is true for different types of generative models: (a) In

a conventional generative model, stochastic noise is the only factor that is optimised. (b)

In a generative model with a deterministic anchor process, an anchor with Gaussian noise

is used as prediction. (c) Spatio-temporal compositional anchors correspond to predictions,

considering any combined pair of spatial and temporal anchors. (d) Multi-level spatio-

temporal anchors encode multiscale modes by combining anchors at different levels [102].

Deep Generative Models

Numerous studies have looked in depth at generating multiple hypotheses using deep

generative models. These models typically involve learning a parametric probability distri-

bution function, either explicitly or implicitly, to predict future movements. However, the

57

stochastic nature of these models can lead to variations in the magnitude of the hypotheses

generated.

Figure 4.5: The optimization process involves the joint optimization of anchors and network

parameters [102]

Let p(Y |X) describe the probability distribution function of the movement Y, con-

ditioned on the past movement X, with the latent variable z ∈ Z, thus the distribution

can be reparameterised as p(Y |X)
∫
p(Y |X, z)p(z)dz, where p(z) is a prioritised normal dis-

tribution. To generate Ŷ), z is drawn from p(z) and then mapped using a deterministic

generator G : Z × X → Y as [102] (Figure 4.5 a)):

z p(z), Ŷ = G(z,X) (4.17)

where G represents a deep neural network parameterized by θ, where it is attempted to make

the distribution pθ(Ŷ |X) (from G) as close as possible to p(Y |X). In order to produce a

variety of motion predictions, conventional methods typically start by randomly selecting

a group of latent codes Z = {z1, ..., zK} from a prior distribution p(z). However, while

generative models have the potential to encompass various modes, they do not offer a definite

assurance of accurately capturing all modes [102], [133], [134].

Anchor-Based Sampling

To cope with the problem stated in the last section, the author decomposes the

code within the latent space of the generative model into two parts: a stochastic component

sampled from p(z), and a deterministic component represented by a collection of K learn-

able parameters known as anchors a = {ak}K
k=1, taking into consideration some previous

assumptions:

• The deterministic aspect refers to the presence of correlated or shareable changes in ve-

locity, direction, movement patterns, etc., that naturally emerge across various actions

performed by different subjects and can be directly acquired from data.

58

• The stochastic aspect pertains to the random magnitude of the changes that occur

when a subject carries out an action.

Thus, the intuition behind deterministic anchors is to detect a wide range of patterns, and

this is accomplished by employing a meticulously crafted optimization process. Additionally,

stochastic noise is utilized to add further details to the variations in movement within specific

patterns. The latent code disentanglement can be denoted as a new multi-modal distribution:

pθ(Ŷ |X,A) =
1

K

∫
pθ(Ŷ |X, z, ak)p(z)dz (4.18)

Accordingly, the selected k -th learned anchor ak ∈ A, with randomly sampled noise z ∈ Z,

can generate a prediction Ŷk:

z p(z), Ŷk = G(ak, z,X) (4.19)

a total of K predictions can be made if an anchor is used only once, even though the anchors

are not limited to being used once. To incorporate the anchors into the network, it is more

effective if simple additions are made between anchors and latent features, Figure 4.6 b).

Spatial-Temporal Anchors

As mentioned in the sections on graph networks, the range of potential future move-

ments can be roughly divided into two distinct forms: spatial variation and temporal vari-

ation, which are relatively separate. This observation suggests a viable approach to further

divide K anchors into two types of adaptable codes: spatial anchors As{as
i}Ks

i1 and temporal

anchors At{at
j}Kt

j1. The usual notation of KKs×Kt can be used here. Thus, with this decom-

position, Ks ×Kt compositional anchors can be obtained. The frequency variation of future

movement sequences is actually controlled by the temporal anchors, since they represent

temporal features in the frequency domain. Spatial anchors, on the other hand, are concep-

tually identical in the temporal dimension, but describe the spatial variation of movement

and control the general trends and directions of movement. Conversely, temporal anchors

remain constant in the spatial dimension but differ in the temporal dimension, resulting in

frequency differences that affect the speed of the movement.

Thus, to generate Ŷk (Figure 4.5 c)), z must be sampled and the i -th and j -th spatial

(as
i) and temporal (at

j) anchors chosen:

z p(z), Ŷk = G(as
i + at

j, z,X) (4.20)

59

Figure 4.6: Combination of ST anchors, sampled noise with the backing STGCN [102]

Again, as
ia

t
j stands for the compositional anchor s-t. In addition, the spatio-temporal

anchors allow movement control to be adjusted via spatial and temporal variations. To

illustrate, if you keep the spatial anchors constant and adjust or interpolate the temporal

anchors, it is possible to create future movements that have comparable patterns [102].

Multi-Level S-T Anchors

To capture multiscale modes of future movement, Sirui et al. [102] proposed a

multilevel mechanism to extend the spatio-temporal anchors. This is illustrated in Figure

4.5 (d), which shows a double-storey or two-stage design. The author introduces two different

sets of s-t anchors {A1
t, A

1
t} and {A2

t, A
2
t} and associates them with two different network parts

G1,G2. Assuming that (i, j) are the s-t indices corresponding to the 1D index k, the sequence

Ŷk can be generated by a two-step process as:

z p(z), Ŷk = G2(as2
i + at2

j, z,G1(as1
i + at1

j, X)) (4.21)

where as1
i ∈ A1

s, at1
i ∈ A1

t, as2
i ∈ A2

s, at2
i ∈ A2

t. Anchors can thus be used at several levels

and serve as a principled approach to incorporate more complicated assumptions about

impending movements.

During the training process, the model uses each spatio-temporal anchor in an ex-

plicit way to generate K future movements for each past movement sequence. The loss

functions essentially follow the approach outlined in [25], [135], which can be divided into

three main types: (1) reconstruction losses, which optimise the best predictions given dif-

ferent definitions among the K generated motions, ensuring that the anchors match their

respective closest modes; (2) a diversity-promoting loss, which explicitly promotes different

pairwise distances in the predictions and prevents the anchors from collapsing into a single

mode; and (3) motion constraint losses, which promote the generation of realistic output

motions. The anchors are learned directly from the data using gradient descent. During

60

the forward pass, each anchor ai is added as an additional input to the network, resulting

in a total of K outputs. During the backward pass, each anchor is independently optimised

based on its corresponding outputs and losses, while the backbone network is updated based

on the combined losses of all outputs.

Interaction-Enhanced Spatial-Temporal Graph Convolutional Network

Let the Discrete Cosine Transform (DCT) X̂1:ThTp be a past motion where each pose

has V joints and a predefined mask M, and the base C ∈ RM×(ThTp) is a past pose X1:Th
,

where the last pose is replicated to be X1:ThTp [x1, ..., xTh
, xTh

, xTh
, ..., xTh

]T . The formulation

of X̂CX1:ThTp inRM×V×C0 in the 0-th layer and the s-t features of any layer l as (V l, E l) with

M ×V nodes. The node i is given by the 2D index (fi, vi) for the joint vi and the frequency

component of the DCT fi. The edge (i, j) ∈ E l is the link between node i and node j and

is represented by the learnable adjacency matrix AdjlAdjl
s Ads

l
f ∈ RMVMV . Adjl

s, connects

the nodes with the same frequency and Adjl
f is responsible for the interactions between the

nodes representing the same joint [102].

As in the previous method, the s-t graph could be encoded via graph convolution

network, given a set or trainable weights W l ∈ RMV×MV and the activation function σ(·),

the STGCN layer projects the input dimensions from C l to C l+1 by:

Hl+1
k = σ(AdjlHl

kW
l) = σ(Adjl

sAdj
l
fHl

kW
l) (4.22)

where, once again Hl
k ∈ RMV×Cl denotes the latent feature or hidden state of the prediction

Ŷk at the l -th layer. As in the previous method, the whole of the network consists of multiple

GCNs. After the prediction of the DCT coefficients Ỹk ∈ RM×V×CL reshaped from HL
k and

CL = 3, we can recover Ŷk via the inverse DCT as:

Ŷk = (CT Ỹk)Th+1:Th+Tp (4.23)

where the last Tp time-steps are recovered, representing the future, predicted poses[102].

Cross-Layer Sharing and Spatial Interaction Pruning

Sirui et al. also found that sharing adjacency matrices at a step of one layer is

quite effective, i.e. Adj4
s and Adj6

sAdj
8
s and Adj5

sAdj
7
s , as can be seen in the Figure 4.6.

To highlight the physical relationships and constraints between spatial joints, the spatial

connections Âdjl
sMs ⊙ Adjl

s within each graph layer l are pruned by applying a predefined

61

mask Ms using the element usage product ⊙. The author thus proposes:

Ms[i][j] =

1 vi and vj are physically connected, fi = fj

1 vi and vj are mirror connected, fi = fj

0 otherwise

(4.24)

In conclusion, the architecture comprises four STGCNs in their original form, without any

spatial pruning, along with four Pruned STGCNs.

4.3.4 Training

As aforementioned, the loss functions can be categorized into three groups:

• The reconstruction losses, which encompass reconstruction error and multi-modal re-

construction error.

• The diversity-enhancing losses (Multi-Modal).

• The motion constraint losses, which consist of history reconstruction error, pose prior,

limb loss, and angle loss.

Reconstruction error loss, with the aim to minimize the reconstruction error by promoting

the prediction that closely aligns with the ground truth. This, in turn, encourages the

corresponding anchor to capture a specific pattern or mode is given by the following equations

which share the same notation as the previous subsections:

Lr = min
k

||Ŷk − Y ||2 (4.25)

The multi-modal reconstruction error works by encouraging predictions to encompass mul-

timodal ground truth, there is a promotion of anchors to capture a wider range of modes.

Lmm =
1

N

N∑
n=1

min
k

||Ŷk − Yn||2 (4.26)

The multimodal ground truth Yn represents the possible future movements in several modes.

The discontinuity between prediction and history is mitigated by a close fit of the recon-

structed historical movement X̂k to the past sequence of the ground truth X, which is

achieved by using the inverse DCT. The error in the reconstruction of history can thus be

defined as follows

Lh =
1

K

K∑
k=1

||X̂k −X||2 (4.27)

62

The diversity-promoting loss function is designed to prevent the anchors from converging to

the same point by actively promoting differences between pairwise predictions, defined as:

ld =
2

K(K − 1)

K∑
j=1

K∑
k=j+1

exp(−||Ŷj − Ŷk||1
α

) (4.28)

The use of a pre-trained normalisation flow pnf to evaluate the probability of the pose

already present enables the measurement of generated human poses Ŷk. Using this module

ensures that the generated poses have a considerable probability within the pnf .

Lnf = −
K∑
k=1

logpnf (Ŷk) (4.29)

Limb loss is addressed by ensuring that the length of the limb (bone) remains consistent

with the ground truth. The bone length is determined as the distance between two joints

that are physically connected, and the vector L̂k encompasses the bone lengths of all poses

within X̂k. Thus, the limb loss can be given by:

Ll =
1

K

K∑
k=1

||L̂k − L||2 (4.30)

Finally the training parameters were kept as Sirui et al. [102] stated. 8 layers of STGCN

starting with 3 channels, then 128,64,128,64,128,64,128 and once again 3 channels. The

learning rate was set at 0.001 and decayed after 100 epochs, as:

lr = 0.001× (1.0− (
max(0, epoch− 100)

400
)) (4.31)

The optimizer used to train the model was the Adam function and capped the number of

possible K predictions to 1. Multiple cases were trained with 10 frames of context and

between 5 and 50 frames of predicted movement.

63

64

5 Results and Discussion

In this chapter, we will present and discuss the results of different performance

evaluation tasks. As mentioned earlier, two different tasks, skeleton-based action recognition

and motion prediction, are evaluated using three models, one of which focuses on action

recognition and two competing models are used for motion prediction. Quantitative and

qualitative performance metrics are extracted for these three models, and conclusions are

drawn about their feasibility in a real-time scenario.

5.1 Metrics and Evaluation

In order to evaluate the proposed methods, several metrics were established. These

were separated by task. Since the action recognition task is a classification task and the

dataset is unbalanced, some metrics need to be carefully selected to best represent the

overall performance of the method. For this purpose, the false positive rate (FPR), the F1

score and the mean class accuracy were chosen.

Let TP denote the true positive cases, TN the true negatives, FP the false positives

and consequently FN the false negatives of the i -th class out of a total of N classes, i ∈ N :

mCA =
1

N

N∑
i=1

TP + TN

TP + TN + FP + FN
(5.1)

The mean-class accuracy is used because the distribution is not balanced. In an ideal sce-

nario, the distributions of samples between subsamples (classes) would be uniform, but

because each set has different samples and a varying number of them, the accuracy would

undoubtedly change as well. So, to remediate this problem, mean-class accuracy was intro-

duced to achieve more realistic results.

The F1-score is a better way of measuring unbalanced data than the standard ac-

curacy. The F1 score has two parts, the precision and the recall, it is used to measure the

balance between precision and recall. It considers both the false positives and false negatives

65

in determining the overall performance of a model. The F1 score is calculated as the har-

monic mean (1
1
2

) of precision and recall, providing a single value that represents the model’s

accuracy in classifying positive instances while minimizing incorrect classifications.

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1 =
TP

TP + 1
2

= 2× Precision×Recall

Precision+Recall
(5.4)

Normalised mutual information (NMI) is a metric for measuring similarity or agree-

ment between two groups of labels or clusters. It is commonly used in unsupervised learning

tasks, such as clustering or community detection.

NMI calculates the mutual information between the two sets of labels and then

normalises it to obtain a value between 0 and 1. A higher NMI value indicates greater

similarity or agreement between the label sets, while a lower value indicates less similarity

or agreement.

NMI(Y,C) =
2× I(Y ;C)

[H(Y) +H(C)]
(5.5)

where Y is the class labels, C the cluster labels, the function H(·) is the entropy, and I(Y ;C)

is the mutual information of Y ∩ C.

For the action recognition model, the final metric used to measure the overall per-

formance of the model is the False Positive Rate as proposed by Coskun et al. [88]. The false

Positive Rate (FPR) is a metric used to evaluate the performance of a binary classification

model. It measures the proportion of negative samples that are falsely classified as positive.

In other words, it represents the rate at which the model mistakenly identifies a negative

sample as positive. The false positive rate is calculated by dividing the number of false

positive predictions by the sum of true negative predictions and false positive predictions.

It is often used in conjunction with other evaluation metrics, such as the true positive pre-

diction rate (recall) or the false negative prediction rate (FNR), to provide a comprehensive

understanding of the performance of the model.

FPR =
FP

FP + TN
(5.6)

For the second part of the proposed method, a few methods were employed based

on loss functions. The Mean Per Joint Position Error MPJPE, equation 4.16, is reported in

millimetres.

66

5.2 Evaluation of the Baseline Methods

In this section, there will be a quantitative analysis between the chosen methods

and other baselines existing in the literature.

5.2.1 Evaluation of Coskun’s Attentive LSTM

For the quantitative assessment of the metric, the dataset Human3.6M [1] was used

for comparison with the baseline. In the Results section, other metrics are analysed using

the PROZIS dataset [125], [126].

When using the Human3.6M dataset, all actions and sub-actions from all subjects

were used. The model was trained in 8 categories and tested in 7. The CMU [136] dataset

was also used, with six joints excluded, and the sampling rate reduced from 120Hz to 30Hz.

Of the 38 categories, 19 were selected for testing and 19 for training. To avoid gimbal locking,

the data were processed into an exponential map [88], [137]. A series of FPR tests for 90%,

80% and 70% true positive rates were made, according to the literature, these values allow

for a better visualisation of the performance of the classificator, i.e. if the values at 90%,

80% and 70% are relatively close to each other and zero, the classificator is quite good [88].

CMU H36M

FPR-90 FPR-80 FPR-70 FPR-90 FPR-80 FPR-70

DTW[138] 47.48 42.92 37.62 49.64 47.96 44.38

MDDTW[139] 44.60 39.07 34.04 49.72 45.87 44.51

CTW[140] 46.02 40.96 39.11 47.63 43.10 42.18

GDTW[141] 45.61 39.95 35.24 46.06 42.72 40.04

DCTW[142] 40.56 38.83 26.95 41.39 39.18 36.71

Triplet[143] 39.72 33.82 28.77 42.78 40.11 36.01

Triplet + GOR[144] 40.32 33.97 27.78 42.03 37.61 33.95

N_Pair[145] 40.11 32.35 26.16 40.46 39.56 36.52

MMD-NCA[88] 32.66 25.66 20.29 38.42 36.54 33.13

Table 5.1: Comparison of the FPR

If the true-positive rate (TPR) is set to X%, this means that the model is expected

to correctly identify X% of the positive instances.

67

However, the FPR is not determined by the TPR alone. It depends on the spe-

cific threshold or decision limit chosen by the model for classifying instances as positive or

negative. Different thresholds will result in different FPR values even if the TPR is fixed.

To determine the FPR corresponding to a specific TPR, additional information must

be calculated, such as the specific threshold or Receiver Operating Characteristic (ROC)

curve for the model.

Figure 5.1: The F1 scores and Normalized Mutual Information of 3 of the best baselines and

Coskun et al.’s method MMD-NCA [88]

It can be empirically deduced that in NMI and in F1 score, as per Figure 5.1,

Coskun’s approach works best results when compared to differing embedding sizes.

Figure 5.2: Attention mechanism in play [88]

The aim of the self-observation mechanism is to draw attention to the poses that

contain the most informative details in terms of the semantics of the movement process.

Consequently, the attentional mechanism is expected to prioritise the descriptive poses within

the movement, allowing the model to capture more informative embeddings. Based on the

peaks of A, which is composed of ai from the equation 4.12.

68

Figure 5.2 models a basketball sequence. Regardless of the differences in the length

of the movement, the model’s attention is focused on the moment when the player throws the

ball, as this contains the most informative aspect of the movement. Similarly, in the bending

movement, the model focuses on the specific sections of the movement. This illustration thus

shows the successful use of the mechanism of self-attention to highlight the most informative

sections of the sequence.

5.2.2 Evaluation of STARS and STS-GCN

For this methodology, the two considered will be compared quantitatively and qual-

itatively. The comparisons will focus on the MPJPE error, on models trained on exponential

map form. It should be noted that the model STARS, like the author’s implementation [102],

does not include a mode for 3D XYZ Cartesian joints. Further information on the results of

the model STS-GCN, trained on 3D XYZ Cartesian joints, is also provided.

The dataset used was Human3.6M [1] with all 15 different actions trained for 5

subjects, using one subject as a test set and another as a validation set. Each pose is

represented by 22 joints in an exponential map format and a 3D Cartesian format [25], [106].

All algorithms require 10 frames (400 msec) as input, although results are also

presented for a higher number of input frames. The algorithms then generate predictions

for future poses, ranging from 2 to 10 frames (80-400 msec) in the case of the short-term

predictions and 14 to 25 frames (560-1000 msec) in the case of the long-term scenario [25],

[106].

In addition to the two methods that are the focus of this paper, the comparison also

includes ConvSeq2Seq [146], which uses convolutional layers to encode the long- and short-

term histories separately. Also considered is LTD-X-Y [106], which incorporates a DCT to

encode the sequence frequency before a GCN (X and Y represent the number of observed

and predicted frames) [25], [102]. The results are as follows

69

W
al

ki
ng

E
at

in
g

Sm
ok

in
g

D
is

cu
ss

io
n

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

C
on

vS
eq

2S
eq

72
.2

77
.2

80
.9

82
.3

61
.3

72
.8

81
.8

87
.1

60
.0

69
.4

77
.2

81
.7

98
.1

11
2.

9
12

3.
0

12
9.

3

LT
D

-5
0-

25
50

.7
54

.4
57

.4
60

.3
51

.5
62

.6
71

.3
75

.8
50

.5
59

.3
67

.1
72

.1
88

.9
10

3.
9

11
3.

6
11

8.
5

ST
S-

G
C

N
60

.3
64

.6
65

.9
70

.0
2

57
.2

68
.3

75
.5

82
.6

54
.2

63
.8

70
.8

76
.1

91
.8

10
5.

2
11

3.
8

11
8.

9

ST
A

R
S

49
.3

53
.5

57
.4

61
.1

50
.2

61
.1

69
.1

74
.1

44
.2

51
.8

59
.0

64
.3

74
.0

85
.1

94
.1

10
0.

4

D
ir

ec
ti

on
s

G
re

et
in

g
P

ho
ni

ng
P
os

in
g

P
ur

ch
as

es
Si

tt
in

g

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

C
on

vS
eq

2S
eq

86
.6

99
.8

10
9.

9
11

5.
8

11
6.

9
13

0.
7

14
2.

7
14

7.
3

77
.1

92
.1

10
5.

5
11

4.
0

12
2.

5
14

8.
8

17
1.

8
18

7.
4

11
1.

3
12

9.
1

14
3.

1
15

1.
5

82
.4

98
.8

11
2.

4
12

0.
7

LT
D

-5
0-

25
74

.2
88

.1
99

.4
10

5.
5

10
4.

8
11

9.
7

13
2.

1
13

6.
8

68
.8

83
.6

96
.8

10
5.

1
11

0.
2

13
7.

8
16

0.
8

17
4.

8
99

.2
11

4.
9

12
7.

1
13

4.
9

79
.2

96
.2

11
0.

3
11

8.
7

ST
S-

G
C

N
75

.8
92

.9
10

2.
2

10
9.

6
11

1.
2

12
2.

4
13

1.
8

13
6.

1
72

.5
87

.9
99

.7
10

8.
3

11
5.

8
14

2.
4

16
1.

7
17

8.
4

10
4.

6
11

9.
4

13
2.

7
14

1.
0

82
.0

97
.6

11
0.

9
12

1.
4

ST
A

R
S

76
.4

91
.6

10
2.

4
10

7.
6

10
1.

2
11

6.
5

12
9.

5
13

5.
8

67
.2

82
.1

95
.1

10
3.

8
79

.7
98

.2
11

3.
9

12
9.

3
10

0.
3

11
7.

5
13

3.
1

13
9.

4
77

.5
95

.0
10

9.
1

11
7.

6

Si
tt

in
g

D
ow

n
P

ho
to

W
ai

ti
ng

D
og

W
al

ki
ng

W
al

ki
ng

To
ge

th
er

A
ve

ra
ge

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

56
0

72
0

88
0

10
00

C
on

vS
eq

2S
eq

10
6.

5
12

5.
1

13
9.

8
15

0.
3

84
.4

10
2.

4
11

7.
8

12
8.

.1
87

.3
10

0.
3

11
0.

7
11

7.
7

12
2.

4
13

3.
8

15
1.

1
16

2.
4

72
.0

77
.7

82
.9

87
.4

90
.7

10
4.

7
11

6.
7

12
4.

2

LT
D

-5
0-

25
10

0.
2

11
8.

2
13

3.
1

14
3.

8
75

.3
93

.5
10

8.
4

11
8.

8
77

.2
90

.4
10

1.
1

10
8.

3
10

7.
8

12
0.

3
13

6.
3

14
6.

4
56

.0
60

.3
63

.1
65

.7
79

.6
93

.6
10

5.
2

11
2.

4

ST
S-

G
C

N
10

4.
1

12
1.

4
13

7.
6

14
8.

4
81

.2
99

.6
11

1.
3

80
.3

95
.0

95
.0

10
5.

9
11

3.
6

11
9.

0
12

9.
0

14
3.

9
15

1.
5

61
.9

65
.4

69
.1

72
.5

85
.0

98
.3

10
8.

9
11

7.
0

ST
A

R
S

10
0.

9
12

0.
7

13
6.

6
14

6.
8

78
.1

96
.9

11
2.

1
12

2.
2

71
.7

85
.0

96
.0

10
3.

6
11

1.
9

12
6.

3
14

2.
9

15
3.

1
54

.1
59

.5
63

.5
67

.5
75

.8
89

.3
10

0.
8

10
8.

4

Ta
bl

e
5.

2:
C

om
pa

ra
ti

ve
an

al
ys

is
of

th
e

ob
ta

in
ed

re
su

lt
s.

70

It is possible to see that in this segment the STARS’ IE-STGCN for long term

predictions does, indeed, achieve better MPJPE error values than the STS-GCN and even

LTD with 50 context frames. Unfortunately, due to the LTD’s fixed size, it does not allow

great versatility. Even though the IE-STGCN achieves better results, these are not signi-

ficative, achieving in a long term prediction around 10 mm better prediction accuracy. For

short term, prediction, the average is even less noticeable. The table below shows that the

difference of the average for prediction of about 10 frames is no larger than 8 mm.

Short-term prediction Long-term prediction

80 160 320 400 560 720 880 1000

ConvSeq2Seq 16.6 33.3 53.9 61.2 90.7 104.7 116.7 124.2

LTD-50-25 11.2 23.4 47.9 58.9 79.6 93.6 105.2 112.4

STS-GCN 13.5 27.7 54.4 65.8 85.0 98.3 108.9 117.0

STARS 10.0 21.8 45.7 56.9 75.8 89.3 100.8 109.4

Table 5.3: Average Comparison between multiple methods.

Another important note is the prediction using the standard 3D XYZ Cartesian

point coordinate system. The prediction using 3D XYZ points is not as great as with the ex-

ponential map transformation, but the data requires less pre-processing and post-processing

in the form of the introduction of inverse kinematics and forward kinematics functions. Ac-

cording to [25], using the 3D XYZ Cartesian coordinates reduces the performance of the

model by 23% for short-term prediction and 34% for long-term prediction, which is sufficient

for the purposes of this thesis.

71

5.3 Results

For the results, the focus will be on the qualitative assessment of the overall results

and the provided feedback to the end-user. The architecture’s successes and shortcomings.

Firstly, for the action recognition purposes, there is a need to explain the PROZIS dataset

[125], [126].

5.3.1 The PROZIS Challenge Dataset

This dataset is a custom, non-open source dataset containing videos of different

annotated exercises (squats, burpees, sit-ups, push-ups and jumping jacks) from different

participants of varying length (and unknown frame rate) and with added annotated execution

errors [125], [126]. The capture and processing of this dataset was part of a project of the ISR

(Institute of Systems and Robotics) of the Electrical and Computer Engineering Department

of the University of Coimbra, named "The PROZIS Challenge" [125], [126]. Due to previous

work related to the INPACT project, which aimed to transform this dataset from image

based to skeleton based data, proved itself to be somewhat difficult. Some exercises were

recorded in-house with several people passing by, in the background. This led to fragments

in the extraction of the skeletal landmarks, which eventually delayed the correct extraction

of the landmarks. Therefore, only a limited number of joint sequences were available for

this project. These landmarks were stored in a .json file with the appropriate annotations

for the beginning and end of a repetition, if the repetition had an execution error, and the

skeletal embeddings. In the end, the squat exercise had the most samples with almost 950

sequences, the other exercises varied between about 300 and 70. It is also worth noting that

there is a clear discrepancy between the number of well executed and the not well executed

tasks.

5.3.2 Action Recognition

When it comes to action recognition, or the classification of exercises that are per-

formed well and those that are not, the model had some difficulties with the PROZIS dataset

[125], [126]. In the first place, the differences between well-executed exercises and not-well-

executed exercises are very minute. Thus, this task is very difficult and requires a very

sensitive network.

For this part, some modifications were made to the dataset. First, for each exercise

72

(already in skeleton format) of all participants, all samples were divided into three different

classes: OK, NOT OK and UNKNOWN. The sequences were cut to length or padded by

skeletons initialised to zero. It should be mentioned that movement interpolation was tried

but padding yielded better results in a range of one or two percentage points (mean class

accuracy), then the sequences of each set (training, validation and test) were concatenated

into a list and fed to the network So, with the modified dataset, a series of experiments were

conducted, measuring the mean class accuracy and, most importantly, analysing the output

of the loss function.

After analysing the training curves shown in Figure 5.3, some conclusions can be

drawn. In (a), the loss curves of the validation and training sets show similar behaviour

and have a good rate of convergence until they reach a plateau near the 200th epoch. A

look at the accuracy curve shows that the achieved accuracy is quite good, with a mean

class accuracy of 96.45%. On the other hand, if the graphs b), c) and d), are analysed, the

same conclusions can not be drawn. c) and d) are clearly under fitting, the results of the

accuracy testing just shows that the model does not learn and that there is a very high class

imbalance. In b), the model is slightly underfitting and the raggedness of the curve shows

that the training dataset is not representative. This shows that the number of samples has

a large information gap.

The inference process is quite fast, about two hundredths of a second, which allows

for a very fast prediction, provided the skeleton landmarks are already extracted and the

subsequent skeleton is preprocessed.

5.3.3 Motion Prediction and Feedback

For the motion prediction task, the MPJPE error function was modified a little.

Instead of calculating the mean position error per joint, the position error the joint position

error was calculated, making the error per joint accessible. The notation used bellow is the

same as in the MPJPE, equation 4.16:

LJPE =
1

V (T +K)
||x̂vk − xvk||2 (5.7)

Keeping the same notation of the equation 4.16, instead of calculating the mean distance

of all the joints through all time-steps, the positional Euclidean error will be calculated for

each joint, for each time-step. This way, according and with prior knowledge of where the

rehabilitation work will focus limbwise, or the INPACT project, it is assumed that there is

knowledge on what part of the body will be assessed and the exercise to be executed, i.e. the

73

rehabilitation that includes walking/running for post-operative or even neurodegenerative

diseases like multiple sclerosis rehab, the focus will be on the legs while other exercises like

squats will include both the legs and the spine.

Figure 5.4 shows the sequence of 25 frames, corresponding to almost 1 second of

prediction, focusing on the error of the legs. The model used was the STS-GCN by [25] using

3D Cartesian Coordinates with 10 frames of movement context. The error was thresholded

for a better visual inspection of the prediction. In the image the striped black lines represent

the ground truth, while the prediction is colour coded by several thresholds of accuracy,

green meaning very good, yellow meaning good, orange meaning mediocre and red meaning

the observed movement is not following the predicted average movement. These thresholds

will enable the system to provide meaningful instructions to the user. This removes useless

joints for the analysis and provides an easier visual feedback towards the user.

74

(a) Training and validation accuracy and

losses wrt squats

(b) Training and validation accuracy and

losses wrt sit-ups

(c) Training and validation accuracy and

losses wrt push-ups

(d) Training and validation accuracy and

losses wrt jumping-jacks

Figure 5.3: Results for an experiment in the conditions above stated in 4.2.1

75

F
ig

ur
e

5.
4:

Se
qu

en
ce

of
25

im
ag

es
in

a
w

al
ki

ng
ex

er
ci

se

76

One second of prediction time is quite unreasonable for real-world applications, but

it shows the robustness of the architecture. The speed of the movement was also changed

to see if it had any effect on the prediction. This was done by trying the same action but

subsampling it from 50% to 25%, increasing the distance between joints and between frames.

The model proved to be robust enough to make the necessary corrections to the distance.

By an empirical analysis of the aforementioned Figure 5.4 it can be seen that the

model is fairly accurate, provided the motion is linear and the context corresponds to the

motion to be executed. As expected, the prediction increasingly deviates from the actual

situation in the last few frames.

In order not to underestimate the importance of context, another experiment was

conducted. At the beginning of this exercise, the performer stood still. Only after a few

frames of prediction does the performer begin to move. This can be demonstrated empir-

ically by analysing Figure 5.5. Another fact regarding context is that the more context

samples there are, the better the prediction. Thus, more complex features such as a better

approximation of speed can be extracted.

It should also be noted that the joint position error increases as the number of

prediction samples increases. This happens because the error accumulates after each time

step and the observed ground truth deviates more and more from the prediction. Therefore, it

is best not to overstretch the capabilities of the model by increasing the number of predicted

samples. Another important point is that the models are not able to produce results in

real time. As for the language used, Python is not known for being the fastest language. C,

C++ and Rust are the fastest, yet Python provides an amazing backbone with many machine

learning oriented functions and libraries. Still, the entire inference process takes between

two and five seconds of processing time to generate the predicted sequence, its associated

error and saving the drawn images. Provided the landmarks are already extracted and the

sequence are preprocessed.

77

F
ig

ur
e

5.
5:

Se
qu

en
ce

of
25

w
al

ki
ng

fr
am

es
pr

ov
in

g
th

e
im

po
rt

an
ce

of
hi

st
or

ic
co

nt
ex

t

78

6 Conclusion and Future Work

With the ever-increasing need for computer assisted aids in almost all medicine

fields and the massive bump in the public interest for it in this post Covid-19 world, the

search for novel ways to assist humans in saving lives and improving the quality of life have

taken a front row seat in the development priority. As stated before in the context of the

INPACT project, the goal was to implement a full-stack project, to help in the execution of

rehabilitation exercises, both in-house and out-house. The novelty of the project arises due

to the fact that this has not been done for rehab purposes and does not include a full-fledged

working project.

In this thesis, a catalogue of back-end methods to help with physical rehabilitation

has been presented and implemented. These can be divided into two categories: Action

Recognition, where correctly and incorrectly performed exercises were tested, and Movement

Prediction, where two different machine learning models create a fixed-size sequence (the

predicted sequence) given a time sequence as context. The observed sequence (the ground

truth) and the predicted sequence were compared, and the total error measured joint by

joint.

On the proposed pipeline. A sequence of RGB images is used to extract skeletal

landmarks, which are normalised and subsampled to an appropriate length. Then the context

sequence is collected and fed to the action recognition model or the motion prediction model.

Then, if the former, is chosen the data is sifted through a Bidirectional LSTM with a self-

attention mechanism, and depending on the goodness of execution, a classification is made. If

the latter, is chosen, one of two options: Extract the landmarks as 3D Cartesian coordinates

or extract them as 3D Euler angles and further process them to exponential map format.

Although this guarantees better results due to the lack of gimbal locking (loss of one degree

of freedom), the raw extraction of 3D coordinates results in faster computation time as there

is no need for further pre-processing with negligible degradation of the extracted metrics.

Second, in motion prediction, the joints of the skeleton are fed by one of two dif-

79

ferent types of Convolutional Graph Neural Networks, one a space-time separable graph

convolutional network and an anchor-based graph convolutional network. These can extract

latent features within the graph representation of the input data and use them to obtain a

predicted sequence by iterating them in each step until the last predicted frame.

Third, these sequences are used to determine an error metric by comparing it to

the observed sequence (the ground truth) and calculating an error variable. A skeleton is

created and given to the user as feedback.

Moreover, the motion prediction architectures have some very interesting properties.

First, they are quite robust to changes in speed and sampling rate. The networks adjust the

output sequence according to the execution speed and sampling rate without the need for

a dynamic time warping algorithm. Secondly, they are very sensitive to the given context.

It is worth noting that the predicted sequence is much more accurate for longer context

sequences than for shorter sequences.

These models were implemented in Python using the TensorFlow and PyTorch li-

braries. The results were measured in FPR and mean class accuracy in the case of the action

detection model and in Mean Per Joint Position Error (MPJPE) loss function variations in

the case of motion prediction. All these methods were compared with other state-of-the-art

methods.

6.1 Future Work

Improvements to the current system need to be made to further validate the meth-

ods, and some other improvements to the models need to be made. Firstly, more datasets

with more diverse and complicated movements need to be tested, specially those with work-

out or even rehabilitation exercises in mind.

Not only, but also, some improvements need to be made to the data preprocessing.

For once, a inverse kinematics function that transforms 3D Cartesian Coordinates into 3D

Euler and then to exponential map needs to be created, so a higher threshold of prediction

accuracy is achieved.

There are still some other ways in which the overall system can be improved, either

by implementing new features or by joining it with other systems

• Implementation of multi-person prediction and exercise analysis

• Addition of prediction of movement an analysis of more specific and intricate parts of

80

the body, like the spinal column

• Movement segmentation for repetition counter

• Add an overall scoring function for the action recognition model

• Due to current performance benchmarks, add a faster, less sophisticated model to make

corrections without predicting the movement.

With these proposals and a broader array of datasets, these methods are surely to

produce even better results and a more intuitive feedback. Not only this but the proposed

system has the capability to be modified for other types of data and scenarios like in the

automotive industry or meteorology.

81

Bibliography

[1] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale

datasets and predictive methods for 3d human sensing in natural environments”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7,

pp. 1325–1339, Jul. 2014.

[2] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black, Amass:

Archive of motion capture as surface shapes, 2019. arXiv: 1904.03278 [cs.CV].

[3] J. Bocas, “The digitalization of medicine”, in Digital Health and Wearables, 2022.

[4] L. Rigamonti, C. L. Urs-Vito Albrecht, M. Tempel, B. Wolfarth, and D. A. Back,

“Working group digitalisation. potentials of digitalization in sports medicine”, in Cur-

rent Sports Medicine Reports, vol. 19, 2020, pp. 157–163. doi: DOI:10.1249/JSR.

0000000000000704.

[5] J. Manyika, S. Ramaswamy, S. Khanna, et al., “Digital america: A tale of the haves

and have-mores”, in McKinsey Global Institute, 2015. [Online]. Available: https :

//www.mckinsey.com/industries/high-tech/our-insights.

[6] M. Müschenich and L. Wamprecht, “Health 4.0 — how are we doing tomorrow?”, in

Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, vol. 9, 2018, ch. 585-

606.

[7] B.Mesko, Z. Drobni, E. Benyei, et al., “Digital health is a cultural transformation of

traditional healthcare”, in Mhealth, 2017. doi: 10.21037/mhealth.2017.08.07..

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682364.

[8] W. Frontera, L. Micheli, S. Herring, and J. Silver, “Medical management and reha-

bilitation”, in Elsevier Inc, 2007.

[9] H. Saner and v. d. V. E, “Ehealth in cardiovascular medicine: A clinical update”, in

Eurpean Journal of Preventive Cardiology, vol. 23, 2016, ch. 5-12.

83

https://arxiv.org/abs/1904.03278
https://doi.org/DOI: 10.1249/JSR.0000000000000704
https://doi.org/DOI: 10.1249/JSR.0000000000000704
https://www.mckinsey.com/industries/high-tech/our-insights
https://www.mckinsey.com/industries/high-tech/our-insights
https://doi.org/10.21037/mhealth.2017.08.07.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682364

[10] D. Lupton, “The digitally engaged patient: Self-monitoring and self-care in the digital

health era.”, in Social Science and Medicine, vol. 86, 2013.

[11] E. Sillence, P. Briggs, P. Harris, and L. Fishwick, “How do patients evaluate and make

use of online health information?”, in Social Science and Medicine, vol. 64, 2007.

[12] Y. Liao, A. Vakanski, and M. Xian, “A deep learning framework for assessing physical

rehabilitation exercises”, in IEEE, 2019, pp. 1–9.

[13] S. R. Machlin, J. Chevan, W. W. Yu, and M. W. Zodet, “Determinants of utiliza-

tion and expenditures for episodes of ambulatory physical therapy among adults”, in

Physical Therapy, vol. 91, 2011, pp. 1018–1029.

[14] R. Komatireddy, A. Chokshi, J. Basnett, M. Casale, D. Goble, and T. Shubert, “Qual-

ity and quantity of rehabilitation exercises delivered by a 3-d motion controlled cam-

era: A pilot study”, in International Journal of Physical Medicine and Rehabilitation,

vol. 2, 2014.

[15] “Intelligent platform for autonomous collaborative telerehabilitation”. [Online]. Avail-

able: https: // isr. uc. pt/ index. php/ projects /current - projects? task =

showprojects.show$%5C%$28$%5C%$29&idProject=274.

[16] M. Varandas and P. Peixoto, 3d pose and human shape estimation for autonomous tel-

erehabilitation systems, Master’s thesis, ISR, Departamento de Engenharia Eletrotéc-

nica e Computadores, Universidade de Coimbra, Jul. 2023.

[17] J. Li, C. Xu, Z. Chen, S. Bian, L. Yang, and C. Lu, Hybrik: A hybrid analytical-

neural inverse kinematics solution for 3d human pose and shape estimation, 2022.

arXiv: 2011.14672 [cs.CV].

[18] O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj, and D. J. Inman,

“A review of vibration-based damage detection in civil structures: From traditional

methods to machine learning and deep learning applications”, Mechanical Systems

and Signal Processing, vol. 147, p. 107 077, 2021, issn: 0888-3270. doi: https://

doi.org/10.1016/j.ymssp.2020.107077. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0888327020304635.

[19] K. O’Shea and R. Nash, “An introduction to convolutional neural networks”, in School

of Computing and Communications, Lancaster University, Lancashire, 2015.

84

https://isr.uc.pt/index.php/projects/current-projects?task=showprojects.show$%5C%$28$%5C%$29&idProject=274
https://isr.uc.pt/index.php/projects/current-projects?task=showprojects.show$%5C%$28$%5C%$29&idProject=274
https://arxiv.org/abs/2011.14672
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107077
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107077
https://www.sciencedirect.com/science/article/pii/S0888327020304635
https://www.sciencedirect.com/science/article/pii/S0888327020304635

[20] Z. Liu, S. Wu, S. Jin, et al., “Towards natural and accurate future motion prediction

of humans and animals”, in 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2019, pp. 9996–10 004. doi: 10.1109/CVPR.2019.

01024.

[21] F. han, B. Reily, et al., “Space-time representation of people based on 3d skeletal

data: A review”, in CVIU, vol. 158, 2017, pp. 85–105.

[22] D. Hoeim and S.Savarese, “Representations and techniques for 3d object recognition

and scene interpretation”, in Synthesis Lectures on Artificial Intelligence and Machine

Learning.Morgan & Claypool Publishers, 2011.

[23] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction using recur-

rent neural networks”, 2017. arXiv: 1705.02445 [cs.CV].

[24] W. Mao, M. Liu, and M. Salzmann, “History repeats itself: Human motion prediction

via motion attention”, 2020. arXiv: 2007.11755 [cs.CV].

[25] T. Sofianos, A. Sampieri, L. Franco, and F. Galasso, “Space-time-separable graph

convolutional network for pose forecasting”, 2021. arXiv: 2110.04573 [cs.CV].

[26] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn: Deep learning on

spatio-temporal graphs”, 2016. arXiv: 1511.05298 [cs.CV].

[27] A. Vihya, “A comprehensive guide on human pose estimation”. [Online]. Available:

https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-

on-human-pose-estimation/.

[28] T. Vidvan, “Human pose estimation using opencv & python”. [Online]. Available:

https://techvidvan.com/tutorials/human-pose-estimation-opencv/.

[29] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of a

quaternion-based kalman filter for human body motion tracking”, IEEE Transactions

on Robotics, vol. 22, no. 6, pp. 1216–1227, 2006. doi: 10.1109/TRO.2006.886270.

[30] G. Panahandeh, N. Mohammadiha, A. Leijon, and P. Händel, “Continuous hidden

markov model for pedestrian activity classification and gait analysis”, IEEE Transac-

tions on Instrumentation and Measurement, vol. 62, no. 5, pp. 1073–1083, 2013. doi:

10.1109/TIM.2012.2236792.

85

https://doi.org/10.1109/CVPR.2019.01024
https://doi.org/10.1109/CVPR.2019.01024
https://arxiv.org/abs/1705.02445
https://arxiv.org/abs/2007.11755
https://arxiv.org/abs/2110.04573
https://arxiv.org/abs/1511.05298
https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-on-human-pose-estimation/
https://www.analyticsvidhya.com/blog/2022/01/a-comprehensive-guide-on-human-pose-estimation/
https://techvidvan.com/tutorials/human-pose-estimation-opencv/
https://doi.org/10.1109/TRO.2006.886270
https://doi.org/10.1109/TIM.2012.2236792

[31] Y. Huang, K. Englehart, B. Hudgins, and A. Chan, “A gaussian mixture model based

classification scheme for myoelectric control of powered upper limb prostheses”, IEEE

Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1801–1811, 2005. doi:

10.1109/TBME.2005.856295.

[32] A. Vakanski, I. Mantegh, A. Irish, and F. Janabi-Sharifi, “Trajectory learning for

robot programming by demonstration using hidden markov model and dynamic time

warping”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-

ics), vol. 42, no. 4, pp. 1039–1052, 2012. doi: 10.1109/TSMCB.2012.2185694.

[33] D. Biswas, Z. Ye, E. B. Mazomenos, M. Jöbges, and K. Maharatna, “Cordic framework

for quaternion-based joint angle computation to classify arm movements”, in 2018

IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

doi: 10.1109/ISCAS.2018.8350967.

[34] E. Mazomenos, D. Biswas, A. Cranny, et al., “Detecting elementary arm movements

by tracking upper limb joint angles with marg sensors”, IEEE journal of biomedical

and health informatics, vol. 20, May 2015. doi: 10.1109/JBHI.2015.2431472.

[35] M. del Pra, “An overview of the architecture and the implementation details of the

most important deep learning algorithms for time series forecasting”, in Time Series

Forecasting with Deep Learning and Attention Mechanism. [Online]. Available: https:

//towardsdatascience.com/time-series-forecasting-with-deep-learning-

and-attention-mechanism-2d001fc871fc.

[36] A. Ohri, S. Agrawal, and G. Chaudhary, “On-device realtime pose estimation &

correction”, in International Journal of Advances in Engineering and Management

(IJAEM), vol. 3, 2021.

[37] J. Zhang, “Dynamic time warping:explanation and code implementation.”. [Online].

Available: https://towardsdatascience.com/dynamictime-%20warping-3933f25fcdd.

[38] S. Bhan, “What is dynamic time warping?”. [Online]. Available: https://medium.

com/mlearning-ai/what-is-dynamic-time-warping-253a6880ad12.

[39] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, Recent advances in

recurrent neural networks, 2018. arXiv: 1801.01078 [cs.NE].

[40] LeCun, Bengio, and Hinton, “Deep learning”, in Nature, vol. 521, 2015, pp. 436–444.

[41] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-

dient descent is difficult”, 2, vol. 5, 1994, pp. 157–166. doi: 10.1109/72.279181.

86

https://doi.org/10.1109/TBME.2005.856295
https://doi.org/10.1109/TSMCB.2012.2185694
https://doi.org/10.1109/ISCAS.2018.8350967
https://doi.org/10.1109/JBHI.2015.2431472
https://towardsdatascience.com/time-series-forecasting-with-deep-learning-and-attention-mechanism-2d001fc871fc
https://towardsdatascience.com/time-series-forecasting-with-deep-learning-and-attention-mechanism-2d001fc871fc
https://towardsdatascience.com/time-series-forecasting-with-deep-learning-and-attention-mechanism-2d001fc871fc
https://towardsdatascience.com/dynamictime-%20warping-3933f25fcdd
https://medium.com/mlearning-ai/what-is-dynamic-time-warping-253a6880ad12
https://medium.com/mlearning-ai/what-is-dynamic-time-warping-253a6880ad12
https://arxiv.org/abs/1801.01078
https://doi.org/10.1109/72.279181

[42] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato, Learning longer

memory in recurrent neural networks, 2015. arXiv: 1412.7753 [cs.NE].

[43] K. Brind, “What is machine learning? definition, types, and examples.”, in Certificate

in Quantitative Finance Institute, 2022.

[44] K. D. Foote, A brief history of machine learning, May 2023. [Online]. Available:

https://www.dataversity.net/a-brief-history-of-machine-learning/#.

[45] Z.-H. Zhou, Machine Learning. Nanjing: Springer Signature, 2021, isbn: 9811519676,

9789811519673.

[46] D. O. Hebb, The organization of behavior: A neuropsychological theory. New York:

Wiley, Jun. 1949, isbn: 0-8058-4300-0.

[47] S. Grossberg, “Recurrent neural networks”, in Scholarpedia, vol. 8, 2013. doi: 10.

4249/scholarpedia.1888.

[48] D. Chortarias, Human activity recognition with deep learning, 2021.

[49] L. C. Jain and L. R. Medsker, Recurrent Neural Networks: Design and Applications,

1st. USA: CRC Press, Inc., 1999, isbn: 0849371813.

[50] L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applica-

tions (Prentice-Hall international editions). Prentice-Hall, 1994, isbn: 9780133341867.

[Online]. Available: https://books.google.pt/books?id=ONylQgAACAAJ.

[51] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall, 1999.

[52] aishwarya.27, “Introduction to recurrent neural network”. [Online]. Available: https:

//www.geeksforgeeks.org/introduction-to-recurrent-neural-network/.

[53] S. Amidi, “Recurrent neural networks cheatsheet”. [Online]. Available: https : / /

stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-

networks.

[54] J. Nabi, “Recurrent neural networks (rnns)”, in Implementing an RNN from scratch

in Python.. [Online]. Available: https://towardsdatascience.com/recurrent-

neural-networks-rnns-3f06d7653a85.

[55] J. Delua, “Supervised vs. unsupervised learning: What’s the difference?”. [Online].

Available: https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-

learning.

87

https://arxiv.org/abs/1412.7753
https://www.dataversity.net/a-brief-history-of-machine-learning/#
https://doi.org/10.4249/scholarpedia.1888
https://doi.org/10.4249/scholarpedia.1888
https://books.google.pt/books?id=ONylQgAACAAJ
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning
https://www.ibm.com/cloud/blog/supervised-vs-unsupervised-learning

[56] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convo-

lutional neural networks”, Neural Information Processing Systems, vol. 25, Jan. 2012.

doi: 10.1145/3065386.

[57] R. Kwiatkowski, “Gradient descent algorithm — a deep dive”, in The Gradient Descent

method lays the foundation for machine learning and deep learning techniques. Let’s

explore how does it work, when to use it and how does it behave for various functions.,

2021. [Online]. Available: https://towardsdatascience.com/gradient-descent-

algorithm-a-deep-dive-cf04e8115f21.

[58] J. Watt, R. Borhani, and A. K. Katsaggelos, Machine Learning Refined: Foundations,

Algorithms, and Applications. Cambridge University Press, 2016, isbn: 9781316402276.

doi: 10.1017/CBO9781316402276. [Online]. Available: https://doi.org/10.1017/

CBO9781316402276.

[59] G. Mayanglambam, “Deep learning optimizers”, in SGD with momentum, Adagrad,

Adadelta, Adam optimizer, 2020. [Online]. Available: https://towardsdatascience.

com/deep-learning-optimizers-436171c9e23f.

[60] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[61] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computation,

vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735.

[62] C. Olah, “Understanding lstm networks”, 2015. [Online]. Available: https://colah.

github.io/posts/2015-08-Understanding-LSTMs/.

[63] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction

with lstm”, in 1999 Ninth International Conference on Artificial Neural Networks

ICANN 99. (Conf. Publ. No. 470), vol. 2, 1999, 850–855 vol.2. doi: 10.1049/cp:

19991218.

[64] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning”, CoRR,

vol. abs/2106.11342, 2021. arXiv: 2106.11342. [Online]. Available: https://arxiv.

org/abs/2106.11342.

[65] Y. Tamura, “Lstm back propagation: Following the flows of variables”, in Artificial

Intelligence, Data Science, Deep Learning, Main Category, 2020. [Online]. Available:

https://data-science-blog.com/blog/2020/09/07/back-propagation-of-

lstm/.

88

https://doi.org/10.1145/3065386
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://doi.org/10.1017/CBO9781316402276
https://doi.org/10.1017/CBO9781316402276
https://doi.org/10.1017/CBO9781316402276
https://towardsdatascience.com/deep-learning-optimizers-436171c9e23f
https://towardsdatascience.com/deep-learning-optimizers-436171c9e23f
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1049/cp:19991218
https://arxiv.org/abs/2106.11342
https://arxiv.org/abs/2106.11342
https://arxiv.org/abs/2106.11342
https://data-science-blog.com/blog/2020/09/07/back-propagation-of-lstm/
https://data-science-blog.com/blog/2020/09/07/back-propagation-of-lstm/

[66] M. Alhamid, “Lstm and bidirectional lstm for regression”, in Learn how to use Long

Short-Term Memory Networks for regression problems, 2021. [Online]. Available: https:

//towardsdatascience.com/lstm-and-bidirectional-lstm-for-regression-

4fddf910c655.

[67] E. Zvornicanin, “Differences between bidirectional and unidirectional lstm”. [Online].

Available: https://www.baeldung.com/cs/bidirectional-vs-unidirectional-

lstm.

[68] N. Malingan, “Attention mechanism in deep learning”. [Online]. Available: https:

/ / www . scaler . com / topics / deep - learning / attention - mechanism - deep -

learning/.

[69] Z. Niu, G. Zhong, and H. Yu, “A review on the attention mechanism of deep learn-

ing”, Neurocomputing, vol. 452, pp. 48–62, 2021, issn: 0925-2312. doi: https://

doi.org/10.1016/j.neucom.2021.03.091. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S092523122100477X.

[70] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention is all you need, 2017. arXiv:

1706.03762 [cs.CL].

[71] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, A convolutional neural network

for modelling sentences, 2014. arXiv: 1404.2188 [cs.CL].

[72] B. Warner, “Tinkering with attention pooling”, in Improving Upon Learned Aggrega-

tion. [Online]. Available: https://benjaminwarner.dev/2022/07/14/tinkering-

with-attention-pooling.

[73] E. A. Nadaraya, “On estimating regression”, Theory of Probability & Its Applications,

vol. 9, no. 1, pp. 141–142, 1964. doi: 10.1137/1109020. [Online]. Available: https:

//doi.org/10.1137/1109020.

[74] G. S. Watson, “Smooth regression analysis”, Sankhyā: The Indian Journal of Statis-

tics, Series A (1961-2002), vol. 26, no. 4, pp. 359–372, 1964, issn: 0581572X. [Online].

Available: http://www.jstor.org/stable/25049340 (visited on 05/29/2023).

[75] J. F. Kolen and S. C. Kremer, “Gradient flow in recurrent nets: The difficulty of

learning longterm dependencies”, in A Field Guide to Dynamical Recurrent Networks.

2001, pp. 237–243. doi: 10.1109/9780470544037.ch14.

89

https://towardsdatascience.com/lstm-and-bidirectional-lstm-for-regression-4fddf910c655
https://towardsdatascience.com/lstm-and-bidirectional-lstm-for-regression-4fddf910c655
https://towardsdatascience.com/lstm-and-bidirectional-lstm-for-regression-4fddf910c655
https://www.baeldung.com/cs/bidirectional-vs-unidirectional-lstm
https://www.baeldung.com/cs/bidirectional-vs-unidirectional-lstm
https://www.scaler.com/topics/deep-learning/attention-mechanism-deep-learning/
https://www.scaler.com/topics/deep-learning/attention-mechanism-deep-learning/
https://www.scaler.com/topics/deep-learning/attention-mechanism-deep-learning/
https://doi.org/https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/https://doi.org/10.1016/j.neucom.2021.03.091
https://www.sciencedirect.com/science/article/pii/S092523122100477X
https://www.sciencedirect.com/science/article/pii/S092523122100477X
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1404.2188
https://benjaminwarner.dev/2022/07/14/tinkering-with-attention-pooling
https://benjaminwarner.dev/2022/07/14/tinkering-with-attention-pooling
https://doi.org/10.1137/1109020
https://doi.org/10.1137/1109020
https://doi.org/10.1137/1109020
http://www.jstor.org/stable/25049340
https://doi.org/10.1109/9780470544037.ch14

[76] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey

on graph neural networks”, IEEE Transactions on Neural Networks and Learning

Systems, vol. 32, no. 1, pp. 4–24, 2021. doi: 10.1109/TNNLS.2020.2978386.

[77] J. Zhou, G. Cui, S. Hu, et al., Graph neural networks: A review of methods and

applications, 2021. arXiv: 1812.08434 [cs.LG].

[78] “Https://web.stanford.edu/class/cs224w/slides/08-gnn.pdf”.

[79] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, Geometric deep learning:

Grids, groups, graphs, geodesics, and gauges, 2021. arXiv: 2104.13478 [cs.LG].

[80] Y. Shastri, “A beginner’s guide to graph neural networks”, in What are Graph Neural

Networks (GNN)? Learn more about their architecture, applications in computer vi-

sion, and the reasons for their increasing popularity., 2022. [Online]. Available: https:

//www.v7labs.com/blog/graph-neural-networks-guide.

[81] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The

emerging field of signal processing on graphs: Extending high-dimensional data anal-

ysis to networks and other irregular domains”, IEEE Signal Processing Magazine,

vol. 30, no. 3, pp. 83–98, 2013. doi: 10.1109/MSP.2012.2235192.

[82] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, Spectral networks and locally con-

nected networks on graphs, 2014. arXiv: 1312.6203 [cs.LG].

[83] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, et al., Convolutional networks

on graphs for learning molecular fingerprints, 2015. arXiv: 1509.09292 [cs.LG].

[84] A. Micheli, “Neural network for graphs: A contextual constructive approach”, IEEE

Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, 2009. doi: 10.1109/

TNN.2008.2010350.

[85] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning

to align and translate, 2016. arXiv: 1409.0473 [cs.CL].

[86] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, Convolutional

sequence to sequence learning, 2017. arXiv: 1705.03122 [cs.CL].

[87] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, Graph

attention networks, 2018. arXiv: 1710.10903 [stat.ML].

[88] H. Coskun, D. J. Tan, S. Conjeti, N. Navab, and F. Tombari, Human motion analysis

with deep metric learning, 2018. arXiv: 1807.11176 [cs.CV].

90

https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/2104.13478
https://www.v7labs.com/blog/graph-neural-networks-guide
https://www.v7labs.com/blog/graph-neural-networks-guide
https://doi.org/10.1109/MSP.2012.2235192
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1509.09292
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2010350
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1705.03122
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1807.11176

[89] A. Newell, K. Yang, and J. Deng, Stacked hourglass networks for human pose estima-

tion, 2016. arXiv: 1603.06937 [cs.CV].

[90] C. Zhao, J. G. Han, and X. Xu, “Cnn and rnn based neural networks for action

recognition”, Journal of Physics: Conference Series, vol. 1087, no. 6, p. 062 013, Sep.

2018. doi: 10.1088/1742-6596/1087/6/062013. [Online]. Available: https://dx.

doi.org/10.1088/1742-6596/1087/6/062013.

[91] S. W. Pienaar and R. Malekian, Human activity recognition using lstm-rnn deep neural

network architecture, 2019. arXiv: 1905.00599 [cs.LG].

[92] T. K. Vintsyuk, “Speech discrimination by dynamic programming”, Cybernetics, vol. 4,

no. 1, pp. 52–57, 1968, Russian Kibernetika 4(1):81-88 (1968).

[93] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping”, in Proceedings

of the 2001 SIAM International Conference on Data Mining (SDM), pp. 1–11. doi:

10.1137/1.9781611972719.1. eprint: https://epubs.siam.org/doi/pdf/10.

1137/1.9781611972719.1. [Online]. Available: https://epubs.siam.org/doi/abs/

10.1137/1.9781611972719.1.

[94] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time

series”, in KDD Workshop, 1994.

[95] C. A. Ratanamahatana and E. Keogh, “Making time-series classification more accu-

rate using learned constraints”, in Proceedings of the 2004 SIAM International Con-

ference on Data Mining (SDM), pp. 11–22. doi: 10.1137/1.9781611972740.2.

eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.2. [Online].

Available: https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.2.

[96] Y. Zheng, Q. Liu, E. Chen, J. L. Zhao, L. He, and G. Lv, “Convolutional nonlinear

neighbourhood components analysis for time series classification”, in Advances in

Knowledge Discovery and Data Mining, T. Cao, E.-P. Lim, Z.-H. Zhou, T.-B. Ho,

D. Cheung, and H. Motoda, Eds., Cham: Springer International Publishing, 2015,

pp. 534–546, isbn: 978-3-319-18032-8.

[97] W. Pei, D. M. J. Tax, and L. van der Maaten, Modeling time series similarity with

siamese recurrent networks, 2016. arXiv: 1603.04713 [cs.CV].

[98] A. López-Méndez, J. Gall, J. Casas, and L. Van Gool, “Metric learning from poses

for temporal clustering of human motion”, Sep. 2012. doi: 10.5244/C.26.49.

91

https://arxiv.org/abs/1603.06937
https://doi.org/10.1088/1742-6596/1087/6/062013
https://dx.doi.org/10.1088/1742-6596/1087/6/062013
https://dx.doi.org/10.1088/1742-6596/1087/6/062013
https://arxiv.org/abs/1905.00599
https://doi.org/10.1137/1.9781611972719.1
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972719.1
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972719.1
https://epubs.siam.org/doi/abs/10.1137/1.9781611972719.1
https://epubs.siam.org/doi/abs/10.1137/1.9781611972719.1
https://doi.org/10.1137/1.9781611972740.2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.2
https://epubs.siam.org/doi/abs/10.1137/1.9781611972740.2
https://arxiv.org/abs/1603.04713
https://doi.org/10.5244/C.26.49

[99] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an in-

variant mapping”, in 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’06), vol. 2, 2006, pp. 1735–1742. doi: 10.1109/

CVPR.2006.100.

[100] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face

recognition and clustering”, in 2015 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), IEEE, Jun. 2015. doi: 10.1109/cvpr.2015.7298682.

[Online]. Available: https://doi.org/10.1109%2Fcvpr.2015.7298682.

[101] M. Schultz and T. Joachims, “Learning a distance metric from relative comparisons”,

in Advances in Neural Information Processing Systems, S. Thrun, L. Saul, and B.

Schölkopf, Eds., vol. 16, MIT Press, 2003. [Online]. Available: https://proceedings.

neurips.cc/paper_files/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-

Paper.pdf.

[102] S. Xu, Y.-X. Wang, and L.-Y. Gui, “Diverse human motion prediction guided by

multi-level spatial-temporal anchors”, in Lecture Notes in Computer Science, Springer

Nature Switzerland, 2022, pp. 251–269. doi: 10.1007/978-3-031-20047-2_15.

[Online]. Available: https://doi.org/10.1007%2F978-3-031-20047-2_15.

[103] X. Zhang, F. X. Yu, S. Kumar, and S.-F. Chang, “Learning spread-out local feature

descriptors”, in 2017 IEEE International Conference on Computer Vision (ICCV),

2017, pp. 4605–4613. doi: 10.1109/ICCV.2017.492.

[104] J. Goldberger, G. E. Hinton, S. Roweis, and R. R. Salakhutdinov, “Neighbourhood

components analysis”, in Advances in Neural Information Processing Systems, L.

Saul, Y. Weiss, and L. Bottou, Eds., vol. 17, MIT Press, 2004. [Online]. Avail-

able: https : / / proceedings . neurips . cc / paper _ files / paper / 2004 / file /

42fe880812925e520249e808937738d2-Paper.pdf.

[105] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, Recurrent network models for

human dynamics, 2015. arXiv: 1508.00271 [cs.CV].

[106] W. Mao, M. Liu, M. Salzmann, and H. Li, Learning trajectory dependencies for human

motion prediction, 2020. arXiv: 1908.05436 [cs.CV].

[107] J. Bütepage, M. Black, D. Kragic, and H. Kjellström, Deep representation learning

for human motion prediction and classification, 2017. arXiv: 1702.07486 [cs.CV].

92

https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109%2Fcvpr.2015.7298682
https://proceedings.neurips.cc/paper_files/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://doi.org/10.1007/978-3-031-20047-2_15
https://doi.org/10.1007%2F978-3-031-20047-2_15
https://doi.org/10.1109/ICCV.2017.492
https://proceedings.neurips.cc/paper_files/paper/2004/file/42fe880812925e520249e808937738d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/42fe880812925e520249e808937738d2-Paper.pdf
https://arxiv.org/abs/1508.00271
https://arxiv.org/abs/1908.05436
https://arxiv.org/abs/1702.07486

[108] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural

networks, 2014. arXiv: 1409.3215 [cs.CL].

[109] S. Yan, Y. Xiong, and D. Lin, Spatial temporal graph convolutional networks for

skeleton-based action recognition, 2018. arXiv: 1801.07455 [cs.CV].

[110] F. Chollet, Xception: Deep learning with depthwise separable convolutions, 2017. arXiv:

1610.02357 [cs.CV].

[111] C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with convolutions, 2014. arXiv: 1409.

4842 [cs.CV].

[112] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, Ogb-lsc: A large-scale

challenge for machine learning on graphs, 2021. arXiv: 2103.09430 [cs.LG].

[113] W. Hu, M. Fey, M. Zitnik, et al., Open graph benchmark: Datasets for machine learn-

ing on graphs, 2021. arXiv: 2005.00687 [cs.LG].

[114] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson,

Benchmarking graph neural networks, 2022. arXiv: 2003.00982 [cs.LG].

[115] C. Ying, T. Cai, S. Luo, et al., Do transformers really perform bad for graph repre-

sentation?, 2021. arXiv: 2106.05234 [cs.LG].

[116] L. Zhao, Y. Song, C. Zhang, et al., “T-GCN: A temporal graph convolutional net-

work for traffic prediction”, IEEE Transactions on Intelligent Transportation Systems,

vol. 21, no. 9, pp. 3848–3858, Sep. 2020. doi: 10.1109/tits.2019.2935152. [Online].

Available: https://doi.org/10.1109%2Ftits.2019.2935152.

[117] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, Graph transformer networks,

2020. arXiv: 1911.06455 [cs.LG].

[118] H. Qiang, Z. Guo, S. Xie, and X. Peng, Mstformer: Motion inspired spatial-temporal

transformer with dynamic-aware attention for long-term vessel trajectory prediction,

2023. arXiv: 2303.11540 [cs.LG].

[119] S. Hu, L. Shen, Y. Zhang, Y. Chen, and D. Tao, On transforming reinforcement learn-

ing by transformer: The development trajectory, 2023. arXiv: 2212.14164 [cs.LG].

[120] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action recognition by repre-

senting 3d skeletons as points in a lie group”, in 2014 IEEE Conference on Computer

Vision and Pattern Recognition, 2014, pp. 588–595. doi: 10.1109/CVPR.2014.82.

93

https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1801.07455
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/2103.09430
https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2106.05234
https://doi.org/10.1109/tits.2019.2935152
https://doi.org/10.1109%2Ftits.2019.2935152
https://arxiv.org/abs/1911.06455
https://arxiv.org/abs/2303.11540
https://arxiv.org/abs/2212.14164
https://doi.org/10.1109/CVPR.2014.82

[121] F. S. Grassia, “Practical parameterization of rotations using the exponential map”,

Journal of Graphics Tools, vol. 3, no. 3, pp. 29–48, 1998. doi: 10.1080/10867651.

1998.10487493. eprint: https://doi.org/10.1080/10867651.1998.10487493.

[Online]. Available: https://doi.org/10.1080/10867651.1998.10487493.

[122] J. Solà, J. Deray, and D. Atchuthan, A micro lie theory for state estimation in robotics,

2021. arXiv: 1812.01537 [cs.RO].

[123] C. Xu, L. N. Govindarajan, Y. Zhang, and L. Cheng, Lie-x: Depth image based ar-

ticulated object pose estimation, tracking, and action recognition on lie groups, 2016.

arXiv: 1609.03773 [cs.CV].

[124] C. Bregler and J. Malik, “Tracking people with twists and exponential maps”, in Pro-

ceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (Cat. No.98CB36231), 1998, pp. 8–15. doi: 10.1109/CVPR.1998.698581.

[125] J. Batista, “Prozis challenge”, 2019. [Online]. Available: https://www.isr.uc.

pt/index.php/projects/past- projects?task=showprojects.show%28%29&

idProject=219.

[126] B. Ferreira, P. Menezes, and J. Batista, “Transformers for workout video segmen-

tation”, in 2022 IEEE International Conference on Image Processing (ICIP), 2022,

pp. 3470–3474. doi: 10.1109/ICIP46576.2022.9897194.

[127] A. Mishchuk, D. Mishkin, F. Radenovic, and J. Matas, Working hard to know your

neighbor’s margins: Local descriptor learning loss, 2018. arXiv: 1705.10872 [cs.CV].

[128] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh, No fuss distance

metric learning using proxies, 2017. arXiv: 1703.07464 [cs.CV].

[129] F. Zhou and F. De la Torre, “Generalized canonical time warping”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 279–294, 2016. doi:

10.1109/TPAMI.2015.2414429.

[130] C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio, “Batch normalized

recurrent neural networks”, in 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2016, pp. 2657–2661. doi: 10.1109/ICASSP.

2016.7472159.

[131] Z. Lin, M. Feng, C. N. dos Santos, et al., A structured self-attentive sentence embed-

ding, 2017. arXiv: 1703.03130 [cs.CL].

94

https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1080/10867651.1998.10487493
https://arxiv.org/abs/1812.01537
https://arxiv.org/abs/1609.03773
https://doi.org/10.1109/CVPR.1998.698581
https://www.isr.uc.pt/index.php/projects/past-projects?task=showprojects.show%28%29&idProject=219
https://www.isr.uc.pt/index.php/projects/past-projects?task=showprojects.show%28%29&idProject=219
https://www.isr.uc.pt/index.php/projects/past-projects?task=showprojects.show%28%29&idProject=219
https://doi.org/10.1109/ICIP46576.2022.9897194
https://arxiv.org/abs/1705.10872
https://arxiv.org/abs/1703.07464
https://doi.org/10.1109/TPAMI.2015.2414429
https://doi.org/10.1109/ICASSP.2016.7472159
https://doi.org/10.1109/ICASSP.2016.7472159
https://arxiv.org/abs/1703.03130

[132] S. P. Singh, M. K. Sharma, A. Lay-Ekuakille, D. Gangwar, and S. Gupta, “Deep

ConvLSTM with self-attention for human activity decoding using wearable sensors”,

IEEE Sensors Journal, vol. 21, no. 6, pp. 8575–8582, Mar. 2021. doi: 10.1109/

jsen.2020.3045135. [Online]. Available: https://doi.org/10.1109%2Fjsen.2020.

3045135.

[133] Y. Yuan and K. Kitani, Diverse trajectory forecasting with determinantal point pro-

cesses, 2019. arXiv: 1907.04967 [cs.CV].

[134] Y. Yuan and K. Kitani, Dlow: Diversifying latent flows for diverse human motion

prediction, 2020. arXiv: 2003.08386 [cs.CV].

[135] W. Mao, M. Liu, and M. Salzmann, Generating smooth pose sequences for diverse

human motion prediction, 2022. arXiv: 2108.08422 [cs.CV].

[136] C. mellon university - cmu graphics lab - motion capture library, Http://mocap.cs.cmu.edu/,

2010.

[137] D. J. Sutherland, H.-Y. Tung, H. Strathmann, et al., Generative models and model

criticism via optimized maximum mean discrepancy, 2021. arXiv: 1611.04488 [stat.ML].

[138] X. Li, H. Li, H. Joo, Y. Liu, and Y. Sheikh, Structure from recurrent motion: From

rigidity to recurrency, 2018. arXiv: 1804.06510 [cs.CV].

[139] M. Hassan, D. Ceylan, R. Villegas, et al., Stochastic scene-aware motion prediction,

2021. arXiv: 2108.08284 [cs.CV].

[140] Z. Liu, P. Su, S. Wu, et al., “Motion prediction using trajectory cues”, in 2021

IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 13 279–

13 288. doi: 10.1109/ICCV48922.2021.01305.

[141] M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People tracking with human

motion predictions from social forces”, in 2010 IEEE International Conference on

Robotics and Automation, 2010, pp. 464–469. doi: 10.1109/ROBOT.2010.5509779.

[142] M. Li, S. Chen, Y. Zhao, Y. Zhang, Y. Wang, and Q. Tian, Dynamic multiscale

graph neural networks for 3d skeleton-based human motion prediction, 2020. arXiv:

2003.08802 [cs.CV].

[143] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional

networks, 2017. arXiv: 1609.02907 [cs.LG].

95

https://doi.org/10.1109/jsen.2020.3045135
https://doi.org/10.1109/jsen.2020.3045135
https://doi.org/10.1109%2Fjsen.2020.3045135
https://doi.org/10.1109%2Fjsen.2020.3045135
https://arxiv.org/abs/1907.04967
https://arxiv.org/abs/2003.08386
https://arxiv.org/abs/2108.08422
https://arxiv.org/abs/1611.04488
https://arxiv.org/abs/1804.06510
https://arxiv.org/abs/2108.08284
https://doi.org/10.1109/ICCV48922.2021.01305
https://doi.org/10.1109/ROBOT.2010.5509779
https://arxiv.org/abs/2003.08802
https://arxiv.org/abs/1609.02907

[144] W. Liu, D. Anguelov, D. Erhan, et al., “SSD: Single shot MultiBox detector”, in

Computer Vision – ECCV 2016, Springer International Publishing, 2016, pp. 21–37.

doi: 10.1007/978-3-319-46448-0_2. [Online]. Available: https://doi.org/10.

1007%2F978-3-319-46448-0_2.

[145] H. S. Koppula and A. Saxena, “Anticipating human activities for reactive robotic

response”, in 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2013, pp. 2071–2071. doi: 10.1109/IROS.2013.6696634.

[146] C. Li, Z. Zhang, W. S. Lee, and G. H. Lee, Convolutional sequence to sequence model

for human dynamics, 2018. arXiv: 1805.00655 [cs.CV].

[147] B. C. Hall, An elementary introduction to groups and representations, 2000. arXiv:

math-ph/0005032 [math-ph].

[148] R. M. Murray, S. S. Sastry, and L. Zexiang, A Mathematical Introduction to Robotic

Manipulation, 1st. USA: CRC Press, Inc., 1994, isbn: 0849379814.

[149] E. Gallo, The so(3) and se(3) lie algebras of rigid body rotations and motions and

their application to discrete integration, gradient descent optimization, and state es-

timation, 2023. arXiv: 2205.12572 [cs.RO].

[150] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision: From

Images to Geometric Models. SpringerVerlag, 2003, isbn: 0387008934.

[151] J. L. Blanco-Claraco, A tutorial on SE(3) transformation parameterizations and on-

manifold optimization, 2022. arXiv: 2103.15980 [cs.RO].

96

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://doi.org/10.1007%2F978-3-319-46448-0_2
https://doi.org/10.1109/IROS.2013.6696634
https://arxiv.org/abs/1805.00655
https://arxiv.org/abs/math-ph/0005032
https://arxiv.org/abs/2205.12572
https://arxiv.org/abs/2103.15980

Appendix A

Lie Group Theory and Exponential Maps

In this appendix, the focus of will be on the Special Euclidean Group 3 (SE(3)),

which is the most valuable for this thesis. For further reading on the basic definitions and

concepts, Brian C. Hall [147] explains it in greater detail and for further details on rigid

body kinematics the book "A Mathematical Introduction to Robotic Manipulation" [148]

provides a great insight.

SE(3), is the set of 4× 4 matrices made denoted by

P (R,
−→
d) =

R −→
d

0 1

 (A.1)

where
−→
d ∈ R3 is the translation vector and R ∈ R3×3 represents the 3 × 3 rotation

matrix. The members of the SE(3) group act on the points points z ∈ R3, by applying a

rotation and then a translation [20], [120], [123], [148], [149]:R −→
d

0 1

z
1

 =

Rz +
−→
d

1

 (A.2)

The members of this set engage in standard matrix multiplication, and when viewed geo-

metrically, they can be arranged in a seamless manner to create a curved manifold with six

dimensions. This arrangement grants them the characteristics of a Lie group [147], [149].

Within this group, the 4 by 4 identity matrix I4 is included and recognized as the group’s

identity element.

The Lie algebra of SE(3), denoted as se(3), is the tangent plane to the identity

element I4 of SE(3). It consists of 6 dimensions and is represented by 4 by 4 matrices of the

form

: U −→w

0 0

, where U is a 3× 3 skew-matrix and the vector −→w ∈ R3 is once again the

98

translation [120], [123], Thus

B =

U −→w

0 0

 =

0 −u3 u2 w1

u3 0 −u1 w2

−u2 u1 0 w3

0 0 0 0

 ∈ se(3) (A.3)

with the vector representation:

vec(B) = [u1, u2, u3, w1, w2, w3] (A.4)

And with the closed form solution [150]:

U =

u1

u2

u3

 =
θ

2sinθ

R(3, 2)−R(2, 3)

R(1, 3)−R(3, 1)

R(2, 1)−R(1, 2)

 (A.5)

where θ = arcos(Tr(R)−1)
2

) and:

w =

w1

w2

w3

 =
[
(I3−R)U×+U UT

||U ||

]−1

(A.6)

The exponential map expSE(3) : se(3) → SE(3) and the logarithm map logSE(3) :

SE(3) → se(3) [20], [120], [123], are given by:

expSE(3)(B) = eB

logSE(3)(P) = log(P)
(A.7)

e and log denoting the matrix exponential and logarithm, e which maps elements from the

algebra to the manifold and determines the local structure of the manifold and log which

maps elements from the manifold to the algebra [20], [120], [123], [148], [151].

99

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Context
	1.2 Problem Formulation
	1.3 Objective
	1.3.1 A Note on Machine Learning

	1.4 Human to Machine Locomotion Representation
	1.4.1 Joint Representation
	1.4.2 Pose Modelling
	1.4.3 Temporal Variability

	1.5 System Goals
	1.6 Document Outline

	2 Background
	2.1 Machine learning
	2.1.1 Brief History of Machine Learning

	2.2 Recurrent Neural Networks
	2.2.1 The Recurrent Neural Network Architecture
	2.2.2 Long-Short-Term Memory Networks
	2.2.3 Attention Mechanisms
	2.2.4 Common Attention Mechanisms

	2.3 Graph Neural Networks
	2.3.1 Architecture and Pipeline of the Typical GNN
	2.3.2 The Convolutional GNN

	3 Related Work
	3.1 Human Motion Models
	3.1.1 RNN Based Classification
	3.1.2 Recent improvements
	3.1.3 RNN Based Prediction
	3.1.4 Graph Based Motion Prediction
	3.1.5 Considerations on the Transformer Architecture

	3.2 Skeleton Parameterization
	3.2.1 Exponential Mapping and Lie Algebra

	4 Developed Work
	4.1 Pipeline of the Proposed Approach
	4.1.1 Experimental Datasets

	4.2 Action Recognition
	4.2.1 Coskun's Self Attentive LSTM

	4.3 Motion Prediction
	4.3.1 Space-Time-Separable Graph Convolutional Network
	4.3.2 Spatio-Temporal Separable Convolutions and Self-Attention
	4.3.3 Spatial-Temporal Anchor-based Sampling
	4.3.4 Training

	5 Results and Discussion
	5.1 Metrics and Evaluation
	5.2 Evaluation of the Baseline Methods
	5.2.1 Evaluation of Coskun's Attentive LSTM
	5.2.2 Evaluation of STARS and STS-GCN

	5.3 Results
	5.3.1 The PROZIS Challenge Dataset
	5.3.2 Action Recognition
	5.3.3 Motion Prediction and Feedback

	6 Conclusion and Future Work
	6.1 Future Work

	A Lie Group Theory and Exponential Maps

