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Abstract

Mobile robotics can potentially revolutionize many aspects of industry, from material hand-
ling and manufacturing to augmented reality or autonomous driving. One of the key challenges
in mobile robotics is enabling robots to perceive and manipulate objects in their environment
accurately. Detecting the 6D pose of an object is a critical task for this purpose. It enables
robots to classify and recognize objects, estimate their poses, and track them over time.

Perceiving an object’s pose is also essential for building risk indicators that can be used
in motion planning to help robots navigate safely and avoid collisions. However, most of the
existing 6D object detection methods have been developed and evaluated in academic contexts,
so further studies may be needed to demonstrate their feasibility and effectiveness in industrial
environments. It is important to note that this context refers to the problem of determining an
object’s 6 Degrees of Freedom (6DoF) in 3D space, including its 3D position and 3D orientation.
This can be achieved using various techniques, with point clouds, RGB, Depth, or RGB-D
images as inputs.

This dissertation introduces several multi-stage frameworks for 6D object detection inspired
in DenseFusion, encompassing key components such as object detection using Yolov5, image fea-
ture extraction, point cloud feature extraction, fusion network, and pose estimation. Validation
on the LINEMOD dataset provided crucial insights into method effectiveness. Further evaluation
on the KITTI dataset, unveiled nuanced behaviors based on object proximity. A multimodal
analysis was also conducted to assess the influence of varying input data sources on the pose
estimator performance, considering the trade-offs between cost-effective cameras and robust yet
expensive LiDAR sensors.

Furthermore, a novel approach incorporating LiDAR sensor data was introduced, along with
a custom loss function calculating the Chamfer distance between point clouds. This approach
yielded a performance comparable to the one achieved with ground truth objects and the original
loss function. The research culminated in the validation of all methods on a virtual industrially-
focused dataset developed for this purpose, the presented results highlight the possible efficacy
of the introduced methods in industrial applications.

Keywords: Deep Learning, 6D Object Detection, 6D Pose Estimation, Industrial Applica-
tions
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Resumo

A robótica móvel pode potencialmente revolucionar muitos aspetos da indústria, desde o
manuseamento de materiais e o fabrico até à realidade aumentada ou à condução autónoma.
Um dos principais desafios da robótica móvel é permitir que os robôs percebam e manipulem
objetos no seu ambiente com precisão. A deteção da pose 6D de um objeto é uma tarefa crítica
para este fim.

A perceção da pose de um objeto é também essencial para a construção de indicadores de
risco que podem ser utilizados no planeamento de movimentos para auxiliar os robôs a navegar
em segurança e evitar colisões. No entanto, a maioria dos métodos de deteção de objetos 6D
existentes foram desenvolvidos e avaliados em contextos académicos, pelo que poderão ser ne-
cessários mais estudos para demonstrar a sua viabilidade e eficácia em ambientes industriais. É
importante notar que este contexto se refere ao problema de determinar os 6 graus de liberdade
de um objeto no espaço 3D, incluindo a sua posição 3D e orientação 3D. Isto pode ser con-
seguido usando várias técnicas, tendo como entrada nuvens de pontos, imagens RGB, imagens
de profundidade ou imagens RGB-D.

Esta dissertação introduz várias abordagens de múltiplas etapas para a deteção de obje-
tos 6D inspiradas na DenseFusion, englobando componentes-chave como a deteção de objetos
utilizando Yolov5, extração de características de imagem, extração de características de nuvens
de pontos, rede de fusão e estimativa de pose. A validação no conjunto de dados LINEMOD
forneceu informações cruciais sobre a eficácia dos métodos. Uma avaliação mais aprofundada
no conjunto de dados KITTI revelou comportamentos diferenciados com base na proximidade
do objeto. Também foi realizada uma análise multimodal para avaliar a influência de diferentes
fontes de dados de entrada no desempenho do estimador de pose, considerando as vantagens e
desvantagens entre câmaras económicas e sensores LiDAR robustos, mas dispendiosos.

Foi ainda introduzida uma nova abordagem que incorpora dados do sensor LiDAR, acom-
panhada por uma função de perda personalizada que calcula a distância Chamfer entre nuvens
de pontos. Esta abordagem produziu um desempenho comparável ao obtido com objetos ground
truth e a função de perda original. A investigação culminou com a validação de todos os métodos
num conjunto de dados virtuais de cariz industrial desenvolvido para o efeito. Os resultados
apresentados realçam a possível eficácia dos métodos introduzidos em aplicações industriais.

Palavras-chave: Aprendizagem Profunda, Deteção de Objetos 6D, Estimação de Pose 6D,
Aplicações Industriais
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“Education is the most powerful weapon which you can use to change the world.”
Nelson Mandela
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1
Introduction

In this chapter, lies discussions regarding what drove motivation for the project, objectives
established for it, and contributions that have been made to fortify research in this area.

1.1 Context and Motivation

Since mobile robots are becoming an increasingly common sight in industrial setups for
activities such as material handling or transportation of goods or assembly or inspections, they
must be able to perceive and interact with their surroundings accurately [6]. This implies
having accurate object detection abilities and accurately estimating an object’s position (its
six degrees of freedom), including its orientation within space. In many instances (e.g., pallet
handling; bin picking; or object tracking), determining an object’s pose plays a critical role.
However, detecting an item’s 6D pose against an industrial background can prove challenging
given factors like unpredictability concerning visual obstructions, cluttered surroundings, and
variable lighting conditions, amongst other demanding aspects unique to such environments.

The work of this dissertation is part of an ongoing research project known as “GreenAuto:
Green Innovation for the Automotive Industry” 1. The primary objective within this project is
to develop and evaluate methods for detecting and precisely estimating the 6D pose of objects
in industrial settings, such as warehouses and manufacturing facilities. The ultimate purpose of
this detection system is to integrate it into an autonomous forklift operation. This autonomous
forklift will navigate to designated drop-off and pick-up zones, and then detect objects of interest
and manage their transportation. The deployment of this system is envisioned to significantly
enhance warehouse efficiency and reinforce workplace safety by advancing the automation of
forklift maneuvers.

The proposed research explored various Deep Learning-based object detection and pose
estimation methods, focusing on addressing the specific challenges in industrial environments.
Deep Learning (DL) [7] is a subfield of Artificial Intelligence (AI) that has revolutionized how
machines process and assimilate information. The inspiration for this breakthrough lies in the
intricate structure and functioning of the human brain, particularly its neural networks. DL
models have demonstrated exceptional performance in computer vision tasks. These models can

1https://transparencia.gov.pt/pt/fundos-europeus/prr/beneficiarios-projetos/projeto/02-C05-i01.02-
2022.PC644867037-00000013/
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gain valuable insights and make accurate predictions by leveraging large datasets and computa-
tional power. Advances in this field have profound implications for various industries and hold
immense potential for shaping the future of technology and innovation [8, 9, 10].

1.2 Proposed Framework

The main purpose of this dissertation was to develop and evaluate 6D pose estimation
methods in industrial environments. Based on the DenseFusion framework [2], various methods
were developed, using different input data and approaches for the pose estimation.

The 6D Object Detection pipelines depicted in Figs. 1.1, 1.2,1.3, 1.4, embody a sequence of
stages that enable robust and accurate object detection in industrial environments. This multi-
stage framework encompasses vital components, including but not limited to, object detection,
image feature extraction (Figs. 1.1, 1.2, 1.4), point cloud feature extraction, fusion network
(Figs. 1.1, 1.2, 1.4), and pose estimation. Each stage plays a crucial role in contributing to the
overall performance of the pipeline.

At the forefront of the pipeline lies the object detection stage. This phase involves identi-
fying objects of interest within the input data. The objective is to localize the objects and
propose potential regions of interest precisely. To do so, the Yolov5 [11] was the object de-
tection network chosen to recognize the objects present in the images. Following the object
detection stage, the image feature extractor comes into play. By making use of a Convolutional
Neural Network (CNN), the feature extractor processes the detected Region of Interest (RoI) and
captures high-level features intrinsic to each object. This enables the 6D detection framework
to recognize distinguishing characteristics even within cluttered or occluded scenes. Simultan-
eously, point cloud data provides a depth-rich representation of the environment in scenarios
involving 3D perception. The point cloud feature extractor decodes the spatial coordinates,
which then identifies significant features that enhance the knowledge acquired from 2D images.
The true strength of the pipeline lies in its ability to fuse information from both image and
point cloud data. The network fuses the extracted features, enabling the model to benefit from
the complementary nature of the two data sources. The pose estimator stage uses deep learning
techniques to accurately infer the object’s position and orientation in 3D space.

In order to validate these frameworks, the development of a dataset was imperative. This
necessity was originated from the absence of a realistic and accessible dataset online for validating
the accurate detection of pallets within a warehouse setting. For instance, the PalLoc6D dataset
[12], an RGB-D virtual dataset for the 6D detection of pallets, which lacks a realistic scenario
because the pallets are generated randomly in various locations, surrounded by random objects,
within a randomized background.

Along with the creation of this dataset, a comprehensive multimodal analysis was made
to understand the influence of varying input data on the performance of the pose estimator.
This analysis is relevant because the industry remains uncertain about which sensors to em-
ploy. While Light Detection and Ranging (LiDAR) presents unparalleled resilience to diverse
weather conditions and lighting variations, it comes with the drawback of being very expensive
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Figure 1.1: Pipeline for framework using RGB-D.
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Figure 1.2: Pipeline for framework using Depth.
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Figure 1.3: Pipeline for framework using Point Cloud only.

for large-scale implementation. Moreover, the point cloud data it generates, representing the
spatial coordinates of object surfaces, introduces added complexity in automating object feature
recognition and extraction. On the other hand, cameras offer a more cost-effective alternative,
capable of discerning color in the environment and identifying objects at higher resolutions.
However, they fail to maintain recognition accuracy when fluctuating illumination and struggle
to identify distant objects within static images [13].
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Figure 1.4: Pipeline for framework using RGB-D with Middle Fusion.

1.3 Objectives and Key Contributions

For the development of the 6D object detection in an industrial environment, several ob-
jectives were established:

1. Testing several 6D object detection methods;

2. Evaluation of the tested methods in benchmark datasets;

3. Detailed analysis of DenseFusion;

4. Development of multiple methods for 6D object detection based on DenseFusion (Fig. 1.5):

(a) Masked-based DenseFusion: Depth;

(b) Masked-based DenseFusion: Point Cloud;

(c) Masked-based DenseFusion: Multimodal Middle Fusion;

(d) Masked-based DenseFusion: Early Fusion;

(e) Detection-based DenseFusion: Depth;

(f) Detection-based DenseFusion: Point Cloud;

(g) Detection-based DenseFusion;

5. Evaluation of the developed methods in benchmark datasets;

6. Development of a virtual dataset simulating an industrial environment;

7. Evaluation of the developed methods in the industrial dataset;

The succeeding chapters of this dissertation clarify on the main implementations and con-
tributions of this study:
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Figure 1.5: Taxonomy of the developed frameworks.

Developed Work (Chapter 4)

Presents an overview of developed methods for 6D pose estimation, including the developed
dataset for industrial environment validation.

Software Tools and Hardware Materials (Chapter 5)

Describes the software and hardware components that were utilized in order to achieve the
designated goals.

Results and Discussion (Chapter 6)

Evaluation and analysis of all the proposed methods, including the validation in an indus-
trial environment.
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2
Background Material

This chapter will elaborate upon a comprehensive description of the methodologies that
support the progression of this dissertation.

2.1 Deep Neural Network (DNN)

Deep Neural Network (DNN) is a subdivision of Machine Learning (ML) that is concerned
with the prediction of outputs, whether they are supervised, semi-supervised, or unsupervised
[14]. In contrast to traditional ML techniques, which are often limited in their capacity to
process raw data, the application of DL represents a highly sophisticated form of DNN that
leverages multiple layers to extract high-level features from the input data. For instance, when
applied to image processing, the lower layers of the DL model are capable of detecting basic
edges, while the higher layers can distinguish specific letters, objects, or object features [15].

2.1.1 Convolution Neural Network (CNN)

The CNN possesses a deep feed-forward architecture and showcases a remarkable aptitude
for generalizing to advanced networks that integrate fully connected layers. Primarily utilized
for image analysis, particularly pattern recognition, the CNN can also be utilized to tackle
other data analysis challenges, such as classification issues. Their notable ability to be trained
properly without overfitting is particularly significant, along with their effortless application to
large networks [16].

A CNN can be divided into the feature extraction and classification modules. Feature
extraction is the process of identifying and extracting important features from an input image.
Classification is the process of assigning a label to an input image. The label can be a category,
such as “cat” or “dog”, or it can be a numerical value, such as the probability that the image is
a cat.

The feature extraction and classification processes are represented in Fig. 2.1 and consist of
the following:

1. The input image is subjected to a sequence of convolutional layers.

2. The convolutional layers extract spatial features from the image.

3. The spatial features are passed through a series of pooling layers.
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Figure 2.1: Overview of a Convolution Neural Network.

4. The pooling layers reduce the dimensionality of the spatial features.

5. The spatial features are passed through a series of fully connected layers.

6. The fully connected layers classify the image.

2.1.2 YOLOv5

YOLOv5 [11] is a state-of-the-art object detection model that was released in 2020. It
comprises four different models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The archi-
tecture of YOLOv5, represented in Fig. 2.2, is built upon CSP-Darknet53 [17] as the backbone,
incorporating a Spatial Pyramid Pooling Fast (SPPF) [18] layer. The Neck of the model employs
CSP-PANet [19], and the detection head follows the YOLOv4 [20] methodology.

CSP-Darknet53 fuses two popular CNN designs, Darknet and Cross-Stage-Partial-connections
(CSP). The CSP framework reduces the network’s computational cost while preserving its high
accuracy. This is achieved by separating the feature maps into two distinct segments, processing
them individually, and then integrating them. This process decreases the necessary computa-
tions and facilitates quicker training and inference durations.

Spatial Pyramid Pooling (SPP) is a pooling methodology commonly employed in CNNs to
create a fixed-length representation regardless of image size or scale. SPPF, an optimized variant
of SPP, was developed by the YOLOv5 creators and features a reduced number of Floating Point
Operations (FLOPs).

Path Aggregation Network (PANet) is a neural network improvement technique that aims to
enhance information propagation within the network by incorporating precise localization signals
in the lower layers of the feature hierarchy. This is accomplished by implementing a bottom-up
path augmentation strategy, effectively reducing the distance between the lower layers and the
highest-level feature.
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Figure 2.2: Representation of Yolov5 Network Architecture. Adapted from [1].

2.2 Point Cloud Clustering

The process of point cloud clustering refers to the method of categorizing points within a
point cloud according to their similarities. This technique is commonly employed to partition a
point cloud into distinct entities or to discern diverse characteristics within a particular object.
Numerous clustering algorithms have been proposed in recent years, making the field of clustering
techniques extensive.

Ester et al. [21] proposed DBSCAN, a density-grounded algorithm that discerns clusters
based on the density of points in a specified area. The algorithm classifies points into three
categories: core, border, and noise points. Core points are characterized by the presence of
at least a predetermined number of points within a given range, as specified by the input
parameter. In contrast, border points are those with fewer than the specified number of points
but still within the range of a core point. Noise points are data points that neither qualify as core
points nor as border points. Consequently, they do not belong to any cluster and are typically
considered outliers or noise in the dataset. Ng et al. [22] introduced Spectral Clustering, which
uses the top eigenvectors of a matrix obtained from the disparity between points to cluster them.
Müllner et al. presented an Agglomerative Clustering Algorithm, which operates by merging the
nearest clusters iteratively until all the data points are consolidated into a single cluster. The
outcome of this clustering approach is a dendrogram, a diagram resembling a tree, that reveals
the hierarchical connections among the clusters. These methods can be compared in Fig. 2.3.

Of all the clustering techniques discussed earlier, DBSCAN algorithm 1 was the most re-
markable one owing to its efficient performance and superior clustering outcomes. The results
of the implementation of the clustering algorithm can be seen in Fig. 2.4.

2.3 Object Detection Algorithms

To achieve the objectives proposed for this dissertation, a 6D object detection algorithm is
needed. To do so, it is possible to implement and develop a new pose estimation algorithm or
choose one from the multiple methods available and start from there. For the purpose of this
study, the second option was the obvious choice. To that end, intensive research was done to
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Algorithm 1: DBCSAN Algorithm
Data points D, neighborhood distance ϵ, minimum points MinPts Clusters C and noise
points N
C ← ∅ ; // Initialize empty set of clusters
N ← ∅ ; // Initialize empty set of noise points
foreach unvisited point p in D do

Mark p as visited;
N ′ ← getNeighbors(p, ϵ);
if |N ′|< MinPts then

Add p to N ;
else

Create a new cluster Ci;
expandCluster(p, N ′, Ci, ϵ, MinPts);
Add Ci to C;

return C (clusters) and N (noise points);
expandCluster(p, N ′, Ci, ϵ, MinPts):
Add p to Ci;
foreach point q in N ′ do

if q is unvisited then
Mark q as visited;
N ′′ ← getNeighbors(q, ϵ);
if |N ′′|≥MinPts then

N ′ ← N ′ ∪N ′′;

if q does not belong to any cluster then
Add q to Ci;

getNeighbors(p, ϵ):
Initialize an empty set N ;
foreach point q in D do

if distance(p, q) ≤ ϵ then
Add q to N ;

return N ;
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Figure 2.3: Comparison between different clustering methods. Adapted from Scikit-Learn Plot
Cluster Comparison.

Figure 2.4: DBSCAN clustering result. The clusters correspond to a car, pedestrian, car, and
pedestrian, respectively.

understand what method would be the best for what is intended.

Ideally, all the methods in chapter 3 would be implemented, tested and compared. However,
most methods with good results and available code were developed with Compute Unified Device
Architecture (CUDA) 10 or less, while the machine being used for the development of this
research has a recent Graphics Processing Unit (GPU), section 5.4, and is only capable of
running from CUDA 11 up.

Although this limitation, some methods were tested: CenterSnap [23], ShAPO [24], Dense-
Fusion [2] and Point Pillars [25]. CenterSnap and ShAPO ended up being discarded because
their code was developed too much around the NOCS [26] dataset, making it difficult to switch
to a dataset with a different structure. Also, they used pre-training weights and files that were
not explicit about how these could be generated.

While superior-performing methods exist, testing them was not possible due to incompat-
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Figure 2.5: Overview of DenseFusion 6D pose estimation model. Taken from [2].

ibilities between CUDA and PyTorch. The selection of DenseFusion as the preferred approach
was based on its ease of implementation and the availability of online support, which are crucial
considerations when implementing such tools. Additionally, DenseFusion is currently one of the
most precise estimators of 6D pose, and its architecture is not excessively complex. Therefore,
this chapter presents the methodology of DenseFusion, covering its implementation details and
its training and testing methods.

2.3.1 DenseFusion

DenseFusion is a framework for estimating the 6D orientation of known objects from RGB-
D images. As the authors explain, this technique introduces an architecture that independently
processes the two complementary data sources, RGB and depth. Moreover, a dense fusion
network extracts pixel-wise dense feature embeddings, from which orientation is estimated. In
addition, this approach incorporates an iterative pose refinement procedure that increases the
precision of orientation estimation while enabling near real-time inference. The architecture of
DenseFusion can be seen in Fig. 2.5.

2.3.1.1 Object Segmentation

The initial stage involves segmenting the objects of interest within the image. The se-
mantic segmentation network is based on the PoseCNN [3] architecture, a convolutional neural
network arranged in an encoder-decoder configuration to capture high-level and low-level fea-
tures effectively. The encoder module comprises multiple convolutional layers, followed by batch
normalization and ReLU activation. This encoding process progressively diminishes the spatial
dimensions of the feature maps, enabling the network to capture increasingly complex and ab-
stract representations. After each convolutional layer, max pooling operations were implemented
to downsample the feature maps while preserving crucial local information.

The decoder module is designed to reestablish the spatial dimensions of the feature maps
while enhancing the acquired representations. It commences by executing upsampling operations
utilizing the max pooling indices from the corresponding encoder stage. The upsampled feature
maps then undergo a series of convolutional layers, followed by batch normalization and ReLU
activation. This method gradually improves the features and ensures the network learns to
reconstruct segmentation maps accurately. This network can be seen in Fig. 2.6.
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Figure 2.6: Representation of the Object Segmentation Network. Adapted from [3].

2.3.1.2 RGB Feature Extractor

The RGB feature extractor is a modified version of the Residual Network (ResNet) archi-
tecture integrated with the Pyramid Scene Parsing Network (PSPNet) module. This feature
extractor is designed to extract rich and informative features from RGB images. At the core
of the feature extractor lies the ResNet backbone, known for its ability to train deep models
effectively.

ResNet [4] was first introduced to address a specific challenge in training very deep neural
networks. As neural networks grow deeper, i.e., have more layers, they have the potential to
capture more complex patterns and features from data, which is beneficial for many tasks,
especially in computer vision.

However, as traditional deep neural networks became increasingly deeper, it was observed
that utilizing additional layers in certain convolutional neural networks resulted in poorer per-
formance than the same network with fewer layers. Unexpectedly, researchers also determined
that this drop in performance couldn’t be attributed to overfitting. This phenomenon defies in-
tuition, as one would typically expect a larger network to perform at least as well as its smaller
counterpart. However, Stochastic Gradient Descent (SGD) appears to encounter difficulties in
converging to an optimal solution within expansive networks.

ResNet was specifically designed to overcome this. The introduction of residual blocks
allowed the network to learn residual functions, that represent the difference between the input
and output of a layer in a neural network, instead of unreferenced ones. This means the network
can focus on learning the adjustments or “residuals” to the identity mapping of the input, rather
than trying to learn the entire mapping from scratch. The residual block consists of two or three
streams of convolutional neural networks, followed by an element-wise addition operation that
combines the input with the output of the convolutional layers, as demonstrated in Fig. 2.7.

In this particular implementation, ResNet-18 serves as the backbone. The main difference
in ResNet-18 compared to other ResNet architectures is its number of layers. ResNet-18 consists
of 18 layers, while other ResNet architectures have more layers. When balancing the trade-off
between accuracy and computational resource utilization, ResNet-18 emerges as the best choice.
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Figure 2.8: Representation of the RGB Feature Extractor Network. Adapted from [5].

The PSPNet [5] module is incorporated to enhance the feature extractor’s capability. The
PSPNet module leverages a pyramid pooling strategy to capture multiscale contextual informa-
tion from the input image. It divides the input feature maps into multiple stages, each employing
adaptive average pooling and convolution operations to extract features at different spatial res-
olutions. These features are then bilinearly upsampled and concatenated with the original fea-
tures. A bottleneck convolutional layer reduces the dimensionality of the concatenated features
to enhance efficiency.

The feature extraction process begins by passing the input RGB image through the ResNet
backbone. The backbone network extracts both low-level and high-level features from the im-
age. These features are further processed by the PSPNet module, which captures contextual
information at multiple scales and incorporates it into the feature representation. By integrating
this module, it is possible to have a pose estimation network that is more resilient for objects of
varying scales. An overview of the architecture can be seen in Fig. 2.8.

2.3.1.3 Point Cloud Feature Extractor

Previous methodologies have utilized CNNs to process the depth image as a supplement-
ary image channel. Nonetheless, such an approach fails to consider the depth channel’s inherent
three-dimensional (3D) structure. Instead, the DenseFusion framework involves initially convert-
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ing the segmented depth pixels into a 3D point cloud by employing the known camera intrinsic
parameters, followed by a PointNet-like architecture to extract the geometric characteristics.

The depth segmented object is converted into a 3D point cloud by the following equation:


xw = zc · (u− u0) · fu
yw = zc · (v − v0) · fv
zw = zc

(2.1)

where u and v represent two coordinates of a given point within the depth map, (u0, v0) serves
as the central coordinate for the said map, zc denotes the relevant depth value, and f is the focal
length of the camera. Finally, xw, yw, and zw denote the three coordinates within the world
coordinate system.

PointNet introduced by Qi et al. [27] is a neural network architecture designed to process
point cloud data, an essential type of geometric data structure. Unlike alternative techniques
that convert point cloud data into regular 3D voxel grids or sets of images PointNet directly
processes point clouds and upholds the permutation invariance of points within the input. This
means that the network can handle point clouds of varying sizes and orders without the need
for pre-processing.

PointNet uses max pooling to aggregate local features of points into global features. Max
pooling is a common operation in CNNs that reduces the spatial dimensions of feature maps
while retaining the most important information. In PointNet, max pooling is applied to the
output of a Multi-Layer Perceptron (MLP) that processes the local features of each point. The
resulting global feature vector represents the entire point cloud and is used for classification or
segmentation tasks. Max pooling is used because it is a simple and effective way to reduce local
features and capture the most salient information.

However, DenseFusion’s approach introduces a modified version of the model, which replaces
the max-pooling reduction function with an average pooling method. Using average pooling
instead of max pooling can provide a more fine-grained encoding of information in the vicinity
of each point and the point cloud as a whole. An overview of the architecture can be seen in
Fig. 2.9.

2.3.1.4 Pixel-wise Dense Fusion Network

The concept behind the pixel-wise dense fusion network is to shift away from relying solely
on the object’s global features to determine its pose. Instead, it harnesses the power of local
per-pixel features, allowing each of these features a global context and allowing them to make
pose predictions independently. This approach enables the method to potentially pick the most
reliable predictions based on the visible portion of the object, reducing the impact of problems
like objects partially hidden from view or interference from background elements. An overview
of the architecture can be seen in Fig. 2.9.
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Figure 2.9: Representation of the Point Cloud Feature Extractor and Pixel-wise Dense Fusion
Network.

2.3.1.5 Pose Estimator

The pose estimator block in the DenseFusion framework estimates the 6D pose of known
objects from RGB-D images. The block takes as input the pixel-wise dense feature embedding
generated by the dense fusion network and outputs the predicted pose of the object. The pose
estimator block uses a residual-based approach to estimate the pose, which is trained jointly
with the main network. The residual-based approach calculates the distance between the ground
truth pose and the corresponding points transformed by the estimated pose, known as the pose
estimation loss. This loss is quantified by the distance between said points. The pose estimation
loss is defined as:

L =
1

N

N∑
i=1

(Lp
i ci − w log(ci)), (2.2)

where N is the number of points sampled from the segmented object, ci is the confidence coeffi-
cient, and w is incorporated as a secondary regularization term to balance the average distance
loss and confidence. For asymmetric objects (objects where their halves are not symmetrical
reflections of one another), Lp

i represents the average distance between the N corresponding
points on the object after the ground truth pose and the estimated pose transformation. Lp

i is
defined as:

Lp
i =

1

M

∑
j

∥(Rxj + T )− (R̂ixj + T̂i)∥, (2.3)

where M is the number of points randomly selected from the 3D model of the object, xj is
the jth point in M , R and T are the ground truth rotation and translation, respectively. And
R̂i and T̂i are the rotation and translation of the ith fused feature estimate in N , respectively.
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Figure 2.10: Representation of the Pose estimator Network.

Symmetric objects have more than one and possibly an infinite number of canonical frames,
any orientation can be chosen for the object reference frame, and it will still exhibit the same
symmetry, which leads to ambiguous learning objectives, therefore modified Lp

i is defined as
follows when the object is symmetric:

Lp
i =

1

M

∑
j

min
0<k<M

∥(Rxj + T )− (R̂ixk + T̂i)∥. (2.4)

The output of this network consists of n-point predictions, where n represents the total
number of points in the point cloud. Each prediction includes the rotation quaternion, trans-
lation vector, and confidence score, all contributing to the estimated pose. Incorporating this
final value allows the network to undergo a self-supervision process, whereby it can autonom-
ously evaluate the quality of its predictions. Ultimately, the pose that is selected as the final
prediction is the one that is associated with the highest score. The Pose Estimator architecture
can be seen in Fig. 2.10.
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Figure 2.11: Overview of the Iterative Pose Refinement. Taken from [2].

2.3.1.6 Iterative Pose Refinement

The goal of the iterative pose refinement is to rectify its own errors in pose estimation by
taking a step-by-step approach. The challenge lies in training the network to improve its initial
prediction rather than generating entirely new ones. In order to overcome this, the previous
projection is incorporated as part of the input for the next iteration. The fundamental concept
involves regarding the formerly predicted pose as an approximation of the desired target entity’s
standard frame, and then transform the input point cloud to match this estimated frame. This
way, the converted point cloud implicitly represents the estimated pose. This transformed point
cloud is then reintroduced into the network, and a new pose is predicted based on the previous
estimation. This iterative process can be repeated multiple times, potentially leading to more
accurate pose estimations with each step. The final pose is obtained through K iterations,
defined as follows:

RT = [Rk|tk] · [Rk−1|tk−1] · · · [R0|t0] (2.5)

The Iterative Pose Refinement overview can be seen in Fig. 2.11.
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3
State of the Art

In this chapter, a comprehensive summary of the literature on the task of object detection
is presented.

In recent years, significant advancements have been made in the field of object detection,
and numerous methodologies have been proposed to address this issue. Typically, these advanced
techniques are categorized into three primary groups based on the type of input data: RGB-
based methods, which exclusively rely on color information to determine the pose of an object;
RGB-D methods, which use both color and depth data; and point-cloud-based methods, which
utilize specialized algorithms to depict objects as sets of 3D points for feature extraction and pose
estimation. Each approach has strengths and limitations depending on the specific requirements
of each scenario or application task.

3.1 3D Object Detection

3D Object Detection is the process of recognizing items in a 3D setting and making predic-
tions about their positioning (X, Y, Z) and the object’s rotation around its center or origin. This
particular methodology is typically employed in the fields of robotics, autonomous automobiles,
and enhanced reality applications.

3.1.1 RGB Based Methods

Detecting three-dimensional objects from a single RGB image is challenging due to the inher-
ent ambiguity involved. Existing approaches can be classified into three categories: geometry-
based, learning-based, and deep learning-based. Geometry-based methods [28] use geometry
and 3D world assumptions to estimate 3D bounding boxes. Learning-based methods incorpor-
ate category-specific 3D shape priors [29, 30] or additional 2.5D information [31] to detect 3D
bounding boxes or reconstruct the shape of the object in 3D. Deep learning-based methods
[32, 33] estimate 3D object bounding boxes directly from 2D object detection. A summary of
these method can be found in Table 3.1.

Choi et al. [28] introduced a hierarchical scene model for understanding complex indoor
scenes using a 3D Geometric Phrase (3DGP) model. The 3DGP captures the semantic and
geometric relationships among objects that often coincide within the identical 3D spatial con-
figuration, allowing the system to prefer certain configurations based on deformation cost and
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Table 3.1: Summary of RGB 3D Object Detection Methods.

Method Year Category Summary

Choi et al. [28] 2013 Geometry-based The model captures semantic and geometric relationships between objects that
frequently co-occur in the same 3D spatial configuration.

Huang et al. [29] 2018 Learning-based
The algorithm seeks to minimize the differences between the input image and
the rendered images generated by the 3D representation, over the space of depth,
surface normal, and object segmentation map.

Mono3d++ [30] 2019 Learning-based
The model detects the 3D pose and shape of vehicles by optimizing two-scale
projection consistency between the generated 3D hypotheses and the 2D
pseudo-measurements and integrating task priors into an overall energy function.

3D-RCNN [31] 2018 Learning-based
The algorithm is a deep convolutional neural network that learns to map image
regions to the full 3D shape and pose of all object instances in the image.
Produces a 3D representation of the scene.

Mousavian et al. [32] 2017 Deep Learning-based
The model estimates the 3D object orientation and dimension using a hybrid
discrete-continuous loss and combines these with geometric constrains to recover
an accurate pose.

Huang et al. [33] 2018 Deep Learning-based The algorithm uses parametrization of targets and cooperative training across different
modules to improve the prediction accuracy.

view-dependent biases. The spatial deformation of an object in a 3DGP node is determined by
the difference between the object’s instance location and the expected location relative to the
centroid (average position of all the constituent objects).

Huang et al. [29] proposed a two-step method in which 3D object detection and 3D lay-
out estimation are learned jointly, while Kundu et al. [31] presented a method for 3D object
recognition and reconstruction using category-specific object shape priorities through a render-
and-compare approach.

Mono3D++ was presented by He et al. [30]. The method optimizes the two-scale projection
consistency between the generated 3D suppositions and their 2D pseudo measurements. In order
to accomplish this, an overall energy function includes three task priors, which play a vital role
in ensuring that the 2D projection of the 3D bounding box is contained within the truncated
2D box measurement.

Huang et al. in [33] proposed a method that uses parametrization of targets and cooper-
ative training across different modules to improve prediction’s accuracy. The parametrization
helps maintain the consistency between the 2D image and the 3D world. The process of para-
metrization plays a crucial role in upholding the consistency between the 2D image and the 3D
world.

Mousavian et al. [32] introduced a hybrid discrete-continuous loss. The discrete component
divides the 360-degree range of possible orientations into a fixed number of bins, and the con-
tinuous component estimates the offset from the center of each bin. This approach allows the
model to estimate the orientation with high precision while avoiding the limitations of purely
discrete or continuous methods.

However, the precise localization of bounding boxes is difficult due to the lack of depth
information, especially for monocular imagery. Methods based on RGB images have exhibited
relatively poorer performance when compared to RGB-D methods, owing to the fact that pixel
intensity can vary for different appearances. Nevertheless, these methods have the potential to
provide useful range information thanks to the advantages of camera sensors.
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3.1.2 RGB-D Based Methods

Various methods exist in the field of RGB-D (color and depth) techniques, and these can
be classified into three main categories: 2.5D processing methods, 2D driven 3D methods, and
3D convolution-based methods. 2.5D processing techniques [34, 35] employ depth images as
2D images directly. In the case of 2D Driven 3D methods [36, 37], it is typical to maintain
RGB constant and to transform depth images into point clouds. 3D convolution-based methods
[38, 39] converts the depth maps into point clouds. A summary of these methods can be found
in Table 3.1.

Gupta et al. [34] introduced a geometric embedding for depth images that encodes height
above ground and angle with gravity for each pixel, a measurement of the angle that the local
surface normal of a pixel makes with the inferred gravity direction, in addition to the horizontal
disparity, called Horizontal Disparity, Height above Ground, and Angle with gravity (HHA).

3D-SSD [35], proposed by Luo et al., consists of two components: hierarchical feature fu-
sion and multi-layer prediction. Hierarchical feature fusion combines appearance and geometric
features from RGB-D images to exploit 2.5D representations in a synergetic way, improving
accuracy and efficiency. Multi-layer prediction utilizes multi-scale features for object detection.
It addresses the issue of object sizes by attaching a set of 3D anchor boxes with varying sizes to
every location of the prediction layers.

Qi et al. [36] presented F-PointNet, a method that takes a frustum of a point cloud and a
2D object detection bounding box as input to predict the 3D bounding box. The accuracy of
the 3D prediction depends on the quality of the 2D prediction.

Frustum VoxNet [37], by Shen et al., is a system that first detects objects in 2D and then
detects the 3D objects within the 3D frustums these 2D detections define by voxelizing parts of
the frustums. The main novelty of this method, was determining which parts of the frustums to
voxelize, allowing for high-resolution representations around the objects of interest and reduced
memory requirements.

PointFusion [38], by Xu et al., is a method that uses a CNN and a PointNet [27] architecture
to independently process the image and the point cloud data, respectively. The outputs are
subsequently merged through a fusion network, which predicts multiple 3D boxes along with
their confidences, employing the input 3D points as points of reference in space.

In 2020, Qi et al. introduced imVoteNet [39], the network applies 2D detectors on RGB
images to generate 2D votes. These votes are produced by projecting 3D bounding boxes onto
the 2D image plane and creating 2D heatmaps for each object category. The geometric signals
from the 2D votes are lifted to 3D, along with semantic/texture cues. The deep Hough voting
framework generates 3D votes, created by combining the features of the points within each 3D
bounding box. Using gradient blending through a multi-tower architecture, the method blends
2D and 3D detection.
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Table 3.2: Summary of RGB-D 3D Object Detection Methods.

Method Year Category Summary

Gupta et al. [34] 2014 2.5D Processing

The model uses semantically rich image and depth features for object detection.
They introduced HHA, a geocentric embedding for depth images that encodes
height above ground and angle with gravity for each pixel in addition to the
horizontal disparity.

3D-SSD [35] 2020 2.5D Processing The algorithm uses a network that combines appearance and geometric features and
utilizes multi-scale features for object detection.

F-PointNet [36] 2018 2D Driven 3D The model operates directly on raw point clouds and leverages both 2D object
detectors and advanced 3D deep learning for object localization.

Frustum Voxnet [37] 2020 2D Driven 3D The model detects objects in 2D and then detects the 3D objects within the 3D
frustums the these 2D detections define by voxelizing parts of the frustums.

PointFusion [38] 2018 3D Convolution-based
The algorithm combines image and point cloud information using a CNN and
PointNet architecture. The outputs are combined by a fusion network which predicts
multiple hypotheses and their confidences.

imVoteNet [39] 2020 3D Convolution-based The model fuses 2D votes in images and 3D votes in point clouds, and explicitly
extracts both geometric and semantic features from the 2D images.

3.1.3 Point Cloud/Depth Based Methods

3D Object Detection within point cloud data can be categorized into four main approaches:
point-based methods, voxel-based methods, range-view-based methods, and multi-view-based
methods. Point-based methods [40, 41] are input-wise permutation invariant, meaning they
operate directly on individual points within the point cloud. Voxel-based methods [25, 42] use
a grid-representation-based approach, dividing the point cloud into volumetric cells (voxels).
Range-view-based methods [43, 44] capture multiple range views of the point cloud from different
perspectives, converting the 3D detection problem into multiple 2D image-like detections. Multi-
view-based methods [45, 46] combine the advantages of both range-view-based and voxel-based
approaches. A summary of these methods can be found in Table 3.3.

PointRCNN [40], by Shi et al., is a two-stage framework. The first stage generates a few
3D proposals from the point cloud in a bottom-up manner via segmenting the point cloud of the
whole scene into foreground points and background. The proposals are refined in the canonical
coordinates in the second stage to obtain the final detection results. The network of the second
stage transforms the pooled points of each proposal to canonical coordinates to learn better
local spatial features, which are combined with global semantic features of each point learned
in the first stage for accurate box refinement and confidence prediction.

CenterPoint [41], by Yin et al., consists of two stages. First, the framework detects the
centers of objects using a keypoint detector, based on a 2D CNN feature map, and regresses to
other attributes, including 3D size and 3D orientation. Secondly, the estimates from the first
stage are refined using additional point features on the object.

Lang et al. introduced PointPillars [25], which works by encoding a point cloud into a
sparse tensor representation, which reduces the number of computations required for object
detection. The method employs PointNet for acquiring a depiction of point clouds that are
structured in a vertical arrangement (referred to as pillars). The encoded characteristics can be
applied in conjunction with any conventional 2D convolutional detection framework, and a lean
downstream is proposed.

Proposed by Deng et al., VoxelRCNN [42] is a two stage approach that uses voxel-based
representation of 3D data. The first stage is a 3D backbone network that takes in the raw

22



3. State of the Art

point cloud data and generates a set of voxel features. These features are computed by dividing
the input data into a 3D grid of voxels and computing statistics (such as mean or max) for
each voxel. The second stage is a 2D Birds-Eye-View (BEV) Region Proposal Network (RPN)
that takes in the voxel features and generates a set of candidate object proposals. The BEV
RPN operates on a 2D projection of the voxel grid onto the ground plane, which reduces the
computational cost and allows for efficient processing.

RangeDet [43], by Fan et al., is a single-stage LiDAR-based 3D object detector that uses
the range view representation. It works by designing three components by analyzing the existing
range-view-based methods and addressing the issues of scale variation and inconsistency between
2D range image coordinates and 3D Cartesian coordinates. These components include a range-
aware feature extractor, a range-aware anchor-free head, and a range-aware post-processing
module. The range-aware feature extractor extracts features from the range view representation
and uses a range-aware convolutional layer to handle the scale variation issue. The range-aware
anchor-free head predicts the 3D bounding boxes and class labels of objects using the range-
aware feature maps. The range-aware post-processing module refines the predicted 3D bounding
boxes by considering the objects’ range information and geometric constraints.

Range Sparce Net (RSN) [44], by Sun et al., works by predicting foreground points from
range images and then processing the selected foreground points using sparse convolutions to
detect objects. The implementation of lightweight 2D convolutions on dense range images leads
to a notable reduction in the number of selected foreground points, thereby facilitating the
subsequent operation of sparse convolutions in the RSN. The fusion of features derived from
the range image has the potential to enhance the accuracy of detection.

Shi et al. proposed PointVoxel-RCNN [45], which is a framework that integrates 3D voxel
CNN and PointNet-based set abstraction to learn more discriminative point cloud features for
accurate 3D object detection from point clouds. The framework uses a 3D voxel CNN to condense
a 3D scene into a few keypoints using a unique voxel set abstraction module. This reduces the
need for additional computations and encodes important scene features. After generating 3D
proposals with the voxel CNN, the framework employs RoI-grid pooling to extract proposal-
specific features from the key points to the RoI-grid points through keypoint set abstraction.

Presented by Zheng et al., Self-Ensembling Single-Stage Detector (SE-SSD) [46] contains
a pair of teacher and student Single-Stage Detectors (SSDs). The teacher SSD generates soft
targets, filtered using an Intersection over Union (IoU)-based matching strategy to obtain high-
quality training samples for the student SSD. The SE-SSD employs an augmentation method-
ology in order to generate shape-aware augmented samples for instructing the student with the
primary goal of optimizing the assimilated knowledge from the teacher model. This encourages
the student to infer complete object shapes.

3.2 6D Object Detection

6D Object Detection is the process of recognizing 3D objects in a 3D space about their posi-
tioning (X,Y,Z) and orientation (roll, pitch, yaw). This task is important in various applications,
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Table 3.3: Summary of Point Cloud 3D Object Detection Methods.

Method Year Category Summary

PointRCNN [40] 2019 Point-based

The model is a two-stage framework. In the first stage, a sub-network
generates a small number of 3D proposals via segmenting
the point cloud of the whole scene. The proposals are refined in the
canonical coordinates in the second stage.

CenterPoint [41] 2021 Point-based
The algorithm first detects center of objects using a keypoint detector and
regresses to other attributes. In a second stage, refines these estimations
using additional point features on the object.

PointPillars [25] 2019 Voxel-based
The model is encoder which utilizes PointNets to learn a representation
of point clouds organizes in pillars. The encoded features can be used with
any standard 2D convolutional detection architecture.

VoxelRCNN [42] 2021 Voxel-based The algorithm consists of a 3D backbone network, a 2D Birds-Eye-View
region proposal network, and a detect head.

RangeDet [43] 2021 Range-view-based

The model includes a range-aware feature extractor, range-aware anchor-free
head, and a range-aware post-processing module to prevent issues of scale
variation and inconsistency between 2D range image coordinates and 3D
cartesian coordinates.

RSN [44] 2021 Range-view-based The algorithm predicts foreground points from range images and applies
sparse convolutions on the selected foreground points to detect objects.

PVRCNN [45] 2020 Multi-view-base
The model summarizes the 3D scene with a 3D voxel CNN into a small
set of keypoints via a voxel set abstraction module to save follow-up
computations and also to encode representative scene features.

SE-SSD [46] 2021 Multi-view-based
The algorithm contains a pair of teacher and student SSD’s, and uses an
IoU-based matching strategy to filter soft targets from the teacher and
formulate a consistency loss to align student predictions with them.

including robotics, augmented reality, virtual reality, and autonomous vehicles.

3.2.1 RGB Based Methods

RGB methods for estimating an object’s pose can be categorized into: holistic approaches,
dense correspondence exploration, and 2D-keypoint-based methods. Holistic approaches [47,
3] directly extract pose parameters from RGB images. Dense correspondence methods [48,
49] establish correspondences between image pixels and mesh vertexes to recover poses using
Perspective-n-Point (PnP) techniques. 2D-keypoint-based methods [50] detect 2D keypoints to
establish the 2D-3D correspondence for pose estimation, although they may suffer from loss of
geometry information due to perspective projections. A summary of these methods can be found
in Table 3.4.

DeepIm [47], by Li et al., uses an initial pose estimation to progressively enhance the
pose accuracy through a process of matching the rendered image with the observed image.
The training of the network involves learning to predict a relative Special Euclidean group in
3 dimensions (SE(3)) transformation by leveraging a disentangled representation of both 3D
location and 3D orientation. This training process is conducted iteratively.

PoseCNN [3], by Xiang et al., takes an RGB image as input and estimates the 3D translation
and rotation of the object. The estimation of the translation is accomplished through the process
of localizing the center of the object within the image and making predictions regarding its
distance from the camera. On the other hand, the estimation of the rotation is achieved by
regressing to a quaternion representation. The network uses a Hough voting layer to find the
2D object center and the ShapeMatch-Loss (SLOSS) function to handle symmetric objects.
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Table 3.4: Summary of RGB 6D Object Detection Methods.

Method Year Category Summary

DeepIm [47] 2018 Holistic
The model network takes an initial pose estimation of an object in
a test image and predicts a relative SE(3) transformation that matches
a rendered view of the object against the observed image.

PoseCNN [3] 2018 Holistic
The algorithm estimates the translation by localizing the objects center
in the image and predicting its distance from the camera, and the
rotation by regressing to a quaternion representation.

CDPN [48] 2019 Dense Correspondence
The algorithm disentangles the pose to predict rotation and translation
separately. For rotation, a local region-based paradigm is used. For
translation, it is directly estimated from local image patches.

EPOS [49] 2020 Dense Correspondence
The model uses an encoder-decoder network to predict correspondences
between densely sampled pixels and compact surface fragments that
represent the object.

PVNet [50] 2019 2D Keypoint-based
The algorithm regresses pixel-wise vectors pointing to the keypoints
and uses these vectors to vote for keypoint locations, creating a flexible
representation for localizing occluded or truncated keypoints.

Proposed by Li et al., Coordinates-Based Disentangled Pose Network (CDPN) [48] approach
untangles the pose to predict rotation and translation separately. For rotation, a well-designed
local region-based paradigm is used to make the estimation more accurate and efficient. For
translation, it is directly estimated from local image patches. These tasks are merged and solved
in a unified network. The object size in the image can change arbitrarily along with the distance
to the camera, so the object is zoomed in on to a fixed size according to the detection.

Introduced by Hodan et al., Estimating Pose of Objects with Symmetries (EPOS) [49] uses
an encoder-decoder network to predict correspondences between densely sampled pixels and
compact surface fragments that represent the object. At every individual pixel, the network
makes predictions regarding the likelihood of the presence of each object, the likelihood of the
fragments given the presence of the object, and the precise 3D location on each fragment. A
variable number of corresponding 3D locations, which are dependent on the data, are chosen for
each pixel. The poses of potentially multiple instances of the object are then estimated using a
robust and efficient variation of the PnP RANdom SAmple Consensus (RANSAC) algorithm.

Pixel-wise Voting Network [50], by Peng et al., operates by performing regression on pixel-
wise vectors that indicate the positions of keypoints. These vectors are then utilized to cast
votes for the localization of the keypoints. This approach results in the establishment of a
versatile representation that is capable of accurately localizing keypoints that may be occluded or
truncated. Additionally, this method offers the ability to determine the uncertainties associated
with the keypoint locations that the PnP solver can further leverage.

3.2.2 RGB-D Based Methods

The availability of depth cameras has led to an extensive investigation into estimating 6D
object pose using RGB-D data. These methods can be divided into: template-based methods
[51, 52], which rely on feature and shape-based template matching to locate the object in the
image and coarsely estimate the pose, feature-based methods [53] that exploits point cloud to
match 3D features and fit the object models into the scene, and deep learning-based methods
[2, 24] that use deep learning to extract features from the RGB-D data and then use these
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Table 3.5: Summary of RGB-D 6D Object Detection Methods.

Method Year Category Summary

Hinterstoisser et al. [52] 2013 Template-based
The model uses templates of the object to detect it in the
scene and estimate its pose. The templates are built from
3D models of the object using a rendering engine.

Cao et al. [51] 2016 Template-based
The algorithm uses a 3D model to render example poses of
objects and transforms images to the Laplacian of Gaussian
space to achieve invariance to illumination across an object.

Hinterstoisser et al. [53] 2016 Feature-based
The algorithm improves the Point Pair Feature method by
proposing a novel sampling and voting schemes that reduce
the influence of clutter and sensor noise.

DenseFusion [2] 2019 Deep Learning-based
The algorithm uses a heterogeneous architecture that processes the
RGB and depth data separately and uses a dense fusion network to
extract pixel-wise dense feature embeddings.

ShAPO [24] 2022 Deep Learning-based The model uses a novel texture code unique to each object in the
database and predicts object instance masks using a specialized head.

features to estimate the pose. A summary of these methods can be found in Table 3.5.

Hinterstoisser et al. [52], proposed a method that is mainly based on the LINEMOD [54]
approach for object detection, which uses the templates to detect the object in the scene and
estimate its pose accurately and in real-time. The method also uses color information to check
the detection hypotheses and enhance the accuracy of the detection rate by 13% in comparison
to the original LINEMOD.

Cai et al. [51] uses a 3D model to generate example poses of a textureless object and
determine the closest match to the input image through the utilization of a GPU implementation.
The approach transforms images to the Laplacian of Gaussian space to achieve invariance to
illumination and appearance across an object. In order to facilitate real-time matching, the
authors introduce an approach that involves the modification of the template set and the image,
as well as the restructuring of the conventional normalized cross-correlation operation to harness
the computational power of the GPU in performing rapid matrix-matrix multiplication.

In 2016 Hinterstoisser et al. [53] proposed some improvements to the Point Pair Features
method [55]. The proposed improvements include sampling and voting schemes that reduce the
influence of clutter and sensor noise. The sampling scheme selects pairs of points that are likely
to belong to the same object, while avoiding pairs that are likely to belong to different objects
or the background. The voting scheme aggregates the PPFs of all pairs of points that are likely
to belong to the same object, while ignoring those that are likely to belong to different objects
or the background.

ShAPO [24], by Irshad et al., is a method that performs object-centric scene reconstruction
from a single-view RGB-D observation. It infers 3D shape, 3D appearance, 6D pose, and sizes
of multiple object instances. The approach employs a distinctive texture code associated with
each object stored in the database and utilizes a specialized head to generate object instance
masks. By means of accurate downstream optimization, the network predicts masks to ensure
precision.
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Table 3.6: Summary of Point Cloud 6D Object Detection Methods.

Method Year Description

PointVoteNet [56] 2020 The model performs point-to-point correspondence assignment, joint classification
and segmentation within a point cloud system.

CloudPose [57] 2020 The algorithm uses a PointNet to extract features from point cloud segments, and
directly regress to 3D rotation and 3D translation with two separate networks.

CloudAAE [58] 2021 The model uses an augmented autoencoder to learn latent embedding, which
encodes object pose features.

OVE6D [59] 2022 The algorithm decomposes the 6-D pose into viewpoint, in-plane rotation, and
translation, and estimates each component in a cascaded manner.

3.2.3 Point Cloud/Depth Based Methods

Recently, innovative approaches have been introduced in point cloud methods for 6D pose
estimation. The summary of the following method can be found in Table 3.6.

Hagelskjaer et al. proposed PointVoteNet [56], which can detect and estimate the pose of
rigid objects in point cloud data, using unordered point sets. This is achieved through performing
point-to-point correspondence assignment joint classification and segmentation within a point
cloud system.

CloudPose [57], introduced by Gao et al. uses supervised learning on point clouds to
estimate the pose of a known 3D object. Supervised learning is a type of machine learning where
an algorithm learns to map input data to output data based on a set of labeled examples. In the
context of this method, the deep neural networks used for rotation and translation regression are
trained using supervised learning on a dataset of known object poses and corresponding point
clouds.

Later, Gao et al. introduced an improved method named CloudAAE [58] where rather
than directly regressing to 6D pose from point clouds as CloudPose, they use the latent code
from an Augmented Auto Encoder as the input to pose regressors. The method also includes a
lightweight data synthesis pipeline that creates synthetic point cloud segments for training.

OVE6D [59] is a framework with a network consisting of a single shared backbone with three
head branches and is trained end-to-end. The backbone extracts features from the input depth
image and object mask. The three head branches estimate the viewpoint, in-plane rotation, and
object translation. The network is trained using a loss function that combines three different
losses with different weights.

3.3 Datasets

Numerous image datasets have been developed to facilitate the training and testing of
methods. These datasets aim to portray significant scenarios and challenges that methods may
face in practical applications, such as occlusion, clutter, multiple objects, similar objects, changes
in lighting, street views, and indoor views. Table 3.7 presents the most commonly used datasets
for 3D and 6D pose estimation.
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Table 3.7: Datasets used for multiple object detection and pose estimation methods.

Dataset Pose
Estimation Data Classes Images Environment

Metric
KITTI [60] 3D RGB-D 3 14999 Street Views
SUN RGB-D [61] 3D RGB-D - 10335 Domestic
NYU-Depth V2 [62] 3D RGB-D 894 1449 Domestic
PASCAL-VOC [63] 3D RGB 12 14999 Indoor/Outdoor
RU-APC [64] 6D RGB-D 25 10368 Warehouse
LINEMOD [52] 6D RGB-D 12 18273 Indoor
T-LESS [65] 6D RGB-D 30 117000 Industrial
YCB-Video [3] 6D RGB-D 21 213827 Indoor
NOCS-REAL275 [66] 6D RGB-D 6 300000 Indoor
JHUScene-50 [67] 6D RGB-D 50 22520 Industrial
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4
Developed Work

This chapter clarifies the 6D pose estimation methods developed (Fig. 1.5) within the
context of this dissertation to fulfill the proposed objectives. All these methods are grounded
in the foundational DenseFusion [2] framework, the specifics of which are detailed in Section
2.3.1. An overview of the crafted dataset designed to assess these methods performance within
an industrial environment is also included.

4.1 Segmentation-based Pose Estimation Methods

This section comprises the developed pose estimation methods based on segmentation.
These methodologies utilize an object segmentation technique, addressed in Section 2.3.1.1, to
identify objects of interest in an image.

4.1.1 DenseFusion: Multimodal Early Fusion

This methodology proposes a modification to the DenseFusion framework, wherein the early
fusion of RGB and depth information is employed to augment the accuracy and robustness of
pose estimation. The primary objective of this approach is to leverage the distinct strengths
of both modalities and enable the network to learn more discriminative features by jointly
considering color and depth information. The goal of this fusion is to mitigate the challenges
associated with occlusions, varying lighting conditions, and noise that are commonly encountered
in pose estimation tasks.

To compute the early fusion approach, the architecture of DenseFusion was adapted by con-
catenating the RGB and depth modalities channel-wise to create a multi-channel input that
retains both color and depth information. This joint input is then processed by subsequent
network layers for feature extraction and pose estimation instead of performing separate feature
extraction on RGB and depth images. An overview of the architecture can be seen in Fig. 4.1.

4.1.2 DenseFusion: Multimodal Middle Fusion

Similarly to the previous method, a multimodal middle fusion approach is proposed. While
the early fusion method combines RGB and depth data at the input level, it may risk losing fine-
grained details present in each modality. On the other hand, traditional RGB feature extraction
methods often struggle with handling occlusions and varying lighting conditions. The middle
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Figure 4.1: Overview of DenseFusion: Multimodal Early Fusion Architecture.

fusion with attention mechanisms approach is presented to address these challenges. Select-
ively fusing RGB and depth information at intermediate stages of the network using attention
mechanisms, is an attempt to capture the most relevant and discriminative features from both
modalities.

Attention mechanisms [68] allow the network to focus on salient features from each modality
while suppressing noise and irrelevant information. This approach enables the network to decide
when and how to integrate RGB and depth data. These mechanisms produce attention weights
that highlight the most relevant features from each modality.

Attention computations involve calculating a weighted sum of values based on the similarity
between a query and a set of key-value pairs. The most commonly used attention mechanism
employs a dot product and softmax function:

b⃗ = softmax (q⃗ ·K) = softmax

∑
j

qjkij

 , (4.1)

where q is the query, a vector that represents the current input position that we want to focus
on, K is the keys, a set of vectors representing all positions in the input sequence, index i is the
position in the sequence and j is the index of the feature. The softmax function is defined as:

softmax (x⃗) =
ex⃗∑
i e

x
i

, (4.2)

and ensures that b⃗ is normalized. Following the computation of b⃗, the weighted mean is calculated
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Figure 4.2: Overview of DenseFusion: Multimodal Middle Fusion Architecture.

as:

V · b⃗, (4.3)

where V is the values, a set of vectors containing information at each position in the input
sequence.

Multi-head attention, used in this approach, extends the single-head attention concept by
letting the model focus simultaneously on different parts of the input sequence. Instead of
having a single set of learnable parameters for keys, queries, and values, multi-head attention
introduces multiple sets (heads) of these parameters. Each head independently computes an
attention mechanism, resulting in multiple output representations. Considering an attention
layer defined by A(q⃗,K,V). The multi-head attention is expressed as:

[
A(W0

q q⃗,W
0
kK,W0

vV), A(W1
q q⃗,W

1
kK,W1

vV), . . . , A(WH
q q⃗,WH

k K,WH
v V)

]
. (4.4)

An overview of the architecture can be seen in Fig. 4.2. Two variations of this approach
were employed, differing in the dimensionality of the attention module, which determines the
dimensionality of the input and output embeddings in the sequence. For ease of comparison, we
shall designate these as ”DenseFusion: Multimodal Middle Fusion 1” for the version with lower
dimensionality, and ”DenseFusion: Multimodal Middle Fusion 2” for the version featuring higher
dimensionality. Some alternative iterations of this approach incorporating attention mechanisms
were explored. However, these variations yielded unsatisfactory preliminary outcomes that do
not justify specific mention.
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Figure 4.3: Overview of DenseFusion: Depth Architecture.

4.1.3 DenseFusion: Depth

In this section, a method that relies on only depth information is proposed. This approach
offers some benefits to the field of computer vision and its applications. By focusing solely
on depth data, this method provides a solution that surpasses some challenges associated with
traditional techniques that rely on both color and depth information. The exclusive dependence
on depth information eradicates the potential shortcomings that can arise from variations in
color due to changes in lighting, occlusions, or other environmental factors.

The key idea was to fuse the strengths of DenseFusion while eliminating the reliance on RGB
data. The original pipeline includes three main stages: feature extraction, feature matching,
and pose refinement. This method retains these stages, but adapts them to accommodate depth
information exclusively. An overview of the architecture can be seen in Fig. 4.3.

4.1.4 DenseFusion: Point Cloud

Like the previous one, this method relies exclusively on depth information, specifically
the geometry features extracted from the point cloud generated by the depth map, using only
PointNet to extract features. The method streamlines the data processing pipeline and reduces
computational demands by forgoing the need for RGB data and focusing only on the point
cloud. This efficiency translates to a faster and more responsive pose estimation algorithm. An
overview of the architecture can be seen in Fig. 4.4.

4.2 Detection-based Pose Estimation Methods

This section comprises the developed Pose Estimation Methods based on detection. These
methodologies utilize the Yolov5 [11] network to identify objects of interest in an image. Section
2.1.2 provides a detailed explanation of this object detector.
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Figure 4.4: Overview of DenseFusion: Point Cloud Architecture.

4.2.1 DenseFusion: Point Cloud

Most 6D Pose Estimation methods available online use data from RGB or RGB-D cameras.
These sensors have some limitations, such as uneven lighting, reflections, and occlusions, that
often cause object detection accuracy to suffer. RGB-D cameras attempt to overcome these
limitations by incorporating depth data to improve scene understanding. However, they also
have their own constraints, such as struggling with transparent or reflective surfaces experiencing
accuracy degradation in low-light conditions.

An alternative approach to RGB-based methods is to use lasers, LiDAR, or similar tech-
nologies to generate a 3D representation of the environment. A method that uses the data
of these types of sensors can be more accurate in detecting objects, regardless of lighting con-
ditions or surface properties, transcending the shortcomings of RGB-based approaches. This
is especially crucial in industrial settings, where reliable object detection can directly impact
operational efficiency and worker safety. With that in mind, a method using only LiDAR-like
sensors information was developed. An overview of the architecture can be seen in Fig. 4.5.

4.2.1.1 Depth Map Projection from Point Cloud

Before diving into how the projection is made, we need to understand the calibration
matrices that KITTI [60] provides. The camera projection matrix, often denoted as P , is a
3x4 matrix that maps 3D world coordinates to 2D image coordinates. It plays a central role
in converting point cloud data to the image plane. Given calibration data, the P matrix is
constructed and augmented to a 4x4 matrix:

P =

[
P3×4 0

0 1

]
. (4.5)

The rectification matrix, represented by R, is a 3x3 transformation matrix that rectifies
stereo images, a process to merge images taken from multiple perspectives into a common map
coordinate system. Like P , it is expanded to a 4x4 matrix:
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Figure 4.5: Overview of DenseFusion: Point Cloud Architecture.

R =

[
R3×3 0

0 1

]
. (4.6)

The transformation matrix Tr converts the Velodyne LiDAR coordinates to camera co-
ordinates.

Tr =

[
Tr3×4 0

0 1

]
. (4.7)

We can now obtain the calibration matrix, Clb, by chaining the transformations as follows:

Clb = P ×R× Tr. (4.8)

The 3D point cloud is converted into a depth map by following the equation:


zc · v
zc · u
zc

1

 = Clb×


xw

yw

zw

1,

 (4.9)

where u and v represent two coordinates of a given point within the depth map, zc denotes the
relevant depth value, and (xw, yw, zw) represents the coordinates within the world coordinate
system.

Given the inherent sparsity of point cloud data, it becomes crucial to enhance its density to
facilitate more effective feature extraction. To achieve this, a bilateral filter [69] was employed.
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This filter incorporates both background and foreground points projected onto the image plane,
generating a denser representation of the point cloud.

The depth-mapping process involves a formulation that capitalizes on local spatial inter-
polation and leverages the Bilateral Filter technique. This fusion allows for accurate depth-map
generation, which is essential in applications where understanding scene geometry is crucial.

Local spatial interpolation enables the estimation of range measurements in the depth map’s
sampled and unsampled areas. This interpolation is localized within a defined region or window,
with the point of interest serving as the central reference. The primary objective is to predict
the range-distance value at this central location based on a finite set of observed points situated
within the region.

Incorporating the sliding window technique further refines local spatial interpolation. This
methodology entails systematically shifting a window or mask across the depth map, center-
ing it on the location of interest. The window’s dimensions dictate the scope of neighboring
points considered for the interpolation process. By adopting the sliding window technique, the
algorithm effectively infers range measurements at unsampled positions, utilizing the values of
proximate sampled points.

Central to this formulation is the Bilateral Filter, a technique used in image processing
and computer vision to smooth images while preserving edges and details. The strength of
the Bilateral Filter lies in its dual consideration of spatial proximity and intensity resemblance
between pixels. The bilateral Filter’s application is modified to enable depth-map upsampling.
This adaptation emphasizes the preservation of edges and foreground-background disparities,
ensuring that the resulting upsampled depth map retains crucial scene delineations.

4.2.1.2 Point Cloud Projection from Depth Map

The depth map is converted into a 3D point cloud by computing the inverse of the projection
of a depth map from a point cloud:


xw

yw

zw

1

 = Clb−1 ×


zc · v
zc · u
zc

1

 , (4.10)

4.2.1.3 Object Selection

Once the output clusters are acquired, the subsequent task involves the strategic selection
of a specific cluster that corresponds to the object of interest. The criteria for this selection
are: density and proximity. The density of a cluster is estimated by the number of core points
it comprehends, indicating a high concentration of data points in that region. Meanwhile, the
proximity factor determines how close the cluster is to the sensor. In practice, selecting the
cluster with the highest density and closest to the sensor ensures that the chosen cluster is the
desired object.
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Algorithm 2: K-means Clustering
Data: Input data X, number of clusters k
Result: Cluster assignments C
Initialize centroids c1, c2, . . . , ck randomly;
repeat

foreach data point xi ∈ X do
Assign xi to the nearest centroid: ci = argminj dist(xi, cj);

end
foreach centroid cj do

Update centroid cj as the mean of assigned points: cj =
1

|Cj |
∑

xi∈Cj
xi;

end
until convergence;

4.2.1.4 Upsampling and Downsampling of the Objects

The object chosen from the point cloud clustering contains a specific count of points corres-
ponding to the number of pixels depicting the object in the image. However, for the network’s
pose estimator to operate effectively, it’s essential to maintain consistent object dimensions.
Therefore, it becomes imperative to ensure uniform object sizes. In cases where the object
exhibits a lower number of points than the target dimension, an upsampling procedure is neces-
sary. Contrariwise, downsampling is required when the object comprises an excessive number
of points. This process of upsampling and downsampling guarantees that the network’s pose
estimation functions optimally by standardizing object dimensions across the dataset.

For downsampling, the goal is to reduce the number of points while retaining the essential
features of the point cloud. To do so, the K-means clustering algorithm 2 is applied with the
desired number of clusters set to the desired number of points. The algorithm assigns each point
in the cluster to one of these K clusters. The cluster centers are then computed and serve as
the downsampled points for the point cloud.

For upsampling, the goal is to increase the number of points while preserving the overall
distribution and characteristics of the point cloud. The number of points needed to reach the
desired number of points is calculated by subtracting the current number of points in the object
point cloud from the desired number. To generate new points, the algorithm employs random
oversampling. This involves drawing random samples from the existing points in the point cloud.
The generated new points are stacked (vertically) on top of the existing points in the point cloud.

4.2.1.5 Loss Function

The original approach employs 3D model point clouds of objects to calculate the posi-
tional disparity between the ground truth and the predicted pose. This involves applying the
transformation poses of both the ground truth and the pose prediction to the 3D model. These
transformations position the identical point cloud in distinct locations, enabling a point-to-point
distance computation between the two configurations. Nevertheless, in the context of detection-
based pose estimation methods, the datasets employed do not provide 3D object models. This
means that the point cloud derived from detection and the point cloud representing the ground
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truth will differ. As a solution, the Chamfer distance emerges as a suitable metric for calculating
the dissimilarity between these distinct point clouds.

The Chamfer distance is a metric used to measure the similarity between two point clouds
by calculating the average nearest neighbor distance between points in one point cloud to the
other point cloud. Representing the Chamfer distance between two 3D point clouds involves
computing the Euclidean distances for each point in one point cloud to its nearest neighbor in
the other point cloud and then averaging these distances. The Chamfer distance between two
sets of points S1 and S2 is defined as:

CD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x− y∥22+
1

|S2|
∑
y∈S2

min
x∈S1

∥x− y∥22. (4.11)

The pose estimation loss becomes:

L =
1

N

N∑
i=1

(CDici − w log(ci)), (4.12)

where N is the number of points sampled from the segmented object, ci is the confidence
coefficient, and w is incorporated as a secondary regularization term to balance the average
distance loss and confidence.

4.2.1.6 Prediction Selection

As previously described, DenseFusion generates a set of Npoints predictions, each with a
confidence score associated. This method chooses the highest confidence score prediction as
the ultimate pose prediction. However, a novel approach to prediction selection is introduced.
Rather than solely relying on the single highest-confidence prediction, this new strategy considers
all or a subset of the top predictions. The rationale lies in recognizing that the prediction with
the utmost confidence may not invariably be the most accurate. A weighted average of the pose
predictions is computed to address this, effectively combining the top predictions into a final,
refined prediction. This technique aims to enhance the reliability and robustness of the pose
estimation process.

However, averaging quaternions can be challenging because quaternion space is not linear,
and simple averaging can lead to undesirable results. The algorithm 3 introduced by Markley et
al. [70] aims to find the quaternion that represents the average rotation of a set of quaternions.
This is particularly useful when we have a collection of rotations and want to find a smooth,
interpolated rotation that is as close as possible to the average of the given rotations. The basic
idea behind the algorithm is to represent the quaternions in a higher-dimensional space and
then perform the averaging in that space. The algorithm involves finding the eigenvalues and
eigenvectors of a matrix derived from the input quaternions. The eigenvector corresponding to
the largest eigenvalue is then used to compute the averaged quaternion. This method tends to
produce better results than simple linear averaging of quaternions, especially when dealing with
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rotations that are not close to each other in quaternion space. It helps avoid issues like gimbal
lock and produces a more meaningful average rotation.

Algorithm 3: Quaternion Weighted Average (Markley)
Input:

Q: an M × 4 ndarray of quaternions.
weights: a list of M elements, a weight for each quaternion.

Output:
An averaged quaternion.

Initialize:
A as a 4× 4 matrix of zeros;
M as the number of rows in Q;
wSum as 0;
for i = 1 to M do

q = Q[i, :];
wi = weights[i];
A = A+ wi · (q⊗ q⊺);
wSum = wSum+ wi;

Scale A by dividing by wSum;
A = A/wSum;
Get the eigenvector corresponding to the largest eigenvalue of A;
eigenvalues, eigenvectors = eig(A);
avgQuaternion = eigenvectors[:,−1];
return avgQuaternion;

The translation vector follows a normal weighted average computed as:

T =

∑N
i=1 ti · ci∑N
i=1 ci

(4.13)

where N are the number of predictions considered, r and t are the rotation and translation of
the prediction, and c the corresponding confidence. The final pose prediction is [R|T ].

4.3 Industrial Dataset

In pursuing the objectives of this dissertation, a comprehensive evaluation of existing meth-
ods in an industrial setting is essential. This requires a careful examination of their performance
in such environments and an assessment of their robustness. Of course, this evaluation requires
the availability of a suitable dataset.

This dataset was created to fulfill the project’s prerequisites associated with the present
dissertation. This necessity was originated from the absence of a realistic and readily available
dataset online for validating of the accuracy of the detection of pallets within a warehouse setting.
For instance, consider the PalLoc6D dataset [12], which serves as an RGB-D virtual dataset for
the 6D detection of pallets. However, it lacks a realistic scenario because the pallets are generated
randomly in various locations, surrounded by random objects, within a randomized background.
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Figure 4.6: Example of rendered RGB-D images, and respective Masks and Point Clouds from
Industrial Dataset.

The key idea revolves around an autonomous forklift capable of navigating towards designated
pick-up and drop-off zones. Once positioned correctly, the robot must accurately identify the
pallet’s location, enabling seamless execution of the loading and unloading processes. To achieve
this objective, the dataset simulates a virtual warehouse environment, consisting of carefully
designed shelves populated with pallets and boxes, capturing data from the perspective of a
mobile robot.

The resulting industrial dataset includes an extensive collection of 816 RGB-D raw images
with a resolution of 1224x370, along with the corresponding point clouds, 2D and 3D bounding
box annotations for every pallet object within the image, as well as the essential calibration
matrices.
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5
Software Tools and Hardware Mater-
ials

This chapter provides a brief overview of the various software tools and libraries used to
develop the 6D object detection and classification system for this study.

5.1 Operating System

Ubuntu [71] is a free and open-source operating system that offers unlimited development
privileges. It also has official long-term support, continuous maintenance, and a built-in firewall
that mitigates potential security risks. The decision to use Ubuntu as the operating system for
the study was primarily motivated by the observation that most online object detection methods
have been developed and made available in this particular environment.

5.2 Python

Python [72], namely version 3.8, was the main programming language because it is a popular
choice for machine learning and computer vision tasks. The packages implemented in developing
the proposed pipeline can be found in Table 5.1.

5.2.1 Pytorch

PyTorch is a well-known open source machine learning library. It builds and trains deep
learning models for object recognition and classification. PyTorch is based on the Torch library

Table 5.1: Python packages

Package Version Description
Pytorch [73] 1.7.1 Machine learning framework

Numpy [74] 1.22.0 Package for computation of arrays, matrices, and linear algebra

Matplotlib [75] 3.7.0 Library for creating static, animated, and interactive visualizations

Scikit-learn [76] 1.2.2 Data analysis library

Opencv [77] 4.5.2 Library that allows you to perform image processing and computer vision tasks

Ultralytics [78] 7.0.0 Package that provides YOLO models

41



6D Object Detection for Mobile Robotics Targeting Industrial Applications: a Case Study

Table 5.2: NVIDIA GeForce RTX 3060 specifications

Card Length 224mm x 116mm
CUDA Cores 3584

Video Memory 12GB GDDR6
Memory Bus 192-bit
Engine Clock Boost: 1777 MHz

Memory Clock 15 Gbps
Power Consumption 170W

Supported OS Windows, Linux

and provides effortless integration with Python. It also enables computations on the GPU using
CUDA [79]. These tools are widely used for computer vision and DL in academia and industry.
Consequently, PyTorch was a suitable option for developing a system for detecting 6D objects.

5.3 Conda

Conda [80] is an efficient package and environment management system widely used in code
development due to its many advantages. It allows developers to create isolated environments
so that each project gets its packages and dependencies without affecting other projects. This
feature mitigates library conflicts and ensures consistent code execution on different systems.
In addition, Conda offers a wide range of pre-built packages, including popular libraries for
data science and machine learning, so developers can quickly set up their programming envir-
onments without installing packages manually. Conda has become an indispensable tool for
developers who want to streamline code development and ensure the consistency of their code
across multiple platforms.

5.4 Evaluation Setup

The study was conducted using a combination of hardware components, including an
NVIDIA GeForce RTX 3060 [81] GPU and an AMD Ryzen™ 7 3800X 8-core processor Central
Processing Unit (CPU), along with 64 GB of RAM. The key specifications of theGPU are out-
lined in Table 5.2.
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6
Results and Discussion

This chapter unveils the performance of the proposed Pose Estimation methods and a
comparative analysis of them.

6.1 Segmention-based Pose Estimation Methods

The evaluation of segmentation-based pose estimation methods will take place within the
same dataset used for DenseFusion. This approach enables a direct comparison between the
introduced techniques and the original method’s performance. The chosen dataset, LINEMOD,
is one of the most widely used benchmark datasets for 6D pose estimation, encompassing 13
objects (ape, bench vi, camera, can, cat, driller, duck, eggbox, glue, hole p., iron, lamp and
phone) with minimal textures across a collection of 15,783 RGB-D images. Given the real-world
acquisition of these images, challenges abound in the form of occlusions, limited textures, and
lighting disparities within cluttered environments. It is noteworthy that the partitioning of
training and test sets remains consistent with official dataset guidelines.

6.1.1 Evaluation Metrics

This section will delve into evaluation metrics used in the LINEMOD dataset: Average
Distance of Keypoints (ADD) and Average Distance of Keypoints with Symmetry (ADD-S).
These metrics offer a quantitative means of the quality of pose estimation outcomes.

6.1.1.1 Average Distance (ADD)

This metric measures the average Euclidean distance between predicted keypoint positions
(R̂, T̂ ) and their corresponding ground truth positions (R, T ). The final ADD score is obtained
by averaging these distances over all keypoints, with a lower score indicating greater accuracy
of the pose estimation algorithm, which is computed as follows:

ADD =
1

M

∑
x∈M
∥(Rx+ T )− (R̂x+ T̂ )∥, (6.1)

where x represents one of the M sampled points belonging to the 3D model, x denotes one of
the M points of the model, R and T are the ground truth rotation and translation matrices,
respectively. And R̂ and T̂ are the predicted rotation and translation matrices, respectively. This
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metric can serve as a tool for both a loss function and an accuracy measurement. Predictions
that register a score lower than a predetermined threshold are deemed correct. Generally, this
threshold is established in the following manner:

ADD ≤ kmd. (6.2)

6.1.1.2 Average Distance of Keypoints with Symmetry (ADD-S)

The ADD-S metric is an extension of the ADD metric that considers the symmetrical
nature of certain objects. This is particularly relevant in human pose estimation, where certain
keypoints possess symmetrical counterparts. If the ADD metric were used exclusively, wrongly
predicted keypoints would be penalized, even if they were symmetric. To solve this problem,
the ADD-S metric introduces a symmetrization step that verifies the correct placement of the
predicted keypoint, based on a known symmetry transformation. In a misplaced keypoint,
the metric identifies the corresponding symmetric keypoint on the opposite side and calculates
the Euclidean distance between the predicted and ground truth keypoints. This adjustment
guarantees that symmetric keypoints are evaluated impartially, which is computed as follows:

ADD-S =
1

M

∑
x1∈M

min
x2∈M

∥(Rx1 + T )− (R̂x2 + T̂ )∥. (6.3)

6.1.2 Multimodal Study

In this Section, the performance of the proposed multimodal methods on the LINEMOD
dataset is compared. Table 6.1 presents a comprehensive analysis of the performance of different
multimodal methods for object detection and pose estimation on the LINEMOD dataset. The
method based only on the geometric features achieves an accuracy really close to the original
method, separated by only 0.5%, even though not provided with the RGB data. The Dense-
Fusion: Depth disappoints slightly, with an accuracy of only 90.0%. This poor performance
compared to DenseFusion: Point Cloud might be because using both depth image and point
cloud features could introduce redundancy in the information. If the information extracted from
the depth image is already present in the point cloud, combining them might not provide any
additional benefit and introduce noise or inconsistencies. Interestingly, the inclusion of depth
information proves beneficial for certain objects. Objects like ape, bench vi, can, cat, driller,
andlamp exhibit improved accuracy scores when the DenseFusion: Point Cloud variant is em-
ployed. This suggests that depth data provides crucial information for these objects, enabling
more accurate pose estimation.

In addition, to verify the robustness of the model for the different objects, the plot of
the accuracy-threshold curve of ADD(-S) and box plots of ADD(-S) accuracy for the different
multimodal methods is made, as shown in Figs. 6.1 and 6.2 respectively.

In Fig. 6.1, the threshold value is changed for evaluating ADD(-S) and calculating the
corresponding accuracy of the estimated pose. The maximum threshold value is set to 10% of
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Table 6.1: Accuracy (ADD(-S)) of the multimodal methods on the LINEMOD dataset. Objects
in bold are symmetric.

DenseFusion DenseFusion:
Depth

DenseFusion:
Point Cloud

ape 89.3 77.8 90.5
bench vi 93.9 86.6 94.6
camera 95.0 84.5 89.4
can 95.7 89.2 96.1
cat 97.3 93.2 97.4
driller 91.6 89.1 94.9
duck 92.7 79.3 89.1
eggbox 99.9 99.8 99.9
glue 99.7 99.7 99.4
hole p. 94.5 90.4 93.5
iron 97.2 91.3 93.8
lamp 96.3 94.2 97.7
phone 96.7 94.4 95.9
Mean 95.3 90.0 94.8

Figure 6.1: The accuracy-threshold curve of
the multimodal methods on the LINEMOD
dataset.

Figure 6.2: Box plot of the accuracy of the
multimodal methods on the LINEMOD data-
set.

the 3D model diameter. The graphic shows that DenseFusion: Point Cloud excels particularly
at lower thresholds, reflecting enhanced robustness and stability in its performance.

Moving to Fig. 6.2, a set of three box plots corresponds to the methods enumerated in Table
6.1. Each box plot encapsulates five key numerical indicators: the upper whisker (depicted as a
black horizontal line above the box), upper quartile (top edge of the box), median (highlighted
by a red line within the box), lower quartile (bottom edge of the box), and lower whisker (black
horizontal line below the box). Both DenseFusion and DenseFusion: Point Cloud exhibit a
similar and small range between the upper and lower whisker, and the box height is relatively
narrow in both, indicating a concentrated distribution of accuracy.

For a more tangible understanding, qualitative results of the multimodal methods are
presented in Fig. 6.3.
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Figure 6.3: Visualization of the multimodal methods on the LINEMOD dataset. Green dots
indicate the ground truth poses, while red represents estimated poses. Three columns show the
results of DenseFusion, DenseFusion: Depth, and DenseFusion: Point Cloud, respectively.

6.1.3 Feature Extraction Variations

This section assesses the method performances using various techniques for feature extrac-
tion from the input data. Table 6.2 clearly demonstrates that all the introduced methods increase
the performance of the original one. DenseFusion: Middle Fusion 2 stands out with the most
remarkable performance. This variant enhances the overall method performance by 1.9 percent-
age points, showcasing the highest accuracy across nearly all objects within the dataset. By
comparing DenseFusion: Middle Fusion 1 and DenseFusion: Middle Fusion 2, it becomes evid-
ent that augmenting the dimensionality of the attention model leads to a notable improvement
in overall accuracy.

Figure 6.4 exhibits that the variations of DenseFusion: Middle Fusion are way more robust
and stable compared to the DenseFusion: Early Fusion and DenseFusion that behave similarly.

Figure 6.5 contains four box plots, corresponding to the methods in Table 6.2. The circles
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Table 6.2: Accuracy (ADD(-S)) of methods with feature extraction variations on the
LINEMOD dataset. Objects in bold are symmetric.

DenseFusion DenseFusion:
Early Fusion

DenseFusion:
Middle Fusion 1

DenseFusion:
Middle Fusion 2

ape 89.3 91.1 95.2 96.5
bench vi 93.9 95.2 94.8 95.2
camera 95.0 95.2 98.6 98.9
can 95.7 96.9 95.3 96.2
cat 97.3 97.3 97.6 99.2
driller 91.6 94.2 93.2 97.5
duck 92.7 95.8 96.0 95.4
eggbox 99.9 100.0 97.1 96.5
glue 99.7 99.6 96.5 97.0
hole p. 94.5 93.2 95.1 97.1
iron 97.2 96.5 99.6 98.2
lamp 96.3 96.9 97.7 98.4
phone 96.7 96.3 97.8 98.3
Mean 95.3 95.8 96.5 97.2

Figure 6.4: The accuracy-threshold curve of
the methods with feature extraction variations
on the LINEMOD dataset.

Figure 6.5: Box plot of the accuracy of the
methods with feature extraction variations on
the LINEMOD dataset.

in the graphic represent outliers, data points that are located outside the whiskers of the box
plot. DenseFusion: Early Fusion is the only method with outliers indicating a more unstable
behavior when trying to estimate the pose of different objects. DenseFusion: Middle Fusion 2
has the smallest range between the upper and lower whisker, and the box height is relatively
narrow, indicating that the accuracy distribution is relatively concentrated.

For a more visual understanding, qualitative results of the multimodal methods are presen-
ted in Fig. 6.6.

6.1.4 Comparative Study with State-of-art

From Tables 6.3, 6.4, and 6.5, and Fig. 6.7, it becomes evident that all the proposed
techniques, with the exception to DenseFusion: Depth, exhibit enhanced performance when
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Figure 6.6: Visualization of the methods with feature extraction variations on the LINEMOD
dataset. Green dots indicate the ground truth poses, while red represents estimated poses. Four
columns show the results of DenseFusion, DenseFusion: Early Fusion, DenseFusion: Middle
Fusion 1, and DenseFusion: Middle Fusion 2, respectively.

evaluated on LINEMOD in comparison to the current state-of-the-art approaches that solely
rely on RGB data for pose estimation. Delving into the realm of RGB-D techniques, the per-
formance of DenseFusion: Middle Fusion 2 emerges as strikingly competitive, nearly outpacing
the state-of-the-art benchmarks. Shifting the focus to Depth-based methodologies, DenseFusion:
Point Cloud surpasses the existing state-of-the-art techniques within this category, achieving the
best performance for most object classes. This advancement in accuracy amounts to a notable
increase of 2.3 percentage points. The methods proposed in this dissertation were trained for
100 epochs due to limited computational resources and time. This is less than the 500 epochs
used to train state-of-the-art methods. However, the introduced methods still achieved a very
good performance. This suggests that they have the potential to be even more effective with
more training time.

6.2 Detection-based Pose Estimation Methods

The detection-based pose estimation methods will be evaluated on the KITTI dataset.
This dataset is commonly used for 3D object detection, but it is possible to use it for 6D object
detection and is well-supported by the research community. It is also relatively simple to work
with and provides LiDAR data, which is necessary for evaluating models that only use point
clouds as input data. Comprising a comprehensive collection of labeled images and point cloud
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Table 6.3: Accuracy (ADD(-S)) of RGB state-of-art methods on the LINEMOD dataset.
Objects in bold are symmetric

DeepIM [47] CDPN [48] HybridPose [82]
ape 77.0 64.4 77.6
bench vi 97.5 97.8 99.6
camera 93.5 91.7 95.9
can 96.5 95.9 93.6
cat 82.1 83.8 93.5
driller 95.0 96.2 97.2
duck 77.7 66.8 87.0
eggbox 97.1 99.7 99.6
glue 99.4 99.6 98.7
hole p. 52.8 85.8 92.5
iron 98.3 97.9 98.1
lamp 97.5 97.9 96.9
phone 87.7 90.8 98.3
Mean 88.6 89.9 94.5

Table 6.4: Accuracy (ADD(-S)) of RGB-D state-of-art methods on the LINEMOD dataset.
Objects in bold are symmetric

DenseFusion DenseFusion:
Early Fusion

DenseFusion:
Middle Fusion 1

DenseFusion:
Middle Fusion2 MaskedFusion [83] FFB6D [84]

ape 89.3 91.1 95.2 96.5 92.2 98.4
bench vi 93.9 95.2 94.8 95.2 98.4 100.0
camera 95.0 95.2 98.6 98.9 98.0 99.9
can 95.7 96.9 95.3 96.2 97.4 99.8
cat 97.3 97.3 97.6 99.2 97.8 99.9
driller 91.6 94.2 93.2 97.5 95.6 100.0
duck 92.7 95.8 96.0 95.4 94.0 98.4
eggbox 99.9 100.0 97.1 96.5 99.6 100.0
glue 99.7 99.6 96.5 97.0 100.0 100.0
hole p. 94.5 93.2 95.1 97.1 97.3 99.8
iron 97.2 96.5 99.6 98.2 97.1 99.9
lamp 96.3 96.9 97.7 98.4 99.0 99.9
phone 96.7 96.3 97.8 98.3 98.8 99.7
Mean 95.3 95.8 96.5 97.2 97.3 99.7

data, KITTI provides an extensive range of object categories, including cars, pedestrians, and
cyclists. For this study, only cars and pedestrians will be considered.

The approach employed to derive the outcomes in Sections 6.2.1 and 6.2.3 relies on utilizing
the ground truth point cloud for pose prediction. In Section 6.2.2, the RGB-D and Depth meth-
ods similarly depend on ground truth 2D object detections for pose prediction. Consequently,
in these instances, the processes of detection, point cloud projection, and point cloud clustering
were not employed as part of the investigation detailed in the aforementioned sections. The loss
used in these methods was the original one from DenseFusion. The assessment will be conducted
based on the metrics outlined in Section 6.1.1.
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Table 6.5: Accuracy (ADD(-S)) of Depth state-of-art methods on the LINEMOD dataset.
Objects in bold are symmetric

DenseFusion:
Depth

DenseFusion:
Point Cloud CloudPose [57] CloudAAE [58]

ape 77.8 90.5 58.3 92.5
bench vi 86.6 94.5 65.6 90.8
camera 84.5 89.4 43.0 85.7
can 89.2 96.1 84.7 95.1
cat 93.2 97.4 84.6 96.8
driller 89.1 94.9 83.3 98.7
duck 79.3 89.1 43.2 84.4
eggbox 99.8 99.9 99.5 99.2
glue 99.7 99.4 98.8 98.7
hole p. 90.4 93.5 72.1 85.3
iron 91.3 93.8 70.3 91.4
lamp 94.2 97.7 93.2 86.5
phone 94.4 95.9 81.0 97.4
Mean 90.0 94.8 75.2 92.5

Figure 6.7: Box plot of the accuracy of the state-of-art methods on the LINEMOD dataset.

6.2.1 Distance-Based Accuracy Study

Within this section, an investigation will be done to comprehensively evaluate the network’s
ability to estimate the poses of objects situated at varying distances from the sensor. This study
aims to provide a detailed understanding of how the network performs across different ranges
and distances.

The accuracy (measured by ADD) of both vehicles and pedestrians can be found in Table
6.6 and Table 6.7, categorized by their respective ranges. Table 6.6 exclusively includes ground
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Table 6.6: Accuracy (ADD) according to the distance of the objects on the KITTI dataset.
Objects with less than 100 points were not considered.

Distance <7m 7-15m 15-25m
Car 95.9 (1114) 88.3 (969) 85.9 (1178)
Pedestrian 89.7 (136) 85.8 (281) 61.1 (72)
Mean (1250) 95.2 87.8 84.5

Table 6.7: Accuracy (ADD) according to the distance of the objects on the KITTI dataset.
Objects with less than 50 points were not considered.

Distance <7m 7-15m 15-25m 25-35m
Car 95.8 (1116) 84.9 (971) 87.7 (1090) 95.2 (1232)
Pedestrian 89.6 (134) 74.2 (279) 74.4 (160) 66.7 (18)
Mean (1250) 95.1 82.5 86.0 91.2

truth objects that contained over 100 points before the upsampling/downsampling process, while
Table 6.7 discards objects with less than 50 points.

This tables provide a clear representation of how object distance significantly influences
detection accuracy. The accuracy falls with increasing separation between the Velodyne and
objects. This holds true for both car and pedestrian detection scenarios. The decline in ac-
curacy with distance underscores the intricate challenges that detection systems confront when
attempting to identify distant objects precisely. One plausible explanation for this phenomenon
could be attributed to the reduction in distinct points that distant objects exhibit, resulting
in decreased object definition. It’s worth noting an exception in Table 6.7, where accuracy is
greater for the 25-35m range than the 7-15m and 15-25m ranges. This anomaly might be at-
tributed to the dominance of cars at this particular distance interval, with only 18 pedestrians
present. This scenario could enable the model to generalize more effectively for estimating car
poses, subsequently leading to an overall accuracy boost.

A comparative analysis between car and pedestrian detection reveals a consistent trend: cars
consistently achieve higher detection accuracy across all distance spans and point thresholds.
This outcome aligns with expectations due to cars’ greater prevalence and size, which naturally
makes them more conspicuous in the detection process. However, the disparity in accuracy
between cars and pedestrians extends as the distance increases. This disparity underscores that
while both object classes have difficulty with distance-related challenges, pedestrian detection
exhibits a heightened sensitivity to varying object distances.

The influence of the point threshold on accuracy also merits attention. Examination of
objects containing a minimum of 100 points (Table 6.6) reveals a tendency toward heightened
accuracy compared to instances where the threshold is set at 50 points (Table 6.7). This un-
derscores the significance of dense point clouds in furnishing ample information for accurate
detection, particularly when dealing with objects situated at greater distances. Qualitative
results are presented in Figs. 6.17 and 6.9.
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Figure 6.8: Visualization of the method according to the distance on the KITTI dataset,
considering only objects with more than 100 points. Green dots indicate the ground truth
poses, while red represents estimated poses. Three columns show the results for <7m, 7-15m,
15-25m, respectively.

6.2.2 Multimodal Study

In this section, we study how input data can significantly impact a model’s performance
when applied to a subset of the KITTI dataset, focusing on objects within a 7-meter range of
the LiDAR sensor, filtering out objects with fewer than 100 data points. Table 6.8 presents
the accuracy results of various multimodal methods. These methods include RGB-D, which
extracts features from the RGB image and geometry features from the point cloud; Depth,
which extracts features from the depth map and the point cloud; and Point Cloud, which relies
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Figure 6.9: Visualization of the method according to the distance on the KITTI dataset,
considering only objects with more than 50 points. Green dots indicate the ground truth poses,
while red represents estimated poses. Four columns show the results for <7m, 7-15m, 15-25m,
and 25-35m, respectively.

solely on geometry features extracted from the point cloud.

For the car detection, the Point Cloud modality achieves the highest accuracy with 95.9%.
The RGB-D modality also performs well, achieving an accuracy of 90.9%, although it falls
slightly short of the accuracy attained by the Point Cloud modality. Turning our attention to
pedestrian detection, the Point Cloud modality again outperforms the rest with an accuracy of
89.7%. This further underscores the point that point cloud data is a powerful tool for detecting
cars and pedestrians effectively.

These results indicate that point cloud data stands out as the most dependable and accurate
modality for object detection tasks in the context of autonomous driving, closely followed by
RGB-D data. Point clouds excel in capturing intricate spatial information, making them well-
suited for the precise detection of both cars and pedestrians. Qualitative results are presented
in Fig. 6.10.
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Table 6.8: Accuracy (ADD) of the multimodal methods on the KITTI dataset.

RGB-D Depth Point Cloud
Car (1114) 90.9 88.2 95.9
Pedestrian (136) 76.5 86.0 89.7
Mean (1250) 89.4 88.0 95.2

Figure 6.10: Visualization of the multimodal methods on the KITTI dataset. Green dots
indicate the ground truth poses, while red represents estimated poses. Three columns show the
results of RGB-D, Depth, and Point Cloud, respectively.

6.2.3 Prediction Selection Variations

As introduced in Section 4.2.1.6, a new way of choosing the correct prediction for the pose
estimation is proposed. This method involves computing a weighted average of predictions based
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Table 6.9: Accuracy (ADD) for different prediction selection methods on the KITTI dataset.

Argmax Weighted
Avg

Weighted
Avg 50%

Car (1114) 95.9 81.7 79.9
Pedestrian (136) 89.7 53.0 61.8
Mean (1250) 95.2 78.6 77.9

on their associated confidence scores. The accuracy (ADD) on the KITTI dataset for various
prediction selection techniques is presented in Table 6.9. Specifically, three distinct methods are
compared: the argmax, which selects the prediction with the highest confidence; the weighted
average, which takes into account all predictions; and the weighted averages considering a subset
of predictions, the top 50% predictions with the highest confidence. A subset of KITTI was used,
considering only objects within 7 meters of the LiDAR sensor, and excluding objects with less
than 100 points.

From Table 6.9 it’s possible to observe that none of the proposed methods manage to surpass
the original approach’s performance, Qualitative results are presented in Fig. 6.11.

6.2.4 DenseFusion: PointCloud

This section will assess the performance of the DenseFusion: Point Cloud. This method
relies on object detection in a 2D space to estimate the pose of objects, making it crucial to have
a robust detector capable of identifying all the objects of interest within a given image. In our
case, the input is a depth image, which further complicates the task of 2D object detection.

In Figs. 6.12 and 6.13 are presented the results of the Yolov5 2D object detection. The con-
fusion matrix and the precision-recall curve provide valuable insights into the model’s perform-
ance. The confusion matrix is a tabular representation used to evaluate the model’s performance.
It categorizes the model’s predictions into three key categories:

• True Positives (TP): Number of instances where the detection was an IoU with the
ground truth higher than a certain threshold.

• False Positives (FP): Number of instances where the detection was an IoU with the
ground truth inferior to a certain threshold.

• False Negatives (FN): Number of instances where the ground truth objects don’t have
any detection.

where IoU is the intersection over union, a number that quantifies the degree of overlap between
two bounding boxes. A threshold of 50% was used. The precision-recall curve illustrates the
trade-off between precision and recall at different thresholds. Precision represents the ratio of
true positives to the total number of predicted positive instances, indicating how many predicted
positive instances are accurate. It is calculated as TP / (TP + FP). Recall (also known as
sensitivity or true positive rate) represents the ratio of true positives to the total number of
actual positive instances, measuring how effectively the model identifies actual positives. It
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Figure 6.11: Visualization of the method according to the prediction selection on the KITTI
dataset. Green dots indicate the ground truth poses, while red represents estimated poses.
Three columns show the results for argmax, weighted avg, and weighted avg 50%, respectively.

is calculated as TP / (TP + FN). A high Area Under the Curve (AUC) signifies both high
recall and high precision, with high precision indicating a low false positive rate and high recall
indicating a low false negative rate.

Analyzing the confusion matrix, we observe that for cars, the model achieved an 88%
detection rate, implying that 12% of the cars went undetected. On the other hand, pedestrians
had a detection rate of 79%, indicating that 21% of pedestrians were not detected. This suggests
that detecting pedestrians is more challenging than detecting cars. Inspecting the precision-
recall curve, we find that cars achieved an AUC of 91.9%, while pedestrians achieved 80.6%.
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Text
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Figure 6.12: Confusion matrix of the 2D de-
tection on the KITTI depth images.

Figure 6.13: Precision-Recall curve of the
2D detection on the KITTI depth images.

Table 6.10: Accuracy (ADD) for DenseFusion: Point Cloud on the KITTI dataset.

DenseFusion:
PointCloud

Car (729) 94.5
Pedestrian (90) 98.9
Mean (819) 95.0

Table 6.11: Accuracy (ADD) for the proposed methods on the developed dataset.

DenseFusion DenseFusion:
Depth

DenseFusion:
Point Cloud

DenseFusion:
Middle Fusion

Mean 100.0 100.0 100.0 100.0

These AUC values indicate the overall effectiveness of the model in correctly identifying cars
and pedestrians, with cars being detected more accurately than pedestrians.

From Table 6.10 it is possible to observe the accuracy (ADD) of the model, having an
overall accuracy of 95%. Impressively, the pedestrians class was able to have a higher accuracy
than the cars class. Qualitative results are presented in Figure 6.14.

6.3 Validation on Industrial Dataset

In this section, we will assess the effectiveness of the proposed method using the newly
created dataset. As illustrated in Figs. 6.15 and 6.16, it is evident that Yolov5 successfully
detects all pallets while not producing any false positives. Additionally, referring to Table 6.11,
we can observe that all methods exhibit flawless performance on the developed dataset, but it
is important to mention that DenseFusion: Middle Fusion had the fastest converge rate.
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Figure 6.14: Visualization of the DenseFusion: Point Cloud on the KITTI dataset. Green
dots indicate the ground truth poses, while red represents estimated poses.

1.0

Figure 6.15: Confusion matrix of the 2D de-
tection on the Industrial dataset depth map im-
ages.

Figure 6.16: Precision-Recall curve of
the 2D detection on the Industrial dataset
depth map images.
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Figure 6.17: Visualization of the proposed methods on the developed dataset. Green dots
indicate the ground truth poses, while red represents estimated poses. Four columns show the
results for DenseFusion, DenseFusion: Depth, DenseFusion: PointCloud, DenseFusion: Middle
Fusion respectively.
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7
Conclusion

This dissertation represents a comprehensive exploration of 6D Object Detection algorithms.
The primary objective was to develop an algorithm capable of accurately detecting the pose of
pallets within shelves, with the intention of integrating it into an autonomous forklift for efficient
object handling.

The development process started with the implementation of several state-of-the-art meth-
ods, drawn from publicly available codebases. With DenseFusion being the chosen framework
to start from, a widely adopted technique in the community with substantial online support.
Subsequently, a multimodal analysis of the framework was conducted to investigate how differ-
ent types of input data impact the pose estimation accuracy. The original framework, utilizing
RGB-D data, exhibited the best performance. Intriguingly, using only the point cloud of the
object of interest yielded comparable results to the original method and outperformed it in sev-
eral objects. In contrast, combining both the depth image and point cloud proved less effective,
hinting at potential noise introduced into the system.

Following this analysis, some variations of the original method were introduced, including
DenseFusion: Multimodal Early Fusion and DenseFusion: Multimodal Middle Fusion, aimed
at enhancing performance. DenseFusion: Multimodal Early Fusion improved performance by
fusing RGB and Depth images before feature extraction, while DenseFusion: Multimodal Middle
Fusion improved performance by extracting features from RGB and Depth images separately
and then fusing them using an attention model. Notably, DenseFusion: Multimodal Middle
Fusion with a larger dimensionality stood out as a top performer, demonstrating performance
close to some state-of-the-art methods.

After validating all introduced methods on the LINEMOD dataset, a distance-based study
was conducted on the KITTI dataset, employing the point cloud of ground-truth objects as
input data. This allowed to assess the model’s behavior concerning the distance of objects,
revealing that the framework more effectively estimated the pose of objects closer in proximity.
A multimodal study was also conducted on this dataset, with DenseFusion: Point Cloud sur-
prisingly having the best performance. Additionally, several variations in prediction selection
methods were explored using a subset of the KITTI dataset. Instead of opting for the prediction
with the highest confidence, a weighted average of predictions based on the best confidences
was proposed. While this variation did not consistently outperform the original method, it did
demonstrate potential improvements for specific objects, suggesting that the highest confidence
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prediction may not always be the most accurate.

Furthermore, a method was proposed utilizing input data from a LiDAR sensor. For this
approach, a novel loss function was introduced by computing the Chamfer distance between two
point clouds. This resulted in performance comparable to when using ground truth objects and
the original loss function.

Finally, the introduced methods were validated on the developed industrial dataset. All
validated methods achieved an impressive accuracy rate of 100%, unequivocally demonstrating
the successful accomplishment of the dissertation’s primary goal.

7.1 Future Work

The results presented in this dissertation demonstrate the full potential of 6D object detec-
tion in industrial applications. Nonetheless, it is recognized that there is still a wide range of
improvements that can be made.

Longer Tests

Test the methods for 500 epochs, as the state-of-art methods.

Virtual Dataset

Improve virtual dataset with different lighting conditions and more occlusions.

Detection of Multiple Objects

Improve the model by considering panoptic segmentation models to deal with multiple
objects.

Real-World Validation

Acquire data in a real industrial scenario and evaluate the models obtained from virtual
data.

Simulation to Reality

Simulation to reality transfer and transfer learning of the models obtained with virtual
data, considering data acquired in an industrial scenario.
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