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Abstract

Authentication systems based on facial recognition have become increasingly popular in

recent years as a convenient approach to verifying individuals. This non-intrusive authenti-

cation method analyzes distinct facial properties, compares them, and examines patterns in

a person’s facial contours. However, the rise of Presentation Attacks (PAs) poses a signifi-

cant threat to the reliability of this form of authentication, as impostors attempt to bypass

the systems by impersonating others using printed photos or 3D masks.

Therefore, to ensure the reliability of facial authentication, it is crucial to develop Face

Anti-Spoofing (FAS) algorithms that can effectively defend against all types of spoofing

attempts and overcome associated challenges. In addition to the extensively studied Con-

volutional Neural Networks (CNNs), the emergence of Vision Transformers (ViTs) in other

areas of computer vision has sparked interest in utilizing this deep learning architecture in

the field of FAS. Furthermore, in addition to RGB data, the incorporation of multi-modal

information such as Depth and Infrared, has also shown promising results in detecting more

complex attacks.

In this regard, the main objective of this thesis is to explore the use of multi-modal

Vision Transformers for the FAS task. Based on existing contributions in the literature, the

proposed ViT-based frameworks using multi-modal images will be compared to a CNN-based

approach for evaluation and performance comparison. These frameworks will be evaluated

at the intra-domain, cross-domain, and zero-shot levels using different Presentation Attack

Detection (PAD) datasets. The results aim to demonstrate the effectiveness of attention

mechanisms in this context and highlight the benefits of leveraging multi-modal information

to distinguish genuine faces from spoofing attempts in FAS applications.

Keyworks: Presentation Attacks, Face Anti-Spoofing, Multi-modal Information, Vision

Transformer, Deep Learning
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Resumo

Os sistemas de autenticação baseados em reconhecimento facial tornaram-se nos últimos

anos cada vez mais populares como uma abordagem conveniente para verificar indivíduos.

Este método de autenticação não intrusivo analisa propriedades faciais distintas, compara

as mesmas e examina padrões nos contornos faciais de uma pessoa. No entanto, o aumento

dos Ataques de Apresentação (PAs) representa uma ameaça significativa para a confiabili-

dade desta forma de autenticação, uma vez que impostores tentam contornar os sistemas ao

fazerem-se passar por outros utilizando fotos impressas ou máscaras 3D.

Portanto, para garantir a confiabilidade da autenticação facial, é crucial desenvolver

sistemas de Anti-Spoofing Facial (FAS) que permitam a defesa contra todos os tipos de

tentativas de falsificação e superar os desafios associados. Para além das Redes Neuronais

Convolucionais (CNNs) extensivamente estudadas, a emergência dos Transformers em outras

áreas de visão por computador despertou interesse em utilizar esta arquitetura no campo

de FAS. Por outro lado, para além de informação RGB, a incorporação de informações

modais como Profundidade e Infravermelho, também tem mostrado resultados promissores

na deteção de ataques mais complexos.

Nesse sentido, o objetivo principal desta tese é explorar o uso de Vision Transformers

(ViTs) multi-modais para a tarefa de FAS. Baseados em contribuições existentes na liter-

atura, os frameworks propostos baseados em ViTs utilizam imagens multi-modais e vão ser

comparados a uma abordagem baseada em CNN para avaliação e comparação de desem-

penho. Estes frameworks serão avaliados ao nível de intra-domain, cross-domain e zero-shot

usando diferentes datasets de Detecção de Ataques de Apresentação (PAD). Os resultados

visam demonstrar a eficácia dos mecanismos de atenção nesse contexto e destacar os benefí-

cios de aproveitar informações multi-modais para distinguir faces genuínas de tentativas de

falsificação em aplicações de FAS.

Keywords: Ataques de Apresentação, Anti-Spoofing Facial, Informação Modal, Vision

Transformer, Deep Learning

v





“Sou piloto dos meus sonhos e vou voar o mais alto que conseguir."





Contents

Acknowledgements ii

Abstract iv

Resumo v

List of Contents xi

List of Acronyms xii

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges and Breakthroughs . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State-of-the-Art 5

2.1 Evolution of Face Anti-Spoofing methods . . . . . . . . . . . . . . . . . . . . 5

2.2 CNN-based methods for Face Anti-Spoofing . . . . . . . . . . . . . . . . . . 6

2.2.1 Single cue-based methods . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Multiple cue-based methods . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Multi-modal based methods . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Attention-based methods for Face Anti-Spoofing . . . . . . . . . . . . . . . . 12

2.3.1 Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1.1 Vision Transformer Variants . . . . . . . . . . . . . . . . . . 14

ix



2.3.2 Hybrid Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 ViT-based methods using RGB images for FAS . . . . . . . . . . . . 15

2.3.4 ViT-based methods using multi-modal images for FAS . . . . . . . . 17

2.4 Domain Generalization methods for Face Anti-Spoofing . . . . . . . . . . . . 19

2.4.1 Style Augmentation based methods . . . . . . . . . . . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methodology 23

3.1 Multi-modal ViT Baseline Network . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Patch Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Positional Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Multi-modal ResNet Baseline Network . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Residual Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Multi-modal Hybrid Baseline Network . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Hybrid Patch Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Multi-modal Fusion Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Style Augmentation: Mixstyle . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Cross-Entropy Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Domain-invariant Concentration Loss . . . . . . . . . . . . . . . . . . 35

4 Results and Discussion 37

4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 WMCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1.1 Evaluation Protocols . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 CASIA-SURF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2.1 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Vision Transformer Interpretability . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.1 Intra-domain Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.2 Cross-domain Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



4.5.3 Zero-shot Learning Results . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.3.1 Multi-modal Data vs RGB Spectrum . . . . . . . . . . . . . 52

4.5.4 Fusion Methods Results . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.5 Mixstyle Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.6 Concentration Loss Results . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.7 Unified ViT Pipeline Results . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion and Future Work 61

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 References 64

A Ablation Study on the baseline models 69

A.1 Intra-Domain Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Appendix Cross-Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



List of Acronyms

PA Presentation Attack

FAS Face Anti-Spoofing

CNN Convolutional Neural Network

ViT Vision Transformer

PAD Presentation Attack Detection

SVM Support Vector Machine

PCA Principle Component Analysis

LSTM Long Short-Term Memory

OFM Optical Flow Magnitude

RNN Recurrent Neural Network

rPPG Remote PhotoPlethysmoGraphy

SE Squeeze-and-Excitation

GAP Global Average pooling

MFE Modal Feature Erasing

NLP Natural Language Processing

DeiT Data-efficient image Transformer

T2T-ViT Tokens-to-Token Vision Transformer

CeiT Convolution-enhnanced image Transformer

I2T Image-to-Tokens

xii



LeFF Locally-enhanced Feed-Forward

LCA Layer-wise Class token Attention

BCE Binary Cross-Entropy

MTSS Multi-Teacher Single-Student

MAMD Multi-Level Attention Module with Dropblock

MFAST Multi-Modal Face Anti-Spoofing Transformer

FM-ViT Flexible Modal Vision Transformer

CMTB Cross-Modal Transformer Block

MMA Multi-headed Mutual-Attention

FA Fusion Attention

MA-ViT Modality-Agnostic Vision Transformer

FWT Feature-Wise Transformation

SSAN Shuffled Style Assembly Network

MHSA Multi-head Self-Attention

MLP Multilayer Perceptron

LOO Leave-one-out

CE Cross-Entropy

APCER Presentation Classification Error Rate

BPCER Presentation Classification Error Rate

ACER Average Classification Error Rate

ACC Accuracy

ROC Receiver Operation Characteristic

FPR False Positive Rate

TPR True Positive Rate

xiii



List of Figures

1.1 Presentation Attacks. Taken from [1]. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Typology of PAs. Taken from [2]. . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 First PAD method via CNN. Taken from [3]. . . . . . . . . . . . . . . . . . . 7

2.2 CNN-LSTM framework. Taken from [4]. . . . . . . . . . . . . . . . . . . . . 7

2.3 CNN-RNN model. Taken from [5]. . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Two-stream CNN for FAS. Taken from [6]. . . . . . . . . . . . . . . . . . . . 9

2.5 Multi-modal CNN. Taken from [7]. . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Multi-modal CNN with multi-layer feature aggregation. Taken from [8]. . . . 11

2.7 Multi-modal CNN with modal feature erasing. Taken from [9]. . . . . . . . . 11

2.8 Multi-modal face and PA detector. The green boxes indicate bonafide detec-

tions and red boxes denote attack detections. Adapted from [10]. . . . . . . . 12

2.9 ViT model overview. Taken from [11]. . . . . . . . . . . . . . . . . . . . . . 13

2.10 ViT framework for PAD task. Taken from [12]. . . . . . . . . . . . . . . . . 16

2.11 MTSS architecture. Taken from [13]. . . . . . . . . . . . . . . . . . . . . . . 17

2.12 MFAST architecture. Taken from [14]. . . . . . . . . . . . . . . . . . . . . . 17

2.13 FM-ViT pipeline. Taken from [15]. . . . . . . . . . . . . . . . . . . . . . . . 18

2.14 Comparison of existing multi-modal fusion strategies. Taken from [16]. . . . 18

2.15 Latent space approach. Taken from [17]. . . . . . . . . . . . . . . . . . . . . 19

2.16 Adaptive ViT. Adapted from [18]. . . . . . . . . . . . . . . . . . . . . . . . 20

2.17 SSAN pipeline. Taken from [19]. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Multi-modal ViT pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Tokenization of image patches. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Encoder block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Multi-head self-attention block. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Multi-modal ResNet pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xiv



3.6 Residual Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Multi-modal Hybrid pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Tokenization of feature maps. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Multi-modal fusion methods. Taken from [20]. . . . . . . . . . . . . . . . . . 32

3.10 Types of batch shuffling. Each shape corresponds to a different domain. . . . 34

3.11 Pipeline of the training under LDiC loss. . . . . . . . . . . . . . . . . . . . . 36

4.1 RGB, Depth and Infrared bonafide images from the WMCA dataset. . . . . 38

4.2 Examples of bonafide and presentation attacks. . . . . . . . . . . . . . . . . 38

4.3 Multi-modal bonafide and PAs from the CASIA-SURF dataset. The attacks

were taken from the training set. . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Graphical representation of the attention matrix in each paralell head of the

first encoder block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Attention maps of all paralell heads in the first encoder block. The red zone

refer to the most discriminative location of the image. . . . . . . . . . . . . . 45

4.6 Attention maps of all encoders. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Attention maps of the multi-modal ViT baseline for all classes of both datasets

(WMCA on the left and CASIA-SURF on the right). The attention maps were

built using the attention weights from the last encoder. . . . . . . . . . . . . 48

4.8 Activation maps of the multi-modal ResNet baseline for all classes of both

datasets (WMCA on the left and CASIA-SURF on the right). The activations

were selected from each individual branch, after the 4th residual block (res4). 48

xv



List of Tables

4.1 Acquisition condition for each PA. . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 WMCA attack distribuition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Data distribution of the grandtest protocol. . . . . . . . . . . . . . . . . . . . 40

4.4 Data distribution of the LOO-2D protocol. . . . . . . . . . . . . . . . . . . . 40

4.5 CASIA-SURF attack categories. . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 CASIA-SURF types of attacks and number of samples per subset. . . . . . . 42

4.7 Training configuration of the baselines. . . . . . . . . . . . . . . . . . . . . . 42

4.8 Intra-domain evaluation on the CASIA-SURF and the grandtest protocol from

the WMCA dataset across all baseline models. . . . . . . . . . . . . . . . . . 47

4.9 Cross-domain evaluation using the CASIA-SURF and the grandtest protocol

from the WMCA dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 Zero-shot evaluation on the leave-one-out protocols in WMCA dataset. . . . 51

4.11 Zero-shot evaluation on the leave-one-out protocols in WMCA dataset using

only the RGB spectrum on the ViT baseline. . . . . . . . . . . . . . . . . . . 52

4.12 Fusion Methods on the Multi-modal ViT Baseline. . . . . . . . . . . . . . . . 54

4.13 Fusion Methods on the Multi-modal ResNet Baseline. . . . . . . . . . . . . . 54

4.14 Fusion Methods on the Multi-modal Hybrid Baseline. . . . . . . . . . . . . . 55

4.15 Domain Generalization of the Multi-modal ViT Baseline using Mixstyle. . . 56

4.16 Domain Generalization of the Multi-modal ResNet Baseline using Mixstyle. . 56

4.17 Domain Generalization of the Multi-modal ViT Baseline using LDiC loss. . . 57

4.18 Domain Generalization of the Multi-modal ResNet Baseline using LDiC loss. 57

4.19 Domain Generalization of the Multi-modal Hybrid Baseline using LDiC loss. 58

4.20 Unified ViT pipeline results on cross-domain scenario. . . . . . . . . . . . . . 58

4.21 Unified ViT pipeline results on cross-domain scenario with frozen backbone

during the first 10 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xvi



A.1 Performance of the Multi-Modal ViT baseline on the grandtest protocol of the

WMCA dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2 Performance of the Multi-Modal ViT baseline on the CASIA-SURF dataset. 70

A.3 Performance of the Multi-modal ResNet baseline on the grandtest protocol of

the WMCA dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4 Performance of the Multi-Modal ResNet baseline on the CASIA-SURF dataset. 70

A.5 Performance of the Multi-modal Hybrid baseline on the grandtest protocol of

the WMCA dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.6 Performance of the Multi-modal Hybrid baseline on the CASIA-SURF dataset. 71

A.7 Cross-domain performance of the Multi-modal ViT baseline. . . . . . . . . . 72

A.8 Cross-domain performance of the Multi-modal ResNet baseline. . . . . . . . 72

A.9 Cross-domain performance of the Multi-modal Hybrid baseline. . . . . . . . 73

xvii





1 Introduction

1.1 Context and Motivation

In recent decades, advances in technology have enabled the development of robust and

reliable authentication systems. These systems aim to verify the identity of an entity and

thereby confirm its access as legitimate. Of all existing authentication systems, those that

require biometric information such as facial recognition, fingerprint or even iris scanning as

a form of verification stand out since they are safer, more convenient and effective when

compared to other more traditional identification solutions such as password, pin-code or

email verification.

Since each person has a series of unique measurable properties on their face, facial recog-

nition is able to uniquely identify, recognize and authenticate a person by comparing and

analyzing patterns based on the subject’s facial contours in a non-intrusive way. Interest in

facial recognition systems and algorithms has been increasing by the business community and

according a report made by MordorIntelligence [21], not only this market has been valued

at 3.72 billion dollars in 2020, but it is projected to be valued at 11.62 billion by 2026.

In addition, these systems have a wide area of applicability. One of their most prevalent

uses is in identity verification and access control scenarios. By comparing an individual’s face

with a pre-registered image or a database of known identities, these systems can rapidly con-

firm the person’s identity and provide access to personal spaces, including buildings or mobile

devices. Moreover, facial recognition systems are also employed in security and surveillance

applications. For instance, they can be utilized in airport security to monitor public spaces

and identify potential threats by recognizing individuals who have been previously identified

as dangerous.

However, the widespread deployment of this technology for security-critical scenarios

is still limited and under scrutiny due to its vulnerability to presentation attacks. These

attacks are usually carried out by malicious users who make use of digital manipulation and

1



physical means to overcome security systems and gain illegitimate acess to a victim device.

Most common type of PAs are print, replay, 3D masks, Mannequin, Glasses, Makeup and

Tatto. Figure 1.1 provide some examples of presentation attacks.

Figure 1.1: Presentation Attacks. Taken from [1].

Based on their typology, PAs can be divided into impersonation and obfuscation attacks.

In impersonation attacks, impostors make use of spoof to be recognized as someone else by

copying victims facial attributes into spoofing attacks. In obfuscation attacks, impostors

use tricks, e.g., wearing glasses, extreme makeup, wig, to avoid being recognized by the

system. Futhermore, based on their craft, PAs can be classified into 2D and 3D attacks. 2D

attacks primarily revolve around presenting facial attributes using flat or wrapped printed

photos, photos with cut-out eyes or mouth, and digital video replays. On the other hand,

3D attacks involve the utilization of printed masks crafted from specialized materials such

as paper, resin, or plastic. The diagram illustrated on figure 1.2 summarizes PAs.

Figure 1.2: Typology of PAs. Taken from [2].
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1.2 Challenges and Breakthroughs

Over the last few years, there has been an increasing focus on the development of FAS

algorithms in order to safeguard facial recognition systems against PAs. However, building a

robust system that can effectively defend against all types of spoofing attempts is a complex

task, mainly due to the high number of factors that need to be considered.

To begin with, apart from traditional 2D attacks, the increasing number of static and

dynamic 3D attacks poses a higher threat to PAD systems as they are more realistic in terms

of color, texture, and geometry. Additionally, the risk of spoofing attacks has increased not

only because it’s easier for impostors to find online data about their target, but also because

spoofing can be acquired from wider angles, complex scenes, different devices, and materials.

These factors, combined with the emergence of spoofing data from multiple domains, present

additional challenges for anti-spoofing applications in cross-domain scenarios. For instance,

spoofing cues are sensitive to capture conditions, which may drastically vary from one domain

to another due to differences in camera devices, sensor types, illumination settings and

resolutions, i.e., spoof samples from one domain may be misinterpreted as real samples on

another domain and vice-versa.

Moreover, existing PAD datasets are predominantly single-modal, limited in terms of

subject diversity, insufficient in representing various types of attacks, and contain relatively

small amounts of training data. On one hand, the lack of training data can lead to overfit-

ting issues, resulting in poor generalization to other domains and unseen attack types. On

the other hand, datasets restricted to RGB images limit models to effectively learn spoof

cues on newly-made more sophisticated and realistic attacks, e.g., 3D masks. To address

these challenges, researchers have recently introduced large-scale multi-modal datasets that

incorporate multiple modalities, including RGB, Depth, Infrared, and Thermal data. The

key ideia behind incorporating multi-modal data is to make it extremely hard for attackers

to replicate the properties of a bonafide sample across diferent modalities. For instance,

depth data captures information about distances, enabling differentiation between real faces

and replay or print attacks that produce flat depth maps. Infrared data, on the other hand,

measures the amount of heat radiated from a face and analyzes the differences in appearances

between real and spoof faces.

In the light of these problems, multiple deep learning methods have been adopted as

framework to distinguish between genuine users and spoofing attacks. From the multitude of

solutions, Vision Transformers have recently been studied as an alternative to the extensively
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used CNNs for the FAS task. Despite showing promising results to date, there are still few

works related to the use of attention-based approaches in this field. Notoriously known for

its self-attention mechanism, ViT attends to the whole image to capture global dependencies

between image patches rather than using convolutional layers and downsampling operations

to extract features.

1.3 Objectives

This dissertation intends to develop multi-modal networks utilizing Vision Transformers

and compare their performance with a CNN-based approach for FAS task. While CNNs

are widely used for classification tasks in computer vision, this thesis aims to investigate

the effectiveness of Vision Transformers in detecting spoof attempts and recognizing genuine

faces. Building upon existing contributions in the literature, we also aim to evaluate perfor-

mance under diverse scenarios to assess whether ViT-based architectures can generalize well

to unseen domains and attacks and prove how models can benefit from RGB, Depth and

Infrared data.

To achieve this, both ViT and CNN-based models will be trained and tested using mul-

tiple PAs from the WMCA [22] and CASIA-SURF [7] datasets. The evaluation will cover

zero-shot learning, intra-domain, and cross-domain analysis to provide comprehensive in-

sights into the performance of these models in different contexts.

1.4 Document Structure

The outline of this dissertation is the following:

• Chapter 2: State-of-the-Art reviews the most relevant works in the literature and

provides a theoretical background about the subject.

• Chapter 3: Methodology describes the implementation and all approaches used during

the course of this work.

• Chapter 4: Results and Discussion provide a detailed examination about the experi-

mental results.

• Chapter 5: Conclusion and Future Work summarises what was concluded from the

results and suggests improvements.
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2 State-of-the-Art

This chapter reviews the relevant contributions of the literature concerning the topic

of face anti-spoofing and contextualizes the existing architectures and methods that have

proven to be usefull in this field. By examining and summarizing the significant findings

and advancements in the literature, this chapter offers a comprehensive understanding of the

state-of-the-art approaches and techniques employed in face anti-spoofing research.

2.1 Evolution of Face Anti-Spoofing methods

The current literature and much of the previous research predominantly focus on two

primary approaches to tackle FAS: handcrafted-based methods and deep learning-based

methods.

The first attempts for face PAD were made through liveness detection using handcrafted

methods. Liveness cues, such as eye-blinking, blood pulse measure, face and head movement

and physiological signals were explored for dynamic representation. Classical handcrafted

features (e.g LBP [23] [24], SIFT [25], HOG [26] and DoG [27]) made use of texture, color

and motion cues to extract spoofing patterns from various color spaces. However, this type of

PAD method shows weak generalization abilities as they are not powerful enough to capture

all the possible variations in the acquisition conditions and liveness cues are easily mimicked

bv video attacks, making them less reliable. For the context of this thesis, these methods

will not be deepened.

Nevertheless, over the last few years, most of the research in this field has shifted towards

using deep learning methods such as CNNs and more recently, Transformers. These methods

have been heavily proposed for both static and dynamic face PAD due to their strong

discriminative feature representation ability. While static methods consider a single frame

captured by the sensor, dynamic methods leverage the temporal information obtained from

video captures by exploiting motion across multiple video frames. In contrast to handcrafted
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methods, deep learning methods are able to automatically extract relevant texture features

from input data without relying on human expertise to design hand-crafted features. Even

though CNNs and Transformers have already shown promising results at detecting spoofing,

both methods may suffer from overfitting due to limited amount of training data and weak

generalization ability as they are trained to recognize specific types of spoofing attacks.

Futhermore, deep learning-based approaches heavily rely on training configurations and fine-

tuning of hyperparameters.

2.2 CNN-based methods for Face Anti-Spoofing

Regarding deep learning methods, most of the developed pipelines in the field of FAS

have relied on using CNNs as the primary approach for identifying spoofing attempts. In

the early stages, most studies relied on end-to-end training of CNNs to learn feature rep-

resentations from RGB face images and videos, combined with Support Vector Machines

(SVMs) to perform classification. Although most common algorithms require labeled data

for supervision, they still regard face anti-spoofing as a binary classification problem.

2.2.1 Single cue-based methods

In the context of FAS, CNNs have been widely used for extracting features related to

texture and liveness cues. Texture cues focus on the texture properties of the object presented

to the system and allow CNNs to learn distinctive texture-based features that are related to

local patterns and image details. Liveness cues, on the other hand, refer to dynamic patterns

observed in a video sequence such as head movement and facial expressions.

In 2014, Yang et al. [3] made the first attempt to detect spoofing attacks using a CNN.

The proposed method is illustrated in figure 2.1 and demonstrated superior performance

compared to existing handcrafted methods when it came to detecting photo and video replay

attacks. The approach utilized an AlexNet to learn texture features and employed a SVM

classifier with binary classes. Although the results were promising, the model encountered

overfitting issues due to the limited scale and diversity of datasets available at that time.

To alleviate this issue, Li et al. [28] proposed fine tuning a ImageNet-pretrained VGG

network for the PAD task on the same type of attacks. The approach involved extracting

deep partial features from the convolutional layers of the network, and then reducing the

dimensionality of these features using Principle Component Analysis (PCA) blocks to prevent
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Figure 2.1: First PAD method via CNN. Taken from [3].

overfitting. Once the deep partial features were extracted and reduced, a SVM classifier was

trained for classification.

Since CNN architectures cannot extract temporal features themselves, Tu et al. [4]

investigated using a CNN-LSTM architecture to extract textural features across video frames

by focusing on the motion cues. The CNN part, based on a VGG16 network, was used to

extract features from each individual frame, while the LSTM network is used to capture the

temporal dynamic information across the sequence of features extracted by the CNN. This

allowed the model to learn the differences between real human and spoofed faces, based not

only on the appeareance of the individual frames but also on the temporal patterns of the

face sequence. Figure 2.2 shows the pipeline.

Figure 2.2: CNN-LSTM framework. Taken from [4].

Gan et al. [29] also approached FAS as a video sequence classification problem by propos-

ing a 3D CNN to learn spatial and temporal features on multi-frame image level. To preserve

the characteristics of temporal dimension between consecutive frames, a 3D convolution was
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applied on the video sequence. According to the author, unlike common 2D convolutions,

also known as stack convolutions, the kernel of the 3D convolution creates more than one

feature map by operating in multiple dimensions rather than one dimension on the input

image sequence, which is usefull for extracting features of continuous video sequences.

Feng et al. [30] explored fusing motion-based cues and image quality-based cues for

liveness detection. The proposed CNN has three sub-networks all locally connected with

inputs from three different visual cues. The first network uses an image as input and performs

face image quality assessment. The second network analyses a face video and extracts

motion-based liveness features between face frames with a fixed interval and creates an

Optical Flow Magnitude (OFM) map which describes the facial motion pattern. Lastly, the

third network calculates an average OFM scene map from the scene video, which is the raw

video where the face video was extracted.

Within the same context but with a novel approach, Jourabloo et al. [31] introduced a

new perspective for solving the face PAD via noise modeling. The proposed CNN framework

based on a De-Spoof Net was aimed to estimate the noise of a given spoof image by inversely

decomposing it into the live face and spoof noise pattern. For optimization, a new type of loss

functions were also designed to encourage the pattern of the spoof images to be ubiquitous

and repetitive while aiming for zero noise in the real images. The author’s method showed

promising results on photo and video replay attacks when compared with other state-of-the-

art deep face PAD methods.

2.2.2 Multiple cue-based methods

Alternatively to methods that rely solely on single cues, other approaches in the literature

reflect the importance of combining texture, liveness and 3D geometric cues to address the

detection of various types of spoofing.

For instance, Liu et al. employed 3D-geometric and liveness cues in their work [5].

The proposed approach consists of a CNN-RNN model that utilizes pseudo-depth maps

and Remote PhotoPlethysmoGraphy (rPPG) supervision to extract spoofing cues from face

videos. The CNN part is responsible for evaluating each frame separately and estimating

both depth and feature map of each frame and the RNN part for evaluating the temporal

variability across the feature maps by estimating a rPPG signal. The feature maps generated

by the CNN part are then fed into a non-rigid registration layer which is responsible for

processing the input data for the RNN part. This layer aligns the input data which enables
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the RNN to compare the feature maps without considering the facial pose or expression and

motivates the CNN component to generate zero depth maps either for all frames or for a

majority of frames in a given input video sequence. The described method is shown in figure

2.3.

Figure 2.3: CNN-RNN model. Taken from [5].

Atoum et al. [6] employed a two-stream CNN that makes use of texture and 3D-geometric

cues to differenciate between live and spoof faces. This approach involves extracting local

features and generating depth maps from the input image. While the first CNN stream

is trained on randomly extracted patches from the input image to learn rich-appearance

features, the second stream is used for depth estimation of the full face image. In the

end, the outputs from the two streams are combined and used for classification. Figure 2.4

illustrates the proposed approach.

Figure 2.4: Two-stream CNN for FAS. Taken from [6].

2.2.3 Multi-modal based methods

As discussed in the introduction chapter, integrating information from multi-modal data

is essential to enhance the robustness of the traditional single-modal PAD algorithms. This

is particularly important because certain attacks can only be detected by leveraging informa-

tion captured from depth and infrared sensors. Despite the fact that late fusion is tipically

employed to merge features obtained from each modal input, a significant challenge has been

indentifying an optimal approach for fusing information from all modalities without losing

any of their intrinsic characteristics.
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The creator of the CASIA-SURF dataset, Zhang et al. [7] proposed a novel three branch

multi-modal network as shown in figure 2.5. Each branch uses ResNet blocks as backbone

and takes as input only images from one single modality, making each branch specialized

in extracting features from that modality. At deeper levels of each branch, the features

are passed through Squeeze-and-Excitation (SE) blocks for feature re-weighting and then

concatenated with features from other modalities via Global Average Pooling (GAP) into a

single stream.

Figure 2.5: Multi-modal CNN. Taken from [7].

A. Parkins et al. [8], winner of the Chalearn Face Anti-Spoofing Attack Detection Chal-

lenge, adopted a similar approach using a ResNet-based CNN and multi-modal input data.

Even though each modality is processed by a unique branch and features are fused via SE

and concatenated at deep-level layers, this approach differs from the baseline in terms of

feature aggregation. The authors used aggregation blocks to group outputs from multiple

layers of the network, with each block using features from the previous one and fusing them

with ones from the residual blocks of the main branches, allowing the model to capture

multi-layer information. Figure 2.6 illustrates the network and the multi-layer aggregation

stategy.
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Figure 2.6: Multi-modal CNN with multi-layer feature aggregation. Taken from [8].

The work [9] by T. Shen et al. employed a patch-level image approach to extract features

using a CNN and a Modal Feature Erasing (MFE) module for multi-modal face anti-spoofing

detection, as shown in figure 2.7. The authors trained one single ResNext for each modality

to learn rich appearances using randomly selected patches from the images for patch-based

feature learning. Then, during training, features from one randomly selected modality were

erased to prevent overfitting and better learning.

Figure 2.7: Multi-modal CNN with modal feature erasing. Taken from [9].

On the other hand, A. George et al. [10] adressed the issue of PAD by proposing a novel

multi-modal face detector capable of performing face location and presentation attack de-

tection based on the combined feature representation extracted from multiple modal images,

including Grayscale, Depth and Infrared. The authors implemented a RetinaNet with focal

loss as an object detector consisting of two subnetworks: one responsible for regressing the

bounding box and the other for performing the classification between bonafide and PA. One

major difference between the framework illustrared in figure 2.8 and the other works in the

literature is that the model does not consider each modality separately. Instead, composite
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images are used, which result by stacking normalized gray-scale, depth and infrared channels

into one multi-channel image.

Figure 2.8: Multi-modal face and PA detector. The green boxes indicate bonafide detections

and red boxes denote attack detections. Adapted from [10].

2.3 Attention-based methods for Face Anti-Spoofing

While CNNs are generally recognized for their convolutional approach, attention mecha-

nisms have demonstrated their utility in enhancing the performance and interpretability of

CNNs and Transformers architectures. From the multitude of attention mechanisms that

have been developed in the field of deep learning, each with its own strengths and appli-

cations, the most widely used type of attention mechanism in Transformer architectures is

self-attention.

Self-attention enables models to focus on relevant information and establish long-range

dependencies across the entire input sequence. To accomplish this, a given patch embedding

matrix or feature map is processed through three separate linear layers, resulting in query,

key, and value matrices (Q, K, V). The query and key matrices are then multiplied element-

wise to generate attention scores, forming an attention matrix. This matrix is subsequently

normalized using the softmax operator, producing scores that represent the importance of

each element relative to others in the input sequence. Finally, the output (Equation 2.1)

is obtained as the weighted sum of the values, with each value’s weight determined by a

compatibility function between the query and the corresponding key.

Attention(Q, V,K) = softmax(
QKT

√
d

)V (2.1)

where d denotes the dimensionality of the Q, K and V matrices.
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2.3.1 Vision Transformer

Inspired by the success achieved by Transformers [32] in the field of Natural Language

Processing (NLP), Dosovitskiy et al. [11] has explored using Transformer’s original design

with minimal changes for image classification. Compared to CNNs, which primarily focus on

local features, the proposed Vision Transformer uses self-attention to capture long-distance

dependencies between image patches, enabling it to effectively derive global information

about a given image.

Specifically, ViT first reshapes an image X ∈ RH×W×C into a sequence of non-overlapping

patches. Then, these patches, also treated as tokens, are linearly embedded into patch

embeddings, and 1D positional embeddings are added to encode positional information.

Additionaly, an extra learnable embedding, also designated as CLS token, is appended to

the sequence of embedded patches, and the resulting sequence is fed to an encoder. The

state of the CLS token after training and fine-tuning serves as global feature representation

and is used for classification. An overview of the ViT model is depicted in figure 2.9.

Figure 2.9: ViT model overview. Taken from [11].

ViT is the first computer vision model to rely exclusively on the Transformer architecture

to achieve competitive image classification performance at a large scale. While it may be true

that this kind of architecture has shown to be effective for feature extraction, ViT’s perfor-
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mance is still below similarly sized convolutional models when trained on small amounts of

data. This is due to the fact that Transformers lack some of the inductive biases inherent to

CNNs, e.g., translation equivariance and locality, and therefore do not generalize well when

trained on insufficient amounts of data. Moreover, the straightforward tokenization of input

images by hard split can make ViTs unable to model local structures like edges and lines.

Last but not least, they suffer from large model size and require substantial computational

resources.

Nevertheless, the authors of ViT found that large-scale training surpasses the limitations

of inductive bias and achieves state-of-the-art results on multiple image recognition bench-

marks, i.e., ViTs reaches peak performance when pre-trained on large scale datasets (14-300

million images) and fine-tuned on smaller datasets for downstream recognition tasks.

2.3.1.1 Vision Transformer Variants

To adress the issue of large-scale training on huge datasets, Touvron et al. [33] proposed

a Data-efficient image Transformer (DeiT). The model uses ImageNet as the sole training set

and achieves competitive accuracy on the ImageNet benchmark with less data requirements

and improved efficiency compared to ViT.

To solve the limitation of simple tokenization in ViT, Tokens-to-Token Vision Trans-

former (T2T-ViT) [34] incorporates a transformation layer that performs progressive image

tokenization by recursively aggregating adjacent tokens into one token.

FocalViT [35], SWIN [36] and TNT [37] are three transformer variants that were designed

to capture both global and local dependencies between image patches. FocalViT introduces

a novel focal self-attention mechanism which allow each token to attend to its closest sur-

rounding tokens at fine-granularity and to summarized tokens when it goes to farther regions

of the image. SWIN constructs a hierarchical representation by first dividing the image into

non-overlapping smaller patches and gradually merging them with neighboring patches at

deeper transformer levels. Lastly, TNT divides each patch in sub-patches and then uses

an inner transformer block to model the relationships between sub-patches and an outer

transformer block to capture patch-level intrinsic information.

To enhance feature representation, CrossViT [38] introduces a dual-branch ViT that

combines image patches of various sizes. Additionally, it incorporates a cross-attention

technique that merges the CLS tokens from one branch with the patch tokens from the

other branch, and vice versa. This enables the exchange of information between the branches,
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facilitating improved information flow and interaction between different parts of the model.

To address the problem of attention collapse in deeper transformers, the DeepVis [39]

approach replaces the standard multihead self-attention block with a re-attention module.

In ViT models, unlike CNNs, simply stacking more layers does not always grant improved

performance as attention maps tend to become more similar in the higher layers, leading to

less discriminative feature maps.

2.3.2 Hybrid Vision Transformer

To minimize the drawbacks and limitations of ViTs, some works in the literature have

explored incorporating convolutions into transformers to introduce locality and improve the

extraction of local features.

Dosovitskiy et al. [11] proposed a hybrid architecture that combines a Vision Transformer

and a CNN. Rather than splitting the input image into patches, the input sequence to the

ViT’s encoder is formed by flattening and projecting the feature maps of a CNN to the

Transformer dimension. Although the proposed model outperformed ViT for small model

sizes, the performance gap disappeared for larger models.

Inspired by [11], Yuan et al.[40] proposed a Convolution-enhnanced image Transformer

(CeiT) that combines a CNN for low-level feature extraction and a ViT for establishing long-

range dependencies. However, CeiT has three main modifications compared to the vanilla

ViT used in [11]. Firstly, an Image-to-Tokens (I2T) module is employed to extract patches

from generated low-level features. These patches are smaller in size and flattened into a

sequence of tokens. The second key change is a Locally-enhnaced Feed-Forward (LeFF) layer

that replaces the standard feed-forward network and promotes correlation among neighboring

tokens in the spatial dimension. Lastly, a Layer-wise Class token Attention (LCA) is attached

at the top of the Transformer to attend over class tokens at different layers.

Even though these two former works only use CNNs to generate features maps which are

then fed to a standard ViT, other works in the literature such as [41] and [42], attempted to

strategically incorporate convolutional layers directly into ViT’s architecture.

2.3.3 ViT-based methods using RGB images for FAS

As previously mentioned at the beggining of this chapter, the majority of research related

to FAS has relied on using CNNs. As a result, only a limited number of studies have

investigated the application of ViT’s capabilities to identify spoofing cues.
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The baseline approach in [12] proved that fine-tuning a pre-trained ViT for the PAD task

was sufficient to achieve state-of-the-art performance. The authors only replaced the last

layer with a fully-connected layer with one output and fine-tuned their model using a Binary

Cross-Entropy (BCE) loss. The framework is depicted in figure 2.10. Multiple training

stategies were also considered, including partially fine-tuning only a sub-set of layers to

reduce overfitting. The proposed model not only achieved excellent results on unseen attack

scenarios but it also showed remarkable performance on cross-domain generalization.

Figure 2.10: ViT framework for PAD task. Taken from [12].

In [13], it was proposed a new Multi-Teacher Single-Student (MTSS) ViT with a multi-

level attention design. The proposed model consists of feature extractor ViT followed by a

CNN and a Multi-Level Attention Module with Dropblock (MAMD). During training, the

goal is to use the Vision Transformer to train a smaller student CNN and improve the student

model’s performance. Given an input image, the three color channels are converted into

YCbCr color space, where Y, Cb and Cr channels are rearranged into a 1-D feature vector,

positional encoded and fed into the visual transformer for feature extraction. Then, the

MAMD block is used to adress overfitting during training by generating rich attented feature

maps from multi level inputs while dropping irrelevant spatial features. These features are

consequently converted and resized to match the input size. The overall architecture is shown

in figure 2.11.
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Figure 2.11: MTSS architecture. Taken from [13].

2.3.4 ViT-based methods using multi-modal images for FAS

Samar et al. [14] proposed a Multi-Modal Face Anti-Spoofing Transformer (MFAST) that

utilizes two branches to independently process RGB and Thermal images. Both positional

encodings and CLS tokens are applied to each branch. The resulting features from both

branches are fused together and fed to a linear classifier. Figure 2.13 shows the proposed

MFAST architecture.

Figure 2.12: MFAST architecture. Taken from [14].

In a similar approach, Ajian et al [15] proposed a flexible modal framework built on a

multi-branch ViT. Specifically, the Flexible Modal Vision Transformer (FM-ViT) retains

a specific branch for each modality and introduces a novel Cross-Modal Transformer Block

(CMTB). Each block incorporates two Multi-headed Mutual-Attention (MMA) layers and

two Fusion-Attention (FA) blocks to guide each branch to learn modality-agnostic features.

The key innovation behind this approach is that the FA block enforces the CLS tokens of
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each modal sequence to be used as a query to enchange information with patch tokens of

another modal sequence.

Figure 2.13: FM-ViT pipeline. Taken from [15].

Liu et al. [16] studied multiple fusion stategies on his Modality-Agnostic Vision Trans-

former MA-ViT. Despite the fact that halfway fusion is one of the most commonly used

fusion strategies, it suffers from the drawback that if one modality disappears during test-

ing, this method would fail to distinguish between real and spoof. On the other hand, late

fusion strategies usually retain a specific branch for each modality to capture different modal

information independently and fuses the multi-modal information at the decision level, re-

sulting in large models to store. On the contrary, early fusion is used to reduce computational

cost and improve efficiency by projecting multi-modal data into a joint embedding space at

input level to capture intra and cross modality interactions within the transformer model.

The decribed multi-modal fusion stategies are illustrated on figure 2.14.

Figure 2.14: Comparison of existing multi-modal fusion strategies. Taken from [16].
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2.4 Domain Generalization methods for Face Anti-Spoofing

Despite the notable achievements of previous CNN-based and ViT-based methods for

FAS in intra-domain testing, the paradigm shifts for zero-shot learning and cross-domain

scenarios where limited data and domain gaps become aditional challenges. This is primarly

due to fact that intrinsic image characteristics, e.g., illumination, facial appearance, sensor

types, camera quality, may change from domain to domain, leading to feature bias during

training and poor generalization towards unseen domains. The disparity between feature

spaces of real and spoof faces are often less pronounced within domains than across them.

For this reason, it is important for FAS solutions to be trained on one or multiple source

domains and adapt to unseen domains or unknown attacks.

The work by [17] proposed a domain invariant MobileViT supervisioned by two losses to

learn a domain-invariant latent space. To accomplish this, a concentration loss is employed

to encourage real-face embeddings to not be biased to specific domains and converge its

embeddings towards the origin. On the contrary, an attack-separatation loss groups mul-

tiple attacks and separates their representation from real-faces, i.e., this loss pushes attack

embeddings away from the origin. Figure 2.15 overviews the proposed method.

Figure 2.15: Latent space approach. Taken from [17].

Huant et al. [18] proposed an adaptive ViT for robust few-shot cross-domain FAS.

The key innovation is the introduction of two novel components: ensemble adapters and

Feature-Wise Transformation (FWT) layers. Each ensemble adapter first linearly projects

the n-dimensional features into a lower dimension m, applies a non-linear activation function

GELU and then projects back to n dimensions. The main goal of the adapter is to help adjust

feature distribuition of the pre-trained transformer blocks to the face anti-spoofing data, as
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well as granting training stability and prevent overfitting. Moreover, a cosine similarity loss

Lcos is applied to the outputs hi and hj of the adapter to enforce the learning of diverse

features. On the other hand, the FWT layer is only used during training as can be seen as

an augmentation technique. This layer aims to increase the diversity of training samples,

thus dramatically reducing overfitting. According to the authors, the incorporation of both

components have improved the performance of few-shot cross-domain FAS by allowing the

model to adapt to new domains, particularly in cases where there is a low volume of training

data. Figure 2.16 provides an overview of the framework.

Figure 2.16: Adaptive ViT. Adapted from [18].

2.4.1 Style Augmentation based methods

In the scope of domain generalization, style augmentation involves transferring style be-

tween images from different domains, where one image provides visual context, e.g., color,

texture, contrast, brightness, and the other provides high-level semantic content. The trans-

fer of style between source domains generates synthetic images that are usefull in several

ways for FAS tasks. On one hand, synthetic images can increase the size of training data and

diversify inputs, i.e., styled augmentation can generate spoof attacks from live faces, as [43]

and [44] demonstrates. On the other hand, they can be used to approximate the semantic

space and reduce disparity between source domains, leading to a generalized feature space.

The method proposed in [19] employed a two branch network called Shuffled Style As-

sembly Network (SSAN) to perform style transfer at feature level across source domains.

One of the branches is used to extract style information while the other is used to extract

content features, e.g., global semantic features and physical attributes. Rather than per-
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forming style transfer image-to-image like in [45], the proposed method uses a cascade of

shuffled style assembly layers to reassemble content and style features under a contrastive

learning stategy. This stategy emphasizes liveness-related style information and suppresses

domain-specific ones by pulling the shuffled-assemly features close or far from an anchor

point. The pipeline is shown in figure 2.17.

Figure 2.17: SSAN pipeline. Taken from [19].

2.5 Summary

Throughout this chapter, we discussed several methodologies presented in the literature

that are based on CNNs and Vision Transformers. These methodologies detail the evolution

of this field and have contributed to the development of algorithms aimed at addressing the

challenges of FAS.

It is important to note that while FAS research based on CNNs has been extensively

explored and will not be the main focus of this dissertation, ViT-based approaches are

relatively less utilized in this field, primarily due to their high data requirements. Firstly,

although ViT architectures have already shown superior performance compared to CNNs in

other computer vision tasks, a pre-trained ViT backbone may not adapt well to the specific

facial data used in the task. Secondly, the features extracted from a pre-trained backbone are

typically at a high-level, which may not be suitable for detecting subtle low-level information

that is crucial in face anti-spoofing.

For this reason, the following chapters will focus on the development of strategies based

on these two architectures that incorporate contributions from other relevant works in the

literature such as the integration of multi-modal data, methods for merging modalities,
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and techniques to assist models in cross-domain scenarios, such as style transfer and the

utilization of specific loss functions.
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3 Methodology

This chapter aims to provide a comprehensive overview of the experimental work devel-

oped throughout this thesis.

Initially, sections 3.1, 3.2, and 3.3 delve into the multi-modal baselines (ViT, ResNet,

Hybrid) developed in this dissertation. These sections provide a detailed examination of

how these baselines were structured and adapted to classify multi-modal data for the task of

FAS. The subsequent sections focus on explaining the techniques implemented to enhance

the performance of these models, providing insights into the strategies employed to optimize

their effectiveness.

Section 3.4 provides a careful explanation of the formulation of the multi-modal fusion

strategies. In section 3.5, the style transfer technique is introduced, and the differences

between various mixing strategies are explained. Lastly, section 3.6 presents two types of

losses. The first is the loss used in all baselines, while the second is a loss employed to

enhance performance in cross-domain scenarios.

3.1 Multi-modal ViT Baseline Network

The first goal was to adapt the configuration of the original Vision Transformer [32]

to a multi-modal scenario. In the proposed baseline, the backbone parameters are shared

across all modalities and the multi-modal learned CLS embeddings (tokens) are fused via

concatenation and used for classication. Figure 3.1 overviews the multi-modal ViT pipeline.
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Figure 3.1: Multi-modal ViT pipeline.

3.1.1 Patch Embeddings

The images from different modalities are sequentially fed to the backbone. Since ViTs

only process images with 3 channels, each image from the Depth and Infrared modalities

had to be stacked up to create an input image with three grayscale channels.

For any given image X ∈ RC×H×W with height H, width W, and number of channels C, it

is first divided into a grid of N non-overlapping patches xi
p, i = 1, 2, ..., N=196. Next, these

patches are flattened and tokenized into a sequence of embedded patches, as illustrated in

figure 3.2. Each patch xi
p is linearly projected by a convolutional layer with a P × P kernel

and stride P and mapped to a single 1D vector with dimension D=768. We denoted this

projection as E(xi
p) and D is kept fixed throughout the layers. After the projection of all

patches, the sequence of embedded patches, i.e., x1
pE, x2

pE,.., xN
p E, are concatenated to

create a N ×D patch embedding matrix.

In addition to the embedded patches, an extra 1D learnable CLS embedding with D-

dimension is appended to the patch embedding matrix. This embedding vector interacts with

patch tokens at every transformer encoder and serves as global feature representation as it

contains global information about the image. Futhermore, a learnable positional embedding

Pe is added to each embedded patch vector to encode positional information betwen patches,
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i.e., this embedding vector is added in matrix form. The resulting sequence of embedding

vectors Z0 with size N + 1×D serves as input to the encoder and is described by Equation

3.1.

Z0 = {CLS;x1
pE;x2

pE; ...;xN
p E}+ Pe CLS ∈ R1×D, xi

pE ∈ R1×D, Pe ∈ R(N+1)×D (3.1)

Figure 3.2: Tokenization of image patches.

3.1.2 Positional Encodings

To encode spatial information, positional encodings are generated using sinusoidal func-

tions of varying frequencies and added directly to the embedded patches. The main purpose

of these embeddings is to provide the model with information regarding the sequence order

of the tokens. Furthermore, these encodings are learnable and implemented as a fixed-

dimensional matrix Pe that is updated alongside the model parameters.

Pe(pos, i) =


sin( pos

10000
2i

dmodel

) if i is even

cos( pos

10000
2i

dmodel

) if i is odd
(3.2)

where pos ∈ R : 0 < pos < N denotes the token position and i ∈ R : 0 < i < D − 1

represents the current position along the embedding dimension.

3.1.3 Encoder

The Transformer is composed of a series of L=12 encoder blocks. The encoder block is

depicted in figure 3.3. Each block comprises alternating Multi-head Self-Attention (MHSA)
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layers, Multilayer Perceptron (MLP) blocks and normalization blocks. Considering that the

sequence of embedded vectors is given by Zl−1, the flow of tokens throughout each encoder

block is the following: Zl−1 is first normalized, passed through the MHSA block and added

to its previous state to produce an output Z
′

l as shown in Equation 3.3. The output Z
′

l is

then normalized and fed to the MLP block for token reprojection. This output is added to

its previous state via residual connection to produce Zl, as shown in Equation 3.4.

Figure 3.3: Encoder block.

Z
′

l = MSA(LN(Zl−1)) + Zl−1, Z
′

l ∈ R(N+1)×D, l = 1, ..., L (3.3)

Zl = MLP (LN(Z
′

l )) + Z
′

l , Zl ∈ R(N+1)×D, l = 1, ..., L (3.4)

The residual connections help the model to mitigate the vanishing gradient problem and

allow better flow of information through the layers. In the normalization blocks, the tokens

are normalized by a LayerNorm function according to their mean and standard deviation

and then are linearly transformed by a set of weights and biases. The MHSA block is used

to boost the performance of the vanilla self-attention mechanism lightly described in section

2.3 and is illustrated in figure 3.4.
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Figure 3.4: Multi-head self-attention block.

At this block, the sequence of embedded vectors Zl−1 is first expanded by a fully-

connected layer and then broken up into a set of Query, Key and Value matrices (Q, K

and V), each one with the same size as Zl−1. Instead of applying a single attention function

to the original sets of Q, K and V, each vector is further split into h=12 different paralell

heads, i.e., Q, K and V ∈ Rh×N×D/h. Each head is responsible for learning a different rep-

resentation by performing self-attention (equation 3.5) on the smaller split versions of Q, V

and K.

Attention(Q, V,K) = softmax(
QKT

√
d

)V (3.5)

To accomplish this, the dot product of the query vector with the key vector for each

pair of query and key vectors is computed to calculate the attention weights, also known as

attention matrix. In pratical terms, this operation represents of much each query matches

a given key, i.e., how much each token is paying attention to other tokens in the sequence.

The resulting attention scores are then normalized by a softmax operator to scale the values

to a probability function and multiplied to the V vector. In the end, the outputs of all

attention heads are concatenated to form an embedding vector whose shape is the same as
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the encoder input Zl−1. Finally, this vector is passed through another linear layer to obtain

the final output of the MHSA.

The MLP block is composed by two fully-connected layers with dropouts and GeLU ac-

tivations. The first fully-connected layer expands the embeddings from D to 4D dimensions,

while the second layer shrinks them back to D dimensions. For regularization and to prevent

overfitting, dropout is applied to the output of each fully-connected layer.

3.2 Multi-modal ResNet Baseline Network

Rather than solely relying on self-attention mechanisms, a multi-modal ResNet baseline

was designed to study the effectiveness of a convolutional approach for FAS tasks and to

provide a comparation metric with the former ViT based architecture. The proposed pipeline

is shown in figure 3.5 and employs three branches to process the different modalities of the

input data individually.

Figure 3.5: Multi-modal ResNet pipeline.

The network can be divided into two main parts. In the first part, each branch of the

network uses a full ResNet-18 backbone with resi blocks, i = 1, 2, 3, 4, to extract features

from input images. Since each branch deals exclusively with images from one modality, all

branches become specialized in extracting features from different modalities, thus enhancing

the model ability to capture sensitive modality-related information. In the second part, the

deep modal features are fused via concatenation and passed through a fifth ResNet block,

denoted by res5. Unlike the other res blocks, this block is used to decrease the depth of the

multi-modal feature map and to withdraw interdependencies between different modalities.

The output vector is then averaged using a pooling layer and used for classification.

28



3.2.1 Residual Connections

Each res block is composed of N=2 residual blocks and each residual block consists of

two 3× 3 convolutional layers, followed by batch normalization layers and ReLU activation

functions. The first residual block within each res block is used to increase the number of

channels C of the given feature map X ∈ RC×H×W . To accomplish this, an extra 1 × 1

convolutional layer is applied to match the shape of the input X with the pre-output F (X)

of the residual block. These two feature representations are then added via skip connections

before the last ReLU activation to produce an output feature map F (X)+X that has twice

the channels and half the feature size of X. This feature map is then fed to the second residual

block. An illustration of a res block along with its residual blocks is shown in figure 3.6.

Figure 3.6: Residual Block.

3.3 Multi-modal Hybrid Baseline Network

To combine the strenghts of both Vision Transformers and ResNets, a multi-modal Hybrid

baseline was built by merging the properties of the two previous baselines. The proposed

Hybrid pipeline is shown in figure 3.7. The model employs a three branch ResNet backbone

to extract high-level features from multi-modal images and a ViT backbone to attend to

the spatial relationshipts between the extracted features. Rather than splitting the input

image into patches and then linearly project each patch, the input sequence fed to the ViT

backbone is formed by feature maps extracted from the ResNet backbone.
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Figure 3.7: Multi-modal Hybrid pipeline.

3.3.1 Hybrid Patch Embeddings

Given an image X ∈ RH×W×C with height H, width W, and number of channels C, it is

first processed by the ResNet backbone for feature extraction. The output of the backbone

is a feature map Fm ∈ R512×14×14 which is then passed through a Feat2Emb convolutional

layer. This layer serves the puporse to match the shape of the output feature map Fm with

the proper dimensions needed to build the patch embedding matrix, i.e., this layer increases

the depth of the feature map Fm to dimension D=768 and keeps its spatial size. The final

output of the convolutional part of the hybrid model is a feature map Fm ∈ RD×14×14,

which is then flattened along dimension D. As a result, each channel of the feature map F i
m,

i = 1, 2, 3, ...D is flatenned by an operation we denoted by F (F i
m) to produce a 1D vector

F i
mF with size N=196. Analogous to the standard version of ViT, both learnable CLS tokens

and positional embedding Pe are added to the sequence of concatenated flattened feature

maps. Figure 3.8 provides a visual representation of the tokenization of feature maps.

30



Figure 3.8: Tokenization of feature maps.

3.4 Multi-modal Fusion Methods

Fusion methods for multi-modal datasets refer to methods used to combine information

from different sources of data into a joint representation. In the field of FAS, sophisticated

attacks often require information from multiple modalities to be detected. Therefore, several

studies in the literature have explored ways of leveraging information from different modal

data to increase the robustness of models. Inspired by the work of [20], multiple late fusion

strategies were incorporated into baseline models as an alternative to the straightfoward con-

catenation, which concatenates all features from different modalities without any additional

processing.

On one hand, to implement the fusion stategies in ViT and Hybrid baselines, rather

than utilizing the class tokens CLS attached to the sequence of vectors of patch tokens, the

whole sequence of patch tokens was used as feature map. On the other hand, in the ResNet

baseline, the feature map from each branch before fusion was utilized. The framework of

each fusion method is shown in figure 3.9.

Convolutional Concatenation

This type of concatenation is illustrated in Figure 3.9a) and differs slightly from the

baseline direct concatenation used in the ViT and Hybrid baselines. Instead, the proposed

method is very similar to the fusion method used in the ResNet baseline which first concate-

nates the feature maps (FRGB, FDepth, and FIR) and employs a convolutional layer to mine

the dependencies among the modal features. This method is formulated in Equation 3.6.
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(a) Convolutional Concatenation fusion. (b) Squeeze-and-Excitation fusion.

(c) Cross-attention fusion.

Figure 3.9: Multi-modal fusion methods. Taken from [20].

Ffuse = ReLU(BN(Conv(Concat(Frgb, FDepth, FIR))) (3.6)

Squeeze-and-excitation fusion

For this type of fusion, a Squeeze-and-Excitation module is utilized in each independent

modality branch. This module recalibrates each channel of the feature map to create a more

robust representation by enhancing the important features while ignoring the irrelevant ones.

The refined features (FRGB, FDepth, and FIR) are then concatenated and aggregated according

to the formulation described in Equation 3.7(σ denotes the Sigmoid function). This fusion

method is shown in figure 3.9b).
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F SE
RGB = FRGB · σ(FC(ReLU(FC(AvgPool(FRGB)))))

F SE
Depth = FDepth · σ(FC(ReLU(FC(AvgPool(FDepth)))))

F SE
IR = FIR · σ(FC(ReLU(FC(AvgPool(FIR)))))

Ffuse = ReLU(BN(Conv(Concat(F SE
RGB, F

SE
Depth, F

SE
IR ))))

(3.7)

Cross-attention fusion

Rather than fusing features from a heterogeneous space, feature addition in the homoge-

neous space was also explored. Therefore, relationship maps between FRGB and FDepth/FIR

are computed through cross-attention. The resulting normalized modality-interacted maps

are then multiplied by FRGB to form cross-attentioned features, namely FCA
RGB and FCA

IR . Fi-

nally, the original RGB features FRGB are added to the cross-attentioned features and fused

using an additional convolution. Cross-attention fusion is formulated in Equation 3.8 and

illustrated in figure 3.9c).

−
F

CA

Depth = Softmax(
−
FDepth(

−
FRGB)

T )
−
FRGB

−
F

CA

IR = Softmax(
−
F IR(

−
FRGB)

T )
−
FRGB

Ffuse = ReLU(BN(Conv(FRGB + FCA
Depth + FCA

IR )))

(3.8)

where F and
−
F denote the spatial features and vectorized features, respectively.

3.5 Style Augmentation: Mixstyle

Mixstyle [45] is a type of style augmentation that was designed to regularize the training

of a model by mixing style information of source domain features in cross-domain scenarios.

Unlike other methods, it does not require the generation of synthetic images of new styles

as it is implemented into batch training, i.e., this module performs style transfer by only

mixing instance-level feature statistics across images from the same batch.

Considering that an input batch x is composed by images of domains x1 and x2, then

x = [xi
1, x

j
2], i.e,. i, j denote the image index position in the respective domain batch. The

goal of mixstyle is to generate a reference batch xref by shuffling image positions between

both domains and use it to compute mixed feature statistics using Equations 3.9 and 3.11.

γmix = λσ(x) + (1− λ)σ(xref ) (3.9)
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βmix = λµ(x) + (1− λ)µ(xref ) (3.10)

where λ ∈ R is an intance weight sampled from a Beta distribution, λ ∼ Beta(α, α)

with α=0.1. Then, the mixed feature statistics γmix and βmix are used to compute the

style-normalized x :

Mixstyle(x) = γmix
x− µ(x)

σ(x)
+ βmix (3.11)

The generation of xref depends on the shuffling strategy applied to the input batch x.

Therefore, two mixing strategies are proposed:

• Random Mix: the order of images in x is randomly shuffled, i.e., xref=[Shuffle(x )]. In

this scenario, images may be styled with images from the same domain.

• Crossbatch Mix: xref is obtained by swapping domain order and shuffing image posi-

tions within each domain. i.e., xref =[Shuffle(xj
2),Shuffle(xi

1)].

(a) Random Mix. (b) Crossbatch Mix.

Figure 3.10: Types of batch shuffling. Each shape corresponds to a different domain.

Mixstyle is applied on every batch during training and deactivated when the baselines

are validating and testing.

3.6 Loss Functions

3.6.1 Cross-Entropy Loss

Given a certain image, it is either classified as real/bonafide or attack/spoof. To measure

the difference between the outputs and the true class labels, a cross-entropy loss LCE was

implemented across all baseline models. In practical terms, this loss applies a softmax

function direcly to the output tensor of the classification head to obtain the predicted class

probabilities and computes the negative log-likelihood between the predited probabilities

and the true labels.
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LCE = −
N∑
i=1

ŷilogyi (3.12)

where N is the batch size and ŷi, yi are the truth label and the predicted probability

distribuition of the ith image respectively, i.e., yi is given by the classification head.

3.6.2 Domain-invariant Concentration Loss

In addition to the cross-entropy loss LCE, this work incorporates a domain-invariant con-

centration loss, denoted as LDiC , inspired by the work of Liao et al. [17]. The purpose of the

LDiC loss is to enhance the generalization capability of the baseline models in cross-domain

scenarios. By aggregating the features of real face images, this loss facilitates the learning of

a domain-invariant representation, which is crucial for achieving robust performance across

different domains.

Let D1, ..., DK be representation of K datasets, where each dataset specifies one domain.

Considering that each domain constains C types of attacks and real images, the previous

notation can be further extended to symbolize the set of attacks in domain k, Dc
k, where c

is the c-th type of attack with c ∈ [1, ..., C]. In addiction, Dreal
k indicates the set of real face

images within the same domain k ∈ [1, ..., K]. To start with, all real faces from different

domains Dreal
k are treated as a unified positive (non-spoof) class of data, combining them in

the following manner:

DR =
K⋃
k=1

Dreal
k (3.13)

This unification serves two purposes. Firstly, it aims to provide any given real face image

in Dreal
k with a feature representation that is not biased towards specific domains. This

ensures that the learned representation remains invariant to domain changes, enabling the

model to generalize well across different domains. Secondly, regardless of the domain of a

real face image, the objective is to ensure that its feature embedding is positioned close to

the origin of the embedding space. To accomplish this, the loss function LDiC is employed to

encourage the learned feature embeddings of real face images in all domains to have smaller

norms. The formulation of LDiC is explicitly described in Equation 3.14.

LDiC =
1

N

N∑
i=1

1[xi ∈ DR] · ||fi|| (3.14)
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where N denotes de batch size, 1 is the indicator function, ’·’ is the inner product and fi

is the i -th feature embedding of the input image xi.

Finally, the domain-invariant concentration loss LDiC and the cross-entropy loss LCE are

combined to train the baseline backbones in a supervised manner. The total loss Ltotal is

defined in Equation 3.15 and is depicted in Figure 3.11.

Ltotal = LCE + λLDiC (3.15)

where λ is a balance factor, λ ∈ [0,∞].

Figure 3.11: Pipeline of the training under LDiC loss.
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4 Results and Discussion

This chapter is divided in two main parts. The first part, consisting of sections 4.1, 4.2,

4.3, and 4.4, focuses on technical aspects related to the datasets, implementation details,

evaluation metrics and the interpretability of Vision Transformers in the context of FAS. The

second part, section 4.5, provides a detailed examination about the experimental results. It

starts by covering intra-domain, cross-domain and zero-shot evaluation using all baseline

models and then transitions to the different approaches that have been incorporated to

enhance the performance of the baselines, specially in the cross-domain scenario.

4.1 Datasets

4.1.1 WMCA

WMCA [22] is a publibly available preprocessed PAD dataset which consists of 1679 short

video samples of bonafide representations, 2D and 3D attacks from 72 different individuals.

It contains synchronized multi-channel data from several channels including RGB, Depth,

Infrared and Thermal. Two sensors, e.g., Intel RealSense SR300 and Seek Thermal Compact

PRO, captured the data synchronously during 10 seconds using different resolutions and

frame-rate depending on the channel. The color channel was recorded with a resolution

of 1920×1080, while the other channels were recorded at 640×480. Furthermore, all data

was recorded during several sessions, each with different environmental conditions, such as

lighting and background.

The presentations in the database are grouped into two main categories: Bonafide, which

is the real representation of individuals and presentation attacks. Due to the wide variety of

presentation attacks, they can be further divided into sub-categories. Table 4.1 provides the

acquisition conditions of each PA category and figures 4.1 and 4.2 illustrate some examples.
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Figure 4.1: RGB, Depth and Infrared bonafide images from the WMCA dataset.

Table 4.1: Acquisition condition for each PA.

Attack type Acquisition condition

Print Printed face images on A4 paper matte and glossy paper

Replay Electronic photos and videos recorded on an iPhone 6 and iPad pro 12.9

Fake Head Several pre-heated manequinn heads

Rigid Mask Custom made realistic rigid masks and decorative plastic masks

Flexible Mask Custom made realistic soft silicone masks

Paper Mask Custom make paper masks based on real identities

Glasses Different models of disguise glasses with fake eyes and paper glasses

Figure 4.2: Examples of bonafide and presentation attacks.

The total number of 1679 video recordings include bonafide and presentation attacks and

are divided into multiple protocols and grouped into three subsets: train, eval and test. Since

the video recordings are correlated and consequently are uniformly sampled in the temporal
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domain, only 50 frames from each video were selected, totalling a sum of 83,950 biometric

samples across all subsets.

Table 4.2: WMCA attack distribuition.

Attack type Category Videos

Bonafide - 347

Print 2D 200

Replay 2D 348

Fake Head 3D 122

Rigid Mask 3D 137

Flexible Mask 3D 379

Paper Mask 3D 71

Glasses 3D 75

Total - 1679

4.1.1.1 Evaluation Protocols

The split into multiple protocols aims to evaluate the performance of the framework in

seen and unseen attack scenarios. The grandtest protocol is mainly used for intra-domain

performance evaluation and is intended to test the performance of the network in the cases

where the attack categories are known a priori. It consists of all attacks distributed in equal

proportions across all subsets and the data split is done ensuring almost equal distribution

of PA categories and disjoint set of client identifiers in each subset.

The remaining protocols are designed to simulate the Zero-shot/Leave-one-out (LOO)

scenarios as they pretend to emulate real-world situations where an unseen attack type is

encountered. The main objective is to determine which types of attacks are most easily

detectable in the absence of any training data for those specific attacks. This helps verify

whether the model is capable of transferring knowledge from previously encountered attack

categories to detect the unseen attack. There are a total of seven LOO protocols, each

involving the exclusion of a specific attack type during the training and validation phases.

During testing, only samples from that particular attack type and bonafide data are used.

For instance, in the LOO-2D protocol, all 2D attacks are removed from the training and

validation sets, while the test set consists of bonafide samples and 2D attacks exclusively.

The same approach is applied to all other protocols. The data distribution for both the
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grandtest and LOO-2D protocols is summarized in Tables 4.3 and 4.4, respectively, providing

an overview of how the data is split across the different attack types and genuine samples.

Table 4.3: Data distribution of the grandtest

protocol.

Attack type Train Val Test

Bonafide 124 108 115

Print 68 66 66

Replay 152 116 80

Fake Head 53 52 17

Rigid Mask 26 62 49

Flexible Mask 110 131 137

Paper Mask - - 71

Glasses 31 22 22

Total 564 557 557

Table 4.4: Data distribution of the LOO-2D

protocol.

Attack type Train Val Test

Bonafide 124 108 115

Print - - 66

Replay - - 80

Fake Head 53 52 -

Rigid Mask 26 62 -

Flexible Mask 110 131 -

Total 333 353 262

4.1.2 CASIA-SURF

CASIA-SURF is another large-scale multi-modal PAD dataset that primarily focuses on

2D attacks and includes bonafide samples collected from over 1,000 chinese subjects with

a wide range of ages. The data acquisition process involves the use of an Intel RealSense

SR300 camera, which simultaneously captures RGB, Depth, and Infrared videos in diverse

indoor environments. The resolution varies across the different modalities, with RGB videos

recorded at 1280x720 resolution and Depth and Infrared videos recorded at 640x480 reso-

lution. During the video recording sessions, participants were instructed to hold a printed

attack image in front of their faces and perform specific actions such as walking towards and

away from the camera, turning their heads, and bending the paper. This process aimed to

create multiple variations of attack scenarios. For each bonafide sample, there are 6 presen-

tation attacks, each one in the form of a printed flat or curved face image with cut eyes, nose,

mouth areas or their combination. Table 4.5 describes CASIA-SURF attacks and figure 4.3

shows some examples of attacks and bonafide samples across all modalities.
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Table 4.5: CASIA-SURF attack categories.

Attack type Attack Description Regions Cut out

Attack 1 flat printed face eyes

Attack 2 curved printed face eyes

Attack 3 flat printed face eyes and nose

Attack 4 curved printed face photo eyes and nose

Attack 5 flat printed face photo eyes, nose and mouth

Attack 6 curved printed face eyes, nose and mouth

Figure 4.3: Multi-modal bonafide and PAs from the CASIA-SURF dataset. The attacks

were taken from the training set.

4.1.2.1 Evaluation Protocol

The owned version of the CASIA-SURF dataset, provided by the laboratory, consists of a

total of 29,266 images for training, 9,608 images for validation, and 57,710 images for testing.

Following the legacy evaluation stategy introduced by the authors, we have chosen to use

live faces and attacks 4, 5, and 6 to train the baselines, while the remaining attacks and live

faces are reserved for validation and testing. This selection ensures an equal distribution of

flat and curved faces across all subsets. Table 4.6 presents the distribution of samples and

the types of attacks included in each subset.
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Table 4.6: CASIA-SURF types of attacks and number of samples per subset.

Subset
Attack

Nº Samples
1 2 3 4 5 6

Train ✓ ✓ ✓ 29,266

Val ✓ ✓ ✓ 9,608

Test ✓ ✓ ✓ 57,710

4.2 Implementation Details

The implementation of this thesis relied on the open-source PyTorch deep learning library,

and all the code was written in Python. For the ViT and Hybrid baselines, we adapted the

ViT-B base network described in [11] for the multi-modal task. The ViT-based baselines

were trained with a batch size of 32, an AdamW optimizer, and a cosine annealing scheduler

for 30 epochs.

As for the ResNet baseline, we utilized the pre-existing backbone available in the PyTorch

library. This baseline was trained for 50 epochs with an Adam optimizer, a cosine annealing

scheduler, and a batch size of 64.

The difference in batch size and epochs between the ViT-based baselines and the ResNet

baseline is due to model size and memory constraints, as we were unable to train the ViT-

based baselines with the same configuration as the ResNet baseline. Furthermore, the initial

weights of all baselines were pre-trained on the ImageNet-1k dataset, and the training was

conducted using a Cross-Entropy (CE) loss function. The choice of learning rates will be

covered in the upcoming section. Table 4.7 summarizes the training configuration of all

baselines.

Table 4.7: Training configuration of the baselines.

Baseline pre-trained epochs batch loss optimizer scheduler

Multi-modal ViT ✓ 30 32 CE AdamW cosine

Multi-modal Hybrid ✓ 30 32 CE AdamW cosine

Multi-modal Resnet ✓ 50 64 CE Adam cosine

To enhance the baseline’s performance, multiple data augmentation techniques were ap-

plied to all images during training, including random rotation, random cutout, random crop,
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random grayscale, horizontal flip, and color jitter. These augmentation techniques were ap-

plied consistently across all baselines and the images from all modalities were normalized

with µ = (0.485, 0.456, 0.406) and σ = (0.229, 0.224, 0.225). However, in the ViT and Hy-

brid baselines, the images were resized to 224x224, while in the ResNet baseline, a lower

resolution of 112x112 was used for resizing the images.

For result reproduction, we used the same seed for every training and testing run and the

best model was selected based on the minimum loss observed in the validation set. Finnaly,

all baselines were trained using an Nvidia RTX 3090.

4.3 Evaluation Metrics

For the performance evaluation, real/bonafide images are assigned with label 1 and attack

images are labeled as 0. Based on these labels, the evaluation metrics are defined as follows:

• TP: Bonafide samples that are correctly predicted as bonafide.

• FP: Spoof samples that are wrongly classified as bonafide.

• TN: Spoof samples that are correctly predicted as spoof.

• FN: Bonafide samples that are wrongly classified as spoof.

These metrics are then used to compute another two sets of metrics that are commonly

used among other works in the literature. The first is the standardized ISO/IEC 30107-

3 metrics which consists of an Attack Presentation Classification Error Rate (APCER),

Bonafide Presentation Classification Error Rate (BPCER) and an Average Classification

Error Rate (ACER). These metrics are formulated in the following equations:

ACC =
TP + TN

TP + FP + TN + FN
(4.1)

APCER =
FP

FP + TN
BPCER =

FN

FN + TN
ACER =

APCER +BPCER

2
(4.2)

where Accuracy (ACC) is the percentage of bonafide and spoof samples correctly iden-

tified, APCER is the percentage of spoof samples that are incorrecly classified as bonafide,

BPCER is the percentage of bonafide samples that are incorrectly classified as spoof and

ACER is the mean of APCER and BPCER.
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The second set of metrics is the Receiver Operating Characteristic (ROC) curve which is

used in several works in the literature and is used to select a suitable threshold to trade off

the False Positive Rate (FPR) and True Positive Rate (TPR) according to the requirement

of real applications.

FPR =
FP

FP + TN
TPR =

TP

TP + FN
(4.3)

4.4 Vision Transformer Interpretability

In section 3.1.3 we discussed the multi-modal ViT, which comprises a series of encoders.

Within each encoder block, there are 12 parallel heads responsible for projecting the em-

bedded patch tokens to multiple sub-spaces using self-attention. As a result, we obtain 12

different projections, where each projection represents a distinct representation of the input

image.

In practical terms, each head attends to a specific part of the input image by evaluating

the significance of the split version of the query in relation to the split version of the key.

These matrices have a shape of 3 × 197 × 64, and each head attends to 197 tokens, where

each token has a feature length of 64. In other words, each patch token is projected 768

times via a convolutional layer, resulting in each head attending to 68 projections of each

patch. Out of the 197 tokens, the first token represents the CLS token that flows through

the Transformer which is appended to the sequence of embeded patches, and the remaining

196 tokens represent the linearly projected patches. Consequently, each head computes

attention weights by taking the dot product between the given query and key (equation

3.5). The resulting attention matrix, denoted as A ∈ R197×197, provides insights into the

importance of different image parts to the Transformer. Figure 4.4 illustrates the computed

attention matrices for all attention heads in the first encoder (L = 1).

Visualizing the attention weights overlaid on the image offers an intuitive understanding

of the regions considered significant by the Transformer. Therefore, it is beneficial to visualize

each attention head map separately to comprehend their focus areas. The heatmaps are

generated by calculating the mean of each attention matrix along the second dimension and

then resize it to a 14× 14 matrix. Figure 4.5 demonstrates how the attention maps appear

throughout the attention heads in the first encoder (L = 1).
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Figure 4.4: Graphical representation of the attention matrix in each paralell head of the first

encoder block.

Figure 4.5: Attention maps of all paralell heads in the first encoder block. The red zone

refer to the most discriminative location of the image.

Notably, different heads concentrate on different image regions. For example, heads 1,

7 and 10 prioritize local features, while heads 3, 8 and 9 capture information that covers
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a larger portion of the face, including the background. The outputs of all heads are then

concatenated to produce an output whose shape is the same as the input to the encoder.

This output is subsequently fed into the next encoder and so on.

To better understand how information flows through all the encoders, the attention

weights of all heads are averaged, representing the learned representations at each encoder.

These representations are shown in figure 4.6. When analyzing the attention maps at each

encoder, we find that the Transformer attends to most of the image at the lowest layers

and progressively refines its focus until the last layer, resulting in regions that it considers

semantically relevant for classification.

Figure 4.6: Attention maps of all encoders.

4.5 Validation Results

4.5.1 Intra-domain Results

The first stage of evaluation focuses on conducting intra-domain evaluation using the

CASIA-SURF dataset and the grandtest protocol from the WMCA dataset. This evaluation

involves utilizing all the baseline models described in chapter 3 and aims at simulating

circumstances where the network has prior knowledge of the attacks it will encounter during

the testing phase.
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Considering the crucial influence of hyperparameter tuning on deep learning models, an

ablation study was performed to determine the optimal learning rate for each baseline. The

goal was to identify the learning rate that would yield the best results for the specific dataset.

The selection of the best model was based on the accuracy achieved on the test set. The

results of this ablation study can be found in appendix A.1, and they are summarized in

table 4.8. Until stated otherwise, we will refer to these results as the baseline results. In

order to enhance readability, the baselines with the highest Accuracy (ACC) and lowest

Average Classification Error Rate (ACER) for the dataset under study are highlighted in

cyan. This highlighting allows easier identification of the top-performing baseline in terms

of these evaluation metrics.

Table 4.8: Intra-domain evaluation on the CASIA-SURF and the grandtest protocol from

the WMCA dataset across all baseline models.

Dataset Baseline ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

WMCA-

grandtest

ViT 99.73 0.2 1.25 0.64 99.57 99.04 98.54

ResNet 98.74 1.56 0.10 0.83 98.12 72.87 64.89

Hybrid 99.34 0.55 1.10 0.82 99.53 84.78 66.54

CASIA-

SURF

ViT 98.67 1.01 2.07 1.54 97.89 88.18 70.56

ResNet 99.38 0.43 1.05 0.74 99.59 96.17 89.12

Hybrid 98.62 0.75 2.85 1.8 97.83 83.29 63.07

Overall, the baselines achieved highly promising results on both datasets. On one hand,

the results presented in table 4.8 demonstrate that the ViT-based baselines (ViT and Hy-

brid) performed better in detecting the various PAs present in the WMCA dataset (99.73%

and 99.34% accuracy, 0.64% and 0.82% ACER respectively). On the other hand, the ResNet

baseline outperformed the ViT-based baselines on the CASIA-SURF dataset (99.38% accu-

racy and 0.74% ACER), which primarily consists of 2D attacks such as print and replay

attacks. These results indicate that the ViT-based models excel at handling the diverse

range of attacks present in the WMCA dataset, while the ResNet baseline is slightly more

effective in detecting 2D attacks in a dataset mostly composed of planar attacks.

To further understand the features contributing to the decisions, the activation maps for

the ViT and ResNet baselines are shown in figures 4.7 and 4.8.
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Figure 4.7: Attention maps of the multi-modal ViT baseline for all classes of both datasets

(WMCA on the left and CASIA-SURF on the right). The attention maps were built using

the attention weights from the last encoder.

Figure 4.8: Activation maps of the multi-modal ResNet baseline for all classes of both

datasets (WMCA on the left and CASIA-SURF on the right). The activations were selected

from each individual branch, after the 4th residual block (res4).

Interestingly, a noticeable distinction exists between the two architectures in terms of

their perception of the semantically relevant regions. The attended regions of the ViT

baseline are spatially distributed across the image, smaller in scale and more detailed when

compared to the heatmaps generated by the ResNet baseline, which suggests that ViTs

assign equal relevance to different parts of the image. In contrast, the ResNet baseline

demonstrates limitations in weighting different image regions due to its pooling layers and

convolutional process. The features extracted from the higher layers of the baseline possess a

larger receptive field, enabling them to represent semantic information effectively. However,

in terms of resolution, these features exhibit lower detail compared to the activations observed

in ViTs.
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4.5.2 Cross-domain Results

Following the intra-domain evaluation, the cross-domain evaluation involves training,

validating, and testing the models using both the CASIA-SURF and the grandtest protocol

of the WMCA dataset. The results presented in table 4.9 correspond to the best baseline

model selected from a range of learning rates, which are detailed in appendix A.2. This

type of evaluation aims to simulate a model that has been trained under different domains,

allowing us to assess the generalization capability of the baselines.

Table 4.9: Cross-domain evaluation using the CASIA-SURF and the grandtest protocol from

the WMCA dataset.

Dataset Baseline ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

ViT 97.42 3.40 0.37 1.89 96.67 81.86 72.45

ResNet 95.67 4.97 2.62 3.80 89.28 56.18 37.88

Hybrid 94.49 4.95 7.02 5.99 79.26 51.35 35.42

Although the best performing model is the multi-modal ViT (99.73% accuracy and 1.89%

ACER), the performance of all baselines in cross-domain scenario decreased compared to the

intra-domain level. This decline in performance can be attributed to the bias introduced by

the similarity of images within the same dataset and their differences to the other dataset.

When models are evaluated in a cross-domain scenario, they may struggle in correctly classi-

fying bonafide and PAs from the other dataset because the model has learned representations

that are specific to one dataset and may not effectively generalize to the feature space of the

other dataset.
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4.5.3 Zero-shot Learning Results

The last evaluation stage is the zero-shot evaluation, which differs from the previous

evaluations where all attack categories are known a priori. In zero-shot learning, models

are evaluated in unseen presentation attacks as it indicates their effectiveness in encontering

real-world attacks that were not seen during training time. To conduct this evaluation, all

baselines were trained and tested on all leave-one-out protocols of the WMCA dataset. For

a detailed explanation of these protocols, please revisit section 4.1.1.1. All baselines were

tested using the learning rates that were used in the evaluation of the grandtest protocol.

The results are tabulated in table 4.10.

Initially, the baselines demonstrated mediocre performance in the LOO-2D and LOO-

3D protocols, except for the ResNet baseline, which performed significantly better in the

LOO-2D protocol (98.43 % ACC and 1.41% ACER) than its counterparts. In practical

terms, training a model to detect 2D attacks and then evaluating it on 3D attacks poses a

significant challenge for the baselines, as they struggle to extract features that are relevant

to the distinctive characteristics of 3D attacks. The same is true for the reverse scenario.

Furthermore, the LOO-Flexible-Mask and LOO-Glasses protocols also yielded poor re-

sults across all baselines, indicating a collapse in performance. Among the 3D attacks, the

silicone masks utilized in these protocols are the most similar to real faces, which explains

the difficulty in detecting these attacks even when leveraging multi-modal information. The

infrared range does not capture significant changes in the face, as the masks were pre-heated

before the attack acquisition. Moreover, the relief of the masks closely resembles the facial

relief of a real person, resulting in very similar depth maps. Attacks involving fake glasses

are also difficult to detect, as all baselines struggled to achieve good results (86.85%, 84.76%

and 86.06% ACC for the ViT, ResNet and Hybrid respectively). These attacks barely alter

the features of a real person, as the fake glasses are easily mistaken for real glasses. Once

again, in this situation multi-modal information is of little use, which highlights the difficulty

of detecting these 2 types of attacks.

When analysing the performance of three baselines, it is evident that the ViT baseline

outperformed the other two baselines in several protocols, including print, replay, paper

mask, rigid mask, fake-head, and glasses. This suggests that the attention mechanism em-

ployed by ViT is highly effective in detecting various types of attacks. On the contrary, the

ResNet baseline demonstrated significantly better performance in the protocols (LOO-2D,

LOO-3D and LOO-Flexible mask) where it outperformed the ViT and Hybrid baselines.
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Table 4.10: Zero-shot evaluation on the leave-one-out protocols in WMCA dataset.

Protocol Baseline ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

2D

ViT 74.04 46.41 0.0 23.21 99.74 99.55 99.43

ResNet 98.43 2.71 0.12 1.42 99.74 99.22 99.04

Hybrid 89.15 18.84 0.71 9.77 95.67 92.61 87.37

3D

ViT 29.35 99.98 0.0 49.99 23.08 6.75 2.35

ResNet 45.26 77.90 0.0 38.95 34.10 23.04 0.0

Hybrid 29.96 99.67 0.0 49.83 26.43 7.48 4.43

Print

ViT 99.77 0.0 0.37 0.18 100 100 100

ResNet 99.06 0.0 1.48 0.74 99.91 99.86 99.73

Hybrid 99.52 0.0 0.75 0.37 100 100 100

Replay

ViT 99.81 0.25 0.16 0.20 99.84 99.81 99.76

ResNet 98.89 1.32 0.96 1.14 98.90 97.27 96.47

Hybrid 98.73 0.43 1.86 1.14 98.49 97.53 96.45

Paper

mask

ViT 99.90 0.09 0.1 0.1 100 100 99.97

ResNet 99.22 0.0 1.25 0.63 99.97 99.90 99.81

Hybrid 99.32 0.0 1.10 0.55 99.97 99.70 99.51

Flexible

mask

ViT 58.70 75.97 0.0 37.99 63.72 45.93 32.14

ResNet 84.03 29.36 0.02 14.69 71.32 63.44 59.22

Hybrid 65.02 64.25 0.10 32.18 69.51 50.17 26.10

Rigid

mask

ViT 99.75 0.25 0.24 0.25 99.83 99.76 99.74

ResNet 98.65 0.0 1.91 0.96 100 99.91 99.90

Hybrid 98.96 0.38 1.32 0.85 98.82 98.54 97.90

Fake-

head

ViT 98.98 7.53 0.05 3.79 99.83 99.83 99.83

ResNet 97.91 0.47 2.90 1.69 97.53 96.12 96.12

Hybrid 98.82 0.12 1.34 0.73 99.95 98.14 98.14

Glasses

ViT 86.85 81.55 0.07 40.81 54.99 50.52 50.05

ResNet 84.76 93.64 0.24 46.94 20.47 17.55 15.43

Hybrid 86.06 84.18 0.50 42.34 42.17 33.84 30.94
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4.5.3.1 Multi-modal Data vs RGB Spectrum

In order to explore the impact of incorporating Depth and Infrared modalities on the

detection capability of attacks, we conducted an experiment using the multi-modal ViT

baseline with three modalities (RGB, Depth and Infrared) and compared it to the same

baseline using only the RGB spectrum. This evaluation aims to assess the influence of

multi-modal data on the performance, rather than focusing on the best performing model.

Table 4.11: Zero-shot evaluation on the leave-one-out protocols in WMCA dataset using

only the RGB spectrum on the ViT baseline.

Protocol Modalities ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

2D
RGB+Depth+IR 74.04 46.41 0.0 23.21 99.74 99.55 99.43

RGB 43.79 99.53 1.22 50.38 77.81 73.93 71.20

3D
RGB+Depth+IR 29.35 99.98 0.0 49.99 23.08 6.75 2.35

RGB 29.96 99.67 0.0 49.83 11.69 4.12 1.50

Print
RGB+Depth+IR 99.77 0.0 0.37 0.18 100 100 100

RGB 95.26 0.03 7.44 3.74 96.92 94.61 92.10

Replay
RGB+Depth+IR 99.81 0.25 0.16 0.20 99.84 99.81 99.76

RGB 65.28 78.43 4.31 41.37 66.14 62.31 59.97

Paper

mask

RGB+Depth+IR 99.90 0.09 0.1 0.1 100 100 99.97

RGB 92.61 4.67 9.04 6.86 79.48 76.26 72.19

Flexible

mask

RGB+Depth+IR 58.70 75.97 0.0 37.99 63.72 45.93 32.14

RGB 58.67 75.33 0.83 38.08 51.34 20.89 12.40

Rigid

mask

RGB+Depth+IR 99.75 0.25 0.24 0.25 99.83 99.76 99.74

RGB 91.48 17.51 4.77 11.14 61.55 48.61 43.95

Fake-

head

RGB+Depth+IR 98.98 7.53 0.05 3.79 99.83 99.83 99.83

RGB 94.97 8.47 4.52 6.50 95.10 88.73 88.73

Glasses
RGB+Depth+IR 86.85 81.55 0.07 40.81 54.99 50.52 50.05

RGB 83.96 71.82 5.37 38.60 14.49 8.35 8.17

Based on the information presented in table 4.11, it can be concluded that the inclusion

of multi-modal information is in fact important for the model to achieve better performance

in detecting attacks due to the fact that the results worsened in all protocols when using the

RGB spectrum alone.
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In the case of 2D attacks, it is noticeable that the absence of depth information relative

to the face contributes to the degradation of performance. Print and replay attacks, which

are relatively similar to a real face, become more difficult to detect in the absence of com-

plementary modal information. As expected, the performance in detecting 3D attacks also

deteriorates in all protocols when using only the RGB spectrum, which highlights the im-

portance of including depth and infrared cues that assist in distinguishing between genuine

and fake samples in these protocols.

Finally, by analyzing the LOO-Flexible-mask and LOO-Glasses protocols, it is observed

that the results when using the three modalities or only RGB are practically the same,

which validates the hypothetical conclusion made in the previous section, i.e., the Depth

and Infrared spectra have little or no contribution to the detection of these specific attacks.

4.5.4 Fusion Methods Results

The first step to enhance the results of all baselines in both intra-domain and cross-

domain scenarios is to incorporate the multi-modal fusion methods described in section 3.4.

To accomplish this, the original fusion utilized in each baseline model was substituted with

three distinct fusion methods: Concatenation (C), Squeeze-and-excitation (SE), and Cross-

Attention (CA). In the ResNet baseline, only the SE and CA were tested. To analyze the

individual influence of each fusion method, several tests were carried out and the results are

presented in Tables 4.12, 4.13 and 4.14.

Despite the increase in the number of parameters and training time across all baselines

due to the introduction of fusion methods, most tests demonstrated improvements in results

in comparison to the baseline’s.

Among all the fusion methods, SE consistently showed the highest performance im-

provement, benefiting all baselines in the cross-domain scenario. Particularly, the ViT and

ResNet baselines exhibited significant improvements, even in the intra-domain results. For

the attention-based baselines (ViT and Hybrid), these improves results validade the use of

patch tokens as global feature, specially when they are further recalibrated via squeeze and

excitation operations, rather than relying solely on the CLS token to perform classification.

On the contrary, the CA method, while improving the performance of the ViT baseline

in the grandtest protocol, consistently showed poorer results in the cross-domain scenario

in all baselines. This suggests that feature fusion in a homogeneous space may not provide

advantages in the context of anti-spoofing.
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Table 4.12: Fusion Methods on the Multi-modal ViT Baseline.

Dataset
Fusion

ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

C SE CA 10−2 10−3 10−4

WMCA-

grandtest

ViT Baseline 99.73 0.2 1.25 0.64 99.57 99.04 98.54

✓ 99.10 0.02 4.28 2.15 99.84 97.39 95.50

✓ 98.08 0.03 9.17 4.60 98.63 93.58 89.23

✓ 99.85 0.04 0.59 0.31 99.86 99.53 99.20

CASIA-

SURF

ViT Baseline 98.67 1.01 2.07 1.54 97.89 88.18 70.56

✓ 97.60 0.78 6.13 3.46 95.13 74.62 57.31

✓ 98.92 0.70 1.94 1.32 98.44 93.34 85.46

✓ 98.04 2.59 0.52 1.55 98.97 94.31 68.79

Cross-

Domain

ViT Baseline 97.42 3.40 0.37 1.89 96.67 81.86 72.45

✓ 97.37 3.50 0.29 1.90 97.53 70.53 45.15

✓ 98.59 1.79 0.37 1.08 98.49 58.88 33.60

✓ 96.94 3.11 2.92 3.01 92.74 77.70 65.12

Table 4.13: Fusion Methods on the Multi-modal ResNet Baseline.

Dataset
Fusion

ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

SE CA 10−2 10−3 10−4

WMCA-

grandtest

ResNet Baseline 98.74 1.56 0.10 0.83 98.12 72.87 64.89

✓ 99.04 1.12 0.35 0.73 98.85 86.14 74.38

✓ 98.59 1.72 0.23 0.97 97.18 92.97 89.37

CASIA-

SURF

ResNet Baseline 99.38 0.43 1.05 0.74 99.59 96.17 89.12

✓ 96.50 3.47 3.55 3.51 87.16 68.23 57.54

✓ 95.62 4.11 4.99 4.55 74.17 21.02 16.22

Cross-

Domain

ResNet Baseline 95.67 4.97 2.62 3.80 89.28 56.18 37.88

✓ 96.30 4.98 0.26 2.62 96.66 13.48 6.87

✓ 92.75 7.59 6.35 6.97 56.87 0.0 0.0
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Table 4.14: Fusion Methods on the Multi-modal Hybrid Baseline.

Dataset
Fusion

ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

C SE CA 10−2 10−3 10−4

WMCA-

grandtest

Hybrid Baseline 99.34 0.55 1.10 0.82 99.53 84.78 66.54

✓ 98.91 1.06 1.20 1.13 98.54 40.02 27.84

✓ 98.88 1.22 0.75 0.98 97.53 41.15 28.70

✓ 96.10 4.92 0.02 2.47 95.48 61.48 43.10

CASIA-

SURF

Hybrid Baseline 98.62 0.75 2.85 5.89 97.83 82.39 63.07

✓ 96.14 3.28 5.18 4.23 89.27 62.77 27.79

✓ 95.52 3.14 7.56 5.35 82.31 58.82 41.94

✓ 95.03 3.19 9.08 6.14 80.27 53.36 22.22

Cross-

Domain

Hybrid Baseline 94.49 4.95 7.02 5.99 79.26 51.35 35.42

✓ 79.32 27.85 1.45 14.65 71.99 48.47 29.19

✓ 96.47 4.20 1.74 2.97 92.88 78.18 65.93

✓ 89.45 12.52 5.27 8.90 41.34 17.64 10.69

4.5.5 Mixstyle Results

To further improve the results of the baselines in cross-domain, we investigated mixing

features statistics between the two datasets. The outcomes of these experiments are sum-

marized in Tables 4.15 and 4.16. During training, we applied two mixing strategies, namely

random and crossbatch, to all batches to ensure maximum feature mixing using a Beta

distribution Beta(α, α) with α=0.1.

In the multi-modal ViT baseline, we placed Mixstyle before the patch projection and

after the patch projection, denoted by BP and AP respectively in Table 4.15. While we did

not applied Mixstyle within the encoders, the model performs better when Mixstyle is apllied

after the patch projection rather than before, despite the degradation of results. Another

conclusion is that the random shuffling of features collapsed the performance of the model,

indicating that this mixing stategy is not the most suitable for this baseline, as features from

one dataset may be stylized with features from the same dataset. In contrast, crossbatch

mixing ensures that features from one dataset are only stylized with statistics from one image

of the other dataset. When this mixing strategy was employed after the projection of the

patches, the model surpassed the baseline version in terms of accuracy, achieving 97.65%
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Table 4.15: Domain Generalization of the Multi-modal ViT Baseline using Mixstyle.

Dataset Mixing ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

ViT Baseline 97.42 3.40 0.37 1.89 96.67 81.86 72.45

Random BP 92.10 10.73 0.33 5.53 90.01 51.09 29.26

Random AP 93.81 8.08 1.10 4.59 88.17 49.11 27.93

Random BP+AP 95.83 5.39 0.89 3.14 92.48 66.75 41.35

Crossbatch BP 91.93 10.92 0.43 5.68 87.64 60.65 24.85

Crossbatch AP 97.65 2.79 1.16 1.98 95.09 60.66 41.39

Crossbatch BP+AP 96.07 5.32 0.18 2.75 97.75 57.0 19.35

ACC.

Table 4.16: Domain Generalization of the Multi-modal ResNet Baseline using Mixstyle.

Dataset Mixing ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

ResNet Baseline 95.67 4.97 7.02 5.99 79.26 51.35 35.42

Random res1 95.30 5.68 2.06 3.87 90.44 75.83 0.0

Random res12 96.81 3.40 2.65 3.02 86.56 53.07 0.0

Random res123 96.51 3.06 4.63 3.85 81.15 14.64 4.46

Crossbatch res1 94.82 6.34 2.09 4.21 84.86 48.49 9.77

Crossbatch res12 94.90 5.08 5.15 5.12 78.26 47.98 39.20

Crossbatch res123 94.03 7.69 1.35 4.52 85.61 50.33 44.67

Given that each branch of the standard multi-modal ResNet baseline has four residual

blocks denoted by res1−4, we trained different models with MixStyle applied to the first three

layers, i.e., according to the original paper [45], placing Mixstyle after the 4th res block breaks

the inherent label space. To clarify the notation, res1 signifies that MixStyle is applied after

the first residual block, while res12 indicates MixStyle is applied after both the first and

second residual blocks, and so on. When analysing table 4.16, the results surpassed the

baseline in all experiments when using the random shuffling, which indicates a very different

behaviour when compared to the ViT baseline, which outperformed its baseline when using

the crossbatch shuffling.
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4.5.6 Concentration Loss Results

Another approach to improve cross-domain results involves the utilization of a domain-

invariant concentration loss LDiC that concentrates domain-invariant bonafide representa-

tions into a non-spoof class of data. One significant advantage of this method is that it does

not introduce additional computational complexity to any baseline model.

In contrast to the baseline models, which are only trained with a Cross-Entropy loss LCE,

here we add the LDiC loss to the LCE loss during the training of all baselines. Each baseline

is trained with different balance factors, denoted as λ = {0.2, 0.5, 0.7, 0.9} and the LDiC loss

is calculated by computing the L1 norm of all feature vectors that represent bonafide images

within the same batch of images, as shown in equation 3.14. Tables 4.17, 4.18 and 4.19 show

the results.

Table 4.17: Domain Generalization of the Multi-modal ViT Baseline using LDiC loss.

Dataset Balance Factor ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

ViT Baseline 97.42 3.40 0.37 1.89 96.67 81.86 72.45

λ=0.2 96.36 4.90 0.16 2.53 98.02 15.55 3.24

λ=0.5 97.10 3.77 0.57 2.17 97.33 79.69 46.47

λ=0.7 98.44 1.95 0.49 1.22 97.56 60.30 0.05

λ=0.9 97.82 2.74 0.69 1.71 96.22 33.33 1.63

Table 4.18: Domain Generalization of the Multi-modal ResNet Baseline using LDiC loss.

Dataset Balance Factor ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

ResNet Baseline 95.67 4.97 2.62 3.80 89.28 56.18 37.88

λ=0.2 94.88 4.60 6.42 5.56 72.78 0.0 0.0

λ=0.5 95.21 5.56 2.72 4.15 86.80 0.0 0.0

λ=0.7 93.29 6.97 6.02 6.49 0.0 0.0 0.0

λ=0.9 95.82 5.24 1.34 3.29 93.18 61.9 32.42
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Table 4.19: Domain Generalization of the Multi-modal Hybrid Baseline using LDiC loss.

Dataset Balance Factor ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

Hybrid Baseline 94.49 4.95 7.02 5.99 79.26 51.35 35.42

λ= 0.2 96.12 4.82 1.34 3.08 92.06 12.85 6.89

λ= 0.5 95.76 5.49 0.88 3.19 92.22 49.57 34.97

λ= 0.7 93.09 8.91 1.56 5.23 85.37 55.41 28.09

λ= 0.9 97.45 1.90 4.28 3.09 92.85 68.72 28.74

From the visualization of the last three tables, all baseline models benefited from concen-

trating the features of real faces into a single category and pushing them close to the origin,

as there is at least one balance factor in each model that boosted the cross-domain results

when comparared to its respective baseline.

4.5.7 Unified ViT Pipeline Results

The final stage of evaluation involves integrating all the above-mentioned approaches into

a unified pipeline, with the ViT baseline serving as the core. The objective is to determine

whether it is feasible to design a network that combines multiple enhancement approaches,

each individually boosting the baseline performance, and consequently improving the detec-

tion of attacks in cross-domain scenarios, which are the most challenging.

Based on the top-performing results obtained in previous sections, the final pipeline

includes the multi-modal ViT baseline backbone combined with a Squeeze-and-Excitation

fusion module, a crossbatch AP shuffling strategy for feature styling, and a concentration

loss LDic. The fusion and mixstyle strategies remain fixed, and experiments were conducted

using different balance factors λ, previously explicited in section 4.5.6.

Table 4.20: Unified ViT pipeline results on cross-domain scenario.

Dataset Assembly ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

ViT Baseline 97.42 3.40 0.37 1.89 96.67 81.86 72.45

SE + Crossbatch AP + λ= 0.2 95.46 6.21 0.06 3.14 98.00 0.0 0.0

SE + Crossbatch AP + λ= 0.5 95.58 5.55 0.12 3.48 93.52 0.12 0.12

SE + Crossbatch AP + λ= 0.7 95.68 5.38 1.45 3.42 94.64 0.0 0.0

SE + Crossbatch AP + λ= 0.9 97.96 2.33 1.28 1.80 96.25 0.39 0.04
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As table 4.20 shows, the initial three results demonstrate that stacking successful ap-

proaches does not necessarily lead to performance enhancements compared to the baseline.

In these cases, the model overfitted and produced poor results. However, there was one

scenario where the model slightly outperformed the baseline (97.96% Accuracy and 1.80%

ACER), which was when a balance factor λ=0.9 was considered. This suggests that even

though incorporating a more sophisticated fusion method along with mixstyle and a con-

centration loss can be effective, it is crucial to note that the model’s performance is highly

sensitive to parameterization.

The data of table 4.20 and all prior experiments in this thesis utilize transfer learn-

ing. All baselines are initialized with pretrained weights and subsequently fine-tuned for a

downstream task, where during backpropagation, all model parameters are updated. While

Mixstyle and LDiC do not introduce any learnable parameters, the same can’t be said about

the fusion module SE as it lacks pretrained weights. As a result, one can theorize that the

introduction of untrained parameters in the pipeline may distort the pretrained features dur-

ing training, potentially causing the model to converge to a local minimum. This is because

the model consists of a pretrained backbone that contains high-level feature information,

combined with a module containing learnable parameters that start training from scratch.

To address this issue, we took insights from the work of Ananya et al. [46] and tried

to improve the downstream performance of the model by freezing the pretrained backbone

parameters for the first 10 epochs. During this period, only the SE module and classification

head were trained. This technique aimed to establish a more balanced training process

and mitigate any potential distortion that could arise from the introduction of untrained

parameters in the early stages of training. The results are presented in table 4.21.

Table 4.21: Unified ViT pipeline results on cross-domain scenario with frozen backbone

during the first 10 epochs.

Dataset Assembly ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−4

Cross-

Domain

ViT Baseline 97.42 3.40 0.37 1.89 96.67 81.86 72.45

SE + Crossbatch AP + λ= 0.2 99.18 0.56 1.53 1.05 99.24 87.0 22.09

SE + Crossbatch AP + λ= 0.5 98.96 1.03 1.09 1.06 98.86 90.34 71.15

SE + Crossbatch AP + λ= 0.7 97.38 3.42 0.47 1.94 96.78 0.0 0.0

SE + Crossbatch AP + λ= 0.9 98.73 1.49 0.66 1.08 98.78 91 75.66

The results from the last table demonstrate that partially freezing the pretrained part
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of the network had a significant positive impact on performance, achieving an accuracy

of 99.18% and an ACER of 1.05% when considering a balance factor λ of 0.2. Notably,

the performance for other balance factors also consistently increased. This indicates that

by selectively freezing the pretrained parameters and allowing focused training on specific

modules until a certain point, the model’s overall performance improved considerably.
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5 Conclusion and Future Work

5.1 Conclusion

In conclusion, the primary focus of this dissertation was on developing algorithms for

spoof detection, particularly based on Vision Transformers, and addressing the challenges

associated with spoofing in authentication systems. Since Transformers have already demon-

strated state-of-the-art results in other areas of computer vision, how would they perform

as base framework for FAS tasks? To answer this question, three distinct baseline models

were developed: one based on a standard Vision Transformer, another based on a CNN,

and a Hybrid version that combined characteristics from both. Even though all networks

were evaluated using the same protocols, greater emphasis was placed on the ViT-based

architecture.

Considering the favorable results in section 4.5 attained by the ViT baseline, one may

conclude that this architecture can serve as an alternative to CNNs in the context of FAS.

Generally speaking, the self-attention mechanism has proven capable of extracting spoof-

specific discriminative features, despite the substantial increase in the number of parameters

and training time. In contrast, the performance of the Hybrid baseline, although improved

upon the ResNet on certain tasks, consistently fell short of the ViT’s performance, indicating

that convolutionally generated features do not necessarily assist or enhance the performance

of ViTs. Additionally, the study on the fusion methods confirmed that patch tokens can be

used on both ViT and Hybrid baselines for classification rather than the usual CLS tokens,

as they contain sufficient information about the image. Lastly, incorporating feature mixing

strategies in the lower layers of the model and introducing an invariant loss have proven to

be effective in developing a suitable pipeline for improving robustness in the cross-domain

scenario. This pipeline also showed that a model composed of a dissimilarity of pretrained

parameters benefits immensely from adjusting the early stages of training. As section 4.5.7

discussed, when leveraging a pretrained backbone with an untrained module, it is suitable
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to freeze the pretrained parameters at the start of the training and allow the unitialized

parameters to first converge to the backbone rather than training all parameters at once.

By analysing the domain evaluation results in sections 4.5.1 and 4.5.2, the experiments

showed that the performance within a single dataset was better than the performance across

multiple datasets for all baselines. This is because the capture conditions between WMCA

and CASIA-SURF are different, making it more challenging for the models to learn and

adapt to the unique characteristics of different datasets simultaneously, ultimately leading

to a worsening of results compared to intra-domain level. In zero-shot evaluation, despite

the evident collapse in the LOO-3D protocol, there was a notable success across all baselines

in detecting unknown attacks during the test phase, which demonstrates the ability of the

designed models to transfer knowledge from previously trained attacks to identify unseen

attack categories.

Finally, this work also proved that the overall effectiveness of attack detection significantly

improved in the presence of multi-modal information. Specifically, the tests conducted on

section 4.5.3.1 using the ViT baseline demonstrated that incorporating depth and infrared

information greatly enhanced the model’s ability to detect 2D and 3D attacks. Naturally,

this highlights the necessity to supplement the RGB camera with depth and infrared sensors

during face capture to increase security during authentication.

5.2 Future Work

Based on the contributions provided by this thesis, we suggest that future experimental

work in this field can be directed towards the following directions:

• Extend the cross-domain evaluation to zero-shot cross-domain. This can be achieved by

acquiring a third multi-modal PAD dataset and evaluating the network’s generalization

ability by training on the first two datasets and testing on the third. On top of that,

instead of treating this problem as a binary classification task, it should be extended

to a multi-class detection problem, where each class is assigned to a unique PA.

• Alongside the standard ViT used in this work, it would be interesting to delve into the

unique properties of some variants and explore their use for spoof detection, as some

of them were designed to address the limitations of ViTs. Since these architectures are

usually large-scale models, further investigation should focus on scaling these models
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to low hardware requirements. This is necessary to ensure that they can be used in

real-time applications or on devices with limited resources.

• In addition, we believe that the performance can be improved by utilizing other loss

functions and exploring different model parameters. It would also be valuable to in-

vestigate other data augmentation strategies that are more suitable for FAS.
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Appendix A

Ablation Study on the baseline models

A.1 Intra-Domain Appendix

Table A.1: Performance of the Multi-Modal ViT baseline on the grandtest protocol of the

WMCA dataset.

Dataset LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

WMCA

grandtest

0.1 79.10 0.66 98.33 49.49 2.37 00.42 0.02

0.01 78.47 08.50 71.36 39.93 4.52 0.59 0.14

0.001 92.42 6.81 10.52 8.66 52.54 16.57 9.88

0.0001 97.71 2.61 1.03 1.82 90.19 71.30 50.52

0.00001 99.18 0.94 0.37 0.65 99.70 89.70 84.61

0.000001 99.73 0.2 1.25 0.64 99.57 99.04 98.54
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Table A.2: Performance of the Multi-Modal ViT baseline on the CASIA-SURF dataset.

Dataset LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

CASIA-

SURF

0.1 91.54 7.12 11.55 9.34 62.83 22.80 5.68

0.01 94.10 4.77 8.51 6.64 76.01 39.17 12.95

0.001 97.44 1.93 4.0 2.97 92.26 73.81 49.43

0.0001 98.67 1.01 2.07 1.54 97.89 88.18 70.56

0.00001 88.87 0.0 15.96 7.98 99.94 96.65 86.81

0.000001 78.75 30.46 0.0 15.23 99.01 94.98 87.76

Table A.3: Performance of the Multi-modal ResNet baseline on the grandtest protocol of the

WMCA dataset.

Dataset LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

WMCA-

grandtest

0.1 96.95 2.92 3.55 3.24 93.83 68.54 60.07

0.01 96.89 3.40 2.02 2.71 91.37 64.12 58.03

0.001 98.13 1.85 1.97 1.91 96.45 90.26 86.54

0.0001 98.74 1.56 0.10 0.83 98.12 72.87 64.89

0.00001 98.33 1.86 0.90 1.38 96.07 80.83 62.61

0.000001 97.64 1.54 5.51 3.53 88.52 48.64 36.64

Table A.4: Performance of the Multi-Modal ResNet baseline on the CASIA-SURF dataset.

Dataset LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

CASIA-

SURF

0.1 93.99 6.80 4.19 5.50 83.64 67.77 0.00

0.01 99.38 0.43 1.05 0.74 99.59 96.17 89.12

0.001 87.78 16.51 2.32 9.41 83.65 64.86 54.19

0.0001 82.68 24.82 0.02 12.42 89.94 64.27 44.08

0.00001 90.81 13.14 0.06 6.60 97.87 86.75 57.73

0.000001 81.17 26.98 13.51 96.22 83.58 63.43
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Table A.5: Performance of the Multi-modal Hybrid baseline on the grandtest protocol of the

WMCA dataset.

Dataset LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

WMCA-

grandtest

0.1 90.76 5.57 23.27 14.42 16.96 3.65 1.83

0.01 87.06 1.49 29.12 56.75 38.16 0.59 0.52

0.001 98.63 1.32 1.57 1.44 97.25 90.23 86.83

0.0001 99.12 0.85 1.03 0.94 99.10 50.90 55.54

0.00001 99.15 0.84 0.89 0.86 99.44 85.97 73.76

0.000001 99.34 0.55 1.10 0.82 99.53 84.78 66.54

Table A.6: Performance of the Multi-modal Hybrid baseline on the CASIA-SURF dataset.

Dataset LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

CASIA-

SURF

0.1 95.47 2.44 9.33 5.89 83.03 45.09 21.65

0.01 98.62 0.75 2.85 1.8 97.83 83.29 63.07

0.001 96.14 3.40 4.90 4.15 87.43 53.76 23.85

0.0001 70.73 41.92 0.09 21.01 89.17 52.50 18.05

0.00001 81.78 26.12 0.0001 0.1306 0.9672 0.8449 0.6746

0.000001 70.37 42.49 0.0 21.24 96.98 80.88 51.83
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A.2 Appendix Cross-Domain

Table A.7: Cross-domain performance of the Multi-modal ViT baseline.

Baseline LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

ViT

0.1 87.46 6.75 28.07 17.41 56.00 24.07 6.39

0.01 91.02 4.23 12.1 8.16 69.59 31.98 18.6

0.001 96.49 3.47 3.63 3.55 96.49 75.61 60.88

0.0001 97.42 3.40 0.37 1.89 96.67 81.86 2.45

0.00001 92.93 9.70 0.01 4.86 99.38 91.79 78.90

0.000001 95.57 6.08 0.01 3.05 99.64 97.57 87.65

Table A.8: Cross-domain performance of the Multi-modal ResNet baseline.

Baseline LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

ResNet

0.1 95.67 4.97 2.62 3.80 89.28 56.18 37.88

0.01 95.00 6.67 0.54 3.61 91.19 0.0 0.0

0.001 92.54 10.10 0.39 5.24 95.07 82.55 62.20

0.0001 91.02 12.30 0.06 6.18 95.17 85.39 74.25

0.00001 94.62 7.26 0.36 3.81 96.62 91.44 78.17

0.000001 88.17 16.08 0.44 8.26 93.46 76.64 47.33
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Table A.9: Cross-domain performance of the Multi-modal Hybrid baseline.

Baseline LR ACC(%) APCER(%) BPCER(%) ACER(%)
TPR@FPR(%)

10−2 10−3 10−3

Hybrid

0.1 89.98 9.83 10.52 10.17 54.04 17.43 6.26

0.01 92.73 6.49 9.37 7.93 62.16 34.25 22.25

0.001 94.49 4.95 7.02 5.99 79.26 51.35 35.42

0.0001 75.43 33.73 0.0 16.87 87.51 61.78 41.31

0.00001 73.53 36.34 0.01 18.17 93.59 80.00 66.67

- - - - - - - -

73


	Acknowledgements
	Abstract
	Resumo
	List of Contents
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Challenges and Breakthroughs
	1.3 Objectives
	1.4 Document Structure

	2 State-of-the-Art
	2.1 Evolution of Face Anti-Spoofing methods
	2.2 CNN-based methods for Face Anti-Spoofing
	2.2.1 Single cue-based methods
	2.2.2 Multiple cue-based methods
	2.2.3 Multi-modal based methods

	2.3 Attention-based methods for Face Anti-Spoofing
	2.3.1 Vision Transformer
	2.3.1.1 Vision Transformer Variants

	2.3.2 Hybrid Vision Transformer
	2.3.3 ViT-based methods using RGB images for FAS
	2.3.4 ViT-based methods using multi-modal images for FAS

	2.4 Domain Generalization methods for Face Anti-Spoofing
	2.4.1 Style Augmentation based methods

	2.5 Summary

	3 Methodology
	3.1 Multi-modal ViT Baseline Network
	3.1.1 Patch Embeddings
	3.1.2 Positional Encodings
	3.1.3 Encoder

	3.2 Multi-modal ResNet Baseline Network
	3.2.1 Residual Connections

	3.3 Multi-modal Hybrid Baseline Network
	3.3.1 Hybrid Patch Embeddings

	3.4 Multi-modal Fusion Methods
	3.5 Style Augmentation: Mixstyle
	3.6 Loss Functions
	3.6.1 Cross-Entropy Loss
	3.6.2 Domain-invariant Concentration Loss


	4 Results and Discussion
	4.1 Datasets
	4.1.1 WMCA
	4.1.1.1 Evaluation Protocols

	4.1.2 CASIA-SURF
	4.1.2.1 Evaluation Protocol


	4.2 Implementation Details
	4.3 Evaluation Metrics
	4.4 Vision Transformer Interpretability
	4.5 Validation Results
	4.5.1 Intra-domain Results
	4.5.2 Cross-domain Results
	4.5.3 Zero-shot Learning Results
	4.5.3.1 Multi-modal Data vs RGB Spectrum

	4.5.4 Fusion Methods Results
	4.5.5 Mixstyle Results
	4.5.6 Concentration Loss Results
	4.5.7 Unified ViT Pipeline Results


	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	6 References
	A Ablation Study on the baseline models
	A.1 Intra-Domain Appendix
	A.2 Appendix Cross-Domain


