
Lucyanno Frota Fernandes

SMAP
A S EMANTIC MAP PING FRAMEWORK FOR MOBILE

ROBOTS

Master’s dissertation submitted in partial fulfilment of the
Master Degree in Electrical and Computer Engineering

specialization in Robotics Control and Artificial Intelligence,
supervised by Professor Doctor Rui Paulo Pinto da Rocha, and

presented to the Department of Electrical and Computer
Engineering of Faculty of Sciences and Technology of

University of Coimbra.

October, 2023

SMAP: A Semantic Mapping

Framework for Mobile Robots

Lucyanno Frota Fernandes

Coimbra, October 2023

SMAP: A Semantic Mapping

Framework for Mobile Robots

Supervisor:

Prof. Doctor Rui Paulo Pinto da Rocha

Jury:

Prof. Doctor Jorge Manuel Moreira de Campos Pereira Batista

Prof. Doctor Lino José Forte Marques

Prof. Doctor Rui Paulo Pinto da Rocha

Dissertation submitted in partial fulfillment for the degree of Master of Science in Electrical

and Computer Engineering specialization in Robotics Control and Artificial Intelligence.

Coimbra, October 2023

Acknowledgements

I want to express my sincere gratitude to all those who have supported and contributed

to completing this dissertation. Without their assistance, guidance, and encouragement, this

work would not have been possible.

I am profoundly thankful to my advisor, Prof. Doctor Rui Paulo Pinto da Rocha, for

his unwavering support, insightful guidance, and mentorship throughout this research. His

expertise and dedication were instrumental in shaping this project and my academic journey.

I am also grateful to the members of my dissertation committee, Prof. Doctor Jorge

Manuel Moreira de Campos Pereira Batista and Prof. Doctor Lino José Forte Marques, for

their valuable feedback and constructive criticism that significantly improved the quality of

this document.

I extend my thanks to the faculty and staff at the University of Coimbra for providing an

enriching academic environment and valuable resources for my research, special thanks to

Fábio André dos Santos Faria for helping in the process of testing the Jetson board powered

by an alternative power source.

My appreciation goes to my family and friends for their unwavering encouragement and

moral support. Their patience and understanding during the demanding phases of this

project were essential in keeping me motivated. I want to give special thanks to my friends,

Naiara Simões, New New New New New New New Nicole Petra Kraemer Medina and Victor

Kawazoe Bem, for helping me in the execution of the experiments that were performed in

this work.

In closing, I am grateful to all those mentioned above and to anyone else who has played

a part, however small, in the successful completion of this academic document.

Thank you all for your contributions and support.

ii

Resumo

Esta dissertação de mestrado tem como objetivo geral criar um espaço comum entre

diferentes abordagens de mapeamento semântico. Para o efeito, é proposta uma framework

espaciotemporal probabilística modular e versátil. Esta abordagem tem as seguintes vanta-

gens: torna possível a fácil integração de novos métodos de deteção e classificação semânticos;

é expansível, tornando o sistema mais adaptável às características e necessidades específi-

cas de cada aplicação; é robusta na forma como lida com mudanças no ambiente e com a

incerteza; é computacionalmente eficiente e escalável, tornando praticável o crescimento do

mapa e suas representações quando o sistema é executado num dispositivo de computação

de borda instalado no robô.

O pipeline semântico que corporiza o framework proposto torna possível o uso de de-

tetores estado da arte pré-treinados para estimar características 3D primitivas de objetos

detetados e posicioná-los num mapa topológico probabilístico. A framework também pode

lidar com a adição de novas classes ao sistema sem precisar recriar mapas antigos ou retreinar

o sistema inteiro devido à classificação expansível.

O mapa semântico topológico utilizado é leve tanto em espaço de armazenamento quanto

em requisitos de processamento. A representação pode armazenar informações mais ricas

em menos espaço se comparado com mapas semânticos convencionais baseados em grelhas

de ocupação.

O sistema foi implementado e testado num robô móvel equipado com um System On

Module (SOM) Jetson (Nvidia), usando um ambiente de contentores Docker que possibilita

a sua replicabilidade e boa escalabilidade.

iii

Abstract

This dissertation focuses on creating a common ground between different semantic map-

ping approaches. With this aim, a probabilistic spatio-temporal framework is proposed,

which has several advantages: it is modular, to make possible the easy integration of new

semantic detection and classification methods; it is expandable, to introduce more adapt-

ability to the system through time; it is robust in the way it handles environment changes

and uncertainties; it is computational efficient enough to deal with the growth of the map

and its representations while executing locally on the robot, in an onboard edge computing

device.

The proposed semantic pipeline makes possible the use of pre-trained popular state-of-

the-art detectors to estimate primitive 3D geometric characteristics of detected objects and

place them into a probabilistic Topological Semantic Map. The framework can also handle

the addition of new classes to the system without the need to recreate old maps or retrain

the entire system due to the expandable classification.

The Topological Semantic Map utilized is lightweight in both storage space and compu-

tational requirements. It can store richer information in less space than conventional grid

semantic maps.

The system was deployed and tested on a mobile platform equipped with a Nvidia Jet-

son System On Module (SOM) using a Docker containerized environment to have better

applicability and scalability.

iv

“We cannot solve problems with the kind of thinking we employed when

we came up with them."
— Albert Einstein

vi

Contents

Acknowledgements ii

Resumo iii

Abstract iv

List of Acronyms xi

List of Figures xiii

List of Tables xvi

List of Pseudocodes xvii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Statement . 2

1.3 Objectives . 4

1.4 Document Overview . 5

2 Related Work and Fundamentals 6

2.1 Object Recognition . 9

2.1.1 YOLO . 9

2.2 Stacking Ensembles . 11

3 Proposed Pipeline 13

3.1 Sampling . 14

3.2 Object Detection . 14

3.3 Geometric Segmentation . 15

3.4 Binned Depth Map . 23

3.5 Data Association . 25

viii

3.5.1 Topological Map and Vertex Structure 26

3.5.2 Visibility Histogram . 27

3.5.3 Semantic Update . 29

3.5.4 Positive Observations . 34

3.5.5 Negative Observations . 35

4 System Implementation 38

4.1 Container Architecture and Communication 39

4.2 ROS Architecture . 43

5 Experiments and Evaluation 45

5.1 Execution Times . 47

5.2 Point Decay . 49

5.3 Object Registration . 50

5.4 Map Size . 54

6 Conclusion 55

7 Bibliography 57

A Complete system pipeline 64

B Metrics 67

B.1 TPr, TNr, FPr, FNr . 67

B.2 Accuracy (ACC) . 68

B.3 Precision (PRE) . 68

B.4 Average Precision (AP) . 68

B.5 Mean Average Precision (MAP) . 68

B.6 Intersection over Union (IoU) . 68

C Additional Images 70

C.1 Geometric Segmentation Pipeline . 70

C.2 RVIZ SMAP Map Representation . 76

C.3 SMAP Grid Representation . 78

C.4 Mobile Robotics Lab (MRL) . 88

C.5 ROS Diagrams . 94

C.6 P3-DX Plataform and Sensors . 97

ix

C.7 Box Plot . 101

D System Parameters 102

E Extra Results 105

E.1 Object Registration Position Error . 105

E.2 Expandable Classification Test . 107

F Auxiliary Tools 111

F.1 ROS . 111

F.2 NVIDIA Jetson . 112

F.3 Docker . 113

F.4 Thread Timeout Lifetime Calculation . 114

F.5 Parameter Tuning Tool . 115

F.6 Map Exporter . 116

G Jetson AGX Xavier ROS 2 Emergency Stop 122

H Project Repositories 124

H.1 GitHub Repositories . 124

H.1.1 SMAP Environments . 124

H.1.2 SMAP Packages . 124

H.2 DockerHub Repositories . 124

I Videos 126

J System setup tutorial 127

K Docker Image Compile Time 131

x

List of Acronyms

AABB Axis Aligned Bounding Box

AMCL Adaptive Monte Carlo Localization

AP Average Precision

ARM Advanced RISC Machines

BB Bounding Box

BDM Binned Depth Map

CPU Central Processing Unit

CSPDarknet53 Cross Stage Partial Darknet53

CUDA Compute Unified Device Architecture

cuDNN CUDA Deep Neural Network

DDS Data Distribution Service

FN False Negative

FoV Field of View

FP False Positive

GPU Graphics Processing Unit

GUI Graphical User Interface

HOG Histogram of Oriented Gradients

IoU Intersection over Union

IPC Inter Process Communication

ISR Institute of Systems and Robotics

L4T Linux For Tegra

LED Light Emitting Diode

xi

LIDAR Light Detection and Ranging

ML Machine Learning

MLP Multi Layer Perceptron

MRL Mobile Robotics Lab

NMS Non-Maximum Suppression

OS Operating System

OvA One-vs-All

PANet Path Aggregation Network

PCL Point Cloud Library

PDF Probability Distribution Function

PRE Precision

QoS Quality of Service

RMSE Root Mean Square Error

RoA Region of Acquisition

RoE Region of Exclusion

RoI Region of Interest

ROS Robot Operating System

R-CNN Regions with Convolutional Neural Network

SDK Software Development Kit

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SMAP Semantic Mapping

SOM System On Module

SOR Statistical Outlier Removal

SSD Single Shot Detector

SURF Speeded Up Robust Features

SVM Support Vector Machine

TCP Transmission Control Protocol

xii

TF Transform

TN True Negative

TOPS Tera Operations Per Second

TP True Positive

TRT Tensor RT

YOLO You Only Look Once

List of Figures

1.1 Spatial and semantic information hierarchies 3

1.2 Milk box . 4

2.1 YOLO bounding boxes . 10

2.2 YOLOv5 performance comparison . 11

2.3 Stacking ensemble diagram . 12

3.1 Semantic pipeline diagram. 13

3.2 YOLOv5 detections . 15

3.3 Geometric segmentation pipeline . 16

3.4 Crop filter comparison . 17

3.5 RoI illustration . 18

3.6 RoI filter comparison . 18

3.7 Voxelization illustration . 18

3.8 Voxelization comparison . 19

3.9 SOR illustration . 19

3.10 SOR filter comparison . 20

3.11 Euclidean clustering . 21

3.12 Clustering comparison . 21

3.13 AABB illustration . 22

3.14 Confidence estimation response . 23

3.15 Binned depth map illustration . 24

xiii

3.16 Binned depth map view 1 . 25

3.17 Depth map bin projection. 25

3.18 Visibility histogram illustration . 28

3.19 Histogram observation angle illustration 29

3.20 Stacking classification . 31

3.21 Combined set x̂ example . 31

3.22 Positive observation flowchart . 34

3.23 Negative observation flowchart . 36

3.24 Occlusion panels illustration . 37

4.1 Container architecture diagram . 40

4.2 SMAP ROS nodes graph . 43

5.1 SMAP map . 45

5.2 SMAP object indicatior . 46

5.3 SMAP place indicator . 47

5.4 Object detector execution times . 48

5.5 Geometric segmentation times . 48

5.6 Callback times . 49

5.7 Geometric segmentation point cloud size decay 50

5.8 SMAP visualized in RVIZ2 . 51

5.9 SMAP estimation problems . 52

5.10 Map size comparison . 54

A.1 Detailed system diagram . 65

B.6.1 Intersection over union . 69

C.1.1 Reference image . 70

C.1.2 YOLOv5 detections . 71

C.1.3 Reference point cloud . 71

C.1.4 Object segmentation crop filter . 72

C.1.5 Object segmentation RoI filter . 72

C.1.6 Object segmentation voxelization . 73

C.1.7 Object segmentation SOR filter . 73

C.1.8 Object Segmentation Clustering . 74

xiv

C.1.9 Object segmentation 3D AABB estimation 74

C.1.10 Binned depth map view 1 . 75

C.1.11 Binned depth map view 2 . 75

C.2.12 SMAP map of the MRL . 77

C.3.13 Occupancy grid . 78

C.3.14 SMAP 2D projection of class backpack 79

C.3.15 SMAP 2D projection of class bottle . 80

C.3.16 SMAP 2D projection of class chair . 81

C.3.17 SMAP 2D projection of class couch . 82

C.3.18 SMAP 2D projection of class keyboard 83

C.3.19 SMAP 2D projection of class suitcase . 84

C.3.20 SMAP 2D projection of class table . 85

C.3.21 SMAP 2D projection of class tv . 86

C.3.22 SMAP 2D projection of class umbrella 87

C.4.23 MRL plant . 89

C.4.24 MRL object locations . 90

C.4.25 Experiment 2 path . 91

C.4.26 Mobile Robotics Lab (MRL) 1 . 92

C.4.27 Mobile Robotics Lab (MRL) 2 . 92

C.4.28 Mobile Robotics Lab (MRL) 3 . 93

C.4.29 Mobile Robotics Lab (MRL) 4 . 93

C.5.30 ROS node diagram . 95

C.5.31 ROS TF tree diagram . 96

C.6.32 Robotic plataform . 98

C.6.33 Jetson AGX Xavier with e-top circuit and ZED 2 camera 99

C.6.34 ZED 2 stereo camera . 99

C.6.35 Hokuyo URG-04LX laser range finder . 99

C.6.36 Intel 8265 M.2 wireless network . 100

C.7.37 Box plot summary illustration . 101

E.2.1 Multiple detectors performance impact 108

F.1.1 ROS IPC diagram . 112

F.2.2 Jetson AGX Xavier . 112

F.3.3 Docker NVIDIA toolkit architecture diagram 114

xv

F.4.4 Thread timeout function response. 115

F.5.5 Parameter tuning tool. 116

F.6.6 SMAP topological map RVIZ representation 117

F.6.7 SMAP topological map . 118

F.6.8 Occupancy grid . 119

F.6.9 Occupancy grid without obstacles . 120

F.6.10 2D representation of the semantic map for the class TV 121

G.1 Emergency stop circuit diagram . 122

List of Tables

2.1 Semantic mapping related works comparison 8

5.1 Object registration metrics. 50

5.2 Position RMSE. 53

D.1 System parameters part 1 . 103

D.2 System parameters part 2 . 104

E.1.1 Experiment 1. 105

E.1.2 Experiment 2. 106

E.1.3 Experiment 3. 107

E.2.4 Even odd classes part 1 . 109

E.2.5 Even odd classes part 2 . 110

K.1 Time necessary to compile the docker images developed. 131

xvi

List of Pseudocodes

3.1 Statistical outlier removal filter . 20

3.2 AABB estimation . 22

3.3 Confidence estimation . 23

3.4 Topological map structures . 26

E.5 Even odd model index selection . 108

F.6 Object estimator callback . 115

xvii

1 Introduction

The last three decades have been marked by technological advances that were key in

solving current problems in healthcare, space exploration, industrial development, and many

others. Most of these achievements can be attributed to computers, due to the high avail-

ability of cheap computing power, and to robots, for their ability to work with high loads

and operate in places with adverse conditions.

1.1 Context and Motivation

Despite many improvements in processing power and robotics autonomy, the robots of

today are limited mostly because often they only can perform tasks in constrained environ-

ments or can only understand a limited set of low-level commands that are almost unique to

each robot. To follow the tendencies proposed by industry 4.0 and become more popular in

domestic applications [1], those robots need to operate in complex dynamic, and uncertain

environments while interacting with people in a natural way.

Semantic mapping provides a way to relate high-level labels (e.g. “chair”, “toy”, “com-

puter”, ...) with low-level sensor data in map structures. Applications using those structures

should easily give robots the capability to share richer map features with less bandwidth

(e.g. instead of sending a raw point cloud that describes a chair, the robot can send just

a sparse reconstruction and the label "chair") and be capable of understanding high-level

commands, expressed in a human-like way (e.g. find(“table”) or go_to(“office”) instead of

go_to(x=47.8,y=5.30,z=-169.2) [2]. Additionally, the understanding of more abstract con-

cepts is a step towards richer human-robot interactions, such as object manipulations be-

tween humans and robots using natural language.

The attribution of semantic information about the environment perceived by the robot

is key to robots becoming present in domestic environments and working cooperatively with

humans in industries, offices, and hospitals.

1

1.2 Problem Statement

Often, robots are unable to interpret data as humans do. They may only collect sensorial

data and interpret it as points in space, which is enough information to navigate a workspace

when represented in a robotic navigation map. However, it is not enough if the robot has

to engage in natural and human-like interactions with users because it lacks meaningful

information for humans about the semantics of objects and places.

Two important concepts to consider are anchoring and ontology. The first one is a well-

known concept in robotics and is defined in [3] as:

“We call anchoring the process of creating and maintaining the correspondence between

symbols and sensor data that refer to the same physical objects.”

Ontology, the second one, is an area of study in philosophy that follows a more abstract

concept. In philosophy, the term was defined in [4] as:

“[...] ontology, which can be defined as the science of what is: of the various types and

categories of objects and relations in all realms of being.”

A less abstract definition of ontology applied to computer science is defined in [5] as:

“A specification of a representational vocabulary for a shared domain of discourse”,

“definitions associate the names of entities in the universe of discourse (e.g., classes,

relations, functions, or other objects) with human-readable text describing what the names

are meant to denote is called an ontology”

To explain what Semantic Mapping is, one first has to understand what “semantics”

is. Semantics is the study of the set of characteristics that can be attributed to a thing to

describe it. Semantic Mapping can be defined as the ability of the robot to perform anchoring

by clustering features in sensorial data which are then used to detect and classify things (i.e.

objects, places) in the environment using human-like categories (i.e. symbols), to further

establish a relationship between the detected things, the robot map, and a conceptual map

(Figure 1.1).

An example can be the semantics associated with the object shown in Figure 1.2. By

looking at it, it is possible to relate its shape to a thing that holds liquids; and, combined

2

Figure 1.1: The spatial and semantic information hierarchies. On the left, spatial information

is gathered by the robot sensors. On the right, is semantic information that models concepts

in the domain and the relations between them. Image reproduced from [2].

3

with the label on the box, one gets enough information to determine that it is a milk box

undoubtedly. Therefore, after determining its semantics, the object is no more for the robot

than just a geometric volume located somewhere in the workspace, but also a human-like

meaning is assigned to it, which embeds key information about possible interactions of the

object with the human user and the environment. This arises when e.g. the user asks the

robot “Please bring some milk to me”; or the robot reasons that if that object is found in

some place, this is perhaps a kitchen or a dining room.

Figure 1.2: Milk box.

By using an ontology and building a knowledge base based on it, the semantic mapping

concept can be expanded to incorporate even more information and improve the classification

of objects. As an example, one can reutilize the milk box analogy; by knowing the shape of

the object, it can be inferred that it must be a fluid container; consequently, we can increase

the probability of the object being classified as a milk box or a juice box. One can also use

ontology to reason about objects to decide where to search for them; for instance, a milk

box requested by the user is more likely to be found in places like a kitchen or pantry; or

even inside another object, like a fridge.

1.3 Objectives

The main goal of this dissertation is to develop a modular semantic mapping framework

that can assign meaningful labels to the data collected by a robotic system and combine the

results into a coherent map, to be later capable of performing tasks with richer human-robot

interactions.

The specific objectives to be achieved by the framework are:

• Introducing a framework capable of detecting and extracting the geometry of objects

in the surrounding environment, for later combining it to the robot map.

4

• To create a modular structure that can work with most of the popular state-of-the-art

object detectors without the need to reshape the main code.

• To have expandable entity classification.

• Create a mechanism that can handle the uncertainty associated with temporal varia-

tions.

• To be lightweight enough to be deployable in an edge computer.

• To be implemented in a containerized environment and in a popular and recent middle-

ware such as ROS1 2, in order to be available for further research and easily integrate

into other systems.

In order to validate the developed framework, it should be integrated into a Pioneer P3-

DX module robot driven by a SOM Jetson AGX Xavier2. The robotic platform is equipped

with a ZED 2 Stereo Camera3, and a Hokuyo URG-04LX Light Detection and Ranging

(LIDAR).

1.4 Document Overview

This document is divided into 6 chapters each discussing one of the main aspects of the

work. The first chapter is an introduction to the subject to be explored; it describes the mo-

tivation and the objectives of the work. The second chapter talks about the research on the

topic and explains some key aspects of different state-of-the-art implementation. Chapter 3

discusses the functionality developed in this work; it proposes a semantic pipeline from sam-

pling to the semantic map and explains the steps needed in the process while abstracting

implementation details. Chapter 4 explains the details of the system implementation re-

garding sensors utilized, container architecture and relationship, ROS architecture, and the

third-party tools utilized. Chapter 5 talks about the experiments conducted with the mobile

platform P3-DX and its results. Finally, Chapter 6 highlights the main aspects addressed in

the document and suggests some future improvements.

1ROS is an open source middleware developed by Open Robotics: https://www.openrobotics.org/.
2https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
3https://www.stereolabs.com/zed-2/

5

https://www.openrobotics.org/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.stereolabs.com/zed-2/

2 Related Work and Fundamentals

The concept of semantic mapping has been explored a quite a long time. One of the first

researchers was Benjamin Kuipers in 1978 with the paper “Modeling spatial knowledge” [6]

where he tried to embed spatial knowledge in topological maps aiming for the use of concepts

like “you are here”, “place”, “path”, and “go-to(place A, place B)”. In later contributions [7, 8],

Kuipers determined a relationship between topological and metric data and related those

with the control commands performed by the robot. This was the first effort in the area

and it was mainly manual; it was a deterministic approach and did not introduce much

information to the map.

In the early 2000s, the first confidence-based approach was proposed by Galindo [2] using

topological maps to represent semantics, and metric maps to represent the environment.

The relationship between the maps was achieved using anchoring (proposed by [3]) between

links of two hierarchy graphs that relate spatial information (sensorial data) to conceptual

knowledge. The ability to make decisions taking uncertainty into account became a baseline

for most of the future works in the area.

Most of the future works used a confidence-based spatio-temporal accumulation method

to ensure more stable results with less impact of false positives. This method utilizes a map

represented by discrete cells arranged in a grid, in which each cell stores a probability of that

cell to be occupied (i.e. 2D grid map). In this case, in addition to the occupancy value, each

cell contains a vector of beliefs of each possible class [9, 10]. A similar approach was used

in [11]. The authors used a vector like [9, 10], but with the addition of θ values to represent

the complete pose in which the observation was acquired. Another slight variation was used

in [12]. In this case, there is a grid map for each semantic class. A common downside of these

approaches is the more extensive memory requirement to store the map, especially [12, 13], if

compared with works based on topologic maps for semantic representation, like [7, 8, 11, 14].

Conceptually, these work in the same way as the ones based on a grid map, but have a more

compact and efficient representation in terms of memory requirements.

6

The works [14, 15] follow the same idea as Galindo but with a more realistic repre-

sentation, using a topologic map to represent the semantics and a probabilistic relational

model that integrates commonsense knowledge about the environment (i.e. a conceptual

map). This approach is capable of building new relations between concepts observed in the

workspace and can improve the inference capability about the environment. For instance,

if a computer is detected, the weights for classifying the place as a room or an office are

increased. Despite the use of detected object information to better estimate the place, those

approaches were scene-oriented and based on Support Vector Machine (SVM) classifiers.

The majority of articles focus on indoor environments, although ironically one of the first

works in the semantic mapping research area was based on outdoor environments [7]. This as-

pect is fundamental to describe the main challenges related to the mapping task. In outdoor

applications, the biggest challenges are to develop sensorial models robust enough to deal

with adverse conditions (i.e. foliage, translucent surfaces), adapt the robotic tools (e.g. map-

pings framework, object detection, etc.) to work on a much larger scale, and develop highly

efficient object detection/classification methods. In contrast, indoor applications are simpler

in terms of the robustness of low-level system characteristics but tend to be more accurate.

There are some examples of the combination of multiple sources of detection/classification

into a more diverse or accurate result [11, 14, 12] (i.e. Multi-Cue detection/classification),

and dynamic models that can learn conceptual relationships autonomously [14].

There are only a few examples of research in the robotics community that introduce

the geometry of the objects in the map [1, 16, 13]. The use of object geometry is more

common in the computer vision community, in works like [17, 18, 19, 20], mostly because of

the high computational cost of the tasks which most mobile robots cannot afford (e.g. mesh

segmentation, 3D object reconstruction).

There are a few open research problems in previous works about semantic mapping:

• There are no standards in the way labels are related to the point clouds or the map,

i.e. there is a multitude of distinct map representations.

• As the implementations are mostly platform-specific and are not easily replicable in

other circumstances, adding a new feature means doing almost all the work from the

beginning.

• The lack of conventions makes difficult the adaptation to robotics of solutions from

computer-vision applications.

7

Because of these problems, it is hard to benchmark different methods. Usually, the

articles only present comparisons of the same method in different datasets or scenarios, but

there is no indication of meaningful comparative benchmarks with similar methods.

B
.K

ui
pe

rs
[8

]

C
.G

al
in

do
[2

]

R
.G

oe
dd

el
[9

]

Y
.K

at
su

m
at

a
[1

0]

A
.P

ro
no

bi
s

[1
1]

N
.B

lo
do

w
[1

]

N
.S

ün
de

rh
au

[1
2]

A
.P

ro
no

bi
s

[1
4]

R
.B

.R
us

u
[1

3]

J.
C

.d
.

C
.S

.F
er

na
nd

es
[2

1]

N
.S

ün
de

rh
au

[2
2]

D
.M

at
ur

an
a

[2
3]

T
hi

s
W

or
k

Indoor Environment X X X X X X X X X X X X

Outdoor Environment X X

Single-Cue Classification X X X X X X X X X*

Multi-Cue Classification X X X X*

Object Detection X X X X X X X X X*

Place Detection X X X X X X X X X*

Expandable Classification X X X

Semantic Grid Map X X X X X X X X X X

Semantic Topological Map X X X X X

Object Reconstruction X X X X

Confidence-Based X X X X X X X X X X X

Spatio-Temporal Coherence X X X X X X X X X

Conceptual Map X X X X X X X

Automatic Concept Building X

Table 2.1: Semantic mapping related works comparison. (*) Given the modularity of the

system, these features are dependent on the detectors utilized in the application.

A comparison of the methods surveyed in this section is presented in Table (2.1). The

table shows that features such as Confidence-Based and Spatio-Temporal Coherence are

mandatory in semantic mapping models. Additionally, most of the works use Single-Cue

Classification and use Semantic Grid Maps. Rare characteristics are Expandable Classi-

fication and Automatic Concept Building. This dissertation proposes a versatile modular

8

framework that is independent of a specific object detector and gives the user the ability to

tune the computational cost and model performance by selecting different detectors.

2.1 Object Recognition

Object recognition is a field of computer vision that aims to identify objects in images.

It is primarily composed of two main tasks: object detection and object classification. These

two tasks are closely related but are essentially different, as described by Zheng Song in [24]:

“The object classification task aims to predict the existence of objects within images,

whereas the object detection targets localizing the objects.”

In the early 2000s, the task of detecting objects in images where performed by region

descriptors like Histogram of Oriented Gradients (HOG) and Scale-Invariant Feature Trans-

form (SIFT). The first one, HOG [25], has fixed-size oriented square boxes as descriptors,

and the orientation of the boxes is determined by the gradients around the key points. The

second one, SIFT [26, 25], is more robust and is like an extension of HOG, it adds a final

step that resamples local pixels into planes with multiple scales and orientations to better

estimate the correct one.

Despite the robustness of SIFT in dealing with affine transformations in its patches

and its faster version Speeded Up Robust Features (SURF) [26, 25], those methods were

outperformed by non-blockwise region based techniques like Regions with Convolutional

Neural Network (R-CNN) [27], Fast R-CNN [28] and Faster R-CNN [29].

The current state-of-the-art methods are Single Shot Detector (SSD), You Only Look

Once (YOLO), and Retina Net. All three were inspired by the region proposal concept

introduced by Girshick in [27], but each of them tries to improve the accuracy or latency

in its manner. Being the SSD the best in terms of latency, RetinaNet the best in terms of

accuracy, and YOLO as the best overall performance between lower latency and accuracy.

2.1.1 YOLO

YOLO is a state-of-the-art real-time object detector and classifier. It was initially pro-

posed by Joseph Redmon in 2015 [30] and became one of the main methods used in many

applications related to object detection. Over the years YOLOv2 and YOLOv3 [31] were

published officially by the original creator, and versions v4 up to v8 were unofficial releases

9

published by the community. These subsequent versions of the deep neural network-based

image detector proposed over the years improved their performance with small changes in

its architecture and better integration with modern ML deployment tools.

YOLO became popular because of its fast inference time while maintaining reasonably

good accuracy. It was achieved by combining the two steps of detection into a single network.

The YOLOv3 object detection works by first creating a S × S grid with cells with equal

sizes within the image and then creating 5 anchors for each cell, the center of the cell is

the reference point of the anchors. Each anchor is the patch of pixels that are used for

classification. Each anchor only can classify one object, e.g. for a grid with 5 × 10 cells, it

can have at maximum 5×10×5 = 250 objects detected. The parameters of the anchors have

prior fixed values (pw, ph) and are defined in the training by the inverse of the cost function

of each anchor parameter. The parameters are combined to form the final cost functions [31]:

σ(to) = Pr(object) ∗ IOU(b, object) (2.1) cost(x) = bx + by + bw + bh + σ(to) (2.2)

where bx, by, bw, bh are the cost functions of the anchor parameters and σ is the sigmoid

function. σ(to) is the confidence score, and it is defined by the product of the object predic-

tion confidence by the Intersection over Union (IoU). The parameters referred to above are

illustrated in figure 2.1.

Figure 2.1: Bounding boxes with dimension priors and location prediction. Image reproduced

from [32].

The YOLOv5, one of the most popular detectors of the YOLO family, introduces some

changes to the architecture that make it more performant in both, accuracy and latency

by using a Cross Stage Partial Darknet53 (CSPDarknet53) backbone [33]. It also improves

10

the localization of objects on different scales with the use of a Path Aggregation Network

(PANet) (a network similar to RetinaNet) as a Neck. The YOLOv5 model was utilized

in this dissertation because, in addition to its good architecture improvements, it also has

out-of-the-box support to run in popular ML inference engines such as TensorRT and ONNX.

Figure 2.2: YOLOv5 models performance comparison in MS COCO dataset. Average Pre-

cision (AP). Image reproduced from [1].

2.2 Stacking Ensembles

Stacking [34] is a Machine Learning (ML) technique of the family of ensembles. An

ensemble is the combination of the output of a group of independent classifiers into a new

model that is trained with the results of the base classifiers. They are a powerful tool to

achieve better classification performance and can be applied to almost any type of classifica-

tion problem, with the downside of increased computational cost. Because of that, they are

usually based on simple independent classifier models having low computational cost (i.e.

weak learners).

Stacking is different from bagging [35], which is an ensemble technique used to better

handle noisy datasets using multiple copies of the same classifier. And it is also different from

boosting, which is an ensemble technique used to improve the performance of classifiers with

copies of itself trained in different datasets [34]. Stacking uses heterogeneous classifiers and,

by using a meta classifier, it can combine non-deterministic results (see Figure 2.3). These
1https://github.com/ultralytics/yolov5

11

https://github.com/ultralytics/yolov5

two characteristics are very important for the modularity purpose of this work, because of

the ability to combine different classification algorithms and consequently be more diverse

if used with models that were trained with different datasets. The meta classifier can be

any operation or algorithm capable of combining the inputs into a coherent output vector.

It can be a simple normalized sum of the input vectors, or even another classification layer

implemented using algorithms like SVM [36] and Multi Layer Perceptron (MLP) [37].

Figure 2.3: Stacking ensemble diagram. Image reproduced from [34].

12

3 Proposed Pipeline

This chapter proposes a scalable semantic mapping pipeline with parallel processing ca-

pabilities. In a general way, the process can be described in five major steps: Sampling

(Section 3.1), where all the relevant data is acquired and packed; Object Detection (Sec-

tion 3.2), where images are processed by one or many object detectors to extract labeled 2D

BB; Geometric Segmentation (Section 3.3) in which a correlation between image points and

cloud points is established and a 3D Axis Aligned Bounding Box (AABB) is extracted for

each object detection; Point Cloud Binning (Section 3.4, page 23) which pre-processes the

occlusion detection by computing a Binned Depth Map (BDM); and the Data Association

(Section 3.5, page 25) component that assimilates the data processed by previous steps into

a topological map. Figure 3.1 depicts an outline of the pipeline proposed in this thesis; the

complete pipeline is depicted with more details in Appendix A (page 64).

Data AssociationSampling

Topological
Map

Data Association
Positive

Data Association
Negative

Geometric
Segmentation

Object
Detection

Point Cloud Binning

RGB Image

Robot Pose

Point Cloud

Figure 3.1: Semantic pipeline diagram.

The processing of the Data Association steps (Positive and Negative associations) occurs

in parallel since they are independent of each other, and both Object Detection and Geo-

metric Segmentation can have multiple instances working in parallel. Each object detector

outputs a list of object propositions, and each object of this list can be processed in parallel

in the Geometric Segmentation. Additionally, multiple object detectors with different sets of

classes can be utilized. A diagram of the pipeline with just one object detector is presented

in Figure 3.1.

13

3.1 Sampling

The sampling component is a data collection step utilized to group and synchronize the

necessary data for the pipeline to work as intended. It expects as input the Robot Pose p, a

RGB Image I, and a RGB Point Cloud. It outputs a structure with a combination of these

3 data types.

The Robot Pose is defined by the vector p =
[
x y z ψ ϕ θ

]T
in relation to the

world frame, it can be estimated by any state-of-the-art localization or Simultaneous Local-

ization and Mapping (SLAM) algorithm using range data or visual information (e.g. SLAM

Toolbox1 or ORB-SLAM3 [40]).

The RGB Point Cloud is a set of
[
x y z r g b

]
points in space relative to the

sensor frame, it needs to be a “projectable” and “organized ” point cloud. As defined in the

documentation of the Point Cloud Library (PCL) 2:

“A projectable point cloud dataset is the name given to point clouds that have a correlation

according to a pinhole camera model between the (u,v) index of a point in the organized

point cloud and the actual 3D values. This correlation can be expressed in its easiest form

as u = f x/z and v = f y/z.”

“An organized point cloud dataset is the name given to point clouds that resemble an

organized image (or matrix)like structure, where the data is split into rows and columns.”

3.2 Object Detection

In the object detection step, a set of 2D AABBs is generated to indicate the limits of the

detected object (Figure 3.2). A normalized vector of the probability of the object belonging

to each class is generated for each bounding box.

Any object detector capable of generating a 2D AABB and a probability vector, e.g.

HOG-based detector, R-CNN, SSD, YOLO, etc., can be used due to the framework flexibil-

ity. Most off-the-shelf options are designed to output the AABB alongside the label of the

most probable class and its confidence. Although this imposes constraints, in most cases
1SLAM Toolbox is a graph-based SLAM based on Open Karto [38]. It is also the official SLAM package

of ROS 2 [39]
2PCL is a reputable general purpose library to process point cloud data efficiently [41, 42]. It was first

developed in ROS and later became so popular that it became an independent library to cover a much bigger

range of applications.

14

Figure 3.2: YOLOv5 detections with annotated labels.

a modification in the pipeline can adapt the network to work in the system. In cases in

which the detector outputs only the most probable label, the last layer of classification can

be removed and the values normalized to achieve the desired output.

Denoting as D the “detections matrix ”, where d is the number of detected objects (each

line represents a single detection), 2D AABB[1×4] is a vector containing the minimums and

maximums [x, y] coordinates that define a 2D bounding box (top left corner and bottom

right corner); and xi as the “vector of class labels” of the classifier index i, in which the

output vector has a length equal to the number of known classes N and follows properties

of a Probability Distribution Function (PDF):

xi =
[
x1 x2 · · · xN

]
, (3.1)

xc ≥ 0, ∀c ∈ {1, N}, (3.2)

N∑
c=1

xc = 1, (3.3)

D[d×(N+4)] =

[
x[1×N], 2D AABB[1×4]

]
1

...[
x[1×N], 2D AABB[1×4]

]
d

 .
(3.4)

3.3 Geometric Segmentation

The Geometric Segmentation component expects as input an organized and projectable

point cloud, as mentioned in Section 3.1, and a 2D AABB indicating the limits of a detected

object in a 2D image. This component is composed of 7 steps of point cloud processing to get

to the desired output which is the 3D AABB with its associated confidence. The 3D AABB

includes the subset of points from the original point cloud that correspond to the detected

15

object in the scene. An illustration of this specific pipeline for geometric segmentation can

be seen in Figure 3.3. The different steps of the pipeline are presented in the following

subsections.

Geometric Segmentation

Object Detection

Data
Association

RoI Filter Voxelization

SOR Filter Clustering 3D BB
Estimation

Confidence
Estimation

Point Cloud
Crop Filter

Figure 3.3: Geometric segmentation pipeline. D (Eq. 3.4) is the result of the classifier which

is composed of 2D AABBs, and the classification vector x. D∗ (Eq. 3.5) is the composition

of 3D AABBs, x, and BBc (Bounding Box (BB) confidence).

D∗
[d×(N+7)] =

[
x[1×N], 3D AABB[1×6], BBc

]
1

...[
x[1×N], 3D AABB[1×6], BBc

]
d

 (3.5)

Crop Filter

The crop filter consists of segmenting the point cloud corresponding to the points of the

detected object. Since the point cloud is organized, the processing is equivalent to cropping

the relative 2D AABB of an image. The 2D AABB can be defined by two [u, v] points, the

points with minimum and maximum coordinates inside the box. Figure 3.4 illustrates the

influence of this step.

Considering p1 = [u1, v1], p2 = [u2, v2] as the points with minimum and maximum coor-

dinates respectively, and I as the image matrix, the matrix Ic is the image crop matrix:

Ic ⊆ I, (3.6)

Ic[u− u1, v − v1] = I[u, v], ∀(u, v) ∈ [u1..u2], [v1..v2]. (3.7)

16

Figure 3.4: Crop filter comparison: image annotated with detections of an image detector

(top), the equivalent point cloud (bottom), and the cropped point cloud corresponding to

the bounding box of one of the detected objects (right). Figure 3.6 illustrates the next step

of the pipeline.

Region of Interest (RoI) Filter

The RoI filter is responsible for filtering the region in which the precision of the acquired

point cloud is acceptable (see Figure 3.5). This region is defined by 3 parameters, Rmin, Rmax,

and the Field of View (FoV) of the sensor. Points outside this region are not completely

invalid, but errors associated with their position are greatly increased and can degrade further

steps of the geometric segmentation process. Figure 3.6 illustrates the influence of this step.

Voxelization

Voxelization is a downsampling process utilized to convert continuous 3D structures into

discrete 3D grids. Continuous points are transformed into voxels through equation (3.8), the

equivalent of points in a 3D grid, based on a parameter that dictates the size of the voxels

Sleaf leaf size (see Figure 3.7).

17

FoV

RoE

RoA

RoI

Figure 3.5: Illustration of the Region of Interest (RoI) and its relation with the Region of

Acquisition (RoA) and the Region of Exclusion (RoE).

Figure 3.6: RoI filter comparison: left image shows the segmented point cloud from 3.4, right

image shows the filtered point cloud. Figure 3.8 illustrates the next step of the pipeline.

point = (x, y, z) ∈ R3 −→ v = [i, j, k] ∈ Z3 (3.8)

Figure 3.7: Illustration of the “Stanford bunny” voxelized using different values of Sleaf .

Image reproduced from [43].

The voxelization of a point cloud equalizes the density of points through the space and

removes excess data points in regions with higher densities. In sensors such as stereo cameras

18

and 3D LIDARs, objects closer to the sensor usually appear in the field of view with a

higher number of points and a reduced number in marginal areas; this is a consequence of

the perspective projection utilized in the sensor model. Figures 3.7 and 3.8 illustrate the

influence of this step.

Figure 3.8: Voxelization comparison: left image shows the RoI filtered cloud from 3.6, right

image shows the voxelized point cloud. Figure 3.10 illustrates the next step of the pipeline.

Statistical Outlier Removal (SOR) Filter

The SOR filter addresses the visual artifacts generated in projective point clouds. Those

artifacts tend to occur in regions of transition between surfaces yielding abrupt depth vari-

ations. They look like a connection between the surfaces but they are actually outliers that

can degrade the model (see Figure 3.9).

Figure 3.9: Illustration of the Statistical Outlier Removal (SOR): inliers are depicted in

green and outliers are depicted in red. The image shows an office chair alongside a table

with a small box over it. Illustration based on the table_scene_lms400 dataset3.

19

This filter aims to remove the image artifacts by estimating a Gaussian distribution for

the neighborhood of each point of the cloud and removing values with a large standard

deviation multiplier. Figure 3.10 illustrates the influence of this step. The Pseudocode 3.1

describes the process.

Figure 3.10: Statistical Outlier Removal (SOR) filter comparison: left image shows the

voxelized point cloud from 3.8, right image shows the filtered point cloud. Figure 3.12

illustrates the next step of the pipeline.

Pseudocode 3.1: Statistical outlier removal filter
// meank -> Number of neighbor points to consider

// std_multiplier -> Max standard deviation value for a point to be considered inlier

for each point in point_cloud:

Get meank neighbor points;

Estimate a Gaussian distribution of the neighbors;

for each neighbor in neighbors:

Compute distance from neighbor to point;

if distance greather than (std_multiplier·σ):

Remove neighbor from point_cloud; // Outlier

Clustering Filter

Clustering is the process of arranging multiple sampled points into groups based on

given a metric. If the Euclidean distance is chosen as a metric (Ed =
√
x2 + y2 + z2), it can

be utilized to split the point cloud into multiple smaller ones, in which the biggest cloud

generated represents the most relevant one [44]. An example of clustering is depicted in

Figure 3.11. The clusters are generated based on two parameters: the minimum amount of

points to be considered a cluster (clustermin), and the distance tolerance between points to

be considered in the same cluster (clustertol).

Because of the previous steps of filtering, Box Filter (Subsection Crop Filter) and RoI

Filter (Subection Region of Interest (RoI) Filter), the point cloud at this stage of the pipeline

20

Figure 3.11: Point cloud composed of points of multiple objects sectioned into clusters

represented by different colors. Image reproduced from [45].

represents a cloud composed of small patches of points in which the majority of the points

come from the same desired object. Selecting the biggest cluster is equivalent to selecting

the points most likely to belong to the detected object. Figure 3.12 illustrates the influence

of this step.

Figure 3.12: Clustering comparison: left image shows the SOR filtered point cloud from 3.10,

right image shows the selected cluster. Figure 3.13 illustrates the next step of the pipeline.

3D Axis Aligned Bounding Box (AABB) Estimation

The 3D AABB represents the smallest cuboid, aligned with the world frame axes, that

contains a group of points. It can be defined by only two 3D points, the minimum, and

maximum [x, y, z] of the sampled points. This process is described in detail by the Pseu-

docode 3.2. Figure 3.13 illustrates the influence of this step.

21

Pseudocode 3.2: AABB estimation
min = random point of point_cloud;

max = random point of point_cloud;

transformed_point_cloud = transform(point_cloud);

for each point in transformed_point_cloud:

if min.x greater than point.x:

min.x = point.x;

if point.x greater than max.x:

max.x = point.x;

// Repeat for y and z

centroid = (min + max) / 2;

The transformation referred to in the Pseudocode 3.2 is the coordinate transformation

from the sensor frame to the world frame. It can be described through equation (3.9):

Pworld = worldTrobot × robotTsensor × P sensor. (3.9)

Figure 3.13: AABB illustration: The red box shows the estimation of the object volume in

the initial point cloud. Figure 3.12 illustrates the previous step of the pipeline.

Confidence Estimation

A confidence value is generated based on the distributions of the points of the point

cloud. Due to the nature of point clouds generated by sensors, such as stereo cameras and

3D LIDARs, the farther the points are from the sensor less accurate they are. The confidence

response is defined by 3 parameters, the minimum and maximum possible distances Rmin,

22

Rmax (see Subsection Region of Interest (RoI) Filter), and a threshold in which the confidence

suffers no penalty (obj_ths). Pseudocode 3.3 illustrates the process:

Pseudocode 3.3: Confidence estimation
// Rmin, Rmax - minimum and maximum distances of points in point cloud

closest = random point of point_cloud;

farthest = random point of point_cloud;

for each point in point_cloud:

closest_distance = compute_distance(closest);

farthest_distance = compute_distance(farthest);

point_distance = compute_distance(point);

if point_distance greather than farthest_distance:

farthest = point;

if point_distance less than closest_distance:

closest = point;

num = farthest - closest;

den = Rmax - Rmin;

if num less than or equal obj_ths:

confidence = 1;

else:

confidence = den−(num−obj_ths)

den
;

The parameters Rmin and Rmax are defined in Subsection Region of Interest (RoI) Filter.

Figure 3.14 shows the response curve of this function

1.0

0.5

C
on

fid
en

ce
 (%

)

Distance (m)

Figure 3.14: Confidence values as a function of the distance between the closest and farthest

point of the cloud.

3.4 Binned Depth Map

The depth map is a representation of the distances from the camera frame to the solids

in the scene. It is usually represented as a matrix of distances with each cell representing

the distance related to the pixel with the same [u, v] indexes in the image. In the binned

23

Figure 3.15: Illustration of the depth map binning process. The last image shows the cloud

points associated with the segmented region of the Point Cloud.

depth map, each cell represents a panel with a group of distances related to multiple pixels

in an image.

A binned depth map is used to lower the number of computations necessary to process

the occlusions in the scene. The use of the binned depth map makes possible a more efficient

occlusion processing by pre-computing the most intensive operations of the occlusion step

(Section 3.5) in parallel with the Geometric Segmentation (Section 3.3). The parallelism is

possible due to the independence of other steps of the pipeline, as it only requires an ordered

Point Cloud.

The binned depth map is a simpler representation of the Point Cloud that enables less

computationally expensive occlusion detection. It is generated based on ordered Point Cloud

points, in which the size of the bins, defined by 2 xyz points, is determined by smaller square

segments of the cloud. As shown in Figure 3.15, the image is split into smaller regions using

a grid with cells of equal [su, sv] sizes, and further, those regions are related to the point of

the cloud and a AABB of each region is extracted. Figure 3.16 shows a visual representation

of the BDM.

It is important to note that due to the projective nature of the data, this process can

produce boxes that have overlapping regions with each other. An illustration of this phe-

nomenon is presented in Figure 3.17.

24

Figure 3.16: Binned depth map visual representation.

y

x

Width

Height

Figure 3.17: Projection of a region related to a bin. The black stripes represent the bin

regions from a top-down view, the blue cone is the FoV, the green cone is the projection

related to one bin, and the yellow square is the AABB of an arbitrary bin. The yellow square

has a width that is bigger than the width of the bins because of the perspective projection.

3.5 Data Association

This Section will approach how the observations are processed, selected, and combined to

incorporate spatio-temporal semantic information into a coherent topological map. It starts

by introducing the topologic map and its data structures in Subsection 3.5.1. Subsection 3.5.2

presents the visibility histogram, which was utilized to mitigate object vanishing due to

25

occlusion. The combination of multiple detections and the update of the object’s semantic

values is discussed in Subsection 3.5.3. Finally, Subsections 3.5.4 and 3.5.5 explain how the

mechanisms presented in this Section are logically combined to create the map using positive

and negative observations.

3.5.1 Topological Map and Vertex Structure

The topological map was chosen to represent the system’s semantics because of its coarser

granularity, if compared to a typical grid map, which leads to less computational cost.

Despite using a topological map, the system still needs the grid map to retain metric in-

formation. The vertices of the topological map store the semantic payload alongside the

relationship with the spatial location of the objects in the grid map (Pseudocode 4).

As stated in “Topological Mapping and Navigation in Real-World Environments” [46]:

“A constructed topological map is a graph-like abstraction of large-scale space that

represents the world as two types of areas: places, where qualitatively distinct decisions are

presented to the robot, and paths, which are connections between places.”

In terms of the graph structure. The vertices represent the landmarks and the connections

represent the path that links the landmarks. Each vertex is composed of metric information

which relates it to the grid map. Additionally, each vertex has a semantic payload that

stores the semantics associated with this node. The structure of the topological map objects

is described in Pseudocode 4.

Pseudocode 3.4: Topological map structures

vertex = {

index: // unique integer

position: // 3d_point float[3](x, y, z)

this_thing: // thing object

related_things: // list of thing objects

}

thing = {

object_id: // unique integer

type: // enum (OBJECT - 0, LOCATION - 1)

histogram: // histogram object

position: // 3d_point float[3](x, y, z)

position_confidence: // float

AABB: // tuple (3d_point min, 3d_point max)

class_probabilities: // Probability hash map

}

Vertices are composed of 4 attributes, index (identifier number), position (3D point in

space), this_thing (thing object), and related_things (list of thing objects). The first two

are the minimum necessary to create a graph and store the metric information of the vertice;

the last two are based on the thing structure and they represent the semantic payload.

26

The thing structure is a generic data structure utilized to describe semantic entities.

It can be of 2 types (OBJECT - 0, LOCATION - 1). Vertices are always of the type

LOCATION because they already describe the metric aspects of a place. Things of type

OBJECT are stored in the related_things list and are always related to a unique vertex

within a fixed vertex distance (Vd).

Things stores the position of the center point of the entity, its position confidence, the

AABB, a visibility histogram (Subsection 3.5.2), and a hash map of all classes probabilities.

A hash map is utilized, instead of a simple vector, to simplify the process of adding new

classes to the data structure without the need to keep track of order.

Topologic Map Construction

The topologic map construction is based on the motion of the robot and the position of

detected objects. New vertices and edges are added based on the distance from the robot to

the nearest map vertex. If an object is detected at a position in space with a distance from

a vertex greater than 2× Vd a support vertex will be created.

To ensure map consistency, the following conditions have to be satisfied:

1. Distance between any two vertices should be less than 2× Vd.

2. Distance from an object to a vertex should be less than Vd.

3. Edges should have a max length of Vd × Ef .

Vd and Ef denotes Vertex Distance and Edge Factor. Although both are tunable param-

eters, the Ef should be contained in the interval]0, 1[. VD × Ef defines the minimum value

acceptable for a new edge to be created.

3.5.2 Visibility Histogram

The visibility histogram is a polar histogram structure that maps the acquisition angle

of the observations collected through time for each object. It is used to try to mitigate the

vanishing of objects from the map due to occlusion. Each bin stores the log-odds of an

observation occurring from that direction. Additive observations increase the value l, and

subtractive observations decrease it l. The log odds function and its inverse are expressed

through equations (3.10) and (3.11), where p(x) is the probability of the object being visible.

27

Log-Odds : l(x) = ln

(
p(x)

1− p(x)

)
(3.10) Log-Odds−1 : p(x) = 1− 1

1 + el(x)
(3.11)

The bin values can be interpreted as follows:

• (p(x) > 0.5) or (l(x) > 0) −→ the object should be visible.

• (p(x) = 0.5) or (l(x) = 0) −→ undefined.

• (p(x) < 0.5) or (l(x) < 0) −→ the object should not be visible.

Occupancy
Confidence

Visibility
Confidence

Robot
Trajectory

FOV

1

2

Figure 3.18: Representation of the visibility histogram of two objects. The robot has two

objects inside his FoV but only one is visible at the current instant (object nr. 2), the other

one is occluded by a column (object nr. 1). The triangles around the objects represent

the bins of the histogram with colors ranging from red to green, with the white ones being

undefined bins (p(x) = 0.5) or (l(x) = 0). The values shown in the figure are log-odds.

Figure 3.18 illustrates a scene where the robot collected observations while navigating

through the presented trajectory. Based only on the current viewpoint of the robot, object

nr. 1 should be deleted after a few seconds because it cannot be detected by the robot.

Alternatively, by using the visibility histogram generated through the trajectory, the robot

should be capable of interpreting this case as an occluded viewpoint and attenuate the

probability decay to avoid removing the object from the map because it knows that the

object was detected previously from a different viewpoint. Even if an object is considered

occluded, a small decay factor is applied to account for temporal uncertainties and remove

some false positives.

28

Histogram Update

The values of the histogram are updated based on the angle from where the object was

observed ϕo and its distance d (see Figure 3.19). The value to be added to the bin as δb is

defined in equation (3.12), where δbase is the maximum desired update value.

δb(d) =
δbase
d
2
+ 1

(3.12)

x

y

Figure 3.19: Representation of the angle of observation from the camera’s perspective ϕc,

and from the object’s perspective ϕo.

Collected observations can be jittery due to factors such as platform movement, light

conditions, and detector jitter. To minimize this issue, an iterative smoothening filter dis-

tributes newly acquired observation confidence through multiple bins instead of just the

closest one. Its behavior is described below.

Consider an observation that should be assigned to an arbitrary bin h at a sample k as

bh,k, a filter length as lf , and a weight vector w1×lf :

bh+j,1:k = bh+j,1:k−1 +
1∑
w1×lf

·w
[
1 +

lf
2
+ j

]
· δb(d) ∀j ∈

[
− lf

2
..
lf
2

]
. (3.13)

To ensure a controlled convergence time and avoid numerical problems, a clamping step

must be used to contain the log-odds value between known limits lmax and lmin. Consequently

lmin ≤ bh+j,1:k ≤ lmax.

3.5.3 Semantic Update

This Subsection discusses how to perform an expandable classification, which aggregates

the classification of different detectors, using a stacking ensemble configuration, and how

29

it is accumulated over time with a Bayesian filter [47] to incorporate prior and temporal

knowledge.

This Subsection is mostly inspired by the Expandable Classification done by N. Sünderhau

in [12] (Equations 3.14, 3.15, 3.16, 3.17, 3.18, 3.19). In his work, only one classifier was used,

an AlexNet [48] network trained on Places205 dataset [49]. Conversely, this work aims to

use multiple generic classifiers and differs in the prediction step of the Bayesian filter. Each

of those classifiers was trained in a particular dataset and has its own set of known classes,

consequently, they are only capable of evaluating a pre-defined set of classes, also known as

closed-set classifiers.

Expandable Classification

The classification problem is commonly implemented using a closed-set assumption. They

are trained in a fixed number of classes and are never presented with unknown classes at

training time. This limited set has a significant impact on the ability of the system to adapt

to new environments and is more susceptible to misclassification of unknown object classes.

In contrast, the open-set classifiers can reject unknown classes instead of misclassifying

them. Closed-set classifiers can be extended to become open-set ones [50]. This can be

accomplished by using a stacking ensemble (see Section 2.2, page 11) to create a meta

classifier capable of combining the results of multiple classifiers that were trained on different

class subjects. This meta-classifier can be as simple as the normalized sum of the input

classification vectors into an expanded vector, or it can be more complex and use a ML

algorithm to better fit and tune the expected results.

If using a ML algorithm, the meta-classifier learns how to combine the results of the

classifiers into a bigger set of classes and improve the accuracy of repeated ones. The meta

classifier is trained in an One-vs-All (OvA) arrangement using just a small training set. For

instance, classifiers 1 and 2 are trained to classify objects with classes [A, B, C] and [A, B,

D, E] respectively. The meta classifier should be able to identify classes [A, B, C, D, E] and

possibly improve the precision of classes A and B.

The combined set x̂ is the combination of the classes of the M classifiers and it needs to

abide by the following conditions:

• It must have independent classes.

• It cannot have repeated classes. Repeated classes should be combined into a single cell

of the combined set x̂.

30

Classifier 2

Classifier 1

Classifier M

Meta
Classifier

Figure 3.20: Stacking classification. x̂1, x̂2, · · · , x̂M are the sets of classes of each classifier.

Each classifier has its own set of classes it has been trained on. x̂ is the combined set and

L(Ik|x̂k) is the combined likelihood.

• The combined likelihood must be normalized to distribute the probabilities over the

newly added classes and preserve the properties imposed by equations (3.2) and (3.3).

The combined set is defined in equation (3.14); An illustrative example is shown in

Figure 3.21. This figure illustrates a case in which 3 classifiers have a common class, and

that class is assigned to cell 3 of x̂. The value of cell 3 will be obtained by any operation

that combines the 3 values (i.g. sum, product, weighted sum).

1 2

3

4 5 6 7

Figure 3.21: Combined set x̂ example. Cell 3 of the x̂ is the combination of the values

x1,3, x2,1, x3,1, that represents the common class known by the 3 classifiers.

x̂ =
(
[x1,1, . . . , x1,o]︸ ︷︷ ︸

x1

, [x2,1, . . . , x2,p]︸ ︷︷ ︸
x2

, [xM,1, . . . , xM,q]︸ ︷︷ ︸
xM

)
(3.14)

Taking Figure 3.20 as an illustration reference. Let p(xi|Ik) be the probability distribu-

tion, in which xi represents the set of known classes of a classifier i, and Ik is the presented

image at sample k. The likelihood of a classifier will be:

L(Ik|x̂) =
[
p(x1|Ik), . . . , p(xM |Ik)

]
(3.15)

31

Then, the combined likelihood can be obtained using equations (3.14) and (3.15):

L(Ik|x̂k) =
(
p(x1,1|Ik), . . . , p(x1,o|Ik), p(x2,1|Ik), . . . , p(x2,p|Ik), . . . , p(xM,1|Ik), . . . , p(xM,q|Ik)

)
(3.16)

Bayesian Filter

The output beliefs of classifiers can vary over time, even in an almost static environment,

due to model imperfections. Stable outputs with low false positive rates are key to having

a consistent representation of the environment. Because of that, a Bayesian filter is utilized

to incorporate prior and temporal knowledge into the update.

As described in [51], a Bayesian smoother is:

“[...] a class of methods that can be used for estimating the state of a time-varying system

which is indirectly observed through noisy measurements.”

This filter is implemented in two steps, prediction and update, and its use can smooth

the beliefs of classifiers over time by combining previous results with the current one into

a more coherent, stable output with temporal knowledge. It is important to note that this

method assumes that the next state is dependent only upon the current state (i.e. first-order

Markov assumption).

The combination of the prediction and update steps can estimate the probability distri-

bution p(x̂k|I1:k) over all possible labels x̂k, given the obeserved images I1:k.

The prediction step of the filter is the process presented in Expandable Classification in

which its output is L(Ik|x̂k) (Eq. 3.16). The update is the combination of the prior knowledge

p(x̂), the current predicted value L(Ik|x̂k) (Eq. 3.16), and the result of a previous iteration

p(x̂k−1|Ik−1), which results in equation (3.17).

p(x̂k|Ik) = p(x̂)︸︷︷︸
prior knowledge

·
prediction︷ ︸︸ ︷
L(Ik|x̂k) · p(x̂k−1|Ik−1)︸ ︷︷ ︸

previous result

(3.17)

The prior knowledge can be introduced by an external factor that influences the prediction

(e.g. the place classification can be used to change the likelihood of different classes), and

the temporal knowledge is represented by fusion of previous classification with new ones

(Eq. 3.17).

32

Entity Update

The classifications made must be stored and updated coherently in a map-like structure.

Most of the works in literature use grid maps to store and represent the semantics of the

environment, like [9, 10, 12]. Although this work aims to use a topologic map, the process of

updating the cells/vertices is still the same. The only difference is the way cells are selected

to be updated. The logic for this will be discussed in Subsections 3.5.4 and 3.5.5. The beliefs

of each cell can be updated using equation (3.18).

pk(x̂i|I1:k) =

1 + 1− pk(x̂i|Ik)

pk(x̂i|Ik)︸ ︷︷ ︸
current classification

·

accumulated classification︷ ︸︸ ︷
1− pk(x̂i|I1:k−1)

pk(x̂i|I1:k−1)
· p(x̂i)

1− p(x̂i)︸ ︷︷ ︸
prior knowledge

−1

(3.18)

Converting equation (3.18) to a log-odds representation and assuming a prior knowledge

p(x̂i) = 0.5 (mentioned in page 5 of [52]), we have (Eq. 3.19):

Lk(x̂i|I1:k) = L(x̂i|I1:k−1) + L(x̂i|Ik). (3.19)

This representation needs a clamping step to limit the values frontiers, the same as the

one presented in Subsection 3.5.2 (page 29). It can be described by lmin ≤ Lk(x̂i|I1:k) ≤ lmax.

Position Update

The position of objects can vary over time due to measurement errors or real object

motion. In consequence, the position of an object has to be updated to ensure map coherence.

The position of an object and its 3D AABB are updated using the low-pass filter expressed

through equation (3.20).

o(k) = o(k − 1) ·
(
1− 1

1 + elc(k)

)
+ o(k) ·

(
1

1 + elc(k)

)
(3.20)

Let define respectively lc(k) and lc(k) as the clamped accumulated log-odds value of the

bounding box confidence BBc (Eq. 3.21) at an instant k, and the log-odds value of the es-

timated bounding box confidence BBc at an instant k. o is the vector of positional object

parameters,

o =
[
xmin ymin zmin xmax ymax zmax xcentroid ycentroid zcentroid

]
, wherein the mini-

mum and maximum points represent the 3D AABB, and the centroid represents the assumed

position of the object.

33

lc(k) = lc(k − 1) + lc(k) (3.21)

3.5.4 Positive Observations

A positive observation D∗ is the group of data that is used by the system to make positive

associations about the entities of the map. D∗ represents a detected object, it can be used

to either create a new object instance in the map or update an existing one. The diagram

presented in Figure 3.22 illustrates the process.

2. Filter objects

1. Get neighbor
vertices

List of objects

C.0.1.
size of list > 0

List of objects

5. Try to
combine

5. Try to
move

Object

Object

Object

2.1. Get object
from list

C.2.1.
Has equal label?

2.4. Remove
object from list

No

C.2.2.
Inside active cone?Yes

C.2.3.

?

Yes

3. Add object

3.1. Get closest
vertex

C.3.1.

?

3.2. Create
support vertices

Yes

3.3. Create new
object

3.4. Append
object to related
objects list of the

vertex

No

No Yes

No

Positive Observation

4. Update object

4.1. Get closest
vertex

4.2. Histogram
Update

4.3.
Position/Confidence

Update

4.4. Probability
Vector Update

Figure 3.22: Positive observation flowchart. (D∗) represents a detected object, defined in

equation (3.5, page 16). (p) represents the robot pose.

As for the steps indicated in Figure 3.22, it is important to note:

• (1.) Gather vertices in a 3-layer deep neighborhood in relation to the robot position.

• (2.) Select only the candidates that can be matched with (D∗) (Eq. 3.5, page 16):

– (C.2.1.) Check if both instances have the same classification label.

34

– (C.2.2.) Check if the object is inside the active cone (similar to Figure 3.5,

page 18).

– (C.2.3.) Check if the distance between both instances is less than the product of

object position error (oe) and object tracking factor (ot).

• (C.0.1.) Check if the list has any candidates left.

• (3.) Add a new object:

– (3.1.) Get the closest vertex in relation to the object position.

– (C.3.1.) Condition to enforce rule 1 proposed in Subsection 4 (page 27).

– (3.3.) Create a new object instance with the data defined (D∗) (Eq. 3.5, page 16).

• (5.) Try to combine two object instances if they are close enough.

• (6.) Try to move an object to another vertex to enforce condition 2 defined in Subsec-

tion 4 (page 27).

3.5.5 Negative Observations

The negative observations are responsible for removing invalid objects from the map. It

reduces the beliefs of objects in a specific area based on the expected object position and

distance from the camera. This is done by validating the registered object geometry with

newly acquired cloud points that are expected to exist in the neighborhood of the AABB of

the object. This process detects object absence and occlusions, as well as partial occlusions

using the BDM referred to in Section 3.4. Figure 3.23 illustrates this process.

As for the steps indicated in Figure 3.23, it is important to note:

• (1.) Gather vertices in a 5-layer deep neighborhood in relation to the robot position.

• (C.1.) Check if the object is inside the active cone (similar to Figure 3.5, page 18).

• (3.) Compute the 8 points that represent the corners of the object AABB.

• (5.) Compute the corner matches. Corner matches are the BDM panels that have

the closest angular position as the corner points. The angular difference is determined

through equation (3.23).

35

1. Get neighbor
vertices

Negative Observation

2. Get object
from list

C.1.
Inside active cone? 3. Get AABB

corners
5. Get corner

matches

4. Remove
object from list

No

Yes

C.3.

9. Remove object
from related objects

Yes

6. Count panels

8. Decay probabilities
No

List of objects

Occluded

Partially occluded

C.2.
Classify Occlusions

Absent

Figure 3.23: Negative observation flowchart. BDM is the binned depth map introduced in

Section 3.4. p represents the robot pose.

Equation (3.22) shows a function that enforces the continuity of an angle difference

between
]
−π

2
, π
2

]
. Equations (3.24) and (3.25) express respectively, in relation to the

camera, the angles to the panel and corner; where ϕcc is the angle from the camera to

the corner, and ϕcp is the angle from the camera to the panel.

g(α− β) = atan2(sin(α− β), cos(α− β))

(3.22)

ϕdiff = g(ϕcc − ϕcp) (3.23)

ϕcp = g(atan2(ycamera − ypanel, xcamera − xpanel)− θcamera) (3.24)

ϕcc = g(atan2(ycamera − ycorner, xcamera − xcorner)− θcamera) (3.25)

• (6.) Make the count of panels. Panels before the object (pbe), inside the object (pin),

and after the object (paf). The panels are classified depending on the distance from

the camera. Figure 3.24 illustrates the types of panels.

• (C.2.) Classify object as occluded, partially occluded, or absent based on pbe, pin, paf .

• (8.) Reduce the beliefs of the visibility histogram and likelihood vector Lk(x̂i|I1:k)

(Subsections 3.5.2, and 3.5.3). The decay factor is attenuated when partially occluded.

36

(1) (2) (3)

Figure 3.24: This image shows a top-view representation of a case of object occlusion (1),

object absence (2), and a valid object (3). The purple box is the supposed object BB. The

red area delimits panels before the object, the green area represents panels inside the object

BB with tolerance, and the blue area represents panels after the object.

• (C.3.) Check if an object is still considered valid based on the condition Object Confi-

dence (Oc) < valid object threshold (ovalid) (Eq. 3.27 and Eq. 3.10, page 28).

Hc = fohc(b1:k︸︷︷︸
histogram bins vector

) (3.26)

Oc = foc

 p(argmax(Lk(x̂i|I1:k)))︸ ︷︷ ︸
tp1: most probable class confidence

,

tp2: bounding box confidence︷ ︸︸ ︷
p(lc(k)) , Hc︸︷︷︸

tp3: observation histogram confidence

(3.27)

37

4 System Implementation

The system was implemented in a Pioneer P3-DX platform having a Jetson AGX Xavier

on board as its main computer (Figure F.2.2, page 112). The Jetson was equipped with an

Intel 8265 M.2 Wireless (Figure C.6.36, page 100) Network to provide a Wi-Fi connection. In

relation to the sensors, the system was equipped with a ZED 2 stereo camera (Figure C.6.34,

page 99), and a Hokuyo URG-04LX laser range finder (Figure C.6.35, page 99). As for the

OS, the system has the NVIDIA L4T 35.3.1 with the Jetpack SDK 5.1.1. Figure C.6.32 in

Appendix C.6 (page 98) shows the robot and its sensors.

As mentioned before, one of the objectives of this dissertation is to develop a modular

semantic mapping framework; a microservice architecture [53] was chosen to address the

matter because of its flexibility, modularity, and isolation paradigms. Although ROS it-

self constitutes a microservice framework with each node being a service responsible for a

simple task, the composition of nodes to perform a more complex but well-defined task is

still considered as a microservice. In this work, the system was divided into self-contained

components responsible for each task; it was structured to work inside Docker containers to

isolate different types of dependencies and avoid possible conflicts. Both ROS Noetic and

ROS Foxy were utilized as middlewares to support the development of the system. ROS

Noetic was utilized because the P3-DX robotic platform only has support in ROS (up to

the ROS Noetic distribution); the package ros1_bridge was utilized to make a connection

between the two middlewares.

Despite the simultaneous use in the system of instances of ROS Noetic and ROS Foxy, the

development was focused on ROS Foxy, thus on ROS 2. Tools like RVIZ2 1 and Gazebo2 were

utilized alongside standard ROS Foxy packages for common robotic tasks, such as SLAM

Toolbox [54], to perform efficient SLAM, and Nav2 [55, 56, 57, 58] for localization, path

planning, motion control, and navigation behaviors.

This chapter describes the implementation details of the framework proposed in Chapter 3
1RVIZ2: https://github.com/ros2/rviz
2Gazebo Simulator: https://gazebosim.org/home

38

https://github.com/ros2/rviz
https://gazebosim.org/home

(page 13). Section 4.1 will present the containerized structure of packages utilized in the

implementation and essential details about its components. Section 4.2 discusses the node

architecture and its relationships, including communication details.

4.1 Container Architecture and Communication

The container structure of the system was developed with modularity and scalability as

the main objectives. All containers are based on the official NVIDIA L4T 35.2.1 docker

image and have isolated dependencies depending on each application case. The only case

of cross-container dependencies is with respect to inter-container communication; containers

need to have the same message types to correctly communicate. The interfaces utilized are a

combination of standard ROS 2 messages, ZED interfaces3, and Semantic Mapping (SMAP)

interfaces (see repository H.1.2, page 124), which is a custom interface developed specifically

for the needs of this project.

The communication between containers is achieved using a combination of a docker host

network driver and the ROS middleware interface. The ROS middleware interface was

completely remodeled in the transition from ROS (Transmission Control Protocol (TCP)

based) to ROS 2 (Data Distribution Service (DDS) based). Since this project is oriented

towards the ROS Foxy distribution, all the inter-container communication is handled by

the DDS communication, with the TCP communication being used only inside the P3-DX

container for intra-container communication (see Figure 4.1). Different from the TCP ROS

implementation, the ROS 2 DDS is not a ROS 2 implementation but a wrapper. The

developer has the option to choose between a few commercial-grade implementations4 being

the Cyclone DDS5 the only one capable of handling a stable and reliable communication

using a Jetson host and a remote desktop client.

P3-DX Robot Interface Container

The P3-DX container handles the interactions with the physical robot. It has the ROS

Aria Node (robot drivers), the Robot Description Node, which was ported from ROS Noetic

(see repository H.1, page 124, in the appendices), the Emergency Stop Node, which was

adapted to work with a Jetson host, and the ROS Bridge Node8. The ROS Aria Node is
3ZED interfaces: github.com/stereolabs/zed-ros2-interfaces
4ROS 2 RMW implementations: tinyurl.com/2p98y8f9
5Cyclone DDS: github.com/eclipse-cyclonedds/cyclonedds
8ROS Bridge Package: github.com/ros2/ros1_bridge

39

https://github.com/stereolabs/zed-ros2-interfaces
https://tinyurl.com/2p98y8f9
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/ros2/ros1_bridge

SMAP Core

SMAP Perception
Server Node

SMAP Topological
Map Node

SMAP Object
Estimator Node

Detection

SMAP Perception
Wrapper Node

TCP Communication

DDS Communication

P3-DX Robot Interface

Robot
Description

Node

Emergency Stop
Node ROS Bridge Node

ROS Aria
Node

Detector

Navigation

SLAM Toolbox
Node

Navigation 2 Stack

Sampler

SMAP Sampler
Node

ZED Wrapper
Stack

Sampler

SMAP Sampler
Node

Sensor Driver

Detection

SMAP Perception
Wrapper Node

YOLO v5

Figure 4.1: Container architecture diagram. The diagram shows the docker containers of

the system and its main applications; the continuous lines represent connections of the con-

tainers, and the dashed lines represent possible extra connections. Navigation 2 Stack [55].

ZED Wrapper Stack6. Ultralytics YOLOv57.

responsible for the wheels’ motor actuation and the odometry of the platform. Robot De-

scription Node defines and updates the static and dynamic mathematical model of the robot,

thus defining the transformations between robot frames and updating the joint values over

time. The Emergency Stop Node implements a physical switch to disable the robot motors in

case of an emergency (see Appendix G, page 122). Lastly, the ROS Bridge Node deals with

the communication between ROS Noetic and ROS Foxy environments. A parametric bridge

was utilized to avoid bridge overloading. This means that only explicitly defined messages

and services will be forwarded to the other environment9.

Navigation Container

The navigation container is responsible for all the actions related to the navigation of

the platform, ranging from SLAM to failure recovery behaviors. The SLAM task, usually

performed in ROS 1 by third-party packages like Gmapping10, Cartographer 11 and RTab12,

were substituted in ROS 2 by the officially supported SLAM Toolbox package [56]. This

package is focused in creating lifelong maps, that can keep improving the map even after

system reinitalization, by maintaining pose graphs between sessions. The package is based

on the well popular open_karto SLAM library [59] that implements an efficient pose graph
9Parameter bridge parameter definition: tinyurl.com/76ych53v

10Gmapping: openslam-org.github.io/gmapping.html
11Cartographer: google-cartographer.readthedocs.io/en/latest/
12RTab-Map: github.com/introlab/rtabmap

40

https://tinyurl.com/76ych53v
https://openslam-org.github.io/gmapping.html
https://google-cartographer.readthedocs.io/en/latest/
https://github.com/introlab/rtabmap

SLAM algorithm. The Navigation 2 Stack [56] is a ROS 2 package developed to easily incor-

porate production-ready navigation capabilities into robots. It provides functionalities and

tasks like Adaptive Monte Carlo Localization (AMCL), speed controller, path planning, path

planning smoothening, collision monitoring, waypoint following, recovery behaviors and many

others. Both packages Navigation 2 and SLAM Toolbox are part of the same ecosystem13

and are directly integrated, providing seamless interoperability between them.

Sampler Container

The sampler container is responsible for the sampling of all the data necessary to perform

semantic mapping. It contains the SDK and packages necessary to collect and process the

raw sensorial data. This container is composed of two components: ZED wrapper Stack and

SMAP Sampler Node. The former is a dependency of the ZED 2 stereo camera; it performs

the tasks necessary to collect and process the raw sensor data, as well as establishing the

transformations between the multiple camera sensors and the robot frame. The latter is

responsible for aggregating all the data necessary to perform semantic mapping into a single

message packet (see repository H.1.2, page 124, in appendices).

Detection Container

This container is used to enclose a ROS 2 wrapped object detector and all of its depen-

dencies. In this case, a YOLOv514 object detector was wrapped using the developed SMAP

Perception Wrapper Node (see repository H.1.2, page 124). This node is a generic ROS 2

node packed with utility tools such as image pre-processing and post-processing, as well as

predefined services to register the detector in the system and publish the detections in the

correct format. The detector registration process will be explained in Section 4.2.

Although the YOLOv5 implementation is Python-based using pyTorch, the model itself

is serialized and deployed in the C++ NVIDIA deployment interface TRT, which offers a

performance boost due to high levels of optimization for production environments. The

model utilized was a pre-trained “YOLOv5s” model15; it was trained for 300 epochs with

images of the COCO Dataset16.
13Open Navigation LLC: opennav.org/
14YOLOv5: https://github.com/ultralytics/yolov5
15YOLO pre-trained models: github.com/ultralytics/yolov5#pretrained-checkpoints
16COCO Dataset: cocodataset.org/#home

41

https://www.opennav.org/
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5#pretrained-checkpoints
https://cocodataset.org/#home

SMAP Core Container

The SMAP Core Container has the necessary library (PCL, and Boost Library17) de-

pendencies necessary to run the SMAP Nodes to perform the semantic mapping task. It

is composed of the SMAP Perception Server Node, which is responsible for the detector

registration; the SMAP Object Estimator Node which handles the Geometric Segmentation

and BDM construction tasks; and the SMAP Topological Map Node which implements the

mechanisms necessary to maintain the map.

The SMAP Perception Server Node is a ROS server that handles the registration of new

detectors. It manages the structure of the “classes_probabilities” hash map mentioned in

Subsection 3.5.1 (page 26), and only the values of it can be updated by the SMAP Topological

Node. This node is essential for the system to know what classes are known by each detector

and ensures that the values are assigned to the correct classes.

The SMAP Object Estimator Node performs the Geometric Segmentation and BDM

tasks. For the first one, the node receives as input a group of detections D (Eq. 3.4, page 15),

which has a d number of detected objects. It launches a new thread, with a limited lifetime,

for each object in order to reduce the overall latency of processing. The maximum number

of threads allowed is 8. The lifetime of threads is explained in Appendix F.4, page 114.

The second task is executed in an independent thread and expects as input an ordered point

cloud. The cloud is processed to extract multiple AABBs related to cloud subregions (see

Section 3.4, page 23 that are stored in a 2D matrix-like structure that is propagated to the

negative association step of the SMAP Topological Map Node.

The SMAP Topological Map Node creates and maintains a graph that represents a Topo-

logical Map (see Subsection 3.5.1, page 26). The structure of the graph is implemented using

an Adjacency List [60], in which the vertices represent the landmarks that store the seman-

tic payload relative to that physical location, as well as the objects related to that place.

The edges of the graph represents traversability between two vertices. In addition to graph

management, this node has callbacks to handle incoming object features (D∗, BDM) (see

Figure A.1, page 65); to perform the Data Association task (see Subsections 3.5.4, and 3.5.5);

and a callback to expand the graph based on the robot movement (see Subsection 4, page 27).
17Boost Libraries: boost.org/

42

https://www.boost.org/

4.2 ROS Architecture

This section discusses the ROS architectural details of the implementation as well as

essential details about each SMAP node. Figure 4.2 shows the node graph related just to

the SMAP nodes. The complete node graph of the system and the Transform (TF) tree

diagram are presented in Appendix C.5.

/zed_node

/image_rect_color

/sampler_node/cloud_registered

/tf

/perception_yolo_v5/data /topo_map
/pose

/markers

/perception_server/add_perception_module

/object_estimator/predictions /observations

/depth_map

Figure 4.2: SMAP ROS nodes graph. Solid lines represent topics and dashed lines represent

services. Topic prefixes were omitted for simplicity.

sampler_node

As mentioned before, the sampler node (see Appendix H.1.2) is an aggregator node whose

main purpose is to gather all the data necessary to accomplish the semantic mapping task.

It gathers 3 types of information: RGB image (“/image_rect_color ”)18, colored point cloud

(“/cloud_registered ”)19, and robot pose (“/tf ”). The node has 2 timers: the first one triggers

a callback that publishes the robot pose to “/pose”20 at a 20 Hz rate; the second one triggers

a callback that publishes the gathered data to the topic “/data”21, limited by the sensor

publish rate that is configured to 10 Hz. Additionally, the sampler node makes memory level

verifications in its messages before publishing, to ensure that only valid data is propagated.

perception_yolo_v5

This node is an instance of the smap_perception_wrapper (see Appendix H.1.2, page 124)

that encapsulates the YOLOv5 detector22. When started, the node makes a call to the service

“/add_perception_module” to register this instance and its known classes. If successful, the

node starts to make predictions. Multiple objects can be detected in an image received in
18sensor_msgs/Image: tinyurl.com/54s3b4nh
19sensor_msgs/PointCloud2: tinyurl.com/3rwcrznc
20geometry_msgs/PoseStamped: tinyurl.com/586cezn8
21SmapData: tinyurl.com/46f6r8fe
22YOLOv5 list of classes: https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml

43

https://tinyurl.com/54s3b4nh
https://tinyurl.com/3rwcrznc
https://tinyurl.com/586cezn8
https://tinyurl.com/46f6r8fe
https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml

the topic “/data”. Each detected object is represented by a SmapObject23, and the group of

objects detected in an image composes a SmapDetections24 (Eq. 3.4, page 15) message that

is published to the topic “/predictions”.

perception_server

The perception server is responsible for the management of the probability hash map

(Pseudocode 4, page 26). It preserves the coherence of the hash map while adding new detec-

tors. New detectors are added through requests made in the service “/add_perception_module”.

Each detector receives a unique identifier, that is used to distinguish the origin of different

detections that were classified with the same class. The perception server also maintains

metadata related to added detectors to be later able to re-establish a connection with a

previously registered detector.

object_estimator

This node performs 2 important tasks: geometric segmentation (Section 3.3, page 15)

and BDM creation. Both of them are handled by the “/predictions” callback. This function

splits the data into multiple threads to balance the computational load (see Appendix F.1,

page 114).

topo_map

The topo_map node is responsible for making the data association (see Subsections 3.5.4,

page 34 and 3.5.5, page 35) and publishing object markers to RVIZ2. The positive observa-

tions are handled by the “/observations” callback (see Subsection 3.5.4, page 34), and nega-

tive observations are handled by the “/depth_map” callback (see Subsection 3.5.5, page 35).

In addition to the callbacks mentioned before, this node has two timers that trigger

callbacks for publishing and updating the map visualization. Both callbacks are processed in

independent threads and a mirrored representation of the map, stored in ROS markers array

message format, is utilized to reduce access times to the shared topological map structure.

The publishing timer has a frequency of 4 Hz and only publishes the existing message. The

update timer has a frequency of 1 Hz; it accesses the proper topological map and updates the

marker array. All the accesses to the topological map and the marker array are synchronized

using mutexes provided by the Linux operating system.

23SmapObject : tinyurl.com/mr3x7hd7
24SmapDetections: tinyurl.com/ytddt2ny

44

https://tinyurl.com/mr3x7hd7
https://tinyurl.com/ytddt2ny

5 Experiments and Evaluation

The system described in Chapter 4 was deployed and tested inside the Mobile Robotics

Lab (MRL) of the Institute of Systems and Robotics (ISR) in a non-controlled environment.

Despite the ability of the robot to navigate and map the environment autonomously, the

robot was moved manually around the lab because we did not manage to acquire in time

the electronic parts necessary to fulfill the power requirements (20VDC:4.5A∼9VDC:10A) of

the Jetson AGX Xavier1 to be powered by the robot’s batteries. Figure 5.1 shows a sample

of the semantic map of the MRL.

Figure 5.1: SMAP map in RVIZ. Figures C.4.26, C.4.27, C.4.28, and C.4.29 (page 93) illus-

trate the correspondent locations in MRL. Figures 5.2 and 5.3 explain the SMAP indicators.

1https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/

45

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/

Two experiments were performed. In the first one, the platform traveled the path illus-

trated in Figure C.4.23 and essential data, such as execution times (Section 5.1), point cloud

decay (Section 5.2), object classification precision (Section 5.3), and map size (Section 5.4),

were recorded. The second experiment aimed to evaluate the object positioning accuracy

(Section 5.3); the robot was conducted through a smaller path (see Figure C.4.25, page 91) in

which 15 scene objects had their centroid coordinates manually measured (see Figure C.4.24,

page 90) to obtain an object ground truth.

Figure 5.2: SMAP object indicator. The purple text shows the label (“ l:TV ”), object state

(“st:V ”) (V - Visible, O - Occluded, A - Absent), and object confidence (“c:0.925 ”). The blue

parallelepiped is proportional to the object’s volume. Triangles around the object represent

bins of the Visibility Histogram (see Subsection 3.5.2, page 27); the color ranges from red

(lodds < 0) to green (lodds > 0), and values close to lodds = 0 (No observations) have the

triangles ommited.

The parameters utilized in the experiments are presented in Appendix D (page 102);

Figure 5.1 shows an example of the Semantic Map of the MRL, and a video of the system in

action is available in Appendix I (page 126). More examples of the SMAP map are available

in Section 5.3 and Appendices C.2 and C.3. Extra results are available in Appendix E.

46

Figure 5.3: SMAP place indicator. The orange squares represent the position of the main

vertices of the topological map, the green text is the place classification of this vertice, and

the red line shows the connections between vertices (the edges).

5.1 Execution Times

This section presents the execution times of the main steps of the system presented in

Chapters 3 and 4. The execution times were recorded using only one thread of the geometric

segmentation process to simplify the execution time estimation.

The plot presented in Figure 5.4 shows the execution times of the YOLOv5 object detec-

tor. It shows that the Pre Processing (letterbox transformation2 + tensor initialization), In-

ference (object predictions) and Non-Maximum Suppression (NMS)3 steps can be performed

fast. Contrarily, the Post Processing step which overlays BBs in an image (see Figure 3.2,

page 15) tends to bottleneck the object detection. The median and the maximum execution

times are 91ms (10Hz) and 213ms (4Hz) respectively.

Figure 5.5 shows execution times of a single thread of the Geometric Segmentation

pipeline. The plot contains a lot of outliers due to the high variation in the point cloud

number of points and the patterns in it. Voxelization, Statistical Outlier Removal (SOR)

and Clustering are the steps most affected. Despite the big-time variations, the whole seg-

mentation pipeline can be executed in 82ms (12Hz), in the worst-case scenario, and in most

of the time in just 0.36ms (2.7KHz).

The execution time of the system’s callbacks is shown in Figure 5.6. Each callback is

responsible for performing one of the main steps of the semantic pipeline (see Figure A.1,
2Letterbox transformation is a process that resizes the image to a square format. 640× 640 in YOLOv5.
3Non-Maximum Suppression (NMS) is a filter step that removes lower score overlapping Bounding Box

(BB).

47

101 102

Execution Time in milliseconds [ms]

Post Processing

NMS

Inference

Pre Processing

Figure 5.4: Object detector execution times (Box Plot details in Appendix C.7, page 101).

10 4 10 3 10 2 10 1 100 101

Execution Time in milliseconds [ms]

Confidence Estimation

3D BB Estimation

Clustering

SOF

Voxelization

RoI Filter

Crop Filter

Figure 5.5: Geometric segmentation times (Box Plot details in Appendix C.7, page 101).

page 65). The plot shows the system’s main implementation weakness: both the Geometric

Segmentation and Point Cloud Binning are processed in independent threads that are sus-

ceptible to system preemption. This aspect is visible at the execution times of the Geometric

Segmentation callback in Figure 5.6 and is propagated to its steps (Figure 5.5). The Point

48

Cloud Binning is less impacted due to fewer function calls. Disabling system preemption in

the Operating System (OS) and setting reasonable task priorities can lead to performances

close to the median times. The sum of the maximums and the medians are 3155s (316mHz)

and 167ms (6Hz) respectively.

10 1 100 101 102 103

Execution Time in milliseconds [ms]

Positive Observation

Negative Observation

Geometric Segmentation

Object Detection

Figure 5.6: Callback times (Box plot details in Appendix C.7, page 101).

5.2 Point Decay

This section presents the reduction of cloud points along steps of the Neck of the semantic

pipeline (see Figure A.1, page 65). Figure 5.7 shows the filtering influence of Geometric

Segmentation steps, although Region of Interest (RoI) Filter and Statistical Outlier Removal

(SOR) seem to have almost no influence, they are essential to remove outliers and prevent

bad estimations.

Different from the Geometric Segmentation, Point Cloud Binning has a fixed output size

that depends only on the system parameters (see Appendix D, page 102). In this case, the

output Binned Depth Map (BDM) has size 24× 16× 3 = 1152 points.

49

Full Cloud Crop Filter RoI Filter Voxelization SOF Clustering

101

102

103

104

105

Ou
tp

ut
 c

lo
ud

 si
ze

 a
fte

r e
ac

h
st

ag
e

Figure 5.7: Geometric segmentation points. Plot details in Appendix C.7, page 101.

5.3 Object Registration

The Object Registration was evaluated in two experiments: Figures 5.1 and 5.8 illustrate

the maps collected while experimenting. The first experiment tried to evaluate metrics like

True Positive (TP), False Positive (FP), and Precision (PRE) of the system. The acquisition

of the negative metrics True Negative (TN) and False Negative (FN) was not possible due to

the non-controlled environment utilized for the tests, making it impracticable to determine

if an object should have been registered or not. Table 5.1 shows the results obtained. The

metrics were computed based on the exported equivalent 2D maps generated by the Map

Exporter (see Appendix F.6, page 116). The map of each class was manually compared and

the TP and FP metrics were evaluated.

Backpack Bottle Chair Couch Keyboard Suitcase Table TV Umbrella

TP 1 1 15 1 2 1 3 10 1

FP 0 0 11 1 1 1 1 8 1

PRE 100% 100% 57.7% 50% 66.7% 50% 75% 55.6% 50%

Table 5.1: Object registration metrics. The grid maps utilized to create the table are

presented in Appendix C.3 (page 78). Precision (PRE).

50

It is important to note that Table 5.1 was generated using an optimistic system con-

figuration (ovalid = 0.5) to generate a large number of entities in the map. As a conse-

quence, in regions where the robot makes fast turns the systems tend to create multiple

instances of the same entity instead of updating the existing one, therefore reducing the

Precision (PRE). This is visible in the demonstration video in Appendix I (page 126) as well

as in Figures C.3.21 and C.3.16, Appendix C.3.

Figure 5.8: SMAP visualized in RVIZ2. The image shows good estimations of both the

position and volume of objects in the scene. Figure C.4.28 (page 93) shows the correspondent

location in the MRL. Figures 5.2 and 5.3 explain the indicators present in the figure.

The second experiment tried to estimate the positional accuracy of the map. A ground

truth plant of the MRL (Figure C.4.24, page 90) was manually measured and compared with

the positions acquired by the system while mapping the area. The results of the experiment

(Table 5.2) show a noticeable contribution of the zz-axis error to the total error (if object

1 is considered an outlier). This can be explained by the low number of observations of

a certain object. Figure 5.9 shows an example of two objects viewed from only one static

51

perspective. Therein, the AABB of the chair is floating (i.e. it is above the floor) because

the system did not have the opportunity to observe the chair’s legs. Figure 5.9 also displays

a problem related to the system’s preference for the biggest cluster available while acquiring

the object’s geometry. This greedy preference has led the system to wrongly position the

AABB of the supposed “refrigerator ” on top of the bottle, that it did not recognize. Those

two problems are mostly attenuated when the robot has the opportunity to make multiple

observations from different perspectives.

Figure 5.9: SMAP estimation problems. The image displays the map’s problems when

observing objects from only one static perspective. The chair is floating due to limited

Point Cloud information and the “refrigerator ” is placed in the wrong position in space (see

Section 5.3, page 50). Figures 5.2 and 5.3 explain the indicators present in the figure.

It is important to note that objects 1 and 2 (see Table 5.2) of the second experiment

had bad results due to a small object dimension combined with a low number of observa-

tions because of the trajectory traversed by the platform and their positions (Figure C.4.24,

page 90).

52

Reference Class
Error [m]

x y z Distance

1 Bottle 1.49 -0.14 0.13 1.50

2 Bottle - - - -

3 TV 0.02 -0.01 0.02 0.03

4 TV -0.02 -0.02 -0.01 0.03

5 TV -0.15 0.21 0.05 0.26

6 TV 0.04 -0.03 0.03 0.06

7 TV 0.01 0.03 0.03 0.05

8 TV 0.33 -0.31 -0.12 0.47

9 TV 0.02 -0.04 0.03 0.05

10 TV 0.03 -0.02 0.02 0.04

11 Chair -0.00 0.02 0.30 0.30

12 Chair -0.02 0.03 0.26 0.27

13 Chair -0.02 -0.04 -0.02 0.05

14 Chair 0.01 0.01 0.23 0.23

15 Chair 0.01 -0.01 0.23 0.23

RMSE

x 2.36

y 0.17

z 0.30

Total 0.43

Table 5.2: Root Mean Square Error (RMSE) table generated from the mean object error of

tables E.1.1, E.1.2 and E.1.3 (see Appendix E.1). Object 2 was not detected by any of the

tests and object 1 has a much bigger error than the other objects. RMSE without objects 1

and 2: RMSEx = 0.14, RMSEy = 0.15, RMSEz = 0.28, RMSEtotal = 0.20.

53

5.4 Map Size

The occupancy grid map representation is widespread in various robotics applications

including semantic mapping (see Table 2.1, page 8). While the grid map is an intuitive spatial

representation for human visualization, it takes more space while storing less information;

each cell only has the resolution of 3 values (Free, Unknown, Occupied), and an independent

grid map for each known class is needed (see Table 2.1, page 8). Contrarily, the “.smap” file

format serializes all the information necessary to describe the SMAP map, such as Visibility

Histogram (see Subsection 3.5.2, page 27), Entity 3D Axis Aligned Bounding Box (AABB),

and the full likelihood vector Lk(x̂i|I1:k) (see Subsection 3.5.3, page 29) with floating point

precision. Figure 5.10 compares the size of the same map in different formats. The 2D grid

map was obtained using the Map Exporter (see Appendix F.6). The 3D grid map is an

extrapolation of the 2D grid map using the same resolution and assuming the same height

of the Mobile Robotics Lab (MRL) (3.75m
0.05m/cell

= 75 cells).

103 104 105

Size in Kilobytes [KB]

3D Grid Map [z=75 cells]
2D Grid Map
SMAP Topological Map

Figure 5.10: Map size comparison. The SMAP topological map uses roughly 250KB while

the 2D and 3D grid maps can take up to 7.5MB and 550MB respectively.

54

6 Conclusion

In this dissertation, a semantic mapping framework (SMAP) was proposed, implemented,

deployed, and tested in a real mobile robotic platform using edge computing provided by the

Jetson AGX Xavier.

The framework was structured in a microservice architecture [53] with modularity and

scalability in mind. Containers with simple and well-defined objectives were combined to

accomplish a complex task; the containers also isolated groups of dependencies to ensure

easy system deployment and reproducibility.

A comprehensive Semantic Pipeline was developed with a built-in Geometric Segmen-

tation (Section 3.3, page 15) capable of transforming generic 2D image detectors (such as

YOLO) into 3D object estimators. The pipeline also takes advantage of an Visibility His-

togram (Subsection 3.5.2, page 27) to better understand the environment around it and

avoid wrong object removal. Additionally, the pipeline enables expandable classification (see

Subsection 3.5.3) that makes possible the use of old maps while adding new classifiers to the

system.

Finally, the topological map utilized to store the environment semantics is lightweight

and capable of fast entity access. The serialized “.smap” format is richer than the common

grid map and the overall system is performant enough to be deployed in an edge platform

such as the Jetson embedded computer or similar.

Future Work

Despite many features and advantages, the system developed is far from perfect and has

a long list of improvements that were not possible due to the limited time window of this

dissertation project. The following list summarize some improvements that would be worth

to exploit in future work:

• Better multi-threading implementation. The multi-threading solution utilized works as

55

intended in terms of parallelism, but is not correctly configured to obtain the expected

performance gains, leaving behind a lot of performance potential.

• Place classification. The framework was built with all the structures and features

necessary to incorporate place semantics12 with even features like custom, per class,

traversability cost and place prior knowledge influence in object classification. Despite

all the support structures, a proper place classifier was not integrated.

• Better parameter tuning. Due to a lack of time, a lot of parameter values that were

utilized are far from ideal, especially the functions (fohc, foc) (see Table D.2, page 104)

that were simplified to make the deployment of a first iteration of the framework doable

in time. For instance, the tp3 component (Eq. 3.27, page 37) of foc should have been a

multiplication factor in the whole function to impose a greater influence of the Visibility

Histogram (see Section 3.5.2, page 27) instead of just a weighted sum of components

tp1, tp2 and tp3.

• Load balancing. Thanks to the microservice architecture, the computing load of dif-

ferent processing steps of the SMAP framework can be balanced using a container

orchestration3 system (such as Docker Swarm and Kubernetes) to deploy multiple

containers performing the same task. Additionally, taking advantage of the Data Dis-

tribution Service (DDS) adopted in ROS 2, the containers can be deployed in different

devices within the same network to offload the Jetson.

1Vertex structure: https://tinyurl.com/2duwc42f
2Edge structure: https://tinyurl.com/knvtt4ds
3Container orchestration automatically provisions, deploys, scales, and manages containerized appli-

cations without worrying about the underlying infrastructure. Developers can implement container or-

chestration anywhere containers are, allowing them to automate the life cycle management of containers.

[https://cloud.google.com/discover/what-is-container-orchestration].

56

https://github.com/lucyannofrota/smap_core/blob/7da7ff4ea3c56b26881c79e3d86643cfe23c1d2a/smap_base/include/smap_base/graph.hpp#L23
https://github.com/lucyannofrota/smap_core/blob/7da7ff4ea3c56b26881c79e3d86643cfe23c1d2a/smap_base/include/smap_base/graph.hpp#L49
https://cloud.google.com/discover/what-is-container-orchestration

7 Bibliography

[1] N. Blodow, L. C. Goron, Z.-C. Marton, D. Pangercic, T. Rühr, M. Tenorth, and

M. Beetz, “Autonomous semantic mapping for robots performing everyday manipu-

lation tasks in kitchen environments,” in 2011 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 4263–4270, IEEE, 2011.

[2] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J.-A. Fernandez-Madrigal, and

J. González, “Multi-hierarchical semantic maps for mobile robotics,” in 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 2278–2283, IEEE, 2005.

[3] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring problem,” Robotics and

Autonomous Systems, vol. 43, no. 2, pp. 85–96, 2003. Perceptual Anchoring: Anchoring

Symbols to Sensor Data in Single and Multiple Robot Systems.

[4] B. Smith, “Objects and their environments: from aristotle to ecological ontology,” in

Life and motion of socio-economic units, pp. 84–102, CRC Press, 2000.

[5] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowledge

Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[6] B. Kuipers, “Modeling spatial knowledge,” Cognitive Science, vol. 2, no. 2, pp. 129–153,

1978.

[7] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy based on a se-

mantic hierarchy of spatial representations,” Robotics and Autonomous Systems, vol. 8,

no. 1-2, pp. 47–63, 1991.

[8] B. Kuipers, “The spatial semantic hierarchy,” Artificial Intelligence, vol. 119, no. 1-2,

pp. 191–233, 2000.

57

[9] R. Goeddel and E. Olson, “Learning semantic place labels from occupancy grids using

cnns,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 3999–4004, IEEE, 2016.

[10] Y. Katsumata, A. Taniguchi, Y. Hagiwara, and T. Taniguchi, “Semantic mapping based

on spatial concepts for grounding words related to places in daily environments,” Fron-

tiers in Robotics and AI, vol. 6, p. 31, 2019.

[11] A. Pronobis, O. M. Mozos, B. Caputo, and P. Jensfelt, “Multi-modal semantic place clas-

sification,” International Journal of Robotics Research (IJRR), Special Issue on Robotic

Vision, vol. 29, pp. 298–320, Feb. 2010.

[12] N. Sünderhauf, F. Dayoub, S. McMahon, B. Talbot, R. Schulz, P. Corke, G. Wyeth,

B. Upcroft, and M. Milford, “Place categorization and semantic mapping on a mobile

robot,” in 2016 IEEE International Conference on Robotics and Automation (ICRA),

pp. 5729–5736, IEEE, 2016.

[13] R. B. Rusu, Z. C. Marton, N. Blodow, A. Holzbach, and M. Beetz, “Model-based and

learned semantic object labeling in 3d point cloud maps of kitchen environments,” in

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3601–

3608, 2009.

[14] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and reasoning with het-

erogeneous modalities,” in Proceedings of the 2012 IEEE International Conference on

Robotics and Automation (ICRA), (Saint Paul, MN, USA), May 2012.

[15] A. Pronobis, Semantic Mapping with Mobile Robots. PhD thesis, KTH Royal Institute

of Technology, Stockholm, Sweden, Dec. 2011.

[16] R. Dube, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “SegMatch:

Segment based place recognition in 3d point clouds,” in IEEE International Conference

on Robotics and Automation (ICRA), 2017.

[17] J. McCormac, A. Handa, A. Davison, and S. Leutenegger, “Semanticfusion: Dense 3d

semantic mapping with convolutional neural networks,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA), pp. 4628–4635, IEEE, 2017.

58

[18] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-source library

for real-time metric-semantic localization and mapping,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), pp. 1689–1696, IEEE, 2020.

[19] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davison,

“Slam++: Simultaneous localisation and mapping at the level of objects,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1352–1359,

2013.

[20] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features from rgb-d

images for object detection and segmentation,” in European Conference on Computer

Vision, pp. 345–360, Springer, 2014.

[21] J. C. d. C. S. Fernandes, “Semantic mapping with a mobile robot using a rgb-d camera,”

Master’s thesis, Universidade de Coimbra, 2019.

[22] N. Sünderhauf, T. Pham, Y. Latif, M. Milford, and I. D. Reid, “Meaningful maps -

object-oriented semantic mapping,” CoRR, vol. abs/1609.07849, 2016.

[23] D. Maturana, Semantic Mapping for Autonomous Navigation and Exploration. PhD

thesis, Carmegie Mellon], Pittsburgh, PA, August 2021.

[24] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan, “Contextualizing object detection

and classification,” in CVPR 2011, pp. 1585–1592, 2011.

[25] S. Routray, A. K. Ray, and C. Mishra, “Analysis of various image feature extraction

methods against noisy image: Sift, surf and hog,” in 2017 Second International Con-

ference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–5,

2017.

[26] S. Srivastava, “SIFT vs SURF: quantifying the variation in transformations,” CoRR,

vol. abs/1504.06740, 2015.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 580–587, 2014.

[28] R. Girshick, “Fast r-cnn,” CoRR, vol. abs/1504.08083, 2015.

59

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection

with region proposal networks,” 2016.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

[31] J. Redmon, “Yolo v3: Real-time object detection.” https://pjreddie.com/darknet/

yolo/, 2022. Last accessed November 2022.

[32] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” 2016.

[33] A. Khalfaoui, A. Badri, and I. E. Mourabit, “Comparative study of yolov3 and yolov5’s

performances for real-time person detection,” in 2022 2nd International Conference on

Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1–

5, 2022.

[34] M. Z. Saeed Shafieian, “Multi-layer stacking ensemble learners for low footprint network

intrusion detection,” Complex & Intelligent Systems, vol. 1007, pp. 2198–6053, 2022.

[35] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, pp. 123–140, 1996.

[36] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A compre-

hensive survey on support vector machine classification: Applications, challenges and

trends,” Neurocomputing, vol. 408, pp. 189–215, 2020.

[37] T. F. Rathbun, S. K. Rogers, M. P. DeSimio, and M. E. Oxley, “Mlp iterative construc-

tion algorithm,” Neurocomputing, vol. 17, no. 3, pp. 195–216, 1997.

[38] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vincent,

“Efficient sparse pose adjustment for 2d mapping,” 2010 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pp. 22–29, 2010.

[39] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic world,” Journal of

Open Source Software, vol. 6, no. 61, p. 2783, 2021.

[40] C. Campos, R. Elvira, J. J. Gomez, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM3:

An accurate open-source library for visual, visual-inertial and multi-map SLAM,” IEEE

Transactions on Robotics, vol. 37, no. 6, pp. 1874–1890, 2021.

60

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

[41] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE Inter-

national Conference on Robotics and Automation (ICRA), (Shanghai, China), IEEE,

May 9-13 2011.

[42] R. B. Rusu and S. Cousins, “Point cloud library basic structures.” https://

pointclouds.org/documentation/tutorials/basic_structures.html, 2023. Last

accessed July 2023.

[43] Y. Zhou, H. Lu, G. Wang, J. Wang, and W. Li, “Voxelization modelling based finite

element simulation and process parameter optimization for fused filament fabrication,”

Materials & Design, vol. 187, p. 108409, 2020.

[44] R. Rusu, “Semantic 3d object maps for everyday manipulation in human living environ-

ments,” 2009.

[45] “Euclidean cluster extraction.” https://adioshun.gitbooks.io/pcl/content/

Tutorial/Segmentation/euclidean-cluster-extraction-pcl-python.html, 2023.

Last accessed July 2023.

[46] C. E. Johnson and B. Kuipers, Topological Mapping and Navigation in Real-World

Environments. Ph.D. dissertation, Univ. Michigan, 2018.

[47] M. Opiela and F. Galčík, “Grid-based bayesian filtering methods for pedestrian dead

reckoning indoor positioning using smartphones,” Sensors, vol. 20, no. 18, 2020.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” in Proceedings of the 25th International Conference on

Neural Information Processing Systems - Volume 1, NIPS’12, (Red Hook, NY, USA),

p. 1097–1105, Curran Associates Inc., 2012.

[49] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million

image database for scene recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 40, no. 6, pp. 1452–1464, 2018.

[50] R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura, “Classification-

reconstruction learning for open-set recognition,” CoRR, vol. abs/1812.04246, 2018.

[51] S. Särkkä, Bayesian Filtering and Smoothing. Bayesian Filtering and Smoothing, Cam-

bridge University Press, 2013.

61

https://pointclouds.org/documentation/tutorials/basic_structures.html
https://pointclouds.org/documentation/tutorials/basic_structures.html
https://adioshun.gitbooks.io/pcl/content/Tutorial/Segmentation/euclidean-cluster-extraction-pcl-python.html
https://adioshun.gitbooks.io/pcl/content/Tutorial/Segmentation/euclidean-cluster-extraction-pcl-python.html

[52] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap:

an efficient probabilistic 3d mapping framework based on octrees,” Autonomous Robots,

vol. 34, pp. 189 – 206, 2013.

[53] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, “From monolithic systems to mi-

croservices: An assessment framework,” Information and Software Technology, vol. 137,

p. 106600, 2021.

[54] S. Macenski, “Slam toolbox.” https://github.com/SteveMacenski/slam_toolbox,

2023. Last accessed July 2023.

[55] S. Macenski, “Navigation 2.” https://github.com/ros-planning/navigation2, 2023.

Last accessed July 2023.

[56] S. Macenski, F. Martín, R. White, and J. Ginés Clavero, “The marathon 2: A navigation

system,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2020.

[57] A. Merzlyakov and S. Macenski, “A comparison of modern general-purpose visual slam

approaches,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2021.

[58] S. Macenski, S. Singh, F. Martin, and J. Gines, “Regulated pure pursuit for robot path

tracking,” Autonomous Robots, 2023.

[59] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and R. Vincent,

“Efficient sparse pose adjustment for 2d mapping,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 22–29, 2010.

[60] G. Valiente, “Adjacency maps and efficient graph algorithms,” Algorithms, vol. 15, no. 2,

2022.

[61] P. Silva and R. Rocha, “Low-power footprint inference with a deep neural network of-

floaded to a service robot through edge computing,” in Proceedings of the 38th ACM/SI-

GAPP Symposium on Applied Computing, SAC ’23, (New York, NY, USA), p. 800–807,

Association for Computing Machinery, 2023.

[62] P. Silva and R. Rocha, Edge Computing to Enable Onboard Computation of Deep Learn-

ing Algorithms in Service Robots. M.Sc. Thesis, University of Coimbra, 2022.

62

https://github.com/SteveMacenski/slam_toolbox
https://github.com/ros-planning/navigation2

[63] J. Pérez, J. Díaz, J. Berrocal, R. López-Viana, and A. González-Prieto, “Edge comput-

ing: A grounded theory study,” Computing, vol. 104, p. 2711–2747, dec 2022.

63

Appendix A

Complete system pipeline

The diagram shown in Figure A.1 presents the complete system pipeline. It shows all

the components necessary to perform semantic mapping, from Data Collection, to Seman-

tic Pipeline, and finally the Map. An overall description of the Semantic Pipeline will be

presented in the topics below, and the in-depth details are discussed in Chapter 3 (page 13).

Backbone

The backbone is where the features are extracted from the data (see Section 3.2, page 14);

in this case, the input data is an RGB Image that is processed by an image detector. The

image detector extracts multiple objects from the image and outputs the matrix (D); in

which each line represents a detected object. Objects are represented by a combination of

the vector of class labels (x), and a 2D AABB; (x) has length (N) equal to the number of

classes know by the detector. This stage can be performed by 1 or more detectors with a

different set of classes working in parallel as mentioned in (see Section 4.1, page 39).

Neck

The neck is where features are transformed and refined; in this case there are 2 parallel

processes, Geometric Segmentation (Section 3.3, page 15) and Point Cloud Binning (see

Section 3.4, page 23). The first one, inputs the matrix (D) and estimates a pair of 3D

AABB and Bounding Box Confidence (BBc) for each object; the output is the matrix (D∗)

which is the composition of (x), 3D AABB and (BBc). The second one, Point Cloud Binning,

downsamples the relevant aspects of the Point Cloud into a Binned Depth Map (BDM).

64

Sam
pling

H
ead

D
ata association - N

egative O
bservations

N
eck

G
eom

etric Segm
entation

B
ackbone

G
eom

etric
Segm

entation

Point C
loud

B
inning

D
ata C

ollection
Sem

antic Pipeline

R
G

B
 Im

age

Point C
loud

M
ap

Topological
M

ap

O
bject

D
etection 1

O
bject

D
etection M

Vertex
U

pdate

O
cclusion

D
etection

O
bject

Selection
R

obot Pose

D
ata association - Positive O

bservations

Vertex
U

pdate

Sem
antic

U
pdate

O
bject

Selection

D
ata

A
ssociation

C
rop Filter

R
oI Filter

Voxelization

SO
R

 Filter
C

lustering
3D

 B
B

Estim
ation

C
onfidence

Estim
ation

F
igure

A
.1:

D
etailed

system
diagram

.

65

Head

The head is where the main task of the model is performed; in this case, it is the

semantic mapping. The semantic mapping is built using associations of acquired features

with their relative positions in a metric map; the associations are divided into 2 groups that

are processed in parallel; association of positive observations (Subsection 3.5.4, page 34) and

associations of negative observations (Subsection 3.5.5, page 35). The positive ones use the

matrix (D∗) to create and update instances of objects in the map; the second one utilizes

the BDM to validate the expected positions of mapped objects and detect cases of object

occlusion and object absence.

66

Appendix B

Metrics

The majority of the formulae that compose this appendix were extracted from Scikit

Learn1 web page.

Notation

• TP - True Positive

• TN - True Negative

• FP - False Positive

• FN - False Negative

• REC - Recall = TPr

• TPr - True Positive Rate

• TNr - True Negative Rate

• FPr - False Positive Rate

• FNr - False Negative Rate

• SPE - Specificity = TNr

B.1 TPr, TNr, FPr, FNr

TPr =
TP

Positives
=

TP

TP + FN
(B.1)

TNr =
TN

Negatives
=

TN

TN + FP
(B.2)

FPr =
FP

Negatives
=

FP

FP + TN
(B.3)

FNr =
FN

Positives
=

FN

FN + TP
(B.4)

1Scikit learn: https://scikit-learn.org/stable/modules/model_evaluation.html

67

https://scikit-learn.org/stable/modules/model_evaluation.html

B.2 Accuracy (ACC)

Accuracy is how close the measurement is to its true value.

Accuracy =
Correct Classifications

All Classifications︸ ︷︷ ︸
Multi Class Classification

=
TP + TN

TP + TN + FP + FN︸ ︷︷ ︸
Binary Classification

(B.5)

B.3 Precision (PRE)

Precision is how close the measurements are to each other.

Precision =
TP

TP + FP
(B.6)

B.4 Average Precision (AP)

Average precision is the area under the precision-recall curve. (p− precision, r− recall)

AP =

∫ 1

r=0

p(r)dr (B.7)

That can be approximated using:

AP =
N∑
k=1

(REC(k)−REC(k − 1)) · PRE(k) (B.8)

B.5 Mean Average Precision (MAP)

Is the mean of all classes AP.

AP =
1

N

N∑
i=1

APi (B.9)

B.6 Intersection over Union (IoU)

IoU is a relationship between the ground truth, and prediction bounding boxes; it is

defined by the division of the area of intersection by the area of union. Figure B.6.1 illustrates

this metric.

68

Ground Truth Area

Prediction Area

Ground Truth Area

Prediction Area

IoU =

Figure B.6.1: Intersection over union.

69

Appendix C

Additional Images

C.1 Geometric Segmentation Pipeline

Figure C.1.1: Reference image.

70

Figure C.1.2: YOLOv5 detections.

Figure C.1.3: Reference point cloud.

71

Figure C.1.4: Object segmentation steps: Crop Filter.

Figure C.1.5: Object segmentation steps: Crop Filter, RoI filter.

72

Figure C.1.6: Object segmentation steps: Crop Filter, ROI filter, Voxelization.

Figure C.1.7: Object segmentation steps: Crop Filter, ROI filter, Voxelization, SOF filter.

73

Figure C.1.8: Object Segmentation steps: Crop Filter, ROI filter, Voxelization, SOR filter,

Clustering.

Figure C.1.9: Object segmentation steps: Crop Filter, ROI filter, Voxelization, SOF filter,

Clustering, 3D AABB Estimation.

74

Figure C.1.10: Binned depth map view 1.

Figure C.1.11: Binned depth map view 2.

75

C.2 RVIZ SMAP Map Representation

76

Figure C.2.12: SMAP map of the MRL. The map shows the precise location (see Table 5.2,

page 53), and good volume estimation of the entities analyzed. The map corresponds to

the region illustrated by Figures C.4.26, C.4.27 and C.4.29 (page 92). Figures 5.2 and 5.3

explain the indicators present in the figure.

77

C.3 SMAP Grid Representation

Figure C.3.13: Occupancy grid (0.05m/cell).

78

Figure C.3.14: SMAP 2D projection class Backpack (0.05m/cell).

79

Figure C.3.15: SMAP 2D projection class Bottle (0.05m/cell).

80

Figure C.3.16: SMAP 2D projection class Chair (0.05m/cell).

81

Figure C.3.17: SMAP 2D projection class Couch (0.05m/cell).

82

Figure C.3.18: SMAP 2D projection class Keyboard (0.05m/cell).

83

Figure C.3.19: SMAP 2D projection class Suitcase (0.05m/cell).

84

Figure C.3.20: SMAP 2D projection class Table (0.05m/cell).

85

Figure C.3.21: SMAP 2D projection class TV (0.05m/cell).

86

Figure C.3.22: SMAP 2D projection class Umbrella (0.05m/cell).

87

C.4 Mobile Robotics Lab (MRL)

88

Figure C.4.23: Mobile Robotics Lab (MRL) plant. The red trace is the path traveled by the

robot in experiment 1 referred to in Section 5 (page 45). The robot starts and finishes in

the same location between two working stations.

89

Figure C.4.24: Mobile Robotics Lab (MRL) object locations. Figures C.4.26, C.4.27

and C.4.29 illustrates the correspondent location in MRL.

90

Figure C.4.25: Experiment 2 path. The red trace is the path traveled by the robot in

experiment 2 referred to in Section 5 (page 45). The robot starts near a cabinet and finishes

between two working stations.

91

Figure C.4.26: Mobile Robotics Lab (MRL) photo 1.

Figure C.4.27: Mobile Robotics Lab (MRL) photo 2.

92

Figure C.4.28: Mobile Robotics Lab (MRL) photo 3.

Figure C.4.29: Mobile Robotics Lab (MRL) photo 4.

93

C.5 ROS Diagrams

94

/ro
s_b

rid
g
e

/sm
a
p
/sa

m
p
le
r_n

o
d
e

/tf

/b
t_n

a
v
ig
a
to
r

/tf

/lo
ca
l_co

stm
a
p

/sca
n

/g
lo
b
a
l_co

stm
a
p

/sca
n

/sla
m
_to

o
lb
o
x

/sca
n

/R
O
S
A
R
IA

/e
n
a
b
le
_m

o
to
rs

/d
isa

b
le
_m

o
to
rs

/cm
d
_v
e
l

/sm
a
p
/to

p
o
_m

a
p
/m

a
rk
e
rs

/sm
a
p
/p
e
rce

p
tio

n
_y
o
lo
_v
5

/sm
a
p
/p
e
rce

p
tio

n
_se

rv
e
r

/sm
a
p
/p
e
rce

p
tio

n
_se

rv
e
r/a

d
d
_p
e
rce

p
tio

n
_m

o
d
u
le

/sm
a
p
/o
b
je
ct_e

stim
a
to
r

/sm
a
p
/p
e
rce

p
tio

n
/p

/sm
a
p
/sa

m
p
le
r/d

a
ta

/sm
a
p
/to

p
o
_m

a
p

/sm
a
p
/sa

m
p
le
r/p

o
se

/sm
a
p
/o
b
je
ct_e

stim
a
to
r/o

b
se
rv
a
tio

n
s

/sm
a
p
/o
b
je
ct_e

stim
a
to
r/d

e
p
th
_m

a
p

/g
o
a
l_p

o
se

/re
co
v
e
rie

s_se
rv
e
r

/cm
d
_v
e
l

/co
n
tro

lle
r_se

rv
e
r

/cm
d
_v
e
l

/co
stm

a
p
_ra

w

/p
u
b
lish

e
d
_fo

o
tp
rin

t

/ze
d
2
/jo

in
t_sta

te
s

/ze
d
2
/ze

d
_sta

te
_p
u
b
lish

e
r

/tf

/ze
d
2
/ro

b
o
t_d

e
scrip

tio
n

/ze
d
2
/ze

d
_n
o
d
e

/tf

/ze
d
2
/ze

d
_n
o
d
e
/p
o
in
t_clo

u
d
/clo

u
d
_re

g
iste

re
d

/ze
d
2
/ze

d
_n
o
d
e
/rg

b
/im

a
g
e
_re

ct_co
lo
r

/tf
/jo

in
t_sta

te
s

/ro
b
o
t_sta

te
_p
u
b
lish

e
r

/tf

/ro
b
o
t_d

e
scrip

tio
n

/m
a
p

/R
O
S
2
_E

_S
T
O
P

/e
n
a
b
le
_m

o
to
rs

/d
isa

b
le
_m

o
to
rs

/tf

/o
d
o
m

/e
sto

p
/m

o
to
rs_sta

te

/u
rg
_n
o
d
e

/o
d
o
m

F
igure

C
.5.30:

R
O

S
node

diagram
.

B
lue

nodes
belong

to
R

O
S

N
oetic,red

nodes
represent

R
O

S
Foxy.

Solid
lines

represent
topics

and
dashed

lines
represent

services.

95

v
ie

w
_fra

m
e
s R

e
su

lt

ze
d

2
_le

ft_ca
m

e
ra

_fra
m

e

ze
d

2
_im

u
_lin

k

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

9
5

.4
1

4
B

u
ffe

r le
n

g
th

: 5
.0

2
5

M
o
st re

ce
n

t tra
n

sfo
rm

: 1
6

9
2

8
9

9
1

1
3

.4
2

0
7

3
8

O
ld

e
st tra

n
sfo

rm
: 1

6
9

2
8

9
9

1
0

8
.3

9
5

5
0

1

ze
d

2
_le

ft_ca
m

e
ra

_o
p

tica
l_fra

m
e

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_te

m
p

_le
ft_lin

k

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_ca

m
e
ra

_ce
n

te
r

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_b

a
ro

_lin
k

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_m

a
g

_lin
k

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_rig

h
t_ca

m
e
ra

_fra
m

e

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

b
a
se

_lin
k

fro
n

t_so
n

a
r

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0p
3

d
x
_le

ft_w
h

e
e
l

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0p
3

d
x
_rig

h
t_w

h
e
e
l

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

sw
iv

e
l

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

to
p

_p
la

te

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

lm
s1

0
0

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_b

a
se

_lin
k

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

so
n

a
r

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
.1

8
5

B
u

ffe
r le

n
g

th
: 4

.9
0

9
M

o
st re

ce
n

t tra
n

sfo
rm

: 1
6

9
2

8
9

9
1

1
3

.4
4

0
6

0
3

O
ld

e
st tra

n
sfo

rm
: 1

6
9

2
8

9
9

1
0

8
.5

3
1

2
3

2

o
d

o
m

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
.2

B
u

ffe
r le

n
g

th
: 4

.9
0

2
M

o
st re

ce
n

t tra
n

sfo
rm

: 1
6

9
2

8
9

9
1

1
3

.3
6

7
0

5
O

ld
e
st tra

n
sfo

rm
: 1

6
9

2
8

9
9

1
0

8
.4

6
5

0
3

7

p
3

d
x
_le

ft_h
u

b
ca

p

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0p
3

d
x
_rig

h
t_h

u
b

ca
p

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ce
n

te
r_w

h
e
e
l

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ce
n

te
r_h

u
b

ca
p

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

m
a
p

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 5

0
.1

9
9

B
u

ffe
r le

n
g

th
: 5

.0
M

o
st re

ce
n

t tra
n

sfo
rm

: 1
6

9
2

8
9

9
1

1
3

.6
0

6
0

5
9

O
ld

e
st tra

n
sfo

rm
: 1

6
9

2
8

9
9

1
0

8
.6

0
5

9
2

2

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_rig

h
t_ca

m
e
ra

_o
p

tica
l_fra

m
e

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

ze
d

2
_te

m
p

_rig
h

t_lin
k

 B
ro

a
d

ca
ste

r: d
e
fa

u
lt_a

u
th

o
rity

A
ve

ra
g

e
 ra

te
: 1

0
0

0
0

.0
B

u
ffe

r le
n

g
th

: 0
.0

M
o
st re

ce
n

t tra
n

sfo
rm

: 0
.0

O
ld

e
st tra

n
sfo

rm
: 0

.0

R
e
co

rd
e
d

 a
t tim

e
: 1

6
9

2
8

9
9

1
1

3
.4

7
1

7
4

8
8

F
igure

C
.5.31:

R
O

S
T

F
tree

diagram
.

96

C.6 P3-DX Plataform and Sensors

97

Figure C.6.32: (a) ZED2 Stereo Camera, (b) Jetson AGX Xavier, (c) RGB-D Orbbec Astra,

(d) Hokuyo URG-04LX laser range finder, (e) P3-DX Platform.

98

Figure C.6.33: Jetson AGX Xavier with e-top circuit and ZED 2 camera.

Figure C.6.34: ZED 2 stereo camera.

Figure C.6.35: Hokuyo URG-04LX laser range finder.

99

Figure C.6.36: Intel 8265 M.2 wireless network.

100

C.7 Box Plot

Minimum

1 Quartile

Median

3 Quartile

Maximum

Outlier

Figure C.7.37: Box plot summary illustration. Box plots are utilized to represent data

distribution in a compact format. It presents the minimum and maximum values as well as

the 4 quartiles Q1, Q2 ≡ Median, Q3, Q4 ≡ Maximum.

101

Appendix D

System Parameters

This appendix presents a list of the values adopted by the system of all parameters

mentioned in this document.

102

Parameter Value

Samplig (section 3.1, page 14)

ZED2 Stereo Camera

Image Resolution 672× 376 pixels

grab_frame_rate 10 [Hz]

pub_frame_rate 10 [Hz]

Point Cloud Resolution 672× 376 points

point_cloud_freq 10 [Hz]

cam_pose
[
0.10 0.0 0.84 0.0 0.0 0.0

]
Object Detection (section 3.2, page 14)

Nyolov5 80

Geometric Segmentation (section 3.3, page 15)

RoI

Rmin 0.2 [m]

Rmax 1.7 [m]

Voxelization

Sleaf 0.03 [m]

SOR

meank 8 samples

std_multiplier 0.3

Clustering

clustermin 50 points

clustermax 10000 points

clustertol 0.065 [m]

Confidence Estimation

obj_ths 0.2 [m]

Table D.1: System parameters.

103

Parameter Value

Binnecd Depth Map (section 3.4, page 23)

BDM dimensions 24× 16 cells

Data Association (section 3.5, page 25)

Topological Map

Vd 1 [m]

Ef 0.95

Visibility Histogram

δbase 2

lf 5

w1×lf

[
0.5 1.5 6 1.5 0.5

]
lmin, lmax -10, +10

Semantic Update

p(x̂) 1

Positive Observations

oe 0.2

ot 0.5

Negative Observations

ovalid 0.5

fohc(v)

∑#v
e=1 1ve>0.7∑#v

e=1(1ve>0.7 + 1ve<0.4)

foc(tp1, tp2, tp3)
4 · tp1 + 1 · tp2 + 1 · tp3

6

Table D.2: System parameters.

104

Appendix E

Extra Results

E.1 Object Registration Position Error

Tables E.1.1, E.1.2 and E.1.3 present the ground truth centroid of objects in the world

and compare them with estimated positions. Figure C.4.24 illustrates the ground truth. The

mean error of each object of the 3 tables was compiled into the Table 5.2 (page 53).

Reference Class Ground Truth Position Error

1 Bottle [-0.01, 0.16, 0.83] [-1.5,-0.3, 0.7] [1.49,-0.14, 0.13]

2 Bottle [2.97, 1.36, 0.86] - -

3 TV [0.33, 1.57, 0.96] [0.4, 1.6, 0.9] [0.07,-0.03, 0.06]

4 TV [0.34, 2.14, 1.08] [0.4, 2.2, 1.1] [-0.06,-0.06,-0.02]

5 TV [0.35, 3.81, 1.15] [0.5, 3.6, 1.1] [-0.15, 0.21, 0.05]

6 TV [0.81, 1.80, 0.99] [0.7, 1.9, 0.9] [0.11,-0.10, 0.09]

7 TV [0.92, 2.20, 0.99] [0.9, 2.1, 0.9] [0.02, 0.10, 0.09]

8 TV [0.83, 3.29, 0.98] [0.5, 3.6, 1.1] [0.33,-0.31,-0.12]

9 TV [3.05, 1.79, 0.98] [3.0, 1.9, 0.9] [0.05,-0.11, 0.08]

10 TV [2.99, 2.35, 0.97] [2.9, 2.4, 0.9] [0.09,-0.05, 0.07]

11 Chair [-0.31, 2.16, 1.19] [-0.3, 2.1, 0.3] [-0.01, 0.06, 0.89]

12 Chair [-0.27, 3.80, 1.19] [-0.2, 3.7, 0.4] [-0.07, 0.10, 0.79]

13 Chair [-3.05, 0.38, 0.45] [-3.0, 0.5, 0.5] [-0.05,-0.12,-0.05]

14 Chair [2.44, 2.13, 1.19] [2.4, 2.1, 0.5] [0.04, 0.03, 0.69]

15 Chair [1.42, 2.08, 1.19] [1.4, 2.1, 0.5] [0.02,-0.02, 0.69]

Table E.1.1: Experiment 1.

105

Reference Class Ground Truth Position Error

1 Bottle [-0.01, 0.16, 0.83] - -

2 Bottle [2.97, 1.36, 0.86] - -

3 TV [0.33, 1.57, 0.96] [0.3, 1.6, 0.9] [0.03,-0.03, 0.06]

4 TV [0.34, 2.14, 1.08] [0.3, 2.2, 1.0] [0.04,-0.06, 0.08]

5 TV [0.35, 3.81, 1.15] - -

6 TV [0.81, 1.80, 0.99] [0.8, 2.0, 0.9] [0.01,-0.20, 0.09]

7 TV [0.92, 2.20, 0.99] [0.8, 2.3, 0.9] [0.12,-0.10, 0.09]

8 TV [0.83, 3.29, 0.98] - -

9 TV [3.05, 1.79, 0.98] [2.8, 2.0, 0.9] [0.25,-0.21, 0.08]

10 TV [2.99, 2.35, 0.97] [2.8, 2.6, 1.0] [0.19,-0.25,-0.03]

11 Chair [-0.31, 2.16, 1.19] [-0.4, 2.0, 0.5] [0.09, 0.16, 0.69]

12 Chair [-0.27, 3.80, 1.19] [-0.4, 3.7, 0.3] [0.13, 0.10, 0.89]

13 Chair [-3.05, 0.38, 0.45] [-2.9, 0.4, 0.4] [-0.15,-0.02, 0.05]

14 Chair [2.44, 2.13, 1.19] [2.3, 2.3, 0.4] [0.14,-0.17, 0.79]

15 Chair [1.42, 2.08, 1.19] [1.4, 2.0, 0.5] [0.02, 0.08, 0.69]

Table E.1.2: Experiment 2.

106

Reference Class Ground Truth Position Error

1 Bottle [-0.01, 0.16, 0.83] - -

2 Bottle [2.97, 1.36, 0.86] - -

3 TV [0.33, 1.57, 0.96] [0.5, 1.6, 0.9] [-0.17,-0.03, 0.06]

4 TV [0.34, 2.14, 1.08] [0.5, 2.1, 1.1] [-0.16, 0.04,-0.02]

5 TV [0.35, 3.81, 1.15] - -

6 TV [0.81, 1.80, 0.99] [0.9, 1.9, 1.0] [-0.09,-0.10,-0.01]

7 TV [0.92, 2.20, 0.99] [1.0, 2.1, 0.9] [-0.08, 0.10, 0.09]

8 TV [0.83, 3.29, 0.98] - -

9 TV [3.05, 1.79, 0.98] [3.0, 2.0, 0.9] [0.05,-0.21, 0.08]

10 TV [2.99, 2.35, 0.97] [3.0, 2.3, 0.9] [-0.01, 0.05, 0.07]

11 Chair [-0.31, 2.16, 1.19] [-0.3, 2.0, 0.6] [-0.01, 0.16, 0.59]

12 Chair [-0.27, 3.80, 1.19] [-0.3, 3.6, 0.0] [0.03, 0.20, 1.19]

13 Chair [-3.05, 0.38, 0.45] [-2.9, 0.6, 0.5] [-0.15,-0.22,-0.05]

14 Chair [2.44, 2.13, 1.19] [2.4, 2.1, 0.5] [0.04, 0.03, 0.69]

15 Chair [1.42, 2.08, 1.19] [1.6, 1.9, 0.5] [-0.18, 0.18, 0.69]

Table E.1.3: Experiment 3.

E.2 Expandable Classification Test

To test the Expandable Classification of the system two nodes were created (yolo_v5_odd

and yolo_v5_even) based on the yolo_v5 node detector; those nodes are basically the same

as the yolo_v5 except for the fact that they only publish detections with even or odd class

indexes1 according to Pseudocode E.5 (see Tables E.2.4, and E.2.5). This method was cho-

sen because each detector tends to apply the same computational load to the system while

testing the ability of the system to add a new detector (therefore new classes) in runtime.

A simple experiment was conducted with both yolo_v5_even and yolo_v5_odd deployed

in independent containers and the execution timings of the system were recorded. Fig-

ure E.2.1 shows the results and the timings are basically the same, except for the Geometric

Segmentation that had a huge performance impact.
1YOLOv5 list of classes: https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml

107

https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml

10 2 10 1 100 101 102 103

Execution Time in milliseconds [ms]

Positive Observation [Multi]

Positive Observation [Single]

Negative Observation [Multi]

Negative Observation [Single]

Geometric Segmentation [Multi]

Geometric Segmentation [Single]

Object Detection [Single]

Object Detection [YOLO ODD]

Object Detection [YOLO EVEN]

Figure E.2.1: Multiple detectors performance impact. “Single” timing when running with

one detector, “Multi ” timing when running with two detectors.

Pseudocode E.5: Even odd model index selection
for j in range(8):

k = 2*j+1; // Indexes to be rejected k*5 -> (k+1)*5-1 [EVEN]

k = 2*j; // Indexes to be rejected k*5 -> (k+1)*5-1 [ODD]

if(c >= k*5 and c <= (k+1)*5-1):

ignore detection;

108

YOLO Even YOLO Odd

(5) bus (0) person

(6) train (1) bicycle

(7) truck (2) car

(8) boat (3) motorcycle

(9) traffic light (4) airplane

(15) cat (10) fire hydrant

(16) dog (11) stop sign

(17) horse (12) parking meter

(18) sheep (13) bench

(19) cow (14) bird

(25) umbrella (20) elephant

(26) handbag (21) bear

(27) tie (22) zebra

(28) suitcase (23) giraffe

(29) frisbee (24) backpack

(35) baseball glove (30) skis

(36) skateboard (31) snowboard

(37) surfboard (32) sports ball

(38) tennis racket (33) kite

(39) bottle (34) baseball bat

Table E.2.4: Even odd classes part 1.

109

YOLO Even YOLO Odd

(45) bowl (40) wine glass

(46) banana (41) cup

(47) apple (42) fork

(48) sandwich (43) knife

(49) orange (44) spoon

(55) cake (50) broccoli

(56) chair (51) carrot

(57) couch (52) hot dog

(58) potted plant (53) pizza

(59) bed (54) donut

(65) remote (60) dining table

(66) keyboard (61) toilet

(67) cell phone (62) tv

(68) microwave (63) laptop

(69) oven (64) mouse

(75) vase (70) toaster

(76) scissors (71) sink

(77) teddy bear (72) refrigerator

(78) hair drier (73) book

(79) toothbrush (74) clock

Table E.2.5: Even odd classes part 2.

110

Appendix F

Auxiliary Tools

To help in the development and the portability of the system to future projects related

to semantic mapping, a few standard and well-known tools in the Robotics community

were used. Those tools were important to drastically reduce the development time in this

dissertation. This section will introduce and describe the importance, functionalities, and

contribution of each development tool to this thesis.

F.1 ROS

Robot Operating System (ROS) is an open-source middleware released in 2007 by the

company Willow Garage (latter turned into Open Robotics). Despite the name “Robot Op-

erating System”, actually, it is not an OS and is based primarily on Linux. ROS is a con-

solidated robotics middleware in research applications because of its ecosystem, integrated

with a set of tools essential for development and deployment. In 2015, the second version

of the middleware was released, ROS 2. ROS 2 carries all the advantages of its predecessor

but with the ambition to become popular in industrial applications, as well as to enable the

deployment of fully distributed robotics software systems. It became closer to working as a

real-time system, with support for more OS (Ubuntu, Windows 10, MacOS, Debian, etc ...).

ROS is structured to work as a modular integrated system. Each functionality (e.g.

mapping, navigation) is implemented in a node that is basically a system process. The Inter

Process Communication (IPC) used is based on messages and can work in both synchronous

and asynchronous modes using “services” and “topics”, respectively. Figure F.1.1 illustrates

the flow of messages. “Services” establish a synchronous communication between a server
1https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-

Nodes/Understanding-ROS2-Nodes.html

111

https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Nodes/Understanding-ROS2-Nodes.html

Topic

Service

Request

Response

Node

Service
Client

Subscriber

Node

Service
Server

Publisher

Node

Subscriber

Figure F.1.1: ROS IPC Diagram. Image reproduced from ROS FOXY documentation1.

node and a client node that is based on request/response pairs. Conversely, “Topics” follows

the philosophy of “publisher ” and “subscriber ”: a node can publish a message to a topic and

all nodes subscribed to that topic will receive that message asynchronously.

F.2 NVIDIA Jetson

Jetson2 is a family of System On Module (SOM) systems developed by NVIDIA aimed

at low consumption and high computational power embedded systems, including mobile

robots. Since it is a SOM, it is a complete computational unit containing Central Processing

Unit (CPU), Graphics Processing Unit (GPU), memory, storage, and input/output ports.

Figure F.2.2: Jetson AGX Xavier Development kit. Image reproduced from [3].

Its CPU is developed by NVIDIA and based on an Advanced RISC Machines (ARM)
2https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
3https://elinux.org/File:Xavier-module-dev-kit-3qrtr-1945px.png

112

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://elinux.org/File:Xavier-module-dev-kit-3qrtr-1945px.png

architecture. The GPU is also developed by NVIDIA, is based on a Volta microarchitecture,

and has a total computational power of 22 Tera Operations Per Second (TOPS).

The Jetson uses a custom Linux-based distro called Jetson Linux (popularly known as

Linux For Tegra (L4T)) that is combined with the Jetpack Software Development Kit (SDK)
4 to provide hardware acceleration to the system using interfaces like Tensor RT (TRT) 5,

CUDA Deep Neural Network (cuDNN) 6, and Compute Unified Device Architecture (CUDA)
7.

The Jetson AGX Xavier (Figure F.2.2) was the device chosen to power the robotic plat-

form in this work. This device has been used recently in our lab for edge computing research

[61, 62, 63]. A concept that consists of moving the heavy processing of modern applications

closer to the machinery to take advantage of latency, bandwidth, and security if compared

with cloud computing. In a mobile robot, this paradigm is key for lower latency perception

applications and robot autonomy not relying on the cloud and potentially decreasing power

consumption.

F.3 Docker

Docker is a tool to build, share, and run applications easily8. It is an “operating system

for containers”, and it works by creating a kernel-level interface between containers and real

hardware using virtualization. The docker is available on the principal OS on the market and,

because of the virtualization, it transforms applications into multi-platform applications.

With Docker, it is possible to create a container with an OS inside, which can be different

from the host system OS, configure it, and install dependencies and applications. The created

containers are extremely light because they only store the instructions needed to replicate

the OS state (e.g. Docker Image), and can be shared and are ready to run in other systems,

possibly different OS.

Docker was fundamental in this work to restore previous installation states and to share

progress between the simulation environment in a development computer and the Jetson

in the robot. In the future, it will be key to easily replicate the work done within this

dissertation project.
4Jetpack : developer.nvidia.com/embedded/jetpack
5TensorRT : developer.nvidia.com/tensorrt
6cuDNN : developer.nvidia.com/cudnn
7CUDA: developer.nvidia.com/cuda-zone
8Docker: https://www.docker.com/
9https://docs.nvidia.com/ai-enterprise/deployment-guide-bare-metal/0.1.0/docker.html

113

https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuda-zone
https://www.docker.com/
https://docs.nvidia.com/ai-enterprise/deployment-guide-bare-metal/0.1.0/docker.html

Figure F.3.3: Docker NVIDIA toolkit architecture diagram. Image reproduced from [9].

The use of docker in Jetson systems is almost a prerequisite due to limitations imposed

by the ARM architecture, and the custom Linux distro (L4T) utilized in the system. As a

consequence, the Jetson family of SOMs has a custom built-in docker engine supported by

NVIDIA (see Figure F.3.3), and Jetson-compliant applications are meant to be developed

inside containers to ensure minimal platform conflicts as possible.

F.4 Thread Timeout Lifetime Calculation

The SMAP Geometric Segmentation Node (section 4.1) generates multiple threads to

handle the Geometric Segmentation task in parallel; It creates a new thread for each detected

object (Pseudocode F.6); Each thread has a limited lifetime based on the number of active

threads (thactive) defined by equation F.1.

timeout = 1000 · e−
thactive

τ (ms) (F.1)

The parameter (τ) was set to a value of 1.738; This value gives a good compromise

between rapid value decay and processing time margin. The thread timeout times are shown

in figure F.4.4.

114

0 1 2 3 4 5 6 7 8
thactive

10
56

100

177

316

562

1000

Ti
m

e	
(m

s)

Timeout	function	response

Figure F.4.4: Thread timeout function response

Pseudocode F.6: Object estimator callback

predictions_callback(predictions):

launch depth map binning thread;

for each object in predictions:

while thactive >= 8:

// Ensures that no more than 8 geometric segmentation threads

// are launched

wait 1 milliseconds;

launch geometric segmentation thread;

F.5 Parameter Tuning Tool

The geometric segmentation pipeline has a lot of steps and parameters that impose com-

promises between computational cost and performance; to better understand the influence

of each step and make fine adjustments to the parameters, a simple Graphical User Inter-

face (GUI) was developed as a tool to help in the parameter fitting of this process. The GUI

was developed using Dear ImGui10, a self-contained open source C++ GUI library that is

largely used to develop debug tools for real-time 3D applications. This library was chosen
10Dear ImGui : github.com/ocornut/imgui

115

https://github.com/ocornut/imgui

because of its simplicity and minimal software integration requirements; the whole interface

was implemented inside a single lambda function that is executed only when tunning the

parameters. The interface enables the user to change parameter values, enable or disable

steps of the pipeline, and plot the execution times of each step in real time; additionally,

it can freeze the current input of the pipeline to provide more consistency in the timing

comparisons between different step configurations. Figure F.5.5 and video I illustrates the

interface.

Figure F.5.5: Parameter tuning tool.

F.6 Map Exporter

Map Exporter is a ROS 2 node developed to help visualize the semantic map. The map

generated by the Semantic Mapping (SMAP) package is a topological map that is represented

in execution time in the RVIZ2 ROS tool (see Figure F.6.6), the representation of the map

after the execution is hardly comprehensible in terms of spatial disposition of the objects

(Figure F.6.7). This node aligns and projects the objects into the 2D plane corresponding

116

to the occupancy grid map of the robot, which has more meaningful spatial characteristics.

This is achieved by first removing the obstacles from the occupancy grid (see Figures F.6.8

and F.6.9), and then projecting each object of the topological map in a 2D plane; each

projection generates 4 corner points that are iterated using Bresenham’s line algorithm11 to

create lines between then with varying scales until a filled square-like structure is generated

in the new grid map (Fig F.6.10). One new map is generated per object, and the new maps

are generated following the standard ROS grid map structure12.

Figure F.6.6: SMAP topological map RVIZ representation. Figure C.4.27 (page 92) illus-

trates the correspondent location in MRL.

11Bresenham’s line algorithm: https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
12ROS map_saver: https://github.com/strawlab/navigation/blob/master/map_server/src/map_saver.cpp

117

 https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
https://github.com/strawlab/navigation/blob/master/map_server/src/map_saver.cpp

unknown_1
[-0.1, 0.1, 0.0]

tv_1
[0.8, 0.9, 1.1]

keyboard_1
[1.0, -0.9, 0.5]

tv_2
[0.7, -0.6, 1.1]

tv_3
[0.6, 0.1, 0.9]

bottle_1
[0.8, -0.3, 0.8]

keyboard_2
[0.4, -0.3, 0.7]

tv_4
[1.2, 0.6, 1.0]

tv_5
[1.3, -0.1, 1.1]

tv_6
[0.6, -1.2, 0.9]

tv_7
[0.9, -0.0, 1.1]

chair_1
[0.1, -0.6, 0.6]

chair_2
[0.0, -1.3, 0.2]

chair_3
[0.5, -0.6, 0.5]

bottle_2
[0.4, -0.1, 0.8]

keyboard_3
[0.7, -0.7, 0.7]

unknown_2
[-0.5, -0.8, 0.0]

1.00

chair_4
[-1.1, -1.6, 0.6]

chair_5
[-1.5, -2.4, 0.4]

refrigerator_1
[-1.6, -2.3, 0.6]

refrigerator_2
[-1.1, -1.6, 0.7]

backpack_1
[0.0, -1.5, 0.3]

refrigerator_3
[0.1, -1.4, 0.7]

chair_6
[0.8, -0.9, 0.3]

Figure F.6.7: SMAP topological map.

118

Figure F.6.8: Occupancy grid.

119

Figure F.6.9: Occupancy grid without obstacles.

120

Figure F.6.10: 2D representation of the semantic map for the class TV.

121

Appendix G

Jetson AGX Xavier ROS 2 Emergency Stop

This is a Python script designed to implement a simple physical kill switch to disable the

robot motors as fast as possible in case of an eventual emergency. The script is a ROS Foxy

Node that utilizes the Jetson-GPIO library1 to implement a simple interruption callback

detected on Jetson pin 22 (figure G.1)2. The callback function make calls to the ROS

Aria services “/disable_motors” and “/enable_motors” depending on the time in which the

button is held.

1k Ω

Jetson AGX Xavier

Button

+3.3 V [Pin 17]

Input [GPIO Pin 22]

Output [GPIO Pin 18]

Ground [Pin 20]

330 Ω

1k Ω

Figure G.1: Emergency stop circuit diagram.

1Jetson-GPIO: github.com/NVIDIA/jetson-gpio
2Jetson AGX Xavier pinout: jetsonhacks.com/nvidia-jetson-agx-xavier-gpio-header-pinout/

122

https://github.com/NVIDIA/jetson-gpio
https://jetsonhacks.com/nvidia-jetson-agx-xavier-gpio-header-pinout/

Button behavior:

• Disable motors when started

• Disable motors if the button is held for less than 2 seconds

• Enable motors if the button is held for more than 2 seconds

The circuit diagram shown in Figure G.1 shows two Light Emitting Diode (LED)s and

one push button. The purpose of the blue LED is to validate the physical connections of

the push button terminals. This is important since the circuit is not soldered. The red LED

indicates whether the motors are enabled or disabled: ON means enabled and OFF means

disabled.

123

Appendix H

Project Repositories

H.1 GitHub Repositories

ROS2 P3-DX Package: github.com/lucyannofrota/P3DX

Docker Image Building Scripts: github.com/lucyannofrota/p3dx-docker

SMAP Deploy: github.com/lucyannofrota/smap_deploy.git

H.1.1 SMAP Environments

Desktop Environment: github.com/lucyannofrota/smap-ros2-docker/tree/foxy

Jetson Environment: github.com/lucyannofrota/smap-ros2-docker/tree/jetson

H.1.2 SMAP Packages

SMAP Interfaces: github.com/lucyannofrota/smap_interfaces

SMAP Sampler: github.com/lucyannofrota/smap_sampler

SMAP Perception: github.com/lucyannofrota/smap_perception

SMAP Perception Wrapper: github.com/lucyannofrota/smap_perception_wrapper

SMAP YOLOv5: github.com/lucyannofrota/smap_yolo_v5

SMAP Core: github.com/lucyannofrota/smap_core

H.2 DockerHub Repositories

Jetson Noetic: hub.docker.com/r/lucyannofrota/jetson-noetic

Jetson Noetic + Foxy: hub.docker.com/r/lucyannofrota/jetson-noetic-foxy

Jetson Noetic P3-DX: hub.docker.com/r/lucyannofrota/p3dx-noetic

124

https://github.com/lucyannofrota/P3DX
https://github.com/lucyannofrota/p3dx-docker
https://github.com/lucyannofrota/smap_deploy.git
https://github.com/lucyannofrota/smap-ros2-docker/tree/foxy
https://github.com/lucyannofrota/smap-ros2-docker/tree/jetson
https://github.com/lucyannofrota/smap_interfaces
https://github.com/lucyannofrota/smap_sampler
https://github.com/lucyannofrota/smap_perception
https://github.com/lucyannofrota/smap_perception_wrapper
https://github.com/lucyannofrota/smap_yolo_v5
https://github.com/lucyannofrota/smap_core
https://hub.docker.com/r/lucyannofrota/jetson-noetic
https://hub.docker.com/r/lucyannofrota/jetson-noetic-foxy
https://hub.docker.com/r/lucyannofrota/p3dx-noetic

Jetson Noetic + Foxy P3-DX: hub.docker.com/r/lucyannofrota/p3dx-noetic-foxy

P3-DX Navigation: https://hub.docker.com/r/lucyannofrota/p3dx-navigation

SMAP Images: hub.docker.com/r/lucyannofrota/smap

• Desktop Environment: lucyannofrota/smap:env

• Desktop Visualization (RVIZ2): lucyannofrota/smap:desktop-deploy

• Jetson Core Environment: lucyannofrota/smap:jetson-env-latest

• Jetson ZED Sampler: lucyannofrota/smap:jetson-sampler-zed-latest

• Jetson YOLOv5: lucyannofrota/smap:jetson-yolov5-latest

• Jetson Core Deploy: lucyannofrota/smap:jetson-deploy-latest

125

https://hub.docker.com/r/lucyannofrota/p3dx-noetic-foxy
https://hub.docker.com/r/lucyannofrota/p3dx-navigation
https://hub.docker.com/r/lucyannofrota/smap

Appendix I

Videos

Geometric Segmentation Demo: youtu.be/a5s0wMLJDj4

SMAP Demo: https://youtu.be/_PDy815FyG8

126

https://youtu.be/a5s0wMLJDj4
https://youtu.be/_PDy815FyG8

Appendix J

System setup tutorial

This Appendix presents a quick guide on how to deploy and test the SMAP Framework

using the GitHub and Dockerhub repositories (Appendix H). The only requirement is to

have Docker installed both in the robot and in the remote computer that will be used for

visualization.

Docker Installation

The commands to install the Docker engine are available at:

https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository

It is strongly recommended to follow the post install tutorial available at:

https://docs.docker.com/engine/install/linux-postinstall/

Jetson Setup

The collection of images from the P3DX platform and SMAP packages listed in Ap-

pendix H are grouped into a single docker compose1 file that downloads and launches all the

services necessary to properly run the SMAP package in a Jetson host. Run the following

commands line by line in a new terminal:

1Docker Compose is a script file that describes which Docker services2will be executed as well as their

privileges and commands. Note: Depending on the Docker engine version the docker compose can be called

using “docker-compose” or “docker compose”.
2Docker service is the name given to a docker container that is executing some program (providing a

service).

127

https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/engine/install/linux-postinstall/

Clone smap_deploy repository

git clone --branch jetson https://github.com/lucyannofrota/smap_deploy.git

Enter the smap_deploy folder

cd smap_deploy

Use only one of the commands below to download the images and launch the services:

Launch all services.

docker-compose up -d # Use flag '-d' to detach the containers.

Launch only the necessary services.

docker-compose up -d p3dx p3dx-navigation smap-sampler smap-yolov5

smap-deploy # Use flag '-d' to detach the containers.↪→

Launch the services to run even and odd yolo_v5 models.

docker-compose up -d p3dx p3dx-navigation smap-sampler smap-yolov5-even

smap-yolov5-odd smap-deploy # Use flag '-d' to detach the containers.↪→

The service “smap-deploy” already runs the SMAP node when launched; however, it is

not capable of exporting the logs when the container is stopped. In order to have access to

the logs, the service “smap-env ” should be used instead. Since “smap-env ” service does not

launch the SMAP node, it has to be launched and stopped manually. Finishing the node

manually using ctrl+c possibilities the logs to be exported to the folder ’./results’. The code

below shows how to launch, attach, and execute the services with log access:

Launch only the necessary containers with log access in the folder

./results.↪→

docker-compose up -d p3dx p3dx-navigation smap-sampler smap-yolov5

Attach the terminal to a new terminal inside the docker container

Inside the container terminal launch smap_node

docker exec -it smap-env bash -c ". install/setup.bash && ros2 launch

smap_node smap_launch.py"↪→

To stop the node and export the logs use "ctrl+c"

128

Jetson Teleop

docker exec -it p3dx-navigation bash -c ". install/setup.bash && ros2 run

teleop_twist_keyboard teleop_twist_keyboard"↪→

Remote RVIZ 2 Client

Thanks to the DDS protocol adopted in ROS 2, the process of connecting two machines

running ROS has never been easier. The only requirement to visualize the SMAP topics in

a remote host is that both computers need to be connected to the same network and use the

same ’ROS_DOMAIN_ID’ variable value. Similar to what was presented in Jetson Setup

section, the code below describes how to download and launch the RVIZ2 service already

configured with the same ’ROS_DOMAIN_ID’ as the Jetson Services:

Clone smap_deploy repository

git clone --branch desktop-rviz

https://github.com/lucyannofrota/smap_deploy.git↪→

Enter the smap_deploy folder

cd smap_deploy

Launch the RVIZ2 with all the P3DX and SMAP configurations.

docker compose up -d smap-desktop-rviz # Use flag '-d' to detach the

containers.↪→

Note: The user has to adjust the docker-compose.yml depending on the client

host setup. The default is set to a host with NVIDIA drivers; in order to

change the graphics driver or run without discrete graphics change or remove

the following lines:

deploy:

resources:

129

reservations:

devices:

- driver: nvidia

capabilities: [gpu]

Important Note: Because of the Quality of Service (QoS) ROS 2 policies, the

nodes running and the order in which they start can affect the way the tf tree of

the robot is built. Some inconsistencies can be experienced when rebooting the

services “p3dx ” and “p3dx-navigation” while the “smap-desktop-rviz ” service is

running. The “smap-desktop-rviz ” service always needs to be started only after

the complete initialization of services “p3dx ” and “p3dx-navigation”. The tf

tree should be similar to Figure C.5.31, and can be checked using the following

command:

docker exec -it smap-desktop-rviz bash -c ". install/setup.bash && cd

/workspace/tf_tree && ros2 run tf2_tools view_frames.py"↪→

130

Appendix K

Docker Image Compile Time

Image Time

Jetson Noetic 02h58m36s

Jetson Noetic + Foxy 05h43m02s

Jetson Noetic P3-DX 00h06m30s

Jetson Noetic + Foxy P3-DX 01h25m04s

P3-DX Navigation 01h25m04s

ros2-zed 00h33m28s

Jetson ZED Sampler 00h04m17s

Jetson YOLOv5 00h16m55s

Jetson Core Environment 00h00m31s

Jetson Core Deploy 00h00m30s

Total 11h15m41s

Table K.1: Time necessary to compile the docker images developed.

131

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	List of Pseudocodes
	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Statement
	1.3 Objectives
	1.4 Document Overview

	2 Related Work and Fundamentals
	2.1 Object Recognition
	2.1.1 YOLO

	2.2 Stacking Ensembles

	3 Proposed Pipeline
	3.1 Sampling
	3.2 Object Detection
	3.3 Geometric Segmentation
	3.4 Binned Depth Map
	3.5 Data Association
	3.5.1 Topological Map and Vertex Structure
	3.5.2 Visibility Histogram
	3.5.3 Semantic Update
	3.5.4 Positive Observations
	3.5.5 Negative Observations

	4 System Implementation
	4.1 Container Architecture and Communication
	4.2 ROS Architecture

	5 Experiments and Evaluation
	5.1 Execution Times
	5.2 Point Decay
	5.3 Object Registration
	5.4 Map Size

	6 Conclusion
	7 Bibliography
	A Complete system pipeline
	B Metrics
	B.1 TPr, TNr, FPr, FNr
	B.2 Accuracy (ACC)
	B.3 Precision (PRE)
	B.4 Average Precision (AP)
	B.5 Mean Average Precision (MAP)
	B.6 Intersection over Union (IoU)

	C Additional Images
	C.1 Geometric Segmentation Pipeline
	C.2 RVIZ SMAP Map Representation
	C.3 SMAP Grid Representation
	C.4 Mobile Robotics Lab (MRL)
	C.5 ROS Diagrams
	C.6 P3-DX Plataform and Sensors
	C.7 Box Plot

	D System Parameters
	E Extra Results
	E.1 Object Registration Position Error
	E.2 Expandable Classification Test

	F Auxiliary Tools
	F.1 ROS
	F.2 NVIDIA Jetson
	F.3 Docker
	F.4 Thread Timeout Lifetime Calculation
	F.5 Parameter Tuning Tool
	F.6 Map Exporter

	G Jetson AGX Xavier ROS 2 Emergency Stop
	H Project Repositories
	H.1 GitHub Repositories
	H.1.1 SMAP Environments
	H.1.2 SMAP Packages

	H.2 DockerHub Repositories

	I Videos
	J System setup tutorial
	K Docker Image Compile Time

