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Resumo

Parece evidente que os veículos autónomos irão trazer inúmeras vantagens, seja a nível de segurança,

eficiência, como também permitir que pessoas com mobilidade reduzida possam circular, mesmo que

não consigam conduzir. Há alguns anos que esta área tem vindo gradualmente a aumentar a atenção

de pessoas por todo o mundo e não há dúvidas que este é um dos caminhos a seguir. Para que

veículos autónomos naveguem em ambientes desconhecidos, a existência de algoritmos de SLAM

robustos, que consigam operar em todo o tipo de condições adversas é essencial. Neste sentido,

este trabalho tem em vista focar-se em estudar e compreender de forma clara sistemas de SLAM

baseados em LIDAR, identificando quais as suas limitações e as suas vantagens. São estudados

quatro algoritmos de SLAM (Cartographer, HDL-Graph SLAM, LIO-SAM e SC LeGO LOAM)

e testados em dados adquiridas em ambientes reais. Numa primeira avaliação, consideraram-se

sequências com loops diretos. De seguida, tendo em conta os resultados alcançados na primeira

avaliação, foram selecionados dois algoritmos com melhores resultados de trajetória e então foram

testados em ambientes que contivessem passagens pelos mesmo lugares, vistos de uma perspetiva

complementar para avaliar a robustez do algoritmo de loop closure. Os resultados demonstraram

que em termos de local SLAM o melhor algoritmo foi o LIO-SAM (embora o Cartographer tenha tido

bons resultados de trajetória precisava de muitos ajustes nos parâmetros), apesar de ter apresentado

uma pequena limitação quando existem altos na estrada. Ambos os algoritmos SC LIO-SAM e SC

LeGO LOAM identificaram com sucesso os locais revisitados, devido a possuir um algoritmo de place

recognition robusto e que apresentou bons resultados na secção de loop closure. O algoritmo com

desempenho inferior foi claramente o HDL-Graph SLAM uma vez que não continha algoritmo de

global map optimization que compensasse os erros obtidos no processo de local SLAM. Demonstrou-

se com evidências experimentais a influência do loop closure na correção da trajetória e do mapa

obtido.

Palavras-Chave: Localização e Mapeamento Simultâneos; Detecção de Loops; Mapeamento 3D;

Optimização de Posição por Grafos; Veículos Autónomos

iii



Abstract

It seems evident that autonomous vehicles will bring numerous advantages, including improved

safety, efficiency, and increased mobility for individuals with reduced mobility who may not be able

to drive. Over the past few years, this field has gradually gained the attention of people worldwide,

and it seems clear that the overall adoption of automated vehicles (including robots) will be one

of the paths to follow. To enable autonomous vehicles to navigate in unknown environments, the

existence of robust SLAM (Simultaneous Localization and Mapping) algorithms capable of operating

under various adverse conditions is essential. In this context, this work aims to focus on studying

and gaining a clear understanding of LIDAR-based SLAM systems and identifying their limitations

and advantages.

Four SLAM algorithms (Cartographer, HDL-Graph SLAM, LIO-SAM, and SC LeGO LOAM)

are discussed and evaluated on data acquired in real-world scenarios. The first evaluation has con-

sidered sequences with direct loops. Then, two algorithms with the best trajectory results were

selected and evaluated in environments that included revisits to the same locations from a different

perspective to evaluate the robustness of the loop closure algorithm. The results demonstrated

that, in terms of local SLAM, the best-performing algorithm was LIO-SAM (although Cartogra-

pher achieved good trajectory results, it required significant parameter tuning), although it showed

a slight limitation when encountering road bumps. Both SC LIO-SAM and SC LeGO LOAM suc-

cessfully identified revisited locations due to their robust place recognition algorithm, which yielded

good results in the loop closure section.

The worst-performing algorithm was clearly HDL-Graph SLAM, which lacked a global map

optimization algorithm to compensate for errors in the local SLAM process. The influence of loop

closure on trajectory and map correction can be seen on the reported results.

Keywords: Simultaneous Localization and Mapping; Loop Closure Detection; 3D Mapping; Pose-

graph Optimization; Autonomous Vehicles
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“What we know is a drop, what we don’t know is an ocean.”

— Isaac Newton
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1 Introduction

1.1 Autonomous Vehicles

Over the last decades, intelligent and autonomous vehicles (AV), including autonomous robots, have

become more integrated into our daily routine. By definition, an autonomous car [8] is a vehicle

that can operate without human intervention, being able to make decisions by itself and navigate

through an environment. Mobility and artificial intelligence (AI) improve the functioning capabili-

ties of self-driving cars and robots, leading to the exploration of various research domains, including

path planning, self-localization, mapping, exploration, coverage, team member coordination, col-

laboration, perception and SLAM.

In the past, mobile robots [48] were limited to performing repetitive or predetermined tasks,

but as technology has advanced, this view has changed. Nowadays, due to AI’s progress, the

growth in computational resources, and the evolution of sensors, robots and AV are becoming

more “intelligent”, having the ability to sense the environment and make decisions with a high

degree of autonomy. In this thesis, mobile robots and autonomous vehicles will often be referred

to interchangeably in the sense that they can be understood as sophisticated machines that can

operate in real-world environments and can be smart enough to avoid obstacles in their path and

have the ability to travel freely without being constrained.

Autonomous vehicles pretend to revolutionize the future, offering improved transportation safety

and efficiency [58]. They can be helpful for people with reduced mobility, such as the elderly

and those with disabilities, reduce traffic congestion, and optimize energy efficiency. Recently,

autonomous vehicles have been the subject of many research areas, and their evolution has been

triggered by international projects such as the DARPA challenge [55], European Truck Platooning

[1] and No Hands Across America [8], which aim at promoting the development of AVs [58].

The main objective of these projects was to create a fully autonomous and robust car capable

of driving itself without human assistance, and that was reliable and safe enough to be deployed

into real-world environments without compromising human lives in the process. All of them showed

considerable contribution in this area, although several limitations had been identified, such as

the robot’s perception of the surrounding environment, failure to detect road marks and/or traffic
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light signals, and the difficulty of operating autonomously. Many of these problems were due to

the software/hardware available at the time they were carried out and external factors such as

unfortunate weather conditions (fog, rain). Even so, with the limitations and problems that were

encountered when carrying out the project, the progress was remarkable, having identified many

solutions and/or alternatives that allowed researchers to overcome some of the limitations that were

found.

Before going into more detail about AVs, it is necessary to understand the architecture of these

autonomous systems. According to Nakhaeinia et al. [41], to perform autonomous navigation, an AV

generally goes through 3 stages: (i) perception, (ii) planning and interpretation and (iii) movement.

In the first phase of the process, the exteroceptive sensors (LiDAR, sonar or camera) provide all

the information it needs to understand what is around it. Next, after all the data is collected, the

vehicle has to be able to process and interpret all the information and be able to plan a route/path

based on what it has perceived through the sensors, taking into account all the obstacles in its

surroundings and its target point. Finally, after deciding which path to follow, control commands

are sent to the motors, allowing the robot to move without colliding with obstacles.

1.2 Context and Motivation

For a robotic vehicle to be able to navigate without an a-priori map of the place where it is inserted,

two important factors are necessary: (i) location in operational space; and, (ii) having a sensory-

based representation of the space where it is. Thus, in this way, the robot knows its location

and can interpret the data acquired through exteroceptive and proprioceptive sensors. The field of

robotics that is dedicated to autonomous navigation has already been a predominant topic since the

beginning of the 20th century, at the time when techniques for estimating the robot’s position and

building maps began to emerge. However, the problem was in performing both tasks simultaneously.

To perform autonomous navigation required a representation of the space over which the robot was

moving, which is a difficult problem to address given the computational power of the time and the

complexity of the problem at hand. To understand the importance of Simultaneous Localization

and Mapping (SLAM), it is enough to know that before its existence, it was only possible to perform

autonomous driving deliberately if the robot had a map a-priori and knew its initial position in the

map.

Frese [18] formulates that SLAM is an estimation theoretical problem, which encompasses the

estimation of the robot’s current position and the construction of a map that characterizes the

structure of the environment where the vehicle operates. To perform both tasks, the vehicle must

be equipped with onboard sensors that allow it to perceive the outside world. Without a map, it is

not only difficult to locate the vehicle, but also to interpret the information acquired by the sensors.
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The absence of a map makes navigation impracticable, as it is not possible to deliberately plan a

path/trajectory to an objective point. On the other hand, by building a model of the surrounding

environment, the vehicle becomes able to locate itself through position estimation algorithms, such

as scan matching/feature matching and/or odometry . By achieving good localization, a consistent

and robust map can be achieved, where the relative measurements of the obstacles to the vehicle

are consistent. Briefly, it is not possible to map without localizing, nor the other way around, both

have to be done simultaneously, hence the SLAM concept.

Although SLAM has a wide range of advantages and has overcome some problems of autonomous

navigation, it is necessary to understand that it still has some limitations and problems, among

them, the susceptibility to measurement errors of the sensors, tire slippage (drift errors), and the

weather conditions that affect the performance of the sensors. All this leads to the accumulation

of errors, and SLAM seeks to minimize the estimation error. Another problem is the limitation of

some sensors, which can not overcome occlusions created by walls and other objects, have range

limits, and are sensitive to light/fog and/or rain. Therefore, for a robust system, it is necessary to

merge different sensors to introduce greater robustness and redundancy in the vehicle.

Loop closure plays a crucial role in SLAM by offering several key advantages. Firstly, enables a

robot to recognize a previously visited location, which allows for correcting and refining its global

map. Secondly, loop closure is able to handle loop errors. When revisiting a place, discrepancies, or

errors in the map may arise due to sensor noise, perception limitations, or environmental changes,

but loop closure provides a mechanism to detect and rectify these errors, ensuring the map remains

consistent and coherent. Another advantage to leverage from loop closure is that the robot is able

to optimize its own trajectory estimation. By detecting loops, the robot can optimize its path and

reduce accumulated errors that occurred over time in localization.

In summary, SLAM aims to construct a map while simultaneously estimating the position. How-

ever, SLAM faces many challenges, such as sensors measurements in adverse conditions, leading to

error accumulation. To address these issues, loop closure represents a vital module to enable recog-

nition of revisited places, enhancing map corrections and reducing errors. Loop closure serves as a

mechanism to ensure consistency and coherence of the map. Furthermore, loop closure contributes

to the optimization of the trajectory estimation.

1.3 Main Objectives

This thesis addresses some relevant issues in the application of autonomous driving vehicles, more

particularly in the evaluation of 3D SLAM techniques and the influence of loop closure in SLAM.

The initial phase of this thesis involves exploring some 3D SLAM techniques, using readily avail-

able open-source datasets to evaluate their performance and understand their practical implications,
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such as their strengths and weaknesses, and fine-tune their parameters for optimal performance.

At a later stage, acquisition of a dataset of our own, there was a need to create our dataset and

validate SLAM algorithms, even though open source datasets provided a valuable starting point,

the process of establishing this dataset presented a significant learning experience, requiring careful

consideration of sensor errors, sensors setup, and calibration, obtaining accurate ground truth data,

etc. The subsequent stage of the project involves studying and exploring the impact of loop closure

in SLAM. This task can be accomplished by evaluating different loop closure detection algorithms,

ranging from geometrical detectors (e.g., radius search) to feature-based methods employing hand-

crafted features (e.g., scan context [30]), or learned features (e.g., ORCHnet [6] and OverlapNet

[11]).

In summary, we evaluated and validated the SLAM using open-source datasets such as KITTI

[19], allowing for a quicker assessment. Subsequently, we utilized our own dataset for further

evaluation and validation. At a later stage, a system was developed in a car equipped with a

64-channel LiDAR, RTK GPS, and IMU to acquire a dataset and create a map that provides a

detailed description of the UC-POLO2 campus of the University of Coimbra, at Coimbra, Portugal.

Furthermore, in conjunction with our work on SLAM, we will also assess loop closure algorithms

to evaluate the performance of each one individually and when fused with another. Ultimately,

conclusions and future directions will be drawn to identify potential improvements and highlight

the strengths and weaknesses of the work.

1.4 Document Overview

This master thesis will go as follows: Chapter 2 presents a list of related works that have already

been implemented in this field, such as SLAM and loop detection algorithms. At the end, a topic

summarizes and discusses the state of the art developed on the subject of matter. Chapter 3

introduces the requirements to develop and test the proposed approach, along with a detailed

description of it, as well as an explanation of its functioning. After that, Chapter 4 presents an

in-depth experimental evaluation of the proposed approach. This chapter aims to validate and

assess the effectiveness of the chosen method by subjecting it to rigorous testing and comparison

with existing techniques. Finally, in Chapter 5, an overview of the developed work and future work

directions are outlined.
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2 Background and Related Work

2.1 Simultaneous localization and mapping

2.1.1 Introduction to SLAM

SLAM seeks to build a map of the environment while simultaneously localizing the robot within it.

According to Debeunne [14], SLAM can be divided into four distinct groups: Image-based, LiDAR-

based, Radar-based, and a combination of Visual-Lidar, fusing visual and LiDAR data. Considering

that a LiDAR will be used in the proposed framework, we will discard the image-based systems and

focus on LiDAR-based approaches. One of the preliminary reasons for choosing LiDAR over Radar

is its ability to create 3D maps with high accuracy. Thrun [54] states that SLAM is the problem of

estimating landmarks in the environment (mapping) and at the same time determining the agent’s

position (localization). Based on Aulinas et al. perspective [5] there are three probabilistic methods

to address the SLAM estimation problem: EKF-based [27], Particle filter-based [39, 53], and Graph-

based [34]. This thesis considered SLAM algorithms that use graph-based probabilistic filters and

work under the ROS middleware [46]. The choice of selecting graph-based SLAM is because this

type of framework the computational cost increases linearly with the map size, whereas EKF and

Particle filters the computations increase exponentially. Therefore, graph-based approaches are a

good choice for large outdoor environments [13].

2.1.2 Stages of SLAM

Debeunne [14] states that SLAM can be divided into three stages: in the first stage, the robot’s

position is estimated based on odometry, and a local map is generated based on the reading of

the sensors. In the second step, an alignment is performed between the local and global maps, to

calculate the robot’s position in the map coordinate system. In the third step, the robot’s position

undergoes optimization, and the global map is updated, incorporating the local map. In case the

SLAM contains, after an excursion of arbitrary length, a previously visited area, there is still a

fourth stage that seeks to optimize the map through loop closure detection. An example of a

generic LiDAR-based SLAM architecture is present in figure 2.1.
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Figure 2.1: LiDAR-based SLAM diagram overview.

Graph-based probabilistic filter in SLAM

The graph-based SLAM approach, proposed by F. LU and E. Millios [34] in 1997, represents pose

estimation as a pose-graph optimization problem. The poses obtained from the scans are considered

a pose in the graph. The relative transformation between two scans is considered a constraint and

represents an edge in the graph.

The network is composed of nodes and links, with each node denoting a pose within the map

frame, while the links represent constraints. In this network, two distinct types of links are estab-

lished. The first type of link emerges from the connection between two adjacent poses along the

path, often referred to as the odometry link. The second link is established based on the level of

overlap between two frames. When two frames exhibit a substantial overlap, a new constraint is

introduced between them, effectively incorporating this overlapping information into the network.

Network representation is present in figure 2.2 taken from [14].
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Figure 2.2: Representation of a pose-graph SLAM filter [14]. A node represents each pose xi. Poses

are connected by edges Eij = {eij}. Edges contains spatial constraints that represent consecutive

poses i and j withdrawn from sensor measurements (odometry links). Note that edges eij model the

proprioceptive information (odometry constraints) and Ωij represent virtual measurements (overlap

between non-consecutive frames).

The graph construction is performed during odometry estimation (front-end), whilst the graph

optimization occurs in the mapping module (back-end). The mapping module is responsible for local

and global optimization. Graph-based technique is present in most of the state-of-art algorithms

and achieved interesting results when compared with other methods.

2.1.3 Pointcloud Registration

This section discusses 3D registration methods using LiDAR. Pointcloud registration is a crucial

process in 3D mapping that consists of aligning pointclouds to create a unified representation of

the environment. There are two types of pointcloud data registration: coarse-registration or fine-

registration [12]. In fine-registration, the goal is to achieve maximum overlap between two point-

clouds, using typically iterative methods (ICP) [7], normal distribution (NDT) [36] or random sam-

ple consensus method (RANSAC) [17]. They are accurate but not efficient computationally. ICP

is a commonly 3D LiDAR registration method that performs matching between two pointclouds by

minimizing the distance between corresponding points and find the optimal transformation. NDT,

on the other hand, represents a pointcloud as a Gaussian distribution and aligns pointclouds by

matching these distributions. The limitations of these two accurate techniques is the fact that they

compute point-to-point scan matching and is not ideal for real-time as it takes large time-consuming.

In order to reduce the number of points present in the registration, variants of ICP and NDT arose.
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Matching algorithms like point-to-plane ICP, Fast-ICP revealed to have slighter better registration

time, however the accuracy depended on a lot in the parameter configuration.

In coarse registration methods, rigid body transformations are obtained using feature-based

techniques. Examples of feature-based coarse registration methods are the Point-based [62, 50, 61,

16, 25], Line-based [22, 59, 33], Surface-based [38, 20, 3, 4, 9] methods, and a combination of them

[28, 47]. Feature-based LIDAR registration methods predominantly rely on feature points, but they

encounter challenges related to sensor noise and limited geometric information. To address these

limitations, line features were introduced because they offer stronger geometric constraints than

points, resulting in improved registration accuracy. Surface features, on the other hand, contain even

more information and are less susceptible to noise, making them crucial in structured environments,

especially for ground structure representation. To achieve highly accurate registration, it is essential

to extract surface features before the registration process, typically accomplished through point

cloud segmentation.

In large-scale structured environments, researchers have explored combining point, line, and

surface features. For instance, methods like SC LeGO LOAM, LIO-SAM, and LOAM identify

keypoints based on geometric shapes, such as ground points (representing surfaces) and non-ground

points (segmented points like corners and edges). These features are subsequently employed for

registration purposes.

2.2 LiDAR-based SLAM frameworks

The present section addresses SLAM frameworks applied in the ROS middleware. There are dozens

of SLAM implementations, however we have chosen four 3D LiDAR graph-based SLAM techniques

after doing a review in state-of-art. The approaches discussed in the sequel have shown decent

results in outdoor scenarios and contain all the criteria that we intended (sensors and graph-based

SLAM).

2.2.1 LEGO-LOAM

LeGO-LOAM [51], presented in 2018 by T. Shan and B. Englot, is an optimized version of LOAM [68]

(Lidar Odometry and Mapping) designed for 6D state estimation using a 3D LiDAR. This system

targets small-scale embedded systems and addresses challenges related to real-time SLAM’s smooth-

ness and reliability on computationally constrained platforms. LeGO-LOAM’s SLAM methodology

comprises two key components: High-Frequency Odometry and Lower-Frequency Mapping. The

high-frequency odometry component involves point cloud segmentation to remove outliers and ex-

traction of corner and plane data points. These features are used to calculate the transformation

between consecutive LiDAR scans, primarily focusing on feature matching against the previous
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frame. The lower-frequency mapping component optimizes feature matching between the current

frame and the surrounding point cloud, contributing to the creation of a detailed map. Recently, a

novel algorithm called SC-Lego LOAM [65] was introduced, drawing inspiration from LeGO-LOAM

and LOAM. It incorporates a loop closure detector called Scan Context (SC) to improve SLAM’s

performance in complex environments.

Figure 2.3: System structure diagram of the LeGO LOAM algorithm [51].

LeGO LOAM is composed of five main modules: pointcloud segmentation, feature extraction,

LiDAR odometry, LiDAR mapping and transform fusion. The system architecture is shown in figure

2.3:

A. Pointcloud Segmentation

The segmentation module takes as an input a 3D pointcloud and projects it onto a range

image [63]. A range image is a representation form of LiDAR pointcloud, where a 3D point-

cloud is projected into a 2D image. The main reason for this is that a 2D image is capable

of capturing the local geometry of the pointcloud. This intrinsic property allows obtaining

neighboring points without having to construct a KD tree. There are immense algorithms for

2D projection, however, the most common are bird’s eye view, cylindrical, and spherical pro-

jection. Range image belongs to spherical projection and is largely used for LiDAR pointcloud

processing. Range image applications include object detection, object segmentation, motion

prediction, semantic segmentation, LiDAR odometry.

Considering Pt = {p1, p2, . . . , pn} as the pointcloud acquired by LiDAR sensor at the time t,

where pi is a point in Pt and to each point is associated ri, which represents the Euclidean

distance from the correspondent point to LiDAR frame. The resolution of the range image

depends on the LiDAR’s properties. In Ouster LiDAR, the default horizontal resolution is

1024, but in Velodyne is 1800. The vertical resolution depends on the number of channels of

the LiDAR used, for instance, there are LiDARs with 16, 32, 64, and 128 channels.
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Then is applied an image-based segmentation method to the range image, so as to group

points into clusters. The clusters are assigned a label: ground points or segmentation points.

Points belonging to the same cluster receive the same label, and points marked as ground

points do not enter the segmentation process. Utilizing pointcloud segmentation enhances

processing efficiency and refines feature extraction precision. However, given the real-time

operational nature of the target system, it is designed to ensure swift and dependable feature

extraction from segmented pointcloud clusters. Consequently, features associated with clusters

containing fewer than 30 points, which encompass items like small objects and tree leaves, are

regarded as unreliable and subsequently excluded. At the same time, there is a selection of

the clusters, the points inside the clusters are assigned three properties: its label, ground or

segmented point, its column and row index in the range image and the distance value.

B. Feature extraction

The feature extraction module is responsible for extracting planar and edge features from

ground points and segmented points. The procedure can be described in the following manner:

1. Consider A the aggregate of points belonging to the same row in the projected image

(range image), roughness c of a pi can be expressed by the formula below:

c =
1

|A| · ||ri||

∥∥∥∥∥∥
∑

j∈A,j ̸=i

(rj − ri)

∥∥∥∥∥∥ (2.1)

where, ri and rj are the range values from points pi and pj in relation to LiDAR, respec-

tively.

2. Divide the range image horizontally, to obtain numerous equal sub-images, enabling the

extraction of features uniformly.

3. The points are then sorted based on their roughness c. This process is carried through

for each row of the sub image. The features are assigned as edge or planar features

according to a certain roughness threshold cth . Points with c larger than cth are called

edge features, and points with c < cth are segmented into planar features.

4. After step 3, nFe edge feature points with the largest roughness c that do not belong

to the ground are extracted from each row in the sub-image, and nFp planar feature

points with the lowest c are selected from either ground or segmented points, also for

each row in the sub-image. In the end, Fe and Fp correspond to the groups of edge and

planar features from all sub-images. Then non-ground edge feature points nFe with the

highest roughness c and ground plane feature points nFp with the smallest roughness c

are selected from each row in the sub-image and the result is an edge feature set Fe and

a plane feature set Fp for all sub-images, where Fe ⊂ Fe and Fp ⊂ Fp.
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C. LiDAR Odometry

The LiDAR odometry modules estimates the motion between two consecutive scans. The

transformation is found by performing point-to-plane and point-to-edge scan matching. By

other means, we need to search the corresponding features for points in F t
e and F t

p from the

feature sets Ft−1
e and Ft−1

p of the previous scan [68]. In order to improve the accuracy and

efficiency of the feature matching of LOAM, a couple of alterations were made:

1. Label matching

In order to reduce the amount of points searched for matching, it only looks for corre-

spondences with the same label from Ft−1
e and Ft−1

p , depending on which type of feature,

in this case F t
e and F t

p, respectively. This process, narrows the potential candidates and

improves the efficiency.

2. Two-step L-M optimization

The two-step Levenberg-Marquardt (L-M) optimization method seeks to find the mini-

mum distance transformation between two scans. The first step is to estimate [tz, θroll, θpitch]

by matching the planar features, F t
p with their correspondences in Ft−1

p . Then [tx, ty, θyaw]

are obtained using the edge features in F t
e and their matching correspondences in Ft−1

e ,

while taking into account the constraints obtained in the first step [tz, θroll, θpitch]. Fi-

nally, the 6D transformation is achieved by fusing [tz, θroll, θpitch] and [tx, ty, θyaw].

D. LiDAR Mapping

The LiDAR mapping module, instead of matching the features extracted from the feature

extraction module against the previous scan, it matches the features present in the feature

set {F t
e , F

t
p} with the surrounding pointcloud map Qt−1 to enhance the precision of the atti-

tude transformation, the process proceeds by utilizing the ultimately adjusted pose acquired

through L-M optimization [40]. The adjusted pose is then utilized to integrate spatial limi-

tations that link the newly added node in the point cloud map with the previously selected

node. Simultaneously, new constraints are introduced through loop detection. Afterward, the

altered pose map is sent to GTSAM for the purpose of graph optimization, culminating in

the update of the final estimated pose.

E. Transform fusion

The transformation module combines the pose estimation outcomes derived from both the

LiDAR odometry module and the LiDAR mapping module, producing the ultimate pose

estimation output.

F. Loop detection
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The loop detection algorithm, present in LeGO LOAM, uses a KD tree to find historical

poses and nearby pointclouds based on Euclidean distance. Then it uses ICP to calculate

the transformation between the two key frames and retrieves an ICP fit score between the

two pointclouds. If the fit score is below the threshold, it uses the pose of the most similar

historical frame to constraint and correct the current global pose. Afterward, it updates the

map to obtain a more consistent global map. This loop detection algorithm contains many

flaws, mainly the large amount of computation and low detection accuracy. Since it is desired

to be able to perform in a real time scenario, the usage of a lower frequency loop detection is

implemented. Furthermore, a considerable combined error can be observed in the mapping of

extensive and distant scenarios.

2.2.2 LIO-SAM

Two years later in 2020, Tixiao Shan and colleagues created LIO-SAM [52]. This new proposed

approach contained a lot of similarities in comparison with LeGO LOAM, being the main difference

the IMU integration in odometry optimization, in contrast with LeGO LOAM and LOAM the fusion

of LiDAR and IMU was tightly-coupled instead of loosely-coupled. Loosely-coupled systems [51, 68]

use IMU as a prior for the scan registration, for instance ICP orientation, and to remove pointcloud

distortions. However, the IMU is not integrated in the optimization step. An alternative for these

frameworks it to implement loosely-coupled fusion with EKF [35]. Tightly-coupled approaches such

as LIOM [66] offered an improvement by optimizing the LiDAR and IMU odometry estimation.

However, the strategy lacked in real-time performance. LIO-SAM comprises four factors when

performing optimization: (i) IMU preintegration factor, (ii) LiDAR odometry factors, (iii) GPS

factors, (iv) loop closure factors. All of them contribute to add constraints in the pose-graph.

The graph is then optimized using the incremental smoothing and mapping (ISAM2) [29]. The

registration of the raw data measurements from the LiDAR is equal to LOAM and LeGO LOAM.

The loop closure module of LIO is similar to a radius search loop detector, that computes history

keyframes based on Euclidean distance. The proposed algorithm has similarities with LeGO LOAM

thanks to the represention of optimized poses in a graph, and thus a new novel SLAM framework

SC LIO-SAM has already been presented combining a more robust loop closure detector based on

features, denominated as Scan context [30].

2.2.3 Cartographer

Cartographer [26] is a 2.5 D graph-based SLAM framework, decomposed into local SLAM and global

SLAM. The local SLAM is produced through scan matching in conjunction with IMU data. As local

maps may gradually accumulate errors over time, a submap reaches completion once it gathers a

specific number of scans, triggering the creation of a new submap. The other subsystem is the global
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SLAM, built through the Graph-SLAM algorithm with direct constraints (from odometry) and

virtual constraints (observations). It fulfills the role of reorganizing the submaps among themselves

to form a coherent global map. To perform the scan matching and graph optimization, a library

developed by Google, Ceres [2], was developed to solve the non-linear least squares problem. Ceres

has the flexibility to be adjusted to give more or less confidence to the odometry data. The more

significant the weight of a data source, the greater the emphasis cartographer will place on this

source for performing the scan matching. In other words, the role of local SLAM is to generate

good submaps, while the function of global SLAM is to integrate them cohesively.

2.2.4 HDL Graph SLAM

HDL Graph SLAM, as described in Koide et al. work [31], is a 3D Lidar SLAM that employs

the RANSAC algorithm to identify key features within the point cloud data. Similar to the LeGO

LOAM method, these features serve as constraints to determine the robot’s position. The pointcloud

registration employed by HDL is NDT (Normal Distribution Transform). To perform local map

optimization, HDL uses RANSAC combined with g2o pose-graph optimizer [32]. To detect loops,

it uses translation and trajectory length between nodes, and then to validate loop candidates,

performs scan matching through ICP, GICP or NDT. The final estimated pose, similar to LeGO

LOAM, involves a step that integrates transformations. This integration is combined with the

position estimated through odometry and mapping, employing the UKF (Unscented Kalman Filter)

technique to refine the results.

2.3 Loop Closure Detection

Loop closure, also referred to as place recognition in some relevant literature, is one of the key

problems in SLAM mapping, as the robot/vehicle transverses a large cycle, the need to correct

the map under large errors in not an easy task. Burgard [23] et al. stated that loop closure is

when the robot is able to recognize a place or location that it has visited before. By comparing

the current sensory data with the data collected in the past, the robot identifies similarities or

matching features. Once the robot identifies loop closure, it leverages this information to correct

and update its global map. By aligning the new sensory data with the existing map, the robot can

refine its understanding of the environment and, thus, improve the robot localization and navigation

capabilities, correcting any inaccuracies/inconsistencies that may have emerged during the initial

mapping phase.

According to Xue et al. [10] there are two ways to perform loop closure: using geometry-based

method or feature-based method. In the following subsections, we will discuss only LiDAR-based

loop closure techniques.
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2.3.1 Geometry-based

The most basic and primary methods used in loop detection were the geometry-based ones [23], the

idea behind it is simple, it detects a loop by identifying a revisited place through robot positions,

if the robot passes a position with a high likelihood from the observation measurements, than it

means that the current position is a loop candidate. The drawback of choosing this approach is

the fact that it does not consider uncertainty in the position of the robot/vehicle and when the

accumulated error is too large, makes it harsh to detect potential revisited places.

Recent SLAM frameworks, to achieve higher accuracy using geometry-based loop closure detec-

tors, began to utilize pose-graph optimization along with ICP. Zhang and colleagues [68] considered

a loop candidate, by listing keyframes that are within a radius threshold for the current frame, and

then applied ICP for every loop candidate listed. Whenever a revisited place is identified, a new

constraint is added into the factor graph, connecting the variables associated with the most recent

keyframe and the potential candidate keyframe. Every element within the pose graph symbolizes

a 3D pose and corresponds to a keyframe within the ICP layer. Each factor, on the other hand,

signifies a restriction connecting two of these elements. This kind of approach was also applied

LeGO LOAM [51] and LiTAMIN [37].

2.3.2 Feature-based

When performing loop closure using feature-based place recognition techniques, there is always a

trade-off that has to be made between robustness and computational cost. If the system you are

employing owns less computation cost, choosing a feature-based handcrafted loop detector might

be the best choice. However, if it has tons of computation resources and what you desire is more

robustness, selecting learning feature-based loop detectors will not disappoint. Recently, most

of the place recognition techniques use feature-based loop detectors due to their robustness and

computation efficiency.

Handcrafted feature-based techniques

This section gives an overview of some handcrafted place recognition approaches widely used in the

state-of-art, among them Scan Context, M2DP and Histogram.

Giseop Kim and Ayoung Kim created Scan Context [30], which is a global feature descriptor

that encodes the information of a 3D pointcloud into a Nr ×Ns spatial descriptor. To clarify this

matrix, this means that for each pointcloud a scan context descriptor contains Nr which corresponds

to the radial coordinates (distance from the sensor), and Ns sectors for each ring, related with

the orientation of the sensor, whose FOV is 360 degrees. By performing circular shifting in the

descriptor, it is possible to recognize 360
Ns

viewpoint alignments. The algorithm rotation invariant,
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since it preserves structural information of the scene, and therefore can recognize loops with different

viewpoints. For each scan, a descriptor is stored and is matched against previous descriptors through

a similarity score. If the match is below a certain threshold, a loop candidate is identified.

M2DP [24] presented by Li He et al. stands for Multi-Modal Distribution Preserving Pointcloud

Descriptor and what it does is projecting a 3D pointcloud into multiple 2D planes to generate a

signature matrix descriptor. Signature points are distinctive key points that stand out from the

others, by other means, are points that exhibit different patterns. The multi-modal is because

M2DP combines orientation of the surface, local point density and spatial distribution. Once the

signature points are identified, they are used as the baseline of the algorithm. just like in Scan

Context, MD2DP match the current local descriptor against previous pointcloud descriptors within

the buffer.

Histogram [49] approach projects a pointcloud into a single dimension, using histograms. An

example of a histogram function is the distance from the points detected to the sensor frame or the

height above the ground plane. As the vehicle moves, it keeps comparing histograms from different

locations. A similarity is computed, and a threshold is applied. If two histograms are too similar,

a loop closure is detected.

Learning feature-based techniques

There are several place recognition learning feature-based algorithms using 3D Lidar as input [6,

11, 15, 57, 67], but we will only focus on two: PointnetVLAD and ORCHnet. These methods use

deep-learning techniques to perform feature-learning and aim to transform LiDAR data into feature

representations. The most commonly-used Pointnet VLAD [57], processes 3D pointclouds using

Vector of Locally Aggregated Descriptors (VLAD), which represents an image as a fixed-length

vector that encodes spatial information about local features in the map. Very recently, Barros et

al. presented a robust global feature descriptor approach (ORCHnet) [6] with the aim of fusing

multiple aggregation algorithms (SPoC, GeM and MAC) to identify orchards.

2.4 State-of-the-art discussion

In order to summarize and discuss the state-of-art presented above, the Tables below are shown.

Table 2.1 shows a review of graph-based SLAM algorithms and compares them according to type of

pointcloud registration, pose-graph optimization algorithm, which kind of maps they produce and

computation resources.
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SLAM

Frameworks

Map

representation

Pose-graph

Optimization

Pointcloud

registration

Computation

resources

LeGO-LOAM 3D L-M Planar and edges features ⋆ ⋆ ⋆

LOAM 3D L-M Planar and edges features ⋆ ⋆ ⋆

Cartographer 2.5 D Ceres ICP ⋆ ⋆ ⋆⋆

HDL-Graph SLAM 3D g20 NDT ⋆ ⋆ ⋆⋆

LIO-SAM 3D ISAM Planar and edges features ⋆ ⋆ ⋆

Table 2.1: Comparative Table presented to compare different SLAM frameworks.

Note: ⋆ are defined in a scale from 1 to 5 and go from low computational cost (1 ⋆) to high (5 ⋆)

To delve into the topic of loop closure, we’ve organized the place recognition algorithms, as

outlined in section 2.5, into two comprehensive tables 2.2 and 2.3. This classification has been

based on specific criteria, including place recognition category, computational cost, and robustness.

The first table places them into place recognition categories:

Loop detection algorithms

Geometric-based ICP, GICP and NDT

Feature-based
Handcrafted Scan Context, Histogram, M2DP

Learning Overlapnet, ORCHnet, PointnetVLAD

Table 2.2: The table presented allocates the categories of each different loop closure detector.

To analyze computational cost and robustness per category, the table below is presented:

Loop closure categories Computation Cost Robustness

Hancrafted feature-based ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Learning feature-based ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Geometric-based ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Table 2.3: Comparative table for computational cost and robustness for each place recognition

category.

Note: ⋆ are defined in a scale from 1 to 5 and go from low computational cost (1 ⋆) to high (5 ⋆)
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3 Methodolody

This section describes the principal modules of the framework used as the cornerstone of the SLAM

system. To start, we will begin by examining the SC LeGO LOAM framework, which contains all

the baseline architecture of LeGO LOAM. Then we will dig into the loop detection module of SC

LeGO LOAM. At a later stage of this section, we will present all the implemented work, such as

the dataset acquisition of UC - POLO2 to test the loop closure algorithm and SLAM performance,

as well as the implementation of loop closure protocols that gave us significant insight into its

performance.

3.1 System Architecture

Firstly, the algorithm chosen as the baseline of this work was SC LeGO LOAM [65]. The main reason

behind this pick is the fact that it contains a novel loop closure detector using LiDAR, designed

Scan Context [30], which when compared to various state-of-the-art place recognition approaches,

appears to have decent and competitive results. Since the aim of this thesis was to perform a

comprehensive study on graph-based 3D LiDAR-SLAM and evaluate his performance in terms of

loop detection, we considered two datasets for this matter: KITTI dataset and UC - POLO2 campus

dataset.

As briefly described in section 2.2.1, SC LeGO LOAM is a 3D SLAM framework that combines

two key components: Scan Context and LeGO LOAM. In order to understand the architecture of

the entire system, it is relevant to conduct a thorough analysis of the algorithm and then, go into

more detail about what has been achieved.

The main outputs of the SLAM framework is to construct a 3D map using mainly LiDAR and

IMU and the correspondent trajectory. The diagram below shows all the system overview of the

present work (Figure 3.1).
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Figure 3.1: General system overview of the architecture.

3.1.1 Improved algorithm – SC LeGO LOAM

In order to enhance and address issues of efficiency and computational load, SC LeGO LOAM

introduced the unique feature of incorporating a more robust loop closure detection algorithm in

comparison to LeGO LOAM Euclidean distance ICP-based loop detector. At first glance, the initial

advantages of Scan Context (SC) over Euclidean distance-based ICP (Iterative Closest Point) are

twofold: a reduced amount of data to process while still effectively identifying previously revisited

locations. To gain a clearer understanding, we will delve into the entire new loop detection algorithm,

but first explain the SC LeGO LOAM algorithm architecture, shown in figure 3.2.

Figure 3.2: System structure diagram of the SC LeGO-LOAM algorithm [65].

The SC LeGO LOAM diagram flow is equivalent to the LeGO LOAM, with a little difference

in terms of loop detection. The procedure is as follows:

1. Read LiDAR 3D pointclouds and project each pointcloud into a range image and perform

segmentation. The segmentation module groups points in clusters, which can be marked as
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ground points or non-ground points (segmented points). Three characteristics are assigned

for each point: the label, row and column index in the range image and the distance value.

2. Subsequently, the feature extraction module calculates the roughness c and extracts edge

feature points nFe and plane feature points nFp based on a ranking of surface roughness c.

3. The LiDAR odometry module estimates pose transformation between two consecutive frames

through a two-step L-M optimization method that uses point-to-edge and point-to-plane scan

matching.

4. In order to refine the pose estimation and update the global map, the LiDAR mapping module

matches the features F t
e and F t

p with the surrounding map pointcloud and then uses the refined

pose obtained through L-M optimization to add spatial constraints between the new node and

the previous selected node of the pose graph constructed by GTSAM.

5. Alongside the LiDAR mapping module, to further eliminate the pointcloud drift, a scan

context loop detector is applied to identify revisited places and also add new spatial constraints

into the pose graph in case of loop closure, which will update and correct the map error that

can have occurred in the mapping process. This loop detection runs at a slower rate, but

enables to fix pointcloud drift.

6. To verify if a loop occurred, transform the current keyframe into the global coordinate system

and perform registration against its history keyframes using ICP. If the ICP fit score is below

a given threshold, the loop closure is considered successful, and the pose constraints are added

between the current frame and the candidate frame. These constraints are then introduced

into GTSAM for map optimization and refine pointcloud representation.

7. In the end, the transform fusion module combines the positions estimated from LiDAR odom-

etry and LiDAR mapping and outputs a final refined estimated pose.

Scan Context

Scan Context [30] is an algorithm of loop detection present in SC LeGO-LOAM and is a global

feature descriptor of a pointcloud. In other words, it is an outdoor place recognition that encodes

a 3D pointcloud into a matrix Nr ×Ns. Then uses a ring key encoding function to provide a fast

search and reduces the matrix to Nr × 1, representing its final descriptor dimension. Then a KD

tree is constructed through a stack of ring keys, and retrieves the nearest candidates. In the end,

the retrieved candidates are compared against the query scan context, and those who satisfy the

acceptance threshold and are close to the query are considered a loop. An overview of the scan

context architecture is presented in figure 3.3.
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Figure 3.3: Scan Context algorithm overview [30].

To understand each process, it is crucial to know how the partition of the pointcloud into a

matrix is performed. Firstly, the algorithm takes as input a 3D scan from the LiDAR, then the scan

is divided into azimuthal and radial bins in the sensor coordinate system, ensuring equal spacing

between them (figure 3.4a). Considering Ns and Nr number of sectors and rings, respectively, if we

take Lmax as the maximum range of the LiDAR sensor, the radial gap is Lmax
Nr

and the angle of each

sector 2π
Ns

, assuming the parameters after some testing, were defined as Ns = 60 and Nr = 20, this

means that from the center of the sensor to its maximum range, there will be 20 rings, and each

ring is composed by 60 sectors.

Figure 3.4a shows that a scan context descriptor is a partition of the whole 3D pointcloud into

bins. Pij is the set of points belonging to a bin, where ith ring and jth sector overlapped. Thus, a

partition can be expressed as:

P =
⋃

i∈[Nr],j∈[Ns]

Pij (3.1)

Since the pointcloud is divided into regular and constant intervals, a bin located farther away

from the sensor will exhibit a significantly larger area compared to one that is closer. Nonetheless,

both pieces of information are equally embedded within a single pixel of a scan context. Following

the partitioning of the point cloud, each bin is allocated a singular numerical value by using the

pointcloud in that bin. Different from the usual pointcloud descriptors, scan context bin encoding

function ϕ does not use the histogram approach to gather the information, instead it uses the

maximum height between the points belonging to the same bin. The purpose of employing the

height is to effectively capture the vertical characteristics of nearby structures, accomplishing this

without the need for complex computations to analyze the attributes of the point cloud. The bin

encoding function is presented below:
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ϕ(Pij) = max
p∈Pij

z(p), where ϕ : Pij → R (3.2)

where z(.) is a function that returns the height of a point p (z coordinate). Empty bins are assigned

a zero value, and blue pixels in image 3.4b correspond to bins where the space is either free or not

observed. Based on the previously mentioned procedures, a scan context denoted as I is ultimately

illustrated as a matrix with dimensions Nr ×Ns:

I = (aij) ∈ RNr×Ns , aij = ϕ(Pij) (3.3)

The sector angle varies from 0 to 2π and corresponds to the azimuthal coordinate, whilst the

radial coordinate is the distance from the center of the sensor to the maximum range. By storing

information this way, the geometrical structure of the scene is preserved.
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(a) Top 3D scan view divided in radial and azimuthal

directions

(b) Scan context matrix

Figure 3.4: Creation of scan context [30]. Figure (a) shows the ground divided in azimuthal (0 and

2π) and radial directions (minimum sensor range to maximum). Yellow area corresponds to a ring,

the cyan area is a sector, and black-filled dots are bins. Figure (b) represents a scan context matrix,

as it can be seen the geometrical structure is preserved. The rows of the matrix correspond to rings

and columns to sectors. The value extracted from the bins represent the maximum height of points

belonging to that bin.

In figure 3.4a the yellow area corresponds to a ring, which are the points that are at the same

radial distance, while the cyan area matches a sector, points that have equal orientation. The black

filled dot represent a bin, this way a point can be expressed as polar coordinates p(r, θ), where radial

equals r and azimuthal equals θ. It is observable that the center of the scan is a global keypoint,

leading us to term a scan context as a self-centered location descriptor.

In the image on the right 3.4b the rows and columns are rings and sectors, respectively. As

said before, it is visible how the internal structure of the pointcloud is preserved in contrast to the

histogram. To verify if two different places match, scan context compares descriptors through a

two-step search algorithm composed by similarity scoring and nearest neighbor search.

One of the steps, similarity score, calculates the distance between two scan context descriptors,
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the distance measures how similar are both descriptors. Assuming Iq and Ic are two scan context

descriptors, acquired from the query pointcloud and candidate pointcloud, respectively. In order to

compare both, a pairwise distance is calculated in a colmnwise manner. To perform this operation,

for the same column index of two different descriptors, cjq and cjc, query and candidate descriptor,

respectively, for the same column index j. The cosine distance is employed to compute the distance,

and this process is reiterated until the final point is reached. The distances are summed and

subsequently divided by the total column count, the equation 3.4 shows how the process to calculate

similarity between descriptors is performed:

d(Iq, Ic) =
1

Ns

Ns∑
j=1

(
1− cjq · cjc

||cjq||||cjc||

)
(3.4)

The columns can be shifted due to the fact that the LiDAR is observing from a different view-

point, for example, revisiting the same location but in the opposite direction, formally referred to

as a reverse loop. The same doesn’t apply to the rows, as the representation of the scan context

relies on the sensor’s location. Thus, the rows always maintain the same order and consistency, with

only the columns varying if the sensor’s coordinate system relative to the world coordinate system

changes.

To address this issue, for a given descriptor, a circular shift is applied to all columns, and

the similarity score is calculated for each shift. The minimum distance and the yaw of the shifted

descriptor, Icn, are returned. This is achieved by comparing it with the original descriptor that hasn’t

undergone any shifting, Ic. Essentially, this process aligns two point clouds in terms of yaw. To

calculate the yaw, one only needs to determine the number of columns by which it has been shifted

compared to the original, and then multiply it by the resolution of 2π
Ns

. In summary, the minimum

distance between two descriptors is returned, taking into account the shift across all columns, along

with the number of columns that were shifted to achieve that distance, the expressions below show

mathematically what was explained:

D (Iq, Ic) = min
n∈Ns

d (Iq, Icn) (3.5)

n∗ = arg min
n∈Ns

d (Iq, Icn) (3.6)

The other step of the searching algorithm consists of searching for nearest neighbors, it uses a

KD tree constructed through ring keys. A ring key is a rotation-invariant descriptor obtained from

the scan context descriptor, which consists of applying a mean to every bin value belonging to the

same ring.
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Figure 3.5: Ring key generated for fast search [30].

Considering an NrxNs matrix, where Nr and Ns are, respectively, number of rings and sectors,

by applying a mean for each ring. The new descriptor will now be an Nrx1 matrix, where each row

value contains the mean value of each ring section.

ψ(ri) =
1

Ns

Ns∑
j=1

Pij (3.7)

where ri defines the ith ring and Pij the bin value for ith ring and jth column.

In picture 3.5, {r1, r2 . . . rNr} are the rings of the scan context descriptor. While not as detailed

as scan context, the ring key allows for quick searching to identify potential loop candidates. In

SLAM context it is really useful as it stores a buffer of much lighter descriptors every time the

algorithm concatenates pointclouds, by other means in context of SLAM, since the algorithms is

continuously receiving 3D scans, whenever there is a new pointcloud, scan context stores in a k

vector a descriptor using the ring key encoding function ψ present in expression 3.7.

k = (ψ (r1) , . . . , ψ (rNr)) , where ψ : ri → R (3.8)

Therefore, the scan context buffer used in this work is as follows:

SCbuffer = (k1, k2, . . . , kNp), where Np is number of pointclouds (3.9)
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Each k vector is used as a key to construct the KD tree. Simultaneously, the ring key of the query

scan is used to look for similar keys and their corresponding indexes. The number of the top similar

keys that are going to be retrieved is defined by the user, in case of SC LeGO LOAM by default

it retrieves 10 candidates maximum. Right after the construction of the KD tree, the next steps

run in parallel: search for nearest neighbors and compute the similarity score between the query

scan context descriptor and the retrieved candidates (equation 3.4). The candidate with the lowest

distance (higher similarity) is selected. If the candidate fits the acceptance threshold, the place is

considered as a revisited place:

c∗ = arg min
ck∈C

D(Iq, Ick), D < τ (3.10)

where C is the set of candidates extracted from the KD tree, τ the given acceptance threshold and

c∗ the index of the place identified as a loop.

3.2 Software Requirements

In order to test the software, we used Ubuntu 20.04 with the ROS framework (ROS 1 Noetic).

3.2.1 SLAM setup using ROS

A brief introduction to ROS is present in appendix A.1. To be able to use ROS with SLAM, the

robot/vehicle must be equipped with sensors and its drivers, as well as a workstation (computer)

that can run ROS nodes. ROS must be configured on both robot/vehicle and the computer. To

run SC LeGO LOAM on any SLAM application, it requires launching sensors and driver nodes in

the platform where it is running, for instance, in a robot to be able to send velocity commands

through a controller (via Bluetooth or Wi-Fi). In a car, if you are already driving it, this part can

be skipped, unless it is an autonomous car, in that case, the procedure is similar. The following

step is to launch the SLAM node from the computer, and to analyze whether it performs SLAM

well or not, a visualization tool, such as Rviz, can be launched.

3.2.2 Inputs and Outputs

The SLAM node of SC LeGO LOAM subscribes to two main topics: IMU and LiDAR topic. The

IMU topic uses ROS messages type sensors_msgs/Imu, which typically includes measurements of

acceleration, angular velocity and orientation. The topic that reads this data, by default is set

in ‘/imu/data’, any node that wants to receive data from IMU needs to search for this topic.

In SC LeGO LOAM the IMU is used to de-skew the pointcloud and serve as an input for the

ICP orientation (scan matching prior), this type of sensor fusion with the LiDAR is classified as

loosely-coupled and was first introduced in LOAM [51]. The LiDAR topic messages are the type
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sensor_msgs/PointCloud2, which represent a collection of 3D points in space and is our main

source to estimate robot/vehicle motion through feature scan-matching. The published topic of the

pointclouds is ‘/velodyne_points’. The algorithm does not have odometry as an input, because

this way, we can study the weaknesses and strengths of LiDAR-based SLAM techniques more

precisely. Besides, odometry obtained through GPS/wheel encoders or other odometry estimation

algorithms can be used as ground truth to compare with the output of SLAM.

The outputs of SC LeGO LOAM are 6D pose estimated after and before the mapping pro-

cess. The first is the refined position after passing through the transform fusion module of the

type nav_msgs/Odometry, in the topic ‘aft_mapped_to_init’. The second one is obtained in the

LiDAR odometry module, using only the two-step L-M optimization method, through feature scan

matching. The message type is the same, but the topic name is ‘integrated_to_init’. Besides

the position estimation output along the trajectory, the algorithm stores a final map in .pcd format.

For localization-only algorithms, this stack of pointclouds and estimated poses during the trajectory

represent good inputs, considering the map did not suffer any alterations over time, if not the case,

a more complex approach must be taken. Figure 3.6 illustrates how to setup a computer with ROS

and run SLAM.

Rosbag

Publishing ROS topics /imu/data

/velodyne_points

IMU messages

Computer with ROS
installed Launch file

Rosbag play

Run SLAM algorithm

subscribes ROS Topics

Outputs a 3D map and
trajectory

Runs launch file

/aft_mapped_to_init

Trajectory ROS topic

Map.pcd

Outputs

Map in .pcd format

LIDAR messages

SLAM algorithm

/integrated_to_init

odometry ROS topic

Figure 3.6: SLAM setup with ROS.

3.3 Sensors

As we already mentioned above, our SLAM algorithm uses LiDAR and IMU as inputs. How-

ever, to be able to compare and evaluate different algorithms and datasets, an additional sensor,

namely GPS (Global Positioning System), was incorporated to obtain a ground truth trajectory.

This trajectory served as a reference against which the performance of the SLAM (Simultaneous

Localization and Mapping) algorithm was evaluated and compared. The utilization of GPS data
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enabled a comprehensive assessment of the algorithm’s accuracy and effectiveness in mapping and

localization tasks.

Since we used two datasets for SLAM evaluation (KITTI and UC- POLO2 dataset) in the

upcoming section, we exclusively elaborate on the sensor employed to collect the custom dataset.

Subsequently, in the following section dedicated to the Datasets, we provide a concise overview of

the sensors utilized in the open-source dataset of KITTI.

3.3.1 Xsens MTi-300 IMU

The xsens MTi-300-2A5G4 [64] is an Inertial Measurement Unit (IMU) renowned for its precision

and versatility. This is a 9-axis degree-of-freedom IMU, that contains sensor fusion algorithms,

several sensors (accelerometer, gyroscope and magnetometer). Each of these sensors provides specific

information about motion and orientation, and when combined, they can be used to estimate

position and orientation in three-dimensional space.

Figure 3.7: IMU xsens MTi-300-2A5G4

Here is how a 9-axis IMU works:

• Accelerometer

An accelerometer measures linear acceleration along three axis (X, Y and Z). It detects changes

in velocity and gravity, which allows the device to determine movement and orientation with

respect to Earth gravitation field. By integrating acceleration over time, velocity is obtained,

and by integrating velocity we estimate position. However, as any sensor, sensor drift error

accumulates over time and the accuracy of the accelerometer tends to degrade after long

periods.

• Gyroscope

A gyroscope measures the angular velocity around the three-dimensional axis. By integrating

gyroscope output over time, we estimate the orientation in terms of angle (roll, pitch, yaw).

Just like the accelerometer, integration errors accumulate over time, generating drift.
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• Magnetometer

A magnetometer measures the direction of the magnetic field. This sensor is used to determine

the orientation with respect to Earth’s magnetic north. By combining a magnetometer with

an accelerometer, orientation estimation can be improved, especially in case where linear

acceleration does not change much. The magnetometer represents the main difference between

a 6-axis IMU and 9-axis.

• Barometer

A barometer sensor measures the atmospheric pressure. This pressure data can be used

to estimate changes in vertical position. It does not provide orientation estimates like the

accelerometer and gyroscope, but can enhance accuracy of position estimates when combined

with other sensors, such as accelerometer and GPS.

The orientation estimation responsible for calculating the orientation angles (roll, pitch and yaw)

is then a combination of the accelerometer gravity vector, gyroscope angular rates and magnetometer

magnetic field data. It uses a Kalman filter to compute a statistical optimal 3D orientation estimate

of high accuracy. The output angles represent the device orientation relative to the IMU reference

frame, set during calibration. The position estimation is an integration of the accelerometer data,

to get linear velocity and then a double integration to estimate position. The vertical position (z

coordinate) is a combination of the barometer and accelerometer.

The IMU, presented in figure 3.7, has a rate of turn of around 450 degrees per second, and the

interface to connect it to the computer is a converter from a RS232 Serial cable to USB.

Sensor Fusion performance Gyroscope Accelerometer

Roll/Pitch 0.2º RMS Rotation Turn 450 deg/s Standard Full Range 20 g

Yaw/Heading 1º RMS Bias Stability 10 deg/h Bias Stab. 15 µg

SDI Yes Noise Density 0.01°/s/
√
Hz Noise Dens. 60 µg/

√
Hz

Table 3.1: Sensor technical specifications.

3.3.2 OS1-64 Ouster Lidar

The high-resolution ouster LiDAR [42] can achieve a range between 0.8 and 120 metres. The FOV

of this device is 360º and outputs pointclouds at a rate frequency of 10 HZ to a maximum of 20 HZ.
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Figure 3.8: OS1-64 Ouster LiDAR.

The vertical FOV is from (-16.6º to 33.2º) and is composed by 64 vertical beams, whilst the

number of horizontal beams by default is 1024, but can vary between (512,1024 and 2048). The

vertical and horizontal resolution in degrees, using the configuration (10 hz rate, 1024 horizontal

beams and 64 channels) can be calculated using the following formulas:

Vres =
33.2◦

Vbeams − 1
≈ 0.53◦ (3.11)

Hres =
360◦

Hbeams
≈ 0.35◦ (3.12)

The technical characteristics of this device are shown in the table below:

OS1-64

Vertical Resolution 64 channels

Horizontal Resolution 512, 1024 or 2048 channels

Range 120 m

Vertical FOV -16.6º to 33.2º

Vertical angular resolution 0.35º - 2.8º

Precision 1.5 - 5 cm

Rotation rate 10 or 20 HZ

Power draw 14 - 20 W

Table 3.2: Lidar technical specifications.

The Ouster LiDAR also contains an internal IMU integrated, which outputs at a maximum rate

of 100 HZ. This IMU has the same coordinate frame system as the LiDAR and there is no need to

provide to the SLAM algorithm the extrinsic transformation between them.
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3.3.3 Topcon Hiper Pro GPS

Global Positioning System (GPS) is a satellite-based navigation system that allows users to deter-

mine their precise location and monitor their movements. Once GPS was used to obtain ground

truth, high precision was necessary, and therefore, the use of GPS was only considered if the option

of RTK was available. RTK is a technique used in GPS to achieve highly accurate positioning in

real-time. The basic principle behind RTK is the way that distance is calculated. A traditional GPS

uses pseudo-range measurements to calculate distance from the satellite, which provides accuracy of

meter-level. Pseudo-range measurements involve measuring the time since the GPS signal was sent

from the satellite until it reached the receiver. The GPS satellite transmits a signal that contains a

specific code, and the receiver compares the code received with its own code. The time between the

transmitted and received code (time of travel) (tr − ts) multiplied by the speed of light c gives the

distance between the satellite and the receiver. The biggest problem of this approach is that GPS

signals can be affected by multiple sources. From Ionospheric and Tropospheric delays, reflection

on surfaces (multipath interference), ephemeris errors, etc.

d = c · (tr − ts) (3.13)

Carrier-phase measurements were introduced as a significantly much better algorithm to reduce

the distance error inherent in code-phase measurements, enabling a much higher level of precision

in GPS positioning. The receiver tracks the exact number of carrier wave cycles between the GPS

satellite and the receiver. Then the number of carrier wave cycles N multiplied by the signal

wavelength λ combined with the phase ϕ. The carrier wavelength is around 20 centimeters, which

has shown to be much shorter than the code length. The error using this approach is fractions of a

wavelength and the way it is calculated is shown below:

d = N · λ+ λϕ (3.14)
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(a) GPS receiver (b) Base station tripod

Figure 3.9: GPS Topcon Hiper Pro [56]

In order to understand of how an RTK GPS works, we will present a brief sequence of the whole

process:

1. Base Station Setup:

The base station is set up at a known static location with a clear view of the sky to have

precise coordinates. The base from now on will keep tracking signals from the satellites and

calculates its position using pseudo-range and carrier-phase measurements (centimeter-level

precision).

2. Rover Receiver Setup:

The rover whose position changes over time as it is moving, calculates its initial position

using GPS signal it receives from the satellites using code phase measurements (meter-level

precision). Then it sends its initial position estimate to the base station.

3. Base Station Calculation:

The base station receives the rover initial position estimate and compares it with its own

measurements. The base calculates the differential corrections needed to refine the rover

position estimate so that it align with its known (highly accurate coordinates of the base).

4. Correction Transmission:

The calculated differential corrections are then sent back to the rover from the base station,

usually via radio or NTRIP. The corrections are applied to the rover measurements and its

position estimate is updated with a much higher precision. The rover

5. Continuous Updates:

As the rover keeps moving, it continuously keeps receiving real-time corrections from the base.
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The base station besides calculating the corrections for rover, also performs complex calculations

to improve its accuracy. This process allows high precision positioning in real-time. The corrections

are sent in RTCM format. The GPS outputs NMEA messages, in RTK the maximum rate is 20 HZ.

To understand the NMEA message structure, let’s examine the popular $GPGGA message:

Figure 3.10: Example of a basic GPS NMEA message data structure (GPGGA)

GPGGA stands for Global Position System fix data and is a standard NMEA 0183 message (ap-

pendix B.1) used in GPS systems.

3.4 Datasets

Datasets in the context of SLAM are indispensable for many reasons. They serve as benchmarks

for SLAM algorithms, allowing us to evaluate their performance and robustness in real-world sce-

narios. Acquiring datasets for SLAM testing, serves as a valuable tool that offers the best of both

worlds. It is similar to running a simulation, yet with the advantage of utilizing real-world sensor

measurements. These datasets enable rigorous testing and provide a platform for fine-tuning SLAM

algorithms.

After careful consideration and evaluation of numerous autonomous driving datasets, we have

deliberately chosen the KITTI [19] dataset as the most suitable option for our specific research

requirements. KITTI stands out as an ideal choice due to its meticulous design, the algorithm was

created with a target in autonomous driving applications. Moreover, KITTI’s utilization of crucial

sensors, such as the LiDAR and IMU aligns perfectly with our predetermined criteria.

There were also other datasets that caught our attention, such as the FORD dataset [43].

However, the issue was related to the fact that it included a dataset that was excessively large and

had too few revisited locations, which is essential for the loop closure module. The easiest way to run

a SLAM algorithm using ROS is through rosbags. Therefore, we only considered datasets that were

obtained or can be converted into a rosbag and are related to autonomous driving scenarios. The

first dataset, KITTI is an open-source dataset which allowed to get quick results that contributed to

validate the SLAM algorithm. The second dataset, UC – POLO2, is an in-house dataset. the main

reasons behind the acquisition of this dataset are the fact that it contains reverse loops, even though

KITTI sequence 02 also contains, it represented an advantage to test the loop closure algorithm

Scan Context. The second motive is because of the sensors, which are highly advanced, slightly

33



more recent than those employed in KITTI dataset. Therefore, our objectives were to test the

sensors to determine if there were any differences in the performance of the algorithm.

3.4.1 KITTI Dataset

KITTI [19] is an open-source dataset designed for autonomous driving applications. The dataset

contained diverse sensory components, ranging from 2 RGB and 2 grayscale cameras (Sony ICX267

CCD 1.4 MP), 3D LiDAR (Velodyne HDL-64E), inertial measurement unit (OXTS RT3003 IMU)

and RTK GPS. Synchronization and calibration measures were taken to avoid drift in orientation,

which would lead to translation error. The dataset comprises several environment categories (Road,

City, Residential, Campus) allowing diversity for SLAM validation.

The collected data was zipped into a single file containing the recording data and the sequence

number. For testing purposes, we used a package called “kitti2bag” which converts the sensors

readings into a rosbag file, containing all the relative transformations required. To obtain ground-

truth data, there is a section in KITTI official site, that contains the start and end time for each

KITTI sequence, then we used a package to obtain the ground truth poses synchronizing the raw

data timestamps with the estimated ground-truth. The KITTI ground-truth was obtained using

RTK-GPS/INS fusion with an accuracy below 10 cm. The figures below show how the setup

configuration for this dataset:

(a) KITTI platform. The vehicle is

equipped with four video cameras (two

color and two grayscale cameras), a 3D laser

scanner and a combined GPS/IMU inertial

navigation system.

(b) This figure illustrates the sensor’s setup

(red) with respect to the vehicle body.

Heights are marked in green and were mea-

sured with respect to the road surface

plane. The transformations between sen-

sor frames are marked in blue.

Figure 3.11: KITTI car setup.
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3.4.2 UC - POLO 2 Dataset Acquisition

Dataset Description

Firstly, UC-POLO 2 Dataset was taken for exclusively Lidar-based frameworks, and does not provide

cameras for visual SLAM. The experiment took place in the POLO 2 campus of the University of

Coimbra, and represents a dataset for outdoor urban environment. This dataset was explicitly

constructed to evaluate the performance of scan context loop detector, as it contains reverse loops

that help to validate the algorithm robustness. Besides, once we afforded highly advanced and

up-to-date sensors, and we wanted to obtain a dataset for our campus, we’ve decided to take a step

forward and assume the construction of it.

This section will define and explain all the measures taken to produce the dataset, from hard-

ware selection, setup preparation, sensor calibration, ground-truth data collection and data-post

processing.

The major sensors used in this dataset included: Xsens MTi-300 IMU (figure 3.7), OS1-64

Ouster Lidar (figure 3.8) and RTK GPS (figure 3.9a). To start, we wanted to make this work

within the ROS framework because of the SLAM frameworks we have chosen. To do that, some

measures were taken. Installation of ROS drivers for each sensor, by installing the drivers we were

able to record data through rosbags in ROS message formats. The IMU already had a driver for

that matter, we just needed to check if it was aligned with the LiDAR and GPS reference. For the

GPS, we installed a driver to parse the standard NMEA messages and publish in the ROS topic

“/fix”. And the last sensor, the ouster LiDAR also already owned ROS driver, we just had to

configure it to use ROS timestamps, rate of data collection and horizontal resolution.

35



OS1- Ouster lidar

Xsens MTi-300 IMU
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Figure 3.12: System overview. 64-channel Ouster LiDAR installed in the top of the car (sensor in

the front row), Xsense MTI-300 IMU installed at the back of the car, and RTK GPS is in between

LiDAR and IMU.

Sensors Setup and Data Collection

The sensors coordinate system employed was a right-handed coordinate system (x forward, y left and

z up). The system was composed of a 64-channel LiDAR in the top of the car, slightly highly placed,

to avoid detecting the car, which would interfere with the pointclouds. Alongside the LiDAR, there

was a 9-axis IMU in the middle center located at the back of the car, and GPS complemented the

list of sensors situated in the middle of LiDAR and IMU. The dataset contains two sequences for

LiDAR-based SLAM applications.

Before initiating the system deployment, we wanted to make sure that every sensor that was

going to be integrated was prepared for the ROS environment. The next step, included IMU

calibration, to keep simplicity we wanted the sensors to have aligned system coordinates to avoid

having to apply many transformations in the vehicle description. After calibrating the sensors,

installing the drivers, and assembling the platform, the next step was to record the dataset and

start collecting data. For that, we launched a ROS launch file, containing drivers of each sensor and

a rosbag to record all the topics that were being published. The LiDAR was collecting data at 10

hz, whilst the IMU was acquiring data at 400 hz, so synchronization was not needed. Some SLAM

algorithms like LIO-SAM and Cartographer require high-performing IMU and take advantage of

36



that to outperform other approaches, since they integrate IMU measurements in conjunction with

LiDAR odometry to improve the pose estimation.

To be able to run the recorded dataset in ROS, a URDF model of the vehicle was highly

demanded. URDF is characterized by the relative transformations of the sensors (extrinsic trans-

formation between sensors) and ensures that they are accurately registered in a common reference

frame. This step was important so that at the time of launching SLAM in ROS, the visualization

of the frames would be correct. To achieve this, we considered the origin of the vehicle reference

frame, as the center back wheels baseline. After some exhaustive measures, the system setup is

presented below in figure 3.13.

x

y

OS1- Ouster lidar

(height: 1.86 m)

Wheel axis

(height:  0.35 m)

Xsens MTi-300 IMU

(height: 1.55 m)(height: 1.652 m)

base link
y

x

0.34 m

Topcon Hiper Pro GPS

y

x z

y

x z

0.16 m0.54 m

y

x z z

Car backCar Front

Figure 3.13: Sensors setup. This figure shows mounting positions with respect to the base link.

Heights above the ground are marked in blue and measured with respect to the road surface.

Transformation between sensors are explicited in meters.

Ground Truth Data Collection

To perform an assessment of the SLAM algorithms, acquiring ground truth data was essential to

evaluate SLAM performance. We used an IMU as an orientation ground-truth and RTK GPS for

positioning. The GPS was configured in RTK mode to provide high-precision data, we setup a base

station with a PDOP (Position Dilution of Precision) under 1 meter, which is a very good value

for GPS positioning, allowing accuracy of centimeters (section 3.2 explains how to setup an RTK

GPS). The GPS was publishing ROS messages of the type sensors_msgs/Navsat_fix at a fixed

rate of 5 hz. GPS coordinates provide information about the latitude, longitude, altitude, position

covariance, and other GPS-related information in the WGS-84 reference system (most common

reference system for GPS data). In cases where the RTK signal was lost (due to objects occlusion),

the GPS would still send data in fix mode, obviously with a lower precision. For visualization of

the sequences taken, we produced a KMZ file from the rosbag recorded. The procedure was the
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following:

• Created a script to open the recorded rosbag and read the topic ’/fix’ for GPS messages.

• Parse the GPS ROS messages ’sensors_msgs/Navsat_fix’ and extract latitude, longitude

and altitude from each message.

• Use a library to convert GPS data into KML file. Then compress the file into KMZ file.

• Import the KMZ file in Google Maps and display the sequences of GPS data from each dataset

sequence.

The sequences of UC - POLO2 are shown in figure 3.14: Sequence 01 contains two long roads

with reverse loops. Sequence 02 contains a reverse loop when returning and direct loops when

crossing the roundabout, as it crosses it twice. To implement this GPS data as a ground truth

option for SLAM comparison, two final procedures had to be implemented, system coordinates

conversion and data post-processing.

Data Post-processing

After collecting the data, the first step was to perform post-data processing to remove noise, zero

values and ground-truth outliers originating from the RTK signal loss. After analyzing the recorded

bags, the IMU contained zero values and GPS data showed RTK signal loss in some stages, reducing

the precision of our ground truth. Therefore, a post-process was required as it follows:

• Created a script to read the IMU data in the topic ‘/imu/data’ and removed zero values

from it.

• Read the topic of GPS, converted to UTM coordinates, according to the region. The first

position was removed to start in the position (0,0).

• A filter was applied to the GPS to reduce the noise of the sensor, especially the z coordinate

that got peaks in height. The filter used was a polynomial interpolation of the GPS data

using the Savitzky Golay filter [44], with a 4-th order polynomial and 50 points in the moving

window (i.e., 10 seconds of data) for the xy-axis, and 250 points in the moving window for

the z-axis (i.e., 50 seconds of data).
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(a) The trajectory of the vehicle for the Sequence 01 of UC - POLO2 dataset.

(b) The trajectory of the vehicle for the Sequence 02 of UC - POLO2 dataset.

Figure 3.14: Sequences of UC - POLO2 dataset. (a) and (b) are both trials around the POLO2

campus, the trajectory points are GPS traces of our recordings. The starting and ending points of

each sequence individually is approximately the same.
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3.5 Loop Closure Implementation

In this section, we present protocols to obtain ground truth data for loop detection, in order to

perform the evaluation of the SC LeGO LOAM loop detection algorithm. The implementation of

PointnetVLAD and ORCHnet inside the loop closure module is presented in Appendix C.1.

Loop Closure Protocols

To thoroughly assess the effectiveness of place recognition approaches, we employed two distinct

evaluation protocols [60] to evaluate the recall and precision of each method we are comparing.

Consider fkc as the current keyframe, L[fkc] the output frame of the place recognition module,

H[fkc] the list of history keyframes for the current frame and df a threshold applied in the place

recognition module. The protocol A evaluates in case of a detected looop by the place recognition

module, if there is a history keyframe for the current frame within a radius of 4 m, then the loop

is considered a true positive. Otherwise, is a false positive. If the loop module outputs “-1” (means

no loop candidate) and the condition for ground truth is verified (exists a history key frame within

a radius of 4 m for the current frame) then is considered a false negative and if both output “-1”

then is a true negative.

If the output of loop closure module, L[fkc] , is under a distance feature threshold, df the

prediction is positive. Otherwise, is negative. To calculate ground-truth data for loop closure, we

use a KD tree to find 10 nearby history key frames within a radius for fkc. Considering this an

evaluation based on Euclidean distance, we discard the previous 300 scans (last 30 sec of data).

Then we retrieve the minimal distance found for the current keyframe, d[fkc]. If d[fkc] is less than

4 m then ground truth for fkc is considered positive.
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Algorithm 1 Protocol A for loop-closure evaluation
Variables

Let fkc be the current keyframe, H[fkc] list of history frames for current key frame, L[fkc] the

output of the loop module for the current frame, S[fkc] feature score for the current frame, df

feature threshold and d[fkc] closest Euclidean distance between current keyframe and H[fkc].

end Variables

Find if fkc has been transversed:

for each fkc do

if L[fkc] == "-1" then

No loop candidate found.

else if (L[fkc] ≥ 0) and (S[fkc] ≤ df ) then

Potential Loop candidate. (Positive prediction)

for each H[fkc] do

if d[fkc] ≤ 4 then

Loop candidate confirmed. (True positive)

else if d[fkc] > 4 then

Loop candidate predicted is a false positive.

end if

end for

else if (L[fkc] ≥ 0) and (S[fkc] > df ) then

Loop candidate rejected (Negative prediction).

end if

end for

The Protocol B uses ICP for ground-truth. The process is very similar to protocol A with the

main difference being how we consider a positive and negative for ground-truth, instead of searching

for nearby history keyframes it uses the ICP as a reliable source for ground-truth. The algorithm

is as follows:
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Algorithm 2 Protocol B for loop-closure evaluation
Variables

Consider Ithresh as the ICP fit score threshold, I[fkc] the ICP fit score for the current frame,

S[fkc] feature score for the current frame, L[fkc] the output frame of the place recognition module,

df feature threshold, fkc be the current keyframe and Nhf number of near history key frames will

be considered by ICP to fuse the query frame and the candidate frame.

end Variables

Find if fkc has been transversed:

for each fkc do

if L[fkc] == "-1" then

No loop candidate found.

else if (L[fkc] ≥ 0) and (S[fkc] ≤ df ) then

Potential Loop candidate. (Positive prediction)

Applies ICP for the Nhf (surround cloud)

if I[fkc] ≤ Ithresh then

Loop candidate confirmed. (True positive)

else if I[fkc] > Ithresh then

Loop candidate predicted is a false positive.

end if

else if (L[fkc] ≥ 0) and (S[fkc] > df ) then

Loop candidate rejected (Negative prediction).

end if

end for

3.6 Evaluation Metrics

3.6.1 SLAM

This section explains the metrics used to evaluate SLAM and loop closure detection. ATE (Absolute

Trajectory Error) and RPE (Relative Position Error) are by far, the most common metrics to

evaluate accuracy of SLAM [45].

ATE

ATE quantifies the differences between the estimated trajectory and ground-truth poses. Before

computing ATE, as both trajectories may not be aligned in the same reference frame, for SLAM

drift evaluation we aligned both trajectories using Michael EVO package [21] -align_origin option.

ATE is defined in several ways: root mean square error (RMSE ), mean, and median. Assuming that
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the sequence for the estimated poses of the trajectory is pi and from the ground truth trajectory

is gi, where each pose represents a position in the world coordinate system, assuming that both

trajectories are aligned and the rotation matrix R is the indentity matrix. The absolute trajectory

error will be:

ATErmse =

√√√√( 1

n

n∑
n=1

||pi − gi||2
)

(3.15)

ATEmean =
1

n

n∑
n=1

(pi − gi) (3.16)

ATEmedianodd
=

(n+ 1)th

2
term (3.17)

ATEmedianeven =

(
n
2

)th
+
(
n+1
2

)th
2

term. (3.18)

ATE represents the mean difference between the estimated trajectory and the ground truth

trajectory for each frame.

RPE

The relative pose error measures the local accuracy of SLAM between over a fixed time interval δ.

Consider P ∈ SE3 as the estimated matrix and G ∈ SE3 as the ground truth matrix, the relative

pose error Ri at timestamp i is:

Ri = (G−1Gi+δ) · (P−1Pi+δ) (3.19)

For a sequence of n poses, we obtain m = n−δ relative pose errors, the δ parameter was set to 1

to calculate for all frames. The RPE is usually divided in two components: rotation and translation.

Just like in ATE it calculates the RMS and mean error, for demonstration we will just show how

to calculate RMS:

RPEi,δ
trans =

√√√√( 1

m

m∑
i=1

||trans(Ri)||2
)

(3.20)

RPEi,δ
rot =

√√√√( 1

m

m∑
i=1

||∠(rot(Ri))||2
)

(3.21)

For SLAM evaluation, we consider delta equal to 1, to cover all possible pairs in translation and

rotation.

3.6.2 Loop Closure

The loop closure assessment was essentially made through curves of precision-recall. Precision

measures accuracy of loop detection, high precision indicates that the algorithm when detects a
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loop, it is very likely to be an actual loop, and thus has a low rate of false positives. It is not

about the number of actual loops that the algorithm misses, but how good the prediction is when

it identifies loops.

Recall is the rate of true positive loops, it is a percentage of true loops correctly identified by

the algorithm. A high recall indicates that the algorithm is very good at identifying true loops, and

it doesn’t miss any positive ground-truth loops. In general, these two concepts are a trade-off, and

you can adjust the parameters of the algorithm or threshold to optimize one in detriment of the

other. The formulas for precision and recall are shown below:

Pre =
TP

TP + FP
(3.22)

Rec =
TP

TP + FN
(3.23)

To create the curves for precision and recall, we used the feature score retrieved by the loop

closure module, to understand for each threshold value how well the algorithm performs. The

procedure is as it follows in appendix D.1 and was applied for both protocol algorithms 1 and 2.
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4 Experimental Evaluation

The results reported in this thesis have been split into two main groups: evaluation of SLAM and

loop closure performance. For SLAM, we considered two datasets (KITTI and UC - POLO2), when

using the KITTI dataset, the ground-truth trajectory was obtained through RTK GPS and IMU

fusion from the KITTI website. Whereas, ground-truth trajectory for UC - POLO2 dataset was

acquired directly from RTK GPS, and we just added orientation from the IMU readings, but no

fusion has been performed. The main framework to run each SLAM package was ROS.

4.1 SLAM

To evaluate SLAM performance we have chosen the metrics present in section 3.6.1 (APE and RPE),

each trajectory was obtained from the transformation between the map and base_link referential

frames. The sequence selection was based on evaluating direct loops (KITTI sequences 05 and 07)

and reverse loops (UC-POLO2 sequence 02).

The SLAM was split into two datasets. In the KITTI dataset, four algorithms were tested

under the same environments (KITTI sequences 05 and 07), while for UC - POLO2 dataset the

results were generated chosing only the algorithms whose loop closure module was robust enough

to perform fully reverse loops (SC LeGO LOAM and SC LIO-SAM).

4.1.1 KITTI Dataset

Default parameters were used, except for the cartographer. The four chosen algorithms to test

SLAM were SC LeGO LOAM, LIO-SAM, Cartographer, and HDL-Graph SLAM. Figure 4.1 plots

the results for KITTI sequence 5 for each of the four algorithms:
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Figure 4.1: KITTI sequence 05 trajectory.

Tables 4.1 and 4.2 shows the APE and RPE metric results for this sequence, regarding each of

the four algorithms:

ATE Cartographer HDL Graph SLAM LIO-SAM SC LeGO LOAM

RMSE (m) 4.8536 12.7791 6.4280 8.6908

Mean (m) 4.4663 10.6666 5.8731 7.5286

Table 4.1: APE results regarding KITTI sequence 05 trajectory.

RPE Cartographer HDL Graph SLAM LIO-SAM SC LeGO LOAM

RMSE (m) 0.0328 0.0193 0.1725 0.0919

Mean (m) 0.0241 0.0143 0.0289 0.2340

RMSE (deg) 0.0057 0.0008 0.0025 0.0076

Mean (deg) 0.0043 0.0013 0.0014 0.0060

Table 4.2: RPE results regarding KITTI sequence 05 trajectory.

To have a good understanding of the results present in tables 4.1 and 4.2, it is important to

acknowledge two main concepts. The APE metric is effective for evaluating the overall global

accuracy of a SLAM system by measuring how closely the estimated trajectory aligns with the

ground-truth trajectory. In contrast, RPE assesses local accuracy by examining the consistency of

poses between consecutive pairs. If a SLAM algorithm performs well in RPE, it signifies strong

local estimation.
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However, it is important to recognize that even if an algorithm excels in local odometry esti-

mation, as indicated by low RPE values, it can still underperform compared to others with less

impressive local accuracy. This discrepancy can be attributed to error accumulation over time and

the absence of robust global map optimization algorithms. This exact scenario occurs with HDL-

Graph SLAM. While it achieves low RPE errors in translation and rotation, its APE error is the

highest among the four metrics. The reason for these low RPE values lies in HDL’s utilization of

fine-registration techniques for point cloud registration, specifically the NDT method. As previ-

ously mentioned, these methods deliver exceptional accuracy in point cloud registration but come

with a significant computational cost, particularly in point-to-point or point-to-plane matching.

HDL-Graph SLAM employs the g20 algorithm with RANSAC for pose-graph optimization, which

proves to be equally effective when compared to LIO-SAM and LeGO LOAM pose-graph optimizers

(L-M). However, HDL does have a notable limitation, as it lacks a robust loop closure algorithm.

Consequently, over time, global pose estimation tends to degrade, as the system fails to compensate

for this absence of loop closure detection, as evidenced by HDL’s inability to detect a loop closure

at the end of the trajectory in figure 4.1.

LIO-SAM and LeGO LOAM, on the other hand, extract features from the 3D scans, and per-

form scan-matching through features, and reduce significantly the amount of points to compute

transformation between scans, the RPE values achieved high accuracy, as the surface features and

edges were well detected urban environments, like KITTI and UC – POLO2 datasets. This type

of registration approach tends to perform really well in structured environment and saves com-

putation time. With their ability to estimate local positions accurately, these algorithms possess

robust global map optimization techniques, which is why they yielded decent results overall. As

depicted in Figure 4.1, both LIO-SAM and SC LeGO LOAM demonstrate the capacity to correct

their positions and update the global map trajectory when encountering a loop. This capability is

notably absent in HDL-Graph SLAM.

The superior performance of LIO-SAM over SC LeGO LOAM in terms of APE can be attributed

to a couple of key factors. First, the sequence in question lacks any reverse loops. In cases with

reverse loops, LIO-SAM’s loop closure algorithm might perform less effectively than SC LeGO

LOAM’s, as it may struggle to detect revisited locations from a different viewpoint. Additionally,

LIO-SAM’s superior RPE values result from its tightly-coupled approach, which integrates IMU

data into local odometry estimation. This integration provides better accuracy than the loosely-

coupled system employed by SC LeGO LOAM. Due to this lower accumulation of error over time,

LIO-SAM outperforms SC LeGO LOAM, although the difference in performance is not substantial.

Analyzing the results for the best APE metric, it is visible that Cartographer produced the best

results, however, with a high amount of parameter over-fitting. Even though Cartographer had

decent results, the fact that it does not produce a 3D map and is very over-tuned, made it the least
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(a) (b)

Figure 4.2: (a) Estimation of XYZ coordinates for KITTI sequence 05; (b) Roll, pitch and yaw

estimation for KITTI sequence 05.

desirable option of all.

The next sequence was very a simple one, containing only one direct loop at the end, the KITTI

sequence 07 trajectories is present in figure 4.3:

Figure 4.3: KITTI sequence 07 trajectory.

Tables 4.3 and 4.4 show the APE and RPE metric results for sequence 07, regarding each of the

four algorithms:
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ATE Cartographer HDL Graph SLAM LIO-SAM SC LeGO LOAM

RMSE (m) 2.4372 2.1602 1.5166 1.8050

Mean (m) 2.1416 1.9053 1.3299 1.3911

Table 4.3: APE results regarding KITTI sequence 07 trajectory.

RPE Cartographer HDL Graph SLAM LIO-SAM SC LeGO LOAM

RMSE (m) 0.0264 0.0195 0.0755 0.1470

Mean (m) 0.0208 0.0161 0.0266 0.0619

RMSE (deg) 0.0021 0.0012 0.0020 0.0081

Mean (deg) 0.0017 0.0009 0.0015 0.0064

Table 4.4: RPE results regarding KITTI sequence 07 trajectory.

Once again, the results indicate that LIO-SAM and SC LeGO LOAM have a better overall

performance, since they perform local and global map optimization. The RPE accuracy of HDL-

Graph SLAM and Cartographer is slightly better in comparison to the others, because of using

ICP-based registration algorithms, which as said above has high-precision but a lot of computation

cost. However, this local accuracy, if not properly compensated by map optimization algorithms,

tends to accumulate errors over time. As it can be seen, the ATE error that evaluates the alignment

between the estimated and ground-truth trajectory is lower for LIO-SAM and SC LeGO LOAM,

which are the algorithms with better global map optimization. Just like in sequence 05, LIO-

SAM outperforms SC LeGO LOAM for local odometry estimation because of the way it calculates

odometry (tightly-coupled system) and, therefore, is the algorithm with better ATE value, as it

accumulates less error during local estimation. The cartographer this time presented worse results

than all the results, even though correcting the trajectory at the end, due to not having been over-

tuned (this time we did not perform any tuning in Cartographer parameters and the performance

is visibly worse). Since the trajectory is short, HDL-Graph SLAM errors were similar to the other

algorithms. However, as seen in longer sequences like sequence 05 of the KITTI dataset, this

algorithm’s global optimization is not the best because it lacks a robust approach to loop closure

detection.
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(a) (b)

Figure 4.4: (a) Estimation of XYZ coordinates for KITTI sequence 07; (b) Roll, pitch and yaw

estimation for KITTI sequence 07.

4.1.2 Polo 2 Campus Dataset

For our second dataset, we have decided to choose algorithms that we found as reasonable to detect

reverse loops. SC LeGO LOAM was clearly one we wanted to test, since it was our baseline algorithm

and contained a robust loop detector. The second algorithm was LIO-SAM, but with the integration

of the same detector of LeGO LOAM (scan context), we found interesting the performance of this

algorithm in terms of trajectory precision. The trajectories for SC LIO-SAM and SC LeGO LOAM

in the UC - POLO2 sequence 02 are plotted in figure 4.5.

Figure 4.5: UC - POLO2 sequence 02 trajectory.

Table 4.5 shows the results for the APE and RPE metrics for UC - POLO2 sequence 02, regarding

each of the two algorithms.

ATE RPE trans. RPE rot.

RMS(m) Mean(m) RMS(m) Mean(m) RMS(deg) Mean(deg)

SC LL 4.2403 4.1295 0.2913 0.1962 0.0235 0.0132

SC LIO-SAM 5.9378 4.7018 0.6230 0.2013 0.0216 0.0107

Table 4.5: APE and RPE results regarding UC - POLO2 sequence 02 trajectory.
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The results on the UC - POLO2 sequence 02 have demonstrated that both algorithms have

successfully achieved the intended result for this sequence, as they both identified and corrected

revisited places, there is one loop in the roundabout and other at the end, when returning to the

initial position. There is an interesting fact that can be withdrawn from the plotted results. The

SC LIO-SAM executed almost the entire trajectory perfectly, with minor ATE and RPE errors.

However, as soon as it encountered a bump in the road near the end of the sequence, the Z-

coordinate spiked. One possible interpretation for this event is that the LIO-SAM integrates IMU

readings into odometry estimation, unlike the SC LeGO LOAM, which uses IMU as input for scan

matching orientation (both RPE rotations were nearly the same). If this hadn’t happened, both the

final RPE and ATE of the SC LIO-SAM would have been better, which was not the case. We can

see in Figure 4.6 (a) the peak in the Z-coordinate of the SC LIO-SAM, which eventually manages

to detect a loop and correct its position.

(a) (b)

Figure 4.6: (a) Estimation of XYZ coordinates for UC - POLO2 sequence 02; (b) Roll, pitch and

yaw estimation for UC - POLO2 sequence 02.

4.2 Loop Closure

So far, we have been evaluating the trajectory and explaining the algorithm’s performance without

actually seeing the output map. Therefore, having a visualization of the map constructed instead of

only the trajectory gives a much more illustrative demonstration of where loop closure has occurred.

Having said that, we divided loop closure into two sections: The first is dedicated to understanding

some hyper-parameter influence in the map correction, providing insights into the map constructed

based on different parameter configurations, for example, with and without loop closure, bag rate,

mapping interval. The second one is exclusively aimed at evaluating the loop closure algorithms in

terms of performance.
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4.2.1 Hyper parameters - map correction

We have chosen UC- POLO2 sequences 01 and 02, using a single algorithm (SC LeGO LOAM),

to test and comprehend the influence of each parameter in the overall map creation and pose

estimation.

Hyper parameters

Before we go into the results, let’s first explain each parameter individually. The hyper parameters

were: bagrate frequency, mapping interval. The bagrate frequency tells us how fast we want

the algorithm to read the data, if this parameter is set at 1x it means that is equal to real-time.

The mapping interval, is for local map optimization and tells us how fast SC LeGO LOAM saves

keyframes and corrects the local odometry. A higher value of mapping interval will have more time

to update the pose estimated by the odometry module, but skips more frames. On the other hand,

a lower value for this parameter will not produce accurate results, since it will update almost at

the same time as the odometry module (it is important that the mapping module is at a lower rate

than the odometry module).

For every sequence, we changed the loop closure flag. It indicates if the algorithm performs

global map optimization or not. For each result obtained, the ICP fit score used was the same. ICP

fitscore is the protocol used by SC LeGO LOAM to analyze if the predictive candidate from SC is

a true candidate or not (uses a 0.5 SC threshold + ICP), an alternative approach would be to use

a much lower threshold value for SC (about 0.1) and remove ICP from the equation. After some

testing, we selected a value that gives overall good results (ICP fitscore = 0.8).

First parameter configuration

Defaults parameters: Mapping 0.3, bagrate 1x

This configuration allowed us to understand the influence of the loop closure integration in the

global map optimization.
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(a) (b)

Figure 4.7: UC - POLO2 sequence 01 map with (a) and without loop closure (b). Default parame-

ters: bagrate 1x, mapping 0.3.

(a) (b)

Figure 4.8: UC - POLO2 sequence 02 map with (a) and without loop closure (b). Default parame-

ters: bagrate 1x, mapping 0.3.

From UC - POLO2 sequence 01 (presented in figure 4.7 (a) and (b)), we can see that the

algorithm, even without loop closure, achieves great results in the map, as the algorithm did not

accumulate much error and was able to compensate using only local map optimization, the fact

that the features extracted are extremely perceptible, makes the algorithm perform really well even

in the absence of a loop closure algorithm. For sequence 02, in figure 4.8 (b) the map despite being

decent almost the whole trajectory, it is seen right at the end, the absence of an existing loop closure

algorithm that would correct the final position, figure 4.8 (a) shows a correction of it.

Mapping changed from 0.3 to 0.2, bagrate 1x: We decided to decrease the mapping value

to see if sequence 01 in figure 4.7 (b) would still produce a coherent map:
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Figure 4.9: UC - POLO2 sequence 01 map without loop closure. Parameters: bagrate 1x, mapping

0.2.

It is noticeable how worse the map was by changing this parameter. The algorithm did not

have time to optimize accurately the estimated positions, resulting in more accumulated drift in

the trajectory.

Mapping changed from 0.3 to 0.5, bagrate 1x: The next step, was to increase the mapping

value for sequence 02 and see if it would produce a decent map without loop closure, as it would

have more time to compute optimizations in the local map.

Figure 4.10: UC - POLO2 sequence 02 map without loop closure. Parameters: bagrate 1x,

mapping 0.5.

The algorithm as we predicted achieved a really great map result without global map optimiza-

tion.

Our last parameter change was increasing the bagrate for both sequences. Considering the best

parameters of mapping for sequence 01 and 02 without loop closure, were respectively 0.3 and 0.5,

we doubled the bagrate for each.

Sequence 01 parameters: Mapping 0.3, bagrate 2x

Sequence 02 parameters: Mapping 0.5, bagrate 2x
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(a) (b)

Figure 4.11: UC - POLO2 sequence 01 maps with (a) and without loop closure (b). Parameters:

bagrate 2x, mapping 0.3.

(a) (b)

Figure 4.12: UC - POLO2 sequence 02 maps with (a) and without loop closure (b). Parameters:

bagrate 2x, mapping 0.5.

Taking a closer look at these last results, we observed that with a higher bagrate, sequence

01 suffered a lot, as the positions without an external global map optimizer degraded significantly

and the result is the map in figure 4.11 (b). On the contrary, the map produced with loop closure

is consistent and optimized. In sequence 02, both figures (with and without loop closure) were

able to produce a decent final map. The increase of the bagrate presented difficulties, because this

parameter will affect the processing time, the mapping is still the same (keyframes saved are the

same), but if the machine does not have sufficient computation at this rate, it won’t finish the

calculations for local map optimization and map will degrade.

4.2.2 Scan Context evaluation

Our last results section was intended to test the loop closure algorithm exclusively, without taking

into consideration the trajectory and map. For that purpose, we selected two sequences (KITTI

sequence 05 and UC - POLO2 sequence 02). First, we were able to compare SC with two more

place recognition techniques (ORCHnet and PointnetVLAD) through a file-based integration. The
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second, since we did not own files for it, just SC was evaluated.

The curves of precision and recall for KITTI sequence 05 using protocol A and B are plotted in

figure 4.13

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision/Recall Curve using Closest Key frame Approach as GT

SC
ORCHnet
PointnetVLAD

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision/Recall Curve using ICP as GT with 0.8 threshold

SC
ORCHnet
PointnetVLAD

(b)

Figure 4.13: (a) Precision-recall curve for KITTI sequence 05 using protocol A (closest keyframe);

(b) Precision-recall curve for KITTI sequence 05 using protocol B (ICPthresh = 0.8)

Before starting to discuss the results, it is important to mention the feature score ranging values

for each place recognition algorithm.

SCmin = 0.022 ORCHnetmin = 0.043 Point.V LADmin = 0.092

SCmax = 0.616 ORCHnetmax = 1.135 Point.V LADmax = 0.881

Analyzing the results from figure 4.13a, we can clearly understand that SC outperforms both

ORCHnet and PointnetVLAD, as it maintains a good prediction until a certain feature score thresh-

old. Figure 4.14a shows that SC under a thresh = 0.2 has only true positives according to protocol

A. Above this score, it starts failing to detect correctly a true positive. PointnetVLAD works well

but with a lower threshold value of 0.15, but from there his precision starts falling down linearly,

which is not ideal for an algorithm, as it does not distinguish well what is a true positive and what

isn’t. ORCHnet is similar to PointnetVLAD in terms of linearity in the curve, but performs worse

than the others since from the beginning it starts failing its predictions, acquiring false positives

with low feature score values, showing that even with low values the algorithm prediction does

not match with the actual value. The recall values of the three algorithms are different, while SC

presents a steep curve, around 0.7 recall, PointnetVLAD starts decreasing linearly around 0.2 and

0.5 and ORCHnet around 0.1, showing that their accurate true positive rate is very low compared

to SC.
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Using protocol B (figure 4.13b), SC and PointnetVLAD perform comparably until a certain

threshold with high predictive accuracy, while ORCHnet again starts decreasing from the beginning,

however, it performs better than PointnetVLAD around 0.4 recall. In figure 4.14b, it can be seen

that SC predicts well again until threshold = 0.2.
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Figure 4.14

The results for SC in UC - POLO2 sequence 02 are plotted in figures 4.15a and 4.15b. Once

again, SC demonstrated a solid performance in protocol A, being able to detect flawlessly until a

threshold equal to 0.33 (figure 4.16a). Whereas in protocol B it detects with an efficiency of around

80% with a threshold of 0.2 (figure 4.16b).
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Figure 4.15: (a) Precision-recall curve for UC - POLO2 sequence 02 using protocol A (closest

keyframe); (b) Precision-recall curve for UC - POLO2 sequence 02 using protocol B (ICPthresh = 0.8)
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5 Conclusion

SLAM takes an important role in autonomous driving applications, as it provides the solution for

an autonomous vehicle to navigate through an unknown environment without an a-priori map. The

aim of this work was to perform a comprehensive study on 3D outdoor SLAM. With the help of

two datasets, KITTI and UC – POLO2, we were able to validate and understand the strengths

and weaknesses of each algorithm based on its trajectory and map correction, providing us with

a significant learning experience throughout the process. Alongside the SLAM, we investigated in

detail the performance and influence of algorithms for global map correction (loop closure).

Analyzing the results experienced when performing a benchmark in SLAM, a few conclusions

have been withdrawn. From the four algorithms tested, the ones that presented better results in

terms of trajectory with default parameters were clearly LIO-SAM and SC LeGO LOAM. Cartogra-

pher despite the good results, had immense overturning and was not able to construct a 3D map. It

is also important to note that, matching-based algorithms, like the ones used in Cartographer and

HDL-Graph SLAM achieved slightly higher accurate results than the feature-based ones (LIO-SAM

and SC LeGO LOAM), but at a considerable computation expense. However, this feature-based

methods were able to compensate through global map optimization, reducing significantly the error.

As previously mentioned, LIO-SAM demonstrates superior performance in scenarios featuring

smooth, direct loops, primarily due to its more accurate local odometry estimation. However,

our evaluation, notably in the UC-POLO2 sequence 02, revealed limitations in the algorithm’s

performance. This limitation arises from the fusion of IMU data with LiDAR odometry to enhance

pose estimations. LIO-SAM struggled when encountering road irregularities, such as bumps, which

adversely affected the pose estimation, particularly in the Z coordinate. In contrast, SC LeGO

LOAM, which integrates IMU data as a prior orientation for scan matching, proved to be more

robust in these challenging conditions. This approach maintains a clear separation between IMU-

based orientation adjustments and the position estimation (X,Y,Z), minimizing the impact of road

disturbances.

Additionally, for our assessment of the POLO2 dataset, we opted to utilize a variant of SC

LIO-SAM. This choice was driven by the algorithm’s robustness in loop detection, particularly

its ability to handle rotations and effectively recognize revisited places from different viewpoints.

This capability was notably absent in the previous ICP-based Euclidean distance place recognition
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module. In summary, although LIO-SAM excels in certain scenarios, its susceptibility to road

irregularities became evident during our evaluations. SC LeGO LOAM, with its segregated IMU

integration strategy, offered more reliable performance under such conditions. Furthermore, the

choice to employ a variant of SC LIO-SAM for the POLO2 dataset underscores the importance of a

robust loop detection mechanism capable of handling different perspectives on revisited locations.

In loop detection, SC clearly outperformed both ORCHnet and PointnetVLAD in both pro-

tocols, achieving positive results in its predictions. The presence of a loop closure mechanism in

SLAM has been demonstrated to be indispensable in mitigating the detrimental errors accumu-

lated by local SLAM. While local map optimization and odometry may refine the trajectory on a

small scale scenario, they do not address the issue of error propagation. Our results suggest that

even local optimization methods with high competence may not fully maintain long-term accuracy.

The incorporation of a global map correction mechanism serves as a protective measure against

cumulative errors that could endanger the reliability of autonomous navigation.

5.1 Future Work

After reviewing and comparing SLAM algorithms, we noticed flaws in terms of odometry estimation

for both SC LeGO LOAM and LIO-SAM. LIO-SAM was able to perform better in scenarios with no

bumps on the road, while SC LeGO LOAM due to its characteristic of not using IMU to estimate

XYZ position, was able to outperform LIO-SAM exclusively in that type scenarios. We purpose a

better way of fusing both algorithms (tighly-coupled and loosely-coupled) so that they complement

each other and produce a final pose estimation robust enough to handle both scnenarios. In terms

of dataset, we noticed that despite RTK GPS in open clear-sky view spaces that are not covered

by buildings or other structures is able to achieve a precision of centimenters, in areas with objects

occlusions might not be the best reliable approach to gather ground-truth data. Performing a

fusion of the GPS data with IMU or odometry might bring a effective way, specially on these type

of environments.
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Appendix A

ROS

A.1 ROS Introduction

Robot Operating System (ROS) is an open source framework that provides tools, libraries that

enable to efficiently create, simulate and deploy diverse robotic applications. The core objective

behind creating ROS (Robot Operating System) was to establish a versatile and adaptable platform

dedicated to the creation and management of robotic systems. With its emphasis on modularity

and scalability, ROS accelerates the progession of robotics, by promoting standardized interfaces

and smooth interaction among robotic components and software modules.

One application that ROS can support is SLAM, as already has been discussed, SLAM is essential

for autonomous navigation, exploration etc. The main goal here is to produce a 3D map that is

consistent with the surrounding environment, and allows a vehicle to navigate inside it. ROS works

as a middleware running on top of an operating system, and allows different nodes/programs to

communicate with each other through messages, services and actions. The interface with sensors,

actuators, drivers, controllers and algorithms is already present in ROS.

ROS Core

ROS Core is a group of nodes and programs that are prerequisites of a ROS-based system. For the

nodes to communicate, ROS Core must be running. When initializing roscore, three processes are

created: ROS Master, ROS Parameter Server and rosout. ROS Master provides the registration

of names for ROS graph resources, tracking publishers and subscribers to topics, as well as services,

enabling ROS nodes to locate and communicate with one another. The communication is peer-to-

peer. Since the nodes to communicate require a master, the ROS system is centralized.

Alongside the initialization of ROS Master, the Parameter Server is a centralized storage sys-

tem used to manage configuration parameters and settings for ROS nodes. Finally, rosout is a

standard ROS topic responsible for publishing logging messages.
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Graph Resources

ROS graph resources includes: Nodes, Parameters, Topics and Services. ROS Topics serve as

designated conduits through which nodes communicate by exchanging messages. Every ROS topic

is characterized by a specific data format determined by the type of ROS Message employed for its

publication. Consequently, nodes possess the capability to exclusively accept messages that conform

to the corresponding data type. If nodes require the ability to participate in remote procedure

calls, which involves receiving responses to requests, it is advisable to utilize ROS Services as an

alternative approach.

ROS Communication Protocols

There are two principal ways to communicate between nodes. Nodes can communicate through

ROS Topics and ROS Services.

The communication protocol employed in ROS Topics is based on publisher-subscriber model.

When a node publishes data to a specific topic, it sends out messages without being aware of

which nodes, if any, are interested in receiving them. Subscribing nodes express their interest in a

particular topic. This asynchronous communication approach allows nodes to operate independently

and facilitates efficient data exchange.

On the other hand, the communication protocol applied in ROS Services is request-response.

Nodes interact by sending service requests and receiving corresponding responses. When a node

sends a service request, it specifies the desired action, and another node that provides the service

processes the request and sends back a response. This direct and synchronous communication

approach enables nodes to work together on tasks involving interactions that demand specific actions

and corresponding results.

Even though ROS Topics and ROS Services represent the primary communication mechanisms

in ROS, it also supports other higher-level communication mechanism, that combines aspects of both

topics and services, ROS Actions. Actions are ideal for scenarios where tasks need to be executed

over time and involve multiple steps or feedback, for example, in navigation scenarios.

ROS Coordinate frames

ROS has a coordinate frame system that requires configuration according to our robot/vehicle.

Frames are organized in a tree, where nodes signify components or sensors within our setup, and

the connections denote the relative positioning and orientation between these nodes. This capability

enables ROS to consider relative sensor positions while making use of their data.
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Appendix B

GPS

B.1 NMEA-0183 protocol message

Below there is a field by field explanation of this data structure.:

$GPGGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x,M,x.x,M,x.x,xxxx

hhmmss.ss = UTC time

llll.ll = latitude of position

a = Northern (N) or Southern(S) Hempishphere

yyyyy.yy = longitude of position

a = Eastern (E) or Western (W) Hemishphere

x = GPS Quality indicator (0=no fix, 1=GPS fix, 2=Dif. GPS fix, 4= RTK fixed,

5= RTK float)

xx = number of satellites in use

x.x = horizontal dilution of precision

x.x = Antenna altitude above mean-sea-level

M = units of antenna altitude, meters

x.x = Geoidal separation

M = units of geoidal separation, meters

x.x = Age of Differential GPS data (seconds)

xxxx = Differential reference station ID
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Appendix C

Integration in files

To evaluate Scan Context against other algorithms, we used a file-based evaluation. Since the aim

was to compare the performance of Scan Context, we used a predetermined set of loop candidates,

that was available for the KITTI dataset. The files from where we took the readings contained all

the LiDAR frames, 24 loop candidates per frame, and their respective score.

C.1 File-based integration

The algorithms that we chose to compare were PointnetVLAD and ORCHnet and were trained for

all the KITTI sequences. The implementation of this procedure was quite simple: we fed to the

algorithm inputs of potential loop candidates in the loop detector module, by just knowing the

current global frame index and retrieved 5 of the best scores per frame. The most difficult problem

we encountered using this approach was the fact that the SLAM algorithm did not concatenate all

the pointclouds, which is normal due to the amount of real time processing. The maximum number

of pointclouds combined was exactly half of the LiDAR publishing rate (i.e., 5 hz). This represented

a problem, because we had to search for a global index in the files and the algorithm was storing

a different index to detect loops. The solution for this adversity was to create two buffers with the

exact same size, where one of them stores the global index and the other a local index (corresponds

to the frame the algorithm uses as input to the loop module). The global index was taken directly

from the callback function that keeps track of the pointclouds received in a specific topic, we just

added a counter for that matter. The local index was taken directly from the function that saves

keyframes and stores descriptors for Scan Context. The idea is the following:

1. Scan context whenever a pointcloud is saved by the SLAM, creates a descriptor for each of

them and stores them in a vector. Think this as a stack of descriptors, where the number of

descriptors is equal to the number of pointclouds the algorithm concatenates. The problem

is that the number of pointclouds saved is different from the number of pointclouds received.
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Local buffer stores the indexes of the pointclouds integrated by the algorithm, which is half

of the pointclouds received. This is the index that the loop closure module will treat as the

current frame.

2. Then inside the callback function, we kept track of the number of pointclouds received, which

is equal to the number of 3D scans published by the LiDAR. Here we have the global index.

3. Then, inside the function responsible for saving keyframes, we created two buffers: local

buffer and global buffer. The local buffer stores the index of the pointclouds integrated by

the algorithm and the global buffer saves the global indexes provenient from the pointcloud

callback function.

4. To search for candidate frames in the files of PointnetVLAD and Orchnet, we use the indexes

from the global buffer. Whilst Scan context uses the frames present in the local buffer.

5. The buffers are the key for this to work, since the buffers are created at the same time and

belong to the same thread. To remap a global index into a local index, we just need to know

the exact index in the buffer. Imagine a global buffer G and a local buffer L with the same

dimensions, storing the local and global indexes continuously.

To know the where a global index fits in the local index, let G[i] be the global frame retrieved

from the file at index i, and L[i] the frame that represents an actual input for the loop closure

module at index i. Then to know the correspondence between the frames from the file and

the frames of the loop detector, we do G[i] = L[i].

6. When searching for potential candidates for the current frame in the file, two things can

happen: retrieve "-1" or the first 5 global indexes (which are the indexes with the best score).

7. If loop candidate retrieved from the file is "-1" means that there is no loop. Whereas if it

retrieves the best 5 indexes, then we perform a search in the global buffer to verify if it contains

any of the indexes retrieved. If yes, we convert do G[i] = L[i], where i is the index found in

the global buffer. The outputs of these operations is an input to the loop closure module.
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Appendix D

Precision-Recall curves

D.1 Implementation of the precision-recall curves

Example of how to create a precision and recall curve

N = np.sum(dist[:, 2] <= 4)

dist[:, 1] = np.where ((dist[:, 0] >= 0) & (dist [:,2] <=4), 1, 0)

resolution = (score_max -score_min) * 1.0 /10

for i in np.arange(score_min , score_max , resolution ):

for j in range(0, dist.shape [0]):

if dist[j][3] <= i:

p = p+1

if dist[j][1] == 1:

tp = tp+1

else:

fp = fp+1

re = tp * 1.0 / N

pr = tp * 1.0 / p

rec.append(re)

pre.append(pr)

plt.plot(rec , pre))

plt.show()

return rec ,pre

In the code above, we consider dist[j][3] as the feature score for each frame and dist[j][1]

the condition to be a true positive value, and N the number of ground truth positives.
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