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Abstract

The use of Augmented Reality has grown significantly and has been applied in various fields.
Simultaneously, assistive technology, such as Brain-Computer Interfaces, has made significant
improvements in the quality of life of individuals with severe motor impairments.

In this dissertation, we explored the integration of Microsoft Hololens 2 and P300-based
Brain-Computer Interface, for future applications in assistive robotics. The proposed Human-
Machine Interface could identify relevant elements for the given scenario, such as doors, tables,
or people, depending on the user’s objective and the Brain-Computer Interface was utilized to
determine the user’s intentions.

Using YOLOv5 for real-time object detection and the SORT algorithm for object tracking,
our system recognized and consistently tracked objects within the user’s field of view. This preci-
sion was important for ensuring effective communication with the P300-based Brain-Computer
Interface. By integrating the P300-based Brain-Computer Interface, users can interact with
detected objects solely through their thoughts. The Brain-Computer Interface achieves this by
interpreting neural signals associated with the discrimination of target and non-target objects,
enabling hands-free selection and interaction with objects in the environment.

The experiment results showed potential as well as difficulties. Our integrated system
showed the potential for hands-free interaction with the environment using the Brain-Computer
Interface and Microsoft HoloLens. However, we encountered difficulties, possibly stemming from
communication delays, when utilizing the Brain-Computer Interface and Microsoft HoloLens.
In the future, strategies to improve accuracy and reduce latency between all modules need to
be researched.

In our research, we studied the integration of Augmented Reality, object detection, and
Brain-Computer Interfaces based on event-related potentials for future applications in assistive
robotics. Although we were able to integrate this technology, we encountered some challenges in
integrating Brain-Computer Interface and Microsoft HoloLens, particularly with communication
delays. Despite these obstacles, we successfully reduced delays in image acquisition, however,
addressing latency in the Brain connection is a complex task that needs to be researched in the
future.

Keywords: HMI, Microsoft Hololens 2, BCI, Object Detection, Multi-Object Tracking,
Assistive Robotics, SORT, YOLOv5
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Resumo

O uso da Realidade Aumentada cresceu significativamente e tem sido aplicado em várias
áreas. Ao mesmo tempo, a tecnologia assistiva, especificamente as Interfaces Cérebro-Computador,
avançou significativamente na melhoria da qualidade de vida de pessoas com graves deficiências
motoras.

Nesta dissertação, criámos uma interface que pode ser combinada com uma Interface Cérebro-
Computador para uso em situações de assistência. A Interface Humano-Máquina proposta pôde
identificar elementos relevantes para o cenário dado, como portas, mesas ou pessoas, depend-
endo do objectivo do utilizador, e a Interface Cérebro-Computador determinou as intenções do
utilizador.

Utilizando o YOLOv5 para deteção de objetos em tempo real e o algoritmo SORT para o
seguimento de objetos, o nosso sistema reconheceu e seguiu consistentemente objetos no campo
de visão do utilizador. Esta precisão foi importante para garantir uma comunicação eficaz com
a Interface Cérebro-Computador baseada no potencial relacionada a eventos P300. Ao integrar
a Interface Cérebro-Computador baseada em P300, os utilizadores podem interagir com objetos
detetados apenas através dos seus pensamentos. A Interface Cérebro-Computador alcança isto
ao interpretar sinais neuronais associados à discriminação entre objetos-alvo e objetos não-alvo,
permitindo a seleção e interação sem usar as mãos com objetos no ambiente.

Os resultados experimentais revelaram-se promissores, no entanto, também enfrentamos
algumas dificuldades. O nosso sistema integrado demonstrou potencial para interação sem o uso
das mãos com o ambiente, utilizando a Interface Cérebro-Computador e o Microsoft HoloLens.
No entanto, encontrámos dificuldades, possivelmente relacionadas com atrasos na comunicação,
ao utilizar a Interface Cérebro-Computador e o Microsoft HoloLens. Alcançar detecções precisas,
na Interface Cérebro-Computador, foi difícil, requerendo melhorias para um melhor desempenho.

Na nossa investigação, estudámos a integração da Realidade Aumentada, deteção de ob-
jetos e Interface Cérebro-Computador baseados no potencial relacionado a eventos P300, para
futuras aplicações em robótica assistiva. Embora tenhamos conseguido integrar esta tecnologia,
enfrentámos desafios na integração do Interface Cérebro-Computador e do Microsoft HoloLens,
nomeadamente relativos a atrasos na comunicação. Apesar destes obstáculos, conseguimos re-
duzir os atrasos na aquisição de imagens, no entanto, abordar a latência na ligação Interface
Cérebro-Computador é uma tarefa complexa que precisa de ser melhorada no futuro.

Palavras-chave: HMI, Microsoft Hololens, BCI, Detecção de Objectos, Rastreamento
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de vários Objectos, Robótica Assistida, SORT, YOLOv5
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“Success is stumbling from failure to failure with no loss of enthusiasm.”
Winston S. Churchill
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1
Introduction

This chapter introduces the motivation behind the development of this work, along with the
goals and essential contributions.

1.1 Context and Motivation

Augmented reality (AR) has been growing in the past few years and is expected to continue
to grow. In 2022 AR was valued at 38.56 billion dollars and is expected to continue to grow at
a compound annual growth rate (CAGR) of 39.8% from 2023 to 2030 [2]. AR technology has
applications in various fields, including medical training, interior design, modeling, education,
entertainment, and retail industry.

There are many people around the world who face significant difficulties in their daily lives
due to severe motor impairments. These individuals often face limitations in their autonomy
and mobility, restricting their ability to interact and navigate in their environments. To manage
this crucial necessity, the area of assistive technology has witnessed remarkable advancements,
particularly in the domain of Brain-Computer Interfaces (BCIs). BCIs offer hope for improving
the quality of life for those with severe motor disabilities. Traditional control interfaces, such as
joysticks or button switches, have proven to be inadequate for those with limited physical mo-
bility. In response to this critical issue, brain-actuated systems, like brain-actuated wheelchairs,
have gained importance within the area of assistive technology, to promote independence and
elevate the quality of life for users of assistive platforms [3].

Previous research at the University of Coimbra’s Institute of Systems and Robotics intro-
duced DEVIS (Dynamic Environment-based Visual Interface System) [4], a system designed to
improve the user experience of a brain-actuated wheelchair. DEVIS features a Dynamic Visual
Interface, scene analysis, and a BCI for navigation target selection. The study demonstrated
real-time functionality and high accuracy in target selection using the BCI.

The goal of this dissertation is to develop an interface that will be integrated with a BCI, with
applications in assistive contexts, such as to aid users with severe motor disabilities in driving
robotic wheelchairs. The Human-Machine Interface (HMI) must detect elements of interest for
the aforementioned context, such as doors, tables, or humans (for aid requests or interaction).
A BCI paradigm will be used to determine the user’s intent and goal. In the future, the robotic
wheelchair should be able to drive the user towards their intended destination, guaranteeing the

1
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user’s comfort and safety. Recent research has shifted its focus from static and/or predefined
interfaces towards more immersive and dynamic interfaces (some using the Microsoft HoloLens
[5]).

During the development of this dissertation, BCI used AR technology to interact with both
physical and virtual worlds and explore new methods of displaying feedback to the user. This
is important for users to perceive and control their brain activity or shape their communication
intentions.

To achieve these objectives, in this dissertation, we used YOLOv5 [6] as a Real-Time Object
Detection algorithm and SORT [7] as a Multi-Object Tracking algorithm.

1.2 Proposed Framework

Our research centers on a multi-step process. Initially, we acquire images using the Microsoft
Hololens 2, followed by applying an object detector to detect specific elements of interest within
the image. These identified elements are then transmitted to the Hololens 2 to be displayed
to the user (Part 1). Concurrently, the same information is forwarded to a Brain-Computer
Interface (BCI), which plays an important role in object selection (Part 2). It is important
to note that while our work contains the image acquisition and BCI integration aspects, the
guidance of a wheelchair toward the chosen target object, which represents the third part of the
system, does not make part of our research.

The proposed framework, depicted in Fig. 1.1 combines real-time object detection through
YOLOv5, multi-object tracking using SORT, and integration with the Hololens 2 augmented
reality platform. This framework enhances the autonomy and quality of life of individuals with
motor disabilities by facilitating efficient interactions with their environment.

1.3 Objectives and Key Contributions

The proposed study objectives are listed below in chronological order of execution:

1. Development of the TCP/IP connection between the Computer and the Hololens
Establishing an efficient TCP/IP connection between the computer and the HoloLens was
an important aspect of our research. Our goal was to optimize timing, enabling seamless
and rapid communication between the two devices.

2. Hololens Camera image acquisition
One of the critical challenges encountered during image acquisition was minimizing delays.
Many techniques were explored and optimized to guarantee real-time image capture from
the Hololens camera while maintaining low latency.

3. Integration of YOLOv5s
We evaluated various object detectors to determine which one best suited our research.
Initially, we tested YOLOv3, then transitioned to YOLOv5 and explored different model

2
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Figure 1.1: Architecture which encompasses the AR interface (Part 1), BCI paradigm (Part
2) and wheelchair navigation approach (Part 3).

variants in the YOLOv5 family. After a thorough analysis, we opted for YOLOv5s as the
most appropriate model.

4. Implementation of SORT considering the detections provided from YOLOv5
To improve object tracking accuracy, based on detections from YOLOv5 parameters in
the SORT algorithm were finetuned.

5. Development of the communication architecture to connect to the BCI
To integrate our system with the BCI, we implemented a UDP communication architecture.
This architecture allowed data exchange between our Computer and the BCI.

6. Integration of the modules and validation in a real setting
Validation of the proposed pipeline/framework was carried out with two volunteers in a

3
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real scenario.

The key implementations and contributions of this study are detailed in the following
chapters of this dissertation:

Developed Work (Chapter 4)

This chapter provides an extensive explanation of the methodology used and outlines the various
strategies deployed to accomplish the proposed objectives.

Software Tools and Hardware Materials (Chapter 5)

The information about the specific tools is presented in this chapter.

Results and Discussion (Chapter 6)

This chapter presents the results and discussion of the proposed study.

4



2
Background Material

In this chapter the methods used in the development of this dissertation are described.

2.1 Online Multi-Object Tracking

2.1.1 SORT

The SORT (Simple Online and Realtime Tracking) algorithm is a Multi-Object Tracking
algorithm capable of tracking multiple objects in a video [7]. This algorithm consists of three
main steps: First, an object detector is used to detect elements of interest in an image. The next
step involves predicting the object’s position by using a Kalman Filter [8], estimating the new
position based on the knowledge of the previous position. Once the new position is observed,
the Kalman filter dynamically adjusts its belief.

Finally, the third step involves associating the detected objects across frames to maintain
their identity and ensure consistent tracking. This data association problem is solved by using the
Hungarian algorithm [9], to link objects from one frame to the next based on their predicted and
observed positions. This association step allows SORT to track multiple objects simultaneously
while maintaining their identities [10].

2.2 Object Detector

Object Detection is an essential task in the computer vision field, which involves identifying
and locating objects in digital images or video frames. This process requires training a computer
program or algorithm to recognize specific objects or classes of objects within an image and then
outlining them with bounding boxes to show their position in the image. [11]

2.2.1 YOLOv5

YOLOv5 (You Only Look Once, version 5) [6] is a famous deep-learning model, released in
2020 by Glenn Jocher, and is used to detect objects in an image or video. YOLOv5 consists of
three parts: The Backbone: CSPDarknet53, the Neck: PANet, and the Head: Yolo Layer. First,
the CSPDarknet53 takes the input, an image, to extract features through a series of convolutional
layers. YOLOv5 uses a feature pyramid network (FPN) to extract features, helping the model
to detect objects of different sizes in the image. The model has multiple detection heads, each
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responsible for predicting bounding boxes, object classes and object confidences. These detection
heads are attached to different levels of the feature pyramid. For each anchor box, the model
predicts six values, xmin, ymin, xmax and ymax, that represent the bounding box coordinates,
object confidence scores and class scores for different object classes. Then, YOLOv5 divides
the input image into a grid of cells and each one of these cells is responsible for predicting
bounding boxes for objects that are present in that cell. After making predictions at multiple
scales, YOLOv5 uses Non-Maximum Suppression (NMS) that discards duplicate detections and
maintains the most confident predictions. The output of YOLOv5 consists of a list of bounding
boxes, their corresponding class labels and their confidence scores for each detected object in
the input image.

There are five versions of the YOLOv5 model, each with variations in size and capabilities.
These versions include YOLOv5s (Small), YOLOv5m (Medium), YOLOv5l (Large), YOLOv5x
(Extra-Large) and YOLOv5n (Nano). For our research, we decided to use YOLOv5s, the smal-
ler version, due to the requirement of real-time object detection on the HoloLens, known for
its limited computational resources, providing an optimal balance between speed and accuracy,
providing minimal latency between object detection and augmented reality interactions in the
HoloLens environment. During our investigation, we encountered a few challenges while us-
ing the YOLOv5s. The main issue we faced was its stability. Due to its smaller model size,
YOLOv5s sometimes struggled to detect objects in our BCI and HoloLens setup consistently.
This inconsistent detection created problems for our research where accuracy and consistency
were important. A representation of the YOLOv5 architecture is presented in Fig. 2.1.

2.3 Brain-Computer Interface

BCI is a growing field that combines neuroscience, computer science and engineering. These
systems serve as a direct communication path between the human brain and external devices,
such as computers, robotic systems, and in our case, AR interfaces. BCIs allow users to control
these devices using their thoughts, translating neural signals into commands. These systems offer
a big promise for improving the quality of life for individuals with severe motor impairments or
disabilities, as they avoid conventional input methods like keyboards, joysticks or touchscreens
[12].

Among the various BCI approaches, P300-based BCI has gained attention due to being
non-invasive and having a relatively high accuracy in detecting a user’s intentions. They rely
on the P300 event-related potential (ERP), a distinct neural response that occurs in the brain
when a person recognizes a specific stimulus among a group of stimuli. By detecting the presence
or absence of this response, P300 BCI can infer a user’s intent, such as selecting an item from
a menu or controlling the movement of a wheelchair. These systems hold great promise in
scenarios where traditional control interfaces are impractical or impossible to use [13].

In our research, we explored the capabilities of the P300 BCI, integrated with AR, to
understand the user’s intention. We aimed to provide a more intuitive and accessible for users
with severe motor disabilities to interact with the physical and digital worlds.

6



Figure 2.1: Architecture of the YOLOv5 algorithm. This architecture contains three com-
ponents: the Backbone, CSPDarknet, which initially handles feature extraction from the input
data. Next, these features are passed to the Neck, PANet, where feature fusion takes place.
Finally, the Head of the network, which is YOLO Layer, serves as the output stage, providing
detection results (class, confidence, location, size) [1].
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3
State of the Art

This chapter summarizes relevant literature containing the Object Detection, Microsoft
HoloLens 2, and the Brain-Computer Interface technologies related to the investigation in this
dissertation.

3.1 Object detection

Object detection is one of the key tasks of the computer vision area and has been one of
the most popular topics to research in recent years [14]. Object detection must detect objects
of interest in an image or video and provide the respective bounding box around the detected
object.

In a general way, object detection starts by obtaining an image or video. Then, significant
features are extracted using Convolutional Neural Networks (CNNs) - CNNs are deep learning
models designed to process images. The extracted features provide a complete representation
of the input data, allowing the model to recognize the image’s patterns, textures and context.
After the feature extraction, the next step is to use an object detection algorithm to locate and
classify the objects within the image.

Object detection methods can be divided into One-stage and Two-stage methods [15]. One-
stage methods can predict the bounding boxes and probabilities in a single step. They predict the
locations and the classes of the objects using default boxes with different sizes. Popular One-stage
methods are YOLO and SSD (Single Shot Multibox Detector). On the other hand, Two-stage
methods break down the object detection process into two main stages: region proposal and
object classification. In the first stage, the algorithm proposes regions that are likely to contain
objects (region proposals). These proposed regions are refined and classified into specific object
classes in the second stage. Two popular two-stage methods are Faster R-CNN (Region-based
Convolutional Neural Networks) and Mask R-CNN.

YOLO was first introduced by Joseph Redmon, et al. in 2015. The main purpose of
YOLO is to perform real-time object detection predicting both object bounding boxes and class
probabilities in just one stage through the neural network.

In the past, object detection methods with two-stage methods were costly in terms of com-
putation as they depended on region proposals and object classification, however, YOLO intro-
duced a one-stage approach that was faster and more accurate, causing a significant impact in
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the area of object detection.

YOLO uses a deep convolutional neural network to process the complete image at once. The
network divides the image into a grid and predicts bounding boxes and class probabilities for
each grid cell. Each bounding box is associated with a specific confidence score that indicates
the confidence that the model has in the presence of an object within that box, moreover, YOLO
performs non-maximum suppression to select the most appropriate bounding box.

In [16], Alexey Bochkovskiy et al. introduced YOLOv4, which, by that time, represented
a significant improvement over previous versions of the YOLO model. YOLOv4 achieved an
optimal balance between speed and accuracy with improvements in the backbone architecture,
using the CSPdarknet53. Instead of using FPN, like in the YOLOv3, the authors used PANet
for parameter aggregation across various backbone levels for distinct detector levels. Data aug-
mentation was utilized to increase the input data’s variability so that the capacity of the object
detection model, to variations in images obtained from various environments, is improved. The
study concluded that YOLOv4 was the fastest and most accurate detector in terms of accuracy
and speed when compared with the YOLOv3, EfficientDet, ATSS, ASFF, and CenterMask.

YOLOv5 was released in 2020 by Glenn Jocher. Compared with the YOLOv4, the YOLOv5
focused on reducing the model size, increasing speed, and improving ease of use. For bounding
box prediction, this algorithm adopted an anchor-free approach, meaning that the network
directly predicts the bounding box coordinates without relying on predefined anchor boxes. In
what concerns the backbone, YOLOv5 uses a Focus structure with CSPdarknet53 as a backbone,
and like the YOLOv4, it also adopts the CSP structure, and the neck segment acquires the FPN
+ PAN structure [17]. The Focus layer was first introduced in YOLOv5, this layer replaces
the first three layers in the YOLOv3 algorithm. When using a Focus layer, there are several
benefits that can be gained, including a reduction in the amount of the required CUDA memory,
a decrease in the layer size, and an increase in both forward and backpropagation [18].

Siddhi Chourasia et al. conducted a study [19] on three object detectors, YOLOv4, YOLOv5,
and YOLOv7, which were compared to determine their performance in detecting safety helmets
within an image to identify which of these detectors revealed the best performance in this task.
The authors concluded that in terms of overall performance, YOLOv7 achieved the highest
average accuracy with 96.4%, beating YOLOv5, which achieved 95.1%, and YOLOv4, with
93.6%.

SSD (Single Shot Multibox Detector) was introduced in 2016 by Wei Liu et al. [20]. Similar
to the YOLO, SSD has the ability to perform object detection in a single step, making this
detector efficient and ideal for applications that demand real-time processing. SSD takes a dif-
ferent path when compared to traditional methods that use region proposal algorithms, instead,
it uses a convolutional method and a single neural network that predicts the object bounding
boxes and their class confidence directly from the image. Then, the network generates a set of
default bounding boxes, anchors, which will cover different object sizes and shapes by varying
in scales and aspect ratios, resulting in an improved performance. The authors demonstrated
that when given the VGG-16 base architecture, SSD was revealed to be superior in terms of
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accuracy and speed. The SSD512 model had a beer accuracy compared to the Faster R-CNN
on PASCAL VOC and COCO datasets, being three times faster. The SSD300 model ran faster
than the YOLOv1, at 59 FPS, and with superior detection accuracy.

Jeong-ah Kim et al. [21] compared three object detectors, Faster-RCNN, YOLOv4, and
SSD. The purpose of the study was to identify different types of vehicles. The authors trained
these algorithms using a dataset of automobiles and analyzed their performance to determine the
best model for recognizing vehicles. After analyzing those object detectors, it was determined
that YOLOv4 had the best performance in terms of both speed and accuracy for the given
task. Although Faster R-CNN was found to be the fastest among RCNN models, the use of a
CNN resulted in a low FPS. The SSD was considered fast but compared to the YOLOv4 had
a lower accuracy because of its use of a lighter architecture (MobileNet-v1). The authors also
mentioned that introducing FPN (Feature Pyramid Network) to the YOLOv4, improved the
model to detect small objects.

Faster R-CNN is an object detector model, introduced in 2016 by Shaoqing Ren, et al. [22],
that combines region proposal network (RPN) and Fast R-CNN into a single network by sharing
their convolutional features [23]. The RPN is a method that is used to generate region proposals
by sliding a small network over the convolutional feature map, making the proposal process
efficient. Then, these proposals are refined and classified by the Fast R-CNN algorithm, sharing
convolutional features with the RPN reducing the computation, and improving the performance.
Faster R-CNN is known for its state-of-the-art performance on benchmark datasets like COCO
and Pascal VOC, making this an effective solution for different real-world applications. The
combination of RPN and Fast R-CNN simplifies the object detection pipeline and improves
accuracy and speed.

In [24] the authors studied two object detectors, YOLOv5, a well-known one-stage method,
and Faster R-CNN, a multi-stage method, for applications in autonomous machine vision. In
this study, spacecraft images are used as training data, with labels for solar panels and satellite
bodies, and the testing process includes capturing videos of a target satellite under different
conditions and labeling them for similar characteristics. After training both algorithms, Faster
R-CNN outperformed YOLOv5, although YOLOv5 offered a faster inference rate. This study
suggests YOLOv5 as the preferred real-time object detector due to its speed.

Mask R-CNN (Mask Region-based Convolutional Neural Network), introduced in 2017 by
Kaiming He et al., is an object detector that extends Faster R-CNN by adding a pixel-wise seg-
mentation component to its capabilities, this means that, in addition to predicting the bounding
box and class labels for an object in an image or video, this detector can also predict object
masks, which accurately delineates the boundaries of objects at a pixel level, making this detector
a powerful instance segmentation model [25].

In [26], Wei Li et al. created two COCO datasets based on the Baidu AI insect detection
Dataset and IP102 Dataset (a Large-Scale Benchmark Dataset for Insect Pest Recognition) and
compared YOLOv5, Faster-RCNN and Mask-RCNN detectors, on the two coco datasets, to find
which one is more efficient for insect detection. The authors conclude that Yolov5 for insect pest
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detection on Baidu AI dataset with simple backgrounds is a better option due to its accuracy
of over 99%, having a computational speed faster than Faster-RCNN and Mask-RCNN, but
when applied to the IP102 dataset, its accuracy drops to around 97%, while Faster-RCNN and
Mask-RCNN maintained accuracy of 99%.

3.1.1 Object Detection and Tracking

Object detection and tracking are essential tasks in computer vision, allowing the detection,
recognition, and subsequent tracking of objects in images or frames of a video [27]. Because of
security measures, object detection and tracking have been important by providing surveillance,
threat identification, and response capabilities, indispensable tools for providing the safety of
people and properties [28].

Gioele Ciaparrone et al. [29] conducted a study on the use of Deep Learning for Multiple
Object Tracking (MOT) in single-camera videos. This study examines the four essential stages
that make up a standard MOT pipeline: detection, feature extraction, affinity, and association.
They explore how Deep Learning enhances detection and feature extraction at each stage. This
study highlights the importance of detecting high-quality features and utilizing Convolutional
Neural Networks (CNNs) for extracting appearance features. It also highlights the need to adapt
Single Object Tracking (SOT) trackers and global graph optimization techniques to address
Multiple Object Tracking (MOT) challenges, which is made possible through the integration of
Deep Learning.

Ricardo Pereira et al. [30] proposed a study focused on Multi-Object Tracking (MOT),
more specifically, SORT [7] and Deep-SORT [31], for applications in assistive mobile robot nav-
igation. The authors present new data association cost matrices for the SORT algorithm based
on intersection over union, Euclidean distances, and bounding box measurements to improve
object detection accuracy across frames. YOLOv3 [32] is utilized for the object detection and
classification of the objects in the frames. After that, the detections are then used as inputs for
the Multi-Object Tracking (MOT) evaluation study, to track and associate the objects across
frames. The SORT method achieved higher results of accuracy and precision when compared to
the Deep-SORT method. The proposed A data association metric achieved the best perform-
ance on both evaluated object tracking methods showing a significant improvement on the MT
evaluation metric, which could be crucial to successful navigation tasks on robotic platforms.
As expected, results showed that the object tracking overall performance has a high dependency
on the object detector performance. The SORT is faster than the Deep-SORT, reaching 50 FPS
on the overall pipeline (YOLOv3 + SORT).

3.2 Augmented Reality

3.2.1 Augmented Reality and Object Detection

Augmented Reality (AR) allows users to preview virtual items in the real world [33]. AR has
applications from mobile apps to smart glasses, in many industries like medicine, entertainment,
military and industrial manufacturing [34]. Augmented reality and object detection have many
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applications when combined, such as recognizing and detecting objects in the real world as shown
by Haythem Bahri et al. [35], which proposes an implementation of an object detector, YOLOv3,
in the Microsoft Hololens 1 glasses for detect and recognize objects. The authors established a
TCP/IP connection between the Hololens, as a client, and the desktop as the server, to process
the object detection on a desktop. They concluded that the YOLOv3 presented an improved
result, with 5 fps, when compared to the previous version of YOLO.

Another example of integrating augmented reality with object detection is the utilization of
the YOLOv5 algorithm for the identification and interpretation of American Sign Language, with
the purpose of including people with speech or hearing difficulties, in verbal communication. [36]
The proposed solution utilizes YOLOv5 to detect the numbers and alphabets, corresponding to
each gesture, captured through a camera. To train and evaluate the model, the MU HandImages
ASL dataset [37], which achieved 95% precision, was used.

3.3 Brain-Computer Interface

Brain-Computer Interface (BCI) can establish communication and control between the brain
and external devices [38]. The field of BCI has been growing, with multiple research studies
being conducted, for example, a BCI that enables communication and control in the metaverse
by skin touch [39] and a BCI that can control a robotic arm [40].

Some research, concerning the BCI has been carried out at the Institute of Systems and
Robotics of the University of Coimbra, are explained next. In order to improve the user ex-
perience of a brain-actuated wheelchair, Ricardo Pereira et al. [4] developed a DEVIS. The
main objective of this system is to create an intuitive approach for selecting navigation tar-
gets, particularly for individuals with severe motor disabilities. This system consists of three
main components: a Dynamic Visual Interface (DVI), that presents a possible navigation goal
in multiple visual cues, an RGB image-based perception module for scene classification, object
detection and object tracking, and a P300-based BCI used to select the navigation target. The
authors concluded that the proposed DEVIS successfully achieved real-time functionality, allow-
ing the user to interact without any delays or latency problems. Users were also able to select
the navigation target with high accuracy using the BCI.

Another research, also conducted at the ISR of the University of Coimbra, proposes a new
approach that improves the usability and reliability of Brain-Controlled Wheelchairs (BCWs)
for users with severe motor disabilities. The authors’ main issues were the low reliability of
decoding electroencephalographic (EEG) signals and the high cognitive workload associated with
constant wheelchair control. To overcome these challenges, Aniana Cruz et al. [41] introduced
a multi-component approach, including a self-paced P300-based BCI, that would allow users
to change between control and noncontrol states without needing extra tasks, simplifying the
user experience, while a dynamic time-window command allowed balancing the reliability and
speed of the BCI system. Seven healthy participants and six participants with motor disabilities
validated the system. Every participant could successfully control the BCI with an accuracy
greater than 93%. The authors conclude that the proposed approach improves the usability and
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reliability of BCW.

3.4 Assistive Robotics

There are some studies to explore the application of assistive r

obotics with HoloLens glasses, including its application in a robotic wheelchair. In [42],
the authors propose an augmented reality system making use of Microsoft HoloLens glasses for
robotic wheelchair navigation addressing the challenge faced by disabled people who use robotic
wheelchairs with built-in assistive features, such as shared control. Usually, users struggle to
form a mental model of their wheelchair’s behavior in diverse environmental conditions.

The system would display visual feedback to the patient as a way of explaining the under-
lying dynamics of the wheelchair’s shared controller and its predicted future states. This work
shows experimental evidence that additional effort should be taken to limit the amount of alerts
presented to the users so as to not overwhelm them. This research, at that time, represented
pioneering research in integrating AR headsets with robotic wheelchairs, showing valuable in-
sights for design considerations. It also highlighted the importance of positioning virtual objects
in visible locations, away from the mobile base. The results highlight how AR cues, such as a
virtual rear-view mirror, can be useful elements in designing robotic wheelchairs. Implement-
ing these cues can improve the process of retrieving information and decrease the mental effort
required to operate a robotic wheelchair, leading to a better experience for the user.

3.5 HoloLens and BCI integration

Table 3.1 presents a comparison of findings from three research articles that explore the
integration of AR with BCI technologies. Each article focuses on different aspects of this integ-
ration, including the choice of AR head-mounted displays (HMDs) and BCI technologies.
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Table 3.1: Comparison of Articles Using HoloLens and BCI.

Article HoloLens
Version

BCI Techno-
logy

Research Ob-
jective Key Findings

Yasmine
Mustafa et al.
[43]

HoloLens 1 SSVEP-based
BCI

BCI-AR Integra-
tion

Proposed an ad-
aptive ensemble
classification
system to handle
inter-subject vari-
ability, achieving
a mean accuracy
of 80% on PC and
77% on HoloLens.
Demonstrated
robustness to
head movements
during SSVEP
commands.

Dennis Dietz
et al. [44] HoloLens 1 P300-based

BCI
Mixed Reality In-
teraction

Proposed a mixed
reality inter-
face using P300
brain signals.
Demonstrated
controlling real-
world devices like
a TV remote,
suggesting poten-
tial applications
for people with
physical disabilit-
ies.

Pasquale
Arpaia et al.
[45]

Epson Moverio
BT-350,
Oculus Rift S
and HoloLens
1

SSVEP-based
BCI

Performance
comparison
of AR head-
mounted displays
in SSVEP-based
BCI

Choice of AR
HMD signific-
antly impacts
SSVEP detection.
HoloLens and
Oculus Rift S
showed better
classification
accuracy than
Epson Moverio
BT-350.
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In this chapter, we provide a comprehensive presentation of the work undertaken to achieve
the objectives of the proposed dissertation.

4.1 Methodology

In this dissertation, our main objective was to integrate object detection, augmented reality
and brain-computer interface technologies so that users with severe mobility issues could identify
and interact with objects of interest within an environment. For the task of object detection,
the YOLOv5 model was chosen due to its capacity for real-time processing and accuracy. The
integration of augmented reality, through Microsoft Hololens 2, implicated the development of a
program to establish a TCP/IP (Transmission Control Protocol/Internet Protocol) connection
between the Hololens 2 device and our computer, to project the results of YOLOv5 into the
Microsoft Hololens.

4.2 Hardware and Software Configurations

Configuring both hardware and software was essential to successfully connect the computer
and the Hololens 2. Those configurations are explained next.

4.2.1 Hardware Configurations

In what concerns the hardware, we had to configure the computer and the Hololens 2. On
the computer, it was necessary to disable the private network firewall as it could interfere with
the Hololens connection. We also had to create a hotspot, with the computer, so that Hololens
could successfully connect to the internet.

For the Microsoft Hololens 2 part, it was necessary to turn ”Developer Mode” On, on
settings, to enable the deployment of the Visual Studio code.

15



A Human-Machine Interface Using Augmented Reality Glasses for Applications in Assistive
Robotics

4.2.2 Software Configurations

To be able to deploy the client code into the Hololens we had to configure both Visual Studio
and Unity. Next, the steps to deploy are presented:

• Create a project in Unity. Within the project create a game object and a script;

• Place the client’s code in the script;

• After creating the project, go to File > Build Settings;

• On the Platform type select ’Universal Windows Platform’;

• Click on ’Add Open Scenes.’ and check ’Development build’ and ’Script Debugging’;

• On Player Settings check: ’InternetClient’, ’InternetClientServer’, ’PicturesLibrary’, ’PrivateN-
etworkClientServer’, ’SharedUserCertificates’, ’Webcam’, ’Microphone’, ’Location’, ’Hu-
manInterfaceDevice’, ’Objects3D’, ’SpatialPerception’, ’RemoteSystem’ and ’GazeInput’;

• Create a ’Builds’ folder within the project and build it inside that folder;

• In the ’Builds’ folder, open the Visual Studio solution;

• Build configuration: ’Release’; Processor: ’ARM64’; Add the IP of the glasses in Debug
Properties.

4.3 Hololens - Server Communication

To exchange information between the Microsoft Hololens 2 and the Computer, first, it was
necessary to connect both devices to the same network. After that, we established a TCP/IP
connection between the server (computer) and the client (Hololens 2). This task involved spe-
cifying the port in the server-side code, while the IP address of the computer and the port
information were configured in the client-side code. TCP/IP works by breaking the information
into packets, sending it to a known IP address and using port numbers to identify specific ser-
vices. We used this protocol for data communication because this protocol ensures that data is
received when compared to UDP [46]. Then, the server received the image from the client and
processed it using YOLOv5 and SORT to detect and track relevant objects. After detecting
an object, YOLOv5 sends the coordinates to Unity to create bounding boxes using a specific
function.

The diagram in Fig. 4.1 represents the data exchange between the server and the client over
TCP/IP.
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Figure 4.1: Data exchange between Microsoft Hololens and computer over TCP/IP.

4.4 Image Acquisiton

For image acquisition, we first tried using the UnityEngine.Windows.WebCam.PhotoCapture
API for capturing photos with the Hololens. Our initial concept involved sending images from
the client to the server, using this API, to be processed, however, we eventually opted not to
use this approach because we faced significant delays in acquisition. Instead, on the server side,
we would directly access the images through OpenCV’s VideoCapture function using a link.
The link contained the username and password of the Windows Device Portal along with the
IP address of the Hololens. This approach improved real-time processing and provided faster
access to the image data. The real-time camera is accessible through the following link:

https://username:password@IP_Adress/api/holographic/stream/live_high.mp4?holo=
false&pv=true&mic=false&loopback=false&RenderFromCamera=false

4.5 Object Detection + Object Tracking

For both Object Detection and Object Tracking were used YOLOv5 [6] and SORT [7]
algorithms, respectively, on the server side, as mentioned above.

In our thesis, we were inspired by the work of Guilherme Carvalho et al. [47], who integ-
rated YOLOv3 with SORT (a tracking algorithm) to achieve real-time object tracking. After
conducting tests, we discovered that YOLOv5 produced better results in terms of both accuracy
and speed. We experimented with both YOLOv5m and YOLOv5s but chose YOLOv5s for our
research project involving the Hololens. This decision was based on the fact that YOLOv5s
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is more lightweight and can operate effectively on the Hololens’s limited hardware resources,
despite its slightly lower accuracy when compared to YOLOv5m.

We also utilized the SORT algorithm that Guilherme implemented, but we changed one
of the parameters, min_hits, which is the number of minimum consecutive track matches to
consider as a track as valid. Guilherme used min_hits = 3, but we used min_hits = 5. A
higher min_hits value will make the tracker more robust to noise, but it will also make it less
likely to detect new objects. In our case, we chose to use min_hits = 5 because we wanted to
make the tracker more robust to noise, since Hololens, has a relatively small field of view and
can be affected by reflections and other kinds of noise. By increasing the min_hits value, we
were able to reduce the number of false positives caused by noise. However, increasing this value
also made it less likely to detect new objects. This is because the tracker would need to see an
object for at least 5 consecutive frames before it would consider it a valid track.

The server starts by specifying a TCP port for communication, which is set to port 40001.
It initializes an empty result list that will store the bounding box coordinates among other
parameters. Afterward, it starts a pre-trained YOLOv5 Small model object detection on a GPU
if available. The server then enters an infinite loop that receives continuous video frames from
the Hololens and performs object detection using the YOLOv5. To simplify the processing by the
YOLOv5 algorithm, we resized the input image to dimensions of 416 × 416 pixels. The SORT
algorithm is then applied to track objects across frames. After this, we have two equations
that modify the bounding box coordinates. These calculations transform the bounding box
coordinates from the format [x1, y1, x2, y2] (where x1 and y1 represent the top-left vertex, and
x2 and y2 represent the bottom-right vertex) to the format [x, y, width, height] since they are
more convenient for processing.

width = x2 − x1 (4.1)

height = y2 − y1 (4.2)

Equation 4.1 subtracts the x coordinate of the top-left vertex of each bounding box from the
x coordinate of the bottom-right vertex. It calculates the width of each bounding box. Similarly,
Equation 4.2 subtracts the y coordinate of the top-left vertex of each bounding box from the y

coordinate of the bottom right corner. It calculates the height of each bounding box.

The tracked objects’ positions and IDs are collected into a results list. The code also listens
for a UDP signal, coming from the BCI, that indicates if the user selected any target, this value is
also added to the list. Depending on this signal, the bounding boxes of objects are consequently
colored. Additionally, it constantly updates the detected and tracked objects’ information and
sends this information to a client over TCP/IP, to be displayed on the Hololens.

Algorithm 1 outlines the key steps involved in the server code, from initialization to con-
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tinuously processing video frames and performing object detection while utilizing the SORT
algorithm for object tracking.

Algorithm 1: Server side Pseudocode
1 Load YOLOv5 model
2 Initialize SORT algorithm
3 Connect to client through TCP/IP
4 Receive Video from the camera with OpenCV
5 while True do
6 Get frames from the video
7 Resize frames to 416× 416 pixels
8 Perform object detection using YOLOv5
9 Obtain bounding box coordinates [x, y, w, h]

10 Calculate confidence score, class, and class name for detected objects
11 Run the SORT algorithm for object tracking
12 end while

4.6 Bounding Box Display

To project the bounding boxes onto the Hololens, it was necessary to make use of the Unity
platform. As explained above, Unity is a game development platform that besides being used
to create video games and mobile applications, can also be useful for applications in Microsoft
Hololens 2. For that matter, we made use of Unity to deploy those bounding boxes, through a
GameObject. GameObjects are considered the most important concept in Unity Editor because
they store the fundamental elements of a game or application scene [48].

After the processing stage, which involves YOLO and SORT, the server sends, to the client,
a list containing the coordinates of the detected objects, x, y, w (width) and h (height). Since
these coordinates are relative to the image with dimensions 416 pixels in width and 416 pixels in
height, we must transform these coordinates to match the scale and dimensions of the Hololens.
Equations 4.3 and 4.4 represent the transformation of x and y, respectively. fx and fy corres-
pond to an offset determined by iterative adjustments to align precisely with the Hololens’ field
of view because we could not find the transformation/calibration matrix between the physical
camera and the in-game camera. The values chosen were fx = −480 and fy = −290.

x = fx+ sx× x× aspectW

1280.0f
× Camera.main.pixelWidth; (4.3)

y = fy + sy × y × aspectH

720.0f
× Camera.main.pixelHeight; (4.4)

sx and sy, which also appear in these equations, represent a scaling factor applied to x and y,
these scaling factors also were determined through iterative adjustments. The values chosen were
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sx = 1.80 and sy = 1.40. Following this transformation, we determined the aspect ratios for both
width and height, aspectH = 720.0f

416.0f and aspectW = 1280.0f
416.0f . Both aspect ratios are calculated

as the ratio of the width and height of the desired screen resolution, 1280 and 720 pixels, to the
reference width, 416 pixels. The purpose of these transformations is to map or scale coordinates
from one coordinate system to another. Then we can use the API Camera.main.pixelWidth and
Camera.main.pixelHeight, to get the width and height of the Camera viewport in pixels.

Similar to x and y, w and h are computed using the same approach, with the exception of
the offset. Because Unity uses a left-hand coordinate system where Y is pointing downwards,
equation 4.6 has a negative sy to reverse the direction of the Y-axis because, without this
negative sign, increasing values of h would move coordinates downward on the screen.

w = sx× w × aspectW

1280.0f
× Camera.main.pixelWidth; (4.5)

h = −sy × h× aspectH

720.0f
× Camera.main.pixelHeight; (4.6)

To draw the bounding box, we had to create four vertices. Unity takes the screen coordinates,
x and y, and the depth, p, and returns a Vector3 with the equivalent world coordinates. Depth
represents the distance to the camera.

Bottom left 4.7, top left 4.8, bottom right 4.9 and top right 4.10 are the 4 vertices of the
bounding box. After testing, we found that a depth value of 0.35 provided the best visual
representation for our bounding box.

bottomleft = (x, y) (4.7)

topleft = (x, y + h) (4.8)

bottomright = (x+ w, y) (4.9)

topright = (x+ w, y + h) (4.10)

After creating the vectors, we developed a function that accepted the start vector, end
vector, and a bounding box color as parameters. Inside the function, a GameObject is created
with these parameters, and the color of the bounding box is determined based on the value
received from the BCI.

The P300-based BCI allows the user to select, by flashing the DVI (Dynamic Visual Interface
System), visual cues associated with each potential target with the user’s intent. These potential
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(a) (b)

(c) (d)

Figure 4.2: Visual stimulus 4.2a, 4.2b, 4.2c, and selection of desired target 4.2d

targets randomly flash by smoothly transitioning the color of the bounding box from blue to
green, as seen in Fig. 4.2a, Fig. 4.2b, and Fig. 4.2c. However, once a user’s intention is detected,
the bounding box of the selected target turns red, Fig. 4.2d. In this case, it’s important to note
that the number of potential targets can’t exceed 9. If the object detector detects more than 9
objects in an image, any additional detections beyond the initial 9 are eliminated.

When using the self-paced mode, a constant stream of images is displayed with overlaying
bounding boxes. If the BCI control state is detected, the image will freeze and the visual cues
will begin to flash in accordance with the oddball paradigm. This paradigm involves presenting
a sequence of stimuli that includes a rarely appearing ”target stimulus” and a more frequently
appearing ”non-target” stimulus. Once the BCI detects the intended target, it will be highlighted
in red and the image stream will resume [4].

Algorithm 2 presents the pseudocode for color selection based on BCI commands and object
tracking.
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4.7 Brain-Computer Interface Communication

In this section, we explore BCI technology and its role in developing our framework. The
P300 BCI is a system that allows users to establish communication and control over devices
using their brain activity, Fig. 4.3a. This technology integrates with AR and will be explored
in more detail next.

4.7.1 BCI Setup

In our experiment, we placed a computer, a smartphone, and a computer mouse on a table
in front of the user, as seen in Fig. 4.3a. We used this setup as the main focus of our research,
monitoring the user’s interactions with the objects. To achieve this, we combined the use of the
HoloLens with the P300 BCI. The HoloLens displayed bounding boxes around these objects,
highlighting them, as seen in Fig. 4.2a, Fig. 4.2b and Fig. 4.2c. By monitoring the user’s
brain activity through the P300 cap BCI, we could determine which object the user pretended
to select. Figure 4.3 illustrates a participant prepared for the experiment, wearing both the BCI
and HoloLens.

4.7.2 Integration with Augmented Reality

To integrate the BCI with the HoloLens, we needed to connect the BCI system to the same
network as the HoloLens and computer. This network connectivity was important in establishing
communication that allowed data to flow between the BCI, HoloLens and the computer. The
server would send to the BCI the number of boxes that were detected within the environment,
this number was limited to a maximum of nine boxes. Subsequently, the BCI processed the
received data and performed the task of allowing the user to select a specific box from among
the detected boxes. The user’s intent was directly reflected in this choice. In order to maintain
the accuracy of communication and avoid the risk of losing data, the BCI would send back to
the server the command it received. This confirmation step was implemented because data can
sometimes be lost in the communication process.

Figure 4.4 represents the data exchange between the Hololens, computer and the BCI over
both TCP/IP and UDP.
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(a) (b)

Figure 4.3: Experimental Setup: A comprehensive view of the experimental setup showcasing
the BCI integrated with AR. The scene includes a selection of real-world objects ready for
detection.

Figure 4.4: Data Exchange Between Microsoft Hololens, Computer and BCI over TCP/IP and
UDP.
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Algorithm 2: Pseudocode for color selection based on BCI commands and tracked objects.
1 flash← false
2 lastBCICommandTrackID ← −1
3 ct← 0
4 modified← false
5 foreach boundingBox in bbs do
6 if BCICommand = −2 then
7 modified← true
8 if flash = true then
9 if tracking_id = lastBCICommandTrackID then

10 color ← green
11 else
12 color ← blue
13 end if
14 else
15 if tracking_id = lastBCICommandTrackID then
16 color ← red
17 else
18 color ← blue
19 end if
20 end if
21 else
22 if BCICommand mod 10 = 0 then
23 if ct = BCICommand then
24 flash← true
25 lastBCICommandTrackID ← tracking_id
26 color ← green
27 modified← true
28 else
29 color ← blue
30 end if
31 else
32 selectBCI ← BCICommand mod 10
33 if ct = selectBCI then
34 modified← true
35 flash← false
36 lastBCICommandTrackID ← tracking_id
37 color ← red
38 else
39 color ← blue
40 end if
41 end if
42 end if
43 ct← ct+ 1
44 if modified = false then
45 lastBCICommandTrackID ← −1
46 end if
47 end foreach
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5
Software Tools and Hardware Mater-
ials

This chapter comprehends the software tools and hardware materials used for the develop-
ment of this dissertation.

5.1 Software Tools

5.1.1 Visual Studio

Visual Studio is an integrated development environment (IDE) created by Microsoft in 2002
and is used for software development, with many applications including, desktop applications,
web applications, mobile apps, and cloud-based applications, among others. Visual Studio
provides the developer a comprehensive set of tools, services, and features making it easier for
developers to build high-quality software across different platforms and technologies [49].

Since this dissertation used a TCP/IP connection, Visual Studio 2022 was utilized to estab-
lish the connection between the server, in Python, and the client in C#. Unity was integrated
with Visual Studio for the deployment of the C# code (client) into Microsoft HoloLens.

5.1.2 Unity

Unity is a cross-platform game engine that was developed by Unity Technologies in 2005.
Unity allows developers to create video games, interactive experiences, 2D, 3D, virtual reality
(VR) and augmented reality (AR) applications [50].

The Unity engine provides a user-friendly interface and an extensive collection of tools and
features, supporting various platforms, including Windows, macOS, Linux, Android, iOS and
many others.

We used version 2021.3.16f1 of Unity and as explained above, Visual Studio and Unity were
integrated to deploy the client code, in C#, to the Microsoft HoloLens.

5.1.3 Windows Device Portal

The Windows Device Portal (WDP) is a web server tool that allows developers to re-
motely manage and configure Windows devices, including PCs, tablets, phones and the Mi-
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(a) Front view (b) Side view

Figure 5.1: Microsoft Hololens 2.

Table 5.1: Microsoft HoloLens 2 specifications.

CPU Qualcomm Snapdragon 850 Compute Platform
Memory 4 GB RAM
Storage 64 GB

Display resolution 2048 × 1080
Field of view 52°

Camera 8 MP, 1080p30 video
Microphones Five channel array
Eye tracking Yes

Biometric security Yes (Iris Scan)
Hand tracking Yes
Connectivity IEEE 802.11 2x2 WiFI, Bluetooth LE 5.0, USB Type-C

crosoft HoloLens [51]. To access WDP the user must type the IP of the device, in this case, the
Microsoft HoloLens, in a web browser, allowing the developer to access many information about
the device.

5.2 Hardware Materials

5.2.1 Microsoft HoloLens 2

Microsoft HoloLens 2, see Fig. 5.1, is a mixed reality (MR) head-mounted display that was
developed by Microsoft in 2019. It is designed to overlap the digital elements with the physical
world, allowing users to interact with holographic content in the real world, unlike virtual reality
(VR), which creates a fully digital environment.

In Table 5.1 Microsoft HoloLens 2 specifications are presented.
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5.2.2 Brain-Computer Interface

The BCI material consisted of three essential components: the BCI cap, the amplifier, and
the electrode driver box.

The BCI cap, shown in Fig. 5.2 a), is a specially designed headwear that captures and records
neural activity with great accuracy. The cap is equipped with an array of electrodes that detect
and measure the electrical signals produced by the brain. The electrodes are carefully arranged,
according to our study’s needs, to guarantee complete spatial coverage, allowing monitoring of
neural activity from different regions of the brain at the same time.

The Electrode Driver Box, shown in Fig. 5.2 b), connects electrodes and manages signal
transmission, optimizing signal quality before sending neural data to the computer for analysis.
The device plays a crucial role in ensuring the high quality of data collected, which contributes
to the success of our research.

The Amplifier, shown in Fig. 5.2 c), is a crucial component in our BCI material. Its main
function is to improve the faint electrical signals that are detected by the BCI cap. Typically,
neural signals are weak and need to be amplified to be accurately analyzed and interpreted. The
Amplifier serves as a tool to magnify the electrical signals while preserving their integrity.
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Figure 5.2: BCI materials. a)Cap, b)Electrode Driver Box and c)Amplifier.
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6
Results and Discussion

6.1 BCI-Hololens Setup and Validation Protocol

In this chapter, we provide a detailed description of the setup and procedures that we
followed to prepare and validate the Hololens-BCI system.

6.1.1 Cap Placement and Electrode Selection

The user begins by wearing an EEG cap and applying a conductive gel to improve conduct-
ivity between the electrodes and scalp. This gel is placed between the electrode sensors and
scalp to remove any substances that could block the flow of electrical signals. The conductive
gel has a low impedance, which means it has a small resistance to electrical signals, resulting in
more precise readings of the brain activity.

The location of the electrodes on the scalp is crucial for capturing specific brain activity and
depends on the research being conducted. The electrodes were placed at Fz, Cz, C3, C4, CPz,
Pz, P3, P4, Po7, PO8, POz and Oz channels, according to the international 10-20 standard
system. The right earlobe was utilized as a reference and the ground electrode was placed at
AFz. The EEG signals were sampled at 256 Hz and pre-processed using a notch filter at 50 Hz
and a bandpass filter between 0.5 and 30 Hz.

Figure 6.2 shows the placement of the electrodes used in our research.

6.1.2 Experimental Setup

We positioned on a table, three distinct objects as seen in Fig. 6.1a: a computer, a smart-
phone, and a computer mouse. These items were carefully selected to represent common objects
users may encounter in real-life situations. The Hololens and BCI systems used these objects as
targets for user interaction.

The user, wearing both the Hololens and the EEG cap, was seated at a fixed distance of
50 centimeters from the table. This distance was chosen to enable comfortable interaction and
alignment between the user’s line of sight through the Hololens and the objects on the table.

During the course of our experiments, we made a significant adjustment to the setup to
improve the performance of the object detection component, which utilized the YOLOv5 model.
We modified the color of the table’s top surface to white, Fig. 6.1b. This adjustment was
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(a) Table configuration with original surface (b) Table configuration with white surface

Figure 6.1: Table Configurations with Original and White Surfaces.

made to increase the contrast between the objects and the table surface, as the YOLOv5 model
occasionally encountered challenges in consistently detecting all three objects simultaneously
when the table had a neutral color. Transitioning to a white table surface improved object
detection.

6.2 Signal Processing

To analyze biosignals, we send the signals from the bioamplifier to MATLAB and Simulink.
Next, we use a Butterworth bandpass filter to filter the biosignals. This type of filter is designed
to pass signals of a certain frequency while attenuating signals outside of that range. This is
crucial for analyzing biosignals as they typically have a narrow frequency range. By filtering the
signals with a Butterworth bandpass filter, we could ensure that we were analyzing the relevant
frequencies for the biosignal.

6.3 BCI - Hololens Train

6.3.1 User Training/Calibration

Before using the P300 BCI, a calibration phase was carried out. During this phase, the user
was presented with a series of stimuli in the form of green-flashing bounding boxes displayed on
the HoloLens according to the oddball paradigm. The user received instructions to concentrate
on a particular item (target) placed in front of them and mentally count the number of times
the bounding box flashed green. Each object flashed nine times before moving to the next item
of the sequence. The choice of nine counts was motivated by the need to collect a large number
of samples, which would prove instrumental in training the classifier. The distinction between
target and non-target stimuli during this phase was crucial in improving the classifier’s overall
performance. This calibration phase took about 45 minutes, to gather the EEG data to train
the P300 classifier.
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Figure 6.2: Electrode locations, according to the international 10-20 extended system. Bold
circles indicate the channels used in our research. Yellow circle indicates the ground.

6.3.2 Data Acquisition

The EEG signals are acquired with a g.USBamp bioamplifier, equipped with 12 positioned
electrodes. The right earlobe was utilized as a reference and the ground was placed at AFz
allowing us to capture the user’s cognitive responses. As the user focused their attention on
specific objects displayed through the HoloLens, the P300 BCI recorded P300 event-related
potentials from the user’s brain. This data is then transmitted to a computer for processing.

The BCI system operates in a sequential mode, where it captures an image from HoloLens
and flashes each of the three target objects for 150 ms, with a stimuli interval of 250 ms. To
ensure a reliable object selection, each one of the three target objects is flashed a total of nine
times within the same image. This resulted in a total of 27 flashes occurring in a single captured
image. The reason behind this approach is that the HoloLens environment is highly dynamic,
with objects and their positions changing quickly. Given the current pipeline of our BCI system,
we found it difficult to adapt to this dynamic environment. Therefore, by flashing each target
object multiple times within a single image, we expected to improve the accuracy. The process
of capturing an image, flashing the objects and moving on to the next image is repeated in the
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Figure 6.3: Grand average and R-squared graph for Participant 1.

validation phase as well.

6.3.3 Results of BCI Calibration

The calibration/training phase is important because it prepares the model to be used in the
validation phase, indicating how well the model will perform on new data. If the model is not
well-trained or calibrated, it may not be accurate on new data. The results of this calibration,
for the two participants, are explained and shown below.

Figure 6.3 shows the graph for the Grand Average (top) and for the R-squared (bottom)
for Participant 1. The grand average graph displays the data collected from these 12 channels,
and averaged together, over a one-second interval. When examining the grand average from
Participant 1, it is evident that the graph exhibits a substantial amount of oscillatory behavior
and does not display the typical event-related potential P300. The presence of these irregular-
ities makes it challenging to discriminate between target and non-target signals, as the graph
displays many oscillations making it difficult to identify any significant patterns. However, when
examining the R-squared graph, it’s important to note that even though there are some temporal
windows with a certain level of discrimination (though relatively low), these temporal windows
do not align with the expected response windows, considering any potential delays. It is possible
that these deviations are associated with ocular artifacts.

The Grand Average graph of Participant 2, as seen in Fig. 6.4 demonstrates a well-defined
pattern, a P300 peak at around 500 ms preceded by an N200 100ms earlier, which points to it
being the classic pattern but with a delay of 200ms.

Figure 6.5 presents Participant 2’s Target and Non-Target Grand Average, revealing an
SSVEP effect overlapping with the P300 ERP, indicating a response to all stimuli.
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Figure 6.4: Grand average and R-squared graph for Participant 2.

Figures 6.6a and 6.6b, present the relationship between the expected error rate and the
number of stimulus repetitions during online sessions for the participants. This graph demon-
strates the evolution of participant performance as they are exposed to varying levels of stim-
ulus repetition. The results suggest that the performance improves with a higher number of
repetitions, indicating the presence of the P300 signal. This improvement is observed through
cross-validation, highlighting the significance of stimulus repetition in the binary classification
between target and non-target.

6.4 BCI - Hololens Online Validation

6.4.1 Data Acquisition

Similar to data acquisition during the training phase 6.3, in the validation phase the process
remained the same, with one difference: instead of flashing nine times, the stimuli flashed five
times. We used a g.USBamp bioamplifier with twelve electrodes to acquire EEG signals. While
the users focused their attention on particular objects displayed on the HoloLens, the P300 BCI
recorded P300 event-related potentials from their brains. Later, we sent this data to a computer
for further analysis.

6.4.2 Results

To calculate the accuracy of the test phase, we conducted experiments with the participation
of two individuals. Accuracy was determined by the number of correct predictions relative to
the total cases, expressed as a percentage.
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Figure 6.5: Target and Non-Target Grand Average for Participant 2.

Accuracy =
Correct Predictions

Total Number of Cases
× 100%

For Participant 1, in a scenario with 3 classes, we observed a total of 50 cases, and our
system made 16 correct predictions, resulting in an accuracy rate of 32%, which approximates
a chance level.

For Participant 2, in a scenario with 3 classes, we observed a total of 49 cases and among
these cases, 16 predictions were accurate, leading to an accuracy rate of 27.11%, which approx-
imates a chance level.

6.5 User Experience

In this section, we provide insights into the experiences of Participants 1 and 2 during their
engagement in our experiment. We administered a questionnaire [52] to gather feedback from the
participants regarding their perspectives. Taking into account the participants’ feedback during
the experiments can improve future experiments. Here we display two distinctive experiences,
with fatigue being a main contributor to poor performance. More feedback is needed in order
to understand if this factor, or other factors, are important enough to significantly impact the
users’ experience.

Participant 1 perceived the overall workload as low, indicating that the task did not seem to
be demanding. They also found task difficulty to be low, indicating that it wasn’t particularly
complex or difficult to handle. Despite the low workload and task difficulty, Participant 1
reported a high level of effort. Reported Participant 1’s fatigue during the experience might have
contributed to their perception of the task as requiring significant effort and thus considering
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(a) Participant 1. (b) Participant 2.

Figure 6.6: Expected error for the online sessions with cross-validation for each participant
(Y-axis) with the specific number of stimulus repetitions (X-axis).

their performance as poor. Participant 1 also considered the mental demand as high but the
physical demand as low, which aligned with the overall workload.

Participant 2 found the workload and task difficulty to be low indicating that the task did
not seem to be overwhelming and challenging. Participant 2 expressed that they put in a lot
of effort in completing the task. They found the physical demands to be low but considered
the mental demands to be high because of the cognitive aspects of the task. In general, this
participant considered their performance to be good.
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7
Conclusion

This dissertation explored the integration of Microsoft HoloLens 2 and Brain-Computer
Interface technologies, aiming for future incorporation with assistive robotics to assist people
with motor disabilities in driving robotic wheelchairs.

We have established TCP/IP and UDP/IP connections, that connect the Microsoft HoloLens
to the computer and the Brain-Computer Interface respectively. These connections serve as the
foundation of our communication framework, enabling the exchange of data and commands
between the various components of our system. The trial that combined Microsoft HoloLens
with Brain-Computer Interface did not produce any conclusive outcomes.

The acquisition from the HoloLens camera was successful, and notable enhancements were
made in optimizing the frame rate for captured images sent to the object detection algorithm.
This improvement was achieved by OpenCV’s VideoCapture function in conjunction with Win-
dows Device Portal credentials, a more effective approach than relying on the standard Unity
API function for this task.

Furthermore, the implementation of object detection using YOLOv5 and object tracking
using SORT was successfully executed within the HoloLens environment. In particular, the
rendering of bounding boxes generated by the object detection and tracking algorithms, us-
ing Unity, was also accomplished. These bounding boxes effectively encapsulated all objects
perceived by the HoloLens, aligning them accurately according to the user’s field of view.

After conducting experiments with two participants, we concluded that there seems to be a
latency issue in the system which may vary unpredictably. Additionally, there appears to be an
SSVEP effect that could overlap with the P300 signal, reducing the ability to distinguish between
target and non-target. The study’s small number of participants also limits the conclusions that
can be drawn, as the patterns observed between participants were significantly different.

In the future, the integration of this system with assistive robotics still holds the potential
to significantly enhance the quality of life for individuals with motor disabilities. Although we
have encountered challenges, including communication delays, object detection instability, and
variations in user performance, we remain enthusiastic about the transformative possibilities
this technology offers to individuals facing motor disabilities.
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7.1 Future Work

As we look ahead for future work, it is evident that extensive research and development
are necessary to overcome the challenges we faced in integrating Brain-Computer Interface with
Microsoft HoloLens. Although our initial attempts were promising, we encountered significant
obstacles in achieving a smooth integration.

Improving Object Detection Accuracy: The accuracy of YOLOv5 may need further
improvement for reliable object detection and tracking. Future research should explore tech-
niques such as fine-tuning the model with domain-specific data, investigating alternate object
detection algorithms, or leveraging ensemble methods to improve accuracy.

Reducing Hololens-BCI Communication Delay: Addressing communication delays
between Hololens and BCI is crucial for a smoother user experience. Research should focus on
optimizing data transmission protocols, exploring edge computing solutions to reduce latency,
or implementing predictive algorithms to compensate for delays.

Real-world Testing: Expand testing and experimentation to more diverse real-world
scenarios, environments, and user populations. Collect data in various contexts to assess the
system’s robustness, adaptability, and effectiveness across different use cases.

Create a dataset from the user’s point of view: Creating a dataset from the user’s
point of view improves flexibility, control and customization to effectively address our research
objectives. This is especially important when existing datasets do not align with our specific
research context or requirements.

User-Centered Design Iterations: Refine the user interface and interaction design.
Incorporate user feedback to ensure the system aligns with their needs.

Integration with Assistive Robotics: Expand the integration to control and navigate
assistive robotic platforms beyond object detection and tracking.
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