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Resumo

A epilepsia é uma das condições neurológicas mais prevalentes, afetando cerca de 1% da pop-

ulação mundial. Embora os medicamentos antiepiléticos tenham mostrado eficácia no controlo

de crises em grande parte dos casos, cerca de 1/3 dos doentes continuam a enfrentar episódios

recorrentes. Nesse sentido, a busca por abordagens alternativas torna-se imperativa para melho-

rar a qualidade de vida desses doentes. Uma das estratégias promissoras é a previsão de crises,

que pode ser implementada em sistemas de intervenção ou alerta, com o intuito de evitar ou

minimizar os efeitos adversos das crises epiléticas.

Um dos desafios cruciais nesse campo de pesquisa é identificar o peŕıodo pré-ictal, car-

acterizado por ser o intervalo que marca a transição da atividade cerebral regular para uma

crise. Vários estudos têm explorado métodos recorrendo ao uso de dados de eletroencefalo-

grama (EEG) para essa finalidade. No entanto, foram poucos os que se mostraram viáveis para

aplicação cĺınica.

Um aspeto que se revela determinante nos resultados obtidos é o conjunto de dados usado.

Pelos vários estudos presentes na literatura é posśıvel concluir que a performance é bastante

influenciada pela base de dados utilizada. São várias as carateŕısticas que diferem entre as bases

de dados dispońıveis: o tipo de sinal EEG, as condições a que os doentes foram sujeitos durante

a recolha dos dados, o tipo de epilepsia, informações temporais de cada crise, entre outros.

O presente trabalho teve como objetivo avaliar a performance de um algoritmo de previsão

quando aplicado a diferentes bases de dados. O desenvolvimento desse algoritmo foi realizado

para a base de dados European Epilepsy Database (EPILEPSIAE) [1], que serviu como base

de comparação com as restantes (Children’s Hospital Boston from the Massachusetts Institute

of Technology (CHB-MIT) [2], American Epilepsy Society (AES) [3] e Epilepsy Ecosystem [4]).

Apenas as mudanças necessárias foram aplicadas ao algoritmo base, de forma a garantir a

uniformização do processo para uma comparação justa e direta.

O modelo desenvolvido utilizou um classificador de Regressão Loǵıstica e foi aplicado a

dados de 40 doentes da base de dados EPILEPSIAE, 6 da CHB-MIT, 7 da AES e 3 da Epilepsy

Ecosystem.

Os resultados de treino obtidos mostraram que para os dados que não possúıam informações

temporais das crises (AES e Epilepsy Ecosystem) a performance foi bastante superior. É posśıvel

concluir que lidar com o problema de forma menos rigorosa, sem considerar a natureza real dos

dados, leva a melhores resultados. No entanto, estes bons resultados não são representativos da

realidade.

Além disso, os valores de performance obtidos na fase de teste revelaram-se mais baixos
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Resumo

que os reportados por outros estudos utilizando estas bases de dados. São as assumpções para

simular situações de alarme realistas que levam a esses maus resultados. Assim, verifica-se que

os resultados excelentes obtidos por muitos autores se devem à falta de rigor na abordagem

prática do problema.

Por último, a análise comparativa das duas abordagens distintas (alarmes e amostra) per-

mitiu verificar que os resultados obtidos são menos satisfatórios na abordagem de alarmes. Este

aspeto permite concluir que lidar com o problema de uma forma mais realista leva a piores

resultados.

Em suma, este estudo, embora tenha enfrentado algumas dificuldades no processo de

padronização devido à heterogeneidade dos dados, encontrou algumas carateŕısticas dos ban-

cos de dados que influenciam a performance de um modelo de previsão de crises epiléticas. É,

portanto, o ponto de partida para explorar mais detalhadamente a influência da base de dados

usada, bem como a definição de peŕıodo pré-ictal no contexto de previsão de crises.
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Abstract

Epilepsy is one of the most prevalent neurological conditions, affecting approximately 1% of

the global population. While Antiepileptic Drugs (AEDs) have demonstrated effectiveness in

controlling seizures in many cases, approximately one-third of patients continue to experience

recurrent episodes. In this context, pursuing alternative approaches becomes imperative to

enhance the quality of life for these patients. One promising strategy is the prediction of seizures,

which can be implemented in intervention or alert systems to prevent or minimize the adverse

effects of epileptic seizures.

One of the crucial challenges in this research field is identifying the preictal period, charac-

terized as the interval marking the transition from regular brain activity to a seizure. Numerous

studies have explored methods using Electroencephalogram (EEG) data for this purpose. How-

ever, few have proven viable for clinical application.

A critical determinant of the results achieved is the dataset in use. The dataset used

significantly influences performance, as evident from various studies in the literature. Vari-

ous characteristics vary across the available databases, encompassing differences in the type of

recorded EEG signal, the conditions patients faced during data collection, the type of epilepsy,

and temporal information for each seizure, among others.

This study aimed to evaluate the performance of a prediction algorithm when applied to

different datasets. The algorithm’s development primarily centered on the European Epilepsy

Database (EPILEPSIAE) [1], which was then used as a reference point for comparisons across

other datasets, namely Children’s Hospital Boston from the Massachusetts Institute of Technol-

ogy (CHB-MIT) [2], American Epilepsy Society (AES) [3], and Epilepsy Ecosystem [4]. Only

necessary modifications were made to the base algorithm to ensure a fair and direct comparison.

The developed model utilized a Logistic Regression classifier and was applied to data from 40

patients from the EPILEPSIAE database, six from CHB-MIT, seven from AES, and three from

the Epilepsy Ecosystem.

The training results obtained showed that for datasets lacking temporal seizure information

(AES and Epilepsy Ecosystem), performance was significantly higher. Handling the problem

less rigorously, without considering the real nature of the data, leads to better results. However,

these favorable results do not accurately represent reality.

Furthermore, the performance values obtained in the testing phase were lower than those

reported by other studies using these databases. Assumptions made to simulate realistic alarm

situations account for these poor results. Thus, it is evident that the excellent results achieved

by many authors stem from a lack of practical rigor in approaching the problem.
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Finally, the comparative analysis of the two approaches (alarm and sample) has revealed

that the outcomes achieved are less favorable in the alarm approach. This finding suggests that

employing realistic metrics in problem-solving leads to comparatively poorer results.

In summary, while encountering some difficulties in standardization due to data hetero-

geneity, this study identified specific dataset characteristics that influence the performance of an

epileptic seizure prediction model. It serves as a starting point for a more detailed exploration

of the influence of the dataset used and the definition of the preictal period in the context of

seizure prediction.
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Introduction

This chapter begins by addressing the motivation that led to the development of this project

in Section 1.1. Subsequently, Section 1.2 delineates the project’s objectives and anticipated

contributions. Section 1.3 addresses the main limitations associated with predicting epileptic

seizures. Finally, Section 1.4 offers a succinct overview of the document’s structural organization,

chapter by chapter.

1.1 Motivation

Epilepsy is one of the prevalent neurological disorders, affecting about 1% of the world’s popu-

lation. It results from abnormal brain activity culminating in seizures, notable for their unpre-

dictable nature, which presents a considerable challenge for patients and healthcare professionals.

Alongside the immediate seizure-related symptoms, epilepsy also triggers a series of neurological,

cognitive, psychological, and social effects, making it a complex and multifaceted condition [5].

The first line of treatment for epilepsy involves the use of Antiepileptic Drugs (AEDs),

offering significant relief to a considerable number of patients. Nevertheless, a third of epilepsy

patients face a condition known as Drug Resistant Epilepsy (DRE), wherein AEDs are not

enough to provide a seizure-free life [6, 7, 8]. The inability to effectively manage seizures places

these patients at risk of numerous complications. Beyond physical complications like acciden-

tal injuries and brain damage, DRE leads to severe psychological issues, including psychosis,

neuropsychological deficits, depression, and anxiety [9, 10, 11].

Although epilepsy surgery is an effective option for select DRE patients, stringent selec-

tion criteria restrict the number of individuals eligible for this intervention [12]. Considering this

challenging scenario, exploring alternative approaches to improve epilepsy management, particu-

larly for individuals with DRE, becomes paramount. A promising approach in this context is the

development of warning devices capable of predicting the occurrence of seizures. These devices

can play a crucial role in patient’s lives by providing advanced information about impending

seizures, allowing them to take appropriate preventive measures [13].

The motivation for developing this work stems from enhancing the quality of life for indi-

viduals with epilepsy, particularly those grappling with DRE. Through exploring and enhancing

seizure prediction capabilities utilizing warning devices, this study aims to provide a noteworthy

contribution to the field of clinical neurology. The overarching objective is to furnish patients

with practical tools for navigating the unpredictability of seizures while concurrently mitigating

the physical and psychological risks associated with DRE. In doing so, this work will positively
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impact patients’ quality of life and emotional well-being, giving them greater control over their

medical condition.

1.2 Goals and Contributions

The central objective of this research is to elevate the realm of epileptic seizure prediction through

the comparative assessment of performance across multiple databases. The primary mission is

to develop an algorithm for seizure prediction and alarm activation before their onset, suitable

for application across diverse datasets. At the core of this entire domain of seizure prediction

lies the foundational concept of the preictal period – a transitional phase that precedes the onset

of an epileptic seizure. The conceptual basis for this approach hinges on the existence of this

preictal phase. The ability of Electroencephalogram (EEG) signals to record the preictal period

has been crucial to advances in this field, opening doors to the creation of more effective warning

and intervention systems.

For this reason, the development of a system capable of continuous real-time data moni-

toring and, importantly, the timely notification of the patient regarding an impending epileptic

seizure is the ultimate objective. This alert must occur within a clearly defined time inter-

val (Seizure Occurrence Period (SOP)) with a pre-established time horizon (Seizure Prediction

Horizon (SPH)). This advanced notice period must offer adequate time for the implementa-

tion of preventive measures. An accurate prediction system has the potential to open up new

therapeutic possibilities, including alert devices to help patients avoid risky situations or even

intervention devices capable of managing seizures through anticonvulsant medication adminis-

tration or electrical stimulation.

Considering the profound impact of the selected database on the resultant outcomes, there

emerges an imperative need to formulate an algorithm with universal applicability, thereby

facilitating a direct cross-database comparison of results. In this context, utilizing EEG data

sourced from the European Epilepsy Database (EPILEPSIAE), Children’s Hospital Boston from

the Massachusetts Institute of Technology (CHB-MIT), American Epilepsy Society (AES), and

Epilepsy Ecosystem databases, this research can be partitioned into 3 fundamental contributions:

• Development of a patient-specific seizure prediction algorithm using a subset of EPILEP-

SIAE data;

• Adaptation of the seizure prediction algorithm originally devised for the remaining databases

(CHB-MIT, AES, and Epilepsy Ecosystem);

• Comprehensive evaluation and comparative analysis of the model’s performance when

applied across these four distinct databases.

1.3 Seizure Prediction Limitations

Predicting epileptic seizures presents substantial challenges primarily due to the complex nature

of epilepsy. A significant proportion of EEG recordings available for use are collected during pre-

surgical monitoring, which does not accurately represent the daily seizure activity of patients.

This discrepancy arises because patients undergoing pre-surgical monitoring typically undergo
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medication withdrawal and experience sleep deprivation, factors that do not reflect their usual

conditions. Although databases containing long-term data exist, they are often only partially

accessible, providing limited data and information. Additionally, these databases often lack

critical information essential for seizure prediction, such as epilepsy type, focus location and

lateralization, vigilance state, seizure onset and end times, medication details, and more. The

available databases also suffer from a lack of data organization and standardized structures,

making it challenging to establish meaningful comparisons between them [14].

Among the foremost challenges is the marked diversity in seizure types and epileptic syn-

dromes, which vary significantly among patients. This diversity complicates the creation of a

universally effective algorithm. Additionally, the relatively rare occurrence of epileptic seizures

results in a notable data imbalance, which can lead to classifier specialization on the interictal

class [15, 16].

Despite the valuable role played by the EEG in seizure prediction, due to its complexity

it is still not fully understood, complicating the analysis and interpretation of EEG data. The

precise determination of the preictal period is crucial for effective seizure prediction, but con-

sensus regarding its ideal duration also remains elusive. Furthermore, evidence suggests that

the preictal period can vary between patients and even between seizures in the same patient,

amplifying the challenges associated with its identification [15, 17].

Concept Drifts (CDs) are also a key concern. These drifts denote alterations in a patient’s

susceptibility to seizures, influenced by numerous factors, including circadian rhythms, vigilance

levels, sleep patterns, and adjustments in medication. These CDs introduce supplementary

complexities and can have implications for the effectiveness of predictive models [14, 18, 19].

These limitations bring attention to the inherent complexity of predicting epileptic seizures

and highlight the ongoing need for research and innovative solutions in this critical area of

clinical neurology.

1.4 Structure

Beyond the introductory section, this document comprises five additional chapters:

Chapter 2 provides essential information about epilepsy, EEG, an introduction to the

seizure prediction field, and the concept of CDs.

Chapter 3 offers an extensive overview of the literature concerning EEG seizure prediction

and introduces the databases employed in this study.

Chapter 4 comprehensively describes the entire methodology employed, including necessary

adaptations for each of the analyzed databases.

Chapter 5 presents the results achieved for each database, accompanied by interpretative

analysis and cross-database comparisons.

Chapter 6 concludes this thesis by summarizing its principal conclusions and discussing

future perspectives.
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Background concepts

This chapter covers the fundamental concepts for a transparent background understanding of

this document’s topic. It begins with Section 2.1, which delves into concepts and definitions re-

lated to epilepsy and seizures, providing a solid foundation. Section 2.2 examines the Electroen-

cephalogram (EEG) signal and its significance in epilepsy. Section 2.3 covers current treatment

and therapeutic options, offering a comprehensive view of the clinical context. The fundamental

principles underlying seizure prediction are clarified in Section 2.4, while Section 2.5 addresses

concept drifts relevant to seizure prediction. Finally, Section 2.6 summarizes the key conceptual

elements covered in this chapter.

2.1 Epilepsy and Seizure Concepts

About 1% of people worldwide have epilepsy, one of the most prevalent nervous system disor-

ders [20]. The International League Against Epilepsy (ILAE) and the International Bureau for

Epilepsy (IBE) conceptualized epilepsy as “a disorder of the brain characterized by an enduring

predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological,

and social consequences of this condition” in 2005 [21].

Considering that the previous definition requires at least one occurrence of an epileptic

seizure, it is also essential to define it as “a transitory manifestation of signs and/or symptoms

due to abnormal excessive or coordinated neuronal activity in the brain.”

The ILAE created an operational, clinical definition of epilepsy in 2014 to have a more help-

ful terminology for clinical use and to be consistent with how epileptologists interpret epilepsy

[22]. According to this practical viewpoint, epilepsy is considered a brain disease rather than a

problem that can manifest as any of the following symptoms:

1. “At least two unprovoked (or reflex) seizures occurring >24 h apart.”

2. “One unprovoked (or reflex) seizure and a probability of further seizures similar to the

general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the

next 10 years.”

3. “Diagnosis of an epilepsy syndrome.”

This approach enables early treatment by increasing clinicians’ awareness of the possibility

of recurrence following a single unprovoked incident. “Unprovoked” refers to the absence of a

transient or reversible component that would typically lower the threshold and trigger a seizure

at that moment.
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2.1.1 Classification of Epilepsy

The ILAE also reviewed the classification of epilepsy diagnoses in 2017. The key was to use more

straightforward nomenclature, allowing more flexibility and transparency and adding the lack

of seizure types. Figure 2.1 illustrates this new classification, which consists of three ordered

states. The seizure type comes first, then the epilepsy type, and the epilepsy syndrome [23].
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Figure 2.1: ILAE 2017 framework for classification of epilepsies. Adapted from: Scheffer et al.
(2017) [23].

The etiology is present throughout each classification level, as it affects the treatment of

a patient, whether as a result of genetic variables, networks involved, or clinical trials, among

others. However, this document will not discuss this topic.

2.1.1.1 Seizure Types

In order to diagnose epilepsy, the first step for a clinician is to assess whether a particular episode

exhibits seizure features and if it derives from an abnormal electrophysiological discharge within

the brain. According to the classification shown in the Figure 2.2, it is, therefore, necessary

to classify the seizure into one of the recognized categories. Since this classification is not

hierarchical, if insufficient or ambiguous information exists, specific rows may be purposefully

excluded from this classification [24].

Knowing the seizure’s origin is crucial for its classification. If the starting point remains

obscured, the seizure is considered an unknown onset seizure. Seizures originating in networks

limited to one cerebral hemisphere are known as focal seizures. Bilaterally dispersed networks

that span both hemispheres originate and identify the generalized seizures.

The remaining classification levels are entirely optional. The next level is awareness, which

refers to self-awareness and environmental awareness, even when it is immobile. It is an essential

characteristic in the classification of focal seizures. However, it is not a classifier for generalized

onset seizures since most seizures cause compromised or complete loss of consciousness [24, 25].
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Focal Onset Generalized Onset Unkown Onset

Un

tonic-clonic
epileptic spasms

behavior arrest

Motor

Nonmotor

Unclassified

Aware
Impaired

Awareness

automatisms
atonic
epileptic spasms
hyperkinetic
myoclonic
tonic

autonomic
behavior arrest
cognitive
emotional
sensory

Motor Onset

Nonmotor Onset

focal to bilateral tonic-clonic

tonic-clonic
clonic
tonic
myoclonic
myoclonic-tonic-clonic
myoclonic-atonic
atonic
epileptic spasms

typical
atypical
myoclonic
eyelid myoclonia

Motor

Nonmotor (absence)

Figure 2.2: ILAE 2017 expanded framework for classification of seizure types. Adapted from:
Fisher et al. (2017) [24].

For focal and generalized seizures, the following classification level is optional and can be

either motor or non-motor, depending on the seizure’s first prominent sign or symptom. Unless

non-motor signals are significant, motor signals often prevail when both signals are present.

Unknown onset seizures may be referred by unclassified or with additional attributes, such as

motor or nonmotor [24]. Seizures with patterns that do not fall within the ILAE classification

categories or with insufficient data are called unclassified seizures.

Due to its prevalence and severity, the category “generalized onset tonic-clonic” is the

most significant among the several types of seizures. These seizures are described as violent,

accompanied by a loss of consciousness and severe autonomic dysfunction. A clonic seizure

involves bilaterally rhythmic jerking, and it can happen alone or in conjunction with tonic

activity, with a bilateral increase in limb tone [26].

Other factors, which clinicians frequently examine, must be considered in addition to these.

For a comprehensive assessment, recording the state of vigilance at the time of the seizure (awake,

REM, non-REM stages I-IV), as well as the location of the seizure onset in terms of brain lobes

(frontal, temporal, central, occipital, and parietal) and hemispheres (left, right, and bilateral),

is a common approach.
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2.1.1.2 Epilepsy Types

The next step in classification is to determine the type of epilepsy for which the patient must

meet the criteria for epilepsy as established in 2014. As it considers information about the overall

clinical picture, image, genetics, examinations, and others, and the possibility of having different

types of seizures, the classification of the type of epilepsy is broader than the classification of

seizures [23, 27].

Epilepsies share the exact characterization as seizures, exhibiting three main types: focal,

generalized, or unknown. In addition, the system identifies a new category: combined focal

and generalized epilepsy [28]. It is referred to as unknown epilepsy when the clinician knows

the patient has epilepsy but cannot specify which type due to a lack of information, an EEG

recording, a video or an imaging study.

The patient with focal epilepsy may suffer various seizures, such as focal aware seizures,

focal impaired awareness seizures, focal motor seizures, focal non-motor seizures, and focal

to bilateral tonic-clonic seizures. The interictal EEG in these circumstances typically reveals

focused epileptiform discharges. This category of epilepsy comprises seizures involving only one

cerebral hemisphere and unifocal and multifocal disorders.

Absence, myoclonic, atonic, tonic, and tonic-clonic seizures, as well as other types of

seizures, may occur in people with generalized epilepsies. Typically, the patient’s EEG shows

generalized peak-wave activity. Patients who experience both generalized and focal seizures

fall under the combined focal and generalized epilepsy category. The interictal EEG reveals

visible epileptiform activity and generalized spike-wave discharges, although the existence of

epileptiform activity is not necessary for diagnosis [23].

2.1.1.3 Epilepsy Syndrome

Epilepsy type is distinct from epilepsy syndrome. A diagnosis of epilepsy syndrome refers to

clusters of features that occur together, allowing the acquisition of more detailed information

than a diagnosis of a specific type of epilepsy. Although there is no official ILAE categorization,

most syndromes have well-known names [27].

These features include seizure types, EEG, and imaging resources. It usually contains age-

dependent features such as age at onset and remission, seizure triggers, diurnal variation, and

prognosis [23]. Proper diagnosis of epilepsy syndrome is critical since studies have demonstrated

that specific Antiepileptic Drugs (AEDs) can exacerbate seizures in various epilepsy syndromes

[29].

TLE

The most prevalent epilepsy syndrome is Temporal Lobe Epilepsy (TLE), exclusively represented

among patients within the EPILEPSIAE data subset employed for this project. TLE is a broad

term for epilepsy conditions marked by focal seizures brought on by lesions in the temporal lobe

or otherwise mediated by temporal lobe structures. However, the ILAE’s classification scheme

does not include TLE as a distinct syndrome.
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Most clinicians distinguish Mesial Temporal Lobe Epilepsy (MTLE) from neocortical or

lateral temporal lobe epilepsy. MTLE is known to exhibit high drug resistance and is the

epileptic syndrome where most surgeries are performed. This distinction becomes crucial when

considering these patients’ mechanisms and ongoing therapy.

2.1.2 Seizure Clusters

Seizure clusters, commonly referred to as Acute Repetitive Seizures (ARS), describe the oc-

currence of consecutive seizures grouped, often with shorter interictal periods than what is

considered typical (ranging from several hours to minutes). These clusters predominantly man-

ifest in patients with Drug Resistant Epilepsy (DRE) and harm their quality of life, linked to

several complications. Inadequate management of these clusters may lead to progressing into

status epilepticus, a more severe and potentially life-threatening condition. The lack of a stan-

dardized clinical definition for clusters leads to variations in the criteria used to classify them

across different studies. Some studies define clusters as at least three seizures within 24 hours

[30, 31, 32], while others consider it to be 2-4 seizures within 48 hours [33].

2.2 EEG

Due to its relatively low cost and ability to show the physiological signs and manifestations of

abnormal cortical excitability that underlie epilepsy, EEG is crucial in diagnosing and treating

patients with seizure disorders. Neurons are responsible for enabling communication within the

brain through electrical impulses. In its most basic description, an epileptic seizure resembles

a short circuit characterized by irregular electrical activity in the brain. Consequently, what

the EEG captures corresponds to the cumulative effect of electric fields generated by millions of

these cells [34, 35].

Therefore, electrophysiological brain signals captured on EEG are a complex variety of

patterns reflecting the activation of numerous neural networks. Some patterns are transient,

consisting of sharp brain waves that last only one or two cycles, while others are long-term

oscillations (see Figure 2.3) [36].

Oscillatory activity, which has stationary features during a brief EEG segment, is regarded

as “normal” or spontaneous. Bands divide their frequencies, with delta activity being the most

prevalent in the lowest frequency range (2-4 Hz). Theta rhythms are present in the 4-8 Hz

range, while alpha activity depicts the calm waking state from 8 to 13 Hz. Beta activity is

predominant at frequencies between 13 and 30 Hz, and gamma activity is present above 30 Hz

[37]. The various frequency ranges produced by the neurological system’s various operations are

influenced by various parameters, including age and state of alertness, among others [35].

The transient or “abnormal” waveform adopts specific waveforms and exhibits short-term

non-stationary characteristics. There are two types of transients: normal and abnormal. Ex-

amples of transients identified as abnormal epileptic phenomena are spikes, polyspikes, spike

and wave complexes, sharp waves, and sharp and slow wave discharges. Within the category of

abnormal transients, non-epileptiform transients are also identified, such as periodic complexes
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and triphasic waves. Numerous sleep potentials, including vertex waves, K complexes, positive

occipital sharp sleep transients, and benign epileptiform sleep transients, are examples of normal

transients [37, 38].

Artifacts are recorded electrical potentials that do not originate in the brain and frequently

imitate actual EEG activity, which makes it challenging to distinguish between the transients

mentioned above when they are present. One way to classify them is by dividing them into

groups based on source, persistence, and amplitude. They can come from the patient (e.g.,

muscle activity, eye blinking, chewing, and cardiac impulses) [39, 38], external interference

(ambient electromagnetic interference, which occurs at frequencies of 50 or 60 Hz), or electrodes

and leads [37, 40].

Oscillation and transient can coexist or, in some circumstances, can be directly connected

through phase-resetting processes. Investigating these patterns requires the ability to character-

ize their spatiotemporal properties, which is not simple accurately. A significant difficulty lies

in the frequency bands of transient and oscillatory activities that can overlap [36].

EEG

OscillationsTransients

AbnormalNormal

Delta (2-4 Hz)

Theta (4-8 Hz)

Alpha (8-13 Hz)

Beta (13-30 Hz)

Gamma (>30 Hz)

AbnormalNormal

Vertex waves

K-complexes

Positive occipital
sharp transients

of sleep

Benign
epileptiform

sleep transients

Sleep
potentials

Seizure activity

Artifacts

Epileptiform
discharges

Spike

Polyspike

Spike and wave
complex

Sharp wave

Slow wave

Non-
epileptiform

Periodic
complexes

Triphasic waves

Pysiological

External

Eye blinking

Chewing
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Cardiac impulses

Powerline
interference

Electrodes
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I

-

Figure 2.3: EEG activity categorization. Adapted from: Sanei and Chambers (2013) [41].
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2.2.1 Signal Acquisition

The EEG is critical for obtaining most of the information required to diagnose epilepsy, as

it can define rapid changes in current flows due to its high temporal resolution. However, it

lacks spatial resolution since the number of electrodes, positioning, and head features constrain

measurements. Measurements on different spatial scales involve performing macroscopic non-

invasive recordings obtained through the scalp or employing surgical procedures that enable

intracranial registration [42].

2.2.1.1 Scalp EEG

It is a simple, low-cost method typically used as a diagnostic tool. At times, such measurements

can provide sufficient information, while in other instances, they merely serve as an initial step

toward conducting more in-depth intracranial recordings [42]. EEG scalp detection involves

“synchronous” brain activity. As a result, most epileptiform discharges recorded directly on the

cortical surface are either invisible on the surface EEG or do not sufficiently reveal their epileptic

origin [38].

The signal is influenced in various ways by passing through several layers of non-neural

tissue (cerebrospinal fluid, skull, and scalp) [42]. This acquisition approach cannot effectively

record lower amplitude faster frequencies in the beta and gamma bands due to the prevalence

of extracranial artifacts, primarily muscular [38].

A standard electrode positioning system called the international 10-20 system (see Figure

2.4) enables data comparison between patients and the patient himself [42]. The relative dis-

tances between cranial landmarks on the head surface are used in this system to describe head

surface locations. Electrodes on the left receive odd numbers, while those on the right receive

even numbers. The suffix “Z” is allocated to those in the midline. The prefix “F” indicates

electrode placement in the frontal regions, whereas “C”, “T”, “P”, and “O” indicate electrode

placement in the central, temporal, parietal, and occipital regions, respectively [38, 43].

FRONT
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P4

O2

F3

C3

P3

O1

T5

T3

F7

A1
Fz

Cz

Pz

Figure 2.4: International 10-20 system used for electrode placement. Adapted from: Varsavsky
et al. (2011) [42].
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Different electrode combinations are employed in “channels”, with each channel including

two electrode inputs, the second being the next electrode in the line or a reference, placed in

bipolar or referential montages (see Figure 2.5), respectively.

In the organization of bipolar montages, chains of electrodes are frequently arranged in a

straight line. The second input of the first channel becomes the second channel’s first input,

allowing the localization of maximums and minimums of electric fields by the so-called “phase

reversal”. This type of montage is generally preferred because it produces “cleaner” traces due

to the proximity of the electrode pairs, which leads to more efficient noise cancellation. The

anteroposterior longitudinal bipolar or “double banana” montage (see Figure 2.5a) is the most

commonly used in clinical practice [44].

Referential or monopolar montages are bipolar arrangements except that the reference

electrode, which serves as the second input to each channel, is located farthest from the first

electrode position. The electrodes are typically placed on the scalp, although they can also be

positioned on the mastoids or earlobes and, less commonly, across the cervical spine or nose [38].

FRONT

BACK

FRONT FRONT

BACK BACK

(a) (b) (c)

Figure 2.5: EEG montages in which scalp electrodes are used as reference. (a) Longitudinal
bipolar montage. (b) Transversal bipolar montage. (c) Referential montage (to Cz). Adapted
from: Varsavsky et al. (2011) and Beniczky et al. (2020) [42, 45].

Long-term recording of brain electrical activity is necessary, as it increases the likelihood of

capturing seizures. The traditional method of collecting EEGs requires a time-consuming setup

process that includes skin preparation, electrode attachment, gel application, mounting, and

connection selection. In addition, it takes the patient out of their typical environment, which

restricts the patient’s natural behavior while signal acquisition occurs. As a result, in the past

20 years, innovative non-invasive mobile electroencephalography solutions have been created

to overcome the drawbacks of traditional clinical EEG and enhance the monitoring of patients

with long-term conditions. Despite the availability of mobile technologies, their adoption remains

quite limited [46, 47].
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2.2.1.2 iEEG

Intracranial recordings are typically performed during pre-surgical analysis to identify the spe-

cific brain areas needing resecting [42]. This diagnostic procedure is crucial in mapping the

seizure onset zone, essential for targeting the epileptogenic zone. The epileptogenic zone refers

to the specific region in the brain that is indispensable for initiating seizures. By surgically

removing the epileptogenic zone, it is possible to achieve seizure freedom for the patient. The

epileptogenic zone is the smallest cortical area necessary to remove the patient from seizures.

Specifying the safety boundaries for removing this area during surgery becomes necessary [48].

In this scenario, the placement of electrodes lacks standardization, with placement decisions

tailored to each patient’s needs and circumstances [42]. Electrodes of different types, including

subdural electrodes (grid or strip electrodes) placed on the brain’s surface or depth electrodes

that undergo stereotactic implantation within the brain, enable the acquisition of recordings.

Each has advantages and downsides and is thus utilized based on the clinical context [49].

Brain surfaceSkull

(a) (b) (c)

Figure 2.6: Placement electrodes for intracranial recordings: grid (a) and strip (b) electrodes
positioned on the brain surface, while depth electrodes (c) inserted into deeper brain regions.
Adapted from: [50].

The benefits of the intracranial EEG signal include (generally) much less contamination

with artifacts, closer proximity to seizure-generating sites, allowing for high spatial resolution,

and fewer problems with reference electrode - provided an extracranial reference is used [38].

Another significant advantage of Intracranial Electroencephalogram (iEEG) over scalp EEG is

the ability to record at a considerably higher frequency range of detectable brain signals [48].

On the other hand, intracranial recordings are more invasive and cannot be used in an

outpatient setting to track a patient’s seizure status in their familiar environment [17]. Further-

more, because the implanted electrodes can only detect activity in a small area around them,

they cannot detect any previous or concurrent activity in nearby or distant areas [51].
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2.3 Treatment and Therapeutics

The principal objectives inherent in any treatment or therapeutic methodology for epilepsy

encompass suppressing seizures while mitigating adverse effects on the patient within the shortest

conceivable span. The pursuit of these targets collectively poses significant difficulties [52].

2.3.1 Antiepileptic Drugs

The decision to initiate treatment requires a meticulous evaluation of the risk-to-benefit ratio

and the patient’s preferences, given the enduring nature of the treatment for a minimum duration

of two years and, in some circumstances, for the entirety of the patient’s life [53].

The first line of treatment is the intake of AEDs. The primary goal of administering AEDs

is to counterbalance the disturbed excitation and inhibition equilibrium resulting from the hyper

excitatory or hypersynchronous neuronal activity observed in the condition. To accomplish this

objective, AEDs can modulate voltage-gated ion channels, enhance inhibitory mechanisms, or

attenuate excitatory mechanisms, depending on their specific mechanism of action [54].

Approximately two-thirds of epilepsy patients achieve seizure freedom through AEDs [53].

Nonetheless, despite the fraction of positive cases observed and the existence of accessible AEDs,

approximately one-third of individuals who have epilepsy endure DRE, a condition characterized

by persistent seizure episodes throughout their lifetime. This condition is associated with an

increased likelihood of injuries, lower socioeconomic status, compromised quality of life, cogni-

tive impairments, and mood fluctuations. Moreover, behavioral disorders, including depression

and anxiety, manifest more frequently among these patients and their families than among the

broader populace [55].

The emergence of novel AED in the past few decades has proven beneficial because they

have introduced distinct adverse effects profiles. However, the proportion of patients with DRE

remained virtually unchanged, indicating that the new drugs only impact the treatment of

patients already treated with the existing drugs [52].

2.3.2 Surgery

After the failure of two well-tolerated antiepileptic drug treatment regimens, the consideration

of surgery becomes imperative [56]. This surgical procedure involves resecting the specific brain

region responsible for generating seizures, called the epileptic zone. The medical community

widely acknowledges it as the most effective treatment modality for patients who have DRE

[53].

Determining the suitability for effective epilepsy surgery relies on a thorough pre-surgical

assessment, allowing for the precise delineation of the epileptogenic zone and crucial brain areas.

This assessment enables the development of a personalized resection plan for each patient. The

epileptogenic zone is the minimal cortical area that, when removed, leads to seizure freedom

while considering the potential for postoperative morbidity [53].

Within this evaluation, it is crucial to acquire a sufficient number of seizure records. The

utilization of provocation methods, such as sleep deprivation and gradual withdrawal of AEDs,
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aims to reduce hospitalization duration and associated expenses while enhancing the perfor-

mance of the recordings. However, it is essential to exercise caution and gradually conduct

the drug withdrawal process, as it may trigger tonic-clonic seizures, thereby elevating the risk

of Sudden Unexpected Death in Epilepsy (SUDEP), seizure clusters, or even life-threatening

status epilepticus [57].

Surgical treatment offers notable benefits, considering the limited number of patients who

achieve seizure freedom after failing to respond to two appropriate AEDs. Despite the substantial

growth in the number of established epilepsy surgery centers, the volume of therapeutic, surgical

procedures performed for epilepsy has not experienced a corresponding increase [58].

2.3.3 Neurostimulation

Neurostimulation refers to the utilization of electrical stimulation on a specific structure within

the nervous system, employing various techniques to interfere with and potentially prevent or

terminate ictal events, aiming to decrease the occurrence of seizures [59]. Neurostimulation is

a palliative treatment, and only a subset of individuals may achieve seizure freedom for more

than 12 months. The consideration of this therapeutic option is often appropriate for patients

with refractory epilepsy who are unwilling or ineligible for surgical intervention [60].

Among the invasive neurostimulation procedures, three commonly utilized methods con-

sistently demonstrate both safety and efficacy: Vagus Nerve Stimulation (VNS), Deep Brain

Stimulation (DBS), and Responsive Neurostimulation (RNS) [61, 62]. VNS stimulates the va-

gus nerve, RNS focuses on the cortex, and Anterior Nucleus of Thalamus Deep Brain Stimulation

(ANT-DBS) specifically targets the anterior nucleus of the thalamus. Regarding device place-

ment, VNS exclusively resides within the chest, featuring an electrode encircling the left vagus

nerve and a subcutaneously implanted pulse generator in the upper left chest region. In contrast,

the RNS involves a device implanted in the cortex, while ANT-DBS requires sensor placement

in the Anterior Thalamic Nucleus (ATN) and a chest-implanted pulse generator. All these

specificities, along with additional details, are visually presented in the accompanying Figure

2.7.

The neurostimulation techniques can be further categorized based on the mechanism em-

ployed, distinguishing between open-loop and closed-loop systems. DBS and older-generation

VNS are examples of open-loop systems, whereas RNS and newer-generation VNS operate as

closed-loop systems [62].

When deciding between these three therapies, several factors influence the choice, including

the patient’s age, type of epilepsy, and location. All three therapies are suitable for adults

with focal epilepsies. VNS may be an option for four-year-old and older children with focal or

generalized epilepsy. VNS and RNS can be offered to individuals with 2-drug-resistant epilepsy,

while the ANT-DBS requires 3-drug resistance. Regarding geographic approval, many global

regions have approved VNS, whereas RNS exclusively holds approval in the United States of

America (USA), and ANT-DBS has gained approval in North America, Europe, and other

countries [60].

Comparisons directly assessing these three techniques in controlled studies have yet to be
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Figure 2.7: Approved neurostimulation therapies in epilepsy and brain targets for each neu-
rostimulation approach according to sites of stimulation and known primary anatomical path-
ways. Adapted from: Ryvlin et al. (2021) [60].

conducted, primarily due to the absence of standardized or equivalent stimulation parameters

across the devices. Nonetheless, all three approaches have shown that many patients achieve

at least six months without seizures and are generally well tolerated. Additionally, they have

been associated with statistically significant improvements in quality of life, although the clinical

significance of these changes remains unclear [59]. Despite this, when considering data from the

blind period of the main controlled trials, DBS and RNS have demonstrated better performance

compared to VNS. However, VNS has certain advantages, such as easier implantation, not

requiring advanced equipment, shorter surgical procedures, potentially shorter hospital stays,

and no risk of intracranial complications [62].

Device-based neurostimulation offers advantages in terms of tolerability compared to AEDs.

However, it is crucial to consider the specific risks of adverse events and some disadvantages

associated with neurostimulation. A comparison between the three neurostimulation solutions

is available in the provided Table 2.1.

Drawbacks of neurostimulation techniques include the requirement for surgery, battery

replacement, and frequent visits for stimulation parameter adjustments. Due to these limitations

and the lack of robust evidence guiding the selection of neurostimulation over AEDs, choosing

the most appropriate treatment remains an individual decision based on risk-benefit analysis and

personal preference for each case [60]. Moreover, it is imperative to regard current stimulation

techniques as a variant of palliative intervention and recognize that they do not substitute more

definitive resective or ablative therapies if it is safe to administer them [63].
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VNS RNS ANT-DBS

Category of treatment Palliative 

Ideal epileptogenic zones
 Not localised,

multifocal, or not
resectable

Bitemporal or eloquent
focus

Bitemporal, multifocal,
or not localised

Level of accessibility Moderate Low

Level of invasiveness Moderate High

Risk of therapy-induced
brain lesion

None Low

Chance of long-term seizure
freedom

Low

Average gain in quality of life Moderate

Level of adherence High

Table 2.1: Key characteristics of the presently approved neurostimulation therapies. Adapted
from: Ryvlin et al. 2021 [60].

2.3.4 Rescue Medication

Urgent measures are required in acute seizure emergencies, such as prolonged seizures, acute

seizures, status epilepticus, cluster seizures, and out-of-hospital seizures, to avert neuronal injury

and mitigate associated morbidities [64]. In such cases, established guidelines recommend the

prompt administration of a rescue medication, typically a Benzodiazepine (BZD), within 5 to

10 minutes after the seizure initiates [65].

Patients diagnosed with epilepsy may require access to at-home rescue medication, par-

ticularly those with an increased vulnerability to prolonged seizures. However, studies have

indicated low utilization of these rescue drugs in home environments, which presents a problem

as most seizures initiate in a pre-hospital context. In the absence of available rescue medication,

treatment can only start when emergency medical services arrive or when the patient reaches the

hospital, which is typically beyond the 10-minute timeframe preceding the onset of the seizure

[65].

Multiple factors, including the infrequent prescription of these drugs, insufficient training,

or a lack of involvement from educational institutions, contribute to the low percentage of rescue

drug utilization in at-home settings. One possible explanation for the reluctance to prescribe

rescue medication for the general epilepsy population may be the apprehension of adverse effects,

particularly respiratory depression [64]. Nonetheless, studies have shown that significant adverse

effects usually occur and intensify only after administering more than two BZDs, suggesting that

most patients can safely receive at least one dose [65].
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2.3.5 Warning Devices

Researchers have undertaken extensive research to investigate intervention devices and their

potential for improving the quality of life for patients. A crucial aspect of these devices is their

ability to issue timely alarms when a seizure is impending, achieved by continuously monitoring

changes in the biosignal. This functionality allows patients or their caregivers to take measures

to mitigate the consequences of the seizure or facilitate the administration of rescue medication.

These devices incorporate algorithms that analyze long-term signals to accomplish this objective,

triggering alarms while disregarding data segments contaminated by artifacts. Notable EEG

acquisition technologies include UNEEG SubQ, EpiMinder Subscalp, and Byteflies Sensor Dots

[66].

The first human clinical trial of an implantable alerting device, the NeuroVista Seizure

Advisory System, holds significant relevance in this domain, marking the first successful im-

plementation utilizing ambulatory EEG data. In this trial, a continuous recording device was

surgically implanted in 15 patients with refractory epilepsy, ranging from 6 months to 3 years in

duration. The system involved the connection of intracranially implanted electrodes to a sub-

dermal telemetry unit implanted in the thorax through subdermal wires. This telemetry unit

wirelessly transmitted EEG data to a portable unit, as illustrated in the accompanying Figure

2.8. The device continuously monitors brain activity by recording the EEG using intracranial

electrodes, giving patients a probability assessment of experiencing a seizure [14, 67, 68].

advisory device

electrodes

telemetry device

Figure 2.8: Ambulatory seizure warning system. Adapted from: Kuhlmann et al. (2021) [14].

The recent rapid progress in wearable devices provides non-invasive alternatives. Despite

the swift improvement in technology and the availability of new devices, the utilization of wear-

able devices for the daily clinical management of epilepsy remains rare, lacking sufficient evidence

to support their potential benefits adequately. The launch of the My Seizure Gauge challenge

aimed to develop a personalized seizure advisory system device and incorporated Empatica E4,

Byteflies Sensor Dots, and Epilog data. These devices enable the analysis of signals beyond EEG,

including Accelerometry (ACC), Blood Volume Pulse (BVP), Electrodermal Activity (EDA),

Photoplethysmography (PPG), Electromyography (EMG), Heart Rate (HR), and temperature

[69]. Currently, alongside the devices previously discussed, there exists a wide variety of com-

mercially accessible wearable devices, and an increasing number of these devices are receiving

regulatory approval for the control of specific types of seizures [70].
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2.4 Seizure Prediction

The unpredictability of epilepsy is a perpetual worry for patients. Developing new therapeutic

strategies that can anticipate seizures would help overcome some of the challenges presented by

this characteristic. The primary aim of seizure prediction is to develop tools to promptly notify

patients of an upcoming seizure based on online physiological data by activating alarms [15].

Four distinct stages divide a seizure event, including the preictal stage before the seizure

onset, the ictal stage throughout the seizure, the postictal stage following the seizure offset, and

the interictal stage between seizures. These stages are visually represented in the accompanying

Figure 2.9 [71].

INTERICTAL INTERICTALPREICTAL PREICTALPOSICTAL POSICTAL

ICTAL ICTAL

SEIZURE ONSET SEIZURE ONSET

INTERICTAL

P8-O2

P7-T7

T7-FT9

FT9-FT10

FT10-T8

T8-P8

Figure 2.9: Periods of a seizure episode represented on an EEG signal. Adapted from: Cui et
al. (2018) [71].

Accurate seizure prediction relies on distinguishing the preictal from the interictal pe-

riod, which depends on identifying seizure biomarkers that can capture the transition from a

seizure-free state to a seizure. The preictal stage poses the most significant challenge in correct

annotation because it lacks a recurring pattern, presenting the primary obstacle in seizure pre-

diction [14]. Customized algorithms for patients have demonstrated greater efficacy than general

models in light of the heterogeneity of seizures and epilepsies [17].

2.4.1 Seizure Onset

A key aspect in the prediction of seizures is the identification of the onset time. The onset time

can be either electrographic or clinical. Detecting the first clinical symptoms determines the

clinical onset, while the first visible changes in the EEG recordings establish the electrographic

onset. Since the EEG signal forms the basis of these models, prediction algorithms typically

consider the electrographic onset [17]. Researchers have noted that initiating an electrographic

event may precede the onset of clinical symptoms in seconds or minutes [42]. An optimal

intervention system could interrupt the progression of a seizure prior to the clinical onset [17].
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2.4.2 Lead Seizure

It is common for seizures to occur in clusters, and predicting the initial seizure in a cluster,

known as the lead seizure, is significantly more challenging. The selection of a minimum seizure-

free interval by authors is a common practice to demonstrate that subsequent seizures are

independent events while maintaining a balance between the necessity of a sufficient quantity of

seizures and the requirement for independence. Studies have defined lead seizures as consecutive

seizures separated by a minimum of 1 hour [72], 1.5 hours [73], 2 hours [74, 75], 4 hours [67, 76,

77, 78, 79], 4.5 hours [80, 81], 5 hours [18], or 8 hours [68].

2.4.3 Seizure Detection vs Prediction

Seizure detection pertains to the act of ascertaining whether seizures are currently occurring

or not [82]. Early detection of epileptic seizures targets the short period between the start of

observable changes in brain activity that signal the onset of an ictal episode and the emergence

of clinical symptoms that affect the patient. This detection occurs just a few seconds before the

first clinical symptoms, which is different from prediction techniques that look for a preictal state

sufficiently long before the EEG onset. Nevertheless, the limited time available for detection

offers little opportunity for intervention, if any [17, 83].

In the case of early seizure-detection algorithms, the main concern is to determine whether,

following the onset of electrographic seizure activity, it is possible to prevent the seizure through

stimulation or if the brain has already reached a point beyond which stimulation is ineffective and

will inevitably proceed towards a clinical manifestation of seizure. If the brain has not passed

the “point of no return”, early detection algorithms can be employed to support responsive

intervention within closed-loop stimulation systems [17, 84].

2.4.4 Forecasting vs Prediction

The concept of forecasting deviates from predicting whether a seizure will occur. Instead, it

highlights identifying the brain state with a high probability of a seizure. The evaluation of the

risk of seizure occurrence is possible because of the presence of cycles of Interictal Epileptiform

Activity (IEA) on diverse time scales, such as circadian (over hours), multidien (over days), and

circannual cycles (over years) [85, 86, 87].

The variations in IEA on circadian, multidien, or circannual temporal scales may be asso-

ciated with environmental fluctuations, metabolic processes, or intrinsic brain factors like sleep

homeostasis or arousal levels [88]. The critical phases of these cycles help determine distinct

intervals with elevated seizure risk, commonly referred to as proictal states, thus opening the

possibility of forecasting seizures over extended periods [85, 87].

The ambiguity surrounding the risk of a seizure (forecasting) and its realization in an ac-

tual seizure (prediction) has repercussions for the preictal and proictal states’ concepts. The

preictal phase is the period preceding a seizure, where a point of no return is assumed, typically

lasting seconds to minutes. This perspective considers epilepsy a deterministic process, where

increased cortical excitability will inevitably progress to seizures unless individuals take stabi-
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lization measures. In contrast, the proictal state reflects a probabilistic perspective, representing

antecedents that strongly constrain the probability of seizures. Consequently, seizures may or

may not occur during a given proictal period, despite the high momentary risk. Figure 2.10

enables a straightforward visualization of these differences.

Seizure

Preictal

less likely

more likely

5s 0.7mV

1 dayProictal

Figure 2.10: Visual representation illustrating the temporal dynamics of preictal and proictal
states. Shown in this figure is an example of a daily cycle overlaid by an about-weekly cycle of
seizure likelihood. Adapted from: Stirling et al. (2021) [72].

Therefore, one can compare the contrast between forecasting and predicting seizures to the

disparity between gauging the likelihood of a thunderstorm and identifying the precise timing

of lightning bolts, respectively [85, 87, 88].

2.4.5 Seizure Prediction Characterization

Since the 1970s, researchers have been exploring the seizure prediction domain, and by the 2000s,

numerous algorithms were already using EEG signals to predict seizures. However, evaluating

the suitability of an algorithm’s performance for clinical implementation took much work due

to the need for recognized standards. In brief, a prediction method examines successive EEG

time windows and triggers timely alarms that enable intervention [17].

Winterhalder et al. [89] proposed the “seizure prediction characteristic” in 2003 to address

this issue, a framework for evaluating seizure prediction techniques based on clinical, behavioural,

and statistical factors. The evaluation involved two metrics adjusted to an alarm system: seizure

sensitivity and the False Prediction Rate per hour (FPR/h).

Additionally, since predictive models cannot determine the exact timing of a seizure, they

suggest two concepts to handle this uncertainty: the Seizure Occurrence Period (SOP) and the

Seizure Prediction Horizon (SPH). The SPH represents the time frame within which a prediction

tool alerts the patient to an impending seizure. It spans from the activation of the alarm to

the beginning of SOP. SPH is also known as Intervention time (IT). SOP refers to the expected

period of a seizure occurrence. The Figure 2.11 offers a visual representation that can assist in
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comprehending the periods pertaining to the SOP and SPH.
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Figure 2.11: Visual representation of SOP and SPH using an EEG recording and an example
of a feature extracted by a seizure prediction algorithm. Adapted from Schelter et al. (2006)
[90].

If a seizure occurs during the raised alarm’s SOP period, the alarm correctly predicted the

seizure. Conversely, if an alarm is triggered, but no seizure occurs within the specified SOP, the

alarm is considered a false one. Figure 2.12 exhibits a visual representation that elucidates the

classification of alarms.

Therapeutic devices must maintain a minimum window of time corresponding to the SPH

to minimize the impact of seizures effectively. A specific period, dependent on the type of

intervention, is necessary for intervention systems to take effect and prevent dangerous circum-

stances. As a result, determining the minimum prediction horizon is critical for successful clinical

application [89].

Similarly, determining a maximum time frame for SOP is necessary. According to existing

literature, this period can last from several minutes to several hours, potentially affecting the

performance of algorithms in the patient’s daily life. To ensure the efficacy of interventions such

as electrical stimulation and anticonvulsant drug administration during the SOP, they must

persist for the entire period, as the exact time of seizure onset is unknown. However, prolonged

interventions can lead to increased side effects, and longer SOPs can cause more significant

psychological stress to patients. Hence, defining an upper limit for SOP is crucial for these

reasons [89]. Ensuring patient confidence and minimizing the need for complex interventions

requires using reasonable values for SPHs and SOPs, despite the challenge of achieving optimal

parameter adjustment.

22



2. Background concepts

Onset

Onset

OnsetAlarm

Time

Time

Time

SPH SOP

Interictal Preictal Ictal Posictal

Alarm

SPH SOP

Alarm

SPH SOP

Figure 2.12: Visual representation of the true and false alarm concept in seizure prediction.
Adapted from: Winterhalder et al. (2003) [89].

2.4.5.1 Performance Assessment

When evaluating the performance of a system with particular emphasis on the temporal aspects

of a prediction, sensitivity and FPR/h are critical metrics. Distinguishing whether the alarm was

triggered correctly or not is imperative to compute these metrics [91]. The visual representation

of this distinction in alarm categories can be observed in Figure 2.12.

Sensitivity (Equation 2.1) defines the ratio between the number of accurate predictions

and the total number of actual seizures. For prediction systems, FPR/h is a reliable measure

of specificity. FPR/h quantifies the number of false predictions generated per hour (Equation

2.2) by dividing the number of false alarms by the interictal period’s duration, during which

the model may generate false alarms. An activated alarm relates to a specific SPH and SOP,

and this time frame (refractory period) does not allow for triggering any additional alarms. The

refractory period should be excluded from the FPR/h calculation, although some authors may

not consider this.

SS =
Ntrue alarms

Nseizures
. (2.1)

FPR/h =
Nfalse alarms

△interictal −Nfalse alarms ∗ (△SPH +△SOP )
. (2.2)

The primary goal of a prediction technique is to accurately predict as many seizures as

possible, with the ideal scenario resulting in a sensitivity score of 1. However, an interdependent

relationship exists between sensitivity and FPR/h, whereby an increase in sensitivity generally

increases FPR/h, and achieving a sensitivity score of 1 may come at the cost of numerous false

alarms.

The patient experiences more adverse implications as the value of FPR/h increases. The
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higher number of false alarms may make the patient complacent and ignore the alerts, lead-

ing to inadequate preparation for actual seizures. On the other hand, if the patient takes all

the alarms seriously, he may experience significant unnecessary psychological stress, expecting

seizures that never occur. FPR/h also influences the possibility of causing unintended outcomes

in specific treatments. In cases where AEDs or neurostimulation are administered based on false

predictions, there is a risk of overmedication or excessive brain electrical stimulation, leading to

side effects.

Therefore, it is imperative to identify a maximum rate of acceptable false predictions from

a clinical perspective. Winterhalder et al. (2003) [89] reported that the pre-surgical context

generally exhibits an average of 0.15 seizures per hour, equivalent to 3.6 per day. In contrast, in

everyday circumstances, the average is 0.0042 seizures per hour, corresponding to 3 seizures per

month. Setting the FPR/hmax to 0.15 would result in approximately 50% of the alarms being

false for patients under monitoring, which is deemed acceptable. However, this value becomes

unthinkable in normal conditions, where it increases to 97%. Thus, the appropriate maximum

value for this metric should be context-dependent and based on the average incidence of seizures

[89].

The occurrence of false alarms throughout the day is also a crucial consideration for im-

plementing a seizure prediction approach. False alarms during a patient’s sleep state may be

less detrimental than during wakefulness, as patients are less susceptible to harm or injury while

asleep [91].

The evaluation of a seizure prediction system is distinct from traditional machine learning

problems, as it involves triggering alarms. The evaluation of the binary classification of interictal

and preictal samples, using sensitivity (Equation 2.3) and specificity (Equation 2.4), would be

the approach for a typical Machine Learning (ML) problem, as shown in the Figure 2.13.

SSsample =
TP

TP + TN
. (2.3) SPsample =

TN

TN + FP
. (2.4)
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Figure 2.13: Confusion matrix for assessing sample seizure prediction.
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2.4.5.2 Statistical Validation

Determining whether a prediction system is adequate for clinical use requires testing whether its

performance is better than chance [15, 17]. Statistical validation techniques, such as nonspecific

predictors [89, 90, 92] and surrogate analysis [92, 93, 94], are commonly employed to conduct

such evaluations.

Unspecific predictors

Winterhalder et al. (2003) [89] introduced the term “random prediction” to describe a non-

specific approach to seizure prediction, where alarms are activated randomly without any input

from EEG. Typically, seizure prediction methods are optimized to maximize sensitivity until

the false prediction rate reaches its FPRmax. Thus, during a brief interictal period (I), the

probability that an alarm trigger is (Equation 2.5):

p = FPR/h× I (2.5)

When considering a longer time interval (W ), the formula allows for computing the probability

P of at least one alarm (Equation 2.6):

P = 1− (1− FPR/h× I)
W/I ≈ 1− e−FPR/hW for I ≪ W (2.6)

When W = SOP , this accurately reflects the sensitivity of a random prediction method

since it represents the probability that at least one alarm triggers during the seizure occurrence

period.

Schelter et al. (2008) [92] introduced a new approach to random prediction using a Poisson

process for false predictions. The probability of triggering an alarm at any point in a time series

with FP (number of false predictions) and N samples is given by Equation 2.7:

PPoiss =
FP

N
(2.7)

When the time interval is SOP, and it is possible to confirm that the patient is not persis-

tently under warning, i.e., when the product of FPRmax and SOP is significantly lower than 1,

the Equation ?? gives the likelihood of triggering at least one alarm during that interval.

P ≈ 1− e−FPR/hW ≈ FPR/h× SOP (2.8)

The probability mentioned above corresponds to the sensitivity of the random predictor.

It acts as the basis for testing the significance level to determine if the prediction method’s

sensitivity can surpass it.

Nonetheless, at this level of significance, it is necessary to take other factors into account,

such as the number of analyzed seizures and the dimension of the extracted feature vector (d),

as an increase in the number of channels and/or measures raises the probability of chance pre-

dictions of seizures. However, machine learning models can produce a one-dimensional output

(d=1) even when utilizing multi-dimensional inputs. Therefore, d > 1 is employed when execut-
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ing multiple predictions simultaneously. Hence, the binomial distribution, as defined in Equation

2.9, allows for calculating the probability of predicting at least k out of K seizures.

Pbinom(k,K,P ) = 1−

[
j≤k∑
1

(
K

j

)
P j(1− P )K−j

]d

(2.9)

Obtaining the critical value using the following formula (Equation 2.10) allows for testing

statistical significance.

σ =
argmaxk{Pbinom(k,K,P ) > α}

K
× 100% (2.10)

In summary, the random predictor has the advantage of being computationally lightweight

since it does not require EEG input in its analytical expression. Nonetheless, following a Poisson

homogeneous distribution, which assumes a uniform distribution of false alarms over time, may

not be suitable for managing non-random seizure occurrences brought on by Concept Drifts

(CDs) or drug withdrawal. Moreover, overcoming the random predictor for a small number of

seizures tested can be challenging, given that seizures are rare events and models often need to

be customized to individual patients.

Surrogate Analysis

Surrogate seizure predictors are generated based on Monte Carlo simulations that involve con-

strained randomizations of the original seizure times. Although stochastic, they share specific

properties of the original data. This approach requires large computational resources; however,

it provides greater flexibility than analytical random predictors, allowing multiple null hypothe-

ses to be evaluated based on specific assumptions and constraints. As a result, if the original

seizure predictor outperforms the surrogate predictors with statistical significance, it is possible

to reject the null hypothesis, indicating that the developed algorithm is more effective than mere

chance [15, 92].

Original

D4 D1 D2 D5 D3 D6

D1 D2 D3 D6 D4 D5

D3 D6 D4 D5 D2 D1

Surrogate

Time

Time

Original

D1 D2 D3 D4 D5 D6

Time

Figure 2.14: Representation of the original seizure and surrogate times bootstrapped from the
inter-seizure intervals. The arbitrary onset times for the surrogates are originated through a
uniform distribution and represented by the dashed vertical lines. Adapted from: Schelter et al.
(2008) [92].
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The seizure-times surrogate method proposed by Andrzejak et al. (2003) [94] involves sub-

stituting the original seizure times with randomly generated times. The random onset times are

generated from the original interictal periods and maintain the original measurement profiles

and the distribution of the interval between seizures and the total number of seizures, as illus-

trated in the Figure 2.14. Therefore, implementing the algorithm utilizes the same EEG data

and the new seizure onset times, enabling a comparison of the performance attained here with

that achieved using the original seizure onset times.

Both algorithmic and statistical analyses can be validated using this technique, thereby

providing high reliability. As such, this technique found application in the statistical validation

presented in this document. Nonetheless, it is essential to emphasize that the application of this

method can pose challenges due to the small number of seizures captured in the EEG recordings.

2.4.5.3 Postprocessing

Typically, a post-classification process minimizes the number of false alarms, which involves

regulating the classifier output using methods like Firing Power (FP) or Kalman Filter (KF).

Applying the FP method involves rounding the prediction rates to a set of binary values

first, then averaging them over a sliding window of duration τ , equal to the SOP’s length.

Whenever the computed average value is more significant than an arbitrary threshold value,

the classifier generates a prediction for the subsequent crisis. The Equation 2.11 provides the

mathematical formulation for this moving average filter, utilizing fp[n] and O[k] as key variables.

Here, fp[n] represents the trigger power at time n, varying between 0 and 1, while O[k] denotes

the binary output generated by the classifier.

fp [n] =

∑n
k=n−τ O [k]

τ
. (2.11)

The triggering of an alarm occurs when the value of fp[n] exceeds this threshold. The

threshold value determines the level of conservatism exhibited by the alarm generator. Following

the triggering of an alarm, a refractory period is typically considered.

KF represents another potential approach to consider, given its recursive filter structure

intended for the estimation of a linear dynamical system’s state (Equation 2.12):
sk+1 =

 1 Tp

0 1

 sk + wk

yk =
[
1 0

]
sk + zk

. (2.12)

where sk denotes the system state at time k, yk corresponds to the measured variable,

and wk and zk represent white noise vectors with zero mean. An alarm activates when the KF

output classifies it as a preictal sample. Multiple studies [95, 96, 97] have employed the FP

technique repeatedly, yet the search for an optimal threshold value remains ongoing. While KF

demonstrated enhanced sensitivity, FP yielded better outcomes in reducing the number of false

positives. Additionally, it is worth noting that, according to Teixeira et al. (2012) [98], the

trigger power method triggers alarms more conservatively [15, 98, 99].
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2.5 Concept Drifts

CD denotes the unpredictable changes occurring in the fundamental distribution of streaming

data over time, leading to a decline in the performance of trained prediction models (see Figure

2.15). Several factors, such as seizure events, alterations in the type or dosage of AEDs, and

biological rhythms (e.g., circadian rhythms), can induce these alterations in the distribution of

EEG data [100].
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Figure 2.15: Graphical representation of the concept drifts change types and their possible
translation for the specific case of epilepsy seizure prediction in pre-surgical monitoring condi-
tions. Adapted from: Lu et al. (2018) [100] and Gama et al. (2014) [101].

The predominant data collection in the pre-surgical context is responsible for the higher

prevalence of CDs. This trend is associated with patients undergoing AEDs withdrawal and

experiencing sleep deprivation. Patients’ exposure to these conditions impacts their circadian

rhythm and sleep-wake cycles, ultimately causing an “artificial” increase in seizure frequency,

an unusual occurrence [102].

For a considerable time, the presence of daily to monthly patterns in seizure occurrence,

indicating the regulation of brain activity over long time scales, has been a matter of discus-

sion. However, the accomplishment of the precise definition of these patterns has occurred only

recently. As stated by Khan et al. (2018) [103], the rhythms can be categorized as follows:

• Circadian: “A biological rhythm is considered to be a circadian rhythm if it meets three

criteria: the rhythm should have an endogenous free-running (approximately) 24 h period,

should be entrainable (i.e., be capable of phase reset by environmental cues and synchroni-

sation to the 24 h day), and should exhibit temperature compensation.”;

• Multidien: “Refers to rhythms with a time period covering several days.”;

• Ultradian: “Refers to rhythms with periods of less than 24 h; ultradian rhythm cycles can

occur with a frequency of more than once per day. A prominent ultradian rhythm is the

non-REM–REM cycle, which in humans has a period of approximately 90 min.”
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2.5.1 Sleep-wake Cycle

The sleep-wake cycle holds immense significance in this context, as it instigates significant al-

terations in behavioral and physiological states. Sleep, a reversible physiological process for

roughly one-third of human life, involves decreased mobility, consciousness, and responsiveness.

It plays a vital role in safeguarding both physical and mental well-being.

Sleep comprises two distinct stages: Non-Rapid Eye Movement (NREM) and Rapid Eye

Movement (REM). Typically, these stages follow a cyclic pattern, with each cycle spanning an

average of 90 to 110 minutes. During a typical sleep period in adults, 4 to 6 cycles occur, as

illustrated in the accompanying Figure 2.16.

1st half of the night: early sleep 2nd half of the night: late sleep

11 pm midnight 1 am 2 am 3 am 4 am 5 am 6 am 7 am

Wake

REM

N1

N2

N3

Time of night

NREM

Figure 2.16: Hypnogram representing the sleep stages during a whole night of sleep in a
healthy human adult. Adapted from: Blume et al. (2015) [104].

The NREM stage constitutes approximately 75 to 80% of the total sleep duration in adults.

The American Academy of Sleep Medicine (AASM) categorizes it into three sleep stages (N1-N3)

based on EEG criteria. These stages occur repetitively throughout the entire sleep episode. The

NREM stage exhibits synchronized low-frequency, high-amplitude EEG oscillations, including

sleep spindles and K-complexes (particularly in the N2 substage). Stage N3 of NREM sleep,

often called slow-wave sleep, corresponds to deep sleep [103].

The REM stage of sleep does not undergo subdivision into distinct substages; however, low-

amplitude mixed-frequency EEG oscillations, rapid eye movements, and reduced muscle tone

are distinctive characteristics of this stage of sleep [103].

To summarize, in the regular sleep pattern of adults, a systematic transition occurs from

wakefulness to sleep initiation, subsequently progressing to NREM sleep and ultimately reaching

REM sleep. The Figure 2.16 shows a clear tendency for the duration of REM sleep to increase

while the duration of NREM sleep progressively shortens throughout the successive sleep cycles

[105, 106].
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2.6 Summary

Epilepsy, a neurological condition, displays notable clinical diversity concerning the nature of

seizures, types of epilepsy, and epileptic syndromes. Seizures can be categorized based on ini-

tial signs/symptoms, level of consciousness, and the location of the epileptic focus. The most

common epileptic syndrome is TLE, characterized by seizures primarily originating from the

temporal lobe. Seizure clusters refer to consecutive seizures with short interictal periods, requir-

ing critical management to prevent progression to status epilepticus, a life-threatening condition.

In such cases, the usual approach is to administer rescue medications.

Seizure prediction focuses on patients suffering from DRE (approximately one-third of

cases) who face unpredictable seizures’ physical and social consequences. These patients often

undergo extensive pre-surgical monitoring over weeks or months to evaluate their condition

before considering surgical interventions. Consequently, most datasets in this field consist of

data collected during this monitoring period. Resective surgery represents a highly effective

option for alleviating crises. Although it is an invasive technique, it is considered relatively safe.

Neurostimulation may be considered an alternative for patients who are not suitable candidates

for surgery.

EEG constitutes the principal medical tool for monitoring the brain’s electrical activity,

although numerous aspects of its morphology still need to be understood. There are two ways to

conduct EEG acquisition: scalp EEG, a non-invasive technique that records brain activity from

the brain’s surface, and iEEG, which involves the application of subdural or depth electrodes.

Despite the invasive nature of iEEG and its associated risks, it exhibits reduced susceptibility

to noise and yields a more precise representation of high-frequency activity. Not all detected

epileptic activity can reliably predict seizures, necessitating the comprehensive analysis of diverse

EEG patterns to enhance predictive accuracy.

In seizure prediction, the EEG signal consists of interictal, preictal, ictal, and postictal pe-

riods. The goal is to identify the preictal period and issue alerts promptly to anticipate seizures.

In this context, a connection exists between each alert and a specific period of occurrence (SOP)

and intervention time (SPH). However, identifying this interval poses challenges due to the

inherent variability of the preictal period across patients and seizure episodes.

The evaluation of a seizure prediction system should encompass sensitivity and false pos-

itive rate per hour (FPR/h). A practical methodology should incorporate suitable periods of

occurrence and intervention times, enabling practical interventions in real-life situations. Fur-

thermore, statistical validation is imperative to ensure the system surpasses chance-level per-

formance. Moreover, the proposed methodologies must effectively handle challenges associated

with data imbalance and CDs, including the circadian cycle, sleep-wake cycle, and medication

tapering during pre-surgical monitoring.
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State of the Art

This chapter outlines the current state of the art in seizure prediction and the most relevant

databases pivotal to several studies and for the development of this document. Section 3.1

presents the common framework, exploring historically utilized techniques and resources. Section

3.2 furnishes a detailed exposition of selected databases, elucidating their relevance in recent

research pursuits. Finally, Section 3.3 offers a summative overview of the core concepts discussed

throughout this chapter and closing remarks.

3.1 Seizure Prediction

Numerous research studies actively sought to manage the difficulty of predicting seizures, aiming

to improve the quality of life for individuals with epilepsy. After years of endeavour and inves-

tigation, contemporary prediction algorithms follow a conventional framework, as illustrated in

the Figure 3.1.

Signal Acquisition

Performance
Evaluation

Signal
Preprocessing

Feature
Extraction

Regularization Classification
Feature

Selection

Data Preparation

Machine Learning ApplicationPostprocessing

Figure 3.1: Flowchart of the typical seizure prediction framework. Adapted from: Assi et al.
(2017) [15].
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The components of this framework can be summarized as follows:

• Signal acquisition refers to the collection of Electroencephalogram (EEG) data, which

serves as the primary research tool;

• The signal undergoes preprocessing to enhance EEG quality and enable transmission of

signal information via time window analysis;

• Extracting and selecting features involves calculating and selecting the most relevant

characteristics that are capable of differentiating between distinct EEG phases (interic-

tal/preictal);

• Classification entails training Machine Learning (ML) models that use the previously se-

lected characteristics to identify periods as interictal or preictal;

• Regularization aims to improve the classifier’s output by smoothing it while disregarding

isolated classifications and assigning them temporal meaning;

• The performance assessment and the findings’ significance are accomplished by utilizing

the established metrics.

Although frequently employed, this structure exhibits variability in existing approaches,

which results from the absence of a gold standard algorithm and the resulting range of possi-

bilities. Deep Learning (DL) can effectively merge several phases into an integrated workflow,

demonstrating its prowess in optimizing data analysis.

Differences in Deep Learning approaches

Extracting the most discriminative features of the proposed methods with the mentioned struc-

ture poses a significant challenge, as it relies on the complexity of the process. DL models offer a

viable solution to address this complexity, given their inherent ability to perform feature extrac-

tion and learn features intricately associated with the problem. More sophisticated ML models,

specifically DL algorithms, were explored to address this challenge due to the exponential growth

in available data and computational power.

These algorithms can automate preprocessing, feature extraction, and classification when

handling raw data, improving performance. As such, the structure described above is subject

to several changes, as the three approaches in the Figure 3.2 depict [107].

According to the Figure 3.2, the most straightforward approach, represented by letter

A, involves the model undertaking preprocessing (e.g., artifact removal, noise reduction, and

filtering), feature engineering, and classification. This option involves providing raw input,

which may not have undergone significant processing, and extracting classification output via

sequence analysis [108, 109, 110, 111, 112].

Some authors who adopt another alternative in the Figure 3.2, represented by the path of

B, extract features in advance instead of using raw data as input [113]. Then the models are pro-

vided with the resulting measures. This approach emphasizes feature selection, dimensionality

reduction, and classification.

In the last option (C), the acquired coefficients are extracted and provided to another

classifier, as the authors [72, 107] use these models as feature engineering. Despite the advantages

of these approaches, they demand more extensive databases to prevent overfitting issues and to
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Figure 3.2: Current DL pipelines for predicting seizures. The colors represent the use of DL
models. Adapted from: Assi et al. (2017) [15].

yield better outcomes than other methods. Additionally, their increased complexity results in

difficulties interpreting the results, making their clinical applicability challenging [16, 113].

3.1.1 Signal Acquisition

Signal acquisition and data selection represent the starting point of a seizure prediction investi-

gation, wherein the selection of signal type and dataset profoundly influence the outcomes and

conclusions drawn across various studies.

The Table 3.1 presents an overview of the data employed in seizure prediction research

over the past decade, highlighting the EEG signal as the primary focus of the analysis, albeit

including other signals like Blood Volume Pulse (BVP), Accelerometry (ACC), Electrodermal

Activity (EDA), temperature, and sleep.

The most commonly used databases (Children’s Hospital Boston from the Massachusetts

Institute of Technology (CHB-MIT), EPILEPSIAE, Freiburg, American Epilepsy Society (AES),

and NeuroVista) include traditional scalp EEG or Intracranial Electroencephalogram (iEEG)

data.

Despite efforts, patient discomfort remained unresolved, underscoring the importance of

conducting studies that enable real-time data acquisition using more comfortable and portable

devices like wristbands and smartwatches. Anticipated success in these studies stems from using

a larger volume of data and exploring variations in research hypotheses. The addition of other

signal types to the Table 3.1, aside from the EEG, is attributable to these investigations, as
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Table 3.1: Overview of the signal acquisition from seizure prediction over the past 11 years.

Study Database Patients
No. of Seizures

(analyzed time)
Signal Electrodes

Assali et al. (2023) [116] CHB-MIT 17
61

(-)
Scalp EEG -

Hu et al. (2023) [117] CHB-MIT 22
198

(26.8 days)
Scalp EEG -

Li et al. (2023) [118]
Kaggle (AES)

CHB-MIT
4 dogs+18

41+90

(-)

iEEG

Scalp EEG
-

Lopes et al. (2023) [102] EPILEPSIAE 41
227

(233.3 days)
Scalp EEG -

Pinto et al. (2023) [119] EPILEPSIAE 40
224

(135.6 days)
Scalp EEG -

Xu et al. (2023) [120] CHB-MIT 4
27

(-)
Scalp EEG -

Liang et al. (2022) [121]
CHB-MIT

Kaggle (AES)
13+5 dogs+2

64+-

(-+55.57 days)

Scalp EEG

iEEG
-

Pal Attia et al. (2022) [108]
ZUH

KCL’s clinical trial
6

-

(409 days)
Subcutaneous EEG -

Peng et al. (2022) [122]
CHB-MIT

Freiburg
16+20

74+82

(-)

Scalp EEG

iEEG

-

3 in focal region and

3 far from local region

Pinto et al. (2022) [123] EPILEPSIAE 93
238t

(153.6t days)
Scalp EEG -

Singh et al. (2022) [124] CHB-MIT 24
173

(38.17 days)
Scalp EEG -

Viana et al. (2022) [114]
ZUH

KCL’s clinical trial
6

82

(594 days)
Subcutaneous EEG -

Zhang et al. (2022) [125]
SeizeIT1

SeizeIT2
42+39

182+67

(168.1+133.3 days)

Scalp EEG

BTE EEG
-

Nasseri et al. (2021) [76] NeuroPace 6
278

(4 years)

ACC

BVP, EDA

TEMP

Wristband

Pinto et al. (2021) [126] EPILEPSIAE 19
49t

(29.6t days)
Scalp EEG -

Proix et al. (2021) [86] NeuroPace 18
-

(> 6 months p.p.)
iEEG -

Stirling et al. (2021a) [115] Personal 1
134

(6 months)
Subcutaneous EEG -

Stirling et al. (2021b) [72] Personal 11
1493

(13.5 years)

BVP

Sleep stages
Smartwatch

Tamanna et al. (2021) [127] CHB-MIT 6
40

(-)
Scalp EEG -

Usman et al. (2021) [128] CHB-MIT 22
198

(26.8 days)
Scalp EEG -

Vandecasteele et al. (2021) [129]
SeizeIT1

EPILEPSIAE
42+93

221+675

(-)

Scalp EEG

BTE EEG

ECG

-

Gabara et al. (2020) [130] CHB-MIT 6
34

(8.4 days)
Scalp EEG -

Meisel et al. (2020) [74] Personal 69 -

ACC

BVP, EDA

TEMP

Wristband

Stojanović et al. (2020) [131]
EPILEPSIAE

Epilepsy Ecosystem
5+3

50+692

(1.32+33.17 days)
iEEG 31-122, 16

Xu et al. (2020) [109]
Kaggle (AES)

CHB-MIT
5 dogs+22

44+45

(1.85+1.18 days)

iEEG

Scalp EEG
-

Daoud and Bayoumi (2019) [107] CHB-MIT 8
43

(-)
Scalp EEG -

Nejedly et al. (2019) [78] NeuroVista Canines 4 dogs
75

(1608 days)
iEEG 16

Truong et al. (2019) [132]

Freiburg

CHB-MIT

EPILEPSIAE

13+13+30
59+64+261

(12.95+8.7+120 days)

Scalp EEG

iEEG
6, 22, 19

Zhang et al. (2019) [110] CHB-MIT 22
182

(-)
Scalp EEG -

Chamseddine et al. (2018) [99] Kaggle (AES) 1 dog
-

(85 hours)
Scalp EEG 16

Kiral-Kornek et al. (2018) [133] NeuroVista 15
2817

(16.29 years)
iEEG 16

Kitano et al. (2018) [134] CHB-MIT 9
59

(30.57 hours)
Scalp EEG -

Kuhlmann et al. (2018) [67] NeuroVista 3
211

(442 days)
iEEG 16

Truong et al. (2018) [111]

Freiburg

CHB-MIT

Kaggle (AES)

13+13+5 dogs+2
59+64+48

(13+8.7+26 days)

Scalp EEG

iEEG
6, 22, 19

Tsiouris et al. (2018) [112] CHB-MIT 12
185

(40 days)
Scalp EEG -
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Table 3.1 continued from previous page

Study Database Patients
No. of Seizures

(analyzed time)
Signal Electrodes

Yang et al. (2018) [135] Freiburg 19
83

(-)
iEEG -

Aarabi et al. (2017) [136] Freiburg 10
38

(242 hours)
iEEG

3 in focal region and

3 far from local region

Direito et al. (2017) [97] EPILEPSIAE 216
1206t

(697t days )

Scalp EEG

iEEG

F7, FZ, F8, T5, PZ, T6

6 random

6 in focal region

Karoly et al. (2017) [18] NeuroVista 9
1458

(10.35 years)
iEEG -

Khan et al. (2017) [137]
MSSM

CHB-MIT
12+15

15+18

(21.25+18 hours )
Scalp EEG -

Assi et al. (2015) [138] Kaggle (AES) 5 dogs
44

(-)
iEEG 16

Bandarabadi et al. (2015) [96] EPILEPSIAE 24
183t

(150t days)

Scalp EEG

iEEG

3 in focal region and

3 far from local region

Rasekhi et al. (2015) [139] EPILEPSIAE 10
86

(58 days)

Scalp EEG

iEEG

3 in focal region and

3 far from local region

Alvarado-Rojas et al. (2014) [73] EPILEPSIAE 53
558

(531 days)
iEEG -

Moghim and Corne (2014) [140] Freiburg 21
-

(24 days)
iEEG

3 in focal region and

3 far from local region

Teixeira et al. (2014) [95] EPILEPSIAE 278
2702

(2031 days)

Scalp EEG

iEEG

F7, FZ, F8, T5, PZ, T6

6 random

6 in focal region

Cook et al. (2013) [68] NeuroVista 15
1392

(≈ 16 years)
iEEG 16

Rabbi et al. (2013) [141] EPILEPSIAE 1
7

(1.5 days)
iEEG 2

Rasekhi et al. (2013) [142] EPILEPSIAE 10
46t

(31t days)

Scalp EEG

iEEG

3 in focal region and

3 far from local region

AES stands for American Epilepsy Society. CHB-MIT for the Children’s Hospital Boston from the Massachusetts
Institute of Technology, MSSM for Mount Sinai Epilepsy Center at the Mount Sinai Hospital, ZUH for Zealand
University Hospital, and KCL for King’s College London. BTE for Behind-The-Ear. In analysed time and
seizures, ”t” stands for testing data. BVP, ACC, EDA, and TEMP stand for blood volume pulse, accelerometry,
electrodermal activity, and temperature.

evidenced by Stirling et al. (2021b) [72], Nasseri et al. (2021) [76], and Meisel et al. (2020)

[74]. Also, this extends to examining newly introduced EEG acquisition modalities, specifically

Subcutaneous Electroencephalography (sqEEG) and Video Electroencephalography (vEEG).

The outlook for research suggests a shift toward investigating sqEEG data. This represents a

promising direction, with initial studies [108, 114, 115] starting to investigate its utility, although

the data is not yet publicly accessible.

Electrode selection

Research endeavors concerning EEG have unveiled several approaches to selecting electrodes for

data acquisition, encompassing quantity and location. A subset of studies (including Assali et

al. (2023) [116], Hu et al. (2023) [117], Li et al. (2023) [118], Lopes et al. (2023) [102], Pinto

et al. (2023) [119], Xu et al. (2023) [120], Liang et al. (2022) [121], Pinto et al. (2022) [123],

Usman et al. (2021) [128], Zhang et al. (2019) [110], Daoud and Bayoumi (2019) [107], Tsiouris

et al. (2018) [112], and others) elects to use all obtainable electrodes. In contrast, others prefer

a restricted number of electrodes situated in specific regions or at random, intending to increase

patient comfort and simulate real-life scenarios as closely as possible. Such choices generate

different assumptions that call for in-depth analysis.

Opting for a random selection of electrodes is based on the assumption that the processes

that generate seizures can be detected anywhere in the brain. Using a specific set of electrodes

(such as F7, FZ, F8, T5, PZ, and T6) makes it possible to maximize scalp coverage while mini-
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mizing the number of electrodes used. On the other hand, the exclusive selection of electrodes

in focal and non-focal regions [95, 97] assumes that the differential on activity is sufficient to

capture seizure generation. In more detail, three electrodes close to the focal region and three

others farther away were chosen for studies: Peng et al. (2022) [122], Aarabi et al. (2017) [136],

Bandarabadi et al. (2015) [96], Rasekhi et al. (2015) [139], Moghim and Corne (2014) [140],

and Rasekhi et al. (2013) [142].

Although selecting all electrodes may appear intuitive, given its comprehensive data cov-

erage, this approach can result in significant computational costs and discomfort for patients.

Nevertheless, the chaotic nature of the entire brain makes it challenging to identify any assump-

tion that can accurately predict seizures [143].

3.1.2 Preprocessing

Obtaining precise information from raw biomedical signals, especially EEG is complex. Proper

preprocessing is necessary to improve signal quality, reduce noise and artifacts, and normalize

the data for comparison with other patients’ recordings. The central goal is to develop an

effective real-time method for receiving and processing data [144].

Figure 3.3 displays a general pipeline for signal preprocessing. First, the data is segmented

using window analysis to work with smaller information blocks. Following that, performing

actions such as denoising, filtering, artifact removal, and/or decomposition is possible. Taking

careful note of defined steps, such as outlining the preictal period, Seizure Occurrence Period

(SOP), and Seizure Prediction Horizon (SPH), is essential. These aspects should be established

early in the research and tailored to align with the intended intervention, whether alerting the

patient, initiating rescue medication, or electrostimulation.

Raw Signal

SOP and SPH
definition

Data Windowing Denoising and
Filtering

Preictal period
definition

Signal
Decomposition

Artifact Removal

Required if Sup. Learning 

Required  

Figure 3.3: Flowchart of the typical signal processing pipeline in seizure prediction. The
definition of the preictal period is required when using a supervised learning approach.

Table 3.2 provides an overview of the authors’ decisions on signal preprocessing. Most

studies tend not to emphasize noise removal, filtering, and artifact removal due to the complexity

of the EEG signal. Overusing these methods could result in the loss of relevant brain information.
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Data segmentation

A moving window analysis approach is employed in seizure prediction systems to extract chrono-

logical features and enable online time series analysis simulations. This involves partitioning the

EEG signal into small windows, with potential overlap between consecutive windows.

In accordance with the selected studies provided in the Table 3.2, window duration falls

essentially within the range of 2 to 60 seconds, with non-overlapping 5-second windows being

the most widely used [68, 73, 95, 96, 97, 99, 110, 112, 117, 122, 123, 138, 139]. The selection

of these values primarily depends on computational cost and execution speed, with variables

such as the number of electrodes, sampling frequency, and recording duration influencing the

decision. Additionally, there is a prevailing belief that windows spanning from 1 second to 1

minute effectively compromise spatial and temporal resolution for examining EEG dynamics

while maintaining a level of stationarity. Hence, 5-second windows find widespread use for this

reason.

Denoising, Filtering and Artifact Removal

It is unavoidable that noise and artifacts from various sources will corrupt the captured EEG

signals. Accordingly, signal filtration becomes an indispensable step, and the specific method-

ologies to be applied depending on the particular form of noise or artifacts requiring eradication

[145].

A notch filter effectively removes powerline interference within the 50 to 60 Hz frequency

range. Moreover, the principal strategies include filtering the signals within specified frequency

ranges of interest, decomposing wavelet coefficients, and excluding visually recognized defective

segments [15].

Using bandpass filters is a widely prevalent practice, with only the chosen cut-off fre-

quencies differing across studies. In most cases, respiratory artifacts manifest as low-frequency

components below 0.5 Hz, making it the typical choice for the lower limit of cut-off frequen-

cies. The higher limit value is typically more challenging to delimit since it consists mainly of

environmental noise.

The available evidence suggests that the authors did not give extensive attention to this

step at this stage, given the potential risk of losing important information and the potential

robustness of subsequent steps to handle noise and artifacts. Thus, it is possible to address this

aspect during the classification tasks.

Preictal Period Duration, SOP, and SPH

The duration of the preictal period lacks a clear and consistent definition, owing to its heterogene-

ity across patients and seizures. Consequently, there is no consensual ideal value for its length

[146]. A range of values has been employed in research, with some utilizing a fixed preictal period

(5 min [140], 10 min [134, 137], 15 min [133], 30 min [18, 102, 109, 110, 118, 121, 124, 127, 132],

60 min [73, 74, 76, 78, 99, 107, 108, 114, 138], or other values [67, 117, 120, 128]) while others

exploring multiple values [72, 95, 96, 97, 112, 116, 119, 123, 139, 141, 142]. The fixed periods

established in these studies span from 5 to 240 minutes.
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Table 3.2: Overview of the signal preprocessing steps, preictal period, and SPH duration over
the last 11 years.

Study
Sliding

Window
Filtering

Preictal

Period
SPH

Assali et al. (2023) [116]
2s

No overlap
- 30 min and 60 min -

Hu et al. (2023) [117]
5s

N.A. overlap

5th-order Butterworth band-pass

5-50Hz
25 min 5 min

Li et al. (2023) [118]
30s

No overlap
- 30 min

1 min (CHB-MIT)

5 min (Kaggle)

Lopes et al. (2023) [102]
10s

No overlap

0.5–100Hz 4th-order band-pass

50Hz 2nd-order notch
30 min 10 min

Pinto et al. (2023) [119]
5s

No overlap
- 30, 40, 50, 60 min 10 min

Xu et al. (2023) [120]
30s

50% overlap

Trap

57-63Hz and 117-123Hz
4 hours 5 min

Pal Attia et al. (2022) [108]
60s

No overlap

0.5-48Hz band-pass

40dB attenuation
60 min 5 min

Liang et al. (2022) [121]

30s

S samples overlap (CHB-MIT)

No overlap (AES)

57-63 and 117-123Hz band-pass and

DC removal (CHB-MIT)
30 min (CHB-MIT) -

Peng et al. (2022) [122]
5s

No overlap

57-63 and 117-123Hz (CHB-MIT), 47-53

and 97-103Hz (FREI) band-pass
30 min 30 min

Pinto et al. (2022) [123]
5s

No overlap

50Hz notch

0.5Hz high-pass

30, 35, 40, 45, 50, 55, 60,

65, 70, 75, 80, 85, 90 min
-

Viana et al. (2022) [114]
60s

No overlap

0.5-48Hz band-pass, 25Hz

low-pass, 40dB attenuation
60 min -

Singh et al. (2022) [124]
5, 10, 15, 20, 25, 30s

No overlap

2nd-order Butterworth band-pass

0.1-127Hz
30 min 5 min

Zhang et al. (2022) [125]
2s

50% overlap
1-25Hz band-pass - -

Nasseri et al. (2021) [76]
1, 4s

N.A. overlap
- 60 min 15 min

Pinto et al. (2021) [126]
5s

No overlap

50Hz notch

0.5Hz high-pass

30, 35, 40, 45, 50, 55, 60,

65, 70, 75, 80, 85, 90 min
-

Stirling et al. (2021a) [115] N.A.
0th-order Butterworth band-pass

Hilbert transform
- -

Stirling et al. (2021b) [72]
5, 60s

No overlap

Butterworth band-pass

Hilbert transform
60 min and 24 hours -

Tamanna et al. (2021) [127]
10s

(-)
- 30 min -

Usman et al. (2021) [128]
29s

No overlap
Empirical Mode Decomposition 32 min -

Vandecasteele et al. (2021) [129]
2, 60s

50 and 17% overlap
- - -

Gabara et al. (2020) [130]
4s

N.A. overlap
- - -

Meisel et al. (2020) [74]
30s

No overlap
- 60 min -

Stojanović et al. (2020) [131]
20s

50% overlap

50Hz Parks-McClellan optimal

equiripple FIR (FSP)

50Hz Butterworth IIR (ECO)

5 min (FSP)

60 min (ECO)

30s (FSP

5 min (ECO)

Xu et al. (2020) [109]
20s

No overlap
- 30 min 5 min

Daoud and Bayoumi (2019) [107]
5s

No overlap
- 60 min -

Nejedly et al. (2019) [78]
30s

15s overlap
- 60 min -

Truong et al. (2019) [132]
28s

No overlap

Band-pass as notch

47-53Hz and 97-103Hz
30 min 5 min

Zhang et al. (2019) [110]
5s

No overlap

5th-order Butterworth band-pass

5-50Hz
30 min -

Chamseddine et al. (2018) [99]
5s

No overlap

0-190Hz bandpass

60Hz notch
60 min -

Kiral-Kornek et al. (2018) [133]
5s

No overlap

Octave-wide digital and notch

8Hz-128Hz
15 min -

Kitano et al. (2018) [134]
4s

No overlap
- 10 min -

Truong et al. (2018) [111]
30s

No overlap

Notch

DC removed
30 min 5 min

Tsiouris et al. (2018) [112]
5s

No overlap
- 15, 30, 60, 120 min -

Kuhlmann et al. (2018) [67]
0s to 600s

0 to 50% overlap
- 55 min 5 min

Yang et al. (2018) [135]
5, 120, 360s

No overlap
Notch - -

Direito et al. (2017) [97]
5s

No overlap
50Hz notch 10, 20, 30, 40 min 10s
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Table 3.2 continued from previous page

Study
Sliding

Window
Filtering

Preictal

Period
SPH

Aarabi et al. (2017) [136]
10s

No overlap

50Hz notch

0.5-100Hz 4th-order Butterworth
30, 50 min 10s

Karoly et al. (2017) [18]
60s

50% overlap

50Hz notch

1-140Hz band-pass
30 min 1 min

Khan et al. (2017) [137]
1s

No overlap
0-128Hz low-pass 10 min -

Assi et al. (2015) [138]
5s

No overlap

50Hz notch

0.5 - 180Hz band-pass
60 min 5s

Bandarabadi et al. (2015) [96]
5s

No overlap
50Hz notch 10, 20, 30, 40 min -

Rasekhi et al. (2015) [139]
5s

No overlap
50Hz notch 10, 20, 30, 40 min -

Alvarado-Rojas et al. (2014) [73]
5s

No overlap

8th-order Butterworth

in bands of interest from 0.5Hz to 140Hz

Hilbert transform

60 min 1 min

Moghim and Corne (2014) [140]
5s and 9s

No overlap
Artifact removal with EEGLAB 5 min -

Teixeira et al. (2014) [95]
5s

No overlap
50Hz notch 10, 20, 30, 40 min 10s

Cook et al. (2013) [68]
5s

No overlap

Octave-wide digital and notch

8Hz-128Hz
minutes to hours -

Rabbi et al. (2013) [141]
10s

50% overlap

60Hz notch

0.5 - 100Hz band-pass
15, 30, 45 min -

Rasekhi et al. (2013) [142]
5s

No overlap
50Hz notch 10, 20, 30, 40 min -

An accurate definition of the preictal period holds great significance in supervised learning

techniques. Nonetheless, unsupervised learning methods can also be used in prediction systems

to identify preictal labels [147, 148].

The spectrum of SPH values in Table 3.2, ranging from 5 seconds to 30 minutes, indicates

that there is still no definitive answer regarding the ideal duration of SPH. Despite the absence

of a defined value, it is crucial to consider that the duration should be sufficient to enable timely

alerts or interventions, as required.

In this sense, the prevailing belief is that most studies present an unrealistic scenario of

what is necessary for practical applications since they do not specify the SPH value, creating

the perception that this period receives no attention. Given that the preictal period comprises

both the SOP and SPH, ignoring the SPH duration would result in the SOP period representing

the entire preictal period [149].

3.1.3 Feature Extraction

Feature extraction, an intrinsically heterogeneous step, encompasses several methodological ap-

proaches. It involves extracting the most discriminative features from the EEG signals. Nev-

ertheless, the search for a combination of ideal features persists. Although it is possible to

exclusively employ black-box methodologies, the ongoing search for an optimal combination is

advantageous as it ensures a higher level of reliability. This approach allows for understanding

the overall EEG dynamics, evaluating potential external influences such as artifacts or noise,

and providing more comprehensive explanations regarding signal behavior.

The core objective revolves around capturing three essential dimensions that characterize

seizure activity [15, 17, 141]:

• the increase in energy due to cerebral electrical discharges;

• the shift in spectral power from lower to higher frequencies;

• the augmentation of neural synchronization.
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The Figure 3.4 reveals the arrangement of these characteristics into four main classes, clas-

sifying them based on their linearity and the number of channels used. In terms of linearity,

these features assume designations of linear or nonlinear. Regarding channel usage, the classi-

fication separates into univariate – for single-channel applications – and bivariate/multivariate,

which account for analyses that use two or more channels [15, 150, 151].
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Figure 3.4: Classification of frequently utilized EEG features in seizure prediction studies,
organized according to number of channels and linearity.

Table 3.3 delivers a comprehensive panorama of the attributes extracted across several

seizure prediction studies in the last 11 years. Rasekhi et al. (2015) [139] revealed that employ-

ing multivariate features results in fewer incorrect predictions than univariate ones. However,

although multivariate approaches offer a greater wealth of information, univariate measures are

computationally more efficient and have a straightforward interpretation. Notably, linear uni-

variate features have found more application than nonlinear options, driven by their simplicity

and the clarity of their interpretation. Despite the absence of a definitive, essential feature,

Morman et al. in 2005 [152] used a set of multivariate and univariate characteristics, showcasing

remarkably satisfactory predictive outcomes. Moreover, their elevated computational demands

might constrain the real-time viability of nonlinear features. The comparative performance

analysis between different types of features has generated conflicting results in the literature

[152, 153, 154], so no conclusion has yet been drawn [15, 155]. Nevertheless, the scientific

community has heavily invested in using well-established univariate linear features in long-term

data analysis. This investment affirms that progress in this field has primarily revolved around

database developments.

With the growth of DL techniques [107, 112, 117, 118, 120, 128, 156], some approaches

combine Convolutional Neural Network (CNN) for automatic feature extraction and Long-term

Memory Network (LSTM) for classification, particularly when the temporal dimension of the
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data holds significance. Nonetheless, even in DL approaches, it is common to primarily focus

on transforming the signals into the frequency domain.

Categorizing the extracted features into univariate or multivariate, linear or nonlinear con-

tributes significantly to a more structured and comprehensible feature extraction process. Ap-

pendix A presents an extensive overview of these features.

3.1.4 Feature Selection

The process of feature selection holds a significant position within prediction algorithms, par-

ticularly due to the intricate nature of brain dynamics and the necessity to comprehend the

transitions between interictal and preictal states. The combination of multiple resources of-

ten leads to high-dimensional spaces, which demands careful selection of the most informative

features. This decision-making process is significant to prevent redundancy or ambiguity that

might negatively affect the classifier’s performance. The aim is to identify features with strong

discriminating power and avoid overfitting [15].

To achieve this objective, several techniques have been put into action, including Reli-

efF [140], minimum Redundancy Maximum Relevance (mRMR) [15, 138, 139, 157], maximum

Difference Amplitude Distribution (mDAD) histograms [146], minimum normalized difference of

percentiles [96], forward selection [158], and Genetic Algorithmss (GAs) [123, 126, 138, 159, 160].

The intention behind each of these approaches is to identify the most effective set of resources.

ReliefF quantifies the importance of features through random sampling and evaluating

instance proximity to determine their significance. In contrast, mDAD operates by examining

histograms illustrating amplitude distributions. The variables that lead to minimal histogram

overlap for each class are considered the most distinct. On the other hand, mRMR, a widely

employed method, ranks resources by enhancing their relevance while minimizing redundancy

among them. GAs take inspiration from natural selection processes. It leverages biological

principles, where the strongest members from an initial population survive and recombine to

adapt to external shifts.

Another widely employed technique is Principal Component Analysis (PCA), which seeks to

simplify high-dimensional data by transforming it into a lower-dimensional orthogonal space. In

this process, the original features are combined to form what’s called principal components, each

representing a unique orthogonal projection. The sequence of principal components is decided by

the eigenvalues of the covariance matrix, which enables the choice of projections showcasing the

most significant variances. This technique is effective in maintaining the essential information

of the data while making it less complex [15, 161].

Finally, in the case of DL approaches, the reduction is done by convolutional layers [109,

117, 120, 128, 132, 156] or autoencoders [107].
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Table 3.3: Overview of the used features from seizure prediction over the past 11 years.

Linear Univariate Features Nonlinear Univariate Features Linear Multivariate Features Nonlinear Multivariate Features

Study Other
Statistical
Moments

Spectral
Band
related

Wavelets
Auto-regressive

Modelling
Energy

Hjorth
Parameters

Decorrelation
Time

Phase-space
and Chaos

Lyapunov
Exponent

Dynamic
Similarity

Index

Line-
length

Energy Entropy Ratio Correlation
Dynamical
Entrainment

Mean
Phase

Coherence

Nonlinear
interdependence

Synchrony

Assali et al. (2023) [116]
From raw data

to STFT
Stability Index

X X

Hu et al. (2023) [117]
Raw data

and STFT data
X

Li et al. (2023) [118] Raw data
Lopes et al. (2023) [102] Raw data X X X X X
Pinto et al. (2023) [119] Raw data X X X X X X
Xu et al. (2023) [120] Raw data

Pal Attia et al. (2022) [108]
Raw data,

FFT data, and TOD
X

Pinto et al. (2022) [123] X
Singh et al. (2022) [124] X X

Viana et al. (2022) [114]
Raw data

and FFT data
X

Zhang et al. (2022) [125] Total Power X X X

Nasseri et al. (2021) [76]
Raw data

HR
Time of the day

Proix et al. (2021) [86]
Temporal
Features

Stirling et al. (2021a) [115]
Event-based cycles
Seizure-based cycles

Stirling et al. (2021b) [72]
HR features

Time of the day
Sleep features

Tamanna et al. (2021) [127] X X X X

Usman et al. (2021) [128]
From raw data

to STFT
X

Vandecasteele et al. (2021) [129]
Time domain
HR/HRV

X X

Gabara et al. (2020) [130] X X

Meisel et al. (2020) [74]
Raw data

HR
Stojanović et al. (2020) [131] X

Xu et al. (2020) [109] Raw data
Daoud and Bayoumi (2019) [107] Raw data

Nejedly et al. (2019) [78]
Raw data

and STFT data

Truong et al. (2019) [132]
From raw data

to STFT
X

Zhang et al. (2019) [110]
From raw data

to CSP
Chamseddine et al. (2018) [99] X

Kiral-Kornek et al. (2018) [133]
From raw data
to Spectograms
Time of the day

X

Kitano et al. (2018) [134] X
Kuhlmann et al. (2018) [67] X X X X X X X X X X X

Truong et al. (2018) [111]
From raw data

to STFT
X

Tsiouris et al. (2018) [112] Raw data
Yang et al. (2018) [135] X
Aarabi et al. (2017) [136] X X
Direito et al. (2017) [97] X X X X X X X
Karoly et al. (2017) [18] X X X
Assi et al. (2015) [138] X X X

Bandarabadi et al. (2015) [96] X X
Rasekhi et al. (2015) [139] X X X X X X X X

Alvarado-Rojas et al. (2014) [73]
Phase interaction

with HFO
Moghim and Corne (2014) [140] X X X X X X

Teixeira et al. (2014) [95] X X X X X X X
Cook et al. (2013) [68] X X X
Rabbi et al. (2013) [141] X X X X
Rasekhi et al. (2013) [142] X X X X X X X

STFT stands for Short-Time Fourier Transform, FFT for Fast-Fourier Transform, TOD for Time Of the Day, HR for Heart Rate, CSP for Common Spatial Patterns, and
HFO for High-Frequency Oscillations.
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3.1.5 Classification

The classification phase entails using a trained model to distinguish between preictal and, usually,

the interictal state based on selected features. The methods employed span a broad spectrum,

including traditional approaches and sophisticated DL algorithms (see Table 3.4). Within these

DL, a common trend is the transition from utilizing Support Vector Machines (SVMs) [15, 96,

97, 125, 127, 129, 139, 140, 156] to CNNs [16, 67, 78, 99, 103, 109, 116, 128, 133] and LSTMs

[72, 74, 76, 99, 107, 108, 112, 114, 128].

Furthermore, various other classification methods, such as Deep Residual Shrinkage Net-

works (DRSNs) [120], Transformer [117], Gated Recurrent Units (GRUs) [99], random forests

and decision trees [67, 68, 72, 115, 129], k-Nearest Neighbors (kNNs) [68], Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) [138, 141], and logistic regressions [18, 72, 115, 123, 126],

found application.

Nevertheless, data imbalance, wherein there are more interictal samples than preictal ones,

presents a difficulty during the training process. In response, the authors have applied a range

of strategies. These include reducing interictal sample numbers [95, 96, 97, 138], customizing

classifiers more responsive to cost considerations [15, 155], or producing synthetic preictal sam-

ples using Generative Adversarial Networks (GANs) [132]. These tactics all aim to balance the

representation of different states, ultimately enhancing the model’s predictive capabilities.

Data partition strategies

Assessing the performance of a prediction algorithm involves subjecting it to tests using data

independent of the training dataset, ensuring its ability to perform well in diverse scenarios.

In order to prevent bias, it is critically important to avoid utilizing training and testing data

related to the same seizures. Therefore, adopting data partitioning methods is vital in creating

distinct training and testing sets.

Choosing a partitioning method involves making different assumptions regarding seizure

prediction. In specific strategies [117, 108, 157, 161], a predetermined number of seizures are

chosen from all patients for training purposes, with the rest reserved for the testing phase.

Another viewpoint embraces an individualized strategy, where the model is trained and tested

individually for each patient [97, 109, 114, 116, 124, 130, 131, 136, 140, 141], recognizing the

substantial variability in the mechanisms driving seizure generation across patients. In particular

cases, authors take this concept further by considering the sequence of seizures, utilizing initial

seizures for training and subsequent ones for testing [73, 76, 95, 96, 123, 126, 139].

Recently, the Leave-One-Out technique has garnered attention [74, 107, 108, 110, 111, 118,

120, 121, 122, 129, 132]. Here, N-1 seizures (or patients) are used for training, leaving one seizure

for testing. N represents the total number of seizures/patients. Additionally, for studies that

consider concept drifts, as is the case with analyses conducted using ultra-long-term records

(having a duration of several months for each individual), authors incorporate regular retraining

of classifiers to ensure their effectiveness over an extended period [18, 68, 76, 133].
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Table 3.4: Overview of the classification, regularization, performance, and statistical validation
over the past 11 years.

Study
Training data

(testing data)

Classification

(regularization)
Performance

Statistical

Validation

Assali et al. (2023) [116]
80% samples

(20% samples)
CNN

SS=0.93

ACC=0.945
No

Hu et al. (2023) [117]
80% samples

(20% samples)
Transformer

SS=0.92

FPR/h=0.00
No

Li et al. (2023) [118]
Leave-One-Out

with seizures
MLPs

SS=0.93

FPR/h=0.11
No

Xu et al. (2023) [120]
Leave-One-Out

with seizures
DRSN-GRU

SS=0.90

FPR/h=0.025
No

Pal Attia et al. (2022) [108]
k-fold cross validation

with patients

LSTM

(1h smooth)

SS=0.54

TiW=0.33

4 in 6 (0.67)

Surrogate Analysis

Liang et al. (2022) [121]

(CHB-MIT)

Leave-One-Out

with seizures

CNN

(K-of-N analysis)

SS=0.88 (CHB-MIT)

FPR/h=0.04 (CHB-MIT)

AUC=0.86 (AES)

No

Peng et al. (2022) [122]
Leave-One-Out

with seizures

MMS-AAE

+ SVM

SS=0.73 (CHB-MIT)

FPR/h=0.24 (CHB-MIT)

SS=0.76 (FSP)

FPR/h=0.19 (FSP)

No

Pinto et al. (2022) [123]
First 3 seizures

(remaining seizures)

Logistic Regression

(Firing Power)

SS=0.16

FPR/h=0.21

30 in 93 (0.32)

Surrogate Analysis

Viana et al. (2022) [114]
Initial 1/3 of data

(last 2/3 of data)

LSTM

(1h smooth)

SS=0.73

TiW=0.34

5 in 6 (0.83)

Surrogate Analysis

Singh et al. (2022) [124]
90% of data

10% of data
CNN

SS=0.98

SP=0.97
No

Zhang et al. (2022) [125]
SeizeIT1 dataset

(SeizeIT2 dataset)
SVM

SS=0.88

FPR/h=1.93

4 in 6 (0.67)

Surrogate Analysis

Nasseri et al. (2021) [76]
First 2/3 of data

(last 1/3 of data)

LSTM

(Kalman Filter)
AUC=0.80

5 in 6 (0.83)

Random Predictor

Pinto et al. (2021) [126]
First 60% of seizures

(last 40% of seizures)

Logistic Regression

(Firing Power)

SS=0.37

FPR/h=0.79

6 in 19 (0.32)

Surrogate Analysis

Proix et al. (2021) [86]
At least

60% of data
PP-GLMs

AUC=0.74

BSS=0.23

15 in 18 (0.83)

Surrogate Analysis

Stirling et al. (2021a) [115]

Retraining and

testing chronologically

and iteratively

Random Forest+Log Reg AUC=0.88 No

Stirling et al. (2021b) [72]

Retraining and

testing chronologically

and iteratively

LSTM+Random Forest

+Log Reg

(Kalman Filter)

AUC=0.74
11 in 11 (1.00)

Random Forecast

Tamanna et al. (2021) [127]
80% of data

(20% of data)

SVM

(K-of-N analysis)

ACC=0.96

FPR/h=0.19
No

Usman et al. (2021) [128]
k-fold cross validation

with seizures
CNN+LSTM

SS=0.93

SP=0.92
No

Vandecasteele et al. (2021)

[129]

Leave-One-Out

with seizures (EEG)

with patients (ECG)

SVM (EEG)

Random Forest (ECG)

SS=0.79 (EEG)

SS=0.64 (ECG)

FPR/h=1.00

No

Gabara et al. (2020) [130]
70% of data

30% of data
SVM

SS=0.96

ACC=0.96
No

Meisel et al. (2020) [74]
Leave-One-Out

with patients
LSTM

SS=0.51

TiW=0.44

30 in 69 (0.43)

Random Predictor

Stojanović et al. (2020) [131]
70% of data

(30% of data)
SVM

SS=0.95 (EPI)

SP=0.99 (EPI)

SS=0.69 (ECO)

SP=0.79 (ECO)

No

Xu et al. (2020) [109]
80% samples

(20% samples)
CNN

SS=0.96

FPR/h=0.07
No

Daoud and Bayoumi (2019)

[107]

Leave-One-Out

with seizures
CNN, Bi-LSTM

SS=0.99

FPR/h=0.004
No

Nejedly et al. (2019) [78]
Increases over time

(after training epochs)
CNN

SS=0.79

TiW=0.18

4 in 4 (1.00)

Random Predictor

Truong et al. (2019) [132]
Leave-One-Out

with seizures
GAN, CNN, NN AUC=0.81

51 in 56 (0.91)

Hanley-McNeil AUC test

Zhang et al. (2019) [110]
Leave-One-Out

with seizures

CNN

(Kalman Filter)

SS=0.92

FPR/h=0.12

Statistical comparison

between methods

Chamseddine et al. (2018) [99]
80% samples

(20% samples)

LSTM, GRU, CNN

(Kalman Filter,

Firing Power)

SS=0.88

SP=0.99
No

Kiral-Kornek et al. (2018)

[133]

First 2 months

(remaining duration)
CNN

SS=0.69

FPR/h=0.00

15 in 15 (1.00)

Random Predictor

Kuhlmann et al. (2018)[67]
Training

and testing clips

GLMs, SVM, CNN

Ensembles, Boosting, Trees

AUC=0.75

FPR/h=0.58
No

Truong et al. (2018) [111]
Leave-One-Out

with seizures

CNN

(Kalman Filter)

SS=0.79

FPR/h=0.14

28 in 31 (0.90)

Random Predictor

Tsiouris et al. (2018) [112] K-fold with recordings LSTM
SS=0.99

FPR/h=0.02
No

Aarabi et al. (2017) [136]
1 seizure

(remaining seizures)
Thresholding

SS=0.89

FPR/h=0.11

8 in 10 (0.8)

Random Predictor
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Table 3.4 continued from previous page

Study
Training data

(testing data)

Classification

(regularization)
Performance

Statistical

Validation

Direito et al. (2017) [97]
2 - 3 seizures / patient

(remaining seizures)

SVM

(Firing Power)

SS=0.38

FPR/h=0.20

24 in 216 (0.11)

Random Predictor

Karoly et al. (2017) [18]
Day 100-200

(Day 200 onwards)

Logistic Regression

(Bin width of 1h)

SS=0.60

TiW=0.23

9 in 9 (1.00)

Time-matched predictor

Khan et al. (2017) [137] 10-fold cross validation CNN
SS=0.87

FPR/h=0.14
Random Predictor

Assi et al. (2015) [138]
80% segments

(Remaining segments)
SVM, ANFIS

SS=0.85

SP=0.80
No

Bandarabadi et al. (2015)

[96]

First 3 seizures / patient

(Remaining seizures)

SVM

(Firing Power)

SS=0.76

FPR/h=0.10

23 in 24 (0.96)

Random Predictor

Rasekhi et al. (2015) [139]
First 3 seizures / patient

(Remaining seizures)

SVM

(Firing Power)

SS=0.61

FPR/h=0.11

5 in 10 (0.50)

Random Predictor

Alvarado-Rojas et al. (2014)

[73]

First 4 seizures / patient

and at least 10

hours of data

(Remaining seizures)

Thresholding

(Kalman Filter)

SS=0.47

FPR/h=0.94

7 in 53 (0.13)

Random Predictor

Moghim and Corne (2014)

[140]

10-fold cross validation

with 70%/30% samples
SVM

SS=0.91

SP=1.00
Unspecific predictors

Teixeira et al. (2014) [95]
2 - 3 seizures / patient

(Remaining seizures)

SVM, ANN

(Firing Power)

SS=0.74

FPR/h=0.28

Statistical comparison

between methods

Cook et al. (2013) [68]
First 4 months

(Remaining duration)

kNN+Decision Tree

(Smoothing)

SS=0.61

TiW=0.23

9 in 10 (0.90)

Time-matched predictor

Rabbi et al. (2013) [141]
1 seizure / patient

(5 seizures)
ANFIS

SS=0.80

FPR/h=0.46
No

Rasekhi et al. (2013) [142]
First 3 seizures / patient

(Remaining seizures)

SVM

(Firing Power)

SS=0.74

FPR/h=0.15
No

LSTM stands for Long Short-Term Memory, CNN for Convolutional Neural Network, DRSN for Deep Residual
Shrinkage Network, GRU for Gated Recurrent Unit, MLP for Multi-Layer Perceptron, SVM for Support Vector
Machine, ANFIS for Adaptive Neuro-Fuzzy Inference Systems, GLM for Generalized Linear Model, PP-GLM for
Point Process Generalized Linear Model, GAN for Generative Adversarial Network, ANN for Artificial Neural
Network, kNN for k-Nearest Neighbor, SS for Sensitivity, FPR/h for False Positive Rate per Hour, ACC for
Accuracy, AUC for Area Under the Curve, BSS for Brier Skill Score, TiW for Time in Warning.

SVMs

SVMs find extensive application in seizure prediction [67, 95, 96, 97, 125, 127, 129, 130, 131, 138,

139]. In supervised machine learning, SVMs are notable for their generalization capacity and a

small set of parameters requiring adjustment [15, 97, 139]. The fundamental aspect of SVMs is

ascertaining a linear separation plane within an N-dimensional space, aiming to maximize the

separation between the nearest points of different classes, the so-called support vectors. When

dealing with nonlinear separation scenarios, SVMs incorporate nonlinear kernel functions like

the Radial Basis Function (RBF), creating nonlinear decision boundaries [15, 42, 97, 139].

Linear SVMs offer notable interpretability, mainly due to their ability to construct separat-

ing hyperplanes based on critical cases of each class, commonly referred to as support vectors.

Nevertheless, in cases with a high number of features, a trade-off exists between the volume of

features and the interpretability of the model, necessitating careful consideration.

CNNs

CNNs [67, 78, 99, 107, 109, 110, 111, 116, 121, 124, 128, 132, 133] emerge as a subgroup of

DL algorithms known for their proficiency in directly extracting essential features from raw

data. Initially designed for processing multidimensional data, such as images, CNNs possess

the skill to capture patterns and temporal information intrinsic to time series data [113, 162].

This proficiency becomes especially relevant in seizure prediction, given that the neural network

integrates the EEG time series. To facilitate this, techniques like the Fast Fourier Transform

(FFT) or wavelet decomposition can be employed to transform the raw data into a more suitable
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format [110, 111, 128, 132]. As a result, researchers can approach seizure prediction using EEG

as an improved visual time series, accounting for electrode arrangement and their interactions

[109, 137].

The design of CNN architectures can exhibit diversity, although it typically involves a

sequence of convolutional layers. These layers employ kernel convolutions to create feature

maps. These maps undergo processing through pooling layers, prioritizing extracting significant

features from the earlier generated maps. Subsequently, classification layers can be employed to

make determinations based on the extracted features. Dropout layers are introduced to mitigate

potential overfitting concerns due to the extensive number of network parameters. These layers

randomly suppress the output of specific units during the training phase [137].

Recurrent Neural Networks (RNNs)

LSTMs [72, 74, 76, 108, 99, 112, 114, 128] represent an advancement of RNNs and assume

a critical role within the realm of DL. They incorporate specialized units, known as gates,

which regulate the retention and removal of information by adjusting corresponding weights.

Diverging from CNNs, LSTMs aren’t constrained by a fixed window, enabling the capture of

temporal patterns in varied contexts, including seizure prediction. Nonetheless, both LSTMs

and CNNs face the obstacle of requiring substantial data volumes and being prone to overfitting

[107, 112, 113, 128]. In some cases [128], the combined approaches of CNNs and LSTMs are used,

taking advantage of the features extracted by the CNNs to enhance the classification conducted

by the LSTMs. This synergy between the two approaches effectively addresses the temporal

nature of the data.

GRUs, a subtype of RNNs, share similarities with LSTMs but introduce the concepts of

reset and update gates, improving the operation of hidden states. GRUs exhibit structural and

computational superiority compared to LSTMs, with the added benefit of fewer parameters and

reduced susceptibility for overfitting [120, 163, 164].

Despite their advantages, LSTMs and GRU face challenges when processing very long

sequences. In response to this limitation, attention layers have emerged as a solution to handle

more extensive sequences, likely to be further explored in the future. Their advantage lies in

easy parallelization, leading to faster computation than LSTMs. However, these do not explicitly

consider temporality like any RNN. Thus, the transformer model comes into play, characterized

by its network architecture exclusively built on attention and fully connected layers.

3.1.6 Regularization

In the context of evaluating the classifier outputs in seizure prediction systems, it is essential to

recognize the inherent limitations of their performance. Real-life scenarios reveal that classifiers

rarely accurately categorize all samples due to data noise and the independent nature of analysis

intervals [15, 95]. As a result, it becomes vital to integrate a postprocessing phase that addresses

the temporal intricacies of algorithmic decisions, aiming to diminish false alarms and enhance

the system’s specificity.

A strategy for mitigating the occurrence of false alarms involves regularizing the classifier
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output. This approach considers the temporal dynamics of the output, with two prominent

techniques for achieving this: the Kalman Filter (KF) [72, 73, 110, 99, 76, 111] and Firing

Power (FP) [95, 96, 97, 99, 123, 126, 139, 141].

FP employs a sliding window analysis to assess the proportion of samples classified as

preictal within an interval corresponding to the preictal phase. If this evaluation surpasses a

predefined threshold, an alarm is activated, allowing for a gradual smoothing of the classifier

output over time. However, it is essential to acknowledge that this threshold has no universally

optimal value. In contrast, KF relies on its ability to estimate a linear dynamic system’s states,

approximating the actual measurements’ actual values. This method operates recursively and

unimodally, predicting the present state based on the previous state and the current measure-

ment. When the filter output surpasses a certain threshold, it triggers an alarm to identify a

preictal state.

In a comparative context, researches such as the study led by Teixeira et al. (2014) [95]

highlighted that the triggering power approach revealed that FP emerged as a more conser-

vative method regarding alarms, having a more extended memory of classification dynamics.

Conversely, despite its tendency to produce more false alarms, the KF displays a relatively

improved sensitivity.

3.1.7 Performance Assessment

The assessment of a developed model holds critical importance, undertaken by applying specific

metrics. In the context of seizure prediction, following the seizure prediction characteristic intro-

duced by Winterhalder et al. (2003) [89], metrics like seizure sensitivity, False Prediction Rate

per hour (FPR/h), and statistical validation incorporating surrogate analysis or general ran-

dom predictors are suggested. However, not all authors follow this approach. Some alternatives

employ metrics such as the Area Under the ROC Curve (AUC) [67, 72, 76, 86, 115, 121, 132],

accuracy [116, 130], sample specificity, and sample sensitivity [99, 124, 128, 131, 138, 140], which

offer insights into the classifier’s performance but might not fully mirror its real-world appli-

cability. Furthermore, the shift from prediction to forecasting introduces the Time in Warning

(TiW) metric as a substitute for FPR/h [18, 68, 74, 78, 108, 114] and includes the Brier Skill

Score (BSS) [18, 86].

Examining Table 3.4 reveals that a set of studies managed to attain an FPR/h below 0.15

[96, 107, 109, 110, 111, 112, 117, 118, 120, 136, 137, 142] - a significant threshold outlined by

Winterhalder et al. (2003) [89] as a point of reference for alert systems in pre-surgical patients.

However, a direct comparison between these studies becomes challenging due to the notable

variations in the dataset, sample size, and the number of records considered. Furthermore, the

selected values for SOP and SPH also manifest variability.

The dataset selection significantly impacts performance, with CHB-MIT presenting more

homogeneous results and high-performance levels [107, 109, 110, 111, 112, 116, 117, 118, 120,

121, 122, 124, 127, 128, 130, 132, 137], while the EPILEPSIAE displays significant heterogeneity

[73, 95, 96, 97, 123, 126, 129, 132, 139, 141, 142]. The number of patients considered directly

influences this variability, ranging from 1 [141] to 278 individuals [95]. Authors typically make
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patient selections based on factors such as signal quality (minimized presence of noise and

artifacts), epilepsy type, seizure count, and specific seizure criteria. Regarding the homogeneity

of strong outcomes with CHB-MIT, using these data to showcase the predictive capabilities of

novel methods becomes questionable. However, it is important to note that CHB-MIT is a freely

accessible open database, unlike EPILEPSIAE and NeuroVista.

Nevertheless, databases encompassing ultra-long-term data, such as NeuroVista [18, 67, 68,

78, 133], Neuropace-derived [76, 86], and others [72, 74, 115], provide more realistic performance

evaluations and are recommended for incorporation in developing commercial seizure prediction

devices.

3.2 Databases

Datasets of EEG recordings taken from epilepsy patients, used in developing algorithms for

seizure detection and prediction, exhibit fundamental variations in their formatting and orga-

nization. For example, some databases offer seizures’ start and end times but do not detail the

associated dates. This absence of date information may lead to the inadvertent assignment of in-

correct dates across multiple days. Additionally, the absence of standardized directives for using

these databases significantly affects the potential for result generalization and reproducibility.

Hence, evaluating the existing disparities, particularly in advantages and limitations, across the

various accessible databases is essential for assessing distinctions in the acquired outcomes [165].

Most publicly accessible datasets lack standardization and comprehensive information on

suitable application scenarios. However, the selection of data to employ can exert a considerable

influence on the performance of prediction algorithms and the strategy adopted for their imple-

mentation. In this regard, all types of data, whether they pertain to demographics or clinical

aspects like epilepsy categorization, seizure profiles, and the number of employed channels, have

an impact [165]. Next subsections describe the most important datasets on this field.

3.2.1 American Epilepsy Society (AES) dataset

The dataset, registered through a collaboration between the AES and Kaggle for a seizure

prediction challenge, encompasses 1333.7 hours of iEEG recordings. This dataset was initially

composed of long-term data. However, only a fraction of this data is accessible, essentially

converting it into short-term data in practice. These recordings originate from seven individuals,

comprising two humans and five canines. In the case of human patients, the number of electrodes

ranges from 15 to 24, with the first patient having deep electrodes and the second having

subdural electrodes. The data recording occurred at a sampling rate of 5 kHz. Four canine

subjects have recordings from 16 implanted electrodes, while the fifth has recordings from 15

implanted electrodes, with a sampling rate of 400 Hz.

Long-term ambulatory recordings of the five canines, all with naturally occurring epilepsy,

were acquired utilizing the NeuroVista seizure advisory system. These recordings have extended

durations, spanning from several months to a year. Conversely, the recordings of the two human

subjects were conducted within a pre-surgical environment [67, 166, 167].
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The dataset comprises 1-hour recordings, partitioned into six individual files, each spanning

10 minutes, with a seizure horizon onset of 5 minutes. In the case of canine data, a specific

condition is imposed on interictal files, requiring a timeframe of at least one week before or

after any seizure event. Conversely, this temporal window constraint extends to only 4 hours

for human data.

The total duration of data recording comprises 267 seizures. It is separated into 78.8 hours

for the human dataset, accounting for 46 of the total seizures (an average of less than 2 hours

of available data for each seizure), and 1254.9 hours for the canine dataset, which includes the

remaining 221 seizures [165]. Access to this database is open to the public, except for the test

file labels and the held-out clips. Table 3.5 provides more extensive information about each

subject.

Table 3.5: Details of the AES dataset.

Subject
Number of

Channels

Sampling

Rate (Hz)

Number of

Train Files

Number of

Test Files

Duration

(hours)

Dog 1 16 400 504 502 167.7

Dog 2 16 400 542 1000 257

Dog 3 16 400 1512 907 403.2

Dog 4 16 400 901 990 315.2

Dog 5 15 400 480 191 111.8

Patient 1 15 5000 68 195 43.8

Patient 2 24 5000 60 150 35

3.2.2 Children’s Hospital Boston - Massachusetts Institute of Technology

(CHB-MIT) dataset

This database consists of scalp EEG recordings acquired at Children’s Hospital Boston (CHB)

and Massachusetts Institute of Technology (MIT) from 23 pediatric patients experiencing in-

tractable seizures. Monitoring lasted for several days after a week of withdrawal from anticon-

vulsant drugs. This dataset includes data collected from 18 female subjects aged between 1.5

and 19 years and five male subjects aged between 3 and 22 years. The recordings, grouped into

24 cases, underwent conducting at a sampling rate of 256Hz. In total, there are 916 hours of

recordings, including 173 seizure events.

The number of electrodes utilized ranges from 23 to 26, and all subjects share a set of

18 bipolar derivations: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-P3, P3-O1, FZ-CZ,

CZ-PZ, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, and P8-O2. Positioning of these

channels followed the International 10-20 system.

In contrast to the AES dataset, this dataset does not come with preictal or interictal

labels. Notwithstanding, the seizure timings within each patient’s metadata files can infer these

labels [165, 168]. This dataset provides open access to its data for all. Each patient’s detailed

information is available in the Table 3.6.
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Table 3.6: Details of the CHB-MIT dataset.

Case Sex Age (years)
Number of

Seizures

Duration of Recordings

(hh:mm:ss)

chb01 f 11 7 40:33:08

chb02 m 11 3 35:15:59

chb03 f 14 7 38:00:06

chb04 m 22 4 156:03:54

chb05 f 7 5 39:00:10

chb06 f 1.5 10 66:44:06

chb07 f 14.5 3 67:03:08

chb08 m 3.5 5 20:00:23

chb09 f 10 4 67:52:18

chb10 m 3 7 50:01:24

chb11 f 12 3 34:47:37

chb12 f 2 40 20:41:40

chb13 f 3 12 33:00:00

chb14 f 9 8 26:00:00

chb15 m 16 20 40:00:36

chb16 f 7 10 19:00:00

chb17 f 12 3 21:00:24

chb18 f 18 6 35:38:05

chb19 f 19 3 29:55:46

chb20 f 6 8 27:36:06

chb21 f 13 4 32:49:49

chb22 f 9 3 31:00:11

chb23 f 6 7 26:33:30

chb24 - - 16 21:17:47

Sex: female (f), male (m).

3.2.3 Epilepsy Ecosystem dataset

Towards the end of 2016, a portion of the dataset from the University of Melbourne became

accessible to the public. Contained within this subset are long-term iEEG recordings obtained

from three female patients (identified as patients 3, 9, and 11) who had been diagnosed with

refractory focal epilepsy. It is essential to highlight that this subset was included in the global

clinical trial for the implantable NeuroVista Seizure Advisory System and displayed the poorest

performance in predicting seizures.

The dataset comprises a total recording duration of 1155 hours, with 390, 204, and 545

seizures recorded in patients aged 22, 51, and 50, respectively. On average, there is approximately

1 hour of available data per seizure. This recording time results in 5047 training and 1908 test

segments [169]. The acquisition of this dataset involved strategically placing invasive strip

electrodes in a 4x4 configuration within the focal hemisphere of the patients. Consequently, it

comprises information from 16 channels, all sampled at 400 Hz.

The dataset’s structure closely reflects the AES dataset, with each hour of recording divided

into six 10-minute segments and the notation of a five-minute window before a seizure, referred
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to as seizure horizon onset. Furthermore, it is a guarantee that the interictal files do not appear

within the 4-hour window preceding and following a seizure event.

An essential characteristic of this dataset that adds complexity to the prediction task

is the significant dissimilarity in data distribution between the test and training sets. This

divergence arises from the fact that the test data were gathered six months after the training

data, during which the patient was undergoing medication [165]. This data’s accessibility is

restricted, entailing form completion, security protocols, and adherence to the usage terms as

defined. Similar to the AES database, the originally long-term data was also reduced to short-

term in practice since only a tiny part of it is made available. In-depth information about each

patient is available in Table 3.7.

Table 3.7: Details of the Epilepsy Ecosystem dataset.

Dataset features Patient 1 Patient 2 Patient 3

Sex f f f

Age (years) 22 51 50

Recording Period (days) 559 393 374

Total Recording (hours) 173 507 475

Number of Seizures 390 204 545

Number of interictal train files 570 1836 1908

Number of preictal train files 256 222 255

Number of interictal test files 16 18 18

Number of preictal test files 46 279 188

Number of channels 16 16 16

Sampling Rate (Hz) 400 400 400

Sex: female (f), male (m).

3.2.4 My Seizure Gauge dataset

The My Seizure Gauge dataset came about through the launch of the My Seizure Gauge challenge

by the Epilepsy Innovation Institute (Ei2) research program, aiming to create a personalized

seizure advisory system device [69].

This dataset consists of continuous recordings obtained from wearable devices worn by

ten patients (see Table 3.8). It also provides data on seizure times and metadata related to

the recordings. This metadata comprises the number of channels, types of channels/biosignals,

sampling rate, total samples within each recording, and timestamps. The data for each patient

extends for approximately 3-5 days.

Data is collected and provided from three distinct devices: Empatica E4, ByteFlies Sensor

Dots, and Epilog. The E4 device, worn on the patient’s wrist, collects data on ACC, BVP,

EDA, Heart Rate (HR), and temperature for nine patients. Regarding the Dots Sensor, it can

record ACC and 3-channel Photoplethysmography (PPG) or Electromyography (EMG) for five

patients. Lastly, Epilog records single-channel EEG when placed on the patient’s forehead [170].

The accessibility of this data is equal to the Epilepsy Ecosystem.
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Table 3.8: Details of the My Seizure Gauge dataset.

Patient Sensor Signals Number of Seizures
Duration of

Recordings (hh:mm:ss)

MSEL 01097
ByteFlies

Empatica E4

ACC, EMG, BVP,

EDA, HR, TEMP
7 117:05:12

MSEL 01838
ByteFlies

Empatica E4

ACC, PPG, BVP,

EDA, HR, TEMP
11 113:37:48

MSEL 00172
ByteFlies

Empatica E4

ACC, EMG, BVP,

EDA, HR, TEMP
12 69:59:05

MSEL 00501
ByteFlies

Empatica E4

ACC, EMG, BVP,

EDA, HR, TEMP
17 88:09:29

MSEL 01808 Empatica E4
ACC, BVP, EDA,

HR, TEMP
9 91:37:28

MSEL 01842 Empatica E4
ACC, BVP, EDA,

HR, TEMP
12 84:14:44

MSEL 01844 Empatica E4
ACC, BVP, EDA,

HR, TEMP
42 89:58:44

MSEL 01110-ICU Empatica E4
ACC, BVP, EDA,

HR, TEMP
12 84:18:39

MSEL 01860
ByteFlies

Epilog
ACC, EMG, EEG 6 149:53:18

MSEL 01575 Empatica E4
ACC, BVP, EDA,

HR, TEMP
82 143:14:20

ByteFlies stands for ByteFlies Sensor Dots, AAC for accelerometry, BVP for blood volume pulse, EDA for
electrodermal activity, HR for heart rate, TEMP for temperature, PPG for photoplethysmography, EMG for
electromyography, EEG for electroencephalogram.

3.2.5 European Epilepsy Database (EPILEPSIAE) dataset

The EPILEPSIAE project, funded by the European Union, got underway in 2008, with the

active participation of six partners from hospitals, universities, and industries in France, Ger-

many, Italy, and Portugal. For this project, they assembled what is now recognized as the largest

epilepsy database, incorporating data from 278 patients. This extensive resource includes not

only the EEG and Electrocardiogram (ECG) recordings of the patients but also detailed meta-

data [5].

This database includes scalp recordings from 227 patients, iEEG recordings from 42, and

9 patients were subjected to both. All patients had their ECG data recorded. The number of

seizures experienced by individual patients ranges from 3 to 94, with an average of 9.72 per

patient. Therefore, this database comprises a total of 2702 seizures. On average, the recording

sessions lasted approximately 175 hours, with the most extended session lasting up to 500 hours.

In total, the dataset comprises over 48000 hours of data [95].

Surface recordings took place with an electrode scheme aligned with the international 10–20

system, with supplemental electrode contacts added as necessary for particular patients. Grids,

strips, and/or depth electrodes came into play for patients undergoing invasive recordings. Sam-

pling rates varied from 250 Hz to 2.5 kHz, depending on the EEG acquisition system utilized

at each hospital and whether the recording method involved surface or intracranial EEG. The

number of recording channels displays variability, covering a spectrum from 14 to 124.

52



3. State of the Art

A notable feature that sets the EPILEPSIAE database apart from previous ones is its struc-

tured and extensive annotation scheme. A team of experienced professionals used video analysis

and EEG assessment to meticulously detect all clinical seizures for each patient. However, only

institutions that participate in the European Epilepsy Database (EPILEPSIAE) project have

full access to this database, while other researchers can purchase a subset of 30 patients. Fur-

thermore, Table 3.9 presents a broad comparison between EPILEPSIAE and the other databases

[7, 1].

Table 3.9: General description of the databases.

Characteristic EPILEPSIAE AES CHB-MIT
Epilepsy

Ecosystem
My Seizure Gauge

Data Type
scalp EEG,

iEEG
iEEG scalp EEG iEEG

scalp EEG, ACC, EMG,

BVP, EDA, HR, TEMP, PPG

Number of Subjects 278 5D + 2H 23 3 10

Number of Seizures 2702
267

(221D + 46H)
173 1139 210

Average number of

seizures / patient
9.72

38

(44D + 23H)
7.52 379 21

Total duration of

recordings (hours)
> 48000

1333.7

(1254.9D + 78.8H)
916 1155 1032

Average recording

time / patient (hours)
175

190

(251D + 39H)
40 385 103

D stands for Dogs, H for Humans, AAC for accelerometry, BVP for blood volume pulse, EDA for electrodermal
activity, HR for heart rate, TEMP for temperature, PPG for photoplethysmography, EMG for electromyography,
EEG for electroencephalogram.

Along with the annotated EEG and ECG data, extensive metadata is present in the

EPILEPSIAE database. It allows for inferences about using Antiepileptic Drugs (AEDs) during

the monitoring period. Data collection includes information about the type of electrodes used,

and in the case of invasive recordings, it registers the date of implantation [7, 1].

3.2.6 Databases in Seizure Prediction Studies

According to the Table 3.1 in the Subsection 3.1.1, CHB-MIT [107, 109, 110, 111, 112, 116,

117, 118, 120, 121, 122, 124, 127, 128, 130, 132, 134, 137], EPILEPSIAE [73, 95, 96, 97, 102,

119, 123, 126, 129, 131, 132, 139, 141, 142], Freiburg [111, 122, 132, 135, 136, 140], and AES

[99, 109, 111, 118, 121, 138] are the databases most frequently used in seizure prediction studies.

The popularity of databases sourced from patients undergoing evaluation for epilepsy surgery,

particularly CHB-MIT, can be traced back to the early stages of seizure prediction research.

This trend is primarily due to CHB-MIT’s open accessibility. Although EPILEPSIAE has data

from 278 patients, only Pinto et al. (2022) [123], Direito et al. (2017) [97], and Teixeira et al.

(2014) [95] incorporated more than 90 patients in their studies, while the rest of the studies

concentrated their efforts on 53 or fewer patients.

Nevertheless, regarding the extent of data and accurately reflecting real-life conditions, the

NeuroVista database stands out, containing up to two years of iEEG recordings per patient.

Cook et al. (2013) [68] released the first study utilizing this database, laying the foundation for

its application in several other studies [18, 133], including participation in a Kaggle competition
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[67]. This competition saw the incorporation of the three patients with the poorest performance,

forming what is now known as the Epilepsy Ecosystem database. Stojanović et al. (2020) [131]

have already utilized this last dataset. However, the undeniable benefits of long-term records

come with ethical and logistical challenges associated with their ongoing monitoring.

The adoption of wearable devices that record different biosignals, exemplified by the recent

creation of the My Seizure Gauge database, has seen significant growth due to the discomfort

experienced by patients during ultra-long-term data recording. Consequently, the utilization of

bracelets [74, 76] and smartwatches [72] has witnessed remarkable growth in recent years.

Recent developments have led to establishment of novel databases featuring distinct EEG

recording systems. A case in point is the clinical trial jointly conducted by King’s College London

(NCT04061707) and Zealand University Hospital [108, 114], where sqEEG recording has taken

center stage. Furthermore, SeizeIT1 and SeizeIT2 [125, 129] have led the way in introducing the

utilization of Behind-The-Ear EEG. Also, the studies by Nasseri et al. (2021) [76] and Proix

et al. (2021) [86] resorted to data from the NeuroPace database obtained from an Responsive

Neurostimulation (RNS) device.

Besides the examination of epilepsy in humans, researchers have recurrently investigated

epilepsy in canines [99, 109, 111, 118, 121, 138], making use of the AES dataset.
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3.3 Summary

Seizure prediction investigations adhere to a common framework, traversing a series of precisely

delineated stages, starting with EEG signals acquisition, followed by signal preprocessing to

eliminate interference and artifacts. Subsequently, feature extraction is engaged, being the

more intricate facet, frequently employing a sliding window methodology. Historically, the

predominant choice has been univariate linear features, although DL models have recently gained

use for this task. Upon finishing feature extraction, the procedure advances with curating and

categorizing these features, aiming to identify preictal segments within the EEG data. The

classifier’s output undergoes a regularization phase to address the challenge of false alarms and

instill temporal context into the classifications. Notably, specific DL techniques, such as LSTMs,

have been directly applied to address temporal aspects of the signal. The journey culminates

in the performance assessment, with sensitivity and the FPR/h serving as crucial benchmarks.

Of paramount importance is the rigorous statistical validation that underpins this evaluation.

Regrettably, the latter’s absence is a prevalent issue, often accompanied by presenting results

for only an optimal point rather than a spectrum of values. This practice contributes to a lack

of uniformity in evaluation methodologies, posing challenges for cross-study comparisons and

the clinical application of these techniques.

Database quality assessment is a critical consideration, given that many databases are

sourced from patients in pre-surgical monitoring, potentially lacking a complete representation of

real seizure events scenarios. Thus, the choice of database significantly influences the algorithm’s

performance, considering variables such as the number of patients, the nature of collected signals,

the number of channels employed, and, fundamentally, the duration and recording conditions of

the data.

The progression of existing databases is evident. Initially, data collection was predomi-

nantly from pre-surgical monitoring. In recent years, there has been a shift towards creating

databases with long-term data that better represent real life. Nonetheless, the predominant

issue persists: most of these databases are not openly accessible. Even the “public” ones often

offer only a portion of the data, constraining research flexibility. This challenge stems from

ethical concerns associated with database privacy.
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Methodology

This chapter provides insight into the methodologies adopted for developing the seizure predic-

tion algorithm across various datasets. Section 4.1 presents an overview of the pipeline used for

European Epilepsy Database (EPILEPSIAE) and provides a description of the seizure predic-

tion model designed for it. The scope of this section is limited to the EPILEPSIAE dataset,

which formed the basis for others due to its superior data quality. Lastly, Section 4.2 outlines

all methodological deviations incorporated into the approaches for the remaining datasets.

4.1 Seizure Prediction

4.1.1 Pipeline Overview

The principal aim of this project centers around developing a patient-specific algorithm capable

of predicting seizure occurrences in epilepsy patients based on Electroencephalogram (EEG)

data. This endeavor took inspiration from the prevalent framework expounded upon in Section

3.1 of the literature review.

TRAINING

DATA PARTITION

EPILEPSIAE

TESTING

Preprocessing Feature Extraction

5s sliding window

59 features x 19
channels

Automatic EEG
artifact removal
using deep CNNs

Training Data

3 first seizures

Testing Data

Remaining
seizures

Raw data

Class Labeling
Standardization
Class Balancing

Feature Selection
Model Training

Classification

Apply trained
classifier

Logistic Regression

optimal SOP
best k features

Grid search:

Postprocessing

Regularization
(Firing Power)

Performance Assessment

Sensivity
FPR/h

Specificity
AUC score

Statistical Validation

Figure 4.1: General overview of the proposed patient-specific pipeline for a real-life simulation.
Asterisks indicate the inclusion of a Logistic Regression classifier in the model training phase.
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Figure 4.1 presents details for each step of this algorithm’s development. This pipeline is

the one of choice because it offers the most accurate simulation of real-life scenarios.

4.1.2 Data

This study involved the careful selection of 40 patients afflicted by Drug Resistant Epilepsy

(DRE) from the EPILEPSIAE database. The subset comprises data obtained during pre-surgical

monitoring of 23 male and 17 female patients, with a mean age of 41.4 ± 15.7 years. Rigor-

ous criteria guided the selection process of patients. Specifically, the inclusion criteria covered

patients diagnosed with Temporal Lobe Epilepsy (TLE), the most common epilepsy type, and

individuals with EEG data recorded at a 256 Hz sampling frequency. The 19 EEG electrodes

were placed according to the International System 10-20 with the channels FP1, FP2, F3, F4,

C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz and Pz.

Moreover, the selection criteria ensured the inclusion of patients who had experienced a

minimum of four independent seizures, with a minimum interval of 4.5 hours between each

seizure. This approach avoided the analysis of seizures belonging to the same seizure cluster.

Consequently, the dataset contains 224 seizures, with 120 utilized for training and the remainder

for testing, resulting in a cumulative data duration of 4656 hours (comprising 3254 hours of

training data and 1402 hours of test data). The accompanying Table 4.1 provides demographic

information for each patient (sex and age) and details about their seizures (number of seizures,

classification, state of surveillance during seizures, and more).

Table 4.1: Detailed information of the 40 patients.

Patient

ID
Age Sex

Number of

seizures

(train/test)

Seizure

classification

Seizure

activity

pattern

Vigilance at

seizure onset

Recording

duration (h)

402 55 f
3

2

FOIA, FBTC, FOIA

FBTC, FOIA

t, t, t

t, t

A, A, A

A, A

103.81

29.66

8902 67 f
3

2

UC, FOIA, FOIA

FOIA, FOIA

a, b, a

m, a

A, A, A

A, A

133.91

22.5

11002 41 m
3

1

UC, FOIA, FOIA

FOIA

?, s, a

t

A, R, A

A

97.16

11.7

16202 46 f
3

4

UC, FBTC, UC

FOIA, FOIA, FOIA, FOIA

r, ?, r

r, r, ?, r

A, A, A

A, A, A, A

201.32

34.45

21902 47 m
3

1

UC, FOIA, FOIA

FOIA

t, t, t

b

A, A, A

R

67.08

9.76

23902 36 m
3

2

FOA, FOA, FOA

FOA, FOA

t, t, t

d, t

A, A, A

A, A

70.74

33.95

26102 65 m
3

1

FOIA, FOIA, FOIA

FOIA

m, t, t

t

A, A, A

A

60.65

22.58

30802 28 m
3

5

FOA, FOA, FOA

FOA, FOA, FOA, FOA, FOA

t ,t ,t

t, t, t, t, t

R, A, 2

A, A, R, 2, 2

87.57

61.71

32702 62 f
3

2

FOIA, FOIA, FOIA

FOIA, FOIA

t ,t ,t

r, a

A, A, A

A, A

117.38

20.49

45402 41 f
3

1

FOIA, FOIA, FOA

FOIA

t, t, t

t

A, A, A

A

71.98

22.31

46702 15 f
3

2

FOA, FOIA, FOIA

FBTC, FOIA

a, a, t

b, t

A, 2, A

2, A

47.46

12.6

50802 43 m
3

2

FOIA, UC, UC

FOIA, FBTC

t, t, t

t, t

A, 2, 2

2, A

165.93

35.6

52302 61 f
3

1

UC, FOA, UC

UC

?, ?, d

t

A, A, 1

A

76.45

6.85

53402 39 m
3

1

FOA, FOA, FOA

FOIA

?, ?, ?

t

A, 2, A

A

70.31

13.73

55202 17 f
3

5

FOIA, FOIA, FOA

UC, UC, FOA, UC, FOIA

t, d, t

t, t, t, r, r

A, A, A

A, A, A, A, A

47.05

65.37

56402 47 m
3

1

UC, UC, UC

FBTC

t, ?, ?

a

A, A, A

A

184.22

20.25

58602 32 m
3

3

FOIA, FOIA, FOIA

FOIA, FOIA, FOIA

r, t, t

r, r, t

A, R, A

A, A, 2

96.94

23.34
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Table 4.1 continued from previous page

Patient

ID
Age Sex

Number of

seizures

(train/test)

Seizure

classification

Seizure

activity

pattern

Vigilance at

seizure onset

Recording

duration (h)

59102 47 m
3

2

FOA, FOIA, FOIA

FOIA, FOA

?, t, t

t, t

A, A, A

A, A

65.83

82.22

60002 55 m
3

3

FOIA, FOIA, FOIA

UC, FOIA, FOIA

d, c, t

t, d, d

1, A, A

R, R, 1

208.11

152.4

64702 51 m
3

2

FOA, FBTC, FBTC

FBTC, FBTC

?, m, t

t, t

A, A, A

A, 2

75.91

31.59

75202 13 m
3

4

FOA, FOA, UC

FOA, FOA, FOA, FOA

t, t, t

t, t, ?, t

2, 2, A

A, A, A, A

100.94

52.63

80702 22 f
3

3

FOIA, FOIA, UC

FOIA, FBTC, FOIA

b, b, ?

c, c, c

A, A, A

A, A, A

49.4

29.55

85202 54 f
3

2

FOIA, FOIA, UC

UC, UC

m, c, m

m, m

2, A, A

A, A

53.49

20.42

93402 67 m
3

2

FBTC, FOIA, FOIA

UC, UC

t, t, t

t, t

2, 2, 2

2, 2

98.0

54.07

93902 50 m
3

3

FOA, FOIA, FBTC

FOIA, FOIA, UC

t, t, d

d, d, d

A, A, 2

A, 2, A

370.83

20.29

94402 37 f
3

4

FOA, UC, FOIA

UC, FOA, UC, FOA

?, d, b

t, ?, b, ?

A, A, A

2, A ,2, A

120.23

30.37

95202 50 f
3

4

FBTC, FOIA, FOIA

FOIA, UC, FOIA, UC

b, b, b

m, b, b, t

2, 2, 2

2, 2, 2, 2

57.6

89.53

96002 58 m
3

4

FOIA, FOIA, FOIA

FOIA, UC ,FOIA, FOIA

t, t, t

d ,a ,t ,a

A, A, A

A, A, A, A

48.4

82.2

98102 36 m
3

2

FOA, UC, UC

UC, FBTC

?, ?, ?

?, ?

A, A, A

A, A

108.61

45.68

98202 39 m
3

5

FOIA, FOIA, FOIA

FBTC, FOIA, FOIA, FOIA, UC

t, a, t

t, t, t, t, t

A, A, A

A, A, A, A, A

111.33

49.88

101702 52 m
3

2

FOIA, FOIA, FOIA

FOIA, FOIA

t, t, t

r, r

A, A, A

2, A

28.41

23.83

102202 17 m
3

4

FOA, UC, FOIA

UC, FOA, FOIA, UC

b, ?, t

?, t, t, t

2, A, 2

A, A, 2, A

57.45

51.41

104602 17 f
3

2

FOIA, FBTC, FBTC

FBTC, UC

t, a, t

t, d

A, 2, 2

2, 2

87.87

15.25

109502 50 m
3

1

FOIA, FOIA, UC

UC

t, t, t

t

A, A, A

A

76.8

41.94

110602 56 m
3

2

FOIA, FOIA, FOIA

FOIA, FOA

t, t, t

t, t

A, A, A

A, A

89.63

25.92

112802 52 m
3

3

UC, FOIA, UC

FOIA, FOIA, UC

t, t, t

t, t, t

A, A, A

A, A, A

71.58

111.5

113902 29 f
3

3

UC, FOIA, FOIA

FOIA, UC, FOIA

t, d, t

t, t, t

A, A, 2

A, 2, A

61.98

22.73

114702 22 f
3

5

FOIA, FOIA, UC

FOIA, FOIA, FOIA, FOIA, FOIA

t, t, t

t, d, t, d, t

A, A, A

A, A, A, A, A

68.39

34.04

114902 16 f
3

4

FOA, FOIA, FOIA

FBTC, UC, FOIA, FOIA

s, b, s

t, r, a, t

A, A, A

2, A, A, A

26.55

50.66

123902 25 f
3

2

FBTC, FBTC, FOIA

FOIA, FOA

t, t, t

t, t

2, 2, R

A, A

152.11

30.15

Sex: female (f), male (m); Seizure classification: unclassified (UC), Focal Onset Aware (FOA), Focal Onset
Impaired (FOIA), Focal to Bilateral Tonic-Clonic (FBTC); Seizure activity pattern: unclear (?), rhythmic sharp
waves (s), alpha waves (a), rhythmic delta waves (d), rhythmic theta waves (t), rhythmic beta waves (b), repetitive
spiking (r), cessation of interictal activity (c), amplitude depression (m); Vigilance state: awake (A), REM sleep
stage (R), Non-REM sleep stage I (1), Non-REM sleep stage II (2).

4.1.3 Preprocessing

Within the scope of this study, EEG data underwent a preprocessing phase employing a Con-

volutional Neural Networks (CNNs)-based approach. This technique, developed by Lopes et al.

(2021) [80], automatically and effectively eliminates artifacts like eye blinking, eye movements,

muscle activity, heart activity, and electrode interference, producing results comparable to those

achieved by experts. The dataset used in the Lopes et al. (2021) study comprised long-term

EEG recordings of particular epilepsy patients featured in this thesis.

The CNN model underwent training using raw and manually preprocessed EEG segments,

mirroring experts’ steps during data preprocessing. This approach enabled the replication of

expert procedures during data preprocessing. The experiments demonstrated that the model
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significantly mitigated the impact of artifacts on EEG signals, all without requiring human

intervention. Consequently, it is well-suited for utilization in extended, real-time monitoring

contexts.

4.1.4 Feature Extraction

EEG signals were partitioned into non-overlapping 5-second windows to extract significant fea-

tures. Established practices in seizure prediction guided the decision to employ this window

duration, which aligns with reasonable values for stationarity, temporal, and spectral resolution.

Owing to its lower computational demands, the extraction process concentrated exclusively

on univariate linear features. All available electrodes were used, given the possibility of multi-

ple brain regions contributing to seizure generation. Consequently, a sliding window technique

captured 59 features in each window’s time and frequency domains for the 19 channels. The

extracted features took cues from the research conducted by Lopes et al. (2023) [102] and Pinto

et al. (2023) [119], who investigated patients included in this study. Within the frequency

domain, these features included relative spectral power bands such as delta (0.5-4Hz), theta

(4-8Hz), alpha (8-13Hz), beta (13-30Hz), and four subbands of gamma - gamma band 1 (30-

47 Hz), gamma band 2 (53-75 Hz), gamma band 3 (75-97 Hz), and gamma band 4 (103-128

Hz). Furthermore, features encompassed the relationships between these bands, spectral edge

frequency and power, alpha peak frequency, total power, and mean frequency. In the time do-

main, computed features consisted of the four statistical moments (mean, variance, asymmetry,

kurtosis), Hjorth parameters (activity, mobility, complexity), decorrelation time, and energy of

wavelet coefficients (from D1 to D5, employing the db4 parent wavelet). For a more in-depth

description of each feature, consult Appendix A.

4.1.5 Data Splitting

This stage entailed the partitioning of resources into two distinct sets for each patient: the

first set being the training set, encompassing the initial three seizures, while the remaining

seizures constituted the test set. The training set was pivotal in classifier training and parameter

optimization, including determining Seizure Occurrence Period (SOP) duration and number of

features. The sets were split following the seizure order since time dependence and concept

drifts are assumed. This chronological division aimed to replicate a practical seizure prediction

scenario, where the model initially learns from a historical set of seizures before being deployed

for real-time prediction on future data.

4.1.6 Training

4.1.6.1 Class Labeling

The feature set samples received categorization into preictal or interictal. The period preceding

a seizure, recognized as the preictal class, corresponds to the cumulative duration of Seizure Pre-

diction Horizon (SPH) and SOP. The project’s objective led to setting the SPH duration at 10

minutes to create an algorithm designed for alert devices. These devices activate alarms, encour-
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aging the patient to administer rescue medication and prevent imminent convulsions promptly.

The determination of the 10-minute value considered the time it takes for rescue medications

(e.g., buccal and rectal diazepam, midazolam) to take effect [171, 172, 173]. The algorithm’s

predictive scope extended to the SOP timeframe preceding the SPH duration. Consequently,

samples linked with SPH were left out, considering them irrelevant for model training and test-

ing.

Customizing the SOP duration for each patient involved a comprehensive grid search across

values (20, 25, 30, 35, 40, 45, and 50 minutes). A deliberate selection process resulted in these

values, aimed at keeping the preictal period within 60 minutes, ranging from 30 to 60 minutes.

4.1.6.2 Feature Standardization

The subsequent action involved standardizing the independent features extracted from the raw

data. The selected method for this task was z-score normalization, which effectively adjusted

the values of each feature to have an average of 0 and a unitary standard deviation.

4.1.6.3 Class Balancing

In the training phase, defining a class balancing strategy to manage data imbalance while pre-

serving data representativeness becomes crucial. Given that the interictal class contains most

samples, an imbalanced dataset can lead to biased results, as the classifier may overly specialize

in the dominant class. Therefore, a deterministic approach to balance classes using class weights

was adopted. Due to the substantial prevalence of the interictal class over the preictal class,

a reduction in the weight assigned to the former occurs, leading to an inversely proportional

relationship. The formula employed to compute the weights for each class corresponds to the

provided Equation 4.1.

wi =
NTotal Samples

2 ·Ni Samples
, i = 0, 1. (4.1)

4.1.6.4 Feature Selection

Much like the process used to determine the optimal SOP value and building upon the research

conducted by Pinto et al. (2023) [119], a similar methodology was applied to identify the optimal

values for the k most discriminatory features. A grid search revealed the most fitting values for

the k most discriminatory features, including k values from 3, 5, 7, 10, 15, 20, to 30 features.

The assessment metric of choice was the ANOVA f -test (Analysis of Variance), which evaluates

the degree of linear dependence between each feature and the target. Subsequently, the k most

discriminative features were selected based on their classification performance, thus pinpointing

the most suitable number of features.
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4.1.6.5 Classifier

Logistic Regression was the classifier of choice for this study, primarily due to its computational

efficiency and straightforward methodology. The shape of its curve follows a logistic function,

and its built-in interpretability is a distinct advantage. This approach adjusted class weights in

inverse proportion to their respective frequencies.

4.1.6.6 Grid-Search

As previously mentioned, applying a grid search methodology enabled the identification of opti-

mal parameters, specifically the ideal SOP and the number of features (k) necessary for training

the selected classifier. For this purpose, the Leave-One-Out Cross-Validation (LOOCV) strat-

egy was employed. LOOCV partitions the training set into three subsets, with two designated

for training and one for validation, ensuring that all subsets contain samples from interictal

and preictal classes. Each subset contains the data before a specific training seizure, where S1

indicates the first seizure, S2 represents the second, and S3 corresponds to the third. This pro-

cess iterates three times, repeating until each subset serves for validation. Lastly, training the

classifier involves using data from S1, S2, and S3, aligning with the most effective parameter

combination. Figure 4.2 provides a schematic representation of this process.

S3

S1

S1

S1 S2

S2

S2 S3

S3

Performance

Select the parameter combination
with the highest performance

Train classifier with all data: 
S1, S2, S3

Validation set
Training set

Figure 4.2: LOOCV procedure implemented to select the optimal parameters. S1, S2, and
S3 represent the data for the first, second, and third seizures, respectively.

A performance metric, represented by Equation 4.2, was instrumental in determining the

optimal parameters. This equation exposes the trade-off between SSsample and SPsample. Having

established the optimal SOP and k values, the model underwent training using the training set.

√
SSsample · SPsample (4.2)
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4.1.7 Testing

To initiate the testing phase, conducting an out-of-sample classification analysis on the test set

resulted in the formulation of predictions. As illustrated in Figure 4.3, the techniques used on the

test data closely resembled those used on the training set, except for class balancing. Therefore,

the test set underwent standardization using the z-score parameters obtained from the training

set, and the most significant features identified during training were selected. Finally, the

classifier was employed to determine the final output.

TRAINING DATA
Class Balancing

Class weights

==
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==
==
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Feature Selection

Select k most
discriminative
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Classifier Training
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TESTING DATA
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Standardization

z-score with
training

parameters

Feature Selection
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training

Classifier Training

Apply trained
classifier

Postprocessing

Regularization
(Firing Power)

Performance
Assessment

Sensivity
FPR/h

Specificity
AUC score

Statistical validation

Figure 4.3: Procedure applied to train and test the seizure prediction model.

4.1.8 Postprocessing

After the classification phase, regularization became active in reducing false alarms and providing

meaningful context to consecutive results while considering the temporal dynamics of the output.

The selected method was Firing Power (FP) (as shown in Figure 4.7), and its calculation followed

the description provided in Section 2.4.5.3. FP employs a moving average low-pass filter to

smooth the signal. It triggers an alarm when the value exceeds a predefined threshold, but only

if a refractory period separates it from the previous one. Setting the chosen threshold at 0.7

was influenced by studies conducted by Pinto et al. in 2023 [119], 2022 [123], and 2021 [126],

which also used EPILEPSIAE. The refractory period corresponds to the entire preictal period

(SOP + SPH), effectively minimizing redundant alerts during a seizure event and mitigating

the patient’s stress and anxiety.
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Time
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0.7
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Alarm

Seizure

Figure 4.4: An illustration of the firing power technique used. When the firing power reaches
a certain threshold (dashed line) and is at least one refractory period apart from the most recent
alarm, an alert is triggered. Two false alarms and one true alarm are illustrated.

4.1.9 Performance Assessment

The assessment of the developed seizure prediction model’s performance involved the use of

standard metrics, such as Sensitivity (Equation 2.1) and False Prediction Rate per hour (FPR/h)

(Equation 2.2), as outlined in the Section 2.4.5.1. Specificity and the Area Under the ROC Curve

(AUC) score were also integrated into the evaluation to provide a comprehensive overview of

the outcomes. This inclusion is essential since not all utilized databases enable the calculation

of sensitivity and FPR/h. Therefore, alternative metrics are essential to facilitate comparisons.

For statistical validation, the employed method was surrogate time series analysis, which

confirmed whether the developed algorithm exhibited performance exceeding that expected by

chance. In this procedure, the original onset times of each seizure underwent random shifts

within the interictal period. This operation was conducted individually for each seizure, ensur-

ing that the simulated seizure times followed the original temporal distribution. The algorithm’s

sensitivity was then determined using the newly generated seizure times. This procedure un-

derwent 30 repetitions to calculate an average sensitivity, subsequently comparing it to the

sensitivity obtained through the proposed methodology. The algorithm’s performance was eval-

uated as superior to chance level when its sensitivity exceeded that of the surrogate predictor

and demonstrated statistical significance. With a significance level 0.05, the analysis involved a

one-sample t-test to evaluate this difference and test the null hypothesis that “the sensitivity of

the proposed approach is not statistically superior to the sensitivity of the surrogate predictor.”
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4.2 Database Pipeline Comparison

The pipeline model applied in the context of EPILEPSIAE formed the foundational framework

for subsequent model implementations across other databases. However, specific alterations were

imperative owing to disparities stemming from differences in the raw data available, whether

related to the type of EEG data collected or the number of channels used, among other dis-

tinguishing factors. Consequently, this section will explore the modifications implemented for

each analyzed dataset. The omitted steps refer to those aspects that have remained unchanged

across all databases.

4.2.1 Data

AES

This research involved integrating data from all subjects in the American Epilepsy Society

(AES) database, which included information from 5 dogs and two humans. Analogous to the

EPILEPSIAE patient subset, human data in this database was collected within a pre-surgical

environment. Nonetheless, several differentiating factors set AES human subjects apart from

EPILEPSIAE patients, including Intracranial Electroencephalogram (iEEG) data, a sampling

frequency of 5 kHz, and the utilization of 15 and 24 channels, among other contrasting elements.

The most notable contrast lies in the absence of temporal data, meaning there is no infor-

mation about the timing of seizures; only 10-minute files categorized as preictal or interictal are

available. In the case of canines, analogous disparities are apparent, coupled with the fact that

the recordings in this context are of a long-term ambulatory nature. Considering the differen-

tiating values, the canine recordings underwent collection at a sampling frequency of 400 Hz,

utilizing 15 and 16 channels.

Despite comprising 267 seizures, only 51 seizures were used in this study. Of these, 34

seizures were earmarked for training, leaving 17 for testing. The decision to work with only a

subset of the total seizures stemmed from the inaccessibility of labels for the available test files.

Section 4.2.4 details the solution to this issue. Consequently, the study encompassed a recording

duration of 627.6 hours. Refer to the Table 4.2 for a thorough presentation of details about each

subject.

Table 4.2: Detailed information of the 7 subjects.

Subject
Number of

channels

Sampling

rate (Hz)

Number of

train files

Number of

test files

Duration

(hours)

Dog 1 16 400 468 12 80

Dog 2 16 400 476 24 83.3

Dog 3 16 400 1392 48 240

Dog 4 16 400 742 62 134

Dog 5 15 400 426 24 75

Patient 1 15 5000 38 12 8.3

Patient 2 24 5000 30 12 7
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CHB-MIT

Not all patient data within the Children’s Hospital Boston from the Massachusetts Institute of

Technology (CHB-MIT) dataset was part of the study. Instead, a meticulous selection process

was undertaken among the 24 available cases, resulting in the identification of only 6 cases (chb01,

chb06, chb10, chb14, chb15, chb24) that met all the necessary criteria. These individuals were the

exclusive ones who experienced a minimum of 4 independent seizures, with a requisite minimum

interval of 4.5 hours between each seizure. Determining the criterion value for delineating

seizures entailed comprehensively evaluating different possible intervals (1, 2, 3, 4, 4.5, and

5 hours). This evaluation involved assessing parameters like the number of patients with a

minimum of 4 independent seizures, the total count of independent seizures, and the mean

count per patient (see Figure 4.5). Given the close alignment between values obtained for 4,

4.5, and 5 hours, the optimal choice appeared to be 4.5 hours, thereby maintaining consistency

with the approach taken in the EPILEPSIAE context.
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Figure 4.5: Influence of separation criterion values on patients with at least four independent
seizures, total seizure count, and average seizures per patient.

Figure 4.6 exhibits a plot illustrating the count of independent seizures for each patient,

utilizing a separation criterion of 4.5 hours. The plot reveals that cases chb12, chb13, and

chb18 exhibit sufficient independent seizures to qualify for selection. Nevertheless, additional

considerations led to the exclusion of these cases. Both chb12 and chb13 experienced multiple

electrode alterations during their recordings, leading to their exclusion from the study. In the

case of chb18, the available temporal window for a single test seizure was excessively short,

rendering its inclusion unviable. Thus, the resultant subset encompasses 32 seizures, with 18

designated for training and 14 reserved for testing. Consequently, the overall duration of target

data for the study is 244 hours, with roughly 47 hours allocated to training data and a substantial
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197 hours dedicated to test data.
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Figure 4.6: Independent seizure occurrences per patient at a separation criterion of 4.5 hours.

The average age of the three women and two men included in the selection is 8.1 ± 5.4 years.

However, it is worth noting that the age and gender of case chb24 remain unknown. Data from

all these patients were collected at a sampling rate of 256 Hz using 23 channels arranged under

the International System 10-20, except for case chb15, which utilized 32 channels. Remarkably,

this dataset closely mirrors the EPILEPSIAE database, featuring the same signal type, sampling

frequency, and availability of temporal data. Nonetheless, a notable difference is the absence of

metadata. The Table 4.3 presents a comprehensive overview of the most relevant information

for each of the cases that were subjects of study.

Table 4.3: Detailed information of the 6 cases.

Patient Age Sex
Number of

channels

Number of seizures

(train/test)

Recording

duration (h)

chb01 11 f 23
3

1

10.59

4.83

chb06 1.5 f 23
3

3

8.19

31.95

chb10 3 m 23
3

3

4.18

111.24

chb14 9 f 23
3

1

8.3

9.32

chb15 16 m 32
3

5

9.75

36.56

chb24 - - 23
3

1

7.83

5.41

Sex: female (f), male (m).
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Epilepsy Ecosystem

Epilepsy Ecosystem is the exclusive database where data from every accessible patient is studied.

Originating from the NeuroVista database, the dataset under consideration focuses on the three

patients who demonstrated the poorest results. The real-life data, collected at a sampling rate

of 400 Hz, is from three female patients. The average age of these three women is 41±13.5 years.

The dataset comprises long-term iEEG recordings acquired from 16 channels. Notably, the data

accessibility structure closely aligns with the AES database. However, in this case, the use of

the test files was enabled by the public availability of their labels.

Consequently, in the execution of this study, data totaling only 935.3 hours was incorpo-

rated from the 1155 hours that the dataset contains. Training received an allocation of 841.2

hours from this duration, with the remaining hours designated for testing. This database ex-

hibits a comparable blend of distinctions and similarities with AES, analogous to the relationship

between AES and EPILEPSIAE. Key distinctions include the absence of temporal information,

variations in the type of EEG data collected, differences in sampling rate, and the absence of

metadata. The Table 4.4 contains detailed data characteristics.

Table 4.4: Detailed information of the 3 patients.

Patient Age Sex
Number of

channels

Sampling

rate (Hz)

Number of

train files

Number of

test files

Recording

duration (h)

1 21 f 16 400 826 62 148.0

2 51 f 16 400 2058 297 392.5

3 50 f 16 400 2163 206 394.8

Gender: female (f), male (m).

My Seizure Gauge

My Seizure Gauge collects an assortment of data from various wearable devices. However, it

is crucial to note that only one of these devices, namely Epilog, played a role in this study

due to its capacity to collect EEG signals. Given these circumstances, the decision was to

select data from a single individual (MSEL 01860) out of the ten available patients. In order to

ensure eligibility, the requirement was to guarantee a minimum of 4 independent seizures, each

separated by a minimum of 3.5 hours. Since this patient’s data did not meet the criteria to fulfill

this requirement, the exclusion of the patient became necessary, resulting in the impossibility of

analyzing data from this database in this study.
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4.2.2 Preprocessing

The preprocessing procedure diverged from the approach used in EPILEPSIAE for all the

databases. Instead of implementing the technique introduced by Lopes et al. (2021) [102], fil-

tering was selectively performed within specific frequency bands to simplify the process. When

the EEG signal was intracranial, such as AES and Epilepsy Ecosystem, a high-pass filter was

employed with a cutoff frequency of 0.5 Hz. In contrast, for database CHB-MIT, the prepro-

cessing procedure entailed using both a high-pass filter with a 0.5 Hz cutoff and a low-pass filter

with a 60 Hz cutoff. Additionally, it became necessary to downsample datasets that initially

had different sampling rates from 256 Hz. Therefore, this additional step was necessary for all

seven AES subjects and the three patients from the Epilepsy Ecosystem dataset.

4.2.3 Feature Extraction

The feature extraction process remained essentially unaltered, with the sole variance being the

adjustment of the number of channels to align with each patient’s specific value.

4.2.4 Data Splitting

Unlike feature extraction, data splitting experienced more extensive adaptations. EEG segments

referring to each seizure or preictal and interictal segments can compose the two distinct datasets.

For the only dataset containing temporal data (CHB-MIT), the segments utilized correspond

to each seizure, mirroring the approach adopted in EPILEPSIAE. Also, the training dataset

comprises the initial three seizures, with the remaining seizures allocated to the test dataset.

Concerning AES, where information regarding seizure timing is unavailable, both the train-

ing and testing datasets are constructed using interictal and preictal files. Additionally, since

the labels of the original test files from this database are inaccessible, the training files had

to be partitioned for training and testing. Initially, this division considered a 70/30 ratio for

training/testing preictal files. However, due to the sequential arrangement of files, this approach

meant, for instance, that the first six files belonged to the same 1-hour preictal period. Conse-

quently, to ensure that data from the same preictal period did not appear in the training and

test sets, the split was adjusted to the closest 70/30 ratio, guaranteeing a split where the sets of

6 files were not separated. In order to maintain balance within the training data, the number of

interictal files added to the training set equaled the number of preictal files, with the remaining

interictal files assigned to the testing set.

The Epilepsy Ecosystem dataset also includes preictal and interictal files. The data’s con-

figuration remained consistent with its publicly available structure, with the data already divided

into two sets: one for training and the other for testing purposes. The singular adaptation mir-

rored the procedure applied in AES, ensuring that the quantity of interictal training files equaled

the number of preictal training files. Table 4.5 provides a concise summary of the information

elucidated in this subsection.
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Table 4.5: Comparison of data splitting approaches for the analyzed databases.

Main approach Data division
Dataset

Alarm Sample

Interval between

seizures (hours) Train Test

EPILEPSIAE X - 4.5 3 first seizures Remaining seizures

CHB-MIT X - 4.5 3 first seizures Remaining seizures

AES - X N.A.

≈ 70% of preictal original

train files (x)

+ x interictal train files

Remaining train files

Epilepsy Ecosystem - X N.A.

All preictal original

train files (x)

+ x interictal train files

All test files

x refers to the number of preictal train files.

4.2.5 Training

4.2.5.1 Class Labeling

This step remained unchanged for CHB-MIT. Conversely, it was bypassed for AES and Epilepsy

Ecosystem, as the data had already been classified and separated into preictal and interictal

segments.

4.2.5.2 Class Balancing

Data balance was maintained by incorporating class weights for CHB-MIT. However, for AES

and Epilepsy Ecosystem, this procedure was simplified, entailing the selection of an equal number

of interictal and preictal files for the training set during data splitting.

4.2.5.3 Grid-Search

Determining optimal parameters followed a uniform approach for CHB-MIT. In contrast, for

AES and Epilepsy Ecosystem, the focus was solely on identifying the ideal number of features

(k), as the data had already undergone classification and the SOP period was predetermined.

The LOOCV strategy was not employed, and the data was divided into the closest 70/30 pro-

portion for training and validation, preserving the integrity of sets comprising six consecutive

files belonging to the same data group. Thus, finding the best k value was not repeated three

times.

4.2.6 Testing

4.2.6.1 Postprocessing

The application of data regularization through the FP method extended to the CHB-MIT

dataset. However, for AES and Epilepsy Ecosystem data, this step was excluded due to the

inability to set alarms without seizure timing information. Therefore, as the approach for these

datasets centered on the individuality of each sample, regularization was not part of the applied

methodology.
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4.2.6.2 Performance Assessment

The procedure for evaluating the algorithm’s performance and conducting statistical validation

remained consistent for CHB-MIT data, using the same metrics. In contrast, for AES and

Epilepsy Ecosystem data, calculating Alarm Sensitivity or FPR/h was impossible. The cal-

culation covered only Sample Sensitivity, Sample Specificity, and AUC score. The approach

to statistical validation had to be slightly different. EPILEPSIAE and CHB-MIT adopted the

surrogate analysis of time series, altering the temporal positioning of seizure onset while main-

taining consecutive order within preictal periods. However, this method did not apply to AES

and Epilepsy Ecosystem data. For these datasets, performing 30 random shuffles of all samples

allowed the determination of an average sensitivity, which was then compared to the sensitivity

obtained through the proposed methodology.

4.2.7 Pipeline Overview

In order to provide a summary of the modifications implemented in each dataset relative to

the model utilized for EPILEPSIAE, Table 4.6 delineates the key distinctions presented in

this section. Furthermore, in the Appendix B, visual representations are available illustrating

the models utilized for the CHB-MIT, AES, and Epilepsy Ecosystem databases, following the

structure of Figure 4.1.

Table 4.6: Differences in methodology across databases.

Dataset EPILEPSIAE CHB-MIT AES Epilepsy Ecosystem

Number of patients 40 6 7 3

Signal scalp EEG scalp EEG iEEG iEEG

Sampling rate (Hz) 256 256 400 D + 5000 H 400

Total hours 4656 248 627 935

Hours/seizure 20.8 7.8 12.31 4.4

Temporal seizure

data
Yes Yes No No

Preprocessing
CNNs-based

approach

0.5Hz high-pass,

60Hz low-pass

filters

0.5Hz high-pass

filter

0.5Hz high-pass

filter

Downsampling No No Yes Yes

Data splitting

approach
Seizures Seizures

Preictal and

interictal files

Preictal and

interictal files

Calculated metrics

SSalarm, FPR/h,

SSsample, SPsample,

AUC

SSalarm, FPR/h,

SSsample, SPsample,

AUC

SSsample, SPsample,

AUC

SSsample, SPsample,

AUC

D stands for dogs, H for humans.
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Results and Discussion

This chapter takes a comprehensive look at the outcomes obtained by the proposed methodology.

Section 5.1 embarks on a detailed analysis of the results achieved during the training phase.

Section 5.2 covers the presentation, analysis, and discussion of the results acquired in the testing

phase. Section 5.3 involves a comparative assessment of the outcomes yielded by the proposed

methodology and those reported in studies by other authors utilizing the same databases. Lastly,

Section 5.4 elucidates the limitations inherent to this study.

5.1 Training Results

As expounded in the Chapter 4, the training phase involved conducting a grid search to ascertain

the optimal parameters for each patient within each database. Classifier training involved using

either the initial three seizures of each patient (for European Epilepsy Database (EPILEPSIAE)

and Children’s Hospital Boston from the Massachusetts Institute of Technology (CHB-MIT)) or

data categorized as preictal or interictal (in the case of American Epilepsy Society (AES) and

Epilepsy Ecosystem). Tables 5.1, 5.2, 5.3, and 5.4 compile the optimal parameters identified for

each patient, along with the corresponding sample Sensitivity (SSSample) and sample Specificity

(SPSample).

A comprehensive review of the tables reveals significant fluctuations in the Seizure Occur-

rence Period (SOP) values, with no clear-cut ideal SOP period standing out. Concerning the

number of features, data from AES and CHB-MIT primarily tend to converge around 3. How-

ever, for the Epilepsy Ecosystem database, limited patient data makes it challenging to identify

a clear trend. Conversely, EPILEPSIAE exhibits a diverse range of values for the number of

features, spanning from 3 to 30, with no apparent inclination toward a particular value.

The results obtained for SSSample and SPSample facilitate the division of the databases into

two distinct groups: EPILEPSIAE, and CHB-MIT forming one group, while AES and Epilepsy

Ecosystem comprise the other. Metric values are notably higher in patients from AES and

Epilepsy Ecosystem. These high values can be attributed to the intracranial data nature, which

reduces susceptibility to noise and artifacts or the absence of temporal distribution reflecting

real-world scenarios, simplifying the classification process.

The closely aligned values observed for EPILEPSIAE and CHB-MIT align with expecta-

tions, given the similarity in data type and organizational structure. Notably, the specificity

values for EPILEPSIAE and CHB-MIT data slightly exceeded the sensitivity, indicating a more

remarkable classifier ability to identify interictal samples than preictal ones.
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Table 5.1: Training results for the EPILEPSIAE database. SOP stands for Seizure Occurrence
Period, SSSample for Sample Sensitivity, and SPSample for Sample Specificity.

Patient SOP (mins) k-features SSSample SPSample

402 50 20 0.35 0.52

8902 25 7 0.87 0.81

11002 20 7 0.45 0.73

16202 20 30 0.64 0.82

21902 40 10 0.65 0.76

23902 45 15 0.71 0.55

26102 50 30 0.29 0.66

30802 50 5 0.74 0.83

32702 20 7 0.72 0.72

45402 25 20 0.69 0.53

46702 30 20 0.19 0.72

50802 20 10 0.74 0.84

52302 45 30 0.55 0.69

53402 40 20 0.37 0.70

55202 45 3 0.50 0.75

56402 20 10 0.51 0.76

58602 20 3 0.09 0.77

59102 35 30 0.40 0.55

60002 35 7 0.57 0.59

64702 40 3 0.36 0.69

75202 25 30 0.73 0.83

80702 40 30 0.30 0.82

85202 20 20 0.31 0.70

93402 20 3 0.39 0.66

93902 45 5 0.60 0.63

94402 45 30 0.51 0.53

95202 25 15 0.48 0.71

96002 25 3 0.70 0.74

98102 25 20 0.36 0.62

98202 25 30 0.17 0.73

101702 50 30 0.65 0.37

102202 50 3 0.31 0.73

104602 35 30 0.24 0.79

109502 30 20 0.35 0.66

110602 40 10 0.51 0.67

112802 20 3 0.33 0.66

113902 45 30 0.32 0.61

114702 35 30 0.13 0.76

114902 25 10 0.55 0.63

123902 25 3 0.66 0.88

Overall 33.13±10.96 16.05±10.82 0.47±0.19 0.69±0.11
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The less-than-ideal results achieved for EPILEPSIAE and CHB-MIT underscore the com-

plexity of the seizure prediction problem when confronted with a scenario replicating the realistic

temporal dynamics of seizure occurrences. Nonetheless, assessing the classifier’s real predictive

prowess is possible only during testing phase.

Table 5.2: Training results for the CHB-MIT database. SOP stands for Seizure Occurrence
Period, SSSample for Sample Sensitivity, and SPSample for Sample Specificity.

Patient SOP (mins) k-features SSSample SPSample

chb01 40 3 0.53 0.64

chb06 50 3 0.68 0.82

chb10 20 30 0.51 0.81

chb14 45 3 0.57 0.47

chb15 25 3 0.25 0.58

chb24 25 15 0.36 0.71

Overall 30.00±13.23 9.50±11.13 0.48±0.15 0.67±0.14

Table 5.3: Training results for the AES database. SSSample stands for Sample Sensitivity, and
SPSample for Sample Specificity.

Patient k-features SSSample SPSample

Dog 1 3 1.00 0.50

Dog 2 3 1.00 1.00

Dog 3 3 1.00 1.00

Dog 4 5 1.00 1.00

Dog 5 3 1.00 1.00

Patient 1 3 1.00 1.00

Patient 2 3 1.00 1.00

Overall 3.29±0.76 1.00±0.00 0.93±0.19

Table 5.4: Training results for the Epilepsy Ecosystem database. SSSample stands for Sample
Sensitivity, and SPSample for Sample Specificity.

Patient k-features SSSample SPSample

Patient 1 30 0.95 0.96

Patient 2 5 0.96 0.79

Patient 3 30 1.00 1.00

Overall 21.67±14.43 0.97±0.03 0.92±0.11
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5.2 Testing Results

During the testing phase, the evaluation of patient-specific models occurred, taking into con-

sideration the remaining seizures (for EPILEPSIAE and CHB-MIT) or preictal/interictal data

(for AES and Epilepsy Ecosystem). This comprehensive evaluation involved the examination of

multiple metrics, including SSAlarm and False Prediction Rate per hour (FPR/h), for databases

containing temporal information on seizures. Additionally, for all databases SSSample, SPSample,

and Area Under the ROC Curve (AUC) were computed. Tables 5.5, 5.6, 5.7, and 5.8 showcase

the predictive outcomes for each patient from EPILEPSIAE, CHB-MIT, AES, and Epilepsy

Ecosystem, respectively. Furthermore, statistical validation took place in conjunction with the

performance evaluation. For EPILEPSIAE and CHB-MIT, this validation utilized the surro-

gate time series analysis for comparison with SSAlarm and SSSample. Meanwhile, the remaining

databases underwent SSSample comparison via a file shuffle approach.

As indicated by Tables 5.5 and 5.6, the number of seizures evaluated varies from 1 to 5,

posing challenges when comparing patient SSAlarm values. The challenge arises because, when

assessing patients with only one tested seizure, sensitivity is constrained to either 0 (indicating an

unforeseen seizure) or 1 (indicating a correctly predicted seizure). However, sensitivity can yield

a range of values when evaluating five seizures. Therefore, a sensitivity value of 1 does not hold

the same significance for patients with different numbers of evaluated seizures. From the tables, it

is evident that only patients 8902, 93402, and chb01 achieved an alarm sensitivity value of 1, and

these patients had only 2 and 1 seizures evaluated in the cases of EPILEPSIAE and CHB-MIT

patients, respectively. Furthermore, 57.5% of EPILEPSIAE patients had only 1 or 2 seizures

evaluated in the test phase and 50% of CHB-MIT patients had only one seizure evaluated. This

implies that, in most cases, only 1 or 2 seizures are set aside for testing, significantly constraining

the range of values achieved for SSAlarm. Hence, this aspect represents a limitation of the study,

stemming from the need for a more extensive dataset involving a larger patient population.

Table 5.5: Testing results for the CHB-MIT database. SSAlarm stands for Alarm Sensitivity,
SSSample for Sample Sensitivity, SPSample for Sample Specificity, and AUC for Area Under the
Curve.

Patient
Tested

Seizures
FPR/h SSAlarm SSSample SPSample AUC

chb01 1 0.31 1.00 0.77 0.46 0.62

chb06 3 0.89 0.33 0.91 0.46 0.68

chb10 3 0.38 0.33 0.49 0.57 0.53

chb14 1 0.52 0.00 0.19 0.51 0.35

chb15 5 0.10 0.00 0.00 0.91 0.46

chb24 1 0.95 0.00 0.35 0.56 0.46

Overall 2.33±1.63 0.53±0.34 0.28±0.39 0.45±0.34 0.58±0.17 0.52±0.12
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Table 5.6: Testing results for the EPILEPSIAE database. SSAlarm stands for Alarm Sensitiv-
ity, SSSample for Sample Sensitivity, SPSample for Sample Specificity, and AUC for Area Under
the Curve.

Patient
Tested

Seizures
FPR/h SSAlarm SSSample SPSample AUC

402 2 0.00 0.00 0.34 0.64 0.49

8902 2 0.10 1.00 0.96 0.92 0.94

11002 1 0.71 0.00 0.50 0.51 0.50

16202 4 0.03 0.00 0.07 0.91 0.49

21902 1 0.00 0.00 0.01 0.88 0.45

23902 2 1.09 0.50 0.68 0.45 0.56

26102 1 0.00 0.00 0.26 0.68 0.47

30802 5 0.37 0.20 0.68 0.75 0.71

32702 2 0.05 0.50 0.50 0.86 0.68

45402 1 0.55 0.00 0.51 0.61 0.56

46702 2 0.00 0.00 0.41 0.58 0.49

50802 2 0.26 0.00 0.23 0.87 0.55

52302 1 0.94 0.00 0.53 0.30 0.41

53402 1 0.27 0.00 0.74 0.65 0.70

55202 5 0.52 0.20 0.66 0.64 0.65

56402 1 0.51 0.00 0.42 0.64 0.53

58602 3 0.52 0.00 0.49 0.58 0.53

59102 2 0.99 0.50 0.76 0.52 0.64

60002 3 0.05 0.00 0.19 0.68 0.43

64702 2 0.52 0.00 0.48 0.65 0.57

75202 4 0.04 0.00 0.18 0.87 0.52

80702 3 0.27 0.33 0.58 0.52 0.55

85202 2 0.11 0.00 0.11 0.87 0.49

93402 2 0.46 1.00 0.85 0.69 0.78

93902 3 0.12 0.00 0.32 0.79 0.56

94402 4 0.71 0.00 0.40 0.49 0.45

95202 4 0.34 0.00 0.40 0.78 0.59

96002 4 0.52 0.25 0.25 0.64 0.45

98102 2 0.12 0.00 0.50 0.83 0.66

98202 5 0.02 0.00 0.33 0.67 0.50

101702 2 0.66 0.00 0.46 0.58 0.52

102202 4 0.04 0.00 0.21 0.85 0.53

104602 2 0.37 0.00 0.51 0.62 0.57

109502 1 1.95 0.00 0.36 0.36 0.36

110602 2 0.31 0.50 0.61 0.71 0.66

112802 3 0.68 0.33 0.53 0.64 0.59

113902 3 0.05 0.00 0.36 0.68 0.52

114702 5 0.00 0.00 0.20 0.80 0.50

114902 4 0.00 0.00 0.28 0.92 0.60

123902 2 0.00 0.00 0.00 0.99 0.50

Overall 1.00±2.06 0.36±0.40 0.13±0.26 0.42±0.22 0.69±0.16 0.56±0.11
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In the scenarios of AES and Epilepsy Ecosystem, examining the number of seizures proves

to be unviable due to the absence of seizure-timing data. Instead, only the quantity of preictal

and interictal files is accessible. The proportion of preictal files within the test dataset varies,

ranging from 1.28 to 4.03% for AES dogs, 13.64 to 16.67% for AES humans, and 5.90 to 31.94%

for Epilepsy Ecosystem patients. Moreover, given that this data analysis does not incorporate

temporal aspects, the computation of SSAlarm and FPR/h remains beyond reach.

Nonetheless, these two metrics are available within the remaining databases, enabling a

direct comparison. The average SSAlarm values achieved by the 40 patients in the EPILEPSIAE

group and the six patients in the CHB-MIT group are 0.13±0.26 and 0.28±0.39, respectively.

Patients who had one correctly predicted seizure were 23902 (in 2 seizures), 30802 (in 5), 32702

(in 2), 55202 (in 5), 59102 (in 2), 80702 (in 3), 96002 (in 4), 112802 (in 3), chb01 (in 1), chb06

(in 3), chb10 (in 3). The most successful in terms of sensitivity were patients 8902, 93402, and

chb01, all of whom had all their seizures correctly predicted. The remaining patients did not

have any predicted seizures. These low alarm sensitivity values emphasize the classifier’s limited

capability to predict seizures accurately.

The average FPR/h values amounted to 0.36±0.40 for EPILEPSIAE and 0.53±0.34 for

CHB-MIT. In the context of real-life application, an ideal FPR/h value is 0.15. Nevertheless,

the elevated values raised doubts about the system’s suitability for real-life scenarios, given that

a high rate of false alarms per hour can negatively impact the patient’s health. Nonetheless,

patient 8902 achieved the best performance, accurately predicting all seizures and maintaining

an FPR/h value of 0.10, falling within the desired range. Despite only predicting half of the

seizures, for patient 32702 it achieved a commendable FPR/h value of 0.05. Unfortunately, for

the remaining patients who experienced at least one predicted seizure, the FPR/h values were

unsatisfactory, consistently exceeding the ideal threshold by at least twice the value.

Divergent results are evident when assessing the SSAlarm and FPR/h values between CHB-

MIT and EPILEPSIAE data. CHB-MIT data exhibits a higher SSAlarm value, while its FPR/h

value suggests a higher rate of false alarms per hour than EPILEPSIAE. A closer look at the

data reveals that in the EPILEPSIAE dataset, 29 out of 40 patients demonstrate zero sensitivity,

and among them, 16 record FPR/h values below the ideal value. This revelation implies that

40% of patients with favorable FPR/h values had no predicted seizures. As a result, these less

favorable data influence the substantial reduction in the global value of FPR/h for EPILEPSIAE

data.

Nevertheless, both datasets exhibit improved sensitivity when restricting the analysis to

patients with at least one predicted seizure. EPILEPSIAE achieves an average sensitivity of 0.50,

while CHB-MIT reaches 0.56. Regarding the FPR/h value, it only changes for EPILEPSIAE to

0.49, underscoring the impact of the abovementioned cases on the results.

The remaining three metrics (SSSample, SPSample, and AUC) were computed for all data

from all databases, allowing for comparisons. The average SSSample values demonstrate remark-

able consistency across the EPILEPSIAE, CHB-MIT, and AES datasets, with values of 0.42,

0.45, and 0.48, respectively. Conversely, the Epilepsy Ecosystem dataset exhibits a significantly

higher average value, reaching 0.75. This remarkable result signifies that 75% of the preictal

samples were accurately classified, underscoring its highly favorable performance.
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Table 5.7: Testing results for the AES database. SSSample stands for Sample Sensitivity,
SPSample for Sample Specificity, and AUC for Area Under the Curve.

Patient
Tested files

(preictal\interictal)
SSSample SPSample AUC

Dog 1
468

(6\462)
0.50 0.54 0.52

Dog 2
482

(12\470)
0.75 0.79 0.77

Dog 3
1416

(24\1392)
0.35 0.76 0.56

Dog 4
769

(31\738)
0.41 0.67 0.54

Dog 5
444

(12\432)
0.76 0.54 0.65

Patient 1
44

(6\38)
0.40 0.50 0.45

Patient 2
36

(6\30)
0.16 0.69 0.42

Overall - 0.48±0.22 0.64±0.12 0.56±0.12

Table 5.8: Testing results for the Epilepsy Ecosystem database. SSSample stands for Sample
Sensitivity, SPSample for Sample Specificity, and AUC for Area Under the Curve.

Patient
Tested files

(preictal\interictal)
SSSample SPSample AUC

Patient 1
72

(23\49)
0.80 0.43 0.61

Patient 2
305

(18\287)
0.71 0.45 0.58

Patient 3
207

(18\189)
0.73 0.24 0.42

Overall - 0.75±0.05 0.37±0.12 0.54±0.10

However, this increase in SSSample was coupled with a reduction in SPSample compared to

the other databases. The highest SPSample value was observed in EPILEPSIAE (0.69), followed

by AES (0.64), CHB-MIT (0.58), and lastly, Epilepsy Ecosystem (0.37). This pattern might be

associated with the average number of hours available per seizure, where datasets containing

more interictal data contributed to more accurate interictal sample classification. The time-per-

seizure ratios for these datasets were 20.8, 12.31, 7.8, and 4.4 hours for EPILEPSIAE, AES,

CHB-MIT, and Epilepsy Ecosystem, respectively. Consequently, higher SPSample values appear

to correspond to datasets where this ratio is higher, and vice versa. Notably, among the results,

patient 8902 stands out with the most favorable combination of SSSample (0.96) and SPSample

(0.92) values.

Lastly, the AUC was computed, with values ranging from 0 to 1, where 1 represents per-

fectly accurate predictions. Consequently, a higher AUC value indicates superior classifier per-

formance. The average AUC scores remain relatively consistent across all databases, typically

averaging around 0.55. In line with the optimal combination of SSSample and SPSample values,
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patient 8902 achieved the highest AUC score (0.94). In the context of the other databases, the

top AUC value was secured by patient chb06 for CHB-MIT, registering a score of 0.68. In the

case of AES, Dog 2 emerged with the highest AUC at 0.77. Lastly, in the Epilepsy Ecosystem

database, patient 1 obtained the leading AUC score of 0.61.

The study also included a phase of statistical validation to ascertain whether the model’s

performance arises from its ability to identify random phenomena within Electroencephalogram

(EEG) signals rather than patterns associated with seizures. This aspect is relevant, considering

seizure prediction is a rare event problem, with a considerable imbalance between interictal and

preictal intervals. Table 5.9 exhibits the results obtained during this phase. The disparity in

results between the alarm approach and the sample approach is evident. Among the 46 patients

investigated, only 6 achieved performance exceeding the chance level in the alarm-based method.

These six patients include five from the EPILEPSIAE dataset (8902, 32702, 80702, 93402, and

110602), along with one from CHB-MIT (chb01).

Table 5.9: Statistical validation results for all databases (EPILEPSIAE, CHB-MIT, AES e
Epilepsy Ecosystem). SSSample stands for Sample Sensitivity, and SPSample for Sample Speci-
ficity.

Patient SSAlarm

SSAlarm

Surrogate

p-value

Alarm
SSSample

SSSample

Surrogate

p-value

Sample

Above chance

(Alarm)

Above chance

(Sample)

EPILEPSIAE

402 0.00 0.00 1.00 0.34 0.00 0.00 •

8902 1.00 0.13 2.97× 10−15 0.96 0.00 1.18× 10−86 • •

11002 0.00 0.17 1.00 0.50 0.00 1.77× 10−73 •

16202 0.00 0.03 1.00 0.07 0.00 0.00 •

21902 0.00 0.00 1.00 0.01 0.00 0.00 •

23902 0.50 0.42 0.86 0.68 0.00 1.96× 10−84 •

26102 0.00 0.00 1.00 0.26 0.00 0.00 •

30802 0.20 0.39 1.00 0.68 0.00 2.31× 10−86 •

32702 0.50 0.03 2.01× 10−10 0.50 0.00 2.64× 10−81 • •

45402 0.00 0.27 1.00 0.51 0.00 2.82× 10−73 •

46702 0.00 0.00 1.00 0.41 0.00 0.00 •

50802 0.00 0.07 1.00 0.23 0.00 2.95× 10−68 •

52302 0.00 0.27 1.00 0.53 0.00 6.06× 10−82 •

53402 0.00 0.10 1.00 0.74 0.00 1.10× 10−95 •

55202 0.20 0.32 1.00 0.66 0.00 1.61× 10−84 •

56402 0.00 0.20 1.00 0.42 0.00 2.03× 10−69 •

58602 0.00 0.12 1.00 0.49 0.00 2.61× 10−73 •

59102 0.50 0.42 0.36 0.76 0.00 9.01× 10−83 •

60002 0.00 0.04 1.00 0.19 0.00 3.43× 10−74 •

64702 0.00 0.23 1.00 0.48 0.00 1.45× 10−81 •

75202 0.00 0.01 1.00 0.18 0.00 1.63× 10−78 •

80702 0.33 0.18 1.82× 10−8 0.58 0.00 9.02× 10−86 • •

85202 0.00 0.05 1.00 0.11 0.00 2.95× 10−64 •

93402 1.00 0.23 1.37× 10−9 0.86 0.00 6.25× 10−79 • •

93902 0.00 0.03 1.00 0.32 0.00 4.67× 10−85 •

94402 0.00 0.24 1.00 0.40 0.00 1.76× 10−77 •

95202 0.00 0.12 1.00 0.40 0.00 4.28× 10−77 •
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Table 5.9 continued from previous page

Patient SSAlarm

SSAlarm

Surrogate

p-value

Alarm
SSSample

SSSample

Surrogate

p-value

Sample

Above chance

(Alarm)

Above chance

(Sample)

96002 0.25 0.18 0.14 0.25 0.00 6.16× 10−68 •

98102 0.00 0.07 1.00 0.50 0.00 2.55× 10−82 •

98202 0.00 0.03 1.00 0.33 0.00 1.15× 10−78 •

101702 0.00 0.28 1.00 0.46 0.00 3.94× 10−81 •

102202 0.00 0.01 1.00 0.21 0.00 2.13× 10−87 •

104602 0.00 0.08 1.00 0.51 0.00 1.96× 10−82 •

109502 0.00 0.43 1.00 0.36 0.00 8.57× 10−71 •

110602 0.50 0.15 3.66× 10−7 0.61 0.00 3.56× 10−84 • •

112802 0.33 0.26 0.08 0.53 0.00 7.79× 10−69 •

113902 0.00 0.06 1.00 0.36 0.00 0.00 •

114702 0.00 0.00 1.00 0.20 0.00 0.00 •

114902 0.00 0.00 1.00 0.29 0.00 0.00 •

123902 0.00 0.00 1.00 0.00 0.00 1.00

CHB-MIT

chb01 1.00 0.07 5.58× 10−10 0.77 0.00 1.69× 10−86 • •

chb06 0.33 0.40 1.00 0.91 0.00 1.63× 10−90 •

chb10 0.33 0.44 1.00 0.49 0.00 8.79× 10−48 •

chb14 0.00 0.13 1.00 0.19 0.00 1.01× 10−69 •

chb15 0.00 0.01 1.00 0.004 0.000 1.54× 10−25 •

chb24 0.00 0.20 1.00 0.35 0.00 6.31× 10−73 •

AES

Dog 1 - - - 0.5012 0.5503 1.00 -

Dog 2 - - - 0.7481 0.4811 8.02× 10−41 - •

Dog 3 - - - 0.3493 0.5140 1.00 -

Dog 4 - - - 0.4091 0.5194 1.00 -

Dog 5 - - - 0.7596 0.3390 3.34× 10−45 - •

Patient 1 - - - 0.4036 0.5994 1.00 -

Patient 2 - - - 0.1619 0.2675 1.00 -

Epilepsy Ecosystem

Patient 1 - - - 0.7985 0.4301 2.94× 10−47 - •

Patient 2 - - - 0.7144 0.3465 2.16× 10−49 - •

Patient 3 - - - 0.7315 0.4216 1.67× 10−45 - •

Conversely, in the sample-based approach, most patients demonstrated performance above

the chance level. Out of the 56 patients studied, 50 outperformed the surrogate predictor.

Notably, AES is the dataset with the lowest percentage (29%) of statistically validated patients.

The notable differences in the number of validated patients between the two approaches raise the

question of whether the less favorable results of the alarm approach stem from the conservative

choice of a 0.7 threshold for Firing Power (FP) during postprocessing. However, this conservative

threshold also ensures that FPR/h values remain within an acceptable range.

The potential for comparisons between these databases does have its limits, mainly due

to the numerous variables in play. Even with a method that upholds a high degree of rigor,

the distinct data organization and the presence of diverse information introduce complexities to

standardizing the process.
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5.3 Comparative Analysis with Other Studies

The results achieved through the developed seizure prediction pipeline are open to comparison

with previous studies mentioned in Chapter 3. To achieve this goal, a selection of eight studies

includes four that rely on the EPILEPSIAE database, three that use CHB-MIT data, two that

utilize AES, and only one that counts on Epilepsy Ecosystem data. Worth noting is that all

studies using EPILEPSIAE data have undergone statistical validation, whereas studies involving

other databases are relatively scarce in this regard. Table 5.10 encapsulates the methodology

details applied to all patients and presents them exclusively for statistically validated patients.

Commencing the comparison with studies utilizing the EPILEPSIAE database, it becomes

apparent that the sensitivity value achieved by the developed methodology occupies the worst

position in the table. The only study that demonstrates a similar sensitivity value is the one

conducted by Pinto et al. (2022) [123]. Nonetheless, it is crucial to note that the Pinto et

al. study examined a significantly larger patient population, over twice the number of patients

compared to this research. Additionally, this study employs a simplistic classifier, in contrast

to the approach taken by Lopes et al. (2023) [102], which incorporates Deep Learning (DL)

methods. Therefore, the expectation in the present study was for a lower sensitivity value.

However, the achieved FPR/h value is quite well situated, being outperformed only by the value

obtained by Pinto et al. (2022) [123]. Nevertheless, it is essential to note that this better

FPR/h value is somewhat “masked” because a careful examination of the data reveals that

this lower value predominantly originates from patients who registered an FPR/h equal to zero

concurrently with zero sensitivity. It signifies that although it did not trigger false alarms, it

did not predict seizures.

When examining the percentage of statistically validated patients, it becomes evident that

Lopes et al. (2023) [102], Pinto et al. (2022) [123], and Pinto et al. (2021) [126] hold an

advantage, boasting a higher percentage of validated patients. Alvarado-Rojas et al. (2014) [73]

achieved a lower percentage of validated patients. Despite the lower value, it is worth noting

that the approach employed for statistical validation differed, with Alvarado-Rojas et al. using

the random predictor. The comparison of specificity and AUC values proves challenging, given

the limited number of studies calculating these metrics for EPILEPSIAE data.

About the CHB-MIT dataset, it is evident that all the studies demonstrated superior per-

formance in both sensitivity and FPR/h compared to the developed methodology. Furthermore,

the AUC values obtained by Li et al. (2023) [118] and Xu et al. (2023) [120] were significantly

higher. Concerning statistical validation, only Truong et al. (2018) [111] conducted this step,

achieving an impressive validation percentage of 92%, which surpasses the results obtained in

this study. It is essential to recognize that the approach employed by Truong et al. differed,

involving using the random predictor.

In the context of AES, it is evident that the metrics achieved by Li et al. (2023) [118]

and Truong et al. (2018) [111] significantly outperformed those obtained by the developed

methodology. Remarkably, Truong et al. achieved a statistical validation rate of 86%, nearly

three times higher than the rate obtained in this study (29%).

Comparing studies utilizing data from the Epilepsy Ecosystem proves challenging due to
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the limited number of studies using this data. In contrast to the prevailing trend observed with

previous databases, the developed algorithm showcased an enhanced sensitivity value (0.75)

compared to Stojanović et al. (2020) [131] (0.69). However, the specificity is considerably lower

(0.37 compared to 0.79). Stojanović et al. did not conduct statistical validation, a crucial aspect

for comparison, as all patients in this study demonstrated performance above the chance level.

Table 5.10: Seizure prediction performance for studies under comparison.

Study Database
No. of

Patients
SS FPR/h SP AUC

Validated

Patients

Li et al. (2023) [118]
CHB-MIT

AES

18

4

0.97

0.93

0.06

0.03

0.87

0.92

0.94

0.97
-

Lopes et al. (2023) [102] EPILEPSIAE 41 0.34 0.90 - - 51%

Xu et al. (2023) [120] CHB-MIT 4 0.91 0.11 - 0.89 -

Pinto et al. (2022) [123] EPILEPSIAE 93 0.16 0.21 - - 32%

Pinto et al. (2021) [126] EPILEPSIAE 19 0.37 0.79 - - 32%

Stojanović et al. (2020) [131] Epilesy Ecosystem 3 0.69 - 0.79 - -

Truong et al. (2018) [111]
CHB-MIT

AES

13

7

0.81

0.75

0.16

0.21
- -

92%

86%

Alvarado-Rojas et al. (2014) [73] EPILEPSIAE 53 0.47 0.94 - - 13%

Developed methodology

EPILEPSIAE

CHB-MIT

AES

Epilepsy Ecosystem

40

6

7

3

0.13

0.28

0.48

0.75

0.36

0.53

-

-

0.69

0.58

0.64

0.37

0.56

0.52

0.56

0.54

12.5%

17%

29%

100%

Developed methodology

(validated patients)

EPILEPSIAE

CHB-MIT

AES

Epilepsy Ecosystem

5

1

2

3

0.67

1

0.75

0.75

0.24

0.31

-

-

0.74

0.46

0.66

0.37

0.72

0.62

0.71

0.54

-

Directly comparing the work presented in this document with selected studies poses no-

table challenges, primarily due to the substantial variability in patient selection and the choice

of parameters employed in the methodologies. Most studies’ lack of statistical validation is a

significant obstacle to this comparison. Additionally, several authors highlight their best re-

sults exclusively, making it challenging to gain a comprehensive and realistic understanding of

the problem. For example, the Table 5.10 presents metrics values obtained by the developed

methodology for all patients and those who passed statistical validation. Values are substantially

better for validated patients. However, these values do not represent the overall situation and

may obscure the real problem. Therefore, when authors only report their best outcomes and fail

to acknowledge setbacks as opportunities for improvement, their studies tend to overestimate

performance.

Furthermore, using assumptions to simulate real-life leads to disastrous results. This asser-

tion finds support in the observation that similarly unsatisfactory results occur when applying

these assumptions to databases already recognized for their very high performance, such as CHB-

MIT. Consequently, studies reporting extremely high results rely on unrealistic assumptions that

do not align with real-life scenarios, representing illusions in solving the problem.
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5.4 Limitations

A limitation inherent in this study pertains to including pre-surgical monitoring data from

databases characterized by short durations spanning just a few hours or days. In these settings,

patients undergo medication withdrawal and sleep deprivation, intending to provoke a higher

frequency of seizures in a shorter timeframe. However, these conditions do not represent an

everyday living environment. Therefore, obtaining more extensive ultra-long recordings encom-

passing extended daily life duration is crucial to render the assessment more comprehensive and

reflective of real-world scenarios.

Furthermore, the limited temporal coverage of the data also has a detrimental effect on

another aspect: the scarcity of independent seizures. Consequently, the study was constrained

to utilize only three seizures for training and a minimum of 1 seizure for testing. Any increase in

the minimum number of seizures reserved for testing would inevitably lead to the exclusion of a

substantial number of patients who did not satisfy the required minimum seizure criteria. This

aspect holds significant importance in this study because it was impractical to incorporate data

from the My Seizure Gauge database due to the insufficient number of seizures that satisfied

the 4.5-hour separation criterion.

Considering the computational speed, the analysis considered only the preceding 4 hours of

each training seizure. As it is strongly advisable to use all available data from training seizures,

this becomes a limitation. Utilizing all available data would improve the representativeness of

interictal data.

Although the primary objective of this study is to assess the predictive “quality” of the data,

it is important to acknowledge that using a relatively basic machine learning pipeline represents a

limitation. Therefore, employing more complex classifiers like Multi-Layer Perceptron, Support

Vector Machine (SVM), and random forest, among others, could have allowed for a more fair

comparison with other studies.

Furthermore, the organization and characteristics of data within different databases differ

significantly. Several databases lack essential metadata, which is pivotal in addressing this

issue. Metadata, encompassing information such as the patient’s epilepsy type, gender, age,

and precise seizure timings, holds substantial significance for meticulous data analysis. These

database differences introduce significant complexity, making employing a uniform set of rules

and assumptions challenging and complicating result comparisons.

Accessibility poses an additional complication, as only pre-surgical monitoring data is

openly accessible in its entirety. In contrast, numerous currently existing datasets remain par-

tially accessible or entirely restricted, occasionally lacking label information or a portion of the

dataset.
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Conclusion

This thesis aimed to develop a methodology capable of predicting epileptic seizures and estab-

lishing comparisons between the performance obtained when applied to 4 different databases.

For this purpose, a patient-specific seizure prediction algorithm was created, following the most

common pipeline in the literature. For European Epilepsy Database (EPILEPSIAE) and Chil-

dren’s Hospital Boston from the Massachusetts Institute of Technology (CHB-MIT) datasets,

the chosen approach involved triggering alarms due to the availability of temporal seizure data.

Conversely, American Epilepsy Society (AES) and Epilepsy Ecosystem relied on a sample-by-

sample approach due to the lack of temporal data.

A clear conclusion emerges when assessing the training phase results across different databases.

Handling the problem less rigorously, without considering the temporal aspect of seizure oc-

currence and disregarding long-term interictal data, leads to better results. Nonetheless, this

improved performance does not necessarily translate into a more accurate representation of

real-life scenarios; it can even have the opposite effect. In fact, the assumptions made to sim-

ulate real-life alarm situations result in unfavorable outcomes, as demonstrated by the results

obtained from the EPILEPSIAE and CHB-MIT datasets. Nevertheless, these assumptions are

indispensable for addressing the problem and its practical applicability. Therefore, obtaining

impressive results holds little value if they lack realism.

The conclusions stemming from comparing the test results and results obtained by other

studies utilizing identical databases align closely are analogous. The anticipation was for some-

what weaker results due to utilizing a relatively straightforward pipeline, but not to this extent.

Once again, the prevailing belief is that the meticulous care and assumptions made to enhance

the representation of real-life scenarios have led to these low-performance results. Many authors

do not have this level of rigor in realistically approaching the problem.

Additionally, the alarm approach yields inferior outcomes compared to the sample ap-

proach. There are instances where no alarms are triggered, but the classifier effectively identifies

many samples as preictal. These cases prompt a consideration of the chosen Firing Power (FP)

threshold value is overly conservative.

A comparison of the values obtained across datasets for each approach reveals that, in

the sample approach, the results demonstrate substantial consistency. However, in the case of

the alarm approach, disparities in the metrics that reflect a real-life context (such as SSAlarm

and False Prediction Rate per hour (FPR/h)) emerge between the EPILEPSIAE and CHB-

MIT datasets. Factors like data duration and inherent nature play a role in causing these

discrepancies, affecting the fidelity of replicating realistic scenarios.
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Extracting definitive insights from the obtained results is challenging despite these evident

conclusions. The many variables at play make it difficult to ascertain the specific factors con-

tributing to the observed value differences. Even with a rigorous methodology, the varying data

types, organizational structures, and accessibility across different databases introduce significant

complexity to the standardization process.

In order to overcome the limitations elucidated above, future work should involve replicating

this study using more extensive, systematically structured, and thoroughly annotated long-term

datasets. Achieving this entails the acquisition and dissemination of additional data into public

databases. Ensuring this novel data is collected in environments mirroring a patient’s everyday

life is of utmost significance. Subsequently, it is crucial to make this data readily accessible to

the public, accompanied by essential information to enable a realistic problem-solving approach.

Furthermore, the developed methodology should undergo testing with parameter variations,

including exploring alternative classifiers and the standardization of the preprocessing step, to

assess the resulting disparities in outcomes.
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D. L. Lorenzetti, and N. Jetté, “Prevalence and incidence of epilepsy: a systematic review

and meta-analysis of international studies,” Neurology, vol. 88, no. 3, pp. 296–303, 2017.

[10] L. A. Jones and R. H. Thomas, “Sudden death in epilepsy: Insights from the last 25

years,” Seizure, vol. 44, pp. 232–236, 2017.

[11] M. R. Sperling, “The consequences of uncontrolled epilepsy,” CNS spectrums, vol. 9, no. 2,

pp. 98–109, 2004.

[12] C. Rathore and K. Radhakrishnan, “Concept of epilepsy surgery and presurgical evalua-

tion,” Epileptic disorders, vol. 17, no. 1, pp. 19–31, 2015.

[13] C. Baumgartner, J. P. Koren, and M. Rothmayer, “Automatic computer-based detection

of epileptic seizures,” Frontiers in neurology, vol. 9, p. 639, 2018.

[14] L. Kuhlmann, K. Lehnertz, M. P. Richardson, B. Schelter, and H. P. Zaveri, “Seizure

prediction—ready for a new era,” Nature Reviews Neurology, vol. 14, no. 10, pp. 618–630,

2018.

[15] E. B. Assi, D. K. Nguyen, S. Rihana, and M. Sawan, “Towards accurate prediction of

87

http://www.epilepsiae.eu/
https://physionet.org/content/chbmit/1.0.0/
https://www.kaggle.com/c/seizure-prediction
https://www.kaggle.com/c/seizure-prediction
https://www.epilepsyecosystem.org/


Bibliography

epileptic seizures: A review,” Biomedical Signal Processing and Control, vol. 34, pp. 144–

157, 2017.

[16] D. R. Freestone, P. J. Karoly, and M. J. Cook, “A forward-looking review of seizure

prediction,” Current opinion in neurology, vol. 30, no. 2, pp. 167–173, 2017.

[17] F. Mormann, R. G. Andrzejak, C. E. Elger, and K. Lehnertz, “Seizure prediction: the

long and winding road,” Brain, vol. 130, no. 2, pp. 314–333, 2007.

[18] P. J. Karoly, H. Ung, D. B. Grayden, L. Kuhlmann, K. Leyde, M. J. Cook, and D. R.

Freestone, “The circadian profile of epilepsy improves seizure forecasting,” Brain, vol. 140,

no. 8, pp. 2169–2182, 2017.

[19] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Dynamic integration of

classifiers for handling concept drift,” Information fusion, vol. 9, no. 1, pp. 56–68, 2008.

[20] L. D. Iasemidis, “Epileptic seizure prediction and control,” IEEE Transactions on Biomed-

ical Engineering, vol. 50, no. 5, pp. 549–558, 2003.

[21] R. S. Fisher, W. V. E. Boas, W. Blume, C. Elger, P. Genton, P. Lee, and J. Engel Jr,

“Epileptic seizures and epilepsy: definitions proposed by the international league against

epilepsy (ilae) and the international bureau for epilepsy (ibe),” Epilepsia, vol. 46, no. 4,

pp. 470–472, 2005.

[22] R. S. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz, J. H. Cross, C. E. Elger, J. En-

gel Jr, L. Forsgren, J. A. French, M. Glynn, et al., “Ilae official report: a practical clinical

definition of epilepsy,” Epilepsia, vol. 55, no. 4, pp. 475–482, 2014.

[23] I. E. Scheffer, S. Berkovic, G. Capovilla, M. B. Connolly, J. French, L. Guilhoto, E. Hirsch,
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F. E. Jansen, L. Lagae, S. L. Moshé, et al., “Instruction manual for the ilae 2017 opera-

tional classification of seizure types,” Epilepsia, vol. 58, no. 4, pp. 531–542, 2017.

[26] H. Hasson, “Generalized onset tonic-clonic seizures. . . ,”

[27] J. J. Falco-Walter, I. E. Scheffer, and R. S. Fisher, “The new definition and classification

of seizures and epilepsy,” Epilepsy research, vol. 139, pp. 73–79, 2018.

[28] A. M. Pack, “Epilepsy overview and revised classification of seizures and epilepsies,” CON-

TINUUM: Lifelong Learning in Neurology, vol. 25, no. 2, pp. 306–321, 2019.

[29] N. Gayatri and J. Livingston, “Aggravation of epilepsy by anti-epileptic drugs,” Develop-

mental Medicine & Child Neurology, vol. 48, no. 5, pp. 394–398, 2006.

[30] K. H. Noe and J. F. Drazkowski, “Safety of long-term video-electroencephalographic mon-

itoring for evaluation of epilepsy,” in Mayo Clinic Proceedings, vol. 84, pp. 495–500, Else-

vier, 2009.

[31] A. Rose, P. McCabe, F. Gilliam, B. Smith, J. Boggs, D. Ficker, J. Moore, E. Passaro,

88



Bibliography

C. Bazil, et al., “Occurrence of seizure clusters and status epilepticus during inpatient

video-eeg monitoring,” Neurology, vol. 60, no. 6, pp. 975–978, 2003.

[32] S. R. Haut, C. Swick, K. Freeman, and S. Spencer, “Seizure clustering during epilepsy

monitoring,” Epilepsia, vol. 43, no. 7, pp. 711–715, 2002.

[33] R. Caraballo, R. Cersosimo, G. Capovilla, and N. Fejerman, “Benign focal seizures of

adolescence,” Fejerman N, Caraballo R. Benign focal epilepsies in infancy, childhood and

adolescence. Montrouge: John Libbey, 2007a, pp. 243–51, 2007.

[34] S. J. Smith, “Eeg in the diagnosis, classification, and management of patients with

epilepsy,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 76, no. suppl 2, pp. ii2–

ii7, 2005.

[35] J. W. C. Medithe and U. R. Nelakuditi, “Study of normal and abnormal eeg,” in 2016 3rd

International conference on advanced computing and communication systems (ICACCS),

vol. 1, pp. 1–4, IEEE, 2016.

[36] N. Jmail, M. Gavaret, F. Wendling, A. Kachouri, G. Hamadi, J.-M. Badier, and C.-G.

Bénar, “A comparison of methods for separation of transient and oscillatory signals in

eeg,” Journal of neuroscience methods, vol. 199, no. 2, pp. 273–289, 2011.

[37] R. Sankar and J. Natour, “Automatic computer analysis of transients in eeg,” Computers

in biology and medicine, vol. 22, no. 6, pp. 407–422, 1992.

[38] I. Osorio, H. P. Zaveri, M. G. Frei, and S. Arthurs, Epilepsy: the intersection of neuro-

sciences, biology, mathematics, engineering, and physics. CRC press, 2016.

[39] T. P. Exarchos, A. T. Tzallas, D. I. Fotiadis, S. Konitsiotis, and S. Giannopoulos, “A data

mining based approach for the eeg transient event detection and classification,” in 18th

IEEE Symposium on Computer-Based Medical Systems (CBMS’05), pp. 35–40, IEEE,

2005.

[40] T. P. Exarchos, A. T. Tzallas, D. I. Fotiadis, S. Konitsiotis, and S. Giannopoulos, “Eeg

transient event detection and classification using association rules,” IEEE Transactions

on Information Technology in Biomedicine, vol. 10, no. 3, pp. 451–457, 2006.

[41] S. Sanei and J. A. Chambers, EEG signal processing. John Wiley & Sons, 2013.

[42] A. Varsavsky, I. Mareels, and M. Cook, Epileptic seizures and the EEG: measurement,

models, detection and prediction. Taylor & Francis, 2011.

[43] V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their

validity as relative head-surface-based positioning systems,” Neuroimage, vol. 34, no. 4,

pp. 1600–1611, 2007.

[44] M. H. Libenson, Practical approach to electroencephalography. Elsevier Health Sciences,

2009.

[45] S. Beniczky and D. L. Schomer, “Electroencephalography: basic biophysical and tech-

nological aspects important for clinical applications,” Epileptic Disorders, vol. 22, no. 6,

pp. 697–715, 2020.

[46] A. Biondi, V. Santoro, P. F. Viana, P. Laiou, D. K. Pal, E. Bruno, and M. P. Richardson,

“Noninvasive mobile eeg as a tool for seizure monitoring and management: A systematic

review,” Epilepsia, vol. 63, no. 5, pp. 1041–1063, 2022.

[47] S. Debener, R. Emkes, M. De Vos, and M. Bleichner, “Unobtrusive ambulatory eeg using

89



Bibliography

a smartphone and flexible printed electrodes around the ear,” Scientific reports, vol. 5,

no. 1, pp. 1–11, 2015.

[48] S. Kovac, V. N. Vakharia, C. Scott, and B. Diehl, “Invasive epilepsy surgery evaluation,”

Seizure, vol. 44, pp. 125–136, 2017.

[49] S. Shorvon, R. Guerrini, M. Cook, and S. Lhatoo, Oxford textbook of epilepsy and epileptic

seizures. OUP Oxford, 2012.

[50] AboutKidsHealth, “Invasive electroencephalography (eeg) monitoring before epilepsy

surgery,” 2023.

[51] R. P. Lesser, N. E. Crone, and W. Webber, “Subdural electrodes,” Clinical neurophysiol-

ogy, vol. 121, no. 9, pp. 1376–1392, 2010.

[52] J. Engel, “What can we do for people with drug-resistant epilepsy?: the 2016 wartenberg

lecture,” Neurology, vol. 87, no. 23, pp. 2483–2489, 2016.

[53] P. Perucca, I. E. Scheffer, and M. Kiley, “The management of epilepsy in children and

adults,” Medical Journal of Australia, vol. 208, no. 5, pp. 226–233, 2018.
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C. Teixeira, “Removing artefacts and periodically retraining improve performance of neural

network-based seizure prediction models,” Scientific Reports, vol. 13, no. 1, p. 5918, 2023.

[103] S. Khan, L. Nobili, R. Khatami, T. Loddenkemper, C. Cajochen, D.-J. Dijk, and S. H.

Eriksson, “Circadian rhythm and epilepsy,” The Lancet Neurology, vol. 17, no. 12,

pp. 1098–1108, 2018.

[104] C. Blume, R. Del Giudice, M. Wislowska, J. Lechinger, and M. Schabus, “Across the

consciousness continuum—from unresponsive wakefulness to sleep,” Frontiers in human

neuroscience, vol. 9, p. 105, 2015.

93



Bibliography

[105] R. K. Tripathy, S. K. Ghosh, P. Gajbhiye, and U. R. Acharya, “Development of automated

sleep stage classification system using multivariate projection-based fixed boundary em-

pirical wavelet transform and entropy features extracted from multichannel eeg signals,”

Entropy, vol. 22, no. 10, p. 1141, 2020.

[106] S. Chokroverty, “Overview of normal sleep,” Sleep disorders medicine: Basic science,

technical considerations and clinical aspects, pp. 5–27, 2017.

[107] H. Daoud and M. A. Bayoumi, “Efficient epileptic seizure prediction based on deep learn-

ing,” IEEE transactions on biomedical circuits and systems, vol. 13, no. 5, pp. 804–813,

2019.

[108] T. Pal Attia, P. F. Viana, M. Nasseri, J. Duun-Henriksen, A. Biondi, J. S. Winston,
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S. T. George, “Automated epileptic seizure detection in pediatric subjects of chb-mit eeg

database—a survey,” Journal of Personalized Medicine, vol. 11, no. 10, p. 1028, 2021.

[169] S. Wong and L. Kuhlmann, “Computationally efficient epileptic seizure prediction based

on extremely randomised trees,” in Proceedings of the Australasian Computer Science

Week Multiconference, pp. 1–3, 2020.

[170] “Epilepsy ecosystem - my seizure gauge.” https://www.epilepsyecosystem.org/

my-seizure-gauge-1. Accessed on 2023-03-23.

[171] J. Cloyd, S. Haut, E. Carrazana, and A. L. Rabinowicz, “Overcoming the challenges of

developing an intranasal diazepam rescue therapy for the treatment of seizure clusters,”

Epilepsia, vol. 62, no. 4, pp. 846–856, 2021.

[172] M. R. Bouw, S. S. Chung, B. Gidal, A. King, J. Tomasovic, J. W. Wheless, and P. J.

Van Ess, “Clinical pharmacokinetic and pharmacodynamic profile of midazolam nasal

spray,” Epilepsy Research, vol. 171, p. 106567, 2021.

[173] S. H. Boddu and S. Kumari, “A short review on the intranasal delivery of diazepam for

treating acute repetitive seizures,” Pharmaceutics, vol. 12, no. 12, p. 1167, 2020.

[174] A. Aarabi, R. Fazel-Rezai, and Y. Aghakhani, “Eeg seizure prediction: measures and

challenges,” in 2009 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, pp. 1864–1867, IEEE, 2009.

[175] P. R. Carney, S. Myers, and J. D. Geyer, “Seizure prediction: methods,” Epilepsy &

behavior, vol. 22, pp. S94–S101, 2011.

98

https://www.kaggle.com/c/seizure-prediction
https://www.epilepsyecosystem.org/my-seizure-gauge-1
https://www.epilepsyecosystem.org/my-seizure-gauge-1


Bibliography

[176] B. Hjorth, “Eeg analysis based on time domain properties,” Electroencephalography and

clinical neurophysiology, vol. 29, no. 3, pp. 306–310, 1970.

[177] L. Chisci, A. Mavino, G. Perferi, M. Sciandrone, C. Anile, G. Colicchio, and F. Fuggetta,

“Real-time epileptic seizure prediction using ar models and support vector machines,”

IEEE Transactions on Biomedical Engineering, vol. 57, no. 5, pp. 1124–1132, 2010.

[178] Z. Zhang and K. K. Parhi, “Seizure prediction using polynomial svm classification,” in

2015 37th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC), pp. 5748–5751, IEEE, 2015.

[179] K. Gadhoumi, J.-M. Lina, and J. Gotman, “Seizure prediction in patients with mesial

temporal lobe epilepsy using eeg measures of state similarity,” Clinical Neurophysiology,

vol. 124, no. 9, pp. 1745–1754, 2013.

[180] H. Ocak, “Automatic detection of epileptic seizures in eeg using discrete wavelet transform

and approximate entropy,” Expert Systems with Applications, vol. 36, no. 2, pp. 2027–2036,

2009.

[181] L. Wang, C. Wang, F. Fu, X. Yu, H. Guo, C. Xu, X. Jing, H. Zhang, and X. Dong, “Tempo-

ral lobe seizure prediction based on a complex gaussian wavelet,” Clinical Neurophysiology,

vol. 122, no. 4, pp. 656–663, 2011.

[182] P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Physical review

letters, vol. 50, no. 5, p. 346, 1983.

[183] L. D. Iasemidis, D.-S. Shiau, J. C. Sackellares, P. M. Pardalos, and A. Prasad, “Dynamical

resetting of the human brain at epileptic seizures: application of nonlinear dynamics and

global optimization techniques,” IEEE transactions on biomedical engineering, vol. 51,

no. 3, pp. 493–506, 2004.

[184] M. Le Van Quyen, J. Martinerie, M. Baulac, and F. Varela, “Anticipating epileptic seizures

in real time by a non-linear analysis of similarity between eeg recordings,” Neuroreport,

vol. 10, no. 10, pp. 2149–2155, 1999.

[185] F. Mormann, T. Kreuz, R. G. Andrzejak, P. David, K. Lehnertz, and C. E. Elger, “Epilep-

tic seizures are preceded by a decrease in synchronization,” Epilepsy research, vol. 53, no. 3,

pp. 173–185, 2003.

[186] E. Oja and A. Hyvarinen, “Independent component analysis: algorithms and applications,”

Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[187] F. Mormann, R. G. Andrzejak, T. Kreuz, C. Rieke, P. David, C. E. Elger, and K. Lehnertz,

“Automated detection of a preseizure state based on a decrease in synchronization in

intracranial electroencephalogram recordings from epilepsy patients,” Physical Review E,

vol. 67, no. 2, p. 021912, 2003.

99



Bibliography

100



Appendices

101





A

Features Description

The focus of this chapter lies in a comprehensive exploration, revealing the most extracted

features from the state-of-the-art, along with the univariate linear features utilized during the

development of this thesis.

Univariate Linear Features

Extracting univariate linear characteristics from the Electroencephalogram (EEG) signal in-

volves characterizing each channel’s signal’s phase/frequency and amplitude information. This

extraction assumes that the EEG is approximately stationary within each time window.

Statistical Moments

Within the EEG time series context, statistical moments are pivotal in elucidating the amplitude

and distribution characteristics. Typically computed concerning the mean, these moments en-

compass various measures. The first moment, which corresponds to the mean, sheds light on the

central tendency of the distribution. The second moment, known as the variance, quantifies the

dispersion around the mean. These initial moments collectively offer valuable details regarding

the location and variability of the amplitude distribution within the time series. Furthermore,

the third moment indicates the slope and thus reveals the degree of skewness in the distribution.

Finally, the kurtosis moment illustrates the distribution’s peak degree.

A comprehensive summary of this information is available in the provided Table A.1. N

signifies the total number of samples encompassed by the sliding window, and x denotes a vector

containing the input values.

Table A.1: Statistical moments

Order Formula Definition

1st (Mean) µ = 1
N

∑N
i=1 xi

Measures the central tendency

of the amplitude of the samples

2nd (Variance) σ2 = 1
N−1

∑N
i=1(xi − µ)2

Measures the dispersion of the amplitude

of the samples around its mean

3rd (Skewness) χ =
1

N−1

∑N
i=1(xi−µ)3

σ3

Measures the degree of asymmetries

of the amplitude distribution

4th (Kurtosis) κ =
1

N−1

∑N
i=1(xi−µ)4

(N−1)σ4 − 3
Measures the relative flatness or

peakedness of the amplitude distribution
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A. Features Description

These methodologies distinguish between interictal and ictal states, thereby providing sig-

nificant value in detecting seizures characterized by substantial amplitude. Noteworthy findings

from several studies [95, 174] demonstrate a decrease in variance alongside an increase in kurtosis

during the preictal period, contrasting with the interictal period [174, 175].

Hjorth Parameters

Hjorth [176] established three normalized slope descriptor parameters — activity, mobility, and

complexity — in the time domain. Activity represents the signal’s variability and assesses its

average power. Mobility, in contrast, involves computing the ratio of the Root Mean Square

(RMS) of the slopes of the EEG signal to the RMS of the amplitudes within a moving time

window, providing an estimation of the mean frequency. On the other hand, complexity employs

the RMS measure of the rate of slope changes relative to an idealized curve, offering an estimate

of the signal’s bandwidth.

According to the research conducted by Mormann et al. (2005) [152], there was a substan-

tial increase in mobility and complexity of the Hjorth descriptors observed during the preictal

phase compared to the interictal phase [174].

Auto-regressive Models

The linear method described herein predicts the values of a linear time series at a specific

time point by employing a weighted sum of preceding values along with noise. Auto-regressive

models are applied to model the EEG signal under the assumption of stationarity, enabling

the examination of neuronal synchronization. To handle the non-stationarity inherent in such

signals, the signal is segmented into shorter intervals using a sliding window approach.

Utilizing auto-regressive modeling, a series of measures were computed and integrated into

the set of characteristics in several studies, allowing for the identification of preictal alterations

[67, 97, 95, 139, 142]. The authors, in their investigations, utilized either the modeling error

resulting from a seizure generation process [142] or the values of the modeling coefficients as

characteristic indicators [177].

Decorrelation Time

Similar to auto-regressive models, decorrelation time finds application in exploring neuronal

synchronization. Autocorrelation, which pertains to the correlation between signal values at

different temporal instances, assumes significance in this context. The correlation time, in turn,

corresponds to the moment when the autocorrelation sequence of a specific EEG signal first

crosses zero.

A decrease in the decorrelation time implies a decrease in the correlation exhibited by

the signal samples. For example, in the case of a white noise sequence, the correlation time is

theoretically zero, indicating a complete absence of correlation among its samples.

The correlation among EEG signal samples decreases in the lead-up to a seizure. The

evidence supporting this finding was established by Mormann et al. (2005) [152], who reported

decreased decorrelation time before seizures [95, 174].
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Relative Spectral Power

Authors typically describe the EEG signal in its major frequency bands: delta, theta, alpha,

beta, and gamma. They often employ frequency domain features to capture the frequency vari-

ations from low to high frequencies and calculate their relative power. The relative power within

a particular frequency band is determined by calculating the area under the power spectrum

curve within the corresponding bandwidth and normalizing it by the total power encompassing

all frequency bands.

These are the characteristics prevalent in the literature [67, 95, 96, 97, 99, 102, 108, 111,

114, 116, 117, 119, 124, 125, 128, 129, 130, 131, 132, 133, 138, 139, 140, 142] and are obtained by

computing the Power Spectral Density (PSD) through the application of the Fast Fourier Trans-

form (FFT) to the EEG time series. Afterward, the computation involves finding the average of

the squared coefficients within the frequency range of interest. Accurate PSD estimation relies

on assuming statistical stationarity in the EEG signal, which requires segmenting the signal

into windows of sufficient length to capture low-frequency brain activity while still being short

enough to satisfy the stationarity assumption.

The literature has documented a shift in power from lower to higher frequencies [95, 96, 142,

152]. In particular, Mormann et al. (2005) [152] observed a relative decrease in power within the

delta band, accompanied by a relative increase in the remaining frequency bands. Furthermore,

Bandarabadi et al. (2015) [96] conducted an in-depth analysis of spectral powers across different

subbands and electrodes, highlighting their potential for detecting gradual changes that precede

seizures [96, 155, 174, 178].

Wavelet Transform

The inherent limitation of Fourier transforms in effectively handling instantaneous signal changes

underscores the need to investigate methods within the time-frequency domain. The Wavelet

Transform (WT) is a more appropriate choice, characterized by its ability to decompose the

continuous signal into subbands known as wavelets derived from a mother wavelet.

Moreover, EEG signals manifest considerable complexity, characterized by their nonlinear

and non-stationary behavior. The wavelet transformation offers a suitable approach for inves-

tigating the elements constituting chaotic and time-variant signals, such as EEG signals, as it

exhibits favorable localization properties in both time and frequency domains. By providing

concurrent insights into time and frequency characteristics, this approach identifies transient

characteristics within the data, including epileptic spikes.

The quantification of energy across diverse frequency bands represents a notable charac-

teristic achievable through utilizing the WT, as evidenced in prior studies [95, 142, 179]. A key

advantage of WT is its capacity to employ variable window sizes, which empowers the method

to yield precise frequency information at lower frequencies and accurate time-related insights at

higher frequencies [180, 181].
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Spectral Edge Frequency

EEG signals distribute spectral power across the entire frequency spectrum, with a significant

portion concentrating within 0 to 40 Hz. Spectral Edge Frequency (SEF) and Spectral Edge

Power (SEP) metrics provide a means to quantify power distribution within this frequency range.

SEF is a crucial measure, providing insight into the distribution of signal energy in the

frequency spectrum and highlighting the concentration of signal power. Quantifying it involves

determining the frequency below which a specific percentage (x) of the total signal energy resides,

with x varying from 0 to 100. In the context of seizure prediction, the widely adopted value for

x is 50%, facilitating the determination of the minimum frequency within the 0-40 Hz band that

contains 50% of the power. The area under the SEF curve corresponds to SEP, as supported

by pertinent studies [17, 95, 140].

Univariate Nonlinear Features

Linear measures are a direct computation from the time series or power spectrum. In contrast,

nonlinear features, including the correlation dimension, greatest Lyapunov exponent, entropy,

and the dynamic similarity index, are derived from the principles of dynamical systems theory

[140, 152]. Given the noisy and non-stationary nature of EEG time series, a reduction in its

chaotic behavior may indicate an impending seizure, as brain dynamics become more predictable

before seizure events. Consequently, chaotic measures can aid in describing brain dynamics by

detecting increased brain synchrony preceding seizures. However, a disadvantage of employing

such features is their computational complexity, posing challenges when implementing them

within online systems [15].

Correlation Sum and Dimension

Proposed by Grassberger and Procaccia (1983) [182], the correlation dimension is a prominent

method for evaluating the fractal dimension of a signal. The dimension arises from examining the

spatial distribution occupied by the signal samples. Additionally, considering a given distance,

the correlation sum considers the likelihood of two vectors in the state space trajectory being

close to each other. The correlation dimension and correlation sum jointly contribute essen-

tial knowledge concerning attractor spatial structure and complexity, offering a mathematically

grounded approach to signal analysis.

Lyapunov Exponent

Chaos theory’s fundamental concept emphasizes that a system’s predictability depends on its

initial conditions. Chaotic behavior exhibits itself through the exponential divergence of neigh-

boring trajectories in state space, which can be quantified using Lyapunov exponents. These

exponents are critical in measuring the separation rate between neighboring trajectories, offering

invaluable insights into the dynamics and predictability of intricate events observed in diverse

systems.
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Lyapunov exponents find widespread applications in various research domains, including

studying events such as seizures. However, the outcomes can be divergent, with some studies

indicating a decrease in the highest Lyapunov exponent shortly before the event [183], while

others suggest an increase approximately 30 minutes before [152]. Nonetheless, the analysis

of Lyapunov exponents remains essential for comprehending the intricate dynamics of complex

systems and their responsiveness to initial conditions.

Entropy

Entropy is a crucial metric for evaluating the regularity and unpredictability of fluctuations

within EEG data. Various forms of entropy, including approximation entropy, sample entropy,

permutation entropy, and spectral entropy, can be utilized to assess the complexity of the EEG

signals. Entropy has proven valuable in detecting transitions from an interictal to a preictal state,

considering seizures often exhibit synchronized brain activity. Several studies have explored this

metric, presenting relevant results [116, 125, 127, 129, 135].

Dynamic Similarity Index

The Dynamic Similarity Index (DSI), a metric introduced by Le Van Quyen et al. (1999)

[184], plays a pivotal role in quantitatively measuring the level of dynamic similarity between

two specific segments within an EEG signal. This method selects one element as a reference,

representing a brief interictal segment, while another component functions as a mobile test

window. The DSI effectively compares the dynamics of these two windows, and upon surpassing

a predetermined threshold, it identifies the preictal period.

A noteworthy aspect of this measurement is its incorporation of time delay, enabling the

extraction of nonlinear features and enhancing the precision of EEG segment dynamics evalu-

ation. DSI has emerged as a valuable tool for detecting the preictal period, as evidenced by

several studies exploring its potential in this domain [15, 17, 184].

Bivariate and Multivariate Linear Features

The comprehensive evaluation of interactions among different brain regions is made possible

through bivariate or multivariate linear features, which concurrently assess two or multiple

electrodes. The preictal stage, marked by complexity in both spatial and temporal aspects,

involves seizures arising from brain synchronization. This state can be effectively captured and

quantified by carefully selecting appropriate features [15, 141].

Maximum Linear Cross-correlation

The maximum linear cross-correlation is a widely employed characteristic for analyzing the syn-

chronization between two electrode channels, constituting a bivariate measure. This assessment

effectively quantifies the degree of delay synchronization between the channels and precisely

determines the time delay τ by which two identical signals shift. As a result, it stands as an

indispensable indicator for measuring the similarity inherent in the two time series. With values
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ranging between 0 and 1, results close to 1 indicate high signal similarity, featuring a possible

time delay τ . In contrast, asynchronous signals yield values nearing 0 [15, 17, 162, 185].

Ration and Differences

The assessment of brain activities requires a holistic perspective on the interrelationships between

multiple regions, achieved through the comparison of the same feature obtained from different

channels. This approach offers a generalized outlook on the interconnected brain dynamics.

This approach quantifies these interrelationships using relative and differential features. Relative

features involve dividing the resources of one channel by those of another, whereas differential

features involve subtracting the resources of one channel from those of another.

ICA

Independent Component Analysis (ICA) [186] is a powerful approach that assumes that each

measured signal comprises a linear combination of independent signals. This technique ef-

fectively decomposes multidimensional data vectors into statistically independent components,

which are valuable for feature extraction. However, ICA demonstrates remarkable success in

eliminating artifacts from EEG signals and decomposing the EEG into different component

signals originating from various sources.

Bivariate and Multivariate Nonlinear Features

Bivariate and multivariate nonlinear features are extensively employed as they excel at capturing

changes in synchrony within EEG signals. These measures simultaneously examine information

from two or multiple electrodes, using concepts of similarity and mutual information.

Mean Phase Coherence

Mean Phase Coherence (MPC) is a widely adopted measure for quantifying the phase synchro-

nization between two time series. The metric produces values between 0 and 1, with outcomes

close to 1 denoting a high degree of synchronization [67, 141, 152]. Some studies consistently

report a reduction in MPC values preceding the onset of seizures [141, 187], indicating MPC’s

relevance as an informative indicator for detecting phase synchronization changes associated

with seizure events.

Dynamic Entrainment

Dynamic entrainment, a feature introduced by Iasemidis et al. (2004) [183], draws inspiration

from chaos theory and focuses on quantifying the nonlinear interaction between two time se-

ries. As a multivariate version of the Lyapunov exponent, dynamic entrainment demands the

computation of the greatest Lyapunov exponent for each analyzed channel.
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Nonlinear Interdependence

The evaluation of nonlinear connectivity between two EEG signals derived from different chan-

nels indicates generalized synchronization. This state arises when one coupled system’s behavior

dynamically affects the other’s behavior [136, 141].
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B

Databases Pipeline Overview

To provide a concise overview of the content discussed within section 4.2, Figures B.1,

B.2, and B.3 illustrate the models employed for the Children’s Hospital Boston from the Mas-

sachusetts Institute of Technology (CHB-MIT), American Epilepsy Society (AES), and Epilepsy

Ecosystem databases. These figures facilitate straightforward comparisons with Figure 4.1, de-

picting the model utilized for European Epilepsy Database (EPILEPSIAE).

TRAINING

DATA PARTITION

CHB-MIT 

TESTING

Preprocessing

Feature Extraction

5s sliding window

59 features x N
channels

0.5 Hz high-pass
filtering

Training Data

3 first seizures

Testing Data

Remaining
seizures

Raw data

Class Labeling
Standardization
Class Balancing

Feature Selection
Model Training

Classification

Apply trained
classifier

Logistic Regression

optimal SOP
best k features

Grid search:

Postprocessing

Regularization
(Firing Power)

Performance Assessment

Sensivity
FPR/h

Specificity
AUC score

Statistical Validation

Figure B.1: General overview of the proposed patient-specific pipeline for CHB-MIT database.
N can assume any of the following values: 23 or 32. Asterisks indicate the inclusion of a Logistic
Regression classifier in the model training phase.
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TRAINING

DATA PARTITION

AES

TESTING

Preprocessing
Feature Extraction

5s sliding window

59 features x N
channels

0.5 Hz high-pass
and 60 Hz low-
pass filtering

Training Data

≈ 70% of preictal
files (x) from

original train files
+ x interictal files

Testing Data

Remaining original
train files

Raw data

Standardization
Feature Selection

Model Training
Classification

Apply trained
classifier

Logistic Regression

best k features
Grid search:

Performance Assessment

Sample sensivity
Specificity
AUC score

Statistical Validation

Figure B.2: General overview of the proposed patient-specific pipeline for AES database. N
can assume any of the following values: 15, 16, or 24. x refers to the number of preictal train
files. Asterisks indicate the inclusion of a Logistic Regression classifier in the model training
phase.

TRAINING

DATA PARTITION

TESTING

Preprocessing
Feature Extraction

5s sliding window

59 features x 16
channels

0.5 Hz high-pass
and 60 Hz low-
pass filtering

Training Data

All preictal files (x)
from original train
files + x interictal

train files

Testing Data

All test files
Raw data

Standardization
Feature Selection

Model Training
Classification

Apply trained
classifier

Logistic Regression

best k features
Grid search:

Performance Assessment

Sample sensivity
Specificity
AUC score

Statistical Validation

Epilepsy
Ecosystem

Figure B.3: General overview of the proposed patient-specific pipeline for Epilepsy Ecosystem
database. x refers to the number of preictal train files. Asterisks indicate the inclusion of a
Logistic Regression classifier in the model training phase.
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