
Inês Margarida Silva Teixeira

GENERATION OF MUTATION TESTS FOR
OPTICAL LINE TERMINAL

September 2023

Dissertation in the context of the Master in Informatics Engineering, specialization
in Software Engineering, advised by Prof. Carlos Nuno Bizarro e Silva Laranjeiro

and Prof. João Nuno Gonçalves Costa Cavaleiro Correia and presented to the
Department of Informatics Engineering of the Faculty of Sciences and Technology

of the University of Coimbra.

Inês Margarida Silva Teixeira

GENERATION OF MUTATION TESTS FOR
OPTICAL LINE TERMINAL

September 2023

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Carlos Nuno Bizarro

e Silva Laranjeiro and Prof. João Nuno Gonçalves Costa Cavaleiro Correia
and presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

Acknowledgements

Initially, I would like to thank my advisor,Professor Nuno Laranjeiro, and my
co-advisor, Professor João Correia, for welcoming me into this dissertation and
guiding me throughout the entire process. I would also like to express my grati-
tude to Altice Labs, especially João Carreira, for always being available to answer
my questions.

To my friends Rita Rodrigues and Filipa Capela, for have always been there to
help and advise me throughout this dissertation. For all the calls focused on me
and my dissertation. Thank you for being there in all the challenging and stressful
moments. As well, thank you for the good times, like watching a sunrise after we
pulled an all-night study session, taking a break to play foosball, and moments
of non-stop laughter. Without both of you, this dissertation, and I, would not be
the same. Thank you for being my pillar not only during this stage of my life but
also in all others.

To my friend Marta Freitas, for helping me throughout all the phases of this dis-
sertation. For always being just a phone call away and ready to support me.
Thanks for your constant presence during this journey.

To my friend Domício Neto, for constantly helping me overcome all my difficul-
ties in this dissertation. For answering all my questions with the extreme kind-
ness. But not everything is work, so thank you for the conversations and shared
laughter in the computer engineering department room. I’m glad this disserta-
tion provided the opportunity for us to meet.

To my other friends who have also been by my side, always believing in me. For
all the advice and moments of relaxation during this dissertation that you shared
with me. Thank you for all the nights out, gatherings, and conversations that
made my academic journey the best years of my life.

To my family, especially my mother, for always supporting me not only through-
out this dissertation but also throughout my entire academic journey. For always
caring about me, bringing me food during the toughest study days. Thank you,
Mom, for all the love and care you give me. I am eternally grateful.

I would also like to thank my cat for never leaving me alone during all the days
and nights of study for this dissertation, as well as throughout the rest of my
academic journey.

A big thank you to everyone for helping me grow professionally.

v

Abstract

Software quality assurance, driven by rigorous software testing, is central to en-
suring that a software application is correct and ready to be delivered to clients.
Among testing methodologies, mutation testing is a highly effective approach to
employ. When combined with traditional testing, it provides a strong phase for
testing for identifying weaknesses in the test suite and, consequently, detecting
defects in software to improve the overall quality of the system. Mutation testing
involves introducing controlled changes, originating mutants, on one software to
simulate fault scenarios and evaluate test suite efficacy.

This dissertation focuses on Optical Line Terminals (OLTs), which are critical net-
work components. Positioned at the supplier’s premises, they manage optical
signal transmission via Passive Optical Network (PON) cables, serving Optical
Network Units (ONUs) and Optical Network Terminals (ONTs). In Fiber to the X
(FTTx) network architectures, they deliver data, voice, video, high-speed internet
access, and television services cost-effectively.

Altice Labs, a distinguished company in the telecommunications industry, is in-
volved in developing and testing OLTs. One of the primary objectives of this
dissertation is to aid in testing the OLT equipment from Altice Labs. To achieve
this, the dissertation aims to develop an approach that automates mutation test-
ing. Typically, this approach involves source code, but challenges arise due to
the absence of the OLT software’s source code. Consequently, it results in the
proposal of an innovative black box mutation testing approach. The approach
outlined in this dissertation involves injecting faults into the OLT by altering its
operational state to achieve our objectives.

Keywords

Mutation Testing, Mutant, Mutation Score, Black Box Testing, Equivalent Parti-
tion Technique, Boundary Values Analysis Technique, Steps, ".features" Files.

vii

Resumo

A garantia de qualidade de software, impulsionada por testes rigorosos de soft-
ware, é fundamental para assegurar que um software esteja correto e pronto para
ser entregue aos clientes. Entre as metodologias de teste, o teste de mutação é
uma abordagem altamente eficaz para empregar. Quando combinado com testes
tradicionais, ele fornece uma fase robusta para identificar fragilidades no con-
junto de testes e, consequentemente, detectar defeitos no software para melhorar
a qualidade geral do sistema. O teste de mutação envolve a introdução de alter-
ações controladas, originando mutantes, num software para simular cenários de
falha e avaliar a eficácia do conjunto de testes.

Esta dissertação concentra-se em Terminais de Linha Óptica (OLTs), componentes
críticos de redes. Localizados nas instalações do fornecedor, eles gerenciam a
transmissão de sinais ópticos por meio de cabos de Rede Óptica Passiva (PON),
atendendo Unidades de Rede Óptica (ONUs) e Terminais de Rede Óptica (ONTs).
Nas arquiteturas de redes de Fibra até o X (FTTx), eles fornecem dados, voz,
vídeo, acesso à Internet de alta velocidade e serviços de televisão de maneira
económica.

A Altice Labs, uma empresa destacada na indústria de telecomunicações, está en-
volvida no desenvolvimento e teste de OLTs. Um dos principais objetivos desta
dissertação é auxiliar nos testes do equipamento OLT da Altice Labs. Para al-
cançar isso, a dissertação visa desenvolver uma abordagem que automatize o
teste de mutação. Normalmente, essa abordagem envolve código-fonte, mas de-
safios surgem devido à ausência do código-fonte do software OLTs. Consequente-
mente, resulta na proposta de uma abordagem inovadora de teste de mutação em
black box. A abordagem delineada nesta dissertação envolve a introdução de fal-
has no OLT alterando seu estado operacional para atingir nossos objetivos.

Palavras-Chave

Teste de Mutação, Mutante, Pontuação de Mutação, Testes em Black Box, Técnica
de Partição Equivalente, Técnica de Análise de Valores Limite, Steps, ficheiros
".features".

ix

Contents

1 Introduction 1
1.1 Problem and Motivation . 2
1.2 Goals . 2
1.3 Planning . 3
1.4 Document Structure . 4

2 Background Concepts 7
2.1 Optical Line Terminal . 7
2.2 OLT2T4 Testing: Execution and Code Syntax 12
2.3 Mutation Testing . 15
2.4 Cost Reduction Techniques in Mutation Testing 18

2.4.1 Mutant Reduction Techniques 18
2.4.2 Execution Cost Reduction Techniques 22

2.5 Summary . 24

3 State of the art 27
3.1 Summary . 34

4 Proposed Approach 35
4.1 Overview . 35
4.2 Methodology . 36

4.2.1 First Instance . 40
4.2.2 Second Instance . 42

5 Implementation 47
5.1 Proposed Approach Development 47
5.2 Mutation Testing Results and Analysis 51

6 Final Considerations 57
6.1 Conclusion . 57
6.2 Future Work . 58

References 59

Appendix A Setting Up the Environment: A Step-by-Step Guide 65

xi

Acronyms

AAR Array Reference for Array Reference Replacement.

AES Advanced Encryption Standard.

ASR Array Reference for Scalar Variable Replacement.

cca Coincidental Correctness.

CLI Common Line Interface.

CSV Comma-Separated Values.

EJB Enterprise Java Bean.

FOM First Order Mutant.

FTTb Fiber-To-The-Business.

FTTB Fiber-To-The-Building.

FTTc Fiber-To-The-Cell.

FTTC Fiber-To-The-Curb.

FTTdp Fiber-To-The-Distribution-Point.

FTTH Fiber-To-The-Home.

FTTx Fiber-To-The-X.

GPON Gigabit-capable Passive Optical Network.

HOM Higher Order Mutants.

MIMD Multiple Instruction Multiple Data.

NMS Network Management System.

OLT Optical Line Terminal.

ONT Optical Network Terminal.

ONU Optical Network Unit.

pda Predicate Analysis.

xiii

PON Passive Optical Network.

sal Statement Analysis.

SIMD Single Instruction Multiple Data.

SiMut Similarity-based Mutation.

SVR Scalar Variable Replacement.

xiv

List of Figures

1.1 First Semester Gantt Chart. 3
1.2 Second Semester Gantt Chart. 3

2.1 Some Fiber-To-The-X (FTTx) Architechtures. Adapted from [Marchetti,
2015-03-01] and [Keiser, 2006-02-06]. 9

2.2 Optical Line Terminal (OLT)2TX Family. [rita-c-felix] 10
2.3 Original Code and Equivalent Mutant. Adapted from [Ma and

Kim, 2016-05-01]. 16
2.4 Description of the Mutation Testing method. Adapted from [Jia

and Harman, 2011-09]. 16
2.5 Cost Reduction Techniques. Adapted from [Jia and Harman, 2011-

09] and [Pizzoleto et al., 2019-11-01]. 18
2.6 Exponential growth of the number of second-order mutants. Adapted

from [Polo et al., 2009]. 21

4.1 System Representation. 36
4.2 OLT2T4 emulator Mutation Testing Diagram. 37
4.3 Results Definition Diagram - 1st Approach. 41
4.4 Testing Phases. 43
4.5 Results Definition Diagram - 2nd Approach. 44

5.1 Test Environment Architecture. 48
5.2 Equipment Identification in the Test File. 48
5.3 Total Results of the 1st Phase Graphic. 52
5.4 Survival Status of Succeeded Mutants in the 2nd Phase Graphic. . . 52
5.5 Mutation Type of Killed Mutants in the 2nd Phase Graphic. 53
5.6 Killed Mutants with Different Failures in the 3rd Phase Graphic. . . 54
5.7 Killed Mutants for Each Failure in the 3rd Phase Graphic. 54
5.8 Total Killed Mutants in the 3rd Phase Graphic. 55

xv

List of Tables

2.1 Mothra Mutant Operators. Adapted from [King and Offutt, 1991]. . 20
2.2 Equivalence of a second-order mutant. Adapted from [Polo et al.,

2009]. 22

3.1 Mutation testing techniques used in 2018. Adapted from [Pizzoleto
et al., 2019-11-01]. 32

4.1 Hexadecimal Test Cases. 38
4.2 Integer Test Cases. 38
4.3 String Test Cases. 39

5.1 Structure of the Spreadsheet for a set with arguments. 48
5.2 Structure of the Spreadsheet for a set without arguments. 49
5.3 Structure of the Comma-Separated Values (CSV) file for the first

instance. 50
5.4 Success Rate of Killed Mutants for Different Failures. 55

xvii

Chapter 1

Introduction

In the scope of the Master’s Degree in Computer Engineering with specialization
in Software Engineering from the University of Coimbra in collaboration with
Altice Labs, this dissertation was proposed.

Software testing is a vital component of the software development lifecycle, en-
suring the quality of software applications. Mutation testing adds an extra layer
of assurance by assessing the effectiveness of the test set and leading to improve-
ments in the software. Using both traditional testing methods and mutation test-
ing can help organizations deliver software that aligns with user expectations
while minimizing risks and costs associated with defects.

This testing method involves introducing controlled changes into the software to
create mutants. Then, the test set is run against a wide range of mutants. Fault
introduction is usually done through the source code, but it can also be accom-
plished in other ways, as it will be applied in this dissertation. The present work
aims to apply mutation testing to an OLT.

In light of this, mutation testing is a powerful evaluation technique capable of
identifying areas of weakness that other testing methods cannot. However, it
has its own limitations, including being time-consuming, having a high compu-
tational cost, and the complexity of handling mutants.

In this dissertation, mutation testing is applied to an OLT. This network equip-
ment is situated at the supplier’s office and serves the purpose of managing the
distribution of optical signals through Passive Optical Network (PON) through
optical fibers cables between the supplier and the multiple customer, specifically
an Optical Network Unit (ONU) or Optical Network Terminal (ONT). The OLT
can be implemented in FTTx architectures for data, Wi-Fi, TV and others service
distribution. Consequently, the OLT plays a central role in telecommunications
networks.

1

Chapter 1

1.1 Problem and Motivation

Altice Labs1 is an organization offering a wide array of innovative telecommuni-
cations and technology solutions. They are dedicated to product development,
encompassing both software and hardware. Altice Labs develops OLTs and tests
them for quality assurance when delivered to their clients. This dissertation aims
to assist in improving the testing process.

The Quality Assurance team at Altice Labs performs manual Mutation Testing
on the OLT, needing to inject faults leading to the creation of mutants by hand.
Doing this way has proven to be time-consuming. In this way, this dissertation
aims to study, propose and develop a framework capable of automating OLT
Mutation Testing, thus improving efficiency within the given time constraints.

As the most recent OLT developed by Altice Labs, the OLT2T4 is the primary
focus of this dissertation. With the collaboration of Altice, the goal of this disser-
tation is to implement mutation testing for this equipment while ensuring that
the approach can be adapted to other OLTs.

In this dissertation, since the OLT source code is not accessible, the aim is to inject
faults using a black-box methodology. This presents the challenge of conducting
mutation testing applied in a black-box approach.

1.2 Goals

As mentioned earlier, the main objective of this dissertation is to study, propose,
and develop an automatic OLT mutation testing approach. To accomplish this, a
series of smaller goals must be achieved, which are listed below:

• Perform a deeper analysis of the concepts and functionalities in the OLTs
developed by Altice Labs. Additionally, understand how tests are con-
ducted and executed within the OLT.

• Analyze and study state-of-the-art techniques for applying mutation testing
in a black-box context, including recent mutation testing approaches.

• Study how to modify the operational state of an OLT and define the faults
to be injected.

• Comprehend the process of automatically generating and executing mu-
tants in conjunction with the test set.

• Implement the proposed approach, starting with the generation of mutants
and subsequently running the test set. While doing this, ensure that the
results of the mutation testing are carefully recorded for future analysis.

1https://www.alticelabs.com/

2

Introduction

1.3 Planning

Due to the change in dissertation topics, the work plan only began in October
2022. Therefore, during the first semester, the majority of time and effort were
dedicated to understanding OLT2T4 mutation testing. Altice Labs were consis-
tently available to provide assistance for this process. Figure 1.1 illustrates the
Gantt chart with the tasks for the first semester.

Figure 1.1: First Semester Gantt Chart.

As shown in figure 1.1, according to the Gantt chart, the first task was to set up the
OLT2T4 emulator to make it possible to execute the tests and subsequently per-
form mutation testing. The second task involved understanding the syntax and
procedures for executing tests in the OLT2T4 emulator. Subsequently, we moved
on to studying the state-of-the-art techniques to gain insights from previous mu-
tation testing approaches. The purpose of these last two tasks was to learn from
them and gather information to help formulate our approach. Unfortunately, the
task of initiating the development of the proposed approach was not completed
as the previous tasks took more time than estimated. Throughout the completion
of these tasks, document writing was in progress, with a significant focus on this
effort in the final month.

In the second semester, the primary goals were to formulate a proposal, imple-
ment it, and execute it. Consequently, figure 1.2 displays the Gantt chart for the
second semester of the dissertation.

Figure 1.2: Second Semester Gantt Chart.

3

Chapter 1

As illustrated in the Gantt chart in figure 1.2, during the second semester, the
tasks faced delays due to the complexities involved in formulating a viable ap-
proach to address the dissertation’s problem. Our OLT2T4 mutation testing ap-
proach had to be implemented within the context of black-box testing, and devel-
oping a solution for injecting faults into the OLT2T4 emulator took longer than
initially projected. Additionally, initial testing revealed that the OLT2T4 software
typically prevented any injected faults. Consequently, we had to reformulate our
approach, which caused delays in subsequent tasks.

Given these challenges, the tasks for the second semester, as previously men-
tioned, involved proposing an approach within the scope of the dissertation.
Subsequently, the development of this approach encompassed several tasks. This
included creating a script file designed to generate the necessary spreadsheet file
containing information required for the injection of faults into the OLT2T4 em-
ulator. Additionally, the next task involved understanding how mutants could
be created, initially starting manually and progressively advancing to automated
methods. Therefore, the subsequent task involved the development of script files
intended to generate the essential files required for fault injection and for execut-
ing Mutation Testing within the OLT2T4 emulator. To improve these scripts, we
made adjustments to address errors identified during their execution.

The subsequent task was to perform OLT2T4 Mutation Testing by executing the
scripts developed in the previously steps. Unfortunately, due to the delays en-
countered earlier in the semester, this task remained incomplete. Finally, as we
approached the end of the second semester, it was written a comprehensive final
report, encapsulating our academic journey and meticulously documenting our
work.

1.4 Document Structure

This document is divided into six chapters, which are:

• The current chapter, chapter 1, introduces the dissertation, addressing its
problems, motivation, goals, and planning.

• The second chapter, chapter 2, presents background information, includ-
ing concepts about the OLT, the testing system applied in the OLT, sintaxe,
mutation testing techniques, and strategies to reduce computational costs.

• The third chapter, chapter 3, discusses related work on recent applications
of mutation testing and techniques for applying it in a black-box context.

• The fourth chapter, chapter 4, outlines the proposed approach for develop-
ing solutions and provides an explanation of how it is achieved.

• The fifth chapter, chapter 5, presents the development of the proposed ap-
proach and its results, followed by the analysis.

4

Introduction

• The sixth chapter, chapter 6 offers the conclusion of this dissertation and
suggests directions for future work.

5

Chapter 2

Background Concepts

This chapter offers an essential context concerning the topics relevant to Muta-
tion Testing in an Optical Line Terminal (OLT), which can be explored in address-
ing the issue outlined in this dissertation. Firstly, the introductory chapter 2.1
provides a clear understanding of the concept of an OLT, an integral element of
this dissertation. Furthermore, it delves into the characteristics and objectives
of OLTs, encompassing different types employed at Altice Labs, along with key
distinctions between them. Subsequently, the focus shifts to conducting a more
comprehensive examination of the OLT2T4, the specific equipment being stud-
ied.

In the subsequent section (2.2), the testing procedures employed for the OLT2T4
at Altice Labs are outlined, encompassing the languages and frameworks chosen
for testing. Moreover, the test composition process using the selected approach is
elucidated.

The following sections are focused on Mutation Testing. The third section 2.3
thoroughly explains mutation testing, detailing its fundamental concepts and
methodology. To enhance comprehension, an illustrative example of a mutant
is also included.

Subsequently, the fourth section 2.5 addresses the high-cost nature of Mutation
Testing and introduces techniques for cost reduction in this context. This section
is subdivided into two subsections. In the first, 2.4.1, techniques to reduce the
choice of mutants to be used for testing are presented. And in the second, 2.4.2,
techniques to optimize the process of executing mutation tests are presented.

2.1 Optical Line Terminal

An OLT is a network device that serves as a terminal point in an optical fiber-
based network. It is responsible for managing and controlling the communication
between the end-user devices and the service provider’s network. The OLT is
located at the central office of providers, as illustrated in figure 2.1.

7

Chapter 2

Altice Labs’ OLT equipment portfolio offers the broadest and most scalable solu-
tion in today’s market, providing Network Operators and Service Providers with
a flexible and cost-effective approach to implement Passive Optical Networks
xPON.

Passive Optical Network (PON) is an optical fiber cable that delivers broadband
network access to homes, businesses and others. Given that PON is a network
technology specific to fiber technology, it offers advantages such as a point-to-
multipoint architecture, high-quality service capabilities for data, voice, and video,
high-speed internet access, and TV services in a cost-effective manner. [Abbas
and Gregory, 2016-05] Since the OLT uses PON cables, they are designed to ad-
dress all of these services as well.

Another characteristic of the OLT is that they also support Active Ethernet ser-
vices, which is a point-to-point fiber access technology used for delivering Inter-
net services to residential and business subscribers through point-to-point links
and Ethernet interfaces. Security is a crucial consideration, and therefore, the
Advanced Encryption Standard (AES) is available for all OLT models from Altice
Labs to protect sensitive data.

The OLT from Altice Labs can be deployed for all Fiber-To-The-X (FTTx) Point-
to-Multipoint scenarios, including the architecture Fiber-To-The-Home (FTTH),
Fiber-To-The-Distribution-Point (FTTdp), Fiber-To-The-Building (FTTB), Fiber-To-
The-Curb (FTTC), Fiber-To-The-Cell (FTTc), and Fiber-To-The-Business (FTTb).

A conventional FTTx network consists of active equipment, which means it is
powered by electricity located at the ends of the network, along with passive ac-
cessories, meaning that do not require electricity. This leads to the term PON net-
works, referring to all the passive components within an FTTx network [Keiser,
2006-02-06].

In the following figure, figure 2.1, some examples of FTTx architectures are illus-
trated and explained.

8

Background Concepts

Figure 2.1: Some FTTx Architechtures. Adapted from [Marchetti, 2015-03-01] and
[Keiser, 2006-02-06].

As shown in figure 2.1, the OLT and Optical Network Terminal (ONT) are the
active elements of an FTTx network. They include transmitters and receivers and
operate in two modes: upstream (sending information from the Optical Network
Unit (ONU)/ONT to the OLT) and downstream (sending information from the
OLT to ONU/ONT). The rest of the network comprises passive elements, such
as the Splitter and the ONU. The splitter is responsible for distributing the opti-
cal signal from one fiber to several others, thus increasing the branching of the
PON network. And the ONU, converts optical signals transmitted via fibers into
electrical signals transmitted over copper wires and sends them to individual
subscribers. The ONU can be located in different spaces, such as a garage (FTTB)
or street cabinet or street pole (FTTC). [Keiser, 2006-02-06]

The ONT is essentially the same as the ONU, but its location changes, they are
placed in the subscriber’s house. The ONT can be a separate equipment, but it is
usually built into the router. Therefore, the ONT has two inputs: one to receive
fiber optics and the other to connect to the router.

So far, Altice Labs has developed two versions of this equipment: OLT1TX and
OLT2TX. The most recent version is OLT2TX, and in this dissertation, we will
exclusively focus on this one.

Within the OLT2TX family, developed by Altice Labs, there are 3 main devices:
OLT2T4, OLT2T2 and OLT2T0 (figure 2.2). In this dissertation, the primary focus
is on the OLT2T4, since it is the one being used.

9

Chapter 2

Figure 2.2: OLT2TX Family. [rita-c-felix]

There are quite a few differences between these devices, but one thing this prod-
uct family has in common is the management level. It can be managed locally
through the Common Line Interface (CLI), a text-based interface for direct de-
vice interaction. And remotely managed via the Network Management System
(NMS), which offers centralized control and device monitoring.

Now to understand the difference between them, it is necessary to first under-
stand how they are constituted. An OLT2TX consists of the Chassis, which houses
the OLT2TX Software and supports N slots, where "N" represents the number of
slots. These slots are filled with different types of cards that provide various func-
tionalities to the OLT2TX, along with a ventilation unit.

There are three types of functionality provided by the cards, as follows:

• Tax card/linecard:Used to establish connections to customers.

• Uplink card: Utilized to establish connections to the operator’s network.

• Matrix/switch-fabric card: Responsible for controlling the OLT and routing
traffic between tributary and uplink cards. It also provides management
interfaces and alarms.

Some cards may have more than one functionality, as will be further discussed
ahead.

Knowing now how an OLT2TX is constituted, it is possible to understand the
differences between the OLT2TX models. This is mostly related to the number of
available entries provided by the cards.

10

Background Concepts

The OLT2T0 serves as a central office FTTx equipment, specifically designed to
cover low-density areas in urban, condominium, and rural environments. This
equipment is equipped to endure an extended temperature range, making it suit-
able for installation within outdoor cabinets or even under more demanding
atmospheric conditions. Regarding capacity specifications, the OLT2T0 has no
slots, which means it does not support any card.

The OLT2T2 functions as a central office FTTx equipment, specifically designed
to cover mid-density areas in urban and metro environments. Similar to the
OLT2T1, this equipment is designed to support extended temperature ranges,
making it suitable for installation within outdoor cabinets or even in locations
exposed to more severe atmospheric conditions. Regarding capacity specifica-
tions, the OLT2T2, since is a medium-sized device, utilizes cards that combine
the matrix and uplink functionalities into a single card. For this type of card the
OLT2T2 have two slots which are both active. In addition to that, it also has four
slots for the tributary cards.

The OLT2T4 is an FTTx central office equipment, designed to cater to high-density
areas in urban and metro environments. Being the largest equipment in the fam-
ily, it has more cards, resulting in more inputs and interfaces, as each input serves
as an interface. Regarding capacity specifications, the OLT2T4 is the only model
that supports up to two matrix cards, one of which is redundant, serving as an
inactive matrix to provide protection in case the active matrix card fails. It also
supports two uplink cards and sixteen tributary cards.

In the OLT2T4, the uplink cards are placed side by side in the center (slot ten
and eleven), and next to each of these are the matrix cards (slot nine and twelve),
with all the remaining slots reserved for the tributary cards (slot one to eight and
thirteen to twenty). For this OLT, Altice Labs has designed one card for each type,
the "CXO2T4A" for the matrix, and the "UL200G" for the uplink. The "UL200G"
provides up to 4 interfaces of 10G plus up to 2 interfaces of 100G. For tributary
cards, there are four types available: "AG16G", which offers 16 Gigabit-capable
Passive Optical Network (GPON) interfaces; "AC16SXG", providing 16 GPON
or 10 Gigabit Symmetrical PON (XGSPON) interfaces; "AE48GE", with up to 48
Active Ethernet (AE) interfaces or up to 24 interfaces of 1G and up to 16 interfaces
of 10G; and0 "AT08SXG", offering 8 interfaces of XGSPON or Time Wavelength
Division Multiplexing PON (TWDM-PON). All the xPON acronyms referred to
earlier are variations of the PON technology. [Abbas and Gregory, 2016-05]

Since the OLT2T4 has individual matrix and uplink cards, these cards cannot be
used in the OLT2T2. However, the tributary cards used in the OLT2T4 are also
compatible with the OLT2T2.

Another difference is evident in figure 2.2, where the slots in the OLT2T2 are
horizontally oriented, unlike the vertically oriented slots in the OLT2T4.

11

Chapter 2

2.2 OLT2T4 Testing: Execution and Code Syntax

As previously mentioned, in this dissertation, mutation tests will be automati-
cally generated for the OLT2T4 tests. Thus, in a first phase, it is necessary to un-
derstand the test system in order to later generate mutants based on this knowl-
edge.

To run the tests, Altice Labs uses Jenkins tool, which triggers the Cucumber tool.
Cucumber interprets the tests written in Ruby, which are represented by the ".fea-
ture" files, and executes the designated block of code in the sequence defined
within the test. However, the tests are scripted in the Gherkin language and are
subsequently mapped to Ruby.

While not obligatory, Jenkins simplifies the test execution process for Altice Labs,
as it automates the execution of test sets and generates reports for each run. This
automation significantly reduces the time and effort required by Altice, which
could otherwise perform these tasks manually. Thus, all the results can be ob-
served in Jira platform, the tool from which Jenkins retrieves the tests and dis-
plays the results. Jira is used because it helps in project management and track-
ing. Therefore, it is employed to have everything integrated into a single location,
facilitating the visualization of test results.

As mentioned previously, the tests developed by Altice Labs are written using
Gherkin since it is a language that follows a structure defined by keywords and
is written in natural language. This framework aids in describing test scenar-
ios in a clear and comprehensible manner for both developers and non-technical
individuals. A Gherkin test usually follows the subsequent structure.

It starts with the keyword "Feature", in which a general description of the feature
being tested is provided, usually consisting of a brief name and a more detailed
description. Following this, an example of usage is provided. [Wynne et al., 2017-
02-17]

Feature: Feature Name
Detailed description of the feature being tested

Then, it may or may not have a "Background" keyword, in which a common
background scenario is defined for several subsequent scenarios. Subsequently,
an example of usage is shown. [Wynne et al., 2017-02-17]

Background:
Given Some background condition

Then, it can include one or several "Scenario" keywords, each describing a specific
situation to be tested. Afterward, an example of usage is demonstrated. [Wynne
et al., 2017-02-17]

12

Background Concepts

Scenario: Scenario name
Given some initial condition
When some action is performed
Then some result is expected

The necessary Step(s) for conducting the test are positioned within each "Sce-
nario", following the desired sequence. When mapped to Ruby, these steps en-
compass the Step definition along with the Step arguments. Step consistently
begin with prepositions or adverbs, these being "Given", "When", "Then", "And",
and "But".These keywords, upon translation to Ruby, also serve as matching steps
in the step definition. The principal keywords are "Given", "When" and "Then",
which structure the phases of the scenario. [Wynne et al., 2017-02-17]

"Given" ensures the scenario’s settings by establishing the initial state, context,
or situation in which the scenario initiates. "When" configures the test for the
scenario, describing the action executed, typically an interaction with the system.
Finally, "Then" verifies the test for this scenario, specifying the result after the
action.[Wynne et al., 2017-02-17]

The "And" and "But" keywords enhance clarity and comprehensibility within the
scenario’s stages. The following script example demonstrates four steps. [Wynne
et al., 2017-02-17]

Given some initial condition
And Other initial condition
When some action is performed
Then some result is expected

The step arguments are a component of Gherkin steps. As the name suggests, this
is where the parameters and their corresponding values are inserted for each de-
fined step, constituting the final parameter in a step definition when mapped to
Ruby. The step argument may or may not include values, depending on whether
arguments are needed for the given step definition. Typically, these are formatted
using Data Tables, where the parameter descriptors are listed in the first row, sep-
arated by the pipe character, and the subsequent rows within the same block con-
tain the values for each corresponding parameter, equally divided by the same
character. The number of parameters must match the number of values, other-
wise it will result in an error. Next, an example of usage is presented. [Wynne
et al., 2017-02-17]

Given initial condition with <variable>:
variable1	variable2
value1	value4
value2	value5
value3	value6

In addition to these keywords, a Gherkin test can also have Tags, Hooks, and
Environment Variables. Tags are markers that can be applied to scenarios or fea-

13

Chapter 2

tures. For those cases, the tag must be positioned above the "Scenario" or "Fea-
ture" keyword, and multiple tags can be placed for each, separated by a space. In
the following, an example of usage is illustrated. [Wynne et al., 2017-02-17]

@featuretag
Feature: Feature Name

@scenariotag1 @scenariotag2
Scenario: Scenario name

Given some initial condition
When some action is performed
Then some result is expected

The tags help in running specific subsets of scenarios or applying hooks to a ex-
clusive subset of scenarios. This can be achieved using the following commands
to execute or skip features or scenarios, respectively. [noa, c]

cucumber --tags "@scenariotag1 @scenariotag2"
cucumber --tags "not @scenariotag1"

Tags exhibit inheritance, meaning that when a tag is assigned to a feature, it ex-
tends to the scenarios within it. Additionally, tags can be employed to establish
links to other documents. [noa, c]

Regarding Hooks, they are blocks are blocks of code that can be executed at dif-
ferent points during a test, although they are generally used before or after sce-
narios. Typically, they serve the purpose of setting up and tearing down the test
environment before and after each scenario. In Gherkin, hooks are commonly
defined within a support file as part of the test framework. [noa, a]

In this context, there are Scenario hooks, which are executed for each scenario,
and they are three types: Before, After, and Around. As the names imply, the Be-
fore hook are executed before the initial step of each scenario, the After hook are
executed after the last step of each scenario, and the Around hook are executed
around a scenario. Additionally, there is also the Step hook, known as AfterStep.
[noa, a]

Hooks can also be conditionally selected for execution based on scenario tags.
This feature enables the linking of a Before, After, Around, or AfterStep hook
with a specific tag expression, resulting in the execution of the corresponding
hook only for particular scenarios. [noa, a]

Additional hook types include Global hooks, which are executed before any sce-
nario or after all scenarios have run, referred to as the BeforeAll and AfterAll
hooks, respectively. Furthermore, there is the InstallPlugin hook, which becomes
active after Cucumber’s configuration, and the AfterConfiguration hook. [noa, a]

Moving on to environment variables, Cucumber employs these variables to en-
able specific functionalities. They are utilized to establish configuration settings

14

Background Concepts

that influence the behavior of tests. This approach provides the advantage of
segregating configuration considerations from the test logic, thus improving the
manageability and flexibility of tests. Some examples of their usage include sup-
plying specialized values to the step definitions or even facilitating the publica-
tion of Cucumber Reports while executing Cucumber. Environment variables can
be configured through various methods, including the command line, configura-
tion files, or directly within the testing framework. It is important to note that,
due to security considerations, defining globally accessible environment vari-
ables containing sensitive information should be avoided. [noa, c] [noa, d]

When Cucumber executes a test, it identifies each Step definition and runs the
corresponding Ruby code linked to it, along with the supporting Cucumber code.
After the test is executed using Cucumber, various possible results are returned,
such as Passed, Failed, Undefined, Pending, and Skipped. These outcomes de-
pend on whether the step definitions successfully perform their intended actions.
[Wynne et al., 2017-02-17] [noa, b]

During scenario execution, Cucumber processes one step at a time. If any step
fails, all subsequent steps and scenarios are bypassed, resulting in either a skipped
or undefined step and scenarios, depending on the situation. When a step passes,
Cucumber proceeds to the next step, as well as in the scenarios. In this context,
an undefined result occurs when Cucumber cannot find a step definition that
matches the step. Furthermore, a pending result emerges when Cucumber en-
counters a step definition that is only partially implemented. Lastly, failing result
when the code within a step definition raises an exception. [Wynne et al., 2017-
02-17] [noa, b]

2.3 Mutation Testing

As mentioned earlier, the aim of this dissertation is to apply Mutation Testing.
Therefore, to gain a better understanding of mutation testing, it is essential to
start by clarifying several fundamental concepts.

• Fault: Defect in a software product or application that causes it not to work
properly.

• Mutant: Version of a system with fault injection(s).

• Test: Procedure used to evaluate and verify if a software application func-
tions as it is supposed to.

• Mutation operators: Changes made to the original code involve modifying
expressions by altering, adding, or removing operators and/or statements
to generate mutants. These operators can include arithmetic, relational, log-
ical, among others.

• Equivalent mutant: A mutant in which changes have been introduced, but
there are no differences in the outputs compared to the original system,
figure 2.3.

15

Chapter 2

• Non-Equivalent mutant: The opposite of the equivalent mutant.

Mutation testing is a testing technique used to measure the effectiveness of tests
in terms of their ability to detect faults in a software product or application. We
are looking to see if the tests sufficiently cover the defined requirements and/or
check the correctness of the implementation of a given system. Because the possi-
ble faults induced can be enormous, this technique of testing uses two principles
to restrict the classes of mutations that are created: the competent programmer
hypothesis, which states that a programmer can make mistakes while writing
code, even if they are a great programmer; and the coupling effect hypothesis,
which states that a set of tests that detects small errors is so sensitive that it will
also detect more complex errors in the program. This allows us to focus on sim-
ple faults because even tests that detect basic faults can also detect more com-
plicated faults. However, the number of potential mutations is still significant.
Therefore, mutation sets have been defined, along with corresponding rules, such
as Mothra’s mutation operators, which will be introduced later.[Pizzoleto et al.,
2019-11-01] [Jia and Harman, 2011-09]

Figure 2.3: Original Code and Equivalent Mutant. Adapted from [Ma and Kim,
2016-05-01].

In the graphic below is shown how the Mutation Testing method works:

Figure 2.4: Description of the Mutation Testing method. Adapted from [Jia and
Harman, 2011-09].

16

Background Concepts

Analyzing the figure 2.4, we see that the "Mutation testing" method creates mu-
tants in the first phase by introducing different syntactic faults in the original sys-
tem. Then, to evaluate and ensure that the original system is flawless for those
flaws introduced, we run the test set in the original system. To get the final result,
we use the metric of comparing the output of the original system and the mutant.
If the output obtained in the mutant it’s different from the original that mutant is
“killed”, otherwise it is said to have “survived”. [Pizzoleto et al., 2019-11-01] [Jia
and Harman, 2011-09]

If a mutant is not "killed" by the test set, it means that the test set was unable to
detect the faults represented by the mutant, or that the changed code was never
executed and is therefore dead code. [Pizzoleto et al., 2019-11-01] [Jia and Har-
man, 2011-09]

Thus, to perform a mutation test, the following events must occur sequentially:
first, a program is submitted for testing; second, a set of test cases is generated;
third, all test cases are run through the original program; fourth, the mutation
operators are selected; fifth, the mutants are generated; sixth, the mutants are run
for each test case; seventh, the outputs are compared; and finally, eighth, the re-
sults are analyzed. If a mutant has not been "killed", it is necessary to improve the
test cases and restart the process. [Pizzoleto et al., 2019-11-01] [Jia and Harman,
2011-09]

To evaluate the quality of the tests used in Mutation Testing, the mutation score
is calculated, representing the percentage of "killed" mutants. This calculation is
performed using the following mathematical expression 2.1. [Jia and Harman,
2011-09]

MutationScore =
Mutants”killed”

TotalNumbero f Mutants
× 100 (2.1)

In this testing method, the more mutants a test set can "kill", the more faults
it detects in the program and the higher the mutation score. The best possible
case is to get a mutation score of 100, which means that no mutants "survived"
and therefore the test set is good enough to detect all the faults signaled by the
mutants. In other cases, the test set needs to be improved by considering the
surviving mutants in such a way that they can be "killed". [Pizzoleto et al., 2019-
11-01] [Jia and Harman, 2011-09]

Mutation Testing has several advantages, such as maximum coverage of the code
which allows finding hidden defects, identifying parts of the code that are not
tested by the original test cases, and finding bugs usually not detected by normal
testing. It also allows for the evaluation of the quality of the tests used to test the
system and can give better feedback to the testers about it. However, one problem
that prevents Mutation Testing from becoming a practical testing technique is the
high computational cost of executing the enormous number of mutants against
a test set. To combat this limitation, Cost Reduction Techniques are used. This
technique consists of reducing the generated mutants ("do fewer") and reducing
the execution cost (combining "do faster" and "do smarter"). [Pizzoleto et al.,
2019-11-01] [Jia and Harman, 2011-09]

17

Chapter 2

2.4 Cost Reduction Techniques in Mutation Testing

In the figure 2.5 is shown some of the existed techniques to combat the high cost
of Mutation Testing. In this document we will only looking, within these, to
the techniques more used. Two approaches to reduce the cost are the Mutant
Reduction Technique and the Execution Cost Reduction Technique.

Figure 2.5: Cost Reduction Techniques. Adapted from [Jia and Harman, 2011-09]
and [Pizzoleto et al., 2019-11-01].

2.4.1 Mutant Reduction Techniques

Mutant reduction techniques aim to reduce the number of mutants used from the
generated mutants for testing without a significant loss of test effectiveness. That
is, for a given set of mutants M and a set of test data T, MS denotes the mutation
score of the test set T applied to mutants M. Mutant reduction consists of finding
a subset of mutants M′ from M, where MS(M′) ≈ MS(M). [Jia and Harman,
2011-09]

As illustrated in the figure 2.5 there are several possible techniques used to reduce

18

Background Concepts

the number of mutants in the generated set used for testing, but in this document
only the most used ones will be presented.

The first approach is Mutant Sampling, in which all possible mutants are gener-
ated first, as in traditional Mutation Testing. Then, a percentage of these mutants
are selected randomly for mutation analysis, and the remaining mutants are dis-
carded. [Jia and Harman, 2011-09]

The second approach is Mutant Clustering, which is a combination of data clus-
tering and mutation analysis, designed to dramatically reduce both the number
of mutants and test data. To do this, a subset of mutants is chosen by applying
clustering algorithms, which reduce the volume of data by segregating similar
data. The sets originated are called clusters, and each has its own clustering cen-
ter. This way, Mutant Clustering consists of classifying the mutants into different
clusters based on the number of sets of test cases able to kill them, with the clus-
tering centers being dynamically selected when grouping the classified mutants.
In the end, different clusters are obtained, and it is guaranteed that each mutant
in the same cluster is "killed" by a similar set of test cases (to better understand
see [Dang et al., 2022-06]). This way, only a small number of mutants are selected
from each cluster to be used in Mutation Testing, and the rest are discarded. Fur-
thermore, a major advantage of this is that clustering algorithms are flexible, i.e.
one can choose the method that fits best according to the application domain.
[Pizzoleto et al., 2019-11-01] [Jia and Harman, 2011-09]

The third approach is Selective Mutation. To better understand this approach, it
is important to first understand the methodology used to generate mutants. Ini-
tially, examples of operators are conditions such as "ifs" and "whiles"; arithmetic
operators such as addition and division; logical operators such as "and" and "or";
and jump instructions such as "goto" and "return". Moving on to the methodol-
ogy, the syntactic modifications that generate mutant programs are determined
by a set of mutant operators. This set changes depending on the language of the
program being tested and the mutation system used for testing. Mutant opera-
tors are created with one of two goals: to induce simple syntax changes based
on errors that programmers typically make (such as using the wrong variable
name), or to force common testing goals (such as executing each branch). As an
example, we have Mothra’s mutation operators, separated into three categories:
Statement Analysis (sal), Predicate Analysis (pda), and Coincidental Correctness
(cca). [Pizzoleto et al., 2019-11-01] [Jia and Harman, 2011-09]

The first, "sal", includes the following actions: replacing each statement with a
"continue" or "trap", where "trap" stops the program and causes the mutant to
die; replacing each statement of a subprogram with a "return"; and replacing
each "goto" or "do" declaration with the label called. The second, "pda", com-
prises the following actions: replacing arithmetic (mathematical operations be-
tween two operators) or relational (Boolean values) or logical operators with all
the others that exist; adding unary operators (operations with a single operand)
before expressions; changing the values of constant variables; changing the value
of expressions to their absolute value; and changing the values in data statements
(values used as inputs in the program). Finally, the third, "cca", encompasses the
following actions: replacing scalar variables (for example fixed-size data objects),

19

Chapter 2

arrays with pre-instantiated arrays, and constants with others existing in the code
respectively. In the following table (Table 2.1), the existing Mothra mutation oper-
ators are classified and identified. [Pizzoleto et al., 2019-11-01] [Jia and Harman,
2011-09] [King and Offutt, 1991]

Mutation Class Operator Description
sal DER DO statement end replacement
sal GLR GOTO label replacement
sal RSR RETURN statement replacement
sal SAN statement analysis (replacement by TRAP)
sal SDL statement deletion
pda ABS absolute value insertion
pda CRP constant replacement
pda DSA DATA statement alterations
pda LCR logical connector replacement
pda ROR relational operator replacement
pda AOR arithmetic operator replacement
pda UOI unary operator insertion
cca AAR array reference for array reference replacement
cca ACR array reference for constant replacement
cca ASR array reference for scalar variable replacement
cca CAR constant for array reference replacement
cca CNR comparable array name replacement
cca CSR constant for scalar variable replacement
cca SAR scalar variable for array reference replacement
cca SCR scalar for constant replacement
cca SRC source constant replacement
cca SVR scalar variable replacement

Table 2.1: Mothra Mutant Operators. Adapted from [King and Offutt, 1991].

20

Background Concepts

The Mothra mutant operators represent more than ten years of refinement through
several mutation systems. All of them are detailed described in [King and Offutt,
1991]. In this case, it will only described the "Array Reference for Array Reference
Replacement (AAR)" mutant, which replaces each array reference in a program
with another distinct array reference in the program. Each mutation operator
generates different numbers of mutants, and some of them generate far more
mutants than others, many of which may turn out to be redundant.

Therefore, this approach seeks to reduce the number of mutation operators ap-
plied by not using the operators that create the most mutants, and finding a small
set of mutation operators that generate a subset of all possible mutants without
significant loss of test quality. To do this, the theory of N-selective mutation is used,
which consists of removing N mutant operators. For example, the two mutation
operators of the 22 Mothra operators that generated the most mutants are "Array
Reference for Scalar Variable Replacement (ASR)" and "Scalar Variable Replace-
ment (SVR)", so it is implemented the “2-selective mutation”. The "4-selective"
and the "6-selective" are also available, by omitting four and six mutation opera-
tors respectively. [Jia and Harman, 2011-09]

Moving on to the fourth and final approach in traditional Mutation Testing, mu-
tants can be classified into First Order Mutant (FOM)s and Higher Order Mu-
tants (HOM)s. FOMs are created by applying a mutation operator only once, and
HOMs are generated by applying mutation operators more than once. For exam-
ple, looking at the figure 2.6, second order mutants arise by combining first order
mutants, as an example, by applying two mutation operators. [Jia and Harman,
2011-09] [Polo et al., 2009]

Figure 2.6: Exponential growth of the number of second-order mutants. Adapted
from [Polo et al., 2009].

Also, when a FOM is combined with another mutant, the second-order mutant
may or may not be equivalent, depending on the equivalence of the FOMs used,
as we can see in table 2.2.

21

Chapter 2

Mi Mj Mi, j
Equivalent Equivalent Equivalent
Equivalent Non-Equivalent Non-Equivalent

Non-Equivalent Equivalent Non-Equivalent
Non- Equivalent Non-Equivalent Non-Equivalent (very probably)

Table 2.2: Equivalence of a second-order mutant. Adapted from [Polo et al., 2009].

The generation of second-order mutants can be made of various combinations
among the FOMs; however, three possible combinations will be presented: Last-
ToFirst, DifferentOperators, and RandomMix. The LastToFirst consists in com-
bining the FOMs with the last ones, i.e. the first with the last, the second with the
penultimate, and so on. The DifferentOperators algorithm consists of combining
FOMs originated by different mutation operators. Finally, RandomMix consists
of randomly combining two FOMs only once, except when there is an odd num-
ber of FOMs, in which case a mutant can be used twice. With this algorithm, there
is a 50% reduction since the number of second-order mutants will be half of the
first-order ones. [Polo et al., 2009]

2.4.2 Execution Cost Reduction Techniques

An alternative way to reduce the computational cost is to reduce the number of
generated mutants and optimize the mutant execution process. In this document,
it will be present three types of techniques, shown in figure 2.5, used to optimize
the execution process.

The first testing technique is Strong, Weak, and Firm Mutation, where the dif-
ference between these depends on the decision to analyze or not if a mutant is
"killed" during the execution process. Strong Mutation is considered the tradi-
tional mutation type, where for a given software S, a mutant M of software S is
considered "killed" only if mutant M gives a different output from the original
software S. Given this context, the mentioned approach evaluates the test results
exclusively after executing the complete test set on all mutants. [Jia and Harman,
2011-09] Furthermore, within this methodology, when dealing with a program of
reasonable size, the potential number of conceivable faults becomes practically
boundless. To narrow down the scope of analysis, two fundamental principles
are predominantly employed. Firstly, the "Competent programmer" hypothesis
involves injecting errors into the code that closely resembles the original code.
Secondly, the "Coupling effect" hypothesis suggests that a single dataset might
be adequate to identify both simple and complex faults. This process makes it a
resource-intensive technique in terms of computational resources. [Jia and Har-
man, 2011-09]

Conversely, weak mutation examines intermediate results between the original
code and the mutated code following the execution of an individual mutated
code. [Offutt and Lee, 1994-05]

Weak Mutation appears in order to optimize the execution of the Strong Muta-

22

Background Concepts

tion. This technique is based on the assumption that S represents a software, C
= C1, ..., Cn denotes a set of components of S, and a set of mutants C’ = C’1, ...,
C’n is formed by altering component cn. The mutant C’ is considered "killed" if
any execution of component C’n differs from the original component Cn. [Jia and
Harman, 2011-09]

So, in Weak Mutation, instead of checking the output of the mutants after the
execution of the entire program, the mutants can be "killed" before executing all
the program since after one mutant component be "killed" the rest of the mu-
tants components are not run. Thus, although this technique clearly requires
significantly less program execution, as disadvantage it clear too that this is less
effectiveness that Strong Mutation.[Jia and Harman, 2011-09]

As previously mentioned, in order to implement weak mutation, it is necessary to
identify components within the original programs where errors could potentially
reside. This process involves examining the fundamental elements of the pro-
gram. These components, referred to as "elementary computational structures",
encompass various aspects such as variable references, assignments, arithmetic
operations, as well as relational and Boolean expressions. [Singh and Srivastava,
2017-12]

This components can be defined in four types: components after the first execu-
tion of an expression (Ex-Weak/1), the first execution of a statement (St-Weak/1),
the first execution of a basic block (BB-Weak/1), and after N iterations of a basic
block in a loop (BB-Weak=N). [Offutt and Lee, 1994-05]

Finally, Firm Mutation falls between Strong Mutation and Weak Mutation in
terms of efficiency and effectiveness. Unlike Strong Mutation, which assesses
mutants only after their generation, and Weak Mutation, stops when a mutant is
"killed", Firm Mutation introduces an intermediate approach. This method aims
to address the limitations of both previously mentioned mutation types. Con-
sequently, Firm Mutation testing operates with the combined characteristics of
Weak and Strong Mutation, as it concludes execution and analyse the results after
mutated code runs and the final output. Commonly adopted in highly interac-
tive development environments, Firm Mutation testing encompasses the partial
execution of program segments. This strategic approach proves advantageous by
efficiently allocating time and resources for the detection of errors. [Singh and
Srivastava, 2017-12]

The second testing technique is using Runtime Optimization Techniques that fo-
cus on reducing the compilation cost. Following this, the most used and relevant
techniques are addressed. The Interpreter-based technique is one of the opti-
mization techniques used in the first generation of mutation testing tools. This
technique implements an interpreter to interpret the result of a mutant from its
source code directly, so the run time cost is it×n×m where it is the interpreting
time, m the number of mutants and n the number of test cases. The main cost
of this technique is determined by the cost of interpretation. This technique is
efficient for small programs, however, due to the nature of interpretation, it be-
comes slower as the scale of programs under test increases. [Jia and Harman,
2008-08-01]

23

Chapter 2

Compiler-Based Technique was aimed at reducing the cost of interpretation. In
this technique, each mutant is first compiled into an executable program, then the
compiled mutant is executed by a number of test cases. Compared to the source
code interpretation techniques, this approach is much faster since the total run
time cost in this case is m(ct + rt × n), where ct is the compilation time and rt is
the run time for each test set. This technique is faster mainly for large programs,
since the run time (rt) for an executable program is faster than the interpretation
time. However, this technique also introduces an extra overhead cost ct. [Jia and
Harman, 2008-08-01]

Now, seeking to reduce the overhead cost of the previous technique, the Mutant
schemata approach was created. This, instead of compiling each mutant sepa-
rately, generates a metaprogram by the mutant schemata technique, where the
metaprogram is like a “super mutant” that can be used to represent all possible
mutants. Thus, to run each mutant against the test set, only the metaprogram
needs to be compiled. Since the metaprogram is a compiled program, its execu-
tion speed is faster than that of a technical interpreter, so this technique has a total
execution time of ct + rt × n × m where ct and rt are the compilation and execu-
tion time of the metaprogram, respectively. Since this metaprogram is a compiled
program, its running speed is faster than the interpreter-based technique. [Jia and
Harman, 2008-08-01]

The last testing technique consists of Advanced Platforms Support for Mutation
Testing, where the computational cost of mutation testing is sought to be dis-
tributed among many processors. Single Instruction Multiple Data (SIMD) con-
sists of executing mutants simultaneously, in other words, one instruction is ap-
plied to a bunch of information or distinct data at constant time. On the other
hand, Multiple Instruction Multiple Data (MIMD) looks to improve the parallel
execution of mutants. MIMD architecture includes a set of N-individual, tightly-
coupled processors. Overall, MIMD is more efficient in terms of performance
than SIMD. [Jia and Harman, 2011-09]

2.5 Summary

OLT is a network device that serves as a bridge between providers and customers.
It manages and distributes data traffic between them using optical signals trans-
mitted over PON fiber cables. This network device can also be applied in various
FTTx architectures to deliver downstream information to clients and receive up-
stream information from clients. To ensure data security, this equipment uses a
specific protocol.

Altice Labs has developed two versions of the OLT: OLT1Tx and OLT2Tx, each
with its own family of OLTs. This dissertation focuses on the OLT2T4 equipment,
which belongs to the OLT2Tx family. The main difference among the OLT2Tx
family members lies in the number of slots they provide. These slots are filled
with cards, which are hardware boards that provide interfaces for connecting
optical fibers. This distinction leads to different processing and traffic-switching
capabilities for each OLT2Tx device.

24

Background Concepts

The tests conducted by Altice Labs for OLT2Tx devices are written in Gherkin and
subsequently interpreted by the Cucumber framework, where they are mapped
to the Ruby language for execution. Creating a Gherkin language file involves us-
ing specific syntax and keywords. These keywords allow the mapping of Gherkin
tests to Ruby. These Gherkin test files typically have the ".feature" extension.

Regarding mutation testing concepts, it is essential to note that this approach
aims to enhance software quality by evaluating the effectiveness of a test set for
that software. In mutation testing, mutants are generated by injecting faults into
the software. The test set is then executed for each mutant to detect faults and
"kill" the mutant. If a fault is not found, the mutant is considered to have "sur-
vived". As a result, the mutation score is calculated at the end of executing all
mutants.

This approach involves both spatial and temporal costs due to the creation of
numerous mutants and the execution of tests for each mutant. Two techniques,
Mutant Reduction Technique and Execution Cost Reduction Technique, seek to
mitigate these costs.

25

Chapter 3

State of the art

In this chapter, recent mutation testing works using the technique of testing are
presented, what are their approaches and results. This section aims to learn from
these methodologies and, if possible, apply them to adjust the concepts within
the scope of this dissertation.

Initially, we begin explore Mutation testing methodologies that have been previ-
ously employed in black box testing scenarios. To begin, let’s delve thoroughly
examine the distinctions that exist between White Box and Black Box testing
methodologies.

In White Box testing, also known as Structural testing, test cases are constructed
based on a comprehensive understanding of the software’s internal implemen-
tation, treating the software as a "white box" entity. Within this framework, the
code’s internal structure is analyzed to formulate test cases that trigger the exe-
cution of specific code segments, such as statements, program branches, or paths.
Considering this, the primary objective is to analyze if the software follows the
expected path for each test case. [Nidhra, 2012-06-30]

On the contrary, Black Box testing, also known as Functional testing, concen-
trates only on the input and output interactions of the software. The software
itself is treated as a black box, implying that its internal mechanics are consid-
ered opaque. In this methodology, test case selection relies on the software’s pre-
defined requirements or specifications. Test cases are consequently constructed
by inputting particular values into the software. The results are then evaluated
based solely on the obtained outputs. Essentially, these tests verify whether the
expected output corresponds to the output received for a given input, regardless
of how the software operates. [Nidhra, 2012-06-30]

Equivalence partitioning, also referred to as equivalence class testing, stands as a
significant software testing methodology that involves categorizing input values
into distinct partitions based on their behaviors or functionalities. The primary
goal of equivalence partitioning is to treat all values within a particular partition
as equivalent, expecting them to exhibit the same behavior within the software.
[Nidhra, 2012-06-30]

Subsequently, test cases are strategically designed to use only one test case as an

27

Chapter 3

representative value from each partition. Through the utilization of equivalence
partitioning, testers can adeptly formulate test cases that effectively represent en-
tire sets of inputs, eliminating the necessity to individually test each input. This
practice not only facilitates achieving comprehensive test coverage but also min-
imizes the number of required test cases. This simplifies the testing procedure,
leading to increased efficiency in the testing process. [Nidhra, 2012-06-30]

Given the advantage of this approach, limitations also arise, such as assuming
that all values within a partition will be processed in the same way by the soft-
ware. Furthermore, this approach is not used in isolation. It should be comple-
mented with the Boundary Value Analysis technique. [Nidhra, 2012-06-30]

Boundary Value Analysis is a software testing technique that focuses on test-
ing values at the boundaries or edges of input domains. This approach aims
to identify and test values that are at the "boundaries" of input ranges, as these
frequently tend to exhibit unique behavior or are more likely to lead to errors.
[Nidhra, 2012-06-30]

The main goal of Boundary Value Analysis is to ensure the software’s robustness
and effectiveness.This is achieved by identifying any issues related to boundary
conditions and ensuring that the software behaves as expected even in these criti-
cal scenarios. This brings a distinctive perspective that can make a significant dif-
ference, since testers frequently uncover defects that might not be found through
typical test cases. [Nidhra, 2012-06-30]

Boundary Value Analysis also has limitations as it cannot be applied to Boolean
and logical values, as well as other input types such as names. [Nidhra, 2012-06-
30]

Transitioning to the study of approaches that apply mutation testing in the con-
text of black box. Murnane and Reed [2001-08] explore how mutation testing,
typically employed for White Box testing (analyzing internal code structures),
can be effectively employed as a black box testing technique. Additionally, the
article includes a comparison of the efficiency between the Equivalent Class Test-
ing, Boundary Value Analysis and Mutation testing within the domain of black
box tests. It is important to note that the first two methodologies are categorized
as Black Box testing techniques. [Murnane and Reed, 2001-08]

For this purpose, Murnane and Reed [2001-08] adopts the approach of treating
specifications as a linguistic framework, facilitating the mutation of terminal sets.
A specification is characterized as a compilation of language elements that collec-
tively outline a program’s input and output behavior. Similar to how program-
ming language syntax and semantics determine valid program forms, each data
item in a specification can be regarded as a language element or a "terminal" el-
ement. The combination of these terminal elements is governed by production
rules. Given this, the process of mutation involves the substitution of one ter-
minal element with another, resulting in the creation of mutant specifications.
These mutants can be categorized as "single-defect" when one element is substi-
tuted, and "double-defect" when two elements are substituted. As an example,
given the terminal set <terminal1><terminal2><terminal3>, the authors create
the mutant <terminal2><terminal2><terminal3> by replacing the second termi-

28

State of the art

nal element with the first. For the results, Murnane and Reed [2001-08] considers
that if the program is capable of detecting the invalid element and returns the
correct message, then it is considered as passed. [Murnane and Reed, 2001-08]

In this article, Murnane and Reed [2001-08] introduces new concepts related to
the generation of inputs through the utilization of mutation operators. These
inputs can syntactically valid or invalid. Syntactically valid inputs prompt the
program to function as expected, where the replaced terminal element is consid-
ered syntactically equivalent to the one it substitutes. Syntactically invalid inputs
uncover program inadequacies or faults and can be categorized as either correct
or incorrect. A syntactically invalid correct input is one that the program ac-
knowledges as having a syntactic error. The authors also suggest that generating
double-defect mutants or utilizing production rule mutation might amplify test-
ing, potentially leading to an excessive number of test cases and complicating the
testing process. [Murnane and Reed, 2001-08]

Furthermore, the article highlights the significance of well-structured specifica-
tions in mutation testing. Additionally, the authors also suggest that integrating
automatic test case generation could help alleviate some of the cost implications
associated with mutation testing. [Murnane and Reed, 2001-08]

In conclusion, this article demonstrates that both mutation testing and boundary
value and equivalence class testing produce similar test cases. However, when
applied in a black box approach, mutation testing can identify distinct types of
errors compared to equivalent class and boundary value testing. Given this, mu-
tation testing can provide valuable insights into the correctness of program be-
havior, but its applicability may be constrained to particular types of specifica-
tions. [Murnane and Reed, 2001-08]

Moving to another approach, Jiang et al. [2008-02] introduces a contract-based
mutation technique designed for testing black box components. This method
involves employing Mutation Testing on the contracts that are provide alongside
whit these components. Notably, this approach allows for the independent muta-
tion of contracts without requiring access to the components’ source code. [Jiang
et al., 2008-02]

A mutation score is then employed to assess the effectiveness of the test set in
eliminating these mutants. Similar to traditional Mutation Testing, Jiang et al.
[2008-02] quantifies the contract mutation score of a test set by calculating the
ratio of "killed" mutants to the total count of non-equivalent mutants. [Jiang et al.,
2008-02]

To generate contract mutations, thus simulating potential misunderstandings of
requirements or errors, Jiang et al. [2008-02] outlines contracts as extensions of
the interfaces of the target component. To achieve this, the language utilized
for writing these contracts is Enterprise Java Bean (EJB), which corresponds with
the specification language of the targeted component. To elaborate further, Jiang
et al. [2008-02] explains that within the EJB component context, "preconditions"
outline the conditions necessary for proper operation of the component interface.
Similarly, "postconditions" express characteristics of the outcomes resulting from
the successful execution of the component interface. [Jiang et al., 2008-02]

29

Chapter 3

Jiang et al. [2008-02] establishes the Contract Mutation Operators based on the
"preconditions" and "postconditions" specified within component contracts. Jiang
et al. [2008-02] approach centers on identifying errors arising from discrepan-
cies between component contracts and the formal specification. For this purpose,
Jiang et al. [2008-02] categorizes potential errors and define corresponding muta-
tion operators for each type. [Jiang et al., 2008-02]

Given this, the mutated contracts originate from changes made to the original
contracts. With this intention, Jiang et al. [2008-02] have defined which type of
changes can be applied to the original contract. These changes primarily involve
altering the relational and logical operators by substituting them with their op-
posite values.

To provide a clearer understanding of the concept, Jiang et al. [2008-02] presents
the an instance of a contract definition within the context of an Automated Teller
Machine, also known as an ATM. In this scenario, a specific component is re-
quested and the relevant interfaces are "ValidatePin" and "Withdraw". Draw-
ing from this context, e article subsequently proceeds to exemplify errors that
may arise during the writing of contracts. For instance, within the contract of
the ATM component, a potential error could be writing "@pre inputAmount <
2000” when it should be “@pre inputAmount <= 2000”, unintentionally restrict-
ing withdrawals of exactly 2000 each time. [Jiang et al., 2008-02]

Based on the experimental results, a notable advantage highlighted by Jiang et al.
[2008-02] is that this approach has the potential to generate fewer equivalent mu-
tants compared to traditional mutation methods. Considering that these equiv-
alent mutants require manual detection, the contract-based mutation approach
can be recognized as a cost-effective strategy for mutation testing. Notably, the
implementation of contract mutation operators in this approach demonstrates al-
most equivalent effectiveness when compared to traditional mutation operators.
Additionally, this technique emerges as an effective solution for creating suitable
test sets, aiming to minimize the costs linked to the testing of Black Box compo-
nents. [Jiang et al., 2008-02]

In a different context, Lefticaru et al. [2011-03-01] proposes three techniques on
how to test through a set of configurations, for example how to select which con-
figurations to use. It also shows the respective results and conclusions. [Lefticaru
et al., 2011-03-01]

The proposed techniques were the following: Use only the latest settings; Use
the union of settings; Use the sequence of settings, for example perform multiset
concatenation between the settings. [Lefticaru et al., 2011-03-01]

Thus, Lefticaru et al. [2011-03-01] introduces a configuration-based testing method-
ology to address the first two proposals. Consider the expected set of configura-
tions Conf = {C1, . . . , Cm} and a constant k, representing the maximum number
of steps needed to obtain all configurations C1, . . . , Cm from the initial multiset.
This approach consists of checking whether the system P can reach the given con-
figuration Ci after at most k steps for each configuration Ci ∈ Conf, 1 ≤ i ≤ m.
[Lefticaru et al., 2011-03-01]

30

State of the art

As a response to the third proposal Lefticaru et al. [2011-03-01] applies configuration-
based testing methodology sequence, which consists in joining the configurations
of the same sequence from each multiset. Because this method considers com-
binations and not just single configurations it becomes a stronger test, as later
confirmed by the author in his results. [Lefticaru et al., 2011-03-01]

Mutation tests will be performed on equipment employed in a network system
for this dissertation. Therefore, it is beneficial to study previous works applying
this technique to network systems. In accordance with this, Laurent et al. [2022-
09-01] proposes a methodology to analyze the performance results from queueing
network models, and the associated system costs required to meet them. Ad-
ditionally, a set of appropriate mutation operators is proposed. [Laurent et al.,
2022-09-01]

The mutation-based approach proposed by Laurent et al. [2022-09-01] is based on
the original approach, but it introduces modifications, as larger or smaller queue
size, different queueing strategy and others, in a Queueing Network model to
better understand the system’s performance. For the selection of operators for
the Queueing networks, the author proposes, according to what is intended to be
investigated in the article, the following configurations: Queue size, Queueing
strategy and Queue parallelism. [Laurent et al., 2022-09-01]

Proceeding with the examination of recent applications of mutation testing ap-
proaches, Kontar et al. [2019-11] several techniques to use during mutation test-
ing are analyzed. Firstly three techniques to generate higher order mutants were
considered, Kontar et al. [2019-11] concluded that HOMs can find subtle errors
that cannot be pointed out by FOMs and that HOMs are necessary because a
high percentage of FOMs are equivalent, leading to wasted computing power
and time. [Kontar et al., 2019-11]

Another point covered by Kontar et al. [2019-11] was the Mutant Clustering ap-
proach. According to the testing results, Kontar et al. [2019-11] affirmed that the
Mutation Clustering method proves advantageous when applied to a test set that
will be reused multiple times. It also points out cases, based on available re-
sources, when the four approaches of mutation testing studied should be used.
[Kontar et al., 2019-11]

The next approaches studied are related to techniques used to reduce the cost of
mutation testing. In light of this, table 3.1 provides an overview of techniques
used in 2018 for mutation testing. Additionally, it includes references to the re-
spective articles associated with each technique.

31

Chapter 3

Cost Reduction Technique Primary goals and respective studies

Higher order mutation
Reducing the number of mutants:

Abuljadayel and Wedyan
Reducing the number of test cases

or the number of executions:
Gopinath et al. [2018-04]

Weak mutation
Reducing the number of mutants and reducing

the number of test cases or the number of executions:
Zhu et al. [2018-04]

Control-flow analysis

Reducing the number of mutants and
automatically detecting equivalent mutants:

McMinn et al. [2019-05] and Marcozzi et al. [2018-05]
Executing faster:

Zhu et al. [2018-04]

Evolutionary algorithms Reducing the number of mutants:
Abuljadayel and Wedyan

Table 3.1: Mutation testing techniques used in 2018. Adapted from [Pizzoleto
et al., 2019-11-01].

In the context of approaches to reduce mutation testing costs, Petrović et al. [2022-
10] introduced three essential ideas for conducting mutation tests that are compu-
tationally infeasible. Their proposals also apply in cases where existing solutions
are used to accelerate mutation analysis. These strategies are: Mutation testing
performed incrementally, focusing solely on changed code during the code re-
view for mutant generation, rather than the entire codebase; Transitive mutation
suppression, utilizing heuristics grounded in developer feedback. This approach
filters mutants in two ways: by removing those considered irrelevant to develop-
ers and by restricting the number of mutants per line and per code review pro-
cess; Mutants selected based on the historical performance of mutation operators.
This selection process includes a basic random selection strategy that generates
one mutant per line, considering information about unproductive nodes. Addi-
tionally, they implemented a targeted selection strategy that considers the past
performance of mutation operators in similar contexts. The goal of these strate-
gies is to create mutants with a higher chance of survival by eliminating irrelevant
mutants and improving their quality [Petrović et al., 2022-10].

To validate the approach, the paper empirically validates the proposed approach
by analyzing its effectiveness in a code review-based scenario used by over 24,000
programmers in over 1,000 projects. The results show that the proposed approach
produces orders of magnitude fewer mutants and that context-based mutant fil-
tering and selection improve mutant quality and actionability. Overall, the pro-
posed approach represents a mutation testing framework that integrates seam-
lessly into the software development workflow and is applicable to industrial
environments of any size [Petrović et al., 2022-10].

Another approach is provided by Pizzoleto et al. [2020-10], which introduces
Similarity-based Mutation (SiMut). This technique aims to reduce the cost of
mutation testing by reusing the results of previously performed mutation test-

32

State of the art

ing on similar programs. SiMut consists of six steps: Create a group of similar
programs (G) to the untested program, select a cost reduction technique (C) for
G, apply technique C to G, and obtain cost reduction measures and parameters
(S). Then, retrieve parameters resulting from cost reduction S for group G. Next,
apply technique C to the untested program based on S. And finally, evaluate the
results, such as the mutation score, for experimental purposes [Pizzoleto et al.,
2020-10].

SiMut aims to reduce the cost of mutation testing by making use of the similari-
ties between programs. It achieves this by decreasing the number of mutants that
need to be created and evaluated. In the SiMut approach, a test set from one pro-
gram is employed to test a mutant of another program. The results of this testing
are then used to identify potentially equivalent mutants in the other program that
can be skipped [Pizzoleto et al., 2020-10].

However, SiMut’s effectiveness can be influenced by various factors, including
the characteristics of the programs being tested and the level of similarity be-
tween them. Consequently, in some cases, SiMut may not be as effective in re-
ducing the cost of mutation testing. [Pizzoleto et al., 2020-10]

Still in the context of reducing the cost associated with mutation testing, [Mateo
and Usaola, 2012-09] presents Bacterio as a useful tool to address this issue. As
[Mateo and Usaola, 2012-09] explains, Bacterio is a tool designed to automate Java
mutation testing tasks. To achieve this, Bacterio implements a set of mutation
techniques, including Selective Mutation, Mutant Sampling, and HOM, aimed
at reducing the overall cost of this technique. The author concludes that this
tool is advantageous in helping testers perform mutation testing more efficiently,
allowing for a more time-effective evaluation of the effectiveness of their tests.
[Mateo and Usaola, 2012-09]

To understand if Mutation Testing improves testing practices, Petrović et al. [2021-
05] addressed four critical questions. The first question pertains to the effects
on testing quantity: How does continuous mutation testing affect the quantity
of test code produced by developers? The second question relates to effects on
testing quality: How does continuous mutation testing affect the survivability of
mutants in a project? The third question concerns fault coupling: Are reported
mutants associated with actual software failures? Can testing written based on
mutants improve the effectiveness of testing for real software faults? And the
fourth question is about mutant redundancy: Are mutants generated for a given
line redundant? Is it sufficient in practice to select a single mutant per thread?
[Petrović et al., 2021-05]

In their study, Petrović et al. [2021-05] utilized a vast dataset containing 15 million
mutants. Their findings demonstrated that mutation testing is indeed associated
with real failures that have practical significance. Additionally, presenting muta-
tion testing as an approach to developers leads them to write more and higher-
quality tests. [Petrović et al., 2021-05]

33

Chapter 3

3.1 Summary

Black Box testing is an approach that treats the software as a Black Box as it lacks
access to the source code. This technique tests software by injecting faults through
manipulation of input values and verifies if the obtained output aligns with ex-
pectations. Two commonly used approaches for selecting input values are Equiv-
alence Partitioning and Boundary Value Analysis, often applied in conjunction.

Mutation testing can be applied as a black box technique. One possible approach
is treating specifications as a linguistic framework, which facilitates the muta-
tion of terminal sets. This involves manipulating terminal elements, which repre-
sent data items in a specification. The concept includes valid and invalid inputs,
where valid inputs lead the program to function as expected, and invalid inputs
result in syntactic errors. Another approach is the contract-based mutation tech-
nique, which generates contract mutations to simulate faults.

Mutation testing designed for black box testing can offer valuable insights into
the correctness of program behavior, which traditional mutation testing may not
provide.

In recent applications of mutation testing approaches, efforts aim to reduce the
cost through various strategies. Some of the approaches used include Mutation
Clustering and HOM. Additionally, there are proposals involving Incremental
Mutation Testing, Transitive Mutation Suppression, Mutants selected based on
the historical performance of mutation operators, and SiMut.

In conclusion, after this study, some solutions for applying mutation testing in a
black-box testing context were explored, but these were found to be inapplicable
to our specific case. However, this exploration significantly contributed to our
understanding of mutation testing. Additionally, no existing solutions for OLT
mutation testing were identified, making the solution proposed in our disserta-
tion unique.

34

Chapter 4

Proposed Approach

This chapter presents the proposed approach for solving the identified problem
alongside with the applied methodologies.

4.1 Overview

In this section, we provide an overview of our proposal for automating OLT2T4
emulator mutation testing. The methodology employed to achieve our goal con-
sists of creating mutants for Altice Labs’ OLT2T4 and subsequently testing them
using the existing test battery developed by Altice Labs for this equipment. As
a result, the mutation score is obtained to evaluate the efficacy of the test set,
and is provided with graphical illustrations, along with files that concatenate the
survival status of the mutants, indicating whether they were "killed" or not.

Initially, since we do not have direct access to the source code, the OLT2T4’s soft-
ware is regarded as a black box. As a result, methodologies specifically designed
for this type of testing will be employed. Additionally, for conducting mutations
testing on the OLT2T4, Altice Labs has provided an OLT2T4 emulator, which
functions as a virtual machine to simulate the OLT2T4 software.

In essence, our goal is to simulate fault scenarios, which leads to the modification
of the OLT2T4’s operational states, thereby generating the mutants. For that,
".feature" files are generated, written in Gherkin, similar to the test files created
for OLT testing. They are executed using Cucumber in conjunction with Ruby. A
more detailed explanation of the syntax of these files is provided in section 2.2.

The operational state of an OLT is determined by settings and parameters con-
figured to ensure its correct functioning within a network. Using the steps out-
lined in the generated ".feature" files, we can modify these configurations, thereby
changing its operational state. For instance, consider the step "configuring an in-
terface’s traffic shaper", which requires the following arguments: "slot", "port",
and "max_bandwidth". These arguments can take on various values, including
1 and 2, "pon.", "eht.", and "lag.", and 0 and 1, respectively. By modifying these
values, we can alter the configuration of the interface’s traffic shaping and, con-

35

Chapter 4

sequently, the OLT’s operational state.

The generation of these ".feature" files was supported by utilizing the existing
test set at Altice Labs for the OLT2 family (OLT2Tx), combined with an spread-
sheet file provided by Altice Labs. This spreadsheet file contain an extensive set
of possible steps for the OLT, covering all types of keywords, including "Given,"
"When," "Then," "And," and "But". As shown in section 2.2, some steps include
Data Tables where values for the respective step’s arguments are introduced. In
the provided spreadsheet file, the arguments for each step type are detailed, in-
dicating their types and possible values.

For a clearer understanding, figure 4.1 illustrates an overview of the functioning
of our system.

Figure 4.1: System Representation.

In summary, in our approach, the system receives two inputs provided by Altice
Labs: the pre-established test set for the OLT2T4 created by Altice Labs itself
and and the content within a spreadsheet file containing all the necessary details
to generate ".feature" files for subsequent testing. As an output it returns the
obtained results from the mutation testing. Further elucidation of the system will
be provided as this chapter progresses.

4.2 Methodology

The process of our system to perform OLT2T4 emulator mutation testing is illus-
trated in figure 4.2.

36

Proposed Approach

Figure 4.2: OLT2T4 emulator Mutation Testing Diagram.

As represented in figure 4.2 in order for our system obtain results, we begin by
filtering the test set to include only those intended for the OLT2T4. Following
this initial filtration, we proceed to apply a more specific filter, selecting the tests
that can be executed in the OLT2T4 emulator. This is essential due to the ab-
sence of a traffic network and the exclusion of certain elements that are typically
present in physical OLTs within the emulator environment. As a result of these
considerations, the size of the test set is reduced to sixty-four tests.

Moving on to the next step of our approach is to define which step will be used
to create the files ".feature". For that we focus on the steps with the keyword
"Given". Since is in these steps where configuration setups are defined, as men-
tioned in section 2.2, only these are used for injecting faults into the OLT2T4. To
determine which steps from the spreadsheet file are used for the keyword "Given"
steps, our system identifies and collates all the steps with the "Given" keyword
that existed in the test set previously filtered. For each step, the system queries
the spreadsheet file provided by Altice Labs, extracting and incorporating the
corresponding information into a new spreadsheet file. This new spreadsheet
file compilation contains comprehensive details about each step, facilitating the
testing process.

With the spreadsheet file generated, the system gains access to a comprehen-
sive range of testing steps, each accompanied by their corresponding arguments,
when applicable. For the purpose of fault injection, the system creates ".feature"
files with only one step at a time, manipulating the values of arguments within
steps that possess them. Derived from the spreadsheet file, the designated mu-
tation operators have been established. These mutation operators, which are the
values to be tested, cover hexadecimal, integer, and string data types of argu-
ments. The selection process employed the Equivalent Class Partition approach
and Boundary Values approach, as described by [Nidhra, 2012-06-30].

37

Chapter 4

For the hexadecimal data type in the spreadsheet file, a maximum length (max_len)
is determined. Consequently, the values selected for testing were established in
the subsequent manner, as shown in Table 4.1.

Hexadecimal Test Cases

Testing the boundary values: random hexadecimal with lengths of max_len - 1,
max_len, and max_len + 1

Testing a random hexadecimal with a length between 1 and max_len

Testing the largest hexadecimal with the maximum length: F’s multiplied by
max_len

Testing the smallest hexadecimal: 0

Testing hexadecimals with upper and lower letters

Testing an empty value

Testing a null value

Table 4.1: Hexadecimal Test Cases.

For the integer data type in the spreadsheet file, a range of possible values [x, y]
is given. Given this range, the values to be tested were determined as shown in
table 4.2.

Integer Test Cases

Testing the boundary values: x-1, x, x+1, y-1, y, and y+1

Testing a random value between x and y

Testing the largest integer: 2147483647

Testing the smallest integer: -2147483648

Testing an empty value

Testing a null value

Table 4.2: Integer Test Cases.

We consider the value 2147483647 as the largest value for the integer data type,
as it represents the maximum value that can be accommodated within 32 bits, in-
cluding Python [Lemire, 2019-01-31]. Other considerations were taken to address
the two cases of a lack of information in the values for integer data type argu-
ments in the spreadsheet file. In one case, when the defined range appears as "N,
?", the "?" is changed to the value 2147483647. In the other case, when only one
number "N" is given, it is defined that the range of values starts from 0 to "N".

38

Proposed Approach

For the string data type in the spreadsheet file, there are two ways of limiting
values for the string argument. One way involves providing specific allowable
words as potential values, and the other way establishes a maximum length
(max_len) for the string. As a result, the values selected for testing were deter-
mined through the following process, shown in table 4.3.

Case Strings Test Cases

1st Case

Testing the provided options

Testing a string of length 10 with special characters (excluding
pipe |)

Testing numbers represented as strings with a length of 5

Testing a string containing only a space

Testing an empty value

Testing a null value

2nd Case

Testing the boundary values: random strings with lengths 0, 1, 2,
max_len - 1, max_len, and max_len + 1

Testing a string of length 10 with special characters (excluding
pipe |)

Testing random numbers represented as strings with a length of
5

Testing a string containing only a space

Testing an empty value

Testing a null value

Table 4.3: String Test Cases.

For two of the values to be tested, the chosen sizes were 10 and 5, as the objective
is to test special characters and disguised numbers within strings, respectively,
rather than focusing on the size.

Within the chosen values for each data type, we have both valid and invalid val-
ues. Valid values are those falling within the range of possibilities, while invalid
values are those that fall outside this range. However, the valid value chosen for
testing may not always be syntactically valid. Meaning that it might not align
with the expected context or usage.

Based on this information, our proposed approaches consist of two instances for
implementing mutation testing in the OLT2T4 emulator, with one instances com-
plementing the other.

39

Chapter 4

4.2.1 First Instance

With the spreadsheet file now containing all the essential information required to
create ".feature" files, our initial instance involves the automatically generation of
the desired quantity of these files. Subsequently, each of these files is executed,
and for every execution, the system alters the state of the OLT2T4 emulator. Fol-
lowing this state manipulation, the complete set of tests provided by Altice Labs
is executed, with the objective of determining whether these tests are capable of
identifying any injected faults.

Throughout the execution of the ".feature" files and the corresponding tests, the
system accumulates the resultant data. Then this various outcomes, are processed
and presented in the form of graphical representations and statistics. This in-
stance contributes to a comprehensive understanding of the achieved outcomes
to further analysis.

To determine the combination of values for each argument within the same step,
our initial instance involved generating all possible combinations. However, this
instance resulted in an excessive number of mutants for testing, some of which
could include multiple invalid value, that are values beyond the valid range or,
in the case of strings, values not predefined. Consequently, during the result
analysis phase, it would be challenging to discern which invalid value led to the
detected fault during Mutation Testing.

In light of this, we decided to inject only one fault at a time across the ".feature"
files. Therefore, for each argument of every step, all the invalid values are tested
one at a time. However, when one argument contains invalid values, the others
retain valid values. It is important to recall that the generated files test only one
step at a time, resulting in multiple files with the same step if it includes argu-
ments. Each of these files represents a different set of possible combinations of
argument values.

After implementing this instance, it was observed that in most cases, if a ".fea-
ture" file contained an invalid value, the OLT emulator’s software would detect it
and subsequently prevent the alteration of the OLT emulator’s state. As a result,
we categorized this as the initial phase of Mutation Testing within the OLT emu-
lator, with the goal of verifying whether the emulator’s software could effectively
detect all instances of invalid inputs. The second phase occurs when our system
successfully modifies the OLT emulator’s state, either by the ".feature" file con-
taining exclusively valid values or due to the emulator’s software not detecting
an invalid value. In this scenario, our system executes the entire test set with the
OLT emulator functioning in the modified state.

During the execution, as mentioned earlier, the system collects data. To facilitate
this, the system generates an spreadsheet file, where each row corresponds to a
tested step, representing an individual ".feature" file that has been tested. The
information within each row includes the step being tested, the values inserted
into its arguments (if applicable), which argument contained invalid values, and
the outcomes of both the first and second phases of Mutation Testing.

In this way, during the initial phase, the system reports whether the OLT2T4 em-

40

Proposed Approach

ulator software detected the invalid values within the ".feature" file or not. If the
fault was caught, the system proceeds to the next ".feature" file. At the end of the
Mutation Testing, this outcome can be further analyzed. On the other hand, if
the file succeeded and the OLT2T4 emulator has transitioned to a new state, the
second phase begins. In this phase, the report indicates whether the mutant was
"killed" or not. Figure 4.3 demonstrates how the results are defined.

Figure 4.3: Results Definition Diagram - 1st Approach.

A mutant is considered "killed" if the test set was able to identify the injected
fault by causing a failure during its execution. If the mutant was not "killed", it is
considered to have "survived".

Based on the analysis, two possible conclusions can be drawn, depending on
whether the mutant was "killed" or not, and if it was erroneous (meaning the val-
ues in the ".feature" file were invalid). If a mutant was "killed" and it is erroneous,
then the tests have been correctly designed to detect that specific mutant. On the
other hand, if the mutant "survived" and is erroneous, it indicates that there are
issues with the test set, either due to incorrect or missing tests. Additionally, if
the mutant is not erroneous, further analysis is required. Even though it might
seem correct, it needs to be verified if the output is as expected, as the mutant
might be created with valid values that are not semantically valid.

Given this, for the first instance of our approach, the following graphics are gen-
erated:

• Total Results of the 1st Phase: This graphic displays the outcomes of the
first phase of the first instance, indicating how many ".feature" files from
the previously generated set were successful in execution and how many
failed.

41

Chapter 4

• Survival Status of Succeeded Mutants in the 2nd Phase: This graphic illus-
trates the results of the second phase of the first instance of our approach.
It shows, for the ".feature" files that succeeded in the first phase, how many
mutants were "killed" and how many "survived".

• Mutation Type of Killed Mutants in the 2nd Phase: This graphic presents
the types of mutants "killed" in the second phase, whether they are erro-
neous or not.

• Mutation Type of Survived Mutants in the 2nd Phase: This graphic indi-
cates the types of mutants that "survived" in the second phase, whether they
are erroneous or not.

As referred before, other results provided by our system are the statistics. Specif-
ically, the mutation score, which represents the success rate of creating mutants,
is displayed for the first phase of Mutation Testing. This is calculated using the
following formula, where "mutants created" represents all the ".feature" files that
were successfully executed in the first phase, progressing to the second phase of
our approach.:

Success rate of creating mutants =
Mutants created

Total files ".feature"
× 100 (4.1)

For the second phase, the success rate of killing mutants is shown, achieved
through the following formula:

Success rate of killing mutants =
Mutants killed

Mutants created
× 100 (4.2)

4.2.2 Second Instance

During the execution of the first instance, it was observed that the initial steps
within the test files establish the proper state of the OLT2T4 emulator for test
execution by utilizing the "Given" keyword. Consequently, in the first instance,
when the state of the OLT2T4 emulator changes due to the introduction of a fault
injection, it often returns to the correct emulator state. However, this must be
tested in cases where the test does not adequately configure the OLT2T4 emulator
to execute the test. In light of this, the second instance to OLT2T4 mutation testing
gains significance as it aims to overcome this specific challenge.

In figure 4.4, the diagram illustrating the testing phases of both instances is shown.

42

Proposed Approach

Figure 4.4: Testing Phases.

Within this context, the second instance involves the automatic generation of
".feature" files by our system. Similar to the first instance, these files contain the
steps with the "Given" keyword that need to be tested, along with all the pos-
sible value combinations for the arguments, if applicable. However, instead of
directly executing the ".feature" files, the faults generated for testing purposes are
incorporated into each test file of the test set after all the existing steps with the
"Given" keyword within the respective test file. A fault is a step with one of the
combinations, if applicable, from various argument value combinations for dif-
ferent steps. If the step does not have arguments, the fault consists only of the
step itself.

Regarding the generation of combinations in this instance, our initial efforts re-
volved around introducing invalid values as arguments for steps involving pa-
rameters. However, these attempts resulted in outcomes similar to those experi-
enced in the first instance. The incorporation of invalid values led the OLT2T4
emulator’s software to prevent the execution of most tests, making them inca-
pable of proper execution. Recognizing this, the current instance exclusively fo-
cuses on testing valid values from the predefined set of test values, as demon-
strated previously.

Given the nature of the generated test files, which center on individual steps,
it is inevitable that for steps with arguments, multiple files will share the same
step. Although, each file will incorporate distinct argument values, ensuring a
comprehensive exploration of all established combinations.

In essence, this instance involves modifying and subsequently executing all the
test files in the test set for each testing fault. During the execution of these new
test files, the system records all the results. These results are then utilized to
generate graphical representations and compile statistics for further analysis.

43

Chapter 4

In light of this, the results provided by the system when applied in this instance
determine whether the mutant was "killed" or not, along with the mutation score.
For the initial outcome, figure 4.5 illustrates the procedure for defining the results.

Figure 4.5: Results Definition Diagram - 2nd Approach.

Looking at figure 4.5, similar to the first instance, in this instance, the system
identifies a mutant as "killed" when, during the execution of the test set for each
tested step, one of the tests fails. Otherwise, if all tests within the test set execute
without issues, the mutant is considered to have "survived". This procedure is
performed for each tested failure.

Since only valid values are tested for the arguments in the steps, all the mutants
generated within this instance are not erroneous. However, despite its appar-
ent correctness, it is essential to verify whether the output matches expectations.
Mutants might be created with valid values that are not semantically valid. fur-
ther analysis is required to better comprehend the outcome, whether a mutant is
"killed" or not.

Consequently, our system generates the following graphics:

• Killed Mutants with Different Failures in the 3rd Phase: This graphic il-
lustrates how many mutants with different failures were "killed".

• Total Killed Mutants in the 3rd Phase: This graphic shows how many mu-
tants were "killed" and how many "survived" from all the altered tests.

• Killed Mutants for Each Failure in the 3rd Phase: This graphic shows for
each set of altered tests how many were "killed" and how many "survived".

In terms of the mutation score in this instance, the calculation involves three rates:
the rate of total "killed" mutants, the rate of "killed" mutants with different fail-
ures and the success rate of "killed" mutants for each different failure.

The success rate of total "killed" mutants encompasses all the results obtained
from the altered tests executed for each tested failure. These rate are determined
using the following expression:

44

Proposed Approach

Success Rate =
Sum of mutants killed for each failure

Sum of mutants created for each failure
× 100 (4.3)

On the other hand, the success rate of "killed" mutants with different failures
specifically focuses on the results obtained for each unique failure tested. This
rate is calculated using the following formula:

Success Rate =
Mutants with different failures killed

Total different failures tested
× 100 (4.4)

Finally, the success rate of "killed" mutants for each different failure encompasses
the results of the altered test for each failure. This is achieved using the formula
below, where N represents the identification for each different failure, mutants
killed represent the mutants "killed" for each different failure, and mutants survived
represent the mutants "survived" for each different failure:

Success RateN =
Mutants KilledN

Mutants KilledN + Mutants Survived N
(4.5)

45

Chapter 5

Implementation

In this section, we detail the implementation of the previously described pro-
posed approach in chapter 4. Additionally, we present the results of the OLT2T4
emulator mutation testing, along with its analysis.

5.1 Proposed Approach Development

To initiate the implementation of our approach, the first step involved setting up
the environment. This encompassed installing VirtualBox, the virtual machine
software, and configuring the OLT2T4 emulator from Altice Labs as a virtual im-
age. Subsequently, network system configurations were adjusted to enable SSH
protocol to the OLT2T4 emulator. Once SSH connection was established, we pro-
ceeded with the installation of Cucumber and Ruby to be able to execute the
".features" files. Additionally, to generate and execute the ".features" files auto-
matically, Python is utilized, requiring its installation as well. A step-by-step
guide to achieve that is shown in A. This collective setup formed the architecture
illustrated in figure 5.1. With these components in place, the environment was
fully prepared for executing the tests.

47

Chapter 5

Figure 5.1: Test Environment Architecture.

As previously mentioned, our system utilizes a filtering process within the test set
provided by Altice Labs. In order to specifically extract the tests for the OLT2T4,
we rely on the fact that all the test files begin by specifying the equipment for
which the test is intended. This characteristic is illustrated in the figure 5.2.

Figure 5.2: Equipment Identification in the Test File.

After collecting the tests for the OLT2T4, the second filtering step aims to retain
only those tests compatible with the OLT2T4 emulator. Consequently, all these fil-
tered tests are executed in the emulator, resulting in a refined test set comprising
only executable tests.

To generate the spreadsheet file used in our system, a script is executed. This
script collects all the steps that start with the keyword "Given" within the test
files and compiles them into a new spreadsheet file. The spreadsheet file includes
detailed information about the step tokens from the spreadsheet file provided by
Altice Labs. Tables 5.1 and 5.2 illustrate the structure of the generated spreadsheet
file, featuring two example steps used for testing, one with arguments and the
other without, respectively.

Step Parameter Type Is Range Values Max Length Observation
an interface’s MAC limit exists with slot integer TRUE 1,2
an interface’s MAC limit exists with port string FALSE pon.,eth.
an interface’s MAC limit exists with admin string FALSE enable,disable
an interface’s MAC limit exists with maximum integer TRUE 1,?
an interface’s MAC limit exists with action string FALSE none,limit
an interface’s MAC limit exists with trap string FALSE enable,disable

Table 5.1: Structure of the Spreadsheet for a set with arguments.

48

Implementation

Step Parameter Type Is Range Values Max Length Observation
A user connects to the OLT equipment using the CLI interface

Table 5.2: Structure of the Spreadsheet for a set without arguments.

The following step in our system is to generate the ".feature" files. This is accom-
plished by executing a new script for both the first and second instances of our
approach. Within the script, we determine whether we are running the first in-
stance or the second instance, in order to select the appropriate code to execute.
It is important to define the instance because they are different in terms of their
methodologies and outcomes. Additionally, we organize the results into different
folders for each instance to facilitate access to them.

When generating these files, it is essential to consider that after the execution of
a ".feature" file, the state of the OLT2T4 emulator is normally reset. However,
since this dissertation intends to keep the state of the OLT2T4 emulator altered, a
new hook was added. Specifically, a "@not_hook" was introduced to ensure that
".feature" files with this hook do not restore the emulator’s state. Consequently,
this hook is added to all the generated ".feature" files. For a better understanding
of what a hook is, please refer to section 2.2.

This script generates the ".feature" files for each step to be tested. Each generated
file contains only one step along with its arguments and their respective values,
if applicable. Given this, the script calculates all the different possibilities for the
values of the arguments for the selected test steps when applicable. This possible
combinations generation is different for each instance, as discussed in section 4.2.
Subsequently, the generated ".feature" files are stored in a folder. An example of
the generated file is shown below:

Feature: Mutant3

Background:
Given a user connects to the OLT equipment using the "CLI" interface

@not_hooks
Scenario:

Given an interface’s MAC limit exists with
| slot | port | admin | maximum | action | trap |
| 1 | pon. | enable | 1 | none | enable |

This script also generates an spreadsheet file in Comma-Separated Values (CSV)
format report where all the results of the OLT2T4 emulator mutations testing
are filled. The script begins by filling in the CSV with information related to
each ".feature" file. This CSV file is slightly different for each instance. Table
5.3 presents the structure of the resulting CSV for the first instance, including an
example for one ".feature" file with arguments and another without:

49

Chapter 5

Mutant Parameters Was a Fault What’s the Fault Was Created Was Killed
2 [] [] []
3 [’slot’, ’port’, ’admin’, ’maximum’, ’action’, ’trap’] [1, 0, 0, 0, 0, 0] (0, ’pon.’, ’enable’, 1, ’none’, ’enable’)

Table 5.3: Structure of the CSV file for the first instance.

Given this, the CSV for the first instance of our approach includes the identifica-
tion of the ".feature" file by its number, the arguments of the step tested, which
argument has an invalid value (represented by the number 1), the values for those
arguments, and leaves two entries with empty values to be further filled with the
results obtained from the execution of the corresponding ".feature" file. For the
second instance, the CSV file has a similar structure to the CSV of the first in-
stance. The difference is that in this one, the "was created" column is removed.

For the execution of the ".feature" files along with the test set, another script is
employed. To be able to execute the files in the OLT, it is necessary to ensure that
the SSH connection with the OLT has been established. To perform the execution,
the following command is used in the appropriate location:

cucumber path_file_to_execute.feature > path_file_result.txt

Once again, in this file, it is necessary to identify which instance is being executed
since the methodology is different, as explained in chapter 4.

For the first instance, as mentioned earlier, the OLT2T4 emulator’s state is re-
stored after running the tests. Consequently, for the first instance during the
second phase, after executing each test from the set provided by Altice Labs, it
is necessary to run the same ".feature" file generated once more to inject the fault
into the OLT2T4 emulator again.

For each instance of our approach, this script generates result files in different
folders, including the outcomes obtained by the Cucumber framework after the
execution of each ".feature" file. From these result files, the script updates the
CSV file with the Mutation Testing results, as defined in section 4.2.

In the first instance, during the second phase of our OLT2T4 emulator Mutation
Testing approach, the test set is executed for each individual mutant created, and
the results obtained for each test within the test set for each mutant are stored in
separate CSV files.

In the second instance of our approach, a similar process is followed. As de-
scribed in section 4.2, the test files within the test set are modified and executed
sequentially. For each fault introduced, a CSV file is generated containing all the
results obtained by the Cucumber framework for the tested alterations.

Therefore, for the first instance of our approach, we fill the CSV file, as illustrated
in table 5.3, with "passed" or "failed" in the "was created" column and "YES" or
"NO" in the "was killed" column. For the second instance of our approach, we fill
the "was killed" column in the CSV file with "YES" or "NO".

Finally, the same script is executed to generate graphical representations, as ex-
plained in chapter 4, of the Mutation Testing results along with the statistics

50

Implementation

stored in a text file for each instance of our approach. In the case, the file related
to the first instance, includes the Success Rate of Creating Mutants (first phase)
and the success rate of killing mutants (second phase), along with the identifica-
tion of the files that were "killed" and those that "survived", specifying whether
each is an erroneous mutant or not (second phase). For the second instance, the
file comprises the rate of "killed" mutants with different failures, the rate of total
"killed" mutants and the success rate of "killed" mutants for each different failure
(third phase).

5.2 Mutation Testing Results and Analysis

As mentioned earlier, while our system automatically conducts Mutation Testing,
it keeps a record of all the necessary data. In this case, the data is stored in a text
file, which contains the results obtained by the Cucumber framework for each
".feature" file, including those generated and the corresponding tests. From this
file, the system updated the CSV file, which concatenates all the results for each
instance of our approach (for the file structure, please refer to the section before
5.1).

Using the CSV file that compiles the results gathered from each ".feature" file, our
system generates graphical illustrations of the Mutation Testing results obtained
from each instance of our approach. Test results are based on what was defined
in chapter 4.

As previously mentioned and explained in section 4.2, the first instance of our ap-
proach generates the following graphics: Total Results of the 1st Phase, Survival
Status of Succeeded Mutants in the 2nd Phase, Mutation Type of Killed Mutants
in the 2nd Phase and Mutation Type of Survived Mutants in the 2nd Phase.

Additionally, for the first instance of our approach, the success rate of creating
mutants and the success rate of killing mutants are displayed, along with the
identification and specification of the type of mutants, whether erroneous or not,
"killed" or "survived".

For the second instance of our approach, it should be noted that for the same
failure, which is associated a step with the keyword "given" containing a single
possible value combination for the arguments, all the tests from the test set are
altered. This results in the creation of several altered tests with the same failure.
Consequently, our system generates the following graphics, as earlier discussed
and explained in section 4.2: Killed Mutants with Different Failures in the 3rd

Phase, Total Killed Mutants in the 3rd Phase and Killed Mutants for Each Failure
in the 3rd Phase.

In addition to these graphics, the success rate of "killed" mutants with different
failures, the success rate of total "killed" mutants, and the success rate of "killed"
mutants for each different failure are presented.

With the aim of testing our system, we employed OLT2T4 emulator Mutation
Testing in each instance of our proposed approach, with a stronger focus on the

51

Chapter 5

first instance. For the first instance, it was executed for 412008 previously gen-
erated ".feature" files. Within these files, seven different steps were used. How-
ever, since one of these steps has thirteen arguments, it generates many possible
combinations of argument values. On the other hand, for the second instance, it
was applied to 15 previously generated ".feature" files, meaning that it was tested
with 15 different steps. This process resulted in the execution of 960 ".feature"
files when applied to the test set. As a result, the graphics obtained are displayed
below to provide a comprehensive understanding. For the first instance, the fol-
lowing graphics were obtained:

Figure 5.3: Total Results of the 1st Phase Graphic.

Figure 5.4: Survival Status of Succeeded Mutants in the 2nd Phase Graphic.

52

Implementation

Figure 5.5: Mutation Type of Killed Mutants in the 2nd Phase Graphic.

Since no "survived" mutants were obtained, the graphic for "Mutation Type of
Survived Mutants in the 2nd Phase" is not shown as it is empty.

The Success Rate of Creating Mutants obtained was 0.000971% in 412008 previ-
ously generated ".feature" files, as evident from the graphics. Additionally, the
mutants "killed" were the ones created with the ".feature" files 1, 2, 1091, and
1184, all of which are non-erroneous mutants. All these files that advanced to
the second phase of our proposed approach contain steps that do not have argu-
ments.

From the results obtained, it is clear that the majority of the tests were caught
by the OLT software due to invalid values in the arguments of the steps. How-
ever, for each of the existing ".features" files with steps that have no arguments,
the test set was executed, and one of the tests failed during the execution. Since
these steps have no arguments and, therefore, no invalid values, further analysis
is required based on the results files that contain the output provided by the Cu-
cumber framework, along with the CSV file that concatenates the results obtained
for each ".feature" file for this particular instance.

Moving to the second instance, in this case, the graphics obtained were as follows:

53

Chapter 5

Figure 5.6: Killed Mutants with Different Failures in the 3rd Phase Graphic.

Figure 5.7: Killed Mutants for Each Failure in the 3rd Phase Graphic.

54

Implementation

Figure 5.8: Total Killed Mutants in the 3rd Phase Graphic.

The success rate of "killed" mutants with different failures was 100.00% in 15 mu-
tants, and the success rate of total "killed" mutants was 85.83% in 960 mutants, as
illustrated in the graphics. Additionally, the success rate of "killed" mutants for
each different failure is shown in table 5.4.

Failure Success Rate of Killed Mutants
1 6.25% in 64 mutants
2 1.56% in 64 mutants
3 98.44% in 64 mutants
4 98.44% in 64 mutants
5 98.44% in 64 mutants
6 98.44% in 64 mutants
7 98.44% in 64 mutants
8 98.44% in 64 mutants
9 98.44% in 64 mutants

10 98.44% in 64 mutants
11 98.44% in 64 mutants
12 98.44% in 64 mutants
13 98.44% in 64 mutants
14 98.44% in 64 mutants
15 98.44% in 64 mutants

Table 5.4: Success Rate of Killed Mutants for Different Failures.

Analyzing the graphics, it is observed that all the failures were detected during
the execution of the test files. This indicates that all the mutants created were
"killed" by the test set provided by Altice Labs. After analyzing the CSV file gen-
erated for each failure, it becomes clear that, except for the first and second fail-
ures, the same test consistently succeeded. Consequently, all the other tests were
able to "kill" the mutant. The first two failures are steps without arguments, while
all the others have arguments. Therefore, the difference in the results is based on

55

Chapter 5

whether the step has arguments or not. However, in both cases, it is necessary
to conduct further analysis. This analysis aims to determine whether the values
introduced in the arguments are valid and if the behavior of the software aligns
with its intended function.

Even though the test set caught almost all failures, the next step is to enhance
the test set with the results we obtained to ensure better quality when testing the
OLT.

In consideration of these results, it is possible to conclude that our system is ex-
ecuting mutation testing for the OLT2T4 emulator automatically and correctly.
Even though it operates automatically, our system effectively achieves the de-
sired results, making it advantageous for Altice Labs. This capability extends to
future OLTs, enabling Altice Labs to enhance the testing phase in terms of time.
Additionally, it helps in identifying weaknesses and errors in the software, lead-
ing to eventual improvements.

However, with all approaches, there comes a cost, and in our case, it is the time
required for the automated execution of OLT mutation testing. Due to the nu-
merous failures that need to be tested, this process takes a considerable amount
of time, spanning several weeks, to complete.

56

Chapter 6

Final Considerations

In this chapter, the final considerations of this dissertation are presented. It in-
cludes a conclusion and suggests future work.

6.1 Conclusion

Software testing is a crucial step in the development of software to ensure its
quality. One of the many approaches to performing software testing is Mutation
Testing. This approach aims to evaluate the effectiveness of tests for a specific
software. When applied in conjunction with traditional techniques, it enhances
the testing phase by identifying vulnerabilities and weaknesses in the software,
leading to a more thorough analysis of software quality.

The Mutation Testing approach involves injecting faults into the software by cre-
ating mutants using predefined mutation operators. For each mutant created, the
existing tests for the specific software are executed to determine if they can detect
the previously injected faults. If the tests detect a fault, the mutant is considered
"killed"; otherwise, it is deemed to have "survived". This approach results in a
mutation score, representing the test set’s capability to detect faults. However,
this technique is time-consuming, as it requires manual creation of all mutants.

Altice Labs is an international telecommunications company that focuses on de-
veloping and innovating telecommunications technologies and solutions. Altice
Labs develops hardware and software, including OLTs, which is a modern PON
technology. An OLT is a crucial network equipment for delivering services to
clients.

Altice Labs tests the software of the OLT to deliver high-quality equipment to its
clients. These tests are written in the Gherkin meta-language, using keywords
like "Given," "When," and "Then" to describe the behavior of the software system
under test. Test files have the extension ".feature". To execute these tests, the
Cucumber testing framework is used, which interprets the ".feature" files and
maps them into Ruby language to execute the code.

The challenge of this dissertation is to propose an approach, in partnership with

57

Chapter 6

Altice, that applies mutation testing techniques to Altice Labs’ OLT software au-
tomatically. This approach aims to reduce the time consumed by the testing pro-
cess. In this case, the testing technique is applied in a black box manner since the
source code of the OLT software is not provided. Therefore, our approach injects
faults into the OLT software by altering its operational state.

Our proposed approach focuses on two instances. In each instance, ".feature"
files are generated to alter the operational state of the OLT. In the first instance,
the previously generated ".feature" files are executed, and whenever possible, the
existing test set provided by Altice Labs is sequentially executed. In the second
instance, for each ".feature" file, the contents inside it are integrated into all the
tests within the test set and executed sequentially. During Mutation Testing, the
results are stored for further analysis. In order to validate our approach, this
document presents the tests that were conducted for this. With these results, it
was possible to conclude the efficiency of our approach in improving software
testing.

In conclusion, this proposed approach provides valuable insights for the testing
phase and contributes to the fields of software testing and software engineering
by offering a time-efficient approach for mutation testing.

6.2 Future Work

In our proposed approach, only combinations with one invalid value or with
only valid values were considered for the first and second instances, respectively.
However, as we started by creating all possible combinations of valid and invalid
values, some code for this case has already been developed. As future work, we
consider the possibility of continuing and improving the implementation of this
aspect. On the other hand, another interesting future work would be to consider,
in each instance, the execution of the combinations used in the other instance.
With the existing code, as it is already possible to generate these combinations,
only minor adjustments would be necessary.

Additionally, our approach only considers three data types, limiting the possible
tests performed on the OLT. Although these data types are the most commonly
used, others could be employed. Therefore, implementing this approach for other
data types in future work would be interesting and would enhance our system.

58

References

Cucumber reference - cucumber documentation, a. URL https://cucumber.io/
docs/cucumber/api/?lang=ruby#hooks.

Cucumber reference - cucumber documentation, b. URL https://cucumber.io/
docs/cucumber/api/?lang=ruby#steps.

Cucumber reference - cucumber documentation, c. URL https://cucumber.io/
docs/cucumber/api/?lang=ruby#tags.

Environment variables - cucumber documentation, d. URL https://cucumber.
io/docs/cucumber/environment-variables/.

Huda Saleh Abbas and Mark A. Gregory. The next generation of passive op-
tical networks: A review. Journal of Network and Computer Applications, 67:
53–74, 2016-05. ISSN 10848045. doi: 10.1016/j.jnca.2016.02.015. URL https:
//linkinghub.elsevier.com/retrieve/pii/S1084804516000989.

Anas Abuljadayel and Fadi Wedyan. International journal of intelligent
systems and applications(IJISA). International Journal of Intelligent Systems
and Applications(IJISA), 10(1):34. URL https://www.mecs-press.org/ijisa/
ijisa-v10-n1/v10n1-5.html.

Xiangying Dang, Dunwei Gong, Xiangjuan Yao, Tian Tian, and Huai Liu. En-
hancement of mutation testing via fuzzy clustering and multi-population ge-
netic algorithm. IEEE Transactions on Software Engineering, 48(6):2141–2156,
2022-06. ISSN 1939-3520. doi: 10.1109/TSE.2021.3052987. Conference Name:
IEEE Transactions on Software Engineering.

Rahul Gopinath, Björn Mathis, and Andreas Zeller. If you can’t kill a supermu-
tant, you have a problem. In 2018 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pages 18–24, 2018-04. doi:
10.1109/ICSTW.2018.00023.

Yue Jia and Mark Harman. MILU: A customizable, runtime-optimized higher
order mutation testing tool for the full c language. Proc. Int. Conf. Testing:
Academic and Industrial Conf. Practice and Research Techniques, 2008-08-01. doi:
10.1109/TAIC-PART.2008.18.

Yue Jia and Mark Harman. An analysis and survey of the development of muta-
tion testing. IEEE Transactions on Software Engineering, 37(5):649–678, 2011-09.
ISSN 1939-3520. doi: 10.1109/TSE.2010.62. Conference Name: IEEE Transac-
tions on Software Engineering.

59

https://cucumber.io/docs/cucumber/api/?lang=ruby#hooks
https://cucumber.io/docs/cucumber/api/?lang=ruby#hooks
https://cucumber.io/docs/cucumber/api/?lang=ruby#steps
https://cucumber.io/docs/cucumber/api/?lang=ruby#steps
https://cucumber.io/docs/cucumber/api/?lang=ruby#tags
https://cucumber.io/docs/cucumber/api/?lang=ruby#tags
https://cucumber.io/docs/cucumber/environment-variables/
https://cucumber.io/docs/cucumber/environment-variables/
https://linkinghub.elsevier.com/retrieve/pii/S1084804516000989
https://linkinghub.elsevier.com/retrieve/pii/S1084804516000989
https://www.mecs-press.org/ijisa/ijisa-v10-n1/v10n1-5.html
https://www.mecs-press.org/ijisa/ijisa-v10-n1/v10n1-5.html

Chapter 6

Ying Jiang, Shan-Shan Hou, Jin-Hui Shan, Lu Zhang, and Bing Xie. AN AP-
PROACH TO TESTING BLACK-BOX COMPONENTS USING CONTRACT-
BASED MUTATION. International Journal of Software Engineering and Knowl-
edge Engineering, 18(1):93–117, 2008-02. ISSN 0218-1940, 1793-6403. doi:
10.1142/S0218194008003556. URL https://www.worldscientific.com/doi/
abs/10.1142/S0218194008003556.

Gerd Keiser. FTTX Concepts and Applications. John Wiley & Sons, 2006-02-06. ISBN
978-0-471-76909-5.

K. N. King and A. Jefferson Offutt. A fortran language system for mutation-based
software testing. Software: Practice and Experience, 1991.

Karam Al Kontar, Joumana Naji, Freddy Demiane, Salma Sobeh, and Ramzi
Haraty. A survey on mutation testing approaches. In 2019 IEEE CHILEAN
Conference on Electrical, Electronics Engineering, Information and Communication
Technologies (CHILECON), pages 1–7, 2019-11. doi: 10.1109/CHILECON47746.
2019.8987448.

Thomas Laurent, Paolo Arcaini, Catia Trubiani, and Anthony Ventresque.
Mutation-based analysis of queueing network performance models. Journal of
Systems and Software, 191:111385, 2022-09-01. ISSN 0164-1212. doi: 10.1016/j.jss.
2022.111385. URL https://www.sciencedirect.com/science/article/pii/
S0164121222001078.

Raluca Lefticaru, Marian Gheorghe, and Florentin Ipate. An empirical evaluation
of p system testing techniques. Natural Computing, 10(1):151–165, 2011-03-01.
ISSN 1572-9796. doi: 10.1007/s11047-010-9188-y. URL https://doi.org/10.
1007/s11047-010-9188-y.

Daniel Lemire. Fast random integer generation in an interval. ACM Transactions
on Modeling and Computer Simulation, 29(1):1–12, 2019-01-31. ISSN 1049-3301,
1558-1195. doi: 10.1145/3230636. URL https://dl.acm.org/doi/10.1145/
3230636.

Yu-Seung Ma and Sang-Woon Kim. Mutation testing cost reduction by clus-
tering overlapped mutants. Journal of Systems and Software, 115:18–30, 2016-
05-01. ISSN 0164-1212. doi: 10.1016/j.jss.2016.01.007. URL https://www.
sciencedirect.com/science/article/pii/S0164121216000078.

Nicola Marchetti. Towards 5th generation wireless communication systems. ZTE
Communications, 13:11–19, 2015-03-01.

Michaël Marcozzi, Sébastien Bardin, Nikolai Kosmatov, Mike Papadakis, Virgile
Prevosto, and Loïc Correnson. Time to clean your test objectives. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages
456–467, 2018-05. doi: 10.1145/3180155.3180191. ISSN: 1558-1225.

Pedro Reales Mateo and Macario Polo Usaola. Bacterio: Java mutation testing
tool: A framework to evaluate quality of tests cases. In 2012 28th IEEE Interna-
tional Conference on Software Maintenance (ICSM), pages 646–649, 2012-09. doi:
10.1109/ICSM.2012.6405344. ISSN: 1063-6773.

60

https://www.worldscientific.com/doi/abs/10.1142/S0218194008003556
https://www.worldscientific.com/doi/abs/10.1142/S0218194008003556
https://www.sciencedirect.com/science/article/pii/S0164121222001078
https://www.sciencedirect.com/science/article/pii/S0164121222001078
https://doi.org/10.1007/s11047-010-9188-y
https://doi.org/10.1007/s11047-010-9188-y
https://dl.acm.org/doi/10.1145/3230636
https://dl.acm.org/doi/10.1145/3230636
https://www.sciencedirect.com/science/article/pii/S0164121216000078
https://www.sciencedirect.com/science/article/pii/S0164121216000078

References

Phil McMinn, Chris J. Wright, Colton J. McCurdy, and Gregory M. Kapfhammer.
Automatic detection and removal of ineffective mutants for the mutation anal-
ysis of relational database schemas. IEEE Transactions on Software Engineering,
45(5):427–463, 2019-05. ISSN 1939-3520. doi: 10.1109/TSE.2017.2786286. Con-
ference Name: IEEE Transactions on Software Engineering.

T. Murnane and K. Reed. On the effectiveness of mutation analysis as a black box
testing technique. In Proceedings 2001 Australian Software Engineering Conference,
pages 12–20, 2001-08. doi: 10.1109/ASWEC.2001.948492. ISSN: 1530-0803.

S. Nidhra. Black box and white box testing techniques - a literature review. Inter-
national Journal of Embedded Systems and Applications, 2:29–50, 2012-06-30. doi:
10.5121/ijesa.2012.2204.

A.J. Offutt and S.D. Lee. An empirical evaluation of weak mutation. IEEE Trans-
actions on Software Engineering, 20(5):337–344, 1994-05. ISSN 00985589. doi:
10.1109/32.286422. URL http://ieeexplore.ieee.org/document/286422/.

Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. Does mu-
tation testing improve testing practices? In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE), pages 910–921, 2021-05. doi:
10.1109/ICSE43902.2021.00087. ISSN: 1558-1225.

Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. Practical muta-
tion testing at scale: A view from google. IEEE Transactions on Software Engineer-
ing, 48(10):3900–3912, 2022-10. ISSN 1939-3520. doi: 10.1109/TSE.2021.3107634.
Conference Name: IEEE Transactions on Software Engineering.

Alessandro V. Pizzoleto, Fabiano C. Ferrari, Lucas D. Dallilo, and Jeff Offutt.
SiMut: Exploring program similarity to support the cost reduction of muta-
tion testing. In 2020 IEEE International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW), pages 264–273, 2020-10. doi: 10.1109/
ICSTW50294.2020.00052.

Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes,
and Márcio Ribeiro. A systematic literature review of techniques and metrics to
reduce the cost of mutation testing. Journal of Systems and Software, 157:110388,
2019-11-01. ISSN 0164-1212. doi: 10.1016/j.jss.2019.07.100. URL https://www.
sciencedirect.com/science/article/pii/S0164121219301554.

Macario Polo, Mario Piattini, and Ignacio García-Rodríguez. Decreasing the
cost of mutation testing with second-order mutants. Software Testing, Verifi-
cation and Reliability, 19(2):111–131, 2009. ISSN 1099-1689. doi: 10.1002/stvr.
392. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.392.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.392.

rita-c-felix. Central office. URL https://www.alticelabs.com/products/
central-office/.

Mayank Singh and Viranjay M. Srivastava. Extended firm mutation testing:
A cost reduction technique for mutation testing. In 2017 Fourth International

61

http://ieeexplore.ieee.org/document/286422/
https://www.sciencedirect.com/science/article/pii/S0164121219301554
https://www.sciencedirect.com/science/article/pii/S0164121219301554
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.392
https://www.alticelabs.com/products/central-office/
https://www.alticelabs.com/products/central-office/

Conference on Image Information Processing (ICIIP), pages 1–6, 2017-12. doi:
10.1109/ICIIP.2017.8313788.

Matt Wynne, Aslak Hellesoy, and Steve Tooke. The Cucumber Book: Behaviour-
Driven Development for Testers and Developers. Pragmatic Bookshelf, 2017-02-17.
ISBN 978-1-68050-496-5. Google-Books-ID: fA9QDwAAQBAJ.

Qianqian Zhu, Annibale Panichella, and Andy Zaidman. An investigation of
compression techniques to speed up mutation testing. In 2018 IEEE 11th Inter-
national Conference on Software Testing, Verification and Validation (ICST), pages
274–284, 2018-04. doi: 10.1109/ICST.2018.00035.

62

Appendices

63

Appendix A

Setting Up the Environment: A
Step-by-Step Guide

This appendix presents the steps to follow for setting up the environment.

1. Install VirtualBox and WinSCP.

2. Insert the OLT emulator image provided by Altice Labs into the VM.

3. Configure the VM’s network.

3.1. Configure the host-only network adapter in the VM by going to File >
Tools > Network Manager and adding a new network with the address
192.168.56.1 and network mask 255.255.255.0.

3.2. Enable one of the host-only network adapters by going to Settings >
Network > Adapter 2, enable it, and associate it with the host-only adapter
named after the network created in step 3.1.

3.3. Configure one of the network interfaces in the OLT emulator with the
address 192.168.56.101.

3.4. Establish an SSH connection with the emulator.

4. Copy the workspace folder from the OLT emulator to the computer using
WinSCP.

5. Install Ruby 2.4 language.

6. Install Cucumber framework by running the command "gem install cucum-
ber -v 3.1.0."

7. Install Altice Labs’ gems-swauto by running the command "gem install gem_name."

8. Install the necessary gems until it is possible to run the dummy test.

8.1. Run the dummy test in the workspace folder by executing the com-
mand "cucumber -t @dummy_test."

65

Appendix A

8.2. Install the gem requested in the output of step 7.1 by running the com-
mand "gem install requested_gem." (Usually, the requested gems in-
clude rspec, json, json-schema, net-ssh, net-ssh-telnet, netsnmp, xml_simple,
gyoku, and snmp).

8.3. Repeat Step 7.1 followed by Step 7.2 until it’s possible to run the dummy
test.

66

	Introduction
	Problem and Motivation
	Goals
	Planning
	Document Structure

	Background Concepts
	Optical Line Terminal
	OLT2T4 Testing: Execution and Code Syntax
	Mutation Testing
	Cost Reduction Techniques in Mutation Testing
	Mutant Reduction Techniques
	Execution Cost Reduction Techniques

	Summary

	State of the art
	Summary

	Proposed Approach
	Overview
	Methodology
	First Instance
	Second Instance

	Implementation
	Proposed Approach Development
	Mutation Testing Results and Analysis

	Final Considerations
	Conclusion
	Future Work

	References
	Appendix Setting Up the Environment: A Step-by-Step Guide

