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Resumo 
 

Introdução 

A perceção de um determinado estímulo sensorial depende do nosso estado neural e 

fisiológico no momento do estímulo. Esse estado fisiológico pode ser alterado quando é 

induzido um estado de expectativa em antecipação de um evento relevante. Esse estado de 

expectativa está associado a uma ativação do córtex frontal, inibição motora, ativação do 

sistema nervoso parassimpático (desaceleração cardíaca), ativação do sistema nervoso 

simpático (dilatação da pupila e alterações na condutância da pele) e a uma facilitação da 

tomada de decisão percetual. No entanto, ainda não está claro se as alterações na fisiologia 

corporal afetam diretamente o processamento sensorial ou se são somente uma 

consequência das alterações cerebrais que por si afetam este processamento. 

 

Objetivos 

O objetivo deste estudo é investigar a interação entre a fisiologia corporal e a atividade 

cerebral e o seu impacto no processamento visual. Neste estudo usamos duas abordagens 

para investigar aspetos diferentes deste problema. Primeiro, investigamos como o estado de 

expectativa é refletido em mudanças nos sinais fisiológicos do corpo e do cérebro, e 

verificamos se esse estado pré-estímulo modula a perceção visual e de que maneira o os 

sinais corporais contribuem para essa perceção. Segundo, investigamos se o estado pré-

estímulo modula a representação cortical de diferentes categorias visuais. 

 

Métodos 

Neste trabalho, utilizámos uma tarefa de discriminação visual, na qual os 

participantes tinham de determinar se o estímulo visual apresentado consistia num carro ou 

numa casa. Cada ensaio começava com um sinal sonoro de alerta que informava os 

participantes sobre a aproximação do estímulo visual. Enquanto os participantes realizavam 

a tarefa, foram adquiridos simultaneamente o eletroencefalograma (EEG) e sinais 

fisiológicos (eletrocardiograma, frequência respiratória, pupilograma e movimentos 

oculares). Para estudar o efeito do estado neural e fisiológico no processamento visual, 

usámos algoritmos de aprendizagem automática e testámos dois tipos de classificadores – 

máquina de vetores de suporte e redes neurais convolucionais. 
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Resultados 

Os resultados sugerem que o estado de expectativa induz alterações no sinal de EEG 

e na fisiologia corporal. Em particular, o estado de expectativa caracterizou-se pelo 

aparecimento de um potencial negativo no sinal de EEG, por uma desaceleração cardíaca, por 

uma diminuição na ocorrência de pestanejos e movimentos oculares refletindo uma inibição 

motora, pela dilatação da pupila e pelo aumento da duração dos ciclos respiratórios. Para 

além disso, foi possível construir classificadores capazes de prever a deteção do estímulo 

visual usando como input o sinal de EEG pré-estímulo, a atividade respiratória ou o 

comportamento da pupila. Contudo, quando combinados com o sinal EEG, nenhum dos 

sinais fisiológicos forneceu informações suplementares ao classificador, o que sugere que os 

sinais fisiológicos não afetam a perceção visual diretamente. Por fim, avaliamos se o estado 

pré-estímulo modula a representação cortical das categorias visuais. Para isso construímos 

um classificador capaz de classificar a categoria visual tendo como input os potenciais 

evocados pelos estímulos visuais. No entanto, não encontrámos evidência de que esta 

classificação fosse modulada pela atividade cerebral ou corporal pré-estímulo. 

 

Conclusões 

Estes resultados sugerem que a atividade pré-estímulo influencia o reconhecimento 

de estímulos visuais. No entanto, não encontrámos evidência de que as alterações 

observadas na fisiologia corporal modulem a perceção visual ou a representação neural do 

estímulo. 

 

Palavras-chave: atividade neural e corporal pré-estímulo; atenção; interações corpo-cérebro; 

Redes Neurais Convolucionais; Máquina de vetores de suporte 
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Abstract 
 

Introduction 

The perception of a sensory stimulus depends on the neural and physiological state 

at the time of the stimulus. This physiological state can be altered when a state of expectation 

is induced in anticipation of a relevant event. This state of expectation is associated with an 

activation of the frontal cortex, motor inhibition, activation of the parasympathetic nervous 

system (cardiac deceleration), activation of the sympathetic system (pupil dilation and 

changes in skin conductance) and a facilitation of perceptual decision making. However, it is 

still unclear whether changes in body physiology directly affect sensory processing or 

whether they are simply a consequence of neural changes that in turn affect this processing.  

 

Goals 

The goal of this study was to investigate the interaction between body physiology and 

brain activity and their impact on visual processing. In this study, we used two approaches to 

investigate different aspects of this problem. First, we investigated how the state of 

expectation is reflected in changes in body and neural physiological signals, and we verified 

whether this pre-stimulus state modulates visual perception and how body signals 

contribute to this perception. Second, we investigated whether the pre-stimulus state 

modulates the cortical representation of different visual categories. 

 

Methods 

In this work, we used a warned visual discrimination task where participants were 

required to determine if the presented visual stimulus consisted of a car or a house. Each trial 

started with an auditory warning cue that alerted participants of the upcoming stimulus. 

While participants were engaged in the task, we simultaneously acquired the 

electroencephalogram (EEG) and body physiological signals (electrocardiogram, respiratory 

rate, pupillogram and eye movements). To study the effect of the neural and body state on 

visual processing, we used machine learning algorithms and tested two types of classifiers – 

support vector machines and convolutional neural networks.  
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Results 

The results suggested that the state of expectation induces changes in the EEG signal 

and in body physiology. In particular, the state of expectation was characterized by the 

appearance of a negative potential in the EEG signal, by cardiac deceleration, by a decrease in 

the occurrence of blinks and eye movements reflecting motor inhibition, by pupil dilation and 

by an increase in the duration of the respiratory cycles. Furthermore, it was possible to 

develop classifiers capable of predicting the detection of visual stimuli using as input the pre-

stimulus EEG, respiratory activity or pupil behavior. However, when combined with the EEG 

signal, none of the physiological signals provided supplementary information to the 

classifier, which suggests that these physiological signals do not affect visual perception 

directly. Finally, we evaluated whether the pre-stimulus state modulates the cortical 

representation of visual categories. To do this, we developed a classifier capable of classifying 

the visual category using as input the potentials evoked by the visual stimuli. However, we 

found no evidence that this classification was modulated by pre-stimulus brain or body 

activity. 

 

Conclusions 

Overall, the results suggest that pre-stimulus activity influences the recognition of 

visual stimuli. However, we found no evidence that changes observed in body physiology 

modulate visual perception or the neural representation of the stimulus. 

 

Key words: pre-stimulus neural and body activity; attention; body-brain interactions; 

Convolutional Neural Network (CNN); Support Vector Machine (SVM) 
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1 Introduction 
 

 

In this chapter, we will start with a contextualization and motivation of the thesis. 

Then, we will describe the theoretical background, as well as the research findings in the field 

of interaction between the brain and the body. Finally, in this chapter, a summary of the 

current study is made. 

 

1.1 Contextualization and Motivation 
The perception of a sensory stimulus depends on the neural and physiological state 

at the time of the stimulus. Numerous researchers posit that these neural and physiological 

states, observed by fluctuations in endogenous activity, have a significant influence on neural 

processing, i.e., these fluctuations can, for example, modulate stimulus processing (1), 

increasing or decreasing the chances one has to correctly process and categorize the 

stimulus content. Endogenous activity represents the activity that naturally occurs within an 

organism’s body, that is, without the influence of an external stimulus. 

Moreover, it is established that brain and body physiological activity such as cardiac 

activity, pupillary response (a measure of brain arousal), respiration and neural activity are 

associated with sensory processing, for example:  

• Variations in heart rate have been correlated with changes in visual evoked 

responses, thereby suggesting a potential role of cardiovascular activity in the 

process of visual processing (2). 

• Fluctuations in pupil size reflect changes in cognitive effort, with greater pupil 

dilation heightened cognitive effort and higher attentional level (3). 

• Enhanced accuracy in visuospatial tasks is observed when stimuli are presented 

during inhalation in comparison with exhalation (4). 

• Fluctuations in the internal state of the brain also affect sensory processing (5,6).  

 

Attentive anticipation, the state of focused attention during sensory expectation, is 

associated with faster and more sensitive sensorimotor processing. This state is 

characterized by specific patterns of cortical activity, motor inhibition, cardiac deceleration 

and pupil dilation. In conclusion, this state of attention causes changes in brain and body 

physiology that are associated with both stimulus processing and behavioral performance (7–

9). 
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Having stated this, several studies have already established an influence of 

fluctuations in physiological activity on visual perception. Nonetheless, most of these 

investigations have not tested whether the influence is content-specific or not.  It was 

precisely this component that came to light in the studies conducted by Li, Y. et al. (1) and 

Podvalny, E. et al. (10), serving as the motivation for the present project. Considering this, both 

studies centered their efforts on studying the role of pre-stimulus activity in shaping the way 

visual stimuli are decoded (1,10). 

 

• Endogenous activity modulates stimulus and circuit-specific neural tuning and 

predicts perceptual behavior 

Li, Y. et al. (1), in Endogenous activity modulates stimulus and circuit-specific neural 

tuning and predicts perceptual behavior, studied the hypothesis that pre-stimulus activity 

modulates decoding accuracy in response to visual stimuli. To do so, they used implanted EEG 

electrodes to acquire neural activity data from 30 patients with epilepsy. During data 

collecting, participants performed a visual task. From the iEEG (intracranial 

electroencephalography) data, the authors extracted stP (single-trial field potential), stBHA 

(single trial broadband high-frequency) and the phases at different frequencies of the pre-

stimulus activity. The stP represents the signal that was extracted from the data through a 

bandpass filter limited between 0.1 and 115 Hz. The stBHA activity was defined, on each trial, 

as the mean z-score of the power spectral density across 40–100 Hz. The power spectral 

density describes how the signal’s power is distributed in frequency components (11). The task 

consisted of viewing images from different categories (faces, bodies, words, houses, 

hammers, and shuffled images) and pressing a button according to the stimulus category. 

Two hundred forty-six selective electrodes were used for each of the task categories, which 

allowed examining the effects of endogenous activity for each category.  

The authors used a machine learning algorithm to discriminate the trial’s category. 

With this analysis, the aim was to study how classification accuracy was influenced by pre-

stimulus activity. To achieve this, they employed a regression logistic model to modulate 

classification boundaries based on the pre-stimulus activity. The algorithm used the pre-

stimulus information to adjust classification boundary and, consequently, to optimize 

classification on each trial. The results demonstrated that the incorporation of pre-stimulus 

activity into the model enhanced the classification accuracy across all visual categories, 

outperforming the classification accuracy using only post-stimulus activity. These results 

suggest that pre-stimulus neural activity modulates the stimulus representation (1).  

Having established the influence of pre-stimulus activity on visual processing, the 

authors proceeded to investigate the underlying mechanisms of this influence. From the 



 

3 
 

regression logistic model, the authors extracted a trial-specific measure of how much 

influence pre-stimulus activity has on neural decoding accuracy. This measure was called 

“modulation index” and was extracted for each electrode. By correlating the modulation index 

values across pairs of electrodes, the authors found a weak correlation between electrodes. 

Nevertheless, for electrodes that share the same category-selectivity this correlation was 

statistically significant, whereas for electrodes of different category-selectivity it was not 

statistically significant. Furthermore, comparing the results to pairs of electrodes, they also 

verified that the neural state modulates, in a specific manner, the post-stimulus activity, 

particularly within regions specialized for the processing of the visual stimulus under 

consideration (1).  

To test the hypothesis that the same aspect of the pre-stimulus activity that 

influences decoding accuracy correlates with behavioral performance, the authors studied 

the correlation between trial-specific modulation index and behavioral reaction time. The 

pre-stimulus modulation index and reaction time (RT) were found to be statistically 

correlated; however, this correlation was not verified between RT and the post-stimulus 

features. This finding suggests that pre-stimulus neural activity has a greater influence on 

reaction time than post-stimulus neural activity (1).  

Finally, the authors evaluate the contribution of different aspects of the pre-stimulus 

features. Their research revealed that when a stimulus is presented during a period of 

relatively low endogenous activity within regions selective to that type of stimulus, this could 

be an indication of reduced pre-stimulus noise. This low endogenous activity was evidenced 

by lower pre-stimulus averages and variances of stBHA and stP (1).  

  

• A dual role of prestimulus spontaneous neural activity in visual object 

recognition 

In A dual role of prestimulus spontaneous neural activity in visual object recognition, 

the authors also studied the influence of pre-stimulus neural state (12). In this paper, the 

authors hypothesized that the recognition of a given object could be influenced by two main 

models: the general model and the specific model. In the general model, the authors 

hypothesized that pre-stimulus brain states exerted an influence on the recognition of the 

stimulus regardless of the stimulus content. The specific model, in turn, suggested that pre-

stimulus brain states enhance the process of recognition in a category-specific manner. Data 

were acquired on 25 participants with magnetoencephalography while performing a visual 

task. Magnetoencephalography is a functional neuroimaging technique that records the 

magnetic fields created by electrical currents that occur naturally in the brain (12). The task 

consisted of presenting real or “scrambled” images, with the real images having a low contrast 
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to achieve a 50% subjective recognition rate. After stimulus onset, the participants had to 

report the category of the object and their recognition of the stimulus. It should be noted that 

they were asked to predict stimulus category even if they did not see any object. The object 

categories were faces, animals, houses, and man-made objects (10).  

To validate the suggested models, the authors used a logistic regression model, which 

received input vectors containing pre-stimulus activity, the categories of objects and 

subjective recognition reports. The pre-stimulus activity was defined as the average of the 

magnetoencephalography signal over a two-second interval before stimulus presentation in 

each trial. The authors started by studying the influence of pre-stimulus activity in visual 

recognition according to the general model. Their analyses revealed that the pre-stimulus 

neural state influences the recognition of an upcoming stimulus regardless of category 

(recognition of the presence of an object). In other words, the general model proposes the 

existence of a general neural mechanism that is not specific to any particular stimulus 

category but still exerts an influence on subsequent recognition. Remarkably, the researchers 

found that the subjective recognition rate increased 7.2%, when the participant reported 

recognizing an object in a previous trial. This observation suggests that the detection of a 

stimulus results in fluctuations in neural activity that facilitate the recognition of the 

subsequent stimulus (10).  

Furthermore, the authors conducted a specific model to ascertain how pre-stimulus 

activity enhances stimulus recognition in a specific way based on the category of the 

stimulus. Their findings suggest that a particular brain state that facilitates the recognition of 

a stimulus belonging to category “a” is different from the state that facilitates the recognition 

of a stimulus from category "b”. Curiously, they discovered that recognition of the stimulus 

becomes easier when the brain correctly predicts a specific stimulus category (and the 

expected category aligns with the actual category of the stimulus). Summarizing, they 

conclude that the neural activity carries predictive information concerning the content of the 

forthcoming recognized stimuli, consequently increasing the sensitivity of predictive 

mechanisms (10).  

Finally, the authors also related the two processes, the general and specific model, 

with the pupil size. This decision was motivated by the fact that pupil size serves as a measure 

of arousal fluctuations. They verified that, in a general way, pre-stimulus neural process 

correlates with pupil-linked arousal. However, this correlation is not specific to the category 

(10). 
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In conclusion, the authors of both studies verified the existence of pre-stimulus 

activity fluctuations that modulate stimulus recognition, with distinct fluctuations favoring 

the recognition of different categories. Using these discoveries as a motto, we decided, in 

addition to studying neural activity, to also incorporate body physiological activity. It is still 

unclear whether changes in body physiology directly affect sensory processing or whether 

they are simply a consequence of neural changes that in turn affect this processing.  

That said, the goal of this study was to investigate the interaction between body 

physiology and brain activity and their impact on visual processing. In this study, we used two 

approaches to investigate different aspects of this problem. First, we investigated how the 

state of expectation is reflected in changes in body and neural physiological signals, and we 

verified whether this pre-stimulus state modulates visual perception and how body signals 

contribute to this perception. Second, we investigated whether the pre-stimulus state 

modulates the cortical representation of different visual categories. 

 

 

1.2 Visual perception 
The individual interpretation and awareness of information obtained through our 

primary senses is referred to as perception. Perception refers to the processing of a specific 

form of energy that provides information about the environment, and it is influenced by prior 

knowledge, memory, and previous experiences (13). 

Visual perception is the ability to perceive the world around us through the light that 

reaches our eyes. We can describe visual perception as the process where a retinal image is 

transformed into a representation of the external world (14). It is the visual system that, 

through specialized cortical areas, is responsible for visual perception (13). 

 

1.2.1 Visual system 

The visual system encompasses the eye as a sensory organ, as well as the visual cortex 

and the optic nerve, parts of the central nervous system. The light energy enters the eye 

through the cornea, then passes through the pupil and lens, responsible for focusing the light 

onto the retina. The retina is composed of specialized cells responsible for visual 

transduction: the rods, which are sensitive to dim light, and cones, specialized in transducing 

bright light. The activation of photoreceptors occurs when light reflects on the sclera. The 

photons are then observed by the photoreceptors, causing their excitation. In turn, these cells 

connect to bipolar cells, which, when activated, induce action potentials in retinal ganglion 
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cells. The axons of these ganglion cells emerge from the retina to create the optic nerve, 

facilitating the transmission of electrical impulses from the eyes to the brain (15,16). 

The optic tract then diverges into two visual pathways: the geniculostriate pathway 

and the tectopulvinar pathway, both of which relay through the thalamus. The principal 

pathway, the geniculostriate pathway, is involved in processes such as visual consciousness 

and pattern recognition. This pathway connects the retina to the lateral geniculate nucleus, 

which connects to the visual cortex. On the other hand, the tectopulvinar pathway plays an 

important role in detecting and orienting visual attention. The tectopulvinar pathway relays 

from the eye to the superior colliculus in the midbrain tectum and, subsequently, reaches the 

visual areas in the temporal and parietal lobes through relays in the lateral posterior-pulvinar 

complex of the thalamus (15,16). 

 

 

Figure 1.1 – Visual pathway. Adapted from (17). 

 

1.2.1.1 Visual cortex 

The visual cortex, situated within the occipital lobe of the cerebral cortex, is the first 

cortical region responsible for processing visual information. The sensory information 

reaches the visual cortex after passing through the lateral geniculate nucleus of the thalamus. 

Notably, each hemisphere of the brain has its own visual cortex. The left hemisphere, for 

instance, receives information from the right visual field and vice versa (18,19). 

The visual cortex is responsible for receiving, dividing, and integrating visual data. 

Then, the processed information is delivered to other regions of the brain (18,19). 

Five distinct areas compose the visual cortex that can be divided into two large groups 

based on their function and structure: 
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• Primary visual cortex (V1) – area that receives the sensory input from the lateral 

geniculate nucleus.  

• Extrastriate cortex – composed of V2, V3, V4 and V5. 

It is believed that, throughout the transmission of visual information, each cortical 

area is increasingly specialized, and as a result, contains more specialized cells. These brain 

regions learn to react to specific objects, facilitating rapid recognition of previously seen 

objects (18).  

The V1 region of the visual cortex, which has six unique layers, is the region 

responsible for receiving and processing visual information. Each layer is characterized by a 

different cell type and function. Basic visual features, such as position and direction, are 

encoded in the responses of V1 neurons (18). This region, more properly the fourth layer, 

receives information that flows from the optic nerve to the lateral geniculate nucleus and 

then to this area (20). Neurons within the V1 area are organized into columns across the 

cortex’s thickness. Each column contains neurons with similar preferred orientation, 

suggesting that neurons in one column might react to visual stimuli with a specific type of 

orientation, while neurons in another column might react to a different orientation, for 

example (18,19). 

Subsequently, V2 receives feedforward signals from V1 and sends feedback signals to 

the V1 area. By integrating the input it receives, this V2 is able to code higher levels of visual 

complexity. Cells in this region are believed to respond to characteristics such as spatial 

frequency, object orientation and differences in color (18,19,21). The data, after being 

processed and integrated in this area, is sent to more anterior regions by two different 

pathways known as the dorsal and the ventral streams. Both pathways are specialized in 

processing different components of visual data (18,19,21). The ventral stream, often linked to 

object recognition, goes through the V3 and V4 areas before culminating in the Inferior 

Temporal Cortex. On the other hand, the dorsal stream focuses on spatial processing and 

visual-motor skills. It travels through V3 and V5 areas reaching the Posterior Parietal Cortex 

(18,19,21).  
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Figure 1.2 - Visual processing pathways (LGN - lateral geniculate nucleus; VFC - ventral frontal cortex; 
IP/SPL - intraparietal/ superior parietal lobule; FEF - frontal eye fields; TPJ - temporoparietal junction). 
Adapted from (22). 

 

1.2.2 Visual processing 

Visual processing is the ability of the brain to use and understand visual information 

derived from the environment. This highly specialized process enables the brain to recognize 

objects and patterns with no conscious effort. Numerous brain areas and higher-level 

processes work together to transform light energy into a meaningful image (18,23).  

Visual processing can be divided into three levels: low-level, mid-level and high-level 

vision. Low-level visual processing is thought to involve the representation and analysis of 

basic features, such as local color, luminance, or contrast (18,23). Then, we have the mid-level, 

which refers to the representation of the interactions between basic characteristics and 

properties, including surfaces (textures), higher-order image statistics, disparity, and 

intermediate form features (18,23). Finally, high-level visual processing refers to the cognitive 

mechanism responsible for integrating information from various sources into the visual 

information that is represented in the consciousness of each individual. It includes complex 

tasks like object processing, which necessitate the integration of diverse visual information 

(18,23). 
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1.2.3 Modulation of visual processing 

The perception that we have of a stimulus is, in addition to what was mentioned 

above, influenced by individual expectations and attention mechanisms. It is believed that 

visual perception results from the interaction between two types of processing: bottom-up 

and top-down processing. Bottom-up processing refers to the visual system’s ability to utilize 

the incoming visual data, through the automatic processing of basic sensory information 

(14,24). In turn, top-down processing refers to more complex cognitive functions influenced 

by our prior knowledge of the world, as well as our expectations and goals (14,24). As a result, 

top-down processing changes the sensitivity of neurons to specific stimuli, which affects the 

information transmitted by them. The information carried by the top-down signal facilitates 

the interpretation of the visual world, playing a role in the encoding and recall of learned 

information (14,24).  

Initially, top-down processing was thought to be a modulatory mechanism that 

reflected how much attention was given to different things. However, it is now believed that 

top-down processing interacts with bottom-up information to "optimize" processing by 

incorporating higher-level object representations, thereby exerting a significant impact on 

perception (25). 

 

 

1.3 Physiological signals and perception 
We are constantly exposed to multisensory stimuli coming from different sensory 

sources. These sources can be external, such as visual, auditory or tactile signals, or internal, 

also known as interoceptive signals, such as cardiac, respiratory and visceral inputs. The 

relationship between body and brain signals and visual perception is complex and 

bidirectional, with both mutually influencing and molding each other in diverse ways (26). 

It is hypothesized that our neural and physiological state at the moment of the 

stimulus onset influences our recognition and perception of it. Moreover, previous research 

has shown that changes in brain and body physiology are associated with changes in the 

speed and sensitivity of cognitive reactions to external stimuli. 
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1.3.1 Cardiac activity 

1.3.1.1 Cardiac activity and electrocardiography 

The cardiac cycle is responsible for maintaining blood flow throughout the body by 

rhythmically pumping blood. To do this, the heart muscle must contract and relax along with 

the opening and closing of the heart valves (27,28). The cycle is composed of two phases: the 

contraction phase, known as systole, and the relaxation phase, known as diastole (27,28). This 

cardiac activity results from a sequence of complex electrophysiological events, which can be 

measured in the electrocardiogram (ECG) (27,28).  

The ECG consists of measuring the electrical activity of the heart generated by the 

cardiac cycle. The heartbeats produce action potentials capable of being detected through 

electrodes (29). The ECG signal is composed of a distinctive waveform corresponding to 

different phases of the cardiac cycle (Figure 1.3). The P wave represents atrial electrical 

activity, that is, it represents the propagation of depolarization through the atria. 

Subsequently, the QRS complex appears, reflecting the electrical depolarization of the 

ventricles, that is, the moment of blood ejection into the arteries. Following the depolarization 

of the ventricular cells, their repolarization occurs, that is, the ventricular fibers begin to relax, 

which represents the T wave. It is important to note that there is no specific wave that 

represents the repolarization of the atrial cells, since this process occurs simultaneously with 

the ventricular depolarization and is not large enough to generate a wave on the 

electrocardiogram (27–29).  

 

 

Figure 1.3 – The electrocardiogram – example of ECG waves. Adapted from (30).  

 

Heart rate is the speed of the cardiac cycle, and it is measured by the number of 

contractions per minute. It can vary with the different physiological requirements of the 

organism. The regulation of heart rate can be done through two distinct mechanisms: 

intrinsic control or extrinsic control. In intrinsic control, the heart rate is regulated by the 

heart itself in response to changes in the volume of blood passing through the heart. The 

extrinsic control, in turn, is the result of the action of the autonomic nervous system (28). The 

Diastole 

Systole 
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sympathetic division of the autonomic nervous system can induce an increase in heart rate, 

as well as an increase in the strength of the heart’s contraction; on the contrary, the 

parasympathetic system leads to a decrease in cardiac activity (28,31).  

The neural mechanisms that control cardiac activity are already known. However, the 

effect of changes in cardiac activity, such as the deceleration observed during freezing states, 

on sensory processing remains unknown. 

 

1.3.1.2 Impact of cardiac activity on perception 

Several authors demonstrated the impact of presenting a stimulus at specific 

moments of the cardiac cycle on the way the stimulus is processed. In Insula Mediates Access 

to Awareness of Visual Stimuli Presented Synchronously to the Heartbeat (32), for example, the 

authors observed that when a visual stimulus is presented synchronously with the cardiac 

cycle, stimulus discrimination is less precise, and it requires more time for the individual to 

perceive the presentation of the stimulus.  

Researchers have found that a subject is more likely to miss the visual stimulus 

presentation when it is presented during the systolic phase than when it is presented during 

diastole (32). Various explanations have been proposed to understand this relationship. One 

notable finding is the relationship between the perception of a given stimulus and the activity 

of baroreceptors, which are pressure sensors. This activity is influenced by the cardiac cycle, 

with greater activation of baroreceptors during systole, for example. It has been widely 

believed that the activation of baroreceptors exerts a general inhibitory effect on the central 

nervous system, leading to a suppression of fundamental sensory and sensorimotor 

processes. Thus, during systole, there is an increase in baroreceptor pressure, resulting in the 

inhibition of the central nervous system (33). 

Additionally, according to Sandman et al. (2), lower heart rates may facilitate the 

perception of visual stimuli. They found that variations in heart rate are related to changes in 

visual evoked responses, more precisely at the level of cerebrovascular and electrocortical 

activity. The authors verified that cephalic pulse amplitudes were largest when heart rate was 

low and smallest when heart rate was high. These findings suggest a potential role of 

cardiovascular activity in the process of visual processing.  

In turn, more recent experiments did not observe any relationship between visual 

processing and the cardiac cycle (34). 
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1.3.2 Respiratory activity 

1.3.2.1 Respiration and its evaluation 

Respiration is the process responsible for delivering oxygen to tissues and removing 

carbon dioxide. For this, it is necessary the movement of air into and out of the lungs, 

promoting gas exchange between the inhaled air and the circulatory system. This process is 

called pulmonary ventilation (28). The pulmonary ventilation process consists of two distinct 

phases: inspiration, involving the intake of air, and expiration, that consists in the expulsion 

of air. These movements are controlled by the activity of the diaphragm, which contracts and 

expands in coordination with the intercostal muscles, allowing the entry and exit of air from 

the lungs (28,29).  

The respiratory rate refers to the complete respiratory cycles occurring within a 

defined timeframe, typically one minute. Adults typically breathe between 12 to 20 breaths 

per minute (28).  

Over the years, several methods have been developed to investigate pulmonary 

ventilation. To measure pulmonary ventilation, we can analyze the air that enters and leaves 

the lungs through spirometry (28,29,35). Another way to study pulmonary ventilation is 

through the displacement of the chest caused by the activity of the diaphragm (28,29,35). This 

non-invasive technique involves the placement of sensors on the chest or abdomen to detect 

changes in the position or displacement in these structures during the entry and exit of air 

from the lungs. In our project, we used a common and non-invasive technique known as 

respiratory inductance plethysmography. This technique consists of measuring, with 

recording bands around the thorax and abdomen, changes in circumference as the 

respiratory muscles contract and relax (28,29,35). These changes in circumference are then 

used to calculate changes in lung volume, allowing us to assess pulmonary ventilation 

without invasive procedures. 

 

1.3.2.2 Impact of respiration on perception 

Perl, O. et al. (4) demonstrated that the acquisition of visuospatial stimuli 

synchronized with inhalation optimizes stimulus processing. Inhalation was found to affect 

the activity of the primary olfactory cortex, which, in turn, impacts cognition that depends on 

limbic structures. It is believed that fluctuations in these limbic structures regulate cortical 

excitability and coordinate network interactions (36). The authors further concluded that 

individuals have the capacity to modulate their breathing to match the stimulus presentation, 

which improves the processing of sensory information (4). 
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1.3.3 Pupillary response 

1.3.3.1 Pupil and eye tracker 

Eyes are organs of the visual system capable of providing living organisms the ability 

to perceive and process visual information. The human eye has a spherical shape and 

comprises several essential structures, including the cornea, sclera, pupil, iris, lens, retina, 

and optic nerve (37). The pupil, located at the center of the iris, is responsible for allowing and 

regulating the light that reaches the eye. To control the influx of light, the iris adjusts the 

pupil’s diameter and, consequently, the pupil’s size (37). 

The size of the pupil can be modulated through changes in luminosity. To this end, 

light-sensitive retinal cells in the ocular system react to bright light by sending signals to the 

oculomotor nerve. Rod and cone photoreceptors, as well as melanopsin ganglion cells are 

examples of light-sensitive retinal cells (38). These signals are sent to the parasympathetic 

branch of the oculomotor nerve, which terminates on the circular iris sphincter muscle. It is 

the contraction of this muscle that will produce a reduction in pupil size. In turn, pupil dilation 

is moderated by the sympathetic nervous system, which controls the iris dilator muscle (38). 

This process is known as the pupillary light reflex. Furthermore, pupil dilation can also occur 

in response to stimuli that evoke interest or arousal (38). 

Pupil size variations under conditions of constant luminance can offer information 

about cognitive and emotional processes. We can measure the pupil size and reactivity 

through pupillometry, a non-invasive technique that measures the dynamic changes in pupil 

size over time (39). This technique can be performed using an infrared video camera to record 

pupil’s behavior. As light enters the eye, it reflects off the retina and exits the eye, returning to 

the camera (40). To record the pupil behavior, we can use an eye tracker (ET). 

Eye tracking is a technology that involves monitoring eye movements in relation to 

the head or the point of gaze (where someone is looking) (3,41). It is commonly used to study 

visual perception, cognitive processes and attention. There are several techniques to 

measure eye movements. The most popular method extracts the eye position from video 

images. Eye trackers are often affordable and provide enough temporal resolution and 

precision to detect even little fluctuations in pupil size (3,41). 

 

1.3.3.2 Impact of modulation in pupil-linked arousal on perception 

The pupil reacts to both light and internal mental states. For instance, excitement or 

bad experiences that modulate arousal state might cause pupil dilation. Other common 

arousal-related processes that influence pupil size include exploratory behavior during 

difficult tasks and decision-making processes (42).  
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According to published research, increasing task demands result in larger pupil size. 

So, changes in pupil size can reflect differences in cognitive effort, with greater pupil dilation 

indicating higher cognitive effort and attentional focus (3). Some studies suggest that, for 

example, in cognitive control tasks, pupil dilation can help to predict task performance, that 

is, participants who have higher pupil dilations perform better on these tasks than those who 

have smaller dilations (3,43). 

 

 

1.3.4 Blinking activity 

1.3.4.1 Blinking and eye tracker 

With an ET, we can also measure blinking. Blinking is a semi-autonomic rapid closure 

of the eyelids that helps to protect the eyes by cleaning and wetting them (44). When blinking 

occurs, the tear glands secrete salty fluids that coat the eyes, facilitating the removal of tiny 

dust particles and maintaining the exposed part of the eyeball wet. Under normal 

circumstances, the average person blinks between 12 and 15 times per minute. However, there 

are circumstances, such as being in a room filled with smoke, when we blink more frequently 

to keep our eyes wet and clear (44). Furthermore, recent studies propose that blinking allows 

us to shift our focus from one task to another, “resetting” our attention mechanism. 

Therefore, it is believed that blinking might be associated with cognitive processes (45). 

 

1.3.4.2 The relationship between blinking and sensory perception 

Eye blinking serves not only to lubricate the cornea, but also as a behavioral 

manifestation of central nervous system activity. Studies have demonstrated that blinking 

can affect task performance, particularly by interfering with attentional focus. Blinking 

causes individuals to momentarily close their eyes, interrupting the flow of visual 

information, and lose focus (46). In this way, while performing a task, it is observed a 

reduction in the frequency of blinking to avoid affecting visual detection and discrimination 

(47).  

It is believed that the blink rate may be an indicator of cognitive load and task 

engagement. Subjects tend to blink less in demanding cognitive tasks, which suggests a 

higher attentional focus and cognitive effort. On the other hand, the blinking rate tends to 

increase when the task demand is lower or when subjects experience mental fatigue. This 

modulation of blink rate suggests a decrease in cognitive effort and attentional focus (48,49).  
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1.3.5 Saccadic activity 

1.3.5.1 Saccades and eye tracker 

Saccades are responsible for rapidly shifting the point of fixation from one object to 

another, through rapid and jerky eye movements. They occur automatically whenever the 

eyes are open, even when fixed on an object. Despite being an automatic mechanism, 

saccades can be intentionally induced. The amplitude of these movements can range from 

slight motions made while reading to more significant movements made while gazing 

around a room (50).  

Saccades are rapid eye movements toward visual, auditory, or tactile stimuli.  Their 

purpose is to direct the focus onto objects of interest and bring them into clear view on the 

fovea, the central area of the retina providing the highest visual acuity (51). However, vision is 

impaired during saccades due to two reasons. Firstly, during large saccades, the image moves 

very quickly causing blurriness, which can impair vision. Secondly, at the initial part of each 

saccade, there is a vision obstruction, a blanking-off process called saccadic suppression. In 

between saccades the eyes remain still during fixations (52). As in the pupil section, to 

measure saccadic activity we also can use an eye tracker. 

 

1.3.5.2 The impact of saccades on perception 

Saccades are movements of the fovea between points of interest that help us to build 

a comprehensive perception of our surroundings. This enables us to efficiently and quickly 

locate crucial information (53). However, saccades, in certain tasks, can be a source of errors, 

impairing vision. For instance, during saccades there is a rapid motion of the image, which 

may result in blurriness and loss of crucial information. Therefore, if a stimulus is presented 

during a saccade, there is a possibility that the individual may miss significant information 

related to the stimulus (47,52).     

Studies conducted by Abeles D. et al. (47) have demonstrated that during attentive 

anticipation of sensory stimuli there is a reduction in saccade rates and that when saccades 

were performed during target presentation, accuracy rates were lower, even for auditory 

stimuli suggesting a general impact on sensory perception. 

 

 

 

 

 



 

16 
 

1.3.6 Neural activity 

1.3.6.1 Neural and electroencephalography 

The nervous system is the major system for control, regulation, and communication 

in the body. It is essential to all mental processes, such as memory, learning, and thinking 

(15,28,54). In conjunction with the endocrine system, the nervous system regulates and 

maintains homeostasis. Through millions of sensory receptors, this system gives us the 

ability to stay connected and responsive to both our internal and external environments 

(15,28,54). These receptors are sensitive to both internal and external changes, allowing the 

monitoring of a lot of information, such as temperature, light, pH levels or even carbon 

dioxide concentrations. The collection of all this information is called sensory input. The 

sensory input is converted into electrical signals that are transmitted to the brain. In the 

brain, different regions communicate and collaborate to perform complex cognitive tasks. 

This process is called integration. Finally, the nervous system sends impulses to different 

parts of the body to produce responses to the sensory input (15,28,54).  

In the nervous system, the information flows from one neuron to another via an 

electrical potential known as an action potential. This action potential propagates along the 

axon to the synapse. Within the synapse, a small gap between neurons, neurotransmitters are 

released into the synaptic cleft, where they bind to receptors on the receiving neuron. 

Consequently, we observe two types of potentials: the action potential that flows through the 

neuron and the postsynaptic potential generated at the synapse (15,28,54).  Action potentials 

have a very small extracellular amplitude, which makes their detection difficult.  To produce 

an EEG signal (voltage differences captured outside the head by electrodes placed in the 

scalp), it is necessary to have a large number of simultaneous action potentials. Unlike action 

potentials, which last only one millisecond, postsynaptic potentials last about ten 

milliseconds. This increase in duration allows for potential changes to accumulate and to be 

registered extracellularly from the scalp (55).  

EEG is a non-invasive technique used to measure the electrical activity of the brain. 

Through electrodes placed on the scalp, this technique measures the voltage fluctuations 

resulting from the postsynaptic potentials (56,57). There are two main types of EEG: 

monopolar and dipolar. In the monopolar EEG, the voltage difference is determined between 

an active electrode and a reference electrode. The dipolar EEG, on the other hand, 

corresponds to the voltage difference between two electrodes, both located on the scalp (58).  

The electrodes are placed in standard positions, according to the International 

Federation of Clinical Neurophysiology (Figure 1.4). For this, specific anatomical points of the 

skull that are stable are used, such as the “nasion” (placed between the forehead and the nose), 

the inion (located at the back of the skull) and the preauricular point (58). 
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Figure 1.4 – Electrodes positions in the International Federation of Clinical Neurophysiology system. 
Adapted from (59). 

 

The EEG wave can have varied forms, and can be classified according to its frequency, 

amplitude, shape, or even the position of the electrodes. In terms of frequency, they can be 

classified as: 

• Delta waves (0.1 – 4 Hz) - predominantly associated with deep sleep, also called 

slow-wave sleep. During this stage of sleep, these become the dominant brain 

wave pattern (57). 

• Theta waves (4 – 8 Hz) – characterized by their relationship with subconscious 

activity. These brain waves are commonly associated with a state of deep 

relaxation, drowsiness, and meditative states (57). 

• Alpha waves (8-13 Hz) - typically associated with a state of relaxed wakefulness 

and are often observed in individuals who are engaged in activities that do not 

require intense mental effort (57). 

• Beta waves (13-30Hz) - associated with various behaviors and actions. This type 

of waves occurs during states of consciousness such as talking, solving problems, 

judging, making decisions, among others (57). 

• Gamma waves (30 – 100Hz) – associated to processes related to perception and 

consciousness. They tend to manifest during a state of hyper-alertness, 

facilitating the integration of sensory inputs (57). 

 

1.3.6.2 The impact of neural activity on perception 

Multiple authors demonstrated that the same stimuli may provoke different 

perceptions. They postulate that this perceptual variability is influenced by fluctuations in 
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neural activity (5,6). For example, alpha oscillations are thought to play an important role in 

sensory processing and perception by modulating neural excitability through functional 

inhibitory mechanisms (60,61).  

In (61), the authors demonstrated how alpha oscillations affect the process of visual 

target detection. It was shown this influence was different from the influence exerted by 

endogenous factors, such as attention. The authors found a significant difference in the mean 

alpha power between trials where the target was not successfully identified and trials where 

the target was accurately detected.  

These findings are consistent with those presented in (60). Using a visual detection 

task, the authors verified that reduced pre-stimulus alpha power, in early visual areas, was 

associated with increased perceptual sensitivity and enhanced discernible information from 

neural activity patterns. Moreover, it was found that the phase of oscillatory alpha activity 

immediately before stimulus presentation had an impact on trials’ performance.  

Summarizing, these findings suggest that fluctuations in endogenous neuronal 

activity affect sensory processing.  

 

 

1.4 Alertness state  
Attention can be described as the ability to select behaviorally relevant stimuli, 

responses, memories, or thoughts from among the many others that are irrelevant. 

According to Posner's paradigm, the attention system involves three major roles: orienting to 

sensory stimuli, which directs attention towards specific locations; executive function, which 

pertains top-down conflict detection and the suppression of distracting information; and 

maintaining a state of alertness (62).  

To study the state of alertness, it is necessary to consider three distinct concepts: 

arousal, vigilance, and alertness. Alertness refers to a state of wakefulness and 

responsiveness to stimuli, whereas vigilance denotes the ability to maintain attention and 

sustain a high level of cognitive performance (63). Arousal, on the other hand, reflects the 

degree of cerebral cortex activation and can be associated with both alertness and vigilance 

(63).  

The alerting network plays a crucial role in both the maintenance and preparation of 

attention, allowing individuals to focus on specific and predefined stimuli. So, in alertness, 

individuals are in a state of preparedness that enables them to react to stimuli. The level of 
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alertness significantly impacts our daily activities, such as learning, solving problems and 

remembering information (64). 

Alertness can be classified into tonic and phasic alertness. Tonic alertness, mediated 

by the right frontal-parietal-thalamic network, involves the intrinsic regulation of arousal 

without external stimuli, i.e., it refers to the maintenance of an alert state. Research on 

circadian rhythms has demonstrated fluctuations in the tonic alertness throughout the day. 

For example, during daytime, there is an increase in the levels of tonic alertness, and then 

they fall during the evening and early morning hours (62,64,65). On the other hand, phasic 

alertness, which is mediated by the thalamic-mesencephalic regions (63), is characterized by 

the ability to temporarily enhance response readiness after an external stimulus, through the 

activation of the cognitive system (65).  

In sensorimotor tasks, the existence of a warning signal before the target stimulus 

causes an increase in levels of alertness, increasing preparedness and improving the 

perceptual decision making (66). Additionally, some researchers have found that this induced 

state of alertness causes a reduction in reaction time (65).   

 

• Contingent negative variation 

The phasic changes in alertness are characterized by a negative shift in the EEG 

activity, which reflects cognitive processes related to the anticipation of an upcoming event 

(67,68). This slow negative shift, known as Contingent Negative Variation (CNV), was first 

identified by Walter et al. (67) and it appears to arise in the anterior cingulate cortex and 

adjacent structures (69). 

These Event-Related Potentials (ERPs) occur between two paired stimuli: S1 and S2, 

which represent the initial and subsequent stimuli, respectively. The initial stimulus serves 

as a warning or preparatory cue, while the subsequent stimulus requires the subject to 

perform a response. In this way, it is believed that the CNV exhibits at least two associative 

functions: attentive orienting to the warning cue, induced by S1, and anticipatory attention 

during executive control, which is caused by S2 (68). These functions align with the two main 

psychophysiological components of the CNV waveform: the early CNV, which is thought to 

reflect the orienting response, and the late CNV, believed to indicate an anticipatory activity 

for the upcoming stimulus and preparation for motor response (Figure 1.5) (69).   
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Figure 1.5 - Event-Related Potential. (A) Grand average ERP locked to cue stimuli at the CZ electrode. (B) 
Topographic scalp distribution of early CNV. (C) Topographic scalp distribution of late CNV. Adapted from  
(70). 

 

It is believed that the alertness network involves fronto-parietal regions, mostly in the 

right hemisphere, and also some brainstem areas such as the locus coeruleus (LC). Studies 

using brain lesions have demonstrated that lesions in the right hemisphere had a greater 

impact on vigilance task performance than lesions in the left hemisphere. These findings 

suggest that the mechanisms necessary for maintaining the alert state seem to be present in 

the right hemisphere (62,65,71,72). 

 

1.4.1 Anatomical pathways 

It is believed that there are two principal regions that are involved in alertness: the 

anterior cingulate cortex and the dorsolateral prefrontal cortex. The dorsolateral prefrontal 

cortex is involved in detecting salient events, preparing and inhibiting motor responses, 

shifting and sustaining attentional focus, and maintaining alertness. The anterior cingulate 

cortex region, in turn, appears to mediate executive and attentional activities, conflict 

monitoring, and the capacity to activate, facilitate, and maintain reactions. According to a few 

neuroimaging studies, the noradrenergic system regulates these regions.  The noradrenergic 

system originates in the LC structure and projects, principally, to frontal areas. Posner and 

Petersen (62) proposed that the parietal cortex, beyond the frontal areas, plays a crucial role 

in alertness (62,65,71,72). 
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In a PET investigation concerning an intrinsic alertness task, Sturm, W. et al. (71) 

reported significant activation in the right frontal cortices (particularly, the anterior cingulate 

cortex and the dorsolateral prefrontal cortex), as well as the inferior parietal cortex, thalamus, 

and brainstem (65,71). There is a connection between the dorsolateral prefrontal cortex and 

the inferior parietal cortex that might be completed by two other indirect pathways (via the 

anterior cingulate cortex and via the thalamus). Understanding these anatomical pathways is 

crucial for the development of a comprehensive network model of alertness and for 

understanding how different brain regions interact during alertness tasks (65,71).  

 

1.4.2 Neurotransmitter systems involved in the modulation of 
alertness 

All systems involved in the state of alertness, namely the neurotransmitter systems, 

exhibit extensive interconnections with direct projections between numerous brain areas 

(63). Different behavioral states are produced by variations in this network’s activity. During 

drowsiness, slow-wave sleep, and surgical anesthesia, cortical networks exhibit a state called 

"synchronized" or “inactivated”, characterized by slow, large-amplitude oscillations that 

demonstrate substantial synchronization between neuronal populations (73). On the 

contrary, during arousal, alertness, and paradoxical sleep, we have the "desynchronized" or 

"activated" state, where cortical networks are characterized by the absence of synchronous 

slow oscillations (73). 

Cortical activation is induced due to the cortical action of neuromodulators, such as 

norepinephrine (NE) and acetylcholine (Ach) (73). 

 

1.4.2.1 The role of the Locus Coeruleus-norepinephrine system in the 

modulation of alertness 

There is a belief that the noradrenergic system originating from the LC structure may 

have a significant role in the maintenance of alertness. This structure, a modulatory nucleus 

located in the brainstem, has projections to the entire brain, and it is responsible for 

controlling the majority of NE release. NE represents the principal chemical component 

involved in the regulation of attention (62,74). 

The LC plays a critical role in regulating arousal and attention. It has been observed 

that activation of the LC system, such as in response to a stimulus, for example, causes an 



 

22 
 

increase in NE levels in the brain, which results in a general increase in cortical activity and, 

consequently, enhanced alertness (75). In this way, it can be deduced that higher levels of NE 

contribute to higher levels of alertness.  

The LC-NE system operates in two modes: tonic (baseline) and phasic (responsive to 

stimuli). When the tonic activity of the LC increases, the individual experiences enhanced 

attention and alertness, leading to improved task performance (63,75). The enhancement of 

sensory processing is believed to emerge from two mechanisms: an increase in the signal-to-

noise ratio in neurons and a change in the receptor field properties, which decreases the 

threshold for response. However, if the increase in LC activity exceeds a particular threshold, 

individuals may become hyperactive and enter in a more easily distractible state (63,75). 

Allied to this, increased levels of NE can also trigger activation of the autonomic 

nervous system, through direct projections to the spinal cord and projections to autonomic 

nuclei. In general, the LC increases sympathetic activity via the activation of α1-adrenoceptors 

on preganglionic sympathetic neurons (63,75). In this way, the LC plays a major role in 

regulating the sympathetic nervous system and the physiological responses associated with 

this system, such as a reduction in salivary glands activity, an increase in heart rate and blood 

pressure, and pupil dilation (63,75). It is important to emphasize that the regulation of the 

sympathetic nervous system is a complex process, involving the interaction of different brain 

regions (63,75). 

 

1.4.2.2 The role of the Cholinergic systems in the regulation of arousal and 

attention 

Acetylcholine (ACh) is a neurotransmitter that plays a crucial role in the cholinergic 

system. Previous investigations employing lesion and microdialysis techniques supported 

the hypothesis that cortical cholinergic projections are imperative for performance in tasks 

involving attentional functions (63,76). Lesions in the basal forebrain (consist of several 

structures responsible to produce ACh) impair performance in tasks in which a state of 

attention is required, which suggest that the cholinergic system has an important role in the 

modulation of cognitive function, namely attention (63,76).  

As in the previous section, we can also divide the cholinergic activity in tonic and 

phasic activity. The first one refers to the continuous release of ACh, which helps to control 

the overall brain arousal and attention levels. However, in response to a stimulus or event, 

there is a rapid increase in ACh release, leading to phasic cholinergic activity (77). In this way, 
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we can induce phasic cholinergic activity with a warning cue, which results in a rapid release 

of ACh. 

In the central nervous system, the ACh plays an important role in arousal, memory 

and other functions. However, the activation of the cholinergic system also produces 

peripherical alterations. In the periphery, the ACh can stimulate the parasympathetic 

nervous system since this system uses acetylcholine as its primary neurotransmitter (77,78). 

This system is responsible for promoting the “rest and digest” state. 

 

1.4.2.3 Tasked-evoked pupil responses 

In the state of alertness, the cholinergic and the noradrenergic systems, among 

others, interact, producing changes in both brain and body states to prepare for the upcoming 

stimulus. One example of this interaction is the pupillary response. Several studies have been 

developed to understand the mechanisms of task-evoked pupil responses (64,79). It is 

believed that the pupillary response results from the microstimulation of several structures, 

namely the LC, which triggers the activation of the noradrenergic system. Furthermore, it is 

postulated that the cholinergic system is also linked to the pupil's response, likely due to its 

close interconnection with the LC (80). 

The activation of these two systems was also verified in (81). In an experiment with 

mice, the authors found high cholinergic and noradrenergic activation during pupil dilation. 

Additionally, they observed that, at the peak of dilation, there was a greater activation of 

noradrenergic activity. However, this noradrenergic activation rapidly decreased, whereas 

cholinergic activity persisted. That said, the authors found that that cholinergic activity has a 

more pronounced effect on the pupil diameter, allowing the pupil to remain dilated for longer. 

In this context, the noradrenergic system is presumed to assume a more pivotal role in the 

dilation process (correlating with pupil derivative), while the cholinergic system is 

responsible for sustaining the pupil dilated, that is, maintaining the pupil size.  

 

1.4.3 Freezing state during anticipatory attention 

As previously mentioned, when a warning cue is presented, the noradrenergic and 

cholinergic systems are induced. These two systems interact and work together to modulate 

alertness, ensuring that the individual is adequately prepared to the upcoming stimulus or 

threat (8). The activation of the noradrenergic and cholinergic systems stimulates both the 

sympathetic and parasympathetic branches of the autonomic nervous system. Nonetheless, 

this process is influenced by several factors, including the nature of the stimulus, its intensity, 
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the context, among other factors, that can affect how much each system is stimulated. For 

example, there are certain stimuli that produce a heightened response from the 

noradrenergic system, thereby producing a more pronounced activation of the sympathetic 

nervous system (8). In these cases, we have a state known as “fight and flight”, characterized 

by a significant increase in energy so that the body can react to the upcoming stimulus. On 

the other hand, there are certain stimuli, with different features, that cause an accentuated 

activation of the cholinergic system, which results in a higher activation of the 

parasympathetic nervous system. The predominance of the parasympathetic nervous 

system results in a state called “freezing state”, which is characterized by a behavioral 

inhibition (8).     

During the freezing response, both the sympathetic and the parasympathetic 

nervous systems are activated. The physiological characteristics of freezing state encompass 

sympathetic features, induced by an increase in the neurotransmitter NE, and 

parasympathetic features, linked to the increase in the neurotransmitter ACh (8). The 

dominance of either system at a given moment determines the specific physiological profile 

observed. So, greater activation of the sympathetic system produces an increase in arousal 

and physiological changes, such as an increase in heart rate and blood pressure, inhibition of 

digestive function, enhanced respiration, among others. On the contrary, higher 

parasympathetic activation causes a deceleration in heart rate and inhibits fight-or-flight 

responses, which contributes to the overall state of freezing observed during threatening 

situations (8). 

In summary, when a warning signal is presented, the state of expectation modulates 

cortical activity, stimulates the sympathetic system, which causes pupil dilation and changes 

in skin conductance, and activates the parasympathetic system, which results in a cardiac 

deceleration (82). Additionally, in this state, it is verified motor inhibition, which improves 

sensory processing and decision-making processes and facilitates threat assessment (7–9). 
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1.5 Classification algorithms 
Machine learning has been increasingly used in neuroscience, enabling numerous 

advances in the analysis of neural data and, consequently, enhancing comprehension of how 

the brain works.  

Machine learning uses mathematical algorithms to perform a given task. The 

algorithms receive a set of data that will be used as training to make estimates without being 

specifically programmed for this purpose (83–85). Thus, the main purpose of machine 

learning is to learn from data.  

There are two main types of machine learning: supervised learning and unsupervised 

learning. In supervised learning, the algorithm uses labeled data in the training process (i.e., 

each example is associated to its label). Here, the goal of the algorithm is to learn a function 

that maps features vectors (input data) and corresponding labels (output categories). On the 

contrary, in unsupervised learning, the algorithm uses unlabeled data (i.e., only the data itself 

and not the corresponding labels), focusing on understanding the hidden patterns and 

structure of the data (83,85).  

 

1.5.1 Support vector machine 

A support vector machine (SVM) is a supervised learning approach for classification 

and regression analysis. As for others learning systems, the goal of SVM is to learn from a 

training data set and attempt to generalize and make correct predictions on unseen data (84–

86).  

For this, the algorithm identifies a hyperplane in an N-dimensional space (where N is 

the number of features) that effectively separates the data points into distinct classes based 

on examples in the training dataset. Thus, the optimal hyperplane is the one that has the 

maximum margin, i.e., is the one which is maximally distant from the labeled points of both 

classes located on either side. The maximum margin is the maximum distance between two 

points of different classes. The points lying closest to the decision surface are the ones with 

most influence on the position of the hyperplane and are called support vectors. The 

hyperplane is defined as wT.x+b=0, where b is the bias, x are the points located on the 

hyperplane and normal to it and w is a vector with the weights (84–86).  

In this type of algorithm, it is possible to modulate the decision boundary so that it 

allows some classification errors to occur. In this case, we can define it as soft margin SVM. 

On the other hand, hard margin SVM looks for a hyperplane that accurately separates the data 

into two classes with no misclassification. To implement hard or soft margins, it is necessary 

to define a penalty parameter C, which controls the flexibility of the model, by defining the 
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classification errors that the classifier wants to avoid. In this way, this parameter allows the 

generalization of the data (84–86). For example, considering C=0 means that we do not want 

any misclassification and therefore we are facing the hard margin SVM. To maximize the 

margin, the optimization problem is the following: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
 𝒘𝑇𝒘 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

 

𝒔. 𝒕.  𝑦𝑖(𝒘𝑇𝒙𝒊 + 𝑏) ≥ 1 − 𝜉𝑖  ∀𝑖 = 1, … , 𝑛, 𝜉𝑖 ≥ 0  

Equation 1 – Optimization problem (86). 

- 𝐶 is the penalty parameter. 

- 𝜉𝑖  is the slack variable that measures, in each point, the violation of the margin 

restriction. 

 

The SVM algorithm performs both linear and non-linear classification. The last type 

of classification is done using the kernel trick, a mathematical function used to map the 

inputs into high-dimensional resource spaces (85–87). That is, a kernel function projects data 

from a low dimensional space to a higher dimension space in order to make the problems 

linearly separable. To capture complex patterns and relationships in the data, the kernel trick 

computes the inner products between pairs of data points. There are several types of kernel 

functions commonly used, namely: linear kernel, polynomial kernel, radial basis function 

kernel (RBF) (85–87).  

The RBF kernel is usually preferred over other kernels, because it can capture 

complex relationships between the input features and is more robust to overfitting. The RBF 

function determines the degree of similarity or proximity between two points X1 and X2 and 

can be defined by the following expression: (85–87) 

 

𝐾 (𝑋1, 𝑋2) = 𝑒𝑥𝑝(− 
‖𝑋1 − 𝑋2‖2

2𝜎2
) 

Equation 2 – RBF kernel. 

 

- 𝜎 is the kernel parameter and is the width of the kernel. 

- ‖𝑋1 − 𝑋2‖ is the Euclidean distance between the two points. 
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The sigma parameter (𝜎) must be optimized, since this parameter controls the level 

of non-linearity introduced in the model. Beyond the sigma parameter, the penalty 

parameter C must also be optimized since this value introduces a penalty for misclassified 

data. There are several ways to optimize these parameters such as grid search (85–87), 

random search, and Bayesian optimization (88). All these optimization strategies attempt to 

minimize a loss (error) function computed on a separated set of data (named “validation” set) 

by varying the parameters. Matlab offers a dedicated functionality to perform such 

optimization, namely ‘OptimizedHyperparamenter’ (89). The ‘OptimizedHyperparamenter’ 

method uses Bayesian optimization, to find the optimal hyperparameters. Bayesian 

Optimization, based on Bayes' Theorem, is a technique used in global optimization problems, 

with the aim of achieving both efficiency and effectiveness (90,91).  To do this, it is necessary 

to construct a probabilistic model to represent the objective function. This model, known as 

the surrogate function, is, subsequently, explored in order to select the candidate samples for 

evaluation on the actual objective function. The search for the optimum is done by the 

acquisition function, which is used to choose the point to be explored in the next iteration 

(90,91). 

 

1.5.2 Deep learning 

Deep learning is a branch of machine learning that exploits deep neural networks to 

solve the objective task (supervised or unsupervised), e.g., image recognition (92).  Deep 

neural networks are composed by many layers of artificial neurons. Each of these layers learn 

simple non-linear functions during training. Thus, by composing these functions, in general 

a complex and non-linear function that maps the input to the output is learned. Depending 

on the connections established across neurons, different networks can be realized, e.g., 

recurrent neural networks, feed-forward and fully-connected neural networks, and feed-

forward and convolutional neural networks (CNNs) (92).   

 

1.5.2.1 Artificial neural networks 

The structure of CNNs was inspired by the neurons in human and animal brains and 

is similar to a traditional neural network. To understand CNN, let us start by looking to the 

simplest neural network. This type of network has multiple layers of interconnected units, the 

neurons (83,93). We can divide the multiple layers into an input layer, one or more hidden 

layers and an output layer.  Considering the input signals, a neuron can be activated, 

producing a new signal that is transmitted to another neuron. Each node, often referred to as 

an artificial neuron, is interconnected with other nodes and has a corresponding weight and 

threshold (83,93).  
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• Weights – the weights play a crucial role in determining the importance of a 

specific input. A higher weight denotes a greater influence of the corresponding 

input on the network’s output, compared to other inputs.  Each input’s 

contribution is determined by multiplying its value by its respective weight. At 

the beginning, the network does not know the importance of the different inputs, 

so the weights are randomly assigned. Then, these weights go through an 

iterative adjustment process, allowing the network to capture the underlying 

patterns and relationships in the data, by assigning appropriate importance to 

different inputs (83,93). 

 

• Threshold – A given node is activated if the output exceeds a defined threshold 

value. This node, when activated, sends the data to the next layer of the network. 

Conversely, if the output is below the mentioned threshold, no data is passed to 

the subsequent layer (83,93).     

 

The activation of neurons in artificial neural networks can be summarized as follows: 

each neuron receives a weighted sum of its inputs. Following this, an activation function is 

applied to compute the output of that neuron. If the output exceeds a predefined threshold 

value, the neuron is activated, thereby passing information to the next neuron (83,93).  

• Activation function – We can define activation function as a “rule” to determine 

how much the neuron will be activated. There are various types of activation 

functions, including: (83,93) 

o Linear function – the activation is proportional to the input. In fact, no 

activation function is applied to the sum of the inputs, which results in an 

output equal to this sum (Figure 1.6 – a)). (83,93) 

o Sigmoid function – receives any real value as input and produces an output 

in the range of 0 to 1. If the input is higher, the output tends to get closer to 1. 

On the contrary, a smaller input results in an output closer to zero. It is 

frequently applied to binary classification problems at the output layer 

(Figure 1.6 – b)) (83,93). A generalization of the sigmoid activation function 

for multi-class classification problems is the softmax function. The latter 

maps the input neurons’ scores (e.g., N scores, corresponding to N classes) 

to a discrete probability distribution (over N classes). 

o Hyperbolic tangent – Similar to the previous function, the output is within a 

defined range, but in this case the range is -1 to 1. It is frequently employed in 

hidden layers and may record both high and low activation levels (Figure 1.6 

- c)). (83,93) 
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Figure 1.6 – Activation functions. Adapted from (93). 

 

 

1.5.2.2 Convolutional neural networks 

A Convolutional neural network is a class of deep learning networks, most commonly 

applied to tasks such as object recognition, image classification and text analysis. The 

architecture of the CNN is inspired by the organization of the visual cortex in animals, where 

groups of cells process different regions of the input image. To fill the complete visual field, 

these smaller subregions are tiled together. In this way, the CNN is mostly employed to extract 

features to a dataset similar to a grid-matrix (83,93). 

The input data from the input layer is transformed by CNNs across all connected 

layers into a set of class scores provided by the output layer. Figure 1.7 shows a high-level view 

of a typical CNN organization.  

 

 

 

Figure 1.7 – High-level CNN architecture. Adapted from (93). 
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In Figure 1.7 we can observe three principal groups of layers. The input layer is where 

the input data is loaded and stored, which are then used by the second group to process the 

data. The features-extraction layers are essential for identifying and extracting relevant 

characteristics from the input data. Lastly, we have the classification layers that are 

responsible for taking the higher-order features extracted by preceding layers and producing 

class probabilities or scores. The classification layers typically include one or more fully 

connected layers (83,93).  

 

Feature-extraction layers – this group of layers can include various types of layers, such as 

convolutional layers, ReLU layer, Pooling Layer, among others.  

Convolutional layers – these layers are responsible for applying filters to the input data to 

extract meaningful features. These layers consist of a set of learnable filters, often referred to 

as kernels, that are convolved with the input data (83,93). The convolution process consists of 

multiplying a kernel with a specific region within the input image. In this way, each value is 

multiplied by the corresponding weight. The output of this layer is a matrix that stores the 

sum of all multiplications called feature map. A convolutional layer is composed of multiple 

filters, which are applied consecutively. This sequential application implies that once an input 

is fully processed by a particular filter, the network applies the subsequent filter. There are 

several parameters that characterize these layers, and thus, that alter the output of the 

convolution: (83,93) 

o Filter size – represents the dimensions of the kernel array. 

o Output depth – refers to the number of distinct filters or feature maps that a 

convolutional layer produces.  

o Stride – determines how far the filter will move each time its function is applied.   

o Zero-padding – allows us to obtain the desired dimension in the activation map, 

by adjusting the input size. This process consists of symmetrically adding zeros 

to the input matrix. 
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Figure 1.8 – The convolution operation. Adapted from (93). 

 

Pooling layer – is typically added after convolutional layers, with the aim of downsampling the 

image and, consequently, reducing computation. The pooling layer achieves this by reducing 

the dimensions of the hidden layer by merging the outputs of neuron clusters from the 

previous layer into a single neuron within the subsequent layer. There are mainly two types 

of pooling operations: (83,93) 

o Max pooling – in this type of pooling it is extracted the maximum value within 

each filter action region (Figure 1.9). 

o Average pooling – this layer, in turn, applies the average value in the region 

caught in the filter. 

 

Figure 1.9 – Max pooling layer example. Adapted from (94). 

 

ReLU Layer – in this layer it is applied an activation function, the ReLU function, defined by the 

expression 𝑓(𝑥) = max(0, 𝑥), to the input 𝑥. If the input value is less than 0, this function 

returns 0, otherwise, it returns the input value. A ReLU layer introduces non-linearity to the 

algorithm, solving the problem related to the gradient vanishing during the training process 

(83,93).  
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Classification layers - The classification layers typically include one or more fully connected 

layers. This layer is used to compute the probabilities of the output classes for the input data. 

It takes the output of convolution/pooling operation, flattens the data and predicts the most 

appropriate label for the image. The output of this layer is created by multiplying the inputs 

with the associated weights, summing them, and then applying an activation function to 

produce the output. The results are propagated to the next fully connected layer, with the last 

layer containing a neuron for each class label. This last layer (properly activated via the 

softmax function) is responsible for producing the output probability distribution that 

represents the likelihood of each class label (83,93). 

 

1.5.2.3 CNN’s algorithm  

 Throughout the years, among the CNNs proposed for classifying EEG signals (95), 

EEGNet (96) represents the most used and successful CNN algorithm. This algorithm, 

developed by Lawhern V. et al. (96), is a compact CNN designed for classification and 

interpretation of brain-computer interfaces based on EEG signals. The architecture of 

EEGNet comprises two different blocks, each with its own purpose. The first block is 

responsible for learning how to filter in time and in space the input EEG. The second block, is 

responsible for learning how to resume in time the information (deep temporal feature 

learning), see Figure 1.10 (96). 

In block one, two convolutional steps are sequentially performed. Initially, 2D 

convolutional filters are applied to generate feature maps that capture the EEG signal at 

different band-pass frequencies. Then, to learn a spatial filter, a depthwise convolution is used. 

The use of depthwise convolution is important since it reduces the trainable parameters. This 

operation allows learning a set of spatial filters for each temporal filter, facilitating the 

efficient extraction of the frequency-specific spatial filters. After that, the exponential linear 

unit nonlinearity is applied. To combat overfitting, given the limited sample sizes, dropout 

technique is employed. Finally, in block one, a pooling layer is applied to reduce the sampling 

rate of the signal (96). 

In block two, the algorithm uses a separable convolution, to reduce the number of 

trainable parameters, and an average layer to reduce the dimension. Lastly, the features pass 

to a classification block, more precisely, a softmax layer. This layer is responsible for 

converting raw scores into probability distributions. These raw scores are normalized into a 

reliable probability distribution using the softmax method. Then, the predicted class is the 

one for which the softmax has produced the highest probability (96). 
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Figure 1.10 - Overall visualization of the EEGNet architecture. Adapted from (96). 

 

1.5.2.4 CNN’s algorithm optimization 

Besides the parameters that characterize convolutional and fully-connected layers, 

the performance of CNN models also depends on several training options and methods. Here 

are described some typical training options: 

o Solver – is responsible for model optimization, through generating parameter 

updates that aim to enhance the loss function. There are several solvers that can 

be used, for example, ‘sgdm’ that uses the stochastic gradient descent with 

momentum optimizer, or the Adam optimizer – Adaptive Moment Estimation 

optimizer (93,97). 

 

o Learning rate – determine the step size at each operation during the 

optimization process in order to minimize the error of the algorithm’s guesses 

(93,97) 

 

o Regularization – is responsible for enhancing CNN’s ability to generalize while 

preventing overfitting. There are several regularization methods: L1 and L2 

regularization, dropout probability, among others. Coefficients L1 and L2 are used 

to prevent overfitting by making certain weights smaller. In turn, the dropout 

technique consists in randomly dropping out some neurons (93,97). 

 

o Mini-batch – refers to a predetermined number of training examples. It is the 

number of examples used to estimate the error gradient before the update of the 

model weights (93,97). 

 



 

34 
 

o Epochs – represent the number of times that the training algorithm will iterate 

over the entire training set, i.e., one epoch is when the neural network processes 

the whole dataset only once (93,97). 

 

o Shuffle – consists of data shuffling to help the flow of information. Here we also 

have a few options: ‘once’ – shuffle the data once before training; ‘never’ – do not 

shuffle the data; ‘every-epoch’ – consist in shuffling the data before each training 

epoch. (93,97) 

 

o Validation frequency – Frequency at which a model is validated. (93,97)    

 

 

1.5.3 Performance metrics 

Performance metrics are used to measure effectiveness and quality of our 

classification model. Moreover, they provide insights about the capability of the model to 

predict what we want. To study the performance of the classification models there are a vast 

number of performance metrics that can be used, such as accuracy and area under Receiver 

Operating Characteristic (ROC) curve (AUC). The first measure (accuracy) tells us how many 

times the model has correctly predicted an item, i.e., consists in the division of the number of 

correct answers and the total of answers (85,98,99).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 3 – Accuracy expression. 

 

- TP: Examples that have been correctly classified as positive. 

- TN: Examples that have been correctly classified as negative. 

- FP: Examples that have been incorrectly classified as positive and are therefore 

actually negative. 

- FN: Examples that have been incorrectly classified as negative and are therefore 

actually positive. 

 

Models often use data that is not balanced, i.e., the number of instances in different 

classes is significantly different. In imbalanced datasets, a model can achieve high accuracy 

by simply predicting the majority class for all instances, ignoring the minority class. For 
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instance, if 95% of instances belong to class A and 5% belong to class B, a model that predicts 

all instances as class A will achieve 95% accuracy. However, this does not reflect how well the 

model can predict the minority class. This problem is addressed by balanced accuracy by 

considering the performance in each class (100). 

Balanced accuracy is based on two metrics: sensitivity and specificity. Sensitivity is 

the ability of the model to correctly identify positive classes. On the contrary, the specificity is 

the model’s ability to correctly identify negative cases (100).  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 4 – Sensitivity expression. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Equation 5 – Specificity expression. 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%)  =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 

Equation 6 – Balanced accuracy expression. 

 

The AUC is a widely used performance metric for binary classification models. It 

evaluates the model's ability to distinguish between positive and negative instances at 

various classification thresholds. The ROC curve is a graphical representation of the true 

positive rate (sensitivity) against the false positive rate (1 – specificity). Each data point on the 

ROC curve corresponds to a unique pair of sensitivity and specificity values, which is 

associated with a particular decision threshold (85,98,99). By calculating the area under the 

ROC curve, the AUC summarizes the model's overall predictive performance. A higher AUC 

value indicates a better-performing model that can effectively differentiate between positive 

and negative instances across different thresholds (85,98,99).  
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Figure 1.11 – The ROC curve for different classifiers. Adapted from (99). 

 

 

 

1.6 Current study 
In this study, we first analyzed data from a previously acquired dataset. In parallel, we 

adapted the previously used behavioral task and acquired data from a new set of participants 

using the improved version of the task. In both tasks, visual stimuli from two categories (cars 

and houses) were presented. Before the stimuli, a warning auditory cue was presented to 

signal the start of the trial and evoke a state of attentive anticipation. The first experiment 

used a visual task where the visual stimuli were made difficult to perceive via a backward 

masking procedure - backward masking study. In the second experiment, the stimuli 

visibility was modulated by using low image contrast - low contrast study. Moreover, in the 

second study, the participants reported not only the stimulus category they perceived but also 

if they recognized the stimulus or if they were responding by chance. The task and stimuli 

details are depicted in the Method’s section. 

In the backward masking study, the stimulus was followed by a mask. However, the 

question arose regarding the participant’s actual perception of the stimulus. It was observed 

that when the participants did perceive the stimulus, many of them reported seeing only the 

cars, so they often only selected the houses if they did not see the cars. That said, during the 

analysis of the data obtained from this task, the doubt arose whether the difference in 

behavior was effectively between the difference in stimuli (car or house) or whether it was the 

difference between seeing a car or not seeing it. Another question that arose was whether, 

many times, they did not see the stimulus, but only the mask, reporting only the “object” they 

saw in the mask. Allied to this, we can also consider as a hypothesis that fluctuations in 
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cortical sensitivity may lead to improved perception of the mask but hinder the perception of 

the stimulus, potentially making it difficult to interpret the results. Based on this, we decided 

to change the task. So, we decided to remove the mask and lower the contrast of the presented 

stimulus making it difficult to recognize. This type of approach was based on the approach 

developed by Podvalny, E. et al. (10). Our expectation in changing the approach was to design 

a task hard to accomplish in which the participant would only recognize 50% of the trials.  

In addition to changing the stimulus presented, we also implemented, in the second 

version of the task, a new feature where the participant had to report whether or not he had 

recognized the stimulus, allowing us to determine the participants’ recognition of the 

stimulus. When given the two options (car or house), the participant, even without having 

seen the stimulus, has a 50% probability of getting its category right, that is, many of the trials 

defined as correct result from a random choice by the participants. Given this, in the 

backward masking study, numerous trials were erroneously attributed to the category of 

correct trials, which can bias the results and, consequently, contribute to the noise within the 

study. In this way, we believed that this implemented feature significantly enhanced our 

comprehension of stimulus detection. Consequently, we believe that the study of stimulus 

detection, instead of trial performance, affords a more realistic way to explore the impact of 

pre-stimulus activity, since we know exactly whether the participant perceived or not the 

stimulus. This way, and given we have this additional information about stimulus detection, 

we decided, in the low contrast study, to focus our analyses on the recognition of the 

stimulus, rather than the performance of the trial (whether or not the participant got the 

category right) as in the backward masking study. 

The methods for these studies are described next. 
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2 Methods 
 

In this chapter, we will start by describing the behavioral task that was used, as well 

all of the changes that were made to it throughout the project. The methods used to acquire 

and analyze the data were then explained. 

 

2.1 Participants 
Forty-one participants took part in the present study: 18 in the backward masking 

study and 23 in the low contrast study. Some participants ended up being discarded due to 

problems in data acquisition or due to changes in task parameters. So, after all, we had 35 

eligible participants, 16 from the backward masking study and 19 from the low contrast study. 

The information about our population is located in Table 1. 

 

 
Age 

(mean ± SD) 
Sex 

Education 

(mean ± SD) 

Dominant 

hand 

Dominant 

eye 

Backward 

masking 

study 

24.72 years ± 

3.71 years 

12 women 

6 men 

 

17.22 years ± 

2.95 years 

right: 15 

left: 3 

 

right: 10 

left:8 

 

Low 

contrast 

study 

25.74 years ± 

6.39 years 

21 women 

2 men 

 

16.74 years ± 

2.61 years 

right: 21 

left:2 

 

right: 11  

left:12 

 

Table 1 - Participant’s characterization. SD: standard deviation 

 

2.2 Stimulus 
In this project, we used a discrimination visual task developed in (101), where the 

participants were asked to discriminate visual stimuli between two categories: cars and 

houses (Figure 2.1). The stimuli used were adapted from the fLoc functional localizer package 

from (102). The authors selected these stimuli since they activate distinct regions of the visual 

cortex. In particular, the presentation of a house results in a higher activation of the 

parahippocampal place area since this area is associated with the visual processing of 

buildings and places. In turn, car stimuli lead to higher activation of the fusiform gyrus area 

(101,103–105). 
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Figure 2.1 – Example of the two types of stimuli (a – car stimulus: b – house stimulus). 

 

In the backward masking study, the visual stimulus was difficult to perceive due to the 

use of a mask (Figure 2.2 – a)), which was composed of parts of houses and cars, adapted from 

the fLoc functional localizer package (102).  

In the low contrast study, instead, we used visual stimuli at the threshold of subjective 

recognition through the manipulation of their contrast levels. To change the contrast of the 

visual stimuli, we based on the approach used in (10). The pixel intensities, ranging from 0 

(black) to 255 (white), were normalized for the range of [0,1] and the mean was removed to 

centralize the values around zero. Then, the chosen contrast was applied to the image by 

multiplying it with a coefficient c (represents the contrast level). Finally, the background color 

of the image was then applied. Summarizing, the image was normalized and subjected to a 

number of operations to transform it based on the contrast and background coefficients. It is 

important to note that this approach was employed on both visual stimuli and scrambled 

images. 

Allied to this, in the second experiment, we incorporated trials with scrambled images 

(without any object stimulus) (Figure 2.2 – b)), taken from the fLoc functional localizer 

package (102), to investigate whether participants had understood the task mechanisms 

linked to the recognition of visual stimuli. 
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Figure 2.2 – a Example of two types of masks. b Image used as scrambled image. c Example of two visual 
stimuli with different contrasts. 

 

2.3 Behavioral task 
The task was developed in (101) using the version 2021a of Matlab and was updated 

with the version 2022a. To develop the task, it was necessary to use the Psychtoolbox-3 

(101,106). This toolbox is composed of a set of functions for vision and neuroscience and 

research, facilitating the synthesis and presentation of visual and auditory stimuli as well as 

interaction with the viewer (101,106).  

For each participant, we acquired around 40 minutes of task, divided in 10 min runs. 

Each run consisted of 60 trials, in the backward masking study, and 65 trials, in the low 

contrast study. Four participants from the backward masking study and three from the low 

contrast study performed an extra task run with a total of five runs.  

Each trial started with an auditory warning cue that alerted participants of the 

upcoming stimulus. The interval between the cue and the subsequent visual stimulus was 

randomized between two and six seconds, to prevent participants from accurately predicting 

the timing of the visual stimulus display, inducing a state of expectation. Then, the visual 

stimulus was presented for 30ms. After the presentation of the visual stimulus and the mask, 

in the backward study, a response prompt was presented to the participants. To ensure that 
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the motor response did not impact the EEG data during stimulus processing, the response 

sides associated with the options of the response prompt were mapped to left/right or 

right/left randomly for each trial. 

 

• Backward masking study (Figure 2.3 – a) 

In this study, the visual stimulus was followed by a visual mask. Then, after the 

presentation of the response prompt, the participants were instructed to indicate which 

stimulus was presented by pressing a button using either their left or right index fingers (keys 

‘Z’ or ‘M’). That said, in this task, we were only able to extract accuracy for a given trial rather 

than stimulus recognition. 

 

• Low contrast study (Figure 2.3 – b) 

In our second study, we changed the contrast of the visual stimulus so that it was 

presented at the threshold of subjective recognition. To ensure that the image contrast was 

adjusted to reach a 50% subjective recognition rate for each individual participant, we 

implemented an adaptive threshold procedure. 

The participants, in this version, were instructed to report whether they recognized 

the stimulus, allowing us to be aware of stimulus recognition in each individual trial. If they 

had actually seen any object, i.e., if they recognized the stimulus, they responded with the 

right and left middle fingers and pressed the keys ‘Z’ or ‘M’ based on the stimulus that they 

saw. If they did not see any object, i.e., if they did not recognize the stimulus, they must guess 

which stimulus was being presented and, to measure that, they were instructed to answer 

with the right and left index fingers. So, when they did not see the stimulus, they had to answer 

with the ‘X’ key or with the ‘N’ key. 

Lastly, in this low contrast study, scrambled images were added, in order to verify that 

the participant was correctly following the instructions in cases where he/she recognized and 

in cases where he/she did not recognize the stimulus. That is, we expected that, in the trials in 

which the scrambled images were presented, participants would be unable to recognize any 

specific object and consequently would consistently respond using the left and right index 

fingers.  
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Figure 2.3 - Schematic example of one trial type (a - backward masking study; b - low contrast study) (the 
response prompt, and the visual stimulus here are not in scale  – the size was increased to facilitate 
visualization). 

 

To aid data analyses, trigger pulses were generated at the onset of each stimulus and 

at every button press. Considering the approaches adopted for each study, certain events 

were included in the low contrast study that were not present in the backward masking study. 
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Backward masking study  

EEG and Biopac 
event code Eye tracker message Event 

1 ‘SUBJECT’ Start of acquisition 
2 ‘sound’ Auditory cue 
3 ‘estimuloCASA’ “House” stimulus (30ms of duration) 

4 ‘estimuloCASA’ “House” stimulus (40ms of duration – only for 
subjects 3 and 4) 

5 ‘estimuloCASA’ “House” stimulus (50ms of duration – only for 
subjects 3 and 4) 

6 ‘estimuloCARRO’ “Car” stimulus (30ms of duration) 

7 ‘estimuloCARRO’ “Car” stimulus (40ms of duration – only for 
subjects 3 and 4) 

8 ‘estimuloCARRO’ “Car” stimulus (50ms of duration – only for 
subjects 3 and 4) 

50 ‘mask’ Mask 
9 ‘OptionLEFT_CASA’ Response prompt with “house” option on the left 

10 ‘OptionLEFT_CARRRO’ Response prompt with “car” option on the left 

11 ‘Response_z_hit’ Response: participant chooses the option on the 
left correctly 

12 ‘Response_z_miss’ Response: participant chooses the option on the 
left incorrectly 

16 ‘Response_m_hit’ Response: participant chooses the option on the 
right correctly 

13 ‘Response_m_miss’ Response: participant chooses the option on the 
right incorrectly 

14 - End of experiment 
 

Table 2 – Triggers and the corresponding events of the backward masking study. 

 

Low contrast study  

EEG and 
Biopac event Eye tracker message Event 

1 ‘StartAquisition’ Start of acquisition 
2 ‘sound’ Auditory cue 
3 ‘estimuloCASA’ “House” stimulus  
6 ‘estimuloCARRO’ “Car” stimulus  

60 ‘estimuloSCRAMBLED’ “Scrambled” stimulus 
9 ‘optionLEFT_CASA’ Response prompt with “house” option on the left 

10 ‘option_LEFT_CARRO’ Response prompt with “car” option on the left 
11 ‘Response_z_correct’ Participant chooses the option on the left correctly – 

recognized the stimulus 
12 ‘Response_z_wrong’ Participant chooses the option on the left incorrectly – 

recognized the stimulus 
16 ‘Response_m_correct’ Participant chooses the option on the right correctly – 

recognized the stimulus 
13 ‘Response_m_wrong’ Participant chooses the option on the right incorrectly 

– recognized the stimulus 
20 ‘Response_x_correct’ Participant chooses the option on the left correctly – 

did not recognize the stimulus 
21 ‘Response_x_wrong’ Participant chooses the option on the left incorrectly – 

did not recognize the stimulus 
22 ‘Response_n_correct’ Participant chooses the option on the right correctly – 

did not recognize the stimulus 
23 ‘Response_n_wrong’ Participant chooses the option on the right incorrectly 

– did not recognize the stimulus 
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61 ‘Response_scrambledz’ Participant chooses the option on the left in scrambled 
trials – recognized the stimulus 

62 ‘Response_scrambledm’ Participant chooses the option on the right in 
scrambled trials - recognized the stimulus 

63 ‘Response_scrambledx’ Participant chooses the option on the left in scrambled 
trials - did not recognize the stimulus 

64 ‘Response_scrambledn’ Participant chooses the option on the right in 
scrambled trials - did not recognize the stimulus 

14 ‘EndAquisition’ End of experiment 
 

Table 3 – Triggers and the corresponding events of the low contrast study. 

 

 

2.4 Adaptive threshold procedure 
In the low contrast study, we implemented an adaptive threshold procedure (Figure 

2.4), wherein the image contrast was adjusted to reach a 50% subjective recognition rate for 

each individual participant. The procedure consisted of successively presenting a 

predetermined set of stimuli with different contrasts. This set of stimuli was repeatedly 

displayed in a randomized order, ensuring equal frequency of occurrence for each contrast 

level. In each trial, the participant reported whether he recognized or not the stimulus by 

pressing different keys. For this, they had to respond with left or right middle fingers if they 

recognized the stimulus and with left or right index fingers if they were just guessing the 

category, that is, if they had not recognized the stimulus. The proportion of responses was 

calculated for each specific contrast value, after the presentation of all contrast levels 

multiple times. Finally, to determine the contrast level corresponding to the 50% subjective 

recognition rate, we used a psychometric function. 

During the first acquisitions, we noticed that the contrast that represents 50% of 

subjective recognition rate was not reflected in 50% of recognition of the trials during the 

task. This fact can have several causes. First, the participants may not have understood the 

task instructions and even having recognized the stimulus, they might have answered with 

their index fingers (responses associated with non-recognition of the stimulus), because, for 

example, they were not completely sure of the stimulus category. Second, maybe the number 

of stimuli used in each contrast was not enough to determine, in an accurate way, the 

contrast that represents a 50% subjective recognition rate. Based on that, we decided to 

double the number of stimuli in each contrast from participant 26. With this improvement, 

it was possible to reach a recognition closer to 50% when performing the task.  
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Figure 2.4 – Schematic example of one trial type from the adaptive threshold procedure (the response 
prompt and the visual stimulus here are not in scale – the size was increased to facilitate visualization). 

 

2.4.1 Psychometric Function fitting 

Psychometric functions allow us to relate a certain participant’s psychophysical 

performance, as the recognition rate of a stimulus, and specific physical stimulus 

characteristic. This type of measure is done to determine parameters that capture the 

participant’s behavior. To obtain the parameters, a continuous function is fitting to the data. 

The process to fit the curve is done iteratively through a range of possible values of two 

parameters, alpha and beta (107,108). 

We used the following formulation of the psychometric function: 

𝜓 (𝑥; 𝛼, 𝛽, 𝛾, 𝜆) =  𝛾 + (1 −  𝛾 −  𝜆)𝐹(𝑥;  𝛼, 𝛽) 

Equation 7 – Psychometric function 

 

The 𝑥 parameter refers to stimulus intensity and the 𝜓 refers to a measure of 

performance (in this thesis, the measure that we used was the proportion of recognized 

stimuli). The 𝛼 value determines the curve’s general position along the abscissa relating to 

sensory or perceptual processes. The parameter 𝛽 determines the slope or gradient of the 

curve. Lastly, we have the 𝛾 and 𝜆 parameters. the parameter 𝜆 is the lapse rate and 

corresponds to the proportion of trials where observers will respond independently of 

stimulus level, for example, represents the probability of responding incorrectly because of a 

lapse. The parameter 𝛾, in turn, represents the guessing rate, which denotes the chance-level 

performance (108,109). 

To model psychometric data, we choose the logistic function.  This function is given 

by: 

𝐹(𝑥;  𝛼, 𝛽) =  
1

1 + exp (−𝛽(𝑥 − 𝛼))
 

Equation 8 – Logistic function expression. 
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After choosing the psychometric function and the initial parameters values, we can 

move forward with, iteratively, fitting the logistic curve to the data. The fitting involves 

searching for values that produce a curve that closely aligns with the experimental data 

(107,108). To find the best fitting of the function to our data, we used Maximum Likelihood 

criterion. Using this criterion, we were able to determine which psychometric function best 

recreated the experiment as if it was carried out by a subject (110). 

Considering the characteristics of the mentioned parameters, we have determined 

that 𝛾 and 𝜆 parameters are considered “fixed parameters”, since they do not change during 

the entire process. In opposite to this, 𝛼 and 𝛽 vary during the fitting, so they are classified as 

“free parameters” (110).  

The purpose of the use of these functions is to find the contrast that allows a 

recognition of 50% of the stimuli. Consequently, the 𝛼 parameter will fluctuate between the 

contrast values that have the recognition rate close to 0.5 (we used the fraction and not the 

percentage). Then, we have the 𝛽 parameter, which is difficult to estimate by inspection. Due 

to the results, we expect that there is a large variation in the recognition rate over a small 

change in contrast levels, so we put a high number here, like 50 (110). The 𝛾 and 𝜆, in turn, were 

considered zero.  

To evaluate the errors in the estimated parameters, we used the Standard Error. This 

method determines how far the estimated values will probably deviate from the true value. 

The standard errors are estimated using a method called bootstrap analysis, which generates 

400 hypothetical sets of data. The logistic function is used to fit each hypothetical data set to 

estimate 𝛼 and 𝛽. The parameter errors are subsequently determined by calculating the 

standard deviations of these predicted values across all sets (107,109,110). 

Finally, to measure how well the model fits the data, we used the goodness-of-fit of 

the function. To do that, we employed the method described in (111). The method involved 

generating a Monte Carlo distribution from the real data, creating multiple artificial datasets 

through randomization. After that, the method determined the percentage of simulations 

with higher deviation than the original data, which allows us to extract an associated p-value. 

The p-value ranges from 0 to 1, with a higher the value indicating a better match between the 

fitted function and the data (107,109,110). 

One of the toolboxes that allow us to implement these functions is the Palamedes 

toolbox. This toolbox is characterized by a collection of MATLAB functions and demonstration 

programs for the analysis of psychophysical data (108). 
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2.5 Physiological recordings: EEG, ECG, respiration and 

eye tracking 
As was said before, the aim of our study was to analyze how pre-stimulus activity 

modulates cortical processing of visual stimuli and, consequently, visual perception. So, 

while participants were engaged in the task, we simultaneously acquired EEG and body 

physiological signals.  

The EEG signal was acquired with a 64-channel Neuroscan system with scalp 

electrodes placed according to the International 10–20 electrode placement standard, with 

reference between the electrodes CPz and Cz and ground between FPz and Fz. Acquisition 

rate was 500 Hz. Vertical and horizontal electrooculograms were recorded to monitor eye 

movements and blinks. This system also allowed us to measure other signals using bipolar 

electrodes:  

• Cardiac activity by placing the positive electrode in the right shoulder and the 

negative electrode over the lower end of the sternum. 

• Blinking through electrooculography with electrodes placed on the face. 

• Trapeze muscle activity using bipolar electrodes placed in the right shoulder 

(these data were acquired but not analyzed within the scope of this work).  

 

To study respiration, we measured the circumferential changes in the thoracic 

region of the torso with a transducer belt with the Biopac system. Until subject 22, breathing 

data was recorded using a sampling rate of 5000Hz. Subsequently, the sampling rate was 

lowered to 1000Hz. We also measured leg movements with accelerometers with Biopic’s 

System Bionomadix and, for the low contrast study only, the cardiac sound with the Biopac 

physiological microphone (these data were acquired but not analyzed within the scope of this 

work).  

Finally, to study eye movements and pupil dilation, we used the EyeLink 1000 Plus. 

Acquisition rate was 500 Hz. During the data acquisition process, there were changes in the 

methodology used to study eye movements and pupil dilation. Initially, we used a monocular 

method, that is, the ET recorded the movements of only one eye, the dominant eye. From 

subject 30, we started using a binocular method that captured the movements of both eyes. 

The monocular method was used in 29 participants and the binocular method was used in 

the remaining participants, 12 participants. In the binocular method, to study the pupil, we 

selected the behavior of the pupil referring to the dominant eye. Blinks and saccades were 

identified as such when detected in both eyes. 

To summarize, in our project, we used the EEG and ECG recordings, respiration, pupil 

dilation, blinking and saccadic activity. 
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2.6 Data correction 
In the participants between S03 and S07 from the backward masking study and S21, 

S23 and S25 from the low contrast study, the events from the biopac system (respiration) and 

Neuroscan (EEG and ECG) were not correctly sent, with some events missing. Considering 

that the events from the ET were well acquired it was only necessary to import the event data 

from the ET into Matlab.  

The ET and the other signals started recording at different times. So, it was necessary 

to measure the difference between the first and the second event from each trial, for both the 

ET and the remaining signals. When we discovered a trial where the difference is the same 

for the ET and for the other signals, means that in that trial the events are correct. Based on 

that, we determine the difference in latencies from the signals (specifically in that trial) and 

apply that difference to all events from the ET. Basically, we add the events from the ET to the 

respiration, EEG and ECG signals, but with the correct latencies.  

 

 

2.7 Data analysis 
 To analyze all the data, we used Matlab (version 2022b) custom scripts and EEGLAB 

toolbox (version 2022.1) (112). In this section, for each physiological recording, we will describe 

the signal processing and subsequent analysis methodologies. 

As mentioned, one of the goals of our project was to investigate how the state of 

expectation produced by the warning cue was reflected in changes in body and neural 

physiological signals and if the pre-stimulus brain and body activity modulated visual 

perception. So, in our analyses, we started by studying each signal individually. In each 

physiological signal we follow the following steps: 

• Evaluate how body signals vary throughout the state of expectation.  

• Evaluate the differences in body and brain signals between correct and incorrect 

trials – backward masking study - and between recognized and not recognized 

trials – low contrast study. 

 

Reaction time: In addition to comparing the trial types analyzed in the two versions 

of the task, we also correlated the different features of each physiological signal with the 

RT.  We decided to study the RT, as we believe that this measure more accurately reflects the 

influence of the state of expectation than the trial type in the backward masking study. This 

belief relates to the fact that many trials were incorrectly attributed to the group of correct 
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trials, as described above. It should be noted that comparisons involving reaction time were 

exclusively conducted using body activity. Given that EEG is composed of many channels, the 

study of each channel individually would be difficult, so we decided to discard these analyses 

and focus only on the relationship between reaction time and body physiology. 

• To assess the reaction time, we considered the temporal distance between the 

presentation of the response prompt and the moment in which the participant 

pressed the key. 

• The comparison between the reaction time and each body signal was carried out on 

a trial-by-trial basis through the correlation of both parameters. This approach was 

performed for all features of the various physiological signals, except for the phase 

of the cardiac and respiratory cycles in which the stimulus is presented. For these 

two features we used a regression model (described in the statistical analysis 

section). 

 

Classifiers: After that, we integrated the pre-stimulus neural and physiological data 

in the classification models to predict participant’s visual performance. Our expectation was 

to identify patterns in the different physiological measures that could facilitate the prediction 

of stimulus detection. Lastly, the final analyses aimed to determine whether the pre-stimulus 

body and neural activity modulated the way in which the stimulus was decoded. This classifier 

was trained using single-trial EEG data, with the objective of discriminating the category of 

the trial. 

 

2.7.1 Neural activity 

2.7.1.1 Preprocessing of EEG data 

The EEG preprocessing was made using the EEGLAB toolbox (112). First, the EEG signal 

was re-referenced to linked earlobes and then bandpass filtered between 0.5-100Hz. After 

that, bad channels were removed and replaced through interpolation. Through visual 

inspection, some intervals of the data in which a generalized noise was seen, caused, for 

example, by the fact that the participant had moved his head, were also removed.  

Then, the ICA algorithm was applied and the components that did not have a neural 

origin were removed. This process was conducted through visual inspection considering 

diverse features of the various components, such as the topography of the component, signal 

frequencies, the amplitudes, among others (112,113). Through the ICA algorithm, we can 

isolate various categories of signals (113). For example, when examining components that 

exhibit regular dipoles with smooth topography and that peak at physiological frequencies, it 
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is likely that these components originate from neural sources (113). In turn, if the components 

have stability intervals with occasional and very quick transitions, probability this component 

has origin on the saccades (113). Components originating from muscular activity are also easy 

to detect, since they are generally very focal and cover a local group of electrodes. Allied to 

this, in the data representation, we can see constant noise that does not vary with task events 

(113). Finally, this algorithm also allows us to eliminate components originating from bad 

channels. This type of component shows strong amplitudes, which are not correlated with 

other channels (113). 

A significant number of the intervals that were removed contained the event 

corresponding to the stimulus presentation. Thus, when these intervals were removed, the 

associated event was also eliminated, making it impossible to apply epochs to these 

particular trials. In the following table, we show the number of trials used in the classifier for 

each subject. 

Backward masking study 

Subject Runs Total trials Trials used 
3 5 300 180 
4 5 300 299 
5 4 240 240 
6 4 240 240 
7 4 240 239 
8 4 240 231 
9 4 240 239 

10 4 240 239 
11 4 240 205 
12 4 240 231 
13 4 240 230 
14 4 240 235 
15 4 240 240 
16 5 300 300 
17 4 240 237 
18 5 300 284 

 

Table 4 - Overview of total trials and trials that were included in the analyses in the backward masking 
study. 

 

 

 

 

 

 

 

 

 



 

52 
 

Low contrast study 

Subject Runs Total trials 
Total trials with 

stimulus Trials used 

21 4 260 240 236 
22 5 325 300 290 
23 4 260 240 238 
24 4 260 240 234 
25 5 325 300 299 
26 4 260 240 239 
27 4 260 240 240 
28 5 325 300 299 
29 4 260 240 240 
30 4 260 240 240 
31 4 260 240 240 
32 4 260 240 240 
33 4 260 240 239 
34 4 260 240 237 
35 4 260 240 239 
37 4 260 240 240 
38 4 260 240 239 
39 4 260 240 239 
40 4 260 240 234 

 

Table 5 - Overview of total trials and trials that were included in the analyses in the low contrast study. 

 

2.7.1.2 Analysis of EEG data 

First, we studied the effect of the cue on the EEG signal by studying the ERP evoked 

by the cue in an epoch between 0.2s before the cue and 3s after the cue onset (with baseline 

removed) and investigated where the ERP was significantly different from zero.  

Then, we also compared the ERP across trial types. Since we wanted to evaluate the 

differences in neural activity just before stimulus onset, we ended up studying the signal just 

two seconds before and two seconds after the stimulus presentation. We chose to include two 

seconds after stimulus onset, in order to analyze the ERPs evoked by the target across the trial 

types considered. In this type of analysis, we had only the representation of each electrode 

individually; however, we wanted a way to represent all channels. For that, we used the 

topoplot function from EEGLAB in Matlab. This function allows us to plot a topographic map 

of an EEG field through interpolation. Since topoplot receives as input a value to each channel, 

we started by obtaining the mean value of each channel for each participant and then 

applying the average value of all participants. Since we only wanted to compare pre-stimulus 

activity across trial types, we extracted the average ERP amplitude in the one second just 

before target onset. For visualization of scalp topographies, we employed perceptually 

uniform color maps by Crameri et al. (114). 

We also studied the EEG signal evoked by the stimulus, the ERP. To do that, we epoched 

the data in a time window of 200ms before and 500ms after the stimulus onset and removed 
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the baseline. We chose 500 ms since the response prompt only appears 500 ms after the 

stimulus and therefore this time window is free from motor processing signals.  

Finally, EEG activity was included in the classifier. In the first analysis, in which the 

objective was to use pre-stimulus neural activity to predict visual performance, we used the 

continuous EEG signal. Next, we also used the continuous signal to discriminate the trial’s 

category. In this case, we used the EEG signal after the presentation of the stimulus. 

Considering that one of the goals was to combine the produced ERPs with pre-stimulus 

activity, we decided to summarize the EEG pre-stimulus activity through a parameter for 

each channel of the EEG signal. To do this, we extracted the average amplitude in the one 

second just before target onset. 

 

 

2.7.2 Cardiac activity 

2.7.2.1 Preprocessing of cardiac data 

The dataset of all participants was processed as described in (115). To process the data, 

the EEGLAB toolbox and the ECG toolbox from the Health Informatics Lab at Centro de 

Informática e Sistemas da Universidade de Coimbra (116) were used.  

The ECG toolbox was specifically designed to handle data with a sampling rate of 

250Hz. Consequently, we had to downsample the data from 500Hz to 250Hz. 

To investigate the influence of the cardiac cycle in the state of expectation, we 

decided to measure the heart rate at the moment of stimulus presentation, as well as monitor 

heart rate fluctuations during this particular state. In order to compute the participant’s 

heart rate accurately, it was necessary to detect the peaks, using the ECG toolbox. However, 

as the toolbox was originally designed to work with ECG data obtained using the precordial 

lead II, it unfortunately misidentifies many of the peaks. To address these limitations, we 

used Matlab scripts developed by (115). 

In most participants, the S peak was very prominent and the one that was correctly 

identified more often (Figure 2.5). Therefore, we used the S peak latency to calculate heart 

rate throughout the task. 
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Figure 2.5 – Example of a typical ECG data, where the red circles denote the S peaks. 

 

In this way, we used the S peaks to measure the heartbeat. Initially, we determined 

the time interval between successive S peaks within each cardiac cycle. Then, having the 

length of each cardiac cycle, we converted them, which were originally expressed in 

milliseconds, into heartbeats (beats per minute). This conversion was achieved by dividing 

60000 by the cycle duration of each cardiac cycle. 

Due to problems in acquiring the ECG signal or even in detecting peaks, we 

sometimes obtained ectopic beats, that is, with abnormal durations. Therefore, to exclude 

these beats, we calculated the z-score of the duration of each beat and removed values with 

absolute z-scores greater than five. It should be noted that, when obtaining the 

instantaneous heart rate, we excluded specific values and not trials associated with ectopic 

beats. This process was done before spline interpolation. However, in the analysis in which 

the duration of the cardiac cycle was considered, if the cycle before the stimulus or before 

the cue (these cycles are used in this discrete analysis) were considered artifacts, the trial 

would be removed and would not be subject to analysis. 

 After that, the values of heartbeat extracted in the previous step were interpolated 

using function spline in Matlab. This function enabled us to compute, at each time point, the 

instantaneous heart rate. 

 

2.7.2.2 Analysis of cardiac data 

First, we studied the effect of the cue on cardiac activity, more precisely in the heart 

rate. For that, we used the interpolated heart rate that assigns a value of heart rate for all data 

points. To study the variations in heart rate induced by the cue, we used an epoch between 2s 

before the cue and 10s after the cue onset (with baseline removed) and investigated the time 

points where the heart rate variation was significantly different from zero. To evaluate the 

heart rate variation just before stimulus onset and to study how its presentation influenced 
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cardiac activity, we ended up studying the signal just two seconds before and three seconds 

after the stimulus presentation. We also compared the heart rate variation across trial types, 

using the same time windows, and evaluated the time points where the difference was 

statistically significant.  

Then, we analyzed cardiac activity by comparing cardiac parameters between 

correct/incorrect trials or recognized/unrecognized trials and studied the correlation 

between cardiac parameters and reaction time. The extracted cardiac parameters were then 

used as features in the classifiers. 

For these analyses, we decided not to use the interpolated heart rate, since it is an 

approximate measure, and focus only on discrete heart rate. The discrete heart rate 

technique allowed us to extract heart rate values at each heartbeat. For the discrete heart 

rate values, we used the duration of the cycle immediately before stimulus presentation and 

the relative heart rate, which represents the heart rate variation between the cardiac cycle 

immediately before the auditory cue and the duration of the cardiac cycle immediately 

before visual stimulus onset. We decided to select the cardiac cycle immediately preceding 

the stimulus presentation, as we believe that the cycle that contained the stimulus would 

already be influenced by the processes associated with the processing of the stimulus.   

Moreover, we also studied the effect of cardiac phase in visual perception. To do that, 

we estimated the phase of the cardiac cycle at the moment of visual stimulus onset by 

dividing each cycle in 360º and calculating the phase (in degrees) at that moment. As the 

phase is a circular variable, to study the impact of cardiac phase, we studied the impact of the 

sine and cosine of the phase together and separately. This approach takes into account the 

circular component of the cycle by projecting it into cartesian coordinates. 

 

2.7.3 Respiratory activity 

2.7.3.1 Preprocessing of respiratory data 

 The dataset of the participants was processed as described in (101). In this previous 

study, the respiration data from the backward masking dataset was analyzed. We based our 

preprocessing of these data on their analyses. Initially, the data was downsampled and 

filtered using the EEGLAB toolbox. Considering that the typical breathing rate, in healthy 

adults, ranges from 12 to 20 breaths per minute (117), the data was downsampled to 100 Hz. 

Then, the data were filtered with a bandpass filter limited between 0.01-2Hz. Even after 

filtering, the data continued to have a significant amount of high frequency noise. So, we 

smoothed the data with the ‘loess’ method. 
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Analyzing a typical breathing data (Figure 2.6), we can see that it consists of peaks and 

valleys. A peak corresponds to the end of an inhalation and the beginning of an exhalation. A 

valley, in turn, corresponds to the end of an exhalation and the beginning of an inhalation. 

Thus, we can measure the respiratory cycle length by extracting the duration between two 

consecutive peaks or valleys. In our thesis, we defined the valleys as the beginning of the 

respiratory cycle. 

 

Figure 2.6 – Example of a typical breathing data, where the red circles denote the valleys and the green 
circle denote the peaks. 

  

In (101), the author also noticed the presence of artifacts in some cycles, due to deep 

breaths or even due to participant movements. To remove the breathing cycles containing 

such artifacts, the author started by using the ‘findpeaks’ function in Matlab. This function 

allows us to determine the aforementioned peaks and valleys. After finding two consecutive 

valleys or peaks, we can obtain the duration of the breathing cycle. Based on that, we can 

obtain the duration of each breathing cycle and subsequently exclude those with abnormal 

durations as outliers. 

To do that, the author (101) computed the z-score using the zscore function in Matlab 

and removed the values with z-scores lower than -2.5. The cycles with z-scores higher than 

2.5 were not removed, because it was believed that they were deep breaths and not artifacts. 

After that, he also studied the inhalation and exhalation length. The author (101) noticed that 

many artifacts were found in the middle of an inhalation or exhalation, making them 

erroneously defined as a peak or a valley, by the ‘findpeaks’ function. This can happen at a 

point that was wrongly defined as a valley and the temporal distance from this point to the 

next valley is within the defined threshold. Therefore, this point, being within the threshold, 

is not considered an artifact. That said, the zscore function was also applied to the duration of 

inhalation and exhalation and the peaks and valleys that, in this approach, were defined as 

artifacts (z-score <2.5) were removed (the value was substituted by blank values - NaN). 
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2.7.3.1.1 Examples of participants where respiration data had too many artifacts 
 

Backward masking study 

Looking at the data of subjects 7 and 17, we noticed many tiny cycles, which makes it 

difficult to correctly identify the beginning and end moments of inspirations and exhalations. 

That said, we decided to exclude these participants from the analyses associated with 

respiration. Therefore, in the analyses involving respiratory data, we considered only 14 

participants. 

 

Figure 2.7 - Breathing data from subject 7 and subject 17, respectively. In these two sub-figures we can 
visualize artifacts at several breathing cycles. 

 

Low contrast study 

In subject 22, the previously mentioned behavior was also verified, therefore, this 

subject was discarded in the analyses associated with respiration. 

 

 

 

 

 

 

 

Figure 2.8 - Breathing data from subject 22. In this figure we can visualize artifacts at several breathing 
cycles. 

 

2.7.3.2 Analysis of the respiratory activity 

The respiratory signal is also a cyclic signal, so we can extract the cycle length, and, 

consequently, the respiratory rate. Contrary to what was done in the cardiac activity point, in 

this section we decided to only use the discrete approach.  
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To analyze how the cycle duration varied over time, we calculated the cycle duration 

of five cycles after the cue, inclusive, and one cycle before, and determined the cycles where 

the variation was significantly different from zero. To evaluate the respiratory cycle 

modulation just before stimulus onset and to study how its presentation influenced 

breathing rhythm, we studied the cycle duration variation one cycle before and one cycle 

after target onset. Then, we compared these variations across trial types (correct/incorrect 

trials in the backward masking study and recognized/unrecognized trials in the low contrast 

study) and evaluated the cycles where the difference was statistically significant. 

Considering the discrete measure, we started by analyzing the cycle before and the 

cycle during the stimulus onset. However, if we consider the cycle at the time of the stimulus, 

its duration will already be influenced by the stimulus. Thus, we would not only be analyzing 

variations produced by the state of expectation, but also produced by the stimulus. Having 

said that, we decided to continue the analysis with just the duration of the cycle before 

stimulus onset. Based on that, we obtained the cycle duration before the stimulus is 

presented. Contrary to what was described in the ECG section, for respiration we decided to 

only study the cycle duration in an absolute and not in a relative way. We took this decision 

since the duration of the respiratory cycle is relatively long and sometimes the cue and the 

target were inserted in the same cycle, which prevented us from verifying the variations in 

the duration of the cycle in the state of expectation. 

Repeating the same analysis performed for the cardiac cycle, we also compared the 

duration of the respiratory cycle with participant’s accuracy (backward masking study) and 

stimulus detection (low contrast study). In addition to the aforementioned analyses, we also 

studied the correlation between the respiratory parameters and RT.  

As mentioned, the respiratory signal is also a cyclic signal, so we also studied the 

phase of the cycle in which the stimulus was presented. As in the ECG, we perform a 

regression between the phase (sine and cosine) and the RT. 

In this way, considering respiration, we included as features the cycle duration and 

phase in the classifier. 
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2.7.4 Eye movement and pupillography data 

2.7.4.1 EyeLink data preprocessing 

From the EyeLink we obtained two synchronized streams of data: eye-position 

samples and events, such as eye-movement events and subject responses or triggers (118). 

To measure pupil size, the EyeLink extracts the area or the diameter of the pupil. First, 

the eye-tracker captures images of the eye using infrared illumination, which causes the 

pupil to contrast against the reflective background of the eye. To determine the pupil’s 

boundaries, the EyeLink system used diverse algorithms. Then, based on the pixel 

dimensions, the system determined the diameter or the area of the pupil. Summarizing, for 

each point we had a positive value of pupil size, that represents, the area or the 

diameter.  Allied to extracting pupil size, we extracted the gaze position (118). 

The EyeLink software calculates the onset and end of the saccades and blinks in the 

data. In this way, we defined the latency of a blink or a saccade considering the onset of these 

events. This system records saccades using three thresholds, such as motion, velocity and 

acceleration. For instance, the velocity threshold is the eye-movement velocity that must be 

exceeded for a saccade to be detected. The EyeLink defines as begin and end of a blink the 

intervals where the pupil size is very small or the pupil in the camera image is missing or 

severely distorted by eyelid occlusion (118). 

The data was initially acquired in edf format, so it was necessary to convert the files 

to asc format for analysis in Matlab. Missing data and blinks, as detected by the EyeLink 

software, were padded by 150 ms and linearly interpolated using an analysis script adapted 

from (80). Data were then normalized as percentage of the mean within each run i.e., for the 

pupil size, we subtracted the mean pupil size across all data points and subsequently divided 

by the mean.  

Finally, in this step, we created a structure composed of nine channels. The first 

channel is composed of zeros and ones, where one denotes the time points in which data was 

interpolated. Then, the next five channels encompassed the signals acquired from the 

EyeLink. The seventh and eighth channels were composed of zeros and ones, with a value of 

one denoting the occurrence of a saccade or a blink. The last channel incorporated the pre-

defined values referred to as triggers. So, in this step, we generated a structure with the data 

and with the triggers. 

Finally, considering the time-windows used for the analysis, we removed the trials 

where the ET did not capture more than 50% of the data. Allied to this, we filtered the pupil 

size data with a bandpass filter limited between 0.1-6Hz, since the signal contained a lot of 

high frequency noise. 
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Outlier detection 

The average spontaneous blink rate is said to be between 12 and 15/min (119). 

Regarding the data obtained by EyeLink, we found that participant 12 (backward masking 

study) had a very low rate of blinks. To do this analysis, we started by obtaining the rate of 

blinks per minute for each subject. Looking at the results, we saw that participant 12 blinked 

less than once per minute, and this low blinking rate did not allow for an accurate study of 

the effect of blinks. Thus, this subject was discarded in the analyses associated with blinking. 

 

2.7.4.2 Analysis of the pupillary response 

To evaluate the impact of the state of expectation in the pupil size, we studied the 

fluctuations in pupil size evoked by the cue within a time window ranging from 0.2s before 

and 10s after the cue onset (with baseline removed). We then identified the time points where 

these fluctuations were significantly different from zero. Subsequently, we studied these 

fluctuations just before visual stimulus onset and how the presentation of the stimulus 

influenced them. For this purpose, we analyzed the signal within a window of two seconds 

before and two seconds after the visual stimulus presentation. Furthermore, we compared 

the fluctuations in pupil size across trial types, using the same time windows. This 

comparison enabled us to establish the time points where statistically significant differences 

in the fluctuations were observed. 

In order to investigate the effect of pupil-linked arousal on visual perception, we 

calculated the average pupil size, average pupil response (pupil variation in relation to pupil 

baseline measured in the 200 ms before cue onset), and average pupil derivative in an 

interval of 1s just before visual stimulus onset. This interval was chosen based on our own 

pilot studies. These pupil parameters were used to compare between correct/incorrect trials 

or recognized/unrecognized trials and to study the correlation between pupil parameters 

and reaction time. Then, the extracted pupil parameters were incorporated in the classifiers. 

 

2.7.4.3 Analysis of blinking and saccadic activity 

As described in the EyeLink data section, we obtained two signals composed of zeros 

and ones, with one being the start of a saccade or the start of a blink. With these signals, we 

were able to extract a blinks/saccades rate (averaged across all trials for each data point) for 

each participant.  

To study the fluctuations in blinking/saccadic activity induced by the cue, we 

extracted the signal with a time window between 0.2s before and 10s after the cue onset (with 

baseline removed) and evaluated the time points where the variation in blinking/saccadic 
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activity was significantly different from zero. Additionally, we studied the signal just before 

and after stimulus onset by using an interval between 2s before to 2s after visual stimulus 

onset. Within this context, we evaluated whether the fluctuations in blinking and saccadic 

patterns induced by the cue were statistically different from zero. Lastly, we compared the 

variations in blinking/saccadic activity across trial types. 

Subsequently, we conducted an analysis of blinking and saccadic activity by 

contrasting the activity parameters between correct/incorrect trials or 

recognized/unrecognized trials. Furthermore, we explored the potential correlations 

between these parameters and reaction time. These parameters were later used as features 

in the classifiers. 

For feature extraction related to the rate of saccades and blinks, to maximize the 

probability of detecting blinks and saccades that might affect the stimulus processing, we 

decided to use as an interval of interest the interval between 1s after the cue and the target 

onset. We decided to not include the first second after the cue, because it is known that when 

we get an alarm signal or any abrupt or unexpected stimulus, our body automatically reacts 

to protect the eye, which may cause a blink, and to look for the possible threat, which may 

cause a saccade, and this reaction does not reflect changes produced by this state of 

alertness. We used the average saccades and blink rate in this interval and compared across 

trial types and used them as features in the classifiers. 

Moreover, we expect that the closer a saccade is to the stimulus display, the greater 

the probability of the participant to miss the stimulus. Based on this, we decided to include a 

further feature where we estimated the temporal distance between the last saccade and the 

stimulus onset. We defined the maximum temporal distance as the temporal distance 

between one second after cue onset and stimulus onset, as described above. Thus, in the 

trials in which no saccade or blink occurred in the considered interval, we considered the 

temporal distance as the limit. 

 

 

 

 

 

 



 

62 
 

2.8  Classification models 
As mentioned before, the aim of our study was to examine the influence of the pre-

stimulus state on visual processing. To do so, we created a first classifier that used the pre-

stimulus neural and physiological signals (pre-stimulus being the activity before the 

appearance of the visual target) as input to classify visual performance (visual performance 

model). In addition, we used, in a second classifier, the post-stimulus activity (neural 

response evoked by the visual targets) to classify the category of the images presented and 

investigated the impact of the pre-stimulus activity on target representation (image category 

model). In the visual performance model, we studied the ability of the classifier to predict trial 

accuracy, in the backward masking study, and trial visual recognition, in the low contrast 

study. Our goal with this model was to investigate whether the pre-stimulus activity 

influences the detection of the stimulus regardless of the category (the pre-stimulus activity 

modulates the ability of the participants to recognize the presence of an object - visual 

sensitivity). In the image category model, in turn, we investigated if the pre-stimulus activity 

modulated how the stimulus was decoded. 

We used two different types of classifiers, the SVM and the CNN. The SVM was used to 

test the ability of the physiological signals to classify visual perception. The CNN (EEGNet) was 

used when EEG signals were processed as input features. 

 

2.8.1  Data 

We started our analyses regarding classifiers, by applying the classification model 

individually to each subject. However, one of the problems we faced was the fact that, for each 

participant, we had relatively few trials, which would influence the performance of the 

classifier. To solve this problem, we decided to make a model that receives as input the trials 

of all participants to enhance the classifier’s ability to recognize patterns and consequently 

achieve better performance. In this new approach, we normalized each participant’s input 

data, with the aim of preserving the integrity and variability of characteristics within 

participants.   

In the backward masking study, we verified that the participants achieved an average 

accuracy exceeding 75% (results section). Thus, we observed a higher number of correct 

trials compared to incorrect trials. In the low contrast study, as described, we focused on 

studying the recognition of the trial. As observed in the results section, participants, on 

average, recognized more than 50% of the trials, resulting in a higher number of recognized 

trials than the unrecognized ones. Consequently, for both studies we had imbalanced data. 

To address this problem, we used the class weights technique. This technique involves 
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assigning higher weights to the minority class, enabling the model to prioritize and assign 

more importance to its samples during training and reduce bias towards the majority class.  

   

2.8.2 Training and test sets 

As mentioned in the previous subsection, we started our analyses by applying the 

classification models to each participant individually. However, each participant had 

relatively few trials. To combat this problem, we decided to use an approach that made use of 

all trials of the participant to train and test the algorithm, the cross-validation approach. This 

approach consisted of dividing the trials into train and test, which was repeated k times. To 

our classifier, we choose a value of k equal to five. That is, the network was run five times and, 

consequently, five performances were obtained. Thus, the final performance of the network 

was the average of the five performances. Then the data for training was divided again, where 

80% was for training the network and 20% for validating.  

When combining the data of all participants, we implemented a strategy where 70% 

of each participant's trials were extracted for training purposes, while the remaining 30% 

were reserved for testing, to ensure the inclusion of data from all participants in the test set. 

Thus, the overall distribution of trials resulted in 70% for training data and 30% for test data. 

To enhance the reliability of our findings, we opted to execute the classifier multiple times. 

Specifically, with the SVM algorithm, we ran 20 times. However, due to the significant 

computational requirements associated with CNN, we limited the number of runs to 15.  

 

2.8.3 Performance metrics 

We used three distinct metrics to assess the classifiers’ performance: the AUC, 

accuracy, and balanced accuracy for when the classes were not balanced. In the particular 

case where the classes are not balanced (when classifying visual performance), the AUC is 

particularly useful, as it assesses the model’s capability to rank samples correctly rather than 

considering a single threshold for classification. In order to standardize the analyses 

presented in the thesis, we decided to use the AUC as the performance metric for the 

remaining analyses, whenever possible.  

 For conciseness, in the body of the thesis, only the results associated with the AUC 

metric are presented. The results that evaluate performance through accuracy and balanced 

accuracy can be found in the appendix.  
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2.8.4  Algorithms 

2.8.4.1 Support vector machine’s algorithm structure 

The data that we obtained from the physiological signals resulted from a discrete 

measure applied to the pre-defined pre-stimulus interval, that is, for each measure we had a 

value associated with a particular trial. Given the relatively small dimension of the dataset 

and its complexity, due to its non-linearity, we opted to employ the SVM algorithm instead of 

the CNN that was optimized for EEG. 

The SVM is an algorithm that is able to, as mentioned, perform both linear and non-

linear classification. Considering that the biological signals contain non-linear dynamical 

characteristics, we opted to employ a non-linear model (120). For that, it was necessary to 

choose the kernel trick that best applies to our data type. We ultimately decided to choose the 

RBF kernel, as it is more robust and able to capture the more complex relationships between 

data. 

o Optimization - The optimization of SVM hyperparameters is a crucial point 

in the development of a SVM algorithm, since it allows a better performance 

and generalization ability of the model. We decided to optimize the sigma 𝜎  

and the penalty c parameters with the ‘OptimizedHyperparamenter’ option 

provided by Matlab. This option makes use of the Bayesian optimization, that 

involves constructing a probabilistic model. To evaluate this model, it is 

necessary to use an acquisition function. We decided to use the default 

acquisition function provided by MATLAB: ‘expected-improvement-per-

second-plus’ (89,121). The expected improvement function measures the 

probability that a particular candidate sample is better than the current best 

sample (90,121). One way to improve the performance is to optimize the 

acquisition function. So, we used ‘expected improvement per second plus’, 

because this approach prioritizes the acquisition of points that are not only 

likely to be good, but that are also likely to be evaluated quickly (90,121).   

 

 

2.8.4.2 Convolutional neural network’s algorithm structure 

To effectively capture the characteristics of the signal across all EEG data points and 

channels within the predefined time interval, it was imperative to select an algorithm capable 

of processing a very large amount of data. In addition, the chosen classifier needed to be able 

to capture both spatial and temporal patterns in a time series format. In this way, we opted for 

the CNN algorithm due to its proficiency in extracting spatial and temporal patterns through 

the application of trainable filters and assigning importance to these patterns using trainable 
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weights. For these analyses we decided to use the EEGNet algorithm due to its architecture 

that was specifically designed and optimized for processing EEG data (96). 

In the classification analyses, where we used only EEG data as input, the EEGNet 

algorithm was used. However, as previously indicated, the aim of our project was to 

investigate the influence of pre-stimulus activity on visual perception. To this end, we used as 

features not only the continuous EEG signal, but also the other measures of the different 

physiological signals. However, the EEGNet algorithm was not designed to incorporate 

additional data beyond the continuous EEG signal. So, for these, we adapted the EEGNet 

classifier, which we called multimodal classifier. This algorithm allows the concatenation of 

the various measures to the continuous EEG signal. 

Similar to the EEGNet algorithm, in the multimodal algorithm, spatial and temporal 

features are extracted from the continuous EEG signal. Thus, the multimodal algorithm also 

comprises the two aforementioned blocks described above (block one for learning how to 

filter in time and in space the input EEG and block two for learning how to resume in time the 

information). Additionally, the measures obtained from the various physiological signals are 

introduced into the network in the one before the last layer. This is achieved by concatenating 

the features obtained through processing the EEG signal with the aforementioned measures. 

Lastly, the resulting features go through a classification block (Figure 2.9).  

 

 

 

 

 

 

 

 

 

 

Figure 2.9 – Overall visualization of the multimodal classifier’s architecture. 

 

The process of designing and optimizing the structure of the model was one of the 

first analyses carried out. Considering that we used an algorithm previously developed in (96), 

the basis of the structures of the classifier had already been predefined. That said, for this 

classifier it was only necessary to define the parameters (table 6) and optimize some of them.  
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o Optimization - In order to facilitate and enhance the efficiency of the 

optimization process, we decided to focus only on optimizing three specific 

parameters: mini-batch size, probability dropout and temporal filters. Selecting 

the appropriate mini-batch size allows us to achieve training stability and 

improve generalization performance of the model. The optimization of the 

temporal filters allows us to choose the best value that facilitates the extraction 

of all temporal and spatial characteristics. Lastly, we optimized dropout 

probability to prevent overfitting and improve the generalization of the 

algorithm. To choose the best parameters for the EEGNet classifier, we analyzed 

the performance of the EEGNet classifier using ERP data from the backward 

masking study and evaluated its ability to classify the images category. We ran 

the classifier five times for each participant using the 5-fold cross validation 

method and compared the classification AUC for each set of parameters. The 

combination of parameters that offered the best performance was mini-batch 

size - 64; temporal filters – 20; probability dropout 0.5. The results of these tests 

can be found in Figure 2.10.  

 

Solver – model 
optimization ‘adam’ 

Learning rate 0.01 
MaxEpochs 200 

L2Regularization 0.001 
Mini-batch size 64 

Shuffle  ‘every-epoch’ 

ValidationFrequency floor(length(y_train)/mini_bs) 
 

 

Table 6 - Training options of the CNN algorithms. 
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Figure 2.10 – Optimization of the hyper-parameters. a Performance of the EEGNet using a combination of 
various values of temporal filters and various values of dropout probability. b Performance of the EEGNet 
using different values of mini-batch size. In sub-figure b, the temporal filter and the dropout probability 
were already optimized. The green bars represent the combination of different temporal filters with a 
dropout probability of 0.35. In turn, the orange bars represent the combination of different temporal filters 
with a dropout probability of 0.50.   

 

 

2.8.5  Analyses performed 

2.8.5.1 Visual performance model 

In this model, our goal was to investigate the potential impact of pre-stimulus brain 

and body activity on stimulus detection, i.e., the influence on visual performance. 

To study the influence of pre-stimulus body activity, we used an SVM algorithm that 

receives as input a vector with the parameters of a certain physiological signal in each trial. 

We evaluated the ability of the classifier to predict visual performance by combining all 

parameters or by using each parameter individual. Our aim when studying each parameter 

individually was to evaluate the contribution of each parameter to the classifier. In other 

words, the objective was to understand which individual component of the cardiac activity, 

for instance, exerted a more substantial impact on the classifier’s performance, which could 

potentially represent a heightened influence of that component on stimulus detection. It is 

essential to highlight that this was one of the last analyses to be carried out and, due to lack 

of time, it was exclusively performed for the all-trials approach.  

We then used the EEGNet algorithm to investigate the potential influence of brain 

activity on visual performance. For that, we used the EEG signal as input. One of the 
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challenges regarding this analysis was selecting the optimal pre-stimulus interval. 

Considering that the minimum interval of state of expectation was two seconds, we decided 

to choose this interval as the maximum interval of interest. Allied to this, we also choose as a 

possible interval of interest the one second interval and the 0.5 seconds interval. It is 

important to highlight that initially, we conducted the analyses for each subject individually. 

Comparing the performance obtained for the various intervals, we can see that, for both the 

backward masking study and the low contrast study, the only interval that provides a 

performance statistically superior to 0.5 is the one second interval in the low contrast study 

(Figure 2.11 and Table 7). Consequently, to ensure standardization and facilitate a meaningful 

comparison between the two studies, we made the decision to choose a one-second pre-

stimulus for both studies. 

 Backward masking 
study 

Low contrast study 

Time of pre-
stimulus (s) 

One-sample t-test One-sample t-test 

0.5  t(15) = -0.471, p= 0.645 t(15) = 0.128, p= 0.900 
1 t(15) = -0.333, p= 0.744 t(15) = -2.487, p= 0.023 
2 t(15) = -0.636, p= 0.535 t(15) = -1.267, p= 0.221 

 

Table 7 – Statistical analyses of the classifier considering different intervals of pre-stimulus activity. We 
used one-sample t-test to evaluate whether the classifier had a behavior statistically superior to 0.5. The 
statistically significant analyses are highlighted. 

 

Figure 2.11 – In the backward masking study, none of the selected intervals demonstrated a statistically 
significant performance higher than 0.5. In turn, in the low contrast study, when using a one-second 
interval, the performance was statistically greater than 0.5. a AUC using the EEGNet model to study the 
influence of different EEG pre-stimulus intervals (backward masking study). b AUC using the EEGNet 
model to study the influence of different EEG pre-stimulus intervals (low contrast study). Each bar shows 
the results for the respective pre-stimulus interval. The black line is the average performance and the 
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rectangle represents ± standard error of the mean. Each circle within the representation denotes each 
participant. *p<0.05, **p≤0.01, ***p≤0.001, n.s.: not significant. 

 

Lastly, we incorporated the body pre-stimulus activity to find out if it contained 

supplementary information that could be recognized by the classifier, enhancing its 

performance. In summary, in the first analyses the network was only fed with the continuous 

EEG signal, while in the second analyses the network was fed with this signal and with the 

measures described in the previous section. 

In order to ascertain the capacity of the multimodal classifier to extract activity 

patterns from physiological signals, we implemented a control algorithm. This algorithm 

uses the multimodal classifier while setting the EEG to zero, with the primary objective of 

determining the classifier’s capability to predict visual performance based only on pre-

stimulus body activity. This approach was chosen to ensure that any potential absence of 

significant improvements in the classifier’s performance, when combined with the pre-

stimulus body activity, is attributed to the ineffective contribution of this activity to the 

classifier and not because the classifier is not able to extract activity patterns from these 

signals. 

 

2.8.5.2 Image category model 

In this model, we started by assessing the classifier’s capacity of, through the EEG 

signal evoked by the visual stimuli (event-related potentials (ERPs)), discriminating the 

stimulus category.  

After studying whether brain and body pre-stimulus activity influence the detection 

of the stimulus and, consequently, the visual performance, we studied if this activity 

modulates the neural representation of the visual stimulus. With this aim, we combined the 

body and brain pre-stimulus activity with the ERPs and evaluated if this combination 

enhanced the classifier's performance.  

 

 

 

 

 



 

70 
 

2.9 Statistical analyses 
In all the statistical analyses, a cut-off of p < 0.05 was used to define significance. All 

statistical tests were run in Matlab. 

 

2.9.1 Data analysis 

For each variable used, we first evaluated if the data distribution was normal using the 

Shapiro-Wilk test implemented in Matlab’s swtest function. This test tests the null hypothesis 

that a given sample follows a normal distribution. Thus, if the p-value is lower than a chosen 

significance level, the null hypothesis is rejected, which suggests that the data do not follow a 

normal distribution. If the variables followed a normal distribution, parametric statistical 

tests were used (one-sample t-test, paired t-test, and Pearson correlation). If the variables did 

not follow a normal distribution, non-parametric statistical tests were used (Wilcoxon test - 

the signrank function of Matlab and Spearman’s correlation). Thus, to assess whether two 

variables were statistically different, for example, we first studied their distribution and, 

based on that, we used the t-test or the Wilcoxon test. In turn, if we wanted to assess a possible 

correlation between two variables, we applied the normality tests again and, subsequently, 

the correlation tests, Pearson correlation or Spearman's correlation.  

To analyze the correlation between the phase of the cardiac cycle and the respiratory 

cycle at which the stimulus was presented and the RT, we used a slightly different approach. 

In contrast to the previous correlations, when studying the phase, we considered two 

variables: the sine and cosine and employed linear regression models, to establish the 

relationship between the mentioned variables, the sine and cosine of the phase, and the RT.  

Considering that the phase corresponds to a sine and cosine transformation, we can use it as 

circular predictor of RT in a regression model with the coefficients 𝛽1 and 𝛽2 (122). The 

regression model can be represented by the following expression: 

 

𝑅𝑇𝑖 = 𝛽0 + 𝛽1 cos 𝜃𝑖 + 𝛽2 sin 𝜃𝑖 + 𝜖 

Equation 9 – Regression model expression. 

 

where 𝑅𝑇𝑖  is the RT on trial 𝑖, 𝜃𝑖  is the phase at which the stimulus is presented in trial 

𝑖, 𝛽0 is the intercept term and 𝜖 the error term. To obtain the coefficients, we used the Matlab’s 

function regress. To determine whether the coefficients are significantly different from zero, 

we started by examining whether the coefficients followed a normal distribution using the 
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swtest function in Matlab. Then, based on the distribution of the coefficients, we utilized 

either the one-sample t-test or the Wilcoxon test. 

 To study the variations in body and brain activity evoked by the cue and to compare 

across trials type, we used the mult_comp_perm_t1 function developed by David Groppe (123). 

This function analyses all data points and corrects for multiple comparisons using the 

permutation method to compute the p-values. The permutation tests establish the likelihood 

that an observed behavior arose “by chance”. This test iteratively resamples the observed data 

to determine the p-value for the given test (124). With the same function (123), we examined 

the differences observed in ERPs between the car and house trials. The objective with this 

analysis was to find out whether the two categories produced significant variations in the 

neural processing of the stimulus and subsequent decision-making processes.  

 

2.9.2 Statistical analyses of the classifier outputs 

To study the ability of the classifier to perform better than the chance level, we first 

employed a one-sample t-test. When using this test, our objective was to study whether the 

performance statistically exceeds 0.5 when using AUC as the performance metric or 

surpasses 50% when accuracy was chosen as the performance metric.  

However, the doubt arose whether each set of classifiers was effectively better than 

the chance level or whether the result was related to the fact that the data were not balanced 

(especially in the visual performance model). In this way, this outcome does not ensure that 

the classifier’s behavior is non-random. Consequently, we made the decision to replace one-

sample t-test for an alternative statistical test, namely the permutation test, to determine 

whether each classifier individually exhibited a behavior distinct from randomness. In this 

way, we started by extracting the performance of each classifier using the true labels. Next, 

we randomized the true labels and, again, extracted the performance of the classifier (both 

AUC and accuracy). This process was repeated 1000 times. To find out whether the classifier 

exhibited superior behavior compared to random chance, we compared the performance of 

the classifier with the true labels to the performance with the randomized labels. We 

considered that the classifier had a superior behavior to the random one if its performance 

exceeded the performance with the randomized labels in at least 95% of the iterations (p-

value = 0.05). However, as mentioned, each classifier was run multiple times. That said, for a 

given analysis, this permutation test was applied to each individual classifier. Thus, it was 

considered that, for example, with cardiac activity, we could predict the recognition of the 

stimulus if at least 50% of the classifiers had a behavior superior to random chance. 

It should be noted that, in all the statistical analyses of the classifier outputs, we 

determined whether the classifier exhibited an ability of distinguishing in a non-chance way. 



 

72 
 

It is essential to highlight that the inclusion of permutation tests occurred exclusively when 

the approach of incorporating all subjects in the classifier was adopted. In summary, when 

the analyses were carried out within the subject, we employed the one-sample t-test.  

 

2.9.2.1 Visual performance model 

We started by studying the capacity of the classifier to distinguish visual 

performance using brain and body pre-stimulus activity.  

We began by studying the influence of each body physiological signal with the SVM 

classifier and by evaluating the individual contribution of different parameters within each 

signal. In this way, we performed a paired-sample t-test to assess the difference between the 

performance obtained with each measure and the one obtained with the combination of all 

measures of a certain signal (all ECG measures, for example).  

Then, we studied how pre-stimulus body activity improved the performance of the 

multimodal classifier. We started by evaluating the capacity of the multimodal classifier to 

extract activity patterns from the pre-stimulus body activity. We studied each physiological 

signal individually and then combined all physiological signals. To ascertain the contribution 

of each physiological signal when using all the signals combined, we used a paired-sample t-

test. 

Subsequently, we evaluated the classifier’s ability to predict visual performance 

using only the EEG pre-stimulus activity. Then, we included each measure, with the 

expectation that each measure would improve the performance of the classifier. To assess 

the improvement of the performance when incorporating each physiological signal, we 

compared the classifier’s performance using only the pre-stimulus neural activity to the 

performance when each physiological signal was included. To determine whether the 

observed differences were statistically significant, we performed a paired-sample t-test. 

 

2.9.2.2 Image category model 

Considering that our initial analyses were performed within participants, the 

following analyses were done within each individual participant. The first analyses focused 

on analyzing the ability of the classifier to discriminate the category using only the ERPs. 

Then, we compared the classifier’s performance with the actual performance of the 

participant in the task (the hits and misses of the participant). To facilitate the comparison of 

the performances, we opted to use only the accuracy, instead of also using the AUC metric. 

To study if there is a statistically correlation between both performances, we ran the Matlab’s 

function corrcoef. 
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After verifying that we were effectively able to discriminate the trial category using 

only ERPs within participant analyses, the same analysis was performed considering data 

from all participants. 

The next step involved integrating the pre-stimulus activity into the classifier and 

finding out if it modulated the stimulus decoding. To assess the improvement of the 

performance when incorporating each physiological signal, we compared the classifier’s 

performance when only considering the post-stimulus neural activity to its performance 

when incorporating each signal individually and when incorporating all signals combined. 

To determine whether the observed differences were statistically different, we performed a 

paired-sample t-test. 
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3 Results and Discussion 
 

In this chapter, we will present and discuss the results of the analyses we performed, 

using the methods outlined in the previous section. 

 

3.1 Task performance 
In the backward masking study, the average accuracy percentage across all 

participants was 80.1%, with a standard deviation of 9.7% (Figure 3.1 - a)). During data 

acquisition, participants reported that they detected more cars than houses. In fact, the mean 

accuracy for houses was 71.5%, with a standard deviation of 17.5%, whereas the mean accuracy 

for cars was 90.2%, with a standard deviation of 9.7% (Figure 3.1 – b)). Applying statistical tests, 

we can conclude that the performance in car trials is significantly higher than the 

performance in house trials (Shapiro-wilk test: W =0.826, p = 0.006; Wilcoxon test: Z = -3.154, 

p = 0.002).  

 In the study that we used low contrast images, participants recognized 65 ± 13% 

[mean ± standard deviation (SD)] of the trials that contained images (Figure 3.1 - c)). Initially, 

we expected a percentage of recognition closer to 50%; however, we observed a higher 

recognition. We believe that this result is related to the fact that the adaptive threshold 

procedure did not include a warning cue and therefore did not induce the same state of 

attention as in the task and also there could have occurred some perceptual learning that 

improved performance over time. In turn, participants only recognized 8% of the scrambled 

images (with a standard deviation of 9.65%) (Figure 3.1 - c)). This low percentage indicates that 

the participants were following task instructions.  

Participants were instructed to report that they did not recognize the stimulus when 

they did not see any object. Therefore, we expected that the accuracy would be 50% on the 

unrecognized trials, due to the random choice. Our results showed that in unrecognized trials, 

the participants correctly answer 57.71% of the trials (with a standard deviation of 8.14%). In 

turn, in recognized trials, the participants correctly answer 91.21% (with a standard deviation 

of 6.82%) of the trials (Figure 3.1 - d)). As expected, the accuracy values in recognized and 

unrecognized trials were significantly different (Shapiro-wilk test: W = 0.984, p = 0.980; 

paired-sample t-test: t(18) = -18.091, p < 0.001). These findings suggest again that participants 

were following task instructions.   

Finally, an analysis was carried out to evaluate the difference in car trials recognition 

and house trials recognition. In the backward masking study, we can see significant 
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differences between both categories, which suggests that participants, in this study, 

continued to detect more cars compared to houses (Shapiro-wilk test: W = 0.9514, p = 0.4166; 

paired-sample t-test: t(18) = -4.391, p < 0.001; Figure 3.1 – c)). This result might be attributed to 

the fact that a car has salient characteristics, such as wheels or a bumper, that are easier to 

identify than those of a house. 

 

Figure 3.1 – Behavioral results. a Percentage of trials correctly answered for each participant (backward 
masking study). b Accuracy for house and car trials study (backward masking study). c Percentage of trials 
reported as recognized for real and scrambled images (low contrast study). d Accuracy in recognized and 
unrecognized trials of real images (low contrast study). e Percentage of recognized trials in both categories 
of our study (low contrast study). The black horizontal line represents the mean across participants and the 
rectangle represents ± standard error of the mean. Individual circles represent data from each participant. 
*p<0.05, **p≤0.01, ***p≤0.001, n.s.: not significant. 

 

The RT is a measure of how quickly an organism reacts to a stimulus. In this way, RT 

can be used as a measure of response confidence and will reflect the difficulty in detecting 

the stimulus (125). As expected, in the trials where participants correctly identified the 

stimulus category, the RT was significantly shorter compared to the trials where participants 

misidentified the stimulus category (backward masking study; Figure 3.2 – a); Shapiro-wilk 

test: W = 0.858, p = 0.018; Wilcoxon test: Z = -3.5162,  p < 0.001). These findings are in line with 

previous studies that show a decrease in RT related to an increase in accuracy (125). 
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The procedure was repeated in the low contrast study. However, considering that, in 

this version, we were able to study stimulus detection, instead of studying the relation 

between RT and accuracy, we decided to relate the RT with the recognition of the trial. As 

anticipated, trials where participants recognized the stimulus showed significantly shorter 

RTs in comparison to when they did not recognize it Figure 3.2– b); Shapiro-wilk test: W = 

0.726, p <0.001; Wilcoxon test: Z = -3.783, p < 0.001).   

 

Figure 3.2 – Reaction time is lower in recognized trials, as well as in correct trials. a Relation between RT 
and task accuracy (backward masking study). b Relation between RT and stimulus recognition (low 
contrast study). The black horizontal line represents the mean across participants and the rectangle 
represents ± standard error of the mean. Individual circles represent data from each participant. *p<0.05, 
**p≤0.01, ***p≤0.001, n.s.: not significant. 

 

 

3.2 Effect of pre-stimulus neural and physiological 

activity on visual perception 
We started by evaluating the changes in body and brain activity induced by the state 

of expectation. Subsequently, we investigated the association between pre-stimulus activity 

and visual perception. Then, we used an SVM model to classify visual perception (correct vs 

incorrect trials in the backward masking study and recognized vs unrecognized trials in the 

low contrast study) using as features the described parameters of the different physiological 

signals. In turn, when using the EEG pre-stimulus activity to classify visual perception, we 

decided to use a CNN model. 
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3.2.1 Effect of pre-stimulus cardiac activity on visual perception 

3.2.1.1 Study of the time course of heart rate variation evoked by the 

warning cue 

Studies developed in the past years suggest that the state of expectation activates, 

among other aspects, the parasympathetic system, which causes a decrease in heart rate (82). 

These findings are supported by the results obtained in both studies. In both Figure 3.3  – a) 

and Figure 3.3 – b), we can see that the auditory cue evoked a cardiac deceleration. This 

deceleration is followed by a cardiac acceleration, after visual stimulus onset, as we can see 

in Figure 3.3 – c) and Figure 3.3 - d). 

In the backward masking study, when comparing correct with incorrect trials, we see 

a significant difference in cardiac deceleration with correct trials presenting a stronger 

decrease in heart rate (Figure 3.3 - e)). We do not see any difference when comparing 

recognized vs unrecognized trials in the low contrast study. Also, just before target onset 

(Figure 3.3 - g) and Figure 3.3 - h)), we can see that cardiac deceleration is stronger in correct 

(backward masking study) and recognized (low contrast study) trials. However, this difference 

was not statistically significant. After target presentation, we see that, in correct trials 

(backward masking study) and in the recognized trials (low contrast study) the heart starts to 

accelerate around 500 ms which corresponds to the moment of the decision, i.e., the heart 

starts accelerating around the time of the motor response. Considering that, in 

incorrect/unrecognized trials, the subject takes longer to make the decision, so, we expect the 

heart to start accelerating later. These conclusions can be verified in Figure 3.3 – g) and Figure 

3.3- h). 
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Figure 3.3 – The cue induced cardiac deceleration. a and b Cue-locked heart rate modulation (a - backward 
masking study; b - low contrast study). c and d Target-locked heart rate modulation (c - backward masking 
study; d - low contrast study). The gray horizontal line represents the time points where the cardiac 
response is significantly different from zero (p < 0.05). The gray rectangle represents the time window in 
which the stimulus is presented. e Cue-locked heart rate modulation in correct trials (green curve) and 
incorrect trials (orange curve) (backward masking study). f Cue-locked heart rate modulation in recognized 
trials (green curve) and unrecognized trials (orange curve) (low contrast study). g Target-locked heart rate 
modulation in correct trials (green curve) and incorrect trials (orange curve) (backward masking study). h 



 

80 
 

Target-locked heart rate modulation in recognized trials (green curve) and unrecognized trials (orange 
curve) (low contrast study). In e, f, g, and h, the gray horizontal line represents the significant time points 
where the cardiac response is significantly different across the two conditions (p < 0.05). The gray rectangle 
represents the time window in which the stimulus is presented. In all graphs, data are represented as mean 
± standard error of the mean across participants. 

 

3.2.1.2 Analyses of cardiac features used in the classifiers 

For the analyses of the effect of pre-stimulus cardiac activity in visual perception 

using classifiers, we extracted three different types of features: heart rate, heart rate variation 

and cardiac phase. First, we studied how these were related to task performance in both 

studies and then we investigated if an SVM classifier was able to use them to predict the 

participant’s performance. 

 

3.2.1.2.1 Absolute heart rate and heart rate variation 

We started by analyzing the absolute heart rate. In the backward masking study, as 

illustrated in Figure 3.4 – a), we observe that the heart rate for correct and incorrect trials is 

practically the same, which suggests that the participant's accuracy is not significantly 

associated with the absolute heart rate (Shapiro-wilk test: W = 0.981, p = 0.974 and paired-

sample t-test: t(15) = 0.743, p = 0.469). In the low contrast study, in turn, in Figure 3.4 – c), we 

can see that in unrecognized trials the heart rate is significantly higher (Shapiro-wilk test: W 

= 0.814,  p = 0.003 and Wilcoxon test: Z = -1.972, p = 0.040).   

Initially, when we explored the effect of heart rate in the backward masking study, 

since we did not see any correlation between heart rate and task accuracy, we hypothesized 

that the cardiac cycle had no effect on visual processing. However, in the low contrast study, 

we can see that there are significant differences in heart rate in the analyzed conditions. The 

results, in this study, are in line with those found in (2), which suggest that the duration of the 

cardiac cycle at the moment of stimulus presentation influences the visual processing. Thus, 

we can consider that the results of the backward masking study were affected by the use of 

the mask and by the fact that several trials were answered correctly by chance, despite the 

physiological state not favoring such correct responses. 

Moreover, we investigated the relationship between RT and heart rate. We are going 

to start with the backward masking study. Since in absolute heart rate there was no 

significant difference between correct and incorrect trials, we expected that a correlation 

between RT and heart rate would not be observed. In Figure 3.4 – b), the correlation values 

are not statistically different from zero, which goes accordingly to what we were expecting 

(Shapiro-wilk test: W = 0.993, p = 0.118 and one-sample t-test: t(15) = -0.560, p = 0.584). In the 

low contrast study, on the contrary, we observed a higher heart rate in unrecognized trials. 
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Based on that, we anticipated a positive correlation between heart rate and RT. We expected 

this, because, when we do not recognize the stimulus, we tend to take longer to decide which 

option to choose. In Figure 3.4 – d), we can see the precise correlation that we had anticipated 

(Shapiro-wilk test: W = 0.962,  p = 0.602 and one-sample t-test: t(18) = 2.850, p = 0.011). The 

results, in the low contrast study, suggest that the heart rate influences the RT, i.e., the heart 

rate has a role in visual processing. Again, in the backward masking study, we do not see this 

influence, probably, due to the influence of the mask. 

After studying the influence of the absolute heart rate, we studied the heart rate 

modulation. In both studies, there is no statistically significant difference between heart rate 

variation and participant’s accuracy ((Figure 3.4 – e) and (Figure 3.4 – g)) (backward masking 

study: Shapiro-wilk test: W = 0.955, p = 0.495 and one-sample t-test: t(15) = -0.981, p = 0.342; 

low contrast study: Shapiro-wilk test: W =0.876,  p = 0.020 and Wilcoxon test: Z = -0.926, p = 

0.655). 

Similarly to the analysis conducted for heart rate, we also examined the relationship 

between heart rate variation and RT. As for the absolute heart rate, the correlation between 

heart rate variation and reaction time is not significant in the backward masking study 

(Shapiro-wilk test: W = 0.9068, p = 0.094 and one-sample t-test: t(15) = 0.338, p = 0.740; Figure 

3.4 – f)) but is significant in the low contrast study (Shapiro-wilk test: W = 0.974, p = 0.762 and 

one-sample t-test: t(18) = 2.126, p = 0.042; Figure 3.4 – h)). The results obtained in the low 

contrast study suggest that the heart rate variation can influence the time needed to make 

the decision and probably the visual processing. 
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Figure 3.4 – Fluctuations in heart rate, measured in the cardiac cycle just before stimulus onset, are 
associated with visual performance. a Relation between heart rate and participant’s accuracy (backward 
masking study). b Correlation between heart rate and RT (backward masking study). c Relation between 
heart rate and participant’s recognition (low contrast study). d Correlation between heart rate and RT (low 
contrast study). e Relation between heart rate variation and participant’s accuracy (backward masking 
study). f Correlation between heart rate variation and RT (backward masking study). g Relation between 
heart rate variation and participant’s recognition (low contrast study). h Correlation between heart rate 
variation and RT (low contrast study). In sub-figures a, c, e and g the black horizontal line is the average 
heart rate/heart rate variation and the rectangle represents ± standard error of the mean. In sub-figures b, 
d, f and h the black line is the average correlation coefficients and the rectangle represents ± standard error 
of the mean. Individual circles represent data from each participant. Filled circles represent participants 
where correlation is statistically significant (p<0.05). *p<0.05, **p≤0.01, ***p≤0.001, n.s.: not significant. 

 

3.2.1.2.2 Phase of the cardiac cycle at the time of visual stimulus onset 

Lastly, we repeated all the analyses described above but with the phase of cardiac 

cycle at the time of visual stimulus onset. This decision was motivated by previous studies 

whose results suggest that the perception of a tactile stimulus is facilitated when it is 

presented during diastole compared to when it is presented in systole (32). So, we 

hypothesized a better performance or an easier detection of the stimulus in the trials in which 

the stimulus appeared in the diastolic phase. 
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The cardiac cycle has a duration of approximately 700ms, with 270ms corresponding 

to systole and the remaining 430ms corresponding to diastole (126). Considering the 

duration of each phase of the cardiac cycle, we can convert the duration of each phase to 

degrees and thus analyze the circular component of the cycle. Applying a simple rule, systole 

can be estimated to be around 140º, while diastole is approximately 220º. It is to be noted that 

we determined as the beginning of the cycle the S peak and that the systole begins before, 

closer to the R peak. That said, we can consider that systole, in terms of the trigonometric 

circle, corresponds to the end of the fourth quadrant, the total of the first quadrant and the 

initial part of the second quadrant. Since we used the sine and cosine of the phase, 

considering the circular component of the cycle, we hypothesized that, when the stimulus 

occurred in the mentioned quadrants, the detection would be lower. Consequently, looking 

at the trigonometric circle, we anticipated that, in incorrect trials, as well as in unrecognized 

trials, the stimulus would be presented mostly in the first quadrant. The stimulus could also 

appear at the end of the fourth quadrant and at the beginning of the second quadrant, which 

would result in correspondingly negative sine and cosine values. However, these negative 

values would be very close to zero. Having said that, it was expected that the average of sine 

and cosine values would be positive. To illustrate this concept, we expected that, in both 

incorrect trials of the backward masking study and unrecognized trials of the low contrast 

study, the stimulus would predominantly appear in the region delineated by the two orange 

lines (Figure 3.5 – a)).  

As previously conducted, let’s start by the backward masking study. Looking to Figure 

3.5 - b), we observe a more positive value for the sine component for incorrect trials, which 

goes according to what we were expecting. However, to the cosine component we see an 

average mean value more negative (Figure 3.5 - c)). Thus, on average, in incorrect trials, the 

stimulus appears outside the previously delimited region. Anyway, the difference between 

correct and incorrect trials is not statistically significant (sin θ - Shapiro-wilk test: W = 0.973, 

p = 0.889 and paired-sample t-test: t(15) = -1.257, p = 0.228; cos θ - Shapiro-wilk test: W = 0.932, 

p = 0.258 and paired-sample t-test: t(15) = 1.2316, p = 0.237). These results contradict those 

found in (32), which suggest that performance is higher when the stimulus is presented at a 

given moment of the cardiac cycle, namely diastole.  

In the low contrast study, there are no significant differences between trial types 

regarding cosine component (Figure 3.5 – f); Shapiro-wilk test: W = 0.925, p = 0.123 and 

paired-sample t-test: t(18) = -0.981, p = 0.340). In the sine component, in turn, we can see 

significant differences between recognized and unrecognized trials (Figure 3.5 – e); Shapiro-

wilk test: W = 0.940, p = 0.225 and paired-sample t-test: t(18) = 2.506, p = 0.022). As mentioned, 

we expected that, in unrecognized trials, the stimulus would predominantly appear in the 

region delineated by the two orange lines, which corresponds to systole. Thus, it would be 

anticipated that the average of the sine component would be positive. However, this is not 



 

84 
 

what happens. We see that, in the unrecognized trials, the sine component is predominantly 

negative. This result suggests that the recognition of the stimulus is lower when the stimulus 

is presented in the third and fourth quadrant of the trigonometric circle, which, in the cardiac 

cycle, corresponds to diastole. These findings contradict those found in (32), which suggest 

that performance is higher when the stimulus is presented at a given moment of the cardiac 

cycle, namely diastole. Therefore, although a relatively small relationship, in the low contrast 

study, cardiac phase appears to affect performance.  

Similar to the analysis conducted on other cardiac measures, we also correlate the 

phase of the cycle at the time of stimulus presentation with the RT. To do that, we did a 

regression, which allowed us to obtain the regression coefficients for both the cosine and the 

sine of the phase. Once again, the analysis was performed for both studies, but none of them 

found regression coefficients significantly different from zero (Figure 3.5 - d) and Figure 3.5 - 

g)). In the backward masking study the results were: sin θ - Shapiro-wilk test: W = 0.907, p = 

0.095 and one-sample t-test: t(15) = -0.754,  p = 0.462; cos θ - Shapiro-wilk test: W =  0.879, p = 

0.038 and Wilcoxon test: Z = 0.983, p = 0.326. For the low contrast study, the results were: sin θ 

- Shapiro-wilk test: W = 0.826, p = 0.004 and Wilcoxon test: Z = 1.207, p = 0.227; cos θ - Shapiro-

wilk test:  W = 0.010, p = 0.011 and Wilcoxon test: Z = -1.123, p = 0.260. The results obtained 

suggest that the cardiac phase does not influence the RT, i.e., there seems to be no significant 

relationship between the cardiac phase and the time required to make the decision. 
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Figure 3.5 - The phase of the cardiac cycle in which the stimulus appears is associated with visual 
performance in the low contrast study. a Possible representation of systole in the trigonometric cycle - 
systole corresponds to the circle zone between the orange lines. b Relation between the sine component of 
the phase and participant’s accuracy (backward masking study). c Relation between the cosine component 
of the phase and participant’s accuracy (backward masking study). d Regression between sine and RT and 
between cosine and RT, respectively (backward masking study). e Relation between the sine component of 
the phase and participant’s recognition (low contrast study). f Relation between the cosine component of 
the phase and participant’s recognition (low contrast study). g Regression between sine and RT and 
between cosine and RT, respectively (low contrast study). In sub-figures b, c, e and f the black horizontal line 
is the average sine/cosine and the rectangle represents ± standard error of the mean. In sub-figures d and 
g the black horizontal line is the average regression coefficients and the rectangle represents ± standard 
error of the mean. Individual circles represent data from each participant. *p<0.05, **p≤0.01, ***p≤0.001, 
n.s.: not significant. 
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3.2.1.3 SVM: classification of visual performance based on pre-stimulus 

cardiac activity 

Upon analyzing Figure 3.6  - a), we can observe that only the heart rate measure 

allows us to predict whether the participants correctly identified the stimulus category in the 

backward masking study. This conclusion is supported by the results in Table 8, where we 

can see that, when using heart rate measure, 55% of the classifiers surpass random 

performance. Conversely, in the remaining measures, the percentage of classifiers with a 

superior performance to the random behavior is lower than 10%. Continuing the analysis of 

Figure 3.6  - a), we can see that the combination of all measures does not allow predicting the 

accuracy. We expected a different behavior, since with the heart rate the classifier can 

extract activity patterns. By combining all the measures, even though the phase and heart 

rate variation do not contain enough information, we expected that the classifier would be 

able to extract the heart rate patterns that it extracted when studying this measure alone. 

However, this was not the observed behavior. We believe that this observed behavior can be 

explained by conflicting information within the different measures, which makes it difficult 

for the classifier to perceive which patterns are associated with correct and incorrect trials. 

Consequently, we can deduce that among all the measures, the heart rate is the sole one that 

provides pertinent information to the classifier. 

Subsequently, the same analysis was performed for the low contrast study. Table 8 

reveals that only some of the classifiers perform better than the random behavior, with a 

maximum of 25% observed in the study of each measure separately. That said, we can deduce 

that, within this study, cardiac activity does not provide enough information for the classifier 

to predict whether the participant recognized the stimulus. Consequently, we proceeded to 

study the influence of each measure individually. In Figure 3.6 - b), we see no significant 

differences between the classifier’s performance when using each measure separately and 

when combining all measures. Consequently, we can conclude that, in the low contrast study, 

pre-stimulus cardiac activity does not facilitate the prediction of participant’s recognition. 

The results obtained in both studies are contradictory. As observed earlier, the low 

contrast study demonstrates a notable and significant difference in heart rate between 

recognized and unrecognized trials, whereas such difference is missing when comparing 

correct and incorrect trials in the backward masking study. That said, it would be expected 

that in the low contrast study it would be possible to predict recognition through cardiac 

activity, whereas in the backward masking study it would not be possible. However, the 

opposite behavior is verified. The results suggest that the classifier was able to extract 

activity patterns in heart rate in the backward masking study that were not detectable 

through traditional statistical analysis.  
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 Backward masking study Low contrast study 

All cardiac measures 0% 15% 
Heart rate 55% 25% 

Heart rate variation 0% 25% 
Phase 5% 25% 

 

Table 8 – Percentage of classifiers using cardiac measures as features that perform better than random. 
We used the permutation test to study if the classifiers had a behavior better than random. The 
permutation test results give the percentage of classifiers that perform better than random as a metric. 
That said, to define whether a given measure allows statistical prediction, a threshold of 50% was 
employed. This signifies that we consider successful classification when a minimum of 50% of the 
classifiers exhibit a performance surpassing random chance. The successful classifications are 
highlighted. 

 

 Backward masking study Low contrast study 

Heart rate t (19) = -10.405; p < 0.001 t (19) = -1.564, p = 0.134 
Heart rate 
variation t (19) = 2.390; p = 0.027 t (19) = -1.794, p = 0.089 

Phase t (19) = -1.886; p = 0.075 t (19) = -1.726, p = 0.101 
 

Table 9 – Comparison between the use of each cardiac measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all cardiac 
measures were combined. The statistically significant analyses are highlighted. 
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Figure 3.6 – Pre-stimulus cardiac activity allows predicting participant's accuracy in the backward 
masking study but does not allow predicting stimulus recognition in the low contrast study. a AUC using a 
SVM model in the backward masking study. b AUC using a SVM model in the low contrast study. The 1st bar 
shows the results for when the combination of all cardiac measures is used. The remaining bars concern 
the performance of the classifiers using each of the measures separately. The black horizontal line is the 
average performance and the rectangle represents ± standard error of the mean. Each circle within the 
representation denotes each individual instance in which the classifier was executed. +: Using this measure 
as an input, more than 50% of the classifiers present a behavior superior to random. ^: When utilizing this 
measure as input, it results in a performance that is statistically different to the performance produced 
when using all measures combined. ^p<0.05; ^^p<0.01; ^^^p<0.001. 

 

3.2.2 Effect of pre-stimulus respiratory activity on visual 

perception 

3.2.2.1 Study of the respiratory cycle duration variation evoked by the 

warning cue 

We found that, in both studies, the auditory cue is followed by an increase in the 

duration of the respiratory cycle and then followed by a decrease (Figure 3.7 – a) and Figure 

3.7 - c)). Permutation tests revealed that the cycle duration that includes the visual stimulus 

was significantly increased in comparison with the duration of the cycle before the cue. In 

Figure 3.7 – b) and Figure 3.7 - d), we can see that the maximum of cycle duration modulation 

occurred in the cycle that contains the visual stimulus. This observation suggests that 
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sensorimotor processing is associated with an increase in respiratory cycle duration. 

Following that, our results suggest an acceleration in respiratory rhythm, i.e., decrease in 

cycle duration. This finding suggests that the presentation of visual stimulus induces a 

deceleration in breathing activity, maybe as an attempt to facilitate visual processing or 

maybe corresponds to the return of the normal state, which had been interrupted by the 

induction of the state of expectation. Comparing the two studies, we can see that, in the low 

contrast study, cycle length restoration takes longer than in the backward masking study. This 

difference might be explained by task variations that, consequently, influence visual 

processing. 

Along these lines, we also conducted an analysis of the variation in cycle duration 

between correct/incorrect trials (backward masking study) and recognized/unrecognized 

trials (low contrast study). In the backward masking study, we can see significant differences 

only in the fourth cycle after cue onset (Figure 3.8 - a)), which appears after visual stimulus 

onset. This result suggests that the observed difference is not cue induced. Finally, in the low 

contrast study, there are no significant differences between the trial types (Figure 3.8 - c) and 

Figure 3.8  – d)). 
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Figure 3.7 – Sensorimotor processing is associated with an increase in the duration of the respiratory cycle. 
a Variation of respiratory cycle duration in one cycle before and four cycles after cue onset (backward 
masking study). b Variation of respiratory cycle duration in the cycle before and after target onset 
(backward masking study). c Variation of respiratory cycle duration in one cycle before and four cycles after 
cue onset (low contrast study). d Variation of respiratory cycle duration in the cycle before and after target 
onset (low contrast study). In sub-figures a and c, the zero on the x-axis represents the respiratory cycle that 
contains the auditory cue. In sub-figures b and d, the zero on the x-axis represents the respiratory cycle that 
contains the target. In all graphs, data are represented as mean ± standard error of the mean across 
participants. The asterisks signal the cycles where cycle duration variation is significantly different from 
zero (*p<0.05, **p≤0.01, ***p≤0.001) 
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Figure 3.8 - There are no significant differences in pre-stimulus respiratory activity between correct and 
incorrect trials (backward masking study) and recognized and unrecognized trails (low contrast study). a 
Variation in the duration of the respiratory cycle in correct and incorrect trials in one cycle before and four 
cycles after cue onset (backward masking study). b Variation in the duration of the respiratory cycle in 
correct and incorrect trials in the cycle before and after target onset (backward masking study). c Variation 
in the duration of the respiratory cycle the recognized and unrecognized trials in one cycle before and four 
cycles after cue onset (low contrast study). d Variation in the duration of the respiratory cycle in correct and 
incorrect trials in the cycle before and after target onset (low contrast study). In sub-figures a and c, the zero 
on the x-axis represents the respiratory cycle that contains the auditory cue. In sub-figures b and d, the zero 
on the x-axis represents the respiratory cycle that contains the target. In all graphs, data are represented 
as mean ± standard error of the mean across participants. The asterisks signal the cycles where cycle 

duration variation is significantly different between trial types (*p<0.05, **p≤0.01, ***p≤0.001). 
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3.2.2.2 Analyses of respiratory features used in the classifiers 

For the analyses of the effect of pre-stimulus respiratory activity in visual perception 

using classifiers, we extracted two different types of features: respiratory cycle duration and 

respiratory phase. It should be noted that, to obtain the respiratory cycle duration, we 

extracted the length of the cycle just before stimulus onset. First, we studied how these were 

related to task performance in both studies and then we investigated if an SVM classifier was 

able to use them to predict the participant’s performance. 

 

3.2.2.2.1 Respiratory cycle duration 

In both Figure 3.9 – a) and Figure 3.9 – c), we can see that the comparison of the 

respiratory cycle duration between the trial types in both studies (correct/incorrect trials in 

the backward masking study and recognized/unrecognized trials in the low contrast study) 

revealed no significant differences (backward masking study: Shapiro-wilk test: W = 0.913, p 

= 0.150 and paired-sample t-test: t(13) = 0.284, p = 0.781; low contrast study: Shapiro-wilk test: 

W = 0.698, p < 0.001 and Wilcoxon test: Z =1.023, p = 0.306). Considering that, in both studies, 

there is no relation between visual stimulus performance and cycle duration, we can 

hypothesize that the respiratory rate is not associated with visual performance and, probably, 

does not influence visual processing. 

Similar to the analyses conducted for other measures, we also explored the 

correlation between respiratory cycle duration and RT. Since, in the previous analysis, none 

of the studies showed significant differences between the trial types, we expected that a 

correlation between RT and respiratory cycle would not be observed. In fact, the results go 

according to what we were expecting, since in none of the studies the correlation values are 

statistically different from zero (backward masking study: Shapiro-wilk test: W = 0.955, p = 

0.639 and one-sample t-test: t(13) = 0.550, p = 0.591; low contrast study: Shapiro-wilk: W = 

0.934, p = 0.230 and one-sample t-test: t(17) = -1.075, p = 0.297) (Figure 3.9 – b) and Figure 3.9 – 

d)) . The findings obtained from this analysis are in alignment with previous observations. In 

none of the analyses there seems to be an association between the respiratory cycle duration 

and the visual processing. 
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Figure 3.9 – The respiratory rhythm seems not to be associated with visual performance. The respiratory 
cycle duration was measured considering the respiratory cycle just before stimulus onset. a Relation 
between respiratory cycle duration and participant’s accuracy (backward masking study). b Correlation 
between respiratory cycle duration and RT (backward masking study). c Relation between respiratory cycle 
duration and participant’s recognition (low contrast study). d Correlation between respiratory cycle 
duration and RT (low contrast study). In sub-figures a and c the black horizontal line is the average 
respiratory cycle duration and the rectangle represents ± standard error of the mean. In sub-figures b and 
d the black horizontal line is the average correlation coefficients and the rectangle represents ± standard 
error of the mean. Individual circles represent data from each participant.  Filled circles represent 
participants where correlation is statistically significant (p<0.05). *p<0.05, **p≤0.01, ***p≤0.001, n.s.: not 
significant 

  

3.2.2.2.2 Phase of respiratory cycle at the time of visual stimulus onset 

In 2019, Perl, O. et al. saw that when the stimulus is presented in synchronization with 

inhalation, there is an optimization of stimulus processing, which results in a higher 

performance (4). Hence, we expected to see a better performance or an easier detection in the 

trials in which the stimulus appeared in inhalation. Considering, as explained in the methods 

section, that we defined the beginning of the cycle as the moment in which a valley occurs, we 

can assume that the beginning of the cycle corresponds to the beginning of inhalation. In this 

way, we hypothesized that stimulus detection, as well as accuracy, would be higher when the 

stimulus is presented in the beginning of the cycle. The ratio between the inspiratory and 
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expiratory phase is 1:2, indicating that the duration of the expiratory phase is twice as long as 

the inspiratory phase (127). By converting this proportion to degrees, we can establish that the 

inspiratory phase corresponds to approximately 120º, while the expiratory phase accounts 

for the remaining 240º. That said, we can consider that inspiratory phase, in terms of the 

trigonometric circle, corresponds to the first quadrant and to the initial portion of the second 

quadrant. Since we used the sine and cosine of the phase, considering the circular component 

of the cycle, we hypothesized that, when the stimulus occurred in the mentioned quadrants, 

the detection would be higher. Consequently, looking at the trigonometric circle, we 

anticipated that, in correct trials, as well as in recognized trials, the stimulus would be 

presented mostly in the first quadrant. The stimulus could also appear at the beginning of the 

second quadrant, which would result in correspondingly negative cosine values. However, 

these negative values would be very close to zero. Having said that, it was expected that the 

average of sine and cosine values would be positive. To illustrate this concept, we expected 

that, in both correct trials of the backward masking study and recognized trials of the low 

contrast study, the stimulus would predominantly appear in the region delineated by the two 

orange lines (Figure 3.10 – a)). 

As previously conducted, let us begin with the backward masking study. Looking to 

Figure 3.10 - b) and Figure 3.10 – c), we observe more positive values in both sine and cosine 

components for incorrect trials, which contradicts our initial expectation. Positive sine and 

cosine values were expected for correct trials and not for incorrect ones. Applying statistical 

tests, we found no significant difference between correct and incorrect trials (sin θ - Shapiro-

wilk test: W = 0.933, p = 0.333 and paired-sample t-test: t(13) = -0.652, p = 0.526; cos θ - Shapiro-

wilk test: W = 0.947, p = 0.458 and paired-sample t-test: t(13) = -0.094, p = 0.927). Based on the 

results of these statistical tests, we can conclude that the phase of the respiratory cycle did 

not significantly influence the participant's performance in the backward masking study. 

The identical analytical approach was employed in the low contrast study. Again, we 

anticipated observing more positive sine and cosine values in the recognized trials. Looking 

at Figure 3.10 – e), we can see a higher, but not significant, value of sine component for 

recognized trials compared to unrecognized trials; however, the average value is negative 

(Shapiro-wilk test: W  = 972, p = 0.832 and paired-sample t-test: t(17)  = 0.467, p = 0.646). In 

Figure 3.10 – f), we also see no significant patterns in the cosine component, being the average 

value in recognized trials practically zero (Shapiro-wilk test: W = 0.956, p = 0.590 and paired-

sample t-test: t(17) = 0.790, p = 0.440). In this way, the sine and cosine components in 

recognized trials are not predominantly positive, which suggest that the inspiratory phase is 

not the phase that favors stimulus detection. Considering the results, we can conclude that, 

in the low contrast study, the phase of the respiratory cycle is not associated with participant's 

recognition. 
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Similarly to the analysis conducted on other respiratory measures, we also examined 

the phase of the cycle at the time of stimulus presentation with the RT. To achieve this, we 

performed a regression, which allowed us to obtain the regression coefficients for both the 

cosine and the sine of the phase. Once again, these analyses were performed for both studies, 

but none of them found regression coefficients significantly different from zero (Figure 3.10 

– d) and Figure 3.10 – g)). In the backward masking study, the results were: sin θ - Shapiro-

wilk test: W = 0.950, p = 0.561 and one-sample t-test: t(13) = -0.032, p = 0.974; cos θ - Shapiro-

wilk test: W = 0.862, p = 0.083 and one-sample t-test: t(13) = 0.802, p = 0.467. For the low 

contrast study, the results were: sin θ - Shapiro-wilk test: W = 0.978, p = 0.928 and one-sample 

t-test: t(17) = -0.867, p = 0.398; cos θ - Shapiro-wilk test: W = 0.958, p = 0.554 and one-sample 

t-test: t(17) = 0.1367,  p = 0.893. 

Taking into consideration all the findings in this section, we speculate that the phase 

of the respiratory cycle in which the stimulus is presented is not associated with visual 

stimulus recognition. 
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Figure 3.10 – The phase of the respiratory cycle in which the stimulus appears does not influence its 
perception. a Possible representation of inspiration in the trigonometric cycle – inspiration corresponds to 
the circle zone between the orange lines. b Relation between the sine component of the phase and 
participant’s accuracy (backward masking study). c Relation between the cosine component of the phase 
and participant’s accuracy (backward masking study). d Regression between sine and RT and between 
cosine and RT, respectively (backward masking study). e Relation between the sine component of the phase 
and participant’s recognition (low contrast study). f Relation between the cosine component of the phase 
and participant’s recognition (low contrast study). g Regression between sine and RT and between cosine 
and RT, respectively (low contrast study). In sub-figures b, c, e and f the black horizontal line is the average 
sine/cosine and the rectangle represents ± standard error of the mean. In sub-figures d and g the black 
horizontal line is the average regression coefficients and the rectangle represents ± standard error of the 
mean. Individual circles represent data from each participant. *p<0.05, **p≤0.01, ***p≤0.001, n.s.: not 
significant. 
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3.2.2.3 SVM: classification of visual performance based on pre-stimulus 

respiratory activity 

In a similar manner to cardiac measures, we also investigated whether there are 

patterns in respiratory activity that may facilitate stimulus detection and task performance. 

In Table 10, we can see that, in the backward masking study, when we applied the 

permutation tests, only the parameter related to respiratory cycle duration exhibits 

performance significantly superior to random behavior. In other words, this particular 

parameter is the only one with at least 50% of classifiers demonstrating better performance 

than random behavior. Conversely, the respiratory phase parameter does not appear to have 

enough information to allow the classifier to predict trial performance, since only 40% of the 

classifiers demonstrate better performance than random. In Figure 3.11 - a), we can see that 

by combining the features of respiratory activity there is a deterioration in classifier 

performance. This observation suggests, in some way, that these measures might contain 

conflicting information. In conclusion, this result may come from the fact that the backward 

masking study is very noisy. 

In the low contrast study, the classifiers were able to extract activity patterns from 

each combination of features allowing predicting stimulus recognition. From Table 10, it 

becomes evident that in all combinations of features employed, over 70% of the classifiers 

achieved a performance superior to the random behavior. We then studied the influence of 

each parameter individually. In Figure 3.11 – b), we can see that the performance of each 

feature separately is almost the same as the performance of all features combined. This 

result suggests that the combination of all measures does not provide extra information to 

the classifier. 

As no significant differences were found in the previous analyses, we did not expect 

the classifier to be able to predict visual performance. In the backward masking study, only 

the respiratory cycle duration parameter offers relevant information to the classifier. 

However, even within this context, only 55% of the classifiers were able to outperform 

random, which is very close to the threshold we established. In contrast, in the low contrast 

study, it was possible to predict stimulus recognition through respiratory activity. In this 

study, classifiers were able to recognize patterns of activity that were not detected in 

previous analyses. We believe that this disparity may be attributed to the fact that our 

previous analyses focused on the average behavior of each participant and not on the activity 

pattern across trials. 
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 Backward masking study Low contrast study 

All respiratory measures 10% 80% 
Respiratory cycle duration 55% 70% 

Phase 40% 70% 
 

Table 10 – Percentage of classifiers using respiratory measures as features that perform better than 
random. We used the permutation test to study if the classifiers had a behavior better than random. The 
permutation test results give the percentage of classifiers that perform better than random as a metric. 
That said, to define whether a given measure allows statistical prediction, a threshold of 50% was 
employed. This signifies that we consider successful classification when a minimum of 50% of the 
classifiers exhibit a performance surpassing random chance. The successful classifications are 
highlighted. 

 

 

 Backward masking study Low contrast study 
Respiratory cycle 

duration t (19) = -2.898; p = 0.009 t (19) = -1.267; p = 0.220 

Phase t (19) = -1.825; p = 0.084 t (19) = -0.467; p = 0.646 
 

Table 11 – Comparison between the use of each respiratory measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all 
respiratory measures were combined. The statistically significant analyses are highlighted. 

 

 

Figure 3.11 - Pre-stimulus respiratory activity allows predicting the participant's recognition. a AUC using 
a SVM model in the backward masking study. b AUC using a SVM model in the low contrast study. The 1st 
bar shows the results for when the combination of all respiratory measures is used. The remaining bars 
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concern the performance of the classifiers using each of the measures separately. The black horizontal line 
is the average performance and the rectangle represents ± standard error of the mean. Each circle within 
the representation denotes each individual instance in which the classifier was executed. +: Using this 
measure as an input, more than 50% of the classifiers present a behavior superior to random. ^: When 
utilizing this measure as input, it results in a performance that is statistically different to the performance 
produced when using all measures combined. ^p<0.05; ^^p<0.01; ^^^p<0.001. 

 

 

3.2.3 Effect of pre-stimulus pupillary response 

3.2.3.1 Study of the time course of the pupillary response evoked by the 

warning cue 

Recent research findings suggest that the state of expectation among other things 

activates the sympathetic system, which results in pupil dilation (82). Allied to this, prior 

research demonstrates that greater pupil dilation suggests increased cognitive activity, 

implying that in such instances stimulus detection tends to be more favorable (128). In Figure 

3.12 - a) and Figure 3.12 - b), these conclusions are supported. We can see that, initially, the 

auditory signal induces a constriction followed by significant dilation. Contrary to what is 

seen in the backward masking study, in the low contrast study, the constriction is more 

pronounced and has a longer duration, i.e., the pupil starts to dilate later (about three seconds 

after cue onset). Comparing the two studies, we note that, in the backward masking study, the 

maximum magnitude of pupil response is higher. We hypothesize that the changes observed 

in pupil behavior may be attributed to variations in task difficulty. As the two tasks differ from 

each other, it is plausible to assume that the required level and type of concentration needed 

may also differ. In this way, the participants prepare themselves differently for the two tasks, 

which may result in differences in pupil behavior. 

In Figure 3.12 – c), Figure 3.12 – d), Figure 3.12 – g) and Figure 3.12 – h), we can see that 

after stimulus onset there is a substantial increase in pupil size, resulting in a distinct pupil 

dilation. This dilation phenomenon started approximately between 300 to 500ms, which 

corresponds to the decision-making processes. After that, the dilation extended for 

approximately one second after stimulus onset, coinciding with the point at which the subject 

made a choice and provided a response with the chosen category option (in the task 

performance section, we can see that the average reaction time in both studies is 

approximately one second after stimulus onset - Figure 3.2). 
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Figure 3.12 – The cue induced pupil dilation. a and b Cue-locked pupil size modulation (a - backward 
masking study; b - low contrast study). c and d Target-locked pupil size modulation (a - backward masking 
study; b - low contrast study). e and f Cue-locked pupil derivative modulation (a - backward masking study; 
b - low contrast study). g and h Target-locked pupil derivative modulation (a - backward masking study; b 
- low contrast study). The gray horizontal line represents the significant time points where the pupil size 
modulation or the pupil derivative modulation is significantly different from zero (p < 0.05). The gray 
rectangle represents the time window in which the stimulus is presented. In all graphs, data are 
represented as mean ± standard error of the mean across participants.  
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In the backward masking study, when comparing correct with incorrect trials, we see 

no significant differences in pupillary response (Figure 3.13 – a), Figure 3.13 – c), Figure 3.13 – 

e) and Figure 3.13 – g)). It was expected that, in the correct trials, the dilation would be more 

pronounced, which would produce a more pronounced and positive behavior in the 

derivative. For the low contrast study, looking at Figure 3.13 – b) and Figure 3.13 – f), it is 

apparent that there is no significant difference in pupillary response between recognized and 

unrecognized trials. However, Figure 3.13 – d) and Figure 3.13 – h) reveal distinct times points 

where the difference between the two conditions is statistically significant. It should be noted 

that these significant time points occur after stimulus onset, so the differences were not 

induced by the state of expectation. These statistical differences may be linked to the 

decision-making process. 
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Figure 3.13 – The state of expectation did not induce significant differences in pupillary response between 
correct and incorrect trials (backward masking study) or between recognized and unrecognized trials (low 
contrast study).  a Cue-locked pupil size modulation in correct (green curve) and in incorrect trials (orange 
curve) (backward masking study). b Cue-locked pupil size modulation in recognized (green curve) and 
unrecognized trials (orange curve) (low contrast study). c Target-locked pupil size modulation in correct 
(green curve) and in incorrect trials (orange curve) (backward masking study). d Target-locked pupil size 
modulation in recognized (green curve) and in unrecognized trials (orange curve) (low contrast study). e 
Cue-locked pupil derivative modulation in correct (green curve) and in incorrect trials (orange curve) 
(backward masking study). f Cue-locked pupil derivative modulation in recognized (green curve) and 
unrecognized trials (orange curve) (low contrast study). g Target-locked pupil derivative modulation in 
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correct (green curve) and in incorrect trials (orange curve) (backward masking study). h Target-locked pupil 
derivative modulation in recognized (green curve) and unrecognized trials (orange curve) (low contrast 
study). The gray horizontal line represents the significant time points where the pupil size modulation or 
the pupil derivative modulation is significantly different for the two conditions (p < 0.05). The gray rectangle 
represents the time window in which the stimulus is presented. In all graphs, data are represented as mean 
± standard error of the mean across participants. 

 

3.2.3.2 Analyses of pupil features used in the classifiers 

For the analyses of the effect of pre-stimulus pupillary response in visual perception 

using classifiers, we extracted three different types of features: pupil size (percentage of the 

mean), relative pupil size (pupil dilation relative to the pre-cue baseline) and average pupil 

derivative. First, we studied how these were related to task performance in both studies and 

then we investigated if an SVM classifier was able to use them to predict the participant’s 

performance. 

 

3.2.3.2.1 Pupil size and derivative 

Prior research suggests that participants with bigger pupil dilation may demonstrate 

a higher ability to detect stimuli and, consequently, better task performance than those with 

smaller dilation (3,43). In this way, our hypothesis was that a greater pupillary response was 

associated with better visual performance. 

Contrary to our expectations, for the backward masking study, none of the measures 

showed statistically significant differences between the correct and incorrect trials (Figure 

3.14 – a), Figure 3.14 – e) and Figure 3.14 – i)). Considering the pupil size, the results of the 

statistical analysis were: Shapiro-wilk test: W = 0.881, p = 0.041 and Wilcoxon test: Z = -0.672, p 

= 0.501. When we removed the baseline, the results were: Shapiro-wilk test: W = 0.896, p = 

0.064 and paired-sample t-test: t(15) = -0.341, p = 0.738. Finally, when we consider the average 

pupil derivative the results were: Shapiro-wilk test: W = 0.915, p = 0.138 and paired-sample t-

test: t(15) = -0.105, p = 0.918. In contrast to the results of the backward masking study, in the low 

contrast study, we can see significant differences in two of the three features analyzed. In both 

pupil size and average pupil derivative (Figure 3.14 – c) and Figure 3.14 – k)), the average value 

in the recognized trials is significantly higher than the average value in the unrecognized 

trials (pupil size - Shapiro-wilk test: W = 0.944, p = 0.311 and paired-sample t-test: t(18) = 3.342, 

p = 0.004; average pupil derivative - Shapiro-wilk test: W = 0.965, p = 0.683 and paired-sample 

t-test: t(18) = 2.554, p = 0.020). Conversely, the relative pupil size did not reveal any statistical 

difference between recognized and unrecognized trials (Shapiro-wilk test: W = 0.970,  p = 0.772 

and paired-sample t-test: t(18) = 0.800, p = 0.434). These results align with previous research 

findings (3,43).  
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Finally, in the backward masking study, we do not see any correlation between pupil 

features, such as relative pupil size and average pupil derivative, and RT (Figure 3.14 – f) and 

Figure 3.14 – j); relative pupil size - Shapiro-wilk test: W = 0.942, p = 0.378 and one-sample t-

test:  t(15) = -0.256, p = 0.801; average pupil derivative - Shapiro-wilk test: W = 0.9012, p = 0.078 

and one-sample t-test: t(15) = 0.086, p = 0.933). However, in Figure 3.14 - b), we can see a 

significant positive correlation between pupil size and RT (Shapiro-wilk test: W = 0.917, p = 

0.132 and one-sample t-test: t(15) = 2.561, p = 0.022). In the low contrast study, only the pupil 

size showed a significant negative correlation with RT (Figure 3.14 - d); Shapiro-wilk test: W = 

0.949, p = 0.392 and one-sample t-test: t(18) = -2.913, p = 0.009). Since the RT is higher in 

unrecognized trials and the pupillary response is lower in these trials, we expected a negative 

correlation between these two measures. Thus, the obtained results for the feature pupil size 

aligns with the initially hypothesized expectation. The remaining measures, relative pupil 

size and average pupil derivative, did not show statistically significant correlations with 

reaction time (Figure 3.14 – h) and Figure 3.14 – l)) (relative pupil size - Shapiro-wilk test: W = 

0.876, p = 0.020 and Wilcoxon test: Z = -0.966, p = 0.334; average pupil derivative - Shapiro-

wilk test: W = 0.926, p = 0.132 and one-sample t-test: t(18) = -1.477,  p = 0.157). 

 The results obtained in these analyses suggest that pupil-linked arousal fluctuations 

can influence the time needed to make the decision and probably the visual processing. 
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Figure 3.14 – Fluctuations in pupil size measured in one second before target onset are associated with 
visual processing. a Relation between average pupil value and participant’s accuracy (backward masking 
study). b Correlation between average pupil value and RT (backward masking study). c Relation between 
average pupil value and participant’s recognition (low contrast study). d Correlation between average pupil 
value and RT (low contrast study). e Relation between relative pupil value and participant’s accuracy 
(backward masking study). f Correlation between relative pupil value and RT (backward masking study). g 
Relation between relative pupil value and participant’s recognition (low contrast study). h Correlation 
between relative pupil value and RT (low contrast study). i Relation between average pupil derivative and 
participant’s accuracy (backward masking study). j Correlation between average pupil derivative and RT 
(backward masking study). k Relation between average pupil derivative and participant’s recognition (low 
contrast study). l Correlation between average pupil derivative and RT (low contrast study). In sub-figures 
a, c, e, g, i and k the black line is the average pupil size/ average pupil derivative and the rectangle represents 
± standard error of the mean. In sub-figures b, d, f, h, j and l the black line is the average correlation 
coefficients and the rectangle represents ± standard error of the mean. Individual circles represent data 
from each participant.  Filled circles represent participants where correlation is statistically significant 
(p<0.05). *p<0.05, **p≤0.01, ***p≤0.001, n.s.: not significant. 
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3.2.3.3 SVM: classification of visual performance based on pre-stimulus 

pupillary response 

Then, we investigated whether there was information in the pupillary response that 

may facilitate the classifier’s prediction of task performance. From Table 12, it is evident that, 

in the backward masking study, a maximum of 5% of the classifiers exhibit superior 

performance compared to random behavior, which means that the classifier was not able to 

extract activity patterns from these features. We believe that there exists a correlation 

between pupil size and its variation in relation to the cue (the results of the correlation 

analyses can be found in the appendix), which suggests that, when we combine these two 

measures, the patterns they deliver are similar (Figure 3.15 – a)). In the average pupil 

derivative, on the contrary, the performance is statistically lower compared to the 

performance observed when all measures are combined (Figure 3.15 – a)). In conclusion, in 

the backward masking study, as anticipated, it is not possible to predict task performance 

through pupillary response. 

For the low contrast study, Table 12 shows that, in almost all combinations of 

measures, over 50% of the classifiers outperformed random behavior, except for the average 

pupil derivative. With average pupil derivative only 45% of the classifiers exhibited a behavior 

better than random. This result suggests that this parameter does not provide patterns of 

activity to the classifier. We then studied the influence of each measure individually. In Figure 

3.15 – b), we can see that the performance of each measure separately is slightly inferior to the 

performance of all measures combined. Nonetheless, it is worth noting that the classifier’s 

performance, when using pupil size and relative pupil size, does not exhibit statistically 

inferior results in comparison to its performance when incorporating all measures (Table 13). 

This result suggests that, in a certain way, the measures were correlated, so their combination 

did not provide very significant information to the classifier (results of correlation analyses 

are found in the appendix). 

As mentioned, we did not expect the classifier to be able to predict accuracy in the 

backward masking study, but we expected the classifier to be able to predict stimulus 

recognition in the low contrast study. Thus, our results align with the anticipated 

expectations, suggesting that fluctuations in pupil size are associated with visual 

performance.  
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 Backward masking study Low contrast study 

All pupil measures 0% 85% 
Pupil size 0% 80% 

Relative pupil size 5% 75% 
Average pupil derivative 0% 45% 

 

Table 12 – Percentage of classifiers using pupil measures as features that perform better than random. We 
used the permutation test to study if the classifiers had a behavior better than random. The permutation 
test results give the percentage of classifiers that perform better than random as a metric. That said, to 
define whether a given measure allows statistical prediction, a threshold of 50% was employed. This 
signifies that we consider successful classification when a minimum of 50% of the classifiers exhibit a 
performance surpassing random chance. The successful classifications are highlighted. 

 

 

 Backward masking study Low contrast study 

Pupil size t (19) = -1.974; p = 0.246 t (19) = 1.913; p = 0.071 
Relative pupil size t (19) = -0.2025; p = 0.842 t (19) = 1.4858; p = 0.154 

Average pupil derivative t (19) = 2.5401; p = 0.020 t (19) = 2.634; p = 0.016 

 

Table 13 - Comparison between the use of each pupil measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all pupil 
measures were combined. The statistically significant analyses are highlighted. 
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Figure 3.15 - Pre-stimulus pupillary activity allows predicting the participant's recognition in the low 
contrast study but does not allow predicting task performance in the backward masking study. a AUC using 
a SVM model in the backward masking study. b AUC using a SVM model in the low contrast study. The 1st 
bar shows the results for when the combination of all pupil measures is used. The remaining bars concern 
the performance of the classifiers using each of the measures separately. The black horizontal line is the 
average performance and the rectangle represents ± standard error of the mean. Each circle within the 
representation denotes each individual instance in which the classifier was executed. +: Using this measure 
as an input, more than 50% of the classifiers present a behavior superior to random. ^: When utilizing this 
measure as input, it results in a performance that is statistically different to the performance produced 
when using all measures combined. ^p<0.05; ^^p<0.01; ^^^p<0.001. 

 

3.2.4 Effect of pre-stimulus blinking activity on visual 

perception 

3.2.4.1 Study of the time course of blinking rate variation evoked by the 

warning cue 

The blink rate is thought to be a measure of cognitive load and task engagement. 

Subjects tend to blink less in demanding cognitive tasks, which reflects a higher level of 

attentional focus and cognitive effort (48,49). Based on this, we expected that the alerting 

stimulus would induce a reduction in the blinking rate. In fact, in Figure 3.16 – a) and Figure 

3.16 – b), we can observe a significant reduction in the blinking rate. However, the reduction 

occurred only about one second after the warning cue onset. In Figure 3.16 – a) and Figure 3.16 

– b), we can see an abrupt  increase in the blinking rate after the cue onset. When we get an 

alarm signal or any abrupt or unexpected stimulus, our body automatically reacts to protect 

the eye, which may cause a blink. Therefore, our results are in line with expectations. That 

said, we consider that the changes produced by the state of expectation are verified only from 

the second one. 

About one second after the visual stimulus is presented, there is a significant increase 

in blinks rate, coinciding with the point at which the subject made a choice and provided a 

response with the chosen category option (in the task performance section, we can see that 

the average reaction time in both studies is approximately one second after stimulus onset - 

Figure 3.2). We believe this is a restoration of normality, causing an increase in blink activity. 

In the backward masking study, when comparing correct with incorrect trials, we see 

a significant difference in blinks’ rate; however, this difference occurred only one second after 

visual stimulus onset (Figure 3.16 – g)). In turn, in the low contrast study, we do not see any 

significant difference when comparing recognized vs unrecognized trials (Figure 3.16 – h)). As 

blinks can interrupt the flow of visual information, it is expected that closer to the target, the 

blinks rate would be higher in incorrect trials and in unrecognized trials. If a participant blinks 

at the moment of the stimulus, it can result in a loss of information, which can lead to the 
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participant not detecting the stimulus and mistaking the stimulus category (46). In Figure 3.16 

and Figure 3.16 – h); however, we cannot see significant differences between the trial types in 

both studies. 

 

Figure 3.16 – The cue induced a decrease in the blink rate. a and b Cue-locked blink rate modulation (a - 
backward masking study; b - low contrast study). c and d Target-locked blink rate modulation (a - backward 
masking study; b - low contrast study). The gray horizontal line represents the significant time points where 
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the blink rate is significantly different from zero (p < 0.05).  The gray rectangle represents the time window 
in which the stimulus is presented. e Cue-locked blink rate modulation in correct trials (green curve) and 
incorrect trials (orange curve) (backward masking study). f Cue-locked blink rate modulation in recognized 
trials (green curve) and unrecognized trials (orange curve) (low contrast study). g Target-locked blink rate 
modulation in correct trials (green curve) and incorrect trials (orange curve) (backward masking study). h 
Target-locked blink rate modulation in recognized trials (green curve) and unrecognized trials (orange 
curve) (low contrast study). The gray horizontal line represents the significant time points where the blink 
rate is significantly different for the two conditions (p < 0.05). The gray rectangle represents the time window 
in which the stimulus is presented. In all graphs, data are represented as mean ± standard error of the mean 
across participants. 

 

3.2.4.2 Analyses of blinking activity features used in the classifiers 

For the analyses of the effect of pre-stimulus blinking activity in visual perception 

using classifiers, we extracted two different types of features: blink rate and the temporal 

distance between the last blink and the visual stimulus onset. First, we studied how these 

were related to task performance in both studies and then we investigated if an SVM classifier 

was able to use them to predict the participant’s performance. 

 

3.2.4.2.1 Blink rate and temporal distance between the last blink and the visual 

stimulus onset 

As seen in Figure 3.16  – g) and Figure 3.16  – h), the blink rate closer to stimulus 

presentation is higher in incorrect trials, as well as in unrecognized trials, however, this 

difference was not statistically significant. To further study this effect, we compared the blink 

rate measured in an interval between one second after cue onset and stimulus onset in 

incorrect trials against the blink rate in correct trials, as well as between recognized and 

unrecognized trials. 

In both the backward masking study and the low contrast study (Figure 3.17 – e) and 

Figure 3.17 – g)), we see no significant differences in blink rate between trial types in both 

studies (backward masking study: Shapiro-wilk: W = 0.848,  p = 0.018 and Wilcon test: Z = 0.950  

p = 0.330; low contrast study:  Shapiro-wilk test: W = 0.913, p = 0.078 and paired-sample t-test: 

t(18) = -1.976, p = 0.064). 

In addition to studying the blink rate, we also studied the temporal distance between 

the last blink and the target onset. Once again, the differences verified between the trial types 

turned out not to be statistically significant (backward masking study (Figure 3.17 – a)): 

Shapiro-wilk test: W = 0.938, p = 0.305 and paired-sample t-test: t(14) = 2.002, p = 0.065; low 

contrast study (Figure 3.17 – c)): Shapiro-wilk test: W = 0.983, p = 0.974 and paired-sample t-

test: t(18) = 0.852, p = 0.405). 
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It would be expected that the blinking activity would influence stimulus detection, 

since if the participants blink too close to the stimulus, it might affect stimulus detection. 

However, this is not what happens. In fact, blinks are rare events whose frequency is 

significantly reduced in the state of expectation. As a result, the probability of a blink 

occurring near to the stimulus becomes very low, thereby only influencing sporadically visual 

performance. 

Moreover, we then investigated the relationship between RT and blinking features. 

From Figure 3.17, we can see that none of the features produced significant correlations. 

Considering the relation between RT and participant’s visual performance and 

considering that the blink rate is higher in incorrect and in unrecognized trials, we expected 

to see a positive correlation between the RT and the blink rate. In fact, in both studies, we 

observe an average positive value of the correlation values, however these were not 

significantly different from zero (backward masking study (Figure 3.17 – f)): Shapiro-wilk test: 

W = 0.952, p = 0.475 and one-sample t-test: t(14) = 1.045, p = 0.314; low contrast study (Figure 

3.17 – h)): Shapiro-wilk test: W = 0.983, p = 0.970 and one-sample t-test: t(18) =2.082, p = 0.052). 

Similarly to the analysis conducted for blink rate, we also examined the relationship 

between the temporal distance between last blink and visual stimulus onset and RT. When 

we considered the temporal distance, we expected a negative correlation, since in incorrect 

and unrecognized trials the temporal distance is smaller and the RT is higher. However, the 

correlation values, once again, were not statistically different from zero (backward masking 

study (Figure 3.17 – b)): Shapiro-wilk test: W = 0.827, p = 0.010 and Wilcoxon test: Z = 1.010, p = 

0.188; low contrast study (Figure 3.17 – d)): Shapiro-wilk test: W =0.971, p= 0.799 and one-

sample t-test: t(18) =-0.250,  p = 0.806).  

 The results obtained suggest that, overall, there seems to be no significant 

relationship between blinking activity and the time required to make the decision. These 

findings are consistent with previous observations and indicate that, probably, blinking 

activity does not significantly influence visual processing.  
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Figure 3.17 – Blinking activity, measured in an interval between one second after cue onset and stimulus 
onset, does not influence visual performance. a Relation between temporal distance of the last blink and 
participant’s accuracy (backward masking study). b Correlation between temporal distance of the last blink 
and RT (backward masking study). c Relation between temporal distance of the last blink and participant’s 
recognition (low contrast study). d Correlation between temporal distance of the last blink and RT (low 
contrast study). e Relation between blink rate and participant’s accuracy (backward masking study). f 
Correlation between blink rate and RT (backward masking study). g Relation between blink rate and 
participant’s recognition (low contrast study). h Correlation between blink rate and RT (low contrast study). 
In sub-figures a, c, e and g the black horizontal line is the average temporal distance of the last blink/blink 
rate, and the rectangle represents ± standard error of the mean. In sub-figures b, d, f and h the black 
horizontal line is the average correlation coefficients and the rectangle represents ± standard error of the 
mean. Individual circles represent data from each participant. Filled circles represent participants where 
correlation is statistically significant (p<0.05). *p<0.05, **p≤0.01, ***p≤0.001, n.s.: not significant. 

 

3.2.4.3 SVM: classification of visual performance based on pre-stimulus 

blinking activity 

Table 14 demonstrates that, using the blinking parameters from the backward 

masking study, and employing a permutation test, a maximum of 15% of the classifiers 

exhibit superior performance when compared to random behavior. Analyzing Figure 3.18 – 

a), we can see that, when we used only the blink rate as input, the performance obtained 

greatly surpasses that achieved by other combinations of measures. However, even though 

this parameter has an approximate average performance of 0.65, when the permutation 
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tests were applied, only 5% of the classifiers presented a behavior superior to randomness. 

These results suggest that this average performance may have occurred by chance. Then, we 

studied the contribution of each measure to the classifier. Our initial expectation was that 

the combination of all measures would yield classifiers with statistically superior 

performance compared to classifiers using each measure individually.  However, this 

hypothesis is not supported by the results (Figure 3.18 – a)). Considering the average 

performance achieved when using only the blink rate as input, it would be expected that this 

measure would provide important and extra information to the classifier, thereby favoring 

its predictive capacity. However, we found that the combination of this measure with the 

distance of the last blink within each trial did not produce improvements in performance. 

This result aligns with the previous conclusions, where it is suggested that the performance 

achieved by using blink rate as a measure was a consequence of chance. In other words, if 

this measure effectively contained pertinent information, the classifier would have been 

able to extract activity patterns that would allow distinguishing between correct and 

incorrect trials. 

The same analyses were performed for the low contrast study. From Table 14 we can 

see that, as observed for the backward masking study, the classifiers cannot predict the 

participant's recognition through the blinking activity, since only 45% of the classifiers 

present a superior performance than the random one. When combining the different 

measures of blinking activity, we expected a statistically superior performance compared to 

classifiers’ performance using each measure individually. However, once again, this did not 

happen (Figure 3.18 – b)). In Figure 3.18 – b), we can verify that the average performance 

obtained through the combination of all measures is practically equivalent to the average 

performance when each measure was used individually. We believe that this behavior may 

be attributed to a possible correlation between the temporal distance of the last blink and 

blink rate (the results of the correlation analyses are in the appendix). This correlation it is 

logical, because if a person blinks a lot, there will be a probability of blinking very close to the 

target.  

In conclusion, the classifier was not able to predict participant’s visual performance 

using blinking activity parameters as features.   
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 Backward masking study Low contrast study 

All blink measures 15% 45% 
Blink rate 5% 5% 

Distance of the last blink 5% 45% 
 

Table 14 - Percentage of classifiers using blinking features as input that perform better than random. We 
used the permutation test to study if the classifiers had a behavior better than random. The permutation 
test results give the percentage of classifiers that perform better than random as a metric. That said, to 
define whether a given measure allows statistical prediction, a threshold of 50% was employed. This 
signifies that a minimum of 50% of the classifier exhibits a performance surpassing random chance. 

 

 Backward masking study Low contrast study 

Blink rate t (19) = -15.283; p <0.001 t (19) = -1.345; p = 0.194 
Distance of the last blink t (19) = 0.4592; p = 0.651 t (19) = -0.250; p = 0.806 

 

Table 15 - Comparison between the use of each blink measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all blinking 
measures were combined. The statistically significant analyses are highlighted. 

 

 

Figure 3.18 - Pre-stimulus blinking activity does not allow predicting task performance or participants 
recognition. a AUC using a SVM model in the backward masking study. b AUC using a SVM model in the low 
contrast study. The 1st bar shows the results for when the combination of all blink measures is used. The 
remaining bars concern the performance of the classifiers using each of the measures separately. The black 
horizontal line is the average performance and the rectangle represents ± standard error of the mean. Each 
circle within the representation denotes each individual instance in which the classifier was executed. ^: 
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When utilizing this measure as input, it results in a performance that is statistically different to the 
performance produced when using all measures combined. ^p<0.05; ^^p<0.01; ^^^p<0.001. 

 

 

 

3.2.5 Effect of pre-stimulus saccadic activity on visual perception 

3.2.5.1 Study of the time course of saccades rate variation evoked by the 

warning cue 

In the state of expectation, the individual tends to momentarily stop all their eye 

movements, namely the saccades (7–9). The saccades are, among other things, responsible 

for shifting the focus of the fovea, enabling us to efficiently and quickly locate crucial 

information (53). However, in some tasks, saccades can affect vision and introduce errors 

(47,52). 

In Figure 3.19 – a) and Figure 3.19 – b), we can see that, shortly after the warning cue 

onset, there is a rapid and significant reduction in saccadic activity followed by a rapid and 

significant increase in its rate. This behavior can be explained by the eye looking for a possible 

threat (suggested by the warning cue), which can cause a saccade. As in the blinks section, we 

consider that the changes produced by the state of expectation are verified only from the 

second one. 

In Figure 3.19 – c) and Figure 3.19 - d), it is possible to see that after stimulus 

presentation there is a significant increase in saccadic activity associated with the 

appearance of the response prompt that evokes eye movements. 

Again, we also analyzed the differences in the saccades rate in correct and incorrect 

trials, as well in recognized and unrecognized trials. As mentioned, saccades can impair 

vision due to the rapid movement of the image, which can cause blurriness and loss of 

important information. In this way, it is expected that close to the target, the saccades rate 

will be higher for incorrect and unrecognized trials. This behavior is evident in Figure 3.19 – 

h), where it can be observed that, at 200 ms before stimulus onset, there is a significant 

difference in saccades rate between recognized and unrecognized trials in the low contrast 

study.  We do not see any significant difference when comparing correct vs incorrect trials 

in the backward masking study.  
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Figure 3.19 – The cue induced a decrease in the saccades rate. a and b Cue-locked saccades rate modulation 
(a - backward masking study; b - low contrast study). c and d Target-locked saccades rate modulation (a - 
backward masking study; b - low contrast study). The gray horizontal line represents the significant time 
points where the saccades rate is significantly different from zero (p < 0.05).  The gray rectangle represents 
the time window in which the stimulus is presented. e Cue-locked saccades rate modulation in correct trials 
(green curve) and incorrect trials (orange curve) (backward masking study). f Cue-locked saccades rate 
modulation in recognized trials (green curve) and unrecognized trials (orange curve) (low contrast study). 
g Target-locked saccades rate modulation in correct trials (green curve) and incorrect trials (orange curve) 
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(backward masking study). h Target-locked saccades rate modulation in recognized trials (green curve) 
and unrecognized trials (orange curve) (low contrast study). The gray horizontal line represents the 
significant time points where the saccades rate is significantly different for the two conditions (p < 0.05). 
The gray rectangle represents the time window in which the stimulus is presented. In all graphs, data are 
represented as mean ± standard error of the mean across participants. 

 

3.2.5.2 Analyses of saccadic activity features used in the classifiers 

For the analyses of the effect of pre-stimulus saccadic activity in visual perception 

using classifiers, we extracted two different types of features: average saccades rate within 

the interval between one second after cue onset and visual stimulus onset and the temporal 

distance between the last saccade and the visual stimulus onset. First, we studied how these 

were related to task performance in both studies and then we investigated if an SVM 

classifier was able to use them to predict the participant’s performance. 

 

3.2.5.2.1 Saccades rate and temporal distance between the last saccade and the 

visual stimulus onset 

For the study of saccades rate, we expected that the higher the rate, the more likely 

the participant would not detect the stimulus and thus miss the category. In fact, this was the 

observed behavior in the low contrast study, where we can see significant differences in 

saccades rate between the trial types (Figure 3.20 – g); Shapiro-wilk test: W = 0.945, p = 0.270 

and paired-sample t-test: t(18) = -2.842, p = 0.011). In turn, the backward masking study 

revealed no significant differences in saccades rate between correct and incorrect trials 

(Figure 3.20 – e); Shapiro-wilk test: W = 0.939, p = 0.283 and paired-sample t-test: t(15) = -1.985, 

p = 0.066). 

Then, we studied the temporal distance between the last saccade and the target 

presentation. In both the backward masking study and the low contrast study, we see 

significant differences in the temporal distance of the last saccade between the trial types 

(correct/incorrect trials in the backward masking study and recognized/unrecognized trials 

in the low contrast study) (backward masking study (Figure 3.20 – a)):Shapiro-wilk test: W= 

0.938, p = 0.274 and paired-sample t-test: t(15) = -1.985, p = 0.042; low contrast study (Figure 

3.20 – c)): Shapiro-wilk test: W = 0.970,  p = 0.773 and paired-sample t-test: t(18) = 2.381, p = 

0.028). These findings are coherent, since a smaller temporal distance between the last 

saccade and the target leads to a saccade occurring at the moment of stimulus onset, which 

can impair vision. 

The results obtained suggest that pre-stimulus saccadic activity is associated with 

visual stimulus recognition. 
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Moreover, we then investigated the relationship between RT and saccadic features. 

From Figure 3.20, we can see that none of the features produced significant correlations 

(correlation between RT and saccades rate - backward masking study (Figure 3.20 – f)): 

Shapiro-wilk test: W = 0.881, p = 0.040 and Wilcoxon test: Z = 1.913, p = 0.059; low contrast 

study (Figure 3.20 – h)): Shapiro-wilk test: W = 0.933, p = 0.198 and one-sample t-test: t(18) = 

0.042, p = 0.967; correlation between RT and the temporal distance between last saccade and 

visual stimulus onset - backward masking study (Figure 3.20 – b)): Shapiro-wilk test: W = 

0.963, p = 0.720 and one-sample t-test: t(15) = -1.545, p = 0.143; low contrast study (Figure 3.20 

– d)): Shapiro-wilk test: W = 0.945, p = 0.326 and one-sample t-test: t(18) = 0.119, p = 0.907).  

The results obtained in both studies suggest that saccadic activity might not 

influence the time needed to make the decision, i.e., the reaction time. Still, according to the 

first analyses, there seems to be a correlation between saccadic activity and visual 

processing.  

 

Figure 3.20 – The saccadic activity, measured in an interval between one second after cue onset and 
stimulus onset, is associated with visual performance. a Relation between temporal distance of the last 
saccade and participant’s accuracy (backward masking study). b Correlation between temporal distance 
of the last saccade and RT (backward masking study). c Relation between temporal distance of the last 
saccade and participant’s recognition (low contrast study). d Correlation between temporal distance of the 
last saccade and RT (low contrast study). e Relation between saccades rate and participant’s accuracy 
(backward masking study). b Correlation between saccades rate and RT (backward masking study). c 
Relation between saccades rate and participant’s recognition (low contrast study). d Correlation between 
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saccades rate and RT (low contrast study). In sub-figures a, c, e and g the black line is the average temporal 
distance of the last saccade/saccades rate and the rectangle represents ± standard error of the mean. In 
sub-figures b, d, f and h the black line is the average correlation coefficients and the rectangle represents ± 
standard error of the mean. Individual circles represent data from each participant.  Filled circles represent 
participants where correlation is statistically significant (p<0.05). *p<0.05, **p≤0.01, ***p≤0.001, n.s.: not 
significant. 

 

 

3.2.5.3 SVM: classification of visual performance based on pre-stimulus 

saccadic activity 

In the backward masking study, Table 16 demonstrates that only a maximum of 15% 

of the classifiers demonstrate superior performance compared to random behavior., i.e., in 

the backward masking study the classifiers were not able to predict visual performance with 

saccadic features. Similar to the observations made with blinking activity, we find a parallel 

pattern here: when using only saccades rate as input, the performance obtained is 

significantly higher compared to the one achieved by other combinations of measures. Again, 

through the application of a permutation test, we verify that only 5% of the classifiers exhibit 

a behavior statistically superior to random. Once again, these results suggest that the 

performance using only saccades rate is not statistically reliable and may have occurred due 

to random chance. Subsequently, we studied the individual contribution of each measure to 

the classifier. Initially, the expectation was that the combination of all measures would yield 

classifiers with statistically superior performance compared to classifiers using each 

measure individually.  However, this hypothesis is not corroborated by the results (Figure 3.21 

– a)). Considering the high performance achieved when using only the saccades rate as input, 

it was presumed that the saccades rate would provide significant supplementary information 

to the classifier, thus augmenting its predictive capability. Nevertheless, again, the 

combination of this measure with the distance of the last saccade within each trial did not 

produce improvements in classifier’s performance. This result aligns with the earlier 

conclusions, where it is suggested that the augmented performance achieved through the 

utilization of saccades rate as a measure was more likely a consequence of chance. 

In the low contrast study, from Table 16, we can see that, as observed for the backward 

masking study, the classifiers were not capable of predicting visual performance based on 

saccadic activity, given that only 15% of the classifiers present a superior performance 

compared to randomness. In this present study, we observed a possible correlation between 

the temporal distance of the last saccade and saccades rate (the results of the correlation 

analyses are in the appendix).  This hypothesis is supported by Figure 3.21 - b). The figure 

illustrates the performance of classifiers employing each measure individually was nearly 

identical to the performance achieved through the combination of both measures. This 

outcome turns out to make sense, because if a participant has a higher rate of saccades in the 
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considered interval, it is possible that one of the saccades occurred very close to the stimulus, 

thus influencing the temporal distance of the last saccade to the stimulus. Thus, the 

combination of these two measures does not provide additional information to the classifier. 

Contrary to our expectations, the classifier was not able to predict visual performance 

in both studies. We consider that these results may be attributed to a potential bias in the 

conducted analyses. Let us consider that in two trials the participant had a saccade very close 

to the stimulus, which impaired the visualization and recognition of the stimulus. 

Consequently, when analyzing the temporal distance from the last saccade to the stimulus, 

the distance in these specific trials would be minimal. As a result, even a minimal distance in 

these two trials could influence the overall average behavior. Thus, what initially appeared to 

be a different behavior between the conditions under study in both studies could have 

resulted only from the behavior observed in these two trials. In these particular trials (used 

purely as an example) recognizable patterns were observed, while the remaining incorrect 

and unrecognized trials did not exhibit patterns in saccadic activity. That said, the classifier 

can be capable of recognizing the patterns in the mentioned trials, but it is not able to identify 

patterns in the remaining trials, as such patterns do not exist. In conclusion, pre-stimulus 

saccadic activity did not allow us to predict stimulus recognition using the SVM algorithm. 

 

 Backward masking study Low contrast study 

All saccade measures 10% 15% 
Saccades rate 5% 5% 

Distance of the last 
saccade 

15% 5% 

 

Table 16 - Percentage of classifiers using saccadic features as input that perform better than random. We 
used the permutation test to study if the classifiers had a behavior better than random. The permutation 
test results give the percentage of classifiers that perform better than random as a metric. That said, to 
define whether a given measure allows statistical prediction, a threshold of 50% was employed. This 
signifies that a minimum of 50% of the classifier exhibits a performance surpassing random chance. 

 

 Backward masking study Low contrast study 

Saccades rate t (19) = -5.572; p <0.001 t (19) = -0.099; p = 0.922 
Distance of the last saccade t (19) = 1.074; p = 0.296 t (19) = 0.634; p = 0.534 

 

Table 17 - Comparison between the use of each saccade measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all 
saccades’ measures were combined. The statistically significant analyses are highlighted. 
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Figure 3.21 - Pre-stimulus saccadic activity does not allow predicting task performance or participants 
recognition. a AUC using a SVM model in the backward masking study. b AUC using a SVM model in the low 
contrast study. The 1st bar shows the results for when the combination of all saccade measures is used. The 
remaining bars concern the performance of the classifiers using each of the measures separately. The black 
line is the average performance and the rectangle represents ± standard error of the mean. Each circle 
within the representation denotes each individual instance in which the classifier was executed. ^: When 
utilizing this measure as input, it results in a performance that is statistically different to the performance 
produced when using all measures combined. ^p<0.05; ^^p<0.01; ^^^p<0.001. 

 

 

3.2.6 Effect of pre-stimulus neural activity on visual perception 

3.2.6.1 Study of the time course of EEG activity variation evoked by the 

warning cue and extraction of EEG features 

During the state of attentive anticipation, a slow negative shift in brain electrical 

potential, the CNV, can be observed in the EEG (67,68). This wave reflects the preparatory 

potential evoked by the warning stimulus. The CNV is typically observed in the fronto-central 

region of the scalp and is thought to originate in the anterior cingulate cortex which is located 

in the medial frontal cortex (129). The CNV shows maximum amplitude in the frontocentral 

channel FCz and, therefore, we chose this channel for analyses (Figure 3.22 - a) and Figure 3.22 

– b)).  
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Since, the evoked negative waveform reflects the preparation to the upcoming 

stimulus, we expected that a more negative amplitude of the EEG signal was related to a 

higher capacity to perceive the stimuli. In Figure 3.22 – c) and Figure 3.22 - d); however, no 

significant differences were observed between trial types. Nonetheless, we observed 

significant differences in the ERPs evoked by the recognized and the unrecognized stimuli, 

after target onset, in the low contrast study. These differences suggest that the neural 

processing is different in these two conditions in the time window between 250 to 500 ms 

after cue onset, possibly representing a response that indicates conscious processing of the 

stimuli (Figure 3.22 – d)). In contrast, backward masking study did not exhibit such significant 

differences (Figure 3.22 – c)). 

It should be noted that the presented signal corresponds only to the data extracted 

from the FCz channel. In order to analyze all the channels, we used a different approach. For 

the analyses of the effect of pre-stimulus neural activity in visual perception, we extracted the 

average EEG activity from each electrode one second before the stimulus presentation. Then, 

we segregated the data based on the participants' responses. In both Figure 3.22 – e) and 

Figure 3.22 – f), we found no significant differences for any of the channels when comparing 

across conditions. 

In none of the analyses there seems to be an association between the pre-stimulus 

neural activity and the visual processing. These results contradict the findings of (5,6), which 

suggest that the internal state of the brain contributes to the stimuli perception. We believe 

that this discrepancy in the results may be associated with the low spatial resolution of the 

EEG, as well as its susceptibility to significant noise interference.   
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Figure 3.22 – Brain pre-stimulus activity is not significantly associated with visual performance. a and b 
CNV induced by the cue (a - backward masking study; b - low contrast study). The gray horizontal line 
represents the time windows where the EEG signal is significantly different from zero (p < 0.05). c EEG 
activity in correct (green line) and in incorrect trials (orange line) locked with target onset (backward 
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masking study). d EEG activity in recognized (green line) and in unrecognized trials (orange line) locked 
with target onset (low contrast study). The gray horizontal line represents the significant time windows 
where EEG activity is significantly different for the two conditions (p < 0.05). e Scalp topography – average 
CNV amplitude in correct and in incorrect trials, respectively (backward masking study). f Scalp topography 
– average CNV amplitude in recognized and in unrecognized trials, respectively (low contrast study). g 
Scalp topography – differences of the CNV amplitude between correct and incorrect trials (backward 
masking study). h Scalp topography – differences of the CNV amplitude between recognized and 
unrecognized trials (low contrast study). In graphs a, b, c and d, data are represented as mean ± standard 
error of the mean across participants. 

 

3.2.6.2 CNN: classification of visual performance based on pre-stimulus 

neural activity 

After studying how EEG pre-stimulus activity was related to task performance in both 

studies, we then investigated if the classifier was able to use EEG pre-stimulus features to 

predict the participant’s performance. Considering that we used the EEG signal, which is 

characterized by being a continuous signal, we realized that we needed a more powerful 

classifier capable of receiving a relatively high amount of data as input. That said, we decided 

to use the EEGNet as it can extract spatial and temporal features of the EEG for the 

classification. Then, we incorporated the parameters of each physiological signal into the 

classifier. In this case, we used the multimodal classifier. 

In both Figure 3.23  – a) and Figure 3.23 – b), it is evident that, with the pre-stimulus 

EEG, we were able to predict the participant’s performance, in both studies. Despite the fact 

that no significant differences were observed between the neural activity and trial types 

(correct/incorrect trials in the backward masking study and recognized/unrecognized trials 

in the low contrast study), the classifier was able to use this information to correctly classify 

the trials. These findings align with the results reported in previous studies (10), suggesting 

an association between EEG activity and the recognition of visual stimuli. 

We then incorporated the different physiological signals into the classifier and 

assessed how these influenced its predictive capacity. If the physiological signal had a direct 

influence on visual processing, then their pre-stimulus state might contribute towards 

predicting the participants visual performance. In both Figure 3.23 – a) and Figure 3.23 – b), 

we can see that the incorporation of different signals produced different behaviors in both 

studies. In the backward masking study, the incorporation of the various physiological 

signals resulted in lower performances compared to when using only the pre-stimulus 

neural activity. In fact, incorporation of both saccadic activity and the combination of all 

physiological signals led to statistically inferior performance. On the contrary, in the low 

contrast study, we can see that the incorporation of physiological signals yielded average 

performances that were not significantly different from the performance of the classifier 

using only the pre-stimulus EEG activity. 
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Backward 

masking study 
Low contrast 

study 

Only EEG pre-
stimulus 

80% 80% 

EEG + ECG 66.67% 100% 
EEG + Respiration 73.33% 100% 

EEG + Pupil 66.67% 100% 
EEG + Blinks 93.33% 100% 

EEG + Saccades 66.67% 100% 
EEG + All measures 60% 100% 

 

Table 18 – Percentage of classifiers using the physiological data and neural activity as features that 
perform better than random. We used the permutation test to study if the classifiers had a behavior better 
than random. The permutation test results give the percentage of classifiers that perform better than 
random as a metric. That said, to define whether a given measure allows statistical prediction, a threshold 
of 50% was employed. This signifies that we consider successful classification when a minimum of 50% of 
the classifiers exhibit a performance surpassing random chance. The successful classifications are 
highlighted. 

 

 

 Backward masking study Low contrast study 

EEG + ECG t (14) = 2.010; p = 0.064 t (14) = -0.359; p = 0.725 
EEG + Respiration t (14) = 1.627; p = 0.126 t (14) = -0.132; p = 0.897 

EEG + Pupil t (14) = 1.442; p = 0.171 t (14) = -0.696; p = 0.498 
EEG + Blinks t (14) = 1.449; p = 0.169 t (14) = -1.817; p = 0.091 

EEG + Saccades t (14) = 2.475; p = 0.027 t (14) = 0.058; p = 0.954 
EEG + All measures t (14) = 3.130; p = 0.007 t (14) = -0.914; p = 0.376 

 

Table 19 – Comparison between the performance achieved using only neural activity and the performance 
attained through the combination of neural activity with different physiological signals. We used the 
paired-sample t-test to evaluate whether each physiological signal contains supplementary information 
that can be extracted by the classifier. The statistically significant analyses are highlighted. 
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Figure 3.23 – The neural pre-stimulus activity influences stimulus detection. Integrating pre-stimulus 
body activity did not significantly improve the classifier’s performance. a AUC using a CNN model to predict 
trial performance (backward masking study). b AUC using a CNN model to predict stimulus detection (low 
contrast study). The 1st bar shows the results for when the neural activity pre-stimulus is used. The 
remaining bars concern the performance of the classifiers combining each physiological signal pre-
stimulus with neural activity. The black line is the average performance and the rectangle represents ± 
standard error of the mean. Each circle within the representation denotes each individual instance in which 
the classifier was executed. +: Using this pre-stimulus activity as an input, more than 50% of the classifiers 
present a behavior superior to random. ^: When utilizing this pre-stimulus activity as input, it results in a 
performance that is statistically different to the performance produced when only neural pre-stimulus 
activity is used. ^p<0.05, ^^p≤0.01, ^^^p≤0.001. 

 

These results suggest that the physiological signals do not convey additional 

information that is not present already in the pre-stimulus EEG signal and therefore do not 

contribute to a better performance of the classifier. However, it is possible that this particular 

multimodal classifier is not as efficient as the SVM at using the physiological features to 

classify the participants visual performance. In order to ascertain the capacity of the 

multimodal classifier to extract activity patterns from physiological signals, we 

implemented a control algorithm that uses the multimodal classifier while setting the EEG 

to zero. It should be noted that, in this analysis, we focused only on the combination of all 

parameters of each physiological signal, rather than studying each parameter individually. 

In the backward masking study, none of the physiological signals contained activity 

patterns that allowed the multimodal classifier to predict visual performance (Figure 3.24 – 
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a)). As demonstrated in Table 20, only a maximum of 26.67% of the classifiers showed behavior 

superior to random. Conversely, in the low contrast study, it was possible to predict visual 

performance through pre-stimulus body activity. Unlike what was seen with the SVM 

algorithm, where the classifier was able to predict visual performance using pupillary 

response and respiratory activity, with the multimodal classifier, only the pupillary response 

allowed the classifier to extract activity patterns (Figure 3.24 – b)). Moreover, the combination 

of all physiological signals also yielded the ability to predict visual performance. These results 

suggest that only the pupillary response provided information to the classifier that allowed 

visual performance to be predicted. Nonetheless, as depicted in Figure 3.23– b), pupil activity 

did not provide extra information to the classifier above the information that was already 

present in the EEG. One of the hypotheses that can justify this result could be the fact that 

pupil activity is somehow reflected in the EEG signal (the correlation matrix between each 

pupil measure and the EEG signal can be found in the appendix). These results make sense, 

as it is anticipated that the brain controls and monitors the body’s state. For the remaining 

physiological signals, we were unable to draw conclusions. This is due to the failure of the 

classifier to extract activity patterns from these signals, making it impossible to determine 

whether or not these signals contain extra information that is not reflected in the EEG signal. 

 

 
Backward 

masking study 
Low contrast 

study 

ECG 0% 13.33% 
Respiration 0% 0% 

Pupil 0% 86.67% 
Blinks 26.67% 0% 

Saccades 6.67% 20% 
All measures 20% 53.33% 

 

Table 20 – Percentage of classifiers using only physiological data as features that perform better than 
random. We used the permutation test to study if the classifiers had a behavior better than random. The 
permutation test results give the percentage of classifiers that perform better than random as a metric. 
That said, to define whether a given measure allows statistical prediction, a threshold of 50% was 
employed. This signifies that we consider successful classification when a minimum of 50% of the 
classifiers exhibit a performance surpassing random chance. The successful classifications are 
highlighted. 
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 Backward masking study Low contrast study 

ECG t (14) 5.128; p <0.001 t (14) = 3.384; p = 0.004 
Respiration t (14) = 5.754; p <0.001 t (14) = 6.1908; p <0.001 

Pupil t (14) = 3.6181; p = 0.003 t (14) = -1.729; p = 0.106 
Blinks t (14) = -1.378; p = 0.190 t (14) = 9.585; p <0.001 

Saccades t (14) = 0.709; p = 0.490 t (14) = 3.672; p = 0.002 
 

Table 21 – Comparison between the performance achieved using each physiological signal individually and 
the performance attained through the combination of all physiological signals. We used the paired-sample 
t-test to evaluate the contribution of each signal when all physiological signals were combined. The 
statistically significant analyses are highlighted. 

 

 

Figure 3.24 – Multimodal classifiers’ performance using only physiological pre-stimulus activity. In the 
backward masking study, none of the signals allowed us to predict trial performance. Conversely, in the low 
contrast study, through pupil activity and combining all physiological signals we predicted stimulus 
detection. a AUC using a CNN model to predict trial performance (backward masking study). b AUC using 
a CNN model to predict stimulus detection (low contrast study). The last bar shows the results for when all 
physiological signals are used. The remaining bars concern the performance of the classifiers using each 
physiological signal individually. The black line is the average performance and the rectangle represents ± 
standard error of the mean. Each circle within the representation denotes each individual instance in which 
the classifier was executed. +: Using this pre-stimulus activity as an input, more than 50% of the classifiers 
present a behavior superior to random. ^: When utilizing this pre-stimulus activity as input, it results in a 
performance that is statistically different to the performance produced when all physiological signals are 
used. ^p<0.05, ^^p≤0.01, ^^^p≤0.001. 
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Comparing both the low contrast study and the backward masking study, it becomes 

apparent that pre-stimulus neural activity influences visual processing. Furthermore, there 

appears to be an association between pre-stimulus body activity and visual performance. 

However, our analyses did not allow us to conclude whether this pre-stimulus body activity 

has a direct impact on sensory processing or whether it is only associated with brain state 

fluctuations that control perception. 

 

 

3.3 Study of the influence of pre-stimulus brain and 

body activity on visual stimulus neural 

representations 
After checking the ability of the classifier to predict visual performance from pre-

stimulus physiological signals, we decided to study its ability to discriminate the visual 

stimulus category from the post-stimulus EEG evoked responses and how these responses 

might be influenced by pre-stimulus brain and body state. 

We found that, in the backward masking study, the visual stimuli evoked ERPs that 

were significantly different between cars and houses (Figure 3.25 – a)). In Figure 3.25 – a), we 

can see that these differences occur particularly around 170 ms after stimulus onset, where 

the negative waveform that peaked approximately 170 ms after stimulus presentation (N170) 

was more negative for car stimuli than for house. This observation is in agreement with the 

conclusions verified in (130). In contrast, the low contrast study reveals no significant 

differences in the ERPs evoked by the car and house stimuli. In Figure 3.25 – b), we can see 

that the negative waveform achieved its maximum amplitude approximately 200 ms after 

stimulus onset, rather than the observed 170 ms after stimulus onset in the backward 

masking study. The observed delay in stimulus processing might be attributed to the 

reduction in stimulus contrast.  

In the backward masking study, we observe significant differences in the EEG signal 

between car and house trials within the time interval associated with neural processing. 

However, this pattern is not verified in the low contrast study. In this study, we can see very 

similar patterns of activity in the conditions examined. This difference may be related to 

changes in task difficulty, resulting in changes in neural processing. Allied to this, we also 

believe that the decrease in contrast hinders the visualization of certain characteristics, 

which could be responsible for the generation of distinct EEG signals. It should be noted that, 

in this thesis, we present the signal relative to the PO7 channel as a representation. However, 

none of the remaining channels exhibited significant differences in processing the two trial 
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types. Some channels, such as the AF4 channel, did exhibit temporal points wherein the 

signal differed between the two types of trials, but these points were situated around the 

400ms mark, which might be associated with decision-making processes (Figure 3.25 – c) 

and Figure 3.25 – d)). 

  

 

Figure 3.25 – The visual stimuli induced significant differences between car and house trials. In the 
backward masking study, we can see significant differences within the time interval associated with neural 
processing and decision-making processes. In the low contrast study, in turn, we only can see significant 
differences within the time interval associated with decision-making processes. a and b Target-locked EEG 
signal recorded from electrode PO7 in car and house trials (a – backward masking study; b – low contrast 
study). c and d Target-locked EEG signal recorded from electrode AF4 in car and house trials (a – backward 
masking study; b – low contrast study). The gray horizontal line represents the time windows where the EEG 
signal is significantly different for the two conditions (p < 0.05). In all graphs, data are represented as mean 
± standard error of the mean across participants. 

 

Next, we investigated if the classifier was able to recognize the patterns associated 

with the different categories and, in this way, correctly classify stimulus category. Thus, the 

classifier was fed with the ERP in each trial as well as the respective trial category.  
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It is important to highlight that the metric selected for the analyses conducted 

throughout the thesis is the AUC. However, as in this analysis the classes are balanced, we 

are going to compare the participant’s performance with the classifier’s performance, we 

decided to choose accuracy as the metric for a more precise comparison. 

Similar to the previous analyses, we are going to analyze the backward masking study 

and then the low contrast study. Analyzing the Figure 3.26 – a), we can see that the accuracy 

of the classifier for each participant is significantly above 50% (t(15) = -7.296, p <0.001). We 

hypothesized that a higher participant’s accuracy was correlated with a higher accuracy of 

the classifier. This hypothesis is based on the fact that if the participant has a higher accuracy 

means that he saw more trials, subsequently resulting in more pronounced ERPs. In this way, 

we performed a correlation between the accuracy of the participants and the accuracy of the 

classifier. The correlation was not statistically significant (r = 0.186; p = 0.489). In the low 

contrast study, on the contrary, in three participants, the accuracy of the classifier is less than 

50% (Figure 3.26 – b)), nevertheless the average across participants was significantly higher 

than 50% (t(18) = -3.726, p = 0.002). Interestingly, the correlation between participant’s 

accuracy and classifier’s accuracy was statistically significant (r = 0.488; p = 0.034). 

Comparing the two studies, as anticipated, the classifier presents a superior performance for 

the backward masking study, due to the generation of more pronounced ERP patterns in this 

particular study. 
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Figure 3.26 – Post-stimulus EEG allows predicting the trial category. a Comparison between the EEGNet 
accuracy and participant’s accuracy (backward masking study). b No significant correlation between 
classifier’s accuracy and participant’s accuracy (backward masking study). c Comparison between 
performance of the EEGNet accuracy and participant’s accuracy (low contrast study). d Correlation 
between classifier’s accuracy and participant’s accuracy (low contrast study). The green bars concern the 
participant’s accuracy and the orange bars concern the classifier’s accuracy. The error bar represents the 
standard error of the mean. In sub-figures b and d, each circle represents a participant. 

 

Finally, we proceeded to investigate whether pre-stimulus neural and physiological 

activity modulates stimulus decoding. To this end, we incorporated body and brain pre-

stimulus activity into the classifier. We included this pre-stimulus activity to investigate 

whether this activity modulates the neural representation of the stimulus. If this modulation 

occurs, the classifier can learn this relation. As an illustration, a given pre-stimulus 
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fluctuation could lead to the modulation of stimulus representation, inducing a more 

pronounced waveform, thereby facilitating the classifier's learning process.   

In both Figure 3.27 – a) and Figure 3.27 – b), it is evident that with the ERPs we were 

able to extract activity patterns associated with neural processing and decision-making 

processes, thereby facilitating the discrimination of stimulus categories. We can see that, in 

both studies, more than 50% of the classifiers exhibited a performance statistically superior 

to random, confirming the efficacy of the classifier to discriminate stimulus category (Table 

22). In the same figures, we can observe that the incorporation of the pre-stimulus 

physiological and neural activity did not produce an improvement in the classifier’s 

performance. In fact, the combination of certain physiological signals with ERPs results in 

statistically lower performances compared to the ones observed when the post-stimulus 

activity was used as input. These results suggest that the pre-stimulus activity does not 

modulate the neural representation of the stimulus. 

Our project was motivated by the results presented in (1) and (10). In (1), the authors 

verified that the pre-stimulus neural activity modulates the neural representation of the 

stimulus, thereby enhancing the classifier’s learning process. In (10), in turn, the authors 

detected the presence of fluctuations that facilitate the recognition of one stimulus over 

another. In summary, both studies established the presence of pre-stimulus neural activity 

fluctuations that influence the processing according to their respective categories. However, 

as illustrated in Figure 3.27, the incorporation of the pre-stimulus neural activity resulted in 

a performance that is statistically inferior to the performance achieved by the classifier when 

exclusively using ERPs. These observed discrepancies between our study and the findings 

presented in (1) and (10) can be attributed to various factors:  

• EEG has a lower spatial resolution than MEG or intracranial recordings, making 

it difficult to distinguish fluctuations in neural activity in different brain regions. 

 

• the feature selected for integration into the classifier might not have been 

optimal. To incorporate in the classifier, we opted to incorporate only the average 

activity of each channel during the second preceding stimulus presentation. 

However, this approach might not have been the most appropriate, as the 

process of averaging could have masked specific activity fluctuations, potentially 

resulting in a biased behavior. 

 

• it is plausible that the task selected for this study might not have been the best, 

potentially hiding the impact of pre-stimulus activity fluctuations. 
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In conclusion, contrary to what was verified in (1) and (10), the integration of pre-

stimulus neural activity did not significantly modulate the decoding process of the stimulus. 

From these findings, we can conclude that pre-stimulus activity influences stimulus 

recognition, but it did not appear to influence the way that the stimulus is decoded. 

 

 
Backward masking 

study 
Low contrast 

study 
ERP 100% 93.33% 

ERP + EEG pre-
stimulus 100% 86.67% 

ERP + ECG 100% 86.67% 
ERP + Respiration 100% 86.67% 

ERP + Pupil 100% 100% 
ERP + Blinks 100% 93.33% 

ERP + Saccades 100% 100% 
ERP + All measures 100% 93.33% 

 

Table 22 - Percentage of classifiers using the combination of body and brain pre-stimulus activity with 
ERPs that perform better than random. We used the permutation test to study if the classifiers had a 
behavior better than random. The permutation test results give the percentage of classifiers that perform 
better than random as a metric. That said, to define whether a given measure allows statistical prediction, 
a threshold of 50% was employed. This signifies that we consider successful classification when a minimum 
of 50% of the classifiers exhibit a performance surpassing random chance. The successful classifications 
are highlighted. 

 

 

 Backward masking study Low contrast study 

ERP + EEG pre-stimulus t (14) = 3.352; p = 0.005 t (14) = 2.649; p = 0.019 
ERP + ECG t (14) = 0.873; p = 0.397 t (14) = 1.151; p = 0.269 

ERP + Respiration t (14) = 1.271; p = 0.224 t (14) = 0.744; p = 0.469 
ERP + Pupil t (14) = -0.403; p = 0.693 t (14) = -0.405; p = 0.692 

ERP + Blinks t (14) = 1.578; p = 0.137 t (14) = 1.039; p = 0.316 
ERP + Saccades t (14) = 1.957; p = 0.071 t (14) = -0.865; p = 0.402 

ERP + All measures t (14) = 1.800; p = 0.094 t (14) = 1.866; p = 0.083 
 

Table 23 - Comparison between the performance achieved using only ERPs and the performance attained 
through the combination of ERPs with different pre-stimulus physiological and neural activity. We used the 
paired-sample t-test to evaluate whether each pre-stimulus activity modulates how stimulus is decoded. 
The statistically significant analyses are highlighted. 
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Figure 3.27 – There is no evidences that the brain and body physiological pre-stimulus activities modulate 
visual stimuli neural representations. a AUC using a CNN model to discriminate stimulus category 
(backward masking study). b AUC using a CNN model to discriminate stimulus category (low contrast 
study). The 1st bar shows the results for when only ERPs are used. The remaining bars concern the 
performance of the classifiers combining pre-stimulus physiological and neural activity with the ERPs. The 
black line is the average performance and the rectangle represents ± standard error of the mean. Each circle 
within the representation denotes each individual instance in which the classifier was executed. +: Using 
this pre-stimulus activity as an input, more than 50% of the classifiers present a behavior superior to 
random. ̂ : When utilizing this pre-stimulus activity as input, it results in a performance that is statistically 
different to the performance produced when only ERPs are used. ^p<0.05, ^^p≤0.01, ^^^p≤0.001

 

 

3.4 Limitations of our project 
As observed in the previous section, the SVM algorithm presented a greater ability to 

predict visual performance using only physiological features than the multimodal classifier. 

When defining the multimodal algorithm, most of the trainable parameters were found in the 

blocks responsible for processing the EEG part, while the remaining parameters were 

adjusted based on the physiological signals. As a result, the algorithm gave too much weight 

to the EEG part, resulting in almost the totality of the weights trained on zero-valued images 

(in the control analysis). Having said that, we believe that the way that this multimodal 

algorithm was developed was probably not the best and future work should explore different 

architectures. Allied to this, the SVM algorithm is probably more robust to the type of inputs 

employed in the study of physiological pre-stimulus activity. In the future, one way to use the 
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multimodal classifier only with physiological activity, without containing useless information 

that the EEGNet extracted from the EEG (even if set to zeros), is to use a simpler classifier that 

is composed only of the layers of the multimodal classifier that process physiological activity.  

This limitation might algo affect the multimodal classifier when combining 

continuous EEG signal with the physiological features. As previously stated, most of the 

trainable parameters are in the layer blocks responsible for processing the EEG, while a small 

minority are in the layer that process physiological activity. In this way, the multimodal 

classifier ends up weighing more the information extracted from the EEG than the 

information extracted from the body signals. This behavior can be one of the hypotheses for 

why adding physiological signals does not significantly improve the classifier’s performance. 

One of the ways to combat this problem is to, together with the continuous EEG signal, 

perform time-series analyses on physiological activity. With this analysis, we believe that the 

classifier can assign equal importance to neural and physiological activity.  
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4 Conclusions 
 

4.1 General conclusions 
In this project, we aimed to investigate the influence of pre-stimulus activity, both 

neural and physiological, on visual perception and visual processing. To achieve this, we used 

two different versions of a visual discrimination task, the backward masking task and the low 

contrast task. In the backward masking task, the only information we had was the accuracy in 

a given trial, that is, whether or not the person had responded correctly according to the 

stimulus category. However, these types of responses have some limitations. For example, on 

some occasions, it was possible that the participants guessed the category correctly purely by 

chance, without recognizing the stimulus. Consequently, the neural and physiological states 

during these trials might not have favored stimulus recognition yet the analyses were done 

considering those trials as the trials where recognition had occurred. That said, we consider 

that the backward masking study was too noisy, whereas the low contrast study provided 

more informative and relevant results due to enhanced design and additional features. As a 

result, we decided to focus our conclusions on the findings derived from the low contrast 

study. 

With the changes in the design of the task, our intention was to create a difficult task, 

where the trials would be at the threshold of visual recognition. In fact, we aimed for 

participants to recognize approximately 50% of the trials. This would enable us to observe a 

clear influence of the state of expectation on stimulus recognition. However, overall, 

participants recognized slightly more trials than expected. This result may come from the fact 

that the conditions of the adaptive procedure were different from the conditions observed 

during the actual task. Allied to this, some participants may not be as attentive during the 

adaptive procedure as they were during task performance, which may have influenced the 

contrast level corresponding to a subjective recognition of 50%.  

Following the behavior analyses, it was time to assess how the pre-stimulus activity 

influenced stimulus recognition. To do so, we started by analyzing the influence of cardiac 

activity. We started by verifying that an auditory cue induced cardiac deceleration. However, 

although there were significant differences in heart rate at the time of stimulus presentation, 

these fluctuations in heart rate were not significantly associated with the participant’s 

recognition of the stimulus.  In fact, the classifier could not accurately predict stimulus 

recognition based on cardiac activity. These results turned out to be contradictory and 

suggest that differences between the classifier’s algorithms and traditional statistical 

analyses might lead to different conclusions and care should be taken when focusing on only 

one type of analyses. 
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Next, we went to study how breathing activity was related to visual processing. 

Initially, we observed that the auditory cue was followed by an increase in the duration of the 

respiratory cycle. Allied to this, we verified that the cycle with the maximum duration was the 

cycle containing the stimulus presentation. We believe this is a novel result that has not been 

observed previously. Moreover, pre-stimulus respiratory activity had information that could 

predict visual performance. In fact, despite the fact that no significant differences were 

observed between the respiratory activity in recognized and unrecognized trials, the 

classifier was able to extract patterns of activity that enabled the prediction of stimulus 

recognition. These results suggest that the simple analysis of the average, as we have seen for 

cardiac activity, can be biased, as it does not take into account the behavior along the trials. 

Thus, the results suggest that respiratory activity somehow is associated with visual stimulus 

recognition. 

As anticipated, the alerting stimulus induced pupil dilation. This is an expected 

behavior since pupil dilation reflects the arousal levels. As verified in other studies, pupil size 

and behavior exhibited significant differences between trials where stimulus was recognized 

and those where it was unrecognized. Moreover, when incorporating the pupillary response 

data into the classifier, we were able to successfully predict stimulus detection. These results 

suggest that pupil-linked arousal is significantly associated with visual perception. 

Finally, we investigated the influence of blinking and saccadic activity on stimulus 

detection. In the state of expectation there is a significant decrease in the occurrence of both 

blinks and saccades, minimizing loss of visual information. In the analyses of blinks and 

saccades, we observed that when they occurred very close to the stimulus, participants 

tended not to recognize the stimulus; however, this was significant in the saccades but not in 

the blinks analyses. Despite having this influence, the occurrence of blinks and saccades near 

to the stimulus is relatively rare due to the reduced occurrence during the state of 

expectation. Allied to this, there were specific activity patterns only when a blink or a saccade 

occurred very close to the stimulus presentation, whereas no detectable activity patterns 

were evident in the remaining trials. This could have affected the ability of the classifier to 

learn from these data. In fact, it was found that, both with the activity of blinks and saccades, 

the classifier was not able to predict stimulus recognition. In conclusion, our findings 

demonstrate that while blinks and saccades might influence stimulus detection when 

occurring close to the stimulus, this influence is sporadic. 

In addition, we also investigated pre-stimulus neural activity. The findings suggested 

that there are no significant differences in EEG cortical activity between trials where the 

participant recognizes the stimulus and those in which he does not. These results were 

contradicted by the classifier’s performance when using only the pre-stimulus EEG activity 

as input, where we can see that it is possible to extract excitability patterns from the cortex, 
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enabling the prediction of stimulus detection. Consequently, these findings suggest that 

neural activity is associated with visual stimulus recognition. 

Our primary objective was to examine how the pre-stimulus activity modulates 

cortical processing of visual stimuli and subsequently affects visual perception. In addition to 

analyzing the pre-stimulus neural activity, we also investigated the influence of the 

physiological state before the stimulus presentation. In order to assess the multimodal 

classifier’s ability to extract patterns from different physiological signals, it was necessary to 

set the EEG to zero, thereby ensuring that the classifier’s predictions were only influenced by 

pre-stimulus body activity. The multimodal classifier was only able to predict visual 

performance when using pupillary activity as input and when incorporating all the 

physiological signals. Applying statistical tests, we found that, probably, when incorporating 

all the physiological signals, it was the pupillary activity that provided the activity patterns to 

the classifier. Summarizing, the multimodal classifier was only able to extract patterns from 

the pupil.  

After evaluating this control algorithm, we integrated various measures with neural 

activity with the expectation of extracting extra information that the classifier cannot extract 

from neural activity. This analysis aimed at understanding if the physiological signals might 

affect visual perception independently from the pre-stimulus activity already observed in the 

brain. The combination of several physiological signals with neural pre-stimulus activity did 

not result in significant improvements in the classifier’s performance. Considering that the 

control algorithm was only able to extract patterns of pupil activity, it was anticipated that 

only this signal would bring supplementary information to the classifier. However, pupil 

activity did not provide extra information. This result suggests that pupil activity is somehow 

already reflected in the EEG signal. We believe that this result may be related to the fact that 

our brain controls and is aware of our body, which causes a correlation between neural and 

physiological activity. For the remaining physiological signals, we were unable to draw 

conclusions. One of the hypotheses that may also have limited the results was the choice of 

the multimodal algorithm, which gives much more weight to the EEG signal than to the 

features of the remaining physiological signals. 

Upon confirming that pre-stimulus activity influences the recognition of the stimulus 

regardless of the category, we went to verify whether this influence was specific to different 

stimulus categories. That is, we went to check if the fluctuations in physiological and neural 

state modulated the encoding of each visual category in the brain. To achieve this, we 

combined the ERPs induced by the visual stimulus with pre-stimulus physiological and 

neural activity in a single multimodal classifier. However, the inclusion of this pre-stimulus 

activity did not produce significant improvements in the classifier’s performance. This 

outcome suggests that the pre-stimulus activity does not modulate the decoding process of 
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the stimulus. This contradicts what was found in (1) and (10). We believe that the discrepancies 

on the results might be attributed to the fact that EEG has a lower spatial resolution than MEG 

or intracranial recordings. Allied to this, the selected features to be included on the classifier 

and the employed task might not have been optimal. Finally, it is plausible that the chosen 

algorithm, as mentioned previously, also has an influence on these results. 

Throughout this project, we conducted a comprehensive investigation into the 

influence of pre-stimulus activity, both neural and physiological aspects, on visual stimulus 

detection. The results demonstrate that pre-stimulus activity indeed plays a crucial role in 

the detection process. However, this influence does not appear to modulate stimulus 

representation in the brain. In other words, pre-stimulus activity exerts a general influence 

on the stimulus recognition, but it has no differential effects on recognition of different 

stimuli.  Moreover, we did not find any evidence that body physiological signals affect visual 

perception directly.  

 

4.2 Future work 
One of the constraints of our project concerns the inclusion of single measures of the 

different physiological signals (at a fixed time point), rather than incorporating the signal’s 

actual time course. Consequently, when extracting the measures, certain fluctuations in the 

signal may be “ignored”, which may influence the neural representations of the stimuli as 

observed in previous studies (1,10). Therefore, in the future, it would be important to 

incorporate the time course of the different physiological signals preserving the signals time 

dynamics and not just a single measure of the signal. 

We observed that visual perception was associated with fluctuations in body 

physiology. However, we did not study how body physiology is associated with visual 

processing in the cortex. It would be interesting to extend these findings to analyze the 

relationship between body physiology and the ERPs. Moreover, through EEG source analyses 

it would be interesting to focus our study in the specific areas of the visual cortex to further 

understand the mechanisms involved. Furthermore, there is still much to be explored 

regarding the interplay between the body and the brain and their mutual influence on 

sensory processing. 
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5 Appendix 
 

5.1 Pre-stimulus neural and physiological activity 

 

Figure 5.1 – Correlation between the different measures and EEG activity from each channel. Several 
studies suggest that our brain is aware of the physiological state of our body. That said, it is to be expected 
that the behavior of each measure is reflected in the EEG signal. Thus, in this analysis, we have the 
correlation between each measure and the electrical activity of each electrode. a Correlation coefficients. b 
Significance values (p-values) of the correlation. It should be noted that this figure represents only the 
correlation and significance values for backward masking study. C: HR – Heart rate; C: HRV – Heart rate 
variation; C: P – sin – sine component of the cardiac phase; C: P – cos – cosine component of the cardiac 
phase; P: A – pupil size; P: R – relative pupil size; P: D – average pupil derivative; B: R – blink rate; B: D – 
distance of the last blink; S: R – saccades rate; S: D – distance of the last saccade; R: CD – respiratory cycle 
duration; R: P – sin – sine component of the respiratory phase; R: P – cos – cosine component of the 
respiratory phase. 



 

142 
 

 

Figure 5.2 - Correlation between the different measures and EEG activity from each channel. Several 
studies suggest that our brain is aware of the physiological state of our body. That said, it is to be expected 
that the behavior of each measure is reflected in the EEG signal. Thus, in this analysis, we have the 
correlation between each measure and the electrical activity of each electrode. a Correlation coefficients. b 
Significance values (p-values) of the correlation. It should be noted that this figure represents only the 
correlation and significance values for the low contrast study. C: HR – Heart rate; C: HRV – Heart rate 
variation; C: P – sin – sine component of the cardiac phase; C: P – cos – cosine component of the cardiac 
phase; P: A – pupil size; P: R – relative pupil size; P: D – average pupil derivative; B: R – blink rate; B: D – 
distance of the last blink; S: R – saccades rate; S: D – distance of the last saccade; R: CD – respiratory cycle 
duration; R: P – sin – sine component of the respiratory phase; R: P – cos – cosine component of the 
respiratory phase. 
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Figure 5.3 – Correlation between parameters of different physiological signals. a Correlation coefficients 
(backward masking study). b Significance values (p-values) of the correlation (backward masking study). c 
Correlation coefficients (low contrast study). d Significance values (p-values) of the correlation (low contrast 
study). C: HR – Heart rate; C: HRV – Heart rate variation; C: P – sin – sine component of the cardiac phase; C: 
P – cos – cosine component of the cardiac phase; P: A –pupil size; P: R – relative pupil size; P: D – average 
pupil derivative; B: R – blinks rate; B: D – distance of the last blink; S: R – saccades rate; S: D – distance of the 
last saccade; R: CD – respiratory cycle duration; R: P – sin – sine component of the respiratory phase; R: P – 
cos – cosine component of the respiratory phase. 
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5.2 Classifiers within-participant 
In this section we will only present the analyses carried out within-participant. It 

should be noted that, at this stage, the permutation test described in the methods section had 

not been applied yet. That said, in these analyses, only simple t-tests were used. We used the 

one-sample t-test to check whether the performance was statistically greater than 0.5, when 

using AUC as a metric, and greater than 50%, when using accuracy as a metric. To study 

whether the incorporation of different physiological signals generated a significant increase 

in performance, we used a paired-sample t-test. 

 

5.2.1 Study of each physiological signal independently 

Evaluation of the ability of the classifier to predict trials accuracy (backward masking 

study) and stimulus recognition (low contrast study) using each physiological signal 

individually. For this, we employed the SVM algorithm. 

 

  

 

  

 

  

  

  
AUC 

(p-value) 

Balanced 
accuracy 
(p-value) 

AUC 
(p-value)  

Balanced 
accuracy 
(p-value) 

ECG 0.806 0.930 0.210 0.455 
Respiration 0.821 0.398 0.716 0.565 

Pupil 0.688 0.427 0.002 0.019 
Blinks 0.610 0.235 0.999 0.716 

Saccades 0.043 0.119 0.187 0.509 

 

Table 24 – P-values resulting from the application of the one-sample t-test to verify whether the 
performance is statistically greater than 0.5, when using AUC as a metric, and statistically greater than 
50%, when using balanced accuracy as a metric. 

 

Backward masking study Low contrast study 
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Figure 5.4 – The performance of the classifier was evaluated for each physiological signal within each 
participant. a AUC using a SVM model to predict trial performance (backward masking study). b Balanced 
accuracy using a SVM model to predict trial performance (backward masking study). c AUC using a SVM 
model to predict stimulus detection (low contrast study). d Balanced accuracy using a SVM model to predict 
stimulus detection (low contrast study). The black horizontal line is the average performance and the 
rectangle represents ± standard error of the mean. Each circle within the representation denotes each 
participant. *: the performance using this physiological signal is statistically better than 0.5. *p<0.05, 
**p≤0.01, ***p≤0.001  

 

5.2.2 Combination of each physiological signal with EEG pre-
stimulus  

This analysis aimed to investigate the influence of pre-stimulus activity on trial 

detection. To determine whether the performance of the classifier is statistically greater than 

chance level (0.5 or 50%), we used the one-sample t-test. Furthermore, to evaluate whether 

the inclusion of each pre-stimulus activity significantly modulated the prediction capacity of 

the classifier and if it resulted in a statistically superior performance compared to using only 
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neural pre-stimulus activity as input. For these comparisons, we employed the paired sample 

t-test.   

 

     
  

 
AUC 

(p-value) 

Balanced 
accuracy 
(p-value) 

AUC 
(p-value) 

Balanced 
accuracy 
(p-value) 

Only EEG pre-
stimulus 

0.744 0.334 0.023 0.676 

EEG + ECG 0.364 0.124 0.003 0.002 
EEG + 

Respiration 
0.705 0.746 0.003 0.002 

EEG + Pupil 0.888 0.086 0.030 0.030 
EEG + Blinks 0.538 0.761 0.030 0.061 

EEG + Saccades 0.516 0.084 0.096 0.161 
EEG + All 

measures 
0.615 0.797 0.049 0.068 

 

Table 25 - P-values resulting from the application of the one-sample t-test to verify whether the 
performance is statistically greater than 0.5, when using AUC as a metric, and statistically greater than 
50%, when using accuracy as a metric. 

 

 

Backward masking 
study 

(p-value) 

Low contrast study 
(p-value) 

 

EEG + ECG 0.312 0.640 

EEG + Respiration 0.559 0.196 

EEG + Pupil 0.699 0.887 
EEG + Blinks 0.394 0.626 

EEG + Saccades 0.652 0.977 

EEG + All measures 0.805 0.872 

 

Table 26 – P-values resulting from the application of the paired-sample t-test to verify whether the 
incorporation of each pre-stimulus activity statistically affects the performance of the classifier. To this 
analysis, we used only the AUC metric. 

 

 

 

 

 

Backward masking study Low contrast study 
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Backward masking 

study 
(p-value) 

Low contrast study 
(p-value) 

EEG + ECG 0.077 0.108 

EEG + Respiration 0.411 0.140 

EEG + Pupil 0.499 0.195 
EEG + Blinks 0.738 0.294 

EEG + Saccades 0.188 0.509 

EEG + All measures 0.560 0.436 

 

Table 27 - P-values resulting from the application of the paired-sample t-test to verify whether the 
incorporation of each pre-stimulus activity improves statistically the performance of the classifier. To this 
analysis, we used only the balanced accuracy metric. 

 

 

Figure 5.5 – Classifier’s performance for each participant using neural pre-stimulus activity combined with 
the pre-stimulus activity of each physiological signal. The incorporation of the pre-stimulus activity did not 
cause significant changes in the classifier's performance. a AUC using the multimodal classifier to predict 
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trials’ accuracy (backward masking study). b Balanced accuracy using the multimodal classifier to predict 
trials’ accuracy (backward masking study). c AUC using the multimodal classifier to predict stimulus 
recognition (low contrast study). d Balanced accuracy using the multimodal classifier to predict stimulus 
recognition (low contrast study). The black horizontal line is the average performance and the rectangle 
represents ± standard error of the mean. Each circle within the representation denotes each participant. *: 
the performance of the classifier is statistically better than 0.5, when using AUC as metric, as is statistically 
better than 50, when using balanced accuracy. *p<0.05, **p≤0.01, ***p≤0.001 

 

5.2.3 Combination of neural and physiological pre-stimulus 

activity with ERPs 

This analysis consisted in studying the influence of pre-stimulus activity on the 

decoding of the stimulus. To determine whether the performance of the classifier is 

statistically greater than chance level (0.5 or 50%), the one-sample t-test was employed. 

Additionally, to evaluate whether the incorporation of each pre-stimulus activity significantly 

modulated the discrimination capacity of the classifier and whether it produced a statistically 

superior performance when using only ERPs as input. To make these comparisons, we 

utilized the paired-sample t-test.   

 

  

 
    

 
AUC 

(p-value) 
Accuracy 
(p-value) 

AUC 
(p-value) 

Accuracy 
(p-value) 

ERP <0.001 <0.001 0.001 0.002 
ERP + EEG pre-

stimulus 
<0.001 <0.001 <0.001 0.003 

ERP + ECG <0.001 <0.001 0.002 0.007 
ERP + 

Respiration 
<0.001 <0.001 0.002 <0.001 

ERP + Pupil <0.001 <0.001 <0.001 0.001 
ERP + Blinks <0.001 <0.001 <0.001 <0.001 

ERP + Saccades <0.001 <0.001 <0.001 <0.001 
ERP + All 

measures 
<0.001 <0.001 <0.001 0.003 

 

Table 28 – P-values resulting from the application of the one-sample t-test to verify whether the 
performance is statistically greater than 0.5, when using AUC as a metric, and statistically greater than 
50%, when using accuracy as a metric. 

 

 

 

 

Backward masking study Low contrast study 
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Backward masking study 

(p-value) 

Low contrast study 

(p-value) 

ERP + EEG pre-stimulus 0.922 0.628 

ERP + ECG 0.797 0.465 

ERP + Respiration 0.245 0.494 

ERP + Pupil 0.814 0.611 

ERP + Blinks 0.839 0.328 

ERP + Saccades 0.715 0.290 

ERP + All measures 0.946 0.336 

 

Table 29 - P-values resulting from the application of the paired-sample t-test to verify whether the 
incorporation of each pre-stimulus activity improves statistically the performance of the classifier. To this 
analysis, we used only the AUC metric. 

 

 

 
Backward masking study 

(p-value) 

Low contrast study 

(p-value) 

ERP + EEG pre-stimulus 0.807 0.613 

ERP + ECG 0.591 0.260 

ERP + Respiration 0.749 0.798 

ERP + Pupil 0.390 0.653 

ERP + Blinks 0.990 0.320 

ERP + Saccades 0.592 0.428 

ERP + All measures 0.492 0.441 

 

Table 30 - P-values resulting from the application of the paired-sample t-test to verify whether the 
incorporation of each pre-stimulus activity improves statistically the performance of the classifier. To this 
analysis, we used only the accuracy metric. 
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Figure 5.6 - Classifier’s performance for each participant using ERPs combined with the pre-stimulus 
activity of each physiological signal. The incorporation of the pre-stimulus activity did not cause significant 
changes in the classifier's performance. a Area under curve using the multimodal classifier to discriminate 
trials category (backward masking study). b Accuracy using the multimodal classifier to discriminate trials 
(backward masking study). c Area under curve using the multimodal classifier to discriminate trials 
category (low contrast study). d Accuracy using the multimodal classifier to discriminate trials category 
(low contrast study). The black horizontal line is the average performance and the rectangle represents ± 
standard error of the mean. Each circle within the representation denotes each participant. 

 

5.3 Classifiers – All trials 
In the body of the thesis are the analyses carried out using the AUC as a performance 

metric. Thus, this section will only contain results using accuracy as a performance metric. 

As mentioned, it was from these analyses that we introduced the permutation tests.  

Then, to analyze the influence of each activity parameter of the different physiological 

signals, we used the paired-sample t-test. 

Finally, we combined pre-stimulus activity with neural activity. To verify whether the 

incorporation of the pre-stimulus activity produces significant changes in the performance 
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of the classifier, we used the paired-sample t-test. Finally, to analyze the influence of each 

measure of the different measures extracted from each signal, we also used the paired-

sample t-test.  

 

5.3.1 Study of each physiological signal independently 

Evaluation of the ability of the classifier to predict trials accuracy (backward masking 

study) and stimulus recognition (low contrast study) using the combination of all parameters 

of a given physiological signal and each parameter separately. For this, we employed the SVM 

algorithm. 

 

5.3.1.1 Cardiac activity 

 

 
Backward 

masking study 
Low contrast 

study 

 
All cardiac 
measures 15% 35% 

Heart rate 95% 60% 

Heart rate 
variation 

5% 40% 
 

Phase 15% 30% 

  

Table 31 –Percentage of classifiers using cardiac measures as features that perform better than random. 
We used the permutation test to study if the classifiers had a behavior better than random. The 
permutation test results give the percentage of classifiers that perform better than random as a metric. 
That said, to define whether a given measure allows statistical prediction, a threshold of 50% was 
employed. This signifies that we consider successful classification when a minimum of 50% of the 
classifiers exhibit a performance surpassing random chance. 

 

Backward masking 
study 

(p-value) 

Low contrast study 
(p-value) 

Heart rate <0.001 0.400 
Heart rate variation 0.720 0.309 

Phase 0.100 0.871 
 

Table 32 – Comparison between the use of each cardiac measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all cardiac 
measures were combined.  
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Figure 5.7 – Classifiers’ performance when using all cardiac measures and when using each measure 
separately. A Balanced accuracy using a SVM model in the backward masking study. b Balanced accuracy 
using a SVM model in the low contrast study. The 1st bar shows the results for when the combination of all 
cardiac measures is used. The remaining bars concern the performance of the classifiers using each of the 
measures separately. The black horizontal line is the average performance and the rectangle represents ± 
standard error of the mean. Each circle within the representation denotes each individual instance in which 
the classifier was executed. +: Using this measure as an input, more than 50% of the classifiers present a 
behavior superior to random. ^: When utilizing this measure as input, it results in a performance that is 
statistically different to the performance produced when using all measures combined. ^p<0.05; ^^p<0.01; 
^^^p<0.001. 

 

5.3.1.2 Respiratory activity 
 

 Backward 
masking study 

Low contrast 
study  

All respiratory 
measures 

15% 100% 

Respiratory 
cycle curation 

80% 95% 

Phase 70% 100% 

 

Table 33 –Percentage of classifiers using respiratory measures as features that perform better than 
random. We used the permutation test to study if the classifiers had a behavior better than random. The 
permutation test results give the percentage of classifiers that perform better than random as a metric. 
That said, to define whether a given measure allows statistical prediction, a threshold of 50% was 
employed. This signifies that we consider successful classification when a minimum of 50% of the 
classifiers exhibit a performance surpassing random chance. 
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Backward masking 

study 
(p-value)  

Low contrast study 
(p-value) 

Respiratory cycle duration 0.002 0.100 
Phase 0.003 0.600 

 

Table 34  – Comparison between the use of each respiratory measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all 
respiratory measures were combined.  

 

 

Figure 5.8 – Classifiers’ performance when using all respiratory measures and when using each measure 
separately. a Balanced accuracy using a SVM model in the backward masking study. b Balanced accuracy 
using a SVM model the low contrast study. The 1st bar shows the results for when the combination of all 
respiratory measures is used. The remaining bars concern the performance of the classifiers using each of 
the measures separately. The horizontal black line is the average performance and the rectangle represents 
± standard error of the mean. Each circle within the representation denotes each individual instance in 
which the classifier was executed. +: Using this measure as an input, more than 50% of the classifiers 
present a behavior superior to random. ^: When utilizing this measure as input, it results in a performance 
that is statistically different to the performance produced when using all measures combined. ^p<0.05; 
^^p<0.01; ^^^p<0.001. 
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5.3.1.3 Pupillary response 
 

 Backward 
masking study 

Low contrast study  

All pupil measures 30% 95% 
Pupil size 20% 90% 

Relative pupil size 40% 100% 
Average pupil 

derivative 
15% 95% 

 

Table 35 - Percentage of classifiers using pupil measures as features that perform better than random. We 
used the permutation test to study if the classifiers had a behavior better than random. The permutation 
test results give the percentage of classifiers that perform better than random as a metric. That said, to 
define whether a given measure allows statistical prediction, a threshold of 50% was employed. This 
signifies that we consider successful classification when a minimum of 50% of the classifiers exhibit a 
performance surpassing random chance. 

 
Backward masking 

study 
(p-value)  

Low contrast study 
(p-value) 

Pupil size 0.838 0.306 
Relative pupil size 0.800 0.332 

Average pupil derivative 0.401 0.400 
 

Table 36 – Comparison between the use of each pupil measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all pupil 
measures were combined.  
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Figure 5.9 – Classifiers’ performance when using all pupil measures and when using each measure 
separately. a Balanced accuracy using a SVM model in the backward masking study. b Balanced accuracy 
using a SVM model in the low contrast study. The 1st bar shows the results for when the combination of all 
pupil measures is used. The remaining bars concern the performance of the classifiers using each of the 
measures separately. The black horizontal line is the average performance and the rectangle represents ± 
standard error of the mean. Each circle within the representation denotes each individual instance in which 
the classifier was executed. +: Using this measure as an input, more than 50% of the classifiers present a 
behavior superior to random.  

 

5.3.1.4 Blinking activity 
 

 Backward 
masking study 

Low contrast 
study  

All blink 
measures 

25% 60% 

Blink rate 100% 75% 
Distance of the 

last blink 
30% 55% 

 

Table 37 - Percentage of classifiers using blink measures as features that perform better than random. We 
used the permutation test to study if the classifiers had a behavior better than random. The permutation 
test results give the percentage of classifiers that perform better than random as a metric. That said, to 
define whether a given measure allows statistical prediction, a threshold of 50% was employed. This 
signifies that we consider successful classification when a minimum of 50% of the classifiers exhibit a 
performance surpassing random chance. 
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Backward masking 
study 

(p-value) 

Low contrast study 
(p-value) 

Blink rate <0.001 0.903 
Distance of the 

last blink 
0.684 0.829 

 

Table 38 – Comparison between the use of each blinking measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all blinking 
measures were combined.  

 

 

Figure 5.10 – Classifiers’ performance when using all blinking measures and when using each measure 
separately. a Balanced accuracy using a SVM model in the backward masking study. b Balanced accuracy 
using a SVM model in the low contrast study. The 1st bar shows the results for when the combination of all 
blinking measures is used. The remaining bars concern the performance of the classifiers using each of the 
measures separately. The black horizontal line is the average performance and the rectangle represents ± 
standard error of the mean. Each circle within the representation denotes each individual instance in which 
the classifier was executed. +: Using this measure as an input, more than 50% of the classifiers present a 
behavior superior to random. ^: When utilizing this measure as input, it results in a performance that is 
statistically different to the performance produced when using all measures combined. ^p<0.05; ^^p<0.01; 
^^^p<0.001. 
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5.3.1.5 Saccadic activity 
 

 Backward 
masking study 

Low contrast 
study  

All saccade 
measures 

25% 25% 

Saccades rate 75% 25% 
Distance of the 

last saccade 
25% 40% 

 

Table 39 - Percentage of classifiers using saccade measures as features that perform better than random. 
We used the permutation test to study if the classifiers had a behavior better than random. The 
permutation test results give the percentage of classifiers that perform better than random as a metric. 
That said, to define whether a given measure allows statistical prediction, a threshold of 50% was 
employed. This signifies that we consider successful classification when a minimum of 50% of the 
classifiers exhibit a performance surpassing random chance. 

 

Backward masking 
study 

(p-value) 

Low contrast study 
(p-value) 

Saccades rate 0.002 0.470 
Distance of the last saccade 0.824 0.003 

 

Table 40 – Comparison between the use of each saccade measure separately and the combination of all 
measures. We used the paired-sample t-test to evaluate the contribution of each measure when all 
saccades’ measures were combined.  
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Figure 5.11 – Classifiers’ performance when using all saccades measures and when using each measure 
separately. a Balanced accuracy using a SVM model in the backward masking study. b Balanced accuracy 
using a SVM model in the low contrast study. The 1st bar shows the results for when the combination of all 
saccades measures is used. The remaining bars concern the performance of the classifiers using each of 
the measures separately. The black horizontal line is the average performance and the rectangle represents 
± standard error of the mean. Each circle within the representation denotes each individual instance in 
which the classifier was executed. +: Using this measure as an input, more than 50% of the classifiers 
present a behavior superior to random. ^: When utilizing this measure as input, it results in a performance 
that is statistically different to the performance produced when using all measures combined. ^p<0.05; 
^^p<0.01; ^^^p<0.001. 

 

 

5.3.2 Combination of each physiological signal with EEG pre-

stimulus  

We started this analysis by evaluating the capacity of the multimodal classifier to 

extract activity patterns from the physiological signals and predict visual performance. We 

employed the permutation tests to evaluate whether the classifier’s behavior is better than 

the random behavior. Then, we compared the classifier’s performance when using each 

physiological signal individually and when combining all physiological signals. 

 

 
Backward 

masking study 
Low contrast 

study 

ECG 13.33% 40% 
Respiration 13.33% 20% 

Pupil 6.67% 80% 
Blinks 33.33% 13.33% 

Saccades 40% 53.33% 
All measures 33.33% 80% 

 

Table 41 – Percentage of classifiers using only physiological data as features that perform better than 
random. We used the permutation test to study if the classifiers had a behavior better than random. The 
permutation test results give the percentage of classifiers that perform better than random as a metric. 
That said, to define whether a given measure allows statistical prediction, a threshold of 50% was 
employed. This signifies that we consider successful classification when a minimum of 50% of the 
classifiers exhibit a performance surpassing random chance. 
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Backward 
masking study 

(p-value) 

Low contrast 
study 

(p-value) 

ECG 0.003 0.172 
Respiration 0.002 0.004 

Pupil 0.018 0.392 
Blinks 0.943 0.481 

Saccades 0.498 0.204 
 

Table 42 – Comparison between the performance achieved using each physiological signal individually 
and the performance attained through the combination of all physiological signals. We used the paired-
sample t-test to evaluate the contribution of each signal when all physiological signals were combined. 

 

 

Figure 5.12 – Multimodal classifiers’ performance when using physiological pre-stimulus activity. A 
Balanced accuracy using a CNN model to predict trial performance (backward masking study). b Balanced 
accuracy using a CNN model to predict stimulus detection (low contrast study). The  last bar shows the 
results for when the combination of all physiological signals is used. The remaining bars concern the 
performance of the classifiers using each physiological signal individually. The black horizontal line is the 
average performance and the rectangle represents ± standard error of the mean. Each circle within the 
representation denotes each individual instance in which the classifier was executed. +: Using this pre-
stimulus activity as an input, more than 50% of the classifiers present a behavior superior to random. ^: 
When utilizing this pre-stimulus activity as input, it results in a performance that is statistically different 
to the performance produced when all physiological signals are used. ^p<0.05, ^^p≤0.01, ^^^p≤0.001 
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We then combined body and brain pre-stimulus activity. This analysis consisted in 

studying the influence of pre-stimulus activity in trial’s detection. We employed the 

permutation tests to evaluate whether the classifier’s behavior is better than the random 

behavior. Additionally, to evaluate whether the incorporation of each pre-stimulus activity 

significantly modulated the prediction capacity of the classifier and whether it produced a 

statistically superior performance when using only neural pre-stimulus activity as input. To 

make these comparisons, we utilized the paired sample t-test.  

 

 Backward 
masking study 

Low contrast 
study 

Only EEG pre-
stimulus 

86.67% 86.67% 

EEG + ECG 60% 100% 
EEG + 

Respiration 
73.33% 100% 

EEG + Pupil 73.33% 100% 
EEG + Blinks 93.33% 100% 

EEG + Saccades 66.67% 100% 
EEG + All 

measures 
60% 100% 

 

Table 43 – Percentage of classifiers using the physiological data and neural activity as features that 
perform better than random. We used the permutation test to study if the classifiers had a behavior better 
than random. The permutation test results give the percentage of classifiers that perform better than 
random as a metric. That said, to define whether a given measure allows statistical prediction, a threshold 
of 50% was employed. This signifies that we consider successful classification when a minimum of 50% of 
the classifiers exhibit a performance surpassing random chance. 

 

 
Backward masking 

study 
(p-value)  

Low contrast study 
(p-value) 

EEG + ECG 0.021 0.730 

EEG + Respiration 0.040 0.586 

EEG + Pupil 0.058 0.921 
EEG + Blinks 0.021 0.714 

EEG + Saccades 0.015 0.418 

EEG + All measures 0.008 0.814 

 

Table 44 – Comparison between the performance achieved using only neural activity and the performance 
attained through the combination of neural activity with different physiological signals. We used the 
paired-sample t-test to evaluate whether each physiological signal contains supplementary information 
that can be extracted by the classifier. 
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Figure 5.13 – Classifiers’ performance when using neural and physiological pre-stimulus activity. A 
Balanced accuracy using a CNN model to predict trial performance (backward masking study). b Balanced 
accuracy using a CNN model to predict stimulus detection (low contrast study). The 1st bar shows the results 
for when the neural activity pre-stimulus is used. The remaining bars concern the performance of the 
classifiers combining each physiological signal pre-stimulus with neural activity. The black horizontal line 
is the average performance and the rectangle represents ± standard error of the mean. Each circle within 
the representation denotes each individual instance in which the classifier was executed. +: Using this pre-
stimulus activity as an input, more than 50% of the classifiers present a behavior superior to random. ^: 
When utilizing this pre-stimulus activity as input, it results in a performance that is statistically different 
to the performance produced when only neural pre-stimulus activity is used. ̂ p<0.05, ̂ ^p≤0.01, ̂ ^^p≤0.001 

 

5.3.3 Combination of neural and physiological pre-stimulus 

activity with ERPs 

This analysis consisted in studying the influence of pre-stimulus activity on the 

decoding of the stimulus. We, again, employed the permutation tests to evaluate whether the 

classifier’s behavior is better than the random behavior. Additionally, to evaluate whether the 

incorporation of each pre-stimulus activity significantly modulated the discrimination 

capacity of the classifier and whether it produced a statistically superior performance when 

using only ERPs as input. To make these comparisons, we utilized the paired sample t-test.   
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 Backward 
masking study 

Low contrast 
study  

ERP 100% 93.33% 
ERP + EEG pre-

stimulus 
100% 93.33% 

ERP + ECG 100% 86.67% 
ERP + 

Respiration 
100% 86.67% 

ERP + Pupil 100% 100% 
ERP + Blinks 100% 100% 

ERP + Saccades 100% 100% 
ERP + All 

measures 
100% 93.33% 

 

Table 45 - Percentage of classifiers using the combination of body and brain pre-stimulus activity with 
ERPs that perform better than random. We used the permutation test to study if the classifiers had a 
behavior better than random. The permutation test results give the percentage of classifiers that perform 
better than random as a metric. That said, to define whether a given measure allows statistical prediction, 
a threshold of 50% was employed. This signifies that we consider successful classification when a minimum 
of 50% of the classifiers exhibit a performance surpassing random chance. 

 

 
Backward masking 

study 
(p-value)  

Low contrast study 
(p-value) 

ERP + EEG pre-stimulus 0.104 0.008 
ERP + ECG 0.571 0.384 

ERP + Respiration 0.918 0.325 
ERP + Pupil 0.770 0.774 

ERP + Blinks 0.204 0.048 
ERP + Saccades 0.450 0.089 

ERP + All measures 0.328 0.030 
 

Table 46 - Comparison between the performance achieved using only ERPs and the performance attained 
through the combination of ERPs with different pre-stimulus physiological and neural activity. We used the 
paired-sample t-test to evaluate whether each pre-stimulus activity modulates how stimulus is decoded. 
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Figure 5.14 – Classifiers’ performance using ERPs combined with the pre-stimulus activity. a Accuracy 
using a CNN model to discriminate stimulus category (backward masking study). b Accuracy using a CNN 
model to discriminate stimulus category (low contrast study). The 1st bar shows the results for when only 
ERPs are used. The remaining bars concern the performance of the classifiers combining pre-stimulus 
physiological and neural activity with the ERPs. The black horizontal line is the average performance and 
the rectangle represents ± standard error of the mean. Each circle within the representation denotes each 
individual instance in which the classifier was executed. +: Using this pre-stimulus activity as an input, 
more than 50% of the classifiers present a behavior superior to random.  
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