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Abstract

Complex systems evolve over time driven by the interactions among its units
or nodes. Examples are Brain activity, pandemics, social networks, Gene Reg-
ulatory Networks. These are applications whereby the underlying connectiv-
ity pattern between its comprising units fundamentally characterize the long
term faith of the system or explains distinct emergent patterns, e.g., epileptic
seizures, long term behavior of a pandemics, or aid in the design of mitigation
policies in a pandemics. However, in all these applications, the causal geometry
is not transparently available and should be inferred from observed data (time
series) with technical guarantees of structural consistency. This Thesis studies
the problem of identifying the causal structure of linear Networked Dynami-
cal Systems. Owing to the intrinsic large scale nature of complex systems, we
can only probe the time series activity at a subset of nodes. Further, in general,
these Networked Dynamical Systems are excited by (possibly adversarial) noise
or control input that exhibit nontrivial statistical structure. We offer two main
contributions within the challenging scope of causal inference under the pres-
ence of latent nodes and structured excitation noise: i) A novel condition over the
noise structure wherein the directed network can be consistently inferred from
observed data (Chapter 4); ii) A novel causal inference algorithm with compet-
itive performance (Chapter 4). In Chapter 5, we present a comprehensive col-
lection of numerical results benchmarking our approach against popular state-
of-the-art methods like Granger or Precision matrix (or Graphical Lasso) over
directed networks, i.e., networks where a node i can influence node j, but not
the other way around. The numerical experiments are performed across distinct
regimes of connectivity, observability and noise correlation. The work developed
has been submitted for publication [Santos et al., 2023].

Keywords

Causal inference, directed graphs, complex systems, statistical analysis, machine
learning, Granger estimator, colored noise, networked dynamical systems, brain
structural connectivity, real-data application.
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Resumo

Sistemas complexos evoluem ao longo do tempo impulsionados pelas interações
entre os seus elementos ou nós. Exemplos incluem a atividade cerebral, pan-
demias, redes sociais e redes de regulação genética. Estas são aplicações em
que o padrão de conectividade subjacente entre os elementos fundamentalmente
caracteriza o destino de longo prazo do sistema ou explica padrões emergentes
distintos, como convulsões epilépticas, comportamento de longo prazo de pan-
demias ou auxilia no desenvolvimento de políticas de mitigação em uma pan-
demia. No entanto, em todas essas aplicações, a geometria causal não está trans-
parentemente disponível e deve ser inferida a partir de dados observados (séries
temporais) com garantias técnicas de consistência estrutural. Esta tese estuda o
problema de identificar a estrutura causal de Sistemas Dinâmicos em Rede lin-
eares. Devido à natureza intrinseca de grande escala dos sistemas complexos,
só podemos sondar a atividade de séries temporais em um subconjunto de nós.
Além disso, em geral, esses Sistemas Dinâmicos em Rede são excitados por ruído
(possivelmente adversarial) ou um input controlado que exibe uma estrutura es-
tatística não trivial. Oferecemos duas contribuições principais no tema desafiador
da inferência causal na presença de nós latentes e ruído de excitação estruturado:
i) Uma nova condição sobre a estrutura de ruído na qual a rede pode ser con-
sistentemente inferida a partir dos dados observados (Capítulo 4); ii) Um novo
algoritmo de inferência causal com desempenho competitivo (Capítulo 4). No
Capítulo 5, apresentamos uma coleção abrangente de resultados numéricos com-
parando a nossa abordagem com métodos populares de última geração, como
Granger ou matriz de precisão (ou Grafo de Lasso). Os experimentos numéricos
são realizados em regimes distintos de conectividade, observabilidade e corre-
lação de ruído. O trabalho desenvolvido foi submetido para publicação [Santos
et al., 2023].

Palavras-Chave

Inferência Causal, sistemas complexos, análise estatística, machine learning, Granger
estimator, ruído colorido, sistems dinâmicos em rede, conectividade estrutural
cerebral, aplicação em dados reais.
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Chapter 1

Introduction

This Chapter presents a brief motivation for the main subject of this Thesis in
Section 1.1 and the discussion of our main goals and contributions in Section 1.2.
Lastly, we introduce the outline structure of this document in Section 1.3.

The work developed was submitted for publication [Santos et al., 2023].

1.1 Motivation

This thesis focuses on the application of machine learning techniques for the
purpose of identifying the causal relationships underlying Networked Dynam-
ical Systems, i.e., the directed network linking the distinct units of the system.
Networked Dynamical Systems (NDS) can be defined as interacting systems,
agents or nodes, each undergoing state changes over time as the overall system
progresses. The collective dynamics are characterized by the coupling among
the nodes and therefore, the pattern of connections linking these nodes holds
paramount significance in comprehending the temporal evolution of Networked
Dynamical Systems. Within the realm of Social Networks, the diffusion of fake
news or information and beliefs critically relies on the underlying (social) net-
work structure [A. Lalitha and Sarwate, 2018; Jadbabaie et al., 2012; Matta et al.,
2020b]. Deeper comprehension of emergent patterns of the human brain remains
still quite elusive; however, recent research has advocated that insights into its
underlying connectivity pattern yield pivotal information concerning cognitive
disorders [Huang and Ding, 2016; Liégeois et al., 2020; Morone et al., 2017; Stam
et al., 2007; Wang et al., 2014]. In instances of pandemics, the comprehension
of the connectivity among distinct communities conforms to a pivotal blueprint
to formulating decisions regarding preventative measures [Ganesh et al., 2005;
Ren et al., 2019], such as the protocols and quarantines instated during the global
outbreak of COVID-19. Across all aforementioned examples, the time series en-
tailing the state evolution of the nodes are observable, for example, through Func-
tional Magnetic Resonance Imaging (FMRI) or Electroencephalography (EEG) in
the brain activity case. Nevertheless, the underlying network that interconnects
these nodes remains concealed. The configuration of this connectivity structure
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Chapter 1

profoundly influences the formulation of mitigation policies in scenarios involv-
ing pandemics, and it significantly informs the diagnose and therapeutic aspects
of cerebral afflictions based on neural activity. This thesis endeavors to formally
study the inference of this latent network from the time series data stemming
from a linear Networked Dynamical System (NDS) under partial observability –
the time series data of only a subset of the nodes can be feasibly probed, – specif-
ically targeting directed networks (causal inference). As in general applications,
the NDS is excited by colored noise, i.e., the noise is correlated across nodes. While
the bulk of the causal inference literature assumes whiteness or noise indepen-
dence (for analysis purposes), this conforms to a strong assumption, in general,
and we consider the challenging noise correlation setting as this is a common
characterizing property across real scenarios.

In the causal inference literature, the main approach is to estimate a scalar value
that describes the interaction strength between two nodes from the time series
data. This is done through various methods, e.g., the standard correlation, Preci-
sion matrix [Loh and Wainwright, 2013], or mutual-information [Chow and Liu,
1968]. Fig. 1.1 illustrates the main idea. If the value estimated is high enough, the
nodes are considered connected, otherwise, it is considered disconnected. The
method can be described as a thresholding or hypothesis testing problem where
above the threshold are the linked pair of nodes, and under it are the discon-
nected ones.

Figure 1.1: Our approach with the feature vector embedding vs the main
scalar based methods in the literature. Our approach builds on the previ-
ous work [Machado et al., 2023] and relies on certain identifiability properties
(namely, linear separability) in comparison with the literature main approach.

In reference [Machado et al., 2023], the pertinent information concerning the net-
work connectivity is encapsulated in the separability of the set of features: A hy-
perplane partitions the set of features, i.e., features of connected pairs lie on one
side of the hyperplane and features of disconnected pairs lie on the other side.
Notably, the features’s inherent separability properties have been rigorously es-
tablished, engendering the prospect of harnessing machine learning methodolo-
gies, namely, supervised methods for the inference of the network’s underlying
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structure. It is worth noting, however, that the scope of the investigation car-
ried out in [Machado et al., 2023] is restricted to Networked Dynamical Systems
excited by diagonal noise, i.e., the covariance matrix of the noise is a multiple
of the identity matrix (noise is independent across nodes). We greatly extend
the approach in [Machado et al., 2023] to the case of colored noise under partial
observability. Namely, the present thesis explores a more comprehensive setting,
encompassing systems characterized by colored noise—wherein the noise covari-
ance matrix contains off-diagonal elements distinct from zero. This extends the
analytical framework to account for a broader spectrum of real-world scenarios,
thereby enhancing the model’s applicability and fostering deeper insights into the
inherent structure of Networked Dynamical Systems. Further, instead of Convu-
lational Neural Networks (CNNs) our method consists on Feed Forward Neural
Networks (FFNNs) with the input of novel features. All-in-all our main goal
is to develop tools to consistently recover the connectivity pattern underlying a
Networked Dynamical System (NDS) from partially observed time series under
colored noise excitation.

1.2 Proposed Approach

This thesis focus on identifying the network structure underlying linear NDS ex-
cited by colored noise and under partial observability. The qualitative behavior
of these dynamical systems strongly depends on the underlying causal network
linking its constituent units. In this thesis, we focus on directed graphs to estab-
lish a novel feasibility condition on the noise structure whereby the network can
be consistently inferred from the observed time series. The networked system is
generated as a directed graph where only few nodes are observable. From the
time-series stemming from those nodes, we compute the new feature vector and
through our reconstruction module the structure is recovered. These time series
datasets stem from a linear NDS excited by colored noise. Fig. 1.2 summarizes
the paradigm.

Figure 1.2: Causal inference under partial observability.

In reference [Machado et al., 2023], the approach primarily centered around the
analysis of linear NDS time series perturbed by diagonal noise. However, in
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our current scenario, the time series under consideration are characterized by the
presence of colored noise. Consequently, the efficacy of their proposed model in
our context has been considerably diminished. This is attributed to the fact that
the [Machado et al., 2023] model was exclusively tailored to scenarios involving
diagonal noise patterns and did not encompass the complexities associated with
colored noise environments. Therefore, a novel set of feature vectors is computed
from the time series characterized by colored noise to describe the connectivity
between nodes. The separability properties of these features are proved, i.e., they
are linearly separable, in that, there is a hyperplane (in feature space) that con-
sistently stratifies the features stemming from connected pairs and those from
disconnected pairs. Finally, for the training set up, our proposed method has as
its input these new feature vector, and with a FFNN plus a clustering method
applied to its output, we can consistently recover the underlying structure un-
der partial observability, outperforming other popular methods as discussed in
Chapter 5.

1.3 Outline

The structure of this thesis and a brief description of each Chapter content is
provided below:

• Chapter 2 – we set the problem formulation and introduce the main back-
ground tools in order to offer a solid ground over all the points developed
along this thesis. More concretely, we present the basics of NDS, brain
neuroscience and the modules of Artificial Neural Networks (ANNs) used
throughout the thesis.

• Chapter 3 – this Chapter entails a brief description of some of the related
estimators in the causal inference literature.

• Chapter 4 – provides the technical results and formulations of the proposed
approach. Namely, we formally establish a novel feasibility condition on
the noise statistical structure, i.e., a sufficient condition on the noise covari-
ance that renders causal inference (under partial observability) a well-posed
problem. That is, there exists an algorithm to consistently infer the direct
network structure.

• Chapter 5 – benchmarks our feature based approach with other popular es-
timators, including [Machado et al., 2023], via numerical experiments across
distinct regimes of noise correlation, observability and connectivity.

• Chapter 6 – presents the concluding remarks and proposes various promis-
ing paths for future research directions.

4



Chapter 2

Background

This Chapter entails the background concerning the basics of Networked Dynam-
ical Systems, causal inference of NDS, Artificial Neural Networks and the main
problem formulation of the thesis.

2.1 Networked Dynamical System

In recent years, the integration of network theory and dynamical systems has
led to the emergence of a captivating framework known as networked dynam-
ical systems. This paradigm extends the classical dynamical systems theory to
account for the intricate interactions between interconnected components, mak-
ing it particularly pertinent to the realm of causal inference in the scope of com-
plex systems. Networked dynamical systems are comprised by entities or units
within a system that are seldom isolated but rather interact with and influence
each other. These interactions can be conceptualized as connections in a network,
where nodes represent system components, and edges capture the influence or
coupling between them. The dynamical behavior of each component is then con-
tingent upon not only its internal dynamics but also the dynamics of its connected
neighbors.

2.1.1 Causal Inference of Networked Dynamical Systems

The integration of network theory and dynamical systems offers a powerful toolkit
for addressing the challenging problem of causal inference. Traditional causal in-
ference methods often rely on observational data and assume static relationships.
In contrast, networked dynamical systems provide a means to capture the evolv-
ing cause-and-effect relationships within a system. By studying how changes in
one component’s state influence the states of connected components over time,
networked dynamical systems enable the identification of causal relationships in
scenarios where traditional methods might fall short. The temporal evolution
of the system’s states can reveal causal dependencies that arise due to feedback
loops, delayed responses, and hidden interactions.
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The crux of networked dynamical systems indexed as directed graphs lies in their
ability to causal relationships within complex systems. By encoding causal influ-
ences as directed edges, these graphs visualize not only the existence of connec-
tions but also the direction of influence. This inherent causal directionality is
particularly valuable for discerning the cause-and-effect relationships that gov-
ern the system’s behavior. Observing the temporal evolution of states within
a directed graph-embedded dynamical system can unveil the cascade of effects
triggered by initial changes. Through this lens, causal relationships emerge as
paths along directed edges, revealing the sequential manner in which changes
propagate through the system. The directed graph representation of networked
dynamical systems finds profound applications in the field of causal inference.
Directed graphs offer a holistic way to visualize and formalize causal relation-
ships by exploiting the temporal aspects of dynamical systems. In scenarios in-
volving complex interactions, hidden variables, and feedback loops, the directed
graph representation can elucidate causal connections that might be obscured in
static models. By analyzing the dependencies along directed edges, researchers
gain insights into the causal structure that underlies the observed dynamics.

Networked dynamical systems for causal inference find applications across di-
verse fields. In biology, they can aid in understanding regulatory networks and
signaling pathways. In social sciences, they provide insights into information
dissemination, opinion formation, and social influence. In engineering, they con-
tribute to the analysis of interconnected control systems and synchronization
phenomena. A compelling application of networked dynamical systems for causal
inference lies in the realm of neuroscience, particularly in understanding brain ac-
tivity and neural networks. The brain is a complex system where neurons interact
with each other through intricate synaptic connections. Networked dynamical
systems provide a framework to model how the activity of individual neurons
influences and is influenced by neighboring neurons over time. By observing the
spatiotemporal patterns of neuronal firing, researchers can infer causal relation-
ships among different brain regions. Insights gained from networked dynamical
systems can shed light on information processing, synchronization, and informa-
tion flow within the brain, ultimately advancing our understanding of cognition,
behavior, and neurological disorders.

2.1.2 Markov Property

At its core, the Markov property signifies that the future state of a system depends
solely on its present state and is conditionally independent of its past states given
this present state. In the context of networked dynamical systems, the Markov
property translates into the idea that the evolution of a component’s state is in-
fluenced primarily by the states of its direct predecessors, or its parents in the
directed graph. Leveraging the Markov property in the context of networked dy-
namical systems contributes to the accurate representation and interpretation of
complex interactions. This thesis relies on this property, where in order to know
the state of the system we have:
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X(0), ..., X(n − 1), X(n), X(n + 1), ..., (2.1)

being X(n) the state of the dynamical system at the instant n. The Markov prop-
erty states that given X(n − 1), X(n) is independent of X(z) for any z < n − 1.
This means that the state X(20) only relies on the information of X(19), and all
the other past instants can be discarded. This property can be defined as:

P(X(n) ∈ A|X(n − 1), X(n − 2), ..., X(0)) = P(X(n) ∈ A|X(n − 1)), (2.2)

where P is the probability of being in state A. The concept of interest pertains to
the likelihood of transitioning into state A, where, conditioned upon the entirety
of the historical states, this likelihood equates to the probability of transition-
ing into the same state A based solely on the antecedent state. This principle
holds significance due to the prevailing circumstance wherein the network, sig-
nifying the intricate interplays between distinct elements or nodes, is often ob-
scure. However, this intrinsic attribute simplifies the task of characterizing the
Functional connectivity (FC) from the available samples.

2.2 Brain Network Neuroscience

The human brain, with its intricate web of neurons and synapses, remains one
of the most enigmatic frontiers of scientific exploration. Recent advancements
in neuroscience have unveiled that the brain’s functionality is not just a product
of isolated regions but a complex interplay of connections. Brain Network Neu-
roscience, often referred to as Connectomics, has emerged as a transformative
field that employs network theory and analysis to decipher the brain’s structural
and functional connectivity patterns. This Section delves into the significance of
Brain Network Neuroscience and its applications, shedding light on how the net-
work perspective enhances our understanding of the brain’s intricate workings.
The human brain is inherently a network: a vast assembly of neurons that com-
municate and exchange information through intricate pathways. Brain Network
Neuroscience leverages the principles of graph theory to represent and analyze
these neural connections. In this context, the brain’s structural and functional
elements are mapped onto nodes and edges of a graph, respectively.

The structural connectome depicts the anatomical pathways that underlie neural
communication. Techniques like Diffusion MRI (dMRI) enable the mapping of
white matter tracts and pathways, creating a structural network representation
of the brain. Nodes in this network represent brain regions, and edges denote
the presence of white matter connections. Functional connectivity captures the
synchronized activity between brain regions, often measured through techniques
like functional Magnetic Resonance Imaging (fMRI) and Electroencephalography
(EEG). Nodes in a functional network correspond to brain regions, and edges
indicate the strength of correlation or synchronization in their activity patterns.
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In [Alvaro Pascual-Leone, 2000] they use a procedure reffered to as Transcranial
magnetic stimulation (TMS) that basically stimulates the nerve cells in the brain.
With it they could trace the timing at which activity in a particular cortical re-
gion contributes to a given task and map the functional connectivity between
the brain regions. In the work developed in [Adolphs, 2003] they conclude that
social behaviour is the result of a whole set of processes between the different
brain’s regions. The main goal of that research was to understand the neural
basis of our intuitive folk psychology, i.e., stereotyping, intentions, beliefs, etc. Dis-
turbances in the structural and functional connectivity of brain hubs, [Martijn P.
van den Heuvel, 2011], are linked to neuropathology. In this work they demon-
strate that there is a tendency for high-degree nodes to be more more densely
connected among themselves than nodes of a lower degree. This provides impor-
tant information on the higher-level topology of the brain network. They define
this higher-level regions as rich clubs and prove that not only they are individu-
ally central but also densely interconnected. It is also suggested and reinforced
that the human brain network possesses a hierarchical assortative organization, a
network topology in which high-degree nodes exhibit a tendency to be intercon-
nected. Further, they conclude that the differente regions the brain do not operate
as individual entities, but instead act as a strongly interlinked collective.

2.2.1 Applications

Cognitive Function: Brain network analysis offers insights into how cognitive
functions emerge from coordinated neural activity. It has illuminated networks
involved in memory, attention, language, and decision-making, revealing how
these functions depend on the interactions between distinct brain regions. Neu-
ropsychiatric Disorders: Aberrant brain connectivity is implicated in various
neuropsychiatric disorders, such as schizophrenia, depression, and autism. Net-
work analysis has provided potential biomarkers and novel insights into the un-
derlying mechanisms of these conditions. Aging and Development: The brain’s
network architecture evolves across the lifespan. Studying how network prop-
erties change with age sheds light on developmental trajectories and age-related
cognitive changes. Neuroplasticity and Learning: Brain networks adapt based
on experience and learning. Network analysis has illuminated the plasticity mech-
anisms that underlie skill acquisition and recovery after brain injury.

2.3 Problem Formulation

The intricate dynamics of networked systems have captivated researchers across
various disciplines, offering a rich tapestry of interactions that underlie the be-
havior of interconnected components. In the realm of Networked Dynamical
Systems (NDS), the interplay between components, driven by complex relation-
ships, has given rise to a new frontier in understanding complex systems. The
manifestation of these interactions often emerges as time-series data, providing a
dynamic window into the behavior of the system.
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Our thesis centers around the fundamental questions: i) Feasibility— Can we con-
sistently recover the causal network from the observed time series data of a lin-
ear networked dynamical system? ii) Algorithm— How can we process the time-
series data to infer its underlying causal structure?

Time-series data, capturing the evolution of system states over time, offer a gran-
ular perspective on how components interact, respond, and influence each other.
By observing the temporal evolution of states, we gain insights into not only the
system’s present behavior but also the echoes of its past and the glimpses of its
future. In this thesis, these time-series are generated under colored noise, and we
only have access to a subset of the total nodes (partial observability).

A stochastic linear NDS can be defined as:

y(n) = Ay(n − 1) + x(n), (2.3)

being y(n) the vector containing the states of the nodes at time n, defined as
y(n) = [y1(n)y2(n) . . . yN(n)], and N being the number of nodes in the NDS.
A ∈ RN

+ is the non-negative interaction matrix whose support, Supp(A), is the
underlying causal network linking the nodes. This matrix A is assumed stable,
i.e., ρ(A) < 1, being ρ(A) the spectral radius of A. This implies, in particular,
that the linear NDS (2.3) is assumed to be stable. (x(n))n∈N is the noise process
applied to the N nodes in the system where x(n) ∼ N (0, Σ) and Σ ∈ SN

+ , being Σ
the noise covariance matrix.

If we assume that y(0) = x(0) we can define y(n) = ∑M
i=0 An−ix(i) with M be-

ing the total number of samples. This is proven by taking y(1) and y(2) where,
y(1) = Ay(0) + x(1), with the assumption above, y(1) = Ax(0) + x(1). And
y(2) = Ay(1) + x(2), and then y(2) = A(Ax(0) + x(1)) + x(2) will end up in
y(2) = A2x(0) + Ax(1) + x(2).

The state of a node can be defined as the sum of all the interactions between its
neighbours. The next figure shows an example of this scenario:

Figure 2.1: Node’s state affection by its neighbours
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In view of Fig. 2.1 we write equation (2.3) nodewise as

yi(n + 1) =
N

∑
j=1

aijyj(n) + xi(n + 1), (2.4)

being aij the interaction descriptor between node i and j. If aij = 0 then the node
i does not have an edge to j, in the rest of the cases there is a link between the
nodes. This stays coherent to the markov property explained in 2.1.2.

In full observability cases the main goal of the graph recovery is to consistently
recover the support of the interaction matrix A, Supp(A) from the time-series.
However, as in this thesis we focus on partial observability scenarios, the goal is
to consistently infer the support sub matrix of A, denoted as AS.

Correlation matrices seamlessly transform into networks, where variables be-
come nodes and correlations become edges. This network representation encap-
sulates the essence of the system’s connections, transcending the limitations of
individual correlations to offer a holistic view of the collective interplay. Nodes
in this network signify variables, and the edges, which carry the weight of cor-
relations, delineate the direct relationships between them. As such, correlation
matrices not only quantify but also visualize the intricate web of dependencies
that characterize the networked dynamical system. Let us define the kth-lag cor-
relation matrix as:

Rk(n) ≜ E
[
y(n + k)y(n)⊤

]
. (2.5)

From the time-series we can define the empirical kth-lag as:

R̂k(n) =
1
n

n−1

∑
l=0

y(l + k)y(l)⊤. (2.6)

As the quantity of samples expands indefinitely, the empirical correlation matri-
ces at the kth lag tend to converge toward the actual correlation matrices. Our
focus lies in regulating the relationship between the number of samples and
the resulting accuracies, a matter commonly referred to as the sample complex-
ity dilemma. The objective is to minimize the requisite number of samples for
achieving a level of performance that rivals or surpasses that attained by other
methodologies, ultimately aiming for optimal efficiency.

In the literature the main method to infer the underlying structure of the dy-
namical system is through an estimator that returns a scalar value for each pair
of nodes. In our case, we want a matrix-value estimator that takes as input the
time-series and returns a matrix as output, for any given n ∈ N, defined as:

F(n) : R|S|×n −→ R|S|×|S|

{[y(ℓ)]S}
n−1
ℓ=0 7−→ F (n) , (2.7)
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The idea is that F (n)
ij represents the link between node i and j with n observed

samples. This way F (n) can be described as the matrix of the estimated inter-
actions between each pair of nodes. A matrix is deemed structurally consistent
when its highest values align with the edges of interconnected node pairs, while
the lowest values coincide with the edges connecting disconnected pairs. We
formalize it with the following definition that we presented in [Machado et al.,
2023].

Definition 1(structural consistency) A matrix-valued estimator F(n) is structurally
consistent with high probability, whenever there exists a threshold τ so that,

P
(
F (n)

ij > τ
)

n→∞−→ 1 ⇐⇒ i → j, (2.8)

i.e., if the ijth entry of F(n) is above the threshold τ, then there is an edge between
the node i and j, with enough sumber of samples n.

in general, a matrix-valued estimator can be defined with an error term:

F (n) = αAS + E (n)
S , (2.9)

with AS being the ground-truth interaction matrix and E (n)
S the error term. To

keep the structural consistency of the matrix-valued estimator the error term
could be different than 0. The constraint built arround the error term is defined
as:

Osc
(
E (n)

S

)
∆
= E (n)

max − E (n)
min ≤

αA+
min
2

, (2.10)

where E (n)
min and E (n)

max are the minimum and maximum entries of the error ma-
trix ES, Amin is the smallest positive entry of the interaction matrix, AS, and
Osc

(
E (n)

S

)
is the oscilation of a matrix E . This means that if, and only if E (n)

max −

E (n)
min is small enough F (n) is considered structurally consistent.

2.4 Artificial Neural Nets

Artificial Neural Networks (ANNs) are at the forefront of contemporary compu-
tational intelligence, drawing inspiration from the human brain’s neural struc-
ture to enable machines to learn and solve complex tasks. With their capacity to
capture intricate patterns, ANNs have transformed fields ranging from machine
learning to image recognition, opening new avenues for solving challenges that
were once considered insurmountable. At the core of ANNs lies the conceptual-
ization of neurons as basic processing units. Just as biological neurons transmit
signals, artificial neurons (also called perceptrons or nodes) process inputs, apply
transformations, and generate outputs. These neurons are organized into lay-
ers, forming a network that emulates the structure of neural connections in the
human brain.
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Figure 2.2: Example of an ANN structure - being wn the weights, bn the bias of
the hidden layer defined by the method

Information flows unidirectionally from input to output through the hidden lay-
ers. During training, ANNs adjust the connections’ weights to minimize the
discrepancy between predicted outputs and actual outcomes. This optimization
process, known as backpropagation, utilizes techniques like gradient descent to
iteratively refine the network’s weights. The learning rule in artificial neural net-
works (ANNs) is a fundamental mechanism that guides the process of adjusting
the connection weights between neurons during training. The learning rule is
responsible for allowing the network to learn from data, adapt to patterns, and
improve its performance on specific tasks. There are two primary learning rules:
supervised learning and unsupervised learning. Supervised learning is the most
common learning paradigm in ANNs. It involves training the network using la-
beled examples, where the desired output is known for each input. The goal is for
the network to learn a mapping from inputs to outputs, so it can accurately pre-
dict outputs for new, unseen inputs. Backpropagation involves two main steps:
Forward Pass and Backward Pass (Backpropagation):. During the forward pass,
the input is propagated through the network layer by layer to generate predic-
tions. The difference between the predicted output and the actual target output
(error) is calculated using a loss function. In the next step, the error is propagated
backward through the network. The gradient of the error with respect to the
weights of each neuron is computed. This gradient indicates the direction and
magnitude of the weight adjustments needed to minimize the error. The com-
puted gradients are used to update the weights of the network’s connections.
Gradient descent optimization methods adjust the weights by subtracting a frac-
tion of the gradient. This process is performed iteratively over the entire training
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dataset until the network’s predictions converge to the desired outputs. The gra-
dient descent equation for the update of the weights can be defined as:

θt+1 = θt − α
∂E(X, θt)

∂θ
, (2.11)

being the weights and biases collectively denotes as θ and α the learning rate.
The error function ∂E(X, θt), with X being the set of input-output pairs and θt the
neural network parameters at the instant t.

Activation functions introduce non-linearity into ANNs, allowing them to ap-
proximate complex relationships between inputs and outputs. Common activa-
tion functions include the sigmoid, hyperbolic tangent (tanh), and rectified linear
unit (ReLU). These functions introduce the capability to capture intricate patterns
and behaviors that linear models often miss.

The resurgence of ANNs, often referred to as the deep learning revolution, has
been fueled by the advancement of hardware, availability of massive datasets,
and innovative algorithms. Deep neural networks, with numerous hidden lay-
ers, have demonstrated unprecedented capabilities in diverse applications, from
natural language processing and speech recognition to autonomous driving and
medical diagnosis. While ANNs have unlocked tremendous potential, their ap-
plication raises ethical considerations such as bias in decision-making, data pri-
vacy, and the black-box nature of complex models. Efforts are underway to ad-
dress these challenges, advocating for transparent and accountable AI systems.

Transfer learning leverages pre-trained neural networks on large datasets to en-
hance performance on new, related tasks with limited data. Pretrained models,
such as those derived from ImageNet, serve as feature extractors that capture
generalizable features from vast image datasets. These features can be fine-tuned
to suit specific tasks, significantly reducing training time and resource require-
ments.

2.4.1 CNN - Convolutional Neural Nets

Convolutional Neural Networks (CNNs), also referred to as ConvNets, represent
a specialized category of artificial neural networks uniquely tailored for the anal-
ysis and processing of visual data, specifically images and videos. CNNs have
exhibited exceptional efficacy in diverse computer vision tasks, encompassing
image classification, object detection, and image segmentation.

The underlying principle behind CNNs is to emulate the visual processing ca-
pabilities of the human brain. Drawing inspiration from the human visual sys-
tem’s adeptness in recognizing patterns, features, and hierarchical representa-
tions, CNNs comprise distinct layers that collectively contribute to comprehend-
ing the input data.

13



Chapter 2

Figure 2.3: CNN architecture example

The fundamental constituents of a CNN are the convolutional layers. Within
these layers, diminutive filters or kernels traverse the input image, effecting element-
wise multiplication and summation to generate feature maps. These feature maps
embody significant patterns and features identified within the input data. Early
layers typically discern rudimentary features, such as edges, corners, or textures,
while deeper layers capture more intricate and abstract features, pertinent to the
given task.

To mitigate overfitting and introduce non-linearity, activation functions, such as
Rectified Linear Unit (ReLU), are often employed after the convolutional lay-
ers. ReLU introduces non-linear transformations by nullifying negative values,
thereby preserving positive values unaltered.

Pooling layers constitute another pivotal component of CNNs. Pooling serves
to reduce the spatial dimensions of the feature maps, consequently diminishing
computational complexity and engendering greater resilience to spatial transla-
tions and distortions in the input data. Max pooling represents a commonly em-
ployed pooling technique, selecting the maximum value within localized regions
of the feature map.

CNNs also encompass fully connected layers, akin to conventional neural net-
works. These layers assimilate the high-level features extracted from the convolu-
tional and pooling layers and ultimately yield the final output, often represented
as a probability distribution across various classes in image classification tasks.

The training of CNNs typically entails the utilization of labeled datasets for su-
pervised learning. Throughout the training process, the network’s weights and
biases are iteratively adjusted via backpropagation and optimization algorithms,
such as gradient descent, with the objective of minimizing the discrepancy be-
tween predicted outputs and the actual ground truth labels.

The remarkable success of CNNs in diverse computer vision tasks has revolu-
tionized the realm of artificial intelligence. These networks have evolved into in-
dispensable tools in domains such as autonomous vehicles, medical image anal-
ysis, facial recognition, and numerous others. Moreover, CNNs have undergone
adaptation to domains beyond vision, such as natural language processing and
speech recognition, thus manifesting their versatility and potential across a broad
spectrum of applications.
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In summation, Convolutional Neural Networks represent a formidable class of
neural networks, exemplifying exceptional prowess in visual data analysis and
conferring machines the ability to discern and comprehend the environment in
ways that were hitherto perceived as exclusively human capabilities. As ongoing
research and technological advancements persist, CNNs are poised to play an in-
creasingly critical role in shaping the future of artificial intelligence and computer
vision applications.

2.4.2 FFNN - Feed Forward Neural Nets

Feed Forward Neural Networks (FFNNs), also known as multi-layer perceptrons,
are a fundamental class of artificial neural networks that have revolutionized the
field of machine learning and artificial intelligence. FFNNs are designed to pro-
cess and analyze complex patterns in data, making them a powerful tool for a
wide range of applications, including pattern recognition, function approxima-
tion, and classification.

Architecture

Figure 2.4: FFNN architecture example

At its core, an FFNN consists of multiple layers of interconnected artificial neu-
rons or nodes. The network is typically organized into three types of layers: in-
put layer, hidden layers, and output layer. The input layer receives the raw input
data, while the output layer produces the final predictions or classifications. The
hidden layers, as the name suggests, are intermediary layers between the input
and output layers, where complex feature representations are learned.
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Forward Propagation

FFNNs employ a feed-forward mechanism, where data flows through the net-
work from the input layer to the output layer without any loops or feedback
connections. The input data is fed into the input layer, and the activations of each
neuron are computed based on weighted connections to the previous layer’s ac-
tivations. These activations are then passed through activation functions, intro-
ducing non-linearity to the network, and the process is repeated until the output
layer produces the final result.

Activation Functions

Activation functions play a crucial role in FFNNs by introducing non-linearities
to the model. Common activation functions include the Rectified Linear Unit
(ReLU), which sets negative activations to zero, and the Sigmoid function, which
squashes the activations to a range between 0 and 1. The choice of activation
functions impacts the network’s ability to learn complex representations and in-
fluences the overall performance of the model.

Training and Backpropagation

To make accurate predictions, FFNNs must be trained on labeled data. The train-
ing process involves adjusting the weights and biases of the neurons in the net-
work to minimize the difference between predicted outputs and the actual ground
truth labels. This optimization is achieved using an algorithm called backprop-
agation, which computes the gradients of the loss function with respect to the
network parameters. These gradients are then used to update the weights and
biases through various optimization techniques, such as stochastic gradient de-
scent (SGD) or Adam.

Evaluation and Performance

Evaluating the performance of an FFNN is essential to assess its effectiveness on
unseen data. Various metrics, such as accuracy, precision, recall, and F1-score,
are commonly used to gauge the model’s performance in classification tasks. For
regression tasks, mean squared error (MSE) or mean absolute error (MAE) are
commonly used evaluation metrics. Cross-validation is often employed to val-
idate the model’s generalization capability and identify potential overfitting is-
sues.

Applications

FFNNs have found widespread application in numerous fields. In computer vi-
sion, they are used for image recognition, object detection, and facial recogni-
tion. In natural language processing, they are employed for sentiment analysis,
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language translation, and text generation. FFNNs are also used in finance for
predicting stock prices, in healthcare for disease diagnosis, and in robotics for
controlling autonomous systems.

Limitations and Future Directions

Despite their success, FFNNs have some limitations, such as the need for large
amounts of labeled data, computational complexity in deep networks, and dif-
ficulty in interpretability. Researchers are continuously exploring techniques to
address these challenges, including transfer learning, unsupervised pre-training,
and neural architecture search, to enhance FFNNs’ performance and scalability.

In conclusion, Feed Forward Neural Networks are a foundational class of artifi-
cial neural networks that have significantly impacted the field of machine learn-
ing and artificial intelligence. Their ability to learn complex patterns and general-
ize to unseen data makes them a valuable tool in various applications, propelling
advancements in diverse domains and paving the way for future breakthroughs
in AI research.

2.5 Clustering Methods

2.5.1 K-means

K-means is a widely employed unsupervised clustering method in machine learn-
ing and data analysis, serving the purpose of partitioning a given dataset into K
distinct clusters. The fundamental objective of K-means is to identify cluster cen-
ters (centroids) in such a way that data points within each cluster exhibit greater
similarity or proximity to their respective centroids than to those belonging to
other clusters.

Initialization

The K-means algorithm begins by setting the number of desired clusters, denoted
as K, based on prior knowledge or domain-specific requirements. The next step
entails the random selection of K initial centroids from the dataset or through
alternative initialization techniques. These initial centroids serve as the starting
points for the clustering process. In this project, the number of centroids is known
and they are two(connected nodes and disconnected nodes).

Assignment Step

In the assignment step, every data point in the dataset is allocated to the nearest
centroid based on a specified distance metric, commonly the Euclidean distance.
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This operation effectively segregates the data points into K clusters according to
their proximity to the respective centroids.

Update Step

Subsequently, the centroids of the K clusters are recalculated during the update
step. The new centroids are computed as the mean of all data points assigned to
each cluster. This recalculation process refines the positions of the cluster centers.

Iteration

The assignment and update steps are repeated iteratively until a specified stop-
ping criterion is met. Common stopping criteria include reaching a predeter-
mined maximum number of iterations or when the positions of the centroids sta-
bilize and remain unchanged across successive iterations.

Convergence

K-means achieves convergence when the centroids cease to shift significantly be-
tween consecutive iterations, and data points no longer alter their cluster assign-
ments. At this point, the algorithm has successfully identified the optimal K clus-
ters, and the process concludes.

Final Output

The final outcome of the K-means algorithm comprises a set of K clusters, each
represented by its corresponding centroid, along with the data points assigned to
each cluster. Collectively, these clusters constitute a partitioning of the original
dataset, with each data point associated with a particular cluster.

Considerations

The choice of initial centroids in the initialization step can influence the cluster-
ing outcome. As a result, K-means may be executed multiple times using differ-
ent random initializations. The clustering result yielding the most favorable out-
come, typically based on a defined criterion such as minimizing within-cluster
variance, is selected as the final clustering solution.

K-means is a versatile technique with diverse applications across various do-
mains, including image segmentation, customer segmentation, data compres-
sion, and anomaly detection. Nevertheless, selecting an appropriate value for K
is essential, as an incorrect choice can lead to suboptimal clustering results. Tech-
niques such as the elbow method or silhouette analysis are commonly employed
to determine the optimal K value, taking into account the inherent characteristics
of the data and the specific clustering task.
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In conclusion, K-means clustering represents a prominent and widely utilized
unsupervised learning method, pivotal in data analysis and pattern recognition.
By iteratively refining cluster centers and partitioning data into clusters based
on similarity, K-means efficiently extracts meaningful structures from unlabelled
data, contributing significantly to various applications and domains in the field
of machine learning.

2.5.2 Gaussian-Mixture

The Gaussian Mixture Model (GMM) clustering method is a powerful and widely-
used unsupervised learning algorithm for data segmentation and clustering tasks.
Unlike K-means, which assigns data points to distinct non-overlapping clusters,
GMM represents clusters as a weighted combination of Gaussian distributions,
allowing for flexible and probabilistic cluster assignments.

Probabilistic Representation

In GMM, each cluster is modeled as a Gaussian distribution with its mean and
covariance. The dataset is assumed to be generated by a mixture of these Gaus-
sian components, where each data point is assigned a probability of belonging to
each cluster. This probabilistic representation accommodates data points that lie
near the boundaries between clusters and assigns them to multiple clusters with
varying probabilities.

Expectation-Maximization Algorithm

The GMM clustering process involves the Expectation-Maximization (EM) algo-
rithm. The EM algorithm iteratively estimates the parameters of the Gaussian
distributions and the probabilities of data point assignments to the clusters.

a. Expectation Step (E-step): In the E-step, the algorithm calculates the posterior
probabilities of data points belonging to each cluster, given the current parame-
ters of the Gaussian distributions. These posterior probabilities, often referred to
as responsibility or membership probabilities, are computed using Bayes’ theo-
rem and determine how much each data point contributes to each cluster.

b. Maximization Step (M-step): In the M-step, the algorithm updates the param-
eters of the Gaussian distributions based on the weighted contributions of data
points to each cluster. The mean and covariance of each Gaussian are adjusted to
maximize the likelihood of the data under the current mixture model.

Initialization

To initiate the GMM clustering, initial estimates of the Gaussian parameters are
required. Commonly used techniques include K-means initialization or randomly
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sampling data points to initialize the means and identity matrices for the covari-
ance matrices.

Convergence

The EM algorithm iteratively performs the E-step and M-step until the estimated
parameters converge to a stable solution or a predefined convergence criterion is
met. The algorithm guarantees monotonic improvement in the likelihood of the
data with each iteration.

Cluster Assignment

Once the GMM model converges, the data points can be assigned to the clusters
based on their highest posterior probabilities. Alternatively, data points can be
assigned to multiple clusters with varying probabilities to represent uncertainty
in the clustering assignment.

Choosing the Number of Clusters

Selecting the optimal number of clusters in GMM can be achieved using tech-
niques like the Bayesian Information Criterion (BIC) or cross-validation. These
methods evaluate the trade-off between model complexity and the fit to the data
to avoid overfitting. In this project the number of clusters is two (connected and
disconnected).

Applications

GMM clustering finds numerous applications, including image segmentation,
speech recognition, anomaly detection, and data compression. It is particularly
useful when the underlying data distribution is complex and multi-modal, as
GMM can capture such complexity using a combination of Gaussian components.

Conclusion

Gaussian Mixture Model (GMM) clustering offers a powerful and flexible ap-
proach to data segmentation, providing a probabilistic representation that ac-
commodates uncertain and overlapping clusters. Its ability to model complex
data distributions makes it a valuable tool for a wide range of real-world applica-
tions, enabling data scientists and researchers to extract meaningful insights from
their data and uncover underlying structures.
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Related Work

In the present Chapter, our discussion revolves around some relevant related
works in the causal inference literature. In particular, some of the causal inference
estimatiors discussed in this Chapter will be used to benchmark our approach in
Chapter 5. As we will discuss, some of the methods discussed are tailored to
linear NDS and withstand well the curse of partial observability. However, most
methods loose their technical guarantees when compounding colored noise to
the partial observability setting. This is still a seldom explored framework in the
literature.

In Section 5, the estimators deployed for the purpose of benchmarking the per-
formance of our method encompass the Granger estimator [Geiger et al., 2015;
Matta et al., 2020c; Santos et al., 2020], the Precision matrix algorithm, the recent
NIG R1 − R3 estimator [Chen et al., 2022], the R1 estimator [Matta et al., 2020a],
and lastly, the recent feature based approach [Machado et al., 2023]. The consis-
tency of the aforementioned estimators is intricately contingent upon the inherent
generative mechanism governing the time-series data. In the event that the time-
series are drawn from a Gaussian multivariate distribution, the utilization of the
Precision matrix represents a consistent approach for deducing the latent network
structure. On the other hand, in scenarios where the samples stem from a linear
dynamical system, the Granger estimator conforms to a consistent estimator.

3.1 Granger estimator

The Granger estimator is a statistical tool commonly used in econometrics and
time series analysis to assess the causal relationship between two or more vari-
ables. It is named after Clive Granger, who was awarded the Nobel Prize in Eco-
nomics in 2003 for his work on analyzing time series data. At its core, the Granger
estimator helps determine whether past values of one variable can provide useful
information in predicting another variable. In essence, it quantifies whether the
historical values of one variable Granger-cause changes in another variable. This
concept is rooted in the idea that if past values of variable X significantly improve
the prediction of variable Y, then it can be inferred that X Granger-causes Y.
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From the time-series coming from the system (2.3) {y(n)}∞
n=1, if we multiply both

sides by y(n)⊤, we have

y(n + 1)y(n)⊤ = Ay(n)y(n)⊤ + x(n + 1)y(n)⊤, (3.1)

which yields,

E
[
y(n + 1)y(n)⊤

]
= AE

[
y(n)y(n)⊤

]
, (3.2)

and then,

A = E
[
y(n + 1)y(n)⊤

] (
E
[
y(n)y(n)⊤

])−1

= R1(n)R−1
0 (n) n→∞−→ R1(R0)

−1,
(3.3)

finally the estimator can be written as R1 (R0)
−1 and can consistently estimate

the underlying interaction matrix A. The equality of the final step (3.3) is done by
having the one-lag correlation matrix R1 ≜ E

[
y(n + 1)y(n⊤)

]
and the correlation

matrix R0 ≜ E
[
y(n)y(n)⊤

]
.

In large scale networks only some of the network nodes can be observed. The
Granger estimator is proven to ve structually consistent at full observability cases,
but can we still use it for partial observability scenarios? Under partial observ-
ability we have the following:

ÂS = [R1]S ([R0]S)
−1 ̸=

[
R1 (R0)

−1
]

S
= AS, (3.4)

where S is the subset of the observable nodes and AS is the true interation matrix
of the nodes belonging to S. Being ÂS the Granger estimated interation matrix.
Even with this result (3.4) where part of the causal information is lost, under cer-
tain regimes. Granger ÂS is provably still structurally consistent under partial
observability and diagonal noise [Matta et al., 2020c, 2022; Santos et al., 2020].
However, as demonstrated in the numerical experiments, Chapter 5, this estima-
tor exhibits poor performance under partial observability and colored noise.

3.2 Precision matrix estimator

The precision matrix, often denoted as the inverse covariance matrix or concen-
tration matrix, is a fundamental concept in statistical analysis, particularly in the
realm of multivariate data. It holds a crucial role in modeling relationships be-
tween variables and is derived from the covariance matrix, which quantifies the
extent to which variables change together. The precision matrix provides valu-
able insights into the conditional dependencies between variables, elucidating the
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direct influence that each variable has on another while controlling for the effects
of other variables. Time series data entails observations of a variable recorded
over discrete time intervals. These observations are often correlated due to tem-
poral dependencies, meaning that the value of a variable at one time point can
influence its value at subsequent time points. As such, the precision matrix de-
rived from time series data encodes the strength and nature of these temporal de-
pendencies, helping to uncover the underlying structure and interactions within
the dataset.

The precision matrix is calculated by the inversion of the correlation matrix R0(n) =
E
[
y(n)y(n)⊤

]
, then [R0]

−1 = E
[
y(n)y(n)⊤

]−1
, which leads to R̂0 = 1

M ∑M
n=0 y(n)y(n)⊤.

Then, R0 can be described too as R0 = ∑n
i=0 AiΣAi. Considering diagonal noise,

Σ = σ2 I, R0 = σ2 (I − A2)−1.

In this case, the precision matrix can be written:

[R0]
−1 =

1
σ2

(
I − A2

)
. (3.5)

This estimator under partial observability can have errors due to the need of all
matrix entries in order to calculate correctly its inverse. In the numeric simula-
tions the precision matrix has better performance than the other estimators, but
the technical proof of its consistency is yet to be formuled. In the colored noise
cases, [R0]

−1 =
[
∑n

i=0 AiΣAi]−1.

3.3 R1 − R3 estimator

The NIG R1−R3 estimator was proposed and studied recently [Chen et al., 2022].
It is tailored for linear NDS under diagonal noise. In particular, it conforms to an
unbiased consistent estimator under partial observability and diagonal noise, i.e.,
it can recover the interaction submatrix AS up to small error with high probability.
We recall that by diagonal noise, we mean that the covariance matrix Σx of the
noise process is a multiple of the identity Σx = σ2 I.

Firstly, remark that from equation (2.5) we can derive R1 as

R1 = E
[
y(n + 1)y(n)⊤

]
, (3.6)

and, by having the system (2.3) we have:

R1 = E
[
(Ay(n) + x(n + 1)) y(n)⊤

]
= AE

[
y(n)y(n)⊤

]
+ E

[
x(n + 1)y(n)⊤

]
.

(3.7)

Having R0 = E
[
y(n)y(n)⊤

]
:
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R1 = AR0. (3.8)

Extending this via induction:

Rk = AkR0. (3.9)

From (2.4) and (2.6), R0 = I + A2 + A4 + · · · = ∑2i
i=0 A2i =

(
I − A2)−1. Therefore

R1 = A + A3 + A5 + (. . . ) and R3 = A3 + A5 + A7 + (. . . ), the R1 − R3 estimator
infers consistently the interation matrix A as R1 − R3 = A. Applying the diago-
nal noise to the same paradigm, having in consideration the demonstration done
with (2.3),

R0 =
n

∑
i=0

AiΣAi, (3.10)

and since Σ = σ2 I, the difference R1 − R3 can be defined as σ2A.

3.4 R1 estimator

This estimator consists in the recovery of the interaction matrix with only the
one-lag correlation matrix, R1. We can define R1 as:

R1(n) = E
[
y(n + 1)y(n)⊤

]
= E

[
(Ay(n) + x(n + 1)) y(n)⊤

]
= AE

[
y(n)y(n)⊤

]
+ E

[
x(n + 1)y(n)⊤

]
,

(3.11)

with E [x(n + 1)] = 0 as (x(n)) is zero mean and remarking that x(n + 1) is inde-
pendent of y(n),

R1(n) = AR0(n). (3.12)

Therefore, considering (3.10) and diagonal noise Σ = σ2 I, we have

R1(n) = σ2(A + A3 + A5 + . . . ). (3.13)

Considering partial observability, as the estimator is a correlation matrix, being S
the set of observable nodes,

[R1]S = σ2([A]S +
[

A3
]

S
+
[

A5
]

S
+ . . . ) = σ2 [A]S + ES, (3.14)

where ES is an error term in the estimation of AS (modulo a multiplicative con-
stant). The error term has been studied in [Matta et al., 2020a] to establish the
structural consistency of R1 under partial observability and diagonal noise.
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3.5 Feature based Approach

In the feature based causal inference approach, first proposed in [Machado et al.,
2023], a feature vector is estimated to each pair of nodes from the time series. Ref-
erence [Machado et al., 2023] proposed a feature assignment so that there exists a
hyperplane that separates consistently the features, with features associated with
connected pairs lying on one side of the hyperplane and features of disconnected
pairs on the other side. This was established formally for linear NDS under par-
tial observability and diagonal noise. In particular, this allowed the successful
deployment of supervised methods to cluster the features and perform causal
inference. More concretely, the features were defined as

Fij(n)
∆
=

([
R̂D(n)

]
ij

,
[

R̂D+1(n)
]

ij
, . . . ,

[
R̂L(n)

]
ij

)
, (3.15)

for each pair ij. Further, these features were normalized by the max feature value:

Fij(n) =
Fij(n)

max(Fij(n))
, (3.16)

for i, j = 1, 2, . . . , N, where N is the number of nodes. In the study conducted
by [Machado et al., 2023], it has been shown that the features were linearly sep-
arable whenever D ≤ 1 and L ≥ 3. Subsequent to the normalization process,
the aforementioned features serve as input to a Convolutional Neural Network
(CNN) module, yielding an array that effectively represents the interconnection
between each pair of nodes. The study employs a total of 200 features, compris-
ing the initial set of 100 negative correlation lag matrices followed by another set
of 100 representing positive correlation lag matrices.

The methodology outlined in the paper, along with the estimators discussed in
Section 3.3 and in Section 3.4, exclusively relies on the time-series data pertain-
ing to each node pair (i and j) to facilitate the computation of their respective
correlation matrix entries. Conversely, Section 3.1 and Section 3.2 necessitate a
more comprehensive approach involving the visualization of all entries for the
inversion of the correlation matrix (R0). Notably, the scope of the research done
in [Machado et al., 2023] encompasses systems affected by diagonal noise and
partial observability.

In a subsequent phase of the investigation, this thesis research focus is broadened
to encompass colored noise regimes. This extension reveals a noteworthy finding:
the CNN module’s performance diminishes notably when subjected to colored
noise conditions.
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Methodology and Technical Results

4.1 Technical Results

The results reported in this Chapter were submitted for publication [Santos et al.,
2023]. They establish conditions on the noise structure, namely, on the covari-
ance matrix Σx of the noise process where the underlying causal inference prob-
lem (under partial observability and colored noise) is feasible, namely, there is
an algorithm to consistently recover the underlying causal network linking the
observed set of nodes.

Assumption 1. As mencioned in Section 2.3 the interaction matrix A is said to be
stable, i.e, ρ(A) < 1, where ρ(A) is the spectral radius of A. Additionally, A is
assumed to be symmetric and nonnegative.

Assumption 2 We assume that σ2 = E
[
x2

i
]

for all i.

Remark that σ2 ≥ E
[
xixj

]
for all i, j. Indeed,

0 ≤ E[(xi − xk)
2] = E[x2

i ] + E[x2
k]− 2E[xixk]

= 2σ2 − 2E[xixk].
(4.1)

Assumption 3. It is assumed that:

σ2 > E
[
xixj

]
= [Σx]ij , (4.2)

for all i ̸= j. That is, the off-diagonal entries of the noise covariance matrix are
strictly smaller than the diagonal.

4.1.1 Impact of the Colored Noise

This thesis focus on Networked Dynamical Systems where the noise structure has
non-zero entries on the off-diagonal of the covariance noise matrix. Extending the
equation in (2.3) we get:
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y(n + 1) = Ay(n) + α·x1(n + 1)︸ ︷︷ ︸
N1

+
β√
N
·1·1⊤·x2(n + 1)︸ ︷︷ ︸

N2

. (4.3)

The noise components within our model, denoted as N1 and N2, serve distinct
roles in the characterization of the Networked Dynamical System (NDS). N1 rep-
resents the diagonal noise, wherein solely the diagonal elements of the noise
structure are influenced by the parameter α. Conversely, N2 signifies the colored
noise, with β being the pivotal factor governing the influence of off-diagonal en-
tries in the noise structure. Consequently, a higher value of β amplifies the impact
of colored noise within the time-series data of each node. As β increases, the task
of extracting information about the underlying structure of the Networked Dy-
namical System from the time-series data becomes progressively more challeng-
ing due to the heightened complexity at the node level. The results presented
in Section 5 demonstrate that, with elevated values of β, an increased number of
samples is required to achieve accurate classification of the functional connectiv-
ity.

The features employed in our analysis are constructed from the time-series data
originating from the Networked Dynamical System (NDS). Consequently, the in-
troduction of colored noise imparts an influence on the feature vector. In essence,
it has been observed that higher values of β lead to increased correlation values
within the time-series data, subsequently affecting the feature set. In brief, the be-
havior of the feature vector with the inclusion of colored noise can be described
as a shift in the features, signifying that the centroid of the feature vector moves
further away from the origin. This phenomenon is schematically depicted in Fig.
4.1.

Figure 4.1: Shift simulation of the Features
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4.1.2 Error characterization

In this Section, we present a demonstration of error characterization and subse-
quently define the theorem pertaining to the error associated with the difference
between R1 and R3.

Remark that R0 can be defined as:

R0(n) =
n

∑
i=0

AiΣAi, (4.4)

since A is a stable matrix, AnE
[
y(0)y(0)⊤

]
An converges to 0. Resulting, R0 =

∑n
i=0 AiΣx Ai,when n → ∞. Σx being the covariance matrix of the noise.

And:
Rk = AkR0. (4.5)

With (4.4) and (4.5):

Rk = AkR0

= Ak ∑∞
i=0 AiΣx Ai,

(4.6)

we can decompose Σx = σ2
gap I + β11⊤ + Σ, being σ2

gap I a diagonal matrix, β11⊤

the average offset matrix and Σ is the variability of the off-diagonal entries of Σx:

Rk = Ak ∑∞
i=0 Ai

(
σ2

gap I + β11⊤ + Σ
)

Ai

= Ak ∑∞
i=0

(
Aiσ2

gap I + Aiβ11⊤ + AiΣ
)

Ai

= Ak ∑∞
i=0 Aiσ2

gap IAi + Ak ∑∞
i=0 Aiβ11⊤Ai + Ak ∑∞

i=0 AiΣAi

= σ2
gap Ak ∑∞

i=0 A2i + βAk ∑∞
i=0 Ai11⊤Ai + Ak ∑∞

i=0 AiΣAi.

(4.7)

This way, R1 = σ2
gap A ∑∞

i=0 A2i + βA ∑∞
i=0 Ai11⊤Ai + A ∑∞

i=0 AiΣAi and R3 =

σ2
gap A3 ∑∞

i=0 A2i + βA3 ∑∞
i=0 Ai11⊤Ai + A3 ∑∞

i=0 AiΣAi. Now R1 − R3 results:

σ2
gap A ∑∞

i=0 A2i − σ2
gap A3 ∑∞

i=0 A2i

= σ2
gap(∑

∞
i=0 A2i+1 − ∑∞

i=0 A2i+3)

= σ2
gap A.

(4.8)

Consider A1 = ρ1 then:
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βA ∑∞
i=0 Ai11⊤Ai − βA3 ∑∞

i=0 Ai11⊤Ai

= β
(
∑∞

i=0 Ai+111⊤Ai − A2 ∑∞
i=0 Ai+111⊤Ai)

= β
(

I − A2)∑∞
i=0 Ai+111⊤Ai

= β
(

I − A2) A ∑∞
i=0 ρi11⊤ρi

= β
(

I − A2) A11⊤ ∑∞
i=0 ρ2i

= β
(

I − A2) ρ11⊤ 1
1−ρ2

= βρ
(
1 − A21

)
1⊤ 1

1−ρ2

=
βρ(1−ρ2)

1−ρ2 11⊤

= βρ11⊤.

(4.9)

Finally:

A ∑∞
i=0 AiΣAi − A3 ∑∞

i=0 AiΣAi

= ∑∞
i=0 Ai+1ΣAi − A2 ∑∞

i=0 Ai+1ΣAi

=
(

I − A2)∑∞
i=0 Ai+1ΣAi.

(4.10)

The previous argument yields the following theorem.

Theorem 1. Under the Assumption 1, the NDS yields

R̂1(n)− R̂3(n)
n→∞−→ σ2

gap A + βρ11⊤ +
(

I − A2
)( ∞

∑
i=0

Ai+1ΣAi

)
︸ ︷︷ ︸

=:E

, (4.11)

and under partial observability:

[
R̂1(n)

]
S
−
[

R̂3(n)
]

S

n→∞−→ AS + ES. (4.12)

4.1.3 Separability & Stability under noise

In this Section, we present and formalize a theorem that establishes the necessary
and sufficient conditions for the consistent recovery of the underlying structure
of the Nonlinear Dynamical System (NDS). Within this formal condition, it is
assured that the information contained within the observable data is retrievable.
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The oscilation of a matrix is the difference between the maximum and minimum
entries of the matrix and be be defined as:

Osc(E) = Emax − Emin. (4.13)

For the next demonstrations let us define some important properties:

Property 1 Given A, a symmetric stochastic matrix:

Osc
(

Av
)
≤ Osc (v) , (4.14)

with each entry of v ≜ Av lying in the convex hull [Hiriart-Urruty and Lemaréchal,
2001] of the set {v1, v2, . . . , vN} of the entries of the vector v ∈ RN, particularly,
vi ∈ [vmin, vmax] for all i.

Property 2

Osc(αv) = |α|Osc(v), (4.15)

for any v ∈ RN and α ∈ R. If vmax is the max entry of a matrix than, αvmax > αvi
for any i = 1, 2, . . . , N.

Property 3

Osc (B + C) ≤ Osc(B) + Osc(C), (4.16)

for any B, C ∈ RN

Property 4

If Osc (Bv) ≤ kbOsc(v) and Osc (Cv) ≤ kcOsc(v),

then, Osc (CBv) ≤ kcOsc (Bv) ≤ kbkcOsc (v),

for all v ∈ RN with kb, kc > 0.

Having A = ρA and the properties (p1, p2, p3, p4:

Osc
((

I − A2)V
)

≤ Osc(V) + Osc
(

A2V
)

≤ Osc(V) + Osc
((

ρA
)2 V

)
≤ Osc(V) + ρ2Osc

(
A2V

)
≤

(
1 + ρ2)Osc(V).

(4.17)

Then:
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Osc
((

I − A2)V
)

= Osc
((

I − A2) ρAV
)

= ρOsc
((

I − A2) AV
)

≤ ρ
(
1 + ρ2)Osc(V).

(4.18)

If we consider ∑∞
i=0 AiΣAi as a monotonous function (with ρ(A) < 1) we can

define the following:

Σmin

1 − ρ2 11⊤ = Σmin

∞

∑
i=0

Ai11⊤Ai, (4.19)

and:

Σmax

1 − ρ2 11⊤ = Σmax

∞

∑
i=0

Ai11⊤Ai, (4.20)

we can set the following boundaries:

Σmin

∞

∑
i=0

Ai11⊤Ai ≤
∞

∑
i=0

AiΣAi ≤ Σmax

∞

∑
i=0

Ai11⊤Ai. (4.21)

This way,

Osc

(
∞

∑
i=0

AiΣAi

)
≤
(
Σmax − Σmin

)
1 − ρ2 . (4.22)

Therefore:

Osc(E) = Osc
((

I − A2) A ∑∞
i=0 AiΣAi)

≤ ρ
(
1 + ρ2)Osc

(
∑∞

i=0 AiΣAi)
≤ ρ(1+ρ2)

1−ρ2

(
Σmax − Σmin

)
=

ρ(1+ρ2)
1−ρ2 Osc

(
O f f

(
Σx
))

.

(4.23)

Now, with high probability,

Osc (E) ≤
A+

min
2

, (4.24)
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where A+
min is the smallest non-zero entry of A. This means that a pair ij con-

sidered connected and kl disconnected, then Fij > Fkl, which by definition 1
guarantees structural consistency. Therefore the structure can be recovered via
thresholding the off-diagonal entries of F. Remark that the behaviour of the er-
ror matrix E is the ruler to whether the structure information is lost or not in the
time-series. When this error matrix is flat enough the estimator F matrix entries
are the shifted entries of A. Therefore we need to establish a caracterization of
the error and study the flatness of the colored noise.

Consequently:

Osc(E) ≤ σ2
gap A+

min
2

ρ(1+ρ2)
1−ρ2 Osc

(
O f f

(
Σx
))

≤ σ2
gap A+

min
2 .

(4.25)

Finally, the next theorem can be defined.

Theorem 2. Let A = ρA be a stochastic matrix with ρ ∈ ]0, 1[, if

Osc (O f f (Σx))

σ2
gap

≤
A+

min
(
1 − ρ2)

2ρ (ρ2 + 1)
, (4.26)

with σ2
gap ≜ σ2 − maxi ̸=jE

[
xixj

]
> 0 and A+

min is the smallest nonzero entry of the
interaction matrix A, then the centered features Fij(n)i ̸=j, C

(
Fij(n)i ̸=j

)
, are leanearly

separable and stable.

4.1.4 Exogenous Intervention

If we add an exogenous intervention, ξ in the system:

y(n + 1) = Ay(n) + x(n + 1) + ξ(n + 1), (4.27)

where ξ(n) ∼ N
(

0, σ2
ξ

)
is i.i.d, and independent of x(n) the equation (4.26)

becomes:

Osc(Off(Σ))
σ̃2

x + σ2
ξ

≤ Amin(1 − ρ2)

2ρ(1 + ρ2)
, (4.28)

where σ̃2
x := σ2 − maxi ̸=jE

[
xixj

]
. This way, if the exogenous intervention is high

enough, regardless of the covariance matrix of the input x(n) the features are
linearly separable. The idea is to increase the diagonal characteristic of the noise
structure making it less colored.
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4.2 Methodology

In this segment, we elucidate the procedural progression employed in transition-
ing from the synthesis of artificial data and its corresponding time-series to the
derivation of relevant features, culminating in the classification of the network’s
nodes into the categories of connected and disconnected entities.

Figure 4.2: Summary of the scheme to obtain the synthetic time series data and
perform classification.

In brief, our approach can be succinctly outlined through a sequence of six dis-
tinct steps. Initially, we establish a directed graph in accordance with specific
rules, subsequently endowing its edges with weights, a process elaborated upon
in Section 4.2.1. By employing a prescribed dynamical law delineated in Section
4.2.2, the ensuing time-series are generated. Subsequent to this, under conditions
of partial observability, computation of the feature vector is effectuated, as ex-
pounded upon in Section 4.2.3. It is pivotal to note that this procedural trajectory
remains consistent during both the training and testing phases, diverging there-
after.

During the training phase, the dataset is partitioned into discrete subsets for train-
ing and testing purposes. The Artificial Neural Network (ANN) models, pivotal
to the numeric results elucidated in a subsequent Section, are then subjected to
a training regimen. Conversely, during the testing phase, partial observability
conditions are replicated. Employing the feature vector derived from observable
nodes, clustering and subsequent classification procedures are executed on the
module’s output, attained by inputting the aforementioned feature vector.
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4.2.1 Generate Graph and Adjacency matrix

The majority of conducted experiments involve the utilization of synthetic data
to establish solid and controlled technical foundations for feature-based causal
inference methods. Subsequently, these techniques are applied to actual data.

The Erdős-Rényi method, named after mathematicians Paul Erdős and Alfréd
Rényi, constitutes a fundamental and widely employed approach within the realm
of network theory and synthetic data generation. This method entails the con-
struction of random graphs with a specified number of nodes and edges, thereby
facilitating the emulation of various network structures for analytical and exper-
imental purposes.

In the context of data synthesis, the Erdős-Rényi method serves as a mechanism
to generate synthetic networks endowed with distinct topological characteristics.
This is achieved by initially defining a set of nodes, followed by a stochastic pro-
cess of edge allocation between these nodes. Specifically, each pair of nodes
possesses a probability, p associated with the presence of an edge connecting
them. This stochasticity in edge formation gives rise to a diverse array of net-
work configurations, ranging from sparsely connected structures to densely in-
terconnected networks. The parameters of node count and edge probability are
amenable to variation, affording us the capacity to explore a wide spectrum of
network configurations. This latitude in parameter manipulation facilitates the
examination of an extensive array of distinct networks, thereby enhancing the
breadth of our method’s generalization and expanding its applicability.

The application of the Erdős-Rényi method within the generation of synthetic
data offers a means to create controlled environments for testing and validating
analytical algorithms, predictive models, and various network-oriented investi-
gations. The resulting synthetic networks enable researchers to assess the perfor-
mance of methods under varying network densities, connectivity patterns, and
other structural attributes.

After building the structure of our graph we need to attribute weights on the
edges resulting our interaction matrix A. We adopt a popular method often re-
ferred to as Laplacian rule [Sayed, 2014]. More concretely, the matrix A is defined
as

{
Aij = α

Gij
dmax(G)

, for i ̸= j
Aii = β − ∑k ̸=i Aik, for all i

, (4.29)

where dmax(G) is the maximum degree of the underlying graph G, i.e., the max-
imum number of neighbors a node admits in the graph, and 0 < α ≤ β < 1
are some parameters of the Laplacian model. In particular, the rows of A sum to
β < 1 and its support is given by the generated graph G. As mention before, the
interaction matrix A is stable, with a ρ(A) < 1 thanks to this rule.
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4.2.2 Dynamical Law & Time-series

The principal objective of this thesis resides in the coherent inference of the la-
tent architecture characterizing networked dynamical systems through analysis
of their corresponding time-series. To accomplish this, the dynamical law gov-
erning the generation of said time-series is formulated with direct consideration
of the graph structure established in the preceding stages defined as:

y(n + 1) = Ay(n) + α·x1(n + 1)︸ ︷︷ ︸
N1

+
β√
N
·1·1⊤·x2(n + 1)︸ ︷︷ ︸

N2

, (4.30)

where N1 is the diagonal component of the noise with covariance matrix α2 I >
0, and N2 is the colored component of the noise with standard deviation β. In
the numeric results Chapter 5 we explore the influence of the noise variation by
changing β in the proposed method’s performance.

4.2.3 Features

The set of features computed from the time-series characterized with colored
noise can be defined as the Cartesian product:

KM(n) ∆
= T M(n)×FM(n). (4.31)

Specifically, for each pair ij:

KM
ij (n) =

(
FM

ij (n), T M
ij (n)

)
. (4.32)

Further, T M(n) =
{
T M

ij (n)
}

ij

T M
ij (n) =

([([
R̂0(n)

]
S

)−1
]

ij
, . . . ,

[([
R̂M(n)

]
S

)−1
]

ij

)
,

The ensemble of features under consideration constitutes the inversion of the cor-
relation lag moments inherent to the complementary portion of the feature set de-
noted as FM(n). The outcomes derived from the incorporation of this particular
set of inverted correlation matrices substantiate the assertion that the aforemen-
tioned features enhance the distinctiveness of the dataset. This enhancement is
reflected in the discernible gap, referred to as the "identifiable gap," between the
feature representations of interconnected and disconnected pairs. Notably, this
gap is more pronounced within the feature set KM(n) as compared to the sep-
arate subsets, namely T M(n) and FM(n), as formally expounded in Lemma 2
within the reference [Machado et al., 2023]. This particular attribute endows the
novel feature ensemble with paramount suitability for the application of super-
vised methodologies in the context of clustering objectives.
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Methodology and Technical Results

As delineated within the technical findings segment, the featured attributes put
forth in this study maintain qualities of linear separability and structural integrity
even under variations in the noise profile, as defined by the dynamical law de-
noted as equation (4.30). More precisely, these attributes exhibit resilience when
subjected to minor perturbations in the off-diagonal elements of the correlation
matrix Σ, as elucidated in Theorem 2, or in scenarios where exogenous interven-
tions attain a certain threshold, as expressed in inequality (4.28). Characterized
by these attributes, the Feed Forward Neural Networks (FFNN) trained utiliz-
ing these features, post normalization with the "Standard Scaler" technique, yield
competitive performance metrics vis-à-vis alternative estimation methodologies.

4.2.4 Features’s Normalization

Adding the colored noise factor to the equation the features used to describe the
dynamical system suffer a shift in the features space. In order to counter this shift,
the features are standardized with Standard Scaler. The StandardScaler is a data
preprocessing technique commonly used in machine learning and data analysis.
It belongs to the category of feature scaling methods, which are employed to
normalize the features of a dataset, ensuring they all have comparable scales.

The primary objective of the StandardScaler is to standardize the features such
that each feature’s distribution has a mean of zero and a standard deviation of
one. The standardization process involves two main steps: mean centering, for
each feature (column) in the dataset, the mean value (µ) is calculated. Subse-
quently, the mean value is subtracted from each data point in that feature, result-
ing in the feature having a mean of zero; scaling: following mean centering, the
feature is scaled by dividing each data point by the standard deviation (σ) of that
feature. This operation ensures that the feature has a standard deviation of one.

That way the standard score of a sample x is calculated as:

Z =
x − µ

σ
, (4.33)

where Z is the standardized value of the sample x, µ is the mean and σ is the
standard deviation of the feature vector.

Overall, feature scaling is a crucial preprocessing step that significantly impacts
the performance of machine learning models. The StandardScaler is a widely
adopted tool in achieving this goal, ensuring that the features’ scales are harmo-
nized and conducive to effective model training and prediction.

4.2.5 Training Structure

In machine learning we have different types of models that differ in structure and
in strengths and weaknesses considering the final goal that we want to achieve.
However, in the training phase all models need a training set and a testing set. A
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validation set can be useful too and is used in most cases.In our case the three are
present in the training phase.

The synthetic data used in this project have some parameters in play such as:
number of features, probability of the connectivity between the network’s nodes,
the number of nodes belonging to the network, the noise that we want to apply
to our scenario, and some other hyper parameters relevant to the results but the
time needed to explore that is way more higher than the time budget to deliver
this project.

In the proposed approach we train the Feed-Forward Neural Network (FFNN)
models using a dataset with an underlying structure of 100 nodes. This dataset
has several subsets that differ on the noise applied to them and in the number
of samples. This way we can have a more robust model that has a good perfor-
mance overall. Having the dynamical law (4.30), the dataset used in the results
illustrated in Fig. 5.19 to Fig. 5.24 is computed from time-series differing in the β
term, being β ∈ [0, 10, 20, . . . , 50].

It is imperative to underscore that both the training and testing phases impose
a substantial computational burden. Notably, circumstances arise wherein the
exploration of factors such as the number of samples, the frequency of runs, the
count of nodes, and similar parameters, could have been pursued more exten-
sively with access to more advanced hardware resources. Regrettably, due to
temporal constraints associated with the available resources, the exploration of
these elevated values and intriguing scenarios remained beyond the scope of our
investigation.

4.2.6 Clustering

In some experiments we resort to clustering algorithms to help with the partition-
ing of the features associated with connected and disconnected pairs of nodes.

The objective of clustering is to group a set of data in a way that the data be-
longing to same group also called cluster are more similar to each than to those
in distinct groups. In our scenario we want to separate the agents that are con-
nected and the ones that are disconnected. Cluster analysis itself is not a specific
algorithm. We chose to test k-means algorithm and Gaussian Mixture.

4.2.7 Classification

After the clustering applied to the output given by the FFNN model we consider
one centroid as the connected centroid and the other as the disconnected centroid.
The nodes belonging to them are then classified by the corresponding centroid
that they belong to.
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Numeric Simulations

This Chapter contains a comprehensive collection of experiments associated with
our feature based method. They are conducted on linear NDS with underlying
direct graphs. Some numerical experiments have been submitted for publica-
tion [Santos et al., 2023].

5.1 Mutual-information based formulation

This experiment tried to elucidate the information contained in the features of the
work [Machado et al., 2023] about the structure underlying the network system.
With it we wanted to build solid ground on the number of features needed in
order for the model of the referred paper obtain a competitive performance.

Briefly, Mutual Information is a fundamental concept in information theory that
quantifies the degree of dependence or shared information between two random
variables. It measures the reduction in uncertainty about one variable when the
value of the other variable is known. In essence, mutual information gauges how
much knowledge of one variable helps predict the other.

Mathematically, the mutual information between two discrete random variables
X and Y is calculated by considering the probabilities of their joint occurrences
and individual occurrences. It is defined as the difference between the entropy of
X and the conditional entropy of X given Y:

I(X; Y) = H(X)− H(X|Y). (5.1)

Here, H(X) represents the entropy of variable X, which quantifies its intrinsic
uncertainty. H(X|Y) represents the conditional entropy of X given Y, indicating
the remaining uncertainty about X when Y is known.

In Fig. 5.1 the mutual information between the ground-truth interaction matrix A
and the Granger estimated interaction matrix, Â, and the correlation lag moments
developed in [Machado et al., 2023], R̂k(n).

39



Chapter 5

Figure 5.1: Mutual information is maximal at the Granger estimator and low-lag
estimators.

The initial datum on the abscissa corresponds to the Granger estimator, while
the subsequent entries pertain to the correlation lag moments. Notably, a prior
observation in [Machado et al., 2023] elucidated that the Support Vector Machine
(SVM) applied in experimentation exhibited elevated weights predominantly for
lower lag moments, and conversely, lower weights for higher lag moments. The
outcome depicted in Fig. 5.1 aligns harmoniously with this antecedent finding.
However, in the context of employing Feed Forward Neural Networks (FFNNs),
the weight distribution across the spectrum of correlation lag moments is found
to be more evenly divided.

Next we do the same test but with a random generated interaction matrix Ar. This
way we want to verify that the mutual information is a metric that is consistent
in this type of framework.

Figure 5.2: Mutual information is low when the underlying structure does not
match the correct one.
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From the observation of the Fig. 5.2, the values of the mutual information are
way lower than the values obtained in Fig. 5.1.

What happens if we change the network structure? Will the low lag moments
still get the highest mutual information values? This questions are the reason of
the following picture 5.3.

Figure 5.3: Mutual information exhibits wider base for sparser networks. Higher
order lag-moments play a role in the estimation.

As expounded upon in Section 4.2.1, the manipulation of network connectivity is
achievable through the manipulation of the Erdős-Rényi algorithm’s probability
parameter denoted as p. The tested values of this parameter are presented in the
legend located at the upper corner of the figure. A discernible trend emerges from
this investigation: as the probability p increases, the foundational extent of the
mutual information tends to contract, a phenomenon attributable to the fact that
sparser networks (characterized by lower p values) yield broader foundational
distributions. This deduction gains further reinforcement through the analysis
conducted in the experiment detailed in Section 5.2. This Section has results that
were obtained in cooperation with another student with similar thesis (Diogo
Rente).

5.2 Regime Analysis

In order to better understand the old model’s (Convolutional Neural Network
(CNN)) behaviour along the different types of networks and the interference of
our features array size in it, we tested, firstly, what would result if we change
the probability of connectivity between the nodes of the network in the training
phase. Then, run across different probability values in the testing phase with the
aim of verifying the difference in the results. After that, we lock the probability
and explore the number of features influence in the CNN model response.
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5.2.1 Probability Variation

(a) 15% Probability test (b) 22% Probability test

(c) 40% Probability test (d) 58% Probability test

(e) 64% Probability test (f) 77% Probability test

(g) 90% Probability test

Figure 5.4: Probability Test

42



Numeric Simulations

All the lines represent the accuracy of a CNN model which is trained with the
probability of the network’s connectivity labeled with the corresponding color.
This tests were made with only diagonal noise presented in the time-series. When
thinking about this experiment, we expected that the models trained in sparser
networks would get better results when testing with sparse networks versus the
models trained with dense networks. For example, the models trained with
12.5%, 25%,37.5% got a lower performance comparing to the 87.5% and 62.5%, in
figures (a), (b) and (c). And in the dense case (fig (e),(f) and (g)) the top three mod-
els with the best performance are models trained with sparse networks which
goes against our initial thought. The closest result that defends our speculation is
(d) where the best model is the one trained with 50% connectivity of the network,
similar to the network tested (58%).

Therefore, there is not a trivial conclusion that we can take from this tests, only
that the probability of the network’s nodes being connected does affect the be-
haviour of CNN models and there is not one that can generalize well enough.

5.2.2 Influence of the Feature Vector

A significant facet in the architecture of CNNs lies in the number of features they
consider during their operation. This parameter, often referred to as the "feature
count," directly influences the network’s capacity to discern intricate details and
generalize from the input data.

In this Section, we embark on a comprehensive exploration of the influence that
the number of features considered holds within the realm of CNNs. By system-
atically varying the feature count and meticulously observing its effects on net-
work performance, we gain profound insights into the interplay between model
complexity, computational efficiency, and predictive prowess. By demystifying
the intricate relationship between feature count and CNN performance, this ex-
ploration contributes to the broader understanding of CNN architecture design,
enabling practitioners to make informed decisions when tailoring models for spe-
cific tasks.

In this experiment we consider two regimes in the testing phase, a sparse network
and a dense one being the connectivity of the sparser one 30% and 70% for the
dense case. The models used will variate in the network’s connectivity and the
number of features used in the training phase.
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(a) Trained at 10% (b) Trained at 20%

(c) Trained at 30% (d) Trained at 40%

(e) Trained at 50%

Figure 5.5: Feature Influence - 30% test - sparse networks
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(a) Trained at 60% (b) Trained at 70%

(c) Trained at 80% (d) Trained at 90%

Figure 5.6: Feature Influence - 30% test - dense networks

The expected result having in consideration the results in 5.1 was a gradual in-
crease in the number of features needed to get the best model’s performance be-
cause of the training phase increasing connectivity.

Instead, the number of features required to get the best performance through
out the training connectivities is not trivial. At 10%, 20%, 40%, 80% the best
performance was obtained with 50 features and in the rest of the cases the number
of features that lead to a better performance varies.
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(a) Trained at 10% (b) Trained at 20%

(c) Trained at 30% (d) Trained at 40%

(e) Trained at 50%

Figure 5.7: Feature Influence - 70% test - sparse networks
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(a) Trained at 60% (b) Trained at 70%

(c) Trained at 80% (d) Trained at 90%

Figure 5.8: Feature Influence - 70% test - dense networks

In this case, a denser one than in Fig.5.5 and Fig.5.6, there is not a constant number
of features that provides the best performance along the different training prob-
abilities of the network’s connectivity and are different from the results obtained
in the 30% test(5.5 and 5.6).

Concluding, there is a influence in the performance of the model but from a cer-
tain value of the networks’s connectivity the influence is not that critical.

5.2.3 Tree Experiment

In this Section we take the two experiments made in 5.2.1 and 5.2.2 to build a
type of tree framework where we take the model trained at 50% connectivity to
be the root of the tree, and its two leafs are the models trained at 25% and 62,5%
connectivities. The left leaf will be the model trained at 62,5% and the right one
is the model trained at 25%. The models are chosen due to their performance in
the probability variation test, where, in general, the network being a sparser one
the 62,5% model as a good performance and if the network is a denser one, the
25% model as a good performance too.
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So based on the output of the tree’s root the leaf is chosen. If the output reveals
a network with a connectivity lower than 50% the left leaf is chosen and used to
classify the network’s nodes connected or disconnected. The same classification
procedure is done at the right leaf, which is chosen if the root’s output reveals a
denser network (connectivity above 50%). The goal was to build a pipeline that
could have good performances independently of the network’s connectivity.

Figure 5.9: Tree classification results

In 5.9 are the results of three trees and three solo models that are the three’s roots.
They differ from each other in the number of features used in the training phase.
The signature "Tree max" refers to the normalization done to the features, and
that is the division by the feature’s max value used in the CNN model proposed
in [Machado, 2022].

Observing the results, the solo models have a better performance comparing to
the Three pipeline built. So our approach to build a stronger pipeline through the
regimes of the network failed. The model resorts to much in the root’s decision
and it can only get good performance after the decision is 100% accurate.

5.3 Colored noise on the CNN

Prior to exploring alternative artificial neural network (ANN) modules and struc-
tures, it is imperative to conduct a preliminary assessment to ascertain the consis-
tent performance of the convolutional neural network (CNN) module presented
in the reference [Machado et al., 2023]. This assessment is aimed at evaluating the
module’s ability to effectively discern the underlying structure of a noisy dataset
(NDS), particularly when the noise structure includes non-zero values in its off-
diagonal elements, which is indicative of colored noise.

To initiate this assessment, we commence by analyzing the classification results
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obtained from a dataset in which the parameter denoted as β is set to zero (β =
0). In this configuration, the absence of colored noise is ensured, and only the
diagonal elements of the noise structure possess non-zero values.

Subsequently, we proceed to increment the β noise parameter to modest levels,
such as 0.1 and 0.5. Throughout this process, it is worth noting that all datasets
undergo a maximum normalization procedure, consistent with the methodology
outlined in the aforementioned reference [Machado et al., 2023].

Figure 5.10: Data classification with diagonal noise

(a) β = 0.1 (b) β = 0.5

Figure 5.11: Data classification with colored noise

Upon careful examination of the obtained results, it becomes evident that the es-
timation of link strength pertaining to both connected and disconnected pairs of
nodes begins to converge, exhibiting a decreasing trend in the value of the Identi-
fiability Gap (IdGap) metric [Matta et al., 2022]. This convergence is particularly
notable as the magnitude of the colored noise factor is progressively augmented.
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The post-data handling strategy, as detailed in [Machado et al., 2023], can be suc-
cinctly summarized as a thresholding mechanism applied to the output produced
by the Convolutional Neural Network (CNN) module. Specifically, pairs of nodes
falling above this threshold are classified as linked, while those falling below it
are categorized as disconnected. However, the observed behavior presents a chal-
lenge for this thresholding technique. For instance, in the illustrative example
shown in Fig 5.11 where β = 0.5, it becomes apparent that the connected and
disconnected pairs can no longer be effectively distinguished. Consequently, in
response to this challenge, our subsequent approach involved the application of
clustering methods, as referenced in Section 4.2.6, to the output generated by the
CNN module. We employ the Granger causality analysis as a baseline reference.

The model used was trained with a balanced network, i.e., the number of con-
nected pairs is equal to the number of disconnected pairs, being the probability
parameter p in the Erdős-Rényi graph construction algorithm equal to 0.5(50%).

(a) Beta = 0.3 (b) Beta = 0.6

(c) Beta = 0.9

Figure 5.12: Results of clustering the CNN output

One notable observation derived from the results is that, as the colored noise fac-
tor is elevated, there is a corresponding increase in the requisite number of sam-
ples needed to attain a satisfactory level of classification accuracy for discerning
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the underlying functional connectivity of the system.

One notable observation derived from the results is that, as the colored noise fac-
tor is elevated, there is a corresponding increase in the requisite number of sam-
ples needed to attain a satisfactory level of classification accuracy for discerning
the underlying functional connectivity of the system.

5.4 New features

In order to simplify and get better performances, we came together with some
new features. In Section 5.4.1 the link between each pair of nodes is described
with the value estimated by the granger estimator, with the one-lag-correlation
matrix(R1) and its inverse(R−1

1 ), with the three-lag-correlation matrix(R3) and,
finally, with the zero-lag-correlation matrix inverted(R−1

0 ). This selection of fea-
tures was based in some results along the innumerous tests made on behalf of the
colored noise regime. In which we observed that these seven variables could be
useful or would help in classifying the link between the two nodes. Section 5.4.2
is the result of the observation of the output given through the experiment made
in Section 5.4.1. Remark that this thesis focus on directed graphs.

As explained in 4.1.1, the features suffer a deviation or a drift when colored noise
it’s considered. In order to counter this behaviour, the features are normalized by
a Standard Scaler.

The structural approach involving the extraction of features followed by the ap-
plication of standard scaling to these features was found to be incompatible with
the architecture of the Convolutional Neural Network (CNN) module as detailed
in [Machado et al., 2023], i.e., the CNN has poor performance. The underlying
reason for this incompatibility remains somewhat elusive. In lieu of adjusting the
hyperparameters of the CNN model’s structure to address this issue, we opted to
explore Feedforward Neural Network (FFNN) models that incorporate the newly
devised structural framework and feature set.

5.4.1 7 features

Instead of discarding right at the start the estimators that we could find in the
literature, we built a feature array that include them rather then just our corre-
lation lag moments. In total, the relation between two nodes is described by 7
features, its estimated value calculated with granger, the zero, one and three lag
correlation matrices and the inverted matrices of the same lag moments.

F (n)
ij =

(
Gij, [R0]ij ,

[
R−1

0

]
ij

, [R1]ij ,
[

R−1
1

]
ij

, [R3]ij ,
[

R−1
3

]
ij

)(n)
, (5.2)

Being G the value estimated by the granger estimator, and Rk the k lag moments.
ij referring to the link between node j and i and (n) to the n instant in time.
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Note that this tests were obtained with few runs. That is, the number of cycles
we use to get the performance is low in order to run the test a little bit faster.
This way the curves of the performances will be less smooth. It only justifies the
increase of number of runs if the outcome is interesting to the goal we are trying
to reach.
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(a) 10% Geral

(b) 10% Connected

(c) 10% Disconnected

Figure 5.13: 7 features Results - 10% test
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(a) 30% Geral

(b) 30% Connected

(c) 30% Disconnected

Figure 5.14: 7 features Results - 30% test
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(a) 50% Geral

(b) 50% Connected

(c) 50% Disconnected

Figure 5.15: 7 features Results - 50% test
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(a) 70% Geral

(b) 70% Connected

(c) 70% Disconnected

Figure 5.16: 7 features Results - 70% test
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(a) 90% Geral

(b) 90% Connected

(c) 90% Disconnected

Figure 5.17: 7 features Results - 90% test
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All models have been trained under a connection probability regime of 50% and
the network directed. The examination encompasses varying connectivity prob-
abilities, as designated in the accompanying figures. The evaluation entails a
comparative analysis of performance involving four estimators: Granger,R1 − R3,
R1 and Precision Matrix against the backdrop of the legacy CNN model (referred
to as CNN Sergio), as well as our two recently developed Feedforward Neural
Network (FFNN) models.

For the legacy CNN, the feature set comprises two hundred correlation lag ma-
trices, encompassing the initial one hundred negative lags and the subsequent
one hundred positive lags. Conversely, the FFNN models utilize the previously
elucidated array of seven new features.

Each probability value is represented through a trio of graphics, elucidating accu-
racy across distinct nodes. Two of these graphics specifically delineate accuracy
within the context of connected and disconnected nodes. This threefold catego-
rization of accuracy has been preferred over the pursuit of a singular balanced
metric, aligning with a pragmatic approach.

Upon perusal of the visual representations, it is evident that the top-performing
entities are consistently the FFNNs and the Precision Matrix estimator. Notably,
the legacy CNN’s performance is not considered, as discerned from the accura-
cies of both connected and disconnected nodes, where the model tends to classify
nearly all links between nodes as disconnected.

While the obtained results do not fall within the realm of the least favorable out-
comes, the Precision Matrix estimator remarkably remains in close proximity and
sometimes even surpasses the performance of this novel architecture.

5.4.2 Mix Features

With the experiment made in 5.4.1 in mind, we came to the conclusion that the
presence of the estimator (granger) in the feature array was not helping in the
model’s classification. Thus, instead of adding the estimator to the feature vector,
we choose to include more correlation lag moments and their invertion, , KM(n),
as explained in 4.2.3. This way, we now consider two hundred correlation lags,
being them the first fifty negative and positive correlation lags and their inver-
tion. A feature set with only the positive lags and other only with negative lags
(and their inverted lags) were tested too.
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(a) 30% Test

(b) 50% Test

(c) 70% Test

Figure 5.18: Different Features Sets Results
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Allow me to elucidate the legend provided: The term "only N" signifies a model
that underwent training and testing exclusively using negative correlation lags
and their corresponding inversions. Conversely, the designation "only P" pertains
to a model exclusively incorporating positive lag moments and their correspond-
ing inversions. The nomenclature "All" denotes a model that was trained using
a comprehensive feature set consisting of both positive and negative lags, along
with their respective inversions. The term "7 features" designates a model ex-
pounded upon in 5.4.1. All the networks used are directed.

In addition, the abbreviation "SS" denotes the utilization of the StandardScaler
technique for normalizing the feature set. Meanwhile, "SS SS" indicates that both
the time series data and the feature set underwent normalization using the Stan-
dardScaler methodology.

Upon meticulous analysis of Fig. 5.18, it is evident that the models trained solely
with positive lags and those trained with a comprehensive set of all lags exhibit
optimal performance. Subsequently, in the forthcoming figure, we opt to adopt
the model employing all lags as our preferred methodology. We intend to com-
pare this selected model across various regimes with the alternative methodolo-
gies delineated in Section 3.

Figure 5.19: Mix Features Results - Scenario 1 - 30%test
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Figure 5.20: Mix Features Results - Scenario 1 - 50%test

Figure 5.21: Mix Features Results - Scenario 1 - 70%test
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Figure 5.22: Mix Features Results - Scenario 2 - 30% test

Figure 5.23: Mix Features Results - Scenario 2 - 50% test

62



Numeric Simulations

Figure 5.24: Mix Features Results - Scenario 2 - 70% test

The scenario 1 the underlying directed network used in the test has 40 nodes in
total with only 20 observable and β = 100. In scenario 2 the β value is set to 120
and the total nodes of the network are 100 with only 40 observable.

Evident from Fig. 5.19 to Fig. 5.24, our proposed methodology consistently out-
performs all other methods evaluated under the three distinct regimes tested at
stage 3. This noteworthy achievement can be attributed to the synergistic amalga-
mation of correlation lags—both positive and negative—alongside their respec-
tive inverted matrices.

Our approach entails the training of a Feedforward Neural Network (FFNN) with
a directed network architecture characterized by a 50% connectivity rate. The in-
corporation of varied beta values, inducing diverse colored noise patterns within
the time series data, further enriches our feature set. Subsequently, these novel
features are harnessed for model training.

In comparative terms, the performance exhibited by all competing estimators, as
well as the legacy CNN model operating with its traditional features, falls short
of attaining the level achieved by our novel model. The potency of our approach,
underscored by the integration of diversified features and strategic network de-
sign, establishes a performance benchmark that remains unattainable by existing
methodologies.

Another observation that can be made is the increase of the classification’s diffi-
culty in denser cases. In denser cases the network is complex and requires more
samples to get the same performance as in sparse networks.

The next experiments show the influence of the values of some parameters in the
models performance. In common they have as root a directed network with a
total of 100 nodes and a total of 500000 samples. The colored noise parameter β is
100 excluding the one experiment where this value is changing. The observable
nodes is fixed to 40 in the experiment where this value isn’t changing. The prob-
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ability of the network’s structure connectivity is 50% except for the experiment
where this same parameter varies.

Influence of the number of observable nodes

The next experiment shows the influence of the total nodes N and obervable
nodes S ratio, N

S in the performance of the methods.

Figure 5.25: Influence of the number of Observable nodes - 30% Test
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Figure 5.26: Influence of the number of Observable nodes - 50% Test

Figure 5.27: Influence of the number of Observable nodes - 70% Test
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In this case, from the observation of Fig.5.25 to Fig.5.27, the proposed method sur-
passes every other approach in all partial observability cases, being the network
balanced, sparse or dense.

Influence of the Beta Parameter

The next experiment shows the influence of the β colored noise parameter in the
performance of the methods.

Figure 5.28: Influence of Beta - 30% Test
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Figure 5.29: Influence of Beta - 30% Test

Figure 5.30: Influence of Beta - 30% Test
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The noise will be diagonal when β = 0. As we can see from Fig.5.28 to Fig.5.30,
when there is only diagonal noise applied in the network, the other methods can
keep up with the one proposed in this thesis. However, as soon as we turn on
the colored noise i.e., we increase the value of β all the performances of the other
methods decreases and ours stays with a good performance.

Influence of the Connectivity

In this experiment the probability of the connectivity p in the Erdős-Rényi algo-
rithm is changed. The purpose is to analyse the influence of the network structure
in the performance of the models.

Figure 5.31: Influence of Connectivity

Our proposed method only fails in the sparser case when the probability linked
with the connectivity of the network is 0.1(10%). As we increase the directed
network connectivity our method has the best performance. Remark that denser
cases are harder then sparser cases.

5.5 Real Data

This Section contains the results in real data that we could find and test it with
the same logic as the experiments shown before. In Section 5.5.1 we use a dataset
that has adjacency matrices obtained through tractography images of the brain.
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5.5.1 Real Network

Reference [Škoch, 2022] by segmenting the tractography results into larger anatom-
ical units, the researchers gain insights into the structural relationships between
different parts of the brain. This process culminates in the creation of a structural
connectivity matrix, which offers estimates of connection strength among all re-
gions of interest. However, the processing of raw data is intricate, computation-
ally demanding, and necessitates expert quality control, potentially discouraging
researchers with limited experience in the field.

To address this challenge, the researchers present a valuable contribution: a dataset
of brain structural connectivity matrices that are preprocessed and ready for mod-
eling and analysis. This dataset is designed to be accessible to a wide community
of scientists, enabling researchers to delve into brain connectivity research with-
out grappling with the complexities of data processing.

The dataset not only includes brain structural connectivity matrices but also pro-
vides the underlying raw diffusion and structural data. Moreover, it offers ba-
sic demographic information pertaining to 88 healthy subjects. By making this
dataset available, the researchers aim to facilitate and accelerate advancements
in brain connectivity research, opening doors for interdisciplinary collaboration
and fostering a deeper understanding of the human brain’s intricate workings.

Figure 5.32: Real network Results

A noteworthy outcome becomes evident in Fig. 5.32, wherein our model demon-
strates superior performance compared to the alternative approaches delineated
in Chapter 3. Specifically, the model in question is characterized as a network
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comprising 90 nodes, encompassing 70 nodes that are observable, and subjected
to colored noise with a beta value of 240.
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Concluding Remarks

This Section provides a succint overview of the contributions in the thesis and
points to feature directions.

6.1 Contributions

This thesis was focused on tackling the intricate task of deducing the interac-
tion structure within a networked dynamic system characterized by linearity and
stochastic behavior. The interactions structure was abstracted as a directed net-
work that needed to be infered from the time series activity at distinct nodes.
Specifically, we delved into the problem of time series data originating from these
systems, which were further perturbed by the presence of colored noise. We as-
sumed partial observability, where the data only covers a portion of the nodes,
leaving some unobserved (partial observability). In this context, we introduced
an inventive collection of feature vectors that are derived from the available time
series. These feature vectors represent statistical descriptors, offering insights
into the connections and direction of connections between pairs of nodes. Our
contributions are twofold. First, we established that this set of features is en-
dowed with linear separability, which means that, with a high degree of proba-
bility, it’s possible to identify a hyperplane within the feature space. This hyper-
plane effectively segregates the features linked with connected node pairs from
those linked with disconnected pairs. Second, we substantiated the structural
reliability of the feature vectors via a rigorous proof under specific parameter set-
tings (2). Consequently, this implies that if we possess the correct hyperplane
for separation, we can consistently categorize node pairs as either connected or
disconnected. To leverage this, a variety of machine learning techniques can be
trained on these distinctive features. In our case, we opted to utilize Feedforward
Neural Networks (FFNNs) to harness the power of this feature set for causal in-
ference, leading to an advanced method. The trained FFNN exhibited exceptional
generalizability. Despite being trained on a specific synthetic network – one gen-
erated using an Erdős–Rényi random graph model with 100 nodes and a connec-
tion probability of 0.5 – it displayed robust performance across a wide spectrum
of connectivity scenarios, even encompassing real-world networks. Our findings
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have been submitted for publication, and we’re also in the process of preparing
additional results for dissemination.

6.2 Future Work

In the preliminary report, our ultimate objective encompassed the application of
our devised methodology to authentic brain data networks. As outlined in Sec-
tion 5.5.1, the employed network structure is derived from neuroimaging data
and is formulated through statistical procedures that capture patterns of brain
activity. Concurrently, we aspired to progress toward the utilization of real-time
series data sourced directly from genuine brain functional magnetic resonance
imaging (FMRI) or electroencephalography (EEG) signals. This endeavor entails
the utilization of statistical methodologies to generate these time series, introduc-
ing an additional facet to our experimental framework and potentially bolstering
the credibility of our approach.

Moreover, the preliminary report alludes to the exploration of Nonlinear Dynam-
ical Systems. It is important to note that this facet of the research has yet to be
subjected to empirical investigations. It is therefore suggested that this repre-
sents a forthcoming avenue of inquiry, wherein the proposed methodology could
be applied, examined, and potentially refined to accommodate the intricacies of
such systems. The prospect of developing a novel feature vector tailored to the
characteristics of Nonlinear Dynamical Systems is also contemplated, provided
the need arises for achieving optimal performance within this domain.
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