

José Miguel Dias Simões

POWER DATA FRAMEWORK ARCHITECTURE

Dissertation in the context of the Master’s in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Bruno Cabral and Prof.

Vasco Pereira and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

September 2023

P
O

W
E

R
 D

A
T

A
 F

R
A

M
E

W
O

R
K

 A
R

C
H

IT
E

C
T

U
R

E

Jo
sé

 M
ig

u
el

 D
ia

s
S

im
õ

es

DEPARTMENT OF INFORMATICS ENGINEERING

José Miguel Dias Simões

POWER Data Framework
Architecture

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Bruno Cabral and Prof.

Vasco Pereira and presented to the Department of Informatics Engineering of
the Faculty of Sciences and Technology of the University of Coimbra.

September 2023

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

José Miguel Dias Simões

POWER Data Framework
Architecture

Dissertação no âmbito do Mestrado em Engenharia Informática, especialização
em Engenharia de Software, orientada pelo Professor Doutor Bruno Cabral e

pelo Professor Doutor Vasco Pereira e apresentada ao Departamento de
Engenharia Informática da Faculdade de Ciências e Tecnologia da Universidade

de Coimbra.

September 2023

Acknowledgements

I would like to thank Professor Bruno Cabral and Professor Vasco Pereira for
their supervision, understanding and patience during the project’s execution, for
providing me with the tools, resources and validation needed to see this work
through.

This work could not have been possible without the support of my family, espe-
cially my partner, Inês, who helped me through the lulls and stalemates, provid-
ing me with the motivation I needed to pull through and reach my objectives,
accompanying me every day as I progressed through the writing and develop-
ment of this dissertation. As the days dragged on, and difficulties mounted, her
fighting spirit and tireless work ethic served as beacon of inspiration, and I know
I could not have done it without her.

I thank my mother, who enabled me to reach this stage, through her love and
sacrifice over many hardships along these University years. I can only hope she’s
as proud of me as I am of her.

I also extend my thanks to my dear friends who have accompanied me since the
freshman years (and some even before that): my brothers-in-arms Rodrigo, Braga
and Diogo, who sat with me many times discussing my work, helping me face my
weaknesses as the project developed through its more tumultuous stages; Nuno,
who provided a constant stream of motivation through his tirelessness and per-
severance in his PhD project; Henrique, Inês and Mónica for their companionship
in the late nights at the department; and a massive thanks to my good friend Bib,
for providing some much-needed tough-love in my many slumps.

I would also like to extend my thanks to Altice Labs S.A. and our contact, Luis
Cortesão, for their availability and for providing the information and feedback
necessary for this project.

And lastly, I would extend my thanks to the members of the jury for their evalu-
ation, feedback and judgement of my work, which was instrumental to the con-
clusion of this dissertation.

This work is funded by the project POWER (grant number POCI-01-0247-FEDER-
070365), co-financed by the European Regional Development Fund (FEDER), Por-
tugal 2020 (PT2020), and by the Competitiveness and Internationalization Oper-
ational Programme (COMPETE 2020).

vii

Abstract

This document describes the work carried out by José Dias, in the scope of the
"POWER Data Framework Architecture" internship promoted and hosted by the
Department of Informatics Engineering of the Faculty of Sciences and Technology
of the University of Coimbra , in partnership with Altice Labs S.A., as part of the
Informatics Engineering Master’s course.

The objective of the internship is to specify a software architecture which meets
the current business goals and needs of Altice Labs’ data management processes,
while also providing a stable foundation for future business growth into an IaaS
or PaaS context and the adoption of novel data management and governance
techniques and practices.

To provide the background for the architecture design process, novel approaches
were analysed and reviewed. Following this brief contextualization, the prelimi-
nary requirement analysis process was initiated, resulting in a requirement spec-
ification to enable the analysis of architectural drivers. The conclusion of this
preliminary step was the drafting of an architecture which met the functional
and non-functional requirements albeit without experimental validation.

To evolve from the draft and mature the architecture into a fully validated and
complete specification, an iterative methodology was followed - an adapted ver-
sion of the Architecture-Centric Design Methodology (ACDM). In each iteration
the architecture and requirements were refined and subsequently evaluated ex-
perimentally and theoretically.

The architecture was developed through two iterations of the design process, re-
sulting in an experimentally validated data ingestion, storage and serving pipeline
under the Lakehouse paradigm, and in a partially validated governance and ad-
ministration platform. The project resulted in a requirement specification and
architecture specification, which will be submitted as deliverables for Altice Labs
S.A..

Keywords

Data Architectures, Big Data, Multi-Tenancy, ACDM

ix

Resumo

Este documento descreve o trabalho realizado por José Dias, no âmbito do está-
gio "POWER Data Framework Architecture", promovido pelo Departamento de
Engenharia Informática da Faculdade de Ciências e Tecnologias da Universidade
de Coimbra, em parceria com a empresa Altice Labs S.A., como projeto de disser-
tação do Mestrado em Engenharia Informática.

O objetivo do estágio é desenhar uma arquitetura de software que cumpra os
objetivos e necessidades atuais dos processos de gestão de dados da Altice Labs,
construindo uma base estável para o crescimento futuro do negócio num contexto
de IaaS ou PaaS, bem como a implementação de novas técnicas e práticas de
gestão e governance de dados.

Para contextualizar o processo de desenho da arquitetura, abordagens inovado-
ras foram analisadas. Após esta contextualização, o processo de análise e en-
genharia requisitos foi iniciado, resultando numa especificação de requisitos que
permitiu a análise dos drivers arquiteturais. A conclusão desta etapa preliminar
foi a elaboração de um rascunho da arquitetura que cumprisse os requisitos fun-
cionais e não funcionais, ainda que sem validação experimental.

Para evoluir a partir do rascunho e progredir do rascunho para uma arquitetura
validada e completa, foi utilizada uma metodologia iterativa - uma versão adap-
tada do "Architecture-Centric Design Methodology" (ACDM). Em cada iteração,
a arquitetura e os requisitos foram refinados, validados e posteriormente avalia-
dos experimental e teoricamente.

Foram realizadas duas iterações do processo de desenvolvimento da arquitetura,
resultando numa pipeline de ingestão, armazenamento e disponibilização de da-
dos validada experimentalmente no paradigma Lakehouse, e numa plataforma de
governança e administração parcialmente validada. O projeto resultou numa
especificação de requisitos e numa especificação de arquitetura que foram en-
tregues à Altice Labs S.A..

Palavras-Chave

Arquitetura de Dados, Big Data, Multi-tenancy, ACDM

xi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Purpose . 2
1.3 Objectives . 3
1.4 Planning and Execution . 4

1.4.1 First Semester . 4
1.4.2 Second Semester . 6
1.4.3 Delay - Summer . 8

1.5 Document Structure . 9

2 Background and Concepts 11
2.1 Data Management Concepts and Drivers 12

2.1.1 Data Activities . 14
2.1.2 Data Structure and Flow . 15
2.1.3 Data Processing . 16
2.1.4 Data Quality . 17
2.1.5 Data Governance . 19

2.2 Data Systems and Models . 20
2.2.1 Relational Database Management Systems 20
2.2.2 Data Warehouse . 22
2.2.3 Data Lake . 26
2.2.4 Data Lakehouse . 29

2.3 Data Architecture Patterns . 32
2.3.1 High-Level Concepts . 32
2.3.2 Lambda Architecture . 33
2.3.3 Kappa Architecture . 34

2.4 Novel Governance-Oriented Approaches 36
2.4.1 Data Fabric . 36
2.4.2 Data Mesh . 38

3 Methodology 43
3.1 Methodology Overview . 44
3.2 Project Management . 45
3.3 Requirement Engineering . 46

3.3.1 Constraints . 46
3.3.2 Functional Requirements . 47
3.3.3 Non-Functional Requirements 48

3.4 Architecture Design . 50

xiii

Chapter 0

3.4.1 Architecture-Centric Design Methodology (ACDM) 50
3.4.2 Requirements Stages . 52
3.4.3 Design/Refine Stage . 53
3.4.4 Experiment Stages . 56

3.5 Architecture Specification . 57

4 State-of-the-Art 59
4.1 Implementations . 59

4.1.1 SmartNews Lambda Architecture 59
4.1.2 Uber Kappa Architecture . 61

4.2 Supporting Technology . 62
4.2.1 Data Ingestion . 62
4.2.2 Data Storage . 64
4.2.3 Data Serving and Consumption 67
4.2.4 Administration and Data Governance 68

4.3 Case Study: Amazon Webservices Lakehouse 69

5 Requirement Analysis & Specification 73
5.1 System Description . 74

5.1.1 Functional System Partitioning 74
5.1.2 Functional View . 75
5.1.3 Administration Layer . 76
5.1.4 Orchestration Layer . 77

5.2 Constraints . 78
5.2.1 Technical Constraints . 78
5.2.2 Business Constraints . 79

5.3 Requirements . 80
5.3.1 Ingestion Layer . 81
5.3.2 Storage Layer . 82
5.3.3 Serving Layer . 83
5.3.4 Administration Layer . 84
5.3.5 Orchestration Layer . 85

6 Architecture Design 87
6.1 Iteration #0 - Notional Architecture 88

6.1.1 Analysis . 88
6.1.2 Creation . 89
6.1.3 Review & Validation . 89
6.1.4 Outcome . 93

6.2 Iteration #1 - First Refinement, Ingestion Layer 94
6.2.1 Analysis . 94
6.2.2 Refinement . 95
6.2.3 Review and Validation . 99
6.2.4 Experiments . 101
6.2.5 Outcome . 105

6.3 Iteration #2 - Storage and Serving Layers 106
6.3.1 Analysis . 106
6.3.2 Refinement . 108
6.3.3 Review and Validation . 113

xiv

Contents

6.3.4 Experiments . 115
6.3.5 Outcome . 122

7 Final Architecture 123
7.1 Overview . 124

7.1.1 Ingestion, Storage and Serving 124
7.1.2 Administration and Governance 124
7.1.3 Infrastructure Control . 124

7.2 Context View . 125
7.3 Container View . 126
7.4 Component Views . 128

7.4.1 Kafka Ingestion Cluster . 128
7.4.2 Lakehouse Hudi/Spark Cluster 130
7.4.3 Serving Spark/Presto Cluster 132

7.5 Alternatives . 134
7.5.1 Ingestion . 134
7.5.2 Storage and Serving . 135

7.6 Future Work . 136

8 Conclusion 137

Appendix A Requirement Specification 151

Appendix B Architecture Specification 185

xv

List of Figures

1.1 Gantt Chart detailing the work plan for the first semester. The "wa-
terfall" approach is clearly visible. 5

1.2 Gantt Chart detailing the executed work for the first semester. The
numerous attempts to re-plan are visible, as well as the scattered,
unstructured nature of the work. 6

1.3 Gantt Chart detailing the planned work for the second semester
(top) and the executed work (bottom). The grey block is a place-
holder. 7

1.4 Gantt Chart detailing the planned (left) and executed (right) work
schedules for the summer dissertation delivery delay period. 8

2.1 Evolution of research volume dedicated to the topic of Data Gov-
ernance and its ancillary data measures. Results use the topic-
search function at "The Lens" to analyse article volume for key-
words "Data Governance" OR "Data Quality" OR "Data Value", dis-
playing a marked increase in the 2010s. 13

2.2 The four-scope model of data management within an organization. 23

2.3 Data integration in the transition from the Operational Scope to
the Atomic Scope. Multiple data records are combined to provide
a more valuable dataset for statistical analysis. 23

2.4 The generic architecture of a layered Data Warehouse. Data flows
from business activities (such as CRM, Logs and Records) into the
Data Warehouse after transformations (ETL). Afterwards, selected
data is pushed to Data Marts to serve the needs of the business
(Sales, Finances, Logistics, for example) 24

2.5 The generic architecture of a Data Lake. Data flows from business
activities (such as CRM, Logs and Records) into the DL, where they
are stored together. BI data flows are generally treated with ETL,
and can even be sent to an intermediary DW before use; while ML
and DS data flows can be consumer directly or after ETL. 27

2.6 The generic architecture of a Data Lakehouse. Data flows leading
to the DL are analysed and a metadata layer is built. This layer is
then accessed through a series of APIs, each having its own spe-
cific set of access rules, ETL, etc. encompassed within to fulfill the
department-specific portion of the DW inspired data access protocol. 30

xvii

Chapter 0

2.7 The generic architecture layout used in Lambda architectures. In
this example, data is processed through two separate layers, the
real-time stream layer, and the batch layer. Additionally, a serv-
ing layer is employed to organise the batch data into consumable
views which can be queried by external systems. 34

2.8 The generic architecture layout used in Kappa architectures. In
this example, data is processed only in the real-time layer, with
historical data being retransmitted from a message store. 35

2.9 High-level structure of the Data Fabric (DF). By orchestrating sev-
eral services (in this case, a Data Lakehouse (DLH), Data Lake
(DL) and Data Warehouse (DW)), combining their inputs through
the ML/AI-driven DF pipeline, and then unifying them under a
common access point, the DF abstracts way access to individual
services, providing a common layer with potential for numerous
data-quality related activities (such as integration, ETL, catalogu-
ing). 38

2.10 High-level structure of the Data Mesh (DM). The mesh is com-
posed of several domains operating in tandem, using a common
data-infrastructure layer. Source-oriented domains feed domains
X and Y, which feed the service-oriented domains. In this case,
data storage systems are virtualised (access is performed indirectly
through the DIaaP layer.). 42

3.1 Schematic representation of a six-part quality-attribute scenario,
displaying the six components included in the formal definition. . . 49

3.2 Diagram of the ACDM’s stages, showing the split point in Stage 5
where the decision is made to either push to production or go back
to a refinement stage should the architecture need further iterations. 51

4.1 The technology-component diagram of the SmartNews architec-
ture, featuring the Input, Batch/Serving, Speed and Output layers
and their main data flow paths (adapted from SmartNews, 2016.
[103]) . 60

4.2 The technology-component diagram of the Uber Kappa architec-
ture, showing the data sources, the ingestion and processing pipelines,
as well as the destinations for the processed data (Kai Waehner,
2021 [107]) . 61

4.3 Map of Data Ingestion technologies which were analysed as part
of the preliminary research. Coloured nodes indicate categories. . . 63

4.4 Map of Data Storage technologies which were analysed as part
of the preliminary research. Included are both raw storage and
lakehouse-ing technologies. Coloured nodes indicate categories. . . 64

4.5 Map of Data Serving technologies which were analysed as part of
the preliminary research. Coloured nodes indicate categories. . . . 67

4.6 Map of Administration and Data Governance technologies which
were analysed as part of the preliminary research. Both metadata
catalogs and access control modules are encompassed. Coloured
nodes indicate categories. 69

xviii

List of Figures

4.7 Technology/Service-centric view of the Amazon Webservices Lake-
house Reference architecture. Flow of data is from bottom to top. . 71

5.1 Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the
main functionalities are identified. 75

5.2 Schematic representation of the administrative view of the archi-
tecture. Metadata flows are represented with dotted green arrows.
The data sources and endpoint external services were joined into a
single component for this view. 76

5.3 Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the
main functionalities are identified. 77

6.1 Conceptual data flow diagram of the notional architecture draft.
The main components are visible and their data flows are repre-
sented by arrows. 89

6.2 Condensed container diagram for the framework architecture as of
the first iteration. Each block represents an application or micro-
service executing in its own environment. 93

6.3 Condensed container diagram for the framework architecture as of
the first iteration. Each block represents an application or micro-
service. Dashed lines indicate metadata flows. 98

6.4 Experimental setup for the Kafka experiments of Iteration 1. In
green is the "single producer" setup, and in blue is the "concurrent
producer" setup. 101

6.5 Condensed container diagram for the architecture as of the second
iteration. Each block represents an application or micro-service.
Dashed lines indicate metadata flows. 112

6.6 Experimental setup for SYSTEM-001. The Kafka Producer (Green
P) would post messages to the topic which Hudi would ingest
from, storing in Min.IO. SparkSQL would query it and compute
end-to-end latency. DataHub would monitor the entire lifecycle. . . 120

7.1 Context diagram for the architecture. Displayed are the three rele-
vant actors and the systems they interact with. 125

7.2 Container View of the Data Framework system. Grey arrows indi-
cate data flows, green arrows indicate log flows and pink arrows
indicate metadata flows. 127

7.3 Component View of the Kafka Ingestion Cluster component. Grey
arrows indicate data flows, green arrows indicate log flows and
pink arrows indicate metadata flows. Additionally, dashed grey
lines indicate data flows from/to outside the component. 129

7.4 Component View of the Lakehouse Hudi/Spark Cluster compo-
nent. Grey arrows indicate data flows, green arrows indicate log
flows and pink arrows indicate metadata flows. Additionally, dashed
grey lines indicate data flows from/to outside the component. . . . 131

xix

Chapter 0

7.5 Component View of the Serving Spark/Presto Cluster component.
Grey arrows indicate data flows, green arrows indicate log flows
and pink arrows indicate metadata flows. Additionally, dashed
grey lines indicate data flows from/to outside the component. . . . 133

xx

List of Tables

2.1 Measures of data quality as surveyed by Sidi et al. indicating a
summarised description of each trait. 18

3.1 Sample definition for constraints. BC-001 indicates a business con-
straint, and TC-001 indicates a technical constraint. 46

3.2 Sample definition for functional requirements. Two examples for
one of the system’s high-level components, with a unique ID and a
Source identifier related to the iteration in which the requirement
was last changed. 47

3.3 Sample definition of a quality-attribute scenario. This example fea-
tures a unique ID, a source identifier related to the versioning of the
requirement specification, and a summarised description of the rel-
evant system quality that is expressed by the scenario. Following
this header, the six-part scenario is detailed. 49

3.4 Typical structure for the ADEW, including the main activities, a
description and their respective duration. 52

3.5 Simplified mapping table of an architecture review, presenting on
mapping of each type (validated, partially validated and issue). . . 55

3.6 Issue types used in the Issue Tracking for the formal architecture
review stage of the adapted-ACDM methodology. 55

5.1 Source ID mapping and description for table entries. 73
5.2 Technical constraints identified for the project. 78
5.3 Business Constraints as identified for the project. 79
5.4 Sample Functional Requirements for Ingestion Layer (IL). 81
5.5 Sample Quality-Attribute Scenario for the Ingestion Layer (IL). In

this case, the quality-attribute scenario relates to Availability. 81
5.6 Sample Functional Requirements for Storage Layer (SL). 82
5.7 Sample Quality-Attribute Scenario for the Storage Layer (SL). In

this case, the quality-attribute scenario relates to Reliability. 82
5.8 Sample Functional Requirements for Serving Layer (SV). 83
5.9 Sample Quality-Attribute Scenario for the Serving Layer (SV). In

this case, the quality-attribute scenario relates to Security. 83
5.10 Sample Functional Requirements for Administration Layer (AL). . 84
5.11 Sample Quality-Attribute Scenario for the Administration Layer

(AL). In this case, the quality-attribute scenario relates to Privacy. . 84
5.12 Sample Functional Requirements for Orchestration Layer (OL). . . 85

xxi

Chapter 0

5.13 Sample Quality-Attribute Scenario for the Administration Layer
(AL). In this case, the quality-attribute scenario relates to Consis-
tency. 85

6.1 QA Evaluation table for draft components of the Ingestion Layer. . 90
6.2 QA Evaluation table for draft components of the Storage Layer. . . 91
6.3 QA Evaluation table for draft components of the Serving Layer. . . 92
6.4 QA Evaluation table for globality of the system in the draft. 92
6.5 Comparison of the main Data Ingestion components under analy-

sis. Components are sorted from left (most suited) to right (least
suited) based on how well they meet the requirements through a
documentation-analysis based approach, to set expectations and
create a knowledge-base. 97

6.6 Condensed view of the RAID issue tracker table as of Iteration 1,
displaying each issue, its description, type and mitigation plan.
Issues of type 0 were omitted, and text was condensed to fit the
short-form presentation approach. The "Status" column indicates
that state of the issue at the end of the iteration. Issues with closed
status will be omitted from future iterations of the table. 100

6.7 Experiment specification related to Iteration 1’s validation process. 101
6.8 Technical specification of the system for the experimental setups

described for the first iteration. 101
6.9 Experimental results for experiment INDIV001 showing Kafka un-

der normal conditions in the two analysed load scenarios. 103
6.10 Experimental results for experiment INDIV002 showing Kafka un-

der partial failure (broker outage) in the two analysed load scenarios.103
6.11 Comparison of the main Lakehouse components under analysis.

Components are sorted from left (most suited) to right (least suited)
based on how well they meet the requirements through a documentation-
analysis based approach. 109

6.12 Comparison of the main Metadata Catalog components under anal-
ysis. Components are sorted from left (most suited) to right (least
suited) based on how well they meet the requirements through a
documentation-analysis based approach. 111

6.13 Condensed view of the RAID issue tracker table as of Iteration 2,
displaying each issue, its description, type and mitigation plan. Is-
sues of type 0 were omitted. The "Status" column indicates that
state of the issue at the end of the iteration. 114

6.14 Experiment specification related to Iteration 2’s validation process. 115
6.15 Technical specification of the systems used in the experimental se-

tups described for the second iteration. 115

xxii

Chapter 1

Introduction

In this chapter, the introduction of the dissertation project is performed, starting
by presenting a brief description of the context for the elaboration of this work,
followed by a detailed look into the motivations and purposes behind the work
to be detailed, as a prelude to the description of the objectives of this dissertation.
Lastly, the document’s structure and contents are outlined.

1.1 Context

This dissertation was written in the scope of the "Dissertation/Internship in Soft-
ware Engineering" curricular unit of the Master’s Course in Informatics Engi-
neering, at the Department of Informatics Engineering, in the Faculty of Sciences
and Technology of the University of Coimbra.

Altice Labs S.A. [7] is a research and development company, starting in the 1950s
as a telecommunications (telecom) technology development initiative, providing
numerous innovations through the application of new, advanced electronics tech-
nology to the Portuguese communications landscape. Presently, they are explor-
ing the application of new technological patterns to the areas of home internet,
IoT and 5G, all while optimizing and improving existing telecom services.

Altice Labs, as lead promoter in partnership with the University of Coimbra,
the Institute of Telecommunications [76] and the Pedro Nunes Institute [77], is
part of "POWER - Empowering a Digital Future" [43], a national project which
seeks to create an innovative portfolio of products and services through the use
of emerging technologies (such as 5G, Data-driven business models and Artificial
Intelligence). The aim of this project is to create a new architecture to serve as the
foundation for a new data governance framework for Altice Labs S.A. to allow for
optimal use of the new research and development efforts within Project POWER.

The project started on the 13thof September of 2022, and concluded on the de-
livery date of the 5thof September of 2023, with an intermediate delivery on the
16thof January 2023.

1

Chapter 1

1.2 Motivation and Purpose

Data is an increasingly important part of the digital landscape in the 21stcentury.
In the age of Big Data, the unprecedented rate of data generation, collection and
storage that we experience today, has led to challenges and bottlenecks in pro-
cessing, especially given that the nature of these massive data flows often makes
conventional systems and techniques no longer applicable due to their limitations
in processing power or due to their lack of flexibility in regards to data variety
[47].

Businesses worldwide have had the opportunity to collect large amounts of data
to meet their business objectives and provide better service. The market for enter-
prise Big Data has been growing fast with an annual growth rate of 13.4%, being
valued at 240.56 thousand million US dollars in 2021, and is expected to reach
655.53 thousand million USD by 2029 [64].

The use of data to enrich and improve services has an indefinite number of ap-
plications, due to the increasing ability to infer and observe patterns from low-
information data sources, especially by leveraging Machine-Learning and other
statistical computing methods [36, 85].

This growth inevitably brings about problems, not only due to the direct scalabil-
ity issues but also in terms of the evolution of the supporting infrastructure and
operational requirements to handle the issue of data governance, which involves
the exercise of authority and control over the use, quality and storage of said data
[1].

The main challenge can be summarized in being able to receive the large, ever
growing amounts of data, finding a way to store it and process it to make it useful,
all within growing security constraints [38] and an ever-evolving technological
and regulatory landscape [97, 102].

Software engineers have designed a variety of reference architectures and pat-
terns to guide the development of systems which can provide the necessary func-
tionalities and qualities for modern enterprise applications. There are studies
in the literature which introduce these architectures from a technical standpoint
[67, 82] and there are also studies which seek to analyze and deconstruct the prob-
lem from an organizational standpoint [87], promoting practices and concepts to
address the critical issues related to data governance.

Despite the large amount of new work and developments [102], the challenge of
finding a correct methodology remains, and much research is dedicated to creat-
ing stable frameworks for data governance and high-volume Big-Data processing
pipelines, leveraging the benefits of cloud computing [37] and highly-efficient,
cost-effective stream processing that can adapt to increasingly strict requirements
regarding data privacy, security and quality.

Recent technological developments (i.e. Data Lakes [65, 93], Lakehouses [32], etc.)
have created an environment that is rich in potential solutions, creating an op-
portunity to optimize and tailor-make these architectures to fit individual needs,

2

Introduction

requirements and business objectives and companies today may explore these in-
novative solutions and create data ecosystems for themselves and for their clients.

As one of the tasks of the Project POWER, and accompanying the research and
development effort within the other sub-projects, namely the ones regarding the
adoption of new organizational frameworks and data governance strategies, the
development of an underlying infrastructure to support all the business goals,
present and future, of Altice Labs is of utmost importance.

This goal can be achieved through the creation of a flexible, adaptive and scalable
framework, the process of large-scale data analytics can be made more stream-
lined, secure and flexible, enabling the adoption of new organizational paradigms
(such as domain-based access, self-serve data governance, etc.) as well as more
business-oriented goals, such as the planned transition from an internal solution
to an Infrastructure-as-a-Service (IaaS)/Platform-as-a-Service (PaaS) context us-
ing multi-tenancy.

The process of designing the architectures to support these services is increas-
ingly important due to the growing complexity, scaling needs and performance
requirements of such systems. Considering the scope of Altice Labs’ business
model and the end goal of producing an effective data management framework,
a software architecture must be designed to account for all the relevant busi-
ness needs, future infrastructure requirements, scalability concerns and regula-
tory constraints.

1.3 Objectives

Taking into account the issues previously mentioned as well as the potential for
an new solution fit for Altice Labs’ goals, the objectives for this internship can be
defined as follows:

1. Research technologies and solutions for a cloud-based Big-data platform
with IaaS capabilities.

2. Perform a comprehensive requirement analysis for this platform.

3. Draft and iteratively refine an architecture proposal to support the iden-
tified requirements, while evaluating the architecture’s main attributes ex-
perimentally and theoretically.

4. Present a fully documented, justified and evaluated architecture specifica-
tion for the Altice Labs Data Framework.

The first semester covered the first two objectives, resulting in an initial Require-
ment Specification, following the IEEE 830-1998 Standard of recommendations
for Software Requirement Specifications [72], and in the production of a draft
architecture proposal, described using a summarized component view.

3

Chapter 1

During the second semester an iterative refinement and evaluation methodology,
inspired by the Architecture-Centric Design Method (ACDM) [74, 83], was fol-
lowed to fulfill the last three objectives, resulting in the fully detailed Architecture
Specification following the "C4" Architecture View Model [105] for architecture
descriptions, as well as the detailed supporting documentation (e.g. experimen-
tal record, validation).

1.4 Planning and Execution

The dissertation project was split into two halves - the first and second semester.

The first half was dedicated to defining the requirements for the system and cre-
ating a draft for the architecture. Although the tentative prototype was designed,
the lack of a structured approach hindered its quality, forcing a re-structuring of
the project’s planning, documentation and review processes by the time of the
intermediate defense.

The second half emphasised the iterative development methodology to leverage
a systematic review and a more organised approach in order to build from the
draft and create a more robust, validated and correct outcome.

Progress drastically increased once the refinement and review processes were
adopted in earnest, and the validation of the architecture was improved dramat-
ically by the introduction of experiments.

Unforeseen hardware limitations led to a delay in the project’s experimental val-
idation, causing the postponing of the final delivery from July to September to
overcome these challenges and complete the experimental validation to ensure
adequate coverage of the requirements.

While it was not possible to complete the experimental validation, the work was
carried out as far as possible within the project’s constraints, and presents good
coverage of the functional and administrative requirements for the system, with
a clear indication of future work and a solid documentation base for future efforts
relating to this project.

1.4.1 First Semester

As described, the first semester encompassed the following objectives:

• Perform research on data management patterns, models and architectures

• Requirement Engineering and Specification

• Architectural Driver Specification

• Creation of a notional architecture (draft or quick prototype)

4

Introduction

These objectives were broken down into six separate tasks:

• Contextualization - Understand the problem, perform preliminary research.

• Planning - Coordinate the task flow and work flow for the semester.

• Requirements - Requirement engineering, elicitation and specification.

• Architecture Draft - Produce a tentative "first-version" architecture.

• Research - Perform research on data management architectures/frameworks.

• Report - Document the process in the dissertation document.

A "waterfall" approach was selected to build the foundation for the future design
work, owing to the successive nature of the Requirement, Architecture Draft and
Report tasks. A large focus was placed on the requirement engineering processes
to ensure that the bulk of the requirement work was completed prior to the archi-
tecture draft’s creation.

To this end, planning was oriented toward contextualizing the problem, and
structuring the project around the architecture design methodology which was
selected for this dissertation project. The simple Gantt Chart in Figure 1.1 seeks
to detail the work schedule on a task level, according to the outlined objectives.

Figure 1.1: Gantt Chart detailing the work plan for the first semester. The "water-
fall" approach is clearly visible.

The objectives were met, with a validated requirement specification and a draft
of the architecture, featuring a notional approach, which sought the serve as a
foundation for a more concrete and systematic process in the second semester.
The research process was also successful in identifying solutions that could fit
into the mold of the project, and building a contextual base for the architectural
decisions to follow.

The workflow in the first semester was tumultuous but, ultimately, provided the
necessary contextualisation and knowledge required to progress into a successful
second semester. The executed work was analysed and summarised in Figure 1.2,
indicating the aforementioned issues.

5

Chapter 1

Figure 1.2: Gantt Chart detailing the executed work for the first semester. The
numerous attempts to re-plan are visible, as well as the scattered, unstructured
nature of the work.

1.4.2 Second Semester

In the second semester, an effort was made to correct the mistakes of the first
semester, namely the unstructured nature of the work, especially considering the
iterative design methodology called for a highly structured approach. With the
feedback from the intermediate presentation, corrections to the report were nec-
essary, and a change of pace was needed. The tasks for the second semester con-
sisted in:

• Planning - Plan the work, task deadlines.

• Document Corrections - Correct the issues in the dissertation report, the re-
quirement specification and clean up the documentation for the architecture
draft.

• Iteration #1 - Analyse the draft, refine it, verify if it meets requirements and
run experiments to validate the architecture.

• Iteration #2...N - Repeat the process described for iteration #1 as many times
as necessary to validate the architecture.

• Architecture Spec. - Develop an architecture specification to submit as a
deliverable following the C4 model [39].

• Requirement Spec. - Develop a requirement specification document to sub-
mit as a deliverable following the IEEE 830-1998 Standard [72].

• Report - Conclude the dissertation report, describing the iterative method-
ology and the development of the final architecture.

The planned structure for the semester was as described in the Gantt Chart in
Figure 1.3, along with the executed work scheduling.

In summary, the plan underestimated the amount of corrections necessary, and
the first iteration was slightly longer than previously estimated. After the first
iteration, some new corrections were necessary, which had been unplanned for,
before the second iteration could proceed.

6

Introduction

Figure 1.3: Gantt Chart detailing the planned work for the second semester (top)
and the executed work (bottom). The grey block is a placeholder.

Despite these challenges, a more refined architecture was developed. Some work
was unfinished, namely related to the Architecture Spec. deliverable, which was
left unfinished due to gaps in the experimental validation stemming from tech-
nical difficulties. Additionally, the monitoring components, which had been de-

7

Chapter 1

prioritized, were still in need of validation, calling for a possible third iteration.

These unfinished facets of the project motivated a delay from the delivery date
of the 10thof July to the 5thof September. This additional period, its planning and
execution records are discussed in the following sub-section.

1.4.3 Delay - Summer

As previously mentioned, three objectives remained upon delaying the delivery
to September:

• Experimental Validation of Iteration #2- Hardware limitations caused the
experimental validation to be incomplete. Additional hardware was ac-
quired to assist.

• Possible Iteration #3 - Monitoring-centric architecture developments.

• Architecture Specification - Without the confirmation that the components
were indeed suited for the architecture, the specification was also incom-
plete pending these results.

To account for this, the work plan was drafted to finish up the experimental vali-
dation as soon as possible with the intent to initiate a third iteration which would
complete the architecture (which up until this point had been developed in a
functional and in an administrative perspective) with a monitoring/management
focus. Figure 1.4 presents the planned and executed work scheduling.

Figure 1.4: Gantt Chart detailing the planned (left) and executed (right) work
schedules for the summer dissertation delivery delay period.

During this time the experimental validation was attempted using more powerful
hardware but was not completed successfully in time for the submission. This
resulted in a priority shift over to improving the final deliverables with revised
diagrams and textual descriptions and cleaning up any trailing documentation to
close out the iterative process and document the resulting architecture for future
work, rather than attempting to rush a third iteration.

8

Introduction

1.5 Document Structure

This chapter serves as a preface to the remaining content of the document, pro-
viding an outline of the context, motivation and purpose behind the production
of this document and of the project as a whole, as well as detailing the objectives
and planning for the project.

The second chapter covers essential context and groundwork for the architec-
ture’s development. It includes an overview of modern data management con-
cepts, an examination of current models, systems and architectures, as well as a
description of novel governance-centric approaches.

The third chapter will detail the methodologies followed in the different steps of
the project. This description seeks to cover the two central steps of the project’s
process - requirement analysis and architecture design - and will explicit the
strategies used for requirement elicitation, analysis and specification and the tech-
niques employed in the architecture design process, the Architecture-Centric De-
sign Methodology (ACDM). Additionally the project management methodolo-
gies which support the architecture development process are described.

The fourth chapter will present the state-of-the-art studied for this project - im-
plementations of the prevalent modern data architectures, a survey on the sup-
porting technologies and a case study of a cloud-native production-ready archi-
tecture.

The fifth chapter will provide a condensed requirement specification, providing
a description of the system and its components, followed by a brief overview of
the system’s requirements and architectural drivers.

The sixth chapter will serve to document the process of architecture design fol-
lowing the ACDM, starting from the initial draft until the final version. Each
section will encompass one full iteration, detailing the analysis, refinement, vali-
dation and experimentation processes which take place within it.

The seventh chapter will describe the final architecture. This description will
inform on the framework architecture’s final state.

The final chapter serves as the conclusion of the report.

Appendix A contains the Requirement Specification for the project and Appendix
B contains the Architecture Specification, produced as deliverables for the project.

9

Chapter 2

Background and Concepts

Data is the central unit of information exchange in the digital age. It is a signal,
a fact or a measure which is transmitted and serves as the carrier of information,
which enables the building and dissemination of knowledge across the various
disciplines, actors and businesses in the modern world. The market’s perspec-
tive on the value of harnessing data has remained the same since its inception -
collect, analyze, optimize - from the initial uses of business intelligence and data-
analysis, such as task automation and cost-cutting [109], to the use of numerical
and statistical methods to guide decision-making in businesses, to the modern
notion of data-as-a-product and the focus on large scale data analysis as the key
to improving value and quality.

While these changes could be analyzed on their own, from a conceptual and busi-
ness management standpoint, to assist in the development of a solution it may be
helpful to review the evolution of the supporting digital infrastructure, which has
enabled the growth of the data market and provided the tools for the widespread
use of data in the modern world.

To this end, a study of the data management landscape was performed, encom-
passing the analysis of the fundamental concepts and drivers of the field as well
as the underlying elements which support the data-centric software architectures,
in order to obtain contextual information and build a knowledge base to make
informed decisions when designing the architecture to be used in Altice Labs’
use-cases.

This chapter starts with a brief description of the core concepts and drivers of
the data management landscape - the activities associated with data, measures of
data and data governance. Following this description, the main data storage sys-
tems and models are presented from a chronological, market-driven perspective
- the Database, the Data Warehouse, Lake and Lakehouse. Following this analy-
sis is a presentation of the main architecture patterns - Lambda and Kappa - and
how their approaches tackle the Big-Data processing paradigm. Lastly, novel ap-
proaches - Data Fabric and Data mesh - are presented, detailing their architecture,
purposes, advantages and drawbacks.

11

Chapter 2

2.1 Data Management Concepts and Drivers

To frame the presentation of data architectures and their components, it is crucial
to first understand the key drivers that influence the growth of the data market
and, by consequence, the development of the underlying digital infrastructure.
These principles and concepts are what fuel the constant innovation, develop-
ment and research attached to the topic of data management at several scales.

While data is a topic which can be described at great lengths and has been the
focus of discussion for many years [104], it is more relevant for this project to aim
research at the properties and concepts surrounding the management of data in
the current enterprise landscape - the era of Big-Data.

For lack of formal definition, the Big Data era can be described as the current
paradigm of data processing, involving very large bodies of data (the so-called
big data) that cannot be handled or analysed by traditional data processing soft-
ware due to its scale, processing or throughput limitations. Though it is not
agreed upon when data can be considered big or how the paradigm itself can
truly be defined, some proposals have appeared to provide a stable foundation
upon which to build more research, providing measures of "big-ness" which can
categorize data-centric activities [47, 57, 81, 108], and provide insight into the key
drivers for software development in the field.

Analyzing these proposed traits, three distinct areas of concern emerge when dis-
cussing the data as a business object:

• Quantitative Measures - Related to the physical traits of data. Included mea-
sures have been defined as Volume, Variability, Variety, Complexity. These
measures generally account for performance, scalability and availability de-
sign questions.

• Qualitative Measures - Based on the information within the data, defined
in some sources as Value, Veracity or Quality. These measures can present
questions to both the technology (integration, compatibility, correctness)
and to the organizational structures surrounding it (auditability, traceabil-
ity, etc.).

• Normative Measures - Related to the ethical, legal and social aspects of
data management. These measures account for traceability, auditability and
compliance-oriented design questions that, like the qualitative measures,
can encompass both the infrastructure and the organizational structure it-
self.

The early days of the data market were focused mostly on the quantitative and
qualitative measures of data, displaying massive evolution in the areas of statistical
analysis, data analytics and business intelligence - the use of data to further business
operations through direct analysis. This use kept growing as more technologies
came along to support the market, allowing for large volumes of data analysis in
the digital space.

12

Background and Concepts

With this tremendous growth in the late 1990s and early 2000s, regulation crept
toward regulating this massive business activity which, due to technological ad-
vancements (namely mobile networks [110] and the proliferation of the internet
[60]), was now able to collect sensitive data on an unprecedented scale, and pos-
sibly interfere with the privacy of individual customers. Social awareness grew
with high-profile incidents, data leaks and privacy breaches, and the demand for
increased attention to the normative measures of data became clear.

What followed was the creation of extensive regulation (and rapid evolution of
existing regulations) regarding the use of private and sensitive data. The General
Data Protection Regulation (GDPR) [61, 62], and other regulations (such as the
CCPA in the U.S.A., PIPEDA in Canada and the DPA in the U.K. among others)
present strict requirements for data-driven business operations and their soft-
ware, which naturally results in a re-prioritization for businesses, software de-
velopers and architects alike to focus on measures of privacy, auditability, trace-
ability and security, instead of merely being concerned with increasing the value
of data. Additionally, upcoming legislature regarding the use of Artificial Intelli-
gence and Machine Learning in business operations [63] (namely those operating
on sensitive data) will bring further challenges to AI-driven Big-Data frameworks
which have grown to unprecedented scales.

Under these constraints, the market and the scientific community in general have
dedicated an increasing amount of attention to these normative measures [40] (Im-
age 2.1), which relate to the to the management of data origins, lineages and track-
ing, traceability and life-cycle of data objects.

It is in this scope that the concept of data governance is born, merging the qual-
itative and normative measures to encompass the management of the usage and
quality of data, and adapt solutions to a the current regulatory landscape. It
can be defined as the creation of guidelines which pertain to how data is stored,
processed, used and disposed of, all while maintaining utility to the business
operations it pertains to.

Figure 2.1: Evolution of research volume dedicated to the topic of Data Gover-
nance and its ancillary data measures. Results use the topic-search function at
"The Lens" to analyse article volume for keywords "Data Governance" OR "Data
Quality" OR "Data Value", displaying a marked increase in the 2010s.

In this section, some of the major concepts associated with data management

13

Chapter 2

will be presented, in order to shed light on the foundation of data framework
development:

• Data Activities - Describing, succinctly, what activities may take place in
the modern Big-Data paradigm through the use of large amounts of data.
Topics of Business Intelligence (BI), Data Science (DS) and Machine Learning
(ML) are covered.

• Data Structure and Flow - Pertaining to the formats of data, the many types
and categories of data items, flows and sources. Topics of structured and
unstructured data and corresponding formats are detailed.

• Data Processing - Detailing the typical use-case for data transformations
in the business landscape and what operations these transformations may
contain. Topics of Batch/Stream Processing and Extract-Transform-Load (ETL)
operations are discussed.

• Data Quality - Detailing concepts of data quality and value, integration and
enrichment and why these qualities matter to a business. Some categoriza-
tions are discussed, along with data cleansing practices.

• Data Governance - Pertaining to data management in the modern busi-
ness landscape, through the analysis of the key elements of the control and
orchestration of massive data ops in an increasingly strict regulatory land-
scape.

2.1.1 Data Activities

Data, in the business sense, is often looked at as a carrier of intrinsic value to
the business it pertains to. In this optic, starting from the very inception of the
idea of a business, data has been harnessed as a way to gauge the successes
and failures of a commercial activity [109] and inform on business decisions.
Through recent developments, data can also be looked at as a source of indicators
of future business needs, requirements and goals, through the use of widespread
Machine Learning and Artificial Intelligence techniques to search for patterns in
massive amounts of data.

Two main areas of activity are generally used to define the Big-Data use-cases:

• Business Intelligence (BI) - The use of techniques, tools and models to re-
port on business activities, create business information and drive external
and internal decision-making. These activities often rely on the structure
and organization of the underlying data to perform simple and fast sta-
tistical analysis, resulting in a rapidly obtained output which can describe
numerous traits of the underlying business activities.

• Data Science (DS) - The use of algorithms, statistics and scientific meth-
ods to attempt to extract/extrapolate knowledge and insights from data’s
underlying patterns. This use is typically attached to exploratory analysis

14

Background and Concepts

and methods, with the intent to use large-scale automated processing and
analytics1 pipelines to perform computations that would be unfeasible for
standard direct analytics technology.

Business Intelligence, as its name suggests, is typically applied to the streams
of data originating from business activities, providing a greater level of under-
standing of the state of affairs through the use of complex analytical methods.
Generally BI initiatives result in dashboards, reports and easily communicable
artifacts, which are useful not only internally but also externally, providing easy
communication with stakeholders2.

Data Science activities typically rely on advanced statistical algorithms, namely
those developed by Machine Learning (ML) and Artificial Intelligence (AI) ini-
tiatives. ML’s approach creates models which are essentially algorithms that learn
(through pattern inference) from data to make predictions or decisions on future
data without being explicitly programmed to do so.

Both these activities can be undertaken as services to external entities (serving
reports to customers, performing data analytics, etc.) or as internal support for
business decision-making. They rely on a constant supply of data in order to
maximise their usefulness, and, as will be presented in the following sub-sections,
rely on certain traits, processing pipelines and on the value of the data objects
they manage.

2.1.2 Data Structure and Flow

Data, in the business sense, has evolved from paper spreadsheets to massive
database tables and binary storage to meet the demands of the growing data
market. In the current landscape, Big-Data systems have to harness many data
sources, often times of wildly varying formats, structures and semantics. Typi-
cally, most modern descriptions involve three main types of data [47]:

• Structured Data - i.e. Transactional data, database entries and records and tables,
AVRO, Parquet, ORC - This data possesses a rigid structure or schema3 which
facilitates querying and interpretation.

• Semi-Structured Data - i.e. Logs, XML files, JSON files... - While these files
may not fit into a traditional database structure, they nonetheless possess
tags and identifiers which allow for simplified consumption processes.

• Unstructured Data - i.e. Natural language, images/video, metadata records... -
These files do not possess an easily identifiable structure and must be ana-
lyzed through more complex algorithms in order to provide their informa-
tion.

1Analytics is the process of discovering, interpreting, and communicating significant patterns
in data.

2A stakeholder is someone with an interest in a project or organization.
3A structured blueprint defining the organization, structure, and relationships of data within

a database or data system, typically used to ensure correctness and facilitate interpretation.

15

Chapter 2

Data formats conform to these categorizations. It is important to note that the
discussion of data structure typically involves the underlying information of the
data and how it can be access and processed. While most data types (structured
or otherwise) could have their binary code accessed and analysed, the meaning-
ful content within is typically only expressed through the interpretation of this
binary data using some form of rule or structure.

Structured data will often find formats that present a strong definition of form
(through enforced structures known as schemas) included within the file itself,
encompassing the data object’s structure and interpretation metadata. Examples
include Avro, Parquet and ORC [44].

Semi-Structured data will hold the data and some information regarding its own
structure [3]. This type of data can also be called self-describing data, if it holds the
instructions to build an interpretation schema and to eventually parse the file’s
contents into an organised format. Example formats include XML, JSON and Log
files, which hold some of the file’s structure in their metadata. The remainder
(e.g. schema information, headers) is typically either described in the data itself
or included as an auxiliary file (e.g. index files, externally supplied schemas).

Unstructured data formats are typically either strict binary representations or
some other type of file where there is fundamentally no internal organisation
to the data contained within. While images, video and audio files do have the
interpreting structure attached to them, the data within is not indicative of the
contents of the file - of the information within.

And these data objects are typically moved from source to destination in one of
two ways:

• Batch Flows - Data is collected up to a certain point, upon which it is bun-
dled and sent to the destination. This is the standard for systems where
high data volume processing is required, but real-time requirements do not
exist.

• Stream Flows - Data is transferred continuously as a stream of individual
records, allowing for real-time analytics on data, creating unique oppor-
tunities, but at a large cost due to the unpredictable nature and scalable
requirements of real time streaming technology.

The systems which support the storage of large amounts of data needed to run a
large-scale data operation are described in a detailed architectural perspective in
Section 2.2.

2.1.3 Data Processing

There are many ways to process data, ranging from individual handmade anal-
ysis, to massive constant realtime processing pipelines, running automatically in

16

Background and Concepts

remote servers. In the current paradigm, two main processing method descrip-
tions (heavily reliant on data flow structure) are typically employed to discuss
the nature of a processing pipeline:

• Batch Processing - The application of massive data use, transformation and
analytical operations on non-realtime sets of data records - batches. Typically
relies on optimising operations to run on large data-sets and scale efficiently
based on batch-size.

• Stream Processing - The application of realtime analytics and data oper-
ations performed on data streams, working record-by-record to ensure a
steady flow of data in varying conditions.

These two methods are intimately tied to the business activity they are attached
to. Stream Processing is typically used with data which has continuity require-
ments i.e. critical systems, monitoring, etc. Internet of Things (IoT) processing
systems, for example, typically rely heavily on stream processing, as constant
data flows are expected from the numerous individual systems which make up
operational grids in this setting. Meanwhile, Batch Processing is typically used
when the analytical processes do not have real-time requirements, i.e. weekly
business reports, legacy system data, etc. In this case data must arrive eventually
and be processed as a whole. Modern systems are typically built to manage both
stream and batch processing modes, as described in Section 2.3.

In the topic of data processing, an often utilised concept is that of Extract-Transform-
Load (ETL) or Extract-Load-Transform (ELT) operations, which describes data
transformations which encompass the extraction of data from its source, the trans-
formation and the loading of data to memory for posterior use (which can happen
before or after the transformation, depending on when the processing happens).

2.1.4 Data Quality

While the discussion of structure, flow and processing essentially enables an un-
derstanding of the physical side of data processing, it is also important to be aware
of the issue of data quality, for what good is a system that can process millions
of data entries per day, where none of the data is valuable for any of the related
business activities?

Data quality refers to the usefulness of the data and its value to the activities in
pertains to. Another term typically used in this discussion is data utility.

As data management systems grow, and more data sources are accrued, increas-
ing the volume and variety of the stored data to unprecedented levels, it is impor-
tant to consider what data is actually providing significant value to the business,
and which data is causing more "harm than good, increasing costs and providing
no significant value. This topic has grown as a research problem [1, 102], and will
likely continue to grow as the trend of regulatory strictness will impose limits on
what kinds of data may be collected - further increasing the drive to maximise
data value.

17

Chapter 2

Data Quality can be analysed as the conjunction of a large number of factors
[88, 101]. Some are presented here, although this is an open research topic, where
the dependencies between them and their degrees of importance to the subjective
measure of quality are still under analysis (Table 2.1). Nevertheless, the aggrega-
tion of measures helps to understand why data quality is such an important topic
- the lack of quality in data is a multifaceted problem that must be tackled in order
to maximise value

Trait Description

Timeliness Extent to which the age of data is appropriated to the
relevant business task. Volatility is an related measure
which can describe for how long a data object will be
useful to the relevant task.

Currency Measure of how "up-to-date" a data object is. Also known
as freshness.

Consistency How consistent is the data object when compared to
previous data objects of the same activity, and how
compatible is it with the processing pipeline.

Accuracy Measure of correlation between data and its real-world
counterpart (be that a fact, a product, a business reality,
etc.).

Completeness The extent to which data is of sufficient volume to match
its relevant business activity.

Accessibility Measure of how readily available and accessible data is
for its intended purpose.

Reputation Measure of how trustworthy the data is, stemming from
its sources and ingestion processes. Also referred to as
trustworthiness.

Reliability Extent to which a data object can maintain its usefulness,
value or performance under variable conditions.

Table 2.1: Measures of data quality as surveyed by Sidi et al. indicating a sum-
marised description of each trait.

Some techniques attached to data quality maintenance and assurance - typically
referred to as Data Cleansing or Data Scrubbing - include, but are not limited to:

• De-duplication - Removal of all ambiguous or duplicate data.

• Standardization - Enforcement of structure/format or naming standards
through data transformation pipelines.

• Verification - Checking data for errors and marking or correcting them.

• Enrichment - Combination with other data for increased value, correctness,
etc.

And, in the topic of enrichment, the idea of continuous integration of data ap-
pears - the idea of constantly combining data sources and creating unified views

18

Background and Concepts

that hold more value than the individual disparate data sources. The topic of in-
tegration is one that is highly discussed in modern data frameworks, due to the
immense potential of combining data across many domains.

2.1.5 Data Governance

With the massive data frameworks of today managing all kinds, shapes and vol-
umes of data on large, distributed clusters over many companies and business
activities, one requirement becomes evidently crucial - control.

Control, in the scope of data management, involves two facets: the facet of con-
trolling data quality, and the facet of controlling data access. By placing the focus
on the data, and ensuring that through its entire life-cycle, quality assurance pro-
cesses are used (such as data cleansing and integration) in a secure, compliant
and effective way, the potential of the associated business activities is magnified,
as the data processing attached to them becomes much more reliable, safe and
powerful.

This control can generally be referred to as data governance [1], and it encom-
passes the processes, organisational structures and technology required to create
a consistent data handling strategy across an organisation’s business enterprise.
Its major areas of effect can be summarised as:

• Availability - Ensuring that data is readily available and that it does not
suddenly cease to be operable.

• Consistency - Making sure that data is consistent, correct, verified and com-
patible amongst the different domains and services within a business.

• Security - Safeguarding private data, access control and data integrity against
malicious agents.

• Auditability/Accountability - Performing traceability processes on data to
track its lineage, history and creating a reliable audit log for compliance
purposes.

Through these processes, data’s value becomes magnified, and the entire enter-
prise can reliably use it to meet their business goals. By mitigating the risks
of poor data quality, and ensuring effective and efficient management, the in-
come generation potential for data becomes maximized. On the front of regula-
tory compliance, the use of data governance practices has a number of benefits,
namely the elimination or decrease in risk of regulatory fines and sanctions, and
the maintenance of reliability in terms of business reputation.

Because of its multifaceted perspective, only some sides of data governance can
effectively be tackled through architectural perspectives - some rely purely on
organisational change and the restructuring of the company’s internal business
structure.

19

Chapter 2

2.2 Data Systems and Models

Following the description of some of the core concepts of data management, and
preceding the analysis of the high-level architectures used in data frameworks, it
is pertinent to analyse the architecture of the data storage systems and models
which house the data and its associated pipelines.

In this section, the four main systems in use today will be analysed: the Rela-
tional Database, the Data Warehouse, the Data Lake and the novel Data Lake-
house.

They will be described in isolation, isolating the higher-level abstract structures
present in reference architectures patterns and frameworks models (as these are
described in more detail in Section 2.3) and presenting the architecture of the
systems in a fully-encapsulated manner.

2.2.1 Relational Database Management Systems

The relational model for data management was proposed for the first time in
1970 by E.F. Codd [35], as a system used to manage large data stores, and create
a dependable model for both storage and access through a highly performant
tabular format. The model was initially defined as being composed of 12 rules,
but has since been simplified to two core concepts:

1. Present data to the user in tabular form, as a collection of tables, each with
a set of rows (records) and columns (attributes).

2. Provide relational operators, i.e. "Select", "Join", "Intersect" to manipulate
table contents.

This model was adopted to create a fully featured system which used the rela-
tional theory proposed by Codd to create a robust, reliable storage system with
highly performant and capable operators - the Relational Database Management
System (RDBMS).

Entities/records (rows) within the database hold a Primary Key (PK), a unique
identifier (ID) which may be referenced and used for query optimisations. This
ID can be used by other entities to generate a referential relationship as a Foreign
Key (FK). This is a design pattern which allows for a flexible expression of rela-
tionships (one-to-one and one-to-many) between entities. Additional steps are
required to use many-to-many relationship topologies, but these are also sup-
ported by the RDBMS.

This design creates very powerful and efficient management systems, with highly
performant operations and software-level optimisations creating an environment
fit for the increasing needs of the nascent data market. The transaction-based4

4Based on the idea that an action upon data can be seen as completed, much like a financial or
trade transaction.

20

Background and Concepts

query language which was developed for these systems, Structured Query lan-
guage (SQL), presented a robust, simple and powerful statement-based language
which provided the tools for querying any set or subset of data within a database
in a very efficient way.

It was in this context that the concept of ACID transactions [70] appeared, con-
taining a set of properties which must be ensured, within a database system, to
guarantee data validity despite errors, power failures and other system difficul-
ties. This set of properties and their descriptions was a very important develop-
ment, as its database-centric design enabled the RDBMS to become a reference for
reliable massive data storage and processing. The following properties, relating
to a transaction, qualify it as ACID-Compliant:

1. Atomic - A transaction may be composed of multiple statements (such as
successive filtering, indexing, etc.). Atomicity relates to the treatment of a
transaction as a singular action/unit, which either happens or fails completely.
If this property is assured, and each action is truly atomic, then the system’s
data is safeguarded from power failures, errors and crashes.

2. Consistent - This property states that a transaction can only bring a database
from a consistent state to another, and it must be valid against all its own
internal rules and schemas before and after the transaction.

3. Isolated - Considering that a distributed and concurrency-enabled RDBMS
may have concurrent transaction execution on the same resource (table),
isolation principles state that the global outcome of a set of concurrent should
be as close as possible to a sequential application of the transactions, to
avoid concurrency-related issues (dirty reads5, non-repeatable reads6, etc)

4. Durable - Related to the concept of "transaction commitment" - once a trans-
action is concluded, its changes are committed, and they will remain com-
mitted even in the event of system failure. This involves the storing of trans-
actions which have completed into non-volatile memory.

Database systems are still very much in use today, as their predominance, for a
long period of time, made them unrivaled in their potential. The next solution
(the Data Warehouse, discussed in the following sub-section) was an abstraction
which, for most of its existence, used RDBMS as its back-end.

Novel techniques such as sharding7, distributed databases and even the adop-
tion of alternative query languages such as NoSQL and the adoption of cloud-
native solutions has allowed the fundamental concepts of the RDBMS to remain
in use even today, more than fifty years after its inception.

5The retrieval of data which has been updated in a concurrent transaction, but is not yet fin-
ished.

6Where data is read before being permanently changed, and thus results in the returning of
data which no longer can be found in the system.

7Type of horizontal database partitioning which separates databases into smaller, faster and
more easily managed parts.

21

Chapter 2

2.2.2 Data Warehouse

The concept of a Data Warehouse (DW) was introduced in the 1980s, as a con-
ceptual model to facilitate data processing on large enterprise data flows, and
replace the ad-hoc, non-architected solutions of the past. In essence, a DW consists
of a subject-oriented data store which can be readily used to support manage-
ment decisions [75]. It became the go-to solution for Business Intelligence (BI)
reports and data analysis due to its efficiency and hierarchical structure which fit
naturally within the enterprise environment

To discuss the technology and underlying architecture of a typical data ware-
house system, some context is provided to understand the motivations behind
the design of this technology. Subsequently, the system is detailed in full, along
with its advantages and disadvantages.

Context

It was designed as a way to facilitate data integration while solving the inherent
inefficiency of the systems which preceded it, especially when framed within the
period of tremendous technological evolution which spanned the 1960s to the
1980s (namely the introduction of the previously mentioned relational database
systems). These systems began showing their faults with the proliferation of "ex-
tract" programs (programs which look for data, extract it from its current store,
and move it elsewhere), which, when done in a chain, resulted in an exponen-
tial increase in inefficiency, stemming from redundant querying, unstructured
"extract-program" design and lack of structure in the data itself (i.e. fields with
same names but different meanings, duplicate fields, etc.).

The change in approach which led to the Data Warehouse’s success started with
the separation of data into four scopes (Image 2.2 [75]:

• Operational - Data record currently in use in the business activity. Can be
subject to immediate change, and is considered to be mutable and volatile.
e.g. The credit score of Subject X.

• Atomic - The historical records associated with operational records of one or
more activities. These are immutable and present a history of the associated
subject within the integrated business activities. e.g. The credit history of
Subject X (numerous previous credit score records).

• Department - Analytical, normalised data pertaining to the historical records
of the atomic level. This data has no overlap with the atomic level, consist-
ing in the output of statistical analysis pertaining to the relevant depart-
ment e.g. For the customer management department - Number of new subjects
per month.

• Individual - The small-term data used by executive information systems.
Heuristics information that exists temporarily to serve a purpose. e.g. 452
new customers since 1982

22

Background and Concepts

Figure 2.2: The four-scope model of data management within an organization.

This four-scope model encompasses the creation of the data (operational), the
storage as data records (atomic), the aggregation and combination of data in a
context (department) and finally the analysis and interpretation (individual). In
and of itself, this approach creates more opportunities for efficient data usage,
and lays the groundwork for the development of the data warehouse as a solu-
tion, centered around the atomic and department data scopes. One of the main
advantages of this model is that, as data passes from the operational scope to the
atomic scope, it can be integrated - combined with other operational data to create
an enriched record - and gain value for the often multi-faceted business opera-
tions within a company.

Figure 2.3: Data integration in the transition from the Operational Scope to the
Atomic Scope. Multiple data records are combined to provide a more valuable
dataset for statistical analysis.

So, a data warehouse essentially encompasses these four scopes, creating a sys-
tem that is built around the passing of operational data into the "warehouse",
which fuels the departmental views. Data flows from the current context, the
immediate operations of the business, to the executive dashboards and business

23

Chapter 2

intelligence views which are built off of summarised data pulled from the ware-
house.

Definition and Description

The Data Warehouse (DW) can be defined as a data management and decision-
making support system which encompasses the full life-cycle of data in the Busi-
ness Intelligence (BI) context. Data is born in the operational context, over the
course of several business activities, and it is recorded in the warehouse, with
or without integration with other sources. Departments within the business can
extract data from the warehouse and subject it to analytical transformations, pro-
ducing summaries and aggregations which can then be used to build BI views for
high-level business decision-making [92].

It uses a layered architecture, following the general layout defined by the previ-
ously identified scopes of data: operational, atomic, department and individual
(described visually in Figure 2.4). The DW is a powerful system for BI use-cases
that leverages the use of Extract-Transform-Load (ETL) operations to integrate
multiple business data sources and create statistical value within data for analyt-
ics, dashboards, reports and other business uses.

An adjacent system is the Data Mart (DM) which exists as a less layered, activity-
specific data store, existing as a leaf of the greater warehouse system. Data which
is prepared and stored in the DW is then sent to these DMs, which serve as
application-specific stores. The analogy which is used (warehouse-mart) allows
for a simplified understanding of the concept of a data mart. The items in the
warehouse are sent to the appropriate marts for sale; and in the case of the DW,
the DM serves as a data store for appropriately selected data, which could be re-
ports (in the case of BI-related departments such as sales, finance, etc.) or even
records closer to the raw information (such as consumer-facing applications, etc).

Figure 2.4: The generic architecture of a layered Data Warehouse. Data flows from
business activities (such as CRM, Logs and Records) into the Data Warehouse
after transformations (ETL). Afterwards, selected data is pushed to Data Marts to
serve the needs of the business (Sales, Finances, Logistics, for example)

24

Background and Concepts

Advantages and Disadvantages

The Data Warehouse was able to bring a solution to many issues, namely the lack
of structure in the immature data management frameworks of the 1980s. It’s ap-
proach defined data analytics for a long period of time, and brought innovations
and underlying structures which are still valid, even forty years after its concep-
tion.

The main advantages of the Data Warehouse include:

• ACID compliance - The use of internally ACID-compliant (Atomic, Consis-
tent, Isolated and Durable) storage mechanisms, such as Databases render
the DW capable of ensuring data operation validity.

• Empowered Business Intelligence - through the use of efficient integration
and analytics on pre-selected domain specific data, BI can be sped up and
decision-making processes can be enhanced greatly.

• Potential for data quality - the ETL chains and integration focus of the sys-
tem can lead to massively increased data quality and value.

• Efficient data access - Simplifying the access chain by pre-selecting data
and increasing granularity the closer data gets to its end-user allows for a
better flow of information.

However, it was ill equipped for the tremendous change which would follow in
the Big-Data era. Modern implementations of data warehouses seek to focus its
use on the decision-making support processes that occur within a company, as
the Big-Data workloads of massive exploratory data analysis do not mesh well
with the structured, streamlined approach of the data warehouse.

In summary, the main disadvantages include:

• Over-use of granularity and physical separation (data silos) - While the
use of department specific data marts may increase efficiency, it also makes
the sharing of data more difficult. Departments effectively have their own
data hoard (colloquially known as a information silo) and have no way to
access other department’s data, limiting interdisciplinary data sharing and
potentially crippling exploratory business activities.

• Complex and rigid ETL chains and limited flexibility - The ETL chains
which provide data value and quality also slow down data processing speed
and potential, since not only are there numerous operations taking place at
all time, these operations often rely on a predetermined structure of the un-
derlying data, not being readily adaptable to new data formats or sources.

• Limited usefulness in modern analytics context - While the DW is a pow-
erful tool for Business Intelligence, it is limited in its potential to fuel Ma-
chine Learning, Data Science and other exploratory endeavours, since these
often rely on unstructured, highly variable data flows, which the DW is
generally not built to support.

25

Chapter 2

These advantages and disadvantages makes the Data Warehouse a powerful, al-
beit limited tool for efficient BI, which is most useful in cases where the data’s
underlying structure is immutable over time. For these cases, the DW is an in-
credibly developed tool, with many technological alternatives, and it remains a
crucial part of the digital business landscape. Additionally, while it may present
some limitations regarding exploratory data analysis, the DW can be integrated
as a component of a bigger, more diverse system (as is described in sub-section
2.2.4) which effectively addresses these problems and maximises the utility of this
system.

2.2.3 Data Lake

The concept of the Data Lake (DL) emerges in the 2010s, as a model for providing
data stores that can adapt to the flexible nature of Big-Data workloads. While a
Data Warehouse (DW) can be seen as a neatly arranged and organized collection
of treated data, ready for consumption, the DL is the opposite, an unfiltered mass
of raw, treated and mixed data, stored in a flat architecture and loosely organized,
to provide the opportunity to extract yet unknown information from exploratory
analysis processes [55].

It became the solution to the problems that began to arise with the structured ap-
proach of the DW, allowing companies to leverage the benefits of Machine Learn-
ing and Data Science into business decision-making, product design, marketing
and many other facets of the business experience [92].

To provide a clear understanding of the Data Lake and its place in the modern
business landscape, some brief context is presented, followed by a description of
the architecture of a DL, and concluded by a critical look at its main advantages
and disadvantages.

Context

With the changes in the technological landscape of the 2000s, namely those re-
lated to the massive increase in data volume and variety, the need for better so-
lutions for storing and analyzing data emerged. The nature of the collected data
started to shift, namely with the proliferation of the internet and mobile networks,
resulting in a massive increase in semi-structured and unstructured data flows.

Accompanying this increase in data flows, developments in Machine Learning
(ML) and the growth of the discipline of Data Science (DS) led to the notion of
untapped potential hidden within data, information hidden within the imper-
ceptible patterns of business data-flows which could be obtained with the help
of exploratory analysis. During this change in the market’s activity, the advent
of cloud-based, scalable and inexpensive storage drove up the potential of data
hoarding, by enabling large masses of data to be stored and efficiently used by
these exploratory statistical methods.

To harness the volume and variability of these data-flows while maintaining steady

26

Background and Concepts

business operations, the idea to use a generic, centralised storage system to serve
both structured needs (BI, etc.), and unstructured needs (ML, DS, etc) was born.
It is in this context that the concept of the Data Lake originates, a way to store
data from variable, mutable data sources, along with the traditional business in-
formation from static sources, reducing the overhead in separating one from the
other, and reducing the amount of pre-processing done before data storage (one
of the main inefficiencies of the Data Warehouse systems that preceded it).

Definition and Description

The Data Lake (DL) can be defined as a centralised data store which is not con-
cerned with the form of the data, storing everything from structured data (database
tables, tabular records, etc), to semi-structured data (XML, dynamically struc-
tured or self-describing data) and unstructured data (rich media data, audio,
video).

The DL leverages scalable and inexpensive storage to build massive data collec-
tions of all aspects of a business, simplifying the process of data harvesting, and
applying ETL only when strictly necessary, effectively reducing the global pro-
cessing time. Figure 2.5 exposes the generic architecture of a DL system.

To navigate the DL’s contents, usually some form of indexing is used, be it se-
quential indexing or metadata based indexing [92], where each item has its own
unique identifier. After this identification, purpose-built and ad-hoc queries are
constructed to pull data from storage.

Figure 2.5: The generic architecture of a Data Lake. Data flows from business
activities (such as CRM, Logs and Records) into the DL, where they are stored
together. BI data flows are generally treated with ETL, and can even be sent to
an intermediary DW before use; while ML and DS data flows can be consumer
directly or after ETL.

Advantages and Disadvantages

In the new context of Big-Data, the Data Lake provided many opportunities. Em-
powering data exploration was the chief benefit over the more structured ap-
proach of the Data Warehouse, bringing a greater degree of flexibility to data

27

Chapter 2

management systems across the board, by showing that structure was not strictly
necessary.

The main advantages of the DL include:

• Simplicity of implementation, startup - The implementation of a DL, in its
simplest form, relies on a single storage component and some utility access
components, making it very simple to set-up. It is suited for any point of a
business’ data life-cycle, since it can be made efficient for all stages of devel-
opment. Because of this, and due to the proliferation of infrastructure-as-
a-service/platform-as-a-service initiatives, the DL has become a very pop-
ular managed service among cloud providers, bringing the possibilities of
the DL with costs that grow along-side the business activity, empowering
smaller businesses to participate in the data market.

• Flexibility of storage and serving operations - Storage which exists inde-
pendently of the input format is highly desirable for today’s multifaceted
and interconnected business operations (namely in terms of metadata ex-
traction, data enrichment and integration), eliminating limits (like the ones
identified for the Data Marts, the data silos) which previously hindered data
quality management.

• Potential value - The value of a formal data management system without
the high startup costs or need for experience with complex ETL pipelines
makes the DL a very attractive solution for data management.

However, the DL, which was considered by many to be a silver bullet due to its
low startup costs and high prospects, attracted a significant amount of criticism
due to its lack of perceivable value, in comparison to its "promise" of added value
to business operations. The main disadvantages associated with this approach
can be summarised as:

• Data quality issues - If there is a lack of pre-treatment and selectivity in the
data ingestion pipeline, the data lake may potentially be filled with data that
has no real use for the intended business objective. While exploratory data
analysis thrives on large datasets and has many possibilities, the initiative to
store any and all data can lead to overcrowded, costly DLs which at some
point become intractable, and are filled with data that has no observable
value - colloquially known as data graveyards or swamps [94].

• Cost creep and storage bloat - With current cloud-native systems being
very popular with DL practices (due to their pay-as-you-go schemes bene-
fiting the creation of scalable data stores early on in a business activity’s dig-
ital life-cycle), it is possible that the rapid growth of storage requirements
(storage bloat) may bring about uncontrolled cost expansions, leading to
the failure of the initiative.

• Lack of ACID compliance - While not a strict requirement, the lack of
ACID-compliance on operations within the data lake’s centralised storage
(owing to their variability

28

Background and Concepts

Owing to these factors, the Data Lake is clearly a system with a lot of potential,
but the implementation must be meaningful and careful in order to avoid the
pitfalls of excessive data hoarding, lack of data quality and bloat. Many of its
issues can be mitigated by building around the DL with ancillary systems, as will
be described in the following sub-section.

2.2.4 Data Lakehouse

As previously discussed, the Data Warehouse (DW) and Data Lake (DL) were
created to solve problems related to the storage and treatment of large volume
data streams, with the DW bringing a sense of order to the data pipeline, and the
DL extending that order to encompass more flexibility. Both these systems are
useful in a modern pipeline, and can be integrated with one another for a greater
degree of adaptability.

This is where the concept of the Data Lakehouse (DLH) [32] appears: a concep-
tual framework to unite the advantages of the DW and the DL harmoniously,
while attempting to create opportunities to tackle the data quality challenges that
both these systems face. While the DLH is not yet completely well-defined, as a
recent technology, it has attracted a significant amount of interest as a potential
solution, bringing the potential of the DL as well as the manageability and control
of a DW to a hybrid solution which enables not only high performance, but also
governance and policy integration on an unprecedented scale.

Context

With the changes to the data market, enterprise challenges grew, and were grad-
ually addressed with the introduction of the DW, and then the DL. However,
many challenges still remained. All the previously identified solutions present
disadvantages, and even when combined (hybrid or two-tier)[32], they result in
some functional difficulties which make them unsuitable for a modern Big-Data
workload:

• Data Warehouse - lacks flexibility, too complex and costly to set-up. ELT/ETL
heavy, so scalability may be difficult.

• Data Lake - too inefficient, lack of opportunities for data quality. Scalable,
up to a point, but may bloat too rapidly.

• Hybrid solutions - too complex to coordinate and integrate data with vastly
different formats, bringing forward more ETL/ELT, more inefficiency, less
scalability, etc.

It became interesting to design a data management system that combined the low
complexity of the Data Lake with the efficiency of the Data Warehouse, without
falling into the trap of the hybrid/two-tier solution which increased complexity
for little gain. To this end, a concept came forth: to use an interface that simulated

29

Chapter 2

a DW, "cataloguing" and simplifying the underlying data system, which stores
mainly in an open format, and creating interfaces that refine the data from this
open format into a readable, readily usable dataset at the end-users point of view.

Definition and Description

As previously described, the Data Lakehouse (DLH) is the combination of Data
Warehousing (DW) principles with the Data Lake (DL). The DLH seeks to make
data access uniform through the use of a metadata layer/catalog [32], reducing
the complexity of data access (avoiding situations like intermediary DWs as de-
scribed in Figure 2.5). Data is requested through the metadata layer, pulled and
forwarded to the end-users (through one or more intermediate steps).

In essence it consists of an additional layer built upon a DL which provides DW-
like access to a sort of "metadata catalog" of the data within. This catalog can be
built to resemble a database and work in a transactional manner, providing ACID
compliance and opportunities to map and manage the data more effectively. This
is functionally achieved by implementing a series of APIs on top of the DL; first
by creating a metadata layer, upon which domain-specific APIs can be built to
fulfill the domain-specific data access conceptualised by the DW’s data marts.

This metadata layer is often built indirectly (by using categorization processes
that occur upon data ingestion, known as hooks) but can also be built by data
analysis processes that take place with previously stored data (by using processes
known as metadata crawlers [10])

Figure 2.6: The generic architecture of a Data Lakehouse. Data flows leading to
the DL are analysed and a metadata layer is built. This layer is then accessed
through a series of APIs, each having its own specific set of access rules, ETL, etc.
encompassed within to fulfill the department-specific portion of the DW inspired
data access protocol.

The progressive nature of data flows in the DLH can be looked at as not only a
form of data flow, but also as a form of data governance, as the APIs which pull
the data from the DL can be configured to filter the data, or integrate/enrich it as
they move toward their end-point. This makes the DLH a very useful and highly
extensible tool not only for data storage management, but also for compliance,
governance and overall control of the sharing and use of data.

30

Background and Concepts

As will be described in Section 2.4, the Lakehouse can be used as a steady plat-
form for the development of governance based frameworks, since it creates a
suitable abstraction

Advantages and Disadvantages

This additional layer built upon the Data Lake brings a number of advantages:

• Efficient ETL/ELT support - By adopting characteristics of transactional
systems on the metadata level, it becomes much simpler to perform ETL
or ELT, by simplifying the "extract" portion of these operations as a simple
API-based query performed on the metadata layer.

• ACID Compliant metadata layer - This metadata layer is structured like a
database, which allows for the implementation of transactional data access
(ACID-compliant), making it a much more secure and reliable method of
data management.

• Flexibility - Maintaining the flexibility of the DL with regards to accepted
data formats (structured, unstructured and semi-structured) is a key benefit
to this approach, since the gains in terms of usability do not result in a loss
of potential for data collection.

But, while the DLH brings a number of advantages, some problems remain,
namely those carried over from the DL, albeit in a lessened way:

• Cost creep and storage bloat - While the Lakehouse creates opportunities
for data quality management, it does nothing to address the potential for
accumulation of unnecessary data. Despite this, with the use of a metadata
layer, the large volume of data within the system becomes more readily
usable, creating opportunities to build value off of this "unnecessary data",
or, at the very least, facilitates grouping of this problematic data, allowing
for easy exclusion from processing should analytics point to a lack of value,
effectively saving on storage space and costs.

• Data Quality issues - Similarly, the quality assurance methods are similar
to those employed in the DL, thus presenting the same issues. However,
by facilitating data analysis through the metadata and governance layer, it
may be possible to facilitate a greater degree of integration, data sharing
and enrichment, possibly tackling some of these problems.

The DLH then becomes a very interesting candidate for the development of new
solutions. By offering tools to tackle the issues of both the Warehouse and the
Lake, it creates a more stable foundation for the adoption of more efficient and
compliant practices.

31

Chapter 2

2.3 Data Architecture Patterns

With the previously mentioned management systems, there now remains the
question of how they will be utilized in a production architecture, where large
performance demands are the norm, and the organization and harmonious oper-
ation of these often massively distributed systems must be ensured. The formal-
ization of software architectures, which map the components, their relationships,
interactions and logical layout is crucial to this task.

While the architectures themselves are often incredibly varied and possess a wide
array of technological solutions, options and components (mainly due to the dif-
ferences in the projected business use-case of the architecture, as well as the stake-
holder contracts [69]), some reference architectures (RAs)8 and patterns can be
used to start the development of a tailor made solution. These have been val-
idated through formal review processes [20] or through extensive refinement
based on experience within the industry.

Some patterns have emerged which, either by their simplicity or their powerful
and flexible nature, have dominated the landscape for Big Data platform architec-
ture design. These involve the creation of pipelines which can serve both stream
and batch ingestion, a requirement for modern pipelines which can collect data
from many variable sources.

For this work, two patterns were studied in depth, the Lambda and Kappa ar-
chitecture patterns. These present solutions for managing the mixed data flows
which are required for a Big-Data capable architecture, and are regarded as very
strong patterns, due to their widespread use in the industry, and their battle-
tested robust design.

2.3.1 High-Level Concepts

Before discussing the two main high-level architecture patterns for Big Data ar-
chitectures, some concepts will be presented: the idea of Layers and Zones or
Paths.

These concepts are often used interchangeably, since both of these concepts de-
scribe logical components - virtual divisions/partitions of a system, typically en-
compassing multiple physical components under a group. These can be consid-
ered high-level descriptors because they inform on function, form or quality while
not physically representing any actually implemented components (low-level).

Layers

The concept of a layered architecture is self-describing - a layout where logical
components (layers) encapsulate within them a set portion of the logic, communi-

8A reference architecture is a "blank-slate" typically used as a starting point or template for the
design of a more featured and specific architecture solution.

32

Background and Concepts

cating with other layers and pushing data from the ingestion layer to the serving
layer.

Typically, a three-layer system is used, encompassing the three main optics of
data management, Ingestion, Storage and Serving/Consumption. Some archi-
tectures may be simplified, discarding storage altogether. Most architectures,
such as the ones described in this section, can be observed through a layer-based
view. This abstraction serves a number of purposes, namely the aggregation of
components in a purpose-driven view, enabling more efficient requirement spec-
ification.

Additionally, it makes the communication of architectures and their overarching
behaviour much simpler and evident.

Zones/Paths

The concept of processing/storage zones can essentially be summarised as the
definition of high-level abstract "paths" for data to take in its course through the
architecture which confer some information regarding the nature of the contained
data flows or stores.

As an example, a system which relies on readily accessible data may build a log-
ical structure known as a "hot" zone/path, where data flows in real-time and is
readily query-able and volatile. That same system may have a separate stream of
data which is not under such strict performance requirements, necessitating more
cleanup and processing before eventually being stored. This stream of slower,
less readily available data may be called the "cold" zone.

While modern architecture patterns (such as the ones discussed further in this
section) use these concepts, they are often defined on a per-architecture basis -
some cloud providers have adopted naming schemes like those described in the
Medallion Architecture [48] - the Bronze, Silver and Gold zones, representing
data quality in a progressive maturity model; while some stick to the "hot/cold"
or "fast/slow" dichotomies.

2.3.2 Lambda Architecture

One of the main architecture patterns which emerged to tackle the Big-Data prob-
lem, focusing specifically on the challenge of handling both stream and batch data
within the same architecture in a cost effective manner, is the Lambda architec-
ture [89], first proposed by Nathan Marz.

This architecture proposes the use of a layered composition, featuring a Batch
Processing Layer and a Stream Processing Layer, two separate sets of processes
which serve the mixed requirements by using the native traits of both stream and
batch data to serve up data that is processed in motion (the real-time streamed
information) and data that is processed at rest (the batch data). The data is then
consumed by its respective job, either a real-time view or a batch view (typically

33

Chapter 2

either applications, dashboards or services). Some interpretations of the Lambda
architecture have an additional layer, the Serving Layer which is used to prepare
the batch data for viewing purposes. A diagram representing the typical descrip-
tion of a Lambda architecture is present in Figure 2.7

Figure 2.7: The generic architecture layout used in Lambda architectures. In
this example, data is processed through two separate layers, the real-time stream
layer, and the batch layer. Additionally, a serving layer is employed to organise
the batch data into consumable views which can be queried by external systems.

Within these layers, components were selected specifically for their ability to
match the corresponding data-type with the utmost efficiency, never inter-mixing
their flows or sharing data between one another - two separate pipelines feeding
different views.

This approach is very effective due to its simple premise - deploy the right tool
for the job - and it provides numerous benefits to the cost management of such a
system: the batch processing is very high volume, so it is done less frequently
in order to minimize spending; and the real-time streams, which have higher
performance requirements, can be managed independently, enabling cost/rate
control measures only on the "expensive" part of the architecture.

However, this design presents significant challenges [86] regarding the additional
problems that come with managing two separate fully encapsulated applications
(real-time and batch) at the same time.Other issues appear when attempting to
combine data between sources after its processing tooling, since the processes
which transform and process the data are typically not intended to produce data
that is readily combine-able, but rather directly consumed. It is worth noting
that for a straightforward use-case that is low on data discovery and integration
activities, this architecture presents numerous benefits, and can be set-up ad-hoc
in a very efficient manner.

2.3.3 Kappa Architecture

The two main problems of the Lambda architecture - excessive overhead/complexity
from dual pipeline management and the lack of integration potential - precipitated

34

Background and Concepts

the development of a new solution, one that simplified the processing stack, uni-
fying the two vastly different data flows, avoiding the two-system solution en-
tirely, and simply enabling the stream processing flow to accommodate the batch
flows too.

This was the main concept behind the development of the Kappa Architecture
model [80], proposed by Jay Kreps, which extends the functionality of the real-
time streaming layer to accommodate both of the previously defined "batch" and
"stream" flows. This use, which was previously limited by the fact that real-time
processing is more expensive, computationally, than scheduled batch operations,
was now enabled through the use of highly scalable and elastic solutions that are
enabled to hold some historical values of the data they process (like Apache Kafka
[24]).

Essentially, by "holding onto" (logging, saving for re-transmission, etc.) the in-
stances of incoming data in a stream, through the use of re-processing, a batch-
like method of operations is achieved, wherein a processing job can be set to
re-execute on "historical" records, allowing both direct, real-time and immedi-
ate processing and batch historical data analysis on the same flow. Figure 2.8
is the generic a simplified version of the Kappa pipeline, using a data store to
re-transmit data whenever necessary for stream processing of a collection of his-
torical data.

Figure 2.8: The generic architecture layout used in Kappa architectures. In this
example, data is processed only in the real-time layer, with historical data being
retransmitted from a message store.

In essence, whenever a historical analysis/view of a specific time period is needed,
the only necessary step to harness it is to perform a re-transmission of data that
passed through the ingestion streams during that time-frame. This is very easy
with modern ingestion systems, very computationally efficient and greatly sim-
plifies the technology stack required to make use of both batch and stream data.

While Kappa does simplify the technology and underlying mechanics of such a
system, it also brings some challenges, namely that of the centralised point-of-
failure - the message stores/logs. Because it no longer has a dedicated layer for
each data flow type, it is less fault tolerant by default, but even more so when the
entirety of the now abstracted batch layer’s functionality relies on the maintenance
of a consistent log throughout large up times, through possible system failures.

35

Chapter 2

2.4 Novel Governance-Oriented Approaches

The technological advances presented previously, as well as the emerging pat-
terns for high-performance, scalable data processing, have enabled the data mar-
ket to grow and host a number of innovations which seek to expand the data
framework into something beyond the previously identified limitations.

With the "physical" aspects of data generally resolved and accounted for with
high-throughput and massively performant cloud processing, there comes a need
to target the qualitative and business-oriented aspects of data: data quality, secu-
rity and privacy, in an environment that tends further and further toward ubiq-
uitous data sharing among business entities.

Two novel approaches will be analysed closely: the Data Fabric and the Data
Mesh. Their innovative proposals will be described, and their core ideas will be
used to guide our understanding of the modern data governance landscape, and
shed some light on how architecture design can be used to achieve the goals set
by these state-of-the-art frameworks.

2.4.1 Data Fabric

In short, the Data Fabric (DF) consists in the use of virtualisation techniques to
build a standardized access layer that can perform data transit between a large
variety of endpoints [71], mixing on-prem environments with hybrid, multi-cloud
architectures, decentralizing data processing and providing a holistic view of the
business environment - the users see the whole data ecosystem as a singular en-
tity. Figure 2.9 displays the generic high-level structure of the Data Fabric.

This is effectively achieved through a loose coupling of many services and data
systems via APIs, creating an abstraction which removes the technological com-
plexities associated with the fetching and use of data in a Big Data architecture.
To do this, this layered architecture proposes the use of a massive, highly com-
plex AI-driven pipeline (the data fabric pipeline) to collect, process and man-
age data from a variety of systems, joining them together with the assistance of
AI/ML-powered data groupings, transformations, cataloguing and sorting. The
output of this pipeline is a set of metadata maps (known as knowledge-graphs
[59]) which define relationships between data-sets, how they may be integrated,
what data-sets they may relate to, and many more meta-information regarding
the underlying data. This information is extremely useful in the efforts of data-
sharing, self-service data exploration and business data integration, creating op-
portunities and potential in otherwise disconnected data sources.

The benefits of a DF architecture are mainly related to the simplification of data
access and to the abstraction of the complex inner workings, ETL and curating
pipelines and data transit which takes place in complex data systems, facilitating
data transformation and integration by allowing data to be made available across
all systems. As per IBM’s definition [71] of the DF architecture, the main benefits
include:

36

Background and Concepts

• Integration - Integration is the core concept behind the DF. By using ad-
vanced machine-learning techniques, along with tools known as knowledge-
graphs, it is possible to create expansive metadata-maps, providing shared
insights for data discovery. This, combined with the unified data access
platform creates a rich environment for the continuous creation of value
within data.

• Democratization - The previously mentioned unified data access also facil-
itates the development of self-service data applications, making data avail-
able to more entities, such as data engineering teams, developers, analytics
dashboards, etc.

• Protection - Unifying also enables centralised access control, providing a
simpler and more powerful access control stack which can operate with
policies, restrictions, encryption, views and domains, creating a stable envi-
ronment for the evolution of governance and compliance-centric change.

These benefits are mostly centered around the simplification of the serving-side
of the architecture, and while this presents tremendous opportunities, it also in-
volves a massive degree of complexity in the underlying systems which support
this virtualised data sharing, access and transit throughout the massive multi-
cloud environments that host the DF.

Concerns emerge regarding the processes used to share data between vastly dif-
ferent systems and standardise access [78] which often require the interpretation
of a schema for the data. This is an open research topic [41, 42, 68], as it may be
required to create a model for schema-inference which can satisfy the flexibility
requirements of a massive collection of varying storage and processing systems,
as well as the simplicity and agility required for a self-service data framework.

High-level Architecture

The Data Fabric’s high-level architecture can be described as an interface to reg-
ulate, facilitate and orchestrate highly scalable, flexible and expansible data
access. By creating a large layer between the users and the storage systems,
and housing within it large pipelines for data quality, categorization, gover-
nance and integration, it is possible to create a centralised access point for highly
disparate source systems that not only facilitates access but empowers users
(namely in the data discovery scope).

Inside these pipelines, by leveraging AI/ML’s massive ability to process incom-
ing and historical data, the DF can build up knowledge-graphs, which can pro-
vide great opportunities for data exploration and insight services, resulting in
metadata catalogs that can be used to find new data, find new relationships in
data, and map out possibly valuable data ops with other departments, teams and
domains.

A simplified look at the DF’s architecture is presented in Figure 2.9.

37

Chapter 2

Figure 2.9: High-level structure of the Data Fabric (DF). By orchestrating several
services (in this case, a Data Lakehouse (DLH), Data Lake (DL) and Data Ware-
house (DW)), combining their inputs through the ML/AI-driven DF pipeline,
and then unifying them under a common access point, the DF abstracts way ac-
cess to individual services, providing a common layer with potential for numer-
ous data-quality related activities (such as integration, ETL, cataloguing).

2.4.2 Data Mesh

The concept of a Data Mesh (DM) was first proposed in 2019 [53] as a potential
model architecture to support the transition from a data-driven to a data-centric
organisation. The Data Mesh architecture seeks to empower business domains
within an organisation by providing an organisational framework that greatly
simplifies the design of the architecture (eliminating most of the complicated inte-
gration tooling), while empowering governance and compliance within the busi-
ness. It leverages the technological benefits of the Data Lake, Lakehouse and Fabric,
while providing the guidelines for the construction of a self-serve, domain-driven
data sharing environment.

This "architecture" does not operate on the same levels as the Fabric, Lake or
Warehouse, because while it uses these technologies as the underlying storage
services for the data management processes, it is not concerned specifically with
what technology lay beneath, but rather how its value can be maximised within a

38

Background and Concepts

business context, where many teams of several distinct domains may wish to in-
teract with data, discover data value and empower their business activity, relying
on each-other and working in harmony, like a mesh.

It was designed initially as a way to shift the focus of the Big-Data paradigm
away from continually increasing the performance, load and complexity of sys-
tems into a more intuitive, innovation-oriented ecosystem, which prioritises in-
creasing data quality and opportunities rather than the act of aggregating and
using growing amounts of data.

Due to its novelty, it is still in the early stages of development, and is a topic of
much discussion [66, 87], however, this description will generally focus on the
definition provided by the author, Zhamak Dehghani [53].

The Data Mesh consists in a series of guidelines which, in short, seek to guide
multi-domain businesses on how to share data between domains and enrich it,
creating more value and making data the center of business decision-making.
These guidelines involve maximising the value of data, by creating rules and
methods for sharing and passing it between domains, essentially turning data
into a product with an intrinsic value that must be maximised. This is achieved
through the use of a data-infrastructure platform, which provides all the meth-
ods for data sharing, and lets each domain share, handle and own its own data,
creating a self-serve ecosystem for data value maximisation.

To describe the Data Mesh thoroughly, it is best to look at it from the bottom-up,
starting with its core operating concepts, and finishing on how current technolo-
gies (like the Fabric, Lakehouse, etc) can be used to empower this new solution.
The main pillars of the DM are the following concepts:

• Distributed Domain-Driven Architecture

• Product Thinking applied to Data

• Self-Serve Platform Design

The following subsections will detail each of these pillars, as they present the
argument for why the Data Mesh is a viable candidate for the next generation of
data management frameworks.

Distributed Domain-Driven Architecture (DDDA)

Based on the concept of Domain Driven Design, the idea is that a singular busi-
ness domain should host and serve its own data, and take responsibility and own-
ership of their own data, rather than simply offloading it into a generic shared
storage service. This design philosophy can still rely on centralised infrastruc-
ture, like a Data Lake, but requires that individual domains maintain control and
singular ownership over their own data. When data is shared to other domains, a
duplicate is created, only with the data that pertains to the destination domain.

39

Chapter 2

Product Thinking applied to Data

The concept of focusing on the product as the object of quality maximization,
for its usefulness to the consumer, for its return on investment, etc. has long
been used in software engineering (i.e. teams designing APIs, interfaces or micro-
services to achieve he goals of the organisation).

The novelty consists in applying this concept to the data-sets used between the
company’s many domains, and attempt to maximize the quality within data at the
domain-level, creating the so-called "Data-Product". This data-product is the object
of value maximization and the goal of each business domain should be to increase
the value and quality of their data-products as much as possible, in order to build
a higher-value output through integration and data consumption.

In this vein, the Data Mesh specification provides some guidelines for treating
data as a product. To maximise the value of a data-product, the following metrics
are worth noting and striving towards as the main traits of a good data product:

• Discoverable - Data-products must be readily available through a catalog,
registry or through meta information. This is what ensures that other do-
mains can reliably look up data, perform data discovery activities, and build
richer data-sets through integration.

• Addressable - In the same vein as the previous entry, the idea of a robust
categorization and address system for data-products is especially interest-
ing considering integration within a decentralized storage solution, where
many disparate storage systems may be connected in tandem (much like a
Data Fabric), and data-products must stay consistent.

• Trustworthy - This metric refers to how well a domain can ensure that the
data it holds has value, no errors, and that it can be trusted to reflect facts
and the reality of the business it pertains to. Processes of integrity testing
and data cleansing/enrichment can provide some degree of trustworthy-
ness, while data lineage and provenance tracking can further increase con-
fidence in a data-product.

• Self-Describing - The data-product should hold enough information within
itself to allow for independent exploration by outside entities. Data schemas
are the foundation for this metric, but any additional metadata will improve
the value of the data-product.

• Inter-operable - Describing how data-products within a Mesh must adhere
to global standards in order to be truly inter-operable between all domains.
These standardisations should take place at a global level, defining entities,
schemas that enable all owners of a data-product to conform and create an
environment where integration is simplified.

• Secure - Just like trustworthiness builds value, the guarantee that only the
responsible domain can see their own data-product in its integral form is
a necessary assurance to build value within a product. This trait can be
readily enforced using policies, role based access control and encryption.

40

Background and Concepts

Self-serve Platform Design

Using the two previous points, if a domain is responsible for its own data-products,
then there exists a possibility for tremendous simplification of the underlying ar-
chitecture: create a domain agnostic architecture where the only infrastructure that is
needed is the one used to support a data-sharing environment.

While traditional integration of a new data-stream and ETL pipeline would often
require at least some re-tooling and complexity, plus the integration of the new
stream into storage, serving and enrichment processes; the self-serve platform
design eliminates nearly all of this complexity by providing the infrastructure for
sharing (the previously discussed global standards, APIs for declaring schemas,
pushing and pulling, requesting data, etc.). By isolating the data-infrastructure
(in this case, the logic of requesting data, sending data, schema communicating,
cataloguing, etc) and ignoring all domain-specific solutions, the overhead to in-
tegrating new data-products is tremendously reduced, since the infrastructure to
support their entry into the system already exists, it merely needs to be registered.

This self-serve platform will then bring a host of benefits:

• Less reliant on data integration engineering - By pre-defining the rules-
of-engagement and giving domains the tools to publish their own data, on
their own terms, data integration pipelines are much easier to implement.
A domain may request another’s data through a contract, with clearly de-
fined policies, enabling compliant integration between different domains
and activities.

• Presents more opportunities for data sharing - Because of this facilitated
integration/sharing pipeline, it is much easier for domains to use external
data, opening the doors to exploratory data analysis, ML-enabled analytics,
combining and enriching the data and creating more value within business
activities.

• Empowers data discovery - Using massive data catalogs and tracking the
movements of data throughout the framework, data discovery teams have
a rich supply of information to assist in making business decisions, creating
new domains, activities and interpreting the massive data flows that occur
within the system.

• Simplifies ETL pipeline complexity - By making each domain responsible
for their own products, and by extent, their own ETL/ELT and data trans-
formation pipelines, they can be more purpose-built, simplified and less
generic, creating better opportunities for data engineers to maximise qual-
ity within the domain.

And with this, the DM is realised. While it is still a relatively new concept, and
implementations are still tentative, it provides a toolset for building data value
which is objective and creates not only business value, but also compliance op-
portunities, which is an increasingly important factor in modern data framework
design.

41

Chapter 2

High-level Architecture

The high-level architecture of the Data Mesh uses a domain as the main building-
block of the architecture, with the hope of creating a network of interoperability,
while using a globally accessible data-management infrastructure layer as a plat-
form (DIaaP) to facilitate data-sharing, enrichment and integration, shifting con-
cerns away from the underlying storage (which may be virtualised). A simplified
diagram of this architecture is presented in Figure 2.10.

Figure 2.10: High-level structure of the Data Mesh (DM). The mesh is composed
of several domains operating in tandem, using a common data-infrastructure
layer. Source-oriented domains feed domains X and Y, which feed the service-
oriented domains. In this case, data storage systems are virtualised (access is
performed indirectly through the DIaaP layer.).

42

Chapter 3

Methodology

In order to develop an architecture, it is important to follow rigorous method-
ologies which enable its growth from the idea-stage into a fully realised outcome
which meets all requirements. These methodologies span the entire design pro-
cess, including the scope of project management, and ensure a traceable and ver-
ifiable approach which leads to a valid outcome.

In order to provide an understanding of the methodologies employed during
the project, this chapter aims to provide a comprehensive documentation of the
management, engineering and design processes which were followed, ensuring
that all steps are clarified thoroughly and that all key decisions and rationales are
well understood.

• Project Management - The process of handling the project’s numerous as-
pects, from risks, to issues and to the structuring of the documentation and
design processes to follow.

• Requirement Engineering - The process of eliciting requirements, validat-
ing them and developing a comprehensive requirement specification, to
present a characterization which adequately addresses all functional and
non-functional aspects.

• Architecture Design - The process of creating the final architecture, select-
ing components, evaluating attributes and testing their functionality; all
while documenting the design decisions in a clear, meaningful way.

The first section of this chapter will broadly discuss the architecture develop-
ment methodology - the Architecture Centric Design Methodology - and the
reasoning behind its selection. Auxiliary information, namely related to require-
ment engineering, project management and risk tracking methodologies are also
briefly presented.

The second section focuses on internal project management and change han-
dling methodologies, namely the steps taken to ensure that traceability and risk
tracking are not only systematically performed but generate opportunities for

43

Chapter 3

improvement; and that change within Altice Labs’ needs or within the project’s
requirements can be handled efficiently without causing excessive delays.

The third section will focus on the requirement engineering process, detailing the
requirement elicitation, the refinement strategies for the requirement specifica-
tion and the notation/format used to support it.

In the fourth section, the architecture-centric design methodology is detailed fur-
ther, detailing all its stages. Additionally, the strategies employed for systematic
architecture review are described.

Lastly, the documentation standard of the Architecture Specification is described
- the C4 model.

3.1 Methodology Overview

For this project, the selected methodology for the architecture’s development was
a slightly reduced adaptation of the Architecture-Centric Design Methodology
(ACDM) [83, 84], an approach which seeks to leverage a repeatable development
cycle of refinement and systematic review to maximise the exploration of archi-
tectural drivers, requirements and technological choices.

This methodology is described in detail in Section 3.4, elaborating on its sev-
eral stages and presenting the main advantages of this methodology when con-
trasted with less flexible and more sequential approaches. Due to the extensive
amount of concepts relevant to the requirement engineering process which is a
pre-requisite to the ACDM’s iterative process, Section 3.3 is dedicated to present-
ing and detailing the fundamentals necessary for the requirement specification
process which took place during the project.

Because this methodology relies on the iterative review of the architecture af-
ter a cycle of refinement, a formal tracking of issues and traceability within the
evolution of the architecture is necessary. To this end, the RAID Tracker (Risks,
Assumptions, Issues and Dependencies) was selected to provide a centralised
record for the ACDM architecture review, as well as ancillary tracking regarding
project dependencies and risk management (described in detail in Section 3.2)

44

Methodology

3.2 Project Management

In the design of software intensive systems, especially while using frameworks
which rely on systematic and traceable analysis, it is crucial to maintain a record
of the numerous processes, stages, inputs and outputs that take place during de-
velopment.

To this end, there are numerous project management frameworks that aim to re-
duce the overhead of project management, especially at scale and with teams
of multiple contributors. These frameworks range from relatively simple spread-
sheet based implementations to fully-featured software platforms centered around
traceability and coordination. The operational conditions of this project do not
call for extensive management frameworks, due to fact that only one actor is
tasked with the development of the architecture, and due to the reduced scope of
the modified ACDM which is used in the architecture development process.

To assist in the traceability process inherently necessary to this project (to assist
in both supervision and workflow), a relatively simple methodology was chosen
- the RAID (Risks, Assumptions, Issues and Dependencies) Tracker - which
uses a simple spread-sheet based format to include information relevant to four
crucial aspects of the software development process as a whole. The four titular
aspects which are tracked can be summarized as follows:

• Risks - This category includes potential events or situations that could have
a negative impact on the project’s timeline, resources, or overall success.
Risks are identified with some attached fields: Priority, Impact and Likelihood
which result in a richer characterization.

• Assumptions - Assumptions are the factors and conditions that are consid-
ered to be true, but they have not yet been fully validated or proven.

• Issues - Issues are problems that have already been verified during the
project execution. In the context of this project, issues may be related to
the project itself or they may be specific to the architecture development
process which is detailed in the following sections.

• Dependencies - Dependencies refer to the relationships and inter-dependencies
between various project tasks, activities, or deliverables.

The use of this tracker is crucial to correctly use not only the ACDM, owing to its
reliance on systematic architecture reviews to be performed every iteration, but
also the requirements engineering and change management processes which also
take place.

45

Chapter 3

3.3 Requirement Engineering

As previously mentioned, the ACDM features an in-depth Requirement Stage
(focusing on driver elicitation and requirement specification) before the itera-
tive process begins in earnest. These concepts indicate how requirements will
be specified, and as such, should be briefly presented in order to facilitate the
understanding of the Requirement Engineering process which took place for this
project.

In order to lead up to the full description of the ACDM, this section will provide
the definitions of the different types of requirements:

• Constraints - Fixed restrictions of technical and regulatory nature that must
be taken into account during architecture design.

• Functional Requirements - Requirements which describe what the system
can do in terms of functionalities, what it can be used for and which inter-
actions several actors can have with it.

• Non-Functional Requirements - Requirements which describe how the pre-
viously indicated interactions occur, providing measures for validation.

3.3.1 Constraints

Constraints, in the requirement engineering context, indicate hard limits for ar-
chitectural decisions, and a set of restrictions that will influence the choices made
around them. Constraints are generally inflexible

These restrictions can appear in a business/organisational context - relating to
operational resources, business operations, cost management - or on the technical
side - existing hardware limitations, pre-selected components and currently used
technology stacks.

Constraints, in this case, will be represented through the use of simple text-based
descriptions, with an indication of which category they relate to (Table 3.1).

ID Source Category Description

BC-001 PRE General The system must evolve into a multi-tenant
cloud-based architecture, with one deployment
for several client provider.

TC-001 PRE BI Data Flows Business Intelligence (BI) data flows/storage
processes must be compatible with the
Prometheus monitoring solution.

Table 3.1: Sample definition for constraints. BC-001 indicates a business con-
straint, and TC-001 indicates a technical constraint.

Business constraints demand a careful analysis and generally can be used to
guide the creation of several related requirements, by understanding which qual-

46

Methodology

ities the system must possess in order to fulfil these restrictions, whereas technical
constraints generally prescribe a simpler analysis of compatibility and interoper-
ability between system components and the identified technical constraint.

3.3.2 Functional Requirements

The functional requirements of the system may be defined as those which express
the system’s intended functionalities. They pertain to the uses of the system and
the goals which it intends to achieve.

To specify a functional requirement, the analysis is focused firstly on the several
actors, external entities who interact with the system. By analysing their goals,
needs and tasks, it is possible to build a comprehensive set of "use-cases", scenar-
ios which involve actions and interactions between actors and the system, which
are of value to these actors [34].

Functional requirements can be presented in a variety of ways, namely use-case
diagrams or simple text-based descriptions. Diagrams are particularly useful
when the focus of the analysis is on the definition of system functionalities, by
facilitating stakeholder validation of changes.

Considering that, in this case, the requirement elicitation resulted in a very strict
and well-defined functional analysis, the use of diagrams is deemed unnecessary,
as the functional requirements are unlikely to change. The preferred method of
presentation will be straightforward, actor-centric text-based descriptions, in a
tabular format, as exemplified in Table 3.2. This format presents four columns
associated with a requirement:

• ID - Internal tracking reference for entries.

• Actor - Actor which the constraint/functional requirement relates to.

• Source - Internal tracking reference for the iteration of the requirement spec-
ification.

• Description - The requirement itself.

ID Actor Source Description

FR-IL-001 System REQ-1 The system logs new component additions/connections
through an API

FR-IL-006 Process
Manager

PRE The process manager can configure scheduled continu-
ous data acquisition (data streaming windows).

Table 3.2: Sample definition for functional requirements. Two examples for one
of the system’s high-level components, with a unique ID and a Source identifier
related to the iteration in which the requirement was last changed.

47

Chapter 3

3.3.3 Non-Functional Requirements

The non-functional requirements (or quality attributes) of the system are defined
as those which specify a quality associated with either a component, a connection
or the system as a whole. Typically they will be associated with a functionality,
giving more information as to how the system will perform it, existing as a sup-
port for the functional requirements.

There are many ways to qualitatively describe a piece of the system, although
typically some standard categories [33], such as the ISO/IEC FCD 25010 standard
[73] are employed to facilitate the description of system qualities:

• Availability - Related to qualities such as fault tolerance, downtime, etc.

• Performance - Related to qualities such as latency, processing time, through-
put, etc.

• Scalability - Related to how the system will scale to match growing de-
mands.

• Modifiability - Related to how adaptable the system is to changes.

• Testability - Related to qualities such as fault discovery, monitoring, etc.

• Usability - Related to qualities such as learning rate, efficient use and error
minimization.

• Interoperability/Compatibility - Related to how well the system can inter-
act with other systems.

While these categories are not strictly limited most qualities can be expressed
under these terms (e.g. the quality of Elasticity can be expressed as Scalability),
and this makes it easier to comprehensively analyse non-functional requirements.
Other qualities may also be expressed, namely those pertaining to the business
activities related to the system (time-to-market, product lifetime, cost/benefit).
Expressing these qualities is crucial to the process of architecture design, as they
are the measure of correctness and completeness of the architecture specification.
Relating to the previously described ACDM, the review of the architecture must
include a thorough validation of the components against the non-functional re-
quirements, often-times requiring experimental analysis to assert that the system
can meet all the needs which it is designed for.

To facilitate the experimental validation of these quality attributes, a specific for-
mat is available, which breaks down the quality into a six-part scenario descrip-
tion [33], which expresses how the system responds to a certain event (stimu-
lus). In this response, the system or component (artifact) will demonstrate the
desired quality (response), in a clear and measurable way (response measure).
The general definitions for the six components of a quality attribute scenario can
be visualised in Image 3.1:

48

Methodology

Figure 3.1: Schematic representation of a six-part quality-attribute scenario, dis-
playing the six components included in the formal definition.

This description will effectively guide the testing for the attribute, as it speci-
fies precisely where, when and how this quality may be verified. Because of the
requirement that the response measure be measurable, the testing cases are al-
ready well defined even before experimentation planning begins. Aside from
these direct benefits to the design process, the use of these six-part scenarios has
the potential to improve the communication of system qualities to stakeholders,
by creating concrete and concise descriptions which encompass non-functional
requirements, expediting the validation process both internally and externally.

Table 3.3 presents the format used to record the non-functional requirements,
showing a sample of one of the quality-attribute scenarios identified for the data
ingestion processes in the system.

QAS-IL-003 - REQ-1 - Availability

Source - Ingestion Queue
Stimulus - A cluster of message brokers enters failure state
Environment - At runtime, under normal operations
Artifact - Ingestion Queue

Response - Process Manager is notified, new components are instantiated to serve existing
streams.
Response Measure: The system does not incur in significant downtime (>30s) during cluster
failure.

Table 3.3: Sample definition of a quality-attribute scenario. This example fea-
tures a unique ID, a source identifier related to the versioning of the requirement
specification, and a summarised description of the relevant system quality that is
expressed by the scenario. Following this header, the six-part scenario is detailed.

49

Chapter 3

3.4 Architecture Design

The design processes followed to create this architecture use the guidelines set
by the aforementioned Architecture-Centric Design Methodology (ACDM), a
methodology which puts the architecture at its core, seeking to efficiently and
quickly build up a solid foundation for a software intensive system. It is worth
noting that the strict definition of the ACDM will not be followed, as an adapted
version is used to better fit with the personnel limitations of the project. In this
methodology (which is detailed in the following sub-section), an iterative cycle
is performed, necessitating a systematic review of the architecture at each repeti-
tion. This review must follow a strict and traceable process in order to verifiably
demonstrate that the architecture meets the previously identified requirements.

3.4.1 Architecture-Centric Design Methodology (ACDM)

The ACDM [83] is a scalable methodology developed to facilitate the develop-
ment of architectures for software intensive systems. It was developed during
the evolution of the software development process, by analysing empirical ex-
periences found during the use of the Architecture Trade-off Analysis Method
(ATAM) [79], to be used as a dedicated architecture development process which
could be integrated into other software development frameworks (such as Water-
fall, Agile methodologies).

This methodology assists in creating an architecture which can complement the
organizational processes and activities which will rely on the projected software.
In practice, this means that the architectural decisions themselves are what will
aim to support the business activities, rather than off-loading this support to the
implementation side of the software development process.

There are numerous advantages to the approach defined by the ACDM [84],
mostly due to the fact that major issues are addressed before any implementa-
tion work commences:

• Requirement definition can be more comprehensive;

• Product expectations are set early;

• Unknowns are tackled early;

It comprises a set of stages (8 in total) (Fig. 3.2) which start with the elicitation of
requirements, to build an understanding of the architectural drivers, and follows
that up with the creation of a first version of the architecture (known formally as
the notional architecture).

This first version is reviewed and a choice is made: if it is ready (Go) then it moves
to production; if not (No-go) then experiments and refinement will follow, until a
new version is developed and submitted for review. This process will go on until
the architecture is ready for production.

50

Methodology

Figure 3.2: Diagram of the ACDM’s stages, showing the split point in Stage 5
where the decision is made to either push to production or go back to a refinement
stage should the architecture need further iterations.

The stages can be described briefly as follows:

• Requirements Stages (1-2) - Elicit requirements, discover, document archi-
tectural drivers and establish the scope of the project.

– 1. Elicit Requirements, Discover Drivers - Meet with stakeholders,
extract drivers and requirements.

– 2. Establish Project Scope - Define project scale, limitations, etc. to
prepare for the first draft.

• Design/Refine Stages (3-4) - Create the notional architecture, subsequently
refine it, and perform a systematic review.

– 3. Create Notional Architecture/Refine Existing Architecture - Build
a notional architecture (basic). On subsequent iterations, refine the ar-
chitecture.

– 4. Formal Architecture Review - Using tracking, systematically review
the architecture using the identified requirements.

• Experiment Stages (5-6) - Depending on the results of the review, move to
production (Go) or experiment and return to stage 3 (No-Go).

– 5. Go/No-Go - Based on the review’s outcome, decide if architecture is
ready for production.

– 6. Experimentation - If it is not ready, perform experiments to target
the architecture’s refinement.

• Production Stages (7-8) - Plan the implementation, build and deploy the
final software product. This stage will not be used in this project.

51

Chapter 3

For this project, considering the personnel limitations, hardware limitations and
the fact that the project was performed outside of Altice Labs S.A., the Production
Stages (7-8) were discarded, and the architecture would be the end-result, no
implementation should follow.

To shed light on the inner workings of the methodology, the following sub-sections
will focus on describing the ACDM’s several stages as well as the adaptations to
the method made for this project and present the strategy employed for trace-
able architecture review, which will factor in during the description of the design
process in Chapter 6.

3.4.2 Requirements Stages

The requirements stages involve the rigorous extraction of drivers to create a
working characterization of the system which may be used to create the notional
architecture. In this stage, typically, there is an Architectural Driver Elicitation
Workshop (ADEW), which uses a structured approach (presented in Table 3.4)
to gain an understanding of the functional and non-functional aspects of the sys-
tem, along with any relevant restrictions/constraints. In short, the meeting is
structured to progress from a broad-stroke problem description to the descrip-
tion of operations, use-cases and functionalities, leading into the description of
the quality-attribute requirements and constraints associated with these function-
alities.

This flow enables a gradual introduction to the relevant architecture-design con-
cepts, ensuring that the stakeholders can have a meaningful contribution to the
requirement specification, while accounting for differences in familiarity with the
software architecture design process.

Activity Objective Duration

Introduction Describe workshop agenda and goals 10 mins.

Use-Case Discussion Describe most relevant use-cases for the target soft-
ware system

30 mins.

Operational
Descriptions

Identify the main actors, functional requirements,
context, workflow and other relevant information re-
garding the previously identified use-cases

30 mins.

Identify Quality
Attribute Requirements

Presentation of the concept of Quality Attribute, ex-
traction of quality information and non-functional re-
quirements for each use-case.

30 mins.

Identify Business
Goals/Constraints

Identify constraints such as number of users, budget,
time constraints, legal aspects, time-to-market, etc.

15 mins.

Identify Technical
Constraints

Identify pre-existing software architecture decisions 15 mins.

Summary Present overview of meeting contents 15 mins.

Table 3.4: Typical structure for the ADEW, including the main activities, a de-
scription and their respective duration.

52

Methodology

The ADEW may take place over several meetings, where the overarching goal is
to consolidate data which can lead to a successful requirement specification.

This stage will result in a first specification which should provide enough context
for an initial driver extraction and scope definition for the project. However, it is
worth noting that this will likely not be the last time that requirements are for-
mulated, as during the refinement processes requirements may change by virtue
of the discovery of new information, submission of changes from the product-
owner or even external factors (such as passing of new regulations).

3.4.3 Design/Refine Stage

These stages are repeated in the iterative portion of the methodology. As such, it
can be split into two parts: the initial design/creation phase (occurs at the start
of iterative process only once), and the refinement phase (occurs on every sub-
sequent iteration). Either of these stages is finalized with a formal architecture
review.

Initial Design Phase (Notional Architecture)

After the initial requirement and scope definitions, the architecture can be de-
fined, albeit in a low-fidelity state. This is called the notional architecture, where
the main goal is to rapidly produce a first version of the architecture, where is-
sues may be identified and tackled as soon as possible. It represents a partitioning
of the system to be the target of successive iterations in subsequent stages. The
notional architecture will typically include:

• Component views - What are the building blocks of the system.

• Context information - How the system interacts with external actors.

• Run-time perspectives - How the system will operate during execution.

• Physical perspectives - How the system will be mapped to the underlying
hardware.

With this notional architecture, or draft, it is possible to begin the ACDM in
earnest and apply the iterative methodology which will mature this prototype
into a correct and complete architecture.

Refinement Phase

In iterations other than the first (where this stage is omitted, and instead the pre-
viously described notional architecture is created), this stage consists in the re-
finement of the architecture, requirements or specification, adding new technolo-
gies, stacks or components in an effort to meet the requirements and fix the issues

53

Chapter 3

identified in previous iterations. Generally, this stage can be described as a 4-step
process:

1. Analysis - Critical analysis of the architecture with assistance from the pro-
fessors and Altice Labs, usually through a presentation of the current state
of the architecture with information and clarification requests.

2. Update Requirements - Implement the necessary changes identified in the
analysis (new requirements, layers, components, etc.)

3. Update Architecture - Rework the architecture’s technologies and solutions
based on the requirements.

4. Consolidate Documentation - Summarise the current state of the architec-
ture in preparation for the experimentation. This includes diagrams, de-
scriptions or any other supporting documentation.

Wherever the architecture is found to be lacking in regards to the requirements,
new solutions have to be considered and researched. The exploration of new tech-
nologies and alternatives should be open and extensive, to ensure that should a
component not meet the requirements, an alternative can be presented for further
validations and the architecture design process does not come to a halt.

Formal Architecture Review

After the architecture has been created or refined, a comprehensive review must
take place. This review will involve the validation of the architecture against the
requirements, to ensure that the newly added or selected components can per-
form their functionalities according to the specification. Typically, the result of
this review is a table where Requirements are mapped with Architectural Ele-
ments, with a corresponding description containing the reasoning and justifica-
tion behind their match. This mapping may present one of three values pertain-
ing to the mapped relationship:

• Validated - Experimentally or analytically validated, provides reasoned as-
surances that the requirement is met by the element.

• Partially Validated - Partially validated through documentation analysis
and research, requires deeper validation through either technical analy-
sis/research or experimentation. Should generate an issue during review
phase, and serves as a temporary marker that a requirement-element map-
ping is a promising candidate.

• Issue - Invalid element for current requirement. Includes a pointer to the
Issue Tracking table.

A simplified and shortened example of a Requirement-Element Mapping Table
is presented in Table 3.5.

54

Methodology

Requirement Architectural Element Status Description

Ingestion latency
<100ms

Apache Kafka Validated Experiments indicate average la-
tency <100ms under several load
profiles

Access breaches
detected 99.999%
of times

Apache Ranger Partially
Validated

Documentation points to 1 in 10
million false negatives.

Downtime <10s for
Storage

Apache Hive Issue See Issue #004.

Table 3.5: Simplified mapping table of an architecture review, presenting on map-
ping of each type (validated, partially validated and issue).

Through the systematic recording of requirements and how the architectural ele-
ments serve to achieve them, it is possible to verify if any issues exist within the
current architecture, and move to the next stage - the decision-making process for
either refinement or production. A formal issue tracking system is essential to
this step, providing a framework for systematic analysis, planning and mitigation
of the identified issues.

For this project, using the previously described RAID Tracker tool, and point-
ing from the previously mentioned Requirement-Element Mapping Table to the
Issue Tracker, it is possible to assign types to the identified architecture issues,
providing a way to plan for different kinds of refinement to take place in the next
iteration. The issue types which are used in this tracking are presented in Table
3.6.

Issue Type Issue Text Description

1 No action required Provide the clear rationale for why the issue is not nec-
essary to act upon.

2 Repair, update or clarify
documentation

Update the documentation, and document these
changes, being specific on what changes were required.

3 More technical
information required

Analyse the problem, perform research, ask technical
questions or collect other resources online to inform on
the issue.

4 More information on
Architectural Drivers

Request information from stakeholders or clarify re-
quirement base internally.

5 Experimentation
required

Plan and conduct focused experiments to explore the
driver under review.

Table 3.6: Issue types used in the Issue Tracking for the formal architecture review
stage of the adapted-ACDM methodology.

The review process will result in a table of issues which can clearly indicate where
the architecture presents flaws, either due to incompatible components, unfin-
ished or lacking documentation, or even just lack of certainty in decision-making,
requiring further validation and the creation of an experimental plan (defined in
the following sub-section). The categorization of issues will allow for the appli-

55

Chapter 3

cation of different handling strategies, namely when tackling issues of Type 5,
which will require a dedicated and more extensive stage later in the iteration.

In summary, the review is structured as follows:

1. Map Requirements to Elements - For each architecturally significant re-
quirement, an element must be indicated as a match in the mapping table.

2. Label Requirement-Element Mappings - For each of the mappings, a sta-
tus should be provided (validated, partially validated or issue).

3. Track Issues - For each issue identified in the mapping table, an issue is
instantiated in the RAID Issue Tracker, with the appropriate type

4. Handle Issue - According to the issue type, plan a handling strategy and
either execute it in the "experiment stages", or pass the issue to the next
iteration’s refinement stage.

3.4.4 Experiment Stages

After the Design/Refine stage, the output of the architecture’s review is analysed
carefully. Should there be no issues remaining (or all issues involved being of
Type 1 Issues, where no action is required), the architecture is presumably ready
to move into production for planning (Go).

However, if the output of the review indicates issues of any other type, then it
is necessary to refine the architecture in a new iteration (No-go). Pending the
existence of Type 5 Issues, experiments may be required to finalize the validation
of previously defined mappings.

Go/No-Go

The analysis of the architecture review performed previously, the issue tracker
must be analysed to guide the remaining steps. A large number of outstand-
ing issues or active problems will lead to an insufficient architecture in need of
refinement, with possible problems revealing themselves into implementation,
whereas conversely, an architecture with little or no outstanding issues may be
ready for production.

The aptly named "Go or No-Go" stage consists in this decision, which will start a
new iteration through refinement or push the architecture for production. Should
the architecture need refinement, then it will pass onto the Experimentation stage,
to attempt to resolve all current Type 5 Issues (Experimentation Needed).

56

Methodology

Experimentation

Issues which call for experimentation will typically come from the absence of as-
surances and data/metrics related to element’s relationship to the relevant qual-
ity attributes. This will mean that it is impossible to truly consider the require-
ment met, and the element cannot be provided as a valid component for the final
architecture.

The experiment, as defined in the ACDM [83], consists of a targeted prototype,
which aims to gather data to assist in the validation of the architectural drivers
(in this case, the element’s relation to the relevant quality-attributes). This exper-
iment can take many forms, including but not limited to:

• Individual Component experiments - Analyze the behaviour and extract
metrics based on a singular component’s execution/configuration. Experi-
ments of this type will be logged as "INDIV".

• Component Interaction experiments - Analyze the behaviour of N systems
in linked operation. This is intended as a middle point between the indi-
vidual analysis and the system-wide analysis, giving partial validation of
harmonious operation. Experiments of this type will be logged as "INTER".

• System Interaction experiments - Analyze the system as a whole, the many
interactions which take place and the general compatibility of the various
selected technologies. Experiments of this type will be labeled "SYSTEM".

These three are the main types of experiment which will be used in this project,
utilising lightweight set-ups and "quick" prototyping to ensure that most of the
architecture can be covered by the experiment plans. Accompanying an experi-
mental stage is a detailed log featuring all relevant metrics, data and methodolo-
gies employed during the experiment(s) which took place.

3.5 Architecture Specification

The specification or technical description of the architecture will be presented
using the C4 Model [39, 105], which uses notation-agnostic diagrams, leveraging
different levels of abstraction to communicate the architecture in four distinct
perspectives: Context, Containers, Components and Code.

The C4 Model uses a simple box-diagram language, where different entities are
connected by arrows detailing their interactions and dependencies. This abstrac-
tion is based on the idea of "zooming" into the details of the system, starting a
broad perspective (the Context Diagram) to understand the system’s interaction
with external factors, and then progressing to a closer view of the system’s inter-
nal execution (the Container diagram), followed by a deeper look into the func-
tionally programmed units (the Component diagrams) within that container.

57

Chapter 3

The fourth level (the Code diagrams) are typically seen as optional in the ear-
lier stages of the development of an architecture, especially since they relate to
how the components should be programmed and how their functionality will be
coded.

For this specification the Code diagram was excluded, as the development of sta-
ble, production ready specifications and code diagrams (which ultimately would
be the final step before the actual implementation) is a part of the Production
stages of the chosen architecture design methodology (ACDM), which will not
be performed within the scope of this project.

• Context Diagram - Detail the system’s relationship to external systems and
actors to contextualise its operation.

• Container Diagram - Detail the system’s containers, i.e. individually exe-
cutable/deployable units.

• Component Diagrams - For each of the previous containers, detail the in-
ternal components which encompass the container’s responsibilities.

• Code - For each component, detail the internal software functions, methods
and calls to implement them in the production scenario.

This model facilitates the understanding of the architecture by providing increas-
ingly granular perspectives on an otherwise complex distributed system, making
it ideal for communicating the structures and components which make up the
pipelines and processing paths for the final solution.

58

Chapter 4

State-of-the-Art

Following the contextualization and background analysis for the field of data
management architecture development, it was crucial to analyse and research
production implementations of these systems, and understand how the support-
ing technologies can contribute to the end-goals of these systems.

Following the presentation of two current implementations - Uber’s Kappa archi-
tecture implementation, and SmartNews’ Lambda architecture implementation -
a survey of technologies is presented. This survey was performed in accordance
with the project’s requirements for cost controllable, preferably open-source soft-
ware components. Finally, a more detailed look into an AWS-based Lakehouse
architecture is presented as a case-study for a tried and tested production-grade
architecture which would meet the requirements of the project.

4.1 Implementations

While these architecture patterns provide a strong and well reasoned high-level
view of how the data flows should be processed, the actual implementation can
vary greatly depending on which general approach is used. To discuss this, two
implementations will be briefly presented: the Kappa Architecture as implemented
by Uber [107], and the Lambda Architecture as implemented by SmartNews [103].
While these cannot be considered reference architectures, they provide a point
of view into the actual implementation of these architectures, and how they are
currently being used in production.

4.1.1 SmartNews Lambda Architecture

This implementation of the Lambda pattern leverages the diverse Amazon Web-
services [8] technology suite to build a massive, highly available and performant
platform. Figure 4.1 displays a technology-component based view.

This architecture was designed in 2016 using the available technologies, and while
today it may present several inefficiencies, it was quite powerful for its time, pro-

59

Chapter 4

viding near real-time user queries and interactivity, and enabling a large amount
of flexibility in the output layer, with many native integrations being possible
with popular Business Intelligence dashboards and team-management tools (such
as Slack).

Figure 4.1: The technology-component diagram of the SmartNews architecture,
featuring the Input, Batch/Serving, Speed and Output layers and their main data
flow paths (adapted from SmartNews, 2016. [103])

Using a variety of input technologies, both batch and stream data processing
takes place. To briefly describe the data processing pipelines, a data-centric per-
spective is presented for each of the data flows:

• Batch Processing - In the Batch layer, data is stored for historical purposes
(in an Amazon S3 storage service). It may then be subjected to data-set scale
transformations using an appropriate processing technology (in this case,
an Amazon EMR-based solution) before being recorded in its new state.
It is then served to external services through the use of powerful query
and reporting engines (PrestoDB for queries and Amazon RDS for database-
storage).

• Stream Processing - As data is pushed into the speed layer, a streaming ser-
vice (Amazon Kinesis Stream, in this case) is employed to move it to its desti-
nation, be that a direct serving path (through AWS Lambda serveless actions)
or through a transformation-enabled path (in this case, using Apache Spark as
its main ETL/ELT engine, and DynamoDB as the supporting database sys-
tem).

This implementation is particularly interesting because, by using the Amazon
Webservices (AWS) managed technology stacks, most of the overhead associated
with the dual platform approach is avoided, since AWS features native integra-
bility and inter-operability between all its services, as well as scalable backends
with a common unified dashboard.

60

State-of-the-Art

4.1.2 Uber Kappa Architecture

One look at a successful Kappa architecture implementation is Uber’s solution.
Using Apache Kafka [24] as a centerpiece, it uses this massively distributed mes-
saging system to create both a realtime and a batch-oriented pipeline. Figure 4.2
presents a very summarised high-level view of the architecture.

Figure 4.2: The technology-component diagram of the Uber Kappa architecture,
showing the data sources, the ingestion and processing pipelines, as well as the
destinations for the processed data (Kai Waehner, 2021 [107])

.

By hosting the entire ingestion pipeline as a single real-time process, some bene-
fits are apparent, namely the simplicity of the overarching design. Both types of
data processing are still supported:

• Batch Processing - Data moves in through the real-time pipeline (Kafka, in
this case) and is stored for later use (Hadoop). Additionally, re-transmission
is supported, enabling full data-sets to be processed at will through the re-
altime processing pipelines as an alternative to dedicated batch processing
systems.

• Stream Processing - Data is passed through (Kafka) and is provided to the
numerous systems which require real-time data feeds. In this case, a pub-
sub consumer is used for alerts, dashboards and the mobile app (enabling
distributed communications through a lightweight messaging protocol), a
highly performant stream processing engine is used for real-time analytics
(in this case, Flink), and a log processing stack can be used (in this case,
ElasticSearch, Logstash and Kibana, also known as the ELK stack).

The flexibility of this system has enabled Uber to grow tremendously, by sim-
plifying the data processing stacks and attaching them to a high performance,
highly scalable and fault tolerant native system, like Kafka.

61

Chapter 4

4.2 Supporting Technology

To better understand and chart the technological landscape surrounding the de-
velopment of Big Data software systems, a survey was performed on currently
widespread solutions. This study intended to list out the major alternatives for
different parts of the architecture, namely the entry of data into the system (inges-
tion), the storage of the data, and the use of the data (serving and consumption).

According to the requirements of the project, this description will focus mainly on
the open-source alternatives which are readily available and highly documented,
namely those belonging to the Apache Software Foundation [28], with brief men-
tions of managed/SaaS implementations. Numerous vendors offer either partial
solutions or full suites.

While this chapter will present a surface-level view of these technologies, further
more focused explorations (namely of their differences, drawbacks and advan-
tages) are presented in Chapter 6 during the iterative design process. It is impor-
tant to note that not all available or even popular technologies were researched
due to time constraints, and the research effort focused mainly on technology
which had previously been identified as part of the preliminary information gath-
ering performed prior to this dissertation project.

Additionally, as a way to understand the design process of a modern cloud-native
architecture, a case study was performed on an Amazon Webservices (AWS) na-
tive Lakehouse platform, showcasing the opportunities attached to a potential
AWS migration and showing how the industry leader’s solutions address the top
requirements of a Big Data architecture.

4.2.1 Data Ingestion

There are many technologies fit for use an ingestion point for a more complex
data analytics system. In a modern ingestion pipeline, some qualities and features
are desirable:

• Scalability, to match variable input loads, growing business operations and
legacy systems.

• Integrity, to ensure that data is moved correctly and without error.

• Performance, to guarantee realtime, near-realtime or correctly scheduled
data ops.

In the study for this application, some technologies proved to have a high poten-
tial; they are mapped in Figure 4.3, showing both on-prem solutions and man-
aged options.

Amongst all others, Apache Kafka [24] is the prime candidate, featuring a robust,
simple architecture of coordinated brokers, passing messages from producers in

62

State-of-the-Art

Figure 4.3: Map of Data Ingestion technologies which were analysed as part of
the preliminary research. Coloured nodes indicate categories.

a publish-subscribe configuration, and building an ordered, immutable log of all
passed messages, which is synchronised with the consumers. It is scalable by
design, highly performant and available, and has become the standard in data
streaming operations.

Additionally, attached to Kafka there are a number of additional "modules", in
the currently expanding Kafka Ecosystem: Kafka Connect (data integration frame-
work to connect to external data sources/destinations), KSQL (real-time SQL
based data processing for Kafka flows) and Kafka Streams (a processing applica-
tion tool, which enables the development of complex data pipelines using Kafka
as a backend).

Other messaging systems, like RabbitMQ [100] and ActiveMQ [4] also provide
scalable messaging, albeit in slightly different ways than Kafka, mostly related to
how messages are handled. Whereas Kafka creates an immutable log and prop-
agates it to the destinations, RabbitMQ and ActiveMQ treat messages as atomic
entities, not allowing for the same kind of record-keeping natively.

Apache Spark [25] is a distributed computing engine which has many potential
uses, data ingestion being one of them. Spark can read data from many different
file formats, and pull them for analytics, ETL and any further processing. Apache
Flink [30] is a similar processing framework that, while sharing many qualities,
focuses mainly on stream processing, whereas Spark has a much bigger emphasis
on batch processing. Additionally, Apache Flume [27] is an ingestion tool used
primarily for log/event data collection which is commonly used for data transit
wherever processing is not required.

On the managed side, Confluent [46] offers a managed Kafka service, using
highly fault tolerant mechanisms to ensure high availability and throughput,
making it one of the top choices for massive Big-Data ingestion pipelines. If a
larger, more diverse suite is required, both Databricks [49] and Cloudera [45] of-
fer fully featured Lakehouse platforms with robust open-source based ingestion
pipelines.

Within the managed ingestion processes, a special distinction is made for the
Amazon Webservices (AWS) native solutions: Kinesis [15] and SQS [19]. Kinesis
is a highly scalable messaging system that shares a lot of traits with Kafka. The

63

Chapter 4

main difference between them is the way they store the log data - Kafka uses
file-based logs, whereas Kinesis uses sharding and high-speed databases.

4.2.2 Data Storage

The search for technologies fit for the underlying storage systems of the tar-
get architecture was framed around the functional distinction between the Lake-
house (which is effectively a metadata layer) and the physical systems below
(namely the Data Lake). Research centered around two monolithic centerpieces -
Hadoop/HDFS [22] and Min.IO/S3 [90] - which provide the raw storage solution
upon which abstractions (such as the aforementioned data management systems)
can be built.

Several solutions were researched, as presented in Figure 4.4, presenting both
self-deployed (on-prem or cloud) and managed alternatives.

Figure 4.4: Map of Data Storage technologies which were analysed as part of the
preliminary research. Included are both raw storage and lakehouse-ing technolo-
gies. Coloured nodes indicate categories.

As previously mentioned, the main components under analysis were Hadoop
and the Hadoop Distributed File System (HDFS) and Min.IO/S3. They func-
tionally achieve the same goal - massive format-agnostic data stores with rich
APIs to manipulate the data within, while offering the tooling and access paths
necessary to use it effectively.

64

State-of-the-Art

However, they are fundamentally different in how they achieve this:

• Hadoop creates a distributed file system which is deployed in controlled clus-
ters, creating what essentially amounts to a monolithic storage service that
is well suited to the MapReduce[52] processing method, a model which
uses a master-worker dynamic across clusters to perform tasks in a granu-
lar manner, allowing for parallelization of data processing tasks on a large
level. Many data processing suites (namely those in the Apache foundation)
have been designed to use MapReduce natively in their processing jobs, en-
suring a high degree of compatibility with this technology, creating a very
rich ecosystem of tools surrounding Hadoop.

• Min.IO/S3 is a more lightweight solution, which simplifies the data store
by removing the hierarchical imposition of a file-system, relying instead on
the object-storage concept. In object storage, data is encapsulated within
an object, along with all its associated metadata, and all objects are stored
and accessed in a flat namespace (i.e. through unique keys). This removes a
lot of the complexity of previous large data-stores, and creates a simple to
store data with native scalability. This makes it well suited to Cloud-Native
environments, where scalability and elasticity are core requirements.

In summary, Min.IO presents a more lightweight alternative to managing large
data-sets, at the cost of not having tailor-made highly performant processing
stacks like those found in Hadoop’s ecosystem, having been at the center of data
processing architectures since its inception [47]. Despite this, while Hadoop’s
ecosystem presents a significant advantage in the process of architecture design
(providing ample amounts of components with native compatibility and integra-
tion), recent developments, such as the wide-spread adoption of S3 API support,
have created opportunities to transition from the stiff and complex HDFS-based
systems to a more flexible, cloud-friendly approach with Min.IO.

As part of this study, other storage systems were also analysed, as either stan-
dalone solutions or building-blocks to assist in the creation of a diverse, hybrid
architecture. PostgreSQL’s [98] open-source database is still considered one of
the de-facto database solutions for distributed relational database management
systems. Additionally, to provide data warehouse-ing capabilities, Apache Hive
[23] takes a metadata-driven approach upon the Hadoop file-system, enabling
high-speed queries and analytics tools in a SQL-like language.

Most of these services are also available in managed form, with the previously
mentioned Cloudera, Databricks companies along with Oracle [96] or even the
Min.IO SaaS deployment, which provide these components as a web-service;
and AWS offering S3 [18] as one of their most popular and featured services,
along with possible HDFS deployments on their container-based deployment
system (AWS EC2 [14]) or even SaaS database deployments like AWS’ DynamoDB
[13].

65

Chapter 4

Data Lakehouse

As previously described, the Lakehouse presents a unique opportunity - harness
the flexibility of the Data Lake, while maintaining the performance and quality of
a Data Warehouse. Functionally, this is done through a metadata system (which
may be an additional storage layer, a table or an abstraction-based system) which
serves as the interface for all data access.

Several technologies present options for this use-case, all centered around the cre-
ation of compatibility between large unstructured Big-Data storage and highly
structured, schema-reliant data processing engines. While all technologies which
are presented seek to add the same features (ACID compliance, Metadata man-
agement, Scalable data management), they all do so in different ways, with dif-
ferent drawbacks.

Delta Lake [54] is one such platform, creating a three-stage data management
system (ingestion, refinement and aggregation) with strong integration with existing
ingestion stacks (like Spark, Kafka), storage systems (S3, Hadoop, Hive) and serving
platforms (Spark, Presto, etc.). It is primarily suited for Spark workloads since that
is its most developed connector.

Apache Hudi [26] is a storage-abstraction based solution which creates a meta-
data table as data is streamed into the system. Hudi has very good integration
with many query engines and ingestion platforms. While Hudi is still very new, it
is incredibly promising due to its flexibility, relative simplicity and suitability for
both batch and streaming workloads. Hudi possesses a great degree of integra-
tion with Spark and Flink on the ingestion side, and with PrestoDB and SparkSQL
on the serving side.

Apache Iceberg [31] takes a fundamentally analytic-centered approach, being
built around the standard lakehouse feature-set but with a clear focus on enabling
large scale column operations and schema-evolutions (changes to data structure)
on massive data-sets.

Meanwhile, on the managed side, all the previously referred entities (Databricks,
Cloudera, Confluent) provide their own metadata governance frameworks (with
Confluent focusing more on the issue of data stream governance options). AWS
offers a complete platform in the LakeFormation [17] service, an S3 native ser-
vice which uses schema crawling1 and metadata catalogs to create a governance
framework around the data lake.

It is worth noting that because the aforementioned lakehouse platforms run on
top of storage systems, it is possible to host them within a managed environment
(like S3 or Databricks/Cloudera cloud stores) freely, albeit taking into account the
increased processing power required to maintain the metastores associated with
the greater degree of metadata transit.

1The process of inferring and/or imposing schemas on unorganized and unstructured data
stores.

66

State-of-the-Art

4.2.3 Data Serving and Consumption

For the serving portion of the data processing framework, several technologies
were researched as potential solutions, most of them centered around the queries
used to pull data from the Storage layer, either directly or through the Lakehouse
meta-stores.

This inevitably honed our research toward technologies which presented native
compatibility with the previously mentioned Lakehouse technologies, as that is
what the queries would effectively be performed on in the production use-case.

Figure 4.5 shows the tech-map of the analysed components:

Figure 4.5: Map of Data Serving technologies which were analysed as part of the
preliminary research. Coloured nodes indicate categories.

Paired with the use of databases as storage components, the use of PostgreSQL
[98] and MySQL [91] is logical, as both present scalable and highly-performant
solutions for SQL-compliant, ACID-compliant querying. These technologies, through
the use of Lakehouse components, are usable even in the Data Lake context (al-
though typically more modern, cloud-native serving components are used).

Cloud-native and oriented solutions, like PrestoDB [99] present innovative solu-
tions to the task of massive, highly performant querying through the use of meta-
data stores (which can provide higher-level mappings and ACID/SQL-compliant
data serving) and a coordinator-worker distributed architecture. As a plus, all
of the researched Lakehouse services feature native, low-code integration with
PrestoDB, enabling their internal metastores to synchronise with Presto’s query
engine seamlessly and automatically. Presto also supports open data formats,
like Parquet and Avro, making it ideal for use with Lake and Lakehouse-ing tech-
nologies.

The previously mentioned Apache Hive warehouse system also presents a SQL-
based query engine implementation using its own internal metadata store, al-
though lacking in support for unstructured or semi-structured data formats.

Apache Spark also features a separate module, built to run natively and in a
scalable manner in Spark execution clusters - SparkSQL - allowing for easy to
use SQL queries. SparkSQL presents an interesting opportunity due to its strong
integration with the analysed Lakehouse technologies.

On the managed side, the previously mentioned providers (Cloudera, Databricks,

67

Chapter 4

Confluent also support their own in-house query engines, featuring high-speed,
scalable and highly available engines. Along with these, Alluxio [6] is a cloud-
service provider which presents a unique version of PrestoDB with massive per-
formance optimizations for Big-Data workloads, using a caching system built
upon their proprietary "Alluxio Distributed Filesystem" [5] which is a storage-level
abstraction for increased performance. AWS solutions rely on a high-degree of
integration with the AWS suite, and using scalable and elastic access methods,
like APIs (such as the AWS API Gateway [11]) or other server-less systems, like
AWS Lambda [16], which enable the creation of RESTful2 query services and
remote-code execution pipelines using integrated internal AWS technologies like
DynamoDB queries and AWS Athena [12].

4.2.4 Administration and Data Governance

Modern data architectures require a large focus on administration, governance
and auditability use-cases in order to meet regulatory compliance. While these
concerns could theoretically be handled through organizational structures and
paper-trails, it is impossible to scale these processes to the size and volume of a
Big-Data workload without the use of supporting technology.

To ensure compliance, two optics are considered: Data Access (access control tech-
nologies) and Data Governance (the use of metadata management systems and
catalogs). Access control stacks form the basis of a compliant system, making
sure the only people who see the data are correctly authorized individuals; and
metadata management systems enable data discovery use cases in a scalable man-
ner while providing numerous compliance options (lineage tracking, integration,
policy-based retention).

The researched technologies are identified in Figure 4.6.

In terms of the metadata management systems (or simply put, the catalogs), three
main options appear as self-deployed solutions: OpenMetadata [95], Datahub
[2] and Atlas [29]. Out of the three, Atlas is the only one that does not currently
offer a SaaS option.

These solutions all present the same core functionalities and goals - to build gov-
ernance opportunities through purpose-built systems, using extensive integra-
tion to gather metadata at all steps of the data framework (ingestion, storage
and serving), and create an easily usable and accessible tool to assist in auditing,
traceability and data discovery use-cases.

OpenMetadata uses an entity database (MySQL) and an implementation of Elas-
ticSearch3 to create a UI which holds all data entities within a system, their re-
spective mappings and relationships, and even their lineage, previous versions,
etc. It has its own internal schemas and operates over a vast amount of connec-

2Built to be used through HTTP, following a standardised set of rules and conventions to en-
able remote utilisation.

3Elasticsearch is a powerful, distributed search and analytics engine designed for fast and
scalable retrieval of data from large volumes of diverse sources

68

State-of-the-Art

Figure 4.6: Map of Administration and Data Governance technologies which
were analysed as part of the preliminary research. Both metadata catalogs and
access control modules are encompassed. Coloured nodes indicate categories.

tors (namely supporting all the identified components present in the described
research).

DataHub is very similar, although it focuses more on developing new integra-
tions (with an easy-to-design connector system), and providing, generally, the
same features as OpenMetadata, albeit in a simpler package with a more user-
friendly interface. The other alternative, Atlas, is similarly featured, but restricted
by its focus on the HDFS/Hadoop platform. Integration with cloud-native object
storage is one of Atlas’ main weak points and its reliance on the HDFS ecosystem
makes it a less favourable choice from a flexibility point of view.

On the managed side, most cloud-vendors offer some form of metadata catalog
(generally proposing Apache Atlas implementations), with AWS’s Glue Catalog
being the indicated component when using a mostly AWS-based stack, due to
its native integration with all other services through "one-click" configuration.
It is worth noting that while AWS Glue is a metadata catalog, it possesses some
features more akin to a Lakehouse component (such as direct data access through
the Catalog), which are not typically supported by metadata catalog components.

These components enable the creation of a tentative framework for exploring data
governance and integration on a much larger scale, especially through the inter-
operability between the data discovery tools and the access control stack.

4.3 Case Study: Amazon Webservices Lakehouse

As part of the research process of technologies and current solutions, a special
degree of attention was given to the solution proposed by Amazon Webservices

69

Chapter 4

[9] for the Lakehouse paradigm. This fully featured and tailor-made architecture
aims to serve all the main requirements of the Lakehouse: Scalability, Governance,
Performance and Security; and it provides the components (all within the AWS
suite) to achieve them.

This analysis focused on identifying technologies and how a reference Lakehouse
framework would be performed in a cloud-native setting. While it may be valu-
able to analyse each individual technological solution and understand their core
principles and integration, the scope of this work and the associated time con-
straints resulted in a focus on a more surface-level approach. Figure 4.7 presents
a container/service view of the architecture.

It uses a layered approach along with a hybrid storage solution encapsulated by
a Lakehouse layer:

• Ingestion Layer - Ingest data into the Lakehouse storage layer, connecting
to internal and external data sources. This layer can deliver batch/stream
into warehouse/lake systems.

• Storage Layer - Responsible for providing durable, scalable and cost-effective
elastic components using a hybrid approach - a Data Lake and a Data Ware-
house, to support a variety of activities using a zone-based system (raw,
trusted, enriched, modeled)

• Catalog Layer/Lakehouse Layer - Store of business and technical metadata
related to the datasets below. This is the main engine for constructing the
queries, by supplying schema information, granular partition information
and data discovery opportunities through an elastic search engine.

• Processing Layer - The ETL transformation layer which provides valida-
tion, cleanup, normalization and enrichment operations to the many data
flows within the framework.

• Consumption Layer - Query systems, distributed ML Jobs and services that
combine data from multiple end-points to serve BI and ML-analytics ser-
vices. Supports multiple user access levels.

While the analysis of the architecture centered mainly on technology identifica-
tion and registration into the knowledge base for the architecture design process,
some interesting structural considerations were observed:

• The use of a Warehouse and a Lake in the Lakehouse architecture, which
is not a fundamental requirement of the Lakehouse’s formal definition (as
the Lakehouse paradigm merely seeks to add Warehouse traits to the Data
Lake) seems to indicate that this architecture is capable of a great degree of
flexibility in the type of storage systems that it supports. By providing a
toolset for integrating Lake data into the Warehouse and vice-versa, a hy-
brid solution is achieved, providing cost-effective storage and powerful en-
richment pipelines.

70

State-of-the-Art

• The use of schema crawlers in the Data Lake provides an interesting way
to perform schema evolution on varying data flows and stores. This fea-
ture has a lot of potential to drive significant value in terms of data quality
management.

• The use of Identity and Access Management (IAM) and Access Control
services at every step of the framework is not something typically seen, but
necessary in the AWS solution due to the single dashboard that is accessi-
ble by all the users. This pattern may be useful in architectures where a
centralised tailor-made dashboard is required.

Figure 4.7: Technology/Service-centric view of the Amazon Webservices Lake-
house Reference architecture. Flow of data is from bottom to top.

71

Chapter 5

Requirement Analysis &
Specification

To lay the foundations for the development of the architecture, it is crucial to
understand the drivers which will motivate the decisions made in the design
process. In short, the stakeholders’ desires, needs and goals must be reflected in
the outcome, their requirements must be analysed, categorized and refined into
a format which can guide development during the architecture phase.

As previously described in Chapter 3, these requirements are grouped into func-
tional and non-functional requirements. Alongside these descriptions, the iden-
tified business and technical constraints are also analysed to outline the regu-
latory rules and restrictions, and any limitations inherent to this project. This
information is presented in tabular form. The sources of the requirements are
identified as mapped in Table 5.1.

To present the requirement specification process, firstly a broad description of
the system is performed following a description of the architecture’s partition-
ing. Secondly, the constraints attached to this system are presented briefly, fol-
lowed by general descriptions of the requirements associated of each layer. The
requirement specification is integrally presented in Appendix A, with this chap-
ter serving as an abridged version of the requirements of the system.

Source ID Description

PRE Extracted from preliminary documentation by ALB.

REQ-0 Outcome of initial refinement (pre-draft).

REQ-1 Requirements in the first iteration.

REQ-2 Requirements in the second iteration.

* Revision or small refinement/adjustment.

Table 5.1: Source ID mapping and description for table entries.

73

Chapter 5

5.1 System Description

With the previously provided context for the system’s purpose and general goals,
an in-depth description of the system is required, to set the stage for the architec-
ture design process.

The system’s main objective is to enable the processing of large quantities of data in
a multi-tenant capable, highly-scalable and available context. Data is received
from source systems, with varying types, sizes and formats, and is passed on to
storage systems, for later use by the system’s various business endpoints (e.g.
data analytics, visualization, ML, etc.).

Throughout this "functionality" chain, there must be provisions for data quality
monitoring, traceability and auditability, as well as considerations for infrastruc-
ture monitoring, automation and system health checking. These features will
allow the system to adapt to the multi-tenancy context, involving external com-
panies and clients in a compliant manner (especially with regards to data privacy
regulations) through strict access control, domain lock-out/management and au-
ditability.

5.1.1 Functional System Partitioning

To design the architecture and organise the requirements, it will prove useful to
create logical units that encompass sets of functionalities and qualities. Following
the initial documentation provided by Altice Labs S.A. there are three views to
consider:

• Functional View - Those pertaining to the main intended functionality -
data processing. This includes a further subdivision:

– Ingestion - The entry of new data into the system.

– Storage - The storage and management of large data volumes.

– Serving - The presentation and consumption of data by external ser-
vices.

• Administrative View - Pertaining to the regulatory constraints and encom-
passing the components which enable compliance.

• Orchestration View - Encompassing the components responsible for moni-
toring, automation and alerting of the system’s execution.

So, to describe the system, a five-layer partitioning is performed: Ingestion Layer,
Storage Layer, Serving Layer, Administration Layer and Orchestration Layer, follow-
ing the aforementioned perspectives. The requirements will be developed and
organised according to this partitioning, which, in itself, evolved over the course
of the semester, initially with a three layer partitioning, before maturing into its
current form after receiving feedback from Altice Labs S.A.

74

Requirement Analysis & Specification

5.1.2 Functional View

As previously discussed, this perspective encompasses three layers - the Inges-
tion Layer (IL), Storage Layer (SL) and Serving Layer (SV). These layers are
where the majority of the system’s data flows will occur, bringing data in from
legacy systems and new sources, transforming it, storing and then delivering it
to its intended endpoint. Figure 5.1 presents a simplified view of the Functional
View, with its main tasks highlighted, layer by layer.

Figure 5.1: Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the main function-
alities are identified.

Data which is streamed in from external sources is passed through the IL, receiv-
ing optional transformations and possibly even being curated based on its quality
or other metrics.

Afterwards, the data is passed to the SL, where storage will take place. This
storage should include some form of cataloguing as per the Lakehouse pattern,
to allow for mixed data storage with warehouse-level performance.

Finally, in the SV, data is pulled from storage. This layer supports automation
of pulling and querying, and provides the necessary tools for data integration,
connecting the data to external services and data sharing. The SV will also en-
compass access control requirements, by virtue of being the external interface of
the system.

The main drivers of these layers can be identified as:

• Ingestion Layer - Performance and Scalability in the data streaming opera-
tions to handle the variable loads and peaks of daily operations, especially
in the multi-tenant environment.

• Storage Layer - Availability and Integrity of the storage systems, and the abil-
ity to ensure that data is never compromised even under hardware failure.

• Serving Layer - Security and Traceability of user actions, to create a stable
and compliant data-sharing environment.

75

Chapter 5

5.1.3 Administration Layer

On top of these functional components, the Administration Layer (AL) serves as
an all-encompassing set of components that will enable the management of data
throughout the entire lifecycle. Figure 5.2 provides a simplified look at the main
tasks supported by the AL.

By leveraging modern technologies such as AI, Knowledge Graphs and more, it
is possible to use metadata derived from all the layers of the system to build a
characterization of the many data flows for auditability and traceability-related
tasks.

Figure 5.2: Schematic representation of the administrative view of the architec-
ture. Metadata flows are represented with dotted green arrows. The data sources
and endpoint external services were joined into a single component for this view.

Through these functionalities, it is possible to maintain an extensive audit log
and use it to ensure compliance, as well as assist in tasks related to data quality
and understanding how data changes throughout its lifecycle by monitoring all
changes made to data objects and integrating them into a comprehensive lineage
view.

The main drivers for this layer are Isolation, Privacy and Usability:

• Isolation and Privacy - In ensuring that data is not widely available to any-
one who seeks it, and that each domain/team/user has their own set of
data and access is controlled.

• Usability - In creating an environment that can facilitate integration, data
sharing and inter-operability between domains in a safe, compliant way.

76

Requirement Analysis & Specification

5.1.4 Orchestration Layer

In parallel with the management of the data, there must also be a feature-set for
managing the system’s execution, and to ensure that scalability, performance and
productivity does not suffer during the various states of operation the system
may be subjected to.

In the Orchestration Layer (OL) components work together to ensure the sys-
tem’s health, through a combination of logging, log analytics and automated
maintenance routines. Figure 5.3 provides a simplified view of the main activ-
ities that take place in the OL.

Figure 5.3: Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the main function-
alities are identified.

To support these functionalities, distinct message queues/pathways must be de-
fined, to ensure long-term scalability and flexibility of the monitoring and man-
agement solution. The potential for this layer is significant, since it may use its
role as overseer to significantly automate the management and health checking
of the system through the configuration of alarms, automated actions and reac-
tions to system events. Taking this into account, the key drivers for this layer are
Consistency, Modifiability and Scalability/Performance:

• Consistency - In logging, monitoring and maintaining the harmony of the
system through constant, real-time analysis of system health data.

• Modifiability - In adding new monitoring components, new analytics op-
erations, action automation and even registering new components into the
monitoring suite. These needs must be met, allowing for a resource-conservative
approach to management and maintenance.

• Scalability/Performance - In ensuring harmonious operation at all load lev-
els, the monitoring, rate-limiting and automation must be able to perform,
and scale up/down whenever necessary, maintaining an elastic profile.

77

Chapter 5

5.2 Constraints

The project’s constraints were identified mostly from the preliminary documen-
tation supplied by Altice Labs S.A. and the Architectural Driver Elicitation Work-
shop (ADEW) which took place prior to the start of the dissertation.

Throughout the semester, several constraints were altered, namely the Business
Constraints, which were refined to better represent the privacy-related issues
brought up over the course of the project.

Because this solution encompasses the functionalities performed currently by a
large number of systems, the technical constraints associated with this project are
generally regarding how the new system will get its data (from source systems)
and how it should present it (to endpoint services).

5.2.1 Technical Constraints

The technical constraints attached to this project are centered around the existing
solutions at Altice Labs S.A., and are designed to facilitate the integration of the
new solution into their currently used technology stacks and legacy systems. As
was described in Chapter 3, Section 3.3.1, these restrictions are hard line prede-
fined decisions which must be accounted for in terms of compatibility.

By considering these restrictions when choosing components, and ensuring com-
patibility with the new solutions, it is expected that the changes which occur with
the implementation of the new system will be significantly easier on the organi-
zation, even if, in a future revision, better options are found.

ID Source Description

TC-001 PRE SMS/Phone data is accessed by Cube Navigator/MicroStrategy

TC-002 PRE SMS/Phone data is stored in Greenplum

TC-003 PRE SMS/Phone data is accessible via REST API and MongoDB

TC-004 PRE SMS/Phone data is monitored via Prometheus Alertmanager

TC-005 PRE BI data is received from CSV and Oracle databases

TC-006 PRE BI data must be available via SQL interface

TC-007 PRE BI data flows/storage processes must be compatible with the
Prometheus toolset

TC-008 PRE Internal clients (helpdesk, etc) receive data from a Kafka MQ

Table 5.2: Technical constraints identified for the project.

78

Requirement Analysis & Specification

5.2.2 Business Constraints

The business constraints identified for this project (Table 5.3) are centered around
two core goals:

• Ensure that the system can support the growth into a multi-tenant scenario.

• Ensure that regulatory compliance can be achieved and maintained.

Due to privacy regulations, and in order to protect customer privacy, some con-
siderations must be taken when choosing components, namely the fact that they
must support privacy measures, and meet the security requirements of the GDPR,
with provisions for auditability of user actions. This will become particularly
relevant when external clients initiate operating on Altice Labs S.A.’s solution.
When this shared operation begins, new concerns emerge regarding cost man-
agement, both internally (i.e. keep internal costs down, cap energy spending or
resource usage) and externally (i.e. create packages and service-level agreements
for external parties).

ID Source Category Description

BC-001 PRE General The system must evolve into a multi-tenant
cloud-based architecture, with one deployment
for several client provider.

BC-002 PRE Privacy The mandatory security requirements of the
GDPR are fully met.

BC-003 PRE Costs Software components included in the architec-
ture should prioritize accessibility and focus
on low-cost alternatives (free-to-use being espe-
cially desirable)

BC-004 PRE* Costs Costs should be controllable, either by limiting
resource usage or by creating cost ceilings.

BC-005 PRE Training Barrier of entry for software component us-
age/modification should be as low as possible,
with good documentation and support.

BC-006 PRE Costs Software components should, ideally, use open
source software.

BC-007 REQ-1 Privacy The software manages personal and non-
personal data in separate ingestion, storage and
serving streams.

BC-008 REQ-1 Privacy Personal data must be anonymized through
Generalisation, Randomisation or Masking.

BC-009 REQ-1 Privacy Personal data must not be kept for a period
longer than useful or necessary for business op-
erations.

Table 5.3: Business Constraints as identified for the project.

79

Chapter 5

5.3 Requirements

Throughout the project, the requirements shifted and evolved, starting from their
immature form, adapted from the ADEW’s output and from initial contextual-
ization meetings, into their final form, after many revisions and presentations,
stakeholder feedback and research work. In this section, some of the identified
requirements will be presented.

For brevity, the majority requirements will be omitted, and the functional and
non-functional characterization of each layer will be presented instead. The full
Requirement Specification is available in Appendix A.

The description of these requirements relies on three actors (apart from the sys-
tem itself):

• End-User - The client, data scientist, analyst, a user that can operate within
the system, but cannot manage it.

• Data Manager - A data manager, Data Protection Officer (DPO) or similar,
a user that can manage the data, privacy policies and data sharing rules
within the system.

• Process Manager - An infrastructure manager, system admin - a user that can
interact with the system’s back-end directly, coordinate and orchestrate the
various components.

80

Requirement Analysis & Specification

5.3.1 Ingestion Layer

As previously described the Ingestion Layer (IL) has been designed and envi-
sioned as a set of scalable, highly performant components that move massive
volumes of data from the source systems to their designated endpoint within the
Storage Layer.

The functional requirements of the IL focus on the ability to configure the sys-
tem’s data streams through scheduling, duplicating, automating and readily mod-
ifying existing streams. By meeting these requirements, the cost of connecting a
new data-source or forwarding data to a different place is vastly reduced, result-
ing in a much more flexible system.

ID Actor Source Description

FR-IL-002 System PRE The system shall accept configurations for both
streaming and batch data sources.

FR-IL-005 Process
Manager

REQ-1 The process manager can configure automated
pulling from external data sources

FR-IL-006 Process
Manager

REQ-1 The process manager can configure scheduled contin-
uous data acquisition (data streaming windows)

Table 5.4: Sample Functional Requirements for Ingestion Layer (IL).

This flexibility is complemented by the identified quality-attributes which the
components of this layer must hold: Scalability, Availability, Performance, In-
tegrity and Compatibility. These are the main traits of this layer’s components,
and result in a fast, reliable system for moving data into the framework without
faults, problems or delays.

QAS-IL-003 - Availability - REQ-1

Source - Ingestion Queue
Stimulus - A cluster of message brokers enter a failure state.
Environment - At runtime, under normal operations.
Artifact - Ingestion Layer

Response - Process Manager is notified, new components are instantiated to serve existing
streams.
Response Measure: The system does not incur in significant downtime (>30s) during cluster
failure.

Table 5.5: Sample Quality-Attribute Scenario for the Ingestion Layer (IL). In this
case, the quality-attribute scenario relates to Availability.

81

Chapter 5

5.3.2 Storage Layer

After coming through the Ingestion Layer’s streams, data arrives at the Storage
Layer (SL), where it must be stored, organized, catalogued and treated, if neces-
sary.

The functional requirements of the SL focus on features necessary to create a
scalable and reliable data store. The ability to visualise data, snapshot, organize
metadata and even provide transformations and ETL on incoming and outgoing
data-streams give ample tools for data management, and create the ideal ground
for a Lakehouse architecture.

ID Actor Source Description

FR-SL-003 System REQ-1 The system shall provide a functionality to create
snapshots of data on-demand.

FR-SL-006 System REQ-1 The system shall provide the ability to store data for
a specified period of time.

FR-SL-007 System REQ-1 The system shall allow the storage of structured,
semi-structured and unstructured data.

FR-SL-008 System REQ-1 The system shall enable scheduling of storage main-
tenance operations (de-duplication, backup, etc.)

FR-SL-010 System REQ-1 The system shall continuously extract metadata from
incoming data streams.

Table 5.6: Sample Functional Requirements for Storage Layer (SL).

Non-functional requirements for the SL focus on Availability, Integrity and Re-
liability, as all the storage system’s data must be backed-up, secured and highly
available to ensure harmony within the system. Additionally, some considera-
tions are made for Security, to ensure that unauthorized access is promptly de-
nied.

QAS-SL-005 - Reliability - REQ-1

Source - Storage Components
Stimulus - One of the storage components ceases to function and communicate.
Environment - At runtime, under normal operations.
Artifact - Storage Layer

Response - Failure is detected, operations are handed over to replicated backups. Faulty
service is restored.
Response Measure: Data must never be lost, either through image backups or distributed
replicas, and the original storage component must be rebuilt and repopulated fully within 1
day.

Table 5.7: Sample Quality-Attribute Scenario for the Storage Layer (SL). In this
case, the quality-attribute scenario relates to Reliability.

82

Requirement Analysis & Specification

5.3.3 Serving Layer

When data, within the Storage Layer, must be used, it is the Serving Layer’s (SV)
components which will bridge the gap between the storage and the endpoint
services.

The functional requirements of the SV focus on convenience features such as au-
tomation, query flexibility (i.e. perform ad-hoc queries) and data sharing features
to fulfil the more "Data-Mesh" oriented use-cases, enabling end-users to share
their data with other clients through a number of filters and privacy-preserving
techniques, and disabling access to unauthorized users outside of the relevant
domain.

ID Actor Source Description

FR-SV-001 System REQ-1 The system shall allow for the automation of data
transit (pushing, pulling) for external services

FR-SV-002 System REQ-1 The system relays data from the Storage Layer
through a message queue

FR-SV-007 Data
Manager

REQ-1 The data manager can configure data transit for new
external services.

FR-SV-008 System PRE The system shall present specific views of the data in
the SL according to the user’s access level/domain.

Table 5.8: Sample Functional Requirements for Serving Layer (SV).

Non-functional requirements for this layer focus on the qualities of Performance,
for high speed querying and data fetching/pulling, and in Security, Traceability
and Consistency, to ensure that user access is done according to the relevant
rules and domain lock-outs, and that all user accesses can be traced for auditing
purposes.

QAS-SV-003 - Security - REQ-1

Source - Data Manager
Stimulus - The data manager wishes to configure new data views for a tenant’s users.
Environment - At runtime, under normal operations.
Artifact - Tenant Interface

Response - The new views are available to the relevant end-users/domains/tenant.
Response Measure: Propagation of new views takes at most 1 hour. Non-authorized users
cannot access this view.

Table 5.9: Sample Quality-Attribute Scenario for the Serving Layer (SV). In this
case, the quality-attribute scenario relates to Security.

83

Chapter 5

5.3.4 Administration Layer

The administrative side of the framework will focus mostly on the traceability
and auditability aspects of the use of data within the framework.

Functional requirements for this layer include the management of teams, do-
mains and users and also the logging of user activity. This management is done
also on the level of maintaining an external data catalog, which serves as a ledger
for all the operations and metadata attached to the data within the system. This
catalog may also be used to initiate data sharing contracts with external clients,
by allowing them to browse the catalog and see, via the metadata, what data may
be of use to them, without compromising on its privacy and security.

ID Actor Source Description

FR-AL-001 Data
Manager

REQ-1 The data manager can perform access control op-
erations, defining who can access which domains
through an IMS (Identity Management System)

FR-AL-005 System REQ-1 The system shall perform global user interaction
monitoring using daily logs pertaining to user actions
(read, write, modify)

FR-AL-006 System REQ-1 The system shall snapshot logs on a configurable ba-
sis and save them to LTS for auditability purposes.

Table 5.10: Sample Functional Requirements for Administration Layer (AL).

Non-functional requirements of this layer involve the maintenance of Security,
Privacy and Isolation, key qualities of a compliant system, and with some in-
terest put on issues of Usability and Consistency to ensure that operating this
administrative environment is easy, and that its effects on the system are felt in a
consistent way.

QAS-AL-004 - Privacy - REQ-1

Source - Tenant X
Stimulus - Tenant X wishes to access data from Tenant Y’s catalog.
Environment - At runtime, under normal operations.
Artifact - Management Dashboard

Response - If Tenant Y has created self-serve views, these may be used. If not, a request is
made for the Data Manager to enable access.
Response Measure: Tenant X cannot access Tenant Y’s data beyond the views which Tenant
Y provides (i.e. if Tenant Y does not enable the viewing of the first column of a DB, Tenant X
will receive that DB without said column).

Table 5.11: Sample Quality-Attribute Scenario for the Administration Layer (AL).
In this case, the quality-attribute scenario relates to Privacy.

84

Requirement Analysis & Specification

5.3.5 Orchestration Layer

With the distributed system in execution, and with the organizational side of the
framework being accounted for, what remains is the management of the infras-
tructure, which relies on logging, monitoring and alarm, to ensure a quick reac-
tion to any adverse conditions.

Functional requirements for this layer generally revolve around the monitoring of
the many components, the health checking and associated analytics and metrics.
With this information, the process manager can automate tasks and backups, set
up alarms, triggers and actions to ensure the harmonious operation of the frame-
work. Additionally, some consideration is allotted to disaster recovery, ensuring
that backups occur and that recovery is possible.

ID Actor Source Description

FR-OL-002 System REQ-1 The system shall perform status monitoring on all
components

FR-OL-003 System REQ-1 The system shall support the building of im-
ages/snapshots of log data and save them to LTS.

FR-OL-007 Process
Manager

REQ-1 The process manager can access platform health data,
status information and component metrics.

FR-OL-009 Process
Manager

REQ-1 The process manager can configure alarms, triggers
and actions, and automate them via connection to
specific component(s).

Table 5.12: Sample Functional Requirements for Orchestration Layer (OL).

The non-functional requirements of this layer revolver generally around Scal-
ability, Performance and Availability, key factors in the system’s response to
changes in the operating conditions, as well as matters of Consistency in how
often the system should execute its backup operations.

QAS-OL-006 - Consistency - REQ-1

Source - Process Manager
Stimulus - The process manager wishes to configure automated snapshotting for the system
health logs.
Environment - At configure time.
Artifact - Orchestration Layer

Response - The logs are saved to LTS via snapshotting at configured time intervals.
Response Measure: Discrepancies of time between snapshots are no greater than 0.1%.

Table 5.13: Sample Quality-Attribute Scenario for the Administration Layer (AL).
In this case, the quality-attribute scenario relates to Consistency.

85

Chapter 6

Architecture Design

Following the description of the requirements, and the creation of a characteriza-
tion which encompasses the functions and qualities of the system, the architecture
process can begin. This process involves the decision-making and corresponding
validation that will eventually result in a properly justified, correct and validated
specification featuring the components, functionalities and qualities expected of
the target system.

During this project, three iterations of the ACDM process were undertaken:

• Iteration #0 - Draft/Notional Architecture

• Iteration #1 - First refinement, Ingestion focused.

• Iteration #2 - Second and final refinement, Storage and Serving focused.

The iteration logs presented in this chapter have the following structure:

1. Analysis - Critical review of the artifacts of the previous iteration, its issues
and any changes which may have occurred.

2. Refinement - Description of the steps taken to evolve the architecture into
its next form. Refinement is performed by updating the requirements, then
updating the architecture, and finally consolidating the current architecture, its
alternatives and design considerations. This step is called "Creation" for
Iteration #0.

3. Review & Validation - Detailed analysis of the architecture based on the
RAID issue tracker’s output. Presented as a summary of the identified is-
sues and the mitigation plan for each issue.

4. Experiments - Aggregated logs of the experiments performed during the it-
eration, presenting a description of each experiment, the experimental sce-
nario/configuration and the experimental results.

5. Result - Summarised view at the iteration’s outcome, presented as a layer-
by-layer analysis along with a reduced architecture diagram.

87

Chapter 6

6.1 Iteration #0 - Notional Architecture

Following the first draft of the requirement specification, enough information had
been gathered to create a draft of the architecture. Because there is not yet a
base for refinement, this iteration serves mainly to provide a quickly put together
foundation which informs on a general level, giving a very basic understanding
of that possibilities may arise as the architecture is further refined.

Three steps are undertaken in this initial iteration: the creation of the basic archi-
tecture layout, the review of this simple design, and a description of its general
functionality.

During this time in the development process, the ACDM’s strict and structured
review processes had not yet been fully adhered to, which resulted in a very
incomplete and crude verification, based only on documentation review and not
using any kind of experimental validation. As such, the descriptions within this
section will be far less detailed than those in the subsequent iterations.

It should also be noted that, at this stage, the Requirement Specification was still
in a preliminary state, pending verification and feedback from Altice Labs. Due to
time constraints related to the project’s deadlines, it had to be used as a backbone
regardless, and this resulted in some marked insufficiencies within the notional
draft, which had to be corrected in the subsequent iterations.

6.1.1 Analysis

Based on the preliminary documents provided by Altice Labs, some information
was already present to tackle the initial design of the architecture:

• A three layer setup - "Streaming" (Ingestion) Layer, Storage Layer and Serv-
ing Layer - was used.

• A number of technologies were present in the supplied diagrams, with the
main ones being identified and categorized in the following sets:

– Ingestion - Kafka, StreamSets, Flume, Spark.

– Storage - HDFS, S3, PostGres.

– Serving - Impala, Presto, Flink.

With this information, as well as the drivers and requirements extracted during
the ADEW, it was possible to create a Requirement Specification, which informed
on the system’s functionalities and qualities, to a certain extent. The Requirement
Specification had used an architecture partitioning system which relates to the
logical structures within a Big Data architecture - ingestion, storage and serving.
This would be the nomenclature that was carried forward, to maintain consis-
tency between documents.

88

Architecture Design

6.1.2 Creation

Using the supplied information as a supporting resource, an architecture draft
was produced that used Kafka as its main data streaming tool, HDFS as its main
storage component, and a mixed use of Flume, Presto and Spark for querying and
serving. This layout was quite basic however, and did not meet all functional
requirements (namely those related to task scheduling and automation, or ETL
operations).

Following this analysis, and, after some additional research, the addition of a
Spark module was added to perform ETL prior to data storage into the Hadoop
cluster. As a supporting structure, and based on research regarding the use of
Airflow as an automation support tool, the use of Airflow with Spark’s ETL abil-
ities was considered. Within HDFS, the addition of Hudi as a "Lakehouse" com-
ponent, adding metadata management capabilities, and Hive as a "Warehouse"
component adding ACID-compliant high-speed transactional queries allowed
the draft to now be able to meet all the currently identified functional require-
ments (based on the listed features within the software’s documentation).

Figure 6.1 expresses a simplified data flow diagram of the system’s draft.

Figure 6.1: Conceptual data flow diagram of the notional architecture draft. The
main components are visible and their data flows are represented by arrows.

6.1.3 Review & Validation

As previously mentioned, at this point the rigorous validation process of the
architecture review (as defined in the Methodology chapter) was not yet being
used, as the notional architecture required only a superficial documentation-based
validation. In its stead, a simple and brief documentation-analysis based ap-
proach was used to perform the gist of the validation, looking at the requirements
and comparing the various components’ documentation to assert, albeit only on
a surface level, if the requirement could potentially be met.

89

Chapter 6

The process involved going through each of the layers, and verifying if the doc-
umentation presented sufficient evidence that the various components was pro-
visioned with the required functionality/quality to meet the requirements. This
description uses the requirements as they were defined at the start of the project,
presenting various differences from the final version.

Ingestion Layer

The Ingestion Layer (IL) components met all the functional requirements, as ex-
pected. The documentation showed them as possessing all the necessary features
which, up to that point, had been identified for the IL. Next, it was important
to verify if the components were within possibility of meeting Quality Attribute
(QA) requirements, by looking at benchmarks and documentation and compar-
ing them to the metrics exposed within the QAs. Table 6.1 presents this "Pass-Fail"
analysis:

ID Description Pass (w. desc)

QA-IL-001 System must be able to capture
600M events/day in regular op-
eration.

PASS - Kafka’s limitation comes from
lack of hardware. Some instances have
been configured to process trillions of
events per day.

QA-IL-002 The system (handles) 40k files
per day under regular opera-
tion. (Processed) in under two
minutes.

PASS - Ingestion time is one of the
measurable and configurable settings
for a Kafka cluster, allowing fine-
tuning of specific streams for these
files.

QA-IL-003 Each file has between 100MB
and 200MB and will represent
50GB daily.

PASS - By scaling up resources, Kafka
can instantiate multiple brokers to pro-
cess up to 10GB/s (in ideal conditions).

QA-IL-004 Data acquisition must be contin-
uously initiated at 6 minute in-
tervals.

PASS - Through Airflow scheduling
and automation, Kafka streams can be
instantiated on-demand.

QA-IL-005 The system can handle near real-
time data acquisition (...).

PASS - Kafka latency can be made as
low as 10ms.

QA-IL-006 The system can handle 100k
events per second from 10k
Video Boxes.

PASS - Due to Kafka’s scalable nature,
it can easily handle 100k events, by
scaling up the amount of internal clus-
ters.

QA-IL-007 The system supports both con-
tinuous and periodic data acqui-
sition processes.

PASS - Kafka streams are continuous,
but through Airflow scheduling and
automation, it can be made to be on-
demand or periodic.

QA-IL-008 The platform shall support
exactly-once (EO) message
delivery.

PASS - Kafka can support EO mes-
sage delivery using a transaction-
based method of operation.

Table 6.1: QA Evaluation table for draft components of the Ingestion Layer.

90

Architecture Design

Storage Layer

The Storage Layer (SL) components met all the functional requirements, having
support for both streaming and batch data, possessing features such as data com-
pression, compaction, etc. and having inter-operability features for data integra-
tion, due to running on the HDFS ecosystem, which provided native compat-
ibility between all the selected components. The subsequent validation of the
QAs produced results indicative of a good fit, showing that through analysis of
feature-sets, HDFS, Hudi and Hive would possibly be able to meet all the relevant
quality attributes. Table 6.2 presents the "Pass-Fail" analysis for the SL:

ID Description Pass (w. desc)

QA-SL-001 Aggregated data snapshots
must be refreshed 24 times
daily, in 1-hour intervals.

PASS - HDFS supports snapshotting
natively, and through Airflow this pro-
cess can be automated.

QA-SL-002 The system must cope with
20TB of data in 1st year and
10TB of yearly growth.

PASS - This growth is limited by hard-
ware only, as HDFS is very flexible,
even up to the petabyte scale.

QA-SL-003 Data must not be deleted in any
circumstance, although lossless
data compression (...).

PASS - Hadoop, Hudi and Hive
all support lossless compression and
backups.

QA-SL-004 The system must handle 10 to 20
thousand database tables under
regular operation.

PASS - The Hive documentation rec-
ommends no more than 500.000 active
tables, providing ample room for nor-
mal functioning and even expansion.

QA-SL-005 The system shall support Long-
term storage (LTS).

PASS - HDFS, Hive and Hudi allow
for backups and HDFS provides an ad-
vanced LTS feature natively.

QA-SL-006 The system shall support
storage of structured, semi-
structured and unstructured
data.

PASS - Using Hive and Hudi both
types of data are supported.

QA-SL-007 The system shall categorize in-
coming data automatically (...)

PASS - Airflow, running on a Spark an-
alytics cluster, will allow for realtime
data analysis and categorization, with
optional injection of metadata into the
files.

Table 6.2: QA Evaluation table for draft components of the Storage Layer.

Serving Layer

The SV’s functional requirements were met through the use of Hive and Presto
to satisfy querying operations, providing flexibility and options when configur-
ing queries (ad-hoc and preset). The use of Airflow allows for the same flexi-
bility when it comes to sending and receiving data as the other layers possess.
Push/Pull operations can be configured, and data enrichment can be performed
by automating data-source mixing tasks, and sending the data back to the IL.

91

Chapter 6

The current state of affairs regarding the SV was quite insufficient, with very few
Quality Attribute requirements defined, and with the use of components not be-
ing very clear. Regardless, the SV’s components’ ability to meet the identified
quality attributes was evaluated, once again by researching within the documen-
tation. Table 6.3 shows these results.

ID Description Pass (w. desc)

QA-SV-001 The system must enable au-
diting and non-repudiation of
user’s access to data.

PASS - Presto supports authentication
and auditing natively, saving queries
and usage metrics to a file (which may
be stored safely in the SL).

QA-SV-002 The system ensures data privacy
among clients (in) a multi-tenant
architecture.

PASS - HDFS and all mounted compo-
nents support role-based security and
lockouts, enabling data privacy.

Table 6.3: QA Evaluation table for draft components of the Serving Layer.

General Requirements

Additionally, some of the functional and non-functional requirements that related
to the globality of the system were analysed. Functional requirements were not
defined for the globality of the system as each layer presented vastly different
functional characterizations.

As far as the general qualities of the system, some questions of availability, main-
tainability and throughput were presented, and the analysis of the documenta-
tion, mainly of HDFS and Kafka, presented them both as potential candidates for
meeting these requirements. Table 6.4 presents the results of this analysis:

ID Description Pass (w. desc)

QA-G-001 The system remains online dur-
ing maintenance or update.

PASS - HDFS and possesses CI/CD ca-
pabilities.

QA-G-002 When a data system becomes
unresponsive, data must never
be lost and the connection is
eventually re-established.

PASS - Kafka buffers support Exactly-
once message delivery, using buffers to
store data until it is sent successfully,
and Airflow supports automating the
retrying procedures/handshakes.

QA-G-003 Peaks (...) are typical, and the
system remains in operation and
does not lose data or functional-
ity (...).

PASS - Kafka and HDFS are good pair
since both are natively scalable and
elastic. All other services mounted
atop this ecosystem are, by virtue of in-
tegration, similarly capable.

Table 6.4: QA Evaluation table for globality of the system in the draft.

92

Architecture Design

6.1.4 Outcome

While this iteration had a very troubled execution, namely due to project man-
agement related difficulties, the lack of adherence to strict validation standards
and the general lack of experience and knowledge evidenced by the lackluster
design process, it nonetheless resulted in a foundation which could be improved.
This foundation is described in a condensed container diagram (Fig. 6.2).

Figure 6.2: Condensed container diagram for the framework architecture as of the
first iteration. Each block represents an application or micro-service executing in
its own environment.

The draft had three main components which served as the core of the architecture:
Kafka, HDFS and Spark/Presto. While these components were not yet experi-
mentally validated, they served as a starting point for a more rigorous approach.

93

Chapter 6

6.2 Iteration #1 - First Refinement, Ingestion Layer

The first iteration’s objective was to build a more concrete architecture from the
notional architecture produced in Iteration 0. The main problems identified with
the draft included missing management and monitoring scopes, which had to be
integrated and accounted for, and some important structural changes to the ar-
chitecture (mainly the lack of a Data Catalog component).

Considering these changes, the areas where the requirements were validated
and more refined were the target of focused refinement and experiments which
sought to validate mainly performance and scalability-related metrics of the In-
gestion Layer components - in this case, Apache Kafka. Alternatives to Kafka
were mapped and compared, eventually cementing Kafka as the correct choice
for this architecture.

The process of analysing, refining and validating these changes is described in
detail in the following sub-sections.

6.2.1 Analysis

The analysis was performed internally, with the professors, and externally, through
meetings with Altice Labs where the draft was presented, and some more require-
ment/driver related information was requested. Through this process, some ar-
eas were identified as being underdeveloped:

1. Two crucial scopes were missing from the requirement specification and
architecture draft: management of data access (access control, data gover-
nance) and management of the infrastructure (health monitoring, network
monitoring)

2. Actors were poorly defined in the requirements, with unclear roles such as
"Administrator", "User" or roles which were too specific such as "Data Sci-
entist" - that while not necessarily incorrect, didn’t result in fundamentally
distinct requirements/drivers.

3. Metadata-related governance requirements were poorly defined, and the
architecture did not have a metadata catalog component, which was identi-
fied as a key requirement.

4. Failure scopes were not included in the Requirement Specification. Qual-
ity Attributes mostly accounted for normal operations and healthy system
states and non-functional attributes were presented poorly, in a basic format
with little detail (not quality-attribute scenarios)

These issues were tracked in the RAID sheet, and handling plans were put in
place to begin the refinement and validation processes. For this iteration, most of
the issues were related to lacking architectural drivers (requirements, essentially)
which required re-working and clarification.

94

Architecture Design

6.2.2 Refinement

The first stage in the refinement process was the update of the requirements ac-
cording to the feedback obtained during the analysis stage. This process consisted
in the re-writing of requirements with the following objectives:

• Improve the quality of the requirement specification – Make definitions
clearer, avoid overly specific definitions and remove redundant require-
ments. Quality-Attributes converted to six-part scenarios; roles reworked
(Data Manager, Process Manager and End-user).

• Centralise infrastructure management requirements – These will be en-
compassed in a new layer – the Orchestration Layer (OL). Includes every-
thing related to logging and health monitoring/alarms.

• Centralise access control/privacy requirements – These will be encompassed
in a new layer – the Administration Layer (AL). Includes everything related
to access control and traceability.

With these new requirements, new technologies were identified as potential can-
didates for these two new layers and for the new data access stack:

Lakehouse - Data Access Stack

In order to make the Lakehouse a reality, it is necessary to ensure the existence of
a metadata store, as well as a service to use this store.

Lakehouse interfaces which have currently been identified (Hudi and Iceberg)
seem to meet the functional requirements for the system, but they have not been
fully validated, and their feature-set is too extensive for a fully-encompassing
testing scope.

Metadata Catalog

The currently most promising candidate for the Metadata Catalog on the on-prem
conception of the system is Apache Atlas, which is an out-of-the-box data cata-
log and governance solution for HDFS-based systems. It is heavily tied to the
Hadoop ecosystem, presenting native integration with Hive, Kafka and Spark.

There are also cloud-native alternatives which offload the metadata management
and data access to managed services. Cloudera, for example, ships with Apache
Atlas natively integrated; Alation is a managed data catalog which can hook onto
services such as S3/Min.IO and AWS Glue is able to provide data catalog capa-
bilities to AWS-based storage.

95

Chapter 6

Orchestration Layer

In this layer, it was necessary to design a monitoring stack that could extract
metrics from all the currently identified components, and generate opportunities
for high-performance analytics. For the on-prem conception of the architecture,
Nagios was identified as a possible centerpiece for this layer, to monitor con-
nectivity and general system health through direct connections to the numerous
servers (for example, the Kafka services, HDFS back-end, etc.) . Additionally,
the use of Log4j as a technical bridge for the numerous Java-based components
enables the use of Spark to run continuous real-time analytics on the large log
flows generated during everyday operations.

Cloud-native solutions generally rely on integrated infrastructure management
dashboards and configurations. As a result, if the architecture migrates to the
cloud-native managed service route, then the management and monitoring is in-
tegrated, for example, with AWS Cloudwatch in the AWS stack.

Administration Layer

The administration of the system essentially relies on the underlying technology
stack. For each of the alternatives (on-prem, cloud-native) several options are
available. HDFS based systems can use Apache Ranger (which features native
integration with Apache Atlas’ dashboard) or Apache Sentry, which governs
direct accesses to HDFS. Meanwhile, cloud-native solutions, much like the man-
agement scope, often come with their own identity management and governance
solutions. AWS IAM is the component in the AWS Suite which can enforce role-
based security on the entire ecosystem.

Consolidation

Additionally, work was performed to organize the current components, and their
respective alternatives, layer-by-layer. It is possible to look at the architecture as
being not just a single possible path, but a set of modular building blocks which
can be used to reach the goal of having a functional framework. By analysing the
compatibility between the identified technologies, it is possible to, for example,
leverage the power and availability of cloud-native tech while also maintaining
the fine-grain control of self-hosted and designed serving solutions.

On the Ingestion Layer, Kafka was defined as a strong candidate due to its sim-
plicity, power and compatibility. Despite this, it was necessary to perform a val-
idation pass to ascertain if it truly was the most adequate fit, before experiments
could proceed.

The result indicates that, for an on-prem, open-source solution, Kafka holds the
lead when compared to the alternative message systems - ActiveMQ, RabbitMQ
and, on the managed side, Kinesis/Confluent Kafka (these losing priority mainly
due to the costs associated with them). The results of this comparison are pre-
sented in Table 6.5.

96

Architecture Design

Feature Apache
Kafka

Confluent
Kafka

AWS
Kinesis

AWS SQS ActiveMQ RabbitMQ

Scalability Horizontal,
auto

Horizontal,
auto

Horizontal,
auto

Horizontal,
auto

Replicable Not
natively

Cost Control Can throttle
consumer

Yes Yes Yes Throttled
externally

Can throttle
consumer

Throughput Very High Exceptional Exceptional Exceptional Low Low

At-Least Once Yes Yes Yes Yes Yes Yes

Message Retention Policy-
based

Policy-
based

Policy-
based

Policy-
based

Delete
after ack.

Delete after
ack.

Cost Model Open-
source

Managed
(SaaS)

Managed
(SaaS)

Managed
(SaaS)

Open-
source

Open-
source

Availability Very High Exceptional Exceptional Exceptional Medium,
High

Medium,
High

Pluggable Metrics Yes Yes Yes Yes Yes Yes

Monitoring Highly
compatible

Proprietary Proprietary Proprietary Highly
compatible

Highly
compatible

Message Ordering Yes Yes Yes No No No

Message Consumption Pull-type Pull-type Pull-type Push-type Push-type Push-type

Latency Low Low Low Low Very Low Very Low

Error Detection Checksum Checksum Not
natively

Optional
Checksum

Not
natively

Not
natively

Topology Pub/Sub Pub/sub Pub/Sub Queue Queue Queue

Direct ETL Support No No Yes No No No

Table 6.5: Comparison of the main Data Ingestion components under analysis.
Components are sorted from left (most suited) to right (least suited) based on
how well they meet the requirements through a documentation-analysis based
approach, to set expectations and create a knowledge-base.

While these features do not directly express quality attributes, they are inherently
tied to them. Through these metrics it is possible to assert that quality-attributes
may be met, and informs on which component may be best suited for the task,
serving as a preliminary step to the validation processes which take place in the
next stage.

97

Chapter 6

To inform on the current state of the architecture, a simplified Container diagram
was created, to illustrate the architecture’s main operating blocks (Figure 6.3. For
the C4-model presentations, the layers which are used in the design process (IL,
SL, SV, AL, OL) are not utilised.

Figure 6.3: Condensed container diagram for the framework architecture as of
the first iteration. Each block represents an application or micro-service. Dashed
lines indicate metadata flows.

In the current definition of the architecture, data flows from the source systems
through a Kafka cluster, entering the Hadoop Storage through the use of a Lake-
house API (which is yet undefined), and going through operations, transforma-
tions and integration within a Hadoop cluster (which may house a number of
internal components such as Spark, Hive, etc.). Parallel to this, the Apache At-
las data catalog is being built with entries that originate through a hook onto the
Kafka cluster, cataloguing data as it comes into the system, and eventually mak-
ing it available through a Web Interface, to which the authenticated user will have
access to.

98

Architecture Design

6.2.3 Review and Validation

For the review, and considering that some large changes were still pending vali-
dation from Altice Labs (mainly the changes to the Serving Layer, Orchestration
and Administration layers and all the supporting structures), the focus of the re-
view was on the Ingestion Layer and the Storage Layer.

In the Ingestion Layer, Kafka presented some unique challenges:

• Performance requirements could not be verified by analysing research or
documentation alone, experimental validation was required to verify if it
could meet these requirements, even on sub-par hardware.

• Availability and Integrity related requirements raised some concerns since
Kafka’s only mechanisms to preserve harmonious operation stem from repli-
cation and redundancy – documentation states that checksums are applied
but the process is not transparent. Could Kafka be relied upon to deliver all
sent messages, and could it do so without errors?

• Kafka would be experimentally analysed to validate the following metrics,
in order to verify if it meets all the relevant quality-attribute requirements:

– End-to-End Latency (<100ms in 99.99% of messages)

– Message Loss Rate (<0.1%)

– Message Out-of-Order Rate (<0.01%)

– Message Error Rate (<0.01%)

– Throughput (informative measure only)

– Maximum Recorded Downtime (Must be <30s)

As for the Storage Layer, Hadoop/HDFS also presented some difficulties, mainly
due to how extensive the software is:

• Due to its large scope, HDFS was only understood on a basic level. The
ecosystem presented so many technologies that a more comprehensive anal-
ysis was due to ensure that it was viable. Documentation, online experi-
ments and the general industry’s long-term support make it a seemingly
viable candidate in all things related to scalability (and such requirements
cannot be tested without sufficient hardware).

• It is then necessary to adapt the requirements of the Storage Layer to focus
more on the usability of the storage components that exist within HDFS or
any other storage solution, rather than attempt to analyse the performance
and scalability characteristics of the storage solution itself, as testing would
be impossible within the hardware’s limitations.

The remaining aspects which were not validated were passed onto the next iter-
ation, pending the feedback from Altice Labs.

99

Chapter 6

The output of the validation of the first iteration was summarised through a con-
densed representation of the RAID Issue Tracker table (Type 0 issues - "no action
required" - were omitted for brevity) presented in Table 6.6:

ID Issue Description Type Mitigation Plan Status
I-001 Monitoring is

insufficiently defined.
4 Re-structure the architecture to

account for a larger degree of
monitoring and traceability.

NEXT

I-002 Catalog not included
in the architecture
draft.

3 Research Data Catalogs,
rework the Storage Layer and
Serving Layer.

NEXT

I-003 Alarms/actions are
not defined.

4 Research
monitoring/orchestration
solutions/engines

NEXT

I-004 No provisions for data
lineage tracking

4 Related to I-002, research Data
Catalogs/Lakehouse.

NEXT

I-005 No provisions for
access control, views,
etc.

4 Research traceability/access
control solutions compatible
with the new catalog/data
solution.

NEXT

I-007 Kafka’s execution
profile is unclear.

5 Prepare experiments:
INDIV-001 and INDIV-002.

OPEN

I-009 Connection of a new
data stream may take
more time than
expected.

5 Research shows that new
sources take a bit more to start
(20-30 seconds). Is this a
problem? Would this
condition the use of Kafka?

OPEN

I-010 Kafka’s error detection
abilities are unclear

5 Experiment on Kafka error
rates (INDIV-002).

OPEN

I-011 Kafka latency may be
too high for RT/NRT.

5 Experiment on Kafka latency
(INDIV-001, INDIV-002).

OPEN

I-012 HDFS is very crudely
understood.

3 Research more on HDFS fault
tolerance, data replication,
availability metrics.

CLOSED

I-017 Requirements scoped
under failure scenarios
are underrepresented

2 Rework QAS descriptions to
also include failure modes and
possible faults.

CLOSED

Table 6.6: Condensed view of the RAID issue tracker table as of Iteration 1, dis-
playing each issue, its description, type and mitigation plan. Issues of type 0 were
omitted, and text was condensed to fit the short-form presentation approach. The
"Status" column indicates that state of the issue at the end of the iteration. Issues
with closed status will be omitted from future iterations of the table.

100

Architecture Design

6.2.4 Experiments

In this iterations two experiments were performed on Apache Kafka, using its
default configuration, to analyse its performance in normal operations, highly
concurrent (high-load) operation under partial failure. The experiments identi-
fied in Table 6.7 were executed using the configuration described in Table 6.8.

ID Target Description Metrics Status

INDIV-001 Kafka Profile Kafka’s normal
operation

Performance,
Integrity

PASS

INDIV-002 Kafka Profile Kafka under partial
failure

Availability, Integrity PASS

Table 6.7: Experiment specification related to Iteration 1’s validation process.

ID System CPU Clock Cores Memory OS

A ASUS X571GT
79B15PL1

Intel Core
i7-9750H

4.5GHz 6 12GB Windows 10
22H2

Table 6.8: Technical specification of the system for the experimental setups de-
scribed for the first iteration.

The software was deployed locally in System A through a set of Java-based appli-
cations using a threaded implementation of the Kafka Consumer and Producer
API (version 3.4.0).

Configuration

The Kafka configuration which was used in this set of experiments consisted in a
simple three-broker implementation, serving a single Kafka topic, with a varying
number of producers (single or concurrent), as described in Figure 6.4:

Figure 6.4: Experimental setup for the Kafka experiments of Iteration 1. In green
is the "single producer" setup, and in blue is the "concurrent producer" setup.

101

Chapter 6

The message structure (described in Figure 6.4) included the Process ID (PID) of
the producer responsible for writing the message to the topic; a serial/sequence
number for the message and the timestamp of the commitment of the message to
the topic.

This structure will enable the computation of metrics related to integrity, perfor-
mance, consistency and availability. Upon arrival, the messages will be sorted by
their PID to assert ordering, errors and loss/failure. The following metrics will
be analysed:

• End-to-End Latency - Mean of end-to-end latency. 99th percentile will also
be analysed.

• Message Loss Rate - Number of undelivered messages (expressed as a per-
centage).

• Message Out-of-Order Rate - Number of inconsistencies in message order
(expressed as a percentage).

• Message Error Rate - Number of inconsistencies in message content (ex-
pressed as a percentage).

• Throughput - Computed number of messages sent per hour.

• Maximum Recorded Downtime - Time elapsed since system failure (broker
outage) until service re-start.

The following internal identifiers will be used in this experiment-set to categorize
the different scenarios:

• NC - Normal Conditions

• PF - Partial Failure

• SPr - Single Producer

• CPr - Concurrent Producers

And the following conditions are defined for the experimental scenarios that were
used in the experiments:

• NP SPr/CPr (Normal Conditions, Single and Concurrent Producers) - 100.000
events (processed by consumer), brokers remain active throughout. Mean
results calculated over 10 runs.

• PF SPr/CPr (Partial Failure, Single and Concurrent Producers) - 100.000
events (processed by consumer), single broker failure induced programati-
cally at 30.000 messages. Mean results calculated over 10 runs.

102

Architecture Design

INDIV-001 - Kafka Metrics - NC SPr/CPr

Trait NC SPr NC CPr

Mean end-to-end latency (ms) 1.09ms 2.45ms

Message Loss Rate (LR) 0% 0%

Message Out-of-Order Rate (OOR) 0% 0%

Message Error Rate (ERR) 0% 0%

Throughput (TP) 3.5 million msg/hour 5 million msg/hour

Maximum Recorded Downtime (MD) - -

Table 6.9: Experimental results for experiment INDIV001 showing Kafka under
normal conditions in the two analysed load scenarios.

Results - Kafka shows excellent performance. Performance, Consistency and In-
tegrity requirements were met.

Observations - The message transmission occurred without issues, and the ex-
ecution profile seems to indicate that Kafka possesses extraordinary throughput
potential, with a very high level of performance, namely considering the near-
realtime latency results. Kafka’s internally managed scaling profile is also evi-
dent, as when the concurrent producer setup began flooding the topic with mes-
sages, Kafka scaled up its resources and increased its throughput to match the
increased load.

INDIV-002 - Kafka Metrics - PF SPr/CPr

Trait PF SPr PF CPr

Mean end-to-end latency (ms) 54.27ms 92.53ms

Message Loss Rate (LR) 0% 0%

Message Out-of-Order Rate (OOR) 0.08% 0.29%

Message Error Rate (ERR) 0% 0%

Throughput (TP) 1.02 million msg/hour 2.32 million msg/hour

Maximum Recorded Downtime (MD) 22s 19.4s

Table 6.10: Experimental results for experiment INDIV002 showing Kafka under
partial failure (broker outage) in the two analysed load scenarios.

Result - Kafka maintains an acceptable level of performance, meeting the speci-
fied quality attribute metrics even under partial failure.

Observations - Kafka’s latency and maximum downtime were affected by broker
failure, as it incurred a relatively fixed downtime (configuration file defines 18
seconds). There were messages ordering faults during the load re-balancing, as
some of the messages which were passed by the lost broker were re-transmitted.

103

Chapter 6

Experiment Results and Conclusions

Kafka performed to expectation, meeting all latency requirements, loss rate and
error rate requirements and even downtime requirements without much diffi-
culty.

However, some questions were noted that, despite not making Kafka ineligible
for its place in the architecture, deserve some type of consideration:

• Out-of-order requirement is not met during partial failure - It may be im-
portant to implement an ordering and de-duplication mechanism or explore
Kafka’s options for broker-consumer synchronization.

• Scalability is observed but not linear - Kafka’s scaling profile, for a five-
fold increase in load, was only a 42% increase in throughput. It may be
that this was a factor limited by the under-powered hardware (as Kafka
typically runs on machines with a lot more parallel computing power and
memory), but it nonetheless requires a note that there may be some merit in
performing a full analysis of the scaling profile for Kafka’s processing under
high loads, in the same vein as some Kafka studies which create progressive
load profiles [58].

Due to the limitations of the project in both scope and time, the experimental
validation of Kafka for this iteration is limited to these experiments. However,
these considerations are carried forward in the issue tracker, where an issue will
reside regarding Kafka’s scalability profile and regarding the need of a robust
ordering mechanism (either correct or tolerate).

104

Architecture Design

6.2.5 Outcome

With the closing of the first iteration, the results of the undertaken processes were
summarised (layer-by-layer):

• Ingestion Layer

– Technologies identified (Kafka, RabbitMQ, ActiveMQ, Kinesis, SQS)
and features mapped and compared.

– Selection of Kafka as the main ingestion component. Other compo-
nents present some challenges (lack of scalability, complexity, costs)
and are not prioritized.

• Storage Layer

– Technologies identified for Storage back-end (HDFS, S3/Min.IO) and
analysed.

– Current selection is HDFS for the storage back-end. Revision by Altice
Labs is required.

• Serving Layer

– Data Catalog component is now under analysis. Technologies are cur-
rently being identified.

– The role of the metadata catalog and the Lakehouse components are
not fully clear and should be researched and better understood going
into the next iteration.

• Orchestration and Administration Layers

– Monitoring and Management are now scoped, and components have
been selected, albeit in a tentative way.

– Dedicated requirements and components have been created, and tech-
nologies have been identified, as well as proprietary/cloud-native al-
ternatives. Despite this, more research is due, as the area is relatively
recent and documentation is scarce for a number of use-cases.

• Requirement Specification

– Requirements were much more developed and concrete, and now in-
clude failure and maintenance scopes.

– Feedback indicates that some level of stability had been reached with
regards to the requirements. Some details left to clarify, but major de-
cisions were now easier to make.

105

Chapter 6

6.3 Iteration #2 - Storage and Serving Layers

The second iteration involved a great deal of change, mainly due to a number
of requirement changes that occurred after Iteration 1. This iteration focused on
adapting the previous version to these new requirements, as well as continuing
the active exploration of new solutions in the realm of data governance and man-
agement.

After the validation of the Ingestion Layer, there was an opportunity to explore
the drivers of the Storage Layer and, due to its proximity and dependency, the
Lakehouse component of the Serving Layer, due to the aforementioned require-
ment changes. This iteration also focused on validating the compatibility be-
tween all the selected components thus far.

6.3.1 Analysis

Following the presentation of Iteration #1’s outcome, and the presentation of the
iteration’s developments to Altice Labs, some new information was introduced
to clarify questions regarding the Ingestion Layer’s experimental stages, resulting
in changes to requirements.

Additionally, some information was forwarded regarding the Lakehouse compo-
nent, which, up until this point, had been undefined as the relevant technologies
were still under research; and some important requirement changes were com-
municated regarding the infrastructure management components, namely that
the focus of the validation should switch to a compatibility study rather than a
full experimental analysis.

These external changes can be described, layer-by-layer:

• Ingestion Layer

– Some newly defined requirements. RT/NRT streaming are possible
but not essential; audio and video ingestion are core features for the
ingestion pipeline.

– Alternatives to Kafka must be analysed further to see if there is any
alternative powerful enough for high-throughput scalable ingestion,
however, Kafka has massive benefits as a choice – cost of entry is essen-
tially null since Altice Labs S.A. is already using it at scale and has evi-
dence of adequate performance, scalability, availability and workflow-
fit.

• Storage Layer

– The primary choice for the Data Lake component at Altice Labs is
shifting away from HDFS, with a transition towards object-storage
based solutions such as S3/Min.IO. This transition should be priori-
tized. However, HDFS can still be considered as a secondary option to
be analyzed and included if necessary.

106

Architecture Design

• Orchestration Layer

– This layer has been de-prioritized in favor of focusing on the functional
side of the framework, mostly due to the existing knowledge of the
team regarding management and monitoring technology, in order pri-
oritize the development of core features - namely the Data Lakehouse
and Catalog solutions.

• Serving Layer

– The use of PrestoDB, Spark and Flink for data processing/serving is
highly recommended due to familiarity within Altice Labs and will be
used as a reference for comparisons and pre-validation screening of
compatibility.

In parallel, internal research was conducted to identify new technologies for the
Metadata Catalog. The previous conception of the data catalog - a data access
interface - was incorrect, as this feature will be covered by the Lakehouse compo-
nent.

The role of the metadata catalog is much more abstract and independent from
the data access stack, without inherently providing any means to access the data
to which it refers to, instead relying on the analysis of the metadata surround-
ing the system’s many data flows and entries from a purely governance and
management-oriented perspective. In summary, the internal changes can be de-
scribed as:

• Serving Layer

– Data Catalog no longer in the Serving Layer, moved to Administration
Layer due to re-structuring of requirements as well as new research and
clarifications.

– Serving Layer now encompasses the Lakehouse component - a metadata-
based system for ACID-compliant, reliable and fast data access on mixed
distributed storage data in variable formats - as well as the querying
logic and any related components.

• Administration Layer

– Now houses the Metadata Catalog, which tracks the entire data life-
cycle, providing lineage views, traceability and auditability through
visualisation-based dashboards.

– Previous iteration presented Atlas as a solution, but its native connec-
tors are no longer the best fit considering the shift away from HDFS
and toward S3/Min.IO.

– New technologies identified as alternatives to Apache Atlas, perhaps
covering some of the identified problems – OpenMetadata, DataHub.

107

Chapter 6

And, in an effort to improve the understanding of the Metadata Catalog’s func-
tion in a data management framework’s compliance goals, a meeting was sched-
uled with another member of the POWER Project, specializing in Data Gover-
nance, to obtain some insight into the requirements associated with a metadata-
based governance system.

• Data provenance and origin tracking are top priority.

• The use of a business glossary can improve inter-operability between do-
mains.

• Metrics and dashboard analytics for metadata flows is also a desirable fea-
ture.

• DOI (Digital-Object Identifiers) for metadata is a requirement.

• Filter systems and search-engine optimizations are also desirable.

6.3.2 Refinement

After the analysis, steps were taken to improve the architecture. Following the
same pattern that was previously defined, the requirements were updated fol-
lowed by a revision of the architecture’s layout and components. Following these
changes, the architecture was consolidated and all the current alternatives, design
considerations, etc. were mapped.

The requirement specification was updated in the following areas:

• Clarify the Lakehouse components/Metadata Catalog components - Putting
them in their appropriate layers (Lakehouse as a Serving Layer component,
Catalog as an Admin. Layer component) and clarifying their role in the
architecture.

• Rework the requirements of the Orchestration Layer - Reflect the shift to-
ward compatibility-based validation rather than direct performance/feature
validation.

• Rework the requirements of the Administration Layer - This layer, which
now includes the Metadata Catalog, should incorporate the feedback from
Altice Labs and from the internal research and meeting with the data gov-
ernance project’s responsible.

And, following the implementation of these changes, the architecture itself re-
quired some re-structuring, as well as the addition of some new technologies
(namely the previously unresolved Lakehouse component). These new technolo-
gies focused mainly on the Serving layer, in both the Lakehouse scope and in the
context of the query engines that will support the functional use of the platform.

108

Architecture Design

Lakehouse

The Lakehouse components which were aggregated and studied were the pre-
viously mentioned Hudi and Iceberg, as well as the Delta Lake solution, which
had been absent in the previous iteration. These three technologies were looked at
and analysed comparatively to assess their compatibility with the Kafka/Min.IO
stack. This would serve as a preliminary selection prior to the validation based
on the quality-attributes and requirements.

In this evaluation, Hudi was selected as the most fit for the current layout of
the system because it met all the functional requirements and seemed fit (based
on documentation analysis and benchmarking) to meet all the quality attribute
requirements.

Feature Hudi Iceberg Delta Lake AWS LakeFor-
mation

ACID Compliant Yes Yes Yes Yes

Automated Data cleansing Yes Yes Yes Yes

Time-travel queries/snapshots Yes Yes Yes Yes

Data retention policies Yes Yes Yes Yes

Data lineage Yes Possible Yes

Audit History Yes Possible Yes Yes

Schema Evolution/Enforcement Yes Yes Yes Yes (schema
crawler)

Open Source Open Source Open Source Open Source Closed Source

Preffered use-case Efficient
Cloud-Native

"Kappa"
analytics

Large table
.Lakehouses

Massive data
pipelines

AWS S3 based
Lakehouses

OOtB Compatibility with Kafka Yes, very
complete

Not yet,
community

driven

Yes, very
complete

Yes, although
not natively

OOtB compatibility with S3/MinIO Yes, very
complete

Yes, very
complete

Yes,
community

driven

Yes, S3
"one-click"

OOtB Compatibility with Presto Yes, very
complete

Yes,
reasonably
complete

Yes, very
complete

Yes, very
complete

OOtB Compatibility with Spark Yes, very
complete

Yes, very
complete

Yes, very
complete

Yes, preferably
through

Amazon EMR.

OOtB Compatibility with Flink Yes, very
complete

Yes, very
complete

Yes,
reasonably
complete

Yes, preferably
through

Amazon EMR.

Table 6.11: Comparison of the main Lakehouse components under analysis.
Components are sorted from left (most suited) to right (least suited) based on
how well they meet the requirements through a documentation-analysis based
approach.

109

Chapter 6

Query Engines

The refinement of the query engine solutions was a necessary step given the
amount of change the Storage and Serving layers went through in this iteration.
Considering the choice of Hudi as the component of choice, it was now interest-
ing to see what native integrations are supported by Hudi, and select those that
are a better fit for the target architecture, prior to a more in-depth validation.

Based on the Apache Hudi documentation [26], there is a large number of com-
patible query engines:

• Presto and Trino - For interactive querying and analytics.

• Hive, Spark and Impala - For batch analytics and data ops.

• Flink - For streaming analytics.

This makes Hudi a very promising solution, especially due to the native PrestoDB,
Spark and Flink compatibility.

Metadata Catalog

Another area that needed changes was the Administration Layer’s data catalog.
With Hudi being selected for use within the architecture, it was possible to look
among the alternatives and find which one was best suited for the task of over-
looking the operation of this Lakehouse.

The three technologies under analysis for the refinement were OpenMetadata,
Acryl DataHub, Apache Atlas and AWS Glue. The comparative analysis (initial
approach) is described in Table 6.12, with Acryl DataHub being the component
which provides the more promising set of features, especially the out-of-the-box
(OOtB) compatibility with the currently identified stack (Kafka and S3/Min.IO).

110

Architecture Design

Feature Acryl
Datahub

OpenMetadata
Catalog

AWS Glue
Data Catalog

Apache Atlas

Data Discovery Yes Yes Yes Yes

Metadata Management Yes Yes Yes Yes

Data Lineage/Provenance Yes Yes Yes Yes

Glossary Yes Yes Yes Yes

Data Quality pipeline Yes Yes Yes Yes, basic

Documentation Good Very good Very good Good

Open Source Open-source Open-source Closed-source Open-source

SaaS available Yes Yes Yes,
exclusively

Yes

Integration Method Programmatic UI-Based UI-Based Programmatic

CLI Yes Yes Yes, as of
AWS CLI 2

No, through
python

Docker/Kubernetes friendly Yes Yes No No,
Hadoop/YARN

Web UI Yes Yes Yes, AWS
Dash

Yes

Access Control Yes Yes Yes Yes

User Groups Yes Yes Yes Yes

Unique Data Object ID Yes Yes Yes Yes

Dashboard with Metrics Yes Yes Yes Yes

OOtB Compatibility with Kafka Yes Yes Yes Yes

OOtB Compatibility with S3/MinIO Yes Yes Yes Yes

OOtB Compatibility with Hudi Yes No No No

OOtB Compatibility with Presto Yes No No No

Table 6.12: Comparison of the main Metadata Catalog components under analy-
sis. Components are sorted from left (most suited) to right (least suited) based on
how well they meet the requirements through a documentation-analysis based
approach.

111

Chapter 6

Consolidation

As with the previous iteration, a consolidation took place to summarise the cur-
rent architecture through a simplified container diagram (Figure 6.5).

Figure 6.5: Condensed container diagram for the architecture as of the second
iteration. Each block represents an application or micro-service. Dashed lines
indicate metadata flows.

In this iteration, the architecture retains its usage of Kafka as the main ingestion
system, but now uses a Spark Cluster to perform the storage of data, as it is
performed through the Hudi Lakehouse system, which relies on Spark jobs to
extract and label metadata in Hudi’s table.

Typically, one Spark application (deployed in the cluster) will serve a Kafka topic
and encompass that entire data flow, enabling standardized categorization through
Hudi’s metadata table.

112

Architecture Design

This system inserts data into S3/Min.IO using the S3 API while simultaneously
building the Hudi metadata table which enables ACID-compliant and high-
speed querying on the underlying data stored the object storage. To query this
data, a dedicated Spark environment is used, hosting SparkSQL (for Hudi-specific
query types) and PrestoDB (for high-performance distributed querying) deployed
on the Spark back-end.

While data moves through the platform, in all three major steps (ingestion in
Kafka, storage through Hudi, and queries through Spark), metadata is extracted
and passed to DataHub, which builds a dashboard (web interface) that allows for
the users to observe data lineage analysis, data provenance checking, auditing
and more through global perspectives (on the totality of data in the system) or a
more focused analysis (targeting either the ingestion, storage or serving streams
in particular).

6.3.3 Review and Validation

With the previous iteration focusing on the data ingestion processes, and the dras-
tic changes which took place during the start of the iteration, this review focused
on the Storage and Serving Layers, and how the Lakehouse paradigm can be im-
plemented within the framework using current technologies. It was in this stage
that HDFS was de-prioritized and S3/Min.IO was moved to the forefront of the
Storage back-end, which arose some concerns regarding the compatibility of the
chosen components.

For the Storage and Serving Layers:

• Min.IO compatibility must be verified for the currently selected compo-
nents (namely on the data ingestion side)

• Lakehouse Components were analysed and Hudi was selected. Can we
verify that Hudi works with the currently selected components?

• Serving Components - The currently selected components (Spark and Presto)
should be analysed to verify compatibility with Hudi and Min.IO. Presto is
natively integrated with both, and presents a lot of documentation in its use

Additionally, aspects of the Administration Layer were also tackled by analysing
the metadata catalog components which were selected. For the Administration
Layer:

• Acryl Datahub seems to be the most featured and appropriate choice for
the desired use-case. However, it is a very recent software solution, and
the current documentation is insufficient to ensure compatibility with the
current components. Some tests are in order.

As previously discussed, the issues pertaining to the Orchestration Layer have
been de-prioritized and reformulated to be essentially framed as compatibility

113

Chapter 6

verification, and are carried over to a possible third iteration. Table 6.13 holds the
condensed RAID issue tracker for the iteration.

ID Issue Description Type Mitigation Plan Status
I-018 Monitoring has been

de-prioritized.
4 Rework requirements for

compatibility-checks. Pass
issues to next iteration.

CLOSED

I-019 Monitoring
components need to be
feature-mapped and
compared.

3 Research their features and
create a table.

NEXT

I-021 HDFS has been
de-prioritized.

4 Rework architecture, focus on
Min.IO/S3.

CLOSED

I-022 Apache Atlas
incompatible with
Min.IO/S3.

4 Research other data catalog
solutions.

CLOSED

I-023 Lakehouse
Component
alternatives must be
studied.

2 Document them and analyse
their feature set to find the
best fit.

CLOSED

I-024 Kafka->Hudi->Min.IO
chain must be
experimentally
verified for
compatibility

5 Attempt to connect them all
and run a data ingestion
process.

OPEN

I-025 Spark/Presto serving
processes (queries)
must be verified on
Hudi

5 Attempt to query
Hudi/Min.IO/S3.

OPEN

I-026 DataHub’s interface
and setup are not well
understood

5 Attempt to set-up DataHub
and run it.

OPEN

I-027 DataHub’s ingestion
for Kafka sources
seems difficult to
set-up

5 Run DataHub on a Kafka
Stream.

OPEN

I-028 Can the entire system
execute in harmony?

5 Run all components and
monitor the data through the
entire system.

OPEN

Table 6.13: Condensed view of the RAID issue tracker table as of Iteration 2,
displaying each issue, its description, type and mitigation plan. Issues of type 0
were omitted. The "Status" column indicates that state of the issue at the end of
the iteration.

114

Architecture Design

6.3.4 Experiments

The experiments of this iteration focus on establishing that all the selected sys-
tems thus far are compatible, inter-operable, and that an end-to-end data stream-
ing scenario can be established. Additionally, it was relevant to attempt to con-
nect DataHub to the framework and witness its operation.

So, in this case, five experiments were planned. However, only three were per-
formed fully, as the fourth experiment was unfinished, and the fifth experiment
needed more system resources than those that were available at the time:

ID Target Description Metrics Status

INTER-001 Kafka,
Min.IO

Place data in Min.IO through
Kafka

Compatibility,
Interoperability,
Usability

PASS

INTER-002 Hudi,
Min.IO,
Spark

Place data in Min.IO through
Hudi

Compatibility,
Interoperability

PASS

INTER-003 Kafka,
Spark,
Hudi

Place data in Min.IO through
Hudi via Kafka

Compatibility,
Interoperability

PASS

INTER-004 DataHub,
Kafka

Setup DataHub, gather from
Kafka

Compatibility,
Interoperability

SKIP

SYSTEM-001 Full
System

Run and observe fully
connected system behaviour

Compatibility,
Interoperability

SKIP

Table 6.14: Experiment specification related to Iteration 2’s validation process.

ID System CPU Clock Cores Memory OS

A ASUS X571GT
79B15PL1

Intel Core
i7-9750H

4.5GHz 6 12GB Windows 10
22H2

B Subsystem for
Linux

Intel Core
i7-9750H

4.5GHz 6 4GB Docker
Engine Linux

C Virtual
Machine

Unknown Unknown 8 32GB Ubuntu 20.04

Table 6.15: Technical specification of the systems used in the experimental setups
described for the second iteration.

This setup required the use of Docker [56], a program that leverages OS virtuali-
sation1 to create containers - software packages that execute in isolation, running
on the Windows Subsystem for Linux (system B), a virtual machine that runs
natively on Windows. Following the delay of the dissertation, a Virtual Machine
was reserved for testing with the Department of Informatics Engineering to ac-
count for hardware limitations of systems A and B - which unfortunately did not
successfully resolve the identified issues.

1The creation of different parallel execution instances at the OS level, simulating an entirely
separate computer within a computer’s execution state.

115

Chapter 6

Configuration

For this set of experiments, the goal was to create a compatibility verification
process which enabled the flow of data from the ingestion components all the
way to the serving components. To ensure this, the following applications were
necessary:

• A working instance of Min.IO - version 8.4.3

• A working instance of Kafka - version 3.4.0 - using the following libraries:

– apache.hudi.utilities_2.11 - For the Hudi connector

– apache.spark.sql_2.13 - For the Spark connector and session tools

– apache.hadoop.aws 3.3 - For the connection between Spark and Min.IO

– amazonaws.aws.java.sdk 1.12 - For the connection to the S3 API

• A working Spark Cluster -version 3.3.2

– Using Hadoop "winutils" version 3.3 for compatibility with Windows

The Kafka instance from the first iteration was re-used, once more with the de-
fault settings. Min.IO was installed locally, and also used the default settings.

For the Spark Cluster, a Docker container setup was launched, which created the
back-end for the Spark Shell to execute, and enabled the registration of Spark jobs
for Hudi Ingestion, SparkSQL queries and PrestoDB queries.

INTER-001 - Min.IO/Kafka Test

For this experiment, the Kafka consumer was programmed to place its data within
the Min.IO "kafka-test" bucket. The same configurations from the experiments in
Iteration 1 were used, with a single producer under normal conditions sending
100.000 messages through the cluster to the consumer.

Result - Compatibility, inter-operability and usability requirements met.

Observations - All files were placed in the correct bucket, and were readily ac-
cessible. Because files were saved directly as text files, they were open-able, and
presented the correct data within when viewed externally.

INTER-002 - Min.IO/Hudi/Spark Test

For this experiment, the Spark Shell was used to insert sample data into Min.IO
through Hudi. Spark ships with some sample datasets which can be readily in-
serted in Min.IO. This experiment used an official Hudi guide [21] to provide
information regarding on which commands to run.

A session was created, using Hudi as a metadata management system and Min.IO
as the storage back-end, using the following configuration:

116

Architecture Design

spark-shell
--packages org.apache.hudi:hudi-spark3.3-bundle_2.12:0.13.1
--conf ’spark.serializer=org.apache.spark.serializer.KryoSerializer’
--conf ’spark.sql.catalog.spark_catalog= \\

org.apache.spark.sql.hudi.catalog.HoodieCatalog’
--conf ’spark.sql.extensions= \\

org.apache.spark.sql.hudi.HoodieSparkSessionExtension’
--conf ’spark.hadoop.fs.s3a.access.key=admin’
--conf ’spark.hadoop.fs.s3a.secret.key=password’
--conf ’spark.hadoop.fs.s3a.endpoint=http://127.0.0.1:9000’
--conf ’spark.hadoop.fs.s3a.aws.credentials.provider= \\

org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider’

In essence, this session initiates a spark-shell job with Hudi as the catalog system,
which uses SparkSQL to create the metadata entries before forwarding the data to
the S3 API used by Min.IO with the provided credentials at the defined endpoint
(in this case, exposed at 127.0.0.1, port 9000).

By submitting data through SparkSQL in this session, Hudi incrementally builds
a metadata store within the S3 bucket. Data is submitted through the following
commands:

val tableName = "hudi_spark_test"
val basePath = "s3a://hudi/hudi_spark_test"
val dataGen = new DataGenerator
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").mode(Overwrite).save(basePath)

These commands generate a dataset through the Spark "DataGenerator" module,
converting it into a serializable data format (dataframe), setting the dataframe for-
mat to a Hudi compatible schema, and then writing it to the Hudi path. With the
data inside, it was now time to attempt a query through SparkSQL.

val tripsSnapshotDF = spark.read.format("hudi").load(basePath)
spark.sql("select _hoodie_commit_time, _hoodie_record_key, \\

_hoodie_partition_path, \\
rider, driver, fare \\
from hudi_trips_snapshot").show()

This query produced a response that featured a table containing the sample data
(rider, driver and fare columns) as well as relevant Hudi metadata (commit time,
record key, partition path). Time-travel queries are also available (track data as of a
certain commit time)

Result - Pass, Hudi and Min.IO are compatible and the SparkSQL query system
implemented by Hudi meets all requirements.

Observations - Following this, the new bucket "hudi_spark_test" was available,
and the data was visible within the bucket. SparkSQL queries performed in an
independent Spark session produced the correct and expected return.

117

Chapter 6

INTER-003 - Kafka/Spark/Hudi Ingestion Test

The first step is to initiate a Spark session with the correct packages attached,
namely the SparkSQL-Kafka package.

spark-shell
-- packages org.apache.spark:spark-sql-kafka-3–4_0\\

org.apache.hudi:hudi-spark3.3-bundle_2.12:0.13.1
(... same configuration as before)

At this stage, before any Spark connectors are deployed, Kafka is launched, with
the topic "hudi_kafka_test_topic" being the destination for the messages to be
sent by the producer. No consumers are required, as the Spark job for writing data
to Hudi from Kafka encapsulates the consumer logic. The next step is to create
a stream reading component within Spark that can be attached to a Kafka topic
through connection with its bootstrap servers (in this case, exposed at 127.0.0.1,
port 9092). The reader is configured to start at the "earliest" submission which
it does not yet know - this will ensure that the data streams encompass the entire
topic while avoiding duplicates.

val dataStreamReader = spark.readStream.format("kafka").
option("kafka.bootstrap.servers", "http://127.0.0.1:9092").
option("subscribe", "hudi_kafka_test_topic").
option("startingOffsets", "earliest")

Next, a Hudi writer was created, that builds data-frames based on the data which
it receives from Kafka. This is the job which will be executed alongside the Kafka
program, triggered to run every 30 seconds (30000 milliseconds) and ingest data
from the Kafka topic, writing it to Hudi’s table. The data is written in Min.IO
through Kafka itself, and not through this Spark session.

val writer = df.writeStream.format("org.apache.hudi")
val tableName = "hudi_kafka_test"
val basePath = "s3a://hudi/hudi_kafka_test"
writer.trigger(new ProcessingTime(30000)).start(basePath);

Now, with the writer in execution, triggering ingestion into Hudi every 30 sec-
onds, it is possible to launch the producer, which begins sending its programmed
100.000 messages. The process takes approximately 4 minutes, and data is streamed
in in 30 second intervals.

Result - Passed, compatibility is assured, Kafka can stream data into Min.IO us-
ing Hudi with the help of a Spark job.

Observations - Data is correctly streamed in with the appropriate time-stamps.
Future experiments could be targeted at the "writer" job execution timer, to see
if it incurs in any significant overhead if a real-time (<10ms) use-case was con-
sidered. It is worth noting that a much simpler option is currently under devel-
opment using Kafka Connect [106] which should greatly simplify the ingestion
process.

118

Architecture Design

INTER-004 - DataHub Setup

This experiment could not be concluded as the minimum system requirements
for executing DataHub’s docker containers were 10GB of RAM - this was not
feasible for execution on the System B, using the Windows Subsystem for Linux
(WSL) which possessed only 4GB of RAM, or System A, which in total possessed
12GB, but used 2GB for the OS, and needed an additional 2GB for the JVM2 run-
ning Kafka.

Despite this setback, an attempt was still made to set-up DataHub and go through
the execution process. This process involved downloading the container images,
and deploying them using Docker. The following services were deployed, as part
of DataHub’s back-end:

• Deployed Applications

– Kafka, Zookeeper - For the messages handled within DataHub.

– Elasticsearch - For the search indexing and search engine used to browse
the metadata catalog.

– MySQL - To host the data and metadata.

– Neo4j Graph Database - To build the underlying graphs that connect
the metadata.

• Internal Modules

– DataHub Generalised Metadata Service (GMS) - Ingestion and meta-
data management process

– DataHub React Frontend - Web user interface for the DataHub catalog.

During the booting process, Elasticsearch and MySQL presented a number of er-
rors. Kafka started up normally, but when attempting to pass messages between
the numerous services, the brokers continuously disconnected and failed. Addi-
tionally, the DataHub GMS, a REST API deployed by DataHub to act as a pro-
cessing unit for metadata arrivals, was not able to establish a connection to the
MySQL service, thus never actually started up, and the DataHub front-end was
never instantiated. Upon browsing the documentation, it seems that the hard-
ware limitations of System B were a significant limiting factor, as the processes
could not operate with under half of their minimum requirement. System C was
not usable as nested virtualisation (required for running Docker containers in a
Virtual Machine) was not enabled for the reserved VM.

Result - Experiment skipped due to hardware limitations.

Observations - While the experiment was not successful, documentation points
to this use-case (Kafka ingestion with DataHub) using a very commonly used,
successful and well documented/developed feature. References for this experi-
ment are the Metadata Ingestion Guide [50] and the Kafka Ingestion Guide [51] from
the official DataHub documentation.

2Java Virtual Machine

119

Chapter 6

SYSTEM-001 - Full System Test

This experiment would inform on the qualities on Compatibility, Interoperabil-
ity and Performance (end-to-end latency to test feasibility of RT/NRT scenarios).
Under similar circumstances as the previous experiment, this analysis could not
be concluded due to the hardware limitations of System A and System B.

The configuration would have been as described in Figure 6.6:

Figure 6.6: Experimental setup for SYSTEM-001. The Kafka Producer (Green
P) would post messages to the topic which Hudi would ingest from, storing in
Min.IO. SparkSQL would query it and compute end-to-end latency. DataHub
would monitor the entire lifecycle.

The experiment’s intent was to monitor the ingestion of data and the querying
of data, and seeing the information populate the DataHub dashboard. Addi-
tionally the possibility of computing end-to-end latency for the entire framework
would have enabled performance metric extraction. Through the previous exper-
iments, it is possible to infer that the functional side of the framework is capable
of operating simultaneously (as both Kafka ingestion through Hudi and Spark-
SQL Hudi queries were able to run in their own independent tests), however, to
run all of the components together, more hardware resources would be necessary.
Additionally, the execution of the DataHub catalog on top of the remaining sys-
tem was not feasible for the reasons presented in the previous experiment log.
The previously identified issue with nested virtualisation in System C once again
made the execution of this experiment unfeasible.

Result - Experiment skipped due to hardware limitations.

Observations - DataHub’s integrations with Kafka and Spark are quite well doc-
umented and seem to be relatively easy to set-up provided that the execution
environment can support them.

120

Architecture Design

Experiment Results and Conclusions

Due to hardware limitations, this experimental suite was not completed. How-
ever, some relevant information was extracted and the understanding of how the
system operates in production was greatly increased.

Kafka, Hudi and Min.IO were proven to be a compatible coupling, with the flex-
ibility and power of Kafka’s clusters being readily configurable to use Hudi as
a Lakehouse component, organising the incoming data and preparing an easily
query-able metadata table. The flexibility of SparkSQL Hudi queries was also
exposed, showing how it can be used to meet compliance goals related to data
snapshotting, retention and lineage tracing.

Avenues for future work include:

• Study the inter-connectivity of the whole system - Through the use of
more powerful hardware, the entire system can be executed and perfor-
mance, scalability and consistency metrics can be gathered.

• Experiment using the Kafka Connect Hudi Sink - The new technology
is still in development, but it shows a great deal of promise in the quick
management of streaming Kafka pipelines.

• Experiment with the Flink-centric ingestion system - Due to time con-
straints, only one of the two major ingestion systems for Hudi was anal-
ysed (Spark). Flink is a very promising solution which can possibly make
the Hudi ingestion process more optimized, simpler and powerful, by com-
bining it with Flink’s streaming data transformation pipelines.

121

Chapter 6

6.3.5 Outcome

This iteration, despite its setbacks in the experimental stage, resulted in a consid-
erable improvement of the requirement specification as well as a number of large
changes in the architecture that brought it closer to a viable and possible solu-
tion for Altice Labs’ use cases. The results of these processes can be summarised
(layer-by-layer) as:

• Ingestion Layer

– Integration of Spark into the Ingestion Layer for Hudi/Kafka bridging.

• Storage Layer

– Experimental validation of S3/Min.IO as the storage solution, followed
by a compatibility analysis with all currently identified technologies.

• Serving Layer

– Technologies identified (Hudi, Iceberg, Delta Lake, LakeFormation),
and features mapped and compared.

– Selection of Hudi as the most promising candidate, followed by exper-
imental validation with Kafka, S3/Min.IO and Spark.

• Administration Layer

– Technologies identified (OpenMetadata, DataHub, Glue, Atlas), and
features mapped and compared.

– Selection of DataHub as the most promising candidate, experimental
validation started but unfinished.

• Orchestration Layer

– De-prioritization and reduction in scope.

– Currently identified components (Nagios + Spark + Log4J) are com-
patible with all the currently identified technologies, lacking only ex-
perimental validation.

• Requirement Specification

– Re-organization to account for the corrected Lakehouse component
definition.

– Re-structuring of the monitoring and infrastructure management re-
quirements to account for the reduced scope.

As there was no time to perform a third iteration, this was the last step in the de-
sign of this architecture. The resulting information and requirement-to-technology
mappings would be used to create the diagrams of the architecture as it stands.

122

Chapter 7

Final Architecture

With the iterative process concluded, the architecture’s current state was docu-
mented for the final submission of the dissertation project and for delivery to
Altice Labs S.A.. The specification uses the C4 model, described in Chapter 3 and
presents three of the four views: Context, Container, Component and Code. The
last level of abstraction in the C4 model (Code) was not developed.

The development process resulted in an architecture with an experimentally val-
idated data processing stack, as well as a partially validated data governance
solution. The monitoring solution, although de-prioritized as per Altice Labs’
wishes, was analysed and composed for compatibility with the Prometheus toolset.

While the architecture is not ready for production scenarios, it is sufficiently de-
veloped for larger scale prototyping and presents evidences that the target frame-
work can be functionally achieved with the selected components. Future work
should ideally focus on utilising more powerful hardware to complement the ex-
perimental validation under more demanding environments and to better profile
the scalability of the network under real conditions

The following sections will approach the three developed levels of the C4 model.
Starting with an overview, then progressing to the C4 views: the context view,
container view and then moving onto the several different components, presenting
a diagram for each view, as well as a textual explanation clarifying the function-
alities and qualities supported by each of the different parts of the architecture.

Alternatives are presented for the data pipeline section of the framework, iden-
tified through the state-of-the-art research and iterative process. Additionally,
a section dedicated to the future work is presented, presenting the avenues for
further development of this framework.

123

Chapter 7

7.1 Overview

The final architecture can be summarised as a system built upon the use of a
Apache Hudi Lakehouse on top of a Min.IO/S3 object store (or Data Lake),
which creates an environment fit for high-speed, highly scalable data serving
through engines like Spark or Presto. This data store is fed by a multitude
of Apache Kafka streams, either directly or after curating ETL via Spark. The
framework’s many data flows are audited, recorded and traced by the Acryl
DataHub metadata catalog, and the infrastructure is constantly under health
monitoring by a Prometheus-based monitoring dashboard.

7.1.1 Ingestion, Storage and Serving

This framework ingests data from a number of source systems through the cre-
ation of designated Kafka Producers that gather data (in push or pull configura-
tions) and send them through a network of brokers onto the Hudi Spark cluster,
which extracts metadata and categorizes data before storing it in a Min.IO/S3
bucket. This chain is built around scalability, fault tolerance and high-throughput,
and allows for many ingestion styles under the Kappa architecture pattern (real-
time and batch using the same component, Kafka)

Using Spark and Presto, the flexibility of the querying systems is maximised, as
Spark enables the use of Hudi-specific audit-related queries (such as the time-
travel or data lineage query) while Presto allows for extremely performant ad-hoc
or preset querying. The use of Apache Airflow enables the automation of queries
on the serving side by automating Spark or Presto jobs. Additionally, Presto can
be executed on a Spark cluster, further exploiting the ability to execute these tech-
nologies in parallel. Both Spark and Presto come provisioned with credential-based
access control which can be connected to external identity management software.

7.1.2 Administration and Governance

To establish an audit log and traceability for entire framework, the use of the
Acryl DataHub metadata catalog helps build a graph-based representation of the
data within the framework, showing origin, destination, accesses, modifies and
lineage for any data object within the framework. This catalog is hooked to all the
components which handle data within the framework, and will, over time, create
a robust audit log to ensure data governance, safe data sharing and compliance
are all possible within the framework.

7.1.3 Infrastructure Control

All the identified components present ways to extract metrics and data which
can be interpreted by the Prometheus monitoring and alerting software, which
allows for alerts and management of the system’s infrastructure.

124

Final Architecture

7.2 Context View

In the context view (Fig. 7.1) for the system, it is possible to see the three main
actors involved with the operation of the framework:

• The Process Manager - Who is responsible for the health monitoring and
configuration of the framework’s components. Uses an external dashboard
which receives data posted by the framework.

• The End User - Who uses an interface to interact with the data inside the
framework. The interface lets the tenant/user see the data which he is au-
thorized to see, query it, and process it through the use of the components
described further in the chapter.

• The Data Manager - Who has direct access to the internal governance tools
of the framework, and can manage tenant access and authorizations through
an external IAM.

Figure 7.1: Context diagram for the architecture. Displayed are the three relevant
actors and the systems they interact with.

The tenant interface, IAM and monitoring dashboard systems were not devel-
oped in this project and remain as avenues for future work.

125

Chapter 7

7.3 Container View

In the container view (Fig. 7.2) the various executable parts of the framework are
visible. Each of these containers is executed either on Docker/Kubernetes or on
bare-metal. It is also possible to operate some of the containers via cloud-based
deployment (namely the Min.IO storage component).

Here, the main data flows are exposed - the flow of data from source systems to end-
users, the metadata governance flows and the infrastructure monitoring flows.

As previously described, the system offers a central path for data to travel through
and from - the Kafka Ingestion Cluster receives data from outside sources, pass-
ing it onto the Lakehouse Hudi/Spark Cluster, which saves it to Min.IO/S3, and
then passes data along to the Serving Spark/Presto Cluster whenever required
by the tenants/end-users. Data may also be served from the Serving Cluster
back to the Ingestion cluster for re-processing, ingestion of newly generated data
or model saving. These three layers support the main qualities demanded of the
framework, in regards to the function of data ingestion, processing, storage and
serving:

• Scalability - All components were selected with scalability and cloud-native
operations in mind, and experimental validation took place, ensuring they
are inter-operable with each-other, albeit in a small, low resource scenario.

• Performance - The main points of data traffic - Kafka and Spark - are highly
performant, and, due to their scalable, distributed and expansible nature,
can guarantee performance at varying load levels.

• Cost Control - All components were selected with cost control in mind,
and, aside from being open-source, include measures for rate control, per-
formance limiting and resource management.

Along this path, the Prometheus deployment extracts metrics, logs and health
data in order to maintain a record of system execution, and potentiate reactive
and predictive maintenance efforts to ensure the long-term stability and scala-
bility of the system (as some of the components require some level of manual
adjustment to scale correctly).

For each of the significant points of data movement (Ingestion, Storage and Serving)
the DataHub Catalog receives metadata transactional records, keeping a com-
plete audit log of all data movements within the system. This allows for the
verification of data lineage, provenance and access for any given data object in
the framework, at all points of its lifecycle.

The DataHub catalog ships with an interface which enables the Data Manager’s
use cases of regulating data discovery, sharing and auditing activities. This cat-
alog interface is also usable by the end-users, who have their own views of the
system’s data, typically filtered by their own authorization level as defined by the
Data Manager.

126

Final Architecture

Figure 7.2: Container View of the Data Framework system. Grey arrows indicate
data flows, green arrows indicate log flows and pink arrows indicate metadata
flows.

127

Chapter 7

7.4 Component Views

For each of the previously identified containers in the Data Framework system,
a component diagram will be presented, exposing the inner components of each
container as well as their connections/relationships to other containers.

7.4.1 Kafka Ingestion Cluster

As the container responsible for the entry of data into the system, the Kafka In-
gestion Cluster (Fig. 7.3) relies on the creation of paths for data to travel to the
framework in scalable way, fit for large volumes of data and a high-throughput
execution profile. This cluster can be deployed on-prem or through cloud-based
Kafka SaaS deployments like Confluent.

Functionalities

This container uses Kafka streams to serve the data sources outside of the sys-
tem. They consist of a Producer-Broker-Consumer set that can be configured in
push, pull or even a batch-style ingestion that aggregates data before passing it to
storage. This is done through explicit programming of the logic within the Kafka
Producer modules (where they can be connected to any API, legacy system or
external data source).

Additionally, there’s a separate Kafka stream for enrichment and data integration
purposes. This stream receives data from the end-users (through the Serving
Spark/Presto Cluster) and inserts it into the framework, making it possible for
data enrichment and integration practices to have their own ingestion path, which
can even include intermediate processing if necessary.

The Kafka clusters and components are all monitored through the metrics and
logs extracted from its coordinator - the Kafka Zookeeper - and they are passed
onto the Prometheus monitoring software for log analytics, automated alarms
and even actions. The several Kafka topics are connected to a DataHub plugin,
syncing the data, along with its metadata, into the DataHub catalog.

Qualities

Through the use of Kafka’s native scalability, these clusters can maintain their
performance even under highly concurrent, high-traffic workloads (through pre-
sizing for the intended loads) and more clusters/streams can be instantiated to
serve tenant’s needs in an elastic way.

Experimental validation indicates that Kafka can serve in this scenario with very
good results in integrity, scalability and performance. Its flexible implementation
also satisfies the requirements of modifiability, enabling a nearly limitless palette
of external connections.

128

Final Architecture

Figure 7.3: Component View of the Kafka Ingestion Cluster component. Grey ar-
rows indicate data flows, green arrows indicate log flows and pink arrows indi-
cate metadata flows. Additionally, dashed grey lines indicate data flows from/to
outside the component.

129

Chapter 7

7.4.2 Lakehouse Hudi/Spark Cluster

Once data has entered the system it is the job of the Lakehouse Hudi/Spark
Cluster (Fig. 7.4) to categorize the data, store it, and serve it to the numerous
services which rely on it. The tools used to create this container are extensively
documented, namely in the identified pairings (Hudi/Min.IO and Spark/Presto),
and rely on open-source technology, with both on-prem and cloud-based deploy-
ments available.

Functionalities

Through the use of Hudi as a Data Lakehouse platform, it is possible to empower
the Min.IO/S3 object storage (typically used as a Data Lake) a build a more flex-
ible and performant system. The Hudi/Min.IO combination is able to serve the
required functionalities by enabling:

• Lineage, time-travel and audit queries (via SparkSQL).

• Build custom categorizations for data streams.

• Create data retention policies for specific data types/categories.

Hudi also natively supports two very powerful query engines: the aforemen-
tioned SparkSQL and Presto, with a large array of native integrations. Addition-
ally, because Hudi runs on a Spark cluster, it is possible to create Spark appli-
cations for ETL jobs and other associated data transformations/integrations that
can be configured to run automatically on designated input streams (functionally
creating a curated data path).

The Prometheus dashboard is connected to Hudi’s Spark cluster, where metrics
are exported to monitor the performance and health of this cluster. Data flows
are monitored and logged through the use of metadata extraction via the Spark
DataHub agent, which is configured to automatically parse Spark metadata trans-
actions and log them in the Catalog.

Qualities

The Hudi/Min.IO/S3 system is a robust, performant, scalable and highly available
set-up, featuring many options to maximise these qualities, such as parallel exe-
cution, redundancy and multi-node operations with error correction.

Experimental validation ensures compatibility between the two, as well as suc-
cessful data transit into the open file formats used by Hudi, as well as the reverse
path of re-building from these formats into easily processed JSON files through
the Hudi query system, fulfilling specified requirements of data integrity.

The ability to perform lineage and time-travel queries also fulfils non-functional
requirements of auditability and security, which aids in adoption of compliant
strategies.

130

Final Architecture

Figure 7.4: Component View of the Lakehouse Hudi/Spark Cluster component.
Grey arrows indicate data flows, green arrows indicate log flows and pink ar-
rows indicate metadata flows. Additionally, dashed grey lines indicate data flows
from/to outside the component.

131

Chapter 7

7.4.3 Serving Spark/Presto Cluster

To interact with the stored data, the Serving Spark/Presto Cluster (Fig. 7.5) con-
tainer leverages the Spark execution environment to create a performant and flex-
ible querying layer, featuring open-source and highly documented technologies
fit for on-prem and cloud-based deployment.

Functionalities

The container relies on the use of the SparkSQL and Presto to query the Hudi ser-
vice, allowing for a variety of query types (ad-hoc, preset, lineage, time-travel)
and for a considerable degree of control over the authorization and access of the
end-user. This is performed through the use of interfacing APIs which may con-
nect to an external Identity and Access Management (IAM) software, providing ac-
cess control to tenant queries.

To send data into the framework, a serving-side API enables data to be routed
back through the Kafka ingestion cluster, and go through the categorization pro-
cesses of the Hudi lakehouse.

The use of an Airflow scheduling component enables end-users to automate queries
to their external services, and it ships with access control associated to its central
dashboard. This feature enables the automation of data presentation to external
AI/ML models, and also the snapshotting and saving of models/model check-
points to long-term storage.

Much like the previous containers, the DataHub catalog tracks all uses of data
into the metadata catalog, while Prometheus manages the health and execution
state of the container’s components.

Qualities

The use of Presto and Spark as querying engines allows the system’s queries to
be very fast, executing in a highly performant way, even in ad-hoc scenarios.

By routing the accesses to data through APIs it is possible to ensure a large degree
of control, interfacing with external IAM software and enabling domain lock-out.
Spark, through combination with Hudi, also enables credentials to be propagated
through the querying process, returning only the data that the user has access to,
omitting fields that they are not authorized to see.

This, along with the recording of all data movements in DataHub fulfils the qual-
ities of security, traceability and privacy which are required for a safe data handling
and sharing environment, potentiating the evolution to a Data Mesh scenario.

132

Final Architecture

Figure 7.5: Component View of the Serving Spark/Presto Cluster component.
Grey arrows indicate data flows, green arrows indicate log flows and pink ar-
rows indicate metadata flows. Additionally, dashed grey lines indicate data flows
from/to outside the component.

133

Chapter 7

7.5 Alternatives

Along with the selected technologies for the final architecture, some of the re-
searched components are, based on the selection criteria described in the previ-
ous chapter, possible viable alternatives for the functionalities of the main data
pipeline.

As research could not cover or experiment on the identified metadata catalog al-
ternatives, this section will not present any alternatives for the data governance
side of the framework, as DataHub is both the most featured and most well doc-
umented choice in this area.

Additionally, some considerations can be made on the management and moni-
toring components, although mostly these rely on the use of the built-in manage-
ment tools provided by cloud-native service providers.

The alternatives presented in this section provide the same feature-set as the se-
lected components, but were not selected as the exclusion process undertaken
in the refinement stages favoured a more suitable alternative. Nonetheless, they
will be presented as they may present a better fit if new conditions arise in the
future of the Data Framework Architecture project.

7.5.1 Ingestion

For Ingestion, as a replacement of Kafka, few components present as much flex-
ibility and performance. However, there are options, namely the ones offered
by the AWS Kinesis Suite, which present very good performance and scalabil-
ity features and an unparalleled level of availability. They can be described as
follows:

• AWS Kinesis Data Streams - Real-time streaming service which serves as a
drop-in replacement for Kafka, featuring a lot of the same principles (records,
re-transmission and "topic"-based streams). Like Kafka, the scalability is
manually performed by pre-sizing and adding more "topics" or, as Kinesis
documentation refers, shards. It specializes in real-time streaming featuring
low latency by default.

• AWS Kinesis Data Firehose - Batch, un-managed data streaming solution
that focuses on high throughput, while sacrificing some the low latency pro-
vided by a more structured service. Latency with Firehose is often above
60ms for a given data record’s transmission, making it less suitable for real-
time workloads, and more useful for massive transfers of data under less
strict requirements.

It should be noted that, while these services provide similar functionalities, they
are more advantageously used when the rest of the chosen technology stack is
also within the AWS Suite, as it ends up providing native, "one-click" integration,
as well as a connected and unified management dashboard system.

134

Final Architecture

Alternatively, it is possible to offload the management of the Kafka cluster to an
external service provider, maintaining the exact same functionality while gaining
the benefit of high availability and improved latency.

Both the AWS and externally managed Kafka services will, however, incur in
costs that can become exacerbated by the multitude of streams demanded by a
multi-tenant architecture.

7.5.2 Storage and Serving

The storage functionalities and qualities, provided in the architecture by S3/Min.IO
with Hudi as the Lakehouse component, can be achieved using other platforms,
albeit with significant changes being necessary to the serving stack. As such,
these alternatives are grouped together.

AWS S3-centric

By using S3 and choosing to use the AWS managed cloud-native solution, it is
possible to also use AWS LakeFormation and AWS Glue to achieve the Lake-
house functionality. However, the compatibility with the currently chosen Serv-
ing stack is not clear, and instead, it is recommended that this use is paired with
other AWS services, as these integrate seamlessly without the need for extensive
modification and untested pairings.

As per the research conducted and presented in Chapter IV, the use of AWS
Athena and Redshift can, in combination, result in a powerful interactive query
engine which can satisfy the requirements of the Serving layer.

HDFS-centric

These solutions typically present some challenges, as the Lakehouse components
typically rely on tailor made connectors fit for more recent object storage services
(such as S3, Azure, Google Cloud).

However, in this case, Apache Hudi presents an HDFS connector which may
enable it to resolve this problem, however, experimentation would be necessary
to ensure compatibility of the stack. If possible, this would make the current
serving stack compatible, and the requirements would likely still be met under
the HDFS-based platform.

135

Chapter 7

7.6 Future Work

With the work taken as far as the dissertation project’s constraints would allow,
the avenues for future work were identified to be delivered alongside the archi-
tecture and requirement specifications.

Three main areas were identified:

• Conclude the experimental validation - While the main data pipeline was
validated experimentally, the conditions for the tests were simply meant for
rapid prototyping and used significantly reduced hardware specifications
in their execution. Additionally, the hardware limitations made it impossi-
ble to test the usability of the metadata catalog correctly, and thus this could
also be worth exploring. The two main tasks here are:

– Test the framework with more resources, using distributed configura-
tions, virtualization and create synthetic scenarios closer to the esti-
mated production workload.

– Finish testing the governance aspects (catalog metadata visualization)
with a suite of tests designed around usability.

• Refine the monitoring solution - As the monitoring was indicated as an
area which should not be focused on, as internally, Altice Labs S.A. already
had significant experience in the area and had proposed existing tooling
(the Prometheus toolset), it may be valuable to explore the monitoring and
management drivers more and see how Prometheus can be potentially used
in the PaaS/IaaS scenario.

• Design the interfaces for the users - This was outside of the scope of the
project, but, nonetheless, remains a very important part for the production
architecture, as some of the concepts associated with managing a multi-
tenant architecture can not be explicitly solved through architectural deci-
sions, but rather through interface design processes.

And, while there are still some areas where improvement is possible, implemen-
tation could feasibly begin on the data pipeline side, as the technologies which
were presented, as well as their data flows and component relationships will al-
low for the identified functional and non-functional requirements to be met.

136

Chapter 8

Conclusion

The objective of this project was to develop an architecture fit for Altice Labs
S.A.’s goal of developing a data processing framework fit for a multi-tenant IaaS
or PaaS scenario and incorporating innovative data management principles.

To achieve this, a requirement engineering process was followed by an iterative
architecture design methodology, which took the initial preliminary drafts to a
more refined, well-rounded architecture, validated not only through documen-
tation and literature review, but also through experimental processes that ensure
that it can meet its identified requirements. These processes were backed up by
a significant research effort into state-of-the-art data management models, ap-
proaches and frameworks, as well as a large amount of contextual information
regarding data processing paradigms.

The dissertation project concluded with the second iteration of the architecture
development process. Through these two passes, the architecture achieved signif-
icant coverage of the requirements, with experimentally validated components,
namely those related to the handling of the system’s data and its adaptation into
a multi-tenant, scalable IaaS/PaaS-capable system. While some ancillary aspects
of the framework were not covered by experimentation due to time and hard-
ware constraints, they nonetheless were the target of significant exploration and
documentation, laying out the groundwork for future work on the project.

Future work can be focused on implementing the data processing pipelines for
production testing, for which there is already a stable and well-documented val-
idation, further refining the architecture, continuing the iterative process with a
focus on the areas which were de-prioritized in Iteration #2, or on performing a
design process for the tenant interface.

And, from a learning perspective, the project provided an opportunity to explore
the processes of systematic software development, demonstrating the power of a
consistent and organized effort to explore requirements, architectural drivers and
research avenues to build the product most suited to the needs of a client. Over
the course of the project numerous exchanges with Altice Labs S.A. provided the
experience of working with external clients, communicating change, risks and
progress - skills which will prove invaluable in future endeavours.

137

References

[1] Rene Abraham, Johannes Schneider, and Jan vom Brocke. Data governance:
A conceptual framework, structured review, and research agenda. Interna-
tional Journal of Information Management, 49:424–438, 12 2019. ISSN 0268-
4012. doi: 10.1016/J.IJINFOMGT.2019.07.008.

[2] Acryl. The #1 Open Source Data Catalog - DataHub, 2023.

[3] Actian. DataConnect - Map Connectors - Data File Formats,
2020. URL https://docs.actian.com/dataconnect/11.5/index.html#
page/User/Data_File_Formats.htm.

[4] ActiveMQ. ActiveMQ, 2023. URL https://activemq.apache.org/.

[5] Alluxio. Caching - Alluxio v2.9.3 (stable) Documentation, 2022.
URL https://docs.alluxio.io/os/user/stable/en/core-services/
Caching.html?utm_source=prestodb&utm_medium=prestodocs#
configuring-alluxio-storage.

[6] Alluxio. Alluxio - Data Orchestration for the Cloud, 2023. URL https:
//www.alluxio.io/.

[7] Altice Labs S.A. Altice Labs – Enabling Digital Society, 2023. URL https:
//www.alticelabs.com/.

[8] Amazon Web Services. Cloud Computing Services - Amazon Web Services
(AWS), 2023. URL https://aws.amazon.com/?nc2=h_lg.

[9] Amazon Webservices. Build a Lake House Architecture on AWS | AWS
Big Data Blog, 2022. URL https://aws.amazon.com/blogs/big-data/
build-a-lake-house-architecture-on-aws/.

[10] Amazon Webservices. Data Catalog and crawlers in AWS Glue -
AWS Glue, 2023. URL https://docs.aws.amazon.com/glue/latest/dg/
catalog-and-crawler.html.

[11] Amazon Webservices. Amazon API Gateway, 2023. URL https://aws.
amazon.com/api-gateway/.

[12] Amazon Webservices. Interactive SQL - Serverless Queries - AWS Athena,
2023. URL https://aws.amazon.com/athena/.

139

https://docs.actian.com/dataconnect/11.5/index.html#page/User/Data_File_Formats.htm
https://docs.actian.com/dataconnect/11.5/index.html#page/User/Data_File_Formats.htm
https://activemq.apache.org/
https://docs.alluxio.io/os/user/stable/en/core-services/Caching.html?utm_source=prestodb&utm_medium=prestodocs#configuring-alluxio-storage
https://docs.alluxio.io/os/user/stable/en/core-services/Caching.html?utm_source=prestodb&utm_medium=prestodocs#configuring-alluxio-storage
https://docs.alluxio.io/os/user/stable/en/core-services/Caching.html?utm_source=prestodb&utm_medium=prestodocs#configuring-alluxio-storage
https://www.alluxio.io/
https://www.alluxio.io/
https://www.alticelabs.com/
https://www.alticelabs.com/
https://aws.amazon.com/?nc2=h_lg
https://aws.amazon.com/blogs/big-data/build-a-lake-house-architecture-on-aws/
https://aws.amazon.com/blogs/big-data/build-a-lake-house-architecture-on-aws/
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/athena/

Chapter 8

[13] Amazon Webservices. Fast NoSQL Key-Value Database – Amazon Dy-
namoDB – Amazon Web Services, 2023. URL https://aws.amazon.com/
dynamodb/.

[14] Amazon Webservices. Secure and resizable cloud compute – Amazon EC2
– Amazon Web Services, 2023. URL https://aws.amazon.com/ec2/.

[15] Amazon Webservices. Process and Analyze Streaming Data – Amazon
Kinesis – Amazon Web Services, 2023. URL https://aws.amazon.com/
kinesis/.

[16] Amazon Webservices. Serverless Computing - AWS Lambda, 2023. URL
https://aws.amazon.com/lambda/.

[17] Amazon Webservices. Data Lake Governance - AWS LakeFormation, 2023.
URL https://aws.amazon.com/lake-formation/.

[18] Amazon Webservices. Cloud Object Storage – Amazon S3 – Amazon Web
Services, 2023. URL https://aws.amazon.com/s3/.

[19] Amazon Webservices. Fully Managed Message Queuing – Amazon Simple
Queue Service – Amazon Web Services, 2023. URL https://aws.amazon.
com/sqs/.

[20] Samuil Angelov, Paul Grefen, and Danny Greefhorst. A classification of
software reference architectures: Analyzing their success and effectiveness.
2009 Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, WICSA/ECSA 2009, pages 141–150, 2009.
doi: 10.1109/WICSA.2009.5290800.

[21] Apache Hudi. Spark Guide | Apache Hudi, 2022. URL https://hudi.
apache.org/docs/quick-start-guide/.

[22] Apache Software Foundation. Apache Hadoop, 2006. URL https://
hadoop.apache.org/.

[23] Apache Software Foundation. Apache Hive, 2010. URL https://hive.
apache.org/.

[24] Apache Software Foundation. Apache Kafka, 2011. URL https://kafka.
apache.org/.

[25] Apache Software Foundation. Apache Spark, 2014. URL https://spark.
apache.org/.

[26] Apache Software Foundation. Apache Hudi, 2016. URL https://hudi.
apache.org/.

[27] Apache Software Foundation. Apache Flume, 2022. URL https://flume.
apache.org/.

[28] Apache Software Foundation. Welcome to The Apache Software Founda-
tion!, 2023. URL https://www.apache.org/.

140

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/ec2/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lake-formation/
https://aws.amazon.com/s3/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://hudi.apache.org/docs/quick-start-guide/
https://hudi.apache.org/docs/quick-start-guide/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hive.apache.org/
https://hive.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://hudi.apache.org/
https://hudi.apache.org/
https://flume.apache.org/
https://flume.apache.org/
https://www.apache.org/

References

[29] Apache Software Foundation. Apache Atlas, 2023. URL https://atlas.
apache.org/#/.

[30] Apache Software Foundation. Apache Flink® — Stateful Computations
over Data Streams | Apache Flink, 2023. URL https://flink.apache.
org/.

[31] Apache Software Foundation. Apache Iceberg, 2023. URL https://
iceberg.apache.org/.

[32] Michael Armbrust, Ali Ghodsi, Reynold Xin, Matei Zaharia, and Uc Berke-
ley. Lakehouse: A New Generation of Open Platforms that Unify Data
Warehousing and Advanced Analytics. In Conference on Innovative Data Sys-
tems Research (CIDR), 2021.

[33] Len Bass, Paul Clements, and Rick Kazman. Software Architecture In Practice.
1 2003. ISBN 978-0321154958.

[34] Len Bass, John Bergey, Paul Clements, Paulo Merson, Ipek Ozkaya, and
Raghvinder Sangwan. A Comparison of Requirements Specification Meth-
ods from a Software Architecture Perspective. 2006.

[35] P Baxendale and E F Codd. A relational model of data for large shared
data banks. Communications of the ACM, 13(6):377–387, 6 1970. ISSN
15577317. doi: 10.1145/362384.362685. URL https://dl.acm.org/doi/10.
1145/362384.362685.

[36] Andrew L. Beam and Isaac S. Kohane. Big Data and Machine Learning in
Health Care. JAMA, 319(13):1317–1318, 4 2018. ISSN 0098-7484. doi: 10.
1001/JAMA.2017.18391. URL https://jamanetwork.com/journals/jama/
fullarticle/2675024.

[37] Blend Berisha, Endrit Mëziu, and Isak Shabani. Big data analytics in Cloud
computing: an overview. Journal of Cloud Computing (Heidelberg, Germany),
11(1):24, 12 2022. ISSN 2192113X. doi: 10.1186/S13677-022-00301-W.
URL /pmc/articles/PMC9362456//pmc/articles/PMC9362456/?report=
abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362456/.

[38] Piero A. Bonatti and Sabrina Kirrane. Big Data and Analytics in the Age of
the GDPR. Proceedings - 2019 IEEE International Congress on Big Data, Big-
Data Congress 2019 - Part of the 2019 IEEE World Congress on Services, pages
7–16, 7 2019. doi: 10.1109/BIGDATACONGRESS.2019.00015.

[39] Simon Brown and Thomas Betts. The C4 Model for Software Architecture, 6
2018. URL https://www.infoq.com/articles/C4-architecture-model/.

[40] Cambia. The Lens - Free \& Open Patent and Scholarly Search, 2023. URL
https://www.lens.org/.

[41] Carlos J. Fernández Candel, Diego Sevilla Ruiz, and Jesús J. García-Molina.
A Unified Metamodel for NoSQL and Relational Databases. Information
Systems, 104, 5 2021. doi: 10.1016/j.is.2021.101898. URL http://arxiv.
org/abs/2105.06494http://dx.doi.org/10.1016/j.is.2021.101898.

141

https://atlas.apache.org/#/
https://atlas.apache.org/#/
https://flink.apache.org/
https://flink.apache.org/
https://iceberg.apache.org/
https://iceberg.apache.org/
https://dl.acm.org/doi/10.1145/362384.362685
https://dl.acm.org/doi/10.1145/362384.362685
https://jamanetwork.com/journals/jama/fullarticle/2675024
https://jamanetwork.com/journals/jama/fullarticle/2675024
/pmc/articles/PMC9362456/ /pmc/articles/PMC9362456/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362456/
/pmc/articles/PMC9362456/ /pmc/articles/PMC9362456/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362456/
https://www.infoq.com/articles/C4-architecture-model/
https://www.lens.org/
http://arxiv.org/abs/2105.06494 http://dx.doi.org/10.1016/j.is.2021.101898
http://arxiv.org/abs/2105.06494 http://dx.doi.org/10.1016/j.is.2021.101898

Chapter 8

[42] Alberto Hernandez Chillon, Diego Sevilla Ruiz, Jesus Garcia Molina,
and Severino Feliciano Morales. A Model-Driven Approach to Generate
Schemas for Object-Document Mappers. IEEE Access, 7:59126–59144, 2019.
ISSN 21693536. doi: 10.1109/ACCESS.2019.2915201.

[43] CISUC. POWER - Empowering a digital future - CISUC, 2021. URL https:
//www.cisuc.uc.pt/en/projects/power.

[44] Clairvoyant. Big Data File Formats, 2021. URL https://www.clairvoyant.
ai/blog/big-data-file-formats.

[45] Cloudera. Cloudera | The hybrid data company, 2023. URL https://www.
cloudera.com/.

[46] Confluent Cloud. Confluent: Apache Kafka Reinvented for Multi-Cloud
Data Streaming, 2023. URL https://www.confluent.io/.

[47] Carlos Costa and Maribel Yasmina Santos. Big Data: state-of-the-art con-
cepts, techniques, technologies, modelling approaches and research chal-
lenges. IAENG International Journal of Computer Science, pages 285–301, 2017.
ISSN 1819-656X. URL https://hdl.handle.net/1822/46855.

[48] Databricks. What is a Medallion Architecture?, 2023. URL https://www.
databricks.com/glossary/medallion-architecture.

[49] Databricks. Data Lakehouse Architecture and AI Company | Databricks,
2023. URL https://www.databricks.com/.

[50] DataHub. Introduction to Metadata Ingestion | DataHub, 2023. URL
https://datahubproject.io/docs/metadata-ingestion/#recipes.

[51] DataHub. Kafka Ingestion | DataHub, 2023. URL https://
datahubproject.io/docs/generated/ingestion/sources/kafka/.

[52] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. 6th Symposium on Operating System Design and Imple-
mentation (OSDI 2004), 2024.

[53] Zhamak Dehghani. Data Mesh - Delivering Data-Driven Value at Scale.
O’Reilly Media, first edition, 2021. ISBN 978-1-492-09232-2.

[54] Delta Lake. Home | Delta Lake, 2023. URL https://delta.io/.

[55] James Dixon. Pentaho, Hadoop, and Data Lakes | James Dixon’s
Blog, 2010. URL https://jamesdixon.wordpress.com/2010/10/14/
pentaho-hadoop-and-data-lakes/.

[56] Docker Inc. Docker: Accelerated, Containerized Application Development,
2023. URL https://www.docker.com/.

[57] Athanasios S. Drigas and Panagiotis Leliopoulos. The Use of Big Data in
Education. IJCSI International Journal of Computer Sciences, 11(5):58–63, 9
2014. ISSN 1694-0784.

142

https://www.cisuc.uc.pt/en/projects/power
https://www.cisuc.uc.pt/en/projects/power
https://www.clairvoyant.ai/blog/big-data-file-formats
https://www.clairvoyant.ai/blog/big-data-file-formats
https://www.cloudera.com/
https://www.cloudera.com/
https://www.confluent.io/
https://hdl.handle.net/1822/46855
https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/
https://datahubproject.io/docs/metadata-ingestion/#recipes
https://datahubproject.io/docs/generated/ingestion/sources/kafka/
https://datahubproject.io/docs/generated/ingestion/sources/kafka/
https://delta.io/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://www.docker.com/

References

[58] Stefan Dzalev and Marjan Gusev. Evaluation of Scalability and Multi-
tenancy: A Use-Case. 2021 29th Telecommunications Forum, TELFOR 2021
- Proceedings, 2021. doi: 10.1109/TELFOR52709.2021.9653373.

[59] Lisa Ehrlinger and Wolfram Wöß. Towards a Definition of Knowledge
Graphs. In Joint Proceedings of the Posters and Demos Track of 12th Interna-
tional Conference on Semantic Systems - SEMANTiCS2016 and 1st International
Workshop on Semantic Change & Evolving Semantics (SuCCESS16, 6 2016.

[60] Enrique de Argaez. World Internet Users Statistics and 2022 World Popula-
tion Stats, 2022. URL https://www.internetworldstats.com/stats.htm.

[61] European Commission. Regulation (EU) 2016/679 of the European Par-
liament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance). 2016.

[62] European Commission. Reform of EU data protection rules
- Rules for business and organisations, 2018. URL https:
//commission.europa.eu/law/law-topic/data-protection/reform/
rules-business-and-organisations_en.

[63] European Union. A European approach to artificial intelligence | Shap-
ing Europe’s digital future, 2023. URL https://digital-strategy.ec.
europa.eu/en/policies/european-approach-artificial-intelligence.

[64] FBI Fortune Business Insights. Big Data Analytics Market
Size, 2022. URL https://www.fortunebusinessinsights.com/
big-data-analytics-market-106179.

[65] Corinna Giebler, Christoph Gröger, Eva Hoos, Holger Schwarz, and Bern-
hard Mitschang. Leveraging the Data Lake: Current State and Challenges.
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 11708 LNCS:179–188,
2019. ISSN 16113349. doi: 10.1007/978-3-030-27520-4{_}13/COVER. URL
https://link.springer.com/chapter/10.1007/978-3-030-27520-4_13.

[66] Abel Goedegebuure, Indika Kumara, Stefan Driessen, Dario Di Nucci,
Geert Monsieur, Willem-jan van den Heuvel, and Damian Andrew Tam-
burri. Data Mesh: a Systematic Gray Literature Review. 4 2023. doi:
10.1145/nnnn. URL https://arxiv.org/abs/2304.01062v1.

[67] Mert Onuralp Gokalp, Kerem Kayabay, Mohamed Zaki, Altan Kocyigit,
P. Erhan Eren, and Andy Neely. Open-Source Big Data Analytics Archi-
tecture for Businesses. 1st International Informatics and Software Engineer-
ing Conference: Innovative Technologies for Digital Transformation, IISEC 2019 -
Proceedings, 11 2019. doi: 10.1109/UBMYK48245.2019.8965572.

[68] Paola Gómez, Rubby Casallas, and Claudia Roncancio. Automatic schema
generation for document-oriented systems. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture

143

https://www.internetworldstats.com/stats.htm
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations_en
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
https://www.fortunebusinessinsights.com/big-data-analytics-market-106179
https://www.fortunebusinessinsights.com/big-data-analytics-market-106179
https://link.springer.com/chapter/10.1007/978-3-030-27520-4_13
https://arxiv.org/abs/2304.01062v1

Chapter 8

Notes in Bioinformatics), 12391 LNCS:152–163, 2020. ISSN 16113349. doi:
10.1007/978-3-030-59003-1{_}10/COVER. URL https://link.springer.
com/chapter/10.1007/978-3-030-59003-1_10.

[69] Ian Gorton and John Klein. Distribution, data, deployment: Software archi-
tecture convergence in big data systems. IEEE Software, 32(3):78–85, 5 2015.
ISSN 07407459. doi: 10.1109/MS.2014.51.

[70] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR), 15(4):287–317, 12 1983.
ISSN 15577341. doi: 10.1145/289.291. URL https://dl.acm.org/doi/10.
1145/289.291.

[71] IBM. What is a data fabric? | IBM, 2023. URL https://www.ibm.com/
topics/data-fabric.

[72] IEEE. IEEE Recommended Practice for Software Requirements Specifica-
tions. IEEE Std 830-1998, pages 1–40, 10 1998.

[73] IEEE. ISO/IEC 25010:2011 - Systems and software engineering — Systems
and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models. ICS : 35.080, 2011. URL https://www.iso.
org/standard/35733.html.

[74] Joseph. Ingeno. Software Architect’s Handbook : Become a Successful Soft-
ware Architect by Implementing Effective Architecture Concepts. Packt Pub-
lishing Ltd, 2018. ISBN 9781788624060. URL https://www.packtpub.com/
product/software-architects-handbook/9781788624060.

[75] William H. Inmon. Building the Data Warehouse Third Edition. Fourth edition,
2002.

[76] Instituto de Telecomunicações. Instituto de Telecomunicações, 2023. URL
https://www.it.pt/.

[77] Instituto Pedro Nunes. IPN - Instituto Pedro Nunes, 2023. URL https:
//www.ipn.pt/.

[78] Veit Jahns. Data Fabric and Datafication. ACM SIGSOFT Software Engi-
neering Notes, 47(4):30–31, 9 2022. ISSN 0163-5948. doi: 10.1145/3561846.
3561854. URL https://dl.acm.org/doi/10.1145/3561846.3561854.

[79] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for Archi-
tecture Evaluation. 2000.

[80] Jay Kreps. Questioning the Lambda Architecture - O’Reilly
Radar, 2014. URL http://radar.oreilly.com/2014/07/
questioning-the-lambda-architecture.html.

[81] Krish Krishnan. Data Warehousing in the Age of Big Data. Elsevier
Inc., 2013. ISBN 9780124058910. doi: 10.1016/C2012-0-02737-8.
URL http://www.sciencedirect.com:5070/book/9780124058910/
data-warehousing-in-the-age-of-big-data.

144

https://link.springer.com/chapter/10.1007/978-3-030-59003-1_10
https://link.springer.com/chapter/10.1007/978-3-030-59003-1_10
https://dl.acm.org/doi/10.1145/289.291
https://dl.acm.org/doi/10.1145/289.291
https://www.ibm.com/topics/data-fabric
https://www.ibm.com/topics/data-fabric
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.packtpub.com/product/software-architects-handbook/9781788624060
https://www.packtpub.com/product/software-architects-handbook/9781788624060
https://www.it.pt/
https://www.ipn.pt/
https://www.ipn.pt/
https://dl.acm.org/doi/10.1145/3561846.3561854
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://www.sciencedirect.com:5070/book/9780124058910/data-warehousing-in-the-age-of-big-data
http://www.sciencedirect.com:5070/book/9780124058910/data-warehousing-in-the-age-of-big-data

References

[82] Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter, and Tawfiq
Hasanin. A survey of open source tools for machine learning with
big data in the Hadoop ecosystem. Journal of Big Data, 2(1):1–36, 12
2015. ISSN 21961115. doi: 10.1186/S40537-015-0032-1/FIGURES/5.
URL https://journalofbigdata.springeropen.com/articles/10.1186/
s40537-015-0032-1.

[83] Anthony J Lattanze. Architecture Centric Design Method, 2006.

[84] Anthony J. Lattanze. Architecting Software Intensive Systems: A Practitioners
Guide. Auerbach Publications, 2008. ISBN 1420045695.

[85] Alexandra L’Heureux, Katarina Grolinger, Hany F. Elyamany, and
Miriam A.M. Capretz. Machine Learning with Big Data: Challenges
and Approaches. IEEE Access, 5:7776–7797, 2017. ISSN 21693536. doi:
10.1109/ACCESS.2017.2696365.

[86] Jimmy Lin. The Lambda and the Kappa. IEEE Internet Computing, 21(05):
60–66, 9 2017. ISSN 1089-7801. doi: 10.1109/MIC.2017.3481351.

[87] Inês Araújo Machado, Carlos Costa, and Maribel Yasmina Santos. Data
Mesh: Concepts and Principles of a Paradigm Shift in Data Architectures.
Procedia Computer Science, 196:263–271, 1 2022. ISSN 1877-0509. doi: 10.
1016/J.PROCS.2021.12.013.

[88] Rupa Mahanti. Data quality : dimensions, measurement, strategy, man-
agement, and governance. 2019. ISBN 0873899776. URL https:
//www.researchgate.net/publication/358523910_Data_Quality_
Dimensions_Measurement_Strategy_Management_and_Governance.

[89] Nathan Marz. How to beat the CAP theorem - thoughts from the red planet
- thoughts from the red planet, 2011. URL http://nathanmarz.com/blog/
how-to-beat-the-cap-theorem.html.

[90] Minio Inc. MinIO | High Performance, Kubernetes Native Object Storage,
2023. URL https://min.io/.

[91] MySQL. MySQL, 2023. URL https://www.mysql.com/.

[92] Athira Nambiar and Divyansh Mundra. An Overview of Data Warehouse
and Data Lake in Modern Enterprise Data Management. Big Data and Cog-
nitive Computing 2022, Vol. 6, Page 132, 6(4):132, 11 2022. ISSN 2504-2289.
doi: 10.3390/BDCC6040132. URL https://www.mdpi.com/2504-2289/6/
4/132/htmhttps://www.mdpi.com/2504-2289/6/4/132.

[93] Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken Q Pu UOIT, and
Patricia C Arocena. Data Lake Management: Challenges and Oppor-
tunities. 12(12):1986–1989, 2019. doi: 10.14778/3352063.3352116. URL
https://doi.org/10.14778/3352063.3352116.

[94] Thor Olavsrud. 3 keys to keeping your data lake from becoming a
data swamp | CIO, 2017. URL https://www.cio.com/article/230163/
3-keys-to-keep-your-data-lake-from-becoming-a-data-swamp.html.

145

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0032-1
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-015-0032-1
https://www.researchgate.net/publication/358523910_Data_Quality_Dimensions_Measurement_Strategy_Management_and_Governance
https://www.researchgate.net/publication/358523910_Data_Quality_Dimensions_Measurement_Strategy_Management_and_Governance
https://www.researchgate.net/publication/358523910_Data_Quality_Dimensions_Measurement_Strategy_Management_and_Governance
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
https://min.io/
https://www.mysql.com/
https://www.mdpi.com/2504-2289/6/4/132/htm https://www.mdpi.com/2504-2289/6/4/132
https://www.mdpi.com/2504-2289/6/4/132/htm https://www.mdpi.com/2504-2289/6/4/132
https://doi.org/10.14778/3352063.3352116
https://www.cio.com/article/230163/3-keys-to-keep-your-data-lake-from-becoming-a-data-swamp.html
https://www.cio.com/article/230163/3-keys-to-keep-your-data-lake-from-becoming-a-data-swamp.html

Chapter 8

[95] OpenMetadata. OpenMetadata: The Best Open Source Data Catalog, 2023.

[96] Oracle. Oracle | Cloud Applications and Cloud Platform, 2023. URL
https://www.oracle.com/.

[97] C. L. Philip Chen and Chun Yang Zhang. Data-intensive applications, chal-
lenges, techniques and technologies: A survey on Big Data. Information Sci-
ences, 275:314–347, 8 2014. ISSN 0020-0255. doi: 10.1016/J.INS.2014.01.015.

[98] PostgreSQL. PostgreSQL: The world’s most advanced open source
database, 2023. URL https://www.postgresql.org/.

[99] Presto Foundation and LLC LF Projects. Presto: Free, Open-Source SQL
Query Engine for any Data, 2022. URL https://prestodb.io/.

[100] RabbitMQ. Messaging that just works — RabbitMQ, 2023. URL https:
//www.rabbitmq.com/.

[101] Fatimah Sidi, Payam Hassany Shariat Panahy, Lilly Suriani Affendey,
Marzanah A. Jabar, Hamidah Ibrahim, and Aida Mustapha. Data quality:
A survey of data quality dimensions. Proceedings - 2012 International Con-
ference on Information Retrieval and Knowledge Management, CAMP’12, pages
300–304, 2012. doi: 10.1109/INFRKM.2012.6204995.

[102] Uthayasankar Sivarajah, Muhammad Mustafa Kamal, Zahir Irani, and Vis-
hanth Weerakkody. Critical analysis of Big Data challenges and analytical
methods. Journal of Business Research, 70:263–286, 1 2017. ISSN 0148-2963.
doi: 10.1016/J.JBUSRES.2016.08.001.

[103] SmartNews. How SmartNews Built a Lambda Architecture on AWS
to Analyze Customer Behavior and Recommend Content | AWS Big
Data Blog. = https://aws.amazon.com/blogs/big-data/how-smartnews-
built-a-lambda-architecture-on-aws-to-analyze-customer-behavior-and-
recommend-content/, 2016.

[104] Ilkka Tuomi. Data Is More than Knowledge: Implications of the Reversed
Knowledge Hierarchy for Knowledge Management and Organizational
Memory. http://dx.doi.org/10.1080/07421222.1999.11518258, 16(3):103–117,
2015. ISSN 07421222. doi: 10.1080/07421222.1999.11518258. URL https:
//www.tandfonline.com/doi/abs/10.1080/07421222.1999.11518258.

[105] Andrea Vazquez-Ingelmo, Alicia Garcia-Holgado, and Francisco J. Garcia-
Penalvo. C4 model in a software engineering subject to ease the com-
prehension of UML and the software. IEEE Global Engineering Education
Conference, EDUCON, 2020-April:919–924, 4 2020. ISSN 21659567. doi:
10.1109/EDUCON45650.2020.9125335.

[106] Jon Vexler and Hudi Development Team. Hudi Kafka Connect Sink
- GitHub, 2023. URL https://github.com/apache/hudi/blob/master/
hudi-kafka-connect/README.md.

146

https://www.oracle.com/
https://www.postgresql.org/
https://prestodb.io/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
=
https://www.tandfonline.com/doi/abs/10.1080/07421222.1999.11518258
https://www.tandfonline.com/doi/abs/10.1080/07421222.1999.11518258
https://github.com/apache/hudi/blob/master/hudi-kafka-connect/README.md
https://github.com/apache/hudi/blob/master/hudi-kafka-connect/README.md

References

[107] Kai Waehner. Kappa Architecture is Mainstream Replacing Lambda - Kai
Waehner, 2021. URL https://www.kai-waehner.de/blog/2021/09/23/
real-time-kappa-architecture-mainstream-replacing-batch-lambda/.

[108] Jonathan Stuart Ward and Adam Barker. Undefined By Data: A Survey of
Big Data Definitions. 9 2013. doi: 10.48550/arxiv.1309.5821. URL https:
//arxiv.org/abs/1309.5821v1.

[109] Richard Webber. The evolution of direct, data and digital marketing. Journal
of Direct, Data and Digital Marketing Practice, 14(4):291–309, 4 2013. ISSN
17460166. doi: 10.1057/DDDMP.2013.20.

[110] Wikipedia. 3G - Wikipedia, the Free Encyclopedia, 2023. URL https://en.
wikipedia.org/wiki/3G.

147

https://www.kai-waehner.de/blog/2021/09/23/real-time-kappa-architecture-mainstream-replacing-batch-lambda/
https://www.kai-waehner.de/blog/2021/09/23/real-time-kappa-architecture-mainstream-replacing-batch-lambda/
https://arxiv.org/abs/1309.5821v1
https://arxiv.org/abs/1309.5821v1
https://en.wikipedia.org/wiki/3G
https://en.wikipedia.org/wiki/3G

Appendices

149

Appendix A

Requirement Specification

151

José Miguel Dias Simões

Requirement Specification
POWER Data Framework Architecture

Document produced in the scope of the dissertation "POWER Data Framework
Architecture", advised by Prof. Bruno Cabral and Prof. Vasco Pereira and
presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

September 2023

Contents

1 Introduction 5
1.1 Purpose . 5
1.2 Scope . 6
1.3 Document Structure and Conventions 6
1.4 Intended Audience and Reading Suggestions 7

2 System Description 9
2.1 Overview . 10

2.1.1 Architecture Partitioning . 10
2.2 Functional Layers . 11
2.3 Administration Layer . 12
2.4 Orchestration Layer . 13

3 Constraints 14
3.1 Business Constraints . 15
3.2 Technical Constraints . 16

4 Requirements 17
4.1 General View . 18
4.2 Ingestion Layer . 19

4.2.1 Functional Requirements . 19
4.2.2 Non-Functional Requirements 20

4.3 Storage Layer . 22
4.3.1 Functional Requirements . 22
4.3.2 Non-Functional Requirements 23

4.4 Serving Layer . 25
4.4.1 Functional Requirements . 25
4.4.2 Non-Functional Requirements 26

4.5 Orchestration Layer . 28
4.5.1 Functional Requirements . 28
4.5.2 Non-Functional Requirements 29

4.6 Administration Layer . 31
4.6.1 Functional Requirements . 31
4.6.2 Non-Functional Requirements 32

2

List of Figures

2.1 Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the
main functionalities are identified. 11

2.2 Schematic representation of the administrative view of the archi-
tecture. Metadata flows are represented with dotted green arrows.
The data sources and endpoint external services were joined into a
single component for this view. 12

2.3 Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the
main functionalities are identified. 13

3

List of Tables

1.1 Source IDs for each of the requirements. 7

3.1 Business constraints identified for the project. 15
3.2 Technical constraints identified for the project. 16

4.1 Functional Requirements for system’s components, in a general view. 18
4.2 Non-Functional Requirements (Quality Attributes) for the general

view. 18
4.3 Functional Requirements for Ingestion Layer (IL). 19
4.4 Functional Requirements for Storage Layer (SL). 22
4.5 Functional Requirements for Serving Layer (SV). 25
4.6 Functional Requirements for Orchestration Layer (OL). 28
4.7 Functional Requirements for Administration Layer (AL). 31

4

Chapter 1

Introduction

In the scope of the "Dissertation/Internship in Software Engineering" curricu-
lar unit of the Master’s Course in Informatics Engineering, at the Department of
Informatics Engineering, in the Faculty of Sciences and Technology of the Uni-
versity of Coimbra, as a part of the POWER Project, requirements were elicited
and specified for the design of a software architecture pertaining to a planned in-
frastructure for a scalable data processing to be implemented at Altice Labs S.A..

This work and the associated dissertation project are funded by the POWER
project (grant number POCI-01-0247-FEDER-070365), co-financed by the Euro-
pean Regional Development Fund (FEDER), through Portugal 2020 (PT2020), and
by the Competitiveness and Internationalization Operational Programme (COM-
PETE 2020).

This chapter will outline the purpose of the document as well as its scope, its lay-
out and relevant information (such as conventions, standards, etc) and lastly, all
relevant information regarding the intended audience and any pertinent reading
suggestions.

1.1 Purpose

This document’s main purpose is to serve as a comprehensive description of the
main functionalities, features and qualities of the desired software framework.
It will serve as a requirement specification - detailing all the functional and non-
functional requirements of the software system, which provide the foundations
for the development of the final architecture.

The processes through which these requirements were elicited, refined and spec-
ified is detailed in full in the dissertation report, where the description focuses on
the methodologies employed in the requirement engineering process.

In contrast, this document focuses on the description and specification of the sys-
tem’s requirements in a stand-alone perspective, to serve as a resource for the
architecture design process.

5

1.2 Scope

This document aims to list the requirements and constraints that will influence
the design of the architecture of a Big Data framework/platform. The data which
will be used in these pipelines is variable, from structured log data to streamed
usage statistics and analytics, so flexibility is an important trait. From a general
point of view, the final architecture aims to serve as the foundation for a scalable,
multi-tenant IaaS/PaaS data framework to serve a number of endpoint services
based on data exploration and interpretation, within ever-changing regulatory
environment characterized by high security and privacy needs.

This framework will receive data from a number of source systems. These source
systems are of varying types, and their internal architecture is not considered. It
is, however, expected that the platform will be able to handle any kind of input,
by way of transforming data to fit a pattern either on the ingestion side or the
storage side.

The projected endpoint services for this platform include Business Intelligence
(BI)-based services (generation of data-based visualisations, dashboards, reports),
Machine-Learning (ML) oriented services (geared toward exploratory and pre-
dictive analysis of high-flow data streams) and alarm or trigger-based services
(which operate on log data). For the purposes of this specification, the scope of
the architectural decisions will lead up to each of these services, but will not en-
compass the services themselves, as these should have a flexible implementation.

1.3 Document Structure and Conventions

The requirement specification and general document structure will follow the
IEEE 830-1998 Standard (IEEE Recommended Practice for Software Requirements
Specifications). This standard provides a structure which may be followed to
create a fully encompassing requirement specification, as well as some general
guidelines for describing requirements.

The contents will begin with a description of the system from a functional and
qualitative standpoint, describing how it will be broken down into logical com-
ponents for the requirement specification (in this case, layers), and presenting the
main functionalities of each component, as well as the main qualities associated
with it. Following this description, the requirements will be presented (functional
and non-functional)

6

1.4 Intended Audience and Reading Suggestions

While the software requirement specification document is written for a more gen-
eral audience, this document is intended for individuals directly involved in the
development of the POWER Data Framework within Altice Labs S.A. and the
corresponding dissertation project within the University of Coimbra. Below is
an overview of the structure of the document, along with additional information
regarding the contents and layout of each Section.

• Chapter I: Introduction - In this section, the basic introductory information
is exposed, along with the scope of the document and some information
regarding the project.

• Chapter II: System Description - In this section there is a description of the
layout of the system and its five main components (layers).

• Chapter III: Constraints - In this section there is a description of the busi-
ness and technical constraints, separate from the requirements.

• Chapter IV: Requirements - In this section, the functional and non-functional
requirements of the system and of each individual layer are detailed. Ac-
companying each layer’s requirements is a brief description of its function-
alities and expectations.

The requirements and all tabular entries in this document all have a Source ID. In
Table 1.1, each ID is described, with information regarding where the requirement
originated.

Source ID Description

(*) Identifies a correction/revision.

PRE Preliminary elicitation (ADEW).

REQ-0 Preliminary refinement/gap-filling for draft.

REQ-1 Requirements pertaining to the first iteration’s refinement.

REQ-2 Requirements pertaining to the second iteration’s refinement.

Table 1.1: Source IDs for each of the requirements.

7

For the analysis of the requirements, some software/requirements engineering
concepts are relevant. They are presented below:

• Constraints - Fixed restrictions of technical and regulatory nature that must
be taken into account during architecture design.

– Technical Constraints typically relate to restrictions imposed by the
legacy software which will be connected to the system, or by pre-selected
components that the client specifically wants to use.

– Business Constraints relate to the business activity of the client, and
must be accounted for and met through correct specification.

• Functional Requirement (FR) - A functional requirement is a specific and
measurable statement that describes what a component is expected to do,
such as a feature, behavior, or task that must be performed by the system to
achieve its intended purpose.

• Non-Functional Requirement (NFR) or Quality Attribute (QA) - A non-
functional requirement is a quality or characteristic that describes how a
component should perform or behave, using categories such as reliability,
usability, scalability, or security. Generally these requirements describe the
qualities of the functionalities and interactions within the system.

• Quality Attribute Scenario (QAS) - A six-part quality attribute scenario is a
structured format used to describe a QA, which includes six key elements:
stimulus, source, environment, artifact, response, and response measure, to de-
scribe a scenario with which to verify whether or not a component meets
the QA.

8

Chapter 2

System Description

The target system consists of a centralized data processing platform designed for
multi-tenant IaaS/PaaS1 operational environments. This platform aims to bring
together various services within Altice Labs S.A. while also facilitating regulatory
compliance. Additionally, it is intended to support future initiatives related to
data privacy, security, and governance by offering appropriate tools and facilitate
the adoption of organizational changes.

To better organize and structure the requirement specification process, it is nec-
essary to create a well-structured and organized layout, splitting the highly com-
plex and large target architecture into more manageable parts, enabling the iso-
lated analysis of the main "building blocks" of the proposed system.

Each of these components, or "layers" has its own distinct characterization, en-
capsulating vastly different requirements and needs. As such, it is necessary to
formalize the partitioning, define clear boundaries between these parts and pro-
ceed with the analysis of each of them in separate, and in a system where they
work together to ensure that all identified requirements are met.

In this chapter, the system’s architecture is described along with its partitioning
into five layers: ingestion, storage, serving, and orchestration & administration.
Each layer has a specific role and objective, and together they enable the system
to perform its main functionalities, and support all quality attributes (such as
performance, scalability, etc.)

For each layer, a brief overview is provided, describing its main functionalities
and motivations, highlighting the key goals that it aims to serve, and the main
drivers for its architectural development.

1Infrastructure/Platform-as-a-service - operational contexts in which the company (in this
case, Altice Labs, supplies either the execution infrastructure or a platform as a service to external
parties for their own data management businesses.

9

2.1 Overview

The system’s main objective is to enable the processing of large quantities of data in
a multi-tenant capable, highly-scalable and available context. Data is received
from source systems, with varying types, sizes and formats, and is passed on to
storage systems, for later use by the system’s various business endpoints (e.g.
data analytics, visualization, ML, etc.). To manage this entire process, an orches-
tration dashboard or control panel monitors the health of the system and handles
the logging and configuration of the various components.

Throughout this "functionality" chain, there must be provisions for data quality
monitoring, traceability and auditability, as well as considerations for infrastruc-
ture monitoring, automation and system health checking. These features will
allow the system to adapt to the multi-tenancy context, involving external com-
panies and clients in a compliant manner (especially with regards to data privacy
regulations) through strict access control, domain lock-out/management and au-
ditability.

2.1.1 Architecture Partitioning

The architecture is partitioned into three views - Functional, Administrative and
Orchestration. These views encompass the system’s full characterization, and can
be summarised as:

• Functional View - Those pertaining to the main intended functionality -
data processing. This includes a further subdivision:

– Ingestion - The entry of new data into the system.

– Storage - The storage and management of large data volumes.

– Serving - The presentation and consumption of data by external ser-
vices.

• Administrative View - Pertaining to the regulatory constraints and encom-
passing the components which enable compliance.

• Orchestration View - Encompassing the components responsible for moni-
toring, automation and alerting of the system’s execution.

So, to describe the system, a five-layer partitioning is performed: Ingestion Layer,
Storage Layer, Serving Layer, Administration Layer and Orchestration Layer, follow-
ing the aforementioned perspectives. Each of the following sections will target
one of these layers, providing a functional view of which tasks and goals the
layer is focused on.

10

2.2 Functional Layers

As previously discussed, this perspective encompasses three layers - the Inges-
tion Layer (IL), Storage Layer (SL) and Serving Layer (SV). These layers are
where the majority of the system’s data flows will occur, bringing data in from
legacy systems and new sources, transforming it, storing and then delivering it
to its intended endpoint. Figure 2.1 presents a simplified view of the Functional
View, with its main tasks highlighted, layer by layer.

Figure 2.1: Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the main function-
alities are identified.

Data which is streamed in from external sources is passed through the IL, receiv-
ing optional transformations and possibly even being curated based on its quality
or other metrics.

Afterwards, the data is passed to the SL, where storage will take place. This
storage should include some form of cataloguing as per the Lakehouse pattern,
to allow for mixed data storage with warehouse-level performance.

Finally, in the SV, data is pulled from storage. This layer supports automation
of pulling and querying, and provides the necessary tools for data integration,
connecting the data to external services and data sharing. The SV will also en-
compass access control requirements, by virtue of being the external interface of
the system.

The main drivers of these layers can be identified as:

• Ingestion Layer - Performance and Scalability in the data streaming opera-
tions to handle the variable loads and peaks of daily operations, especially
in the multi-tenant environment.

• Storage Layer - Availability and Integrity of the storage systems, and the abil-
ity to ensure that data is never compromised even under hardware failure.

• Serving Layer - Security and Traceability of user actions, to create a stable
and compliant data-sharing environment.

11

2.3 Administration Layer

On top of these functional components, the Administration Layer (AL) serves as
an all-encompassing set of components that will enable the management of data
throughout the entire lifecycle. Figure 2.2 provides a simplified look at the main
tasks supported by the AL.

By leveraging modern technologies such as AI, Knowledge Graphs and more, it
is possible to use metadata derived from all the layers of the system to build a
characterization of the many data flows for auditability and traceability-related
tasks.

Figure 2.2: Schematic representation of the administrative view of the architec-
ture. Metadata flows are represented with dotted green arrows. The data sources
and endpoint external services were joined into a single component for this view.

Through these functionalities, it is possible to maintain an extensive audit log
and use it to ensure compliance, as well as assist in tasks related to data quality
and understanding how data changes throughout its lifecycle by monitoring all
changes made to data objects and integrating them into a comprehensive lineage
view.

The main drivers for this layer are Isolation, Privacy and Usability:

• Isolation and Privacy - In ensuring that data is not widely available to any-
one who seeks it, and that each domain/team/user has their own set of
data and access is controlled.

• Usability - In creating an environment that can facilitate integration, data
sharing and inter-operability between domains in a safe, compliant way.

12

2.4 Orchestration Layer

In parallel with the management of the data, there must also be a feature-set for
managing the system’s execution, and to ensure that scalability, performance and
productivity does not suffer during the various states of operation the system
may be subjected to.

In the Orchestration Layer (OL) components work together to ensure the sys-
tem’s health, through a combination of logging, log analytics and automated
maintenance routines. Figure 2.3 provides a simplified view of the main activ-
ities that take place in the OL.

Figure 2.3: Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the main function-
alities are identified.

To support these functionalities, distinct message queues/pathways must be de-
fined, to ensure long-term scalability and flexibility of the monitoring and man-
agement solution. The potential for this layer is significant, since it may use its
role as overseer to significantly automate the management and health checking
of the system through the configuration of alarms, automated actions and reac-
tions to system events. Taking this into account, the key drivers for this layer are
Consistency, Modifiability and Scalability/Performance:

• Consistency - In logging, monitoring and maintaining the harmony of the
system through constant, real-time analysis of system health data.

• Modifiability - In adding new monitoring components, new analytics op-
erations, action automation and even registering new components into the
monitoring suite. These needs must be met, allowing for a resource-conservative
approach to management and maintenance.

• Scalability/Performance - In ensuring harmonious operation at all load lev-
els, the monitoring, rate-limiting and automation must be able to perform,
and scale up/down whenever necessary, maintaining an elastic profile.

13

Chapter 3

Constraints

This chapter seeks to detail the constraints to which the project as a whole is sub-
jected too, and that must be considered when designing the architecture. These
constraints include business-related limitations (such as regulatory constraints,
limits inherent to the business activities of the company, etc.) and more technical-
related limitations (such as integration with existing technology, on-prem hard-
ware, etc.).

The mapping of these constraints will give more perspective to the design process
by defining the rigid and soft limits in the design decisions which will be made
in the architecture design process.

This chapter presents both business and technical constraints. They are presented
in a tabular format, including an ID, a Category, a Description and a Source-ID
(mapped previously in Chapter 1, Section 1.4 - Intended Audience and Reading
Suggestions).

14

3.1 Business Constraints

The business constraints identified for this project can be summarised as the nor-
mal limitations attached to a data management platform (i.e. regulatory compli-
ance, GDPR requirements, etc.) paired with the need to accommodate a growing,
scalable business model and all its requirements (cost control, client management,
privacy, etc).

Table 3.1 identified the main business constraints identified thus far for the project.
As with other requirements/constraints in this document, an ID-Description
pair is used for each entry. The business constraints here also have a Category
identifier, which gives some general information as to which specific topic the
constraint refers to.

ID Source Category Description

BC-001 PRE General The system must evolve into a multi-tenant
cloud-based architecture, with one deployment
for several client provider.

BC-002 PRE Privacy The mandatory security requirements of the
GDPR are fully met.

BC-003 PRE Costs Software components included in the architec-
ture should prioritize accessibility and focus
on low-cost alternatives (free-to-use being espe-
cially desirable)

BC-004 PRE* Costs Costs should be controllable, either by limiting
resource usage or by creating cost ceilings.

BC-005 PRE Training Barrier of entry for software component us-
age/modification should be as low as possible,
with good documentation and support.

BC-006 PRE Costs Software components should, ideally, use open
source software.

BC-007 REQ-1 Privacy The software manages personal and non-
personal data in separate ingestion, storage and
serving streams.

BC-008 REQ-1 Privacy Personal data must be anonymized through
Generalisation, Randomisation or Masking.

BC-009 REQ-1 Privacy Personal data must not be kept for a period
longer than useful or necessary for business op-
erations.

Table 3.1: Business constraints identified for the project.

15

3.2 Technical Constraints

The currently identified technical constraints mostly concern the information and
descriptions gathered during the preliminary "Architectural Driver Elicitation
Workshop", prior to the dissertation project. As such, the contents of the tech-
nical constraints record (Table 3.2) mostly consist of requirements presented from
the analysis of existing systems (namely the connections to legacy data sources
and existing BI or DS, AI or ML services).

While these requirements may not be directly applicable, they provide some idea
of what legacy and existing components may need to be connected to the plat-
form, and as such, represent a base for compatibility-based requirements.

ID Source Description

TC-001 PRE SMS/Phone data is accessed by Cube Navigator/MicroStrategy

TC-002 PRE SMS/Phone data is stored in Greenplum

TC-003 PRE SMS/Phone data is accessible via REST API and MongoDB

TC-004 PRE SMS/Phone data is monitored via Prometheus Alertmanager

TC-005 PRE BI data is received from CSV and Oracle databases

TC-006 PRE BI data must be available via SQL interface

TC-008 PRE Internal clients (helpdesk, etc) receive data from a Kafka MQ

TC-009 REQ-2 Components (general) are compatible with the Prometheus mon-
itoring toolset.

Table 3.2: Technical constraints identified for the project.

16

Chapter 4

Requirements

This chapter outlines the functional requirements and non-functional require-
ments of the system, layer by layer. As previously detailed, the architecture has
been partitioned into five layers (IL, SL, SV, OL and AL), and this chapter will
detail all the requirements associated with each of these logical components.

Functional requirements describe what the system must do to fulfill its purpose
and meet the needs of its users and stakeholders. They specify the features, ca-
pabilities, and behaviors of the system in terms of inputs, processing, outputs
and user interaction, providing a detailed description of the system’s expected
functionality.

Adding to this description, non-functional requirements describe the character-
istics and qualities of the system which are crucial to its overall performance,
usability, reliability, scalability, etc. These provide a set of criteria against which
the system’s success can be measured and help ensure that the system meets the
needs and expectations of its stakeholders, while taking the various constraints
into consideration.

Firstly, the general requirements will be outlined. These encompass the globality
of the system and are applicable to all components. After this general view, each
of the layers’ requirements are detailed separately, in order to provide a compre-
hensive characterization of each component.

17

4.1 General View

From a general perspective, the system’s requirements are defined loosely, but
give some indication on how the system’s components should generally function
in different settings.

Functionally (Table 4.1), integration is identified as a major factor. The ability to
seamlessly integrate new technologies and data streams is considered due to the
open-ended nature of the multi-tenancy context which the framework is intended
to serve. Adding to this, the matter of functionally implementing scalable design
is also considered, as the system must possess the ability to change dynamically
and monitor itself to ensure its adaptability to adverse conditions.

In terms of qualities (Table 4.2, the system has a major focus on the usual factors
that drive distributed systems: Availability, Reliability, Performance and Scal-
ability. Communication between components, general availability metrics and
performance requirements can be defined (albeit loosely), and some general scal-
ability requirements can be defined as significant for all components.

ID Source Description

FR-G-001 REQ-1 The administrator can integrate new data streams into the system.

FR-G-002 REQ-1 The system’s components must dynamically scale to maintain
throughput/other specific production metrics.

FR-G-003 REQ-0 Components collect and internal health checking statistics and
data and push it to the CL.

Table 4.1: Functional Requirements for system’s components, in a general view.

ID Source Category Description

NFR-G-001 REQ-0 Availability The system remains online during maintenance
or update.

NFR-G-002 REQ-1 Reliability The system must guarantee that each mes-
sage is delivered exactly-once, regardless of any
adverse conditions (in both data and logging
queues).

NFR-G-003 REQ-0 Performance Peaks of data production and consumption are
typical, and the system remains in operation and
does not lose data or functionality when peak
conditions are met

NFR-G-004 REQ-1 Scalability The system must instantiate new components
or shelf inactive components to maintain steady
operation under all conditions

NFR-G-005 REQ-1 Scalability The system’s scalability adjustments must never
allow for throughput loss greater than 5%.

Table 4.2: Non-Functional Requirements (Quality Attributes) for the general
view.

18

4.2 Ingestion Layer

As the entry point of data, requirements are more strictly defined, including an
array of functionalities pertaining to the connection of new data sources (and the
adaptability of the system to varying source data flows), and qualities mainly
linked to performance, scalability and reliability (to ensure that data streams and
flows are not disrupted in the production environment.

Due to the multi-tenant target for the system, performance qualities must be de-
fined in a scalable way, to ensure that tests can be performed prior to the actual
system’s production stage (and prior to the concurrent use by various tenants).

4.2.1 Functional Requirements

The functional requirements of the IL focus on the ability to configure the sys-
tem’s data streams through scheduling, duplicating, automating and readily mod-
ifying existing streams. By meeting these requirements, the cost of connecting a
new data-source or forwarding data to a different place is vastly reduced, result-
ing in a much more flexible system.

ID Actor Source Description

FR-IL-001 System REQ-1 The system logs new component addi-
tions/connections through an API

FR-IL-002 System PRE The system shall accept configurations for both
streaming and batch data sources.

FR-IL-003 Process
Manager

REQ-1 The process manager can duplicate data streams and
forward them to the Serving Layer (SV) through a
"speed-layer"

FR-IL-004 Process
Manager

REQ-1 The process manager can connect new data sources to
the IL’s queues

FR-IL-005 Process
Manager

REQ-1 The process manager can configure automated
pulling from external data sources

FR-IL-006 Process
Manager

REQ-1 The process manager can configure scheduled contin-
uous data acquisition (data streaming windows)

FR-IL-007 Process
Manager

REQ-1 The process manager can automate ac-
tions/ETL/transformations using a scheduling
engine

FR-IL-008 Data
Manager

REQ-1 The data manager can interact with the scheduling
engine to ensure correct integration/enrichment for
the "enrichment lane".

Table 4.3: Functional Requirements for Ingestion Layer (IL).

19

4.2.2 Non-Functional Requirements

This flexibility is complemented by the identified quality-attributes which the
components of this layer must hold: Scalability, Availability, Performance, In-
tegrity and Compatibility.

These are the main traits of this layer’s components, and result in a fast, reliable
system for moving data into the framework without faults, problems or delays.

QAS-IL-001 - REQ-1 - Scalability

Source - Source Systems
Stimulus - The number of files streaming into the system increases to peak conditions.
Environment - At runtime, under peak load.
Artifact - Ingestion Layer

Response - Throughput is not severely affected and system operations continue seamlessly.
Response Measure: No throughput loss rate greater than 1% is observed in the ingestion
queues as they adapt to the increased load.

QAS-IL-002 - REQ-1 - Performance

Source - Source Systems
Stimulus - Files are streaming into the system.
Environment - At runtime, under normal operations.
Artifact - Ingestion Layer

Response - Latency is low and files are streamed with minimal overhead.
Response Measure: Latency is not greater than 100ms in message passing operations.

QAS-IL-003 - REQ-1 - Availability

Source - Ingestion Queue
Stimulus - A cluster of message brokers enters failure state.
Environment - At runtime, under normal operations.
Artifact - Ingestion Layer

Response - Process Manager is notified, new components are instantiated to serve existing
streams.
Response Measure: The system does not incur in significant downtime during cluster failure.

QAS-IL-004 - REQ-1 - Compatibility

Source - Process Manager
Stimulus - A new data source is connected to the system.
Environment - At configure time.
Artifact - Ingestion Layer New source is connected and becomes operational, streaming data
into the system.

Response - The source is fully operational and integrated within 1 hour of the change.
Response Measure:

20

QAS-IL-005 - REQ-1 - Integrity

Source - Source Systems
Stimulus - Files are streaming into the system.
Environment - At runtime, under normal operations.
Artifact - Ingestion Layer

Response - File corruptions or errors are corrected by the system, and data is verified before
being stored.
Response Measure: The system detects message errors 99.99999% of the time.

QAS-IL-006 - REQ-1 - Reliability

Source - Ingestion Queue
Stimulus - Message transmission isn’t successful.
Environment - At runtime, under component failure.
Artifact - Ingestion Layer

Response - Messages are not lost, and are re-transmitted upon service recovery using "E-O"
message delivery protocols.
Response Measure: The system has a message loss rate of less than 0.1%.

21

4.3 Storage Layer

In the Storage Layer (SL), requirements focus on the connections to the other
layers and on internal operations regarding the safe, efficient and performant
storage of large quantities of both personal and non-personal data.

4.3.1 Functional Requirements

The requirements of the SL focus on features necessary to create a scalable and
reliable data store. The ability to snapshot data, organize metadata and even
provide transformations and ETL on incoming and outgoing data-streams give
ample tools for data management.

ID Actor Source Description

FR-SL-001 System REQ-0 The system shall provide a functionality to connect
incoming data streams to storage.

FR-SL-002 System REQ-0 The system shall provide optional data transforma-
tion capabilities for incoming data streams.

FR-SL-003 System REQ-1 The system shall provide a functionality to create
snapshots of data on-demand.

FR-SL-004 System REQ-1 The system shall provide the ability to extract aggre-
gated data snapshots.

FR-SL-005 System REQ-1 The system shall provide a functionality to visualize
aggregated data on-demand.

FR-SL-006 System REQ-1 The system shall provide the ability to store data for
a specified period of time.

FR-SL-007 System REQ-1 The system shall allow the storage of structured,
semi-structured and unstructured data.

FR-SL-008 System REQ-1 The system shall enable scheduling of storage main-
tenance operations (de-duplication, backup, etc.)

FR-SL-009 System REQ-1 The system shall allow the configuration of a meta-
data catalog to virtualise data access.

FR-SL-011 System REQ-1 The system shall autonomously build categorizations
based on incoming data types.

FR-SL-012 Data
Manager

REQ-1 A DATA MANAGER may configure custom catego-
rizations for incoming data.

FR-SL-013 Data
Manager

REQ-1 A DATA MANAGER may define "lifespans" for data
categories.

FR-SL-014 Process
Manager

REQ-1 A PROCESS MANAGER may configure new storage
components within the SL (databases, "bins", etc)

Table 4.4: Functional Requirements for Storage Layer (SL).

22

4.3.2 Non-Functional Requirements

Non-functional requirements for the SL focus on Availability, Integrity, Security
and Reliability, as all the storage system’s data must be backed-up, secured and
highly available to ensure harmony within the system. To express these qualities,
the scenarios were designed around the use of the SL’s features, by the Users and
by the Data Manager.

QAS-SL-001 - REQ-1 - Usability

Source - End-user
Stimulus - A user wishes to access a dataset pertaining to his domain.
Environment - At runtime, under normal operations
Artifact - Storage Layer

Response - Data is retrieved and presented to the user.
Response Measure: Data is prepared according to the access level of the user and presents only
the data to which he has access to, omitting fields/rows which he is not allowed to see.

QAS-SL-002 - REQ-1 - Integrity

Source - Data Manager
Stimulus - The manager seeks to ensure that data storage is backed-up and fault-tolerant
Environment - At runtime, under normal operations
Artifact - Storage Layer

Response - The system ensures storage replication, backups and fault-recovery.
Response Measure: Data records are resilient to the loss of their main storage component.
Backups are performed daily.

QAS-SL-003 - REQ-1 - Security

Source - End-user
Stimulus - The user seeks to access data outside of his domain
Environment - At runtime, under normal operations
Artifact - Storage Layer

Response - Data access is denied, user access is logged.
Response Measure: Users are not able to access restricted data outside of their domain.

QAS-SL-004 - REQ-1 - Auditability

Source - Data Manager
Stimulus - Desire to check the lineage of a dataset
Environment - At runtime, under normal operations
Artifact - Storage Layer

Response - The history of the dataset is displayed, from creation.
Response Measure: All intermediate transformations and steps are recorded.

23

QAS-SL-005 - REQ-1 - Reliability

Source - Storage Components
Stimulus - One of the storage components ceases to function and communicate.
Environment - At runtime, under failure conditions.
Artifact - Storage Layer

Response - Failure is detected, operations are handed over to replicated backups. Faulty ser-
vice is restored.
Response Measure: Data must never be lost, either through image backups or distributed
replicas, and the original storage component must be rebuilt and repopulated fully within 1
day.

24

4.4 Serving Layer

The Serving Layer, as the point of interfacing between the system and the end-
users and external services, has a lot of functionalities related to the extraction,
presentation and handling of stored data. Qualities are mostly directed at the
traits of these connections, namely in terms of how data is presented to external
services.

4.4.1 Functional Requirements

The functional requirements of the SV focus on convenience features such as au-
tomation, query flexibility (i.e. perform ad-hoc queries) and data sharing features
to fulfil the more "Data-Mesh" oriented use-cases, enabling end-users to share
their data with other clients through a number of filters and privacy-preserving
techniques, and disabling access to unauthorized users outside of the relevant
domain.

ID Actor Source Description

FR-SV-001 System REQ-1 The system shall allow for the automation of data
transit (pushing, pulling) for external services

FR-SV-003 System PRE The system can perform preset or adhoc queries on
the contents of its internal catalog.

FR-SV-004 System REQ-1 The system shall enable the creation of REST APIs to
relay data from the Storage Layer without the use of
a message queue.

FR-SV-005 System PRE The end-user may configure automated data pulling
for ML/AI/DS tasks.

FR-SV-007 Data
Manager

REQ-1 The data manager can configure data transit for new
external services.

FR-SV-008 System PRE The system shall present specific views of the data in
the SL according to the user’s access level/domain.

FR-SV-009 System REQ-1 The system shall regulate access to the specific catalog
through increasingly granular interfaces

FR-SV-010 End-User REQ-1 The end-user may access the data views which per-
tain to his domain

FR-SV-011 Data
Manager

REQ-1 The data-manager may configure rules to allow data
sharing between domains.

FR-SV-013 Data
Manager

PRE The data manager may connect to the IL’s queue
to set-up an "enrichment lane" for data integra-
tion/enrichment

Table 4.5: Functional Requirements for Serving Layer (SV).

25

4.4.2 Non-Functional Requirements

Non-functional requirements for this layer focus on the qualities of Performance,
for high speed querying and data fetching/pulling, and in Security, Traceability
and Consistency, to ensure that user access is done according to the relevant
rules and domain lock-outs, and that all user accesses can be traced for auditing
purposes.

QAS-SV-001 - REQ-1 - Compatibility

Source - End-user
Stimulus - A user wishes to connect an external analytics engine to an existing data view.
Environment - At runtime, under normal operation
Artifact - Serving Layer

Response - The system allows for the automation of data transformations and subsequent
pushing to the external analytics tool.
Response Measure: The system can adjust the data type/schema to a target type using data
transformations. These transformations are explictly programmed.

QAS-SV-002 - REQ-2 - Performance

Source - End-user
Stimulus - A user executes a query for a sub-selection of a dataset.
Environment - At runtime, under normal operation
Artifact - Serving Layer

Response - The system presents the data.
Response Measure: Queries are executed in real-time with minimal latency (<100ms).

QAS-SV-003 - REQ-2 - Security

Source - Data Manager
Stimulus - The data manager wishes to configure new data views for a tenant’s interface.
Environment - At runtime, under normal operation
Artifact - Tenant Interface

Response - The new views are available to the relevant end-users/domains/tenant.
Response Measure: Propagation of new views takes at most 1 hour.

QAS-SV-004 - REQ-2 - Traceability

Source - End-user
Stimulus - A user executes an operation (read or write)
Environment - At runtime, under normal operation
Artifact - Tenant Interface

Response - The action is recorded in a log.
Response Measure: The log is immutable and replicated. This log is protected from all user
interference and stored outside of normal user access.

26

QAS-SV-005 - REQ-1 - Consistency

Source - Data Manager
Stimulus - The data manager automates pushing of data to external services for periodic data
analytics/ML/etc.
Environment - At runtime, under normal operation
Artifact - Serving Layer

Response - Data pulling from SL and pushing to external services is automated and executed
periodically.
Response Measure: Deviation from scheduled action time is not greater than 1 minute. Op-
erations are executed consistently according to their defined rate (i.e. if hourly, 24 times per
day).

27

4.5 Orchestration Layer

Features like this demand a strict logging system, ensuring realtime data flows
into an analytics engine which can feasibly respond to the changing conditions
of the system. To this end, a connection to the outside (dashboard) will enable a
"Process Manager" to configure and prepare the system for its daily operations,
be it through automating maintenance, analysing logs manually or pushing new
configurations on-the-fly, to effect updates and ensure connectivity throughout
the entire system.

4.5.1 Functional Requirements

Functional requirements for this layer generally revolve around the monitoring of
the many components, the health checking and associated analytics and metrics.
With this information, the process manager can automate tasks and backups, set
up alarms, triggers and actions to ensure the harmonious operation of the frame-
work. Additionally, some consideration is allotted to disaster recovery, ensuring
that backups occur and that recovery is possible.

ID Actor Source Description

FR-OL-001 System REQ-1 The system shall allow for the connection of new
modules to the monitoring system

FR-OL-003 System REQ-1 The system shall support the building of im-
ages/snapshots of log data and save them to LTS.

FR-OL-004 System REQ-1 The system shall be configured to perform load bal-
ancing.

FR-OL-005 System REQ-1 The system performs the automatic creation of execu-
tion snapshots or checkpoints to enable recovery after
catastrophic failure.

FR-OL-007 Process
Manager

REQ-1 The process manager can access platform health data,
status information and component metrics.

FR-OL-008 Process
Manager

REQ-1 The process manager can view and run analytics on
log data.

FR-OL-009 Process
Manager

REQ-1 The process manager can configure alarms, triggers
and actions, and automate them via connection to
specific component(s).

FR-OL-010 Process
Manager

REQ-1 The process manager can configure scaling profiles
(rules for provisioning and orchestration) and auto-
mate their implementation,

Table 4.6: Functional Requirements for Orchestration Layer (OL).

28

4.5.2 Non-Functional Requirements

The non-functional requirements of this layer revolver generally around Scal-
ability, Performance and Availability, key factors in the system’s response to
changes in the operating conditions, as well as matters of Consistency in how
often the system should execute its backup operations.

QAS-OL-001 - REQ-1 - Scalability

Source - System
Stimulus - Resources are insufficient to ensure harmony between producers and consumers.
Environment - At runtime, under high demand.
Artifact - Orchestration Layer

Response - The system scales horizontally to meet demands by executing automated scaling
processes.
Response Measure: No throughput loss rate greater than 5% is observed in any component.

QAS-OL-002 - REQ-2 - Performance

Source - System Component
Stimulus - Sends log data in real-time.
Environment - At runtime, under normal operations.
Artifact - Logging Component

Response - The logs are processed and eventually saved to LTS.
Response Measure: Logs are processed in real-time. Latency is no greater than 10ms.

QAS-OL-005 - REQ-1 - Consistency

Source - Process Manager
Stimulus - The process manager wishes to configure automated snapshotting for the system
health logs.
Environment - At configure time.
Artifact - Orchestration Layer

Response - The logs are saved to LTS via snapshotting at configured time intervals.
Response Measure: Discrepancies of time between snapshots are no greater than 0.1%.

QAS-OL-006 - REQ-2 - Availability

Source - System Component
Stimulus - A component must be updated
Environment - At runtime, during maintenance operations.
Artifact - Component

Response - The component is updated with no downtime, and its operations are not inter-
rupted.
Response Measure: The system ensures that during component update, its operations are en-
sured by either replication or load balancing (i.e.e green-blue).

29

QAS-OL-007 - REQ-2 - Modifiability

Source - Process Manager
Stimulus - The process manager seeks to automate a new analytics chain on log data from
Component X
Environment - At runtime, under normal operations.
Artifact - Log Analytics Engine

Response - The new processing workflow is added to the engine and begins execution.
Response Measure: The integration of this new analytics chain and subsequent presentation
of results takes no longer than 30 minutes.

30

4.6 Administration Layer

This layer will rely on a "Data Manager" to control who has access to the data,
how they can view it, and how it can be shared between users. Also available
will be a comprehensive logging of all user activity in relation to the data, and
the ability to track all interactions in an immutable log to ensure compliance with
relevant regulations. This layer is deeply entwined with the Serving Layer, as this
is where the user’s behaviour will be observable.

4.6.1 Functional Requirements

Functional requirements for this layer include the management of teams, do-
mains and users and also the logging of user activity. This management is done
also on the level of maintaining an external data catalog, which serves as a ledger
for all the operations and metadata attached to the data within the system. This
catalog may also be used to initiate data sharing contracts with external clients,
by allowing them to browse the catalog and see, via the metadata, what data may
be of use to them, without compromising on its privacy and security.

ID Actor Source Description

FR-AL-001 Data
Manager

REQ-1 The data manager can perform access control op-
erations, defining who can access which domains
through an IMS (Identity Management System)

FR-AL-002 Data
Manager

REQ-2 The data manager can associate entities (domains,
tenants, user groups) with catalog views.

FR-AL-003 Data
Manager

REQ-2 The data manager can extract user interaction logs for
analytics.

FR-AL-004 Data
Manager

REQ-2 The data manager can configure new user interaction
logging processes via APIs.

FR-AL-005 System REQ-1 The system shall perform global user interaction
monitoring using daily logs pertaining to user actions
(read, write, modify)

FR-AL-006 System REQ-1 The system shall snapshot logs on a configurable ba-
sis and save them to LTS for auditability purposes.

FR-AL-007 System REQ-1 The AL is connected to all components and access
logs are communicated through APIs integrated into
these components.

Table 4.7: Functional Requirements for Administration Layer (AL).

31

4.6.2 Non-Functional Requirements

Non-functional requirements of this layer involve the maintenance of Security,
Privacy and Isolation, key qualities of a compliant system, and with some in-
terest put on issues of Usability and Consistency to ensure that operating this
administrative environment is easy, and that its effects on the system are felt in a
consistent way.

QAS-AL-001 - REQ-1 - Usability

Source - Data Manager
Stimulus - New data views must be configured for Tenant X
Environment - At configure time.
Artifact - Metadata Catalog

Response - A new view is created, and is readily accessible/configurable for Tenant X.
Response Measure: New view is visible within 1 hour of configuration.

QAS-AL-002 - REQ-2 - Isolation

Source - Unauthorized User
Stimulus - An unauthorised user attempts to access data outside his domain
Environment - At runtime, under normal operations.
Artifact - Tenant Interface

Response - Access is not granted, activity is logged.
Response Measure: Data is not accessible between domains unless explicitly programmed so.

QAS-AL-003 - REQ-2 - Privacy

Source - Tenant X
Stimulus - Tenant X wishes to create a self-serve view for his data.
Environment - At configure time.
Artifact - Metadata Catalog

Response - The view is created and made available to other tenants. Access is granted by
Tenant X or the Data Manager.
Response Measure: Data presented in these self-serve views is updated in real-time when the
source data changes.

QAS-AL-004 - REQ-2 - Consistency

Source - Data Manager
Stimulus - The data manager wishes to configure automated backups of the access log.
Environment - At configure time.
Artifact - Metadata Catalog

Response - The log is automated to be saved to LTS and backed up on a periodic schedule.
Response Measure: Deviations from scheduled time between logs are no greater than 0.1%.

32

QAS-AL-005 - REQ-2 - Privacy

Source - Tenant X
Stimulus - Tenant X wishes to access data from Tenant Y’s views
Environment - At runtime, under normal operations.
Artifact - Metadata Catalog

Response - If Tenant Y has created self-serve views, these may be used. If not, a request is made
for the Data Manager to enable access.
Response Measure: Tenant X cannot access Tenant Y’s data beyond the views which Tenant Y
provides (i.e. if Tenant Y does not enable the viewing of the first column of a DB, Tenant X will
receive that Db without the info on the first column).

33

Appendix B

Architecture Specification

185

José Miguel Dias Simões

Architecture Specification
POWER Data Framework Architecture

Document produced in the scope of the dissertation "POWER Data Framework
Architecture", advised by Prof. Bruno Cabral and Prof. Vasco Pereira and
presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

September 2023

Contents

1 Introduction 4
1.1 Purpose . 4
1.2 Scope . 5
1.3 Document Structure and Conventions 5
1.4 Intended Audience and Reading Suggestions 6

2 System Description 7
2.1 Overview . 8

2.1.1 Architecture Partitioning . 8
2.2 Functional Layers . 9
2.3 Administration Layer . 10
2.4 Orchestration Layer . 11

3 Architecture Description 12
3.1 Overview . 13

3.1.1 Ingestion, Storage and Serving 13
3.1.2 Administration and Governance 13
3.1.3 Infrastructure Control . 13

3.2 Context View . 14
3.3 Container View . 15
3.4 Component Views . 17

3.4.1 Kafka Ingestion Cluster . 17
3.4.2 Lakehouse Hudi/Spark Cluster 19
3.4.3 Serving Spark/Presto Cluster 21

3.5 Alternatives . 23
3.5.1 Ingestion . 23
3.5.2 Storage and Serving . 24

3.6 Future Work . 25

2

List of Figures

2.1 Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the
main functionalities are identified. 9

2.2 Schematic representation of the administrative view of the archi-
tecture. Metadata flows are represented with dotted green arrows.
The data sources and endpoint external services were joined into a
single component for this view. 10

2.3 Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the
main functionalities are identified. 11

3.1 Context diagram for the architecture. Displayed are the three rele-
vant actors and the systems they interact with. 14

3.2 Container View of the Data Framework system. Grey arrows indi-
cate data flows, green arrows indicate log flows and pink arrows
indicate metadata flows. 16

3.3 Component View of the Kafka Ingestion Cluster component. Grey
arrows indicate data flows, green arrows indicate log flows and
pink arrows indicate metadata flows. Additionally, dashed grey
lines indicate data flows from/to outside the component. 18

3.4 Component View of the Lakehouse Hudi/Spark Cluster compo-
nent. Grey arrows indicate data flows, green arrows indicate log
flows and pink arrows indicate metadata flows. Additionally, dashed
grey lines indicate data flows from/to outside the component. . . . 20

3.5 Component View of the Serving Spark/Presto Cluster component.
Grey arrows indicate data flows, green arrows indicate log flows
and pink arrows indicate metadata flows. Additionally, dashed
grey lines indicate data flows from/to outside the component. . . . 22

3

Chapter 1

Introduction

In the scope of the "Dissertation/Internship in Software Engineering" curricu-
lar unit of the Master’s Course in Informatics Engineering, at the Department of
Informatics Engineering, in the Faculty of Sciences and Technology of the Univer-
sity of Coimbra, as a part of the POWER Project, this document serves as the final
architecture specification for the Data Framework dissertation project, pertain-
ing to a planned infrastructure for scalable data processing to be implemented at
Altice Labs S.A..

This work and the associated dissertation project are funded by the POWER
project (grant number POCI-01-0247-FEDER-070365), co-financed by the Euro-
pean Regional Development Fund (FEDER), through Portugal 2020 (PT2020), and
by the Competitiveness and Internationalization Operational Programme (COM-
PETE 2020).

This chapter will outline the purpose of the document as well as its scope, its lay-
out and relevant information (such as conventions, standards, etc) and lastly, all
relevant information regarding the intended audience and any pertinent reading
suggestions.

1.1 Purpose

This document’s purpose is to describe the layout, components and connections
of the software architecture for the target framework. It will serve as an architec-
ture specification, presenting the inner workings of the framework.

This architecture was designed following a formal architecture development method-
ology, and this process is detailed in full in the dissertation report, where the
description is aimed primarily at describing how the architecture was designed
and how components were selected based on research, experimentation and an
iterative design approach.

In contrast, this document focuses on the description and specification of the sys-
tem’s architecture in a stand-alone perspective, to serve as a resource for future
work and implementation efforts.

4

1.2 Scope

This document aims to describe the architecture using an architecture description
language, through diagrams and brief text summaries. From a general point of
view, the final architecture aims to serve as the foundation for a scalable, multi-
tenant IaaS/PaaS data framework to serve a number of endpoint services based
on data exploration and interpretation, within ever-changing regulatory environ-
ment characterized by high security and privacy needs.

This framework will receive data from a number of source systems. These source
systems are of varying types, and their internal architecture is not considered. It
is, however, expected that the platform will be able to handle any kind of input,
by way of transforming data to fit a pattern either on the ingestion side or the
storage side.

The projected endpoint services for this platform include Business Intelligence
(BI)-based services (generation of data-based visualisations, dashboards, reports),
Machine-Learning (ML) oriented services (geared toward exploratory and pre-
dictive analysis of high-flow data streams) and alarm or trigger-based services
(which operate on log data). For the purposes of this specification, the scope of
the architectural decisions will lead up to each of these services, but will not en-
compass the services themselves, as these should have a flexible implementation.

1.3 Document Structure and Conventions

The architecture specification will be described using the the C4 Model for Visu-
alising Software Architecture, which will present diagrams related to the target
software through a hierarchical, notation-independent approach.

The document will follow a simplified chapter structure based on the one de-
scribed in the IEEE 830-1998 Standard (IEEE Recommended Practice for Software
Requirements Specifications). This will provide the generic layout for the presen-
tation of the system’s description and features, and will serve as a framing for the
C4 model’s diagrams.

The content will begin with a description of the system, starting with general
features and qualities and then the main functionalities and qualities of each of its
separate layers. Following this, the C4 documentation will be used to describe the
architecture using four different perspectives (described in the following section).

5

1.4 Intended Audience and Reading Suggestions

This document is intended for individuals directly involved in the development
of the POWER Data Framework within Altice Labs S.A. and the corresponding
dissertation project within the University of Coimbra, as well as any members
of the POWER Project or future implementation endeavours associated with this
architecture.

Below is an overview of the structure of the document, along with additional
information regarding the contents and layout of each Section.

• Chapter I: Introduction - In this section, the basic introductory information
is exposed, along with the scope of the document and some information
regarding the project.

• Chapter II: System Description - In this section there is a description of the
layout of the system and its five main components (layers).

– In these descriptions, the concept of "architectural driver" is used. Suc-
cinctly, it describes a specific requirement or constraint that signifi-
cantly influences the design and decisions made during the architec-
ture design process of that specific layer.

• Chapter III: Architecture Description - In this chapter, the C4 notation is
employed to describe the architecture. This notation starts at a high level
(Context Diagram) then zooms-in on the system, presenting increasingly
granular views (Container Diagram, followed by Component Diagram).
The last level of abstraction (Code) will not be utilized for this description.

– Section 1 - Context Diagram - Detail the system’s relationship to ex-
ternal systems and actors to contextualise its operation.

– Section 2 - Container Diagram - Detail the system’s containers, i.e. in-
dividually executable/deployable units.

– Section 3 - Component Diagrams - For each of the previous contain-
ers, detail the internal components which encompass the container’s
responsibilities.

The last level of abstraction in the C4 model (Code) is not presented in this doc-
ument. It is an optional part of the C4 model as it is often closely linked to the
actual implementation of the framework, and is generally used when designing
at a very fine level (i.e. designing the internal structure of a micro-service, etc).
This process was not performed as part of the dissertation project, which focused
more on the viability of the technologies used in the architecture, resulting in im-
plementations which consisted focused design prototypes, and not production-
grade setups.

6

Chapter 2

System Description

The target system consists of a centralized data processing platform designed for
multi-tenant IaaS/PaaS1 operational environments. This platform aims to bring
together various services within Altice Labs S.A. while also facilitating regulatory
compliance. Additionally, it is intended to support future initiatives related to
data privacy, security, and governance by offering appropriate tools and facilitate
the adoption of organizational changes.

To better organize and structure the requirement specification process, it is nec-
essary to create a well-structured and organized layout, splitting the highly com-
plex and large target architecture into more manageable parts, enabling the iso-
lated analysis of the main "building blocks" of the proposed system. Each of
these components, or "layers" has its own distinct characterization, encapsulating
vastly different requirements and needs. As such, it is necessary to formalize the
partitioning, define clear boundaries between these parts and proceed with the
analysis of each of them in separate, and in a system where they work together
to ensure that all identified requirements are met.

In this chapter, the system is described, from a high-level perspective, along with
its partitioning into five layers: ingestion, storage, serving, and orchestration &
administration. Each layer has a specific role and objective, and together they
enable the system to perform its main functionalities, and support all relevant
quality attributes2.

For each layer, a brief overview is provided, describing its main functionalities
and motivations, highlighting the key goals that it aims to serve, and its main
architecturally significant drivers.

1Infrastructure/Platform-as-a-service - operational contexts in which the company (in this
case, Altice Labs, supplies either the execution infrastructure or a platform as a service to external
parties for their own data management businesses.

2A textual representation of a certain quality of a system/component/interaction, such as Se-
curity, Scalability, Performance or Privacy, for example.

7

2.1 Overview

The system’s main objective is to enable the processing of large quantities of data in
a multi-tenant capable, highly-scalable and available context. Data is received
from source systems, with varying types, sizes and formats, and is passed on to
storage systems, for later use by the system’s various business endpoints (e.g.
data analytics, visualization, ML, etc.).

Throughout this "functionality" chain, there must be provisions for data quality
monitoring, traceability and auditability, as well as considerations for infrastruc-
ture monitoring, automation and system health checking. These features will
allow the system to adapt to the multi-tenancy context, involving external com-
panies and clients in a compliant manner (especially with regards to data privacy
regulations) through strict access control, domain lock-out/management and au-
ditability, setting the stage for new paradigms such as the Data Mesh3.

2.1.1 Architecture Partitioning

The architecture is partitioned into three views - Functional, Administrative and
Orchestration. These views encompass the system’s full characterization, and can
be summarised as:

• Functional View - Those pertaining to the main intended functionality -
data processing. This includes a further subdivision:

– Ingestion - The entry of new data into the system.

– Storage - The storage and management of large data volumes.

– Serving - The presentation and consumption of data by external ser-
vices.

• Administrative View - Pertaining to the regulatory constraints and encom-
passing the components which enable compliance.

• Orchestration View - Encompassing the components responsible for moni-
toring, automation and alerting of the system’s execution.

So, to describe the system, a five-layer partitioning is performed: Ingestion Layer,
Storage Layer, Serving Layer, Administration Layer and Orchestration Layer, follow-
ing the aforementioned perspectives. The following sections will target these
layers, providing a functional view of which tasks and goals the layer is focused
on.

3A shared data processing/integration paradigm that makes each disparate domain in a busi-
ness enterprise responsible for their data quality, and provides them with the tools to share it with
the other domains.

8

2.2 Functional Layers

As previously discussed, this perspective encompasses three layers - the Inges-
tion Layer (IL), Storage Layer (SL) and Serving Layer (SV). These layers are
where the majority of the system’s data flows will occur, bringing data in from
legacy systems and new sources, transforming it, storing and then delivering it
to its intended endpoint. Figure 2.1 presents a simplified view of the Functional
View, with its main tasks highlighted, layer by layer.

Figure 2.1: Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the main function-
alities are identified.

Data which is streamed in from external sources is passed through the IL, receiv-
ing optional transformations and possibly even being curated based on its quality
or other metrics.

Afterwards, the data is passed to the SL, where storage will take place. This
storage should include some form of cataloguing as per the Lakehouse pattern,
to allow for mixed data storage with warehouse-level performance.

Finally, in the SV, data is pulled from storage. This layer supports automation
of pulling and querying, and provides the necessary tools for data integration,
connecting the data to external services and data sharing. The SV will also en-
compass access control requirements, by virtue of being the external interface of
the system.

The main drivers of these layers can be identified as:

• Ingestion Layer - Performance and Scalability in the data streaming opera-
tions to handle the variable loads and peaks of daily operations, especially
in the multi-tenant environment.

• Storage Layer - Availability and Integrity of the storage systems, and the abil-
ity to ensure that data is never compromised even under hardware failure.

• Serving Layer - Security and Traceability of user actions, to create a stable
and compliant data-sharing environment.

9

2.3 Administration Layer

On top of these functional components, the Administration Layer (AL) serves as
an all-encompassing set of components that will enable the management of data
throughout the entire lifecycle. Figure 2.2 provides a simplified look at the main
tasks supported by the AL.

By leveraging modern technologies such as AI, Knowledge Graphs and more, it
is possible to use metadata derived from all the layers of the system to build a
characterization of the many data flows for auditability and traceability-related
tasks.

Figure 2.2: Schematic representation of the administrative view of the architec-
ture. Metadata flows are represented with dotted green arrows. The data sources
and endpoint external services were joined into a single component for this view.

Through these functionalities, it is possible to maintain an extensive audit log
and use it to ensure compliance, as well as assist in tasks related to data quality
and understanding how data changes throughout its lifecycle by monitoring all
changes made to data objects and integrating them into a comprehensive lineage
view.

The main drivers for this layer are Isolation, Privacy and Usability:

• Isolation and Privacy - In ensuring that data is not widely available to any-
one who seeks it, and that each domain/team/user has their own set of
data and access is controlled.

• Usability - In creating an environment that can facilitate integration, data
sharing and inter-operability between domains in a safe, compliant way.

10

2.4 Orchestration Layer

In parallel with the management of the data, there must also be a feature-set for
managing the system’s execution, and to ensure that scalability, performance and
productivity does not suffer during the various states of operation the system
may be subjected to.

In the Orchestration Layer (OL) components work together to ensure the sys-
tem’s health, through a combination of logging, log analytics and automated
maintenance routines. Figure 2.3 provides a simplified view of the main activ-
ities that take place in the OL.

Figure 2.3: Schematic representation of the functional view of the architecture.
Data flows are represented by arrows, and within each layer the main function-
alities are identified.

To support these functionalities, distinct message queues/pathways must be de-
fined, to ensure long-term scalability and flexibility of the monitoring and man-
agement solution. The potential for this layer is significant, since it may use its
role as overseer to significantly automate the management and health checking
of the system through the configuration of alarms, automated actions and reac-
tions to system events. Taking this into account, the key drivers for this layer are
Consistency, Modifiability and Scalability/Performance:

• Consistency - In logging, monitoring and maintaining the harmony of the
system through constant, real-time analysis of system health data.

• Modifiability - In adding new monitoring components, new analytics op-
erations, action automation and even registering new components into the
monitoring suite. These needs must be met, allowing for a resource-conservative
approach to management and maintenance.

• Scalability/Performance - In ensuring harmonious operation at all load lev-
els, the monitoring, rate-limiting and automation must be able to perform,
and scale up/down whenever necessary, maintaining an elastic profile.

11

Chapter 3

Architecture Description

After the identification of the requirements (described in the Requirement Spec-
ification), an iterative process was used to develop the architecture from a draft
into its final version.

This process refined the architecture, starting with the ingestion processes and
components, and ending with the serving, storage and governance components.
These were targeted by experimental validation over the course of two iterations,
as far as the project’s timeline would allow.

With this process concluded, the architecture was documented following the C4
Model, presenting three of the four views: Context, Container and Component.

The last level of abstraction in the C4 model (Code) is not presented in this docu-
ment. It is an optional view as it is often closely linked to the actual implementa-
tion of the framework, and is generally used when designing at a very fine level
(i.e. designing the internal structure of a micro-service, etc). This process was
not performed as part of the dissertation project, which focused on the viability
of the technologies used in the architecture, resulting in implementations which
consisted focused design prototypes, and not production-grade setups.

The following sections will approach the three developed levels of the C4 model.
Starting with an overview, then progressing to the C4 views: the context view,
container view and then moving onto the several different components, presenting
a diagram for each view, as well as a textual explanation clarifying the function-
alities and qualities supported by each of the different parts of the architecture.

Alternatives are presented for the data pipeline section of the framework, iden-
tified through the state-of-the-art research and iterative process described in the
dissertation report associated with this specification. Additionally, a section ded-
icated to the future work is presented, presenting the avenues for further devel-
opment of this framework architecture.

12

3.1 Overview

The architecture can be summarised as a system built upon the use of a Apache
Hudi Lakehouse on top of a Min.IO/S3 object store (or Data Lake), which cre-
ates an environment fit for high-speed, highly scalable data serving through en-
gines like Spark or Presto. This data store is fed by a multitude of Apache
Kafka streams, either directly or after curating ETL via Spark. The framework’s
many data flows are audited, recorded and traced by the Acryl DataHub meta-
data catalog, and the infrastructure is constantly under health monitoring by a
Prometheus-based monitoring dashboard.

3.1.1 Ingestion, Storage and Serving

This framework ingests data from a number of source systems through the cre-
ation of designated Kafka Producers that gather data (in push or pull configura-
tions) and send them through a network of brokers onto the Hudi Spark cluster,
which extracts metadata and categorizes data before storing it in a Min.IO/S3
bucket. This chain is built around scalability, fault tolerance and high-throughput,
and allows for many ingestion styles under the Kappa architecture pattern (real-
time and batch using the same component, Kafka)

Using Spark and Presto, the flexibility of the querying systems is maximised, as
Spark enables the use of Hudi-specific audit-related queries (such as the time-
travel or data lineage query) while Presto allows for extremely performant ad-hoc
or preset querying. The use of Apache Airflow enables the automation of queries
on the serving side by automating Spark or Presto jobs. Additionally, Presto can
be executed on a Spark cluster, further exploiting the ability to execute these tech-
nologies in parallel. Both Spark and Presto come provisioned with credential-based
access control which can be connected to external identity management software.

3.1.2 Administration and Governance

To establish an audit log and traceability for entire framework, the use of the
Acryl DataHub metadata catalog helps build a graph-based representation of the
data within the framework, showing origin, destination, accesses, modifies and
lineage for any data object within the framework. This catalog is hooked to all the
components which handle data within the framework, and will, over time, create
a robust audit log to ensure data governance, safe data sharing and compliance
are all possible within the framework.

3.1.3 Infrastructure Control

All the identified components present ways to extract metrics and data which
can be interpreted by the Prometheus monitoring and alerting software, which
allows for alerts and management of the system’s infrastructure.

13

3.2 Context View

In the context view (Fig. 3.1) for the system, it is possible to see the three main
actors involved with the operation of the framework:

• The Process Manager - Who is responsible for the health monitoring and
configuration of the framework’s components. Uses an external dashboard
which receives data posted by the framework.

• The End User - Who uses an interface to interact with the data inside the
framework. The interface lets the tenant/user see the data which he is au-
thorized to see, query it, and process it through the use of the components
described further in the chapter.

• The Data Manager - Who has direct access to the internal governance tools
of the framework, and can manage tenant access and authorizations through
an external IAM.

Figure 3.1: Context diagram for the architecture. Displayed are the three relevant
actors and the systems they interact with.

The tenant interface, IAM and monitoring dashboard systems were not devel-
oped in this project and remain as avenues for future work.

14

3.3 Container View

In the container view (Fig. 3.2) the various executable parts of the framework are
visible. Each of these containers is executed either on Docker/Kubernetes or on
bare-metal. It is also possible to operate some of the containers via cloud-based
deployment (namely the Min.IO storage component).

Here, the main data flows are exposed - the flow of data from source systems to end-
users, the metadata governance flows and the infrastructure monitoring flows.

As previously described, the system offers a central path for data to travel through
and from - the Kafka Ingestion Cluster receives data from outside sources, pass-
ing it onto the Lakehouse Hudi/Spark Cluster, which saves it to Min.IO/S3, and
then passes data along to the Serving Spark/Presto Cluster whenever required
by the tenants/end-users. Data may also be served from the Serving Cluster
back to the Ingestion cluster for re-processing, ingestion of newly generated data
or model saving. These three layers support the main qualities demanded of the
framework, in regards to the function of data ingestion, processing, storage and
serving:

• Scalability - All components were selected with scalability and cloud-native
operations in mind, and experimental validation took place, ensuring they
are inter-operable with each-other, albeit in a small, low resource scenario.

• Performance - The main points of data traffic - Kafka and Spark - are highly
performant, and, due to their scalable, distributed and expansible nature,
can guarantee performance at varying load levels.

• Cost Control - All components were selected with cost control in mind,
and, aside from being open-source, include measures for rate control, per-
formance limiting and resource management.

Along this path, the Prometheus deployment extracts metrics, logs and health
data in order to maintain a record of system execution, and potentiate reactive
and predictive maintenance efforts to ensure the long-term stability and scala-
bility of the system (as some of the components require some level of manual
adjustment to scale correctly).

For each of the significant points of data movement (Ingestion, Storage and Serving)
the DataHub Catalog receives metadata transactional records, keeping a com-
plete audit log of all data movements within the system. This allows for the
verification of data lineage, provenance and access for any given data object in
the framework, at all points of its lifecycle.

The DataHub catalog ships with an interface which enables the Data Manager’s
use cases of regulating data discovery, sharing and auditing activities. This cat-
alog interface is also usable by the end-users, who have their own views of the
system’s data, typically filtered by their own authorization level as defined by the
Data Manager.

15

Figure 3.2: Container View of the Data Framework system. Grey arrows indicate
data flows, green arrows indicate log flows and pink arrows indicate metadata
flows.

16

3.4 Component Views

For each of the previously identified containers in the Data Framework system,
a component diagram will be presented, exposing the inner components of each
container as well as their connections/relationships to other containers.

3.4.1 Kafka Ingestion Cluster

As the container responsible for the entry of data into the system, the Kafka In-
gestion Cluster (Fig. 3.3) relies on the creation of paths for data to travel to the
framework in scalable way, fit for large volumes of data and a high-throughput
execution profile. This cluster can be deployed on-prem or through cloud-based
Kafka SaaS deployments like Confluent.

Functionalities

This container uses Kafka streams to serve the data sources outside of the sys-
tem. They consist of a Producer-Broker-Consumer set that can be configured in
push, pull or even a batch-style ingestion that aggregates data before passing it to
storage. This is done through explicit programming of the logic within the Kafka
Producer modules (where they can be connected to any API, legacy system or
external data source).

Additionally, there’s a separate Kafka stream for enrichment and data integration
purposes. This stream receives data from the end-users (through the Serving
Spark/Presto Cluster) and inserts it into the framework, making it possible for
data enrichment and integration practices to have their own ingestion path, which
can even include intermediate processing if necessary.

The Kafka clusters and components are all monitored through the metrics and
logs extracted from its coordinator - the Kafka Zookeeper - and they are passed
onto the Prometheus monitoring software for log analytics, automated alarms
and even actions. The several Kafka topics are connected to a DataHub plugin,
syncing the data, along with its metadata, into the DataHub catalog.

Qualities

Through the use of Kafka’s native scalability, these clusters can maintain their
performance even under highly concurrent, high-traffic workloads (through pre-
sizing for the intended loads) and more clusters/streams can be instantiated to
serve tenant’s needs in an elastic way.

Experimental validation indicates that Kafka can serve in this scenario with very
good results in integrity, scalability and performance. Its flexible implementation
also satisfies the requirements of modifiability, enabling a nearly limitless palette
of external connections.

17

Figure 3.3: Component View of the Kafka Ingestion Cluster component. Grey ar-
rows indicate data flows, green arrows indicate log flows and pink arrows indi-
cate metadata flows. Additionally, dashed grey lines indicate data flows from/to
outside the component.

18

3.4.2 Lakehouse Hudi/Spark Cluster

Once data has entered the system it is the job of the Lakehouse Hudi/Spark
Cluster (Fig. 3.4) to categorize the data, store it, and serve it to the numerous
services which rely on it. The tools used to create this container are extensively
documented, namely in the identified pairings (Hudi/Min.IO and Spark/Presto),
and rely on open-source technology, with both on-prem and cloud-based deploy-
ments available.

Functionalities

Through the use of Hudi as a Data Lakehouse platform, it is possible to empower
the Min.IO/S3 object storage (typically used as a Data Lake) a build a more flex-
ible and performant system. The Hudi/Min.IO combination is able to serve the
required functionalities by enabling:

• Lineage, time-travel and audit queries (via SparkSQL).

• Build custom categorizations for data streams.

• Create data retention policies for specific data types/categories.

Hudi also natively supports two very powerful query engines: the aforemen-
tioned SparkSQL and Presto, with a large array of native integrations. Addition-
ally, because Hudi runs on a Spark cluster, it is possible to create Spark appli-
cations for ETL jobs and other associated data transformations/integrations that
can be configured to run automatically on designated input streams (functionally
creating a curated data path).

The Prometheus dashboard is connected to Hudi’s Spark cluster, where metrics
are exported to monitor the performance and health of this cluster. Data flows
are monitored and logged through the use of metadata extraction via the Spark
DataHub agent, which is configured to automatically parse Spark metadata trans-
actions and log them in the Catalog.

Qualities

The Hudi/Min.IO/S3 system is a robust, performant, scalable and highly available
set-up, featuring many options to maximise these qualities, such as parallel exe-
cution, redundancy and multi-node operations with error correction.

Experimental validation ensures compatibility between the two, as well as suc-
cessful data transit into the open file formats used by Hudi, as well as the reverse
path of re-building from these formats into easily processed JSON files through
the Hudi query system, fulfilling specified requirements of data integrity.

The ability to perform lineage and time-travel queries also fulfils non-functional
requirements of auditability and security, which aids in adoption of compliant
strategies.

19

Figure 3.4: Component View of the Lakehouse Hudi/Spark Cluster component.
Grey arrows indicate data flows, green arrows indicate log flows and pink ar-
rows indicate metadata flows. Additionally, dashed grey lines indicate data flows
from/to outside the component.

20

3.4.3 Serving Spark/Presto Cluster

To interact with the stored data, the Serving Spark/Presto Cluster (Fig. 3.5) con-
tainer leverages the Spark execution environment to create a performant and flex-
ible querying layer, featuring open-source and highly documented technologies
fit for on-prem and cloud-based deployment.

Functionalities

The container relies on the use of the SparkSQL and Presto to query the Hudi ser-
vice, allowing for a variety of query types (ad-hoc, preset, lineage, time-travel)
and for a considerable degree of control over the authorization and access of the
end-user. This is performed through the use of interfacing APIs which may con-
nect to an external Identity and Access Management (IAM) software, providing ac-
cess control to tenant queries.

To send data into the framework, a serving-side API enables data to be routed
back through the Kafka ingestion cluster, and go through the categorization pro-
cesses of the Hudi lakehouse.

The use of an Airflow scheduling component enables end-users to automate queries
to their external services, and it ships with access control associated to its central
dashboard. This feature enables the automation of data presentation to external
AI/ML models, and also the snapshotting and saving of models/model check-
points to long-term storage.

Much like the previous containers, the DataHub catalog tracks all uses of data
into the metadata catalog, while Prometheus manages the health and execution
state of the container’s components.

Qualities

The use of Presto and Spark as querying engines allows the system’s queries to
be very fast, executing in a highly performant way, even in ad-hoc scenarios.

By routing the accesses to data through APIs it is possible to ensure a large degree
of control, interfacing with external IAM software and enabling domain lock-out.
Spark, through combination with Hudi, also enables credentials to be propagated
through the querying process, returning only the data that the user has access to,
omitting fields that they are not authorized to see.

This, along with the recording of all data movements in DataHub fulfils the qual-
ities of security, traceability and privacy which are required for a safe data handling
and sharing environment, potentiating the evolution to a Data Mesh scenario.

21

Figure 3.5: Component View of the Serving Spark/Presto Cluster component.
Grey arrows indicate data flows, green arrows indicate log flows and pink ar-
rows indicate metadata flows. Additionally, dashed grey lines indicate data flows
from/to outside the component.

22

3.5 Alternatives

Along with the selected technologies for the final architecture, some of the re-
searched components are, based on the selection criteria described in the previ-
ous chapter, possible viable alternatives for the functionalities of the main data
pipeline.

As research could not cover or experiment on the identified metadata catalog al-
ternatives, this section will not present any alternatives for the data governance
side of the framework, as DataHub is both the most featured and most well doc-
umented choice in this area.

Additionally, some considerations can be made on the management and moni-
toring components, although mostly these rely on the use of the built-in manage-
ment tools provided by cloud-native service providers.

The alternatives presented in this section provide the same feature-set as the se-
lected components, but were not selected as the exclusion process undertaken
in the refinement stages favoured a more suitable alternative. Nonetheless, they
will be presented as they may present a better fit if new conditions arise in the
future of the Data Framework Architecture project.

3.5.1 Ingestion

For Ingestion, as a replacement of Kafka, few components present as much flex-
ibility and performance. However, there are options, namely the ones offered
by the AWS Kinesis Suite, which present very good performance and scalabil-
ity features and an unparalleled level of availability. They can be described as
follows:

• AWS Kinesis Data Streams - Real-time streaming service which serves as a
drop-in replacement for Kafka, featuring a lot of the same principles (records,
re-transmission and "topic"-based streams). Like Kafka, the scalability is
manually performed by pre-sizing and adding more "topics" or, as Kinesis
documentation refers, shards. It specializes in real-time streaming featuring
low latency by default.

• AWS Kinesis Data Firehose - Batch, un-managed data streaming solution
that focuses on high throughput, while sacrificing some the low latency pro-
vided by a more structured service. Latency with Firehose is often above
60ms for a given data record’s transmission, making it less suitable for real-
time workloads, and more useful for massive transfers of data under less
strict requirements.

It should be noted that, while these services provide similar functionalities, they
are more advantageously used when the rest of the chosen technology stack is
also within the AWS Suite, as it ends up providing native, "one-click" integration,
as well as a connected and unified management dashboard system.

23

Alternatively, it is possible to offload the management of the Kafka cluster to an
external service provider, maintaining the exact same functionality while gaining
the benefit of high availability and improved latency.

Both the AWS and externally managed Kafka services will, however, incur in
costs that can become exacerbated by the multitude of streams demanded by a
multi-tenant architecture.

3.5.2 Storage and Serving

The storage functionalities and qualities, provided in the architecture by S3/Min.IO
with Hudi as the Lakehouse component, can be achieved using other platforms,
albeit with significant changes being necessary to the serving stack. As such,
these alternatives are grouped together.

AWS S3-centric

By using S3 and choosing to use the AWS managed cloud-native solution, it is
possible to also use AWS LakeFormation and AWS Glue to achieve the Lake-
house functionality. However, the compatibility with the currently chosen Serv-
ing stack is not clear, and instead, it is recommended that this use is paired with
other AWS services, as these integrate seamlessly without the need for extensive
modification and untested pairings.

As per the research conducted and presented in Chapter IV, the use of AWS
Athena and Redshift can, in combination, result in a powerful interactive query
engine which can satisfy the requirements of the Serving layer.

HDFS-centric

These solutions typically present some challenges, as the Lakehouse components
typically rely on tailor made connectors fit for more recent object storage services
(such as S3, Azure, Google Cloud).

However, in this case, Apache Hudi presents an HDFS connector which may
enable it to resolve this problem, however, experimentation would be necessary
to ensure compatibility of the stack. If possible, this would make the current
serving stack compatible, and the requirements would likely still be met under
the HDFS-based platform.

24

3.6 Future Work

With the work taken as far as the dissertation project’s constraints would allow,
the avenues for future work were identified. Three main areas were identified:

• Conclude the experimental validation - While the main data pipeline was
validated experimentally, the conditions for the tests were simply meant for
rapid prototyping and used significantly reduced hardware specifications
in their execution. Additionally, the hardware limitations made it impossi-
ble to test the usability of the metadata catalog correctly, and thus this could
also be worth exploring. The two main tasks here are:

– Test the framework with more resources, using distributed configura-
tions, virtualization and create synthetic scenarios closer to the esti-
mated production workload.

– Finish testing the governance aspects (catalog metadata visualization)
with a suite of tests designed around usability.

• Refine the monitoring solution - As the monitoring was indicated as an
area which should not be focused on, as internally, Altice Labs S.A. already
had significant experience in the area and had proposed existing tooling
(the Prometheus toolset), it may be valuable to explore the monitoring and
management drivers more and see how Prometheus can be potentially used
in the PaaS/IaaS scenario.

• Design the interfaces for the users - This was outside of the scope of the
project, but, nonetheless, remains a very important part for the production
architecture, as some of the concepts associated with managing a multi-
tenant architecture can not be explicitly solved through architectural deci-
sions, but rather through interface design processes.

And, while there are still some areas where improvement is possible, implemen-
tation could feasibly begin on the data pipeline side, as the technologies which
were presented, as well as their data flows and component relationships will al-
low for the identified functional and non-functional requirements to be met.

25

	Introduction
	Context
	Motivation and Purpose
	Objectives
	Planning and Execution
	First Semester
	Second Semester
	Delay - Summer

	Document Structure

	Background and Concepts
	Data Management Concepts and Drivers
	Data Activities
	Data Structure and Flow
	Data Processing
	Data Quality
	Data Governance

	Data Systems and Models
	Relational Database Management Systems
	Data Warehouse
	Data Lake
	Data Lakehouse

	Data Architecture Patterns
	High-Level Concepts
	Lambda Architecture
	Kappa Architecture

	Novel Governance-Oriented Approaches
	Data Fabric
	Data Mesh

	Methodology
	Methodology Overview
	Project Management
	Requirement Engineering
	Constraints
	Functional Requirements
	Non-Functional Requirements

	Architecture Design
	Architecture-Centric Design Methodology (ACDM)
	Requirements Stages
	Design/Refine Stage
	Experiment Stages

	Architecture Specification

	State-of-the-Art
	Implementations
	SmartNews Lambda Architecture
	Uber Kappa Architecture

	Supporting Technology
	Data Ingestion
	Data Storage
	Data Serving and Consumption
	Administration and Data Governance

	Case Study: Amazon Webservices Lakehouse

	Requirement Analysis & Specification
	System Description
	Functional System Partitioning
	Functional View
	Administration Layer
	Orchestration Layer

	Constraints
	Technical Constraints
	Business Constraints

	Requirements
	Ingestion Layer
	Storage Layer
	Serving Layer
	Administration Layer
	Orchestration Layer

	Architecture Design
	Iteration #0 - Notional Architecture
	Analysis
	Creation
	Review & Validation
	Outcome

	Iteration #1 - First Refinement, Ingestion Layer
	Analysis
	Refinement
	Review and Validation
	Experiments
	Outcome

	Iteration #2 - Storage and Serving Layers
	Analysis
	Refinement
	Review and Validation
	Experiments
	Outcome

	Final Architecture
	Overview
	Ingestion, Storage and Serving
	Administration and Governance
	Infrastructure Control

	Context View
	Container View
	Component Views
	Kafka Ingestion Cluster
	Lakehouse Hudi/Spark Cluster
	Serving Spark/Presto Cluster

	Alternatives
	Ingestion
	Storage and Serving

	Future Work

	Conclusion
	Appendix Requirement Specification
	Appendix Architecture Specification

