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Abstract

The COVID-19 pandemic forced educational systems to quickly switch to remote lectur-

ing, raising a debate about the credibility of evaluations, as they became more susceptible to

fraud. This motivated the implementation of student monitoring systems, such as TrustID,

an image-based deep learning solution with standard face recognition stages (face detection,

alignment and representation). Yet, deep learning methods’ performance is extremely data

dependent and, due to the context where the model is applied, depending on the device

used by the student, there are challenges regarding the quality of the acquired data and

the device’s available processing power. If the student uses a webcam or a smartphone’s

front facing camera, the resulting images will be highly different in terms of resolution,

color, pose, etc. To this extent, the face representation stage is where there is more room

for improvement, and an approach capable of handling the previous challenges with better

accuracy/computational cost trade-off is explored. This work studies four pre-trained Deep

Convolutional Neural Networks (DCNNs) methods: iResnet-SE-50, iResnet-18, FaceNet and

MobileFaceNet. After being subjected to different benchmarks that mimic real world scenar-

ios, the results and accuracy/resource utilization metrics are analyzed, where MobileFaceNet

proves to have the overall superior accuracy/resource trade-off. Then, in an attempt to fur-

ther improve the model, it is fine-tuned with ArcFace using different layer freezing strate-

gies, and for that, two datasets are selected: DigiFace-1M and QMUL-SurvFace. DigiFace-

1M aims to understand how the model reacts to fully synthetic data and to increase the

model’s performance in pose benchmarks, whereas QMUL-SurvFace, is selected to enhance

the model’s competence on low quality images.
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Resumo

A pandemia de COVID-19 forçou os sistemas educacionais a fazerem uma rápida tran-

sição para aulas remotas, gerando um debate sobre a credibilidade das avaliações, visto que

estas se tornaram mais suscetíveis a fraudes. Isto motivou a implementação de sistemas de

monitorização de estudantes, tal como o TrustID, que é uma solução, baseada em imagens,

de aprendizagem profunda, constituída pelas etapas padrão de um sistema de reconheci-

mento facial (detecção do rosto, alinhamento e representação). No entanto, o desempenho

dos métodos de aprendizagem profunda é extremamente dependente da informação ao seu

dispor e, devido ao contexto em que o modelo é aplicado, dependendo do dispositivo uti-

lizado pelo estudante, surgem desafios relacionados com qualidade dos dados adquiridos e a

capacidade de processamento disponível do dispositivo. Se o aluno utilizar uma webcam ou

a câmara frontal de um telemóvel, as imagens resultantes serão muito diferentes em termos

de resolução, cor, pose, etc. Nesse sentido, a etapa de representação facial é onde há mais es-

paço para melhorias, e uma abordagem capaz de lidar com os desafios anteriores com melhor

equilíbrio entre exatidão e custo computacional é explorada. Este trabalho estuda quatro

métodos de Redes Neurais Profundas de Convolução (DCNN) pré-treinadas: iResnet-SE-50,

iResnet-18, FaceNet e MobileFaceNet. Após serem submetidos a diferentes testes de avali-

ação que simulam cenários do mundo real, os resultados e as métricas de exatidão/utilização

de recursos são analisados, onde o MobileFaceNet demonstra ter, globalmente, a melhor

relação entre exatidão e recursos computacionais. Em seguida, na tentativa de melhorar

ainda mais o modelo, este é afinado com o ArcFace usando diferentes estratégias de congela-

mento de camadas e, para isso, dois conjuntos de imagens foram selecionados: DigiFace-1M

e QMUL-SurvFace. O DigiFace-1M visa compreender como o modelo reage a dados total-

mente sintéticos e melhorar o desempenho do modelo em benchmarks de pose, enquanto que

o QMUL-SurvFace é selecionado para aprimorar a competência do modelo em imagens de

baixa qualidade.
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Chapter 1

Introduction

1.1 Context

The outbreak of the COVID-19 pandemic tested the entire world on several levels and

changed the concept of what is considered “normal” thereafter. The devastating health,

economic and social consequences that COVID caused spanned a need to develop novel

solutions, for almost every aspect of our lives to facilitate the adaptation to the new world

we are now living in.

Educational systems were no exception. In the midst of the pandemic, governments

around the world forced institutions to shut down and interrupt the in-person regimen

of teaching. By April 2020, most universities transitioned to an adapted remote learn-

ing paradigm [121] that lacked proper support due to the unanticipated nature of events,

leading to new challenges, in particular, the legitimacy of evaluation performed remotely.

To counter this problem, different approaches can be taken, namely, changing the method

of evaluation, suppressing it altogether [8] or, when possible, implement continuous and au-

tomated vision-based student monitoring solutions, such as TrustID [29]. However, there

are several unresolved issues that must be addressed in order to implement an end-to-end

solution capable of assuring the success of such systems.

One core aspect is the face verification stage, where the visual data obtained from the

monitoring system directly influences the rate of success of said stage. Another challenge is

the unconstrained nature of the problem due to the purpose of the application and expected

devices to be used. There is no way of controlling the conditions of capturing the visual data

and consequent results, and the most likely input method will be a webcam or a smartphone’s

front facing camera, so a high variation in pose, resolution, illumination, etc. is foreseeable.

1



An additional detail that must be considered is the processing power available to execute

the system1, since solutions that benefit from higher accuracy comes at the cost of increased

computational overhead, which can make real-time continuous monitoring unfeasible.

In conclusion, the method of choice must take the aforesaid into consideration and provide

a trade-off between accuracy and computational cost, while also being invariant, to a certain

degree, to the posed challenges of capturing the required data. Another detail to consider

is the accuracy required in this context. Since the solution is intended to perform image-

based student monitoring, the accuracy does not need to be foolproof. Since the monitoring

process occurs over a prolonged span of time, there are enough face verifications to supplant

possible low accuracy values.

1.2 Objectives

Considering the earlier context, the main purpose of this dissertation is to study differ-

ent Face Recognition (FR) methods on varied benchmarks, compare them to the TrustID

project’s FR module and find a superior performing approach. This will result in identifying

a model that offers the most favorable balance of performance and computational efficiency,

with the notion in mind that, in this student-monitoring context, a perfect accuracy is not

required. To achieve our goal, the following specific objectives have been established:

• Conduct a comprehensive review of state-of-the-art face recognition methods to select

the prime ones.

• Implement the essential stages of a face recognition pipeline.

• Select an alternative approach to TrustID’s facial recognition module by evaluating

the proposed methods on diverse benchmarks.

• Fine-tune using relevant datasets in an attempt to further improve the selected ap-

proach.

• Evaluate the performance of the fine-tuned method using selected benchmarks and

discuss the overall best performing solution.

1 According to Steam’s August 2023 hardware survey, roughly 32.34% of its users have a computer with

less than 4 CPU cores.

2



1.3 Dissertation structure

This dissertation is divided into several chapters. Chapter one relates to the introduction

of the dissertation, it presents the context and motivation for this work, and the structure of

the document. The document continues in the second chapter, it starts with an overview of

the history of Artificial Intelligence (AI), provides a face recognition theoretical background,

carries out a survey about the topic’s state of the art, presented through the step-by-step

analysis of the pipeline of a Face Recognition system and its elements, summarizes relevant

related work and finishes with a discussion regarding the dissertation’s objective. In chapter

three, the implemented methods and experiments are described. The forth chapter presents

and discusses the results obtained. Finally, chapter five draws conclusions of the work

achieved in the past several months and prospects for the future.

3



Chapter 2

State of The Art

This chapter gathers all the necessary background to better understand the topics and

work of this dissertation. First, a brief history of Artificial Intelligence (AI) is presented.

Then a review of the theoretical background behind a Face Recognition system and its com-

ponents is provided. To conclude, relevant works related to this dissertation are discussed.

2.1 History of AI

The breakthroughs of AI are predominant and its importance in our everyday life is

undeniable. The interest in the area grew immensely with all the Turing’s theoretical re-

search, the proposal of the first mathematical Artificial Neuron model in 1943 by Warren

McCulloch and Walter Pitts [73] or the first successful Artificial Neural Network (ANN)

by Belmont Farley and Westley Clark [30]. However, only in 1956, during the Dartmouth

Summer Research Project on Artificial Intelligence [72], was the term “Artificial Intelligence”

was proposed by John McCarthy et al., beginning what is now considered to be the birth of

AI [132].

The succeeding two decades following the Dartmouth conference were filled with impor-

tant developments. Namely, the 1959 General Problem Solver implemented by Allen Newel

et al. [79] or Joseph Weizenbaum’s ELIZA (1964), a natural language processing tool [119].

Unfortunately, part of the interest and development around AI met an unforeseen fade after

the 1969 book The Perceptron: A Probabilistic Model for Information Storage and Orga-

nization in the Brain [76] that reported the incapability of ANN to solve linear inseparable

problems. However, the authors failed to consider other solutions already proposed that

solves the linear inseparability, such as the 1965 implementation, by Ivakhnenko and Lapa,

of what is considered to be the first deep learning network [47]. Then, an important break-

4



through, was achieved in 1979 by Kunihiko Fukushima with the introduction of the first

Convolutional Neural Network (CNN). Ten years later, Yann LeCun et al. applied for the

first time Backpropagation [59] to a CNN, creating what is now a pillar for most of the

modern competition winning networks in computer vision [93].

The study on Neural Networks continued with special attention for CNNs due to their

great performance in image related tasks when compared to others networks [61]. Some

relevant examples: in 2003 the MNIST record was broken by Simard et al. [96] and, in

2011, a GPU implementation of a CNN [21] achieved superhuman vision performance [99].

To supplement even more the importance of CNNs and GPUs, only a year later, Alex

Krizhevsky et al. proposed a Deep CNN trained by GPUs that became the first one of this

type to win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [56]. The

year of 2012 was very important for Deep Learning, CNNs and Computer Vision, beginning

what is considered to be the start of the new wave of interest in Artificial Intelligence we are

currently in.

2.2 Face Recognition - Theory Background

Face Recognition (FR) is a thoroughly debated and extensively researched task in the

Computer Vision community for more than two decades [86], popularized in the early 1990s

with the introduction of the Eigenfaces [108] or Fisherfaces [81] approaches. These methods

project faces in a low-dimensional subspace assuming certain distributions, but lack the abil-

ity to handle uncontrolled facial changes that breaks said assumptions. Henceforth, bringing

about face recognition approaches through local features [20, 1] that have respectable per-

formance, however, they are not distinctive or compact. Beginning in 2010, methods based

on learnable filters have risen [129, 62], but reveal limitations when nonlinear variations are

at stake.

Earlier methods for FR worked appropriately when the data was handpicked or generated

on a constrained environment. However, they did not scale adequately in the real world where

there are large fluctuations in, particularly, pose, age, illumination, background scenario, the

presence of facial occlusion [86] and many unimaginable more [48]. These shortcomings can

be dealt with by using Deep Learning, a framework of techniques that solves the nonlinear

inseparable classes problem [76], more specifically a structure called CNN [115].

CNNs are a type of Artificial Neural Network that exhibits an improved performance on

image or video-based tasks compared to other methods [61]. They were greatly hailed in
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2012, after the AlexNet [56] victory, by a great margin, on the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). Just two years later, DeepFace [102] revolutionized the

benchmarks scores by achieving state-of-the-art results that approached human performance,

reinforcing even further the importance of Deep Learning and shifting the research path to

be taken [115].

Given what has been stated so far and the proven robustness, performance, and overall

results in computer vision, the methods discussed in this dissertation will relate exclusively

to Deep Learning approaches. For more information on other methods, please refer to [58].

2.2.1 Convolutional Neural Networks

There are several types of Neural Network architectures, but CNNs are probably the most

widely implemented model overall [126, 64]. Using CNNs for Computer Vision tasks [56,

102, 107, 134], in this specific case, Face Recognition, is not an arbitrary choice, but due to

the fact that the network design benefits from the intrinsic characteristics of the input data:

images have an array-like structure [126], and local groups of values are correlated (motifs

or patterns) and invariant to spatial location [60, 14]. Furthermore, when compared to fully

connected networks, CNNs are superior due to 4 key features: 1) shared weights between the

same features in different locations [64], 2) sparse connections among neurons [3], 3) pooling

layers and 4) the relevant features are automatically identified without any human supervi-

sion [3, 64]. The weight sharing, sparse connectivity and pooling layers are responsible for

reducing the number of parameters, decreasing the network’s complexity and computational

cost required.

Figure 1: Architecture of a Convolutional Neural Network [49].

In the CNN category itself there are different variants, but they all abide the fundamental

structure of a feedforward hierarchical multi-layer network Figure 1. Feedforward because the
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information only flows in a singular direction without cycling [131], hierarchical because the

higher complexity internal representations are learned from lower ones [60, 144] and multi-

layer because it is composed of a series of stages. The raw data is fed to an input layer,

forwarded to a sequence of intercalating convolutional and pooling layers and transmitted

to a stage of one or more fully-connected layers [60, 34, 3].

Convolutional Layer

The convolutional layer aims at extracting feature representations from the inputs. It is

formed by a set of learnable filters called kernels and an activation function [34, 126].

Figure 2: 3x3 Kernels of the Sobel-Feldman operator used for edge detection [98].

A kernel Figure 2, is a grid-like structure of fixed dimensions W × H × D, where W is

the width, H is the height and D is the depth (number of channels), in each of its elements

is a learnable weight adjusted during training to extract significant features [3]. With a

predetermined stride, the kernel scans the receptive field [50], horizontally and vertically,

through the input data, and produces the feature map [60, 3] by performing an element-wise

product, called convolution Figure 3, that can be described as follows [50]:

fk
l (p, q) =

∑
c

∑
x,y

ic(x, y) · wk
l (u, v) (2.1)

where fk
l (p, q) is an element at line p and column q in the feature map from the k-th kernel

in the l-th layer, ic(x, y) is the element at line x and row y in the input data, and wk
l (u, v)

is the weight at line u and column v from the k-th kernel of the l-th layer.

Figure 3: Convolution operation using a 2× 2 kernel.
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The overall architecture of CNNs are inspired by the visual perception [46], so a direct

parallelism can be made to better define the activation function. The kernels can be seen

as receptors, or artificial neurons, that respond to different features, whereas the activation

function is a simulation of the threshold function that dictates if the next neuron is acti-

vated or not. Additionally, the convolution operation is linear, consequently, if a non-linear

activation function was not used, the input of the next layer would be a linear output of

the previous layer. The introduction of nonlinearity through activation functions, such as

Rectified Linear Unit (ReLU) and its variations (Leaky, Parametric, Randomized, Concate-

nated, Bounded, etc) or others like Sigmoid or Tanh [27], allows deep neural networks to

approximate any function, enhancing the ability to fit to any data [64].

Pooling Layer

After the features are extracted, their spatial location becomes less relevant for the fol-

lowing layers. Introducing a pooling layer that reduces the spatial size of the feature maps

by joining identical features [60, 34], keeps only the dominant information. This downsam-

pling operation has two important advantages that help reduce the overfitting problem [2,

64]. First, it reduces the number of learnable features, which requires less memory to train

the network. Second, it enhances feature extraction invariance to shifts and rotations by

emphasizing only the relevant features.

Figure 4: Max pool, an example of a pooling operation.

There are many ways of downsampling the feature map through pooling such as min

pooling, average pooling or stochastic pooling. However max pooling is by far the most

popular one. As pictured in Figure 5, this operation divides the feature map in sections and

computes the maximum value in each while discarding the other ones.
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Fully Connected Layer

Figure 5: Visualization of a fully connected layer [55].

The Fully Connected (FC) layer is located at the end of the network. It is a dense,

feedforward neural network in which every neuron is connected to all other neurons [126, 3].

The final feature map is flattened and transformed in a one-dimensional feature vector and

the purpose of the FC layer is using this vector as an input, and act as the CNN classifier

by performing high logic reasoning [34].

2.2.2 Training a network

Training a neural network in the context of CNNs is the process of finding the optimal

kernel’s weight values that reduces the loss. The training data is passed through the model,

the predictions asserted and the distance between them and the expected result is measured

by a loss function. Training is nothing more than a function minimizing problem. That is

achieved, through a process called gradient descent [89], by computing the loss’s function

gradient with respect to the learnable weights and subsequently updating them. To compute

the gradient and update the weights accordingly to the optimizer, a technique called back-

propagation is used. Backpropagation is an efficient algorithm [59] that applies the Chain

Rule of Calculus
(

dz
dx

= dz
dy

dy
dx

)
, starting at the final layer and proceeding backwards [33].

Regarding the optimizers, there are several common ones, namely, mini-batch gradi-

ent [88] descent or Adaptive moment estimation (Adam) [52], but Stochastic Gradient De-

scent (SGD) [3] is often preferred due to its memory-efficient characteristics [88]. It is

described as follows:
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θ = θ − η · ∇θJ
(
θ; xi; yi

)
(2.2)

where θ are the weights, η is the learning rate, J is the loss function and ∇θJ (θ; xi; yi)

corresponds to the loss’s gradient descent for each training example.

Additionally, the learning rate is an important hyperparameter with immense impact on

the training, since it controls how much the weights are changed. According to Goodfellow et

al. [33], if the rate is set too low, training will be much slower and can become permanently

stuck with a high training error. On the other hand, if it is too high, a local minimum can

be overshot, and the training error increases.

Transfer Learning

Developing a Deep Learning system requires data in large scale [82], specially labeled

one. In a general sense, gathering information can be very difficult, but if the domain of

study is too specific or not widespread enough, that poses an even greater challenge. To

overcome this solution, based on the psychologist C.H. Judd’s theory, a technique called

Transfer Learning takes place. This is defined by Zhuang et al. [146] as: given a source and

target domain, transfer learning is the act of utilizing the knowledge acquired in the source

to further improve the performance of the learned decision functions on the target domain.

A classic example is the case of learning how to ride a motorcycle. It will be easier for

someone who has already learned how to ride a bicycle than it is to someone starting from

scratch.

In the context of CNNs, there are 2 ways of approaching the aforesaid problem. By

taking a pre-trained CNN and either use it as a fixed feature extractor or fine-tuning it.

In the first case, an already trained CNN is used, however, the final few layers or the fully

connected one is discarded and retrained to a specific task, while the rest of the network is

frozen and used as the feature extractor. The second approach is referred to as fine-tuning a

network and, as the name suggests, the source network’s parameters are used as a starting

point and is retrained using the desired data. That can be achieved by updating the whole

network or through freezing the layers, usually the first ones are the more common since

they are responsible for extracting the more general, universal features (edges or patterns,

for example).

10



2.3 A Face Recognition System

Figure 6: A typical learning-based face recognition pipeline, guided by the approach in [115].

According to Ranjan et al. [86], the goal of a face recognition system is to find, process

and learn from a face, gathering as much information as possible. As a result, it is one of the

most widely implemented biometric system solutions in light of its versatility when facing

real world application [26].

All end-to-end automatic face recognition systems follow a sequential and modular1

pipeline Figure 6 composed of three pillar stages [115]: face detection, face alignment and

face representation. First an image or frame from a video is used as an input then, as the

name suggests, the face detection module is responsible for finding a face. Next, the face

alignment phase applies spatial transformations to the data in order to normalize the faces’

pictures to a standardized view. Finally, the face representation stage, makes use of deep

learning techniques to learn and further extract discriminative features that will allow the

recognition per se. In this context, a feature is a characteristic inherent to the input im-

age that has been measured or processed, and presented as a result of the representation

stage [33].

All three stages have their individual importance and methods of implementation. Face

detection is achievable through classical approaches [110, 11] or deep methods, among them

is RetinaFace [25] and MTCNN [135]. Face alignment, once again, can be accomplished

through traditional measures [22, 70] or more modern ones, namely PropagationNet [44]

or, once more, MTCNN [135], which concurrently performs detection and alignment. To

conclude, the face representation module is no exception, and can also be divided in two
1 Sequential because each stage relies on the output from the previous ones, and modular in the sense

that each stage employs its own method which can be modified or swaped to better adapt to specific tasks.
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groups regarding the methodology used. Some conventional systems were already mentioned,

for instance Eigenfaces [81, 108], and the deep learning ones will be reviewed along the

following sections owing to the fact that they are the object of discussion of this dissertation.

As such, the focus will be on describing, with particular interest, the face representation

stage.

For a deeper and extensive study, please refer to: [130] in the case of classic face detec-

tion approaches and [75] for deep learning based methods; [117] addresses traditional face

alignment methods and is complemented with [26] for more up-to-date techniques; and [58]

tackles classic face representation.

2.3.1 Face Detection

Face detection is the first step in any automatic facial recognition system. Given an

input image to a face detector module, it is in charge of detecting every face in the picture

and returning bounding-boxes, for each one, with a certain confidence score [26, 86].

Previously employed traditional face detectors are incapable of detecting facial infor-

mation when confronted with challenges such as variations in image resolution, age, pose,

illumination, race, occlusions or accessories (masks, glasses, makeup) [26, 86]. The progress

in deep learning and increasing GPU power led DCNNs to become a viable and reliable option

that solves said problems in face detection. Methods such as CenterFace [125], MTCNN [135]

or RetinaFace[25] are examples of the more commonly adopted state-of-the-art approaches.

These techniques can be included in different categories depending on the method’s

characteristics. A more analytical perspective [26] distributes the methods, depending upon

their architecture or purpose of application, over seven categories: multi-stage, single-stage,

anchor-based, anchor-free, multi-task learning, CPU real-time and, finally, problem-oriented.

To an in depth review of each category, refer to the Appendix A.

2.3.2 Face Alignment

Face Alignment, or facial landmark detection [15], is the second stage of the face recog-

nition pipeline, and has the objective of calibrating the detected face to a canonical layout,

through landmark-based or landmark-free approaches, in order to support the core final

stage of face representation [26].

Despite the fact that traditional face alignment methods are very accurate, that majorly
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a) b)

Figure 7: Comparison between a) MTCNN: multi-stage, CPU real-time and multi-task learning, and b)

RetinaFace: single-stage, anchor-based, CPU real-time and multi-task learning. MTCNN [135] proposes a

series of bounding boxes then, through a series of refinement stages, the best solution and landmarks are

found. RetinaFace [25] accomplishes, in a single-stage, face classification and bounding box regression by

evaluating anchors, landmark localization and dense 3D projection for facial correspondence.

occurs in constrained circumstances. Therefore, once again, to address that issue, deep

learning-based methods are a growingly common solution to perform an accurate facial

landmark localization that realistically scales to real world scenarios [31].

Furthermore, face alignment, can be accomplished through two categories of methods:

landmark-based and landmark-free. Landmark-based alignment leverages facial landmarks

(eyes, mouth, nose, etc.) to normalize the image to a layout through spatial transforma-

tions [26]. Methods like Wing loss [31], Kernel Density Deep Neural Network (KDDNN) [16]

or the Recurrent Dual Refinement (RDR), proposed in [124], integrate this category. Landmark-

free alignment, as the name obviously suggests, is the category of methods that align the

face without points of reference, namely RDCFace [140] or the one proposed by Hayat et

al. [36]. The Appendix B presents more details regarding the aforementioned.

As can be seen, this step in the face recognition process can be accomplished, very

sporadically, through standalone methods that process the detected face from the previous

stage, but generally joint detection and alignment methods, such as RetinaFace [25], are the

optimal choice [15].

13



2.3.3 Face Representation

Finally, Face Representation is the last stage of the Face Recognition process. It is

responsible for processing the aligned face from the previous stage and mapping the produced

feature representation to a feature space, in which features from the same person are closer

together and those that are different stand further apart from each other [26].

According to the literature [26, 63, 86, 94, 115], there is a consensus about how Face

Recognition can be performed in two settings of operation: face verification and face iden-

tification. This distinction is only made possible due to the approaches available in the

Face Representation stage that can leverage one, the other or both. Face verification, is a

one-to-one, pair-wise match, and it is the action of verifying if the query face matches the

identity that is being claimed. These principles are used in biometric systems such as self-

service immigration clearance using E-passport [63]. Face identification, is a one-to-many

correlation process that compares a query face to a database of faces and associates it to the

corresponding match (or matches). A typical use case is to identify someone in a watchlist

or surveillance videos [63].

The overall pipeline comes to a conclusion in this module. However, due to its importance

for the face recognition problem, face representation is discussed in depth in the next sections.

2.4 Face Representation Pipeline

Figure 8: Face Representation stages and components, guided by the approach in [115].
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As shown in Figure 8, Face Representation is a two-step module composed of a training

and testing stage. So as to be capable of performing face recognition, in either a verification

or identification manner, a face representation system needs to learn robust, invariant and

discriminative features that can distinguish identities [86].

To meet these requirements, the feature extractor must first be trained properly by

taking data from previous stages and outputting a feature representation that is compared

to the desired value using a loss function [60, 115]. After that, everything is ready for the

testing stage, where the face recognition per se occurs by calculating a similarity score for

the feature representation produced by the trained feature extractor, and dictating if the

identity belongs to the same person (face verification) or if it matches one or more identities

(face identification) [86].

2.4.1 Datasets: Training and Testing Data

As been discussed throughout this dissertation, Deep Learning techniques can solve the

problem of handling unconstrained scenarios, where there are variations in pose, illumination,

occlusion, and so forth. To support that, in the past few years, datasets have been developed

with the described challenges in mind so to be able to provide a large and diverse set of both

training data, allowing for adequate regularization to unseen circumstances, and testing data

that benchmarks the face recognition system in, as similar as possible, unconstrained real

world scenarios [26].

Training Data

When developing a deep face recognition system it is essential to keep in mind its necessity

to adapt, and that is where the dataset used for training comes at play. Large training

datasets are essential for face recognition [82], but large-scale is not enough. There must be a

balance between the depth (number of unique identities) and the breadth, or width, (number

of images per identity) [7, 13], and it will lead to different effects. On one hand, a training

dataset that is deep will help the face recognition system to produce more discriminative

feature representations, since it will have a great number of identities to learn from. On

the other hand, a wider set will have more images per identity, therefore, variations in pose,

expressions, illuminations, occlusions, background clutter, image quality, accessories, and so

forth [6] can be introduced and ultimately lead to more robust feature representations.
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Table 1: Comparison of the training datasets. 3- Datasets that are still available to the public. 7- Datasets

that have been removed from distribution.

Dataset Year Availability Images/Videos Depth Avg. Breadth Distribution Description

CASIA-WebFace [128] 2014 7 494,414 10,575 46.7 Public First public face recognition dataset.

Facebook [103] 2015 7 500,000,000 10,000,000 50 Private
Facebook’s private dataset used to test

different properties in face identification.

Google [94] 2015 7 200,000,000 8,000,000 25 Private
Private dataset used to train the FaceNet

method.

VGGFace [82] 2015 7 2,600,000 2,622 991.6 Public
High width public dataset released

alongside VGGFace method.

MS-Celeb-1M [35] 2016 7 10,000,000 100,000 100 Public Large-scale celebrities’ dataset.

MegaFace [78] 2016 7 4,753,320 672,057 7.1 Public Non-celebrity dataset.

VGGFace2 [13] 2017 7 3,310,000 9131 362.5 Public High characteristics variation dataset.

UMDFaces-Videos [7] 2017 7 -/22,075 3,107 7.1 Public Video-based dataset with great variations.

Celeb-500k [12] 2018 3 50,000,000 500,000 100 Public Noisy celebrities’ dataset.

Celeb-500k-2R [12] 2018 3 25,000,000 245,000 102 Public Cleaned version.

IMDb-Face [111] 2018 3 1,700,000 59,000 28.8 Public
Manually cleaned revision

of MS-Celeb-1M and MegaFace.

MS1MV2 [23] 2019 3 5,800,000 85,000 68.2 Public
Semi-automatic cleaned version

of MS-Celeb-1M.

RMFRD [118] 2020 3 95,000 525 180.9 Public
Dataset of masked and unmasked

celebrities.

Glint360k [4] 2021 3 17,000,000 360k 47.2 Public
Cleaned version of the Celeb-500k

and MS1MV2 datasets.

WebFace260M [145] 2021 3 260,000,000 4,000,000 65 Public
Largest publicly available dataset

of celebrities faces (noisy).

WebFace42M [145] 2021 3 42,000,000 2,000,000 21 Public Cleaned and smaller version.

WebFace4M [145] 2021 3 4,2,000,000 200,000 21 Public Smaller version.

DigiFace-1M [6] 2022 3 1,220,000 110k 11.1 Public Large-scale, fully synthetic dataset.

Table 1 showcases large scale datasets that are the usual source of training data. Some

noteworthy examples: CASIA-WebFace [128] that was the first public one of this kind; MS-

Celeb-1M [35] that gathers 10 million images from 100 thousand celebrities; MS1MV2 [23],

the semi-automatic cleaned version of MS-Celeb-1M; MegaFace [78], which introduces close

to 5 million images from 670 thousand non-celebrity identities; WebFace260M [145] revolu-

tionizes the dataset space with 260 million faces from 4 million identities; DigiFace-1M [6], a

synthetic dataset that addresses privacy violations, lack of informed consent and exploitation

of distribution licenses or vague terms (such as “celebrities”) in order to gather data. These

are some of the criticisms that raised enough concerns that ultimately lead to revoking the

distribution of several datasets. An important example of is MegaFace, that collected data

from the image repository Flickr through the exploitation of the Creative Commons License.

This resulted in the inclusion on the dataset of non-aware individuals and their personal pic-

tures that were not licensed for commercial use. For a more comprehensive description of

the training datasets see the Appendix C.
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Testing Data

After the training is completed the performance of the system needs to be evaluated on

different challenges to properly assess if it generalizes to unseen scenarios. The way of doing

so is by employing test datasets, where their evaluation protocols are designed to perform

pair matching, that is, face verification.

Table 2: Comparison of the test datasets. 3- Datasets that are still available to the public. 7- Datasets that

have been removed from distribution. * 153,428 are the number of the dataset’s distractors.

Dataset Year Availability Images/videos Depth Avg. Breadth Description

LFW [42] 2007 7 13,233/- 5,749 2.3
The most well known face verification

public dataset.

YTF [122] 2011 3 -/3,425 1595 2.1
Face verification video dataset inspired

on the LFW.

IJB-A [53] 2015 7 5,712/2,085 500 11.4/4.2
Strays from accuracy saturation

by proposing a more challenging dataset.

CFP [95] 2016 7 7,000/- 500 14
Studies the effect of extreme pose

variations on face verification.

CPLFW [142] 2017 3 13,233/- 5,749 2.3
Variation of the LFW for different poses

with refined verification pairs.

CALFW [143] 2017 3 13,233/- 5,749 2.3
Same principles of CPLFW but applied

to age related tests.

AgeDB [77] 2017 3 16,488/- 568 29.0
Similar to CALFW but promotes noise

free labelling by doing it manually.

IJB-B [120] 2017 7 21,798/7,011 1,845 11.8/3.8
Improvement over the IJB-B dataset

(more data and more possible pairs).

TinyFace [18] 2018 3 15,975 (153,428)*/- 5,139 3.1
Genuine low resolution face recognition

benchmark.

IJB-C [71] 2018 7 31,334/11,779 3,531 8.9/3.3
IJB-B refinement (more protocols

and increased individuals diversity).

IJB-S [48] 2018 7 5,656/552 202 28/2.7
Very challenging manually annotated

benchmark.

RFW [116] 2018 3 40,607/- 11,429 3.5
Benchmarks the racial bias of face

verification methods.

QMUL-SurvFace [19] 2018 3 463,507/- 15,573 29.8
Collected in uncooperative surveillance,

with high variance of characteristics.

MDMFR [109] 2021 3 2,896/- 226 12.8
Large scale dataset for masked

face recognition.

XQLFW [54] 2021 3 13,233/- 5,749 2.3
LFW variation to study the effect of

resolution on face verification.

CAFR [141] 2022 3 1,446,500/- 25,000 57.9
Large scale dataset to study the impact

of individual’s age.

FaVCI2D [83] 2022 3 64,879/- 52,411 1.2
Face verification dataset that addresses

easy pairs, demographic bias and

ethical concerns.
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One of the most well known test data set is LFW [42], but with the evolution of face

recognition methods, it quickly became saturated in terms of accuracy reports. This mo-

tivated investigations to develop more challenging datasets, like A, B, C and S IJB bench-

marks [53, 120, 71, 48], QMUL-SurvFace [19], YTF (for video tests) [122]. For specific

difficulties [26], some examples are CPLFW [142] or CFP [95] for cross-pose, CALFW [143]

or AgeDB30 [77] for cross-age, RFW [48] for racial variations, XQLFW [54] for quality assess-

ment or MDMFR [109] for masked recognition. Although some of the previously referenced

datasets are designed for benchmarking and are described as such, they can also be generally

employed to train or fine-tune algorithms for specific challenges.

For a more comprehensive description of the test datasets see Appendix D.

2.4.2 Feature Extractor

A feature extractor is present in both the training and testing stage of the Face Represen-

tation process, as it allows the visual data to be processed for evaluation by transforming the

input into low dimensional representations [61]. It is also what distinguishes a Conventional

Machine Learning approach from a Deep Learning one.

The following methods are all based in deep learning, therefore the modus operandi abides

by the same principles and can be outlined as follows: 1) the feature extractor is a deep neural

network, more specifically a CNN, that is trained with a loss function, 2) the trained feature

extractor contains prior knowledge and is applied on unseen test data and 3) the results are

used to compute 1:N similarity (face identification - “who is this person?”) or 1:1 similarity

(face verification - “are these persons the same?”).

Over the years, the architecture of CNNs evolved and became of great importance to

all image related tasks. Other than the already mentioned revolutionary AlexNet [56],

there are other designs that significantly contributed to breakthroughs and broken bench-

mark records. There can be general architectures, like VGGNet [97], GoogLeNet [101],

ResNet [37], iResNet [28], or specialized architectures. For example, lightweight face recog-

nition implementations such as MobileFaceNet [17], VarGFaceNet [127], MixFaceNet [10]

and ConvFaceNeXt [39].

→ VGGNet [97] took inspiration from AlexNet and improved its accuracy in image clas-

sification by studying the effect of the network’s depth. It accomplished that by replacing

the 11 × 11 convolution kernel with stride 4 for a stack of very small 3 × 3 receptive field
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with stride 1. The final best performing model was 19 layers deep (16 convolutional and 3

fully-connected) and had 144 million parameters.

Figure 9: GoogLeNet’s inception block from the original paper [101].

→ GoogLeNet [101], also known as Inception-V1, aimed at reducing the computational

cost associated with training and executing a network, while retaining highly accurate re-

sults. That was accomplished by introducing sparse connectivity between feature maps, an

inception block Figure 9, consisting of multi-scale convolutional layers with small blocks of

different sized kernels (1×1, 3×3 and 5×5), and replacing the last fully connected layer with

a global averaging pooling one and adding a dimension lowering bottleneck layer of 1 × 1

convolution before large kernels. These changes helped to achieve a low number of 4 million

parameters (12 times fewer than the revolutionary AlexNet and 36× less than VGGNet)

Figure 10: ResNet’s residual block from the original paper [37].

→ ResNet [37] is one of the most resourced architecture of feature extractors when ap-

plied to face recognition and its main objective is to efficiently train deep neural networks.

By reformulating the layers as residual learning functions, it supports deeper architectures

while being easier to optimize while improving performance. It also solves the accuracy

degradation and the vanishing gradient problems verified when the depth of the network

19



is increased. The main contribution is the introduction of the residual block Figure 10. It

consists of convolutional layers, followed by element-wise addition between the output and

the input of the block. This addition performs an identity mapping by creating a direct

“shortcut connection” that skips the input directly to the output, allowing the network to

learn the difference between the input and the output, i.e., the residual. Enabling the flow

of information from earlier layers directly to later layers, facilitates the gradient flow during

training and makes it easier for the network to learn. Depending on the depth, there are dif-

ferent variations of the ResNet architecture: ResNet-18, ResNet-34, ResNet-50, ResNet-101

or ResNet-152.

→ iResNet [28] further improves the ResNet architecture. It proposes separating the net-

work into stages, providing a better path of information flow through the network’s layers.

Also, it introduces an enhanced version of the residual learning block with 4 times more

spatial channels that focuses on the spatial convolution, and an improved projection short-

cut (used when the dimensions of the previous blocks does not match the ones of the next)

that includes an additional 3× 3 max pooling layer. A major advantage is that all the im-

provements above do not increase the original model’s parameters and, consequently, overall

complexity.

Figure 11: Comparison between ResNet’s residual block (left) [17] and the inverted residual block used by

MobileFaceNet, proposed by MobileNetV2 (right) [91]. Image taken from MovileNetV2’s paper [91].

→ MobileFaceNet [17] is a set of face verification CNN models designed to perform in

real time and with high accuracy on mobile and embedded devices. It is built upon the

inverted residual bottlenecks Figure 11 proposed in the general architecture lightweight CNN

MobileNetV2 [91] that have the purpose of reducing the number of parameters of the network.

The general residual bottleneck block [37] is composed of an input, followed by bottlenecks

and expansions that, respectively, reduces then restores the dimension, and the shortcut

connects the high dimension layers. On the other hand, in the inverted residual architecture,

it is considered that the information is stored in the bottleneck layers and the expansion is a
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mere implementation detail, therefore, a shortcut is placed directly between the bottlenecks.

To solve the accuracy problem of face recognition CNNs that have a global average pooling

layer, MobileFaceNets replaces it by a global depthwise convolution layer with kernel of size

7× 7× 1280, followed by a 1× 1 convolution as the feature output layer.

Figure 12: VargNet’s normal block (top) and downsampling block (bottom) [136] used by VargFaceNet.

Image from VargNet’s paper [136].

→ VarGFaceNet [127] is a lightweight face recognition CNN implementation based on the

VarGNet architecture [136] [17] that introduced a variable group convolution to solve unbal-

ance of computational intensity due to hardware and compilers optimization. VarGFaceNet

will use the normal and downsampling blocks from the VarGNet CNN Figure 12, but will

add a Squeeze and Excitation (SE) block [40] and replace the usual ReLU activation function

by the Parametric Rectified Linear Unit (PReLU) one, since it is better for face recognition

tasks [38]. Other than that, the head setting is also changed without losing discriminative

ability. The network is started with a 3 × 3 convolution with stride 1 that preserves the

input size, instead of the downsampling 3x3 one with stride 2 from VarGNet. Finally, the

embedding setting is also modified by performing variable group convolution and pointwise

convolution to shrink the feature map to a 512-dimensional feature vector that is fed to

the fully connected layer. In conclusion, the VarGFaceNet network is capable of performing

accurate face recognition while maintaining a low amount of 5 million parameters.
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Figure 13: A normal convolution block that uses a single kernel (left) and the Mixed Depthwise Convolution

proposed by MixNet [104].

→ MixFaceNet [10] is a lightweight implementation of MixNet [104] tailored for face veri-

fication. MixNet introduced Mixed Depthwise Convolution Kernels Figure 13 that extends

the theory behind depthwise convolution, but employs multiple kernel sizes in a single convo-

lution, promoting the capturing of different patterns from distinct resolutions while reducing

the number of parameters needed. The main differences proposed by the MixFaceNet design,

compared to MixNet, resides in the head and embedding settings. For the network head

set-up, fast downsampling in the first convolution layer with a 3× 3 kernel and stride of 2,

and PReLU [38] activation function are used. Regarding the embedding settings, the global

average pooling layer used by the MixNet architecture is replaced by a global depthwise

convolution, in the same manner as the previously described MobileFaceNet.

Figure 14: Convolutional block proposed by ConvNeXt [69] (top) and the one by ConvFaceNeXt [39] (bot-

tom). Image from the ConvFaceNeXt work [39].

→ ConvFaceNeXt [39] is a family of lightweight face recognition models, based on the

ConvNeXt [69] and MobileFaceNet architectures Figure 14. The original ConvNeXt block

is modified to better adapt to face recognition tasks and optimized to reduce the number
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of parameters. Accordingly, the Enhanced ConvNext (ECN) block is designed by adopting

a smaller 3 × 3 kernel during the depthwise convolution, instead of the original 7 × 7 one.

Adopting the principles studied in the MobileFaceNet implementation, rather than the usual

layer of normalization and Gaussian Error Linear Unit (GELU) activation function in the

ConvNeXt model, batch normalization and PReLU [38] are employed.

2.4.3 Loss

Figure 15: Intra- and Inter-class challenge [113]. Even though features f2 and f3 belong to the same class,

the euclidean distance between f1 and f2 is much smaller, proving the ineffectiveness of the softmax loss

regarding inter-class compactness and inter-class separateness.

The initially proposed face recognition networks inherited principles from successful ob-

ject classification implementations, henceforth, the most common loss function utilized was

the well-known softmax loss. Unfortunately, it soon proved to be inefficient for face recog-

nition applications since intra-variations (for example, age gap between pictures of the same

identity) can be larger than inter-ones Figure 15. Thus, the investigation interest shifted

towards developing loss functions that had a better generalization ability and promoted fea-

tures more separable (to distinguish between an identity) and discriminative (to distinguish

between identities) [115].

In the context of face recognition, the training can be achieved using either metric learning

loss functions that learn a feature embedding to compute similarity or softmax-based loss

functions that treat the problem as a classification task. Nonetheless, some works merge the

two concepts.
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Softmax-based loss functions

Classification-based loss functions, derived from the general object classification task, aim

at learning an N-way classification of all the classes, where each one relates to an identity

composed of several faces [26].

Because the methods are classification-based, the pioneers such as DeepFace or DeepID [100],

utilized the most widely implemented loss function for classification, i.e. the softmax loss.

It consists of a fully connected layer, the softmax function and cross-entropy loss, and can

be formulated as follows:

L = − 1

N

N∑
i=1

log eW
T
yi
xi+byi∑c

j=1 e
WT

j xi+bj
, (2.3)

where N is the number of images, c is the number of identities, yi is the xi’s ground-truth

label, Wyi is the ground-truth weight from xi in the fully connected layer and bj is a bias

term. The term inside the logarithm represents the probability on the ground-truth class

and the training objective is to maximize this probability.

Taking the aforementioned principles and the drawbacks of lackluster generalization,

and separable/discriminative abilities, the following loss functions proposed improving the

softmax loss to better serve face recognition tasks.

→ NormFace [113] improves the classic softmax loss by studying the effect of L2 nor-

malization to the features and weights during the training stage. Because introducing this

constraint resulted in the network not converging, a scale factor is also adopted that resizes

the cosine similarity’s scale between features and weights. This normalized softmax loss

function can de reformulated as

Lnorm = − 1

N

N∑
i=1

log es cos (θyi )

es cos (θyi ) +
∑c

j=1,j ̸=yi
s cos (θj)

, (2.4)

where s is the scale parameter and cos (θj) results from the inner product between the L2

normalized weights Wj and features xi, i.e., cos (θj) = ⟨xi,Wj⟩
∥Wj∥2∥ii∥2 .

Figure 16: Comparison between the classic softmax loss, modified softmax loss (NormFace) [113] and

SphereFace [67].
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→ SphereFace [67] improved the intra-class compactness and inter-class distance by intro-

ducing a very important concept of angular margin that contrasts with the usual Euclidean

margin. As proven by Liu et al., features learned by softmax loss adopt an intrinsic angular

distribution, therefore, euclidean margins are not compatible with softmax loss Figure 16.

The decision boundary for a classic softmax loss function is (W1−W2)x+b1−b2 = 0, and by

normalizing the weights and zeroing the bias, it becomes ∥x∥(cos (θ1)− cos (θ2)) = 0, where

x is a feature vector and the decision will only depend on the angles between class 1 and

2. SphereFace introduces the hyperparameter m (m ≥ 1 ∈ Z) that will, effectively, control

the margin size between class 1 and 2 respectively as such ∥x∥(cos (mθ1)− cos (θ2)) = 0 and

∥x∥(cos (θ1)− cos (mθ2)) = 0.

→ AM-Softmax and CosFace both improved SphereFace’s main problem: the potential

unstable training convergence due to the multiplicative angular margin. Thus, an additive

cosine margin cos θyi +m is proposed to facilitate the convergence.

Figure 17: ArcFace training process as described in the original paper [23].

→ ArcFace [23] aims at optimizing the geodesic distance margin since there is a mathe-

matical correspondence between the angle and the arc in the normalized hypersphere. The

concept behind this is described in Figure 17. First, the cosine distance among features is ob-

tained by the dot product between the feature produced by the CNN and the fully connected

layer. After that, the arc-cosine is used to calculate the angle between the feature and the

target one. Finally, the authors took the principles from AM-softmax [112] and SphereFace

[67], and introduced an additive angular margin directly to the angle cos (θyi +m), getting

the target logit back by the cosine function and further stabilizing the training process and

improving the discriminative power of the overall system. The loss function is reformulated

by: 1) zeroing the bias and transforming the softmax loss logit W T
j xi = ∥Wj∥xi∥ cos (θj), as

suggested in [67], where θj is the angle between the weight WJ and the feature xi, 2) follow-

ing [113, 67, 114] the weights are normalized by L2, 3) the features x are also normalized

in L2 per [85, 113, 112, 114] suggestion. This normalization insures that there is only an
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angular dependence between weights and features, and the learned features are distributed

along a hypersphere with radius s. To conclude, ArcFace can be described as follos:

L = − log
(

es(cos (θyi+m))

es(cos (θyi+m)) +
∑N

j=1,j ̸=yi
es cos (θj)

)
, (2.5)

where m is the employed additive angular margin penalty between the feature xi and the

ground truth center Wyi to promote the intra-class compactness and inter-class distance

Figure 18.

Figure 18: Demonstration of the intra-class compactness and inter-class distance of ArcFace (right) compared

to Norm-Softmax (left) for 8 identities. The distance margin between classes is clear for ArcFace. Image

from ArcFace’s paper [23].

To this day, ArcFace is still the state-of-the-art regarding face recognition, and one of the

most implemented loss functions of this category, and it is usual to see other novel losses using

it as a starting point. The accuracy saturation of more common benchmarks like LFW [42]

lead to the appearance of harder ones, which will lead to loss functions aimed at more specific

challenges, namely CurricularFace [45], MagFace [74], AdaFace [51] or QMagFace [106].

Metric learning loss functions

Metric learning loss functions include the methods that aim optimizing the distance

between feature embeddings. That is, increase the distance between negative embeddings

and minimize the distance for those that are positive.

One classic example is the contrastive loss, but this category’s attention mainly pends

over the triplet loss first implemented by Schroff et al. in FaceNet [94].

→ Contrastive Loss [26] has the objective of optimizing the distance between identity

pairs: positive pairs are encouraged to be closer and negative ones to be further apart. The

loss function to be minimized is:

Lcontrastive =


1
2
∥f(xi)− f(xj)∥22, ifyi = yj

1
2
max (0,md − ∥f(xi)− f(xj)∥2)2, ifyi ̸= yj

(2.6)
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Figure 19: Triplet loss training representation. Image from Facenet’s paper [94].

→ Triplet Loss (2014) [94] embeds an image to a d-dimensional feature vector in an

Euclidean space. The motivation is to guarantee that, for every individual i, the squared

distance between an image xa
i (anchor) of an identity and its corresponding true identities xp

i

(positive) is smaller than the distance between non-identities, xn
i (negative). This structure

is called a triplet Figure 19. The aforesaid can be described in mathematical terms as:

∥f(xa
i )− f(xp

i )∥22 + α < ∥f(xa
i )− f(xn

i )∥22, (2.7)

where f(x) are the feature embeddings from all the possible triplets, and α is a margin

between positive and negative pairs. Therefore, the loss function to be optimized is:

Ltriplet =
N∑
i

[
∥f(xa

i )− f(xp
i )∥22 − ∥f(xa

i )− f(xn
i )∥22 + α

]
(2.8)

However, there is a major drawback associated with this methodology. The selection of

the triplets has a significant impact on the results and there is a combinatorial explosion

regarding the number of possible triplets, specially for large-scale datasets, leading to a slower

convergence and computational overhead if all the possible triplets are to be used. The only

way to address this problem is through the development of efficient mining strategies that

select both hard and representative triplets.

2.5 Related work

The development of solutions for student monitoring, specially image-based, has encom-

passed a plethora of possibilities that can face several challenges, specially not being capable

of controlling the capturing conditions or the computational power of the device where the

system is executed. Depending on the application, they can be intended for commercial pur-

poses or developed as part of academic research. Commercial solutions such as Kryterion,

ProctorExam, ProctorU, Procotorio, ProctorFree, or SMOWL [84] are available; however,

with the exception of SMOWL, due to their proprietary nature, their methods of implemen-

tation are not disclosed, not allowing to study them adequately. Therefore, all the methods

analyzed, except SMOWL, will fall under the second category.
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→ Zhang et al. [138] (2016) studied a system based on facial features exclusively. The

faces are first detected and extracted using the OpenCV pretrained classifier based on the

Viola-Jones/Haar Cascades algorithm. Subsequently, recognition is carried out utilizing the

Eigenfaces algorithm, which incorporates Principal Component Analysis (PCA). The main

disadvantage of this solution is lacking the flexibility to adverse visual conditions that Deep

Learning techniques have.

→ Atoum et al. [5] (2017) proposed a solution that employs Viola-Jones/Haar Cascades

face detector and Minimum Average Correlation Energy (MACE) filter for face verifica-

tion. Once again, the methodologies utilized are too sensitive to image variations, such as

illumination, pose, expressions, etc.

→ Zhang et al. [139] (2018) latter proposed another solution. In a similar fashion to

Zhang et al. [138] and Atoum et al. [5], the face detection is achieved through the same

OpenCV pretrained module. On the other hand, the detected and cropped faces are now

processed by a modification of the Stereo Matching algorithm. Because this method extracts

information from pairs of stereo images, it is subject to occlusions, ambiguities, textures, etc.

→ Sawhney et al. [92] (2019) introduced an approach where the face detection is ac-

complished in two stages: 1) bounding box regression with the Viola-Jones/Haar Cascades

algorithm and 2) facial landmark generation with a Local Model-based algorithm. After the

faces are extracted, the face recognition stage, in similarity with Zhang et al. [138], applies

simultaneously Eigenfaces with PCA, therefore, the drawbacks coincide.

→ Ganidisastra and Bandung [32] (2021) introduced a Deep Learning-based approach

that employs two models for face detection and recognition: YOLO-face for face detection

and Facenet for face recognition. Notably, Facenet is continuously trained with data collected

at the end of each user session. This training process causes the system to overfit to each

individual identity, leading to reduced adaptability in handling new scenarios due to limited

data availability. Furthermore, the training of Facenet utilizes the triplet loss, which can be

computationally challenging, especially on less powerful hardware. This is primarily due to

the exponential increase in possible combinations when mining triplets during the training

process.

→ SMOWL [57] (2021) is a multi-modal tool that analyzes voice, face and key-strokes
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data. For this dissertation, the interest resides only on the facial aspect of it. For face

detection, it utilizes a combination of FaceBoxes with MobileNet-SSD for occlusion detection.

The face recognition is accomplished with a Facenet model trained with triplet loss on the

MS-Celeb-1M dataset. Anew, the triplet loss training can be considered a drawback.

→ TrustID [29] (2023) is our solution, designed and developed at ISR-UC. It utilizes

as a face detection a linear detector conjointly with a Histogram of Oriented Gradients

and pyramidal image search. After the faces are detected and aligned, they are cropped

to a Region of Interest (RoI) of 150 × 150 pixels. Finally, the faces are passed to a face

recognition module that uses a CNN with 29 layers based on the ResNet-34, trained with

triplet loss on a dataset of, approximately, 3 million faces derived from the Visual Geometry

Group Face [82] and FaceScrub [80] datasets.

The primary focus of this work revolves around the selection of the architecture for the

face recognition module, which, as previously mentioned, will exclusively be centered on

image-based Deep Learning approaches. In pursuit of this goal, the monitoring system must

proactively address potential challenges that may arise during data acquisition and execution.

In particular, the face recognition module must exhibit robustness in handling variations in

illumination, pose, and image quality, especially in scenarios where precise control over

these factors is unattainable. Furthermore, we also need to consider the computational

resources available to users, as students may access the system using smartphones or less

powerful computing devices. Consequently, our choice of framework must be resilient to

these variations and resource constraints.
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Chapter 3

Methodology

From the previously described systems in Section 2.5, two methods must be picked:

one for face detection and one for face representation (that include the feature extracting

backbone neural network and the loss function necessary for training). The next sections

describe these choices and the reasons behind them, as well as the implementation and

necessary steps.

3.1 Face detection

Following the proposed pipeline for a Face Recognition system, the initial design choice

pertains to the Face Detection module, responsible for detecting, selecting and standardizing

the faces. A comprehensive study of solutions was presented in Section 2.3.1 and comple-

mented with Appendix A, wherein RetinaFace emerged as the most adequate solution for a

student monitoring context, therefore, it will be the method used in this work. This approach

accepts an image as input and produces multiple outputs, including a bounding box, five

key facial landmarks (representing the center of the eyes, nose, and corners of the mouth),

and a confidence score that reflects the likelihood of the detection accurately identifying a

face. The selection of this method was predominantly influenced by three critical factors:

1) adaptability to changes in light, pose, facial expressions, etc., facilitated by the DCNN

backbone, 2) incorporation of a single-stage approach and leveraging multi-task learning,

enabling efficient real-time detection of facial landmarks using just a single CPU core (for

VGA resolution), and 3) availability of readily implemented solutions with ample support.

The solution of choice is a Pytorch implementation1 of the original method that offers

1 https://github.com/biubug6/Pytorch_Retinaface
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both a MobileNet-0.25 or ResNet-50 as backbones pre-trained on ImageNet. To better

suit our application, further development over the original implementation was required.

RetinaFace is distributed as a general face detection algorithm that is deployed on data

with multiple faces to be handled, therefore, there is no built-in method for face selection or

transformations, like alignment and resizing. However, on a student’s monitoring scenario,

only one face is relevant, and as consequence of that, the face recognition systems are to be

trained and validated on single face pictures normalized to a canonical view.

Figure 20: Results produced by the RetinaFace method over a test photo. Represented are the bounding

boxes, respective confidence scores and the five facial landmarks.

Instantiating the model with default threshold parameters and Resnet-50 as the back-

bone, it produces the results seen in Figure 20. From all the bounding boxes available, one

must be picked, and one way of doing so is by assuming that the more relevant face is closer

to the camera, hence the area of its bounding box will be greater.
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Figure 21: Visualization of the developed landmark-based alignment. The green dot serves as an auxiliary

point, resulting from the intersection of a horizontal line originating at the pivot eye and a vertical line

projected from the other eye. Subsequently, the rotation angle is determined by computing the arctangent

of two distances: the distance between the higher eye and the auxiliary point, and the distance from the

auxiliary point to the pivot eye.

The alignment is done with the help of the eyes landmarks as seen in Figure 21. The eye

lower relative to the other is declared as the pivot and starting point of a horizontal line that

acts as the reference to calculate the angle of rotation. Following the selection, cropping, and

alignment of the face, it is resized to fit the required dimensions of the subsequent phase.

3.2 Face Representation

The Face Representation stage addresses handling the features of each face and includes

a feature extractor and a loss function. Following the review on related works in Section

2.5 Ganidisastra and Bandung [32] and SMOWL [57] both utilize Facenet trained with

triplet loss for face recognition. This naturally prompts an investigation into the potential

effects on performance when utilizing a modern network (ResNet variations), as well as a

lightweight network with fewer parameters (MobileFaceNet). Furthermore, considering the

drawbacks associated with triplet loss training, examining the impact of a well-established

loss function, like ArcFace would also be noteworthy, as it encourages intra-class compactness

and inter-class distance. Due to time constraints, the methods of choice are all pretrained

and subsequently fine-tuned on datasets appropriate to the model’s scenario deployment.
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3.2.1 FaceNet

For this method, we utilize a highly regarded PyTorch implementation2 that offers pre-

trained models in either the CASIA-WebFace or VGGFace2 dataset. The images’ faces are

cropped and aligned (but not rotated) using MTCNN, and resized to 160 × 160 × 3. How-

ever, this implementation has differences compared to the Facenet described in the original

paper [94]. Firstly, differing from the original adopted GoogLeNet-style Inception model,

the backbone network employed here is the Inception-Resnet-V1, which integrates resid-

ual blocks into the Inception architecture. As highlighted in Section 2.4.2, this modification

streamlines the training process by addressing issues such as accuracy degradation and gradi-

ent vanishing. Secondly, adhering to the recommendations by Parkhi et al. [82], the network

was trained as a classifier using softmax loss, departing from the original’s triplet loss metric

learning approach. Finally, the method’s output is a 512-dimensional embedding, differing

from the 128-dimensional output reported in the original paper.

3.2.2 ResNet

The choices for this architecture were designed to cover a range of neural network depth,

complexity and trainable parameters. Henceforth, there are 3 objects of study, ranging

from less to deeper ones: iResnet-183, a 29 layer version of Resnet-344 (used in the TrustID

project) and iResnet-50 (with SE blocks)5. Both the iResnet-18 and iResnet-50 were trained

on 112 × 112 × 3 faces from the MS1MV2 dataset, using ArcFace as the loss function,

and output 512-dimensional feature embeddings. Regarding the Resnet-34, it was trained

with triplet loss on a custom dataset comprised of 3 million 150× 150× 3 images from the

Visual Geometry Group Face [82] and FaceScrub [80], and outputs a 128-dimensional feature

embedding.

3.2.3 MobileFaceNet

MobileFaceNet5 is a lightweight approach to face recognition that will further aid the

study of the computational cost and model’s performance trade-off. Since it is made available

by the same author as the iResnet-50, it has technical similarities. Once again, it is trained

2 https://github.com/timesler/facenet-pytorch
3 https://github.com/deepinsight/insightface
4 http://dlib.net/face_recognition.py.html
5 https://github.com/TreB1eN/InsightFace_Pytorch
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with ArcFace loss on 112× 112× 3 images from the MS1MV2 dataset and outputs the usual

512-dimensional embedding.

3.3 Finetuning data

Considering that the intended application of the face recognition systems is to monitor

students, the nature of the capture device (webcam or smartphone) or its positioning will

influence the quality of the data. For instance, one potential scenario involves a student with

one monitor and a laptop placed to the side of it, accompanied by a lamp on the opposite

side. This will configuration will result in face captures with very different resolutions, poses

and lightning compared to another student using a laptop, in a well lit room, facing the

subject.

Figure 22: Comparison between devices for different face capturing scenarios. The top row corresponds to

1280× 720 files captured by a webcam, while the bottom row are 2309× 3072 pictures from a smartphone’s

front facing camera.

As can be seen in Figure 22, for faces captured in the same exact scenarios and conditions

there is a huge discrepancy between the webcam and smartphone pictures, ranging from

resolution, detail, color and hue, and illumination. Therefore, it is crucial to have a robust

system that is capable of being insensitive to these variations, hence the possible need to

finetune pre-trained models for that. In this regard, we will examine two distinct datasets:

DigiFace-1M and QMUL-SurvFace.
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Figure 23: Examples of faces from the fine-tuning datasets. Row 1: QMUL-Survface, showcasing the

low quality of the pictures. Row 2: DigiFace-1M, showcasing the variability in pose, color, accessories,

expressions.

Amidst the controversies surrounding the methods of data acquisition for some publicly

distributed datasets, including MS-Celeb-1M, MegaFace, FaceScrub, IJB-C or VGGFace,

Bae et al. developed DigiFace-1M [6] with those concerns in mind. This fully synthetic

dataset emulates different scenarios with variant poses, light, expression and accessories

(hats, masks, makeup, etc.), and it serves as an interesting object of study of the potential

of this type of datasets to diminish the reliance over real face data to finetune a model for

more adverse scenarios.

The second dataset used to finetune our models of choice is QMUL-SurvFace [19] by

Cheng et al. Initially described as a benchmarking dataset, its unconstrained way of captur-

ing resulted on faces with very high variance in resolution, capturing angles, poses, light or

accessories, poses as a perfect source to further adapt the models to said scenarios. Another

noteworthy benefit of this dataset is that the images were collected with the consent of the

individuals, meaning that ethical and privacy dilemmas are not at play.

3.4 Benchmarks

The evaluation will be conducted with 10-fold cross validation on the processed dataset

to match the size of the training data for each model. First with the original pretrained

model and then with the fine-tuned version of the selected one. The model will produce the

feature embeddings and pairwise cosine similarity, and if it is above a certain threshold the

pair is considered as a match.
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To comprehensively assess the performance of the chosen models, we will subject them to

testing across eight diverse datasets: VGGFace2, AgeDB30, two CFP variations (CFP-FF for

frontal-frontal pairs and CFP-FP for frontal-profile pairs), CALFW, CPLFW, XQLFW and

LFW. This approach is designed to capture a wide array of characteristics, closely resembling

real-world scenarios for a thorough evaluation, therefore, four dataset groups based on their

characteristics are defined: frontal, age, pose and hard.

Table 3: Benchmarks’ groups, their difficulty, and in-

tended evaluation purpose. * - Very easy. ***** -

Very difficult.

Dataset Difficulty Evaluation purpose

Frontal
CFP-FF *** Frontal view

performance.LFW *

Age
AgeDB30 *** Sensitivity to

age variations.CALFW ***

Pose
CFP-FP **** Performance for

a range of poses.CPLFW ***

Hard
VGGFace2 *****

Great variation in pose,

age, illumination, etc.

XQLFW *****
Performance for very

low image quality.

Figure 24: Example face pairs from each benchmark.

Row 1: CFP-FF and LFW; Row 2: AgeDB30 and

CALFW; Row 3: CFP-FP and CPLFW; Row 4: VG-

GFace2 and XQLFW

These groups are summarized in Table 3 and pictured on Figure 24, where it is possible

to observe the diversity in pose, expressions, age, illumination and image quality. In terms of

difficulty, the Frontal group is easier, while the Age and Pose groups are moderate. However,

the Hard group significantly raises the challenge, leading to stricter benchmarks.

The chosen evaluation metrics are based on biometric systems of verification and encom-

pass Accuracy, the Receiver Operating Characteristic (ROC) and Detection Error Trade-off

(DET) plots obtained by sweeping an interval of thresholds and calculating the True Accep-

tance Rate (TAR), False Acceptance Rate (FAR) and the False Reject Rate (FRR), and the

Equal Error Rate (EER).

Where TP is True Positive, TN is True Negative, FP is False Positive and FN is False

Negative, the accuracy, a measure for the number of correct predictions, is computed by:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)
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Moreover, TAR and FAR, that indicate, respectively, the proportion of genuine face pairs

correctly classified and the quantity of imposter face pairs incorrectly classified as matches,

is determined by:

TAR =
TP

TP + FN
(3.2)

FAR =
FP

FP + TN
(3.3)

With the previous metrics, it is possible to obtain the FRR, the ratio of genuine matches

that are classified as a non-match:

FRR = 1− TAR (3.4)

Additionally, they also gives us the ability to plot the ROC curves and study the trade-off

between the TAR and FAR at different thresholds and evaluate the performance of different

models Figure 25. With FRR, the DET curve are generated, which serves a similar purpose

to the ROC curves, but with a better performance visualization due to the axis’ logarithmic

scale. Finally, the EER is the point where FRR = FAR and the lower it is, the better

performing the system is.

Figure 25: Range of possible performance for DET (left) and ROC (right) curves. The y-axis represents the

True Positive Rate (or TAR) for the ROC curves and False Negative Rate (or FRR) for the DET curves.

The x-axis represents the False Positive Rate (or FAR) for both plots. Image from [90]

Figure 25 highlights the performance visualization for both the curves’ plots. The closer

the ROC curve is to the top left corner, the better performance the model has, since that

means that it is able of correctly identify more genuine face matches (TAR) while minimizing

the wrong identities incorrectly classified as matches (FAR). For DET, a curve closer to the
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origin represents a better model, since it minimizes the amount of genuine identities matches

classified wrongly classified as imposters (FRR) for a more strict FAR threshold.

Furthermore, to evaluate the performance/resource utilization trade-off, the following are

considered: the number of trainable parameters, trainable layers, quantity of multiplication

and addition operations (mult-adds), inference time and a proposed metric called Number

of Parameters per Unit of Accuracy (NPUA).

3.5 Implementation details

All the training, processing, and benchmarking was developed in a Docker environment

to ensure reproducibility. The code was written using Python 3.8.10 and relies on PyTorch

1.14.0 and Torchvision 0.15.0, along with their corresponding required libraries. The training

process is conducted exclusively on a single GPU, specifically NVIDIA’s GeForce RTX 3080

Ti 12GB.

Regarding the implementation, all development was done with modularity in mind. First,

the data is processed with the customized RetinaFace detection and alignment algorithm

and saved. Then, it is proceeded forward to the neural network that produces a feature

embedding for each image. If the model is being trained, the embedding will be passed on

to the ArcFace module, which will output the feature’s logits. Following the the original

paper [23], the logits are turned to probabilities by applying the softmax activation function

and then contributing to the final step, i.e, the cross entropy loss. Because ArcFace is a

separate structure that does not integrate the backbone networks as a custom layer, the

neural networks can be quickly and easily changed.

3.6 Discussion

Considering the possible challenging scenarios described allied to the incapability of guar-

anteeing robust computational power or quality capture devices, due to the image-based

student monitoring application, it prompts a selection of the methods of face detection,

recognition methods and training datasets with that in mind.

RetinaFace’s backbone DCNN assures adaptability to image variations resulting from

the capture device, and its multi-task, real-time and single CPU core data processing elim-

inates the need for powerful execution machines. After being processed by the customized

RetinaFace implementation, the datasets (QMUL-SurvFace and DigiFace-1M) will serve as
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a fine-tuning source. Their increased depth, width and varied image characteristics (acces-

sories, illumination, poses, quality, etc.) constitute a theoretical robust source of diverse

information to improve a model’s competence. Finally, Section 2.5 highlighted FaceNet,

iResnet-18, iResnet-SE-50 and MobileFaceNet as possible alternatives to TrustID’s face

recognition method. Since they are all deep learning approaches, they all have an inher-

ent flexibility to adapt to information, but the data where they were trained has great

influence on their performance. Regarding the computational power, these methods also dif-

fer in the overhead they generate, wherein iResnet-SE-50 is the heaviest and MobileFaceNet

is the lightest. Hence, because they are trained on different datasets and have different

complexity, each one must be benchmarked in order to pick the model to be fine-tuned that

shows a better performance/resource utilization trade-off. Furthermore, it is important to

acknowledge that achieving perfect accuracy is not an absolute requirement. This is because

the monitoring process involves face verifications occurring over an extended period, during

which a larger quantity of verifications can compensate for lower accuracy values.
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Chapter 4

Results and Discussion

The main purpose of the following chapter is to select a superior approach to TrustID’s

facial recognition solution that encapsulates an appropriate trade-off between performance

and computational cost. To achieve that, first the pre-trained models are benchmarked.

These results, combined with the models’ complexity and resources cost related specifica-

tions, will allow the choice of the most adequate model to be fine-tuned. After training, the

tests are repeated in order to evaluate if the model improved or not, and a final choice for

the main objective is made.

4.1 Models’ specifications

Figure 26: TrustID’s Architecture. Image from the case study’s paper [29]

Here we compare the following four models against the TrustID Resnet-34 based solution

Figure 26, which comprises 29 layers, an average inference time of 7.28 seconds (computed

by averaging the inference time on the entire dataset for all the benchmarks) and has been

trained on the VGG Face and Facescrub ensemble dataset using triplet loss. Relevant spec-

ifications to assist the identification of a superior model are presented in Table 4.
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Table 4: Model’s characteristics. “# Parameter” refers to the trainable parameters, “# Mult-Adds” to

the number of multiplication and addition operations, “# Layers” denotes the quantity of convolutional

and linear layers present in the model, “Embedding” signifies the dimensionality of the feature embedding

produced by the model’s output, “Inference time (s)” represents the average time taken for inference of all

images from all the benchmark datasets, “Loss” is the loss function used to train the model, and “Dataset”

are the training images.

# Parameters # Mult-Adds (G) # Layers Embedding Inference time (s) Loss Dataset

MobileFaceNet 1,200,512 56.62 17 512 2.79 ArcFace MS1MV2

iResnet-18 24,025,600 668.15 18 512 5.01 ArcFace MS1MV2

FaceNet 28,907,599 152.21 63 512 5.89 Softmax CASIA-WebFace

iResnet-SE-50 43,797,696 1610.00 50 512 9.78 ArcFace MS1MV2

This initial analysis suggests that MobileFaceNet has promising characteristics. It is the

least complex model, therefore, is less prone to overfitting to new data and, most impor-

tantly, the amount of computational overhead created and inferece times are much inferior

to the others at study. This is supported by the fewer number of convolutional and linear

layers, trainable parameters and mult-adds. Albeit the similar depth to that of iResnet-18,

MobileFaceNet has, approximately, 95% fewer parameters, which is reflected on the num-

ber of total mult-adds. However, further investigation is required to determine whether

the aforementioned characteristics might pose a bottleneck, potentially leading to a less ro-

bust solution with subpar performance. The ideal solution should strike a balance between

adapting to new data and necessary computational costs.

4.2 Benchmarking Results

4.2.1 Accuracy

After performing 10-fold cross validation on all the benchmark datasets with the pre-

trained models, the mean accuracy is presented on the following table.

Table 5: Model’s face verification accuracy.

Models

Datasets Frontal group Age group Pose group Hard group

CFP-FF LFW AgeDB30 CALFW CFP-FP CPLFW VGGFace2 XQLFW

MobileFaceNet 0.9884 0.9912 0.9308 0.9362 0.8957 0.8642 0.9050 0.5063

iResnet-18 0.9960 0.9960 0.9728 0.9555 0.9414 0.8943 0.9198 0.4943

FaceNet 0.8909 0.9038 0.7147 0.7470 0.7664 0.6738 0.7748 0.5000

TrustID 0.8807 0.9906 0.7153 0.7198 0.7030 0.6235 0.7400 0.6135

iResnet-SE-50 0.9959 0.9953 0.9263 0.9543 0.9457 0.9047 0.9396 0.5137
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From Table 5, we can see that iResnet-18 and iResnet-SE-50 have comparable perfor-

mance. iResnet-18 achieves higher accuracy values on more datasets than any other model,

however, iResnet-SE-50 performs better on the datasets where iResnet-18 does not, but only

by a very small margin. Additionally, concerning the datasets where iResnet-SE-50 exhib-

ited slightly lower performance, the accuracy scores are also very close. Specifically, between

the two models, CFP-FF, LFW, CALFW, CFP-FP, CPLFW and VGGFace2 are all within

a margin of error that can be attributed to non-deterministic behaviors in PyTorch, the

libraries used, hardware, and/or CUDA. It is also important to note that, even though Mo-

bileFaceNet did not achieve the higher accuracy on any benchmark, the scores are the third

best and considering its lightweight specifications highlighted in Table 4, the results are very

promising and present a good example of accuracy and computational cost trade-off without

compromising accuracy for student monitoring. Regarding the results from the extremely

hard XQLFW, they are exceedingly low, approaching 0.5, for almost all the methods. This

suggests that the model is producing outputs that resemble random guesses, which is ex-

actly what occurs with FaceNet. The only exception is TrustID, which can be probably

justified by the method of training. By resizing smaller training images to 150 × 150 there

is a degradation in quality that leads to a model more prepared to handle these situations.

4.2.2 ROC Curves

The previous table indicates that the three methods with superior performance, based

exclusively on the accuracy at the best similarity threshold for each model and dataset, are

the iResnet-SE-50, iResnet-18 and MobileFaceNet. To conduct a more thorough investigation

allowing us to select the most appropriate model to be fine-tuned, the TAR values are

computed for a range of FAR values and the ROC curves are generated. By inspecting how

close the ROC curve is to the top left corner, the prime models can be determined since those

are able to correctly identify more genuine matches while keeping the incorrect matches low.
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Figure 27: ROC Curves for the LFW benchmark from the

Frontal group.
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Figure 28: ROC Curves for the CALFW benchmark from

the Age group.
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Figure 29: ROC Curves for the CPLFW benchmark from

the Pose group.
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Figure 30: ROC Curves for the XQLFW benchmark from

the Hard group.

The selected ROC curves support our initial assumptions. It is evident that, across

the entire FAR range, the three top-performing models are iResnet-SE-50, iResnet-18, and

MobileFacenet. With the exception of XQLFW in Figure 38, where all models, except

TrustID, perform poorly and are close to random guessing, the remaining seven datasets

consistently position these three models near the top-left corner. This pattern indicates

strong model performance. In scenarios with low FAR values, where the model is less

tolerant of incorrectly identifying impostors as matches, the number of correctly classified

pairs (TAR) is higher. Please refer to Appendix E for the remaining from each benchmark

group.
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Table 6: TAR@FAR for all the models and benchmarks.

iResnet-SE-50 iResnet-18 MobileFacenet FaceNet TrustID

1e− 4 1e− 3 1e-2 1e− 3 1e− 2 1e− 4 1e− 3 1e− 2 1e− 3 1e− 2 1e− 3 1e− 2

CFP-FF 0.10000 0.10000 0.99771 0.09886 0.99743 0.09057 0.09600 0.98657 0.02886 0.55257 0.03314 0.58114
Frontal

LFW 0.99067 0.99333 0.99700 0.99100 0.99600 0.91467 0.96933 0.99167 0.39900 0.68800 0.26967 0.50567

AgeDB30 0.68267 0.81700 0.92600 0.91533 0.95300 0.4950 0.59500 0.80267 0.02900 0.14867 0.03467 0.11100
Age

CALFW 0.86633 0.88233 0.91733 0.90167 0.91933 0.68100 0.75900 0.87100 0.07867 0.26767 0.05300 0.18267

CFP-FP 0.07600 0.07971 0.87371 0.07628 0.87400 0.04200 0.05171 0.69857 0.00857 0.22171 0.00686 0.12629
Pose

CPLFW 0.37533 0.58833 0.7900 0.66767 0.75400 0.06467 0.17200 0.64400 0.00967 0.12433 0.01567 0.07300

VGGFace2 0.06000 0.77280 0.86280 0.70320 0.81840 0.05240 0.53880 0.72160 0.17000 0.31720 0.06640 0.19400
Hard

XQLFW 0.00001 0.00033 0.00800 0.00033 0.00433 0.00001 0.00100 0.00433 0.02000 0.40433 0.02167 0.07867

The aforementioned three highest-achieving models distance themselves from FaceNet

and TrustID on the ROC plots, although there is some overlap. As such, Table 6 allows us

to analyze their performance at lower FAR values, where this overlap occurs.

For a low FAR value of 1e − 4, the threshold is more firm and leaves less margin for

identifying wrong matches as true identities, all models fail on more demanding datasets, but

for less intricate ones, iResnet-SE-50 achieves suitable performance on LFW and CALFW,

and MobileFaceNet on LFW. Reducing the strictness and increasing the FAR to 1e − 3,

leads to an improvement on the results, as expected. The iResnet models produce high

TAR values on all datasets apart from the more challenging CFP variations and XQLFW

datasets. MobileFacenet starts to improve but still performs poorly on the pose group, hard

group, CFP pair and AgeDB30 dataset. Finally, at 1e − 2 is the threshold at which all

models excel without compromising the security of the system, since increasing the FAR to

1e − 1 would lead to too much falsely matched pairs. iResnet-SE-50 and iResnet-18 have

comparable performance with high scores on the same benchmarks and both failing XQLFW.

MobileFaceNet approaches iResnet levels of capability aside from slightly lower scores on the

age and pose groups and the XQLFW dataset.

4.2.3 DET Curves

To finalize the selection of the most appropriate model, the FRRs are calculated and

plotted against the previous FAR values to obtain the DET curves. The intersection be-

tween the identity line that divides the graph and the DETs, i.e, the EER points can be

extracted. These curves also allow to make a better distinction between models due to the

more expansive logarithmic scale in which they are generated. In this case, contrary to the

ROC curves, the better performing models are closer to the lower left corner, minimizing
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both the amount of impostors matched as true identities (FAR) and true identities classified

as impostors (FRR).
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Figure 31: DET Curves for the LFW benchmark from the

Frontal group.
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Figure 32: DET Curves for the CALFW benchmark from

the Age group.
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Figure 33: DET Curves for the CPLFW benchmark from the

Pose group.
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Figure 34: DET Curves for the XQLFW benchmark from the

Hard group.

Table 7: EER values for all the models and respective benchmarks.

Frontal Age Pose Hard

CFP-FF LFW AgeDB30 CALFW CFP-FP CPLFW VGGFace2 XQLFW

MobileFaceNet 0.0126 0.0090 0.0723 0.0727 0.1069 0.1463 0.1020 0.4849

iResnet-18 0.0043 0.0045 0.0297 0.0617 0.0609 0.1220 0.0882 0.5094

FaceNet 0.1111 0.0957 0.2900 0.2517 0.2326 0.3270 0.2276 -

TrustID 0.1210 0.1465 0.2827 0.2850 0.2951 0.3742 0.2594 0.3880

iResnet-SE-50 0.0040 0.0043 0.0723 0.0577 0.0554 0.1117 0.0708 0.4854
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As a final analysis, the DET plots and the EER values support what has been previously

discussed: iResnet-SE-50, iResnet-18 and MobileFaceNet are the best performing models.

To no surprise, this group is always close to each other and close to the ideal corner of

the DET graphs. Additionally, XQLFW reveals once again to be too much of a challenge.

Regarding the EER scores, the results and conclusions are similar to the ones from Table 5.

iResnet-SE-50, the more complex model, has the lower scores, with iResnet-18 a close second

and MobileFaceNet as the third. Please refer to Appendix F for the remaining from each

benchmark group

4.3 Number of trainable parameters per unit of accu-

racy

This metric is obtained by computing the division of the number of trainable parame-

ters by the accuracy values, and it will serve as a complement to the metrics that evaluate

resource’s cost, i.e, the amount of mult-adds, inference time, and the number of train-

able parameters and layers. Because the previous tests consecutively place iResnet-SE-50,

iResnet-18 and MobileFaceNet as the more capable methods, they will be the ones studied

in Table 8.

Table 8: Number of trainable parameters per unit of accuracy for the three highest achieving models.

Models

Datasets Frontal Age Pose Hard

CFP-FF LFW AgeDB30 CALFW CFP-FP CPLFW VGGFace2 XQLFW

MobileFaceNet 1.216× 106 1.211× 106 1.290× 106 1.282× 106 1.340× 106 1.389× 106 1.327× 106 2.371× 106

iResnet-18 2.412× 107 2.412× 107 2.470× 107 2.514× 107 2.552× 107 2.687× 107 2.612× 107 4.861× 107

iResnet-SE-50 4.398× 107 4.400× 107 4.728× 107 4.590× 107 4.631× 107 4.841× 107 4.661× 107 8.526× 107

Table 5 emphasizes that the three methods attain comparable accuracy values, a cru-

cial factor for model comparison with this metric. In this context, a lower NPUA value is

preferred, as it indicates that a model can achieve the same accuracy while utilizing fewer

trainable parameters. Finally, we can conclude that MobileFaceNet is the more computa-

tional cost-efficient, presenting NPUA scores lower than iResnet-18 and iResnet-SE-50 by,

at least, an order of magnitude.
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4.3.1 Discussion

At this stage, we are capable of assuring, based on the previous tests, that one objective

is achieved and more adequate solutions to TrustID’s facial verification framework were

found. The three top performing methods proved their robustness to extreme variation

in pose (CFP-FP and CPLFW), age (AgeDB30 and CALFW) or illumination (CFP-FF,

VGGFace2). That being said, the benchmark concerning quality and image degradation

(XQLFW) proved to be a major hurdle to most of the models aside from TrustID.

Considering the benchmarks’ results, the much lower amount of trainable parameters,

mult-adds, inference time and NPUA, MobileFaceNet is the best balance between perfor-

mance and computational cost. As discussed in section 3.6, due to the monitoring context,

achieving perfect accuracy is not the main concern. This is due to the fact that, as the

monitoring occurs over a time span it allows the system to perform more face verifications,

compensating for lower accuracy values. Furthermore, although it is true that Mobile-

Facenet’s accuracy is high in the pose group and VGGFace2, there is room for improvement

in the TAR at low FAR values, hence the fine-tuning. The objective of further training the

model first with QMUL-SurvFace is to try and improve its scores in both the hard group,

specially XQLFW, and pose group benchmarks. On the other hand, DigiFace-1M enables

the study of the impact of fully-synthetic ethically collected data on the scores throughout

the benchmarks, with a special attention to the pose group benchmarks.

4.4 Training Details

By leveraging Optuna’s hyperparameter searching capabilities1, we observe that the op-

timal combination is to train over batches of size 32 for 10 epochs with a 1e−4 learning rate

that decays according to a Cosine Annealing scheduler with warm up restarts. Additionally,

because the model has Batch Normalization layers, they need to be explicitly set to evalua-

tion mode during training. If this step is overlooked, the mean and variance used will be the

ones from the batch and not the values achieved during the pre-training, leading to incorrect

evaluation values. Following the original ArcFace work [23], the optimizer of choice is SGD

with momentum 0.9 and weight decay 5e − 4, scale s = 64 and margin m = 0.5. Manual

early stopping is performed to ensure the most favorable achievable results, by evaluating on

XQLFW and CPLFW during training and saving the model’s training checkpoint with the

1 https://optuna.org/
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highest performing accuracy. These validation datasets are selected accordingly to the areas

where the models showed potential for improvement based on the benchmarks performed.

4.5 Training Results

Fine-tuning all the layers

The first approach is to update the whole network, since both QMUL-SurvFace and

DigiFace-1M are large datasets with a high number of images and identities, there are less

chances of quickly overfitting to the training data. Table 9 and Table 10 summarize the

accuracy results for QMUL-SurvFace and DigiFace-1M, respectively.

Table 9: MobileFaceNet accuracy scores before and after fine-tuning the whole network on QMUL-SurvFace

with different ArcFace margins.

Benchmarks Original m = 0.5 m = 0.4 m = 0.3

CFP-FF 0.9884 0.7957 (↓) 0.7916 (↓) 0.7916 (↓)
Frontal

LFW 0.9912 0.7957 (↓) 0.7915 (↓) 0.7913 (↓)

AgeDB30 0.9308 0.6165 (↓) 0.6112 (↓) 0.6362 (↓)
Age

CALFW 0.9362 0.6593 (↓) 0.6235 (↓) 0.6472 (↓)

CFP-FP 0.8957 0.6447 (↓) 0.6381 (↓) 0.6556 (↓)
Pose

CPLFW 0.8642 0.6048 (↓) 0.5843 (↓) 0.5992 (↓)

VGGFace2 0.9050 0.6516 (↓) 0.6188 (↓) 0.6314 (↓)
Hard

XQLFW 0.5063 0.5325 (↑) 0.5355 (↑) 0.5215 (↑)

Stopping Epoch 6 7 7

According to Table 9, fine-tuning with QMUL-SurvFace improves, as intended, the

XQLFW benchmark performance by 5.17%. However, the verified increase is moderate

and disadvantageous when the accuracy degradation verified on the remaining benchmarks

is taken into account. Hence, in an effort to improve the results, the margin is reduced

in order to generate a less penalizing training with a smaller distance between classes. The

results from these settings are shown in Table 9, and when fine-tuned with QMUL-SurvFace,

it occurs the same behavior as in m = 0.5. The XQLFW results are also better than the

original pre-trained model, increasing 5.77% for m = 0.4 and 3.00% for m = 0.3, while the

other scores worsen.
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Table 10: MobileFaceNet accuracy scores before and after fine-tuning the whole network on DigiFace-1M

with different ArcFace margins.

Benchmarks Original m = 0.5 m = 0.4 m = 0.3

CFP-FF 0.9884 0.8011 (↓) 0.8231 (↓) 0.8157 (↓)
Frontal

LFW 0.9912 0.8011 (↓) 0.8231 (↓) 0.8157 (↓)

AgeDB30 0.9308 0.6732 (↓) 0.6733 (↓) 0.6723 (↓)
Age

CALFW 0.9362 0.6755 (↓) 0.7010 (↓) 0.7010 (↓)

CFP-FP 0.8957 0.6191 (↓) 0.6483 (↓) 0.6609 (↓)
Pose

CPLFW 0.8642 0.5945 (↓) 0.6078 (↓) 0.6170 (↓)

VGGFace2 0.9050 0.6520 (↓) 0.6744 (↓) 0.6758 (↓)
Hard

XQLFW 0.5063 0.4965 (↓) 0.5003 (↓) 0.4975 (↓)

Stopping Epoch 6 5 6

In the case of DigiFace-1M in Table 10, no discernible improvements were observed, and

reducing the margin size did not yield any positive changes. Instead, the model appears to

struggle in adapting to the dataset, resulting in adjustments to the weights that ultimately

led to a deterioration in benchmark performance.

When comparing directly with the paper’s suggested margin (m = 0.5), some conclusions

can be drawn. The model fine-tuned with QMUL-SurvFace produces inferior results in the

frontal and age groups for m = 0.4 and m = 0.3, the pose group is superior for both margins

and the hard group is mixed, where VGGFace2 has lower performance for m = 0.4 and

m = 0.3, and XQLFW improves for m = 0.4 and not for m = 0.3. On the other hand, when

m = 0.4 and m = 0.3, the DigiFace-1M training saw a marginal improvement throughout the

tests but still performs poorly. All in all, reducing the margin size does not have a meaningful

impact on the accuracy results, aside from the XQLFW when tuned with QMUL-SurvFace.

To achieve a more profound understanding of how the model reacts to the data, Table 11

and Table 12 present the TAR at very low FAR.

Table 11: TAR@FAR after fine-tuning the model with QMUL-SurvFace.

m = 0.5 m = 0.4 m = 0.3

Benchmarks 1e− 4 1e− 3 1e− 2 1e− 4 1e− 3 1e− 2 1e− 4 1e− 3 1e− 2

CFP-FF 0.0140 (↓) 0.0209 (↓) 0.3486 (↓) 0.0063 (↓) 0.0154 (↓) 0.2940 (↓) 0.0091 (↓) 0.0169 (↓) 0.3097 (↓)
Frontal

LFW 0.3099 (↓) 0.3263 (↓) 0.4760 (↓) 0.1267 (↓) 0.1680 (↓) 0.3940 (↓) 0.1927 (↓) 0.2310 (↓) 0.4697 (↓)

AgeDB30 0.0050 (↓) 0.0083 (↓) 0.0867 (↓) 0.0027 (↓) 0.0053 (↓) 0.0730 (↓) 0.0093 (↓) 0.0240 (↓) 0.0860 (↓)
Age

CALFW 0.0313 (↓) 0.8053 (↑) 0.8053 (↓) 0.0070 (↓) 0.0323 (↓) 0.0827 (↓) 0.0283 (↓) 0.0340 (↓) 0.0920 (↓)

CFP-FP 0.0006 (↓) 0.9380 (↑) 0.9380 (↑) 0.0003 (↓) 0.0003 (↓) 0.0666 (↓) 0.0000 (↓) 0.0003 (↓) 0.0626 (↓)
Pose

CPLFW 0.0060 (↓) 0.9664 (↑) 0.9664 (↑) 0.0050 (↓) 0.0067 (↓) 0.0397 (↓) 0.0073 (↓) 0.0147 (↓) 0.0613 (↓)

VGGFace2 0.0040 (↓) 0.0536 (↓) 0.1060 (↓) 0.0036 (↓) 0.0376 (↓) 0.0880 (↓) 0.0040 (↓) 0.0364 (↓) 0.1216 (↓)
Hard

XQLFW 0.0000 (↓) 0.0023 (↑) 0.0173 (↑) 0.0000 (↓) 0.0000 (↓) 0.0000 (↓) 0.0000 (↓) 0.0000 (↓) 0.0000 (↓)

49



The reduced margins m = 0.4 and m = 0.3 produce lower TAR scores at any FAR,

including the very relevant frontal group. However, when m = 0.5, there are some improve-

ments. At FAR = 1e− 3 and FAR = 1e− 2, XQLFW increases slightly and the pose group

suffers a significant improvement relative to its higher scores before fine-tuning (44.7% for

CFP-FP at FAR 1e−3 and 1e−2, and 59.0% for CPLFW at FAR equal to 1e−3 and 1e-2).

Table 12: TAR@FAR after fine-tuning the model with DigiFace-1M.

m = 0.5 m = 0.4 m = 0.3

Benchmarks 1e− 4 1e− 3 1e− 2 1e− 4 1e− 3 1e− 2 1e− 4 1e− 3 1e− 2

CFP-FF 0.0020 (↓) 0.0069 (↓) 0.1906 (↓) 0.0026 (↓) 0.0111 (↓) 0.3580 (↓) 0.0057 (↓) 0.0109 (↓) 0.3606 (↓)
Frontal

LFW 0.1633 (↓) 0.2810 (↓) 0.5520 (↓) 0.2300 (↓) 0.3403 (↓) 0.6310 (↓) 0.2320 (↓) 0.3743 (↓) 0.6113 (↓)

AgeDB30 0.0013 (↓) 0.0083 (↓) 0.0530 (↓) 0.0010 (↓) 0.0153 (↓) 0.0747 (↓) 0.0003 (↓) 0.0250 (↓) 0.0790 (↓)
Age

CALFW 0.0017 (↓) 0.0043 (↓) 0.0780 (↓) 0.0013 (↓) 0.0300 (↓) 0.1207 (↓) 0.0050 (↓) 0.0170 (↓) 0.1223 (↓)

CFP-FP 0.0000 (↓) 0.0000 (↓) 0.0149 (↓) 0.0000 (↓) 0.0000 (↓) 0.0194 (↓) 0.0000 (↓) 0.0003 (↓) 0.0226 (↓)
Pose

CPLFW 0.0013 (↓) 0.0017 (↓) 0.0190 (↓) 0.0007 (↓) 0.0016 (↓) 0.0263 (↓) 0.0007 (↓) 0.0033 (↓) 0.0287 (↓)

VGGFace2 0.0000 (↓) 0.0008 (↓) 0.0220 (↓) 0.0000 (↓) 0.0020 (↓) 0.0404 (↓) 0.0000 (↓) 0.0028 (↓) 0.0440 (↓)
Hard

XQLFW 0.0000 (↓) 0.0000 (↓) 0.0083 (↓) 0.0003 (↑) 0.0013 (↑) 0.0087 (↑) 0.0000 (↓) 0.0010 (−) 0.0073 (↑)

Once again, the model trained with DigiFace-1M, does not perform and loses discrimi-

native power at any margin and FAR value with the exception of a few outliers values that

increase minimally, which can be seen as a mere fluctuation.

In the context of general CNN architectures, it is well-established that the initial layers

are primarily responsible for learning fundamental features such as edges, basic shapes, and

patterns that constitute objects or faces. Therefore, with the intention of improving the

previous results, by preserving the weights associated with these earlier layers and avoid-

ing introducing noise during further training, two other approaches are followed: 1) freeze

the first 5 layers and 2) train only the 2 final layers. Additionally, based on the previous

experiences, different ArcFace margins are also studied.

Fine-tuning with 5 initial frozen layers

Table 13 and Table 14 present the accuracy scores after fine-tuning MobileFaceNet with-

out updating the first five layers’ weights. By freezing only 5 layers, the model still keeps its

ability to learn more complex information associated with final stages of the network.
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Table 13: MobileFaceNet accuracy scores before and after fine-tuning the network, with the first five layers

frozen, on QMUL-SurvFace with different ArcFace margins.

Benchmarks Original m = 0.5 m = 0.4 m = 0.3

Frontal
CFP-FF 0.9884 0.7821 (↓) 0.8414 (↓) 0.8155 (↓)

LFW 0.9912 0.7820 (↓) 0.8415 (↓) 0.8156 (↓)

Age
AgeDB30 0.9308 0.5985 (↓) 0.6373 (↓) 0.6382 (↓)

CALFW 0.9362 0.6506 (↓) 0.6962 (↓) 0.6765 (↓)

Pose
CFP-FP 0.8957 0.6477 (↓) 0.6627 (↓) 0.6499 (↓)

CPLFW 0.8642 0.5943 (↓) 0.6195 (↓) 0.5872 (↓)

Hard
VGGFace2 0.9050 0.6442 (↓) 0.6822 (↓) 0.6610 (↓)

XQLFW 0.5063 0.4925 (↓) 0.5020 (↓) 0.5127 (↑)

Stopping Epoch 8 5 6

Table 14: MobileFaceNet accuracy scores before and after fine-tuning the network, with the first five layers

frozen, on DigiFace-1M with different ArcFace margins.

Benchmarks Original m = 0.5 m = 0.4 m = 0.3

Frontal
CFP-FF 0.9884 0.8840 (↓) 0.8806 (↓) 0.8788 (↓)

LFW 0.9912 0.8840 (↓) 0.8805 (↓) 0.8789 (↓)

Age
AgeDB30 0.9308 0.7265 (↓) 0.7125 (↓) 0.7303 (↓)

CALFW 0.9362 0.7400 (↓) 0.7478 (↓) 0.7398 (↓)

Pose
CFP-FP 0.8957 0.7219 (↓) 0.7039 (↓) 0.7223 (↓)

CPLFW 0.8642 0.6423 (↓) 0.6335 (↓) 0.6435 (↓)

Hard
VGGFace2 0.9050 0.7220 (↓) 0.7122 (↓) 0.7080 (↓)

XQLFW 0.5063 0.4997 (↓) 0.4967 (↓) 0.5033 (↓)

Stopping Epoch 6 6 6

As expected, the weights are less updated, hence the majority of the accuracy scores

are higher than when training the whole network. Also, for QMUL-SurvFace (Table 13), if

m = 0.3 there is even an improvement in the XQLFW benchmark. Finally, DigiFace-1M

(Table 14) at any m value, shows no positive developments against the pre-trained model.
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Table 15: TAR@FAR after fine-tuning the model, with the first five layers frozen, on QMUL-SurvFace.

m=0.5 m=0.4 m=0.3

Benchmarks 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2

Frontal
CFP-FF 0.0117 (↓) 0.0149 (↓) 0.2769 (↓) 0.0174 (↓) 0.0303 (↓) 0.4786 (↓) 0.0163 (↓) 0.0286 (↓) 0.3897 (↓)

LFW 0.2033 (↓) 0.2277 (↓) 0.5047 (↓) 0.2907 (↓) 0.3473 (↓) 0.5870 (↓) 0.2597 (↓) 0.2743 (↓) 0.5533 (↓)

Age
AgeDB30 0.0137 (↓) 0.0207 (↓) 0.0597 (↓) 0.0087 (↓) 0.0180 (↓) 0.0643 (↓) 0.0063 (↓) 0.0177 (↓) 0.0777 (↓)

CALFW 0.018 (↓) 0.0210 (↓) 0.0877 (↓) 0.0667 (↓) 0.0737 (↓) 0.1510 (↓) 0.0267 (↓) 0.0570 (↓) 0.1450 (↓)

Pose
CFP-FP 0.0000 (↓) 0.0009 (↓) 0.0617 (↓) 0.0011 (↓) 0.0029 (↓) 0.0871 (↓) 0.0009 (↓) 0.0020 (↓) 0.0694 (↓)

CPLFW 0.0070 (↓) 0.0170 (↓) 0.0570 (↓) 0.0100 (↓) 0.0183 (↓) 0.0870 (↓) 0.0093 (↓) 0.0187 (↓) 0.0633 (↓)

Hard
VGGFace2 0.0032 (↓) 0.0352 (↓) 0.1112 (↓) 0.0056 (↓) 0.0712 (↓) 0.1516 (↓) 0.0040 (↓) 0.0528 (↓) 0.1304 (↓)

XQLFW 0.0000 (↓) 0.0000 (↓) 0.0000 (↓) 0.0000 (↓) 0.0000 (↓) 0.0040 (↓) 0.0000 (↓) 0.0003 (↓) 0.0037(↓)

Table 16: TAR@FAR after fine-tuning the model, with the first five layers frozen, on DigiFace-1M.

m=0.5 m=0.4 m=0.3

Benchmarks 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2

Frontal
CFP-FF 0.0189 (↓) 0.0354 (↓) 0.5574 (↓) 0.0183 (↓) 0.0303 (↓) 0.5200 (↓) 0.0294 (↓) 0.0346 (↓) 0.5539 (↓)

LFW 0.3207 (↓) 0.5577 (↓) 0.7440 (↓) 0.2677 (↓) 0.5180 (↓) 0.7360 (↓) 0.4420 (↓) 0.5980 (↓) 0.7497 (↓)

Age
AgeDB30 0.0083 (↓) 0.0363 (↓) 0.1450 (↓) 0.0027 (↓) 0.0203 (↓) 0.1407 (↓) 0.0047 (↓) 0.0253 (↓) 0.1353 (↓)

CALFW 0.0407 (↓) 0.0813 (↓) 0.2690 (↓) 0.0100 (↓) 0.0593 (↓) 0.2423 (↓) 0.0150 (↓) 0.0393 (↓) 0.2590 (↓)

Pose
CFP-FP 0.0006 (↓) 0.0026 (↓) 0.1231 (↓) 0.0003 (↓) 0.0029 (↓) 0.0880 (↓) 0.0003 (↓) 0.0017 (↓) 0.1106 (↓)

CPLFW 0.0003 (↓) 0.0017 (↓) 0.0383 (↓) 0.0007 (↓) 0.0023 (↓) 0.0247 (↓) 0.0003 (↓) 0.0017 (↓) 0.0407 (↓)

Hard
VGGFace2 0.0000 (↓) 0.0176 (↓) 0.1732 (↓) 0.0000 (↓) 0.0056 (↓) 0.1392 (↓) 0.0000 (↓) 0.0040 (↓) 0.1468 (↓)

XQLFW 0.0000 (↓) 0.0010 (−) 0.0100 (↑) 0.0003 (↑) 0.0007 (↓) 0.0067 (↑) 0.0000 (↓) 0.0010 (−) 0.0093 (↑)

Finally, Table 15 and Table 16 highlight that training with less layers does not improve

the performance at any FAR or margin. Moreover, the previous enhancements verified when

the complete model is trained with QMUL-SurvFace with m = 0.5, and FAR = 1e− 3 and

FAR = 1e− 2 are lost with this configuration.

Fine-tuning the last 2 layers

To finalize, we conducted additional tests by training only the last two layers (one con-

volutional and linear). This allows us to investigate in which direction the model evolves in

terms of results when even less stages are trained.
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Table 17: MobileFaceNet accuracy scores before and after fine-tuning the network, with all the layers frozen

aside the last two, on QMUL-SurvFace with different ArcFace margins.

Benchmarks Original m = 0.5 m = 0.4 m = 0.3

Frontal
CFP-FF 0.9884 0.8751 (↓) 0.8821 (↓) 0.8786 (↓)

LFW 0.9912 0.8751 (↓) 0.8821 (↓) 0.8785 (↓)

Age
AgeDB30 0.9308 0.7097 (↓) 0.7220 (↓) 0.7080 (↓)

CALFW 0.9362 0.7762 (↓) 0.7833 (↓) 0.7752 (↓)

Pose
CFP-FP 0.8957 0.6729 (↓) 0.6714 (↓) 0.6719 (↓)

CPLFW 0.8642 0.6585 (↓) 0.6635 (↓) 0.6635 (↓)

Hard
VGGFace2 0.9050 0.6992 (↓) 0.7014 (↓) 0.7006 (↓)

XQLFW 0.5063 0.4975 (↓) 0.4993 (↓) 0.5010 (↓)

Stopping Epoch 6 3 6

Table 18: MobileFaceNet accuracy scores before and after fine-tuning the network, with all the layers frozen

aside the last two, on DigiFace-1M with different ArcFace margins.

Benchmarks Original m = 0.5 m = 0.4 m = 0.3

Frontal
CFP-FF 0.9884 0.9568 (↓) 0.9630 (↓) 0.9574 (↓)

LFW 0.9912 0.9569 (↓) 0.9629 (↓) 0.9574 (↓)

Age
AgeDB30 0.9308 0.8420 (↓) 0.8533 (↓) 0.8403 (↓)

CALFW 0.9362 0.8672 (↓) 0.8795 (↓) 0.8643 (↓)

Pose
CFP-FP 0.8957 0.8133 (↓) 0.8199 (↓) 0.8171 (↓)

CPLFW 0.8642 0.7650 (↓) 0.7830 (↓) 0.7697 (↓)

Hard
VGGFace2 0.9050 0.8158 (↓) 0.8290 (↓) 0.8134 (↓)

XQLFW 0.5063 0.4923 (↓) 0.4995 (↓) 0.4993 (↓)

Stopping Epoch 5 3 4

Table 17 and Table 18 follows the pattern seen in the previous experiment. On one

hand, training less layers produces results closer to the pre-trained model, on the other, the

network does not improve in any meaningful way.
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Table 19: TAR@FAR after fine-tuning the model, with all the layers frozen except the last two, on QMUL-

SurvFace.

m=0.5 m=0.4 m=0.3

Benchmarks 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2

Frontal
CFP-FF 0.038 (↓) 0.0394 (↓) 0.6503 (↓) 0.0280 (↓) 0.0369 (↓) 0.6237 (↓) 0.0306 (↓) 0.0411 (↓) 0.6483 (↓)

LFW 0.1793 (↓) 0.5243 (↓) 0.7050 (↓) 0.1727 (↓) 0.5347 (↓) 0.6920 (↓) 0.1863 (↓) 0.5210 (↓) 0.6910 (↓)

Age
AgeDB30 0.0210 (↓) 0.0283 (↓) 0.1320 (↓) 0.0373 (↓) 0.0390 (↓) 0.1457 (↓) 0.0213 (↓) 0.0327 (↓) 0.1243 (↓)

CALFW 0.0477 (↓) 0.0977 (↓) 0.3130 (↓) 0.0653 (↓) 0.1137 (↓) 0.3323 (↓) 0.0500 (↓) 0.1073 (↓) 0.3047 (↓)

Pose
CFP-FP 0.0020 (↓) 0.0034 (↓) 0.1323 (↓) 0.0020 (↓) 0.0043 (↓) 0.1346 (↓) 0.0017 (↓) 0.0031 (↓) 0.1146 (↓)

CPLFW 0.0170 (↓) 0.0453 (↓) 0.1567 (↓) 0.0207 (↓) 0.0503 (↓) 0.1607 (↓) 0.0213 (↓) 0.0457 (↓) 0.1683 (↓)

Hard
VGGFace2 0.0040 (↓) 0.0508 (↓) 0.2036 (↓) 0.0052 (↓) 0.0544 (↓) 0.2160 (↓) 0.0044 (↓) 0.0488 (↓) 0.1996 (↓)

XQLFW 0.0003 (↑) 0.0003 (↓) 0.0080 (↓) 0.0003 (↓) 0.0007 (↓) 0.0110 (↑) 0.0003 (↓) 0.0013 (↑) 0.0123 (↑)

Table 20: TAR@FAR after fine-tuning the model, with all the layers frozen except the last two, on DigiFace-

1M.

m=0.5 m=0.4 m=0.3

Benchmarks 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2 1e-4 1e-3 1e-2

Frontal
CFP-FF 0.0734 (↓) 0.0794 (↓) 0.8874 (↓) 0.0743 (↓) 0.0817 (↓) 0.9245 (↓) 0.0734 (↓) 0.0794 (↓) 0.9009 (↓)

LFW 0.8316 (↓) 0.8880 (↓) 0.9516 (↓) 0.8516 (↓) 0.8923 (↓) 0.9503 (↓) 0.8417 (↓) 0.8840 (↓) 0.9517 (↓)

Age
AgeDB30 0.1307 (↓) 0.1707 (↓) 0.4283 (↓) 0.2260 (↓) 0.2390 (↓) 0.4747 (↓) 0.1303 (↓) 0.1893 (↓) 0.4237 (↓)

CALFW 0.3793 (↓) 0.4287 (↓) 0.6457 (↓) 0.4913 (↓) 0.5370 (↓) 0.6933 (↓) 0.4120 (↓) 0.4683 (↓) 0.6550 (↓)

Pose
CFP-FP 0.0137 (↓) 0.0300 (↓) 0.4074 (↓) 0.0194 (↓) 0.0251 (↓) 0.4469 (↓) 0.0120 (↓) 0.0217 (↓) 0.4206 (↓)

CPLFW 0.1050 (↑) 0.2400 (↑) 0.3673 (↓) 0.0830 (↑) 0.2007 (↑) 0.3977 (↓) 0.0713 (↑) 0.1890 (↑) 0.3780 (↓)

Hard
VGGFace2 0.0192 (↓) 0.2220 (↓) 0.4572 (↓) 0.0192 (↓) 0.2620 (↓) 0.5116 (↓) 0.0152 (↓) 0.2328 (↓) 0.4632 (↓)

XQLFW 0.0000 (↓) 0.0000 (↓) 0.0047 (↑) 0.0000 (↓) 0.0000 (↓) 0.0057 (↑) 0.0000 (↓) 0.0000 (↓) 0.0040 (↓)

To conclude, the TAR values continue to be lower than the original model, for both

QMUL-SurvFace (Table 19) and DigiFace-1M (Table 20), with the usual outliers values that

are slightly higher but do not highlight any pattern of improvement.

4.5.1 Discussion

Taking into consideration the previous experiments, it can be inferred that the most

adequate solution is the pre-trained model. Further training on any of the selected datasets

does not improve the overall performance. Although, fine-tuning the whole network with

QMUL-SurvFace leads to higher accuracy on the XQLFW benchmark, the scores for the

other tests are lower. Moreover, when m = 0.5 the model is more discriminative for FAR =

1e−3 and 1e−2 on the pose group and XQLFW, but once again, on the other benchmarks the

model becomes less discriminative. Since the intended application is to monitor students, it

is highly required for the model to adapt to any quality and pose, that is, profile and frontal.
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Therefore, improvement on one benchmark at a cost of having negative impact on the others

is less than idealized. The initial pre-trained model outperforms TrustID’s method, with

low computational cost and respectable scores on all the tests and benchmarks. Despite the

fact that it did not respond well to the fine-tuning on the selected datasets, it still is the

most competent approach to the student monitoring problem as it performs appropriately

considering the possible challenges of pose, illumination, expressions, etc. while maintaining

a light resource utilization2.

2 A video demonstration of the chosen method on a real-time webcam feed is available in the following

repository:https://github.com/davidmcarreira/dfrosi-demo
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Chapter 5

Conclusion

5.1 Main Outcomes

This work studies different neural networks models in order to propose an improved

approach to TrustID’s facial verification module. The main objective is to find an appropri-

ate trade-off between accurate performance and computational cost, without compromising

safety, that substitutes TrustID’s FR module. To that extent, based on the state of the art

presented, four different models were suggested: MobileFaceNet, FaceNet, iResnet-18 and

iResnet-SE-50. Firstly, they were implemented and compared in terms of their specifica-

tions: number of trainable parameters, mult-adds, number of trainable layers, embedding

size, inference time, loss function and training dataset. Since the system is to be applied on

an image-based student monitoring scenario, the capturing device induces high data varia-

tions, hence the model must be invariant to poses, illumination, quality, etc. With that in

mind, appropriate benchmarks were designed to test the methods in a wide range of possible

scenarios.

With initial tests, we evaluated some pre-trained models in order to select one to then

verify if it could be further refined. Analyzing the accuracies on all benchmarks, the ROC

curves, TAR at different FAR values, DET curves and EER points, clearly showcased the

best three models that could replace TrustID’s solution: iResnet-SE-50, iResnet-18 and Mo-

bileFaceNet. iResnet-SE-50 and iResnet-18 are two contenders that performed similarly and

MobileFaceNet consistently scored third, but at a close distance. Balancing MobileFaceNet’s

performance with its inherent lightweight characteristics, it was selected for fine-tuning, since

it has much less trainable parameters, number of mult-adds operations, inference time and

NPUA for a minimal performance trade-off.
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Two datasets were chosen for fine-tuning, each one with an objective in mind. QMUL-

SurvFace was proposed as a way of improving the performance on the very challenging

XQLFW benchmark. Then DigiFace-1M was utilized to test how the model would react

to fully synthetic ethically sourced data, and if it would improve the performance on pose

related benchmarks. First, all the layers of the network, aside from the batch norm ones,

were trained for three different ArcFace margins (0.5, 0.4 and 0.3). This approach revealed

to be successful in increasing the XQLFW accuracy performance and discriminative power at

lower FAR (1e−3 and 1e−2 for m = 0.5) for the pose group and XQLFW when trained with

QMUL-SurvFace. However, that came along with inferior results on the other benchmarks.

In the same experiment, DigiFace-1M did not improve any accuracy results.

With the performance degradation verified on the benchmarks for both datasets, two

new training approaches that involved freezing layers were employed. We concluded that, as

would be theoretically expected, the lesser layers were trained, the closer the results are to

the pre-trained model, but the XQLFW performance did not improve, and again DigiFace-

1M did not show any enhancement whatsoever. This behavior also leads us to believe that,

since the model trained with less layers still shows performs degradation while not improving

in the same domains where the model trained through all the layers does, that can indicate

that the model needs to be more complex in order to be able to adapt to the dataset’s

intricacies without tuning it over all the layers.

Moreover, even though it was not the primary focus of this work, with the customization

and application of RetinaFace, execution of the face recognition methods and merging them

with ArcFace for training, the goal of implementing the essential stages of a face recognition

pipeline is achieved. All in all, and most importantly, the main objective is successfully

accomplished, MobileFaceNet is an adequate trade-off between computational overhead and

accurate results that performs better than TrustID, as proven by the benchmarks and further

supported by the NPUA scores.

5.2 Future work

To further improve the current work, there are some open issues that are worth inves-

tigating. Following the ethically sourced data philosophy, it is important to train, from

scratch, using only DigiFace-1M or an ensemble of datasets of synthetic data and consen-

sual images, in order to compare how the model would perform on the same benchmarks

geared toward student monitoring scenarios. For that, MobileFaceNet [17] is a mandatory
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option, but other lightweight networks, specially recent ones like ConvFaceNext [39] or Mix-

FaceNet [10], must also be considered. Additionally, different training strategies need to be

investigated, for example, freezing all the layers and gradually unfreezing them while train-

ing, finding the optimal learning rate and scheduler per layer or employing different loss

functions, such as QMagFace [106]. Furthermore, leveraging the real world webcam data

collected during TrustID’s proof of concepts, a private face verification dataset and protocol

is to be designed to further aid the system’s development. Finally, implementing an addi-

tional measure against fraud, in particular, liveness detection would also highly benefit the

system’s robustness.
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Appendix A

Face Detection Classes

→ Multi-stage methods [25] include all the coarse-to-fine facial detectors that work in

similar manner to the following two phases. First, bounding box proposals are generated

by sliding a window through the input. Then, over one or several subsequent stages, false

positives are rejected and the approved bounding boxes are refined. To complement, one

widely applied object detection protocol that inspired face detection methods and perfectly

describes the steps mentioned above is Faster R-CNN [87]. However, these methods can be

slower and have a more complex way of training [125].

→ Single-stage approaches [25] are the ones that perform classification and bounding box

regression without the necessity of a proposal stage, producing highly dense face locations

and scales. This structure takes inspiration, once again, from general object detectors, for

example, the Single Shot MultiBox detector, commonly referred to as SSD [66]. Finally, the

methods included in this class are more efficient, but can incur in compromised accuracy,

when compared to multi-stage.

→ Anchor-based techniques [68, 25, 133] detect faces by predefining anchors with different

settings (scales, strides, number, etc.) on the feature maps, then performing classification

and bounding box regression on them until an acceptable output is found. As proven by

Liu and Tang et al. [68], the choice of anchors highly influences the results of prediction.

Hence, it is necessary to fine-tune them on a situation-by-situation basis, otherwise, there is

a limitation in generalization. Furthermore, higher densities of anchors directly generate an

increase in computational overhead.

→ Anchor-free procedures, obviously, do not need predefined anchors in order to find
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faces. Alternatively, these methods address the face detection by using different techniques.

For example, DenseBox [43] which attempts to predict faces by processing each pixel as

a bounding box, or CenterFace [125] that treats face detection as a key-point estimation

problem by predicting the center of the face and bounding boxes. Even so, relating to the

accuracy of anchor-free approaches, there is still room for improvement for false positives

and stability in the training stage [26].

→ Multi-task learning are all the methodologies that conjointly performs other tasks,

namely facial landmark1 localization, during face classification and bounding box regres-

sion [26]. CenterFace [125] is one example, and so it is the widely implemented MTCNN [135],

which correlated bounding boxes and face landmarks. RetinaFace [25] is another state-of-

the-art approach, it mutually detects faces, respective landmarks and performs dense 3D

face regression.

→ CPU real-time methods, as the name suggests, include the detectors that can run

on a single CPU core, in real-time, for VGA-resolution input images. A face detector can

achieve great results in terms of accuracy, but for real world applications, its use can be too

computational heavy, therefore, can’t be deployed in real time (specially in devices that do

not have a GPU) [26]. MTCNN [135], Faceboxes [137], CenterFace [125] or RetinaFace [25]

are examples of this category.

→ Problem-oriented is a category that includes the detectors that are projected to resolve

a wide range of specific problems, for example, faces that are tiny, partially occluded, blurred

or scale-invariant face detection [26]. PyramidBox [105] is an example that solves the partial

occluded and blurry faces, and HR [41] tackles the tiny faces challenge.

1 A facial landmark is a key-point in a face that contributes with important geometric information,

namely the eyes, nose, mouth, etc. [31]
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Appendix B

Face Alignment Classes

→ Landmark-based alignment is a category of methods that exploits the facial landmarks

with the aim of, through spatial transformations, calibrating the face to an established lay-

out [26]. This can be accomplished through: coordinate regression, heatmap regression or

3D Model Fitting. Coordinate regression-based methodologies [31, 65, 135] consider the

landmark localization as a numerical objective, i.e. a regression, thus an image is fed to a

DCNN and it will output a vector of landmark coordinates. Heatmap Regression [24,

123, 16] is different from coordinate regression because, although it is a numerical objective

task, the output is not a coordinate vector, but a map of likelihood of landmarks’ locations.

Finally, 3D Model Fitting [9, 15, 124] is the category that integrates methods that con-

sider the relation between 2D facial landmarks and the 3D shape of a generic face. The

particularity of them is the reconstruction of the 3D face from a 2D face image that is then

projected over a plane in order to obtain the landmarks.

→ Landmark-free alignment, on the other hand, integrates the approaches that do not

rely on landmarks as a reference to align the face, in contrast, these type of methods incor-

porate the alignment into a DCNN that gives, as a result, an aligned face [26]. An example

of an end-to-end method that does not depend on facial landmarks is RDCFace [140], and

it rectifies distortions, applies alignment transformations and executes face representation.

Hayat et al. [36] proposes a method that deals with extreme head poses. The process to

register faces in an image with high pose variance can be quite challenging and often de-

mands complex pre-processing, namely landmark localization, therefore, to address that, a

DCNN is employed that does not rely on landmark localization and concomitantly register

and represent faces.
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Appendix C

Training Data

→ CASIA-WebFace [128], composed of 494,414 face images and 10,575 identities, was

proposed as a novel dataset to overcome the problem of data dependence in face recognition

and improve comparability across different methods.

→ VGGFace [82] was published alongside a homonymous face recognition method and,

once again, with the objective of combating the lack of available large scale public datasets.

It contains 2,6 million images and 2,622 different identities and a curated version, where

incorrect image labels were hand-removed by humans, has 800,000 images for the same

amount of identities.

→ MS-Celeb-1M’s [35] first intention was to provide a novel benchmark to identify celebri-

ties that solves name ambiguities by linking a face with an entity key in a knowledge base.

Second, it aimed at solving the gap in available large-scale datasets by providing a training

set with, approximately, 10 million images and 100 thousand identities. Unfortunately, it is

a dataset known for the presence of noisy labels.

→ MegaFace [78] introduced a benchmark for million-scale face recognition and provided

a public large-scale training dataset that integrated 4,753,320 faces over 672,057 identities.

The main difference compared to the previously mentioned datasets is that MegaFace does

not use celebrities as subjects, in contrast it leverages the photographs released by Flickr

under the Creative Commons license.

→ VGGFace2 [13] is another large-scale dataset, and its main goals are: 1) covering

numerous identities, 2) reduce labeling noise through automatic and manual filtering and,

finally, 3) represent more realistic unconstrained scenarios due to a novel dataset generation
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pipeline that gathers images with a broad range of poses, age, illumination and ethnicity.

All in all, this resulted in a dataset comprised of 3,31 million faces of 9131 subjects.

→ UMDFaces-Videos [7] is a video-based dataset composed of 22,075 videos of 3,107

subjects with 3,735,476 human annotated frames with great variation in image quality, pose,

expressions and lightning. It was proposed during a study how the performance of a face

verification models is impacted by the effects of: 1) the type of media used for training (only

videos or still images vs a mixture of both), 2) the width and depth of a dataset, 3) the

label’s noise and 4) the alignment of the faces.

→ Celeb-500k [12] is another large-scale proposed with two issues in mind: the disparity in

the scale of public datasets when compared with private ones, and determining the impact

in performance from intra- and inter-class variations. That being so, Celeb-500k, consisting

of 50 million images from 500 thousand persons, and Celeb-500k-2R, a cleaned version of

the previous, comprised of 25 million aligned faces of 245 thousand identities, are released.

→ IMDb-Face [111] proposes a new dataset with based on a manually cleaned revision

of MS-Celeb-1M and MegaFace. The growing demand for large-scale datasets introduced a

new variable to take into consideration: the time available to annotate the data. Datasets

that are well-annotated and have an enormous amount of data are notably expensive and

time-consuming to develop. Therefore, automatic measures to clean the data were used, so

it is expected for a certain degree of noise to be introduced in a dataset. After selecting a

subset from both the originals datasets, 2 million images were manually cleaned and resulted

in 1,7 million images of 59 thousand celebrities.

→ MS1MV2 [23] is another well know dataset. It was proposed in the ArcFace face recog-

nition method’s revision paper and consists of a semi-automatic refinement of the previously

mentioned MS-Celeb-1M, resulting in 5,8 million images of 85 thousand identities.

→ RMFRD [118] is presented in the context of the need of using a mask, mandated by

the COVID-19 pandemic, and that greatly reduces the effectiveness of conventional face

recognition methods. Therefore, there was a need to improve their performance and for that

a dataset that provides masked faces is needed. RMFRD pioneered this need by publish-

ing a dataset consisting of 5 thousand masked and 90 thousand unmasked faces from 525

celebrities.
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→ Glint360K [4] is a training set presented in the Partial FC method paper. It was

generated by merging and cleaning the aforementioned Celeb-500K and MS1MV2 datasets,

which resulted in 17 million images of 360 thousand individuals.

→ WebFace260M [145] takes a giant leap in closing the gap between public available

datasets and private ones. Partnered with a time-constrained face recognition protocol, the

original paper presented an enormous 260 million faces and 4 million identities noisy dataset,

an automatically cleaned, high quality training set with 42 million faces over 2 million

identities (WebFace42M), and a smaller scale training dataset derived from the WebFace42M

that has 10% of its data (WebFace4M).

→ DigiFace-1M [6] is a novel approach that revolutionizes the way of training face recog-

nition models. It is a fully synthetic dataset that proposes mitigating three very relevant

problems present in the majority of the conventional datasets: 1) ethical issues, 2) label

noise and 3) data bias. The dataset is divided in two parts: part one contains 720 thousand

images from 10 thousand identities and part two has 500 thousand images with 100 thousand

identities, for a total of 1,22 million images and 110 thousand unique identities.
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Appendix D

Test Data

→ LFW [42] is the most well-known face verification dataset. It was first released in 2007

as a way of evaluating the performance of face recognition methods, in a verification or pair

matching manner, under unconstrained scenarios. LFW divides the dataset in 2 views. View

1 is designed for development, and in the training set contains 1100 pairs of mismatched

images and 1100 pairs of matched ones, while the test set has 500 pairs of matched and

500 pairs of unmatched faces. View 2 is intended for performance reporting and splits the

data over 10 separate sets, to facilitate 10-fold cross validation, where each one has 300

positive pairs (same identity) and 300 negative pairs (different person), resulting in 6000

pairs. Overall, the dataset has 13,233 face images and 5749 identities (only 1680 persons

have two or more images).

→ YTF [122] is a video-based benchmark that leverages the greater amount of information

provided by a video in comparison to still images. By collecting videos from Youtube there

is not an opportunity to control the conditions, hence the footage will support a wider

range of characteristic’s variation, namely lighting conditions, difficult poses, motion blur,

compression artifacts, etc. This resulted in 3425 videos from 1595 identities and a benchmark

protocol inspired in the LFW. To evaluate performance, a pair-matching test is designed.

From the database, 5000 video pairs are collected, where half are matches and the other half

are not, to be divided to allow 10-fold cross validation.

→ IJB-A [53] aims at straying further from the saturation in recognition benchmarks by

proposing more challenging benchmarks (specifically by including wider geographic distri-

bution and full pose variation) for both verification and identification. It consists of a mix

of 5712 images and 2085 videos from 500 individuals, with manual bounding boxes, facial
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landmarks and, most importantly, labels. IJB-A supports two protocols: search (face iden-

tification) and compare (face verification). For both the protocols, the specifications are the

same, i.e., ten random training and testing splits are generated using all 500 identities then

used to perform sample bootstrapping (instead of cross validation) in order to enhance the

number of testing subjects. For each split, 333 subjects are randomly distributed in the

training set and the remainder 167 are placed in the testing set.

→ CFP [95] studies the effect of extreme pose variations, such as a profile view of a face, in

face verification. During collection gender and profession balance, as well as racial diversity,

were considered. A number of frontal and profile view images was also set as 10 and 4,

respectively. Therefore, after cleaning the initial data, it resulted in 7000 images from 500

subjects. The experimental protocol divided the 500 identities over 10 splits (facilitating

10-fold cross validation) and randomly generated 7 matched pairs and 7 unmatched pairs

per identity, resulting in a total of 7000 pairs of faces.

→ CPLFW [142] is another dataset that tackles the overly optimistic accuracy saturation

in classic benchmarks, such as the previously mentioned LFW. To this end, evaluating

performance for cross-pose faces of LFW subjects is the matter of study. It contains the

same number of 13,233 images of 5749 identities like LFW and the benchmark protocol

performance is the LFW View 2 with some differences: 1) negative pairs are from people of

the same race and gender, 2) class imbalance and limited positive pair’s diversity is resolved

by assuring that each identity has at least 2 images.

→ CALFW [143] has the same principles as CPLFW but applied to the age of the subjects

(including the negative pairs selection and the class imbalance problem).

→ AgeDB30 [77], similarly to CALFW, is a dataset that considers the subject’s age. It

distances itself from other databases by solving the noisy labelling, induced by automatic or

semi-automatic methods, by doing so manually. Age-DB has 16,488 images and 568 subjects

used in 4 evaluation protocols, similar to LFW’s View 2, where the main difference between

them is the age difference between pairs (5, 10, 20 and 30 years).

→ IJB-B [120] builds upon IJB-A and proposes solving flaws that were verified in the

previous dataset. First, the improved IJB-B dataset is larger, consisting of 21,798 images

and 7,011 videos from 1,845 subjects, with a more uniform racial distribution. Second, the
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protocols are upgraded due to a greater number of possible comparisons between images and

possible identities.

→ TinyFace [18] was presented to fill in the gap of low-resolution face recognition bench-

marks with genuine images and not downsampled ones. It is designed for face identification,

and is composed of 15,975 labelled images and 153,428 distractors, totalling 169,403 low

resolution images, from 5,139 identities. The evaluation protocol is similar to the one used

by MegaFace: 1) half of the identities are randomly sampled by the probe set and the other

half by the gallery set, and 2) the distractor images are added to the gallery incorporating

further complexity to the identification process.

→ IJB-C [71] adds 1661 new identities to IJB-B and new end-to-end protocols (to evaluate

face detection, identification, verification, clustering) in order to better mimic real-world

unconstrained recognition. They have increased diversity, both in geographic location and

profession, and occlusion scenarios. IJB-C has 31,334 images and 11,779 videos from 3531

subjects.

→ IJB-S [48] is a manually annotated benchmark constructed by collecting images and

surveillance videos that presents a challenging face recognition problem. It is a dataset with

several challenging variations, namely, full pose, resolution, presence of motion blur and

visual artifacts. The aforesaid are tested during 6 different face detection and identification

protocols. IJB-S consists of 350 surveillance videos, 202 enrollment videos and 5656 images.

→ RFW [116] is a proposed benchmark dataset to evaluate the racial bias of face verification

solutions. It is divided in 4 subsets regarding the race of the subjects, where each contains,

approximately, 10 thousand images and 3 thousand identities, totaling 40,607 images from

11,429 subjects. The evaluation protocol is the same as the LFW one, but the negative pairs

were mined to be difficult and avoid easily saturated performance.

→ QMUL-SurvFace [19] is a dataset introduced as a benchmark in the Surveillance Face

recognition Challenge for face recognition in a surveillance context, and it contains both face

verification and identification protocols. By data-mining 17 public person re-identification

datasets, it achieves 463,507 facial images of 15,573 identities collected in uncooperative

surveillance scenarios. Consequently, it presents a high variance in resolution, motion blur,

pose, occlusion, illumination and background clutter.
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→ MDMFR [109] is brought about in light of the COVID-19 impact, where wearing a

mask became mandatory and rendered unusable the traditional face recognition methods.

Therefore, in conjunction with DeepMaskNet, MDMFR was released. It is a large-scale

benchmark dataset designed to evaluate the performance of both masked face recognition

and masked face detection algorithms. The recognition protocol contains 2896 images from

226 identities, intended to benchmark masked face recognition models.

→ XQLFW [54] revisits the LFW and modifies it to better evaluate cross-resolution face

recognition problems. The evaluation protocol, number of images and identities remains the

same (13,233 and 5749, respectively), but the negative pairs are sampled in the same manner

as CPLFW [142] and CALFW [143].

→ CAFR [141] was introduced in 2022, in the revised paper of the AIM (Age-Invariant

Model) as a large-scale benchmark dataset to advance the development of face recognition

models invariant to age. It consists of 1,446,500 images from 25,000 subjects and spans a

range of ages from 1 to 99 years old. The evaluation protocol divides the data in 10 splits

of 2500 pair-wise disjoint subjects, where each one has associated to it 5 matched pairs and

5 unmatched, resulting in a total of 25,000 pairs per split.

→ FaVCI2D [83] is face verification benchmark dataset that proposes to address three

relevant flaws : 1) the pairs selected are not challenging enough, 2) the demographics of other

datasets are not representative enough of the real world diversity and 3) legal and ethical

questions concerning the data used. It is composed of 64,879 images and 52,411 unique

identities, where 12,468 are used to create genuine matched identity pairs with balanced

gender and geographic distribution.
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Appendix E

ROC Curves
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Figure 35: ROC Curves for the CFP-FF benchmark from

the Frontal group.
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Figure 36: ROC Curves for the AgeDB30 benchmark from

the Age group.
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Figure 37: ROC Curves for the CFP-FP benchmark from

the Pose group.
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Figure 38: ROC Curves for the VGGFace2 benchmark

from the Hard group.
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Appendix F

DET Curves
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Figure 39: DET Curves for the CFP-FF benchmark from

the Frontal group.
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Figure 40: DET Curves for the AgeDB30 benchmark from

the Age group.
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Figure 41: DET Curves for the CFP-FP benchmark from

the Pose group.
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Figure 42: DET Curves for the VGGFace2 benchmark

from the Hard group.
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