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Resumo

Os ambientes costeiros são essenciais para muitas espécies, incluindo as gaivotas
das espécies Larus michahellis e Ichthyaetus audouinii, que podem ser afetadas pela
atividade humana. Para melhor compreender os efeitos da atividade humana nas
gaivotas, os seus ńıveis de stress foram medidos através da análise do seu ritmo
card́ıaco. Para atingir este objetivo, foram constrúıdos ovos falsos com microfones
para registar o ritmo card́ıaco das gaivotas.

Neste trabalho, foi desenvolvida uma abordagem de aprendizagem de máquina
que combinou caracteŕısticas extráıdas dos Coeficientes Cepstrais de Frequência de
Mel (CCFM) e Redes Neuronais Artificiais (RNA) para analisar o áudio e identificar
os segmentos que tinham batimentos card́ıacos. A combinação que apresentou
os melhores resultados extraiu 15 médias e 15 desvios-padrão dos Coeficientes
Cepstrais de Frequência de Mel extráıdos de uma janela de áudio de 5 segundos
e, em seguida, analisou-os com uma Rede Neuronal Artificial de seis camadas, em
forma de losango. Identificou com êxito o batimento card́ıaco no áudio. Após a
identificação, esses segmentos foram analisados por uma combinação de Rede Neural
Convolucional (RNC) com Rede Neural Recorrente (RNR) usando células de Memória
de Curto Longo Prazo (MCLP) para localizar os batimentos card́ıacos individuais. A
combinação que obteve os melhores resultados utilizou duas camadas convolucionais
de uma dimensão, uma camada de agrupamento máximo, três camadas de células de
Memória de Curto Longo Prazo e uma camada densa. A identificação de batimentos
card́ıacos nas amostras mostrou resultados promissores, com as flutuações da sáıda
da RNA a corresponderem à localização dos batimentos card́ıacos.
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Abstract

Coastal environments are essential for many species, including seagulls of the Larus
michahellis and Ichthyaetus audouinii species, which can be impacted by human
activity. To better understand the effects of human activity on seagulls, their stress
levels were measured by analyzing their heart rate. To achieve this goal, dummy
eggs with microphones were built to record the seagull heart beat.

In this work, a machine learning approach that combined features extracted from
Mel-frequency Cepstral Coefficients (MFCC) and Artificial Neural Networks (ANN)
was developed to analyze the audio and identify the segments that had heartbeats.
The combination that showed the best results extracted 15 averages and 15 standard
deviations from the Mel-frequency Cepstral Coefficients extracted from a 5-second
audio window, then analyzed them with a six layer, diamond shape, feedforward
Artificial Neural Network. It successfully identified the heart beat in the audio.
After identification, these segments were analyzed by a combination of Convolutional
Neural Network (CNN) with Recurrent Neural Network (RNN) using Long Short-
Term Memory (LSTM) cells to locate the individual heartbeats. The combination
that got the best results used two one dimension convolutional layers, a max pooling
layer, three layers with Long Short-Term Memory cells and one dense layer. The
identification of heartbeats within the samples showed promising results, with the
fluctuations in the ANN output corresponding to the location of the heartbeats.
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Chapter 1

Introduction

This work aims at finding solutions to some problems found by the Centro de
Ciências do Mar e do Ambiente (MARE) [1] research group, in the Ecology and
Conservation of Top Predators (ECOTOP) [2] project, in particular, the measurement
of the birds’ heart rate.

The MARE research group is a Portuguese marine sciences’ investigation center
dedicated to the study of marine environments and to develop ways to promote
sustainable growth. The ECOTOP project, aims at quantifying the human impact
on the coastal populations of seagulls of the genus Larus.

Within this project two features were used to determine the seagulls’ health:
the heart rate, that was measured in Beats Per Minute (BPM) and incubation
temperature, that was measured in degrees Celsius.

To determine the heart rate, the MARE researchers were identifying each heartbeat
manually and from them determining the heart rate. From the heart rate, the health
of the bird can be inferred [3].

This method, although effective, was limited by the amount of data a researcher
could listen at a given time and moved the focus of the researcher away from data
analysis and in to data processing.

This work focuses on developing an automated method for heart beat analysis.
It was developed at the Laboratory of Instrumentation and Experimental Particle
Physics (LIP) [4] that, as the main institution for experimental particle physics in
Portugal, shared its knowledge in sensors, electronics and software with the ECOTOP
project through the Competence Center in Monitoring and Control (CCMC).

1.1 State of the art

For the development of this type of work, several techniques can be used. The
work is usually divided in data extraction and data analysis.
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1.1.1 Data extraction

For the extraction of behavioral characteristics of a bird several techniques can be
used such as:

• Observation

• ECG implant

• Dummy egg with a sensor

In observation, the bird behavioral characteristics of the bird are inferred by
direct observation. However, this method is more prone to errors [5] than the other
two, where behavioral parameters are inferred from the extraction of physiological
parameters.

ECG implants inside the bird’s body allow to measure the heart rate more accurately
than all other methods [6] and from it, factors such as stress and energy consumption
can be deduced [5]. This method has the ethical problem of implanting a sensor
inside an animal’s body. This action can also invalidate the data because then human
interaction and consequent stress can be associated with the act of implanting this
device.

The use of a dummy egg with a sensor inside is a non-invasive method of extracting
the bird heart beat. It only takes a few minutes to place in the nest [7] making it
the method of choice for analyzing human influence on birds [8].

There are several sensors that can be used inside the dummy egg to obtain the
bird’s heart beat, such as infrared [8, 6] or dedicated microphones [7].

Infrared sensors were used in the beginning of this branch of research because
of the limitations of the available microphones by that time. Some limitations of
infrared sensors include the necessity of being in direct contact with the bird’s body,
which demands the absence of feathers between the sensor and the skin. Additionally,
a transparent window in the egg is needed to be able to emit and receive the infrared
light. Furthermore, the sensor can only record a signal when it is in contact with the
body. [6]

Because of this, this technology only worked on certain species of penguins.

With the developments in the sound capturing technology, it became more feasible
to place high sensitivity microphones in small dummy eggs [7]. Using this type of
sensor simplifies data analysis, but has the disadvantage of being prone to noise.
Despite this, it has become a popular way of extracting data, thanks to its low
interference in the birds’ habits.

The study developed by LIP and MARE used a dummy egg to record the sounds
emitted by the birds. This dummy egg had a microphone, thermometer, data
acquisition system, internal memory, and batteries as can be seen in Figure 1.1.

2



1.1.2 Data analysis

The main goal of the data analysis is to calculate the heart rate, from which other
parameters can be inferred, (e.g. the energy consumption or stress levels). [3, 8].

If the data is detailed enough, each heartbeat can be divided in two peaks corre-
sponding to S1 and S2 1 from which it is possible to make more detailed analyses
and detect cardiac anomalies.

There are several ways to analyze the dummy egg data. A possible way is direct
analysis, which consists of listening to the sound file and/or viewing the correspondent
wave forms and manually count heartbeats as a function of time. This way is time-
consuming and expensive, especially when there are several hundred hours of audio
to analyze. Because of these factors, there is an increasing need to automate this
process.

The automation process can be divided into two phases, feature extraction and
information extraction.

For the automation of this process, the software of choice tends to be Matlab
[7, 3, 5]. A common process in automated approaches is a band pass filter for lower
frequencies, which removes a part of the noise.

The approach developed by [3] involved passing the sound through a Fourier
transform, taking a twelve-second moving average and matching frequencies to
BPMs. After this, multiple statistical tests were done to verify the quality of the
deductions and sort into classes of data. These included tests such as: Circular-linear
correlations to analyze the periodicity of the signal, two tailed t-test to quantify the
difference between classes, Tukey-Kramer honestly significant difference to test how
reliable the data was among others.

In the work presented in [5] multiple methods were covered. All methods started
with a frequency filter and passing it through a Hilbert transform to obtain the
envelope of the sound wave. After this, the data was analyzed by four methods.

• Short time Fourier transform

• Sliding auto correlation

• Synchrosqueezed transform

• Peak detection of envelope signal

These systems have larger error margins than a manual analysis but allow processing
large amounts of data.

For the analysis of the data collected in this work, artificial neural networks were

1S1 is the first heart sound, it occurs when the atrioventricular valves close during the ventricular
systole phase. S2 in the second heart sound, it occurs when the aortic and pulmonic valves close
during the ventricular diastole phase. [9]

3



used. This technique was not covered in the specific articles on bird heart beat
analysis, however, it was already implemented in human heart beat analysis [10].
Due to their ability to adapt and learn, they have potential to analyze data more
accurately than classical methods. Furthermore, artificial neural networks such as
convolutional neural networks and recurrent neural networks have shown promising
results in the area of signal analysis and heartbeat distinction [10, 11].

1.2 Previous work developed at LIP

To measure the heart rate and temperature of the seagulls, dummy eggs that re-
semble the ones belonging to seagulls, were developed. These eggs have a microphone
to detect heart beat, and a thermometer to detect the incubating temperature of the
seagull.

The outer layer of the eggs is a plastic shell that is covered with a rubber membrane.
Inside they have a microphone, thermometer, microcontroller and batteries. The
data is stored in a microSD card. A 16Gb card can hold up to 1180 hours of data,
however the batteries need to be replaced after 36 hours of use. The configuration of
the dummy egg can be seen in Figure 1.1.

(a) Back view (b) Top view (c) Front view

Figure 1.1: Configuration of the dummy egg.

The heart beat was stored in the “Waveform Audio File Format” (WAV) audio
file. The sample rate was initially set at 44 100Hz but since the signal concentrates
at the lower frequencies (as can be seen in figure 1.2), it was progressively lowered
until it reached the value of 2 016Hz. With this sample frequency, the maximum
audio frequency the device could record is 1 008Hz, as given by the Nyquist sampling
theorem.

4



Figure 1.2: Heart beat spectrogram example.

When starting this work, two methods were already available to analyze the heart
beat stored in the audio files. They are described in subsection 1.2.1 Method one
and subsection 1.2.2 Method two.

1.2.1 Method one

This method identified peaks in the audio that corresponded to heartbeats and
from them calculated the heart rate. To achieve this, it followed these steps:

1. Window selection: A 15 s window is selected.

2. Sound amplification: The sound of a heart beat is faint, with a peak to peak
amplitude of approximately 0.05 in a scale from -1 to 1, so it was amplified
until it had an average amplitude of 0.5.

(a) Audio before amplification (b) Audio after amplification

Figure 1.3: Audio amplification.
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3. Low pass filter: Most of the energy is dissipated through low energy waves, as
can be seen in the Figure 1.2, as such all frequencies above 4 Hz were removed.

4. Minimum, maximum finder: The peaks of the audio in a 500 samples window
were found and corresponded to heartbeats.

5. Heart rate calculator: The mean value of the time differences between the
maximums is determined and from it the heart rate.

1.2.2 Method two

1. Window selection as in subsection 1.2.1 Method one.

2. Sound amplification as in subsection 1.2.1 Method one.

3. Smoothing and filtering: A Hann function [12] was applied to a 3000 sample
window to obtain the power/magnitude of the signal of interest.

4. Band pass: The resulting wave was passed through a band pass filter with a
range from 50HZ to, 5000Hz to remove noise.

5. Heartbeats finder: A Difference of Gaussians [13] filter is applied to the
smoothed audio. The minimum sigma of the Gaussians was 100 and the
maximum sigma was 500. All features extracted that have a response above
the threshold of 0.01 were considered a heartbeat.

Figure 1.4: Heart beats detected with method 2.

1.3 Alternative methods

These methods had several issues, as they produced inconsistent results depending
on the ambient noise and required manual parameter tuning for each individual
dataset, which limited fully automatic analysis. Consequently, alternative methods
were tested to address these issues.
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Artificial Neural Networks (ANN) showed great potential to solve this kind of
problem, given its ability to learn patterns that could not be detected by classical
algorithms and to generalize them.

1.3.1 Objectives

The main objective of this research is to detect individual heart beats with an
accuracy of 90%.

To reach this objective, the work passed through five stages:

1. Artificial signal generator.

2. Artificial noise generator.

3. ANN to distinguish signal (i.e., heart beat) from noise with an accuracy of at
least 90%.

4. Artificial signal generator with identified heartbeats.

5. ANN to identify individual heartbeats with an accuracy of at least 90%.

The ANN that distinguishes signal from noise was necessary to improve the
detection rates of the ANN responsible for identification of heartbeats.

7



8



Chapter 2

Background

The analysis of the audio files recorded using the dummy eggs was divided in two
parts; feature extraction, for which the main tool was the Mel-Frequency Cepstral
Coefficients (MFCC); and information extraction, which was done using Artificial
Neural Networks (ANN).

For the identification of the heart beat in the data, a feedforward ANN was used.
In this ANN, the inputs were features extracted from the MFCC.

For the identification of heartbeats in the audio signal, two types of ANNs, Convo-
lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) were used
together to extract this information directly from the raw data.

2.1 Mel-Frequency Cepstral Coefficients

The MFCC were chosen as the main way to extract information, as they were
already used in similar problems [11].

They are a non-linear representation of the power spectrum of a time series, that
when applied to a sound can better represent how a human would hear it [14].

They were extracted using the Librosa library [15] written in the Python program-
ming language [16].

Computing the MFCC of an audio signal is a five-step process: framing the signal,
windowing it, applying a Discrete Fourier Transform (DFT), applying a Mel filter
bank, and finally applying a Discrete Cosine Transform (DCT) [17, 14]. Each of
these steps is detailed below.

Framing the signal

The first step is to select a section of the audio, S(t), with a short enough time
span such as the spectral features of the sound can be considered stationary. This
helps to stabilize the acoustic characteristics of the sound [17]. In this work, this
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section of audio was called “MFCC window” and is referred by Sm(t) where m is
the index of the window and t the index of the audio sample in the window.

Windowing the signal

On each MFCC window, a Hann window filter is applied, this filter reduces the
signal amplitude towards the edge of the window which enhances harmonics, smooths
edges, and diminishes edge effects that occur when passing a sound to the frequency
spectrum [17, 18]. The Hann filter is defined by the equation 2.1 [18].

H(n) =
1

2
− 1

2
cos

(
2πn

N − 1

)
, 0 ≤ n ≤ N − 1, (2.1)

where n is the index of the sample of a time series and N is the total number of
samples in the time series. This creates a function with the shape showed on figure
2.1.

Figure 2.1: Hann window H(n) [19].

This filter was multiplied by the signal, as is described in equation 2.2 [18].

S ′
m(t) = H(t) · Sm(t). (2.2)

Discrete Fourier transform (DFT)

Next, the frequency spectrum of the sound is computed for each MFCC window.
This is done using the Discrete Fourier Transform (DFT) that is defined in equation
2.3 [14]:

Xm(k) =
T−1∑
t=0

S ′
m(t)e

− 2πitk
T , k = 1, 2, 3, · · · , T − 1, (2.3)
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where k is the index of the spectrum, T is the total number of samples in Sm(t),
Xm(k) represents the DFT of S ′

m(t) at frequency, f = k ·Fs/T [20]. Fs is the sample
rate of the audio.

Mel filter bank

The Mel filter is defined by expression 2.4 [21].

q = 2595 log

(
1 +

f

700

)
, (2.4)

where f corresponds to a frequency and q the frequency modulated to the Mel filter.
The inverse expression is shown in equation 2.5.

f(q) = 700(10
q

2595 − 1). (2.5)

These equations are necessary to build the Mel filter bank. This is a set of triangular
band-pass filters that act on the output of the DFT [14]. The transfer function of
the filter can be described by equation 2.6 [21]:

Vq(k) =



0 k < f(q − 1)
k−f(q−1)

f(q)−f(q−1)
f(q − 1) ≤ k < f(q)

1 k = f(q)
f(q+1)−k

f(q+1)−f(q)
f(q) < k ≤ f(q + 1)

0 k > f(q + 1)

. (2.6)

Besides this, a normalizing factor for each filter is also calculated using equation
2.7 [14].

A =
K∑
k=0

|Vq(k)|2, (2.7)

where K is the total number of indexes in the DCT.

After these equations are defined, the Mel filter bank is applied using equation 2.8
[14].

Bm(q) =
1

A

K∑
k=0

|Vq(k)Xm(k)|2 , q = 1, 2, 3, · · · , Q, (2.8)

where Q is the number of triangular filters that build the Mel spectrum.
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Discrete cosine transform (DCT)

For the final step in the calculation of the MFCC the logarithm of equation 2.8 is
passed through a DCT, as is described in equation 2.9.

MFCCm(p) =
1

Q

Q∑
q=1

log(Bm(q)) cos

(
πp(2q + 1)

Q

)
, p = 1, 2, 3, · · · , P, (2.9)

where p is the index of the MFCC and P is the number of MFCCs. P must always
be less than Q.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are designed to mimic the working process of
a brain by having nodes (artificial neurons) that can communicate with each other
using connections (artificial synapses), this makes ANNs a good solution to solve
nonlinear problems [22].

The nodes are grouped in layers. In a simple, feed-forward ANN, there are three
types of layers (see figure 2.2): the input layer, where the data is inserted; hidden
layers, that add complexity and flexibility to the model; and the output layer, that
shows the final result.

Figure 2.2: Architecture of a simple ANN [23].

Each node is defined by xl
g, where l represents the index of the layer and g the index

of the node 1. Each xl
g has a set of inputs xl−1

g , that are the outputs from the previous

layer nodes. Each node of the previous layer is multiplied by a weight wj,l
d,g, where j

represents the index of the previous layer and d the index of the corresponding node

1If g is not explicitly mentioned, it is referring to all nodes in that layer. If l is 1 then it is
referring to the input nodes.
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of the previous layer, 2 and summed together, as can be seen in equation 2.10. In
the case of the input layer, its inputs are the data.

I(xl
g) =

D∑
d=1

wj,l
d,g · x

j
d, (2.10)

where D is the number of neurons in the previous layer.

A bias blg is added, as can be seen in formula 2.11 to adjust the ANN for a possible
dataset offset.

z(xl
g) = I(xl

g) + blg. (2.11)

This is then modulated by an activation function U(z(xl
g))

3 [24]. These steps
generate the output of a single node.

This output is then transmitted to the nodes in the next layer by the connections
until it reaches the final layer.

In this work, the output layer will present the label using one-hot encoding [25], a
method in which the label is an array with the same size as the number of categories.
Each category has a corresponding index, so the array is all zeros except for the index
of the category it corresponds to, being one in this case. This reduces correlation
between categories when compared to other methods of presenting labels, such as
decimal encoding.

After an ANN is assembled, it is necessary to optimize its weights and biases, so
it can output the right information for each input [26]. This is done during the
learning phase. In this work the ANN learned by supervised learning, in this process,
an input is given to the ANN, from which an output is generated, this output is
then compared to the expected one and an error is calculated with an error function.
This error is backpropagated through the ANN (explained in subsection 2.2.3 ANN
optimization) changing the weights and biases of the nodes and connections with the
goal of minimizing the overall error.

To build and train the ANN, the Keras [27] library with the TensorFlow [28]
backend from the Python programming language [16] was used.

2.2.1 Activation functions

The activation functions modulates the output of each node, so the ANN can
learn non-linear relations between the input and the output [29]. Usually the same
activation function is applied to all nodes of a layer, and it can change from layer to
layer depending on the goals for each one.

2If g and/or d are not explicitly mentioned, it is referring to all weights in that layer.
3This will be explained in subsection 2.2.1 Activation functions
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In this work, the following activation functions were used:

Linear Activation Function

This activation function is defined in expression 2.12 and its graphical representation
is shown in Figure 2.3.

linear(z) = z. (2.12)

Figure 2.3: Linear activation and its gradient [29].

As it keeps the linearity of the ANN, it was used in the last layer of all tested
networks. In these layers, the goal was to transfer information, not to learn from it.

Rectified Linear Unit (ReLU) Activation Function

This activation function is defined in expression 2.13 and its graphical representation
is shown in figure 2.4.

ReLU(z) =

{
z if z ≥ 0
0 if z < 0

(2.13)
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Figure 2.4: ReLU activation and its gradient [29].

It is the most used activation function because it promotes gradient stability, is
computationally cheaper, and can create a sparse ANN [30], improving its generaliza-
tion. A sparse ANN is possible by the creation of dead nodes. In some circumstances,
this can be a disadvantage [29].

Dead nodes refer to nodes that output zero for all inputs. This occurs when a
node encounters a situation where its weighted sum of inputs falls below zero for all
training data [31]. These nodes cannot learn as its gradient is also zero (see figure
2.4) as such they decrease the ANN efficiency by consuming computational resources
while not providing any useful contribution.

Sigmoid and Softmax Activation Functions

The Sigmoid activation function is defined in expression 2.14 and its graphical
representation is shown in figure 2.5.

Sigmoid(z) =
1

1 + e−z
. (2.14)
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Figure 2.5: Sigmoid activation and its gradient [29].

This function was designed for binary classification, so it gives a result that is
between 0 and 1 that can be interpreted as a probability [29]. The main problem
of the sigmoid activation is that, as can be seen in figure 2.5, the greater the input
absolute value closer to zero the gradient becomes. This learning gradient becomes
smaller as it propagates backward through the ANN during backpropagation, this is
known as the vanishing gradient problem, and it can stall the ANN learning process.

The softmax activation is an implementation of the sigmoid for a vector instead of
a scalar [29]. It is defined in expression 2.15.

Softmax(z)i =
ezi∑K
j=1 e

zj
, i = 1, · · · , K , x = (z1, · · · , zK). (2.15)

Tanh (Hyperbolic Tan) Activation

The tanh activation is defined in expression 2.16 and its graphical representation
is shown in figure 2.6.

Tanh(z) =
ez − e−z

ez + e−z
. (2.16)
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Figure 2.6: Tanh activation and its gradient [29].

Like the sigmoid it is symmetric, but converges faster as the maximum gradient
activation of the function is one, making it four times greater than the one of the
sigmoid [29].

2.2.2 Other types of layers

Besides the activation layers, there were also two other types of layers that were
applied in this work. These layers are only used in the training phase of the ANN.

Batch Normalization

The batch normalization layer applies a transformation to the inputs of the layer by
subtracting the mean and dividing the standard deviation of their values. Empirical
tests prove that this normalization speeds up and stabilizes the learning process and
allows for higher learning rates [32]. However, the application of this layer requires
larger batches and is more computationally expensive.

Dropout

In this layer, each node has a probability of being deactivated, along with their
incoming and outgoing connections, during the training phase of the batch [33]. This
prevents them from co-adapting to each other, minimizing the problem of overfitting
(explained in subsection 2.2.3 ANN optimization) and creates several sparse NN
inside the main one, improving generalization.

2.2.3 ANN optimization

As it was described in, section 2.2 Artificial Neural Networks the value of each
node (including output nodes) xl

g is defined by the equation 2.17.
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xl
g = U

((
D∑

d=1

wj,l
d,g · x

j
d

)
+ blg

)
. (2.17)

For the purpose of ANN optimization, wj,l
d,g and blg are the trainable parameters of

the layers [34]. For the initialization of the ANN, these parameters are filled with
small random values. Then the ANN gradually adjusts these parameters during its
training phase to give more accurate results.

To adjust the trainable parameters, the first step is to choose an input x1 and
compute the ANN output ypredicted. The output is compared to the expected value
yexpected [34]. This comparison is quantified by the usage of the error function. In
this work, the chosen function was the mean-squared error [35] that is defined by
equation 2.18.

J =
1

Y

Y∑
g=1

(
ypredictedg − yexpectedg

)2
, (2.18)

where J is the value of the error, Y is the number of output nodes.

ypredicted is a function of the trainable parameters (see equation 2.17) as such the
error function can be described as J(θ) where θ represent the full set of trainable
parameters (weights and biases).

To train the ANN, the partial derivative of each parameter θ is calculated. This
set of partial derivatives is the error function gradient and can be represented by
∇θJ(θ). To compute the partial derivative the backpropagation algorithm is used,
which utilizes the chain rule to do the calculations. This can be done because all
operations used in an ANN are differentiable [34].

Then its parameters (θ) must be updated in the opposite direction of its gradient
[36]. How much each parameter is optimized is given by the optimization function
and by the learning rate η. In this work, two optimization functions were used:
Stochastic Gradient Descent (SGD) (explained in section 2.2.3 Stochastic Gradient
Descent) and Adam (explained in section 2.2.3 Adam).

Usually the optimization of the parameters of the error function is not done for
each data point, but instead the losses for a small set of data points are calculated
and before errors being back-propagated, this set is called a batch [37].

These optimizations batches are done across the data until the end of the dataset
is reached. This set of batches that encompasses the dataset is called an epoch.

One of the problems that is encountered in the parameter optimization is overfitting
[38], which is when the neural network does not generalize what it learned from the
training data to unseen data.

18



To monitor the overfitting of the network, the data is divided in three sets, the
validation dataset, the training dataset and the test dataset. The learning process
is done only with the training dataset and after each epoch both datasets are feed
to the network and the accuracies and losses measured. This creates four values,
train accuracy, train loss, validation accuracy, validation loss. The difference between
these two sets of measurements (difference between accuracies and between losses) is
correlated to overfitting because it provides a way to inspect how the ANN preforms
with seen data (training dataset) versus unseen data (validation dataset), if the
performance values for the seen data continue to improve and are significant better
than the ones for the unseen data, which may even degrade, then the ANN is
memorizing the validation dataset instead of learning data features. The test dataset
is only feed to the final ANN to prove its quality.

In this work there was a limited amount of data available, so to have a relevant
enough dataset for the training phase the test dataset was only used in a few ANNs.
In some ANN where the goal was only to have a proof of concept and the data was
even more limited, the validation dataset was not used in favor of only using the test
dataset.

Stochastic Gradient Descent

There are several variations of the SGD, in this work it was used the mini-batch
SGD. In it, the parameters are updated for each batch of the training dataset. The
first step in this method is to compute the average of the loss function gradient in
the batch, as is defined in equation 2.19 [37].

∆θ =
1

s

s∑
i=0

∇θJ(θ), (2.19)

where s the size of the batch.

Then the parameters are updated as is defined in equation 2.20.

θnew = θ − η ·∆θ. (2.20)

Performing updates on each batch reduces fluctuations in the optimization of the
error function, which improves convergence. [36]

Adam

The Adaptive Moment Estimation (Adam) is an optimizer that computes adaptive
learning rates for each parameter it updates. To do this, it keeps an exponentially
decaying average of past gradients mt and an exponentially decaying average of past
squared gradients vt

These decaying averages are calculated as defined in equations 2.21 and 2.22.
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mt = β1 ·mt−1 + (1− β1) · ∇θJ(θ). (2.21)

vt = β2 · vt−1 + (1− β2) · (∇θJ(θ))
2 . (2.22)

The parameters mt−1 and vt−1 are initialized as zeros so in the first iterations
there is a bias towards zero, to counteract this the values are bias-corrected using
equations 2.23 and 2.24.

m̂t =
mt

1− βt
1

, (2.23)

v̂t =
vt

1− βt
2

, (2.24)

where βt
1 and βt

2 are β1 and β2 raised to the power of t, the iteration number.

These averages are used to update the parameters of the error equation according
to equation 2.25.

θnew = θ − η√
v̂t + ϵ

· m̂t. (2.25)

In these equations β1, β2 and ϵ are values defined by the user that can be changed
to adapt to different types of data. The authors of this optimizer propose 0.9 for β1,
0.999 for β2 and 10−8 for ϵ [39].

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) [40] are a type of ANN that applies a
convolution between the data and a set of filters to identify patterns in the data,
reducing the need for preprocessing. They have three types of layers: convolutional,
pooling, and fully-connected layers. They provide superior performance with image
and audio classification, but are also more computationally expensive.

Convolutional layer

This layer extracts features from the input data, for this it makes a convolution
between the input and a feature detector (also known as kernel or filter) that is an
array with the same dimensions (e.g., 1D for sound, 2D for gray scale images or 3D
for color images) as the input but a smaller size. Then an element-wise nonlinear
activation function (usually ReLU, sigmoid or tanh) is applied and the feature map
created [41].

There can be multiple kernels and each one creates their own feature map [41].
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Pooling layer

This layer reduces the dimensions of the data by applying an operation that reduces
the number of inputs of the kernel to a single value. The two most used operations
are [40]:

• Max pooling: The kernel selects the sample with the maximum value from the
feature map.

• Average pooling: The kernel calculates the average from the feature map.

Due to time constrains, only the max pooling layer was used in this work.

These layers are usually in between convolutional layers. By stacking several
convolutional and pooling layers, higher-level features can be extracted [41].

Although information is lost in this layer, it helps to reduce complexity, improving
efficiency, and decreasing the risk of overfitting [40].

Fully-Connect layer

This layer, uses as input the features obtained by the previous layers and acts
on them to extract information. For this, an ANN is used as it was described in
section 2.2 Artificial Neural Networks.

2.2.5 Recurrent Neural Networks

RNNs are a type of ANN that introduce the notion of time to a model by taking into
account values derived from the previous state of the network to make a classification
of the current data point [42]. This type of analysis is mostly used for solving
temporal problems such as language translation or speech recognition.

For a data point, x1, two inputs are given to the RNN, the previous time steps
4 hidden values hτ−1 and x1, and the network will give two outputs ypredicted which
represent the classification and hτ that are the hidden values that encode the network’s
state.

4Time steps are represented by the letter τ .
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Figure 2.7: Architecture of an RNN with one input, one output and one recurrent
hidden unit with its propagation through the time steps [42].

RNNs tend to run into two problems, exploding and vanishing gradients. These
issues stem from the size of the gradient, which is the slope of the loss function.
When this gradient is small it tends to become smaller, decreasing how much the
weights are updated, thus preventing the algorithm from learning. When it is too big,
the model becomes unstable. The weights become too large and will eventually cause
a number overflow. One of the solutions is to truncated backpropagation through
time (TBPTT), setting a maximum number of time steps from which the error is
propagated [42].

Some RNNs do not have typical nodes, but instead, memory cells that regulate
the flow of information in the network and through the iterations. In this work, only
one type was used, the Long short-term memory cell.

Long short-term memory

The Long short-term memory (LSTM) cells were developed as a solution to the
problem of vanishing gradients. That is, if the input that is influencing the current one
is not in the recent past, the RNN may not be able to make the correct prediction.
These memory cells store information through the network iterations accessing
them when needed, mitigating the vanishing gradient problem. In this model the
hidden layers do not have nodes but LSTM cells that have a self connected memory
connection and three multiplicative gates: an input gate, an output gate, and a
forget gate [43].

The gates receive inputs from the network, they are summed as is described in
equation 2.10 and then modulated by an activation function, usually a sigmoid (see
section 2.2.1 Sigmoid and Softmax Activation Functions). A gate with a value of 1 is
an open gate, and a gate with a value of 0 is a closed gate. The value of the gate
value is then multiplied by the input in the case of the input gate, by the output in
the case of the output gate or by the recurrent unit in the case of the forget gate [43].
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Each memory cell is made from six elements that can be seen on figure 2.8 and
described on the list below.

Figure 2.8: Representation of a LSTM memory cell [44].

• Memory cell input, that receives the data from the previous layer and previous
hidden layer, and applies the transformation described in section 2.2 Artificial
Neural Networks.

• Input gate, that is multiplied by the value of the input node.

• Self-recurrent connection, a node with linear activation that has as inputs the
value from the input gate and a recurrent connection to itself. This state is
usually passed through an activation function.

• Forget gate, that is used to erase, if necessary, the contents saved by the internal
state.

• Output gate, that is multiplied by the value of the internal state.

• Memory cell input, that is the memory cell output.

2.2.6 Metrics

The quality of the developed ANNs was evaluated using the following metrics:
Loss, Confusion Matrix, Accuracy, Precision and Recall.

• Loss: This measures the inconsistency between the predicted output of the
ANN and the expected output. Its value is given by the error function (subsec-
tion 2.2.3 ANN optimization)

• Confusion Matrix: This is a table that provides a visual representation of an
ANN’s performance by presenting the predicted categories compared to the
actual categories. In the case of a single-output ANN, the confusion matrix is
represented by a 2× 2 matrix, with the categories described in table 2.1.

Total population Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (TN) True Negative (TN)

Table 2.1: Single output confusion matrix.
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• Accuracy: This is the proportion of correctly classified data out of the total
number of instances in the dataset. It can be described by equation 2.26.

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.26)

It measures effectiveness of a model in making correct predictions.

• Precision: This metric is the proportion of true positive predictions out of all
instances predicted as positive. It can be described by equation 2.27.

Precision =
TP

TP + FP
. (2.27)

It measures the accuracy of positive predictions.

• Recall: This metric is the proportion of true positive predictions out of all
positive instances. It can be described by equation 2.28.

Recall =
TP

TP + FN
. (2.28)

Recall provides an indication of the ANNs ability to avoid false negative errors.
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Chapter 3

Implementation

3.1 Urban Sound 8K

The first stage in this work was to gain the necessary knowledge to create and
implement an ANN. So instead of directly using the data from the dummy eggs, it
was used an already known and labeled dataset called Urban Sound 8K [45].

3.1.1 Dataset

The dataset has 8 732 sound samples, each lasting around 4 s. Each sound sample
is labeled and belongs to one of ten categories, as is showed in table 3.1.

With this dataset, the goal was to build an algorithm that could distinguish the
different types of sounds. To achieve this there were two parts, the feature extraction
and the ANN. Both of them passed through several iterations until the most optimal
configuration was found.

It was chosen to start with this dataset because all audio samples are already
classified. In the dummy eggs the data is a raw stream of audio with no labels, by
starting with a dataset that is already labeled it is possible to refine the classification
algorithm in areas such as: type of features to extract, how to extract them, how
much detail the features need, general shape of the ANN, types of layers, optimizers,
among others.

This does not mean all the optimization work is done, both parts of this algorithm
were later refined to adapt to the real data, but some optimization was done using
this dataset.

To achieve a greater similarity between the Urban Sound 8K dataset and the output
data from the dummy eggs, the sampling rates were matched by down sampling the
Urban Sound 8K dataset from a sample rate of 44 100Hz to 2 016Hz.

Not all of the sound files had the same length neither were equally distributed
among the categories. These disparities do not critically affected the work, but it
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was necessary to be aware of them to better understand the results.

From the 8 732 sound files in the dataset, only 7 327 had a usable audio length.
The length was considered usable if it had at least, 8037 samples. The reasoning for
this value is explained in subsection 3.1.2 Feature Extraction.

Figure 3.1(a) shows the distribution of the length of the audio files in samples.
Figure 3.1(b) shows the discrepancies between the number of files per category, and
figure 3.1(c) shows that they increase even further when only audio files with usable
audio length are considered. A more detailed representation of the distribution of
files per category can be found in table 3.1.
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Figure 3.1: Distribution of files.

Category Description Number of files Number of usable
files

Category 0 Air conditioner 1000 997
Category 1 Car horn 429 203
Category 2 Children playing 1000 969
Category 3 Dog barking 1000 675
Category 4 Drilling 1000 805
Category 5 Engine idling 1000 961
Category 6 Gun shot 374 16
Category 7 Jackhammer 1000 804
Category 8 Siren 929 897
Category 9 Street music 1000 1000

Table 3.1: Number of files per category.

The variations between categories explain why some of them trained better than
others. An ANN trained with larger datasets could more easily distinguish between
features and statistical variations. As such, ANNs trained with larger datasets can
give better results, that is why the elements in category nine with 1000 elements can
train better that the ones on category six that has only 16.

This difference in category size did not put restrains on the goals of this part of
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the work, as there were still seven categories with more than 800 samples, which was
sufficient to develop and test the ANN.

3.1.2 Feature Extraction

Several feature extraction methods, effectively consisting of variations in the MFCC
processing, were tested. To compare them, these features were used as inputs to the
ANN developed in section 3.1.3 ANN model 2 only changing the input layer, so it
matches the number of features extracted. This way, the ANN was the classifier that
measured the quality of the feature extraction method, outputting higher accuracies
and lowers losses for methods that extract more relevant data.

In this work, both the ANN and the features’ extractor were developed at the
same time. In this dissertation, it was chosen to present the information in separate
sections to simplify the comparison of the implemented methods.

The data was split in an 80/20 fraction, where 80% of the data were used for
training and 20% for validation. The ANN had the shape presented in table 3.2.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU x yes
2 Dense ReLU 250 yes
3 Dense Softmax 250 yes
4 Output Linear 10 no

Table 3.2: Architecture of ANN used for measuring the quality of the features, where
x will be the number of features.

The optimizer was the SGD (see section 2.2.3 Stochastic Gradient Descent) with a
0.1 learning rate. It was set to ran for 8000 epochs in batches of 32 elements.

All feature extraction methods tested were operations done on the MFCC block.
These were calculated in the following order (see flowchart 3.2): first a 188 sample
window was selected, from here a user selected number of MFCCs were extracted,
then a stride of 47 samples was applied, this cycle repeated until the window went
past the end of the file.
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Figure 3.2: MFCC extraction from audio.

One consequence of this approach was that in the last three MFCC, less than 188
samples are extracted from the file, so the window was zero padded. To avoid this,
those windows were removed.

In this work, the term MFCC referred to a single column of coefficients extracted
from one window, and MFCC block refers to a set of MFCCs that can be represented
in a matrix in which the rows corresponded to the coefficients and the columns to
the windows across the time steps.

The Librosa default values for the window and the stride were used. With these
values, the window had a length of 93ms and the stride had a length one fourth
the window size. At a sample rate of 2016Hz it corresponded to a window of 188
samples and a stride of 47 samples.

Before the audio went through this process, the number of samples was reduced,
to equal a multiple of the length of the stride. This was a way to enforce that all
files have the same number of windows and all the windows have the same number
of samples.

A 4 s audio at a sampling rate of 2016Hz has 8064 samples. The highest multiple
of 47 that is less than 8064 is 8037, so all files were reduced to this value.
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Extracting MFCCs from these audio files with 8037 samples each, with windows of
188 samples at a stride of 47 samples, gave 171 MFCCs. As the last 3 MFCCs were
removed, the final number of MFCCs was 168.

A summary of the ANN models trained using different MFCCs configurations can
be found in table 3.3.

Model Number of
MFCCs

Averages Standard
deviations

Size of
window

Number of
features

Validation
loss

Validation
accuracy

Model 1 40 yes no 188 40 0.0163 88.74%
Model 2 30 yes yes 188 60 0.0143 90.86%
Model 3 30 no no 188 5040 0.0658 53.00%
Model 4 30 yes no 376 40 0.0151 89.96%

Table 3.3: Summary of results given by the ANN.

Feature extraction model 1

For this extraction method, it was chosen to extract 40 coefficients. From the
resulting MFCC block, the average across the time steps was calculated, giving a
total of 40 feature per file. The extraction process is illustrated in the flowchart 3.3.

Start

Audio window
40 coefficients MFCC

is calculated

Row is selected

Average is calculated

Value is appended
to feature array

Has reached
end of rows?

Next row is selected

Feature array
completeNo Yes

Figure 3.3: Block diagram for the feature extraction model 1.
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The ANN trained with this data gave the results displayed on figure 3.4:
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Figure 3.4: ANN model 2 evolution with the feature extraction model 1.

After training the loss function of the ANN had a value of 0.0064, the accuracy
was 96.18%, the validation loss function had a value of 0.0163 and the validation
accuracy was 88.74%.

The confusion matrix reveals that the ANN incorrectly classified categories three,
four, and nine as category two, indicating a potential spectral similarity between
these categories. Additionally, no instances were correctly identified as category six,
which can be attributed to the limited number of entries in that category.

The ANN trained with this extraction method had a validation accuracy of
88.74% that is lower than the goal of 90% making it not suitable for this work (see
subsection 1.3.1 Objectives). The validation and train accuracies have a difference of
7.44 percentage points.

30



Feature extraction model 2

This configuration used as inputs the averages and standard deviations across
a MFCC block of 30 coefficients. This gave each sound sample 60 features. The
extraction process can be seen in the flowchart 3.5.

Start

Audio window
30 coefficients MFCC

is calculated

Row is selected

Average is calculated

Value is appended
to averages array

Standard deviation
is calculated

Value is appended
to standard deviation

array

Has reached
end of rows?

Next row is selected

standard deviation
array is appended
to averages array

Feature array
complete

No Yes

Figure 3.5: Block diagram for the feature extraction model 2.

This configuration gave the results that can be seen on figure 3.6.
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Figure 3.6: ANN model 2 evolution with feature extraction process 2.

After training the loss function of the ANN had a value of 0.0048, the accuracy
was 97.17%, the validation loss function had a value of 0.0143 and the validation
accuracy was 90.86%.

In this ANN, the confusion matrix reveals the categories eight and nine were
mistakenly identified as category two, also indicating a spectral similarity.

This set of features had good results. Both the train accuracy and validation
accuracy had values over 90%. The accuracies had a 6.31 percentage points difference.

Feature extraction model 3

Another test was done using all the entire MFCC block with 30 coefficients as the
input. This gave all files 5040 features. As such, more information was given to the
ANN. The extraction process can be seen in the flowchart 3.7.
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Figure 3.7: Block diagram for the feature extraction model 3.

This configuration gave the results that can be seen on figure 3.8.
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Figure 3.8: ANN model 2 evolution with feature extraction process 3.
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After training the loss function of the ANN had a value of 0.0006, the accuracy
was 99.71%, the validation loss function had a value of 0.0658 and the validation
accuracy was 53.00%.

The learning curves indicate that the optimal performance of the ANN was achieved
around the 1 500 th epoch, and the network did not show further improvement beyond
the 2 000 th epoch. Moreover, the confusion matrices show that the ANN overfitted
to the data. While the training dataset had only misidentified instances in category
six (with the lowest number of instances), the validation dataset had numerous
misclassifications.

The validation accuracy of this ANN was 37 percentage points below the set goal,
and the train accuracy was almost 100%. This means the ANN overfitted and
memorized the data instead of learning patterns from it, this made it not a suitable
solution for this problem.

Feature extraction model 4

In the next test, the size of the window was doubled from 188 samples to 376
samples, as was the stride from 47 to 94 samples. One of the consequences of this
approach is that the size of the MFCC matrix reduced in half from 168 to 84.

The ANN was trained using the method from section 3.1.2 Feature extraction model
2 and gave the results that can be seen on figure 3.9.
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Figure 3.9: ANN model 2 evolution with feature extraction process 4.

After training the loss function of the ANN had a value of 0.0051, the accuracy
was 96.78%, the validation loss function had a value of 0.0151 and the validation
accuracy was 89.96%.

The confusion matrices highlight that this ANN experiences similar issues as the
previous ones. It consistently misclassifies categories three, six, eight, and nine as
category two.

These results were less accurate than the ones got with the 188 sample window.
The lack of improvement is a sign that the extra information given by the increase
in the audio samples is not relevant to the features that distinguish the categories.

From these tests it was concluded that the best features to extract were the 30
averages and 30 standard deviations with the 188 sample window as it was the only
set of features that gave accuracies over 90% in both the train and the validation
dataset.
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3.1.3 Artificial Neural Network

In this section, several configurations of ANNs were tested using the Urban Sound
8K dataset. The input were the features extracted according to method described
in section 3.1.2 Feature extraction model 2. The output was a ten element array
displaying the categories in one-hot encoding.

In all tests the data was split in an 80/20 fraction, where 80% of the data was
used for train and 20% for validation, no test dataset was used for the reasons given
in the subsection 2.2.3 ANN optimization. All trains ran for 8000 epochs.

ANN model 1

The first ANN that was made had the configuration presented in table 3.4.

Layer index Layer type Activation
function

Number of nodes

1 Input ReLU 60
2 Dense ReLU 250
3 Dense Softmax 250
4 Output Linear 10

Table 3.4: Architecture of ANN model 1.

The results were obtained using the SGD optimizer with a 0.1 learning rate.

Training with this network gave the results that can be seen on figure 3.10.
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Figure 3.10: ANN model 1 evolution.

After training the loss function of the ANN had a value of 0.0066, the accuracy
was 96.14%, the validation loss function had a value of 0.0303 and the validation
accuracy was 80.63%.

The confusion matrices consistently reveal the misidentification, primarily focused
on category two.

In this model, the learning curves of the accuracy and loss had several fluctuations
this was a suboptimal learning process, as the ANN had large setbacks that reduce
its quality.

During the final epochs of the learning phase, the ANN exhibited a sudden
improvement in its performance. This occurrence suggests that, by chance, the ANN
might have found another local minimum in the error function. Ideally, the training
should have continued for more epochs to allow the model to stabilize at its lowest
point. However, this was not done because it did not shorten the gap between the
train accuracy and the validation accuracy as such it was deemed non-critical for
the purposes of the work.
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ANN model 2

To solve the problem of the ANN described in section 3.1.3 ANN model 1, a batch
normalization layer was added after each layer. This gave the configuration described
in table 3.5.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU x yes
2 Dense ReLU 250 yes
3 Dense Softmax 250 yes
4 Output Linear 10 no

Table 3.5: Architecture of ANN model 2.

This model took more epochs to learn, but the learning process was smoother and
improved its accuracy, as can be seen in the figure 3.11.
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Figure 3.11: ANN model 2 evolution.
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After training, the loss function of the ANN had a value of 0.0048, the accuracy
was 97.17%, the validation loss function had a value of 0.0143 and the validation
accuracy was 90.86%.

The batch normalization slowed down the learning process but improved its quality
as it can be seen by the lack of fluctuations and the decrease in the difference between
the train and validation curves, as such it was used in all the other ANN.

3.2 Seagull audio, separating noise from signal

For this part of the work, the goal was to have a software tool to analyze the
dummy egg sound file and distinguish the parts that have heart beat from the ones
that do not.

These audio files had a sample rate of 2 016Hz and each file had 20min of length.
The audio in these files was manually divided and assigned in two categories: signal
and noise. The signal corresponded to the heart beat of the bird, and the noise to
everything else.

The noise was further divided in two categories: ambient noise, e.g., the wind,
waves and distant shrieks, and “shot” noise, that corresponded to peaking on the
egg, moving the egg inside the nest and nearby shrieks.

Another way to express this is that ambient noise was caused by the natural
environment, and “shot” noise was caused by the nesting seagull. As a consequence,
the signal muffled the ambient noise, so when there was a signal there was no ambient
noise. “Shot” noise, because of its nature, always happened when there was signal
and muffled it. One of the consequences of this is that the shot noise was less likely
to be removed than the ambient noise. This is not just because of its overlap with
the signal, but also because it happened less frequently.

This muffling of the ambient noise by the signal and of the signal by the shot
noise happened because of two reasons: the proximity of the source of the sound and
the intensity of the sound emitted by the source. The source of the signal (seagull)
was much closer than the source of the ambient noise (e.g. waves, wind on leaves).
Besides, when the seagull sits on the egg its body blocks most of the ambient noise,
only leaving the signal. In the case of the shot noise the source of the sound was at
the same distance as the signal source, but a seagull shriek was much louder than a
heart beat, so it muffled the signal.

An ANN was used to distinguish the heart beat from noise (both types). To
train this ANN, a labeled dataset was needed. To create the dataset, a fake signal
generator and a fake noise generator were made.

3.2.1 Fake signal generator

Creating a completely artificial beat was considered, but after a few tests, it was
concluded that the heartbeats were too complex to be simulated accurately.

39



As such, the generation of a file needed a set of real heartbeats that were selected
from the dummy eggs’ audio files. These heartbeats were selected in windows, 500
samples in length, encompassing the heartbeat. This length was chosen because, from
a visual inspection, it was long enough to encompass a heartbeat and short enough
to create a wide range of BPM. The audio files from which the heartbeats were
selected were chosen randomly, and three to five random heartbeats were extracted
from each one.

These heartbeats were extracted as audio files. A total of 777 heartbeats were
extracted.

After the selection of the individual real heartbeats, the BPM and Signal to Noise
Ratio (SNR) values were randomly chosen for 30 seconds of the file, as having a
non-constant BPM and noise allowed training of more robust ANNs. A random real
heartbeat was chosen from the ones previously saved, it was normalized so is had
a zero average and its maximum absolute value was one. It was also zero padded
until it had the desired heart rate period, and then it was appended to an array.
This process repeated until the array was equivalent to a 30 s long audio file. White
noise was then added according to the SNR defined in the beginning. From this
file, a window five seconds in length was chosen. From this window, features were
extracted as it is described in section 3.1.2 Feature extraction model 2. To the 60
extracted features, a label identifying it as a signal was assigned. Then a 2.5 s stride
was applied to the window, and this cycle repeated until it reached the end of the 30 s
long audio file. This fake signal generation and feature extraction is repeated until
the file duration reached the desired total time. A block diagram of this extraction
can be found on figure 3.12.
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Figure 3.12: Block diagram of the fake signal generator.

3.2.2 Fake noise generator

To train an ANN, a noise file, without a heart beat, was also needed. This file
was created using the Urban Sound 8K dataset. This dataset was chosen because it
offered a large sound variety. It was hopped that it encompassed the two types of
noise mentioned in section 3.2 Seagull audio, separating noise from signal, making
the network more resilient.
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To create it, a file was randomly chosen from the dataset, the features were
extracted using the method described in section 3.1.2 Feature extraction model 2
and a label identifying it as noise was added. This was repeated until there were the
same number of data points for noise as there was for signal.

3.2.3 ANN train

Several ANN configurations were trained using the previously generated data are
described in this section.

ANN model 3

The first model had the shape presented in table 3.6.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input Softmax 60 yes
2 Dense ReLU 20 yes
3 Dense Softmax 20 yes
4 Output Linear 1 no

Table 3.6: Architecture of ANN model 3.

The output was a number between zero and one, if it was one then it means
the ANN detected a signal, if it was zero then the ANN detected noise (binary
classification).

The dataset had 2880 points of data and 2880 points of noise. 80% of the data was
used for training and 20% for validation, it did not have a test dataset as there was
little data. The batch size was 32, it used the SGD optimizer with a 0.001 learning
rate and the loss was mean squared error. It gave the results that can be seen on
figure 3.13.
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Figure 3.13: ANN model 3 evolution.

After training, the loss function of the ANN had a value of 0.0057, the accuracy
was 99.80%, the validation loss function had a value of 0.0037 and the validation
accuracy was 99.74%. These results had an accuracy well above the one required.

The confusion matrices indicate the presence of some false positives, but their
occurrence is negligible.

After this results, an improvement was made in the fake heart beat generation,
instead of adding a layer of white noise to the fake heart beat, sounds from the
Urban Sounds dataset were added. This was made to make the noise and the signal
more similar, so the ANN would be more robust.

ANN model 4

The ANN trained with this data had the shape presented in table 3.7.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 60 yes
2 Dense ReLU 20 yes
3 Dense Softmax 20 yes
4 Output Linear 1 no

Table 3.7: Architecture of ANN model 4.

The train had 14515200 points of data and 14515200 points of noise. 80% of the
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data was used for training and 20% for validation, the batch size was 32, it used
the SGD optimizer with a 0.001 learning rate and the loss was mean squared error.
After 100 epochs, it gave the results that can be seen on figure 3.14. As this was a
simple viability test, no test dataset was used.

(a) Accuracy (b) Loss

(c) Confusion matrix for training data (d) Confusion matrix for validation data

Figure 3.14: ANN model 4 evolution.

After training, the loss function of the ANN had a value of 0.0103, the accuracy
was 99.64%, the validation loss function had a value of 0.0126 and the validation
accuracy was 99.58%. These results had an accuracy well above the one required.

Similar to the previous model, the confusion matrices reveal the presence of a few
false positives, but their occurrence is negligible. The absence of false negatives
and the presence of false positives indicate that the network has higher recall than
precision. This is not ideal, as the subsequent part of the algorithm aims to identify
heartbeats where any false positives could potentially compromise some results.

After these very encouraging results, the trained ANN was tested on real data. It
was chosen a file that had only heart beat, so the expected output would be 1 across
the whole file as the sound is analyzed in 5 s windows. From a visual inspection
of the dummy egg audio file, the average heart rate of a seagull is approximately,
320± 18 BPM [46] so in one window there are in average 27 heart beats. However,
the output of the ANN was a fluctuating line at around 0.5 as can be seen on figure
3.15.
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Figure 3.15: ANN model 4 signal identification.

This result is an indicator that the signal and/or noise generator did not accurately
represent the real data.

In figure 3.16 the real heart beat are compared to the generated ones. In it, it
can be seen that the real data has: greater fluctuation of the baseline noise, a
better integration of the heartbeats with the noise, more similar heartbeats and non
normalized heartbeats.

(a) Real heartbeats

(b) Fake heartbeats

Figure 3.16: Comparison between real and generated data.

With these differences taken into account, the signal and noise generators were
redone.

3.2.4 Revised fake signal and noise generator

To generate the labeled dataset, the sound files were manually inspected and blocks
of the file that have either only beats or only noise were selected and saved separately
as their own audio file.
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For this work, a total of 7 785 s of heart beat and 9 622 s seconds of noise were
selected.

Then a random, 10 000 sample window (4,96 s) was selected from one of these files.
From it, features were extracted as described in section 3.1.2 Feature extraction model
2 and saved in a CSV file with a label that identifies them as noise or signal. As
such, the ANN was trained with complete real data segments instead of a generated
segment using individual beats. This is thought to improve its realism.

Another enhancement of the signal generator was the reduction of the number
of extracted features. Rather than calculating 30 coefficients for the MFCC block,
which would result in 60 features (30 averages and 30 standard deviations), it was
decided to reduce the number of coefficients to 15. From them, the averages and
standard deviations were extracted, as done in section 3.1.2 Feature extraction model
2, resulting in a total of 30 features. This decision was done based on the distribution
plots shown in figure 3.17. These plots revealed that the variance for the last MFCC
coefficients averages and last MFCC coefficients standard deviations was negligible,
and removing them could significantly reduce the training time of the ANN.
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(a) Distribution plot for heart beat

(b) Distribution plot for noise

Figure 3.17: Extraction method of section 3.1.2 Feature extraction model 2 averages
and standard deviations.

3.2.5 ANN train

ANN model 5

This ANN model had the shape presented in table 3.8.
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Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 30 yes
2 Dense ReLU 20 yes
3 Dense Softmax 20 yes
4 Output Linear 1 no

Table 3.8: Architecture of ANN model 5.

This ANN was trained with 521 data points 1 of noise and 521 data points of heart
beat. The loss was calculated using the mean squared error, the optimizer was SGD
with a 0.001 learning rate, the batch size was 10, and it ran for 200 epochs. It gave
the results that can be seen on figure 3.18.

(a) Accuracy (b) Loss

(c) Confusion matrix

Figure 3.18: ANN model 5 evolution.

In the final iteration, the loss function had a value of 0.1353 and the accuracy was
0.95%.

The confusion matrix of this ANN reveals that the number of false positives is
equal to the number of false negatives. This indicates an improvement compared to
previous results.

For this model there was a small amount of data available and for the first iterations

1data point refers to the the features extracted from the 10 000 sample window as explained in
subsection 3.2.4 Revised fake signal and noise generator
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the goal was only a rough optimization. As such, there was no validation dataset; all
generated data was used to train the ANN.

A 20-minute file that, by chance, was half noise half signal was used as a test
dataset. A spectrogram of this file can be found on figure 3.19.

Figure 3.19: Spectrogram of the sound file that is half heart beat, half noise and was
used as test dataset for the ANNs.

.

The detection results on this file can be seen on figure 3.20.

Figure 3.20: ANN model 5 signal identification.
.

The blue line is the output of the ANN and the orange line is the threshold of
detection (0.5): anything above this line was considered as signal and anything below
noise.

In general, the signal was well divided, with a clear demarcation where the noise
ended and the signal began. However, the detection was closer to 0.5 than to the
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extremes and there were a few outliers. The next iterations tried to solve this.

ANN model 6

The next ANN had the shape presented in table 3.9.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 30 yes
2 Dense ReLU 20 yes
3 Dense Sigmoid 20 yes
4 Output Linear 1 no

Table 3.9: Architecture of ANN model 6.
.

The loss was calculated using the mean squared error, the optimizer was SGD with
a 0.001 learning rate, the batch size was 10, and it ran for 500 epochs. It gave the
results that can be seen on figure 3.21.

(a) Accuracy (b) Loss

(c) Confusion matrix

Figure 3.21: ANN model 6 evolution.
.

The detection results are on figure 3.22.
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Figure 3.22: ANN model 6 signal identification.

In the final iteration, the loss function had a value of 0.2205 and the accuracy was
93.33%.

This change did not improve the results. There was still a division, but the outliers
increased, and ANN output was even closer to the 0.5 mark than before.

ANN model 7

Following this, an ANN with the shape presented in table 3.10 was made.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 30 yes
2 Dense ReLU 20 yes
3 Dense Tanh 20 yes
4 Output Linear 1 no

Table 3.10: Architecture of ANN model 7.
.

The loss was calculated using the mean squared error, the optimizer was SGD with
a 0.001 learning rate, the batch size was 10, and it ran for 500 epochs. It gave the
results that can be seen on figure 3.23.
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(a) Accuracy (b) Loss

(c) Confusion matrix

Figure 3.23: ANN model 7 evolution.

In this ANN, there are no false positives, only false negatives, resulting in a
precision of one. This precision value is preferred for this particular section of the
work, as explained in detail in section 3.2.3 ANN model 4.

The detection results of the test file are on figure 3.24.

Figure 3.24: ANN model 7 signal identification.

In the final iteration, the loss function had a value of 0.0949 and the accuracy was
93.33%.
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When using the Tanh activation function, the results became more distributed
across the available range, but the number of outliers increased compared to the
ANN discussed in section 3.2.5 ANN model 5, rising from 3 to 9. In this work, it
is preferable to prioritize a weaker detection capability with higher accuracy over a
stronger but less accurate one.

ANN model 8

This ANN had the same configuration and presets as the one in section 3.2.5 ANN
model 5, but it was trained with 1968 data points of noise and 1968 data points of
signal for 500 epochs. As there was more data, the dataset was split in an 80/20
fraction, where 80% of the data was be used for training and 20% for validation.

It gave the results that can be seen on figure 3.25.

(a) Accuracy (b) Loss

(c) Confusion matrix for training data (d) Confusion matrix for validation data

Figure 3.25: ANN model 8 evolution.

After training the loss function of the ANN had a value of 0.0155, the accuracy
was 98.79%, the validation loss function had a value of 0.0112 and the validation
accuracy was 99.24%.

The detection results of the test file are on figure 3.26.
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Figure 3.26: ANN model 8 signal identification.

Although the ANN had good results when using the train data when it analyzed
the test file, the output was not usable. However, it did detect a difference between
signal and noise.

ANN model 9

In this model, the number of nodes was increased. It had the shape presented in
table 3.11.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 30 yes
2 Dense ReLU 100 yes
3 Dense Softmax 50 yes
4 Output Linear 1 no

Table 3.11: Architecture of ANN model 9.

The loss was calculated using the mean squared error, the optimizer was SGD with
a 0.001 learning rate, the batch size was ten, and it ran for ten epochs. The results
can be seen on figure 3.27.

54



(a) Accuracy (b) Loss

(c) Confusion matrix for training data (d) Confusion matrix for validation data

Figure 3.27: ANN model 9 evolution.

After training the loss function of the ANN had a value of 0.0817, the accuracy
was 97.20%, the validation loss function had a value of 0.0552 and the validation
accuracy was 98.96%.

The detection results of the test file are on figure 3.28.

Figure 3.28: ANN model 9 signal identification.

To reduce the training time, the number of epochs in this model was reduced

55



from 500 to 50. This choice was based on a visual inspection of previous accuracy
evolution graphs, which indicated that the majority of optimization occurs early in
the training process.

With this configuration, the ANN could clearly make a division between signal
and noise with greater separation than the one presented in section 3.2.5 ANN model
5, although there were more outliers.

ANN model 10

In this model, the number of neurons was further increased, as can be seen in table
3.12.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 30 yes
2 Dense ReLU 100 yes
3 Dense Softmax 100 yes
4 Output Linear 1 no

Table 3.12: Architecture of ANN model 10.

The loss was calculated using the mean squared error, the optimizer was SGD with
a 0.001 learning rate, the batch size was 10, and it ran for 50 epochs. The results
can be seen on figure 3.29.

(a) Accuracy (b) Loss

(c) Confusion matrix for training data (d) Confusion matrix for validation data

Figure 3.29: ANN model 10 evolution.
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The detection results of the test file are on figure 3.30.

Figure 3.30: ANN model 10 signal identification.

These results are similar to the ones got by the ANN developed in section 3.2.5
ANN model 8.

ANN model 11

In this model, the final activation layer was changed as can be seen in table 3.13.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 30 yes
2 Dense ReLU 100 yes
3 Dense Sigmoid 100 yes
4 Output Linear 1 no

Table 3.13: Architecture of ANN model 11.

The loss was calculated using the mean squared error, the optimizer was SGD with
a 0.001 learning rate, the batch size was 10, and it ran for 50 epochs.

As the graphs of the evolution of the ANN did not have any information that was
relevant for the optimization of the ANN, as such they will not be presented.

The detection results of the test file are on figure 3.31.
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Figure 3.31: ANN model 11 signal identification.

The division still shares the same problems, as the one seen on section 3.2.5 ANN
model 8.

It is worth noting that the last noise detection was not an outlier, in this point
there was a shot noise that interrupted the signal. The detection of shot noise was a
positive point for the ANN.

ANN model 12

As the ANN was not learning as expected, four things were changed: the number
of nodes per layer of the ANN were changed to funnel like shape; a second node was
added to give a confidence of the data point being noise; the range of the expected
output was changed so 1 corresponded to signal, −1 corresponded to noise and 0 was
the halfway point; the range of the y-axis on the graph of the confidence level of the
signal/noise was increased, so it can represent values that exceed the range [−1, 1].

This ANN architecture can be seen on table 3.14.

Layer index Layer type Activation
function

Number of
nodes

Batch
normalization

1 Input ReLU 30 yes
2 Dense ReLU 256 yes
3 Dense ReLU 64 yes
4 Dense Sigmoid 16 yes
5 Output Linear 2 no

Table 3.14: Architecture of ANN model 12.

The loss was calculated using the mean squared error, the optimizer was Adam,
the batch size was 10, and it ran for 50 epochs.
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The detection results of the test file are on figure 3.32.

Figure 3.32: ANN model 12 signal identification.

This graph shows that the ANN could not detect noise, as the first part fluctuates
too much to be considered usable. In the sections of the sound that contain noise,
this ANN exhibits a significant number of false positives, incorrectly classifying noise
as signal.

ANN model 13

In this model, a dropout was added to all layers except the last one. The shape of
the ANN is presented in table 3.15.

Layer index Layer type Activation
function

Number of
nodes

Batch nor-
malization

Dropout
value

1 Input ReLU 30 yes 0.2
2 Dense ReLU 16 yes 0.2
3 Dense ReLU 64 yes 0.2
4 Dense ReLU 64 yes 0.2
5 Dense Softmax 16 yes 0.2
6 Output Sigmoid 2 no N\A

Table 3.15: Architecture of ANN model 13.

The loss was calculated using the mean squared error, the optimizer was SGD with
a 0.001 learning rate, the batch size was 10, and it ran for 19 epochs. The results
can be seen on figure 3.33.
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(a) Accuracy (b) Loss

(c) Confusion matrix for training data (d) Confusion matrix for validation data

Figure 3.33: ANN model 13 evolution.

The last iteration had a loss of 0.1236, an accuracy of 89.94%, a validation loss of
0.1328 and a validation accuracy of 90.00%.

This model only ran for 19 epochs because it had an early stooping callback that
defined if the validation accuracy did not improve in five consecutive epochs, the
train would stop.

The confusion matrix of the validation dataset demonstrates that the ANN has
higher precision than recall.

The detection results of the test file are on figure 3.34.
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Figure 3.34: ANN model 13 signal identification.

The file analyzed with this ANN had a clear division of noise and signal that could
be used by other programs.

Throughout these attempts, several key concepts were learned. Firstly, in the
last layer of the network, using the sigmoid activation function instead of a linear
activation function yielded best results. Secondly, employing a diamond shape for
the ANN layers instead of a funnel like shape proved to be more effective. Thirdly,
the inclusion of batch normalization layers helped stabilize the learning process and
improve overall results. Lastly, incorporating dropout layers enhanced the resilience
of the ANN and contributed to higher accuracy.

3.3 Seagull audio, identifying individual heart-

beats

After the section of the audio with heart beat were identified, the next step was to
identify the individual heartbeats. To identify them, RNNs were used.

The input sequence of the RNN was the sound of the fake egg, and the output
sequence was a file the same size as the input one. In this file, each sample was a
number between zero and one that corresponds to the probability of that sample
being a heartbeat.

Fake data generator with labeled heartbeats

To train an RNN to identify heartbeats, a labeled dataset was needed. For this, it
was used a modified version of the fake signal generator created in section 3.2.1.

This signal generator was discarded in the section 3.2 Seagull audio, separating
noise from signal, but it was reused for this, as it was the simplest way to test if the
RNN could detect a beat or not.
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To generate the fake audio file, the user first specified the desired length of the file.
Next, a random value between 100 and 200 was chosen as the BPM for the audio
file. Then, a random heartbeat was selected, normalized to a zero average and a
maximum absolute value of one, and padded with zeros to match the period of the
heartbeat at the chosen BPM. This process was repeated until a seven-second audio
clip was generated, which was then repeated to create the desired length specified by
the user.

The label array had the same length as the data array and all indexes were zero
except the 100 indexes after each heartbeat, which were one.

A block diagram of the generation of the fake heart beat and label can be found
on figure 3.35.

Start

User defines
time of file

BPM value
is randomly chosen

Heartbeat files
Heartbeat is

randomly chosen

Heartbeat
is normalized

Heartbeat
is zero padded

Heartbeat
is appended to

an array

Has the array
7 s of audio?

Labeled array
is appended to
labeled dataset

Has dataset
user defined time?

Labeled dataset
complete

Yes

No

Yes

No

Figure 3.35: Fake heart beat and label creation block diagram.

RNN model 1

The first RNN had the architecture described in table 3.16.
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Layer
index

Layer type Activation
function

Nodes Dropout Units Recurrent
dropout

Return
sequences

1 Dense Linear 5000 na na na na

2 LSTM na na 0.1 100 0.1 true

3 LSTM na na 0.1 100 0.1 true

4 LSTM na na 0.1 100 0.1 false

5 Dropout na na 0.1 na na na

6 Output Softmax 5000 na na na na

Table 3.16: Architecture of RNN model 1.

It was trained with 5000 s of data, of which 80% were used for training and 20%
for validation. It ran for 100 epochs and had a batch size of 64. It used the Adam
optimizer and measured its loss using the mean squared error.

This gave the results seen on figure 3.36.

(a) Accuracy (b) Loss

Figure 3.36: RNN model 1 evolution.

After training the loss function of the RNN had a value of 0.1242, the accuracy
was 00.06%, the validation loss function had a value of 0.1247 and the validation
accuracy was 00.00%.

The results, obtained when using this RNN in the train dataset and validation
dataset, are presented in figure 3.37.
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(a) Prediction for the train dataset (b) Prediction for the validation dataset

Figure 3.37: RNN model 1 heartbeat identification.

As can be seen in the figure 3.36 the loss did not improve during the train that
means that the value of the weights and biases were not altered during the training
phase. As such, the RNN did not learn, making it unsuitable for this work. This
could suggest that the ANN may require more than just LSTM cells to learn.

RNN model 2

To improve detection, convolutional layers were added to this model. Additionally,
the dataset was increased, and the model was trained for more epochs than the
previous version.

The decision to use CNNs was influenced by previous works that employed them
[11, 10]. CNNs are useful for their ability to detect patterns through the use of
convolutional layers, regardless of their location within the signal window. This is
particularly beneficial in the context of heartbeat detection, as a heartbeat can occur
at any position within the signal. Additionally, CNNs can effectively reduce dimen-
sionality through the pooling layers. This dimensionality reduction can facilitate the
subsequent RNN in accurately identifying the heartbeats within the data.

This model had the architecture described in table 3.17.

It was trained with 10 000 s of data, of which 80% were used for training and 20%
for validation. It ran for 200 epochs and had a batch size of 64. It used the Adam
optimizer and measured its loss using the mean squared error.

Its evolution can be seen on figure 3.38.
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(a) Accuracy (b) Loss

Figure 3.38: RNN model 2 evolution.

After training the loss function of the ANN had a value of 0.0481, the accuracy
was 00.00%, the validation loss function had a value of 0.0522 and the validation
accuracy was 00.00%. The values for the accuracy can be explained by examining
the way the Keras library calculates the accuracy[47].

The results obtained when using this RNN in the train dataset and validation
dataset are presented in figure 3.39.

(a) Prediction for the train dataset (b) Prediction for the validation dataset

Figure 3.39: RNN model 2 heartbeat identification.

Although the accuracy was zero, the heartbeats were correctly identified, especially
the last ones, this improvement in detection shows that the RNN is taking into
account previous heartbeats to identify current ones. This RNN showed promising
results and hinting that this method can work.

The discrepancy between the accuracy, loss, and actual identification of heartbeats
can be explained by examining how accuracy is calculated in the Keras library [47]
and comparing it to the criteria used for heartbeat identification. The Keras library
defines accuracy based on an exact match between the predicted and expected values.

66



Since the output of the ANN may not precisely replicate the label square wave signal,
the accuracy reported by the library is zero percent. However, it is important to note
that the oscillations of the ANN’s output do correspond to the variations of the label.
Therefore, for the purpose of heartbeat identification, the matching of the label and
oscillations was considered as successful identification, despite not achieving a perfect
match according to the accuracy metric. Similarly, the lower-than-expected losses in
this ANN can be attributed to the same reason.
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Chapter 4

Conclusion

This work aimed to address the heart rate measurement challenges faced by the
ECOTOP project. A proposed solution was developed to automate the identification
of individual heartbeats in audio files.

To achieve this goal, two ANNs were employed, one for signal identification and
another for heartbeat identification. Both ANNs were trained using supervised
learning, and data generators were created for both of them.

The signal and noise data generator gave the best results by creating fake data
directly from real data. This involved selecting segments containing only noise or
heartbeats and creating a dataset to train the ANN. Features were then extracted
from these data windows, and this research found that the best-performing features
were 15 averages and 15 standard deviations over time from the MFCC block of each
window.

The data was then fed into a diamond-shaped, feedforward ANN, achieving an
accuracy of 89.94% and a validation accuracy of 90.00%. The ANN demonstrated a
good separation between noise detection and signal detection, as evidenced by its
analysis of the test file. The utilization of batch normalization, ReLU activation
functions, and dropout significantly improved the ANN’s classification capabilities.

Although the ANN did not technically achieve the initial goal of 90% accuracy, it
fell short by only 0.06 percentage points in the train dataset, which was considered
negligible.

The generator of heartbeat data was done by manually selecting heartbeats and
saving them to a database, from them a sound file with a label identifying the
heartbeats was made. A layer of white noise was also added to improve ANN
resilience.

This data was feed to an ANN model that combined a CNN with an RNN using
LSTM cells. In spite of the way the accuracy is calculated in the Keras library, which
return an accuracy of 0% both for the validation and train datasets, the pulses can
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be actually be correctly identified if using a method like the one suggested below. In
this ANN the use of convolutional and pooling layers greatly improved its ability to
detect the heartbeats.

4.1 Improvements

In this work, there are still several optimizations that can be made.

For example, all the articles that were initial read used MFCC as the way to
extract features, and it was by that reason that they were used. However, a simple
spectral analysis was never tried and if the heartbeats can be easily identified by
visual inspection of the sound spectrogram, then an ANN could identify them as
well. The heartbeats are also visible in the MFCCs, but it was never tested which
one would be better.

The number of MFCCs could also be further optimized by reducing the number of
variables until, for example, 90% of the original variance is reached [48]. This simple
process could reduce the training time of the ANN.

The fake heart beat generator could be improved by adding noise to the files, as
this can improve ANN generalization [49]. Another improvement would be simply
adding more real data that creates the generated one.

The heart beat detection ANN output fluctuates throughout the file as it was
seen in section 3.2.5 ANN model 13 this hinder its capability of detecting signal.
This can be improved by having, for example, a moving average that negates the
effects of outliers, introducing a sense of time to the detection by correlating the
data. Another option would be only considering signal values that were followed by
a certain number of signal detections (e.g., only considering a detection signal if the
previous three detections were also signal).

Another possible optimization for the heart beat detection ANN, is to use a RoC
curve to find the optimal value for the threshold that defines a data point as signal
or noise. For example, in section 3.2.5 ANN model 10 if the threshold was at 0.7
instead of 0.5, the program would have identified all data points correctly except for
one outlier.

The audio generator that produces the labeled heartbeats could be enhanced
by applying some small improvements such as: Not doing sound amplification of
the original heartbeat, instead only moving their average to zero and doing the
amplification on the final sound. Applying a Hamming window to the heartbeat, so
it can better integrate with the zero-pad. Using noise from the real audio to generate
a noise layer that can be added to the generated heart beat.

The ANN that detects individual heartbeats is the section of this work that has
more room to improve. Several aspects optimized, including the number of neurons,
number of layers, types of activation layers, values for dropouts can all be optimized.
The use of RNN cells like GRU, BLSTM, and BiGRU can be tested with BLSTM
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likely to yield better results based on previous research [10].

The output can also have some post-processing, for example passing it through a
function as in equation 4.1.

F (x) =

{
1 if x ≥ 0.5
0 if x < 0.5

. (4.1)

This way, if the output is one for a certain number of samples (later to be defined)
the program gives the information that a heartbeat just occurred.

Another possible improvement is to operate the RNN in continuous mode. In
this mode, instead of providing the RNN with a fixed window of audio for analysis,
the samples are continuously fed into it. This approach can enhance detection
performance as the RNN can better identify later heartbeats, as was seen in section 3.3
RNN model 2.
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