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Abstract

Smart grids are modernized electrical grids that use advanced technology to im-
prove the efficiency and reliability for power supply. The capacity of Smart grids
can be maximized with the use of 5G networks to support communication and
data transfer between devices connected to the grid that allows real-time moni-
toring and control of the grid.

The integration of 5G networks in smart grids can also enable the use of advanced
pricing and market mechanisms for energy. The time-of-use pricing can be used
to incentive customers to use less energy during peak demand periods, while
dynamic pricing can be used to respond to changes in supply and demand in real-
time. This can help to reduce the need for expensive peak generation capacity and
improve the overall efficiency of the energy market.

In future scenarios with intelligent and flexible energy networks, energy sup-
ply systems will demand a high degree of automation to ensure resilience, reli-
ability and efficiency, in this context, real-time energy price information will be
an important input for process optimizations. The present work evaluates the
performance of real-time energy prices calculation and forecasting system in 5G
high-speed communication networks.

Finally, the obtained results present good potential to achieve accurate real time
forecasts of energy prices in Portugal in the short term through the use of statis-
tical and neural networks based models. Complementarily, a 5G communication
networks simulation system is presented to evaluate the performance of 5G net-
works for energy pricing updates.
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Chapter 1

Introduction

The Smart grids are modernized power systems that use advanced technology
to monitor and control the flow of electricity, allowing more efficient and reliable
energy distribution. The 5G networks, on the other hand, are the next generation
of mobile networks that offer faster speeds, lower latency, increased capacity and
security.

The integration of smart grid technology with 5G networks is expected to bring
about significant transformation in the energy market, it enables real-time mon-
itoring and control of energy distribution, allowing for more efficient use of re-
sources and the ability to quickly respond to changes in demand.

This thesis aims to investigate the specific aspects of the energy/electricity market
focusing on the price of energy and exploring the transformations that will come
with the technological advances of smart networks in 5G.

Deeper transformations in the electric energy market sector are slow due to its
characteristics, it is a market that requires a large physical structural volume for
production and availability.

Despite the greater resistance to changes in the energy/electricity market, 5G
Smart Grids enable the improvement of electrical systems for clean and friendly
power generation, combination of multiple distributed clean power sources, in-
tegration of energy storage and electric vehicles, as well as balance of decen-
tralization, reliability and load, with clean and low-carbon, grid-power source
coordination, flexible and efficient features; safe and efficient power transmis-
sion/transformation, characterized by situation awareness, flexibility, reliability,
and coordinated optimization; flexible and reliable power distribution, featuring
controllable, compatible and economical nature; diverse and interactive power
consumption, with the characteristics of diversity, two-way interaction, flexibil-
ity, energy saving and efficiency [2].

This can further drive the transformation of the energy market by allowing the
fast integration and control of intermittent energy sources and increasing the par-
ticipation of consumers as will be explored throughout this work.
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1.1 Objectives

The main objective of this work is to obtain calculation and forecast of energy
prices in real time exploring the potential of Smart Grids in combination with
5G communication networks. Services like this enables consumers to react to
price fluctuations allowing better coupling of consumption according to the most
favourable periods for generation. As a consequence, the entire operating system
of the electrical networks would be favored through the immediate responsive-
ness of the energy supply.

To achieve this objective, mathematical models capable of making energy price
predictions will be defined and operate in 5G Smart Grids simulation scenarios
in order to attest the effective capacity of this system to collect, transmit and pro-
cess all the data necessary to update the electricity price in real-time as well as
providing the price forecast for the next 24 hours.

1.2 Contributions

This document makes contributions as follows:

1. The proposal of forecast models for the price of energy using statistical and
machine learning-based methods that use time series of previously realized
prices and real-time energy generation values of the various technologies
present in the electrical system.

2. A specific analysis of the Portuguese energy system with a focus on the
appropriate adjustment of forecasting models.

3. The proposal for a distributed energy generation data collection in 5G and
processing system to enable model training and price forecast execution
with subsequent sending of the obtained forecast values to end users.

4. Propose the topic for submission of scientific publications.

1.3 Structure

The remaining document is organized as follows:

• Chapter 2 - Background

Provides an overview of the conceptual topics covered by this work such as
Smart Grids, 5G Communication Networks, Time-Series analysis and fore-
cast, the electricity sector and the energy/electricity market in Portugal.

2
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• Chapter 3 - Related Work

Reviews the related work regarding energy price forecast and 5G Networks
simulation/emulation.

• Chapter 4 - Research Objectives and Approach

Describes the work’s research objectives and introduces the approach taken
throughout the dissertation work, as well as the methodology used.

• Chapter 5 - System Architecture

Presents the details of the architecture for the system implemented for the
prototype simulation of a real time energy price forecasting system.

• Chapter 5 - Energy Price Analysis

Presents an exploratory analysis of the composition of the energy matrix
in Portugal and the necessary data analyzes for the energy price forecast
models fitting.

• Chapter 6 - Results

Provides the summary and discussion of experimental obtained results.

• Chapter 7 - Conclusion

Provides the main conclusions, a summary of the results, and the future
work that can be followed.
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Background

This chapter covers the conceptual topics necessary for the development of this
work. The first section introduces the theoretical basement for the price predic-
tion models explored, namely, SARIMA, SARIMAX, LSTM and GRU. Next, a
contextualization of smart grids and the technical basis necessary for the devel-
opment of the proposed work plan are provided.

Also present in this chapter is a contextual introduction to the electricity sector
in Portugal, including current scenario of the electricity sector centred on a broad
view of energy generation, transmission and distribution systems, as well as reg-
ulatory and economic aspects.

The objective is to provide the reader a perception of how the sector works, the
main challenges associated with the energy transition, and a background basis
for a better understand the presented work.

2.1 Energy Price Forecasting Models

The energy price issue is widely discussed in the context of energy systems, after
all it is of broad interest, it affects the viability of investments for energy gen-
eration, operation of energy transmission and distribution systems and the final
consumer.

The theme of forecasting energy prices with a focus on investment in production
is recurrent in the available literature. Financial analyzes for investment decisions
involve the need for accurate forecasts of production costs and availability of
energy supplies. See Chapter 3.

The objective of this work is to analyze the price of energy from the perspective of
the final consumer and the intelligent operation of transmission and distribution
networks.

In this context, the price of energy should act as an indicator of the level of
energy efficiency. The need for support for the energy supply would be indi-
cated through price increases as an immediate incentive for available generating
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sources.

The topic of optimal operation of smart grids is of great importance among the
ongoing discussions on the evolution of energy transmission and distribution
systems currently in operation, as can be seen in publications such as "Opti-
mal Multi-Operation Energy Management in Smart Microgrids in the Presence
of RESs Based on Multi-Objective Improved DE Algorithm: Cost-Emission Based
Optimization"[5].

The Real-time price updates are fundamentally important for the optimal oper-
ation of energy transmission systems. The indicative of the price increase made
available to consumers by very short time scales communication networks could
enable smart home operating systems by injecting power into the electrical sys-
tem, generating mutual benefit. For consumers, who would be protected from
high energy costs, and for Network Operators, which will receive support from
distributed energy generated at the most critical times.

The energy price and generation data are available at hourly granularity, so very
short-term prediction models will be evaluated for one-hour-ahead prediction.
However, the evolution of 5G smart grids equipped with systems such as the one
proposed in this work could make it possible to update the price of energy on
scales of milliseconds.

The price of electricity is time-varying, therefore, statistical techniques for time
series analysis are suitable for analyzing and interpreting the data. It involves
analyzing the patterns, trends and seasonal behaviour of the energy price and
other variables that directly or indirectly interfere with its formation.

Understanding the behaviour of the time series involves identifying not only the
relationships between the current and previous instants of the series but also un-
derstanding the relationships between the current and past instants of the price
time series in relation to the current and past instants of external variables.

The patterns and trends identified in the data can be used to make predictions
about future values and develop mathematical models that can describe the be-
haviour of the time series.

The time series analysis and forecasting techniques uses as theoretical foundation
the books "Time Series Analysis and Forecasting" [18], "Dive into Deep Learning"
[27] and "Time series analysis: forecasting and control" [17].

2.1.1 Features and Parameters Selection

Feature selection is an important process for improving the quality of the input
data when developing predictive models. It reduces the number of input vari-
ables by selecting the features that better represent the data for reduced compu-
tational cost and performance improvement.

In time series analyses, feature selection is applicable for multivariate models, in
addition, many models used for evaluation and prediction in time series are au-
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toregressive, which requires statistical analysis, data descriptive techniques and
transformations for the correct adjustment of parameters of the models as will be
detailed throughout this section.

Seasonal Decomposition

The time series seasonal decomposition method consists of separating data into
trend, seasonal and irregular/erratic variation components for a better under-
standing of data patterns. Once the components have been identified and sepa-
rated, they can be analyzed separately

1. Trend
The trend represents the overall long-term direction of the series, a system-
atic change in the mean or general direction of the time series. The trend can
be linear or nonlinear and can usually be modelled using polynomial func-
tions of different orders by global model-based approaches or by localized
data filtering/smoothing approaches like moving average (MA) filtering or
Locally Weighted Scatter Plot Smooth (LOWESS/LOESS).

2. Seasonality
The seasonal component represents the regular and repeating pattern. The
presence of the seasonal component can be verified by making a frequency
analysis of the time series performed by computing the Fourier Transform
(FT) and observing if important seasonal components will appear with rel-
evant magnitude.

Once the main frequency components are identified, low pass frequency
filters can be used to explicitly remove them.

3. Irregular/Erratic Component
The irregular variation component represents the random fluctuation of the
time series, it can be obtained by removing the trend and seasonality from
the time series.

The removal of trend and seasonality components are important to obtain the
stationarity of the time series. The popular methods for time series analysis such
as Auto Regressive Moving Average (ARMA) require by definition that the series
be stationary as described in detail in Section 2.1.2.

Besides the explicit way, popular approaches as the Box-Jenkins use to attain sta-
tionarity implicitly, by differencing.

Autocorrelation Function

The Autocorrelation Function/Sequence (ACF/ACS) is one of the main existing
techniques to study the correlation between observations of a time series with
their past values. It is a mathematical tool for finding repeating patterns, such

7
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as the presence of a periodic signal obscured by noise or identifying the missing
fundamental frequency in a signal implied by its harmonic frequencies.

The Autocorrelation Function is defined as the value of the autocorrelation coef-
ficient ρk as a function of the lag k, the autocorrelation coefficient ρk is described
as:

ρk =
E[(zt − µ)(zt+k − µ)]√

E[(zt − µ)]2E[(zt+k − µ)]2
=

E[(zt − µ)(zt+k − µ)]

σ2
z

Under the stationarity assumption, the covariance between values zt and zt+k,
separated by k intervals of time, or by lag k, must be the same for all t, it is called
autocovariance γk = E[(zt − µ)(zt+k − µ)] and the variance σ2

z = γ0 is the same
at time t + k as at time t. Thus, the autocorrelation at lag k, that is, the correlation
between zt and zt+k, is:

ρk =
γk
γ0

In particular, ρ0 = 1. Figure 2.1 illustrates the autocorrelation matrix diagonals
represented by the autocorrelation function.

Figure 2.1: Autocorrelation matrix and corresponding autocorrelation function

The Partial Autocorrelation Function/Sequence (PACS) gives the partial correla-
tion of a stationary time series with its own lagged values, regressed the values
of the time series at all shorter lags. In data analysis, it aimed at identifying the
extent of the lag in an Autoregressive (AR) model as part of the Box–Jenkins ap-
proach.
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Cross Correlation Function

The Cross Correlation Function measures the similarity between two different
time series overlapped in time. While the Correlation Function measures how
the value of time t of the time series is related to the value t+k of the same time
series, the objective of the Cross Correlation Function is to measure the similarity
between the value of time t of one time series to the value t+k of another time
series.

The autocovariance coefficients of each of the two series at lag k are defined by
the usual formula:

γxx(k) = E[(xt − µx)(xt+k − µx)]

γyy(k) = E[(yt − µy)(yt+k − µy)]

While the cross-covariance coefficients between xt and yt series at lag +k is de-
fined by:

γxy(k) = E[(xt − µx)(yt+k − µy)]

Similarly to the auto-correlation coefficient, the cross-correlation coefficient at lag
k is provided by:

ρxy(k) =
γxy(k)
σxσy

The Cross correlation function corresponds to the Cross correlation coefficients
defined for k = 0,±1,±2, ... In contrast to the autocorrelation function, the ρxy(k)
coefficient is not equal to ρxy(−k), so the cross-correlation function is not sym-
metric about k = 0.

2.1.2 SARIMAX Model

The Seasonal Autoregressive Integrated Moving Average with Exogenous Vari-
ables, SARIMAX, is a statistical time series forecasting model capable of handling
trend and seasonality components of the time series incorporating external vari-
ables that may have an influence on it.

The SARIMA and SARIMAX models are extensions of ARIMA models that arise
through the combination of simpler models, namely: Autoregressive (AR), Inte-
grated(I) and Moving Average (MA) models as described in the sequence.

9



Chapter 2

• Moving Average (MA)

The Moving Average is a linear model for time series, it is used to calculate
the current value assuming it’s linearly dependent on the current and past
error terms. Moving Average models are based on the assumption that the
underlying data-generating process is stationary.

When the data is stationary, the models can effectively capture the short-
term dependencies and provide accurate forecasts. If the time series data
is non-stationary, it can result in unreliable and spurious results from MA
models.

A moving average model expresses a given random process, X(n), as:

X(n) = β0Z(n) + β1Z(n − 1) + ... + βqZ(n − q)

Defining the backward shift operator B as BjZ(n) = Z(n − j) we have:

θ(B) = β0 + β1B + ... + βqBq

Then,

X(n) = θ(B)Z(n)

• Auto Regressive (AR)

An autoregressive (AR) process expresses actual values as a function of past
process values and a random perturbation. The model is regressed on its
own past values. Thus,

X(n) = α1X(n − 1) + α2X(n − 2) + ... + αpX(n − p) + Z(n)

Considering the backward shift operator B as BjZ(n) = Z(n − j) we have:

ϕ(B) = 1 − α1B − α2B2 − ... − αpBp

Then,

ϕ(B)X(n) = Z(n)

• Auto Regressive Moving Average (ARMA)

The ARMA models are composed by the junction of Auto Regressive and
Moving Average models making it possible, in many cases, to achieve more
flexibility in fitting the model to the data when compared of MA or AR
alone.

X(n) = α1X(n − 1) + α2X(n − 2) + ... + αpX(n − p) + β0Z(n) + β1Z(n −
1) + ... + βqZ(n − q)
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Considering the backward shift operator B as BjZ(n) = Z(n − j) we have:

ϕ(B) = 1 − α1B − α2B2 − ... − αpBp

θ(B) = β0 + β1B + β2B2 + ... + βqBq

Then,

ϕ(B)X(n) = θ(B)Z(n)

• Auto Regressive Integrated Moving Average (ARIMA)

The AR, MA and ARMA models require that the time series be stationary as
previously described, one of the most effective ways to obtain the stationar-
ity of a time series is through differentiation.

The ARIMA models are capable of describing non-stationary processes as
they obtain the stationarity of processes by differentiation and then use
ARMA models to describe the process. To obtain the real time series values
on the output the ARMA model must be integrated. Due to this integration
step, the name Integrated(I) is added to the model.

In ARIMA models, the mathematical representation uses the differential op-
erator described by: W(n) = ▽dX(n) = (1 − B)dX(n), d = 1, 2, ....

W(n) =
α1W(n − 1) + ... + αpW(n − p) + β0Z(n) + β1Z(n − 1) + ... + βqZ(n − q)

Considering the backward shift operator B as BjZ(n) = Z(n − j) we have:

ϕ(B) = 1 − α1B − α2B2 − ... − αpBp

θ(B) = β0 + β1B + β2B2 + ... + βqBq

Then,

ϕ(B)W(n) = θ(B)Z(n)

• Seasonal Auto Regressive Integrated Moving Average (SARIMA)

The ARIMA model is not able to consider the seasonal component of the
time series and considering that seasonality is a very common property,
the SARIMA model appears as a variation of the ARIMA model capable
of representing it. SARIMA model is composed of two ARIMA models,
one that deals with short-term dependencies and the other that deals with
seasonal dependencies.

Considering the backward shift operator B as BjZ(n) = Z(n − j) we have:

11
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ϕp(B) = 1 − α1B − α2B2 − ... − αpBp

ΦP(BS) = 1 − a1BS − a2BS2 − ... − aPBSP

θq(B) = β0 + β1B + β2B2 + ... + βqBq

ΘQ(BS) = b0 + b1BS + b2BS2 + ... + bQBSQ

▽d: d order simple differencing as a trend removal mechanism

▽D
S : D order seasonal differencing, removing seasonal patterns

Then,

ϕp(B)ΦP(BS)▽d ▽D
S X(n) = θq(B)ΘQ(BS)Z(n)

Where ϕp defines the short-term AR parameters, ΦP defines the seasonal
AR parameters. Similarly, θq defines the short-term MA parameters, and
ΘQ defines the seasonal MA parameters.

Therefore, the correct fit of SARIMA models requires the following parameters to
be specified:

SARIMA(p, d, q)(P, D, Q)s

• p: Autoregressive order (AR order)

• d: Degree of differencing (integration order)

• q: Moving average order (MA order)

• P: Seasonal autoregressive order (SAR order)

• D: Seasonal degree of differencing (seasonal integration order)

• Q: Seasonal moving average order (SMA order)

• s: Seasonal period (number of time steps in one season)

Finally, after obtaining the structure of the SARIMA model, it becomes possible to
include exogenous variables in the model, which results in the SARIMAX model
as defined below.

Considering X1(n), X2(n), ..., XM(n) as the exogenous variables and the back-
ward shift operator B as BjZ(n) = Z(n − j) we have:

γi(B) = ξi0 + ξi1B + ξi2B2 + ... + ξipBp

γ1(B)X1(n) + γ2(B)X2(n) + ... + γM(B)XM(n) =
M

∑
i=1

ξiXi(n)
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And the SARIMAX model as an extension of SARIMA model can be expressed
by:

ϕp(B)ΦP(BS)▽d ▽D
S X(n) =

M

∑
i=1

ξiXi(n) + θq(B)ΘQ(BS)Z(n)

2.1.3 Neural Networks

Neural networks consist of interconnected artificial neurons, called nodes or units,
organized in layers. Each node receives input signals, applies a mathematical op-
eration to them, and produces an output signal. The connections between nodes
are associated with weights that determine the strength of the input signal.

The performance of time series forecasting models based on neural network tech-
niques can be extensively explored among the many existing possibilities, for
this work, recognized efficient methods like Long Short-Term Memory Networks
(LSTMs), Gated Recurrent Units (GRU) will be evaluated to obtain the desired
results.

Recurrent Neural Networks - RNN

The RNNs process sequential data by incorporating feedback connections, each
node can maintain a state that captures information from previous time steps
giving the neural network the capacity to retain memory.

In a time-series data set, the values on successive time-stamps are closely related
to one another. If the values of these time-stamps are used as independent fea-
tures the key information about the relationships among the values is lost. For
this reason, the capacity to consider dependencies among the attributes makes
the RNNs well-suited for time-series data.

• Long Short-Term Memory - LSTM

Long Short-Term Memory (LSTMs) are a type of recurrent neural network
(RNN) architecture that are able to selectively remember and forget infor-
mation from previous time steps, making them particularly effective for
modelling long-term dependencies in time series data. See LSTM network
structure in Figure 2.2

The main component of an LSTM is its memory cell, it is responsible for
storing and updating the memory state. The cell interacts with different
gates that control the flow of information, including the input gate, forget
gate, and output gate.

The memory cell is equipped with an internal state and a number of multi-
plicative gates as described:
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Figure 2.2: LSTM neural network structure [24]

1. Input gate determines whether a given input should impact the inter-
nal state;

2. Forget gate determine whether the internal state should be changed to
0;

3. Output gates determine whether the internal state of a given neuron
should be allowed to impact the cell’s output.

The LSTM gate receives the current time step and the hidden state of the
previous time step as inputs. Three fully connected layers with sigmoid
activation functions compute the values of the input, forget, and output
gates, as a consequence the gate’s output is limited to the range (0,1).

In Figure 2.3 is possible to observe that the forget gate determines whether
to keep the current value of the memory or flush it through a product op-
erator. The input node is typically computed with a hyperbolic tangent
activation function (tanh) and it determines how much of the input node’s
value should be added to the current memory cell internal state and the out-
put gate determines whether the memory cell should influence the output
at the current time step.

Mathematically, the expressions for gate output calculations are:

It = σ(XtWxi + Ht−1Whi + bi)
Ft = σ(XtWx f + Ht−1Wh f + b f )
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Figure 2.3: Structure of LSTM Unit [27]

Ot = σ(XtWxo + Ht−1Who + bo)

Where:
Xt is the input at step t
Ht−1 is the hidden state at step t-1
It is the input gate at step t
Ft is the forget gate at step t
Ot is the output gate at step t
W are the weight parameters
b are the bias parameters

Similarly, the equation for the input node can be expressed as:

C′
t = tanh(XtWxc + Ht−1Whc + bc)

Consequently, the current memory cell state can be expressed as a function
of the input and forget gates, the one step behind the memory cell state and
the input node:

Ct = Ft · Ct−1 + It · C′
t

Finally, the new hidden state is calculated by applying the product oper-
ator between the hyperbolic tangent (tanh) function of the memory cell’s
internal state and the output gate.

Ht = Ot · tanh(Ct)

15



Chapter 2

• Gated Recurrent Units - GRU

The Gated Recurrent Units (GRU) architecture is a variation of the LSTM,
the LSTM’s three gates are replaced by two sigmoid activations gates: the
reset gate and the update gate. The LSTM and GRU methods achieve com-
parable performance but GRU has the advantage of being faster to compute.

Likewise, an update gate would allow us to control how much of the previ-
ous hidden state should be retained and how much of the new information
should be added to the current hidden state. The reset gate decides how
much of the previous hidden state should be forgotten.

Figure 2.4: Structure of GRU Unit [27]

Mathematically, the expressions for gate output calculations are:

Rt = σ(XtWxr + Ht−1Whr + br)
Zt = σ(XtWxz + Ht−1Whz + bz)

Where:
Xt is the input at step t
Ht−1 is the hidden state at step t-1
Rt is the reset gate at step t
Zt is the update gate at step t
W are the weight parameters
b are the bias parameters

The GRU’s candidate Hidden State is computed like LSTM’s input node:

H′
t = tanh(XtWxh + Ht−1Whh + bh)

And the final Hidden State update equation is described as:
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Ht = Zt · Ht−1 + (1 − Zt) · H′
t

2.1.4 Evaluation Metrics

In order to evaluate the performance of energy price forecasting methods, com-
parison metrics were used between the time series obtained through the predic-
tion of the models with the time series with real prices realized in the same period.

The evaluation metrics used are described as follows, where Y represents the real
energy price values and X represents the energy price prediction values:

• Mean Absolute Error (MAE)

MAE =
∑N

i=1 |Yi − Xi|
N

• Root Mean Squared Error (RMSE)

RMSE =

√
∑N

i=1(Yi − Xi)2

N

• Mean Absolute Percentage Error (MAPE)

MAPE =
∑N

i=1 |
Yi−Xi

Xi
|

N
∗ 100%

2.2 Smart Grids

A smart grid incorporates digital technology, communication networks, and au-
tomation to enhance the efficiency, reliability, and sustainability of the electrical
grid.

It represents a significant upgrade from traditional power grids, which are often
characterized by one-way electricity flows and limited real-time data monitoring
and control. Smart Grids enable bidirectional communication between various
components of the grid, allowing for better coordination and management.

2.2.1 Smart Grids Challenges

Historically, electricity consumption was static and predictable, any unexpected
change in its behaviour was reflected in a major challenge for operators of energy
transmission and distribution systems.

With the entry of intermittent renewable sources in electrical systems, the com-
plexity of forecasting demand increases, making static systems completely obso-
lete.
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Considering the context presented, it is important to identify the main challenges
to be faced by smart grids in the upcoming years.

1. Growing amount of renewable energy sources: The increasing amount of
renewable energy sources in the system is especially challenging due to the
intermittent nature of these sources since the volume of generation derives
from climatic factors and therefore cannot be controlled or predicted with
accuracy. The oscillation of generation from renewable sources introduces
difficulty in controlling the voltage levels in the systems.

2. Losses in the transmission of electricity: It derives from the one-way char-
acteristic of traditional transmission systems. All real systems will suffer
losses, but for long transmission systems to serve consumers very far from
the generation centres, electrical losses are significant and greatly reduce
the efficiency of the transport process.

3. Interruptions in power delivery Interruptions in supply services are prob-
lems that get worse in systems with little mesh, where there are not many
path options for the interconnection between nodes. Thus, any partial sys-
tem unavailability that occurs along the entire radial circuit will affect black-
outs from that point onwards.

4. High Consumption Demand Operation: Power transmission and distri-
bution systems are known for their off-duty operation most of the time, this
is because they are sized to meet times of high demand that generally only
occur during a few hours of the day or atypical days and all the efforts of
operators of systems are geared precisely to meet periods of high demand.

5. Electromobility: The electromobile transition will be responsible for a ma-
jor change in the demand curve for electricity with the increasing replace-
ment of vehicles powered by fossil fuels by electric ones, in addition to new
possibilities for electric transport that begin to emerge with the advance-
ment of batteries. In the context of public transport, electrical solutions are
also taking up more and more space considering their efficiency and eco-
logical acceptability.

6. Network Modernization: Energy networks modernization refers to the
process of updating and upgrading the infrastructure that is used to trans-
mit and distribute electricity.

This can include replacing old equipment and technology, and implement-
ing new control systems and automation.

The goal of energy network modernization is to improve the efficiency, re-
liability, and sustainability of energy systems. It can also help to reduce
greenhouse gas emissions and support the transition to a low-carbon econ-
omy. Examples of modernization initiatives include:

• Smart grid technology, which allows for two-way communication be-
tween utilities and consumers.

18



Background

• Advanced metering infrastructure (AMI), which uses smart meters to
communicate real-time energy usage data to utilities, enabling them to
better manage demand and improve grid operations.

• Distribution automation, which uses sensors, communication networks,
and advanced control systems to improve the reliability and efficiency
of the distribution grid.

7. Threat of Cyber Attacks: As systems become more automated and re-
motely manoeuvrable, they also become susceptible to cyber attacks and
the consequences of this type of interference will be more devastating. In
this context, cyber security is fundamental for the viability of intelligent
networks.

8. Threat of terrorist attacks: Energy systems are fundamental to the entire
operation of an entity, be it a country, state or even a company. Using this
fragility, terrorist attacks will always consider them in their strategic action.
It is important that the systems are less and less dependent on their regions
in order to reduce the consequences of this type of vandalism.

The global energy scenario presents great challenges, besides the technical chal-
lenges to the immediate implementation of solutions, it also requires a large vol-
ume of investments, considering the necessary infrastructure for the entire exist-
ing process between energy production and consumption. [19]

Therefore, this thesis seeks to investigate possible solutions considering technical
and economical aspects.

First, it is necessary to understand the economic context of the electricity mar-
ket and the characteristics that influence the formation of the energy price that is
made available to the final consumer. It is very important to bear in mind that
the cost of generating and transmitting energy changes with time and depends
on several factors, such as the availability of energy inputs, operation and main-
tenance of assets and the amount of energy demanded.

The periods of greatest energy demand are those that generate more difficulties
and costs for the operation of transmission and distribution systems. Addition-
ally, the power required to meet peak hours in many cases requires the use of
more expensive energy sources to be available, so it seems plausible consumers
receive financial incentives to allocate their consumption at times when the sys-
tem is not overloaded.

To make this possible in a concrete way, it is necessary to carry out periodic mea-
surements for each energy consumer in order to record the energy consumption
at different times of the day, this means a huge volume of data to be transmitted
and processed.

The evolution of technology for photovoltaic generation has reached the level
of modular viability at the individual level: the costs of equipment are afford-
able and its efficiency is acceptable to be used by any individual and new system
owners are already considering the possibility of commercialization
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As mentioned earlier, the challenge of operating the distribution systems increases
with the entry of distributed microgeneration, in addition, regulatory issues need
to be reviewed to allow this type of operation. Actually, what exists for the in-
dividual consumer is the possibility of reducing the energy tariff through the
injection of private generation. [22]

It’s also important not to lose sight of the fact that the current energy market is
controlled by a small group of large companies that would certainly offer resis-
tance to this type of modification.

In this document, we will analyze the current energy market and investigate how
smart grids with high performance in 5G communication and data processing can
promote changes in current energy models.

2.2.2 Smart Grids Emulation

In order to achieve the objectives of this work and obtain a realistic prototype for
simulating a system capable of providing real-time energy prices, it is essential
that the 5G communication system is as close as possible to the real communi-
cation network. To meet this requirement, open-source software capable of sim-
ulating the communication between the smart meters and the Multi-Acess Edge
Computing(MEC) servers will be used.

In this section, there is an introductory description of the Simu5G used to simu-
late the 5G network and the Gurux simulator, used to simulate the smart meters.

SIMU5G

Simu5G is a 5G New Radio (NR) developed by a research project carried out by
Intel Corporation[12] and the Computer Networking Group of the University of
Pisa, Italy and widely used by industry and academia.

Schematically, the 5G system uses a User Equipment (UE), itself composed of
a Mobile Station and a Universal Subscriber Identity Module(USIM), the Radio
Access Network (NG-RAN) and the Core Network (5GC).

The main entity of the NG-RAN is the GNB, where "g" stands for "5G" and "NB"
for "Node B", which refers to the radio transmitter.

The 5GC is represented UPF entity: the User Plane Function (UPF), handling
the user data and, in the signalling plane, the Access and Mobility Management
Function (AMF) that accesses the UE and the NG-RAN.

Simu5G is based on the OMNeT++ simulation framework and provides a collec-
tion of models with well-defined interfaces, which can be instantiated and con-
nected to build arbitrarily complex simulation scenarios.

For a better understanding of the full potential of the SIMU5G simulator, more
detailed descriptions of the OMNet++ and INET frameworks are necessary. The
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information below are selected and transcribed parts from the original descrip-
tions of the software and summarizes its main features:

• OMNet++ [11]

The Discrete Event Simulator OMNeT++ is an extensible, modular, component-
based C++ simulation library and framework, primarily for building net-
work simulators.

More specifically, OMNet++ includes wired and wireless communication
network simulations, Domain-specific functionality such as support for sen-
sor networks, wireless ad-hoc networks, Internet protocols, performance
modeling, photonic networks, etc., is provided by model frameworks, de-
veloped as independent projects.

OMNeT++ offers an Eclipse-based IDE, a graphical runtime environment,
and a host of other tools. There are extensions for real-time simulation,
network emulation, database integration, SystemC integration, and several
other functions.

• INET [6]

The INET Framework can be considered the standard protocol model li-
brary of OMNeT++. INET contains models for the Internet stack and many
other protocols and components. Several other simulation frameworks take
INET as a base and extend it into specific directions, such as vehicular net-
works (Veins, CoRE), overlay/peer-to-peer networks (OverSim), or LTE (Si-
muLTE).

The INET Framework contains models for the Internet stack (TCP, UDP,
IPv4, IPv6, OSPF, BGP, etc.), wired and wireless link layer protocols (Eth-
ernet, Point-to-Point Protocol (PPP), Institute of Electrical and Electronics
Engineers (IEEE) 802.11, etc), support for mobility, Mobile Ad hoc Network
(MANET) protocols, DiffServ, Multiprotocol Label Switching(MPLS) with
Label Distribution Protocol(LDP) and Resource Reservation Protocol - Traf-
fic Engineering(RSVP-TE) signalling, several application models, and many
other protocols and components.

INET is built around the concept of modules that communicate by message
passing. Agents and network protocols are represented by components,
which can be freely combined to form hosts, routers, switches, and other
networking devices.

The Simu5G simulator is able to simulate generic TCP/IP networks including 5G
NR layer-2 interfaces through the models of the INET library, more specifically,
Simu5G simulates the data plane of the 5G Radio Access Network (RAN) and
core network in both Frequency Division Duplexing (FDD) and Time Division
Duplexing (TDD) modes, with heterogeneous GNBs cells (macro, micro, pico,
etc.).

For the specific purposes of the development of this work, the simulator SIMU5G
offers the functionality to run in real-time emulation mode, enabling interac-
tion with real devices, thanks to OMNeT++’s real-time scheduling of events and
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INET’s capability to exchange IP packets between local applications or network
interfaces and the simulator. These IP packets are processed by the simulator as
if they were traversing the 5G cellular network. The above allows a user to run
live networked applications having an emulated 5G network in the middle

Additionally, SIMU5G includes a model of ETSI MEC with models of MEC or-
chestrator, MEC platforms, MEC hosts and MEC services. In the latter, interfaces
towards application endpoints (MEC app and Device app) are ETSI compliant,
which means that one can also use real MEC-based applications and run them
through a simulated 5G network, also in real time. The MEC model offered by
Simu5G comes with MEC services, namely the Radio Network Information Ser-
vice and the Location Service, which return information taken from the simulated
5G network. This way, a MEC developer can test real MEC applications in a real-
istic and fully controllable MEC-enabled 5G network which will be essential for
future developments of the work presented here.

2.2.3 Smart Meters

In order to compose a realistic operational scenario in smart grids, it is necessary
to consider the standard protocols for communication between devices. For this
purpose, Gurux smart meter simulators are used in this work.

Gurux is a Finnish company specialized in Device Language Message Specifi-
cation DLMS protocol used in smart meter communication, their products are
licensed globally. The smart meter simulator provided by Gurux is an open-
source software that simulates the existence of a real smart meter connected to the
system, through which it is possible to perform measurement reading requests
through the DLMS protocol, exactly the same way as with the real device.

Device Language Message Specification - DLMS

DLMS is a protocol standard that is used in electricity, water and gas meters glob-
ally.

Protocol standard is needed to read data from different meter types and manu-
facturers. DLMS is based on the following IEC standards:

• IEC 62056-21 Direct local data exchange

• IEC 62056-42 Physical Layer Services and Procedures for Connection-Oriented
Asynchronous Data Exchange

• IEC 62056-46 Data link layer using HDLC protocol

• IEC 62056-47 COSEM transport layers for IPv4 networks

• IEC 62056-53 COSEM application layer

• IEC 62056-61 OBIS Object identification system
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• IEC 62056-62 Interface objects

DLMS doesn’t define what kind of functionality a meter must implement, only
how to communicate with the meters allowing it to be used for several types of
certified meters and their respective communication channels.

In DLMS there are different authentication levels, each authentication level gives
different kinds of control for the meter becoming adjustable for various client-
server interface configurations.

In closed systems, there is no need for authentication levels, but in DLMS one
needs to establish communication with the meter before reading.

Secured connections are mandatory when data is sent Over The Air (OTA). DLMS
supports three different ways to secure the data.

• Authentication

• Encryption

• Authentication and Encryption

In DLMS, three different kinds of encryption methods to secure a connection be-
tween the client and the meter are supported:

• AES-GCM-128 AES-GCM-128

• ECDH-ECDSAAES-GCM-128SHA-256

• ECDH-ECDSAAES-GCM-256SHA-384

Logical Name and interfaces

In DLMS there are interfaces that describe what kind of data you want to get from
the meter. All meter manufacturers should use the same interfaces and Logical
names. The standardization of logical names and interfaces makes it possible to
replace meters with new ones when different meters are using the same interfaces
and logical names. or even change the meter model and manufacturer and an old
data collecting system can be used.

Client and Server addresses

Each authentication level has its own client address. So when the authentication
level changes also client address changes. There is a client address defined in the
DLMS standard only when a connection is made without authentication.

Each meter must have a unique server address. Using this address meter knows
what messages to receive. Also, the client knows the message sender. The meter
serial number can be usually used as the server address. This makes it possible
that there are several meters operating in the same network (UDP, radio, RS-485).
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PDU and frame size

The size of the Protocol Data Units PDU depends on the meter. If the meter
doesn’t have a lot of memory PDU size is smaller. Frame size depends on the
communication channel.

Protocol specification for the MAC sublayer

The DLMS protocol uses the HDLC frame format type 3 as defined in Annex H.4
of ISO/IEC 13239 in MAC sublayer as shown in Figure 2.5.

Figure 2.5: HDLC Frame Format Type 3 [3]

A description of the frame can be found in the following clauses:

1. Flag field

The length of the flag field is one byte and its value is 0x7E. When two or
more frames are transmitted continuously, a single flag is used as both the
closing flag of one frame and the opening flag of the next frame.

2. Frame format field

The length of the frame format field is two bytes. It consists of one 4 bits
Format type sub-field, one Segmentation bit S and the 11 bit frame length
sub-field, represented by Figure 2.6:

Figure 2.6: Frame Format Field [3]

The value of the format type sub-field is 1010 used to identify the frame
format type 3.

The segmentation bit indicates whether the data being transmitted is part
of a larger message that needs to be segmented for transmission. It is used
to indicate whether the data payload of the current frame is a complete
message or if it is a segment of a larger message that has been divided into
smaller parts for transmission efficiency.

The value of the frame length subfield is the size of the frame in bytes ex-
cluding the opening and closing frame flag sequences.

3. Destination and source address fields

Destination and address frames are used for usual destination and source
addressing. Depending on the direction of the data transfer, both the client
and the server addresses can be destination or source addresses.
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4. Control field

HDLC uses the control field to determine how to control the process of com-
munication. The control field is different for different types of frames in the
HDLC protocol. The types of frames can be Information frame (I-frame),
Supervisory frame (S-frame), and Unnumbered frame (U-frame).

The control field is a 1-2-byte segment depending on the type of the frame
and it is generally required for flow and error control.

5. Header check sequence (HCS) field

The HCS field is used to check the sequence applied only for the header and
it has a two bytes length.

6. Information field

The information field may be any sequence of bytes. In the case of data
frames (I and UI frames), it carries the MAC Service Data Unit (MSDU).

7. Frame check sequence (FCS) field

The length of the FCS field is two bytes. The frame checking sequence is
calculated for the entire length of the frame, excluding the opening flag, the
FCS and any start and stop elements (start/stop transmission).

2.3 Monopolistic Nature of Energy Market

A natural monopoly exists typically due to the high start-up costs or powerful
economies of scale of conducting a business in a specific industry which can result
in significant barriers to entry for potential competitors. The energy industry is a
classic example of a natural monopoly, the bulk of power generation and power
transmission entails large up-front fixed costs and once this investment is paid,
each additional unit of generated energy has a very low cost, at the same time,
it generates enormous economies of scale, the fixed costs will be spread between
the retails customers providing increasingly reasonable final prices for more units
sold. An important aspect of the energy industry that reinforces its permanence
as a natural monopoly is the unavailability of energy resources for the different
possible sources of energy.

Hydroelectric energy resources can be taken as an example, the water resource
is considered a public good that must be made available to all members of so-
ciety. Typically, these services are administered by governments and paid for
collectively through taxation which usually results in exploitation through the
concession regime. The point to be highlighted is that even if the high volume
of investments was not an entry barrier for this specific market, the existence
of hydropower potential depends on a set of geomorphological characteristics
and there are few locations that can meet all the necessary requirements, the ex-
pected final result is the existence of one or few companies exploiting the totality
of the hydroelectric potential. The same analogy can be applied to non-renewable
sources such as nuclear power plants or thermoelectric power plants. In these
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cases, the competitive advantage can be established in companies that own the
main sources of production resources, such as uranium, coal, natural gas, and oil.

As recognized natural monopolies, the electric utilities rates charged to customers
were historically regulated by the governments in order to set at the supposed
tariff modicity level and at the same time cover the operational costs and capital
return. In the 1990s, there were many moves toward deregulation around the
world based on the belief that competition would reduce the final energy price
for consumers.

Deregulation has been orchestrated in different ways around the world, but mostly
it has included competition between generators selling to distributors and com-
petition between distributors selling to final customers. However, the regulation
proponents underestimated the monopolist nature of the market and most house-
holds can’t really choose their electricity supplier since the local power market
is still dominated by one generator. The consequences of a deregulated market
combined with the lack of genuine competition may imply market manipulation,
intentionally reducing the amount of generated power in order to drive up prices.

The breaking of a monopoly brings the gains to consumers outweigh the loss
to the producer, but it’s not so clear whether a natural monopoly, one in which
a large producer has lower average total costs than small producers, should be
broken up because this would raise the average total cost.

The advancement of technologies has gradually changed the characteristics of
the energy market through the growth of distributed microgeneration. New ad-
vances such as smart grids and smart homes equipped with battery energy stor-
age systems will generate environments conducive to the free negotiation of en-
ergy on the electricity grid thanks to the new capacity for flexible operation in
response to sudden variations in generation.

Therefore, the advancement of technology has allowed the opening of markets
historically restricted to a few companies, allowing the entry of small companies
and even individuals. The characterization of the different markets, namely per-
fect competition, monopoly and oligopoly is necessary so that it is possible to
analyze the possibilities for the energy sector.

2.3.1 Perfect Competition

Consumers and producers are price-takers in a perfectly competitive market,
which means that their individual decisions cannot affect the market price. Two
main conditions must be satisfied to classify a market as perfectly competitive:

1. It must contain many producers, none of whom have a large market share.

2. Products from different producers are considered indifferent to consumers.

Most competitive industries can enter and leave the industry, there are no gov-
ernmental regulation obstacles or limited access to key resources and there are no
additional costs associated with shutting down a company.
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In a perfectly competitive market, the price is defined by a horizontal line invari-
ant with the quantity produced, the maximum profit point is defined at the point
of intersection of the price line with the marginal cost curve, as can be seen in
Figure 2.7.

Figure 2.7: Price - Taking Firm’s Profit Maximizing [23]

2.3.2 Monopoly

The fundamental characteristic of a monopoly is the capability to control the util-
ity price by controlling the availability of a good on the market. In a perfect com-
petitive market, the producer faces a fixed market price independent of the sold
amount, a monopolist, though, can affect the price because he is the sole supplier
of that good in the industry facing a downward-sloping demand curve where
price decreases with quantity sold, so by reducing output, it raises the price as
illustrated in Figure 2.8.

Figure 2.8: Perfectly Competitive and Monopolist Demand Curves[23]

The key to the existence of a monopolist market is the presence of strong barriers
to entry, the five principal types of barriers are as follows:
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1. Control of a scarce resource or input Oil is a clear example of energy source
control, oil reserves are limited and the extraction and distribution of oil is
controlled by a small number of large companies and countries.

2. Increasing returns of scale Identified when long-run average total cost de-
clines as output increases, the fixed cost is diluted with a larger number of
units produced

3. Technological superiority

The technological superiority held by a company can enable the complete
dominance of the market in which it operates when no other competing
product is comparable to this one.

4. Network externality

The network externality is characterized whereby the value of a good or
service to an individual is greater when many others use the same good or
service. As examples of network externality we can cite energy distribution
systems, the internet, and roads.

5. Government created barrier

In some cases, the monopoly is purposely created with the intention of pro-
tecting acquired rights or creating incentives, as examples we can mention
copyrights and patents.

A more general picture of monopoly shows us that the profit-maximizing level of
output is the output at which marginal revenue equals marginal cost, indicated
by point A assuming the usual marginal cost curve has a “swoosh” shape and the
average total cost curve is U-shaped.

D: Demand; MC: Marginal Cost; MR: Marginal Revenue; ATC: Average Total Cost

Figure 2.9: Monopolist’s Profit [23]

It is easy to see in Figure 2.9 that it is not interesting for the monopolist to pro-
duce a different amount of the profit-maximizing quantity (QM), the monopolist,
having full control over the production of the good, will always adjust demand
to operate at its optimal point.
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2.3.3 Oligopoly

True monopolies are hard to find, partly because of legal obstacles, oligopolies on
the other hand are much more common. Oligopoly originates in the same way
as monopoly, but materializes in a weaker form, increasing returns to scale is one
of the most important sources for the existence of oligopolies. An oligopoly will
be formed when a small number of producers are the only suppliers of a good in
a specific region. The oligopolists compete with one another, but they know that
its decision about how much to produce would affect the market price, this type
of competition is called “imperfect competition”.

In oligopolistic markets, the unilateral choice of operating at the point of maxi-
mum profit by all companies generates oversupply which results in falling prices
and consequent reduction in profits for all, therefore, oligopolistic markets will
always tend to form collusion or cartels aiming to find the optimal point for ev-
eryone, in practice this is not so simple due to legal blockages and possibilities
of non-compliance with agreements by the participants to increase their profit
individually.

Among all types of markets, the oligopoly is the closest to the current model in
Portugal and Spain, defined through the Iberian Electricity Market - MIBEL, the
acquisition of electricity is done through auctions to ensure competitiveness and
there is also the action of the Energy Services Regulatory Authority - ERSE for the
regulation of natural monopolies.

2.4 The Electric Sector in Portugal

The electric sector in Portugal is configured in a similar way to the majority of
the countries worldwide. The basic composition is represented by four classes of
agents with well-defined functions:

1. Generators, responsible for the production of electric energy from available
sources;

2. Transmitters: responsible for the operation and maintenance of large capac-
ity transmission systems, these are generally systems that operate at very
high voltage and transport energy over long distances;

3. Distributors: transport local energy, operate at medium/high voltage and
carry out delivery to final consumers, divided into industrial, commercial
and residential classes.

4. Auxiliary Agents: In addition to the main agents, the electricity sector also
has important auxiliary agents, usually government agencies that take care
of regulation and centralized operation of the system.

The regulation agency is important for quality control and reasonableness in tar-
iffs, as already mentioned in the (refer to previous Section 2.3). The current elec-
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trical systems are still not well equipped with energy storage capability and there-
fore very dependent on an efficient control system to ensure good behavior in the
face of consumption and generation fluctuations in real time, the system operator
is then responsible for commanding the physical operation of the system through
the various agents involved. [20]

2.4.1 Electric Sector Agents

In this section there is a brief description of the main agents in the electricity
sector and their respective roles.

Entidade Reguladora dos Serviços Energéticos - ERSE

The "Entidade Reguladora dos Serviços Energéticos" (ERSE), is a public legal en-
tity responsible for the regulation of energy services, its function is to guarantee
the efficiency of the services provided, ERSE has a specific council to act on the
regulation of prices and tariffs. [14]

Energy Generators

Power generators in Portugal are divided into two operating regimes named or-
dinary and special regimes. Producers who use renewable endogenous resources
or combined heat and electricity production technologies are included in the spe-
cial regime, all other producers are classified in the ordinary regime.

Redes Energéticas Nacionais - REN

The “Redes Energéticas Nacionais”(REN) is the company responsible for man-
aging the electricity transmission systems in Portugal, it operates under a public
service concession regime and its activity includes the planning, construction,
operation and maintenance of the national transmission network. [16]

Energy Distributors

The Power distributors are responsible for the maintenance and operation of
lines, substations, transformer units and disconnectors, these companies operate
at voltage levels ranging from low to high and are responsible for the electrical
systems that interconnect the transport systems to the final consumer.

Energy Trading Agents

In the context of liberalization of the energy market, energy traders have the
function of acquiring energy from producers and offering it to final consumers,
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for which they have access to transmission and distribution systems through the
payment of fees for the use of these assets.

Electricity Market Operator - OMIE

The operator of the Iberian energy market OMIE performs the integration of en-
ergy supply by producers for acquisition by traders, this activity is carried out
through auctions for the purchase and sale of energy that aim to implement the
necessary commercial relationships to meet demand at the lowest possible price
for Portugal and Spain. The energy acquisition process is carried out in 2 princi-
pal market modalities, the Day-ahead market, the Intraday market:

1. Day-ahead market

The day-ahead market, also called single day-ahead coupling (SDAC), is the
environment where energy is acquired through purchase and sale transac-
tions for the next twenty-four hours, the price and volume offered are de-
fined through the intersection of forecast supply and demand curves.

2. Intraday market

The intraday market is important for making adjustments to the generation
programming defined in the Day-ahead market, this is done through the
intraday auction market modality, which makes adjustments through auc-
tion sessions and through the intraday continuous market modality, which
trades volumes smaller amounts of energy with greater liquidity, it can be
carried out up to one hour in advance. [15]
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2.4.2 The Electricity Market Model

The energy market in Portugal follows the liberalization process common to most
European countries. The activities of energy generation, transport and distribu-
tion are objects of economic regulation as natural monopolies, therefore In the
post liberalization model, the production and commercialization of electricity
were open to competition in order to obtain greater efficiency in the management
and operation of energy resources.

Within the scope of the commercialization of electric energy, energy producers
make their production available through a wholesale market and the sale to the
final consumer is made through the retail market. The commercialization activity
is dissociated from the activities of generation, transmission and distribution in
the liberal vertical model, which is why there is the figure of the energy trader
who makes the commercial connection between producers and consumers.

Wholesale Market

The wholesale energy market is managed by the operator of the Iberian energy
market - OMIE through market mechanisms called the Day-Ahead Market and
the Intraday Market as defined in Ref. 2.4.1 - OMIE.

Retail Market

The liberalized energy market allows the free commercialization of electric en-
ergy, this happens through the retail market where each supplier offers the ac-
quired energy and establishes supply contracts with final consumers. Ref. 2.4.1 -
Energy Trading Agents.

Energy Price

The final energy price is the composition of the energy price obtained by the day-
ahead market added to the price obtained with the adjustment mechanisms car-
ried out by the intraday market. This price model is represented by the “Day
ahead price”, “Adjustment mechanism”, “Additional cost constrains”, “Addi-
tional cost intradaily m.”, in addition to the adjustments carried out by the oper-
ator of the system, represented by the captions “Additional cost SO processes”,
“Interruptibility Service”. See Figure 2.10.

It is possible to verify the predominance of the price obtained through the day-
ahead market in the final price, the participation of the adjustment prices vary
according to the adversities encountered.

On several occasions the amount of energy effectively demanded will be differ-
ent from that foreseen at the time of contracting in the day-ahead market, the
greater the need for correction, the greater the participation of the adjustment
component.
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Figure 2.10: Final Price Components - Reference Retailers OMIE [15]

2.5 Benefits of a free competition energy market

The market of free competition in the energy sector presents itself as the main
trend for the energy transition considering all the benefits pointed out, therefore
this work aims to investigate the financial, economic and technical benefits of
this scenario, as well as to evaluate the technological advances necessary for its
implementation.

The energy transition is just starting around the world, there is much to be dis-
cussed and many possibilities to be explored, some of which have been addressed
by this study. What can be accurately stated is that it will take the evolution of
all areas that make up the current energy sector, in this context 5G Smart Grids
assume a key position.

The 5G Smart Grids is flexible technology to the point of integrating all current
technologies, meeting the performance requirements in terms of transmission
speed, reliability in the delivery of information and security requirements that
highly automated systems require.

An important aspect about the development of smart grids is that it is not an in-
novative invention that can revolutionize an entire industry in a short period of
time, it is an ideological model that arises with the technological improvement
of several areas that together bring the disruptive result, this feature makes the
transitional process more complex and each current impediment to its implemen-
tation must be carefully studied and eliminated.

It is for this reason that, despite Smart Grids playing the main role in this context,
the central theme of this work is the financial and economic context, in particu-
lar related to the price of energy and its impacts on the entire energy transition
process.

Among the main obstacles to replacing current systems with smart grids is the
large amount of capital needed to replace devices and mechanisms with others
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with communication capabilities and automatic action required to meet the ob-
jective functionalities. In this sense, the ever-increasing opening of the energy
markets comes not only to the reduction of energy prices in general, but also
to attract the necessary investment for this upgrade, as it is expected that the
return on investment expected from the negotiation of energy justifies the neces-
sary investments for it, investments that bring benefits to the energy chain as a
whole.[19]

Below are some examples of how increasing the participation of producer con-
sumers on the energy market can benefit the overcoming of a series of existing
difficulties in the systems responsible for the generation, transmission and distri-
bution of electric energy as mentioned in Section 2.2.1.

1. Growing amount of renewable energy sources:

The great challenge for controlling voltage levels in a system with a large
share of renewables comes from the fact that the variation in the amount of
energy supplied varies very quickly on several occasions, reducing the time
required to correct the voltage profiles. [26]

Batteries are great allies of these systems because they are able to smooth the
power variation curves, supplying the system when there is a lack of main
sources or using the excess energy generated for storage.With the growing
increase in renewable sources, storage possibilities demand large invest-
ments in batteries and automatic control systems.[21]

For this reason, financial incentives for producing consumers to invest in
their generation systems are extremely important, the use of batteries would
optimize individual generation systems, storing the energy produced for
use at times when the system most depends on it, leading to increased costs.
Profits from individual systems and cutting edge prices, as a bonus, the
entire system becomes more stable, flexible and reliable.

It is important to remember that when we talk about storing the energy
produced, the electrical system has many other technologies in addition to
Electrochemical energy storage or well known batteries, energy stocks can
be done through pumped storage hydro, compressed air energy storage,
thermal energy storage, Hydrogen Chemical energy storage and others in
development. [25]

It may seem not applicable to the context, but we must remember that the
entry of producer consumers into the energy market would not be limited to
the residential consumer, large commercial and industrial consumers would
have volume of generation and financial resources to invest in various stor-
age systems. In addition, the widespread participation in the energy mar-
ket would still subject everyone to the remuneration of the transport sys-
tems used for the power supplied, as is currently the case, this additional
revenue from new generators would increase the purchasing power of the
distributors, allowing for the necessary investments.

2. Interruptions in power delivery, losses in the transmission of electricity and
terrorist attacks:
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The rapid increase in distributed generation that can be expected with fi-
nancial incentives would generate the sharp increase in microgrids, net-
works capable of self-sustaining becoming independent of the rest of the
system. The emergence of microgrids sharply reduces system losses by pre-
venting the circulation of energy over long distances and reduces the con-
sequences of network outages.

3. High Consumption Demand Operation

Currently, the need to develop energy awareness is widely publicized in or-
der to guide people about the most appropriate times to consume energy.
Financial stimulus is one of the most effective means of achieving this. To-
day, many people already know that high demand times are not appropriate
for consuming energy, but they do not make great efforts to do so, since in
the vast majority of cases energy supply contracts energy do not differen-
tiate tariffs for different times. As an example, it would hardly be possible
to convince a person to charge his electric car at 5 am instead of doing it
the moment he arrives home, at 9 pm, however, if that same person knows
that he is supplying the energy of his system batteries at a high value at 9
pm, the incentive to change the charging time of your car would be much
greater and could even lead you to invest in automatic starters to charge at
the scheduled time.

In this way, both providing the current energy price and the possibility of
direct participation in the energy market would give people the necessary
incentive to intelligently manage energy consumption.

4. Electromobility and Network Modernization

Electromobility and the modernization of networks are realities that have
gained more and more space and that can be extremely accelerated through
the increase in the volume of generation and private investment. Further
studies could conclude that electric vehicles are very attractive with really
low energy prices, which would lead many people to make an early ex-
change of vehicles.

5. Threat of cyber attacks

A large part of the resources raised would inevitably need to be applied to
network security, but the emergence of microgrids also comes to corrobo-
rate with a reduction in the consequences of cyber attacks since it reduces
the interdependencies between different regions of the system.

The issue of making the energy market open to everyone in a practical and
quick way goes far beyond eliminating monopoly markets or making a
profit from the sale of energy, although these are relevant issues, the most
important thing is to achieve accessibility to the energy, as there are many
people who still cannot have access to this basic commodity, it makes no
sense to work to build so many technological facilities if we are unable to
meet these much more basic needs.

35





Chapter 3

Related Work

This chapter provides an overview of the available literature related to the theme
explored in this thesis.

3.1 Price models

The predictability of energy prices is a topic of great importance in the global eco-
nomic context. Therefore, some studies already published were used as a back-
ground for the work presented in this document.

The "Energy Markets Forecasting. From Inferential Statistics to Machine Learn-
ing: The German Case"[13] investigates the performance of statistical methods
and neural networks for forecasting the energy price in the German system. The
referenced article uses the SARIMA and LSTM methods to forecast prices, how-
ever, it does not analyze the generation inclusion of the different existing tech-
nologies as exogenous variables. In addition, the work focuses on the medium
and long term for forecasts and not on the short term.

The "Multi-Attribute Forecast of the Price in the Iberian Electricity Market" arti-
cle [8] evaluates 24-hour multi-attribute energy price predictions for the Iberian
market on the TIM (‘Tangent Information Modeler’) tool with AutoML (‘Auto
Machine Learning’) capabilities. The referenced article uses data from Portugal
and Spain to evaluate price forecasts, the work developed in this document fo-
cuses on the Portuguese system in order to obtain models that capture well the
dynamics of the local electrical system. In addition, the work presented here
brings comparisons between statistical methods and neural networks for the spe-
cific analysis of energy prices in the Portuguese system.

The "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis"[7]
evaluates the Auto Regressive (AR) model and its variations for energy price fore-
casting in Italian energy system. The referenced work evaluates the short-term
price forecasting performance in order to meet the needs of the competitive elec-
tricity market in the development of bidding strategies. The work presented in
this document is similar to the referenced work in the sense of achieving accurate
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forecasts of the price of energy in the short term, however, the work presented
in this document also seeks to evaluate methods based on neural networks and
treatment of seasonal components through the model SARIMA.

The "Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Wind Power Fore-
casting in Portugal"[1] paper proposes a novel hybrid approach, combining wavelet
transform, particle swarm optimization, and an adaptive-network-based fuzzy
inference system, is proposed in this for short-term wind power forecasting in
Portugal. The referenced study evaluates an alternative method to those used in
the work presented in this work for the treatment of time series. Furthermore, its
main objective is to meet the needs of investors in the wind energy sector, while
the study presented here seeks to forecast the price with a focus on the interests
of network operators and end consumers.

Despite the different objectives and approaches, the methodologies proposed by
the referenced studies can bring benefits to the models developed here in future
work. The different characteristics of the Portuguese electrical system compared
to the German, Italian and Spanish systems also bring additional contributions to
the work presented in this document.

3.2 5G Communication Networks

To structure the 5G emulation system, published studies of simulation of 5G net-
works using the SIMU5G simulator were used as references.

The "Scalable Real-Time Emulation of 5G Networks With Simu5G"[10] presents
an evaluation of the SIMU5G’s emulation capabilities, showing that networks
with hundreds of simulated users and tens of cells can be emulated on a single
desktop machine. The 5G network emulation platform required in the work pre-
sented in this document is similar to the one used in the referenced study, how-
ever, this document brings a specific application for using the network, which is
the transport of packets containing the electric power measurement energy gener-
ators installed in the electric system to the MEC server and transports the energy
price prediction information back to users.

The "SIMU5G: A System-level Simulator for 5G Networks"[9] discusses the mod-
elling of the protocol layers, network entities and functions, and validates our
abstraction of the physical layer using 3GPP-based scenarios. The referenced pa-
per aims to evaluate transition scenarios of communication systems to the 5G
standard through the SIMU5G simulator, this is a different approach from the
one used for this work, which uses only 5G networks in the simulations. How-
ever, the 5G Network Modeling implemented in the simulator are common in
both scenarios and were used as a reference.

38



Chapter 4

Research Objectives and Approach

The integrating characteristic of smart grids allows it to connect technologies of
different natures and also to act in the most diverse needs, whether those of tech-
nical and operational origin of the systems or from the public utility point of
view.

The Smart Grids bring many possibilities for the offer of new services and prod-
ucts, however, this great integrative capacity brings great challenges for mod-
elling the technology of new applications.

Therefore, this chapter describes the final objectives that this work seeks to achieve
with the development of a real-time energy pricing system and the approach used
to achieve them.

4.1 Research Objectives

The objective of this work is to test a real-time energy price prediction system
through a 5G communication network capable of collecting data on the genera-
tion of electricity from smart meter devices applying models of energy price fore-
cast and updating the end user with energy price values in the short and very
short terms.

The research objectives are subdivided into:

1. Evaluate the performance of energy price prediction models applied to the
Portuguese electricity system;

2. Evaluate the performance of the system for collecting generation and re-
sponse data in 5G networks.

4.1.1 Energy Price Forecast

The objective of this work is to analyze the price of energy from the perspective of
the final consumer and the intelligent operation of transmission and distribution
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networks, as described in Section 2.1.

Under this approach, the work seeks to verify the capacity of well-regarded fore-
cast models for the treatment of time series aiming at predicting the price in the
very short term.

Considering the hourly granularity of price and energy generation data, price
predictions for one hour ahead will be made to analyze the effectiveness of the
models in the very short term.

Energy price updates for very short periods are essential for energy transmission
and distribution network operators, who require an automatic and immediate
response from the system in case of contingency of important system elements
e.g. high-power generators, voltage transmission lines, etc.

The work also seeks to evaluate the performance of models for 24-hour ahead
forecasting. Precise 24-hour price forecast information enables automatic smart
management systems in homes and industry to optimize energy consumption,
providing individual financial gain and efficient global energy management [4].

The correct adjustment of energy price and generation forecast models is individ-
ual for each system. As an additional contribution, this work uses the Portuguese
energy system as a case study, serving as complementary information to other
similar publications in Europe, as per section 3.1.

4.1.2 Real Time Energy Price System

The simulation of a real-time energy pricing system developed in this work has
the objective to evaluate the viability of this system in smart grid scenarios. With
this purpose, the simulation of the system includes User Equipments(UEs) send-
ing the measurement information of energy generation obtained from smart me-
ters through an emulated 5G communications network, receiving this informa-
tion in MEC server(s) and using it to obtain future energy price values and, finally,
the sending of the prediction information in return to the User Equipments(UEs).
More details about the development of the system are presented in Chapter 5.

To evaluate the obtained results in terms of the capacity of 5G networks to meet
the requirements demanded by operation and control systems of energy trans-
mission and distribution systems, global companies reference studies in the smart
grids area were consulted.

Table 4.1 shows reference information on communication requirements for the
four major 5G application scenarios in the 5G Smart Grids electricity industry in
studies provided by the Deloitte and State Grid Companies [2].

The results obtained through the 5G network emulated through SIMU5G also
allow evaluating aspects such as packet loss, throughput, and RLC delay in the
5G Network.

This study also seeks to evaluate the total time required to update energy prices
in a prototype with limited processing capacity, which can be scaled in future
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Table 4.1: 5G Smart Grids Electricity Industry Communication Requirements.

Major Application Scenarios of 5G Smart Grids electricity industry

Scenario Bandwidth Latency Reliability Connection
density

Precise load control <256 kbps <50ms >99.999% <1,000dev.
/100km

Differential protec-
tion for distribution
network

<10 Mbps <10ms >99.999% <1,000dev.
/100km

Electricity consump-
tion information col-
lection

US<2Mbps,
DS<1Mbps <200ms >99.99% <10,000

dev./km

Mobile inspection 100Mbps <100ms >99.999% 2 to 10 dev.,
local areas

Multi-station integra-
tion

100Mbps-
1G 5ms-20ms 10-1000 dev.,

local areas

studies, making it possible to evaluate performance for larger networks.

4.2 Research Approach

This study is based on studies published in journals with Q1 Quality, and high
reputable conferences (CORE ranking A).

The research of the scientific articles related price forecast and articles related to
real-time 5G emulation was performed via IEEE Explore, ResearchGate, Elsevier,
Academia, Google Scholar and specific journal sites like MDPI.

On these websites, there was a search around the keywords of "Energy", "Price,
"Forecast", "Time Series","SARIMA","SARIMAX","LSTM","GRU", "SIMU5G".
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System Architecture

In this section, the emulation architecture of a real time energy price forecasting
system prototype used for experimentation is described.

The core of the emulation system is provided by SIMU5G simulator operating as
a real time emulator in order to obtain the performance evaluation of distributed
applications running on 5G networks.

In emulation mode, SIMU5G is used as a network transport, having application
endpoints exchange packets through it, in real time. The packets transported by
the emulated network will suffer the same impairments (e.g., delay and losses)
as if they were transported by the real network.

The SIMU5G functioning is based on OMNet++ and INET frameworks as de-
scribed in Section2.2.2.

The OMNet++ modules exchange messages through connections between their
gates and the behavior of a module is implemented by event handlers.

The Network description with gates, connections and parameter definitions is
coded separately using Network Description Language (NED).

Last, the simulation parameter values are defined in the Initialization file (INI).
The INI files are read in the runtime and initialize the model.

In a discrete event simulator the time advances because events are processed.
However, OMNet++ allows the use of a real time event scheduler to flow the
simulation time at the pace of wall clock. The real time emulation in SIMU5G
is possible if simulated time flows faster than real time, therefore the density of
events and their processing time has to be such as to not overload the system
processing capacity.

The OMNet++ computer network elements like hosts, protocols, router/switches,
and connections are provided by the INET library. The INET library includes
many TCP/IP protocol models, such as TCP, UDP, IPv4, IPv6, OSPF, BGP and
wired and wireless layer-2 protocols (ETHERNET, PPP, IEEE, 802.11, etc) allow-
ing to simulate the communication between the endpoints of the network.
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Moreover, the INET library provides the External Interface (ExtInterface) modules
to interface the simulation environment with the host operating system.

The SIMU5G simulator core network allows users to instantiate a UPF and an
arbitrary network topology where forwarding occurs using the GPRS tunnelling
protocol (GTP).

For radio access, SIMU5G allows one to instantiate GNBs and UEs, which interact
using a model of the New Radio protocol stack, GNBs can be connected to the
core network directly.

The UEs and GNBs are modelled as compound OMNeT++ modules. Their archi-
tecture is shown in Figure[5.1]. UEs have all the protocol stack until the applica-
tion layer, whereas GNBs only have communication functionalities. Both include
an NR Network Interface Card (NIC), which models the NR protocol stack.

Figure 5.1: SIMU5G Modules
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5.1 General Architecture

The general architecture of the real time energy price prediction system in 5G
networks comprises the representation of several User Equipment (UE) devices
distributed throughout the energy transmission and distribution system.

In the model defined for the system simulation, the UEs are responsible for mak-
ing requests to the Smart Meters (SM) connected to the system’s energy genera-
tors. Smart meters will be installed in every system power generators and will
measure the power generated upon receiving the request from the UE.

The UEs are responsible for collecting measurements from all local smart meters
in real time and sending the collected data to the nearest gNodeB, which is for-
warded to the MEC server, afterwards.

The MEC Server will be responsible for aggregating all the information received
by many UEs, processing the data to calculate price forecasts for the next 24 hours
and sending the information back to the UEs.

Figure 5.2 represents the model developed to simulate the system, each sepa-
rated box identifies a Linux namespace, creating an isolated system for the var-
ious modules necessary for the simulation. A detailed description of the Linux
namespaces can be found in the next sections.

Figure 5.2: General Architecture
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5.2 Network Topology

The network topology defined for the current project was composed of a MEC
server, a User Plane Function (UPF) and gNodeB(GNB) modules connected as
shown in the Figure 5.3.

Figure 5.3: SIMU5G Network Topology [12]

The number of UEs is variable and each UE is responsible for reading a variable
number of smart meters and sending the reading information through the 5G
network according to the simulation scenarios defined in Section 5.7. The UEs
have fixed positions representing measurement base stations of a group of smart
meters installed in power generators.

As described at the beginning of this section, the INET library provides SIMU5G
with the ability to create interfaces with real applications through external inter-
face modules.

Figure 5.4 details the emulation platform configured in 3 isolated environments
defined as ns_mec0, SIMU5G and ns_ue0.

The SIMU5G is responsible for the network emulation, the ns_mec0 represents
the MEC Server running the MEC applications and the ns_ue0 represents one
single User Equipment (UE) running the user applications. For each UE defined
in the emulation scenario, a new namespace must be created.

The isolated environments are created using Linux namespaces. The Linux names-
paces make it possible to run multiple applications on a single real machine and
ensure no two of them can interfere with each other.
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For the communication between namespaces host OS takes care of forwarding
their packets through Virtual Ethernet (veth) interfaces, as depicted in Figure 5.4.

The sender transmits data via a TCP/UDP socket by specifying the IP address
of veth and the port number the receiver is listening to, the routing table of the
host is configured to reroute arrived packets to the destination veth interface and
vice-versa.

Figure 5.4: Simulation Environment

5.3 Network Configuration

The Network topology and configuration in SIMU5G are defined in the “.INI”
and “.NED” files as mentioned in the introduction of this chapter.

In the “.NED” file the modular components of the network are instantiated and
the connections between the modules are defined. The Network topology defined
for the experiments includes a router, an UPF, a GNB and a vector of UE modules
as shown in Figure 5.2.

In the “INI” file are defined the parameters and configurations of the emulation
such as the number of UEs connected to the Network, the routing table configu-
ration, and the external interface configuration.
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The main parameters of the network are the ones shown in Table 5.1 defined by
default in SIMU5G simulator.

Table 5.1: Main Network Parameters.

Parameter Value
Carrier Frequency 2 GHz
GNB TX Power 46 dBm
GNB Antenna Gain 8 dBi
GNB Noise Figure 5 dB
UE Antenna gain 0 dBi
UE Noise Figure 7 dB
CQI reporting period 40 TTIs
Path Loss Model 15 UMa(Urban Macro)
Fading Model Jakes
Shadowing Model Log-normal distribution
UE Mobility Static

The main “.INI” file configuration steps are transcribed below:

Step 1: Configure the routing table for the emulated network using “.mrt” rout-
ing files.

*.router.ipv4.routingTable.routingFile = "routing/router.mrt"
*.upf.ipv4.routingTable.routingFile = "routing/upf.mrt"
*.gnb.ipv4.routingTable.routingFile = "routing/gnb.mrt"
. . .
*.ue[0].ipv4.routingTable.routingFile = "routing/ue0.mrt"
. . .
*.ue[9].ipv4.routingTable.routingFile = "routing/ue9.mrt"

The routing files define the destination address for packets arriving in the mod-
ules, see the routing files content in Chapter A. For the External Ethernet Interface
configuration virtual ethernet links and external host IP address are indicated to
simulation modules.

Step 2: Configure the External Ethernet Interface

*.router.numEthInterfaces = 1
*.router.eth[0].typename = "ExtLowerEthernetInterface"
*.router.eth[0].device = "sim-veth_mec0"

*.ue[*].numEthInterfaces = 1
*.ue[*].eth[0].typename = "ExtLowerEthernetInterface"
*.ue[*].ipv4.forwarding = true
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*.ue[0].eth[0].device = "sim-veth_ue0"
*.ue[1].eth[0].device = "sim-veth_ue1"
. . .
*.ue[9].eth[0].device = "sim-veth_ue9"
. . .

*.ue[0].extHostAddress = "192.168.3.2"
*.ue[1].extHostAddress = "192.168.4.2"
. . .
*.ue[9].extHostAddress = "192.168.12.2"
. . .
*.router.extHostAddress = "192.168.2.2"

5.4 Real Applications Description

The calculation and forecast of the price of energy in real time requires as in-
put the measurement of the average power of all the energy generation available
at the moment for which the price is to be calculated, therefore each generator
connected to the system must be equipped with a smart meter responsible for
carrying out this measurement and sending it to the server.

This section describes in detail the implementation of the applications used in the
MEC server and in the UEs to achieve the objectives of the study.

5.4.1 User Equipment Applications

The User Equipments run 2 different applications denominated UE_App1 and
UE_App2. The UE_App1 is responsible for requesting measurements to smart
meters and sending information to the server, and the UE_App2 is responsible for
receiving energy price forecast messages that are sent by the MEC server. The im-
plementation of user applications independently is important since many users
may not have installed power generation systems and will still use energy price
information for consumption management.

The UE_App1 can be configured to send power measurement information from
a group of smart meters, however, for system evaluations within the scope of the
simulation, it is not possible to have real smart metering devices and the results
would be unreliable if we do not consider the time required for requesting and re-
ceiving the reading of each of the smart meters connected to the UEs. To simulate
the time delay required for this procedure, a time delay parameter is added be-
fore each packet is sent to the server. Through UE_App1’s time delay parameter,
it is possible to adjust the frequency of sending packets to the MEC server.

Considering the processing limitation of the host used to test the system, the cri-
terion for defining the value of this time delay in the experimental simulations
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was specified as the shortest possible time that allows the receipt of all packets
by the MEC server assuring it is greater than the average time required for the
procedure of obtaining the smart meters measurement. The referred values was
defined in 0.5 seconds.

The message sent to the MAC server is composed of 2 initial bytes containing
information on the total length of the information to be sent followed by the in-
formation itself.

The sent information is structured as a string of characters composed of the smart
meter identification number, reference timestamp of the measuring time, the mea-
sured value of the power of each of the energy sources connected to the smart
meter and finalized by the timestamp of the moment of package shipping. The
different fields of the message are separated by ";".

The format for sending the message was standardized to contain the measure-
ment of all energy sources, considering that complex generation systems with
different origins will exist in the system. Simpler systems such as residential so-
lar generation systems, for example, would have just the information on the solar
power generated and the other fields would be filled with 0.

The format of the message sent by the UE_App1 to the MEC Server is represented
in Figure 5.5.

Figure 5.5: UE_App1 Message Structure

The UE_App2 is a simpler application that only receives packets sent by the MEC
server with the energy price forecast. The implementation of possible automation
and energy efficiency management systems that can make use of the information
received is not part of the scope of this work.

5.4.2 MEC Server Application

The MEC Server application(MEC_App) running on the server must be prepared
to aggregate the data received from each of the UEs connected to the network,
pre-process the data to ensure the good performance of the forecast models and,
finally, send the results of the calculations in return to end users who will be able
to use the information in different ways as described in Section 4.1.1.

The server application was developed in Python and works through 2 Thread-
based routines running in parallel:
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1. Thread 1 - Listen Messages:

The “Listen Messages” routine is responsible for keeping the server per-
manently able to receive messages sent by the UEs and only performs the
function of storing received data.

The receipt of packets is carried out according to the structure described in
Figure[5.5]. The first 2 bytes are read, which contain the length of the infor-
mation, and then the complete information is read according to its length.

The Message storage is done in 2 main data structures. The first one is a
Python "Dataframe" structure that acts as a buffer memory of the system.
This structure stores the original information of each package received with
the addition of the arrival time of the package, at the end of the emulation
the data is saved for later analysis.

The second structure is a Python "Dataframe" structure that will be effec-
tively used to forecast future energy price values and therefore it uses a
memory structure shared with Thread 2, see Figure 5.6. In this structure,
the information contained is the sum of the measured values of the power
of each packet received for every source. In this way, the prediction models
are fed with energy generation information for the entire considered sys-
tem, this stage also counts the number of the received packets for the same
timestamp, the information can be used for packet loss detection and error
identification systems.

2. Thread 2 - File Operations:

The "File Operations" routine is responsible for forecasting the energy price
for the next 24 hours. To this end, Thread 2 monitors the data received
by Thread 1 and forecasts prices through machine learning models trained
with historical information of the price and energy generation by source, as
described in Section 4.1.2.

The prediction routine is called whenever the receipt of packets for the cur-
rent timestamp is complete, this control is done by counting the number
of packets received and has a waiting time limit for the total receipt of all
packets referring to each timestamp, this mechanism ensures that the rou-
tine proceed with its normal operation in case of packet losses.

Whenever the time limit for receiving the current timestamp expires and
the number of packets received does not correspond to the total number of
smart meters in the system, a missing data pre-processing routine is called.

The missing data treatment routine implemented for the test system fills
in the missing data with the average of the other packets received for each
timestamp. This procedure is not the most suitable for all occasions consid-
ering the differences in generation capacity between the different models of
generators for each energy source, however, the ideal treatment for missing
packets requires a much more in-depth study and should be carried out in
future works.

After receiving the data and the error treatment described, the prediction
routine is called and its result is sent back to all user equipment connected
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to the network. The sending time record is attached to the message for
further system performance analysis regarding time delay.

The Figure 5.6 illustrates the operation of external applications.

Figure 5.6: Applications Operation

5.5 Environment Configuration

The SIMU5G emulation modules use the INET external interface to send/receive
IP datagrams or UDP segments between the network emulation and the real ex-
ternal applications as described in Section 2.2.2. In practical terms, it means that
it is possible to configure the emulation in different and isolated environments as
long as they can be referenced through an IP address.

The experimental configuration defined for the experiments carried out in this
work uses Linux namespaces to create different isolated environments for the
execution of user equipment and server applications that communicate through
the 5G network emulated by SIMU5G as illustrated in Figure 5.4.

Therefore, the emulation environment must be configured to allow correct packet
routing.

The Linux namespaces are created by running an executable file called "setup.sh".
The following steps are necessary for the desired result:

Step1: Create namespaces for the MEC server and each one of the user equip-
ment.

sudo ip netns add ns_mec0
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sudo ip netns add ns_ue0
. . .
sudo ip netns add ns_ue9
. . .

Step2: Create virtual links between the namespaces created and the SIMU5G
emulation environment.

sudo ip link add veth_mec0 netns ns_mec0 type veth peer name sim-veth_mec0
sudo ip link add veth_ue0 netns ns_ue0 type veth peer name sim-veth_ue0
. . .
sudo ip link add veth_ue9 netns ns_ue9 type veth peer name sim-veth_ue9
. . .

Step 3: Increase the namespaces maximum transmission unit (MTU) if neces-
sary

sudo ip netns exec ns_mec0 ip link set dev veth_mec0 mtu 10000
sudo ip netns exec ns_ue0 ip link set dev veth_ue0 mtu 10000
. . .
sudo ip netns exec ns_ue9 ip link set dev veth_ue9 mtu 10000
. . .

Step 4: Bring interfaces up

sudo ip netns exec ns_mec0 ip link set dev lo up
sudo ip netns exec ns_ue0 ip link set dev lo up
. . .
sudo ip netns exec ns_ue9 ip link set dev lo up
. . .

Step 5: Bring virtual ethernet links up

sudo ip netns exec ns_mec0 ip link set veth_mec0 up
sudo ip netns exec ns_ue0 ip link set veth_ue0 up
. . .
sudo ip netns exec ns_ue9 ip link set veth_ue9 up
. . .

sudo ip link set sim-veth_mec0 up
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sudo ip link set sim-veth_ue0 up
. . .
sudo ip link set sim-veth_ue9 up
. . .

Step 6: Assign the IP address with netmask 255.255.255.0 to veth

sudo ip netns exec ns_mec0 ip addr add 192.168.2.2/24 dev veth_mec0
sudo ip netns exec ns_ue0 ip addr add 192.168.3.2/24 dev veth_ue0
. . .
sudo ip netns exec ns_ue9 ip addr add 192.168.12.2/24 dev veth_ue9
. . .

Step 7: Add IP route to namespaces

sudo ip netns exec ns_mec0 route add default dev veth_mec0
sudo ip netns exec ns_ue0 route add default dev veth_ue0
. . .
sudo ip netns exec ns_ue9 route add default dev veth_ue9
. . .

Step 8: Disable TCP checksum offloading to make sure that TCP checksum is
actually calculated

sudo ip netns exec ns_mec0 ethtool –offload veth_mec0 rx off tx off
sudo ip netns exec ns_ue0 ethtool –offload veth_ue0 rx off tx off
. . .
sudo ip netns exec ns_ue9 ethtool –offload veth_ue9 rx off tx off

5.6 System Configuration

The real time emulation in SIMU5G is only possible if simulated time flows faster
than the real time, i.e., if the density of events and their processing time are not
such as to overload the system processing capacity.

The above condition depends on the hardware/software system, on how a sim-
ulator is coded, and also on the scenario being run. Three processes within
SIMU5G are particularly computation-intensive: MAC-level scheduling at the
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GNBs; PHY-layer reporting at the UEs, and protocol stack traversal for a packet.
[10]

The testbed for the experiment is composed of an Oracle Virtual Machine Ubuntu
64bit configured with 2 processors and 12 GB RAM running in an Intel(R) Core(TM)
i7-9750H CPU 2.60GHz with 16 GB of RAM.

5.7 Simulation Scenarios

The emulation scenarios were defined considering the limits defined by the pro-
cessing capacity of the system available for experimentation. Increasing the num-
ber of UEs or Smart Meters above the number specified in the scenarios generates
inability to receive packets sent the MEC server and the consequent discarding of
these packets by the network.

The dimension of the emulated system can be expanded in future studies through
the use of exclusive servers of greater processing capacity to perform the network
emulation functions and the MEC server function.

Each scenario has a number of UEs connected to the 5G network and each UE
has a number of smart meters connected to them. During the initial tests of the
system, the inability to process a quantity greater than 20 EU and 20 smart meters
was verified, therefore the scenarios were created with arbitrary quantities below
these. Reference studies obtained similar threshold values, reaching a maximum
value of 25 UEs [10].

Five scenarios were defined for experimentation:

• Scenario 1: 10 UEs - 10 Smart Meters per UE

• Scenario 2: 10 UEs - 20 Smart Meters per UE

• Scenario 3: 15 UEs - 10 Smart Meters per UE

• Scenario 4: 20 UEs - 10 Smart Meters per UE

• Scenario 5: 20 UEs - 20 Smart Meters per UE
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Energy Price Analysis

This chapter presents an exploratory analysis of the composition of the energy
matrix in Portugal and the necessary analyzes for the energy price forecast mod-
els fitting.

6.1 Energy Price Overview

The energy price and generation data evaluated describe the results in the Por-
tuguese energy market from March 2022 to December 2022. The dataset is avail-
able in the OMIE [15] platform.

Section 2.4.1 details the energy auction process for price formation.

Figure 6.1 presents the electricity generation in Portugal by technology compared
to the price of energy for the period evaluated in this study.

Figure 6.1: Hourly Energy Price and Energy Generation by Technology [15]

On March 8 2022, the energy price in Portugal reached 570 Euros €/MWh, a sig-
nificantly higher level than the rest of the period analyzed. The increase in prices
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in this period is coincident with the beginning of the conflicts between Russia and
Ukraine in February 2022, it is then an unusual variation in prices.

The availability of different renewable energy sources will vary depending on
weather conditions and the season of the year. Non-renewable sources, in turn,
have more stability in terms of availability, but their cost varies with their raw
material, which is generally subject to variations in the international market.

The intrinsic characteristics of the energy composition of each system generate
different energy dispatch strategies from the electrical system operators, how-
ever, it is common to identify complementarity between energy sources due to
the fact that the total energy demand does not suffer large variations in the short
term, but the availability of some energy sources does.

In Figure 6.2 it is possible to visualize the correlation between the different tech-
nologies and also the correlation of the price of energy with each of the technolo-
gies present in the Portuguese system from July 2022 to December 2022.

Figure 6.2: Energy Price and Generation Heat Map [15]
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The atypical period of high prices in the system was removed in this analysis to
avoid distortions in the real correlation between the price and the various related
sources.

The final result shows a strong positive correlation between coal and combined
cycle sources and a strong negative correlation between price and wind source.

Among generation technologies, it is possible to identify negative correlations
between renewable and non-renewable sources, which is expected for a country
undergoing an energy transition process.

For a more in-depth analysis of daily energy price, Figure 6.3 shows an hourly
box plot from energy price data.

Figure 6.3: Hourly Energy Price Boxplot by Hour

The hourly price box plot throughout the analysed period points to the intervals
of 7:00-9:00 and 20:00-23:00 as daily energy price peaks and a distribution of each
generation technology is represented in Figure 6.4.

The formation of energy prices is a much more complex issue than it may seem
in superficial analyses. Technologies with a greater amount of energy generated
at times when the price is higher are not always the cause of price increases,
there will be several occasions when the increase in generation from a specific
technology comes precisely to avoid indiscriminate price increases.

The energy price is affected by the availability of energy sources. Every tech-
nology for power generation has its availability affected by many factors, which
makes the final price prediction a complex matter.

Furthermore, the process of free competition between producers also generates
upward and downward fluctuations according to the offers made available in
daily auctions.
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Figure 6.4: Hourly Energy Generation Boxplot by Hour

The objective of this study is not a detailed analysis of the factors that positively
or negatively affect the price of energy, but rather to verify whether machine
learning and statistical methods are capable of identifying existing patterns to
produce reliable price forecasts.
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6.2 Fitting Models

For the effective operation of a real-time energy pricing prediction system, an in-
depth analysis of the data that will be used for training the prediction models is
very important. Through data analysis, it is possible to adjust the forecast models
in order to obtain reliable results.

The experimental analyzes carried out in this study involve the receipt of energy
generation information obtained from the measurement of smart meters installed
in the various generators of the system. The MEC server receives the measured
values and uses them as input data in forecast models previously trained with
price information and generation amounts from previous periods.

This study uses energy price and energy generation values obtained from the
official OMIE website dataset [15]. The dataset used contains hourly values of
energy prices and generation amounts for each source available in the Portuguese
electrical system from March 2022 to December 2022.

The dataset was divided between training and test dataset in the proportion of
80% and 20% respectively as shown in Figure 6.5. The training dataset are used
to train the forecast models while the test dataset are used as input for prediction.

The Energy power values are collected in real time by simulated smart meters
connected to user equipment and sent to the MEC server for price prediction.
For models that use past price and energy values as input, it is assumed that the
server keeps this information in storage. The predicted values are then compared
with price values contained in the test energy price dataset to evaluate the per-
formance of the prediction models.
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Figure 6.5: Energy Price and Generation Dataset

The SARIMA model fitting requires understanding the characteristics of the time
series data like trends, seasonality, or irregular patterns for the specification of
several parameters.

This section presents the step by step used to specify the parameters used in the
SARIMA models and at the same time provides knowledge of the time series that
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can be used to adjust other forecast models.

The SARIMA model fitting requires the following parameter definition as de-
scribed in Section 2.1.2:

SARIMA(p, d, q)(P, D, Q)s

• p: Autoregressive order (AR order)

• d: Degree of differencing (integration order)

• q: Moving average order (MA order)

• P: Seasonal autoregressive order (SAR order)

• D: Seasonal degree of differencing (seasonal integration order)

• Q: Seasonal moving average order (SMA order)

• s: Seasonal period (number of time steps in one season)

The autocorrelation function for the energy price time series (TS) can be used to
identify trend and seasonality that must be removed to obtain the stationarity.

Figure 6.6: Energy Price TS and Autocorrelation Function

The Figure 6.6 shows clearly a non-stationary process with the presence of a
trend. A first order simple differencing process can be used to remove the trend.

Figure 6.7: 1st Order Diff Energy Price TS and Autocorrelation Function
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The Figure 6.7 shows that the result of a first order differencing process seems to
be effective for the trend removal, so the degree of differencing (d) parameter can
be fixed in 1.

d = 1

It is possible to observe in Figure 6.7 that seasonality is still present, so the next
step is to try to remove the seasonality through a first-order seasonal differencing
process. It can be noted that there are high positive correlation indices for lags
T=12 and T=24, the respective results of the seasonal differentiation processes are
shown in Figure 6.8 and Figure 6.9.

Figure 6.8: Seasonal Diff. Energy Price TS - T=12

Figure 6.9: Seasonal Diff. Energy Price TS - T=24

The results achieved by the seasonal differentiation process at T=24 seen to be
more effective for obtaining stationarity.

The only autocorrelation index with value distant from 0 is the T=24 lag itself,
Second-order differentiations and other T values were tested in an attempt to
eliminate it, but they proved to be less effective, therefore, the seasonal degree of
differencing parameter (D) was set to 1 and the Seasonal period parameter(s) was
set to 24.

D = 1

s = 24
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The statistical Dickey-Fuller (DF) unit root test was applied to confirm the station-
ary assumption. As the p-value is close to zero and the augmented Dickey–Fuller
(ADF) statistic is lower than the critical value at 1% we can assume the TS is sta-
tionary.

ADF Test - Energy Price Data
ADF Statistic: -4.328226
p-value: 0.000397
Critical Values:
1%: -3.431
5%: -2.862
10%: -2.567

ADF Test - Energy Price Data (1st Diff + Seasonal Diff 24)
ADF Statistic: -22.846005
p-value: 0.000000
Critical Values:
1%: -3.431
5%: -2.862
10%: -2.567

For defining the auto-regressive order parameter (p) and the moving average or-
der parameter (q) the ACS and PACS were verified. See Figure 6.10.

Figure 6.10: Stationary TS, ACS and PACS

Since in both correlograms, the ACS and the PACS, drop values at lag T=1, it
is possible to assume that the regressive order parameter (p) and the moving
average order parameter (q) can be set to 1.

p = 1

q = 1

The same procedure was executed to the definition of the Seasonal autoregressive
order (P) and Seasonal moving average order (Q) for the correlograms at lags
T=[0,12,24,36]. See Figure 6.11.
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Figure 6.11: ACS and PACS for lags[0,12,24,36]

Once more, the presence of a component in lag T=24 for ACS and PACS raises
doubts about the choice of parameters P and Q, to choose the best combination
between P and Q the residuals evaluation was performed for P, Q = [0, 0] and
P, Q = [1, 1].

Figure 6.12: Residual Evaluation P,Q=[0,0]

Figure 6.13: Residual Evaluation P,Q=[1,1].

As can be seen in Figure 6.12 and Figure 6.13, the residual ACS obtained using
the parameters P, Q = [1, 1] does not have components far from the value 0 and
has an AIC index lower than that obtained using the parameters P, Q = [0, 0].
Therefore, it can be concluded that the model has a good fit for P, Q = [1, 1].

P = 1

Q = 1
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As a result of the evaluation of the time series, it is concluded that the most ad-
equate parameters for model adjustment are p=1, d=1, q=1, P=1, D=1, Q=1 and
S=24.

SARIMA(1, 1, 1)(1, 1, 1)24

Once the parameters of the SARIMA model have been adjusted, an assessment
of the impacts of the different energy sources present in the system under study
is relevant for the selection of the features that most influence price formation.

6.3 Features Selection

The energy price is obviously influenced by the variation of the different energy
sources available in the system and their respective production costs. Therefore,
an analysis of the influence of each of the energy sources is important to identify
those relations.

The Figure 6.14 shows the energy price scatter plots in relation to the produced
quantity of each of the energy sources available in the Portuguese system.

In the energy price plot in relation to imported energy, position (1,1) of the scat-
ter grid, it is easy to notice that energy imports are zero for the vast majority of
points, so this attribute is immediately discarded as it offers little influence on the
price.

Renewable sources, namely solar(3,2), solar thermal(3,1) and wind(2,3), show a
downward trend in energy prices at high production levels as expected, espe-
cially the wind source, which has a large share in the Portuguese energy matrix.

The thermal sources, coal(1,2) and combined cycle(2,2), also show behaviour within
the expected range and have a positive correlation with the price of energy. It is
understood that the biggest influencer of the increase is the combined cycle due
to the large participation of this source in the system. Coal is generally used on
an emergency basis to support the system and it is natural to have its production
increased at times when the price is higher, as these are times when there is an
energy shortage.

Co-generation, residuous and mini hydro sources(3,3) show a positive correla-
tion with price. It is necessary to be more careful when analyzing these sources,
as they are not sources that are always available, which means that they can be
used in the system in emergency moments such as coal or simply have their dis-
patch aimed at greater financial gain for the producers, which explains higher
generation values when the price of energy is also higher.

Hydro(2,1) and nuclear(1,3) sources do not present a neutral behaviour in relation
to price in this analysis, they are typically cheaper energy sources and serve as the
basis for the system, however, it is important to note that there are no high price
points when hydro generation is high and there is also a large concentration of
points with high prices when nuclear generation is high.

67



Chapter 6

Figure 6.14: Energy Price vs Energy Generation Technologies Scatter Plots

Another important point to be considered is the influence of generation from dif-
ferent sources in the following hours of the day, particularly important for 24-
hour ahead forecast. Figure 6.15 shows cross-correlation plots between energy
price and generation for each of the system’s energy sources for this analysis.

The cross-correlation graph shows the energy price behaviour in relation to the
variation of each generation source for T lags from 0 to 25 hours. Positive cross-
correlation indices indicate that the price of energy T hours ahead tends to in-
crease when the generation of the analyzed source increases and negative indices
indicate that there is an inverse relationship between the 2 variables for lag T.

In general, the results corroborate those presented in Figure 6.14.

Energy sources based on coal(1,2) and combined cycle(2,2) always have a posi-
tive correlation with the price of energy for any lag T considered, being a strong
indicator for identifying the price in the next few hours with higher amounts of
generation of these sources. An expected behaviour, as presented in the analysis
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Figure 6.15: Energy Price vs Energy Generation Technologies Cross Correlation
Plots

of scatter plots before.

The wind source, in turn, has a strong inverse correlation, being a good indicator
to identify the price reduction whenever there is an increase in wind energy gen-
eration in the electrical system also corroborating with the analysis carried out
earlier.

For water and solar sources, a cyclical behaviour is observed. The water source
shows a neutral behaviour on average in the previous analysis carried out with
scatter plots, however, the cross-correlation graph makes clear its action in the
sense of lowering energy prices for later hours, as it is a base source it enters into
supply the system whenever there is a shortage of renewable and/or less costly
resources.

The solar source shows a different behaviour than initially expected since it is
only imagined the reduction of energy prices with larger amounts of solar gener-
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ation.

The cross-correlation for solar sources results clearly shows an upward trend in
energy prices for T-lags between 10 and 20 hours.

Considering the daily cycles of the solar source, this behaviour can be explained
by the need to replace this source at night, which is probably done with higher-
cost sources.

Despite this effect, the influence of solar energy is clear in the sense of reducing
the price by the negative index at lag T=0, confirming that higher values of solar
generation promote a reduction in prices at the same time it is generated.

The nuclear energy results indicate price reductions in a constant way.

Finally, the cogeneration, residual and mini-hydraulic sources maintain the be-
haviour observed in the previous analysis, always showing an increase in energy
prices for higher amounts of generation.

Based on the performed analyses, guidance was obtained for choosing the most
appropriate set of variables to increase the performance of the forecast models.
Even if the price formation is done by the composition of all energy sources, the
inclusion of all variables can make it difficult to evaluate trends by forecast mod-
els and better results can be obtained with the correct selection of features.

Therefore, the hydraulic, combined cycle, wind and solar sources were selected
initially because they are the sources that are very present in the systems, reaching
values close to 20 GW of power generated in the system for some hours of the
day, in addition to having a clear influence on the price of energy, as verified in
previous analyses.

The nuclear source was rejected for its low participation and behaviour relatively
close to the water source that is already contained in the chosen set.

The coal source was also rejected. Both, the coal source and the cogeneration,
residual and mini hydro sources have little participation in the energy matrix and
both seem to be used to support the system in the face of high energy demand
or scarcity of other sources, despite the presence of cogeneration, residuous and
mini hydro sources is a much stronger indicator of high energy prices than coal,
as can be seen in the cross-correlation indices, so it was included in the selection
set.

Energy sources selected as models features:

• Hydro

• Combined Cycle

• Wind

• Solar

• Cogeneration-Residuous-Mini Hydro
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Other combinations of the feature set, including the set with all the variables,
were tested in the performance evaluation of the models and did not show more
satisfactory results. However, a much more in-depth analysis can be done in fu-
ture works fully dedicated to improving energy price forecasting models through
feature selection.

The number of layers used for the LSTM and GRU models were defined by ex-
ploratory analysis and those that obtained the best prediction results were cho-
sen. A 3-layer configuration were selected as follows: The LSTM/GRU layer with
128 neurons, a hidden layer with 64 neurons and an output layer with 1 neuron,
for 24-hour predictions the output layer has 24 neurons.
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Results

This chapter presents the results obtained through real-time energy price fore-
casting system simulations. The results are divided into 2 main parts, the first of
which focuses on the performance of the evaluated price prediction models.

The second part focuses on the performance of the 5G network and the total re-
sponse time of the systems from sending the generation data to receiving the re-
sponse from the server with the price forecast information for the next 24 hours.

7.1 Energy Price Forecast

In this section, the results of the models evaluated for predicting the price of
energy are presented.

The models were evaluated for 1-hour ahead and 24-hour ahead forecasts.

The performance evaluation metrics used were MAE, RMSE and MAPE 2.1.4
between the real price value obtained from the training time series and the value
obtained as forecast by the model.
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7.1.1 SARIMA

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model was
evaluated using the parameter setup defined in Section 6.2. As it is a univariate
model, the exogenous variables of energy generation by source are not included.

The Figure 7.1 presents the time series obtained as 1 hour ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period.

Figure 7.1: SARIMA - 1 Hour Ahead Forecast

The Figure 7.2 presents the time series obtained as 24 hour ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period.

Figure 7.2: SARIMA - 24 Hours Ahead Forecast
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7.1.2 SARIMAX

The Seasonal Autoregressive Integrated Moving Average with Exogenous Vari-
ables (SARIMAX) model was evaluated using the parameter setup defined in
Section 6.2. As it is a multivariate model, the exogenous variables of energy gen-
eration by source are included as defined in Section 6.3.

The Figure 7.3 presents the time series obtained as 1 hour ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period.

Figure 7.3: SARIMAX - 1 Hour Ahead Forecast

The Figure 7.4 presents the time series obtained as 24 hours ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period.

Figure 7.4: SARIMAX - 24 Hour Ahead Forecast
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7.1.3 LSTM

The Long Short-Term Memory Recurrent Neural Networks (LSTM) model was
evaluated using the parameter setup defined in Section6.2. The model was used
in univariate and multivariate mode.

The Figure 7.5 presents the time series obtained as 1 hour ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period. For the presented results, the model was used in univariate
mode, therefore only the energy price itself was used for training and as input
data.

Figure 7.5: LSTM - 1 Hour Ahead Univariate Forecast

The Figure 7.6 presents the time series obtained as 24 hours ahead forecast by
the model in comparison with the real values verified for the Portuguese system
in the same period. For the presented results, the model was used in univariate
mode, therefore only the energy price itself was used for training and as input
data.

Figure 7.6: LSTM - 24 Hours Ahead Univariate Forecast

The Figure 7.7 presents the time series obtained as 1 hour ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period. For the presented results, the model was used in multivariate
mode, therefore the energy price and the energy generation of the selected vari-
ables defined in Section 6.3 were used for training and as input data.

The Figure 7.8 presents the time series obtained as 24 hours ahead forecast by
the model in comparison with the real values verified for the Portuguese system
in the same period. For the presented results, the model was used in multivari-
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Figure 7.7: LSTM - 1 Hour Ahead Multivariate Forecast

ate mode, therefore the energy price and the energy generation of the selected
variables defined in Section 6.3 were used for training and as input data.

Figure 7.8: LSTM - 24 Hours Ahead Multivariate Forecast
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7.1.4 GRU

The Gated Recurrent Unit Neural Networks (GRU) model was evaluated using
the parameter setup defined in Section 6.2. The model was used in univariate
and multivariate mode.

The Figure 7.9 presents the time series obtained as 1 hour ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period. For the presented results, the model was used in univariate
mode, therefore only the energy price itself was used for training and as input
data.

Figure 7.9: GRU - 1 Hour Ahead Univariate Forecast

The Figure 7.10 presents the time series obtained as 24 hours ahead forecast by
the model in comparison with the real values verified for the Portuguese system
in the same period. For the presented results, the model was used in univariate
mode, therefore only the energy price itself was used for training and as input
data.

Figure 7.10: GRU - 24 Hours Ahead Univariate Forecast

The Figure 7.11 presents the time series obtained as 1 hour ahead forecast by the
model in comparison with the real values verified for the Portuguese system in
the same period. For the presented results, the model was used in multivariate
mode, therefore the energy price and the energy generation of the selected vari-
ables defined in Section 6.3 were used for training and as input data.

The Figure 7.12 presents the time series obtained as 24 hours ahead forecast by
the model in comparison with the real values verified for the Portuguese system
in the same period. For the presented results, the model was used in multivari-
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Figure 7.11: GRU - 1 Hour Ahead Multivariate Forecast

ate mode, therefore the energy price and the energy generation of the selected
variables defined in Section 6.3 were used for training and as input data.

Figure 7.12: GRU - 24 Hours Ahead Multivariate Forecast

79



Chapter 7

7.1.5 Model Results Analysis

The results presented for the various forecast models tested show great potential
for their use in the energy price forecast function.

Prediction models and machine learning require very in-depth studies and re-
finement to achieve highly reliable results. As already mentioned throughout the
body of this work, there are improvements to be made from the data selection
and pre-processing to the final methodology that will be applied, since this goes
beyond the adequate fitting of the model.

Several techniques already exists and others can be developed for models fitting
that can prove to be effective in improving the accuracy and reliability of the
final result. It is always possible, and even recurrent, that a single technique does
not obtain adequate performance in all situations, therefore methodologies with
varied techniques where each technique works only in the moments in which its
performance is optimized, in general, bring great gain to the final result obtained.

This section presents the analysis of the results obtained in the analysis, seek-
ing to understand the causes for the below-expected performances, in order to
raise hypotheses for improvement. The Figure 7.13 shows the RMSE values and
distribution of errors comparatively between the models.

The GRU model was removed from the comparison analysis of the results for
being a variation of the LSTM model and having presented results similar to this
one.

Figure 7.13: Energy Price Forecast Results

The models that presented the best performances for forecasting the energy price
were "LSTM 1h", "SARIMA 1h" and "SARIMAX 1h" presenting RMSE around 10.
This result shows that the models are able to capture the dynamics of the time
series and produce good results for the very short term.

A lower performance for forecasts 24 hours ahead is expected since the models do
not receive inputs indicative of abrupt changes in the behaviour of the time series
that may happen throughout the day. This effect is evident if we observe the
results of the "SARIMA 24h" in Figure 7.2 and "LSTM 24h" in Figure 7.6 models
for the minimum values of the energy price observed on November 17th, 19th
and 22nd and on December 13th, 14th and 20th.
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In general, the models for 24 hours ahead have low accuracy in the local maxi-
mum and minimum points of the time series, this is most likely due to the influ-
ence of the minimum and maximum values obtained for the previous 24 hours,
which are the last values received for training.

The superior performance of the SARIMA 24h models compared to the LSTM 24h
model may indicate that the long-term influence is not being adequately captured
by the model, but further analysis are needed to confirm this hypothesis.

Another important observation regarding the performance of the LSTM 24h model
is the decoupling between the forecast curves and the actual value verified as of
December 19th.

The month of December 2022 presents the lowest energy price values in the ana-
lyzed period, see Figure 6.1. In the time series used for training, there is no data
for the months of December of previous years, which may be the main cause for
this effect.

Good performances for LSTM models require a large volume of data that was
not yet available during the development of this work. Therefore, using a longer
time series for model training can greatly improve its performance.

The results of the multivariable models presented a substantially inferior perfor-
mance to the univariate models for LSTM forecasts 1 hour ahead and for LSTM
forecasts 24 hours ahead. This result was not expected considering the fact that
the price of energy is a direct result of its composition among the generation
sources available in the system, as can be observed in detail in the exploratory
analysis available in Chapter 6.

A comparative analysis between the forecast results for the LSTM univariate 1-
hour ahead model and the LSTM multivariate 1-hour ahead model can give a
good indication of the cause of the worsening performance.

In the results presented for the multivariable LSTM 1h ahead model, Figure 7.7, it
is possible to observe that the local maximum and minimum values are consistent
with the moment in which they occur for real price values, however, they are
overestimated or underestimated for the vast majority occurrences, which does
not happen for the LSTM univariate forecasting model.

The presence of energy generation variables may condition the model to generate
results similar to past moments that have the same energy generation composi-
tion. That is, compositions of similar generation sources generate similar price
values.

The observed effect is correct behaviour and was even intentional when adding
the exogenous variables. However, the final energy price value for each of the
generation sources is not provided to the models and this may be the main cause
for the observed effect.

The price of each energy source also varies over time, which means that the same
amounts of energy generated from each source have a different final price and
only the value of the final total price as an input to the models does not seem to

81



Chapter 7

be enough to differentiate them.

A possible approach to improve the performance of multivariable models would
be the use of multi-univariate models. The univariate models proved to be effec-
tive at least in the very short term and it is plausible to expect the same behaviour
for their individual use in each of the time series of sources of energy generation.
Furthermore, the same can be done for time series of the prices of each of the
energy sources, which are currently not available on the official data sources.

With the combination of precise forecasts of generation and price of each energy
source, a more accurate result of the forecast of the final price of electric energy is
also expected.

The SARIMAX 1h ahead model, in turn, performed slightly better than the SARIMA
1h ahead model, indicating that there are real possibilities for improving the re-
sults of the forecast models using the generation amounts of the different energy
sources as exogenous variables.

The Kernel Density Estimate (KDE) plot in Figure 7.14 provides a clear visualiza-
tion of the distribution of errors measured between the values predicted by each
of the models and the target value.

Figure 7.14: Models Error Density
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7.2 5G Network Evaluation

This chapter is intended to evaluate the performance metrics of the 5G network
and the response time obtained by the system to update the energy price for the
simulation scenarios defined in Section 5.7.

The following scenarios have been defined:

• Scenario 1: 10 UEs - 10 Smart Meters per UE

• Scenario 2: 10 UEs - 20 Smart Meters per UE

• Scenario 3: 15 UEs - 10 Smart Meters per UE

• Scenario 4: 20 UEs - 10 Smart Meters per UE

• Scenario 5: 20 UEs - 20 Smart Meters per UE

7.2.1 General Performance

The 5G network performance metrics are obtained as output from network em-
ulations performed by the SIMU5G simulator. The Packet losses in the network,
throughput rate and delays in the RLC layer were evaluated. The Figure 7.15
presents the number of packets sent by the UEs to the MEC server.

Figure 7.15: Packet Loss Count

No packet losses were identified for the simulated scenarios. The good perfor-
mance of the simulations regarding packet loss is related to the low number of
UEs due to host processing capacity restrictions. Simulations with a greater num-
ber of UEs and sending a greater number of packets are necessary to identify
packet losses on the network.
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The Figure 7.16 presents the Average User Equipments Throughput in terms of
Downlink (DI) and Uplink (UI) measured in bps.

Figure 7.16: UEs Average Throughput DI and UI

The results obtained show a decrease in Throughput with the increase in the
number of nodes in the network, in particular with the increase in the number
of smart meters connected to each UE. The effect can be observed when com-
paring the results between simulations 10 UE/10SM and 10 UE/20SM and also
between simulations 20UE/10SM and 20UE/20SM.

The Figure 7.17 shows the average delay value in the RLC layer of the UEs.

Figure 7.17: UEs Average Throughput DI and UI

The UE RLC layer Delay average values did not present significant variation be-
tween the simulated scenarios.
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7.2.2 System Time Performance

This section presents the time performance results obtained by the energy price
update system.

The objective of the simulations for time performance is to test the shortest time
necessary for the system to update energy prices, therefore the delay time pa-
rameters between packets sent by the UEs were set to 0, as a consequence, the
simulation scenario with 20 UEs and 20 Smart Meters per UE it was not feasible
due to insufficient processing capacity of the simulation host.

The Figures 7.18,7.19,7.20 and 7.21 present histograms of packet latency observed
in the transmission started at the UE and ended at the MEC server, for each sim-
ulation, respectively.

Figure 7.18: Packet Latency Histogram - 1MEC_10UE_10SM

Figure 7.19: Packet Latency Histogram - 1MEC_10UE_20SM

Figure 7.20: Packet Latency Histogram - 1MEC_15UE_10SM
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Figure 7.21: Packet Latency Histogram - 1MEC_20UE_10SM

The Figure 7.22 presents the Packet Latency KDE plots between simulations for
comparison.

Figure 7.22: Packet Latency KDE Plots

The results show high latency for the vast majority of packets sent over the emu-
lated 5G network. To achieve real-time emulation of 5G networks, the emulator
must be able to process the events generated by the transmission of packets in
a time shorter than the actual transmission latency. Scenarios with a number of
UEs or SMs above 10 clearly present this effect in their distribution curves since
they have a greater number of packets with high latency.

The Figure 7.23 shows the histogram of simulation latency results for 10 UE/10
SM focusing only on packets that had latency lower than 300 ms for further anal-
ysis.

Figure 7.23: Packet Latency <0.3ms Histogram - 1MEC_10UE_10SM

It can be observed that some packets reached latency compatible with 4G trans-
mission levels, but none of them achieved the expected performance for 5G.
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Therefore, the system proved to be capable of performing simulations in high-
speed communication networks as long as improvements in processing capacity
are implemented.

The Figure 7.24 presents the total time histogram results for collecting data mea-
sured by smart meters and updating the energy price for each simulation.

The total time was obtained through the time elapsed between the sending of the
first packet referring to a given timestamp and the arrival of the forecast results
referring to the same timestamp, therefore corresponding to the delay in receiving
the forecast for the next 24 hours in relation to the measurement time.

Figure 7.24: Total Time Histograms per Simulation
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The Figure 7.25 compares the average total time and box plots for all timestamps
evaluated between simulations.

Figure 7.25: Total Time Simulations Average and Box Plots

The results of the total time to update the energy price verified for the imple-
mented prototype system are insufficient to meet the needs for quick responses
required by operational criteria in network operations described in Table 4.1.
However, it shows that it is capable of updating the energy price every 4 sec-
onds, which would be enough to bring great benefits in the context of the energy
efficiency of smart homes.
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Conclusion and Future Works

This chapter includes conclusion and future works.

8.1 Conclusion

Smart grids represent a disruptive advancement in the field of electrical power
distribution and management. There is too much to be explored regarding the
innovation and automation possibilities that can be achieved with telecommuni-
cation networks with ultra-low latency, higher bandwidth, reliability and secu-
rity.

Energy price information updated in real-time is just one of the many possibilities
in terms of services and utilities. In fact, the price of energy in real-time will be a
consequence of the evolution of smart grids in order to solve a real problem that
already exists today.

Currently, within the scope of the operation of transmission and distribution net-
works, already exists the necessity to monitor the entire infrastructure of the sys-
tem, in terms of generation, transmission and consumption. This work explores
the idea of energy pricing service mainly aimed at the final consumer through its
use as information to achieve greater energy efficiency in their homes and also in
the sense of increasing the reliability of the electrical system since the increase in
prices indicates the need to increase the supply of low cost energy in the system.

To achieve the objectives proposed in this work, some of the most well-regarded
models for forecasting time series were evaluated. The results show great poten-
tial for predicting energy prices in the very short term.

The mathematical model requires improvement to achieve the specific purpose
proposed. To this end, many methods have already proven to be effective and
can be considered in improving energy price forecasting based on information
about the energy being generated at the time the forecast is made.

This dynamic characteristic is essential to bring the desired reliability to electrical
systems through the use of Smart Grids, as they are susceptible to unexpected
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events that require a quick response from the system. To this end, the 5G Net-
works are fundamental and becomes the technological advance that will effec-
tively provide this capacity to electrical systems.

In order to evaluate the potential of this technology in smart grids, the work pre-
sented implements the architecture of a 5G network simulation system. The sim-
ulation prototype developed has the natural restrictions of any embryonic project,
but it has already shown itself to be capable of reproducing the functioning of
systems such as forecasting the price of energy in real-time.

The results obtained throughout this work show that the new generation radio
networks can greatly reduce the times for measuring the necessary information
to update prices, which currently can only be done at intervals of 1 hour.

Briefly, this work contributes with statistical and neural network-based models
for the prediction of electricity prices in real-time, based on momentary energy
generation and past energy prices, with specific analysis for the Portugal system
as an additional contribution.

Furthermore, it is also an important contribution of this work, a structure for
simulating communication networks in New Radio 5G capable of helping the de-
velopment of important projects that will integrate the reality of smart networks
in the coming years.

8.2 Future Works

Future work seeks to improve the real-time energy price prediction system through
two main objectives: improving the performance of price prediction models and
improving the processing capacity of system and simulation, as detailed below.

1. Energy Price Forecast Models

The price forecast models evaluated in this study showed good results for
very short-term forecasts, carried out for forecasts one hour ahead of the
moment when measurements of the energy actually generated in the sys-
tem are made. However, they still present average errors that can be very
harmful for applications such as energy trading, which would bring signif-
icant financial losses to users.

To this end, future work should consider more significant amounts of data
for model training, in particular for models based on neural networks, where
this characteristic is essential to achieve better performances.

Furthermore, the reasons why the inclusion of the generation variables of
the different system technologies did not contribute to more accurate model
results, in most cases, must be thoroughly investigated. Changing price
forecasts as a result of changes in generated energy is of fundamental im-
portance so that smart grids can receive support from users in times of high
demand and in cases of contingencies of important components for the op-
eration of energy transmission networks.
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To this end, more complex forecasting models that use different techniques
for treating time series can be considered and select the best results among
them. It must be considered that each energy generation technology has
its own characteristics and the same method will hardly be ideal for all of
them.

In summary, there is still a lot to explore regarding the methodology used
to predict price values, from the data selection and processing stages and
selection of features to the application of the methods.

2. Energy Price System Capacity

The performance of the price prediction system in 5G networks clearly presented
processing limitations. The emulation processing of the 5G network must be in-
creased so that it is capable of processing events related to the sending of packets
in a time lower than the desired latency, which in the case of 5G networks can be
quite challenging.

However, the simulation experiments in this work use a single host, with sepa-
rate network components through isolated Linux operating system environments
(Linux namespaces). Therefore, it is believed that the separation of the various
network components into physically separate hosts with superior processing ca-
pabilities and dedicated to the network emulation and to the MEC server can
bring great performance improvements to the simulations.

The correction measures would likely provide the desired latency performance
for 5G networks and, as an additional benefit, it would also allow the simulation
of broader networks, with greater amounts of connected UE devices, more Smart
Meters and, possibly, additional MEC servers.
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Appendix A

A.1 UE Routing File

ifconfig:
# interface to the external client
name: eth0
inet_addr: 192.168.3.1
Mask: 255.255.255.0
MTU: 1500
Metric: 1
POINTTOPOINT MULTICAST

name: cellular
inet_addr: 10.0.0.1
Mask: 255.255.255.0
MTU: 1500
POINTTOPOINT MULTICAST

ifconfigend.
route:
#Destination Gateway Genmask Flags Metric Iface
192.168.2.0 * 255.255.255.0 H 0 cellular
192.168.3.0 * 255.255.255.0 H 0 eth0
0.0.0.0 * 0.0.0.0 G 0 cellular
routeend.
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Appendix A

A.2 gNodeB Routing File

ifconfig:

# interface to the radio access network
name: cellular
inet_addr: 10.0.0.100
Mask: 255.255.255.0
MTU: 1500
POINTTOPOINT MULTICAST

name: pppIf
inet_addr: 10.0.1.2
Mask: 255.255.255.0
MTU: 1500
POINTTOPOINT MULTICAST
ifconfigend.

route:
#Destination Gateway Genmask Flags Metric Iface
10.0.0.0 * 255.255.255.0 H 0 cellular
10.0.1.0 * 255.255.255.0 H 0 pppIf
10.0.2.0 * 255.255.255.0 H 0 pppIf
192.168.2.0 * 255.255.255.0 H 0 pppIf
192.168.3.0 * 255.255.255.0 H 0 cellular
0.0.0.0 * 0.0.0.0 G 0 pppIf

routeend.
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A.3 UPF Routing File

ifconfig:

# interface 0 to the router
name: pppIf
inet_addr: 10.0.2.2
Mask: 255.255.255.0
MTU: 1500
POINTTOPOINT MULTICAST

# interface 0 to the gnb
name: ppp0
inet_addr: 10.0.1.1
Mask: 255.255.255.0
MTU: 1500
POINTTOPOINT MULTICAST
ifconfigend.

route:

#Destination Gateway Genmask Flags Metric Iface
10.0.1.0 * 255.255.255.0 H 0 ppp0
10.0.0.0 * 255.255.255.0 H 0 ppp0
10.0.2.0 * 255.255.255.0 H 0 pppIf
192.168.2.0 * 255.255.255.0 H 0 pppIf
192.168.3.0 * 255.255.255.0 H 0 ppp0
0.0.0.0 * 0.0.0.0 G 0 pppIf

routeend.
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Appendix A

A.4 Router Routing File

ifconfig:

# interface to the external server
name: eth0
inet_addr: 192.168.2.1
Mask: 255.255.255.0
MTU: 1500
Metric: 1
POINTTOPOINT MULTICAST

# interface to the nat router
name: ppp0
inet_addr: 10.0.2.1
Mask: 255.255.255.0
MTU: 1500
POINTTOPOINT MULTICAST
ifconfigend.

route:

#Destination Gateway Genmask Flags Metric Iface
192.168.2.0 * 255.255.255.0 H 0 eth0
192.168.3.0 * 255.255.255.0 H 0 ppp0
0.0.0.0 * 0.0.0.0 G 0 ppp0

routeend.
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