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Since the dawn of our civilisation, humans have sought means to express 
themselves creatively. Despite the vast set of different tools accessible 
throughout the years, this creative endeavour remains defined by 
the combination of two principles: to choose, making aesthetic and 
conceptual decisions within a solution space, and to diverge, exploring 
original, novel possibilities (reshaping the space). While these 
principles apply to most creative domains, from visual arts to music and 
architecture, the need to efficiently communicate ideas with a target 
audience accentuates their relevance to graphic design, as the quality/
success of the design artefact relies on it. 

The advent of computation and high-level programming languages 
has led to the creation of generative design models (in the present, 
many designers collaborate with machines to generate multiple design 
artefacts). While these models are programmatic in some cases, the 
results always depend on parameters and low-level decisions. Due to 
the number of parameters and consequent combinatorial explosion, 
designers only explore a small subset of possible solutions.

This dissertation describes the development of EvoProteus, a system 
that addresses this limitation by combining a generic generative design 
tool with an evolutionary algorithm. We intend to optimise the search 
through design spaces, creating a framework capable of granting 
some automation within generative processes and ultimately guiding 
designers to better design decisions, as it constitutes a critical part of 
their work. This project takes relevant steps towards an automated 
generative design paradigm.
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Desde os primórdios da nossa civilização que os seres humanos procuram 
meios de se expressar criativamente. Apesar do vasto conjunto de difer-
entes ferramentas acessíveis ao longo dos anos, esta empresa criativa per-
manece ancorada na combinação de dois princípios: escolher, tomando 
decisões estéticas e conceptuais dentro de um espaço de soluções, e diver-
gir, explorando possibilidades novas e originais (reconfigurar o espaço). 
Embora esses princípios se apliquem à maioria dos domínios criativos, das 
artes visuais à música ou arquitetura, a necessidade de comunicar ideias 
com eficácia a uma audiência, acentua a sua relevância para o design gráf-
ico, dado que a qualidade/sucesso do objeto de design depende disso.

O advento da computação e de linguagens de programação de alto nível 
levou à criação de modelos de design generativo (no presente, muitos design-
ers colaboram com máquinas para gerar múltiplos artefatos). Apesar desses 
modelos serem programáticos em alguns casos, os resultados dependem sem-
pre de parâmetros e decisões de baixo nível. Devido ao número de parâmet-
ros e à consequente explosão combinatória, os designers exploram apenas um 
reduzido conjunto de possíveis soluções.

Esta dissertação descreve o desenvolvimento do EvoProteus, um sistema 
que responde a esta limitação combinando uma ferramenta genérica de 
design generativo com um algoritmo evolucionário. Pretendemos otimizar 
o processo de procura criativa, desenvolvendo uma framework capaz de 
conceder algum grau de automação em processos generativos e, em última 
instância, conduzir os designers a melhores decisões de design, o que constitui 
uma parte fundamental do seu trabalho. Este projeto dá passos significativos 
em direção a um paradigma de design generativo automatizado.

Resumo

Palavras-chave

Design Generativo, Espaços Paramétricos, Design Evolucionário, 
Algoritmos Genéticos, Modelos Genéricos. 
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A great ancient tradition conceives the visual arts, and images in general, 
as a language, revealing and embodying spontaneous human creativity. 
Barasch (1997) defines the artist’s creative practice as a universal impulse. 
The most common instance is the urge to perform representative gestures 
in moments of intensive perception or imagination. These expressions 
are forms of communication and a primordial method for visually 
articulating events and emotions. Art then conquers what language 
aims to arrive at, replacing the confused world of sensual impressions 
with a limited but distinct grammar of forms (Barasch, 1997, pp.20-23). 
According to Meggs (1992), graphic design shares this “universal language 
of form” yet has a specific goal. While a painter, for instance, may not 
be concerned with how the work of art will impress the spectator, nor 
with what kind of feelings it will evoke (Barasch, 1997), the designer’s 
goal is to solve problems, organise space, and permeate his work with 
novel1 visuals and symbolic qualities to convey information from his own 
individual expression. Unlike other art forms, a design artefact exists 
in a context determined by the content it has to communicate, where 
functionality is crucial (Önduygu, 2010). This need for functionality 
requires making decisions from a range of possible solutions. Till recent 
times, this process implied using a set of limited tools. The archetypal 
design medium is a pencil, eraser and paper. Designers select materials, 
add elements, remove them, try a different composition and repeat the 
process. With the advent of computation, more sophisticated digital 
design tools (like Adobe software) are essentially emulations of this 
secular means of work (Woodbury, 2010, p. 11).

Nowadays, the design method is shifting as our world is increasingly 
invaded and mediated by electronic systems and devices. First, there has 
been an increased interest in “collaborative, interdisciplinary approaches 
to design problems” (McCormack et al., 2004). A more intimate relationship 
exists between ideas and concepts “through the flexibility introduced 
in design methodologies” (McCormack et al., 2004). This shift has been 
accompanied by a programmatic perspective of graphic design, where 
designers do not create a visual outcome but instead establish a set of 
rules and program computational systems that will. In this scenario, 
computers become creative partners in design decisions (Silva-Jetter, 
2012). Writing code or using programming languages has brought new 
expressive possibilities to this discipline. A new generation of designers uses 
programmatic approaches by building their own programs (Shim, 2020).

1. Novelty, in this context,   
means the quality of being new,  
original and different   
(Mcormack et al., 2004).

i n t r o d u c t i o n
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Given the previous context, in the present, countless artists and designers 
use computation to write programs that generate visual artefacts. 
These artefacts often result from mapping input parameters to visual 
parameters (Shim, 2020). Using parameters requires some decisions that 
affect the outcome, such as the range of variability (predict randomness 
level), relationships between variables, and value assignment. Parametric 
generative models grant designers increased autonomy in their work as 
they can shape rules and variables to attain their own design language 
from conception to execution.

However, while using these models, many designers still produce 
numerous variations of an artefact by hand, either because it is a 
fundamental part of their exploratory design process or because they 
must “manually” test different parameterizations until they find a 
suitable combination for their intentions. In the end, regardless of 
whether it is computational or not, the final form of the artefacts always 
depends on a set of parameters and low-level design decisions that the 
designer defines implicitly or explicitly. Due to the number of parameters 
and consequent combinatorial explosion, the designer only explores a 
small subset of possible solutions.

As more and more designers use code to create visual artefacts by 
manipulating parametric spaces, it is essential to find ways to optimize 
this process. That is the focus of this dissertation. We aim to create a 
computational tool to assist designers in exploring design solutions 
more efficiently. Addressing this goal involves attaining two sub-goals. 
The first is (a) to identify the list of parameters used in the generation 
of any artwork and build a solution space for that artwork. The second 
(b) is to guide designers through that space and help them find the most 
adequate solutions for their purposes.

These intentions translate into the development of a generic system 
capable of generating multiple artefacts from a single source code 
and the integration of a genetic algorithm to accelerate the search for 
interesting outcomes. 

1.1 Motivation

1.2 Goals and Implications

i n t r o d u c t i o n
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We will research def initions and relevant work in graphic 
design, generative design, and evolutionary design to accomplish 
these objectives.  Then, we will create a framework structuring our 
intentions, and develop a system. testing it in distinct contexts. This 
work may represent significant progress in designers’ decision-making 
methods, taking relevant steps towards the automation of generative 
design processes.

This document is structured into nine chapters: (a) Introduction; (b) Work 
plan and methodology; (c) Literature Review; (d) Framework proposal; (e) 
Proof of concept; (f) System development; (g) Evaluation and results; (h) 
Future work and (i) Conclusion. 

In the opening chapter (a), we situated our dissertation within a 
scientific research zone we believe is still unexplored and described the 
issue we plan to tackle through this work. We also outlined a series of 
objectives that we believe will lead us to relevant results. The upcoming 
chapter (b) sets the work plan for the dissertation up to the final 
submission and the methodology that will guide it. The Literature review 
chapter (c) describes the research on the history and definitions of graphic 
design, generative design with parametric approaches and evolutionary 
systems (especially biology-inspired ones). We trace relevant work in 
these fields, identifying some limitations we expect to respond with 
our project. In the Framework proposal chapter (d), we consolidate our 
response to those limitations, presenting some models to structure and 
scientifically support the development process. Following proposal (e), 
we describe an initial implementation of the first framework’s modules 
to prove our concept and gather insights for system development. We 
then present our system (f), discussing the integration of the remaining 
modules, technical challenges, refinements and considerations. The 
Evaluation and Results chapter (g) outlines the different testing levels 
our system underwent and presents the most encouraging results as well 
as some reflections. In Future work (h), we present further developments 
and ideas for our system. To conclude the report (i), we summarize the 
work done and discuss the results achieved both in theory and practice.

1.3 Document Overview

i n t r o d u c t i o n
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This section presents the work plan defined for this dissertation 
and the methodology chosen to guide it.

In the project’s early stages, we drew a plan outlining the required 
tasks until submission. This plan included the creation of a prototype, 
research, framework proposal and implementation, experimentation, 
validation, refinements and report writing. We created a Gantt chart 
(depicted in Figure 2.1.1.) to situate these tasks in time. However, after 
some analysis and reflection, we later restructured the plan to attain the 
necessary adjustments in task definitions and associated timespans. The 
actual plan that will guide our work encompasses the following tasks:

I. Research on graphic design. Research on the graphic design field. 
Definitions, history, design tools, programmatic perspectives in the 
discipline and relevant work.

II. Research on generative design. Research on the generative 
design field with emphasis on parametric approaches. Definitions, 
history, common techniques and relevant work. 

III. Research on evolutionary design. Research on evolutionary 
design, with a special focus on genetic algorithms. Definitions, 
theoretical foundations, potential design applications and relevant 
work (as this task is the last instance in the literature review, we will 
also express some considerations regarding our concept).

IV. Framework proposal. A complete description of the framework 
proposal structuring system implementation, goals, pipeline & 
architecture, scientific approach and technologies to be used.

V. Proof of concept / Early Prototype. Developing an early prototype 
to prove our concept and incorporate the first crucial framework 
components. These tasks are subdivided into three sub-tasks: (a) 
parameter identification, (b) generation of variations and (c) initial 
interface design.

2.1 Tasks identification

w o r k  p l a n  a n d  m e t h o d o l o g y



Towards Automated Generative Design p. 22

VI. System development. The system implementation as a Processing 
design tool for optimized solutions search. This task includes the 
integration of the remaining components, it divides into four sub-
tasks: (a) genetic operations, (b) fitness assignment, (c) interface 
conclusion and (d) initial results.

VII. Evaluation and Results. System evaluation and results 
presentation. We will branch the evaluation into five different 
stages. (a) internal evaluation, continuously comparing the system’s 
performance with our goals (this evaluation is implicit through the 
entire development process); (b) system’s broadness assessment, to 
test its ability to operate with code from various sources with distinct 
characteristics; (c) system’s relevance assessment, to test its relevance 
in solving design problems; (d) user evaluation, to test the interface 
with users and (e) experiments in a different environment beyond the 
regular computer screen execution.

V III. Ref i nement s.  Ident if icat ion and execut ion of minor 
improvements on the system. Interface refinements.

IX. Writing the dissertation. Documentation of the whole process, 
including goals, work plan, preliminary research, evolution of 
implementation over time, results and conclusions. This report 
serves as a comprehensive record of the project, presenting different 
stages of development, errors, achievements and results. Figure 2.1.2 
illustrates all task timespans in a new Gantt chart.

Figure 2.1.1. 

Initial work plan’s Gantt chart. 
The light grey areas correspond  
to predicted delays.

w o r k  p l a n  a n d  m e t h o d o l o g y
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Figure 2.1.2. Actual Gantt chart locating all tasks in time     
(we include a possible final submission extension to September).

2.2 Methodology

The methodology applied will follow Nigel Cross’s “Four Stage Design 
Process”. This descriptive model consists of four stages: (a) exploration, 
(b) generation, (c) evaluation, and (d) communication. The design process 
begins with an (a) exploration and comprehension of the “ill-defined 
problem space” Cross (2000). This is followed by a cyclical methodology 
that comprises two distinct yet interrelated stages: the (b) generation of 
a design concept and the (c) evaluation of the proposed design against 
established objectives, constraints, and metrics. The iteration of 
these two stages continues until the designer reaches a consensus that 
the design proposal has attained its full potential. Then, the process 
culminates in the formal (d) communication of the final artefact to the 
relevant stakeholders (Cross, 2000). This model is visually demonstrated 
in Figure 2.2.1 and was chosen for its minimalistic approach attaining 
directly what Cross (2000, p.29) defines as “the essential activities that 
the designer performs”.

w o r k  p l a n  a n d  m e t h o d o l o g y
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The dissertation employs Cross’s process heuristically, meaning we 
had to adapt it to our own requirements. Here, Cross’s Exploration step 
is equivalent to the Literature review. Then, we employ the Generation 
and Evaluation cycle in two different moments. The first loop involves 
prototyping and composing the Framework proposal. The prototype 
development supports the proposal, while the proposal offers insights 
into the technical aspects of development. When satisfied with the 
framework’s state and initial results, we move on to the next cycle. 
This time, with the knowledge acquired previously, we begin to work 
between system implementation and evaluation, which will guide us 
through system refinement. The final report corresponds to Cross’s 
Communication stage and documents the entire process. Figure 2.2.2 
illustrates this adaptation.

Figure 2.2.1.   

A simple  four-stage model of the design 
process. (Extracted from Cross’s book 
Engineering Design Methods).

w o r k  p l a n  a n d  m e t h o d o l o g y
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Figure 2.2.2.   

Our adaptation of Cross’s method,  
with two separate iterations.

w o r k  p l a n  a n d  m e t h o d o l o g y
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3.1 Graphic Design

I. History. 

Until the 19th century, a graphic designer was primarily a printer 
who used woodblock types and illustrations in a letterpress, creating 
monochromatic books and posters (Hollis, 1994). With the advent of 
chromolithography (a technique in which a designer paints a visual 
artefact transposing it by hand to stone or metal surfaces), designers 
were able to print artwork with different colour tones (Galvan, 2020). This 
method was employed through several artistic movements, bringing 
new perspectives to the design field. One example of its impact is latent 
in the Art Noveau era, where designers, seen as skilled craftsmen, applied 
chromolithography in the form of organic lines and elegant shapes to 
decorate spaces or materials (Meggs & Purvis, 2006).

At the turn of the century, the modern movements in visual arts, 
particularly the Bauhaus school (founded in 1919), redefined this 
discipline by introducing ideas about form, geometry, colour, and 
space into the design language, recognizing for the first time design’s 
potential to solve social problems (Meggs & Purvis, 2006). This led to 
the invention of novel design tools, such as photomontage and new type 
design approaches (Meggs & Purvis, 2006).

During the 1950s, “The International Typographic Style” (the 
embodiment of modernism) provided designers with a framework of 
logic and structure based on grid systems that allowed for systematic 
control of visual elements in uniform layout schemes (Meggs & Purvis, 
2006), taking the first steps towards a programmatic approach to 
design (Figure 3.1.1.) (Hollis, 1994). This modernism modularity concept 
consisted of generating variations, iterated within predefined constraints 
to grant a system’s flexibility. These constraints enabled the designer 
to compose visual artefacts with hierarchy and composition concerns. 
Karl Gerstner, a Swiss designer (1930-2017), took this perspective even 
further. Gerstner emphasized the system and its rules as an element of 
primary importance. He redefined design as a program “or the process of 
building, selecting, and combining parameters” (Shim, 2020, p.3). To the 
author, this approach was more about a designer’s logical thinking over 
the technical process of writing code for algorithms. 
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Figure 3.1.1. 

Weniger Lärm poster by   
Josef Müller-Brockmann (1960).



Towards Automated Generative Design p. 28

Even so, it would play a fundamental role in the evolution of computer 
programs for graphic design purposes. 

A good example of Gerstner’s method is his visual identity project for 
Boîte à musique record shop in Basel, Switzerland. In this work, he designs 
several instances applicable to different required formats. In Figure 3.1.2, 
the rectangular frame is defined as a variable parameter, the proportion of 
which is altered depending on the available space. While containing visual 
consistency, the project also cares for personality. In a second instance, 
Gerstner added an element of playfulness. The tension generated by 
trying to be functional and playful simultaneously turned  Boîte à musique 
recognisable while still consistent (Hewitt, 2008) (Figure 3.1.3).

Figure 3.1.2. 

Boîte à musique 
by Karl Gerstner: 
Designing 
Programmes.

Figure 3.1.3. 

Applying   
the Boîte à musique 
identity playfully.  
From Visual Language  
by Karl Gerstner.
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Figure 3.1.4. 

“Make Me Up” poster by   
April Greiman.

Figure 3.1.5.

“Bring in ‘da Noise, Bring in ‘da Funk” 
poster by Paula Scher. 

These 20th-century movements were accompanied by continuous 
progress in design resources, such as the proliferation of economic paper 
formats and the rise of the phototype technique. Meggs & Purvis (2006) 
explain how this method fragmented the discipline of graphic design into 
“a series of specialized steps”.

After phototype became prevalent (...), skilled specialists included 
graphic designers, who created page layouts; typesetters, who operated 
text and display typesetting equipment; production artists, who pasted 
all of the elements into position on boards; camera operators, who made 
photographic negatives of the pasteups, art, and photographs; strippers, 
who assembled these negatives together; platemakers, who prepared 
the printing plates; and press operators, who ran the printing presses 
(Meggs & Purvis, 2006, p.353).

In the late 20th century, digital technology, especially digital 
computer software, aggregated all of these specialized subfields into one, 
empowering the designer with the ability to carry out computer-aided 
design (CAD) processes with unprecedented creative potential (Meggs 
& Purvis, 2006). Postmodern designers rejected the formal structures 
established by modernism and soon incorporated principles of mixed 
media and deconstruction into their own work by embracing technology 
(Levanier, 2022). Two of the first artists to master these computer-made 
pieces were April Greiman (Figure 3.1.4.) and Paula Scher (Figure 3.1.5).
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Most of this software consisted of commercial tools focused on 
accessibility and usability (for example, Adobe Photoshop, PageMaker 
or FreeHand). The widespread adoption of these digital tools has 
revolutionised how we design, and it continued to gain momentum 
through the early 21st century years. However, as digital literacy among 
young designers and artists proceeded to rise, there was an increasing 
desire to break free from these tools’ limitations (as they do not encourage  
“programmatic perspectives in graphic design” (Shim, 2020, p.1)). 
This turning point began in the late 1990s when Gerstner’s perspective 
was revisited by some designers who were applying computational 
approaches to graphic design. 

II. A programmatic perspective. 

John Maeda (technologist and designer) created “Design by Numbers” 
(DNB), which Silva-Jetter (2012) describes as “a programming language 
intended for people who do not know how to program”. These targeted 
users could be designers and artists (instead of engineers) who were 
incited to explore the computational possibilities associated with their 
code writing. Maeda himself pointed out the essence of his project - “a 
medium for mapping input parameters to visual parameters” (Shim, 
2020, p.7). He highlighted the key role parameters play in programming, 
as they enable the customization and optimization of input and output 
processes, thereby revealing the underlying potential of computation in 
the design field (Shim, 2020). Figure 3.1.6 gives a glimpse of Maeda’s work.

Figure 3.1.6.

“Morisawa”  
posters [1] and [6] by  
John Maeda (1996).
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Figure 3.1.7.

Samples of Generative× 
Data-driven Posters made 
during the Workshop by 
OPENRNDR × Politecnico  
di Milano (February 17-21).

Later, Ben Fry and Casey Reas found Processing 2 within Maeda’s 
“Aesthetics and Computation” research group. A high-level programming 
language made directly on top of DNB. Compared to its precursor, Processing 
has had a greater impact on the design community. Currently, it is widely 
adopted by many visual designers, artists, and architects to create their 
works. Furthermore, Processing has been instrumental in fostering 
programming integration as a core aspect of the creative process among a 
new generation of artists (Fry & Reas, 2022). More recently, a new platform 
has emerged as another foundation for designers to explore rule-based 
programmatic approaches in their creative work. OPENRNDR3 is an open-
source platform for creative coding that combines art and design elements 
with software functionalities. Its iterative process of coding sketches allows 
for discovering and developing new ideas. The platform is versatile and can 
be used for sketches and interactive media installations. It’s also optimized 
to handle real-time data and is suitable for dynamic data visualization and 
interactive installations (Figure 3.1.7).

This leads us to recent years, in which the designer’s role is not necessarily 
creating a visual outcome but rather forming rules and programming 
systems that will (Silva-Jetter, 2012). Nowadays, graphic designers write their 
own code to attain specific problems, navigating through a solution space 
built from parameters and constraints. Silva-Jetter (2012) gives an example. 
“Typically, the design of a visual identity consists of static imagery that is not 
intended to change. In this case, the visual identity is constantly invigorated 
and is always different. It is constantly re-computed and regenerated. In 
this way, it is more related to its inherently digital nature” (p.356). We 
are witnessing a transition from a computer-aided design paradigm to a 
“programmatic-assisted design”, as Erik van Blokland and Just van Rossum 
describe in Shim (2020, p.6). This shift in the discipline has helped develop 
what McCormack et al. (2004) refer to as “Generative Design Culture”, defined 
by a growing taste in collaborative design across different fields and the use 
of digital tools to bridge the gap between concept and final execution. This 
has led to the integration of models that do not only map predefined inputs 
to visuals but also “free designers from ‘design fixation’ and the limitations 
of conventional wisdom, thereby allowing them to explore a huge number 
of possible proposals for a design problem” (Janssen et.al., 2002, p.119), 
inhabiting new properties that may surpass the designer’s expectations. 
These parameter-based models have facilitated the encounter of designers 
and artists with generative design practices (McCormack et al., 2004).

2. Processing, processing.org

3. OPENRNDR, openrndr.org
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I. Precursors of Generative design. 

The history of generative design relates to the first algorithmic 
combinations of goals and constraints in order to reveal solutions, 
making it also a history of design methodology. (Li, 2019). Before the 20th 
century, this methodology was primarily associated with architecture. 
In his doctoral thesis, Martins (2021) presents several examples. We 
outline three of them. 

One notable instance given by the author dates back to the 15th 
century and can be observed in the (a) combinatorial methods utilized 
by Leonardo Da Vinci when designing central-plan churches (Figure 
3.2.1). Da Vinci began with fundamental spatial shapes, such as squares, 
octagons, and circles, and then methodically integrated circular, semi-
circular, or octagonal spaces into the design according to pre-established 
geometric principles. This allowed him to generate every possible central-
plan church design with minimal effort or imagination (p.22). In the 18th 
century, a (b) German landscape game was developed as an example of 
design systems recombination (Figure 3.2.2). The game includes 24 cards 
that can be arranged horizontally in any order to create landscapes of 
different sizes and compositions. By exploring different permutations of 
the cards, players could build various continuous landscapes (pp.22-3). 
In 1926, the famous Swiss-French architect Charles-Édouard Jeanneret 
(also known as Le Corbusier) came up with (c) a set of principles that 
he believed defined his unique architectural style. These principles are 
described in his book, Les Cinq Points d’une Architecture Nouvelle (The 
Five Points of a New Architecture). Le Corbusier’s five points were: using 
pilotis to lift the building off the ground, allowing for free design of 
the ground plan, allowing for free design of the façade, incorporating 
long horizontal windows and including roof gardens. A good example 
of a building that incorporates all of these five points is Villa Savoye. Le 
Corbusier’s principles go beyond describing an architectural style. They 
also provide clear guidelines for designing a building. These points are an 
example of generative systems (p.24). 

3.2 Generative Design

Figure 3.2.1.   

Study of a central church by 
Leonardo Da Vinci (1488),  
 Milan, Italy. 
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During the early 20th century, Karl Gerstner was among the first 
artists to bring programmatic approaches to design. His Boîte à musique 
project is a notable example of this (as shown in the previous segment). 
With the rise of computing technology, many people became interested 
in exploring its potential for generating visual art. This led to a new era of 
experimentation with algorithmic artistic creation. For instance, in 1964, 
Philip Peterson used automatic methods to represent digitized images 
by scanning an input image and converting those values into a grid of 
symbols. An example of this process is the digital recreation of “Mona Lisa” 
(Peterson, 1965). This algorithmic trend applied in visual domains extends 
to John Maeda’s design programs and current generative design practices.

Figure 3.2.2. 

Myriorama, A Collection of Many 
Thousand Landscapes, Designed 
by Mr. Clark, 16 hand-coloured 
aquatints mounted on thin strips of 
card by Samuel Leigh (1824). 

Figure 3.2.3.  

The Digital Mona Lisa   
by H. Philip Peterson (1965). 
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II.	Current	definitions.	

This segment delves into some contemporary definitions of generative 
design applied to visual domains. While Galanter (2003, pp.4) proposes 
a definition for generative art, his description may be adapted to graphic 
design. He refers to it as any practice where the artist uses a system, 
such as a set of natural language rules, a program, a machine, or other 
procedural invention, which is then set into motion with some degree 
of autonomy, resulting in complex artworks. Rodenbröker (2022) defines 
generative design as a method that employs the use of algorithms to 
transform an input (such as data or user interaction) into an output 
in the form of a new medium with multiple variations. This involves 
the development of systems with a set of parameters and constraints 
that serve as the foundation for generating visual outcomes in a broad 
sense. Normally, these systems are user-driven, where the user actively 
controls the generation process by directly manipulating a parameter 
space (Rodenbröker, 2022). According to Gradišar et al. (2022), generative 
design is an approach that facilitates collaboration between the designer 
and a computer algorithm, a method empowered by the complementary 
capabilities of both parties, with the computer being able to efficiently 
sort through data, generate and evaluate numerous solutions, and achieve 
optimal results through iterative refinement. On the other hand, the 
designer brings expertise in the form of real-world experience, in-depth 
knowledge and understanding of the field. Within this definition, the 
emphasis is shifted from generating the design solution to specifying the 
design problem with its constraints and criteria. This allows for the use 
of various algorithms to produce a wide range of solutions from which the 
designer selects the most suitable ones.

Upon these definitions, we list some key aspects of generative design 
applied to the visual arts. (a) Generative design is often a collaborative 
practice between a designer and a machine. (b) It transforms an input 
into a visual output, where the input is usually parameter-based and (c) 
produces a wide range of design solutions. For a deeper understanding 
of parameter-based generative design concepts, we studied Robert 
Woodbury’s “Elements of Parametric Design” (Figure 3.2.4).
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III. Parametric design. 

Woodbury (2010) provides a comprehensive overview of the various 
factors involved in parametric approaches, which is highly relevant 
to generative design practices. On p.11, he explains how a parametric 
approach differs from traditional design methods. Rather than adding 
and removing visual elements, parametric design involves relating 
and changing these elements in a connected manner. This coordination 
requires the designer to consider how these relationships affect the 
outcome. Later on, on p.39, Woodbury defends that using parametric 
modelling in design allows for new possibilities, particularly in the 
realm of form. While, from the author’s perspective, some may view 
this exploration as aimless and without direction, taking a step back 
shows that there is a serious purpose behind it. He says that throughout 
history, design has constantly evolved through the exploration of new 
ideas and concepts, using the available tools, stating that as new design 
languages and styles emerge, this exploratory approach becomes even 
more important.

Two critical aspects of parametric design are the concept of 
parameter and the concept of design space. On p.50, a parameter 
is described as a variable, a named container that holds a value. In 
parametric design, variables can hold multiple values. The variable 
name is written first, followed by the value it contains and the type of 
object it represents. Parametric design allows us to describe a design as a 
collection of values. However, parameters do not impose any particular 
order, and a collection of parameters with no duplicates can be considered 
in any sequence without affecting the values held within those variables. 
Different combinations of variable settings constitute the design space. 
To explain the idea, the author divides it into two categories: implicit 
design space and explicit design space. The implicit design space refers 
to all possible design solutions that can be reached through a symbol 
system. It is a network that includes all solutions that a designer may or 
may not explore. On the other hand, the explicit design space is a smaller 
portion of the design space that includes only the states that have been 
explored in the current or previous design moments. The explicit space 
is developed through the design process and reflects the exploration 
behaviour of designers based on their cognitive limits and knowledge. 
Both implicit and explicit design spaces are interconnected, with the 

Figure 3.2.4. 

“Elements of Parametric Design” 
by Robert Woodbury,   
book cover.
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latter being a subset of the former (Woodbury, 2010, pp.275-6 ). To the 
author, exploring multiple alternatives can lead to better designs. To 
Woodbury’s assessment, we may add Krish’s (2010) idea of an exploration 
envelope limiting the design space, meaning the definition of minimum 
and maximum values each variable may assume.  This grants designers 
better control over the range of possible solutions.

Before the end of this segment, we emphasize some strategies 
Woodbury believes designers employ while using parametric approaches. 
The first one is language. Most current systems require a scripting 
language, which is a type of programming language. However, according 
to the author, designers must switch from their familiar visual and 
interactive representation to working with textual instructions (p.35). The 
second strategy is sketching, which is highly valued in design. Parametric 
models are dynamic and can easily be changed to answer design questions, 
favouring this secular design practice (p.36). Another strategy is coined 
by the author as copy-and-modify, which involves using existing code to 
achieve a particular effect. This requires a community of practice that 
generates code, similar to how web designers often mine existing pages 
for code snippets (p.38).

IV. Generative design projects. 

After this concept revision, we analyze recent projects that are relevant 
to parametric, generative design approaches. In 2008, LUST Design 
Studio created the Poster Wall for the 21st Century for the Graphic 
Design Museum in Breda, Netherlands. The museum installation, “100 
Years of Graphic Design in the Netherlands,” featured a digital and 
physical poster wall (shown in Figure 3.2.5) that automatically generated 
numerous distinct posters using content from various internet sources 
(Manaranche, 2014). In 2017, MuirMcNeil Design Studio employed a 
systematic approach to create 8,000 distinct covers for Eye magazine’s 
94th edition (shown in Figure 3.2.6). They used the HP Mosaic program, 
which allows the generation of various unique compositions through a 
collection of input designs called “seed” image files. For this project, the 
seed images were typographic compositions that repeated the letters of 
the word ‘eye’ in fixed intervals, using different fonts from their TwoPoint 
and TwoPlus type families in three layers (Martins, 2021). MuirMcNeil 
established specific rules within the Mosaic program to adjust each seed 
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file’s sections’ scale, position, crop, and colour, resulting in thousands 
of covers (McNeill and Muir, 2017). André Burnier’s 2020 visual identity 
for CIDDIC, a research centre at the Faculty of Contemporary Music 
at Unicamp, explores user-driven generative systems (Figure 3.2.7). 
Burnier utilized a “designer bot” created with p5.js to facilitate the 
generation of graphics (accessible to everyone) for the research centre.  
The bot combines parametrized visual elements with textual inputs, 
resulting in the generation of unique and coherent artefacts. This 
example demonstrates the creative potential of parametric approaches 
in creating visual identities (Burnier, n.d.). The Munken Creator was 
created by The Munken Paper Mill in partnership with Patrik Hübner 
in 2022. It’s a web-based tool that allows users to create customized and 
visually appealing artefacts using the Munken Sans typeface (Figure 
3.2.8). The tool has an interactive user interface that updates generated 
visuals in real time. It allows users to make changes and adjust their 
designs by manipulating a settings list, such as the font size, letter 
spacing or number of columns. The generated designs are rendered 
on screen and stored in the platform’s URL. “So users can bookmark a 
design they like, save it for later or share their settings with others by 
sending them the URL” (Munken Paper Mill & Hübner, 2022).

Figure 3.2.5.                       

Two images of Poster Wall for the 21st 
Century for the Graphic Design Museum 
in Breda, Netherlands by LUST Studio. 
(a) Installation, (b) Posters.

(b)

(a)
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Figure 3.2.7.  

“The Designer Bot’s”  
by André Burnier (2020). 
Interface.

Figure 3.2.6.

Covers of the Eye magazine 
(issue 94) by MuirMcNeil 
Design Studio (2017).

Figure 3.2.8.

Exploration of   
‘Generative Design’ with   
The Munken Creator (2022).  
colab.munken.com
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These projects reinforce the feeling of an emergent generative 
design culture that is becoming more prevalent in contemporary design 
practices. By systematically using computational tools and methods 
based on rules and parameters, designers have been exploring alternative 
approaches to the field. According to McCormack (2004), this culture 
promotes ideas of evolution, breeding and adaptation, making generative 
design a territory that sparks new possibilities beyond “simple” generative 
models. Evolutionary concepts are becoming part of the designers’ 
vocabulary. As well as being generated, design artefacts may also be 
evolved and optimised to suit specific purposes. In the next section, 
we will analyse concepts and relevant work related to  evolutionary 
approaches in design and determine how they may fit our goals.

l i t e r a t u r e  r e v i e w
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3.3 Evolutionary Design

(...) stuck at that point just before the creative leap. They know where 
they have come from and have a general sense of where they are going, 
but often do not have a precise target or goal.(Janssen et. al, 2002, p.120)

According to Bentley (1999, p.5), Evolutionary design applies evolutionary 
systems to the arts and graphic design field. In computer science, the 
evolutionary computation process involves searching for the best 
solutions to a computational problem. The search space is a space filled 
with all possible solutions. Each point in that space defines a solution. 
The goal is to improve parameter values by searching for better solutions 
within a solution space. This conception corresponds to Woodbury’s 
(2010) implicit design space. To Bentley, there are distinct search 
algorithms, including evolutionary search, a rapidly growing subset. 
These algorithms are inspired by Darwinist biological evolution, using a 
natural evolution method to evolve solutions to problems by considering 
a large population of solutions at once rather than working with one 
solution at a time in the search space. 

Richard Dawkins was among the first to apply evolutionary 
algorithms to the visual domain. He created The Blind Watchmaker 
program in 1986 (Figure 3.3.1.) to explore the artificial evolution of 
biomorphs through tree-growing procedures with a human-guided 
selection criterion. (Dawkins, 1986). In the early 1990s, Karl Sims and 
William Latham collaborated with Stephen Todd to create artistic images 
by combining evolutionary techniques and computer graphics, following 
Dawkins’s track. As seen in Figure 3.3.2. Sims employed user-guided 
evolution to evolve abstract images, three-dimensional shapes, and 
animations, while Todd and Latham presented evolutionary techniques 
for creating biomorphic forms (Martins, 2021). Their work contributed 
heavily to the emergence of evolutionary art (Lewis, 2008).
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Figure 3.3.1.  

Evolution of computer 
biomorphs by   
Richard Dawkins (1986).
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Figure 3.3.2.   

Three artworks by Karl Sims. (a) “Simple expression examples”. Evolution of images.  
(b) “Parent with 19 random mutations”. Evolution of volume textures.   
(c) “Fire of Faces”. Evolution of animations.

(c)

(b)

(a)
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I. Genetic algorithms, revision of concepts.

 There are four types of evolutionary algorithms: genetic algorithms, genetic 
programming, differential evolution, evolution strategy and evolutionary 
programming (Slowik and Kwasnicka, 2020). This segment focuses on 
genetic algorithms, widely used for a broad range of optimisation problems. 

A genetic algorithm is a concept that draws upon the Darwinist 
principles of biological evolution. Such an algorithm creates populations 
of individuals representing potential solutions to a given problem (Holland, 
1992). The goal is to improve upon these solutions through a search process. 
Each solution is represented by a string of numbers of a predetermined 
length (Janssen et al., 2002, p.120). This string is referred to as a genotype. 
Each component within the genotypes represents a gene that determines 
the final appearance of the design solution, also known as the phenotype. 
The genotype representation outlines the search space of a problem, while 
the phenotype representation outlines the solution space (Bentley, 1999). 
It is crucial to carefully design both spaces to ensure that finding good 
solutions is manageable. First, a group of designs is formed by assigning 
various values to the genes. This group is known as the initial population, 
and it usually comprises diverse solutions to the problem created by 
randomly assigning gene values to each genotype. 

The evolution process commences with an evaluation of each potential 
solution using fitness criteria. This criterion determines which candidates 
should be chosen for reproduction in the next generation and which ones 
should be eliminated, similar to natural selection (Kour et al., 2015). The 
search space is explored during the evaluation stage to find potential 
solutions. This process creates a fitness landscape, which shows all possible 
solutions and their fitness levels (Janssen et al., 2002, p.120). Usually, built-
in fitness functions are used to analyze and rank solutions automatically, 
but sometimes human evaluators are needed, especially when aesthetic 
choices are involved (Önduygu, 2010). Successful genetic algorithms tend 
to have increasing fitness scores over time. After assigning fitness scores to 
the candidates, the next generation is created through an operation called 
crossover, which combines genetic material from two parent solutions to 
produce offspring with a mixture of traits (Lewis, 2008). Mutations, random 
changes to the offspring’s genetic material, may also occur to grant some 
level of genetic diversity. A genetic algorithm’s task is to evolve generations 
of solutions and converge them into satisfactory solutions to the problem.
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II.	Advantages	to	the	field. 

In the segment, we share some ideas on the advantages that evolutionary 
systems may bring to the design field. We begin with a poetic thought 
from Bentley (1999) that praises the success of designs created through 
natural evolution, stating that “The most successful and remarkable 
designs known to mankind were created by natural evolution” (p.5). 
In fact, the human brain, arguably the most complex and remarkable 
design ever created, was generated through natural evolution. Janssen 
et al. (2002) argue that evolutionary systems are incredibly well-suited 
to design problems. By considering populations of proposals instead of 
just one proposal at a time, the designer can quickly choose the most 
suitable solutions for their intention. Samara (2007) adds that the design 
process is divided into three stages: conceptualization, execution, and 
iterative redesign based on evaluation. The author emphasizes that this 
iterative nature of graphic design aligns well with classic local search 
optimization algorithms, as they share similar characteristics. 

We conclude that evolutionary design methods fit with current 
generative models utilized by designers. Since programming languages 
allow designers to generate diverse solutions from a set of instructions, 
refining those solutions through progressive optimization seems a 
logical path towards enhancing design practices. The next section 
reviews some projects that already integrate evolutionary systems into 
generative design tools.
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In 2009, Quiroz et al. developed a human-guided evolution of brochure 
documents. The user interacts with a genetic algorithm, which evolves 
placeholders. Each placeholder is represented with one of three shapes, 
and the user can then guide the evolutionary process by evaluating a 
small subset of documents from a larger population. In addition to the 
user’s subjective input, the genetic algorithm also evaluates individuals 
in the population based on a set of objective heuristics for document 
design. Figure 3.4.1. depicts two different moments in their evolution 
process. The “Best” button in the top-left corner of each candidate allows 
for user subjective evaluation. Önduygu (2010) created Gráphagos, 
an evolutionary graphic design system using genetic algorithms to 
randomly mutate and replicate human-evaluated design layouts (Figure 
3.4.2). The program was written in Processing. Önduygu intended to 
create a design tool based on an evolutionary approach to the creative 
process. An interesting aspect of Gráphagos is how it incorporates design 
elements. Some are created from scratch, while others are sourced from 
image and font pools. This concept aims to translate human creative 
appropriation practices into a digital realm. 

The Letterspecies project by Pereira et al. (2019) is a web-based tool 
combining type design with generative processes to generate unique 
letterforms or glyphs automatically. The tool uses an algorithmic drawing 
technique to fill a pre-extracted typographical skeleton, resulting in a 
visually distinct style for each glyph. Users can adjust specific parameters 
for each drawing technique, allowing for a wide range of glyphs that suit 
their visual preferences. A strong feature of this project is that it allows 
for exporting generated glyphs as a type font. Figure 3.4.3. presents 
Letterspecies’ main interface and system exploration on glyph “a”.

3.4 Relevant work

Figure 3.4.1. 

Two instances (gen. 0 and 10)  
of brochure templates  
were displayed to the user   
for evaluation    
by Quiroz et al. (2009).



Towards Automated Generative Design p. 45

Figure 3.4.2.

 (a) Gráphagos interface with 
a random initial population. 
(b) Results for the poster of 
Yüreklendirme Konseri.

Figure 3.4.3. 

(a) Letterspecies project 
interface. (b) Glyph “a” is 
generated using different 
drawing techniques of 
the system on the same 
typographical skeleton. 

l i t e r a t u r e  r e v i e w
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l i t e r a t u r e  r e v i e w

Rebelo et al. (2020) The Evo-Poster Composer (evo-poster) is a 
collection of generative experiments that use Evolutionary Computation 
(EC) methods to create, improve, and assess typographical posters 
(Figure 3.4.4.). These experiments aim to establish a generative process 
that mimics the traditional letterpress print houses workflow in the 
19th century. An essential aspect of this work involves exploring diverse 
evaluation methods. The authors integrate multiple fitness assignment 
schemes into the system to enhance the quality of evolution. Figure 3.4.4, 
image (b), depicts a valuable instance of Rebelo’s exploration. Users can 
submit text inputs to generate multiple typographical posters.

Still, in 2020, Lopes et al. proposed an evolutionary engine for 
generating glyphs, aiding designers to explore during the creative 
process. Their system employs a Genetic Algorithm to evolve SVG paths 
using interactive and automatic fitness assignments (Figure 3.4.5.). The 
system was made to serve as a tool to generate ideas for designers to create 
novel glyphs. To authors, evolutionary approaches have great potential 
to promote novelty as they are similar to human design processes.

Figure 3.4.4. 

(a) Example output of the Evolutionary Poster Composer Approach using the content gathered   
from a poster designed for the May 1968 protests (France) and Coimbra’s Academic crisis of 1969 (Portugal).   
(b) Some executions of the Composer succeeded by the user’s textual input. 

(a)

(b)
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Figure 3.4.5.

(a) Snapshot of Adea’s interface.  
(b) Artefacts are designed using novel 
glyphs generated by the system.

l i t e r a t u r e  r e v i e w
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l i t e r a t u r e  r e v i e w

This literature review has allowed us to reach some conclusions. (a) 
The discipline of design consists of formulating a visual language with 
the intention to communicate ideas. (b) The efficient communication 
of these ideas depends on a set of decisions made during the artefact 
execution. (c) The content of this communication constitutes a design 
problem requiring a solution. (d) Current programming practices based 
on parametric manipulation have expanded the spectrum of perceivable 
solutions to address a design problem. (e) In addition, evolutionary 
approaches allow groups of solutions to be optimised, assisting the 
designer in identifying the best ones. (f) Some designers and researchers 
have sought to implement tools encompassing most of these elements in 
a single platform. (e) However, the analysed works fitting this description 
foresee a particular type of visual output beforehand. In these projects, 
the search space is predefined by the creator, who channels the results to 
a specific group of outputs. 

Upon these assertions, we consider it necessary to explore the 
implementation of a tool capable of integrating all the elements inherent 
to the design practice, which may accelerate important aspects of the 
creative process. With this tool, the designer could create and explore 
his own search space to find solutions to his particular design problem.

3.5 Considerations
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This chapter proposes a framework for structuring system development. 
It is divided into four sections: (a) description and objectives; (b) system 
overview, architecture and pipeline, which involves a comprehensive 
description of the required modules; (c) user flow diagram, given our 
interest in ensuring the system’s relevance as a tool, and (d) development 
plan, as a Processing application.

This framework represents a generic model designed to generate, evolve 
and export multiple instances of a provided sketch code (featuring 
nearly 4 unpredicted characteristics). Here are our objectives: to build 
a parameter-based search space from an external input, manipulate 
parameters within this space to generate variations, employ a genetic 
algorithm to evolve those variations, pursue optimal solutions and 
export the outcomes as independent, executable code sketches. This 
model is designed to assist users in exploring design solutions and should 
work as a tool for designers, relocating them “at the centre of the design 
process” (Janssen et al., 2002). The following sections explain how we 
intend to accomplish these objectives.

Our framework, just like Rebelo et al. (2020, p.111) and other similar 
frameworks, operates with inputs and outputs. The user feeds the 
system with a sketch code as input and generates successive variations 
of that sketch code. Each variation showcases a unique visual outcome 
by assigning diverse values to the parameters used to create the design 
artefact (outputs). This process comprises five components:

Parameters Identification;
Generation Module;
Evaluation Module;
Evolution Module;
Interface.

4.1 Description and Objectives

4.2 System Overview

4. See segment   
“Reflections on the Input”   
from Chapter 6.
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After the user uploads the code he wishes to variate, the (a) 
Parameters Identification module initiates. This module is responsible 
for extracting information on parameters present in the code while 
parsing them into a table that includes the type of parameter, its starting 
value, and the boundaries for exploration (min. and max. values). 
Once the user approves the table, the (b) Generation Module creates a 
population of sketches corresponding to slight variations on the input 
by stochastically modifying the parameter’s default values and injecting 
them back into the source code. While in this module, those variations 
are exported to a folder and rendered on-screen in separate windows. 
Rendering allows the user to evaluate each sketch window, closing the 
less promising ones and leaving the ones worth exploring further intact. 
(c) The Evaluation Module maps that interaction to a fitness score, as a 
client-server utility permits the system to determine which windows 
were closed and which were left open. After fitness assignment, the 
(d) Evolution Module breeds values for a new population of variated 
sketches, this time stemming from the previous population based on 
evolutionary thinking, where each variable parameter corresponds 
to a gene and the fittest individuals (sketches) have more chance to 
reproduce their genotype than the less fit. Those values constitute an 
offspring generation compiled again inside the Generation Module, yet 
this time, values were not assigned randomly as they result from that 
user-guided genetic algorithm. At this stage, the system enters a loop 
of evolving, exporting and rendering populations of sketches as long as 
the user decides. Figure 4.2.1. illustrates this system architecture.  We 
will now describe each component in detail.

Figure 4.2.1. 

Framework’s  
architeture diagram.

f r a m e w o r k  p r o p o s a l
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I.	Parameters	Identification
Input (User uploaded sketch) → Output (Table with extracted parameters)

This module triggers a cascade of tasks that starts with the user’s input 
and ends with a table of parsed parameters constituting the parametric 
space we intend to work with. It reads the input’s source code as a regular 
text file and searches each line for parameters. The system must know 
what it is looking for. We achieve that by defining a markup language (to 
tag parameters) that needs to be applied before uploading. We require two 
underscores preceding the parameter’s name (tag 1.) and the definition of 
what Krish (2011, p.93) presents as the exploration envelope (tag 2.), the 
minimum and maximum values that may be assigned to each parameter 
(two slashes followed by “min:” and “max:”). Below is an example of a 
correctly marked parameter set to be variated:

Original parameter  → loat radius = 10;
Tagged parameter  → float __radius = 10; //min: 5 max: 30

The system starts searching for tag 1. When tag 1. is detected, it 
inspects the respective line of code to confirm its status as a valid 
variable parameter (while removing outliers). A parameter is considered 
valid only when it is initialized, which means the first time it occurs in 
the code (further value assignments depend on the user’s code design 
and may relate to other parameters and operations). We verify this by 
checking if the data type (e.g., float or int) precedes the declaration (the 
data type will also be useful for further value manipulations). After 
validation, the system searches for the next tag (tag 2., boundaries). 
If tag 2. is absent, the parameter remains technically valid but is not 
processed as it is unusable. Parameters get parsed to a table only if tags 
1. and 2. exist. This table collects valuable information on that parameter 
data type, name, initial value, and envelope. The task proceeds until 
all viable parameters are recognised and parsed, as we need to define 
the parametric space before advancing to generation. Finally, the user 
validates the list of parameters and triggers the next module. Figure 
4.2.2. illustrates the extraction of parameters from an uploaded source 
code and their representation in a table.

f r a m e w o r k  p r o p o s a l
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II. Generation Module
Input (Array of genotypes) → Output (Phenotypes exportation and rendering)

This module generates variations of sketches from the original input. 
As we’ve pointed out, the parametric space is built from a table of 
parameters. Each parameter has an associated value that may be 
modified within its envelope. Changing these values produces a different 
parameter combination, resulting in a different visual outcome. We 
consider this combination of values a **genotype** (or chromosome), 
with each value corresponding to a gene. The Generation Module gathers 
multiple genotypes (coded solutions), identifies a search space, and 
creates a population of variations from them (actual solutions), building 
a solution space. It processes genotypes in two distinct moments: (a) 
creating the initial population and (b) generating new populations. 

A. Initial Population. In this stage, our system randomly assigns a 
new value to each parameter within the minimum and maximum 
limits, creating a genotype. The user chooses the number of 
genotypes he wants to generate. That number defines the population 
size of sketches during execution. This stage runs once, and it’s used 
to create an initial, stochastic population of sketches.
 
B.Evolved Populations. Stage II is very similar, but the genotypes 
are not randomly generated. Instead, they result from the evaluation 
and evolution modules application (4.2.3 and 4.2.4, respectively). 
This stage is used to breed an offspring population from the previous 
one and runs continuously until the user decides to end it.

Figure 4.2.2.

Parsing identified 
parameters from source 
code. On the left a code 
example.  On the right,  
a table gathers the  
identified parameters.
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Once the genotypes are read, the system iteratively replaces the 
initial input values by injecting each genotype’s genes back into the 
original code (injection 1). This results in variations that are identical to 
the source, except in parametrization. These variations are phenotypes 
- sketches that generate a family of different visuals from the same code 
structure. The process ends by exporting all phenotypes as runnable files 
to a folder and rendering them on screen through the system in separate, 
grid-displayed windows. However, we apply another code injection 
(injection 2) before that. As phenotypes are displayed in separate windows 
from independent computer processes, we use sockets to facilitate 
communication between sketches and the system, which will allow 
us to evolve them. Each rendered sketch functions as a client, sending 
information to a server allocated by the system (detailed in section 4.2.3). 
So, extra code must be added to sketches to enable this communication 
(each injected line is tagged as such and may be deleted later when the 
execution stops).

III. Evaluation Module, Sockets approach
Input (User interaction) → Output (Ordered list of fitness scores)

A genetic algorithm requires evaluating candidate solutions, which 
affects the evolution process. Visual cues about potential sketch code 
appearances are provided through phenotypes so the user can guide the 
search process toward better solutions. That assessment is made through 
a fitness assignment processed in this module.

When the Generation module renders a population on screen, each 
window represents an individual, corresponding to a possible design 
solution. To classify these candidate solutions, we apply a user-guided 
fitness assignment. In this approach, the user’s interaction frequently 
results in positive increments on the phenotype fitness score as he selects 
the solutions he likes the most. This method is standard in projects where 
the entire execution occurs within a single system interface (Önduygu, 
2010). However, we have a distinct design, as our system creates and 
executes sketches that run through independent processes. In modern 
operating systems, when a computer executes a process associated with 
a visual object, that object is typically displayed within a graphical user 
interface window, which acts as a container for that process’s visual 
representation, allowing users to interact with it. This interface based on 
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windows presents us with a different way to evaluate sketches. Instead of 
working on complex methods to select the ones we like, we close the ones 
we do not. All phenotypes start with good scores, and if the user chooses 
to cease their execution (closing the window), the score turns null. This 
approach constitutes a binary, inverted fitness assignment based on 
closed-opened windows.

The Evaluation module maps the described interaction to a numerical 
fitness score of 0 or 1, where 1 represents a good candidate and 0 a bad 
one (we found this binary classification the most effective method5). The 
mapping is done with a TCP-IP-based socket communication6, a client-
server architecture to enable exchanges between sketch windows and 
the system. Each phenotype operates as a client program that creates 
a socket and requests a connection to a server. The system assigns a 
port and server to that client, creating a socket object at the other end 
of the communication, enabling the server (system) and client (sketch) 
to read and write data. This module creates a table listing the currently 
rendered individuals and their fitness scores. Each sketch window 
updates the system with its current score, depending on its state (open 
or closed). When the user decides to breed the next generation, the last 
read values are ordered from the highest to the lowest and sent to the 
Evolution module. It is worth noting that this architecture allows for 
design features beyond fitness assignment and will be mentioned again. 
Figure 4.2.3. synthesizes the described component.

5. See considerations  
on the fitness assigment  
from Chapter 6.

6. Transmission Control 
Protocol/Internet Protocol 
(Shacklett et.al, n.d).

Figure 4.2.3. 

Client-server architecture 
for fitness assignment.

f r a m e w o r k  p r o p o s a l



Towards Automated Generative Design p. 57

IV. Evolution Module
Input (Parent population + fitness score) → Output (Genotypes for a new 
population)

The Evolution module executes a standard genetic algorithm used to breed 
a new population of variated sketches from the previous population. 
This new group should reflect improvements based on user feedback. It 
branches into two stages: selection and reproduction.

A. Selection. In order to attend user evaluation, it is necessary 
to select which genotypes from the ancestor pop. will reproduce 
the next one. The previous module outputs a list of all individuals 
ordered by fitness. With that list, we conduct a tournament selection 
by randomly selecting a subset of *x* individuals (the tournament 
size) and ranking them based on their fitness. The most fit individual 
is chosen as a parent for reproduction. This process is repeated *n* 
times for the entire population (Jebari & Madiafi, 2013, p.338).

B. Reproduction (Genetic Operators). After parent selection, we 
employ a sequence of operators to reproduce the next generation: 
elite, crossover and mutation. Elite children are direct copies of the 
fittest genotypes within the ancestors. The number of individuals 
bred from this process is determined by an elite size parameter. For 
instance, if the elite size is set to one, only the most fit individual will 
survive to the next generation. The remaining offspring is reproduced 
through a combination of crossover and mutation operations. 

The crossover operator combines the genetic information of 
two parents. There are several ways to conduct this. We use a single-
point approach. A random crossover point is selected in the genotype 
string, and the genetic information of two parents beyond that point 
is swapped with each other (Katoch et al., 2011, p.8098).

The mutation operator maintains diversity (ensures some 
divergence), simulating what is known in biology as errors in the 
copying process (Janssen et al., 2002). It employs random changes to 
specific sections of the individual’s encoding scheme. Our encoding 
scheme is value-based, as each genotype is defined by a string of 
values/parameters (integers, floats, booleans, and others). To apply 
the mutations correctly, we must identify the data type associated 
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with a specific gene and mutate it within its scope. To avoid hard-
coded mutations with rough alterations on the gene value (that may 
lead to drastic changes in the final artefact), we apply a Gaussian 
distribution to the mutation ranged between the gene’s minimum 
and maximum permissible values with a scale factor on the standard 
deviation. These operators work on a probability base, meaning the 
user may choose their recurrence in reproduction. When the entire 
offspring is reproduced, it is sent to the Generation Module.

V. Interface

Our desktop application interface has two components: (a) a control panel 
for guiding the generation process, calibrating genetic operators, and 
manipulating the parametric space, and (b) a group of windows arranged 
in a grid layout that displays the current population. Figure 4.2.4. depicts 
this structure. On the left is a visual representation of a population. On 
the right is the control panel with parsed parameters and system settings.

Figure 4.2.4.  

System’s interface 
wireframe.
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Figure 4.3.1. 

User flow diagram 
depicting the central 
steps of the execution 
process.

Figure 4.3.1. illustrates user navigation from sketch upload to evolution. 
Rounded rectangles mark the start/end of the user f low. Straight 
rectangles represent steps to take, and diamond shapes indicate decision 
points. Underlined tasks constitute critical steps. At the bottom is a 
parallel view locating the framework’s modules in time during execution. 
This diagram will be helpful for interface design and evaluation.

4.3 User flow diagram
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We w i l l use P rocessing, a w idely-used sof t wa re in t he desig n 
community (as mentioned in the Literature Review chapter), to develop 
our system. By doing so, the framework ensures compatibility with the 
standard programming language used by our target audience. This 
gives us the possibility to test and evaluate the system in real scenarios.

The development process has two stages: creating a proof of concept 
prototype and building the actual application. The idea behind creating 
an early prototype is to prove the framework’s potential and the 
viability of critical aspects, such as the markup language assignment, 
the Parameter identification, and the generation of multiple instances 
of the given sketch code. This early endeavour also helps to initiate 
some components regarding user interaction, counting control panel 
and communication between windows and the system. Once the 
concept is proven, system development starts where the prototype left 
off. This will involve integrating the evolutionary component, as well 
as refining the interface and adding secondary features. During these 
stages, we expect to produce distinct results to gain empirical insights 
and strengthen our proposal.

4.4 Development structure
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This chapter gives an overview of the first stage of system development. 
The objectives include assigning the markup language, uploading sketch 
codes, extracting and parsing parameters, generating variations, 
rendering, exportation, and interface early design. Here, we cover 
technical details, early results, and considerations since the Framework 
Proposal already describes the conceptual aspects.

The prototype was developed as a Processing application (Fry & Reas, 
n.d). In addition to Processing’s integrated programming language, we 
added some segments in native Java for specific purposes, like parts of 
the socket communication and sketches rendering.

I. Parsing. 

The first technical challenge was related to parameter identification in 
the given sketch code. The chosen approach was to work with String 
indexes. To explain this method, let us return to the example of a properly 
marked parameter: float __radius = 10; //min: 5 max: 30. Since we want to 
extract and distinguish the information in this line, we must provide the 
system with the necessary tools to do it. We reflected on which characters 
were always present in a variable declaration (inspired by Alan Turing’s 
pattern comparison (Raikar, n.d).). We know our markup tags will be 
there, but we also know that in Java, there will be an attribution key (=) 
and a semicolon (;) to close each declaration. With this knowledge, we 
retrieve the length of the code line (trimmed to avoid errors) and the 
characters index in it. Then, we define intervals between those indexes 
to extract the content inside them into an array. This allows us to filter 
the declaration and parse the valuable information into a table. The 
method is precise, so if any identified keys are missing, the parameter 
is considered an outlier (for our purposes). Reversibly, we use the same 
index information not to extract but to inject new values in the sketch 
code and produce a variation.

5.1 Environment

5.2 Notes from input to parameters extraction
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II. Data types analysis. 

During this phase, it was crucial to differentiate between mutable and 
immutable data types. Any data type associated with numbers (byte, 
short, int, long, float and double) may be altered, as it is possible to define 
a range of exploration and assign new values within that range. This 
includes boolean variables (essentially a choice between two states: 0 
or 1) but excludes non-primitive types like Strings, Arrays and Classes. 
While being primitive data types, char variables may store letters of the 
alphabet. For that reason, we also excluded them. It is relevant to notice 
that our system’s input and output is text (encoded as Strings), so the 
variable type is only considered to manipulate the parameter’s assigned 
value. Parameters life cycle always begins and ends as a String.

III.	Uploading	refinement.	

During the first development iterations, we had to manually input the 
source sketch location path in the directory structure. To solve this, we 
added an interactive action using Processing’s selectInput() method to 
open a file chooser dialogue for selecting input files. The system then 
stores the selected file in an array of Strings.

5.3 How to render and export

Exportation and Rendering are crucial for our intentions, so they needed 
to be solved early. Both steps are related since the sketches exported are 
the ones we render on screen.

I. Exportation. 

Exporting the variations we create as runnable sketches has benefits. 
We may visually review each variation and provide the designer with 
sketch files for later use. Exploring design solutions is only relevant if 
they remain accessible after system execution.
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This process involves injecting the list of new values and communication 
methods (see Generation Module segment from Chapter 4) into the source 
sketch encoded array of Strings. The array is saved as a Processing file in a 
“ Variations “ folder. Each execution implies exporting multiple files that 
will be rendered, so we used a structured indexation method to assign 
filenames. For that, we use two counters, one for each generation and 
one for each sketch within that generation. As we knew we intended to 
implement a genetic algorithm, we applied its semantics. The tag “pop” 
(from a population) precedes each generation index, and “indiv” (from an 
individual) precedes each sketch index (the initial name was “modified”, 
but we found it inaccurate). This is an example of a pseudo path leading to 
the eighth variated sketch from the first population: system/variations/
pop_000/indiv_008/indiv_008.pde.

II. Rendering. 

After completing the export process, Processing’s processing-java 
extension automatically executes sketches without requiring the user 
to open a terminal (as would be the usual procedure). This extension 
sends “-run” commands using the same counters that created the sketch 
paths (predicting that sketches with a certain filename will be in the 
“Variations” folder), all within the system’s task flow. That’s how we 
render exported populations. 

An important aspect of this process is window positioning on-screen, 
as we want to avoid overlap (by default, Processing centres the sketch). 
We designed a grid layout of relative positions to present each variation. 
The grid calculates sketch positions by combining their index (indiv_000,  
001, …), population size and screen dimensions. The positions are then 
assigned with Processing’s setLocation(). This property is part of the 
extra code injections done during exportation. We also considered 
randomly assigning positions to create a “hacked” desktop feeling. 
However, when tested, this approach was ineffective, making it difficult 
for the user to see and evaluate variations.
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Figure 5.4.1. 

Initial interface snapshot. On the left is an eight-variations rendered population  
of a sketch named “Bouncy Balls”. On the right, the control panel with simple 
ordered tasks (the user has already pressed the first three buttons at this point).

5.4 Initiating interface design

To begin considering the interface, we designed a simple, straightforward 
control panel with buttons that led users through a sequence of ordered 
tasks (to ensure each method worked correctly). The panel was placed 
on the right side of the desktop, leaving room for variation windows. We 
left empty space in it to accommodate future feature additions. It worked 
fine as a prototype, but we knew it would require elements hierarchy 
and clarity improvements. Figure 5.4.1. illustrates this first experiment. 
The system uploads a Processing sketch that draws balls in motion. The 
control panel allows us to (a) run the original input sketch, (b) generate 
variations, (c) run variations and (d) print the ones we like (explained in 
the upcoming segment).
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5.5 First foot on evaluation

We had time to initiate evaluation after meeting the predicted objectives 
for this stage. Even though the evolutionary implementation had not 
yet begun, our prototype was already displaying randomly generated 
variations on-screen, so it was possible to access their quality. We started 
designing the communication between windows and the system. This 
functionality fits in the socket-based architecture described in the 
framework. We used the networking tools provided by Processing, with 
local ports and client-server assignments for each variation. Once a line 
of communication is established, each sketch reports a value of 1 to the 
system as long as it stays open. When the window is closed, it reports a 
value of 0 before the sketch shuts down. The system prints a list of open 
sketches using this binary approach, identifying those with a remaining 
value of 1, which allows for the assessment of preferred sketches. This 
data will be crucial to breed new generations. 

Figures 5.5.1. and 5.5.2. depict this process. A population of twelve 
sketches is rendered, the user closes the ones he doesn’t like and presses 
the “Store best variations button”.
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Figure 5.5.1. 

Twelve variations of sketch “Rectangles”.

Figure 5.5.2. 

The remaining six, after user interaction, are still opened and identified 
in the control panel.
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Figure 5.6.3. 

Sketch “Gradient Circles”,   
original and selected variations.

5.6 Early results

Figures 5.6.1. to 5.6.3. are visual outcomes of experiments conducted 
with our prototype. All of them represent random variations from 
sketch codes with distinct characteristics. We already have a sense of 
a generic generative design tool. Figure 5.6.4. illustrates the problems 
random positioning may bring, even though it transmits a feeling of 
organic beauty.

Figure 5.6.1. 

Sketch “A Bezier Loop”,   
original and selected variations.

Figure 5.6.2. 

Sketch “Type from Particles”,  
original and selected variations.
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5.7 Considerations

Before advancing to system development and refinement, we considered 
some aspects. (a) Random generation alone can be interesting. It allows 
us to visualize different solutions automatically, making this type of 
exploration helpful at the beginning of the generative process to provide 
the user with distinct design directions. (b) As we want to render multiple 
instances of a source sketch, its window dimensions must be considered. 
It is impossible to reduce width and height or zoom out the entire sketch, 
as it could affect the artefact. Sketches with larger dimensions may only 
be explored on high-resolution screens. (c) Rendering can be slow in some 
cases. The concurrent execution of multiple Java processes consumes 
considerable computational resources. In Java, this limitation may 
persist as the system requires a reasonably powerful machine. (d) On a 
positive note, the system runs on Linux, Windows, and macOS.

Figure 5.6.4. 

Fifty variations of sketch  “Gradient Circles”. Generative chaos.
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In this chapter, we delve into EvoProteus, the system we’ve developed 
to optimize the exploration of parametric spaces. Below, we discuss the 
integration of the evolutionary component, technical challenges, new 
features, interface enhancements, some results and considerations. 

EvoProteus is born. 

We named our system EvoProteus. In Collins Dictionary (n.d), the term 
“protean” means “readily taking on various shapes or forms; variable” 
and comes from the Greek sea-god Proteus (Figure 6.1.), whose name also 
suggests the “first” (from Greek “prōtos”)(The Editors of Encyclopaedia 
Britannica, n.d), proposing the idea of a primordial being from which 
many forms arise. This concept aligns with our intentions, so we 
combined it with “Evo” to create EvoProteus - a system that explores 
parametric spaces in an evolutionary, protean way.

We succes sf u l ly implemented t he Pa r a meter s Ident i f icat ion, 
Generation, and Evaluation modules in the prototype’s development. 
Here, we integrate the Evolution Module to generate successive 
populations of user-evaluated sketch variations.

I. General Notes on Evolution. 

(a) In order to integrate the genetic algorithm, we added two new classes 
to our code: “Genotype” and “Population”. The “Genotype” class handles 
reproduction operators such as elite, crossover, and mutation. The 
“Population” class handles selection, sorts individuals by fitness and 
conducts the tournament. It also calls the rendering and exportation 
methods developed earlier. (b) The strings of random values we used 
to generate a prototype population in the previous chapter constitute, 
here, the first set of genotypes. Our Genotype is, therefore, a sequence 
of values assigned to each extracted parameter and optimized through 
an iterative process. Our Population is a group of sketch variations 
obtained by replacing the default values with evolved Genotype values. 
(c) The only time EvoProteus processes code is during the input sketch 

6.1 The Evolutionary Leap

Figure 6.1. 

Proteus by Jörg Breu the Elder  
(1475–1537).
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upload. This means that it always operates on top of the original source 
code to export new individuals. Once the evolution process starts, the 
only input our system receives is a list of binary fitness scores it uses to 
breed new Genotypes.

II. Beware of Booleans. 

Most variable types our system recognizes are mutated within a 
Gaussian distribution, but boolean variables have only two states, zero 
or one, challenging controlled mutations. Changing a boolean value 
involves going from one extreme to another, which can significantly 
affect the final visual outcome, such as changing a background from 
white to black.

III. Between Populations Rendering. 

The evolutionary process requires killing one generation and breeding 
another. In EvoProteus, this implies exiting the ancestor’s windows and 
running new ones in a single-panel instruction. To make this possible, 
we call our sockets component again. However, instead of listening, 
the system sends information to the clients (sketches). It opens a 
binary communication for parent sketches to receive instructions 
on when to end their execution. When a population is rendered, the 
system continuously prints the value one into each phenotype. When 
the user signals “Next Generation”, this value changes to zero. For the 
population, zero means extinction, so the “exit()” command is triggered 
inside each individual. This method automates the execution, avoiding 
manually closed windows.
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6.2 Debugs

This stage required overcoming two significant technical obstacles 
related to the entire execution that took us some time to analyse 
and solve.

I. Handling Temporary Files. 

One issue was the creation of excessive temporary files during each 
execution, which would fill the computer disk space in the most severe 
cases. We thought this would be related to the rendering of multiple 
sketches via the command line but then traced this problem to the 
interface’s font file uploading. The system was creating precautionary 
temporary files due to mistrust of font file paths. We excluded these 
external font loading and called the typefaces directly with Processing’s 
PFont.list(), indicating the indexes of each desired font.

II. Concurrency Concerns. 

We had another significant constraint. Sometimes, correctly exported 
variations failed to run during the rendering process. Although 
considered valid by the system, these variations could not be evaluated, 
resulting in zombie individuals poisoning the offspring with genetic 
information the user was unaware of. The problem was due to Java Race 
Condition (Lutkevich, n.d), a concurrency bug. Some sketch windows 
would crash when the system attempted to perform several operations 
(run sketches) simultaneously. We tried to add a delay between each 
variation execution, but that did not work. As it was practically 
impossible to solve this occasional issue, we worked on a debug button. 
Each sketch rendering is associated with a Java process/thread ID. When 
a sketch runs adequately, we use the socket communication to print its 
ID to the system. We then employ a Java method to store all the existing 
processes in an array and compare them with the identified healthy 
sketch IDs. Any outlier constitutes a zombie process (stuck process). The 
debug button outputs a Java command to terminate it and prompts to 
rerun the sketch. 
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6.3 Additional features

We wanted EvoProteus to be both functional and visually appealing. 
After fixing bugs and completing the framework modules, we added extra 
features to enhance user experience.

I. Exploration. 

Our first significant improvement was adding toggle buttons to each 
extracted parameter. By default, all parameters are toggled on at the 
beginning, which means they are equally subjected to the evolution 
process, getting consecutive new values. During the execution, users 
do not need to evolve all variables at the same time. They may freeze the 
exploration of a given parameter and proceed to evolve the remaining 
set. This allows much more precise guidance of the evolution process 
(see segment 6.6). Technically, when a parameter is paused, we look at its 
assigned values in the current generation and keep those values intact in 
the following ones. Paused parameters may be activated later.

II. Restart generation. 

Another feature we had was a restart button. Users can now restart the 
evolution process with a single button press. This saves time compared to 
previous versions, where the program had to be shut down and the input 
uploaded again.

Translated to user interaction, if one or more sketches from the current 
population fail to run, the user may press an “Indiv. missing? Press 
here” button to complete the rendering process and evaluate the results. 
It’s worth noticing that this bug is unpredictable and, most times, 
unexisting, especially in powerful computers.
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III. Fitness assignment. 

We attempted to enhance evaluation by implementing another form 
of fitness assessment, a complementary method that would produce 
more distinct scores. We were particularly interested in the screen’s 
edges, as we believed a sketch dragged out of the edges would likely be 
less attractive. With our socket component, we developed a method 
that prints the location of each sketch window on-screen. EvoProteus 
compares that location with the screen’s dimensions. Windows entirely 
inside the screen maintain a score of 1. If part of a window overflows 
one edge, we map that proportion to a value between 0 and 1, meaning 
a window half out and half in receives a fitness score of 0.5. We tested 
this extra assignment but found it less intuitive than our regular 
classification based on open-closed windows, which remains the 
primary evaluation method.

IV. Favourites folder. 

We added an all-time favourite sketches folder to the system. It is not 
evident that the last population generated will correspond to the user’s 
preferred individuals. In between, there may be pleasing solutions. 
Even though all the rendered individuals are stored in the “Variations” 
folder, locating the best ones within an entire population is challenging. 
EvoProteus allows users to press a window with an attractive solution to 
address this difficulty, storing it in a special folder for later appreciation. 
Sketches saved to this folder are named by date and time, making it easy to 
identify them. For example, a favourite sketch might have a path like this: 
system/favourites/2023_6_27/sketch_16h_2m_58s/sketch_16h_2m_58s.pde.
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6.4 Interface refinements

The quality of user interaction relies a lot on interface design. Our control 
panel underwent several upgrades, enhancing its visuals, hierarchy and 
usability. As part of these improvements, we sought to integrate the 
previously mentioned features. The following segments describe our 
design process over time (Figures 6.4.1. to 6.4.9). Before EvoProteus, the 
system was given many different names.

Figure 6.4.2. 

Version 2.

Feedback on the 
number of generations 
and population size. 

The button for viewing 
the fittest candidates 
was removed and 
replaced with a   
real-time display of 
scores per individual.

Figure 6.4.1. 

Version 1.

The control panel when 
we started the second 
phase of development.
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Figure 6.4.3. 

Version 3.

As we wanted to include genetic settings, we tested 
the possibility of splitting the control panel into 
two windows but abandoned the idea due to higher 
resource consumption and impracticality, favouring a 
single-panel solution. (a) Main panel, (b) side panel.

Figure 6.4.4. 

Version 4.

This is the first attempt 
at incorporating the 
genetic operators 
into the interface: 
population size, 
elite size, tournament 
size, crossover and  
mutation rates.

Figure 6.4.5. 

Version 5.

We restructured the buttons 
scheme, creating a main 
button that exports and 
renders populations with   
a single command.  
The “run input” button was 
resized for visual hierarchy 
reasons.  

We added an extra button for 
concurrency debugging.

(a)

(b)
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Figure 6.4.6. 

Version 6.

Light (a)    
and dark (b) mode.

(a) (b)

Figure 6.4.7. 

Version 7.

Restart button added. 

Users may now reinitiate  
the execution at any time.

Figure 6.4.8. 

Version 8.

The possibility to pause 
the evolution of specific 
parameters is now 
fully integrated with 
the parameters table 
component.
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Figure 6.4.9. 

Version 9.

Panel’s current state.

 Typefaces: Anthony by Sun Young Oh;  
Space Grotesk by Florian Karsten. 

We completed the list of operators with a new 
setting: a mutation scale factor that allows 
for greater control over the impact mutations 
have on genes.
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6.5 Reflections on the Input

Based on the experiments conducted so far, we share a few thoughts 
regarding the input sketch to provide insights into the system’s most 
efficient exploration. (a) Simple inputs are preferable. By “simple,” we 
mean sketch codes without too many rules, methods or constructors. 
Complex sketches are designed for specific goals with clear visual 
objectives, while simpler code pieces with broader/unclear intentions 
may profit more from exploration. It does not mean designers who 
create complex artworks cannot use EvoProteus. In those cases, it might 
be interesting to evolve separate code segments and search through 
solutions for each design component. 

(b) Less (parameters) is more. Halford et al. (2005, p.75) conclude 
that “decision-making must entail the processing of no more than four 
variables in any one cognitive step”. We share this vision. Exploring 
fewer parameters each time (switching to others later) decreases the 
processing load. Fewer variables allow for a better understanding of 
how parametrization affects the outcome, which may be complex to 
perceive with too many parameters at stake. 

(c) Dimensions should be taken into account. We mentioned this 
question previously: The sketch dimensioning must consider the screen 
resolution. Running multiple instances on small screens requires 
smaller window sizes for an effective interaction.
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This chapter describes different levels of system evaluation. It is divided 
into four sections: (a) assessing broadness and (b) relevance, (c) initiating 
user evaluation and (d) experimentation in a different environment. The 
results obtained during this phase were used to refine the framework’s 
conception and system quality.

Throughout the report, we have argued for the generic nature of our 
system and how it can extract parameters and produce variations from any 
Processing sketch. In this segment, we try to prove it. OpenProcessing 7 
is an online coding community for sharing artworks made in p5.js 8 (a 
Processing web adaptation). We came up with the idea of using sketches 
from this platform to assess EvoProteus’s broadness. One advantage of this 
approach is that it exposes the system to external and unfamiliar inputs. 

While exploring OpenProcessing, we came across sketches that 
caught our attention. To try them out, we had to accomplish two tasks. 
First, we translated the source code into Processing, which was quite 
simple since both languages are similar. Then, we assigned the required 
tags to parameter identification. Figures 7.1.1. and 7.1.2. present two 
community artworks and their respective executions in EvoProteus. Both 
tests demonstrate the amplitude of our system and the impact genetic 
operations may have. In each run, we started with a highly diverse set of 
potential solutions, and over time, we converged towards similar solutions 
that met our personal tastes. Figure 7.1.3. depicts another experiment with 
a selection of the most beautiful outcomes. We tested with lots of sketches, 
and every time, the system performed efficiently.

7.1 Assessing broadness

7. OpenProcessing,  
openprocessing.org

8.  p5.js, p5js.org/
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Figure 7.1.1. 

Evolution of “Maurer Roses”, created by Stefan Nicov.   
Population size: 15; Number of Generations: 40.

This test confirms the performance of genetic operations,   
we start with a random set and soon converge to similar solutions.
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Figure 7.1.2. 

Evolution of “Arp”, created by Aaron Reuland.   
Population size: 15; Number of Generations: 23.   

Each variation is an animation.
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Figure 7.1.3. 

Evolution of “Waves”, created by Teng Robin. 
Original and selected variations.
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7.2 Assessing relevance

Our framework is built explicitly for graphic designers who have 
programming skills. In this section, we focused on making sure 
EvoProteus can be used as a tool, assisting in design decisions, from colour 
choice to typography and composition. To achieve this goal, we created, 
imported and evolved artworks that fit into the typical design work. In 
Figure 7.2.1, we experimented with typographic distortion. Figures 7.2.2. 
and 7.2.3 present some of the most pleasant results from this process. In 
Figure 7.2.4., we show examples of gradient combinations, which can be 
helpful when deciding on a visual identity’s colour scheme. Figure 7.2.5. 
demonstrates how the system may provide insights into the composition 
of an exhibition poster. These examples result from the combination of 
parametric exploration of core design elements with an evolutionary 
component that optimizes outcomes based on human evaluation. We are 
pleased to see that EvoProteus is relevant to the design field.

Figure 7.2.1. 

Snapshot. Evolution of “glitched_type”. Exploring distortions   
on the letter ‘a’. Typeface: Helvetica Neue Regular.
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Figure 7.2.2. 

Evolving “glitched_type”, letter  ‘a’.   
Original and selected variations.

(Typography)
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Figure 7.2.3. 

Evolving “glitched_type”, letter  ‘c’.   
Original and selected variations.

(Typography)
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Figure 7.2.4. 

Evolving “gradients”.    
Original and selected variations.

(Colours)
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Figure 7.2.5. 

Evolving “Nozolino exhibit”.   
Original and selected variations.

(Composition)

This sketch was made with a 
photograph by Paulo Nozolino 
Lisboa (2013).

In case the designer has a general 
idea of the poster he wants to 
create but does not know exactly 
how to position the elements and 
which colours to choose.
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User testing is a valuable tool for designers to optimize a system’s 
performance, elevate efficiency, and enhance overall satisfaction. It helps 
uncover behaviours, preferences, and pain points for a more user-centric 
and successful product (Damyanov, 2023). Stéfani Diniz, a Brazilian 
student, attended the University of Coimbra’s Summer program in 
Portugal. Our paths crossed when she enrolled in an immersive research 
experience with us in the Department of Informatics Engineering. After 
briefly explaining our system’s conception, we discussed the need to 
test it with users. She agreed to work on Processing sketches and feed 
EvoProteus. We intended to evaluate the system’s performance and 
define the proper set of instructions to request from a designer before 
exploration. First, she was presented with this list of commands:

1. Create a sketch in Processing;
2. Choose the set of parameters you want to evolve;
3. Tag those parameters with our markup language;
Example:
Original variable → int radius = 0;
Tagged variable → int __radius = 10; //min:0 max:50
(The system only reads initializations.)
4. Run EvoProteus and upload your sketch (make sure to gather all 
code in a single file);
5. Feel free to calibrate the operators as you wish. In case you don’t 
know anything about them, we suggest these values to begin:
Population size - 15 / Elite size - 1 / Tournament size - 3 / Crossover rate - 
0.9 / Mutation Rate - 0.3 / Mutation scale factor - 0.05
6. Explore.

Notes:
(a) All variated sketches will be stored in the ‘variations’ folder;
(b) Your favourite ones will be stored in the ‘favourites’ folder; 
(c) To save a sketch as a favourite, click on the respective window.

7.3 User evaluation
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With this guide, Stéfani created thirteen distinct sketches. EvoProteus 
correctly imported them all, identified the search space and exported the 
outcomes. These experiments emphasized the necessity of developing the 
paused parameter component, which involves restricting the number of 
parameters evolved simultaneously and allows for greater control over 
the evolutionary process. We also identified the need to restart execution 
in case of unsatisfactory results. Stéfani expressed satisfaction with 
EvoProteus’ performance and the diversity of achieved results. We plan 
to expand our system’s evaluation, involving more designers in the future. 
Below is a selection of some sketches Stefáni made and explored with 
EvoProteus (Figures 7.3.1 to 7.3.3).

Figure 7.3.1. 

Evolving “Soup” (after the 
University of Coimbra Canteen’s 
soup) by Stéfani Diniz.   
Original and selected variations 

A possible transition from soup  
to dessert.
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Figure 7.3.2. 

Evolving “Constellations”    
(after M13 Star Cluster Constellation)   
by Stéfani Diniz      
Original and selected variations.
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Figure 7.3.3. 

Evolving “Disorder of objects”   
(about clutter) by Stéfani Diniz   
 Original and selected variations.
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7.4 Experiments with FeedNPlay

Interaction is a crucial aspect of our system. As we got results, we began 
to consider other potential applications beyond typical desktop screen 
executions and looked for interactive approaches. Fortunately, the 
Department of Informatics Engineering (University of Coimbra) has 
a resource called FeedNPlay, one computer with a series of nine LCDs 
located along the busiest corridor after the entrance. These displays 
provide a dynamic digital platform that showcases a variety of content, 
such as images, videos, animations, text, information visualization 
projects, moving typography, and even live interactive artworks, 
installations, and media experiences. We started planning an EvoProteus 
application that could work within this context. “Galápagos” (Figure 
7.4.1.) is an interactive media installation created by Karl Sims and first 
installed at the NTT InterCommunication Center in Tokyo from 1997 to 
2000 (Sims, 1997).

Sims (1997) describes “Galápagos” as an interactive Darwinian 
evolution of virtual “organisms”. Twelve computers simulate the growth 
and behaviors of a population of abstract animated forms and display 
them on twelve screens arranged in an arc. The viewers participate in 
this exhibit by selecting which organisms they find most aesthetically 
interesting and standing on step sensors in front of those displays (p.1).

We were drawn to this project for two reasons. (a) It aligns with 
EvoProteus as a system that evolves visuals based on user feedback. (b) 
There are conceptual similarities between the platform used for Tokyo 
and FeedNPlay. We also found the pedal-based evaluation particularly 
interesting. It is simple, elegant and requires minimal effort. We adapted 
Sim’s installation, sketching an initial plan for our own. Figure 7.4.2. 
depicts the nine screens available on FeedNPlay, each connected to one 
pedal. We decided on a fixed population size of nine individuals, with an 
additional pedal to generate a new population.
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With this plan in mind, we started preparing our installation. In 
terms of technical aspects, there are some key points to note. (a) We 
reduced the control panel usage to the minimum number of actions: 
input upload, parameter and genetic settings. From there, it stays hidden 
till the execution stops. (b) We integrated the pedals into FeedNPlay 
with an Arduino that establishes communication. Whenever a user 
presses a pedal, this device sends a signal to the system identifying the 
pedal’s number. With that information, the system sends a signal to the 
sketch window associated with that number, prompting the execution 
process to stop (using our socket component). The window closes, and 
the system recognizes the solution as unsatisfactory. Pedal “ten” is 
centrally positioned and generates a new population. The next pages 
illustrate the whole process from preparation to experimentation and 
results (Figures 7.4.3 to 7.4.12).

Figure 7.4.1. 

“Galápagos” installation    
by Karl Sims     
at the ICC in Tokyo (1997). 

e va l u a t i o n  a n d  r e s u l t s



Towards Automated Generative Design p. 100

Figure 7.4.2.  

Plans for an EvoProteus 
installation with 
FeedNPlay. Each rectangle 
represents a screen,  
the numbers correspond to 
individuals indexes from  
a sized-nine population.

Figure 7.4.4.  

Preparation phase.  
Testing pedals.

Figure 7.4.3.  

Preparation phase.  
Software adjustments 
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Figure 7.4.5.  

Preparation phase. Pedals arrangement.
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Figure 7.4.6. →  

Experimentation with 
sketch “Protean poster“.

Input uploading and 
generation of variations. 

↓ Figure 7.4.7.  

Experimentation with 
sketch “Protean poster“.

Closing the worst by 
pressing its assigned pedal. 
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↓ Figure 7.4.8.  

Experimentation with 
sketch “Protean poster“.

A rendered population.

↓ Figure 7.4.9.  

Experimentation with 
sketch “Protean poster“.

Evolving populations.
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Our experiment has shown that the system can function in various 
environments. We have observed that different platforms encompass 
distinct experiences. Using EvoProteus on a desktop is more efficient, 
allowing for quick evaluation, diverse genetic schemes, and real-time 
manipulation of operators and parameters. Using it in a more physical 
environment within a specific context may also produce interesting 
results, including multiple users collectively evaluating solutions and 
evolutionary processes that run through an entire day. The choice of 
platform will always depend on the intention, whether to prioritize 
interactive experiences or the system’s performance as a working tool.

Figure 7.4.10. 

Snapshot. An evolved population of posters, created with FeedNPlay.
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Figure 7.4.11. 

“Protean poster“.    
Original and selected   
variations.
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EvoProteus has the potential for further exploration beyond the scope of 
this dissertation. Below, we outline some directions for future research.

Early in development, we considered automatic fitness. Due to time 
limitations, it was not possible. However, it is the next logical step 
in development. By automatic fitness, we mean a non-user-guided 
evaluation of candidate solutions. That way, it becomes possible to run 
larger populations (for now, large pops. may cause cognitive distress) 
and evolve individuals without interruption. Given the system’s generic 
nature, the most interesting path for us is the combination with prompts. 
Prompts are textual instructions or descriptions written to get a desired 
result from a language-based model (Martins et al., 2023, pp.182). The 
user uploads a sketch and prompts the desired outcome. With this 
information, the system generates different variations, captures an 
image of each one, and compares it to a reference image of the desired 
result. How closely the proposed solution matches the example gives the 
fitness score. Variations far from the reference receive lower ratings, 
while those close receive higher ones. With this model, a user could 
create a sketch, upload it to the system, specify a desired outcome, take 
a break, and return later to find that the system had generated new 
solutions visually aligned with his intentions. This scenario would save 
time and effort for designers.

8.1 Automatic Fitness

8.2 Other ideas

I.Multicast architeture. 

As previously stated, our socket architecture operates using unicast 
packets. This means a unique server must be opened for each client to 
exchange data with the system. While practical, this solution lacks 
elegance as several servers may need to be opened for each execution. 
With IP multicast, data can be transmitted to multiple recipient clients 
through a single data stream (IONOS, 2023). In practice, only one server 
must be opened from the system's side to communicate with the entire 
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population. However, this approach presents technical challenges, such 
as dealing with concurrency when different clients attempt to send 
information simultaneously. Despite these challenges, multicast could 
be an efficient, low-resource approach.

II. Processing embed tool. 

Our code is written in Processing, which has a range of valuable tools 
that can be used to attend specific design purposes. Exploring ways to 
integrate EvoProteus into the Processing Environment's available tools 
menu would make it even more convenient and efficient for users. 

III. Web application. 

The system's local development limits access for designers around 
the globe. EvoProteus as a web application would be an interesting 
transition. Even though it would require a significant reconfiguration 
of the interface, particularly the window architecture, integrating the 
system into the web would increase accessibility and open up possibilities 
to work with inputs written in p5.js.
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In this dissertation, we realise parametric design is quickly becoming a 
standard in the graphic design field. The designer defines a set of rules, 
variables and relationships between those variables to generate visual 
artefacts using computational tools. This mechanism allows for the 
generation of multiple parameter-based design solutions. However, 
most designers only produce one artefact at a time. They must constantly 
change the values assigned to each variable to obtain a different result 
from the previous one. What we have tried to prove in this work is that 
it is possible to automate this process of exploring design possibilities if 
we load the algorithm written by the designer into a machine that can 
identify the parameters in question and produce numerous solutions 
much more quickly and with greater diversity. We also realised that 
using an evolutionary algorithm could grant this machine the ability 
to evolve groups of solutions focusing on the designer’s expectations. 
After some theoretical framework and schematisation, we developed a 
machine called EvoProteus.

Through a series of tests, we obtained surprising results that 
demonstrated the potential of our concept. Using our system, we often 
converged on good solutions that could not be generated manually 
due to human time constraints and potential cognitive limitations to 
assign values with high degrees of specificity (for example, values with 
numerous decimal places). We also experimented with different ways 
of interaction with our tool, which allowed us to realize its versatility 
in various environments. In addition to automating solution searches, 
our machine can promote collaborative design experiments involving 
multiple players in exploring an artwork. Further testing in different 
contexts may reveal additional uses beyond what we already perceived in 
this project. The issue of a user-centred evaluation of the solutions’ quality 
is the system’s main limitation to date. Exploring ways to automate this 
process should be the next step in development. Such an advance could 
establish the computer as an even more helpful design partner. It could 
improve and speed up design processes, such as producing distinct 
pieces for a visual identity. While many avenues may be explored with 
EvoProteus, we believe the system already possesses many advantages, 
and we have successfully met our objectives. This dissertation has taken 
significant steps towards what, in the future, can become a parametric, 
automated generative design paradigm.
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EvoProteus
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Figure 11.1.

The process is the project. Experimentations with Sketch “Gradients”. 
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EvoProteus
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Figure 11.2.

The process is the project. Experimentations with Sketch “Bauhaus”. 
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a p p e n d i x

Figure 11.3.

Snapshots of the   
FeedNPlay experiment. 
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EvoProteus
03. Feednplay ExperimentsPopulation size / 09 Distinct outcomes
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Figure 11.4.

The process is the project. Experimentations with Sketch “Protean poster”  
(in FeedNPlay).
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a p p e n d i x

Figure 11.5.

Sketch “Protean poster”, 
other outcomes. 
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