

Ricardo Rocha Sacadura

TOWARDS AUTOMATED
GENERATIVE DESIGN

Dissertation in the context of the Master in Design and Multimedia,
advised by Professor Penousal Machado and Professor Tiago Martins,

and presented to the Department of Informatics Engineering
of the Faculty of Sciences and Technology of the University of Coimbra.

September 2023

Towards
Automated
Generative
Design

Faculty of Science and Technology
of the University of Coimbra
September 2023
Master’s Degree
in Design and Multimedia

Ricardo Sacadura
advised by Penousal Machado
and Tiago Martins

Since the dawn of our civilisation, humans have sought means to express
themselves creatively. Despite the vast set of different tools accessible
throughout the years, this creative endeavour remains defined by
the combination of two principles: to choose, making aesthetic and
conceptual decisions within a solution space, and to diverge, exploring
original, novel possibilities (reshaping the space). While these
principles apply to most creative domains, from visual arts to music and
architecture, the need to efficiently communicate ideas with a target
audience accentuates their relevance to graphic design, as the quality/
success of the design artefact relies on it.

The advent of computation and high-level programming languages
has led to the creation of generative design models (in the present,
many designers collaborate with machines to generate multiple design
artefacts). While these models are programmatic in some cases, the
results always depend on parameters and low-level decisions. Due to
the number of parameters and consequent combinatorial explosion,
designers only explore a small subset of possible solutions.

This dissertation describes the development of EvoProteus, a system
that addresses this limitation by combining a generic generative design
tool with an evolutionary algorithm. We intend to optimise the search
through design spaces, creating a framework capable of granting
some automation within generative processes and ultimately guiding
designers to better design decisions, as it constitutes a critical part of
their work. This project takes relevant steps towards an automated
generative design paradigm.

Abstract

Keywords

Generative Design, Parametric Spaces, Evolutionary Design,
Genetic algorithms, Generic models.

vTowards Automated Generative Design

Desde os primórdios da nossa civilização que os seres humanos procuram
meios de se expressar criativamente. Apesar do vasto conjunto de difer-
entes ferramentas acessíveis ao longo dos anos, esta empresa criativa per-
manece ancorada na combinação de dois princípios: escolher, tomando
decisões estéticas e conceptuais dentro de um espaço de soluções, e diver-
gir, explorando possibilidades novas e originais (reconfigurar o espaço).
Embora esses princípios se apliquem à maioria dos domínios criativos, das
artes visuais à música ou arquitetura, a necessidade de comunicar ideias
com eficácia a uma audiência, acentua a sua relevância para o design gráf-
ico, dado que a qualidade/sucesso do objeto de design depende disso.

O advento da computação e de linguagens de programação de alto nível
levou à criação de modelos de design generativo (no presente, muitos design-
ers colaboram com máquinas para gerar múltiplos artefatos). Apesar desses
modelos serem programáticos em alguns casos, os resultados dependem sem-
pre de parâmetros e decisões de baixo nível. Devido ao número de parâmet-
ros e à consequente explosão combinatória, os designers exploram apenas um
reduzido conjunto de possíveis soluções.

Esta dissertação descreve o desenvolvimento do EvoProteus, um sistema
que responde a esta limitação combinando uma ferramenta genérica de
design generativo com um algoritmo evolucionário. Pretendemos otimizar
o processo de procura criativa, desenvolvendo uma framework capaz de
conceder algum grau de automação em processos generativos e, em última
instância, conduzir os designers a melhores decisões de design, o que constitui
uma parte fundamental do seu trabalho. Este projeto dá passos significativos
em direção a um paradigma de design generativo automatizado.

Resumo

Palavras-chave

Design Generativo, Espaços Paramétricos, Design Evolucionário,
Algoritmos Genéticos, Modelos Genéricos.

viiTowards Automated Generative Design

Aos meus orientadores,
por terem acreditado em mim,
por serem exigentes
e por me cultivarem o gosto de aprender.

Aos meus pais,
aquilo que sou hoje
devo ao vosso amor, dedicação e sacrifício.

À Mariana,
a razão da minha felicidade,
és tudo.

Agradecimentos

Towards Automated Generative Design xiii

Dedico este trabalho à memória
do meu avô Amílcar.

Se algo me vale a genética,
é a herança do teu infindável
amor pelo conhecimento.

Towards Automated Generative Design ix

List of Figures

Figure 2.1.1. Initial work plan’s Gantt chart.

Figure 2.1.2. Actual Gantt chart locating all tasks in time.

Figure 2.2.1. A simple four-stage model of the design process

 Retrieved from Cross (2000).

Figure 2.2.2. Our adaptation of Cross’s method, with two separate iteration.

Figure 3.1.1. Plakat, Weniger Lärm, 1960, Schweiz, Gestaltung.

 Josef Müller-Brockmann.

 Retrieved from: Museum für Gestaltung Zürich / ZHdK.

Figure 3.1.2. “Boîte à musique” by Karl Gerstner: Designing Programmes.
 Retrieved from Hewitt (2008).

Figure 3.1.3. Applying the “Boîte à musique” identity playfully.

 From Visual Language by Karl Gerstner. Retrieved from Hewitt (2008).

Figure 3.1.4. “Make Me Up” poster by April Greiman.
 Retrieved from Levanier (2022).

Figure 3.1.5. “Bring in ‘da Noise, Bring in ‘da Funk” poster by Paula Scher.
 Retrieved from Levanier (2022).

Figure 3.1.6. “Morisawa” posters [1] and [6] by John Maeda (1996).
 Retrieved November 19, 2022, from gurafiku tumblr.com

Figure 3.1.7. OPENRNDR. Retrieved from densitydesign.org

Figure 3.2.1. Examples of early generative architectural design [1].
 Retrieved May 12, 2023, from wikiart.org

Figure 3.2.2. Examples of early generative architectural design [2].
 Retrieved from Bonhams: PANORAMA.

Figure 3.2.3. Example of an algorithmic artistic creation.

 Retrieved from digitalmonalisa.com

Figure 3.2.4. Robert Woodbury’s book. Retrieved from Woodbury (2010).

Figure 3.2.5. Generative design recent projects [1].
 Retrieved from Manaranche (2014).

Figure 3.2.6. Generative design recent projects [2].

 Retrieved from eyeondesign.aiga.org

Figure 3.2.7. Generative design recent projects [3]. Retrieved from Burnier (n.d.).

Figure 3.2.8. Generative design recent projects [4]. Retrieved from Munken Paper
 Mill & Hübner (2022).

p.22

p.23

p.24

p.25

p.27

p.28

p.28

p.29

p.29

p.30

p.31

p.32

p.33

p.33

p.35

p.37

p.38

p.38

p.38

Towards Automated Generative Design xi

Figure 3.3.1. Evolution of computer biomorphs by Richard Dawkins (1986).
 Retrieved from Dawkins (1986, p.330).

Figure 3.3.2. Three artworks by Karl Sims. Retrieved from Sims (1991).

Figure 3.4.1. Two instances of brochure templates.
 Retrieved from Quiroz et al. (2009).

Figure 3.4.2. Gráphagos. Retrieved from Önduygu (2010).

Figure 3.4.3. Letterspecies by Pereira et al. (2019).
 Retrieved from cdv.dei.uc.pt/letterspecies/

Figure 3.4.4. The Evolutionary Poster Composer Approach by Rebelo et al.
 Retrieved from cdv.dei.uc.pt/evoposter/

Figure 3.4.5. Adea by Lopes et al. (2020).
 Retrieved from cdv.dei.uc.pt/adea/

Figure 4.2.1. Framework’s architecture diagram.

Figure 4.2.2. Parsing identified parameters from source code.

Figure 4.2.3. Client-server architecture for fitness assignment.

Figure 4.2.4. System’s interface wireframe.

Figure 4.3.1. User flow diagram.

Figure 5.4.1. Initial interface snapshot.

Figure 5.5.1. Twelve variations of sketch “Rectangles”.

Figure 5.5.2. The remaining six variations of the sketch “Rectangles”.

Figure 5.6.1. Sketch “A Bezier Loop”, original and variations.

Figure 5.6.2. Sketch “Type from Particles”, original and variations.

Figure 5.6.3. Sketch “Gradient Circles”, original and variations.

Figure 5.6.4. Fifty variations of sketch “Gradient Circles”.

Figure 6.1. “Proteus” by Jörg Breu the Elder (1475–1537). The Book of Emblems

 by Andrea Alciato (1531). Retrieved from commons.wikimedia.org

Figure 6.4.1. Interface version 1. Prototype.

Figure 6.4.2. Interface version 2. Number of generations and population size.

Figure 6.4.3. Interface version 3. Genetic operators experiment.

Figure 6.4.4. Interface version 4. Genetic operators integration.

Figure 6.4.5. Interface version 5. Restructuring buttons scheme..

Figure 6.4.6. Interface version 6. Light and Dark mode.

Figure 6.4.7. Interface version 7. Restart button.

Figure 6.4.8. Interface version 8. Pausing parameters.

Figure 6.4.9. Interface version 9. Current state.

Figure 7.1.1. Evolution of “Maurer Roses”, created by Stefan Nicov.
 Available code here: openprocessing.org/sketch/1673672

Towards Automated Generative Design xii

p.41

p.41

p.44

p.45

p.45

p.46

p.47

p.52

p.54

p.56

p.58

p.59

p.66

p.68

p.68

p.69

p.69

p.69

p.70

p.73

p.78

p.78

p.79

p.79

p.79

p.80

p.80

p.80

p.81

p.86

Figure 7.1.2. Evolution of “Arp”, created by Aaron Reuland. Available code here:
 openprocessing.org/sketch/1883176

Figure 7.1.3. Evolution of “Waves”, created by Teng Robin. Available code here:
 openprocessing.org/sketch/1744608

Figure 7.2.1. Snapshot. Evolution of “glitched_type”.

Figure 7.2.2. Evolving “glitched_type”, letter ‘a’. Original and variations.

Figure 7.2.3. Evolving “glitched_type”, letter ‘c’. Original and variations.

Figure 7.2.4. Evolving “gradients”. Original and variations.

Figure 7.2.5. Evolving “Nozolino exhibit”. Original and variations.
 Sketch made with a photograph by Paulo Nozolino Lisboa (2013).
 Retrieved August, 01, 2023 from: quadradoazul.pt/en/qa/artist/paulo/

Figure 7.3.1. Evolving “Soup” by Stéfani Diniz. Original and variations.

Figure 7.3.2. Evolving “Constellations” by Stéfani Diniz. Original and variations.

Figure 7.3.3. Evolving “Disorder of objects” by Stéfani Diniz.
 Original and variations.

Figure 7.4.1. “Galápagos” installation by Karl Sims at the ICC in Tokyo (1997).
 Retrieved from Sims (1997)

Figure 7.4.2. Plans for an EvoProteus installation with FeedNPlay.

Figure 7.4.3. Preparation. Tests with pedals and software adjustments (1).

Figure 7.4.4. Preparation. Tests with pedals and software adjustments (2).

Figure 7.4.5. Preparation. Tests with pedals and software adjustments (3).

Figure 7.4.6. Experimentation with sketch “Protean poster” (1).

Figure 7.4.7. Experimentation with sketch “Protean poster” (2).

Figure 7.4.8. Experimentation with sketch “Protean poster” (3).

Figure 7.4.9. Experimentation with sketch “Protean poster” (4).

Figure 7.4.10. Snapshot. An evolved population of posters.

Figure 7.4.11. Original sketch vs. selected outcomes.

Figure 11.1. The process is the project. Evolution [1].

Figure 11.2. The process is the project. Evolution [2].

Figure 11.3. Snapshots. FeedNPlay experiment.

Figure 11.4. The process is the project. Evolution [3]. (FeedNPlay)

Figure 11.5. Sketch “Protean poster”. Outcomes.

Towards Automated Generative Design xiii

p.87

p.88

p.89

p.90

p.91

p.92

p.93

p.95

p.96

p.97

p.99

p.100

p.100

p.100

p.101

p.102

p.102

p.103

p.103

p.104

p.105

p.119

p.120

p.121

p.122

p.123

i n t r o d u c t i o n p.16

 1.1 Motivation p.18
 1.2 Goals and Implications p.18
 1.3 Document Overview p.19

 w o r k p l a n a n d m e t h o d o l ogy 		 p.20

 2.1 Tasks identification p.21
 2.2 Methodology p.23

l i t e r a t u r e r e v i e w p.26

 3.1 Graphic design p.27
 3.2 Generative Design p.32
 3.3 Evolutionary Design p.40
 3.4 Relevant work p.44
 3.5 Considerations p.48

 f r a m e w o r k p r o p o s a l p.50

 4.1 Description and Objectives p.51
 4.2 System Overview p.51
 4.3 User flow diagram p.59
 4.4 Development structure p.60

 p ro of of c onc e p t p.62

 5.1 Environment p.63
 5.2 Notes from input to parameters extraction p.63
 5.3 How to render and export p.64
 5.4 Initiating interface design p.66
 5.5 First foot on evaluation p.67
 5.6 Early results p.69
 5.7 Considerations p.70

Table of contents

Towards Automated Generative Design xiv

 e v o p r o t e u s p.72

 6.1 The Evolutionary Leap p.73
 6.2 Debugs p.75
 6.3 Additional features p.76
 6.4 Interface refinements p.78
 6.5 Reflections on the Input p.82

e va l u a t i o n a n d r e s u lt s p.84

 7.1 Assessing broadness p.85
 7.2 Assessing relevance p.89
 7.3 User evaluation p.94
 7.4 Experiments with FeedNPlay p.98

 f u t u r e w o r k p.106

 8.1 Automatic Fitness p.107
 8.2 Other ideas p.107

d i s c u s s i o n a n d c o n c l u s i o n p.111

 r e f e r e n c e s p.112

 a p p e n d i x p.118

Towards Automated Generative Design xv

C H A P T E R 1 .

I N T R O D U C T I O N

Towards Automated Generative Design p. 17

A great ancient tradition conceives the visual arts, and images in general,
as a language, revealing and embodying spontaneous human creativity.
Barasch (1997) defines the artist’s creative practice as a universal impulse.
The most common instance is the urge to perform representative gestures
in moments of intensive perception or imagination. These expressions
are forms of communication and a primordial method for visually
articulating events and emotions. Art then conquers what language
aims to arrive at, replacing the confused world of sensual impressions
with a limited but distinct grammar of forms (Barasch, 1997, pp.20-23).
According to Meggs (1992), graphic design shares this “universal language
of form” yet has a specific goal. While a painter, for instance, may not
be concerned with how the work of art will impress the spectator, nor
with what kind of feelings it will evoke (Barasch, 1997), the designer’s
goal is to solve problems, organise space, and permeate his work with
novel1 visuals and symbolic qualities to convey information from his own
individual expression. Unlike other art forms, a design artefact exists
in a context determined by the content it has to communicate, where
functionality is crucial (Önduygu, 2010). This need for functionality
requires making decisions from a range of possible solutions. Till recent
times, this process implied using a set of limited tools. The archetypal
design medium is a pencil, eraser and paper. Designers select materials,
add elements, remove them, try a different composition and repeat the
process. With the advent of computation, more sophisticated digital
design tools (like Adobe software) are essentially emulations of this
secular means of work (Woodbury, 2010, p. 11).

Nowadays, the design method is shifting as our world is increasingly
invaded and mediated by electronic systems and devices. First, there has
been an increased interest in “collaborative, interdisciplinary approaches
to design problems” (McCormack et al., 2004). A more intimate relationship
exists between ideas and concepts “through the flexibility introduced
in design methodologies” (McCormack et al., 2004). This shift has been
accompanied by a programmatic perspective of graphic design, where
designers do not create a visual outcome but instead establish a set of
rules and program computational systems that will. In this scenario,
computers become creative partners in design decisions (Silva-Jetter,
2012). Writing code or using programming languages has brought new
expressive possibilities to this discipline. A new generation of designers uses
programmatic approaches by building their own programs (Shim, 2020).

1. Novelty, in this context,
means the quality of being new,
original and different
(Mcormack et al., 2004).

i n t r o d u c t i o n

Towards Automated Generative Design p. 18

Given the previous context, in the present, countless artists and designers
use computation to write programs that generate visual artefacts.
These artefacts often result from mapping input parameters to visual
parameters (Shim, 2020). Using parameters requires some decisions that
affect the outcome, such as the range of variability (predict randomness
level), relationships between variables, and value assignment. Parametric
generative models grant designers increased autonomy in their work as
they can shape rules and variables to attain their own design language
from conception to execution.

However, while using these models, many designers still produce
numerous variations of an artefact by hand, either because it is a
fundamental part of their exploratory design process or because they
must “manually” test different parameterizations until they find a
suitable combination for their intentions. In the end, regardless of
whether it is computational or not, the final form of the artefacts always
depends on a set of parameters and low-level design decisions that the
designer defines implicitly or explicitly. Due to the number of parameters
and consequent combinatorial explosion, the designer only explores a
small subset of possible solutions.

As more and more designers use code to create visual artefacts by
manipulating parametric spaces, it is essential to find ways to optimize
this process. That is the focus of this dissertation. We aim to create a
computational tool to assist designers in exploring design solutions
more efficiently. Addressing this goal involves attaining two sub-goals.
The first is (a) to identify the list of parameters used in the generation
of any artwork and build a solution space for that artwork. The second
(b) is to guide designers through that space and help them find the most
adequate solutions for their purposes.

These intentions translate into the development of a generic system
capable of generating multiple artefacts from a single source code
and the integration of a genetic algorithm to accelerate the search for
interesting outcomes.

1.1 Motivation

1.2 Goals and Implications

i n t r o d u c t i o n

Towards Automated Generative Design p. 19

We will research def initions and relevant work in graphic
design, generative design, and evolutionary design to accomplish
these objectives. Then, we will create a framework structuring our
intentions, and develop a system. testing it in distinct contexts. This
work may represent significant progress in designers’ decision-making
methods, taking relevant steps towards the automation of generative
design processes.

This document is structured into nine chapters: (a) Introduction; (b) Work
plan and methodology; (c) Literature Review; (d) Framework proposal; (e)
Proof of concept; (f) System development; (g) Evaluation and results; (h)
Future work and (i) Conclusion.

In the opening chapter (a), we situated our dissertation within a
scientific research zone we believe is still unexplored and described the
issue we plan to tackle through this work. We also outlined a series of
objectives that we believe will lead us to relevant results. The upcoming
chapter (b) sets the work plan for the dissertation up to the final
submission and the methodology that will guide it. The Literature review
chapter (c) describes the research on the history and definitions of graphic
design, generative design with parametric approaches and evolutionary
systems (especially biology-inspired ones). We trace relevant work in
these fields, identifying some limitations we expect to respond with
our project. In the Framework proposal chapter (d), we consolidate our
response to those limitations, presenting some models to structure and
scientifically support the development process. Following proposal (e),
we describe an initial implementation of the first framework’s modules
to prove our concept and gather insights for system development. We
then present our system (f), discussing the integration of the remaining
modules, technical challenges, refinements and considerations. The
Evaluation and Results chapter (g) outlines the different testing levels
our system underwent and presents the most encouraging results as well
as some reflections. In Future work (h), we present further developments
and ideas for our system. To conclude the report (i), we summarize the
work done and discuss the results achieved both in theory and practice.

1.3 Document Overview

i n t r o d u c t i o n

C H A P T E R 2 .

W O R K P L A N
A N D M E T H O D O L O G Y

Towards Automated Generative Design p. 21

This section presents the work plan defined for this dissertation
and the methodology chosen to guide it.

In the project’s early stages, we drew a plan outlining the required
tasks until submission. This plan included the creation of a prototype,
research, framework proposal and implementation, experimentation,
validation, refinements and report writing. We created a Gantt chart
(depicted in Figure 2.1.1.) to situate these tasks in time. However, after
some analysis and reflection, we later restructured the plan to attain the
necessary adjustments in task definitions and associated timespans. The
actual plan that will guide our work encompasses the following tasks:

I. Research on graphic design. Research on the graphic design field.
Definitions, history, design tools, programmatic perspectives in the
discipline and relevant work.

II. Research on generative design. Research on the generative
design field with emphasis on parametric approaches. Definitions,
history, common techniques and relevant work.

III. Research on evolutionary design. Research on evolutionary
design, with a special focus on genetic algorithms. Definitions,
theoretical foundations, potential design applications and relevant
work (as this task is the last instance in the literature review, we will
also express some considerations regarding our concept).

IV. Framework proposal. A complete description of the framework
proposal structuring system implementation, goals, pipeline &
architecture, scientific approach and technologies to be used.

V. Proof of concept / Early Prototype. Developing an early prototype
to prove our concept and incorporate the first crucial framework
components. These tasks are subdivided into three sub-tasks: (a)
parameter identification, (b) generation of variations and (c) initial
interface design.

2.1 Tasks identification

w o r k p l a n a n d m e t h o d o l o g y

Towards Automated Generative Design p. 22

VI. System development. The system implementation as a Processing
design tool for optimized solutions search. This task includes the
integration of the remaining components, it divides into four sub-
tasks: (a) genetic operations, (b) fitness assignment, (c) interface
conclusion and (d) initial results.

VII. Evaluation and Results. System evaluation and results
presentation. We will branch the evaluation into five different
stages. (a) internal evaluation, continuously comparing the system’s
performance with our goals (this evaluation is implicit through the
entire development process); (b) system’s broadness assessment, to
test its ability to operate with code from various sources with distinct
characteristics; (c) system’s relevance assessment, to test its relevance
in solving design problems; (d) user evaluation, to test the interface
with users and (e) experiments in a different environment beyond the
regular computer screen execution.

V III. Ref i nement s. Ident if icat ion and execut ion of minor
improvements on the system. Interface refinements.

IX. Writing the dissertation. Documentation of the whole process,
including goals, work plan, preliminary research, evolution of
implementation over time, results and conclusions. This report
serves as a comprehensive record of the project, presenting different
stages of development, errors, achievements and results. Figure 2.1.2
illustrates all task timespans in a new Gantt chart.

Figure 2.1.1.

Initial work plan’s Gantt chart.
The light grey areas correspond
to predicted delays.

w o r k p l a n a n d m e t h o d o l o g y

Towards Automated Generative Design p. 23

Figure 2.1.2. Actual Gantt chart locating all tasks in time
(we include a possible final submission extension to September).

2.2 Methodology

The methodology applied will follow Nigel Cross’s “Four Stage Design
Process”. This descriptive model consists of four stages: (a) exploration,
(b) generation, (c) evaluation, and (d) communication. The design process
begins with an (a) exploration and comprehension of the “ill-defined
problem space” Cross (2000). This is followed by a cyclical methodology
that comprises two distinct yet interrelated stages: the (b) generation of
a design concept and the (c) evaluation of the proposed design against
established objectives, constraints, and metrics. The iteration of
these two stages continues until the designer reaches a consensus that
the design proposal has attained its full potential. Then, the process
culminates in the formal (d) communication of the final artefact to the
relevant stakeholders (Cross, 2000). This model is visually demonstrated
in Figure 2.2.1 and was chosen for its minimalistic approach attaining
directly what Cross (2000, p.29) defines as “the essential activities that
the designer performs”.

w o r k p l a n a n d m e t h o d o l o g y

Towards Automated Generative Design p. 24

The dissertation employs Cross’s process heuristically, meaning we
had to adapt it to our own requirements. Here, Cross’s Exploration step
is equivalent to the Literature review. Then, we employ the Generation
and Evaluation cycle in two different moments. The first loop involves
prototyping and composing the Framework proposal. The prototype
development supports the proposal, while the proposal offers insights
into the technical aspects of development. When satisfied with the
framework’s state and initial results, we move on to the next cycle.
This time, with the knowledge acquired previously, we begin to work
between system implementation and evaluation, which will guide us
through system refinement. The final report corresponds to Cross’s
Communication stage and documents the entire process. Figure 2.2.2
illustrates this adaptation.

Figure 2.2.1.

A simple four-stage model of the design
process. (Extracted from Cross’s book
Engineering Design Methods).

w o r k p l a n a n d m e t h o d o l o g y

Towards Automated Generative Design p. 25

Figure 2.2.2.

Our adaptation of Cross’s method,
with two separate iterations.

w o r k p l a n a n d m e t h o d o l o g y

C H A P T E R 3 .

L I T E R AT U R E R E V I E W

Towards Automated Generative Design p. 27

3.1 Graphic Design

I. History.

Until the 19th century, a graphic designer was primarily a printer
who used woodblock types and illustrations in a letterpress, creating
monochromatic books and posters (Hollis, 1994). With the advent of
chromolithography (a technique in which a designer paints a visual
artefact transposing it by hand to stone or metal surfaces), designers
were able to print artwork with different colour tones (Galvan, 2020). This
method was employed through several artistic movements, bringing
new perspectives to the design field. One example of its impact is latent
in the Art Noveau era, where designers, seen as skilled craftsmen, applied
chromolithography in the form of organic lines and elegant shapes to
decorate spaces or materials (Meggs & Purvis, 2006).

At the turn of the century, the modern movements in visual arts,
particularly the Bauhaus school (founded in 1919), redefined this
discipline by introducing ideas about form, geometry, colour, and
space into the design language, recognizing for the first time design’s
potential to solve social problems (Meggs & Purvis, 2006). This led to
the invention of novel design tools, such as photomontage and new type
design approaches (Meggs & Purvis, 2006).

During the 1950s, “The International Typographic Style” (the
embodiment of modernism) provided designers with a framework of
logic and structure based on grid systems that allowed for systematic
control of visual elements in uniform layout schemes (Meggs & Purvis,
2006), taking the first steps towards a programmatic approach to
design (Figure 3.1.1.) (Hollis, 1994). This modernism modularity concept
consisted of generating variations, iterated within predefined constraints
to grant a system’s flexibility. These constraints enabled the designer
to compose visual artefacts with hierarchy and composition concerns.
Karl Gerstner, a Swiss designer (1930-2017), took this perspective even
further. Gerstner emphasized the system and its rules as an element of
primary importance. He redefined design as a program “or the process of
building, selecting, and combining parameters” (Shim, 2020, p.3). To the
author, this approach was more about a designer’s logical thinking over
the technical process of writing code for algorithms.

l i t e r a t u r e r e v i e w

Figure 3.1.1.

Weniger Lärm poster by
Josef Müller-Brockmann (1960).

Towards Automated Generative Design p. 28

Even so, it would play a fundamental role in the evolution of computer
programs for graphic design purposes.

A good example of Gerstner’s method is his visual identity project for
Boîte à musique record shop in Basel, Switzerland. In this work, he designs
several instances applicable to different required formats. In Figure 3.1.2,
the rectangular frame is defined as a variable parameter, the proportion of
which is altered depending on the available space. While containing visual
consistency, the project also cares for personality. In a second instance,
Gerstner added an element of playfulness. The tension generated by
trying to be functional and playful simultaneously turned Boîte à musique
recognisable while still consistent (Hewitt, 2008) (Figure 3.1.3).

Figure 3.1.2.

Boîte à musique
by Karl Gerstner:
Designing
Programmes.

Figure 3.1.3.

Applying
the Boîte à musique
identity playfully.
From Visual Language
by Karl Gerstner.

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 29

Figure 3.1.4.

“Make Me Up” poster by
April Greiman.

Figure 3.1.5.

“Bring in ‘da Noise, Bring in ‘da Funk”
poster by Paula Scher.

These 20th-century movements were accompanied by continuous
progress in design resources, such as the proliferation of economic paper
formats and the rise of the phototype technique. Meggs & Purvis (2006)
explain how this method fragmented the discipline of graphic design into
“a series of specialized steps”.

After phototype became prevalent (...), skilled specialists included
graphic designers, who created page layouts; typesetters, who operated
text and display typesetting equipment; production artists, who pasted
all of the elements into position on boards; camera operators, who made
photographic negatives of the pasteups, art, and photographs; strippers,
who assembled these negatives together; platemakers, who prepared
the printing plates; and press operators, who ran the printing presses
(Meggs & Purvis, 2006, p.353).

In the late 20th century, digital technology, especially digital
computer software, aggregated all of these specialized subfields into one,
empowering the designer with the ability to carry out computer-aided
design (CAD) processes with unprecedented creative potential (Meggs
& Purvis, 2006). Postmodern designers rejected the formal structures
established by modernism and soon incorporated principles of mixed
media and deconstruction into their own work by embracing technology
(Levanier, 2022). Two of the first artists to master these computer-made
pieces were April Greiman (Figure 3.1.4.) and Paula Scher (Figure 3.1.5).

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 30

Most of this software consisted of commercial tools focused on
accessibility and usability (for example, Adobe Photoshop, PageMaker
or FreeHand). The widespread adoption of these digital tools has
revolutionised how we design, and it continued to gain momentum
through the early 21st century years. However, as digital literacy among
young designers and artists proceeded to rise, there was an increasing
desire to break free from these tools’ limitations (as they do not encourage
“programmatic perspectives in graphic design” (Shim, 2020, p.1)).
This turning point began in the late 1990s when Gerstner’s perspective
was revisited by some designers who were applying computational
approaches to graphic design.

II. A programmatic perspective.

John Maeda (technologist and designer) created “Design by Numbers”
(DNB), which Silva-Jetter (2012) describes as “a programming language
intended for people who do not know how to program”. These targeted
users could be designers and artists (instead of engineers) who were
incited to explore the computational possibilities associated with their
code writing. Maeda himself pointed out the essence of his project - “a
medium for mapping input parameters to visual parameters” (Shim,
2020, p.7). He highlighted the key role parameters play in programming,
as they enable the customization and optimization of input and output
processes, thereby revealing the underlying potential of computation in
the design field (Shim, 2020). Figure 3.1.6 gives a glimpse of Maeda’s work.

Figure 3.1.6.

“Morisawa”
posters [1] and [6] by
John Maeda (1996).

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 31

Figure 3.1.7.

Samples of Generative×
Data-driven Posters made
during the Workshop by
OPENRNDR × Politecnico
di Milano (February 17-21).

Later, Ben Fry and Casey Reas found Processing 2 within Maeda’s
“Aesthetics and Computation” research group. A high-level programming
language made directly on top of DNB. Compared to its precursor, Processing
has had a greater impact on the design community. Currently, it is widely
adopted by many visual designers, artists, and architects to create their
works. Furthermore, Processing has been instrumental in fostering
programming integration as a core aspect of the creative process among a
new generation of artists (Fry & Reas, 2022). More recently, a new platform
has emerged as another foundation for designers to explore rule-based
programmatic approaches in their creative work. OPENRNDR3 is an open-
source platform for creative coding that combines art and design elements
with software functionalities. Its iterative process of coding sketches allows
for discovering and developing new ideas. The platform is versatile and can
be used for sketches and interactive media installations. It’s also optimized
to handle real-time data and is suitable for dynamic data visualization and
interactive installations (Figure 3.1.7).

This leads us to recent years, in which the designer’s role is not necessarily
creating a visual outcome but rather forming rules and programming
systems that will (Silva-Jetter, 2012). Nowadays, graphic designers write their
own code to attain specific problems, navigating through a solution space
built from parameters and constraints. Silva-Jetter (2012) gives an example.
“Typically, the design of a visual identity consists of static imagery that is not
intended to change. In this case, the visual identity is constantly invigorated
and is always different. It is constantly re-computed and regenerated. In
this way, it is more related to its inherently digital nature” (p.356). We
are witnessing a transition from a computer-aided design paradigm to a
“programmatic-assisted design”, as Erik van Blokland and Just van Rossum
describe in Shim (2020, p.6). This shift in the discipline has helped develop
what McCormack et al. (2004) refer to as “Generative Design Culture”, defined
by a growing taste in collaborative design across different fields and the use
of digital tools to bridge the gap between concept and final execution. This
has led to the integration of models that do not only map predefined inputs
to visuals but also “free designers from ‘design fixation’ and the limitations
of conventional wisdom, thereby allowing them to explore a huge number
of possible proposals for a design problem” (Janssen et.al., 2002, p.119),
inhabiting new properties that may surpass the designer’s expectations.
These parameter-based models have facilitated the encounter of designers
and artists with generative design practices (McCormack et al., 2004).

2. Processing, processing.org

3. OPENRNDR, openrndr.org

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 32

I. Precursors of Generative design.

The history of generative design relates to the first algorithmic
combinations of goals and constraints in order to reveal solutions,
making it also a history of design methodology. (Li, 2019). Before the 20th
century, this methodology was primarily associated with architecture.
In his doctoral thesis, Martins (2021) presents several examples. We
outline three of them.

One notable instance given by the author dates back to the 15th
century and can be observed in the (a) combinatorial methods utilized
by Leonardo Da Vinci when designing central-plan churches (Figure
3.2.1). Da Vinci began with fundamental spatial shapes, such as squares,
octagons, and circles, and then methodically integrated circular, semi-
circular, or octagonal spaces into the design according to pre-established
geometric principles. This allowed him to generate every possible central-
plan church design with minimal effort or imagination (p.22). In the 18th
century, a (b) German landscape game was developed as an example of
design systems recombination (Figure 3.2.2). The game includes 24 cards
that can be arranged horizontally in any order to create landscapes of
different sizes and compositions. By exploring different permutations of
the cards, players could build various continuous landscapes (pp.22-3).
In 1926, the famous Swiss-French architect Charles-Édouard Jeanneret
(also known as Le Corbusier) came up with (c) a set of principles that
he believed defined his unique architectural style. These principles are
described in his book, Les Cinq Points d’une Architecture Nouvelle (The
Five Points of a New Architecture). Le Corbusier’s five points were: using
pilotis to lift the building off the ground, allowing for free design of
the ground plan, allowing for free design of the façade, incorporating
long horizontal windows and including roof gardens. A good example
of a building that incorporates all of these five points is Villa Savoye. Le
Corbusier’s principles go beyond describing an architectural style. They
also provide clear guidelines for designing a building. These points are an
example of generative systems (p.24).

3.2 Generative Design

Figure 3.2.1.

Study of a central church by
Leonardo Da Vinci (1488),
 Milan, Italy.

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 33

During the early 20th century, Karl Gerstner was among the first
artists to bring programmatic approaches to design. His Boîte à musique
project is a notable example of this (as shown in the previous segment).
With the rise of computing technology, many people became interested
in exploring its potential for generating visual art. This led to a new era of
experimentation with algorithmic artistic creation. For instance, in 1964,
Philip Peterson used automatic methods to represent digitized images
by scanning an input image and converting those values into a grid of
symbols. An example of this process is the digital recreation of “Mona Lisa”
(Peterson, 1965). This algorithmic trend applied in visual domains extends
to John Maeda’s design programs and current generative design practices.

Figure 3.2.2.

Myriorama, A Collection of Many
Thousand Landscapes, Designed
by Mr. Clark, 16 hand-coloured
aquatints mounted on thin strips of
card by Samuel Leigh (1824).

Figure 3.2.3.

The Digital Mona Lisa
by H. Philip Peterson (1965).

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 34

II.	Current	definitions.	

This segment delves into some contemporary definitions of generative
design applied to visual domains. While Galanter (2003, pp.4) proposes
a definition for generative art, his description may be adapted to graphic
design. He refers to it as any practice where the artist uses a system,
such as a set of natural language rules, a program, a machine, or other
procedural invention, which is then set into motion with some degree
of autonomy, resulting in complex artworks. Rodenbröker (2022) defines
generative design as a method that employs the use of algorithms to
transform an input (such as data or user interaction) into an output
in the form of a new medium with multiple variations. This involves
the development of systems with a set of parameters and constraints
that serve as the foundation for generating visual outcomes in a broad
sense. Normally, these systems are user-driven, where the user actively
controls the generation process by directly manipulating a parameter
space (Rodenbröker, 2022). According to Gradišar et al. (2022), generative
design is an approach that facilitates collaboration between the designer
and a computer algorithm, a method empowered by the complementary
capabilities of both parties, with the computer being able to efficiently
sort through data, generate and evaluate numerous solutions, and achieve
optimal results through iterative refinement. On the other hand, the
designer brings expertise in the form of real-world experience, in-depth
knowledge and understanding of the field. Within this definition, the
emphasis is shifted from generating the design solution to specifying the
design problem with its constraints and criteria. This allows for the use
of various algorithms to produce a wide range of solutions from which the
designer selects the most suitable ones.

Upon these definitions, we list some key aspects of generative design
applied to the visual arts. (a) Generative design is often a collaborative
practice between a designer and a machine. (b) It transforms an input
into a visual output, where the input is usually parameter-based and (c)
produces a wide range of design solutions. For a deeper understanding
of parameter-based generative design concepts, we studied Robert
Woodbury’s “Elements of Parametric Design” (Figure 3.2.4).

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 35

III. Parametric design.

Woodbury (2010) provides a comprehensive overview of the various
factors involved in parametric approaches, which is highly relevant
to generative design practices. On p.11, he explains how a parametric
approach differs from traditional design methods. Rather than adding
and removing visual elements, parametric design involves relating
and changing these elements in a connected manner. This coordination
requires the designer to consider how these relationships affect the
outcome. Later on, on p.39, Woodbury defends that using parametric
modelling in design allows for new possibilities, particularly in the
realm of form. While, from the author’s perspective, some may view
this exploration as aimless and without direction, taking a step back
shows that there is a serious purpose behind it. He says that throughout
history, design has constantly evolved through the exploration of new
ideas and concepts, using the available tools, stating that as new design
languages and styles emerge, this exploratory approach becomes even
more important.

Two critical aspects of parametric design are the concept of
parameter and the concept of design space. On p.50, a parameter
is described as a variable, a named container that holds a value. In
parametric design, variables can hold multiple values. The variable
name is written first, followed by the value it contains and the type of
object it represents. Parametric design allows us to describe a design as a
collection of values. However, parameters do not impose any particular
order, and a collection of parameters with no duplicates can be considered
in any sequence without affecting the values held within those variables.
Different combinations of variable settings constitute the design space.
To explain the idea, the author divides it into two categories: implicit
design space and explicit design space. The implicit design space refers
to all possible design solutions that can be reached through a symbol
system. It is a network that includes all solutions that a designer may or
may not explore. On the other hand, the explicit design space is a smaller
portion of the design space that includes only the states that have been
explored in the current or previous design moments. The explicit space
is developed through the design process and reflects the exploration
behaviour of designers based on their cognitive limits and knowledge.
Both implicit and explicit design spaces are interconnected, with the

Figure 3.2.4.

“Elements of Parametric Design”
by Robert Woodbury,
book cover.

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 36

l i t e r a t u r e r e v i e w

latter being a subset of the former (Woodbury, 2010, pp.275-6). To the
author, exploring multiple alternatives can lead to better designs. To
Woodbury’s assessment, we may add Krish’s (2010) idea of an exploration
envelope limiting the design space, meaning the definition of minimum
and maximum values each variable may assume. This grants designers
better control over the range of possible solutions.

Before the end of this segment, we emphasize some strategies
Woodbury believes designers employ while using parametric approaches.
The first one is language. Most current systems require a scripting
language, which is a type of programming language. However, according
to the author, designers must switch from their familiar visual and
interactive representation to working with textual instructions (p.35). The
second strategy is sketching, which is highly valued in design. Parametric
models are dynamic and can easily be changed to answer design questions,
favouring this secular design practice (p.36). Another strategy is coined
by the author as copy-and-modify, which involves using existing code to
achieve a particular effect. This requires a community of practice that
generates code, similar to how web designers often mine existing pages
for code snippets (p.38).

IV. Generative design projects.

After this concept revision, we analyze recent projects that are relevant
to parametric, generative design approaches. In 2008, LUST Design
Studio created the Poster Wall for the 21st Century for the Graphic
Design Museum in Breda, Netherlands. The museum installation, “100
Years of Graphic Design in the Netherlands,” featured a digital and
physical poster wall (shown in Figure 3.2.5) that automatically generated
numerous distinct posters using content from various internet sources
(Manaranche, 2014). In 2017, MuirMcNeil Design Studio employed a
systematic approach to create 8,000 distinct covers for Eye magazine’s
94th edition (shown in Figure 3.2.6). They used the HP Mosaic program,
which allows the generation of various unique compositions through a
collection of input designs called “seed” image files. For this project, the
seed images were typographic compositions that repeated the letters of
the word ‘eye’ in fixed intervals, using different fonts from their TwoPoint
and TwoPlus type families in three layers (Martins, 2021). MuirMcNeil
established specific rules within the Mosaic program to adjust each seed

Towards Automated Generative Design p. 37

file’s sections’ scale, position, crop, and colour, resulting in thousands
of covers (McNeill and Muir, 2017). André Burnier’s 2020 visual identity
for CIDDIC, a research centre at the Faculty of Contemporary Music
at Unicamp, explores user-driven generative systems (Figure 3.2.7).
Burnier utilized a “designer bot” created with p5.js to facilitate the
generation of graphics (accessible to everyone) for the research centre.
The bot combines parametrized visual elements with textual inputs,
resulting in the generation of unique and coherent artefacts. This
example demonstrates the creative potential of parametric approaches
in creating visual identities (Burnier, n.d.). The Munken Creator was
created by The Munken Paper Mill in partnership with Patrik Hübner
in 2022. It’s a web-based tool that allows users to create customized and
visually appealing artefacts using the Munken Sans typeface (Figure
3.2.8). The tool has an interactive user interface that updates generated
visuals in real time. It allows users to make changes and adjust their
designs by manipulating a settings list, such as the font size, letter
spacing or number of columns. The generated designs are rendered
on screen and stored in the platform’s URL. “So users can bookmark a
design they like, save it for later or share their settings with others by
sending them the URL” (Munken Paper Mill & Hübner, 2022).

Figure 3.2.5.

Two images of Poster Wall for the 21st
Century for the Graphic Design Museum
in Breda, Netherlands by LUST Studio.
(a) Installation, (b) Posters.

(b)

(a)

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 38

Figure 3.2.7.

“The Designer Bot’s”
by André Burnier (2020).
Interface.

Figure 3.2.6.

Covers of the Eye magazine
(issue 94) by MuirMcNeil
Design Studio (2017).

Figure 3.2.8.

Exploration of
‘Generative Design’ with
The Munken Creator (2022).
colab.munken.com

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 39

These projects reinforce the feeling of an emergent generative
design culture that is becoming more prevalent in contemporary design
practices. By systematically using computational tools and methods
based on rules and parameters, designers have been exploring alternative
approaches to the field. According to McCormack (2004), this culture
promotes ideas of evolution, breeding and adaptation, making generative
design a territory that sparks new possibilities beyond “simple” generative
models. Evolutionary concepts are becoming part of the designers’
vocabulary. As well as being generated, design artefacts may also be
evolved and optimised to suit specific purposes. In the next section,
we will analyse concepts and relevant work related to evolutionary
approaches in design and determine how they may fit our goals.

l i t e r a t u r e r e v i e w

Towards Automated Generative Design p. 40

l i t e r a t u r e r e v i e w

3.3 Evolutionary Design

(...) stuck at that point just before the creative leap. They know where
they have come from and have a general sense of where they are going,
but often do not have a precise target or goal.(Janssen et. al, 2002, p.120)

According to Bentley (1999, p.5), Evolutionary design applies evolutionary
systems to the arts and graphic design field. In computer science, the
evolutionary computation process involves searching for the best
solutions to a computational problem. The search space is a space filled
with all possible solutions. Each point in that space defines a solution.
The goal is to improve parameter values by searching for better solutions
within a solution space. This conception corresponds to Woodbury’s
(2010) implicit design space. To Bentley, there are distinct search
algorithms, including evolutionary search, a rapidly growing subset.
These algorithms are inspired by Darwinist biological evolution, using a
natural evolution method to evolve solutions to problems by considering
a large population of solutions at once rather than working with one
solution at a time in the search space.

Richard Dawkins was among the first to apply evolutionary
algorithms to the visual domain. He created The Blind Watchmaker
program in 1986 (Figure 3.3.1.) to explore the artificial evolution of
biomorphs through tree-growing procedures with a human-guided
selection criterion. (Dawkins, 1986). In the early 1990s, Karl Sims and
William Latham collaborated with Stephen Todd to create artistic images
by combining evolutionary techniques and computer graphics, following
Dawkins’s track. As seen in Figure 3.3.2. Sims employed user-guided
evolution to evolve abstract images, three-dimensional shapes, and
animations, while Todd and Latham presented evolutionary techniques
for creating biomorphic forms (Martins, 2021). Their work contributed
heavily to the emergence of evolutionary art (Lewis, 2008).

Towards Automated Generative Design p. 41

Figure 3.3.1.

Evolution of computer
biomorphs by
Richard Dawkins (1986).

l i t e r a t u r e r e v i e w

Figure 3.3.2.

Three artworks by Karl Sims. (a) “Simple expression examples”. Evolution of images.
(b) “Parent with 19 random mutations”. Evolution of volume textures.
(c) “Fire of Faces”. Evolution of animations.

(c)

(b)

(a)

Towards Automated Generative Design p. 42

l i t e r a t u r e r e v i e w

I. Genetic algorithms, revision of concepts.

 There are four types of evolutionary algorithms: genetic algorithms, genetic
programming, differential evolution, evolution strategy and evolutionary
programming (Slowik and Kwasnicka, 2020). This segment focuses on
genetic algorithms, widely used for a broad range of optimisation problems.

A genetic algorithm is a concept that draws upon the Darwinist
principles of biological evolution. Such an algorithm creates populations
of individuals representing potential solutions to a given problem (Holland,
1992). The goal is to improve upon these solutions through a search process.
Each solution is represented by a string of numbers of a predetermined
length (Janssen et al., 2002, p.120). This string is referred to as a genotype.
Each component within the genotypes represents a gene that determines
the final appearance of the design solution, also known as the phenotype.
The genotype representation outlines the search space of a problem, while
the phenotype representation outlines the solution space (Bentley, 1999).
It is crucial to carefully design both spaces to ensure that finding good
solutions is manageable. First, a group of designs is formed by assigning
various values to the genes. This group is known as the initial population,
and it usually comprises diverse solutions to the problem created by
randomly assigning gene values to each genotype.

The evolution process commences with an evaluation of each potential
solution using fitness criteria. This criterion determines which candidates
should be chosen for reproduction in the next generation and which ones
should be eliminated, similar to natural selection (Kour et al., 2015). The
search space is explored during the evaluation stage to find potential
solutions. This process creates a fitness landscape, which shows all possible
solutions and their fitness levels (Janssen et al., 2002, p.120). Usually, built-
in fitness functions are used to analyze and rank solutions automatically,
but sometimes human evaluators are needed, especially when aesthetic
choices are involved (Önduygu, 2010). Successful genetic algorithms tend
to have increasing fitness scores over time. After assigning fitness scores to
the candidates, the next generation is created through an operation called
crossover, which combines genetic material from two parent solutions to
produce offspring with a mixture of traits (Lewis, 2008). Mutations, random
changes to the offspring’s genetic material, may also occur to grant some
level of genetic diversity. A genetic algorithm’s task is to evolve generations
of solutions and converge them into satisfactory solutions to the problem.

Towards Automated Generative Design p. 43

l i t e r a t u r e r e v i e w

II.	Advantages	to	the	field.

In the segment, we share some ideas on the advantages that evolutionary
systems may bring to the design field. We begin with a poetic thought
from Bentley (1999) that praises the success of designs created through
natural evolution, stating that “The most successful and remarkable
designs known to mankind were created by natural evolution” (p.5).
In fact, the human brain, arguably the most complex and remarkable
design ever created, was generated through natural evolution. Janssen
et al. (2002) argue that evolutionary systems are incredibly well-suited
to design problems. By considering populations of proposals instead of
just one proposal at a time, the designer can quickly choose the most
suitable solutions for their intention. Samara (2007) adds that the design
process is divided into three stages: conceptualization, execution, and
iterative redesign based on evaluation. The author emphasizes that this
iterative nature of graphic design aligns well with classic local search
optimization algorithms, as they share similar characteristics.

We conclude that evolutionary design methods fit with current
generative models utilized by designers. Since programming languages
allow designers to generate diverse solutions from a set of instructions,
refining those solutions through progressive optimization seems a
logical path towards enhancing design practices. The next section
reviews some projects that already integrate evolutionary systems into
generative design tools.

Towards Automated Generative Design p. 44

l i t e r a t u r e r e v i e w

In 2009, Quiroz et al. developed a human-guided evolution of brochure
documents. The user interacts with a genetic algorithm, which evolves
placeholders. Each placeholder is represented with one of three shapes,
and the user can then guide the evolutionary process by evaluating a
small subset of documents from a larger population. In addition to the
user’s subjective input, the genetic algorithm also evaluates individuals
in the population based on a set of objective heuristics for document
design. Figure 3.4.1. depicts two different moments in their evolution
process. The “Best” button in the top-left corner of each candidate allows
for user subjective evaluation. Önduygu (2010) created Gráphagos,
an evolutionary graphic design system using genetic algorithms to
randomly mutate and replicate human-evaluated design layouts (Figure
3.4.2). The program was written in Processing. Önduygu intended to
create a design tool based on an evolutionary approach to the creative
process. An interesting aspect of Gráphagos is how it incorporates design
elements. Some are created from scratch, while others are sourced from
image and font pools. This concept aims to translate human creative
appropriation practices into a digital realm.

The Letterspecies project by Pereira et al. (2019) is a web-based tool
combining type design with generative processes to generate unique
letterforms or glyphs automatically. The tool uses an algorithmic drawing
technique to fill a pre-extracted typographical skeleton, resulting in a
visually distinct style for each glyph. Users can adjust specific parameters
for each drawing technique, allowing for a wide range of glyphs that suit
their visual preferences. A strong feature of this project is that it allows
for exporting generated glyphs as a type font. Figure 3.4.3. presents
Letterspecies’ main interface and system exploration on glyph “a”.

3.4 Relevant work

Figure 3.4.1.

Two instances (gen. 0 and 10)
of brochure templates
were displayed to the user
for evaluation
by Quiroz et al. (2009).

Towards Automated Generative Design p. 45

Figure 3.4.2.

 (a) Gráphagos interface with
a random initial population.
(b) Results for the poster of
Yüreklendirme Konseri.

Figure 3.4.3.

(a) Letterspecies project
interface. (b) Glyph “a” is
generated using different
drawing techniques of
the system on the same
typographical skeleton.

l i t e r a t u r e r e v i e w

(a)

(a)

(b)

(b)

Towards Automated Generative Design p. 46

l i t e r a t u r e r e v i e w

Rebelo et al. (2020) The Evo-Poster Composer (evo-poster) is a
collection of generative experiments that use Evolutionary Computation
(EC) methods to create, improve, and assess typographical posters
(Figure 3.4.4.). These experiments aim to establish a generative process
that mimics the traditional letterpress print houses workflow in the
19th century. An essential aspect of this work involves exploring diverse
evaluation methods. The authors integrate multiple fitness assignment
schemes into the system to enhance the quality of evolution. Figure 3.4.4,
image (b), depicts a valuable instance of Rebelo’s exploration. Users can
submit text inputs to generate multiple typographical posters.

Still, in 2020, Lopes et al. proposed an evolutionary engine for
generating glyphs, aiding designers to explore during the creative
process. Their system employs a Genetic Algorithm to evolve SVG paths
using interactive and automatic fitness assignments (Figure 3.4.5.). The
system was made to serve as a tool to generate ideas for designers to create
novel glyphs. To authors, evolutionary approaches have great potential
to promote novelty as they are similar to human design processes.

Figure 3.4.4.

(a) Example output of the Evolutionary Poster Composer Approach using the content gathered
from a poster designed for the May 1968 protests (France) and Coimbra’s Academic crisis of 1969 (Portugal).
(b) Some executions of the Composer succeeded by the user’s textual input.

(a)

(b)

Towards Automated Generative Design p. 47

Figure 3.4.5.

(a) Snapshot of Adea’s interface.
(b) Artefacts are designed using novel
glyphs generated by the system.

l i t e r a t u r e r e v i e w

(a)

(b)

Towards Automated Generative Design p. 48

l i t e r a t u r e r e v i e w

This literature review has allowed us to reach some conclusions. (a)
The discipline of design consists of formulating a visual language with
the intention to communicate ideas. (b) The efficient communication
of these ideas depends on a set of decisions made during the artefact
execution. (c) The content of this communication constitutes a design
problem requiring a solution. (d) Current programming practices based
on parametric manipulation have expanded the spectrum of perceivable
solutions to address a design problem. (e) In addition, evolutionary
approaches allow groups of solutions to be optimised, assisting the
designer in identifying the best ones. (f) Some designers and researchers
have sought to implement tools encompassing most of these elements in
a single platform. (e) However, the analysed works fitting this description
foresee a particular type of visual output beforehand. In these projects,
the search space is predefined by the creator, who channels the results to
a specific group of outputs.

Upon these assertions, we consider it necessary to explore the
implementation of a tool capable of integrating all the elements inherent
to the design practice, which may accelerate important aspects of the
creative process. With this tool, the designer could create and explore
his own search space to find solutions to his particular design problem.

3.5 Considerations

C H A P T E R 4 .

F R A M E W O R K P R O P O S A L

Towards Automated Generative Design p. 51

This chapter proposes a framework for structuring system development.
It is divided into four sections: (a) description and objectives; (b) system
overview, architecture and pipeline, which involves a comprehensive
description of the required modules; (c) user flow diagram, given our
interest in ensuring the system’s relevance as a tool, and (d) development
plan, as a Processing application.

This framework represents a generic model designed to generate, evolve
and export multiple instances of a provided sketch code (featuring
nearly 4 unpredicted characteristics). Here are our objectives: to build
a parameter-based search space from an external input, manipulate
parameters within this space to generate variations, employ a genetic
algorithm to evolve those variations, pursue optimal solutions and
export the outcomes as independent, executable code sketches. This
model is designed to assist users in exploring design solutions and should
work as a tool for designers, relocating them “at the centre of the design
process” (Janssen et al., 2002). The following sections explain how we
intend to accomplish these objectives.

Our framework, just like Rebelo et al. (2020, p.111) and other similar
frameworks, operates with inputs and outputs. The user feeds the
system with a sketch code as input and generates successive variations
of that sketch code. Each variation showcases a unique visual outcome
by assigning diverse values to the parameters used to create the design
artefact (outputs). This process comprises five components:

Parameters Identification;
Generation Module;
Evaluation Module;
Evolution Module;
Interface.

4.1 Description and Objectives

4.2 System Overview

4. See segment
“Reflections on the Input”
from Chapter 6.

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 52

After the user uploads the code he wishes to variate, the (a)
Parameters Identification module initiates. This module is responsible
for extracting information on parameters present in the code while
parsing them into a table that includes the type of parameter, its starting
value, and the boundaries for exploration (min. and max. values).
Once the user approves the table, the (b) Generation Module creates a
population of sketches corresponding to slight variations on the input
by stochastically modifying the parameter’s default values and injecting
them back into the source code. While in this module, those variations
are exported to a folder and rendered on-screen in separate windows.
Rendering allows the user to evaluate each sketch window, closing the
less promising ones and leaving the ones worth exploring further intact.
(c) The Evaluation Module maps that interaction to a fitness score, as a
client-server utility permits the system to determine which windows
were closed and which were left open. After fitness assignment, the
(d) Evolution Module breeds values for a new population of variated
sketches, this time stemming from the previous population based on
evolutionary thinking, where each variable parameter corresponds
to a gene and the fittest individuals (sketches) have more chance to
reproduce their genotype than the less fit. Those values constitute an
offspring generation compiled again inside the Generation Module, yet
this time, values were not assigned randomly as they result from that
user-guided genetic algorithm. At this stage, the system enters a loop
of evolving, exporting and rendering populations of sketches as long as
the user decides. Figure 4.2.1. illustrates this system architecture. We
will now describe each component in detail.

Figure 4.2.1.

Framework’s
architeture diagram.

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 53

I.	Parameters	Identification
Input (User uploaded sketch) → Output (Table with extracted parameters)

This module triggers a cascade of tasks that starts with the user’s input
and ends with a table of parsed parameters constituting the parametric
space we intend to work with. It reads the input’s source code as a regular
text file and searches each line for parameters. The system must know
what it is looking for. We achieve that by defining a markup language (to
tag parameters) that needs to be applied before uploading. We require two
underscores preceding the parameter’s name (tag 1.) and the definition of
what Krish (2011, p.93) presents as the exploration envelope (tag 2.), the
minimum and maximum values that may be assigned to each parameter
(two slashes followed by “min:” and “max:”). Below is an example of a
correctly marked parameter set to be variated:

Original parameter → loat radius = 10;
Tagged parameter → float __radius = 10; //min: 5 max: 30

The system starts searching for tag 1. When tag 1. is detected, it
inspects the respective line of code to confirm its status as a valid
variable parameter (while removing outliers). A parameter is considered
valid only when it is initialized, which means the first time it occurs in
the code (further value assignments depend on the user’s code design
and may relate to other parameters and operations). We verify this by
checking if the data type (e.g., float or int) precedes the declaration (the
data type will also be useful for further value manipulations). After
validation, the system searches for the next tag (tag 2., boundaries).
If tag 2. is absent, the parameter remains technically valid but is not
processed as it is unusable. Parameters get parsed to a table only if tags
1. and 2. exist. This table collects valuable information on that parameter
data type, name, initial value, and envelope. The task proceeds until
all viable parameters are recognised and parsed, as we need to define
the parametric space before advancing to generation. Finally, the user
validates the list of parameters and triggers the next module. Figure
4.2.2. illustrates the extraction of parameters from an uploaded source
code and their representation in a table.

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 54

II. Generation Module
Input (Array of genotypes) → Output (Phenotypes exportation and rendering)

This module generates variations of sketches from the original input.
As we’ve pointed out, the parametric space is built from a table of
parameters. Each parameter has an associated value that may be
modified within its envelope. Changing these values produces a different
parameter combination, resulting in a different visual outcome. We
consider this combination of values a **genotype** (or chromosome),
with each value corresponding to a gene. The Generation Module gathers
multiple genotypes (coded solutions), identifies a search space, and
creates a population of variations from them (actual solutions), building
a solution space. It processes genotypes in two distinct moments: (a)
creating the initial population and (b) generating new populations.

A. Initial Population. In this stage, our system randomly assigns a
new value to each parameter within the minimum and maximum
limits, creating a genotype. The user chooses the number of
genotypes he wants to generate. That number defines the population
size of sketches during execution. This stage runs once, and it’s used
to create an initial, stochastic population of sketches.

B.Evolved Populations. Stage II is very similar, but the genotypes
are not randomly generated. Instead, they result from the evaluation
and evolution modules application (4.2.3 and 4.2.4, respectively).
This stage is used to breed an offspring population from the previous
one and runs continuously until the user decides to end it.

Figure 4.2.2.

Parsing identified
parameters from source
code. On the left a code
example. On the right,
a table gathers the
identified parameters.

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 55

Once the genotypes are read, the system iteratively replaces the
initial input values by injecting each genotype’s genes back into the
original code (injection 1). This results in variations that are identical to
the source, except in parametrization. These variations are phenotypes
- sketches that generate a family of different visuals from the same code
structure. The process ends by exporting all phenotypes as runnable files
to a folder and rendering them on screen through the system in separate,
grid-displayed windows. However, we apply another code injection
(injection 2) before that. As phenotypes are displayed in separate windows
from independent computer processes, we use sockets to facilitate
communication between sketches and the system, which will allow
us to evolve them. Each rendered sketch functions as a client, sending
information to a server allocated by the system (detailed in section 4.2.3).
So, extra code must be added to sketches to enable this communication
(each injected line is tagged as such and may be deleted later when the
execution stops).

III. Evaluation Module, Sockets approach
Input (User interaction) → Output (Ordered list of fitness scores)

A genetic algorithm requires evaluating candidate solutions, which
affects the evolution process. Visual cues about potential sketch code
appearances are provided through phenotypes so the user can guide the
search process toward better solutions. That assessment is made through
a fitness assignment processed in this module.

When the Generation module renders a population on screen, each
window represents an individual, corresponding to a possible design
solution. To classify these candidate solutions, we apply a user-guided
fitness assignment. In this approach, the user’s interaction frequently
results in positive increments on the phenotype fitness score as he selects
the solutions he likes the most. This method is standard in projects where
the entire execution occurs within a single system interface (Önduygu,
2010). However, we have a distinct design, as our system creates and
executes sketches that run through independent processes. In modern
operating systems, when a computer executes a process associated with
a visual object, that object is typically displayed within a graphical user
interface window, which acts as a container for that process’s visual
representation, allowing users to interact with it. This interface based on

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 56

windows presents us with a different way to evaluate sketches. Instead of
working on complex methods to select the ones we like, we close the ones
we do not. All phenotypes start with good scores, and if the user chooses
to cease their execution (closing the window), the score turns null. This
approach constitutes a binary, inverted fitness assignment based on
closed-opened windows.

The Evaluation module maps the described interaction to a numerical
fitness score of 0 or 1, where 1 represents a good candidate and 0 a bad
one (we found this binary classification the most effective method5). The
mapping is done with a TCP-IP-based socket communication6, a client-
server architecture to enable exchanges between sketch windows and
the system. Each phenotype operates as a client program that creates
a socket and requests a connection to a server. The system assigns a
port and server to that client, creating a socket object at the other end
of the communication, enabling the server (system) and client (sketch)
to read and write data. This module creates a table listing the currently
rendered individuals and their fitness scores. Each sketch window
updates the system with its current score, depending on its state (open
or closed). When the user decides to breed the next generation, the last
read values are ordered from the highest to the lowest and sent to the
Evolution module. It is worth noting that this architecture allows for
design features beyond fitness assignment and will be mentioned again.
Figure 4.2.3. synthesizes the described component.

5. See considerations
on the fitness assigment
from Chapter 6.

6. Transmission Control
Protocol/Internet Protocol
(Shacklett et.al, n.d).

Figure 4.2.3.

Client-server architecture
for fitness assignment.

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 57

IV. Evolution Module
Input (Parent population + fitness score) → Output (Genotypes for a new
population)

The Evolution module executes a standard genetic algorithm used to breed
a new population of variated sketches from the previous population.
This new group should reflect improvements based on user feedback. It
branches into two stages: selection and reproduction.

A. Selection. In order to attend user evaluation, it is necessary
to select which genotypes from the ancestor pop. will reproduce
the next one. The previous module outputs a list of all individuals
ordered by fitness. With that list, we conduct a tournament selection
by randomly selecting a subset of *x* individuals (the tournament
size) and ranking them based on their fitness. The most fit individual
is chosen as a parent for reproduction. This process is repeated *n*
times for the entire population (Jebari & Madiafi, 2013, p.338).

B. Reproduction (Genetic Operators). After parent selection, we
employ a sequence of operators to reproduce the next generation:
elite, crossover and mutation. Elite children are direct copies of the
fittest genotypes within the ancestors. The number of individuals
bred from this process is determined by an elite size parameter. For
instance, if the elite size is set to one, only the most fit individual will
survive to the next generation. The remaining offspring is reproduced
through a combination of crossover and mutation operations.

The crossover operator combines the genetic information of
two parents. There are several ways to conduct this. We use a single-
point approach. A random crossover point is selected in the genotype
string, and the genetic information of two parents beyond that point
is swapped with each other (Katoch et al., 2011, p.8098).

The mutation operator maintains diversity (ensures some
divergence), simulating what is known in biology as errors in the
copying process (Janssen et al., 2002). It employs random changes to
specific sections of the individual’s encoding scheme. Our encoding
scheme is value-based, as each genotype is defined by a string of
values/parameters (integers, floats, booleans, and others). To apply
the mutations correctly, we must identify the data type associated

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 58

with a specific gene and mutate it within its scope. To avoid hard-
coded mutations with rough alterations on the gene value (that may
lead to drastic changes in the final artefact), we apply a Gaussian
distribution to the mutation ranged between the gene’s minimum
and maximum permissible values with a scale factor on the standard
deviation. These operators work on a probability base, meaning the
user may choose their recurrence in reproduction. When the entire
offspring is reproduced, it is sent to the Generation Module.

V. Interface

Our desktop application interface has two components: (a) a control panel
for guiding the generation process, calibrating genetic operators, and
manipulating the parametric space, and (b) a group of windows arranged
in a grid layout that displays the current population. Figure 4.2.4. depicts
this structure. On the left is a visual representation of a population. On
the right is the control panel with parsed parameters and system settings.

Figure 4.2.4.

System’s interface
wireframe.

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 59

Figure 4.3.1.

User flow diagram
depicting the central
steps of the execution
process.

Figure 4.3.1. illustrates user navigation from sketch upload to evolution.
Rounded rectangles mark the start/end of the user f low. Straight
rectangles represent steps to take, and diamond shapes indicate decision
points. Underlined tasks constitute critical steps. At the bottom is a
parallel view locating the framework’s modules in time during execution.
This diagram will be helpful for interface design and evaluation.

4.3 User flow diagram

f r a m e w o r k p r o p o s a l

Towards Automated Generative Design p. 60

We w i l l use P rocessing, a w idely-used sof t wa re in t he desig n
community (as mentioned in the Literature Review chapter), to develop
our system. By doing so, the framework ensures compatibility with the
standard programming language used by our target audience. This
gives us the possibility to test and evaluate the system in real scenarios.

The development process has two stages: creating a proof of concept
prototype and building the actual application. The idea behind creating
an early prototype is to prove the framework’s potential and the
viability of critical aspects, such as the markup language assignment,
the Parameter identification, and the generation of multiple instances
of the given sketch code. This early endeavour also helps to initiate
some components regarding user interaction, counting control panel
and communication between windows and the system. Once the
concept is proven, system development starts where the prototype left
off. This will involve integrating the evolutionary component, as well
as refining the interface and adding secondary features. During these
stages, we expect to produce distinct results to gain empirical insights
and strengthen our proposal.

4.4 Development structure

f r a m e w o r k p r o p o s a l

C H A P T E R 5 .

P R O O F O F C O N C E P T

Towards Automated Generative Design p. 63

This chapter gives an overview of the first stage of system development.
The objectives include assigning the markup language, uploading sketch
codes, extracting and parsing parameters, generating variations,
rendering, exportation, and interface early design. Here, we cover
technical details, early results, and considerations since the Framework
Proposal already describes the conceptual aspects.

The prototype was developed as a Processing application (Fry & Reas,
n.d). In addition to Processing’s integrated programming language, we
added some segments in native Java for specific purposes, like parts of
the socket communication and sketches rendering.

I. Parsing.

The first technical challenge was related to parameter identification in
the given sketch code. The chosen approach was to work with String
indexes. To explain this method, let us return to the example of a properly
marked parameter: float __radius = 10; //min: 5 max: 30. Since we want to
extract and distinguish the information in this line, we must provide the
system with the necessary tools to do it. We reflected on which characters
were always present in a variable declaration (inspired by Alan Turing’s
pattern comparison (Raikar, n.d).). We know our markup tags will be
there, but we also know that in Java, there will be an attribution key (=)
and a semicolon (;) to close each declaration. With this knowledge, we
retrieve the length of the code line (trimmed to avoid errors) and the
characters index in it. Then, we define intervals between those indexes
to extract the content inside them into an array. This allows us to filter
the declaration and parse the valuable information into a table. The
method is precise, so if any identified keys are missing, the parameter
is considered an outlier (for our purposes). Reversibly, we use the same
index information not to extract but to inject new values in the sketch
code and produce a variation.

5.1 Environment

5.2 Notes from input to parameters extraction

p r o o f o f c o n c e p t

Towards Automated Generative Design p. 64

II. Data types analysis.

During this phase, it was crucial to differentiate between mutable and
immutable data types. Any data type associated with numbers (byte,
short, int, long, float and double) may be altered, as it is possible to define
a range of exploration and assign new values within that range. This
includes boolean variables (essentially a choice between two states: 0
or 1) but excludes non-primitive types like Strings, Arrays and Classes.
While being primitive data types, char variables may store letters of the
alphabet. For that reason, we also excluded them. It is relevant to notice
that our system’s input and output is text (encoded as Strings), so the
variable type is only considered to manipulate the parameter’s assigned
value. Parameters life cycle always begins and ends as a String.

III.	Uploading	refinement.	

During the first development iterations, we had to manually input the
source sketch location path in the directory structure. To solve this, we
added an interactive action using Processing’s selectInput() method to
open a file chooser dialogue for selecting input files. The system then
stores the selected file in an array of Strings.

5.3 How to render and export

Exportation and Rendering are crucial for our intentions, so they needed
to be solved early. Both steps are related since the sketches exported are
the ones we render on screen.

I. Exportation.

Exporting the variations we create as runnable sketches has benefits.
We may visually review each variation and provide the designer with
sketch files for later use. Exploring design solutions is only relevant if
they remain accessible after system execution.

p r o o f o f c o n c e p t

Towards Automated Generative Design p. 65

This process involves injecting the list of new values and communication
methods (see Generation Module segment from Chapter 4) into the source
sketch encoded array of Strings. The array is saved as a Processing file in a
“ Variations “ folder. Each execution implies exporting multiple files that
will be rendered, so we used a structured indexation method to assign
filenames. For that, we use two counters, one for each generation and
one for each sketch within that generation. As we knew we intended to
implement a genetic algorithm, we applied its semantics. The tag “pop”
(from a population) precedes each generation index, and “indiv” (from an
individual) precedes each sketch index (the initial name was “modified”,
but we found it inaccurate). This is an example of a pseudo path leading to
the eighth variated sketch from the first population: system/variations/
pop_000/indiv_008/indiv_008.pde.

II. Rendering.

After completing the export process, Processing’s processing-java
extension automatically executes sketches without requiring the user
to open a terminal (as would be the usual procedure). This extension
sends “-run” commands using the same counters that created the sketch
paths (predicting that sketches with a certain filename will be in the
“Variations” folder), all within the system’s task flow. That’s how we
render exported populations.

An important aspect of this process is window positioning on-screen,
as we want to avoid overlap (by default, Processing centres the sketch).
We designed a grid layout of relative positions to present each variation.
The grid calculates sketch positions by combining their index (indiv_000,
001, …), population size and screen dimensions. The positions are then
assigned with Processing’s setLocation(). This property is part of the
extra code injections done during exportation. We also considered
randomly assigning positions to create a “hacked” desktop feeling.
However, when tested, this approach was ineffective, making it difficult
for the user to see and evaluate variations.

p r o o f o f c o n c e p t

Towards Automated Generative Design p. 66

Figure 5.4.1.

Initial interface snapshot. On the left is an eight-variations rendered population
of a sketch named “Bouncy Balls”. On the right, the control panel with simple
ordered tasks (the user has already pressed the first three buttons at this point).

5.4 Initiating interface design

To begin considering the interface, we designed a simple, straightforward
control panel with buttons that led users through a sequence of ordered
tasks (to ensure each method worked correctly). The panel was placed
on the right side of the desktop, leaving room for variation windows. We
left empty space in it to accommodate future feature additions. It worked
fine as a prototype, but we knew it would require elements hierarchy
and clarity improvements. Figure 5.4.1. illustrates this first experiment.
The system uploads a Processing sketch that draws balls in motion. The
control panel allows us to (a) run the original input sketch, (b) generate
variations, (c) run variations and (d) print the ones we like (explained in
the upcoming segment).

p r o o f o f c o n c e p t

Towards Automated Generative Design p. 67

5.5 First foot on evaluation

We had time to initiate evaluation after meeting the predicted objectives
for this stage. Even though the evolutionary implementation had not
yet begun, our prototype was already displaying randomly generated
variations on-screen, so it was possible to access their quality. We started
designing the communication between windows and the system. This
functionality fits in the socket-based architecture described in the
framework. We used the networking tools provided by Processing, with
local ports and client-server assignments for each variation. Once a line
of communication is established, each sketch reports a value of 1 to the
system as long as it stays open. When the window is closed, it reports a
value of 0 before the sketch shuts down. The system prints a list of open
sketches using this binary approach, identifying those with a remaining
value of 1, which allows for the assessment of preferred sketches. This
data will be crucial to breed new generations.

Figures 5.5.1. and 5.5.2. depict this process. A population of twelve
sketches is rendered, the user closes the ones he doesn’t like and presses
the “Store best variations button”.

p r o o f o f c o n c e p t

Towards Automated Generative Design p. 68

Figure 5.5.1.

Twelve variations of sketch “Rectangles”.

Figure 5.5.2.

The remaining six, after user interaction, are still opened and identified
in the control panel.

p r o o f o f c o n c e p t

Towards Automated Generative Design p. 69

Figure 5.6.3.

Sketch “Gradient Circles”,
original and selected variations.

5.6 Early results

Figures 5.6.1. to 5.6.3. are visual outcomes of experiments conducted
with our prototype. All of them represent random variations from
sketch codes with distinct characteristics. We already have a sense of
a generic generative design tool. Figure 5.6.4. illustrates the problems
random positioning may bring, even though it transmits a feeling of
organic beauty.

Figure 5.6.1.

Sketch “A Bezier Loop”,
original and selected variations.

Figure 5.6.2.

Sketch “Type from Particles”,
original and selected variations.

p r o o f o f c o n c e p t

Towards Automated Generative Design p. 70

5.7 Considerations

Before advancing to system development and refinement, we considered
some aspects. (a) Random generation alone can be interesting. It allows
us to visualize different solutions automatically, making this type of
exploration helpful at the beginning of the generative process to provide
the user with distinct design directions. (b) As we want to render multiple
instances of a source sketch, its window dimensions must be considered.
It is impossible to reduce width and height or zoom out the entire sketch,
as it could affect the artefact. Sketches with larger dimensions may only
be explored on high-resolution screens. (c) Rendering can be slow in some
cases. The concurrent execution of multiple Java processes consumes
considerable computational resources. In Java, this limitation may
persist as the system requires a reasonably powerful machine. (d) On a
positive note, the system runs on Linux, Windows, and macOS.

Figure 5.6.4.

Fifty variations of sketch “Gradient Circles”. Generative chaos.

p r o o f o f c o n c e p t

C H A P T E R 6 .

E V O P R O T E U S

Towards Automated Generative Design p. 73

In this chapter, we delve into EvoProteus, the system we’ve developed
to optimize the exploration of parametric spaces. Below, we discuss the
integration of the evolutionary component, technical challenges, new
features, interface enhancements, some results and considerations.

EvoProteus is born.

We named our system EvoProteus. In Collins Dictionary (n.d), the term
“protean” means “readily taking on various shapes or forms; variable”
and comes from the Greek sea-god Proteus (Figure 6.1.), whose name also
suggests the “first” (from Greek “prōtos”)(The Editors of Encyclopaedia
Britannica, n.d), proposing the idea of a primordial being from which
many forms arise. This concept aligns with our intentions, so we
combined it with “Evo” to create EvoProteus - a system that explores
parametric spaces in an evolutionary, protean way.

We succes sf u l ly implemented t he Pa r a meter s Ident i f icat ion,
Generation, and Evaluation modules in the prototype’s development.
Here, we integrate the Evolution Module to generate successive
populations of user-evaluated sketch variations.

I. General Notes on Evolution.

(a) In order to integrate the genetic algorithm, we added two new classes
to our code: “Genotype” and “Population”. The “Genotype” class handles
reproduction operators such as elite, crossover, and mutation. The
“Population” class handles selection, sorts individuals by fitness and
conducts the tournament. It also calls the rendering and exportation
methods developed earlier. (b) The strings of random values we used
to generate a prototype population in the previous chapter constitute,
here, the first set of genotypes. Our Genotype is, therefore, a sequence
of values assigned to each extracted parameter and optimized through
an iterative process. Our Population is a group of sketch variations
obtained by replacing the default values with evolved Genotype values.
(c) The only time EvoProteus processes code is during the input sketch

6.1 The Evolutionary Leap

Figure 6.1.

Proteus by Jörg Breu the Elder
(1475–1537).

e v o p r o t e u s

Towards Automated Generative Design p. 74

upload. This means that it always operates on top of the original source
code to export new individuals. Once the evolution process starts, the
only input our system receives is a list of binary fitness scores it uses to
breed new Genotypes.

II. Beware of Booleans.

Most variable types our system recognizes are mutated within a
Gaussian distribution, but boolean variables have only two states, zero
or one, challenging controlled mutations. Changing a boolean value
involves going from one extreme to another, which can significantly
affect the final visual outcome, such as changing a background from
white to black.

III. Between Populations Rendering.

The evolutionary process requires killing one generation and breeding
another. In EvoProteus, this implies exiting the ancestor’s windows and
running new ones in a single-panel instruction. To make this possible,
we call our sockets component again. However, instead of listening,
the system sends information to the clients (sketches). It opens a
binary communication for parent sketches to receive instructions
on when to end their execution. When a population is rendered, the
system continuously prints the value one into each phenotype. When
the user signals “Next Generation”, this value changes to zero. For the
population, zero means extinction, so the “exit()” command is triggered
inside each individual. This method automates the execution, avoiding
manually closed windows.

e v o p r o t e u s

Towards Automated Generative Design p. 75

6.2 Debugs

This stage required overcoming two significant technical obstacles
related to the entire execution that took us some time to analyse
and solve.

I. Handling Temporary Files.

One issue was the creation of excessive temporary files during each
execution, which would fill the computer disk space in the most severe
cases. We thought this would be related to the rendering of multiple
sketches via the command line but then traced this problem to the
interface’s font file uploading. The system was creating precautionary
temporary files due to mistrust of font file paths. We excluded these
external font loading and called the typefaces directly with Processing’s
PFont.list(), indicating the indexes of each desired font.

II. Concurrency Concerns.

We had another significant constraint. Sometimes, correctly exported
variations failed to run during the rendering process. Although
considered valid by the system, these variations could not be evaluated,
resulting in zombie individuals poisoning the offspring with genetic
information the user was unaware of. The problem was due to Java Race
Condition (Lutkevich, n.d), a concurrency bug. Some sketch windows
would crash when the system attempted to perform several operations
(run sketches) simultaneously. We tried to add a delay between each
variation execution, but that did not work. As it was practically
impossible to solve this occasional issue, we worked on a debug button.
Each sketch rendering is associated with a Java process/thread ID. When
a sketch runs adequately, we use the socket communication to print its
ID to the system. We then employ a Java method to store all the existing
processes in an array and compare them with the identified healthy
sketch IDs. Any outlier constitutes a zombie process (stuck process). The
debug button outputs a Java command to terminate it and prompts to
rerun the sketch.

e v o p r o t e u s

Towards Automated Generative Design p. 76

6.3 Additional features

We wanted EvoProteus to be both functional and visually appealing.
After fixing bugs and completing the framework modules, we added extra
features to enhance user experience.

I. Exploration.

Our first significant improvement was adding toggle buttons to each
extracted parameter. By default, all parameters are toggled on at the
beginning, which means they are equally subjected to the evolution
process, getting consecutive new values. During the execution, users
do not need to evolve all variables at the same time. They may freeze the
exploration of a given parameter and proceed to evolve the remaining
set. This allows much more precise guidance of the evolution process
(see segment 6.6). Technically, when a parameter is paused, we look at its
assigned values in the current generation and keep those values intact in
the following ones. Paused parameters may be activated later.

II. Restart generation.

Another feature we had was a restart button. Users can now restart the
evolution process with a single button press. This saves time compared to
previous versions, where the program had to be shut down and the input
uploaded again.

Translated to user interaction, if one or more sketches from the current
population fail to run, the user may press an “Indiv. missing? Press
here” button to complete the rendering process and evaluate the results.
It’s worth noticing that this bug is unpredictable and, most times,
unexisting, especially in powerful computers.

e v o p r o t e u s

Towards Automated Generative Design p. 77

III. Fitness assignment.

We attempted to enhance evaluation by implementing another form
of fitness assessment, a complementary method that would produce
more distinct scores. We were particularly interested in the screen’s
edges, as we believed a sketch dragged out of the edges would likely be
less attractive. With our socket component, we developed a method
that prints the location of each sketch window on-screen. EvoProteus
compares that location with the screen’s dimensions. Windows entirely
inside the screen maintain a score of 1. If part of a window overflows
one edge, we map that proportion to a value between 0 and 1, meaning
a window half out and half in receives a fitness score of 0.5. We tested
this extra assignment but found it less intuitive than our regular
classification based on open-closed windows, which remains the
primary evaluation method.

IV. Favourites folder.

We added an all-time favourite sketches folder to the system. It is not
evident that the last population generated will correspond to the user’s
preferred individuals. In between, there may be pleasing solutions.
Even though all the rendered individuals are stored in the “Variations”
folder, locating the best ones within an entire population is challenging.
EvoProteus allows users to press a window with an attractive solution to
address this difficulty, storing it in a special folder for later appreciation.
Sketches saved to this folder are named by date and time, making it easy to
identify them. For example, a favourite sketch might have a path like this:
system/favourites/2023_6_27/sketch_16h_2m_58s/sketch_16h_2m_58s.pde.

e v o p r o t e u s

Towards Automated Generative Design p. 78

6.4 Interface refinements

The quality of user interaction relies a lot on interface design. Our control
panel underwent several upgrades, enhancing its visuals, hierarchy and
usability. As part of these improvements, we sought to integrate the
previously mentioned features. The following segments describe our
design process over time (Figures 6.4.1. to 6.4.9). Before EvoProteus, the
system was given many different names.

Figure 6.4.2.

Version 2.

Feedback on the
number of generations
and population size.

The button for viewing
the fittest candidates
was removed and
replaced with a
real-time display of
scores per individual.

Figure 6.4.1.

Version 1.

The control panel when
we started the second
phase of development.

e v o p r o t e u s

Towards Automated Generative Design p. 79

Figure 6.4.3.

Version 3.

As we wanted to include genetic settings, we tested
the possibility of splitting the control panel into
two windows but abandoned the idea due to higher
resource consumption and impracticality, favouring a
single-panel solution. (a) Main panel, (b) side panel.

Figure 6.4.4.

Version 4.

This is the first attempt
at incorporating the
genetic operators
into the interface:
population size,
elite size, tournament
size, crossover and
mutation rates.

Figure 6.4.5.

Version 5.

We restructured the buttons
scheme, creating a main
button that exports and
renders populations with
a single command.
The “run input” button was
resized for visual hierarchy
reasons.

We added an extra button for
concurrency debugging.

(a)

(b)

e v o p r o t e u s

Towards Automated Generative Design p. 80

Figure 6.4.6.

Version 6.

Light (a)
and dark (b) mode.

(a) (b)

Figure 6.4.7.

Version 7.

Restart button added.

Users may now reinitiate
the execution at any time.

Figure 6.4.8.

Version 8.

The possibility to pause
the evolution of specific
parameters is now
fully integrated with
the parameters table
component.

e v o p r o t e u s

Towards Automated Generative Design p. 81

Figure 6.4.9.

Version 9.

Panel’s current state.

 Typefaces: Anthony by Sun Young Oh;
Space Grotesk by Florian Karsten.

We completed the list of operators with a new
setting: a mutation scale factor that allows
for greater control over the impact mutations
have on genes.

e v o p r o t e u s

Towards Automated Generative Design p. 82

6.5 Reflections on the Input

Based on the experiments conducted so far, we share a few thoughts
regarding the input sketch to provide insights into the system’s most
efficient exploration. (a) Simple inputs are preferable. By “simple,” we
mean sketch codes without too many rules, methods or constructors.
Complex sketches are designed for specific goals with clear visual
objectives, while simpler code pieces with broader/unclear intentions
may profit more from exploration. It does not mean designers who
create complex artworks cannot use EvoProteus. In those cases, it might
be interesting to evolve separate code segments and search through
solutions for each design component.

(b) Less (parameters) is more. Halford et al. (2005, p.75) conclude
that “decision-making must entail the processing of no more than four
variables in any one cognitive step”. We share this vision. Exploring
fewer parameters each time (switching to others later) decreases the
processing load. Fewer variables allow for a better understanding of
how parametrization affects the outcome, which may be complex to
perceive with too many parameters at stake.

(c) Dimensions should be taken into account. We mentioned this
question previously: The sketch dimensioning must consider the screen
resolution. Running multiple instances on small screens requires
smaller window sizes for an effective interaction.

e v o p r o t e u s

C H A P T E R 7.

E VA L U AT I O N
A N D R E S U LT S

Towards Automated Generative Design p. 85

This chapter describes different levels of system evaluation. It is divided
into four sections: (a) assessing broadness and (b) relevance, (c) initiating
user evaluation and (d) experimentation in a different environment. The
results obtained during this phase were used to refine the framework’s
conception and system quality.

Throughout the report, we have argued for the generic nature of our
system and how it can extract parameters and produce variations from any
Processing sketch. In this segment, we try to prove it. OpenProcessing 7
is an online coding community for sharing artworks made in p5.js 8 (a
Processing web adaptation). We came up with the idea of using sketches
from this platform to assess EvoProteus’s broadness. One advantage of this
approach is that it exposes the system to external and unfamiliar inputs.

While exploring OpenProcessing, we came across sketches that
caught our attention. To try them out, we had to accomplish two tasks.
First, we translated the source code into Processing, which was quite
simple since both languages are similar. Then, we assigned the required
tags to parameter identification. Figures 7.1.1. and 7.1.2. present two
community artworks and their respective executions in EvoProteus. Both
tests demonstrate the amplitude of our system and the impact genetic
operations may have. In each run, we started with a highly diverse set of
potential solutions, and over time, we converged towards similar solutions
that met our personal tastes. Figure 7.1.3. depicts another experiment with
a selection of the most beautiful outcomes. We tested with lots of sketches,
and every time, the system performed efficiently.

7.1 Assessing broadness

7. OpenProcessing,
openprocessing.org

8. p5.js, p5js.org/

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 86

Figure 7.1.1.

Evolution of “Maurer Roses”, created by Stefan Nicov.
Population size: 15; Number of Generations: 40.

This test confirms the performance of genetic operations,
we start with a random set and soon converge to similar solutions.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 87

Figure 7.1.2.

Evolution of “Arp”, created by Aaron Reuland.
Population size: 15; Number of Generations: 23.

Each variation is an animation.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 88

Figure 7.1.3.

Evolution of “Waves”, created by Teng Robin.
Original and selected variations.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 89

7.2 Assessing relevance

Our framework is built explicitly for graphic designers who have
programming skills. In this section, we focused on making sure
EvoProteus can be used as a tool, assisting in design decisions, from colour
choice to typography and composition. To achieve this goal, we created,
imported and evolved artworks that fit into the typical design work. In
Figure 7.2.1, we experimented with typographic distortion. Figures 7.2.2.
and 7.2.3 present some of the most pleasant results from this process. In
Figure 7.2.4., we show examples of gradient combinations, which can be
helpful when deciding on a visual identity’s colour scheme. Figure 7.2.5.
demonstrates how the system may provide insights into the composition
of an exhibition poster. These examples result from the combination of
parametric exploration of core design elements with an evolutionary
component that optimizes outcomes based on human evaluation. We are
pleased to see that EvoProteus is relevant to the design field.

Figure 7.2.1.

Snapshot. Evolution of “glitched_type”. Exploring distortions
on the letter ‘a’. Typeface: Helvetica Neue Regular.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 90

Figure 7.2.2.

Evolving “glitched_type”, letter ‘a’.
Original and selected variations.

(Typography)

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 91

Figure 7.2.3.

Evolving “glitched_type”, letter ‘c’.
Original and selected variations.

(Typography)

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 92

Figure 7.2.4.

Evolving “gradients”.
Original and selected variations.

(Colours)

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 93

Figure 7.2.5.

Evolving “Nozolino exhibit”.
Original and selected variations.

(Composition)

This sketch was made with a
photograph by Paulo Nozolino
Lisboa (2013).

In case the designer has a general
idea of the poster he wants to
create but does not know exactly
how to position the elements and
which colours to choose.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 94

User testing is a valuable tool for designers to optimize a system’s
performance, elevate efficiency, and enhance overall satisfaction. It helps
uncover behaviours, preferences, and pain points for a more user-centric
and successful product (Damyanov, 2023). Stéfani Diniz, a Brazilian
student, attended the University of Coimbra’s Summer program in
Portugal. Our paths crossed when she enrolled in an immersive research
experience with us in the Department of Informatics Engineering. After
briefly explaining our system’s conception, we discussed the need to
test it with users. She agreed to work on Processing sketches and feed
EvoProteus. We intended to evaluate the system’s performance and
define the proper set of instructions to request from a designer before
exploration. First, she was presented with this list of commands:

1. Create a sketch in Processing;
2. Choose the set of parameters you want to evolve;
3. Tag those parameters with our markup language;
Example:
Original variable → int radius = 0;
Tagged variable → int __radius = 10; //min:0 max:50
(The system only reads initializations.)
4. Run EvoProteus and upload your sketch (make sure to gather all
code in a single file);
5. Feel free to calibrate the operators as you wish. In case you don’t
know anything about them, we suggest these values to begin:
Population size - 15 / Elite size - 1 / Tournament size - 3 / Crossover rate -
0.9 / Mutation Rate - 0.3 / Mutation scale factor - 0.05
6. Explore.

Notes:
(a) All variated sketches will be stored in the ‘variations’ folder;
(b) Your favourite ones will be stored in the ‘favourites’ folder;
(c) To save a sketch as a favourite, click on the respective window.

7.3 User evaluation

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 95

With this guide, Stéfani created thirteen distinct sketches. EvoProteus
correctly imported them all, identified the search space and exported the
outcomes. These experiments emphasized the necessity of developing the
paused parameter component, which involves restricting the number of
parameters evolved simultaneously and allows for greater control over
the evolutionary process. We also identified the need to restart execution
in case of unsatisfactory results. Stéfani expressed satisfaction with
EvoProteus’ performance and the diversity of achieved results. We plan
to expand our system’s evaluation, involving more designers in the future.
Below is a selection of some sketches Stefáni made and explored with
EvoProteus (Figures 7.3.1 to 7.3.3).

Figure 7.3.1.

Evolving “Soup” (after the
University of Coimbra Canteen’s
soup) by Stéfani Diniz.
Original and selected variations

A possible transition from soup
to dessert.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 96

Figure 7.3.2.

Evolving “Constellations”
(after M13 Star Cluster Constellation)
by Stéfani Diniz
Original and selected variations.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 97

Figure 7.3.3.

Evolving “Disorder of objects”
(about clutter) by Stéfani Diniz
 Original and selected variations.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 98

7.4 Experiments with FeedNPlay

Interaction is a crucial aspect of our system. As we got results, we began
to consider other potential applications beyond typical desktop screen
executions and looked for interactive approaches. Fortunately, the
Department of Informatics Engineering (University of Coimbra) has
a resource called FeedNPlay, one computer with a series of nine LCDs
located along the busiest corridor after the entrance. These displays
provide a dynamic digital platform that showcases a variety of content,
such as images, videos, animations, text, information visualization
projects, moving typography, and even live interactive artworks,
installations, and media experiences. We started planning an EvoProteus
application that could work within this context. “Galápagos” (Figure
7.4.1.) is an interactive media installation created by Karl Sims and first
installed at the NTT InterCommunication Center in Tokyo from 1997 to
2000 (Sims, 1997).

Sims (1997) describes “Galápagos” as an interactive Darwinian
evolution of virtual “organisms”. Twelve computers simulate the growth
and behaviors of a population of abstract animated forms and display
them on twelve screens arranged in an arc. The viewers participate in
this exhibit by selecting which organisms they find most aesthetically
interesting and standing on step sensors in front of those displays (p.1).

We were drawn to this project for two reasons. (a) It aligns with
EvoProteus as a system that evolves visuals based on user feedback. (b)
There are conceptual similarities between the platform used for Tokyo
and FeedNPlay. We also found the pedal-based evaluation particularly
interesting. It is simple, elegant and requires minimal effort. We adapted
Sim’s installation, sketching an initial plan for our own. Figure 7.4.2.
depicts the nine screens available on FeedNPlay, each connected to one
pedal. We decided on a fixed population size of nine individuals, with an
additional pedal to generate a new population.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 99

With this plan in mind, we started preparing our installation. In
terms of technical aspects, there are some key points to note. (a) We
reduced the control panel usage to the minimum number of actions:
input upload, parameter and genetic settings. From there, it stays hidden
till the execution stops. (b) We integrated the pedals into FeedNPlay
with an Arduino that establishes communication. Whenever a user
presses a pedal, this device sends a signal to the system identifying the
pedal’s number. With that information, the system sends a signal to the
sketch window associated with that number, prompting the execution
process to stop (using our socket component). The window closes, and
the system recognizes the solution as unsatisfactory. Pedal “ten” is
centrally positioned and generates a new population. The next pages
illustrate the whole process from preparation to experimentation and
results (Figures 7.4.3 to 7.4.12).

Figure 7.4.1.

“Galápagos” installation
by Karl Sims
at the ICC in Tokyo (1997).

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 100

Figure 7.4.2.

Plans for an EvoProteus
installation with
FeedNPlay. Each rectangle
represents a screen,
the numbers correspond to
individuals indexes from
a sized-nine population.

Figure 7.4.4.

Preparation phase.
Testing pedals.

Figure 7.4.3.

Preparation phase.
Software adjustments

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 101

Figure 7.4.5.

Preparation phase. Pedals arrangement.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 102

Figure 7.4.6. →

Experimentation with
sketch “Protean poster“.

Input uploading and
generation of variations.

↓ Figure 7.4.7.

Experimentation with
sketch “Protean poster“.

Closing the worst by
pressing its assigned pedal.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 103

↓ Figure 7.4.8.

Experimentation with
sketch “Protean poster“.

A rendered population.

↓ Figure 7.4.9.

Experimentation with
sketch “Protean poster“.

Evolving populations.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 104

Our experiment has shown that the system can function in various
environments. We have observed that different platforms encompass
distinct experiences. Using EvoProteus on a desktop is more efficient,
allowing for quick evaluation, diverse genetic schemes, and real-time
manipulation of operators and parameters. Using it in a more physical
environment within a specific context may also produce interesting
results, including multiple users collectively evaluating solutions and
evolutionary processes that run through an entire day. The choice of
platform will always depend on the intention, whether to prioritize
interactive experiences or the system’s performance as a working tool.

Figure 7.4.10.

Snapshot. An evolved population of posters, created with FeedNPlay.

e va l u a t i o n a n d r e s u l t s

Towards Automated Generative Design p. 105

Figure 7.4.11.

“Protean poster“.
Original and selected
variations.

e va l u a t i o n a n d r e s u l t s

C H A P T E R 8 .

f u t u r e w o r k

Towards Automated Generative Design p. 107

EvoProteus has the potential for further exploration beyond the scope of
this dissertation. Below, we outline some directions for future research.

Early in development, we considered automatic fitness. Due to time
limitations, it was not possible. However, it is the next logical step
in development. By automatic fitness, we mean a non-user-guided
evaluation of candidate solutions. That way, it becomes possible to run
larger populations (for now, large pops. may cause cognitive distress)
and evolve individuals without interruption. Given the system’s generic
nature, the most interesting path for us is the combination with prompts.
Prompts are textual instructions or descriptions written to get a desired
result from a language-based model (Martins et al., 2023, pp.182). The
user uploads a sketch and prompts the desired outcome. With this
information, the system generates different variations, captures an
image of each one, and compares it to a reference image of the desired
result. How closely the proposed solution matches the example gives the
fitness score. Variations far from the reference receive lower ratings,
while those close receive higher ones. With this model, a user could
create a sketch, upload it to the system, specify a desired outcome, take
a break, and return later to find that the system had generated new
solutions visually aligned with his intentions. This scenario would save
time and effort for designers.

8.1 Automatic Fitness

8.2 Other ideas

I.Multicast architeture.

As previously stated, our socket architecture operates using unicast
packets. This means a unique server must be opened for each client to
exchange data with the system. While practical, this solution lacks
elegance as several servers may need to be opened for each execution.
With IP multicast, data can be transmitted to multiple recipient clients
through a single data stream (IONOS, 2023). In practice, only one server
must be opened from the system's side to communicate with the entire

f u t u r e w o r k

Towards Automated Generative Design p. 108

population. However, this approach presents technical challenges, such
as dealing with concurrency when different clients attempt to send
information simultaneously. Despite these challenges, multicast could
be an efficient, low-resource approach.

II. Processing embed tool.

Our code is written in Processing, which has a range of valuable tools
that can be used to attend specific design purposes. Exploring ways to
integrate EvoProteus into the Processing Environment's available tools
menu would make it even more convenient and efficient for users.

III. Web application.

The system's local development limits access for designers around
the globe. EvoProteus as a web application would be an interesting
transition. Even though it would require a significant reconfiguration
of the interface, particularly the window architecture, integrating the
system into the web would increase accessibility and open up possibilities
to work with inputs written in p5.js.

f u t u r e w o r k

C H A P T E R 9 .

D I S C U S S I O N
A N D C O N C L U S I O N

Towards Automated Generative Design p. 111

In this dissertation, we realise parametric design is quickly becoming a
standard in the graphic design field. The designer defines a set of rules,
variables and relationships between those variables to generate visual
artefacts using computational tools. This mechanism allows for the
generation of multiple parameter-based design solutions. However,
most designers only produce one artefact at a time. They must constantly
change the values assigned to each variable to obtain a different result
from the previous one. What we have tried to prove in this work is that
it is possible to automate this process of exploring design possibilities if
we load the algorithm written by the designer into a machine that can
identify the parameters in question and produce numerous solutions
much more quickly and with greater diversity. We also realised that
using an evolutionary algorithm could grant this machine the ability
to evolve groups of solutions focusing on the designer’s expectations.
After some theoretical framework and schematisation, we developed a
machine called EvoProteus.

Through a series of tests, we obtained surprising results that
demonstrated the potential of our concept. Using our system, we often
converged on good solutions that could not be generated manually
due to human time constraints and potential cognitive limitations to
assign values with high degrees of specificity (for example, values with
numerous decimal places). We also experimented with different ways
of interaction with our tool, which allowed us to realize its versatility
in various environments. In addition to automating solution searches,
our machine can promote collaborative design experiments involving
multiple players in exploring an artwork. Further testing in different
contexts may reveal additional uses beyond what we already perceived in
this project. The issue of a user-centred evaluation of the solutions’ quality
is the system’s main limitation to date. Exploring ways to automate this
process should be the next step in development. Such an advance could
establish the computer as an even more helpful design partner. It could
improve and speed up design processes, such as producing distinct
pieces for a visual identity. While many avenues may be explored with
EvoProteus, we believe the system already possesses many advantages,
and we have successfully met our objectives. This dissertation has taken
significant steps towards what, in the future, can become a parametric,
automated generative design paradigm.

d i s c u s s i o n a n d c o n c l u s i o n

R E F E R E N C E S

Towards Automated Generative Design p. 113

Barasch, M. (1997). The Language of Art: studies in interpretation. NY, USA: New York
University Press. ISBN 0-8147-1255-X.

Bentley, P. J. (1999). An Introduction to Evolutionary Design by Computers. In P. Bentley
(ed.), Evolutionary Design by Computers, San Francisco: Morgan Kaufmann, pp. 1–73.

Burnier, A. (n.d). CIDDIC. https://www.andreburnier.com/project/ciddic

Collins Dictionary (n.d). protean. In collinsdictionary.com. Retrieved July 15, 2023, from
https://www.collinsdictionary.com/dictionary/english/protean

Cross, N. (2000). Engineering design methods: Strategies for product design (3rd ed.). John
Wiley & Sons.

Damyanov, M. (2023). Guide to user testing: learn what users really want. In Dovetail.
com. Retrieved May 12, 2023, from https://dovetail.com/ux/user-testing/

Dawkins, R. (1986). The Blind Watchmaker, New York: W. W. Norton & Company.

IONOS. (2023, March 21). What is Multicast? In IONOS Digital Guide. Retrieved August 11,
2023, from https://www.ionos.com/digitalguide/server/know-how/multicast/

Fry, B. and Reas, C. (2022). Welcome to Processing! (n.d.). In Processing.org. Retrieved
November 14, 2023, from https://processing.org/

Galanter, P. (2003). What is Generative Art? Complexity theory as a context for art
theory. New York, NY, USA: Interactive Telecommunications Program, New York
University. http://philipgalanter.com/

Galvan, M. (2020, October 29). A brief history of graphic Design. In Medium.com.
Retrieved September 21, 2022, from https://uxdesign.cc/a-brief-history-of-graphic-
design-90eb5e1b5632

Glez-Morcillo, C., Martin, V. J., Vallejo, D.,Castro-Schez, J. J. and Albusac, J. (2010).
Gaudii: An Automated Graphic Design Expert System. In Proceedings of the Twenty-
Second Innovative Applications of Artificial Intelligence Conference (IAAI-10), pp.1775-1780.

Gradišar,	L.;	Klinc,	R.;	Turk,Ž.;	Dolenc,	M	(2022). Generative Design Methodology and
Framework Exploiting Designer-Algorithm Synergies. In Buildings 2022, 12(12), 2194;
https://doi.org/10.3390/buildings12122194

Halford, G.S.; Baker, R.; McCredden, J.E.; Bain, J.D (2005). How Many Variables Can
Humans Process? In Psychol. Sci. 2005,16, 70–76. DOI:[10.1111/j.0956-7976.2005.00782.x]
(http://dx.doi.org/10.1111/j.0956-7976.2005.00782.x)

Hewitt, J. (2008, February 13). Flexible Consistency, Consistent Flexibility. Speak Up.
In Retrieved March 10, 2023, from https://www.underconsideration.com/speakup/
archives/004431.html

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press

Hollis, R. (1994). Graphic Design: a concise history. In Internet Archive. New York:
Thames and Hudson.

r e f e r e n c e s

Towards Automated Generative Design p. 114

Janssen, P., Frazer, J. and Ming-Xi, T. (2002). Evolutionary Design Systems and
Generative Processes. In Applied Intelligence 16, 119–128. Kluwer Academic Publishers.
The Netherlands.

Jebari,	K.;	Madiafi,	M. (2013). Selection methods for genetic algorithms. In. J. Emerg. Sci.
2013, 3, 333–344.

Katoch, S., Chauhan, S.S. & Kumar, V. (2021). A review on genetic algorithm: past,
present, and future. In Multimed Tools Appl 80, 8091–8126. https://doi.org/10.1007/s11042-
020-10139-6

Kour, H., Sharma, P., and Abrol, P. (2015). Analysis of Fitness Function in Genetic
Algorithms. In International Journal of Scientific and Technical Advancements, 1(3), 87-90.

Krish, S. (2011). A practical generative design method. In Computer-Aided Design, 43(1),
88–100. https://doi.org/10.1016/j.cad.2010.09.009

Levanier, J. (2022). What is postmodern design: how the reigning style of the late 20th
century works. In 99designs. Retrieved January 19, 2023, from https://99designs.com/
blog/design-history-movements/postmodern-design/

Lewis, M. (2008). Evolutionary Visual Art and Design. In Romero, J., Machado, P. (eds)
The Art of Artificial Evolution. Natural Computing Series. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-72877-1_1

Li, S. (2019) Generative design. In Medium.com. Retrieved November, 12, 2022, from
https://medium.com/@sixuanli/generative-design-61cdb7fa89fb

Lopes, D., Correia, J.N. and Machado, P. (2020). Adea – Evolving Glyphs for Aiding
Creativity in Typeface Design. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, New York, NY, USA, 2020, pp. 97-98.

Lutkevich, B. (n.d). race condition. In TechTarget. Retrieved May 15, 2023, from https://
www.techtarget.com/searchstorage/definition/race-condition

Manaranche, A. (2014, July 26). Lust – Posterwall. In Index Grafik. Retrieved November
29, 2022, from http://indexgrafik.fr/lust-posterwall/

Martins, T. (2021). Automated Evolution For Design. Doctoral thesis, University of
Coimbra.

Martins, T., Cunha, J. C., Correia, J. and Machado, P. (2023). Towards the Evolution
of Prompts with MetaPrompter. In Artificial Intelligence in Music, Sound, Art and Design:
12th International Conference, EvoMUSART 2023, Held as Part of EvoStar 2023, Brno,
Czech Republic, April 12–14, 2023, Proceedings, Apr 2023, Pages 180–195. https://doi.
org/10.1007/978-3-031-29956-8_12
McCormack, J., Dorin, A. and Innocent, T. (2004). Generative Design: a paradigm for
design research. In Redmond, J. [et al](http://et.al/). (eds) Proceedings of Futureground,
Design Research Society, Melbourne.

McNeil, P. and Muir H. (2017). Cover Process In Eye 94, pp. 104–105.

Meggs, P. B. (1992). Type & Image. In New York: John Wiley & Sons, Inc.

r e f e r e n c e s

Towards Automated Generative Design p. 115

Meggs, P. B., Purvis A. (2006). Meggs’ History of Graphic Design (4th e.). John Wiley &
Sons.

Munken Paper Mill and Hübner P.(2022). The Munken Creator. Munken. Retrieved
December 05, 2022, from https://colab.munken.com/about-munken-creator

Önduygu, D. C. (2010). Graphagos: Evolutionary Algorithm as a model for the creative
process and as a tool to create graphic design products. M.A, Visual Arts and Visual
Communication Design. Supervisor: Elif Ayiter. Spring 2010.

Pereira, F. A., Martins, T., Rebelo, S. and Bicker J. (2019). Generative Type Design:
Creating Glyphs from Typographical Skeletons. In Artech 2019, 9th International
Conference on Digital and Interactive Arts, October 23–25, 2019, Braga, Portugal. 8 pages.
https://doi.org/10.1145/3359852.3359866

Peterson, H. P. (1965). The Digital Mona Lisa. In Computers and Automation. Newtonville,
Mass. (USA): Berkley Enterprise, Inc.

Quiroz, J. C., Banerjee, A., Louis, S. J. and Dascalu, S. M. (2009). Document Design with
Interactive Evolution. In Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.309–319.
isbn:978-3-642-02937-0.doi:10.1007/978-3-642-02937-0_28.

Raikar, S. Pai (n.d). Bombe. In Encyclopedia Britannica. Retrieved January 20, 2023, from
https://www.britannica.com/topic/Bombe

Rebelo, S., Bicker, J. and Machado, P. (2020). Evolutionary Experiments in Typesetting
of Letterpress-Inspired Posters. In Proceedings of the 11th International Conference on
Computational Creativity (ICCC’20), 110-113. Association for Computational Creativity
(ACC).

Rodenbröker, T. (2022, June 21). What is Creative Coding? In timrodenbroeker.de.
Retrieved October 20, 2022, from https://timrodenbroeker.de/what-is-creative-coding/

Samara, T. (2007). Design Elements: A Graphic Style Manual. Rockport Publishers.
ISBN: 978-1-592-53261-2.

Shacklett, M. E., Novotny, A. & Kate, G. (n.d.). What is TCP/IP? In TechTarget. Retrieved
March 10, 2023, from https://www.techtarget.com/searchnetworking/definition/TCP-IP

Shim, K. (2020, February 20). Computational Approach to Graphic Design. In The
International Journal of Visual Design, 14 (1): 1-9. doi:10.18848/2325-1581/CGP/v14i01/1-9.

Silva-Jetter, J. (2012). Designing through the loop: programming as a tool for aesthetic
creation in the field of graphic Design. In Farias, Priscila Lena; Calvera, Anna; Braga,
Marcos da Costa & Schincariol, Zuleica (Eds.). Design frontiers: territories, concepts,
technologies. São Paulo: Blucher. DOI 10.5151/design-icdhs-068Sims, K. (1991). Artificial
Evolution for Computer Graphics. In Computer Graphics, 25(4), July 1991, pp. 319-328.
(ACM SIGGRAPH ‘91 Conference Proceedings, Las Vegas, Nevada, July 1991.)

Sims, K. (1997). Galápagos. In karlsims.com. Retrieved july 04, 2023, from karlsims.com/
galapagos/

r e f e r e n c e s

Towards Automated Generative Design p. 116

Singh V., Gu. N. (2012). Towards an integrated generative design framework. In Design
Studies, 33(2), 185-207. https://doi.org/10.1016/j.destud.2011.06.001

Slowik, A. and Kwasnicka, H. (2020). Evolutionary algorithms and their applications
to engineering problems. In Neural Comput & Applic 32, 12363–12379 (2020). https://doi.
org/10.1007/s00521-020-04832-8

The	Editors	of	Encyclopaedia	Britannica	(n.d). Proteus. In Encyclopedia Britannica.
Retrieved May, 29, 2023 from https://www.britannica.com/topic/Proteus-Greek-
mythology

Woodbury, R. (2010). Elements of Parametric Design. NY: USA New York: Routledge.
ISBN: 978-0-415-77987-6.

r e f e r e n c e s

A P P E N D I X

Towards Automated Generative Design p. 119

EvoProteus
01. Evolving gradientsPopulation size / 15

0

5

10

15

20

30

50

Nº of generations / 50

a p p e n d i x

Figure 11.1.

The process is the project. Experimentations with Sketch “Gradients”.

Towards Automated Generative Design p. 120

EvoProteus
02. Kandinsky thinks GropiusPopulation size / 15

0

5

10

20

30

40

50

Nº of generations / 50

a p p e n d i x

Figure 11.2.

The process is the project. Experimentations with Sketch “Bauhaus”.

Towards Automated Generative Design p. 121

a p p e n d i x

Figure 11.3.

Snapshots of the
FeedNPlay experiment.

Towards Automated Generative Design p. 122

EvoProteus
03. Feednplay ExperimentsPopulation size / 09 Distinct outcomes

a p p e n d i x

Figure 11.4.

The process is the project. Experimentations with Sketch “Protean poster”
(in FeedNPlay).

Towards Automated Generative Design p. 123

a p p e n d i x

Figure 11.5.

Sketch “Protean poster”,
other outcomes.

This document was composed
with Literata typeface.

Designed by Irene Vlachou, Veronika Burian,
Vera Evstafieva and José Scaglione.

(2020)

