

Diogo Emanuel Ribeiro Cruz

DESIGN AND DEVELOPMENT OF LABORATORY

INFRASTRUCTURE FOR 5G LAN NETWORK

ENVIRONMENTS

Dissertation in the context of the Master in Informatics Engineering, specialization in
Software Engineering, advised by Professor Vasco Nuno Sousa Simões Pereira and
Professor Tiago José dos Santos Martins da Cruz presented to the Department of

Informatics Engineering of the Faculty of Sciences and Technology of the
University of Coimbra.

September of 2023

This page is intentionally left blank.

DEPARTMENT OF INFORMATICS ENGINEERING

Diogo Emanuel Ribeiro Cruz

Design and Development of
Laboratory Infrastructure for 5G

LAN Network Environments

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Professor Vasco Nuno Sousa
Simões Pereira and Professor Tiago José dos Santos Martins da Cruz presented

to the Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra.

September of 2023

This page is intentionally left blank.

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Diogo Emanuel Ribeiro Cruz

Conceção e Desenvolvimento de
Infraestrutura Laboratorial para

Ambientes de Rede 5G LAN

Dissertação no âmbito do Mestrado em Engenharia Informática, especialização
em Engenharia de Software, orientada pelo Professor Vasco Nuno Sousa Simões

Pereira e o Professor Tiago José dos Santos Martins da Cruz e apresentada ao
Departamento de Engenharia Informática da Faculdade de Ciências e

Tecnologia da Universidade de Coimbra.

Setembro de 2023

This page is intentionally left blank.

Acknowledgements

First and foremost, I would like to thank my thesis advisors, Professor Vasco
Pereira and Professor Tiago Cruz, for their invaluable guidance, support, and
incentive throughout the course of this dissertation. Their expertise and direction
were crucial to the success of this work.

I would also like to express my gratitude to Jorge Proença for always showing
avaliabilty to help, especially for all of the valuable corrections and suggestions
he provided.

Finally, I would like to thank my family and friends for their support and motiva-
tion throughout this journey. Without their love and encouragement, this would
not have been possible.

This work was funded by the project POWER (grant number POCI - 01 - 0247 -
FEDER - 070365) [1], co-financed by the European Regional Development Fund
(FEDER), through Portugal 2020 (PT2020), and by the Competitiveness and Inter-
nationalization Operational Programme (COMPETE 2020). It was also partially
supported by the Smart5Grid project (co-funded by FEDER - Competitiveness,
and Internationalisation Operational Program (COMPETE 2020), Portugal 2020
framework) [2].

vii

This page is intentionally left blank.

Abstract

With the advent of 5G technology, a range of application scenarios and use cases
emerges, facilitated by its specific characteristics. Research in this domain is a
priority to understand and fully exploit the possibilities offered by the ecosystem
and associated services. However, gaining access to production infrastructures
and real-world scenarios is complex, as they are considered essential services for
which availability is a priority, being typically managed by telecommunications
operators. Similarly, establishing a 5G network with the corresponding radio
infrastructure for laboratory purposes requires licenses and spectrum usage au-
thorizations, often slow and challenging to obtain.

Therefore, the purpose of this thesis is to conceive and implement a high-fidelity
5G test environment for 5G Local Area Networks (LANs) use cases, providing
the key elements for an Industrial Internet of Things (IoT) ecosystem over 5G.
The goal is to create a hybrid laboratory environment, comprising a combination
of real, emulated, or virtualized components, facilitating Research and Develop-
ment (R&D) activities focused on exploring use cases, integrating components,
and managing infrastructure.

This environment has undergone an experimental validation process to assess its
functional characteristics and performance, which has confirmed its capabilities
for the intended purposes. The validation effort has also helped identify strategic
action points for future development and improvement activities.

Keywords

5G, 5G LANs, Laboratory Testbeds, Industrial IoT, Infrastructure Management,
Virtualized Services

ix

This page is intentionally left blank.

Resumo

Com o advento da tecnologia 5G, emerge igualmente um conjunto de cenários de
aplicação e casos de uso viabilizados pelas suas características específicas, cuja in-
vestigação se reveste como uma prioridade, no sentido de compreender e melhor
explorar todas as possibilidades oferecidas pelo ecossistema e serviços associa-
dos. Contudo, o acesso a infraestruturas de produção e cenários reais reveste-se
de um considerável grau de complexidade, visto serem considerados serviços
essenciais cuja disponibilidade é prioritária, sendo a sua responsabilidade opera-
cional assegurada pelos operadores de telecomunicações. Do mesmo modo, a cri-
ação de uma rede 5G com o correspondente estabelecimento de uma infraestru-
tura rádio para fins laboratoriais está pendente de licenciamentos e autorizações
de utilização de espectro, frequentemente morosas e difíceis de obter.

Assim sendo, o propósito desta tese é o de conceber e implementar um ambi-
ente de testes 5G de alta-fidelidade para casos de uso de Redes de Área Locais
(LANs) 5G, que proporcione os elementos principais de um ecossistema de Inter-
net das Coisas (IoT) industrial sobre 5G. Deste modo, pretendeu-se disponibilizar
um ambiente laboratorial híbrido, composto por um misto de componentes reais
e emulados ou virtualizados, que permita o desenvolvimento de atividades de
Inovação e Desenvolvimento (I&D) focadas na exploração de casos de uso, inte-
gração de componentes e gestão de infraestrutura.

Este ambiente foi ainda sujeito a um processo de validação experimental, para
aferir as suas características funcionais e em termos de performance. Este esforço
de validação permitiu também identificar pontos-chave para futuros desenvolvi-
mentos da plataforma.

Palavras-Chave

5G, 5G LANs, Testbeds Laboratoriais, IoT Industrial, Gestão de Infrastrutura,
Serviços Virtualizados

xi

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Context . 1
1.3 Objectives and Contributions . 2
1.4 Work Plan . 3
1.5 Risks . 5
1.6 Document Structure . 6

2 Background Knowledge 9
2.1 Kubernetes . 9
2.2 Programmable Logic Controller . 10
2.3 Modbus . 11
2.4 Industrial Internet of Things . 11
2.5 Chapter Wrap-up . 12

3 State of the Art 13
3.1 5G System Overview . 13
3.2 5G Architecture . 15
3.3 5G Verticals . 21
3.4 5G Local Area Networks . 23
3.5 State of the Art Conclusions . 27

4 Use Case 29
4.1 Definition . 29
4.2 Requirements . 29
4.3 Use Case Architecture . 34

5 Testbed Scenario 37
5.1 Technologies . 37

5.1.1 Resource Managament . 37
5.1.2 Cluster functionalities . 38
5.1.3 5G Network . 39
5.1.4 Virtual Programmable Logic Controllers software 41

5.2 Final Architecture . 41
5.3 Implementation . 45
5.4 Chapter Wrap-up . 49

6 Validation of the Use Case 51
6.1 Functional Evaluation . 51

xiii

Chapter 0

6.2 Performance Evaluation . 54
6.2.1 Peak rate Tests . 55
6.2.2 Fixed rate Tests . 57

7 Conclusions and Future Work 61

Appendices 71

Appendix A Network Topology and Configurations 73
A.1 Network topology . 73
A.2 Configurations . 74

A.2.1 Tainting a master node . 74
A.2.2 Installing Rancher server . 74
A.2.3 Installing OpenEBS . 75
A.2.4 Installing and configuring Open5GS 75
A.2.5 Installing the New Radio (gnb) from UERANSIM 79
A.2.6 Installing and configuring KEDA 79
A.2.7 Installing Simu5G . 80
A.2.8 Installing and configuring OpenPLC with UEs 82
A.2.9 Configuring the RaspberryPI 90
A.2.10 Configuring the physical PLC (Schneider M221) 93
A.2.11 Configuring the hub-and-spoke scenario 93
A.2.12 Configuring JSON to CSV Converter Script for Peak-Rate

Tests . 95
A.2.13 Configuring the Scenario for Fixed-Rate Tests 96

Appendix B Access Manual 108
B.1 Accessing the Rancher Server for Cluster Management 108
B.2 To access Simu5G . 108
B.3 Accessing the Open5GS Web Interface 110
B.4 To access the UE Container . 110
B.5 Accessing the OpenPLC Web Interface 111
B.6 To access the registers of PLC Instances 112

Appendix C Links and credentials 113

xiv

Acronyms

3GPP 3rd Generation Partnership Project.

5GENESIS 5th Generation End-to-end Network, Experimentation, System Inte-
gration, and Showcasing.

5G-VINNI 5G Verticals INNovation Infrastructure.

5G-EVE 5G European Validation platform for Extensive trials.

5G-PPP 5G Infrastructure Public Private Partnership.

5GC 5G Core.

AF Application Function.

AI Artificial Intelligence.

AKA Authentication and Key Agreement.

AMF Access and Mobility Management Function.

API Application Programming Interface.

AR Augmented Reality.

ARP Address Resolution Protocol.

ARPF Authentication Credential Repository and Processing Function.

AUSF Authentication Server Function.

BSF Binding Support Function.

CBRS Citizens Broadband Radio Service.

CHF Charging Function.

CIoT Cellular Internet of Things.

CISUC Centre for Informatics and Systems of the University of Coimbra.

CNCF Cloud Native Computing Foundation.

CNs Core Networks.

CSCF Call State Control Function.

xv

Chapter 0

DB Database.

DHCP Dynamic Host Configuration Protocol.

DN Data Network.

DNS Domain Name System.

DoD Department of Defense.

DPDK Data Plane Development Kit.

DSS Dynamic Spectrum Sharing.

DSSS Direct Sequence Spread Spectrum.

ENDC E-UTRAN New Radio – Dual Connectivity.

EU European Union.

E-UTRAN Evolved Universal Terrestrial Radio Access Network.

eMBB Enhanced Mobile Broadband.

EPC Evolved Packet Core.

EPS Evolved Packet System.

FBD Function Block Diagram.

FHSS Frequency-Hopping Spread Spectrum.

FR Functional Requirement.

gNB gNodeB.

gNB-DUs gNB-Distributed Units.

gNB-CU gNB-Central Unit.

GUI Graphical User Interface.

HA High Availability.

HSS Home Subscriber Server.

I/O Input/Output.

ICT Information and Communications Technology.

IIoT Industrial Internet of Things.

IL Instruction List.

IMS IP Multimedia Subsystem.

IMSI International Mobile Subscriber Identity.

xvi

Acronyms

IMT-2020 International Mobile Telecommunications - 2020.

IoT Internet of Things.

IP Internet Protocol.

IT Information Technology.

ITU International Telecommunication Union.

K8s Kubernetes.

KPIs Key Performance Indicators.

LAN Local Area Network.

LANs Local Area Networks.

LD Ladder Logic.

LTE Long Term Evolution.

LXDE Lightweight X11 Desktop Environment.

MCC Mobile Country Code.

MIMO Multiple-Input Multiple-Output.

ML Machine Learning.

MME Mobility Management Entity.

mMTC Massive Machine-Type Communications.

MNC Mobile Network Code.

MSPs Managed Service Providers.

NEF Network Exposure Function.

NFR Non-Functional Requirement.

NFs Network Functions.

NFV Network Function Virtualization.

NG Network Gateway.

NG-RAN Next Generation Radio Access Network.

NR New Radio.

NRF Network Repository Function.

NSA Non-Standalone.

NSSAI Network Slice Selection Assistance Information.

xvii

Chapter 0

NSSF Network Slice Selection Function.

NTN Non-Terrestrial Networks.

PCF Policy Control Function.

PCRF Policy and Charging Rules Function.

PDN Public Data Network.

PGW-U Packet Gateway User Function.

PGW-C Packet Gateway Control Function.

PLC Programmable Logic Controller.

PLCs Programmable Logic Controllers.

QoS Quality of Service.

RAN Radio Access Network.

RKE2 Rancher Kubernetes Engine 2.

SA StandAlone.

SAE System Architecture Evolution.

SBA Service-Based Architecture.

SCADA Supervisory Control and Data Acquisition.

SCTP Stream Control Transmission Protocol.

SD Slice Differentiator.

SFC Sequential Function Chart.

SGW-U Serving Gateway User Function.

SGW-C Serving Gateway Control Function.

SMF Service Mobility Function.

SMF Session Management Function.

SSL Secure Sockets Layer.

ST Structured Text.

TC Technical Constraint.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TSG Technical Specification Group.

xviii

Acronyms

UDM Unified Data Management.

UDP User Datagram Protocol.

UDR Unified Data Repository.

UE User Equipment.

UEs User Equipments.

UI User Interface.

UPF User Plane Function.

URLLC Ultra Reliable Low Latency Communications.

US United States.

USIM Universal Subscriber Identity Module.

VM Virtual Machine.

VNC Virtual Network Computing.

VPN Virtual Private Network.

VPP Vector Packet Processing.

VR Virtual Reality.

Xn-C Xn control plane.

xix

This page is intentionally left blank.

List of Figures

1.1 Work Plan 1st Semester . 4
1.2 Work Plan 2st Semester . 4

2.1 Programmable Logic Controller Diagram. Source: [10] 10

3.1 Release 16 Description. Summary of Rel-16 Work Items. Source: [16] 14
3.2 3GPP proposed function architecture and reference points for 5G

networks. Source: [30] . 18
3.3 Architecture 5G base station gNB. Source: [40] 20
3.4 5G PPP goals. Source: [42] . 22
3.5 Deployment as an isolated network. Source: [45] 25

4.1 IIoT use case scenario. Communication between PLC devices us-
ing the 5G network. Adapted from: [50] 35

5.1 Kubernetes cluster diagram with an endpoint in rancher server. . . 43
5.2 Diagram of Kubernetes services using an ingress controller. Source:

[67] . 44
5.3 Use case scenario with the testbed technologies. Adapted from:

[50] . 45
5.4 Hub and Spoke scenario example with PLCs. 48

A.1 Network topology diagram showing the connections between our
Kubernetes cluster, an external Raspberry Pi, an external VM for
performance tests, the physical PLC, and the public internet. 74

B.1 Virtual Network Computing (VNC) Viewer interface connecting to
the Simu5g container. 109

B.2 Simu5g runtime interface for 5G network simulation. 109
B.3 Open5GS Web User Interface (UI). 110
B.4 User Equipment (UE) pod. 110
B.5 UE container terminal. 111
B.6 Master OpenPLC device. 112
B.7 Modbus poll read scenario for the slave device. 112

xxi

This page is intentionally left blank.

List of Tables

1.1 Risk Criteria. 5
1.2 Risks that may affect the completion of this thesis. 6

4.1 Requisites Criteria. 30
4.2 Requirements to implement the use case. 34

5.1 Cluster Resources. 46

6.1 Best performance related to window size in Transmission Control
Protocol (TCP). 56

6.2 Peak rate test results. 56
6.3 Table displaying test results with a fixed rate of 1Mbps for bytes

values. 58
6.4 Table displaying test results with a fixed rate of 5Mbps for lost

packets values. 59
6.5 Table displaying test results with a fixed rate of 5Mbps for bytes

values. 59
6.6 Table displaying test results with a fixed rate of 10Mbps for lost

packets values. 60
6.7 Table displaying test results with a fixed rate of 10Mbps for bytes

values. 60

C.1 Login information for various systems. 115

xxiii

This page is intentionally left blank.

Chapter 1

Introduction

In this chapter, we will present the motivations that drove the creation of this
thesis and the context of the research work. Furthermore, the objectives and con-
tributions produced to the projects, and the work plan pursued in the first and
second semesters. Finally, it presents the risks involved in completing this thesis
and the thesis structure.

1.1 Motivations

This thesis emerges in response to the necessity of having an advanced laboratory
infrastructure for 5G-based Local Area Networks scenarios, showcasing high per-
formance, ultra-low latency, high reliability, and support for Massive Machine-
Type Communications (mMTC). Such a laboratory, embodying these crucial at-
tributes, stands as an indispensable asset, positioned to serve as a foundation for
both the POWER and Smart5Grid projects. By encompassing these foundational
traits, this testbed contributes to innovation, with a specific focus on domains like
5G private networks, and Industrial Internet of Things (IIoT).

1.2 Context

The 5th generation of mobile network technology, commonly designated by 5G,
was conceived to connect virtually everyone and everything, including machines,
objects, and all sorts of devices. It was designed to be faster, more scalable, more
energy efficient, and more reliable, providing massive network capacity and in-
creased availability when compared to previous generations, while being able to
cope with ultra-low latency requirements.

In the present landscape, 5G networks already empower solutions that link de-
vices together, providing the capacity and means to seamlessly connect a massive
number of gadgets and sensors, with diverse data rate requirements, low latency,
and low power consumption. Within the domain of IIoT, 5G plays a pivotal
role in changing the industrial landscape by optimizing processes, minimizing

1

Chapter 1

downtime, enabling predictive maintenance, and delivering high-performance
networks easily and at reduced costs. In the context of smart cities, it underpins
sophisticated traffic management systems, advanced lighting solutions, and real-
time environmental monitoring. This adaptability is amplified by the 5G Service
Architecture (SA), which is based on a microservice concept, dividing its core
through multiple functions, that can open doors for flexible horizontal scaling,
and therefore optimal performance in adverse workloads. Furthermore, the 3rd
Generation Partnership Project (3GPP) specifications encompass specific support
for verticals utilizing slicing and 5G Local Area Networks (LANs), paving the
way for a paradigm shift in terms of the relationship between service, telecom,
and operational infrastructure tenants.

Taking into consideration the 5G potential arises Project POWER and Project
Smart5Grid. In Project POWER "Empowering a digital future" [1], the empha-
sis is on crafting solutions for commercialization within enterprises, leveraging
cloud technologies, cognitive capabilities, and strategic technology vectors such
as private 5G networks, Edge/Cloud computing, data-driven technologies, and
Artificial Intelligence (AI). Conversely, Project Smart5Grid [2] is oriented towards
devising a framework adaptable for smart energy networks, seeking to enhance
the operations of energy systems by harnessing the potential of private 5G net-
works.

1.3 Objectives and Contributions

The primary goal of this thesis is to establish a laboratory environment capable
of supporting 5G LAN technologies and solutions. It will encompass resource or-
chestration, service virtualization using containers, and a functional 5G core. This
objective is fueled by the creation of an IIoT use case that leverages 5G LANs, in-
volving physical and virtualized 5G components. Furthermore, the laboratory is
prepared for potential federation with partner infrastructures via an Virtual Pri-
vate Network (VPN) communication solution. Crucially, the overarching vision
of this testbed extends beyond its primary objective, serving as a foundational
base for not only the POWER and Smart5Grid projects but also future initiatives
yet to unfold. Finally, documentation and validation of the scenario are critical
segments of this thesis.

During the realization of the goals and as part of the Centre for Informatics and
Systems of the University of Coimbra (CISUC) ecosystem, a set of contributions
were made that must be noted:

• The testbed containing 5G LAN solutions and incorporating the IIoT use
case scenario [3].

• One article published [4] as part of the Smart5Grid and POWER projects.

• Presentation titled "SP3 - Future Operations: 5G Private Networks" in the
workshop of the project POWER on February 8th, 2023, in Coimbra.

2

Introduction

• Presentation titled "Designing an Industrial IoT 5G testbed" at the 33rd Sem-
inar of Mobile Communications Thematic Network [5] on February 10th,
2023, at the NOVA School of Science and Technology in Lisbon.

• Presentation titled "Design and Development of Laboratory Infrastructure
for 5G LAN Network Environments" in the workshop of the project POWER
titled "5G and Beyond" [6] on June 20th, 2023, in Coimbra.

• Conducted a live demo of the testbed as part of the Smart5Grid project on
July 20th, 2023, remotely.

The testbed is housed within the CISUC data center and can be replicated to cloud
or other on-premises centers.

1.4 Work Plan

Throughout the 1st semester, our work plan centered on studying, analyzing, and
designing a system-specific use case. We also conducted an in-depth assessment
of the current State of the Art and relevant prior research. The main activities
undertaken during this period included:

• Acquire background knowledge

• Study State of the Art

• Design the use case based on 5G LANs and IIoT nodes

• Research technologies based on the use case

• Build the testbed consisting primarily of 5GC, virtual PLCs, virtual UEs,
and NG-RAN

• Write dissertation document

The following figure 1.1 shows the work that was concluded during the first
semester:

3

Chapter 1

Figure 1.1: Work Plan 1st Semester

In the second semester, the primary focus was finishing developing the testbed,
accompanied by comprehensive validation tests for the entire environment. The
main tasks completed during this time were:

• Develop the testbed

– Integrate the RaspberryPI serving as UE

– Integrate the physical Programmable Logic Controller (PLC)

• Conduct validation tests for the use case requirements

• Compose the final dissertation document

The following figure 1.2 shows the work accomplished for the second semester:

Figure 1.2: Work Plan 2st Semester

4

Introduction

1.5 Risks

Risk is the combination of the likelihood that the event will occur and its poten-
tial impact on the project. Events with a high likelihood and high impact are
considered serious risks.

The table 1.1 presents a review of the criteria for evaluating risks.

Likelihood Impact Severity (Likelihood x Impact)

0 - Unlikely 0 - Insignificant 0 - Insignificant (0 x 0)

1 - Possible 1 - Minor 1 - Minor (1 x 1)

2 - Likely 2 - Moderate 2 - Moderate (1 x 2 or 2 x 1)

3 - Almost certain 3 - Major 3 - Major (1 x 3 or 3 x 1)

Status 4 - Severe (2 x 2)

• Achieved: The risk has occurred

• Not Achieved: The risk has not
occurred

• Pending: The risk has the potential to
occur in the future

6 - Critical (3 x 2 or 2 x 3)

9 - Catastrophic (3 x 3)

Table 1.1: Risk Criteria.

The table 1.2 presents events that could negatively impact the thesis if they occur.
It includes a description of each risk, its severity, a plan for managing it, and its
current status.

5

Chapter 1

ID Risk Description Li
ke

li
ho

od

Im
pa

ct

Se
ve

ri
ty

Contingency Plan Status

1 Absence of a Physical
Next Generation Ra-
dio Access Network
(NG-RAN): This risk
involves the potential
unavailability of a
physical NG-RAN
infrastructure for the
testbed.

2 2 4 Implement software
emulation to replicate
NG-RAN behavior,
enabling testing of
user equipment inter-
actions and network
performance despite
the lack of a physical
NG-RAN.

Achieved

2 Risk of an incom-
plete definition of the
use case: This risk
emerges if the project
goals or requirements,
underlying this thesis,
shift during its execu-
tion, causing an un-
clear use case defini-
tion.

1 3 3 As a backup strat-
egy, regularly review
and update project
goals, adopt flexible
development, involve
stakeholders early,
create a communi-
cation plan, develop
a fallback plan, and
assign a dedicated
project manager.

Not
Achieved

3 Risk of the software
not having all the
required functionali-
ties: It refers to the po-
tential situation where
the set software so-
lution may lack cer-
tain features that are
necessary to meet the
project objectives and
requirements.

1 3 3 Leverage open-source
alternatives and com-
munity contributions
to address potential
gaps in functionality.
Otherwise, consider
in-house development
to meet the required
functionalities.

Not
Achieved

Table 1.2: Risks that may affect the completion of this thesis.

1.6 Document Structure

The document structure is organized as follows. In chapter 2, we provide back-
ground knowledge on the core technologies important to this thesis. In chapter

6

Introduction

3 (State of the Art), we present a system overview of 5G, including a detailed ex-
planation of its architecture and an analysis of 5G Verticals and 5G LANs with
support to IIoT. In chapter 4, we outline the use case and its requirements. Chap-
ter 5 elaborates on the testbed created from the use case, detailing its technolo-
gies, architecture, and implementation. Chapter 6 is dedicated to validating the
requirements of the use case. Finally, Chapter 7 summarizes key points of this
thesis and suggests future work.

7

This page is intentionally left blank.

Chapter 2

Background Knowledge

This chapter aims to present an overview of the essential technologies and con-
cepts that are relevant to the research discussed in the following chapters. The
purpose of this overview is to provide readers with the necessary foundational
knowledge to comprehensively grasp the analysis of these technologies distribu-
tions, as well as the subsequent sections outlining the use case and testbed within
the thesis.

2.1 Kubernetes

Kubernetes (K8s) [7] is an open-source platform for automating the deployment,
scaling, and management of containerized applications. It was originally created
by Google and is now maintained by the Cloud Native Computing Foundation
(CNCF). Kubernetes is designed to run across a cluster of machines, possibly even
across multiple data centers. It allows you to schedule and run containerized
applications on those machines, as well as to scale those applications up or down
and roll out new features or updates with minimal downtime.

One of the key features of Kubernetes is its use of "pods" to run multiple con-
tainers together. Pods are the smallest deployable units in Kubernetes and can be
used to host applications or perform specific tasks such as running a database.
Pods can be managed and scaled independently, and can also be replicated to
provide high availability for the applications that they host.

Kubernetes also provides a number of other features to help the management of
containerized applications, including:

• Service discovery and load balancing: It can automatically expose the ser-
vices running in your pods to the outside world, and can also load balance
traffic between them.

• Configuration management: Allows you to manage the configuration of
your applications through the use of "config maps" and "secrets".

9

Chapter 2

• Persistent storage: Permits you to attach persistent storage to your pods so
that your applications can retain data even if the pods are terminated or
moved to different machines.

• Health checking: Monitors the health of your applications and take correc-
tive action if necessary, such as restarting or replacing unhealthy pods.

Overall, K8s provides a powerful and flexible platform for deploying, scaling,
and managing containerized applications at scale.

2.2 Programmable Logic Controller

A Programmable Logic Controller (PLC) [8] is a type of computer that is specifi-
cally designed for use in industrial control systems. It is used to automate a wide
variety of industrial processes, such as factory automation, oil and gas refining,
and power generation.

PLCs are ruggedized and built to withstand harsh industrial environments, and
they are typically more reliable and durable than traditional computers. They are
also designed to be easily programmable and reconfigurable so that they can be
adapted to control different processes as needed.

One of the key features of PLCs is their use of Input/Output (I/O) modules to
interface with the physical world. These modules can be used to read data from
sensors, such as temperature or pressure sensors, and to control actuators, such
as motors or valves. The PLC can then use this data to make decisions and take
actions based on a set of pre-programmed instructions.

PLCs are typically programmed using one of the five languages defined in the
IEC 61131-3 standard [9]: Ladder Logic (LD), Function Block Diagram (FBD),
Instruction List (IL), Structured Text (ST), and Sequential Function Chart (SFC).
These languages are designed to be easy to use and to closely mimic the logic
of physical control systems, making it simple for engineers and technicians to
program and troubleshoot PLCs.

Overall, PLCs are an essential component of many industrial control systems, and
they play a crucial role in automating and optimizing a wide variety of processes
across many different industries.

Figure 2.1: Programmable Logic Controller Diagram. Source: [10]

10

Background Knowledge

The figure 2.1 shows how the PLC operates. The input module maps the physical
input sensing devices, then it passes in a program with certain functionalities
designed by the user. Finally, the output maps register to the physical output
devices and loop again all these processes.

2.3 Modbus

Modbus [11] is a serial communication protocol that was originally developed in
1979 for use with PLCs. It is used to establish communication between different
devices, such as PLCs, computers, and other industrial control equipment.

Modbus is a client-server protocol, which means that one device (the client) sends
a request to another device (the server) and the server sends a response. Modbus
can be used over a variety of physical communication media, including RS-232
[12], RS-485 [13], and Ethernet.

Modbus does not provide any encryption or secure communication on its own. If
security is a concern, it is typically implemented at a higher level, such as by us-
ing a secure communication protocol like Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) to encrypt the data transmitted over the network. Alter-
natively, Modbus packets can be encapsulated within another protocol, such as
Transmission Control Protocol (TCP)/Internet Protocol (IP), which does provide
some level of security.

It is important to note that the lack of built-in security in Modbus can make it
vulnerable to man-in-the-middle attacks [14] and other types of cyber threats. As
a result, it is important to carefully consider the security requirements of your
system and to take appropriate steps to protect against potential threats.

One of the essential features of Modbus is its use of function codes to specify the
type of action that the client is requesting. For example, a function code might be
used to request that the server send back the current value of a particular register,
or to request that the server write a new value to a register.

Modbus is a widely used protocol in the industrial automation and control in-
dustry, and it is supported by many different types of devices. It is known for
its simplicity and ease of use, and it is often used as a "language" that allows
different devices to communicate with each other.

Overall, Modbus is a valuable tool for enabling communication between different
devices in industrial control systems, and it continues to be widely used today.

2.4 Industrial Internet of Things

The Internet of Things (IoT) [15] refers to the growing network of physical objects
that are connected to the internet and can communicate with each other and with
people. These objects, which can include everyday household appliances, indus-

11

Chapter 2

trial equipment, and vehicles, are equipped with sensors and other technologies
that allow them to collect and exchange data. The IoT allows for the remote mon-
itoring and control of these objects, and it has the potential to transform many
different industries by enabling the automation of processes and the collection of
vast amounts of data.

The Industrial Internet of Things (IIoT) is a specific application of the IoT in in-
dustrial settings, such as manufacturing, retail, healthcare, and other businesses.
IIoT devices, ranging from sensors to equipment, provide businesses with real-
time, detailed data that can be used to improve business processes and increase
efficiency. These devices can be used to optimize supply chain management,
logistics, human resources, and reduce production costs and increase revenue
streams.

Some examples of IIoT applications in different verticals include:

• Manufacturing: In manufacturing can be used for predictive maintenance
to reduce unplanned downtime, and for the wearables to improve operator
safety.

• Automotive: Sensor-driven analytics and robotics can increase efficiency in
automotive maintenance and manufacturing.

• Logistics and transportation: Devices can assist in supply chain manage-
ment, including inventory management, supplier relationship management,
fleet management, and scheduled maintenance.

• Retail: It can be used for automation and human-machine collaboration in
retail.

Overall, IIoT has the potential to revolutionize many different industries and
transform the way we live and work. However, they also raise concerns about
data privacy and security, as well as the potential for widespread job automation.

2.5 Chapter Wrap-up

In conclusion, this chapter provided an overview of several key technologies that
are commonly used in industrial automation and control systems. These tech-
nologies have been chosen to underpin our work due to their unparalleled rel-
evance and utility. Their alignment with our thesis objectives underscores their
significance in meeting our intended outcomes. We covered Kubernetes, a con-
tainer orchestration platform that is used to automate the deployment, scaling,
and management of containerized applications. We covered the concept of PLCs,
which are specialized computers that are used to automate a wide variety of
industrial processes. We also discussed the Modbus communication protocol,
which is used to establish communication between different devices in industrial
control systems. Finally, we explored the IIoT, which refers to the use of smart de-
vices in industrial settings to increase efficiency and optimize business processes.

12

Chapter 3

State of the Art

In the following sections, we will explore the system overview of 5G, including
its architecture based on the Service-Based Architecture (SBA) framework. We
will also delve into the topic of 5G verticals and 5G Local Area Networks with
support for the Industrial Internet of Things (IIoT).

3.1 5G System Overview

International Mobile Telecommunications - 2020 (IMT-2020) is a set of standards
that specified a collection of requirements for future 5G networks that have been
developed by the International Telecommunication Union (ITU) in 2015. The 3rd
Generation Partnership Project (3GPP) is responsible for developing the technical
specifications that implement the IMT-2020 standards in mobile communication
networks. In 2018, 3GPP released its first pack of technical specifications for stan-
dalone 5G networks, known as Release 15. This release included the full batch
of 3GPP specifications for 5G. This phase introduces a new radio transmission
technique and other important concepts, such as improved reliability, increased
modularity, and faster response times.

Release 16, which was functionally frozen in December 2020, specifies the second
phase of 5G deployment. This phase builds upon the foundations established in
Release 15 and introduces new features and capabilities to further improve the
performance of 5G networks. Some of the key features of Release 16 include:

• Enhanced Mobile Broadband (eMBB): This feature aims to improve the qual-
ity of mobile broadband services by increasing the data rates and capacity
of 5G networks.

• Ultra Reliable Low Latency Communications (URLLC): This feature aims
to provide extremely low latency and high reliability for applications that
require real-time communication, such as remote surgery or autonomous
driving.

13

Chapter 3

• Massive Machine-Type Communications (mMTC): This feature aims to sup-
port a large number of devices with low data rate requirements, such as
sensors and other IoT devices.

Figure 3.1: Release 16 Description. Summary of Rel-16 Work Items. Source: [16]

Release 16 presented enhancements to the 5G core network, including support
for network slicing, which allows for the deployment and use of multiple Core
Networks (CNs) simultaneously, each one specialized in providing a specific set
of services and/or subscribers. This allows for greater flexibility and simplifies
maintenance in the network deployment. It also introduced Network Function
Virtualization (NFV), which allows for the communication of all Network Func-
tions (NFs) through a common interface and the ability to locate them anywhere.
This adds to the flexibility of the network. Additionally, introduced edge com-
puting, which brings computational power closer to the end-user to reduce the
response time of the network for applications that require low latency, such as
virtual reality, autonomous driving, and factories of the future.

Release 17, which was functionally frozen in March 2022, brought further en-
hancements for 5G networks. [17] Some of the main features are:

• Enhanced support for non-public networks: Focuses on improving security,
scalability, and customization options for private 5G networks deployed by
enterprises and industries.

• Internet of Things (IoT) over Non-Terrestrial Networks (NTN): It enables
seamless integration of IoT devices with non-terrestrial infrastructure, open-
ing up possibilities for remote sensing, precision agriculture, and disaster
response.

14

State of the Art

• Further enhancements on Multiple-Input Multiple-Output (MIMO) for New
Radio (NR): Optimizes MIMO technology in 5G networks, improving per-
formance, capacity, and coverage for higher data rates and better network
reliability.

These advancements expand the capabilities of 5G, enabling customized private
networks, seamless connectivity in remote environments, and improved perfor-
mance. Release 17 reinforces 5G position as a versatile technology driving inno-
vation across verticals.

Release 18 of the 3GPP specification are expected to introduce new features and
capabilities. [18] Some of the essential attributes that are expected to be included
according to the Technical Specification Group (TSG) meetings are:

• Support for new frequency bands and technologies: It is expected to be used
for 5G in many regions around the world. They may also introduce support
for new technologies such as Dynamic Spectrum Sharing (DSS), which al-
lows for the sharing of spectrum between different wireless technologies.

• Improvements to the 5G core network: It includes support for new net-
work architectures and protocols that will improve the efficiency and per-
formance of 5G networks.

• Enhancements to the 5G radio access network: It includes enhancements to
the 5G NR air interface and support for new spectrum bands.

• Improvements to interworking between different networks: Enhancements
to the protocols that enable interworking between different networks, such
as the 5G System Architecture Evolution (SAE) and the 5G Non-Standalone
(NSA) architecture.

It should be noted that the exact features and capabilities of 3GPP Release 18 are
still being developed and may change prior to the finalization of the specifica-
tions.

Next, we will examine the architecture of 5G and explain the various components
that make up this complex system. We will also discuss the roles and capabilities
of these components, and how they contribute to the overall performance of 5G
networks.

3.2 5G Architecture

As previously referred, the 5G architecture is a Service-Based Architecture (SBA).
A SBA is a design approach for building systems in which the architecture el-
ements are defined in terms of NFs rather than by traditional network entities.
In an SBA, any given NF offers its services to all other authorized NFs and/or to
any "consumers" that are permitted to use these provided services. This approach

15

Chapter 3

offers modularity and reusability, as it allows for the creation of flexible and scal-
able systems that can be easily modified or expanded as needed to support new
features and services. [19]

In the context of 5G, the 3GPP has adopted an SBA framework for the 5G Core
(5GC). The 5GC is the part of the 5G network that controls the communication
between the User Equipment (UE), itself composed of a Mobile Station and a
Universal Subscriber Identity Module (USIM), and the data network. It is formed
of several NFs that work together to provide various services to the UE. These
NFs can be grouped into two main categories: the User Plane, which handles the
transport of user data, and the Control Plane, which handles the signaling and
control of the network.

Some of the 5G network components are:

• The Home Subscriber Server (HSS) is the main subscriber database used
within the IP Multimedia Subsystem (IMS), providing details of subscribers
to other entities within the network. The IMS enables users to be granted or
denied access to other services based on their status. [20]

• The Mobility Management Entity (MME) is a crucial component of the
Evolved Packet Core (EPC) for Long Term Evolution (LTE). It manages mo-
bility sessions for the LTE network and supports subscriber authentication,
roaming, and handovers to other networks. [21]

• The Policy and Charging Rules Function (PCRF) is a network node that
determines how traffic flows over the network for individual subscribers.
Using input from other nodes in the network, the PCRF creates rules that
control various aspects of traffic flow, such as Quality of Service (QoS) re-
quirements, restrictions, throttling, blocking, and billing. These rules are
applied at a granular level, allowing for precise control over individual sub-
scribers data flows in the network. [22]

• The Packet Gateway Control Function (PGW-C) is a component of the Ser-
vice Mobility Function (SMF). When control and user plane separation is in
place, the PGW-C controls the functions performed by the assigned Packet
Gateway User Function (PGW-U). When a subscriber establishes an Evolved
Packet System (EPS) bearer to a given Public Data Network (PDN), the
PGW-C selects and controls the point of attachment to that PDN for the du-
ration of the EPS bearer, regardless of any mobility procedures. The PGW-C
is responsible for managing resources for bearer resources, binding bearers
to subscribers, managing subscriber IP addresses, and supporting mobility.
[23]

• The PGW-U is a component of the User Plane Function (UPF). When control
and user plane separation is in place, the PGW-U serves as the user data
plane ingress and egress point to the EPC. When a subscriber establishes an
EPS bearer to a given PDN, the PGW-U, under the control of the PGW-C,
serves as the point of attachment to that PDN for the duration of the EPS
bearer, regardless of any mobility procedures. The PGW-U is responsible

16

State of the Art

for inspecting packets to ensure that they have the appropriate service level
applied. [24]

• The Serving Gateway Control Function (SGW-C) controls the functions per-
formed by the assigned Serving Gateway User Function (SGW-U) when
control and user plane separation is in place. Each subscriber is served by
a single SGW-C and can have multiple SGW-Us selected for multiple PDN
connections. When the subscriber moves around the Evolved Universal Ter-
restrial Radio Access Network (E-UTRAN), their point of attachment to the
EPC remains fixed at the SGW-U under the control of the SGW-C, unless the
network decides that an SGW-U relocation is required. The SGW-C also has
additional responsibilities, such as lawful interception of subscriber traffic
and triggering downlink data buffering while the subscriber is paged. The
SGW-C also manages packet gateway pause and charging policies based on
implemented policies, such as failed paging, abnormal radio link release,
and dropped packets/bytes at the SGW-U. [25]

• The SGW-U is the user data plane ingress and egress point of the E-UTRAN
side of the EPC when control and user plane separation is in place. When
the subscriber moves around the E-UTRAN, their point of attachment to
the EPC remains fixed at the SGW-U, unless the network decides that an
SGW-U relocation is required. A single subscriber may be supported by
multiple SGW-Us if they have connectivity to multiple PDNs. The SGW-U
also has additional responsibilities, such as lawful interception of subscriber
traffic, inter-operator accounting, and downlink data buffering while the
subscriber is paged. [26]

• The Binding Support Function (BSF) is a key component of the 3GPP SBA
for 5G Core networks. The BSF enables other NFs, such as an IMS Call
State Control Function (CSCF) or Network Exposure Function (NEF), to de-
termine which Policy Control Function (PCF) holds the needed policy and
accounting information for each active mobile device data session. This al-
lows the NFs to access and apply the appropriate policies and accounting
rules for each session, ensuring that traffic is properly controlled and man-
aged in the network. [27]

• The Network Slice Selection Function (NSSF) is a component of the 3GPP
5G architecture that helps the Access and Mobility Management Function
(AMF) select the appropriate network slice instances to serve a particular
device. The NSSF determines the allowed Network Slice Selection Assis-
tance Information (NSSAI) that is supplied to the device, and may also be
used to allocate an appropriate AMF if the current AMF is not able to sup-
port all network slice instances for a given device. The NSSF plays a key
role in ensuring that devices are able to access the network slices that are
best suited to their needs and requirements. [28]

• The Unified Data Repository (UDR) is a centralized repository of subscriber
information that can be used by multiple network functions. For example,
the 5G Unified Data Management (UDM) can use the UDR to store and

17

Chapter 3

retrieve subscription data, while the PCF can use the UDR to store and re-
trieve policy-related data. From a Cellular Internet of Things (CIoT) per-
spective, the NEF may use the UDR to store subscriber-related data that is
permitted to be exposed to third-party applications. The UDR provides a
single, unified source of data that can be accessed and used by various net-
work functions, enabling efficient and effective management of subscriber
information. [29]

Next, we will analyze some of the key functions within the 5G architecture. These
functions play vital roles in enabling the capabilities and features of the 5G net-
work.

Figure 3.2: 3GPP proposed function architecture and reference points for 5G net-
works. Source: [30]

The functions according to figure 3.2 of 5G are as follows:

• The AMF main tasks include registration management, connection manage-
ment, reachability management, mobility management, and various func-
tions related to security, access management, and authorization. The AMF
plays a key role in ensuring that subscribers can access the network and
move around it seamlessly while maintaining secure and authorized access
to network resources. [31]

• The Authentication Server Function (AUSF) is a component of the 3GPP 5G
architecture. The AUSF is responsible for facilitating security processes in a
5G network. It plays a key role in ensuring that only authorized users are
able to access network resources, protecting against unauthorized access
and potential security threats. [32]

• The Network Repository Function (NRF) is a key component of the 3GPP
SBA for 5G Core networks. The NRF acts as a central services discovery

18

State of the Art

broker for all NFs in the 5G Core. This allows NFs to discover and access
the services they need in order to perform their functions and enables the
network to efficiently allocate resources and manage traffic flow. The NRF
plays a critical role in ensuring that the 5G Core network functions smoothly
and efficiently. [33]

• The PCF is a network component that governs the control plane functions
through policy rules and the user plane functions through policy enforce-
ment. The PCF works closely with the Charging Function (CHF) for usage
monitoring, allowing operators to manage and govern network behavior.
Through the PCF, operators can define and enforce policies that control how
traffic flows over the network, allowing for precise control over network be-
havior and resource allocation. This enables operators to optimize network
performance and ensure that subscribers receive the best possible service.
[34]

• The Session Management Function (SMF) is a key component of the 3GPP
5G architecture and the next generation core. The SMF is responsible for
managing subscriber sessions, including establishing, modifying, and re-
leasing them. This enables subscribers to access network resources and use
various services, such as data and voice communications. The SMF plays a
critical role in ensuring that subscribers can connect to the network and use
its services seamlessly and efficiently. [35]

• The UDM supports the Authentication Credential Repository and Process-
ing Function (ARPF) and stores the long-term security credentials used in
authentication for Authentication and Key Agreement (AKA). In addition
to storing security credentials, the UDM also stores subscription informa-
tion for subscribers. This allows the UDM to play a key role in ensuring
that subscribers are able to securely and reliably access network resources
and services. [36]

• The UPF is a function of the 3GPP 5G architecture. The UPF performs func-
tions similar to those of the Serving Gateway and Packet Gateway in a 4G
LTE system. It supports various features and capabilities to facilitate user
plane operation, such as packet routing and forwarding, interconnection to
the data network, policy enforcement, and data buffering. The UPF plays
a critical role in ensuring that user plane traffic is properly managed and
routed in the 5G network, enabling subscribers to access network resources
and use various services. [37]

• The NEF enables the secure exposure of services and capabilities offered by
3GPP network functions. This function can be used for external or internal
exposure/re-exposure, for example by third parties. [38]

• Data Network (DN) refers to services provided by the service provider, In-
ternet access, or services offered by third parties. [39]

• The Application Function (AF) is responsible for controlling the applica-
tion(s) and may also be involved in the user plane. [19]

19

Chapter 3

• The Network Gateway (NG) is the reference point between the access and
core networks and consists of multiple interfaces like N2 and N3. [19]

In 5G, there are two modes of operation: StandAlone (SA) and NSA. The SA
mode uses only 5G components, while the NSA mode can use components from
4G/LTE or the EPC in addition to 5G components. The SA architecture utilizes
the 5GC and the Next Generation Radio Access Network (NG-RAN) to provide
end-to-end connectivity to users. On the other hand, the NSA mode relies on
the EPC or 4G/LTE infrastructure to provide connectivity and uses the 5GC and
RAN for additional functionality and improved performance. Both modes offer
various features and benefits, and the choice of which mode to use depends on
the specific requirements and goals of the deployment.

Figure 3.3: Architecture 5G base station gNB. Source: [40]

The other major component that forms the 5G, besides the 5GC in the SA mode,
is the NG-RAN. The NG-RAN is the component of the network that provides the
wireless connection between the UE and the 5GC as shown in figure 3.3. The
NG-RAN is responsible for transmitting and receiving radio signals to and from
the UE and for performing radio resource management tasks such as allocation
of radio resources and interference management.

The main entity of the NG-RAN is the gNodeB (gNB), which is the radio trans-
mitter and is responsible for transmitting and receiving radio signals to and from
the UE. The gNB may be further divided into a gNB-Central Unit (gNB-CU) and
one or more gNB-Distributed Units (gNB-DUs) linked by the F1 interface. The F1
interface supports signaling exchange and data transmission between the end-
points, separates Radio Network Layer and Transport Network Layer, and en-
ables the exchange of UE-associated and non-UE-associated signaling.

The NG-RAN is connected to the 5GC via the NG interface, and it uses the 5GC to
control the communication between the UE and the data network. The NG-RAN
and the 5GC work together to provide various services to the UE, including voice

20

State of the Art

and data communication, location services, and access to the internet and other
data networks.

Finally, the Xn control plane (Xn-C) interface is defined between two NG-RAN
nodes. The transport network layer built on this interface is based on the Stream
Control Transmission Protocol (SCTP) running on top of IP.

3.3 5G Verticals

A 5G vertical refers to a particular industry or market segment that a 5G network
is designed to serve. Different industries may have specific requirements for con-
nectivity or capabilities, and telecommunications companies may offer special-
ized solutions for each vertical to meet these needs. By segmenting the market
into different verticals, companies can tailor their products and services to the
specific needs of each industry. The main 5G verticals [41] are:

• Automotive: Promoting self-driving vehicles and other transportation in-
novations, improving safety and reducing congestion.

• Manufacturing: Boosting the use of robotics and automation in manufac-
turing, improving efficiency and reducing costs.

• Media: Allowing higher-quality streaming of video and other media, as
well as the use of virtual and augmented reality in the media industry.

• Energy: Facilitating the use of the IoT in the energy industry, allowing for
the remote monitoring and control of power grids and other energy infras-
tructure.

• eHealth: Allowing remote surgery, telemedicine, and other healthcare ser-
vices, permitting doctors to treat patients remotely and providing access to
healthcare in underserved areas.

• Public Safety: Using faster response times for emergency services, as well as
the use of drones and other technologies for search and rescue operations.

• Smart Cities: Enabling the use of the IoT in city infrastructure, such as smart
traffic systems and smart lighting, as well as the use of sensors and other
technologies to improve city services and livability.

One major contributor that supports the growth and advancement of these in-
dustries is the 5G Infrastructure Public Private Partnership (5G-PPP). It is a part-
nership between the European Union (EU) and the European Information and
Communications Technology (ICT) industry, with the goal of promoting the de-
velopment of 5G technology and ensuring that Europe remains competitive in
the global market for telecommunications services. [42]

21

Chapter 3

Figure 3.4: 5G PPP goals. Source: [42]

The main objectives are:

• Develop and demonstrate innovative technologies and solutions for 5G net-
works, including new radio technologies, network architecture, and appli-
cations.

• Foster the deployment of 5G networks and services across Europe, by sup-
porting the development of business models and regulatory frameworks
that facilitate the deployment of 5G infrastructure.

• Enhance the competitiveness of the European telecommunications indus-
try, by supporting the development of new products and services in the
verticals industry.

The 5G European Validation platform for Extensive trials (5G-EVE), 5G Verti-
cals INNovation Infrastructure (5G-VINNI), and 5th Generation End-to-end Net-
work, Experimentation, System Integration, and Showcasing (5GENESIS) infras-
tructure projects, that belong to the 5G-PPP Phase 3 Part 1 [43], are focused on
supporting the deployment and evolution of 5G networks in Europe. These ini-
tiatives aim to establish facilities for testing and validating 5G technologies and
services and to encourage the participation of vertical industries in the design and
evaluation of 5G services. They also seek to demonstrate the value of 5G solutions
to the 5G community and promote the adoption of these solutions. The projects
will utilize a range of 5G technologies and techniques, such as NFV, network
slicing, and automated testing, to verify 5G network Key Performance Indica-
tors (KPIs) under various combinations of technologies and network conditions.
They will also provide interfaces and tools for advanced testing and analysis and
will strive to create sustainable and accessible facilities for 5G experimentation
beyond the duration of the projects.

22

State of the Art

The 5G-PPP Phase 3 Part 3 [44], initiative aims to conduct advanced 5G valida-
tion trials across multiple vertical industries, with the goal of demonstrating the
benefits and capabilities of 5G technologies for a wide range of use cases. The
initiative includes eight projects, each with its own specific focus and purpose. In
terms of projects emphasizing IIoT, we have three prominent examples:

• 5G-SOLUTIONS is a project that aims to demonstrate the benefits of 5G
technologies for a range of innovative use cases across five vertical indus-
tries: factories of the future, smart energy, smart cities, smart ports, and
media and entertainment. It will validate more than 140 performance indi-
cators for 20 use cases and provide technological enablers to facilitate the
automation of field trials. The project aims to demonstrate the potential of
5G for improving the efficiency and effectiveness of various industries and
sectors.

• 5G-TOURS is a project that aims to demonstrate the benefits of 5G tech-
nologies for real users. It will deploy full end-to-end trials for thirteen
representative use cases in the areas of e-health, media and broadcast, and
mobility. The project will focus on providing efficient and reliable close-to-
commercial services that improve the quality of life for citizens and tourists
and represent an important business opportunity. The 5G-TOURS network
system will integrate strategic components of the ecosystem, including net-
work infrastructure, terminals and end devices, vertical solutions enabled
by 5G, and vertical customers receiving the services. The project will eval-
uate the viability of the use cases through technical performance analysis,
economic impact analysis, and customer satisfaction.

• 5G-HEART is a project that aims to demonstrate the benefits of 5G technolo-
gies for healthcare, transport, and food production through the validation
of 5G KPIs. It will focus on use cases such as colon cancer screening, vital-
sign patches, 5G paramedic services in healthcare, autonomous / assisted /
remote driving and vehicle data services in transport, and the transforma-
tion of the aquaculture sector through 5G in food production. The project
will host innovations such as slicing as a service and resource orchestration
and will conduct trials at sites in several locations. It involves major vertical
players, research / academic institutions, and small and medium-sized en-
terprises and aims to improve healthcare, public safety, farm management,
and business models in the 5G market.

3.4 5G Local Area Networks

A 5G Local Area Network (LAN) is a type of private network conceived for ded-
icated wireless connectivity within a specific area, typically an industrial enter-
prise [45]. It integrates with an organization existing Information Technology (IT)
infrastructure to provide high-speed, predictable wireless connectivity with de-
terministic performance and latency for mission-critical digital initiatives across

23

Chapter 3

the enterprise. 5G LANs differ from commercial 5G services and Managed Ser-
vice Providers (MSPs) in that they offer more control and flexibility to the enter-
prise, such as priority scheduling, resource allocation, and security. Differently
from Ethernet, private 5G LANs do not need costly and bulky wired equipment
and allow the ability to connect large numbers of devices in a dynamic envi-
ronment such as Industry 4.0 without the need for specialized cellular network
expertise.

Compared with private LTE networks, private 5G networks offer significant ad-
vantages in both the radio domain and system architecture. In the radio domain,
private 5G networks provide spectrum flexibility, enabling optimal utilization of
available frequency bands, multi-Gbps peak data rates for high-speed data trans-
mission, ultra-low latency for applications demanding real-time responsiveness,
massive connectivity to accommodate a large number of devices, and ultra-high
reliability to ensure mission-critical communications.
At the system level, private 5G networks introduce innovative features that en-
hance their suitability for various use cases. Vertical network slicing enables the
creation of isolated virtual networks, tailored to specific applications or indus-
tries, optimizing resource allocation and ensuring consistent performance. Im-
proved security measures, including network isolation, data protection, and de-
vice/user authentication, guarantee the confidentiality and integrity of sensitive
data, a vital aspect for industries like manufacturing and healthcare. Moreover,
private 5G networks support private edge computing, allowing computation and
data processing to occur closer to the data source, reducing latency and enabling
faster response times.

Private 5G networks simplify complexities related to interference management,
localization, and tracking. Within an industrial setting, the simultaneous trans-
mission of signals from controllers to actuators often results in signal interference.
This interference adversely impacts both reliability and latency. Consequently, ef-
fective interference management assumes paramount significance for private 5G
networks. Three distinct techniques for effectively managing interference are:

• The multiple Access technique avoids the reuse of some radio resources by
multiple nodes/users using parameters such as time, frequency, code, and
spatial resources in a contention-free manner.

• The spread spectrum technique includes Direct Sequence Spread Spectrum
(DSSS) and Frequency-Hopping Spread Spectrum (FHSS) to reduce interfer-
ence. DSSS is used for low-medium narrow-band interference and makes
the transmitted signal wider in bandwidth than the information bandwidth.
After applying the decoding at the receiver, the information bandwidth is
restored while the interference is substantially reduced. By contrast, FHSS
reduces the likelihood of colliding with other transmissions via frequency
hopping and is preferred for severe interference environments.

• Transmission power control involves dynamic adjustment of the transmit
power for managing co-channel interference, reducing energy consump-
tion, and increasing spectral efficiency while ensuring successful commu-
nication and maintaining a given QoS.

24

State of the Art

Private 5G networks effectively address the challenge of accurate localization and
tracking by gathering local statistics. They utilize detailed information about
the wireless environment within specific areas, to enhance precision in local-
ization and tracking algorithms. Leveraging the advanced attributes of 5G NR,
including multiple antennas and wide bandwidth, these networks also employ
Radio Frequency-based techniques such as trilateration and triangulation to cal-
culate object positions. The integration of local statistics optimizes these tech-
niques, mitigating signal attenuation, multipath effects, and environmental fac-
tors. Moreover, scene analysis techniques, backed by comprehensive local statis-
tics, establish databases of signal fingerprints for accurate location matching. By
integrating edge computing capabilities, private 5G networks ensure faster pro-
cessing of localization data, resulting in reduced latency and improved accuracy
in determining object positions for real-time applications involving interactions
between the digital and physical domains [45].

The Stand-Alone Deployment represents a type of private network where both
the 5GC and Radio Access Network (RAN) are kept private. Illustrated in Fig-
ure 3.5, this setup operates independently without reliance on a public network.
To access public services, we have a firewall that intercepts the traffic going from
outside to inside and vice versa, which we can set up as needed. This model finds
relevance in industries and sectors that prioritize high levels of customization, se-
curity, and control over their network environment. It is particularly applicable
in settings where data privacy, low latency, and tailored network services are es-
sential, such as in industrial automation, manufacturing, healthcare, and critical
infrastructure sectors. Importantly, this model is also relevant to our thesis as we
explore the deployment and integration of 5G Local Area Networks (LANs) and
IIoT use cases.

Figure 3.5: Deployment as an isolated network. Source: [45]

Private 5G networks are secure, and fast and can provide reliable voice and data

25

Chapter 3

services across several verticals. Numerous use cases can be supported by these
networks. To illustrate their versatility, we explored a selection of examples and
live demonstrations.

The manufacturing vertical has the widest range of use cases [46]. Some examples
are:

• Production lines can undergo enhancements through multiple routes, en-
compassing improved flexibility, heightened reliability, minimized latency,
and enhanced performance. Given the intricate interplay of control systems
and field devices such as sensors, actuators, and robotics within these lines,
the demand for robust connectivity and time-sensitive networks is imper-
ative. The establishment of private 5G networks emerges as a critical solu-
tion, offering rapid, high-speed, and ultra-low latency connectivity. Lever-
aging 5G private networks empowers production lines to swiftly adapt to
the introduction of new products or the prompt identification and removal
of defective items.

• Private 5G technology paves the way for sophisticated logistics manage-
ment. From finished products to components, assemblies, and supplies,
spanning production facilities, supply chains, and warehouses, the integra-
tion of cost-effective tracking devices becomes feasible. Through the uti-
lization of the IoT and IIoT technologies, critical information regarding the
whereabouts, condition, and environment throughout warehousing, distri-
bution, and circulation processes can be harnessed. This data serves as a
foundation for intelligent decision support systems, ultimately enhancing
the quality of logistics services while simultaneously reducing costs and re-
source consumption associated with logistics operations.

Exploring the manufacturing success story of Ericsson and the United States (US)
Department of Defense (DoD), respectively:

• Ericsson deployment of a smart factory in Lewisville, Texas, USA [47] using
private 5G networks stands out as a beacon of Industry 4.0 progress, recog-
nized by the World Economic Forum. Harnessing the speed and security
of 5G connectivity, the facility has pioneered 25 diverse use cases. Notable
applications include energy monitoring and management, Augmented Re-
ality (AR) for remote assistance, and Machine Learning (ML)-driven visual
inspection.
For energy monitoring, the factory tracks energy consumption and remotely
controls appliances in real-time. AR aids the maintenance team with vir-
tual guidance from global experts for efficient troubleshooting, while ML-
powered visual inspection accelerates the process with high-resolution cam-
eras and advanced algorithms.
This 5G-enabled smart factory boasts 200 operational robots, leading to a
remarkable 120% boost in output per employee and a substantial 65% re-
duction in manual material handling compared to conventional factories.
This implementation underscores the factory dedication to efficiency, pro-
ductivity, and innovative manufacturing practices.

26

State of the Art

• The US DoD has pioneered a smart warehouse initiative at the Marine Corps
Logistics Base situated in Albany, Georgia. Collaborating with Cisco and
other technology firms, they harnessed the capabilities of a private 5G wire-
less network [48]. This advanced network infrastructure utilizes the Cit-
izens Broadband Radio Service (CBRS) and millimeter wave spectrum to
power its operations.
This groundbreaking framework has enabled the deployment of a multi-
tude of intelligent applications. These encompass robotics, barcode scan-
ning, holographic technologies, and AR/Virtual Reality (VR). The integra-
tion of these cutting-edge applications has ushered in a new era of oper-
ational modernization and heightened efficiency across various facets, in-
cluding storage, inventory management, maintenance, and auditing. The
smart warehouse initiative stands as a testament to the transformative po-
tential of private 5G networks in revolutionizing military logistics and op-
erational processes.

Finally, some healthcare vertical use cases [49]:

• Private 5G technology holds the potential to revolutionize healthcare across
multiple dimensions. An illustrative example is its capacity to eliminate
the need for cumbersome wires, enabling swift and dependable transmis-
sion of sizable medical image files to specialists for assessment. The de-
ployment of high-speed 5G wireless networks contributes to the expansion
of the telemedicine arena. This facilitates video consultations between pa-
tients at their homes and medical professionals in hospitals, bolstering the
accessibility of healthcare services.
Through the integration of IoT devices, patients’ vital signs and health con-
ditions can be collected and relayed in real-time, streamlining rapid medical
decision-making by doctors. Within the healthcare sector, Artificial Intelli-
gence (AI) plays a pivotal role in disease recognition and treatment plan-
ning. Private 5G networks play a critical role in supporting real-time ma-
chine learning, which demands substantial data resources.
Furthermore, 5G-enabled AR and VR capabilities offer the exciting potential
to train medical students through immersive experiences, allowing them
to practice surgical procedures within virtual environments. The amalga-
mation of private 5G technology and healthcare promises a transformative
shift in the delivery, accessibility, and advancement of medical services and
education.

3.5 State of the Art Conclusions

In this chapter, we have provided an all-encompassing overview of 5G technol-
ogy and its architecture, thereby shedding light on the primary components and
their functionalities. This comprehensive insight amplifies our understanding of
the underlying mechanisms governing the operation of the 5G network.

27

Chapter 3

The latest milestone of 3GPP, Release 17, brought enhancements such as IoT over
NTN, advancements in spectrum utilization, data rates, and overall capacity.

We have delved into the concept of 5G verticals. These delineate distinct industry
or market segments that 5G networks are tailored to accommodate, showcasing
5G versatility and ability to cater to specific sector demands. Notably, the pivotal
role played by the 5G-PPP in steering the development and widespread deploy-
ment of 5G networks and services across Europe is emphasized. Especially, the
utilization of 5G testbeds in phase 3 part 1, involving three projects, is highlighted
as a significant aspect.

Furthermore, a fundamental concept introduced is that of 5G LANs private cel-
lular networks expressly designed for enterprise applications. Highlighting their
features of high performance, mMTC, ultra-low latency, reliability, and customiza-
tion, we uncover their pivotal role in revolutionizing connectivity within enter-
prise contexts. The profound synergy between 5G LANs and the IIoT becomes
evident, catalyzing transformative advancements. This chapter serves as a gate-
way to understanding the potential of these technologies, particularly within sec-
tors such as manufacturing and healthcare, where the fusion of seamless connec-
tivity and innovation has the power to reshape industries.

28

Chapter 4

Use Case

We opted to create an Industrial Internet of Things (IIoT) use case scenario, as
it encompasses extensive requirements that demand the capabilities of 5G pri-
vate Local Area Networks (LANs). Also, it is aligned with the objectives of both
projects within which this thesis is being conducted. To begin, we will introduce
the use case to provide context, followed by listing the requirements to establish
a thorough understanding of the essential criteria. Finally, we will present the
proposed architecture for the use case.

4.1 Definition

This use case directs to a practical scenario that demonstrates the application of
5G network technology within an industrial setting to enable seamless communi-
cation, optimize data exchange, and efficient management of interconnected de-
vices and systems. Involves the integration of 5G LANs to provide high-speed,
low-latency connectivity, and reliable connectivity in a controlled environment,
connecting various PLCs. The PLCs employ the Modbus protocol for communi-
cation and operate in a master/slave device topology, with the master accessing
registers from the slaves. The overarching objective of this use case is to thor-
oughly assess the advanced capabilities of private 5G networks within an indus-
trial environment.

4.2 Requirements

In this section, we will explore the requirements to achieve the realization of the
use case.

Firstly, the descriptions for the terms "must," "should," "could," and "won’t" are
provided, along with the definitions of functional and non-functional require-
ments.

29

Chapter 4

Term Description

Must Represents a requirement or a technical constraint that is
essential and critical to the success of the project. It must be
implemented without any exceptions or compromises.

Should Represents a requirement that is highly desirable and rec-
ommended for implementation. It is important for achiev-
ing the project goals and delivering a satisfactory solution,
but there may be justifiable reasons for not fulfilling it in
certain situations.

Could Represents a requirement that is optional but desirable. It
may enhance the functionality or performance of the sys-
tem if implemented, but its exclusion would not signifi-
cantly impact the core objectives.

Won’t Represents a requirement that has been deliberately ex-
cluded or deemed unnecessary for the project. It is a con-
scious decision not to pursue or address this requirement,
based on factors such as time, resources, or project con-
straints.

Type Description

Technical Con-
straint (TC)

Are specific limitations and conditions within a project that
arise from the technical aspects of the work. These con-
straints primarily revolve around the tools, technologies,
systems, and methodologies that will be employed during
project planning, development, and execution.

Functional Re-
quirement (FR)

Represents a requirement that describes the specific behav-
ior or functionality that the system or product must exhibit
to meet the needs of the users or stakeholders. It focuses on
what the system should do and how it should behave.

Non-Functional
Requirement
(NFR)

Represents a requirement that describes the attributes, char-
acteristics, or qualities of the system or product. It focuses
on aspects such as performance, reliability, security, usabil-
ity, scalability, and other system-wide qualities.

Table 4.1: Requisites Criteria.

In the following table, the requirements are assigned unique IDs and categorized
based on their type (functional or non-functional), priority, and a brief description

30

Use Case

is provided for each requirement.

ID Name Type Priority Description

TC1 Integrate a 5G
core

TC Must Integrate a 5G core net-
work into the system to
provide the necessary
infrastructure and func-
tionalities for managing
and routing data between
the devices and services
within the network.

TC2 Integrate an
NG-RAN

TC Must Incorporate a Next Gen-
eration Radio Access Net-
work (NG-RAN) into the
system to enable connec-
tivity between the devices
and the 5G core network.

F1 Efficient and
Optimized
Resource Man-
agement

FR Must Efficiently manage com-
puting resources within
the environment, optimiz-
ing resource allocation
to minimize waste and
maximize performance.

F2 Container
Management
Through a
Graphical
Interface

FR Could Provide a user-friendly
graphical interface for
managing containers,
simplifying administrative
tasks, and monitoring con-
tainerized applications.

F3 Ability to
Integrate Ad-
ditional Re-
sources with
Minimal Down-
time

FR Should Seamlessly integrate new
resources into the system
with minimal downtime,
emphasizing high avail-
ability and scalability.

Continues on the next page

31

Chapter 4

ID Name Type Priority Description

F4 Automatic
Management
of public IP
Addressing for
Containers

FR Should Implement automated
management of public
Internet Protocol (IP)
addressing for contain-
ers to enable external
access, prevent conflicts,
and streamline network
configurations.

F5 Automatic Traf-
fic Management
for Containers
via a public
Domain Name
System (DNS)

FR Could Implement automatic
traffic management for
containers using a public
DNS, ensuring efficient
routing and load distribu-
tion.

F6 Persistence of
Container Vol-
umes in Case of
Termination

FR Should Ensure that container vol-
umes are persisted, even if
containers are terminated,
to prevent data loss and
maintain application state.

F7 Creation of
Load Balancers
Between Con-
tainers and
Their Replicas
Based on CPU
Usage

FR Could Establish load balancing
mechanisms that dis-
tribute network traffic
intelligently among con-
tainer replicas based on
real-time CPU utilization.

F8 PLCs Execute
Simple Pro-
cesses with
Distributed
Models, Includ-
ing Horizontal
and Vertical
Communica-
tion

FR Must Programmable Logic Con-
trollers (PLCs) should ex-
ecute simple processes us-
ing a distributed model, al-
lowing for both horizontal
(between similar devices)
and vertical (between dif-
ferent levels of devices)
communication.

Continues on the next page

32

Use Case

ID Name Type Priority Description

F9 Access to Vir-
tual PLCs
Through a
Graphical User
Interface (GUI)

FR Could Provide access to virtual
PLCs via a GUI, allowing
users to interact with and
manage these virtual de-
vices conveniently.

F10 Integration of
Containerized
PLCs with the
Existing 5G
Core

FR Must Seamlessly integrate con-
tainerized PLC instances
with the current 5G core
infrastructure, ensuring
compatibility and efficient
operation.

F11 Traffic from
PLCs Passes
Through the
Existing 5G
Core

FR Must Ensure that data traffic
generated by PLCs is
routed through the ex-
isting 5G core network
for communication and
processing.

F12 Ability to Read
PLC Registers
from Any Mo-
bile Station
Connected to
the 5G Core

FR Should Enable the reading of PLC
registers from any mobile
station that is connected to
the 5G core network.

F13 Simulation of
Data Layer for
the Existing 5G
Core

FR Could Enable the simulation of
the data layer for the ex-
isting 5G core network, al-
lowing testing and vali-
dation of data handling
mechanisms.

F14 Establish a
Scenario with
a Physical Pro-
grammable
Logic Con-
troller (PLC)

FR Must Create a scenario that
includes a physical PLC,
allowing for interaction
and testing with real-
world equipment

Continues on the next page

33

Chapter 4

ID Name Type Priority Description

NF1 Performance NFR Must Ensure low latency and
high throughput for real-
time communication on
the 5G network.

NF2 Scalability NFR Won’t Support a scalable in-
frastructure capable of
accommodating increas-
ing workload on the 5G
network.

Table 4.2: Requirements to implement the use case.

4.3 Use Case Architecture

Derived from the initial use case definition and our specific requirements, an ar-
chitecture was created to support all the needed features. At its core, a 5G net-
work serves as the primary connectivity infrastructure, offering high-speed and
low-latency communication. To integrate PLCs into this network, an NG-RAN
serves as an intermediary, facilitating data exchange between devices via the 5G
Core network.

PLCs function as controllers, overseeing processes using the Modbus protocol
to enable effective communication. To integrate PLC devices with the 5G core,
User Equipment (UE) is employed. UEs act as access points to the 5G network.
To facilitate the integration between UEs and PLCs, we can use containers that
provide network interfaces connected to the 5G core.

Efficient resource utilization is realized through container orchestration, an in-
frastructure that automates key tasks such as provisioning, deployment, scaling,
and management of containerized applications, optimizing resource usage.

To simplify the management of these containerized applications, a graphical in-
terface can be seamlessly integrated, reducing dependency on traditional command-
line interfaces and making the entire system more user-friendly.

Moreover, the incorporation of high-availability mechanisms minimizes down-
time and ensures that additional resources can be seamlessly integrated into the
infrastructure as needed. Persistent volume technology plays a crucial role in
safeguarding critical data, offering data preservation even in the event of con-
tainer failures, thereby ensuring data integrity and availability.

Furthermore, automatic traffic management, employing both IP and DNS, opti-
mizes resource allocation and guarantees uninterrupted connections to contain-
ers. Container replication, driven by CPU utilization metrics and efficient load

34

Use Case

balancing of network traffic, further enhances resource efficiency and network
performance, ensuring that our system operates at peak efficiency.

For simulating industrial environments, a master-slave PLC setup is established,
with simple programs running to mimic industrial operations. This setup in-
cludes a physical PLC acting as a slave device to exploit real-world industrial
scenarios.

The scalability and flexibility offered by the container orchestrator, combined
with the ultra-high data rates and ultra-low latency of the 5G network, empower
our solution to efficiently accommodate new PLCs, maintaining optimal perfor-
mance and adaptability. Figure 4.1 depicts this use case scenario.

Figure 4.1: IIoT use case scenario. Communication between PLC devices using
the 5G network. Adapted from: [50]

35

This page is intentionally left blank.

Chapter 5

Testbed Scenario

In the upcoming sections, we will explore the technologies incorporated into our
testbed scenario, selected by members of the Centre for Informatics and Systems
of the University of Coimbra (CISUC) laboratory who are actively involved in
the Power and Smart5Grid projects. Subsequently, in the architecture section, we
will analyze how these technologies seamlessly integrate to construct our testbed.
Finally, we will provide detailed insights into the practical implementation of
these technologies, including configuration steps complemented in the appendix,
and address the scalability requirement. Important to highlight, that this testbed
fulfills our specified use case scenario.

5.1 Technologies

These technologies were selected based on their utilization by the CISUC labo-
ratory members, who have accumulated knowledge and experience with them.
Although no thorough comparison was conducted with other technologies, these
chosen technologies demonstrated their suitability for fulfilling our objectives
and requirements. Furthermore, the open-source nature of these technologies
offers the advantage of customization to our specific needs, potentially resulting
in cost savings and reduced vendor lock-in.

5.1.1 Resource Managament

This subsection aims to elaborate on the specific technologies employed for re-
source management. As mentioned earlier, Kubernetes excels in orchestrating
containers efficiently, utilizing the resources at our disposal. We will delve into
a Kubernetes distribution utilized in our data center, and subsequently explore
a server designed to enhance usability through a graphical user interface for the
management of the Kubernetes cluster.

37

Chapter 5

Rancher Next Generation Distribution

The Rancher Kubernetes Engine 2 (RKE2) [51] is an open-source distribution de-
signed for the deployment and management of Kubernetes (K8s) clusters. Its
attributes encompass the seamless integration of resources into clusters, catering
to users of varying skill levels. Additionally, RKE2 places a significant empha-
sis on security [52], guaranteeing data protection and overall cluster integrity.
Moreover, RKE2 presence in real-world production environments [53] serves as
a testament to its reliability and adaptability for critical use cases, showcasing its
prowess in thriving within demanding scenarios.

Rancher Server

The Rancher server [54] streamlines Kubernetes cluster management, contain-
ers, and applications through a graphical user interface, enhancing user interac-
tion and simplifying deployment and management processes. Additionally, the
Rancher server offers resource oversight capabilities, including metrics, logs, and
events viewing for individual pods, along with deployment management and
scaling.

Moreover, Rancher Server exhibits versatility by managing clusters across diverse
platforms such as on-premises, cloud, and hybrid environments. It facilitates
multi-cluster management, unifying control, and observation of various clusters
within a single interface. Lastly, its integration capabilities extend to third-party
services, promoting compatibility with other tools or services.

5.1.2 Cluster functionalities

In this subsection, we explore the core cluster functionalities that encompass dy-
namic storage, ensure high cluster availability, enable auto-scalability based on
a diverse set of up to 30 metrics, and present a controller for handling external
service traffic.

OpenEBS

OpenEBS is a technology that allows dynamic storage of persistent volumes [55],
making it a good fit for organizations with varying storage needs. It creates per-
sistent volumes which are important for applications that need to retain data
across restarts or failures. The automatic linking of a created volume with a speci-
fied application, such as a Database (DB), simplifies the process of setting up and
configuring storage. Additionally, allows for flexibility in terms of how data is
stored, whether that is distributed among Virtual machines (not advisable) or in
a single Virtual Machine (VM). Also, it can be integrated into a Kubernetes-based
environment as it is built to work natively with Kubernetes.

38

Testbed Scenario

Kube-vip

Kube-Vip [56] enhances Kubernetes clusters by providing them with a virtual IP
and load balancing for the control plane, securing the creation of highly avail-
able clusters. Moreover, it facilitates the setup of LoadBalancer-type Kubernetes
Services without the need for external hardware or software dependencies. This
technology employs a leader-based mechanism within the cluster servers. In the
event of the leader failure, Kube-VIP efficiently designates a new leader within
approximately 10 seconds, ensuring high availability.

KEDA

KEDA [57] is a Kubernetes-based event-driven autoscaler that allows you to scale
any container in your cluster based on the number of events that need to be pro-
cessed. It is a lightweight, single-purpose component that can be integrated into
your Kubernetes cluster without replacing or duplicating existing components
such as the Horizontal Pod Autoscaler. With KEDA, you can selectively scale
certain services based on events while maintaining the stability and security of
your other services. It also offers a variety of metrics, including over 30 resource-
based metrics, for configuring your scaled objects. KEDA automatically creates a
horizontal autoscaler for you once a scaled object has been defined.

Traefik

Traefik is an implementation of an Ingress Controller for Kubernetes [58], which
orchestrates external access to services by directing incoming traffic according to
specified rules, managing domain names, and Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) termination. Originally a lightweight reverse proxy, Traefik
has evolved to integrate with Kubernetes clusters while remaining compatible
with Docker and other interfaces.

The choice for this ingress controller was also because the default nginx-ingress-
controller of the RKE2 cluster has some security flaws [59].

5.1.3 5G Network

In this subsection, we delve into the implementations of 5G Core (5GC) and New
Radio (NR) distributions within our testbed, alongside a data plane simulator
prepared to benchmark our 5G network solution.

Open5gs and UERANSIM

Open5GS [60] is an open-source implementation of the 5GC and Evolved Packet
Core (EPC) in the C programming language. It is the core network for NR/Long
Term Evolution (LTE) and is capable of operating in both StandAlone (SA) and

39

Chapter 5

Non-Standalone (NSA) modes. Currently, it supports 3rd Generation Partnership
Project (3GPP) Release 17 with providing 5G Core (AMF, SMF+PGW-c, UPF+PGW-
u, PCF, UDR, UDM, AUSF, NRF) network functions and EPC (MME, SGW-c,
SGW-u, HSS, and PCRF) network functions. In comparison to other cores (Free5GC
and Magma), it is not the most capable [61], but it aligns well with our specific de-
mands. The documentation and community support associated with Open5GS
has proven to be valuable assets, even considering the challenges presented by
our project.

UERANSIM [62], is the next generation of open-source 5G User Equipment (UE)
and Next Generation Radio Access Network (NG-RAN) (gNodeB) implementa-
tion. It can be considered as a 5G mobile phone and a base station in basic terms,
both running as separate virtualized instances.

The author in [50] showed how to integrate the 5G main components and test the
5G system.

Simu5g, X11vnc and LXDE

Simu5G is the evolution of the popular SimuLTE 4G network simulator that in-
corporates 5G New Radio access. Based on the OMNeT++ framework, it is writ-
ten in C++ and is fully customizable with a simple pluggable interface. One can
also develop new modules implementing new algorithms and protocols.

The idea behind Simu5G [63] is to let researchers simulate and benchmark their
5G network solutions on an easy-to-use framework. It borrows the concept of
modularity from OMNeT++ thus it is easy to extend. Moreover, it can be inte-
grated with other modules from the INET Framework. It offers support to opti-
mization tools (e.g. optimization solvers such as CPLEX).
Simu5G is compatible with SimuLTE and allows one to simulate network sce-
narios where 4G and 5G coexist, in both SA and E-UTRAN New Radio – Dual
Connectivity (ENDC) deployments. Furthermore, it inherits SimuLTE compati-
bility with other OMNeT++-based libraries, for instance, Veins for vehicular mo-
bility. The simulation of the 5G data plane using Simu5G has not been under-
taken within the testbed, but it remains a potential route for future exploration
and development.

We employ X11VNC as our VNC Server. It allows one to view remotely and
interact with real X displays (i.e., a display corresponding to a physical moni-
tor, keyboard, and mouse) with any VNC viewer. While it is not developed any
longer by its original author Karl Runge, LibVNC and the GitHub community
have taken over the development.
X11vnc does not create an extra display (or X desktop) for remote control. In-
stead, it shows in real-time the existing X11 display, unlike Xvnc, part of TigerVNC,
which is an alternative VNC server available in the official repositories.
Also, note that x11vnc is not shipped with a client viewer. Any VNC viewer
should do the job and be compatible with the x11vnc server while not necessarily
using all its functionalities. [64]

40

Testbed Scenario

The Lightweight X11 Desktop Environment (LXDE) is an extremely fast perform-
ing and energy saving desktop environment. Maintained by an international
community of developers, it comes with a beautiful interface, multi-language
support, standard keyboard shortcuts, and additional features like tabbed file
browsing. LXDE uses less CPU and less RAM than other environments. It is spe-
cially designed for cloud computers with low hardware specifications, such as
netbooks, mobile devices (e.g. MIDs), or older computers. [65]

5.1.4 Virtual Programmable Logic Controllers software

In this subsection, we address the software employed for the management and
communication of virtual Programmable Logic Controllers (PLCs).

OpenPLC

Openplc [66] is the first fully functional standardized open-source Programmable
Logic Controller (PLC), both in software and hardware. It is mainly used in
industrial and home automation, the Internet of Things (IoT), and Supervisory
Control and Data Acquisition (SCADA) research, as it carries built-in security
features. It also does not require any additional licensing fees and allows for fre-
quent updates and patches. The OpenPLC Project consists of two parts: Runtime
and Editor. A Runtime is a portable software designed to run from the smallest
of all microcontrollers (Arduino-compatible) to powerful servers in the cloud.
The OpenPLC Editor is the software that runs on your computer and, as men-
tioned, is used to create your PLC programs. It is very simple to use and supports
all languages that are compatible with PLC.

The OpenPLC communicates with other PLCs using a protocol called Modbus
that runs over port 502 using Transmission Control Protocol (TCP)/Internet Pro-
tocol (IP). When PLCs intercommunicate, one is designated as the master and
the other as the slave. The master synchronizes with the slaves by reading and
writing specific registers that are configured by the user, such as output registers,
input registers, and other types of registers. This allows the PLCs to exchange
data and coordinate their actions to control and monitor industrial processes.

OpenPLC offers a web User Interface (UI) where you can insert a program to con-
duct logical operations on the registers. Alternatively, you can add slave devices
to synchronize specific registers between two or more instances. This allows you
to tailor the system to your needs and requirements.

5.2 Final Architecture

The foundation of this testbed is established upon a Kubernetes cluster, which
automates resource management based on predefined rules. Kubernetes is struc-
tured with master nodes and worker nodes, representing virtual machines. Mas-

41

Chapter 5

ter nodes serve to integrate new nodes and schedule pods, which are one or mul-
tiple containers, onto the worker nodes. These worker nodes leverage their pro-
cessing power, memory, and disk space to manage the containers. For production-
grade Kubernetes cluster distribution, the technology RKE2 is employed. Within
the cluster, a Rancher Server, equipped with a graphical interface, is deployed to
administer it.

We have the flexibility to manually scale our pods or utilize KEDA, which is inte-
grated into the cluster. KEDA offers automated pod scaling based on a range of
30 metrics. Specifically, in our setup, KEDA manages the scaling of our Rancher
server pods by dynamically adjusting their CPU resource allocation as needed,
and expanding or reducing resources when necessary.

For ensuring dynamic and persistent volumes for the MongoDB database within
the 5G core, OpenEBS was implemented, facilitating automated management of
this process. This means that even in the event of the 5G core database encounter-
ing issues, the data remains preserved on a node, contributing to data reliability
and availability.

To ensure high availability within the cluster, Kube-VIP is implemented. The
cluster operates in an Address Resolution Protocol (ARP) mode, wherein a leader
(master node) is elected to inherit the virtual IP. The leader role encompasses the
smooth integration of new worker nodes without disruptions. The ARP mode en-
sures a new leader election within seconds in the event of leader failure. This vir-
tual IP serves as the connection point for expanding the cluster with more nodes.
Kube-VIP also incorporates a "Load Balancing" mechanism, evenly distributing
the workload across all pods and their replicas. This load-balancing property is
linked to a set of "public" IPs for external accessibility of the cluster. These pub-
lic IPs and all the testbed accessibility require a Virtual Private Network (VPN)
connection to the data center of CISUC.

There are two ways to manage the cluster: through a VM that is a master node
using the Kubectl, the Kubernetes command line, or by connecting to an endpoint
on the rancher server as detailed in Appendix B. Figure 5.1 shows what we talked
about so far.

42

Testbed Scenario

Figure 5.1: Kubernetes cluster diagram with an endpoint in rancher server.

In Kubernetes clusters, services provide a consistent and load-balanced endpoint
with static IP addresses to access pods, masking the dynamic nature of pod IPs
and facilitating smooth internal communication within the cluster. By default,
services are configured with the "ClusterIP" type, allowing connections only within
the cluster. Changing the type to "Load Balancing" enables external access by IP
address. Services efficiently distribute work among pods and replicas, while of-
fering the flexibility to target one or multiple running pods.

We have integrated an ingress controller using Traefik, facilitating the routing of
incoming traffic to designated service endpoints based on their assigned names.
This approach enables access to services not only through IP addresses but also
via names. The diagram in Figure 5.2 illustrates the utilization of an ingress con-
troller for three services. Although we are not currently using ingress for our
services, this functionality is active within the cluster.

43

Chapter 5

Figure 5.2: Diagram of Kubernetes services using an ingress controller. Source:
[67]

Simu5G is normally utilized to assess a 5G network through traffic simulation in
the 5G core data plane. This tool offers a graphical interface and is set up within
a container containing a Virtual Network Computing (VNC) Server (X11VNC)
for graphical access and an LXDE environment for a desktop experience. Despite
Simu5G capability to simulate our 5G network data plane with customizable pa-
rameters, we did not utilize it for testing in our configuration.

In implementing the 5G core, the Open5GS distribution was employed, compris-
ing a collection of functions deployed within the cluster. To enable user connec-
tivity to the 5G network, UERANSIM, featuring both a NG-RAN function and
user equipment function, are deployed within the cluster. Notably, these tech-
nologies are generally hosted in separate pods, with the exception of OpenPLC,
which requires the user equipment from UERANSIM and is thus co-deployed
alongside it. OpenPLC serves as the selected software for managing communica-
tions among virtual PLCs. The user equipment delivered by UERANSIM func-
tions as an access point facilitating communication between the PLCs within the
5G network.

Finally, we introduced a physical PLC to simulate real-time scenarios and inte-
grated a Raspberry Pi with user equipment from UERANSIM. This configuration
facilitated port forwarding to the physical PLC, enabling access to the 5G network
and communication with other PLCs.

Figure 5.3 illustrates the technologies used by adapting the use case scenario.

44

Testbed Scenario

Figure 5.3: Use case scenario with the testbed technologies. Adapted from: [50]

5.3 Implementation

Firstly we started by deploying a Kubernetes cluster with 1 master node and
to 2 worker nodes. To check its functionality, and how it worked in practical
terms. Then we realized that for a cluster to have high availability it has to have
at least 3 master nodes. Because having an odd number of master nodes can
help with leader selection in the case of machine or zone failure, by preventing
ties in the voting process. This is crucial because, in case of a tie, the cluster
might experience delays or disruptions in leader selection, potentially leading to
reduced availability or inconsistent management decisions.

To provide us with high availability on the cluster and load-balancing services
we choose to deploy the Kube-VIP with the RKE2 cluster distribution. To better
understand the steps to install the RKE2 we used the information on the official
website of the rancher [68] and the tutorial step-by-step of the author in [69]. We
needed to adapt the interface, the virtual IP, and the range of IPs for the load-
balancing service to our virtual machine and network. In Appendix A.1 we have
a detailed explanation of the network topology of our cluster.

There are two ways in which master nodes can operate within a cluster. The de-
fault approach involves master nodes managing control plane functions [70] like
the scheduler and Application Programming Interface (API) server, in addition to
handling pods from various technologies. Alternatively, the approach we employ
to distribute load more efficiently involves master nodes solely managing control
plane functions, while all other workloads are offloaded to the worker nodes. In
Kubernetes, a "taint" refers to the configuration of a node to repel a specific set of
pods. To learn about tainting master nodes, please refer to Appendix A.2.1.

To deploy the worker nodes, we followed a tutorial step by step on how to inte-
grate them into the cluster [71]. For our cluster and all the technologies inside it
to have enough resources we used 4 worker nodes. Figure 5.1 details the cluster
resources used in this testbed. The CPU model utilized is an Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz, boasting 56 processors. The hypervisor employed in
this setup is VMware ESXi 6.7.0.

45

Chapter 5

Role VCPU(s)RAM Disk

Kubernetes master 2 8 GB 48 GB

Kubernetes master 2 8 GB 48 GB

Kubernetes master 2 8 GB 48 GB

Kubernetes worker 2 8 GB 48 GB

Kubernetes worker 2 8 GB 48 GB

Kubernetes worker 2 8 GB 48 GB

Kubernetes worker 4 8 GB 48 GB

Table 5.1: Cluster Resources.

As prerequisites for various technologies used in our setup, we installed Helm, a
Kubernetes package manager, directly within the Kubernetes cluster [72]. Helm
enables us to efficiently deploy charts, simplifying the management of complex
configurations and applications.

After the cluster was operational we deployed the rancher server to manage the
cluster through a graphical interface. We can see the detailed installation in Ap-
pendix A.2.2.

Then, we proceeded to deploy OpenEBS to facilitate dynamic and persistent vol-
ume management for Open5GS MongoDB. Detailed instructions for the installa-
tion can be found in Appendix A.2.3.

For the Open5GS implementation, we have opted for an openverso chart, which
offers a comprehensive set of 5G functions necessary for both SA and NSA de-
ployment modes [73]. Charts essentially package the required components and
offer customizable parameters, simplifying the deployment of technologies within
Kubernetes clusters. After evaluating various chart options, we decided to em-
ploy openverso charts, which emerged as the most complete and stable option
among the alternatives we considered. As a result, we have selected them for
deploying both open5GS and UERANSIM.

We deployed Open5GS, creating a dedicated namespace that serves not only the
5G core functions but also the user equipment and radio simulation, ensuring
seamless communication between these components. A feature of Open5GS that
we utilized is framed routing for user equipment. This functionality allows con-
nectivity from an external N6 network (N6 being the interface between the Data
Network (DN) and the User Plane Function (UPF)) to IP networks located within
a UE, essentially acting as a router. In our case, we employed framed routing to
establish a sub-network among all of our user equipments. Its primary purpose

46

Testbed Scenario

is to enable devices to utilize the 5G network without requiring a dedicated mo-
bile station to be installed. To implement framed routing, we conducted manual
configuration within the UPF container and the open5GS database. For a com-
prehensive step-by-step guide to configuring open5Gs, refer to Appendix A.2.4.

For deploying the NG-RAN, we opted for the openverso chart, leveraging the
synchronized configurations with open5gs, as both components belong to the
same chart. Detailed installation steps for the gNodeB (gNB) can be found in
Appendix A.2.5.

We integrated KEDA into the cluster with its dedicated namespace. Then, we
modified the rancher configurations by allocating a 100mCPU reservation for
each pod. This reservation ensures that when scaling pods, Kubernetes selects
a worker node with at least 100mCPUs available and assigns it to the pod. Sub-
sequently, we created an auto scaler using KEDA, which dynamically scales the
number of pods from a minimum of 1 to a maximum of 5 based on the aver-
age CPU usage, targeting an 80% threshold per pod. Detailed installation and
configuration steps for KEDA can be found in Appendix A.2.6.

To efficiently manage Simu5G, a desktop environment and a VNC server were
essential, enabling a graphical interface for Simu5G. We created an image encom-
passing these three components and exposed a service to facilitate external access
to Simu5G. For more in-depth details, check out Appendix A.2.7.

For the deployment of the OpenPLC software within the 5G network, we cre-
ated an entry point script responsible for configuring the network interface to
utilize the 5G network and initiating the OpenPLC server. Following this, a
user equipment configuration file was generated, offering customization based
on variables provided during image deployment. Subsequently, we constructed
an image encompassing OpenPLC and UERANSIM, which was then pushed to
a private repository. To access this image from the cluster, a corresponding secret
was established. Finally, the image was deployed within the cluster, exposing
the web user interface and Modbus port for external access. For a more detailed
explanation, go to Appendix A.2.8.

A Raspberry Pi was integrated into the 5G network, acting as a gateway for the
physical PLC. The process began with configuring the VLAN to align with that of
the cluster, along with setting up a private network interface for communication
with the physical PLC. Following this, we compiled and installed the UERANSIM
software, and configured the user equipment with a unique identifier matching
the subscription in open5GS. Furthermore, routes for the 5G network interface
were configured, alongside the setup for forwarding PLC packets to the physical
PLC. For comprehensive step-by-step details, view Appendix A.2.9.

Our physical PLC (Schneider M221) is equipped with an integrated switch that
is interconnected and synchronized with the VLAN switch of the cluster. This
arrangement is essential for enabling communication between the Raspberry Pi
and the physical PLC. Subsequently, we installed the software, as outlined in the
appendix A.2.10, and utilized that software to configure the IP address of the PLC
to match the sub-network of the Raspberry Pi.

47

Chapter 5

We have implemented a hub-and-spoke scenario, which involves designating one
master device responsible for polling registers from various slave devices. To es-
tablish this setup, we initially selected a virtual PLC to serve as the master de-
vice. Subsequently, we configured all the slave devices with a program designed
to perform logical operations on two registers named "slave1" and "parvo." If the
value of "slave1" exceeds 10, "parvo" is set to 0. Conversely, if "slave1" is equal
to or less than 10, "parvo" becomes 1. The initial value of "slave1" is set to 11.
After running all slave devices with this program (excluding the physical PLC),
we accessed the web UI of the master device to configure the monitoring of all
the slaves by polling the registers used in the program on the virtual PLCs and
the discrete input on the physical PLC. For detailed steps and the program logic,
consult Appendix A.2.11. Figure 5.4 illustrates a hub-and-spoke example with
one master device and two slave devices.

Figure 5.4: Hub and Spoke scenario example with PLCs.

The scalability of the 5G network was a consideration, but due to its complexity
and being outside the scope of our objectives, we chose not to pursue it in this
implementation. Instead, we engaged with the openverso community contribu-
tors to explore the possibility of implementing this feature in the future.
The key functions that require scalability are the AMF, UPF, and SMF, as they han-
dle a significant portion of user traffic. Initially, there is an auto scaler restricting
these functions to only one pod, which needs to be removed to allow for scaling.
To ensure efficient workload distribution, CPU reservations need to be defined in
the cluster for these functions. Determining the appropriate reservations requires
a thorough study and analysis of the traffic patterns for these functions.
Downscaling these functions is a challenge due to active user sessions. Further
investigation is needed to determine if the sessions can be redirected to a single
pod during downscaling to avoid disruption. As a recommendation, the addi-
tion of Prometheus, a metric scraper, and the utilization of KEDA for autoscaling
based on these metrics could enhance the scalability and resource management
of the 5G functions.

48

Testbed Scenario

5.4 Chapter Wrap-up

In this chapter, we have explored the technologies, their interconnection, and
their implementation in our testbed scenario. We began by selecting technologies
based on the expertise of the CISUC laboratory members, their suitability for our
objectives, and their open-source nature, which allows for customization.

We discussed resource management using Kubernetes and the Rancher Server,
emphasizing the importance of high availability in our cluster. Cluster function-
alities were addressed, highlighting the role of OpenEBS for dynamic storage,
Kube-VIP for high availability, KEDA for autoscaling, and Traefik as an Ingress
Controller. These components contribute to efficient workload distribution and
external service traffic management within our cluster.

In the context of our 5G network, we adopted Open5GS for the 5G core, and UER-
ANSIM for user equipment and radio simulation. Simu5G, X11VNC, and LXDE
were integrated to facilitate benchmarking and experimentation within a 5G data
plane simulation. We make use of OpenPLC for virtual PLCs alongside a physical
Schneider M221 PLC. To facilitate communication between the physical PLC and
the 5G network, we have integrated a Raspberry Pi as a communication gateway.
This arrangement enables effective communication through the 5G network and
satisfies the specific requirements of our hub-and-spoke scenario.

Finally, we have highlighted scalability considerations for future work. As a rec-
ommendation for enhancing scalability, we propose the utilization of Prometheus
and KEDA to automate the scaling of 5G functions.

49

This page is intentionally left blank.

Chapter 6

Validation of the Use Case

In this chapter, we will address both functional and non-functional requirements.
We will begin by presenting our strategy for evaluating the functional require-
ments and then discuss whether each requirement has been successfully vali-
dated, along with the corresponding evaluation procedure. Subsequently, we will
turn our attention to the non-functional requirement, which is performance. We
will outline our strategy for evaluating performance and provide details about
the implementation and results, with an explanation of those results.

It’s important to highlight that the technical constraints are validated through
the utilization of open5GS for the 5G Core (5GC) and UERANSIM for the Next
Generation Radio Access Network (NG-RAN).

6.1 Functional Evaluation

To validate the functional requirements, we have devised a strategy that includes
various tools and procedures within our 5G network environment. This strategy
encompasses the following key elements:

• Traffic Monitoring: We will use tcpdump to capture and analyze traffic on a
5G network interface. This allows us to observe data flows.

• Ping Tests: We will perform ping tests to assess network connectivity be-
tween various network components.

• Rancher Web User Interface (UI) Assessment: We will access the Rancher
web interface to perform pod deletions, allowing us to observe container
management in action.

• Ensuring access to Programmable Logic Controllers (PLCs) from all the user
equipments: Using the terminal-based mbpoll tool [74], we will evaluate the
ability to read PLC registers of master and slave devices from all the user
equipments.

51

Chapter 6

• High Availability Testing: We will disconnect the leader master node and
ping the virtual IP to verify the high availability of the cluster.

• Address Linking Examination: We will create a service with a LoadBalanc-
ing type to examine if automatic address linking is working correctly.

• Volume Persistence: As part of our volume persistence testing, we will ter-
minate the database pod of open5GS and verify if data persists after the
automatic creation of a new one.

• OpenPLC Web UI: We will access the web-based user interface of OpenPLC
to make changes to the "slave1" register and confirm that the corresponding
"parvo" register on virtual PLCs accurately reflects these changes.

• CPU-Utilization-Driven Auto-Scaling Test: We will increase the traffic load,
through a traffic generator called Packet Sender [75], on the Rancher server
to verify if the auto-scaler dynamically increases the number of replicas in
response to heightened CPU utilization.

• Register Polling: We will check the registers on the master device to ensure
it is correctly polling all slave devices using the Modbus client. The Modbus
client Graphical User Interface (GUI) installation details can be found in
Appendix B.6.

Next, we will address all the functional requirements, presenting validation re-
sults along with explanations of the validation process. The requirements will be
presented in the format (ID - Name: Validation Status). Our approach leveraged
the evaluation strategy to verify these requisites.

F1 - Efficient and Optimized Resource Management: Validated
Within the Rancher server, in the "nodes" category, we are able to view the CPU,
RAM, and the percentage of pods allocated to each node. In the "pods" category,
we can observe the node to which each pod was assigned. To assess resource
management, we systematically deleted pods and verified that the allocation pro-
cess correctly assigned pods to nodes with the most available resources.

F2 - Container Management Through a Graphical Interface: Validated
Within the Rancher server, we not only have the capability to delete pods but
also to create new ones, allocate them to specific nodes, and make edits as needed.
This requirement was successfully validated by deleting a pod through the graph-
ical interface.

F3 - Ability to Integrate Additional Resources with Minimal Downtime: Vali-
dated
To validate this requirement, we deliberately disconnected the leader node and
observed the behavior of the virtual IP. It successfully reestablished connectivity
with another master node within approximately 10 seconds. As mentioned ear-
lier, the virtual IP serves as the endpoint for connecting additional resources to
the cluster.

F4 - Automatic Management of public IP Addressing for Containers: Validated
We configured the Rancher server as a ’LoadBalancer’ type and proceeded to

52

Validation of the Use Case

verify its IP address. Subsequently, we attempted to access it from a computer
with a Virtual Private Network (VPN) connection to the lab, located outside the
cluster. Our successful connection confirmed the validation of this requirement.

F5 - Automatic Traffic Management for Containers via a public Domain Name
System (DNS): Not Validated
Traefik has been successfully implemented within the cluster. However, valida-
tion could not be conducted due to the unavailability of a public DNS for testing
purposes. We recommend exploring this aspect as part of future work.

F6 - Persistence of Container Volumes in Case of Termination: Validated
We initially created subscribers using the open5gs web UI. Subsequently, we
deleted the MongoDB database pod, allowing a new replica to be instantiated.
Upon revisiting the open5gs web UI, we confirmed that the subscribers were still
present. This successful outcome validates this requirement.

F7 - Creation of Load Balancers Between Containers and Their Replicas Based
on CPU Usage: Validated
We initially allocated 100mCPU usage for each of the Rancher server containers.
Subsequently, we created a scaled object with a utilization threshold set at 80%
average usage per container. When a container exceeded the 80% threshold, it
could scale up to a maximum of 5 replica containers. To test this, we installed
a traffic generator, Packet Sender [75], which stressed the Rancher server’s end-
point, thereby activating the auto-scaler. This validation was successful, as the
containers scaled up with increased traffic and downscaled when the traffic de-
creased.

F8 - PLCs Execute Simple Processes with Distributed Models, Including Hori-
zontal and Vertical Communication
Following the implementation of the hub-and-spoke scenario, we conducted an
assessment using the Modbus client, as described in detail in appendix B.6. Through
this client, we continuously monitored the registers that The functionality of logi-
cal programs was validated: when a register’s value exceeded 10, another register
was set to 1, and conversely, when a register’s value was lower than or equal to
10, another register was set to 0. Furthermore, we verified that the master device
effectively polled specific registers from both virtual PLC slaves and the physical
PLC slave, thus validating this requirement.

F9 - Access to Virtual PLCs Through a GUI: Validated
The validation process for this requirement involved the deployment of openPLC
for virtual PLCs, which provided a web-based UI. Subsequently, we created load
balancer services and accessed these virtual PLCs through the web.

F10 - Integration of Containerized PLCs with the Existing 5G Core: Validated
After deploying images that included OpenPLC with UERANSIM and exposing
OpenPLC as a web UI in all these deployments, we accessed the web UI of the
master device. Next, we added the slave device to the configuration. We then ran
a tcpdump in the slave device container to confirm that the registers were being
polled. This confirmation was based on the observed traffic by the IP address of
the User Plane Function (UPF) function on port 502, the Modbus protocol port.
Subsequently, we repeated the process on the master device and verified that it

53

Chapter 6

was effectively sending traffic from the 5G network interface to the slave device.

F11 - Traffic from PLCs Passes Through the Existing 5G Core: Validated
We employed tcpdump within all containerized PLCs and the Raspberry Pi de-
vice to verify that PLC traffic was indeed traversing through the 5G network
interface. This confirmation was based on the utilization of port 502, which is the
designated port for Modbus protocol traffic, and the IP addresses corresponding
to the 5G network.

F12 - Ability to Read PLC Registers from Any Mobile Station Connected to the
5G Core: Validated
We installed the mbpoll package on the User Equipments (UEs) and verified that
we could access all PLCs from any mobile station. This was achieved through the
Modbus terminal client mbpoll, allowing us to read registers with ease.

F13 - Simulation of Data Layer for the Existing 5G Core: Not Validated
As this functionality wasn’t the core focus of our requirements but rather an addi-
tional feature, it was assigned a lower priority, and we didn’t have sufficient time
to test it. However, it has been implemented within the Kubernetes cluster and
can be accessed through a Virtual Network Computing (VNC) viewer, allowing
the execution of Simu5G via a graphical interface, as outlined in the tutorial pro-
vided in Appendix B.2. We recommend considering validation of this for future
work.

F14 - Establish a Scenario with a Physical PLC: Validated
After integrating the Raspberry Pi to forward packets to and from the physical
PLC, we added the physical PLC as a slave to the virtual master PLC and moni-
tored the polling of its physical input.

6.2 Performance Evaluation

For our performance evaluation, we have employed IPERF [76], a versatile tool
designed for active measurements of maximum attainable bandwidth in Inter-
net Protocol (IP) networks. IPERF provides the flexibility to fine-tune various
parameters related to timing, buffers, and protocols (Transmission Control Proto-
col (TCP), User Datagram Protocol (UDP), Stream Control Transmission Protocol
(SCTP) with support for both IPv4 and IPv6). In each test, IPERF provides essen-
tial metrics such as bandwidth, packet loss, and other relevant parameters.

To evaluate the performance of our 5G network, we have devised two types of
tests: maximum-rate tests and fixed-rate tests for our 5G core network. For better
context on how to perform these tests we utilize the information given by the
author in [77].

The maximum-rate tests will involve a single IPERF client and one IPERF server
communicating over a single port through protocol TCP. This test is designed to
assess the peak capabilities of our 5G core network. We will use only one session
because we want the maximum peak rate without concurrency and configure the
window to take the maximum link possible. To choose what is the best window

54

Validation of the Use Case

size (8K,16K,64K,128K,256K, and 400K) we will run some preliminary tests, and
based on the highest measured bandwidth we will use that window size. We do
not go higher than the 400K window because the TCP buffer of the container is
restrained to that max window. After that when we run the actual tests we will
check the standard deviation, the 95 percent confidence interval, the maximum,
the minimum, and the average values of the bit rate.

In the fixed-rate tests, we will deploy 5, 20, and 50 IPERF clients, each commu-
nicating with an external IPERF server via different ports through protocol UDP.
These clients will be actively operating within the 5G network, allowing us to
gauge network performance under varying workloads. We will conduct tests us-
ing bitrates of 1Mbps, 5Mbps, and 10Mbps, and analyze the following metrics:
standard deviation, 95 percent confidence interval, maximum, and average val-
ues of lost packets, as well as the lost packet percentage and average bytes value.

We will start doing 5 tests for each and if the standard deviation is contained it
means it’s already distributed and there doesn’t exist a significant variance so we
can stop there. In contrast, if the standard deviation is significantly different from
each other we will increase the tests to 10 and recheck the variance. If the stan-
dard deviation is still significantly different we will increase it to 30. According to
the central theorem, if you take sufficiently large samples from a population, the
samples’ means will be normally distributed, even if the population is not nor-
mally distributed. According to the law of the big number, if the Sample Size is
bigger or equal to 30, the shape of the Sample Mean Distribution will be Normally
distributed, regardless what the shape of the Population Distribution.

For each one of those tests, we will take 5 minutes. We consider 5 minutes to be
sufficient to stabilize communication in controlled environments. We will check
the CPU and Memory usage for an existing bottleneck in the 5G network.

To facilitate our tests, we deployed a virtual machine with access to the cluster’s
VLAN. This virtual machine is equipped with 5 VCPUs and 8GB of memory. The
specific IP address for this machine can be found in Appendix A.1. Its primary
purpose is to function as our IPERF server, designed to receive communications
from various IPERF clients within the cluster, all of which utilize the 5G network
and connect through different ports.

To begin, we will provide an overview of the peak rate tests, discussing the results
and potential performance enhancements. Following that, we will delve into the
fixed rate tests and their outcomes.

6.2.1 Peak rate Tests

We initiated our testing phase with the peak rate assessments, aiming to verify
the maximum capabilities of our 5G network. To begin, we conducted an eval-
uation of the optimal window size, a parameter that defines the amount of data
transferred before requiring a new communication establishment. Our investi-
gation revealed that window size significantly influences network performance.
Through measurements conducted across various window sizes, we observed an

55

Chapter 6

average throughput of 278 Mbits/s using a 400 KiloBytes window size. These
findings are summarized in Table 6.1 for reference.

Window Size
(KBytes)

Average Measured
Bandwidth (Mbits/s)

8 44.3

16 89.2

64 142

128 250

256 263

400 278

Table 6.1: Best performance related to window size in TCP.

After selecting the optimal window size, we proceeded to deploy a user equip-
ment and bind the IPERF client to the 5G network interface. Subsequently, we
conducted a series of five tests, each lasting for five minutes, and obtained the
following results.

Minimum
(Mbits/s)

Average
(Mbits/s)

Maximum
(Mbits/s)

Standard
Deviation

Confidence
Interval
95%

202.42 307.59 394.88 4.45 ± 0.22

Table 6.2: Peak rate test results.

To obtain these results, we configured the IPERF server to output the results to
JSON files. We generated a total of five files, each corresponding to one test run.
Subsequently, we utilized the script provided in the appendix A.2.12 to merge
all these files into a single CSV file containing all the required information (fields
detailed in the appendix).

To calculate the standard deviation, minimum value, maximum value, and aver-
age value of the bit rate, we imported the data into Google Sheets and employed
its built-in formulas to derive these results effectively.

We can check that we had some peaks in the 5 tests but in 95% of the cases, the
connections were stable. The data was not significantly spread as demonstrated

56

Validation of the Use Case

by the standard deviation value. We reached a maximum peak of 395 Mbits per
second while utilizing an average of 1217 mCPUs for the User Equipments (UEs),
1368 mCPUs for the gNodeB (gNB), and 606 mCPUs for the UPF. We also as-
sessed the node availability, and there are still unallocated VCPUs. Memory us-
age remained relatively stable, so it was not a concern.

The reason we achieved a maximum peak of approximately 395 Mbits per sec-
ond is primarily due to resource limitations within our cluster, particularly be-
ing CPU-bound. We initially investigated network policies that could potentially
restrict network traffic but found none. As mentioned in discussions by users
in [78], the open5GS throughput is determined by the single-core CPU master
frequency, essentially limited by single-thread performance. This limitation can
be mitigated by employing a more powerful CPU. We tested this hypothesis by
adding more VCPUs to the master node, bringing the total to 8 VCPUs, which
corresponds to a physical core. With this configuration, running UPF, NG-RAN,
and UE inside that node, we achieved an average throughput of 410 Mbits per
second, providing empirical support for this theory.

Furthermore, we explored the possibility of configuring the user equipment con-
tainer kernel to optimize for high throughput. However, there are potential lim-
itations in the tun interface and gnodeB of UERANSIM. An alternative approach
involves leveraging Vector Packet Processing (VPP)-UPF [79] with Data Plane
Development Kit (DPDK) [80] to enhance UPF capabilities. This configuration
allows for the processing of multiple packets simultaneously with low latency,
thereby accelerating packet processing. The author in [81] has published a step-
by-step tutorial on configuring VPP-UPF with DPDK in a virtual environment,
and it is compatible with open5GS. This could be considered for future work to
further optimize network performance.

Additionally, it’s worth noting that the author in [82] achieved an average through-
put in the open5GS core of 314.5 Mb per second, demonstrating results similar to
our findings.

6.2.2 Fixed rate Tests

For the fixed-rate tests, we set up a scenario. This involved the automation of sub-
scriber deployment to the open5GS database, the deployment of multiple user
equipments within a single container, and the creation and execution of a script
to generate various server processes allocated to different ports within the Vir-
tual Machine (VM) designated for performance tests. These tests were saved in
JSON files for later conversion. Additionally, we devised and executed a script
that associated multiple IPERF clients with various 5G network interfaces, each
running simultaneously. While these scripts were running, we monitored the
CPU and memory usage through the master node. In all the cases memory usage
remained relatively stable, so it was not a concern. Finally, to consolidate the re-
sults, we developed and ran a script to merge all the JSON files into a single CSV
file, with the necessary parameters specified. The detailed steps for each of these
procedures can be found in appendix A.2.13.

57

Chapter 6

We limited our testing to just five trials for each case due to the lack of dispro-
portionate variance in the results. It did not justify the need for additional testing
rounds.

At a 1Mbps data transfer rate, detailed in table 6.3, we observed no packet losses,
a common outcome for lower bit rates. Lower bit rates tend to experience fewer
packet losses due to their reduced data volume, a behavior consistent with stan-
dard network communication. Lower data rates typically encounter less conges-
tion and fewer data packet drops, contributing to this favorable result. Conse-
quently, our analysis focused solely on the volume of bytes transferred. Addi-
tionally, we conducted CPU usage monitoring for 5, 20, and 50 user equipments,
yielding average values of 202 mCPUs, 436 mCPUs, and 1048 mCPUs, respec-
tively, for the UEs container. For the UPF, the averages were 39 mCPUs, 111
mCPUs, and 213 mCPUs, and for the gNB, the averages were 81 mCPUs, 147
mCPUs, and 291 mCPUs.

We noted that as the number of UEs increased, the data load was more dispersed,
a logical consequence of having more UEs. Despite this increased data load,
the average number of bytes transferred remained constant across all scenarios.
This uniformity suggests that the network adeptly managed the amplified data
demands introduced by additional UEs, maintaining a consistent average data
transfer rate.

This stability in the average bytes transferred serves as a positive indicator of the
network’s scalability. It demonstrates the network’s ability to gracefully accom-
modate higher UE loads without compromising the quality of service.

Number
of UEs

Minimum
(Bytes)

Average
(Bytes)

Maximum
(Bytes)

Standard
Deviation

Confidence
Interval
95%

5 122668 125364 126712 606.9399 ± 13.7352

20 118624 125364 128060 629.5915 ± 7.1233

50 121320 125364 128060 631.7676 ± 14.2970

Table 6.3: Table displaying test results with a fixed rate of 1Mbps for bytes values.

For the 5Mbps data rate, the 5G network demonstrated its capability to handle
a maximum of 30 UEs. After we ran the tests with 50 UEs, only 30 user equip-
ment sessions remained. Also, there were no packet losses observed when the
UE count was 5, which is why these results were excluded from Table 6.4. Addi-
tionally, we conducted CPU usage monitoring for 5, 20, and 30 user equipments,
yielding average values of 327 mCPUs, 1184 mCPUs, and 1525 mCPUs, respec-
tively, for the UEs container. For the UPF, the averages were 140 mCPUs, 266
mCPUs, and 267 mCPUs, and for the gNB, the averages were 202 mCPUs, 525
mCPUs, and 535 mCPUs.

58

Validation of the Use Case

Regarding the packet loss tests in table 6.4, with 20 UEs, the network maintained
minimal packet loss, registering a maximum of 23 lost packets (4.95%). However,
this scenario changed when the UE count was raised to 30. The network experi-
enced an increase in packet loss, reaching a maximum of 70 lost packets (15.18%).
This shift implies that the network forms more congestion and data packet drops
as the UE count escalates.

In the context of Table 6.5, the analysis of data transfer rates revealed that, with 30
UEs, the standard deviation experienced a significant surge, reaching 15921.6195.
The widened confidence interval for bytes transferred with 30 UEs indicates a
broader potential range of data transfer values, aligning with the increased stan-
dard deviation observed under the higher UE count. However, the network han-
dled the increased data load introduced by additional UEs, as evidenced by the
consistent average bytes transferred.

Number
of UEs

Minimum
and per-
centage

Average
and per-
centage

Maximum
and per-
centage

Standard
Deviation

Confidence
Interval
95%

20 0 ; 0% 0 ; 0% 23 ; 4.95% 1.6751 ± 0.0189

30 0 ; 0% 1 ; 0.21% 70 ; 15.18% 4.9210 ± 0.1070

Table 6.4: Table displaying test results with a fixed rate of 5Mbps for lost packets
values.

Number
of UEs

Minimum
(Bytes)

Average
(Bytes)

Maximum
(Bytes)

Standard
Deviation

Confidence
Interval
95%

5 590424 625472 659172 1367.9250 ± 30.9214

20 594468 625472 644344 2870.0725 ± 32.4336

30 478540 624124 767012 15921.6195 ± 346.1334

Table 6.5: Table displaying test results with a fixed rate of 5Mbps for bytes values.

At a data rate of 10Mbps, the 5G network demonstrated its capacity to manage
a maximum of 14 UEs. After conducting tests with 50 UEs, only 14 user equip-
ment sessions were sustained. Examining packet loss in Table 6.6, we observe a
slightly more noticeable impact and data variance concerning UE count on packet
loss metrics. However, the differences were not considerable. Additionally, we
conducted CPU usage monitoring for 5, and 14 user equipments, yielding aver-
age values of 434 mCPUs, and 910 mCPUs, respectively, for the UEs container.

59

Chapter 6

For the UPF, the averages were 219 mCPUs and 251 mCPUs, and for the gNB, the
averages were 278 mCPUs and 396 mCPUs.

Turning to byte transfer, as displayed in Table 6.7, we encountered a notable
increase in variance as the UE count grew. Despite this variance, the average
bytes transferred remained consistent. This consistency signifies that the network
maintained stable communication, even though there were occasional maximum
peaks when the UE count was 14.

Number
of UEs

Minimum
and per-
centage

Average
and per-
centage

Maximum
and per-
centage

Standard
Deviation

Confidence
Interval
95%

5 0 ; 0% 0 ; 0% 67 ; 7.23% 1.3830 ± 0.0313

14 0 ; 0% 0 ; 0% 76 ; 8.20% 6.4995 ± 0.1241

Table 6.6: Table displaying test results with a fixed rate of 10Mbps for lost packets
values.

Number
of UEs

Minimum
(Bytes)

Average
(Bytes)

Maximum
(Bytes)

Standard
Deviation

Confidence
Interval
95%

5 1159280 1249596 1281948 3344.1072 ± 75.6778

14 1110752 1249596 1343956 12845.3687 ± 245.3352

Table 6.7: Table displaying test results with a fixed rate of 10Mbps for bytes val-
ues.

The testbed provides feasible support for low-data-rate Industrial Internet of Things
(IIoT) scenarios with multiple nodes. However, it does have limitations when
dealing with scenarios that require a high number of UEs and high data rates
per UE. Nevertheless, in scenarios with a moderate number of UEs, it remains
possible to construct viable use cases.

60

Chapter 7

Conclusions and Future Work

The primary goal of this work was to establish a laboratory environment tailored
to support 5G Local Area Networks (LANs) technologies and solutions. This en-
compassed the implementation of resource orchestration, service virtualization
via containers, the integration of a functional 5G Core (5GC), and the deploy-
ment of an Next Generation Radio Access Network (NG-RAN). To practically
demonstrate the potential of this environment, we designed an Industrial Inter-
net of Things (IIoT) use case. The first step was to acquire background knowl-
edge of relevant domains, including Kubernetes (K8s), IIoT, Programmable Logic
Controllers (PLCs), and the Modbus communication protocol. Subsequently, we
delved into the realm of 5G technology, to comprehend its architecture and ex-
amine its applications across various industry verticals in the context of IIoT. We
also conducted an in-depth analysis of 5G LANs, and their applications in differ-
ent industry verticals, with a particular emphasis on their role in manufacturing
and healthcare, and their relevance in the context of IIoT.

The subsequent step involved designing the use case along with its associated
requirements and creating a high-level architecture to seamlessly integrate all
the components. This architecture comprised several key elements, starting with
a container orchestrator serving as the foundational infrastructure for efficient
container management. Additionally, it featured essential 5G network compo-
nents, including 5G functions and an NG-RAN. Within the industrial context,
PLCs were employed, communicating via the Modbus protocol and executing a
straightforward logic program within a master-to-slave topology. To mimic real-
world scenarios, a physical PLC was also incorporated. Crucially, all data traffic
for these PLCs was routed through the 5G network.

We then proceeded to translate the defined use case and its prerequisites into a
tangible testbed scenario. Initially, we scrutinized various technologies to iden-
tify if they aligned with our requirements. The selection process was made by
the collective expertise of the Centre for Informatics and Systems of the Univer-
sity of Coimbra (CISUC) laboratory team, who had prior experience with these
technologies.

Subsequently, we established a comprehensive architectural framework to inter-
connect these chosen components. This architecture encompassed several inte-

61

Chapter 7

gral components, including Rancher Kubernetes Engine 2 (RKE2), a distribution
of K8s, utilized for container orchestration. For the NG-RAN and user equipment
provisioning, we employed UERANSIM. Open5GS was deployed as the core el-
ement responsible for handling the 5GC, while OpenPLC emulated the PLCs.
For persistent volume management, OpenEBS was employed, while Kube-VIP
ensured high availability of the RKE2 through a virtual IP, and also served for
automatically assigning public IPs to services. To dynamically scale containers
based on CPU metrics, we integrated KEDA into the setup. Simu5G was for
simulating the data plane of the 5G network. Lastly, Traefik was for automating
traffic management via Domain Name System (DNS).

Additionally, we incorporated a Raspberry Pi into the configuration, tasked with
serving as a traffic forwarder and a 5G network gateway for the physical PLC.

In the concluding phase of establishing the testbed scenario, we provided a com-
prehensive account of the implementation process, complete with detailed steps
and configuration files, which can be referenced in the appendix. It is worth not-
ing that during this implementation, we contemplated the possibility of adding
auto scalability to the 5G network. However, given the intricacies involved and
the fact that it fell beyond the scope of our primary objectives, we opted not to
pursue its implementation.

Following the successful implementation of the testbed scenario, our next objec-
tive was to validate both the functional and performance requirements of the use
case. In terms of functional requirements, we validated the core ones and only
two extra functionalities were not validated, due to time restrictions and as they
were not deemed impactful in achieving our core objectives.

Moving on to performance validation, we conducted peak rate tests, which yielded
a maximum throughput of 395 Mbits per second. However, it’s important to note
that this peak rate was constrained by the limited resources available in our en-
vironment. Additionally, we identified a limitation inherent in Open5GS, where
throughput is primarily determined by the single-core CPU master frequency,
essentially being limited by single-thread performance.

Subsequently, we conducted fixed-rate tests and arrived at the conclusion that
our testbed demonstrates robust support for low-data-rate IIoT scenarios involv-
ing multiple nodes. Nonetheless, it’s crucial to acknowledge that the testbed does
exhibit certain limitations when dealing with scenarios demanding a high num-
ber of User Equipments (UEs) and high data rates per UE. Nevertheless, in sce-
narios featuring a moderate number of UEs, the testbed proves capable of con-
structing viable use cases.

As this research work is an integral part of the POWER and Smart5Grid projects,
it serves as the foundational building block for the development of larger and
more advanced testbeds, fully harnessing the potential of 5G LANs. In terms of
future work, there are several promising routes to explore.

Firstly, we can continue to enhance our testbed by validating the remaining two
functional requirements. This includes validation of Simu5G for simulating the
5G network’s data plane and evaluating Traefik with a public DNS to optimize

62

Conclusions and Future Work

traffic management.

Secondly, addressing non-functional requirements, we can focus on implement-
ing scalability measures. This involves a comprehensive study of the Access and
Mobility Management Function (AMF), User Plane Function (UPF), and Service
Mobility Function (SMF) functions, exploring strategies for replicating these crit-
ical components as they handle a significant portion of user traffic. Additionally,
we can leverage Prometheus, a metric scraper, in combination with KEDA for
auto-scaling based on metrics, ensuring efficient resource allocation.

Lastly, we have the opportunity to enhance performance through the adoption
of technologies like Vector Packet Processing (VPP) and Data Plane Development
Kit (DPDK), which accelerate packet processing within the UPF. These improve-
ments can further optimize data transfer rates and overall network capacity.

63

This page is intentionally left blank.

References

[1] CISUC. The POWER project. Aug. 2023. URL: https://www.cisuc.uc.pt/
en/projects/power.

[2] CISUC. The Smart5Grid project. Aug. 2023. URL: https://www.cisuc.uc.
pt/en/projects/smart5grid-automated-5g-networks-and-services-
for-smart-grids.

[3] Diogo Cruz. Repository composed by UERANSIM v2.2.6 and OpenPLC V3 to
run in a Kubernetes environment. Dec. 2022. URL: https : / / github . com /
DiogoCruz40/UERANSIM_with_OpenPLC.

[4] Diogo Cruz et al. “Designing a high-fidelity testbed for 5G-based industrial
IOT”. In: Proceedings of the 22nd European Conference on Cyber Warfare and
Security (ECCWS 2023), Athens, Greece (June 2023). DOI: 10.34190/eccws.
22.1.1204.

[5] 33o Seminary of Mobile Communications Thematic Network. Feb. 2023. URL:
https://rtcm.inesctec.pt/33o-seminario/.

[6] CISUC. Aug. 2023. URL: https://www.cisuc.uc.pt/en/workshop-on-5g-
and-beyond.

[7] Kubernetes Documentation. Dec. 2022. URL: https://kubernetes.io/docs/
home/.

[8] PLC. Jan. 2023. URL: https://en.wikipedia.org/wiki/Programmable_
logic_controller.

[9] Ramakrishnan Ramanathan. “The IEC 61131-3 programming languages fea-
tures for industrial control systems”. In: 2014 World Automation Congress
(WAC). Jan. 2023, pp. 598–603. DOI: 10.1109/WAC.2014.6936062.

[10] PLC Diagram. Jan. 2023. URL: https://www.daenotes.com/electronics/
industrial-electronics/PLC-programable-logic-control.

[11] The Modbus Official Site. Dec. 2022. URL: https://modbus.org/.

[12] RS232 Serial Communication Protocol: Basics, Working & Specifications. Jan.
2023. URL: https://circuitdigest.com/article/rs232-serial-communication-
protocol-basics-specifications.

[13] RS-485 Serial Interface Explained. Jan. 2023. URL: https://www.cuidevices.
com/blog/rs-485-serial-interface-explained.

[14] Man in the middle (MitM) attack. Jan. 2023. URL: https://www.imperva.com/
learn/application-security/man-in-the-middle-attack-mitm/.

65

https://www.cisuc.uc.pt/en/projects/power
https://www.cisuc.uc.pt/en/projects/power
https://www.cisuc.uc.pt/en/projects/smart5grid-automated-5g-networks-and-services-for-smart-grids
https://www.cisuc.uc.pt/en/projects/smart5grid-automated-5g-networks-and-services-for-smart-grids
https://www.cisuc.uc.pt/en/projects/smart5grid-automated-5g-networks-and-services-for-smart-grids
https://github.com/DiogoCruz40/UERANSIM_with_OpenPLC
https://github.com/DiogoCruz40/UERANSIM_with_OpenPLC
https://doi.org/10.34190/eccws.22.1.1204
https://doi.org/10.34190/eccws.22.1.1204
https://rtcm.inesctec.pt/33o-seminario/
https://www.cisuc.uc.pt/en/workshop-on-5g-and-beyond
https://www.cisuc.uc.pt/en/workshop-on-5g-and-beyond
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://en.wikipedia.org/wiki/Programmable_logic_controller
https://doi.org/10.1109/WAC.2014.6936062
https://www.daenotes.com/electronics/industrial-electronics/PLC-programable-logic-control
https://www.daenotes.com/electronics/industrial-electronics/PLC-programable-logic-control
https://modbus.org/
https://circuitdigest.com/article/rs232-serial-communication-protocol-basics-specifications
https://circuitdigest.com/article/rs232-serial-communication-protocol-basics-specifications
https://www.cuidevices.com/blog/rs-485-serial-interface-explained
https://www.cuidevices.com/blog/rs-485-serial-interface-explained
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/

Chapter 7

[15] What Are Iot and IIoT? Jan. 2023. URL: https://aws.amazon.com/what-
is/iot/?nc1=h_ls.

[16] 3GPP - Release 16. Jan. 2023. URL: https://www.3gpp.org/specifications-
technologies/releases/release-16.

[17] 3GPP - Release 17. June 2023. URL: https://www.3gpp.org/specifications-
technologies/releases/release-17.

[18] 3GPP - Release 18. June 2023. URL: https://www.3gpp.org/specifications-
technologies/releases/release-18.

[19] 3GPP, A 5G analysis. Dec. 2022. URL: https://www.3gpp.org/technologies/
5g-system-overview.

[20] What is home subscriber server (HSS)? Dec. 2022. URL: https://www.dialogic.
com/glossary/home-subscriber-server-hss.

[21] Mobility Management Entity(MME). Dec. 2022. URL: https://www.iplook.
com/products/epc-mme.

[22] Policy and charging rules function(pcrf). Dec. 2022. URL: https://www.iplook.
com/products/epc-pcrf.

[23] PGW-C - PDN Gateway Control Plane Function. Nov. 2022. URL: https://
www.mpirical.com/glossary/pgw- c- pdn- gateway- control- plane-
function.

[24] PGW-u - PDN gateway user plane function. Nov. 2022. URL: https://www.
mpirical.com/glossary/pgw-u-pdn-gateway-user-plane-function.

[25] SGW-C - serving Gateway Control Plane Function. Nov. 2022. URL: https :
//www.mpirical.com/glossary/sgw- c- serving- gateway- control-
plane-function.

[26] SGW-u - serving Gateway User Plane Function. Nov. 2022. URL: https://www.
mpirical.com/glossary/sgw-u-serving-gateway-user-plane-function.

[27] 5G binding support function (BSF) data sheet page. July 2022. URL: https://
titaniumplatform.com/5g-binding-supportfunction-bsf-data-sheet-
page/.

[28] NSSF - network slice selection function. Nov. 2022. URL: https://www.mpirical.
com/glossary/nssf-network-slice-selection-function.

[29] UDR - Unified Data Repository. Nov. 2022. URL: https://www.mpirical.
com/glossary/udr-unified-data-repository.

[30] 3GPP proposed architecture and reference points for 5G networks. Dec. 2022. URL:
https://www.researchgate.net/figure/The-3GPP-5G-architecture-
adapted-from-6_fig1_327635348.

[31] AMF - access and mobility management function. Nov. 2022. URL: https://
www.mpirical.com/glossary/amf-access-and-mobility-management-
function.

[32] Ausf - authentication server function. Nov. 2022. URL: https://www.mpirical.
com/glossary/ausf-authentication-server-function.

66

https://aws.amazon.com/what-is/iot/?nc1=h_ls
https://aws.amazon.com/what-is/iot/?nc1=h_ls
https://www.3gpp.org/specifications-technologies/releases/release-16
https://www.3gpp.org/specifications-technologies/releases/release-16
https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.3gpp.org/specifications-technologies/releases/release-18
https://www.3gpp.org/specifications-technologies/releases/release-18
https://www.3gpp.org/technologies/5g-system-overview
https://www.3gpp.org/technologies/5g-system-overview
https://www.dialogic.com/glossary/home-subscriber-server-hss
https://www.dialogic.com/glossary/home-subscriber-server-hss
https://www.iplook.com/products/epc-mme
https://www.iplook.com/products/epc-mme
https://www.iplook.com/products/epc-pcrf
https://www.iplook.com/products/epc-pcrf
https://www.mpirical.com/glossary/pgw-c-pdn-gateway-control-plane-function
https://www.mpirical.com/glossary/pgw-c-pdn-gateway-control-plane-function
https://www.mpirical.com/glossary/pgw-c-pdn-gateway-control-plane-function
https://www.mpirical.com/glossary/pgw-u-pdn-gateway-user-plane-function
https://www.mpirical.com/glossary/pgw-u-pdn-gateway-user-plane-function
https://www.mpirical.com/glossary/sgw-c-serving-gateway-control-plane-function
https://www.mpirical.com/glossary/sgw-c-serving-gateway-control-plane-function
https://www.mpirical.com/glossary/sgw-c-serving-gateway-control-plane-function
https://www.mpirical.com/glossary/sgw-u-serving-gateway-user-plane-function
https://www.mpirical.com/glossary/sgw-u-serving-gateway-user-plane-function
https://titaniumplatform.com/5g-binding-supportfunction-bsf-data-sheet-page/
https://titaniumplatform.com/5g-binding-supportfunction-bsf-data-sheet-page/
https://titaniumplatform.com/5g-binding-supportfunction-bsf-data-sheet-page/
https://www.mpirical.com/glossary/nssf-network-slice-selection-function
https://www.mpirical.com/glossary/nssf-network-slice-selection-function
https://www.mpirical.com/glossary/udr-unified-data-repository
https://www.mpirical.com/glossary/udr-unified-data-repository
https://www.researchgate.net/figure/The-3GPP-5G-architecture-adapted-from-6_fig1_327635348
https://www.researchgate.net/figure/The-3GPP-5G-architecture-adapted-from-6_fig1_327635348
https://www.mpirical.com/glossary/amf-access-and-mobility-management-function
https://www.mpirical.com/glossary/amf-access-and-mobility-management-function
https://www.mpirical.com/glossary/amf-access-and-mobility-management-function
https://www.mpirical.com/glossary/ausf-authentication-server-function
https://www.mpirical.com/glossary/ausf-authentication-server-function

References

[33] Derek Cheung. 5G core network repository function (NRF). Nov. 2022. URL:
https://derekcheung.medium.com/5g-core-part-5-network-repository-
function-nrf-5dd65afc6f12.

[34] PCF - policy control function. Nov. 2022. URL: https://www.mpirical.com/
glossary/pcf-policy-control-function.

[35] SMF - session management function. Nov. 2022. URL: https://www.mpirical.
com/glossary/smf-session-management-function.

[36] UDM - Unified Data Management. Nov. 2022. URL: https://www.mpirical.
com/glossary/udm-unified-data-management.

[37] UPF - user plane function. Nov. 2022. URL: https://www.mpirical.com/
glossary/upf-user-plane-function.

[38] NEF - Network Exposure Function. Jan. 2023. URL: https://www.mpirical.
com/glossary/nef-network-exposure-function.

[39] DN - Data Network. Jan. 2023. URL: https://www.mpirical.com/glossary/
dn-data-network.

[40] Architecture 5G base station gNB. Dec. 2022. URL: https://www.researchgate.
net/figure/Architecture-5G-base-station-gNB_fig5_339059845.

[41] 5G And Verticals. Jan. 2023. URL: https://5g-ppp.eu/verticals/.

[42] 5G PPP Website. Jan. 2023. URL: https://5g-ppp.eu/.

[43] 5G PPP Phase 3, Part 1: Infrastructure Projects. Jan. 2023. URL: https://5g-
ppp.eu/5g-ppp-phase-3-1-projects/.

[44] 5G PPP Phase 3, Part 3: Advanced 5G validation trials across multiple vertical
industries. Jan. 2023. URL: https://5g- ppp.eu/5g- ppp- phase- 3- 3-
projects/.

[45] Miaowen Wen et al. “Private 5G Networks: Concepts, Architectures, and
Research Landscape”. In: IEEE Journal of Selected Topics in Signal Processing
16.1 (Aug. 2023), pp. 7–25. DOI: 10.1109/JSTSP.2021.3137669.

[46] GSMA. 5G Private and Dedicated Networks for Industry 4.0. Aug. 2023. URL:
https://www.gsma.com/iot/resources/5g-private-npn-industry40/.

[47] Ericsson. Ericsson’s USA 5G Smart Factory. Aug. 2023. URL: https://www.
ericsson . com / en / about - us / company - facts / ericsson - worldwide /
united-states/5g-smart-factory.

[48] US DoD. U.S. Department of Defense’s 5G Smart Warehouses. Aug. 2023. URL:
https://www.defense.gov/News/Releases/Release/Article/2650242/
department-of-defense-successfully-demonstrates-a-5g-network-
for-smart-warehous/.

[49] Accedian. Private 5G answers Healthcare’s urgent call for digital ... - accedian.
Aug. 2023. URL: https://accedian.com/wp-content/uploads/2022/03/
Accedian_private-5G_answers-urgent-call-digital-transformation_
whitepaper.pdf.

[50] λ.eranga. Deploying 5G core network with Open5GS and UERANSIM. Feb.
2022. URL: https://medium.com/rahasak/5g- core- network- setup-
with-open5gs-and-ueransim-cd0e77025fd7.

67

https://derekcheung.medium.com/5g-core-part-5-network-repository-function-nrf-5dd65afc6f12
https://derekcheung.medium.com/5g-core-part-5-network-repository-function-nrf-5dd65afc6f12
https://www.mpirical.com/glossary/pcf-policy-control-function
https://www.mpirical.com/glossary/pcf-policy-control-function
https://www.mpirical.com/glossary/smf-session-management-function
https://www.mpirical.com/glossary/smf-session-management-function
https://www.mpirical.com/glossary/udm-unified-data-management
https://www.mpirical.com/glossary/udm-unified-data-management
https://www.mpirical.com/glossary/upf-user-plane-function
https://www.mpirical.com/glossary/upf-user-plane-function
https://www.mpirical.com/glossary/nef-network-exposure-function
https://www.mpirical.com/glossary/nef-network-exposure-function
https://www.mpirical.com/glossary/dn-data-network
https://www.mpirical.com/glossary/dn-data-network
https://www.researchgate.net/figure/Architecture-5G-base-station-gNB_fig5_339059845
https://www.researchgate.net/figure/Architecture-5G-base-station-gNB_fig5_339059845
https://5g-ppp.eu/verticals/
https://5g-ppp.eu/
https://5g-ppp.eu/5g-ppp-phase-3-1-projects/
https://5g-ppp.eu/5g-ppp-phase-3-1-projects/
https://5g-ppp.eu/5g-ppp-phase-3-3-projects/
https://5g-ppp.eu/5g-ppp-phase-3-3-projects/
https://doi.org/10.1109/JSTSP.2021.3137669
https://www.gsma.com/iot/resources/5g-private-npn-industry40/
https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/united-states/5g-smart-factory
https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/united-states/5g-smart-factory
https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/united-states/5g-smart-factory
https://www.defense.gov/News/Releases/Release/Article/2650242/department-of-defense-successfully-demonstrates-a-5g-network-for-smart-warehous/
https://www.defense.gov/News/Releases/Release/Article/2650242/department-of-defense-successfully-demonstrates-a-5g-network-for-smart-warehous/
https://www.defense.gov/News/Releases/Release/Article/2650242/department-of-defense-successfully-demonstrates-a-5g-network-for-smart-warehous/
https://accedian.com/wp-content/uploads/2022/03/Accedian_private-5G_answers-urgent-call-digital-transformation_whitepaper.pdf
https://accedian.com/wp-content/uploads/2022/03/Accedian_private-5G_answers-urgent-call-digital-transformation_whitepaper.pdf
https://accedian.com/wp-content/uploads/2022/03/Accedian_private-5G_answers-urgent-call-digital-transformation_whitepaper.pdf
https://medium.com/rahasak/5g-core-network-setup-with-open5gs-and-ueransim-cd0e77025fd7
https://medium.com/rahasak/5g-core-network-setup-with-open5gs-and-ueransim-cd0e77025fd7

Chapter 7

[51] SUSE Rancher. Rancher’s next-generation Kubernetes distribution. Dec. 2022.
URL: https://docs.rke2.io/.

[52] SUSE Communities. When to use K3s and RKE2. Aug. 2023. URL: https:
//www.suse.com/c/rancher_blog/when-to-use-k3s-and-rke2/.

[53] Don Poole. Rancher government solutions announces fully supported no-code
deployment of rancher on AWS GovCloud. Aug. 2023. URL: https://finance.
yahoo.com/news/rancher- government- solutions- announces- fully-
091700764.html.

[54] Rancher Server. Dec. 2021. URL: https://rancher.com/docs/rancher/v2.
6/en/.

[55] OpenEBS documentation: Openebs docs. Apr. 2022. URL: https://openebs.
io/docs/.

[56] Kube-vip. Apr. 2022. URL: https://kube-vip.chipzoller.dev/docs/.

[57] Kedaorg. Keda. Apr. 2022. URL: https://keda.sh/.

[58] Will Ho. Kubernetes Ingress Controllers: Why I chose Traefik. Apr. 2022. URL:
https://ikarus.sg/why-traefik-ingress-controller/.

[59] Nginx ingress - insecure. Feb. 2022. URL: https://gist.github.com/oskapt/
18cae046c99c60a3cb2eeaa72a2ad1cc.

[60] Sukchan Lee. Open5gs - Documentation. Jan. 2022. URL: https://open5gs.
org/open5gs/docs/.

[61] Francisco Neto et al. “Analysis for Comparison of Framework for 5G Core
Implementation”. In: Aug. 2023, pp. 1–5. DOI: 10.1109/ICISCT52966.2021.
9670414.

[62] Aligungr. Ueransim - Github. Feb. 2022. URL: https://github.com/aligungr/
UERANSIM.

[63] Simu5G is the result of a joint research project carried out by Intel Cor-
poration and the Computer Networking Group of the University of Pisa.
SIMU5G. Aug. 2022. URL: http://simu5g.org/.

[64] Virtual Network Computing - x11. Aug. 2022. URL: https://tigervnc.org/
doc/Xvnc.html.

[65] Desktop Environment - lxde. Aug. 2022. URL: http://www.lxde.org/.

[66] Open-source PLC software. Dec. 2022. URL: https://openplcproject.com/.

[67] Suleiman Abualrob. Kubernetes: Expose pod externally bypass service load bal-
ancing. Feb. 2022. URL: https://medium.com/@suleimanabualrob/kubernetes-
expose-pod-externally-bypass-service-load-balancing-bf89038afee2.

[68] Setting up a high-availability RKE2 Kubernetes cluster for rancher. Aug. 2023.
URL: https://ranchermanager.docs.rancher.com/v2.6/how-to-guides/
new-user-guides/kubernetes-cluster-setup/rke2-for-rancher.

[69] Adrian Goins. Configuration Step by step of RKE2 with Kube-VIP. Aug. 2023.
URL: https://gitlab.com/monachus/channel/-/tree/master/resources/
2021-09-07-ha-rke2-kube-vip-rancher.

68

https://docs.rke2.io/
https://www.suse.com/c/rancher_blog/when-to-use-k3s-and-rke2/
https://www.suse.com/c/rancher_blog/when-to-use-k3s-and-rke2/
https://finance.yahoo.com/news/rancher-government-solutions-announces-fully-091700764.html
https://finance.yahoo.com/news/rancher-government-solutions-announces-fully-091700764.html
https://finance.yahoo.com/news/rancher-government-solutions-announces-fully-091700764.html
https://rancher.com/docs/rancher/v2.6/en/
https://rancher.com/docs/rancher/v2.6/en/
https://openebs.io/docs/
https://openebs.io/docs/
https://kube-vip.chipzoller.dev/docs/
https://keda.sh/
https://ikarus.sg/why-traefik-ingress-controller/
https://gist.github.com/oskapt/18cae046c99c60a3cb2eeaa72a2ad1cc
https://gist.github.com/oskapt/18cae046c99c60a3cb2eeaa72a2ad1cc
https://open5gs.org/open5gs/docs/
https://open5gs.org/open5gs/docs/
https://doi.org/10.1109/ICISCT52966.2021.9670414
https://doi.org/10.1109/ICISCT52966.2021.9670414
https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM
http://simu5g.org/
https://tigervnc.org/doc/Xvnc.html
https://tigervnc.org/doc/Xvnc.html
http://www.lxde.org/
https://openplcproject.com/
https://medium.com/@suleimanabualrob/kubernetes-expose-pod-externally-bypass-service-load-balancing-bf89038afee2
https://medium.com/@suleimanabualrob/kubernetes-expose-pod-externally-bypass-service-load-balancing-bf89038afee2
https://ranchermanager.docs.rancher.com/v2.6/how-to-guides/new-user-guides/kubernetes-cluster-setup/rke2-for-rancher
https://ranchermanager.docs.rancher.com/v2.6/how-to-guides/new-user-guides/kubernetes-cluster-setup/rke2-for-rancher
https://gitlab.com/monachus/channel/-/tree/master/resources/2021-09-07-ha-rke2-kube-vip-rancher
https://gitlab.com/monachus/channel/-/tree/master/resources/2021-09-07-ha-rke2-kube-vip-rancher

References

[70] Control Plane components of Kubernetes. Aug. 2023. URL: https://kubernetes.
io/docs/concepts/overview/components/.

[71] Installation step by step of Kubernetes worker nodes. Aug. 2023. URL: https:
//docs.rke2.io/install/quickstart/#linux- agent- worker- node-
installation.

[72] Installing Helm. Aug. 2023. URL: https://helm.sh/docs/intro/install/.

[73] Openverso Charts for Kubernetes. Aug. 2023. URL: https://github.com/
Gradiant/openverso-charts.

[74] Mbpoll - Usage and Installation. Aug. 2023. URL: https://manpages.ubuntu.
com/manpages/lunar/man1/mbpoll.1.html.

[75] Jon Dugan and et al. Packet Sender - Send and receive TCP, UDP, SSL. HTTP
Requests. Aug. 2023. URL: https://packetsender.com/.

[76] Jon Dugan and et al. What is IPERF? Aug. 2023. URL: https://iperf.fr/.

[77] Tom Fentom. Using iPerf to Baseline Network Performance. Aug. 2023. URL:
https://www.controlup.com/resources/blog/entry/using-iperf-to-
baseline-network-performance/.

[78] Open5gs Maximum Throughput only 500Mbps - Discussion. Aug. 2023. URL:
https://github.com/open5gs/open5gs/discussions/2208.

[79] Ke-liang DU et al. “High-Performance UPF Prototype Based on VPP”. In:
Journal of Beijing University of Posts and Telecommunications 44.6, 89 (Aug.
2023), pp. 89–95.

[80] Haoran Zhang, Zikang Chen, and Yang Yuan. “High-Performance UPF De-
sign Based on DPDK”. In: 2021 IEEE 21st International Conference on Commu-
nication Technology (ICCT). Aug. 2023, pp. 349–354. DOI: 10.1109/ICCT52962.
2021.9657903.

[81] Installation step by step of VPP-UPF with DPDK. Aug. 2023. URL: https://
github.com/s5uishida/install_vpp_upf_dpdk.

[82] Gabriel Lando. Uma avaliação de desempenho de implementações open source em
software de núcleos de rede 5G. Sept. 2023. URL: https://lume.ufrgs.br/
bitstream/handle/10183/254479/001161325.pdf?sequence=1.

[83] Taint master nodes to only handle control plane functions. Aug. 2023. URL: https:
//stackoverflow.com/questions/55191980/remove-node-role-kubernetes-
io-masternoschedule-taint.

[84] Taint on Kubernetes. Aug. 2023. URL: https://kubernetes.io/docs/concepts/
scheduling-eviction/taint-and-toleration/.

[85] Rancher. Install/upgrade rancher on a kubernetes cluster. Aug. 2023. URL: https:
//rancher.com/docs/rancher/v2.6/en/installation/install-rancher-
on-k8s/.

[86] Rancher Technical Items. Aug. 2023. URL: https://ranchermanager.docs.
rancher.com/v2.6/faq/technical-items.

[87] Mongodb compass installation. Aug. 2023. URL: https://www.mongodb.com/
try/download/compass.

69

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://docs.rke2.io/install/quickstart/#linux-agent-worker-node-installation
https://docs.rke2.io/install/quickstart/#linux-agent-worker-node-installation
https://docs.rke2.io/install/quickstart/#linux-agent-worker-node-installation
https://helm.sh/docs/intro/install/
https://github.com/Gradiant/openverso-charts
https://github.com/Gradiant/openverso-charts
https://manpages.ubuntu.com/manpages/lunar/man1/mbpoll.1.html
https://manpages.ubuntu.com/manpages/lunar/man1/mbpoll.1.html
https://packetsender.com/
https://iperf.fr/
https://www.controlup.com/resources/blog/entry/using-iperf-to-baseline-network-performance/
https://www.controlup.com/resources/blog/entry/using-iperf-to-baseline-network-performance/
https://github.com/open5gs/open5gs/discussions/2208
https://doi.org/10.1109/ICCT52962.2021.9657903
https://doi.org/10.1109/ICCT52962.2021.9657903
https://github.com/s5uishida/install_vpp_upf_dpdk
https://github.com/s5uishida/install_vpp_upf_dpdk
https://lume.ufrgs.br/bitstream/handle/10183/254479/001161325.pdf?sequence=1
https://lume.ufrgs.br/bitstream/handle/10183/254479/001161325.pdf?sequence=1
https://stackoverflow.com/questions/55191980/remove-node-role-kubernetes-io-masternoschedule-taint
https://stackoverflow.com/questions/55191980/remove-node-role-kubernetes-io-masternoschedule-taint
https://stackoverflow.com/questions/55191980/remove-node-role-kubernetes-io-masternoschedule-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://rancher.com/docs/rancher/v2.6/en/installation/install-rancher-on-k8s/
https://rancher.com/docs/rancher/v2.6/en/installation/install-rancher-on-k8s/
https://rancher.com/docs/rancher/v2.6/en/installation/install-rancher-on-k8s/
https://ranchermanager.docs.rancher.com/v2.6/faq/technical-items
https://ranchermanager.docs.rancher.com/v2.6/faq/technical-items
https://www.mongodb.com/try/download/compass
https://www.mongodb.com/try/download/compass

Chapter 7

[88] s5uishida. S5uishida Open5gs 5GC and UERANSIM UE / ran sample configu-
ration - framed routing. Aug. 2023. URL: https://github.com/s5uishida/
open5gs_5gc_ueransim_framed_routing_sample_config.

[89] Scale applications based on CPU metrics - KEDA. Aug. 2023. URL: https://
keda.sh/docs/2.10/scalers/cpu/.

[90] Simu5G image in docker hub. Aug. 2023. URL: https://hub.docker.com/r/
diogocruz40/simu5g.

[91] thiagoralves. OpenPLC GitHub repository. Aug. 2023. URL: https://github.
com/thiagoralves/OpenPLC_v3.

[92] thiagoralves. Installation of EcoStruxure Machine Expert Basic. Aug. 2023. URL:
https://www.se.com/in/en/download/document/Machine_Expert_
Basic_V1_2_SP1/.

[93] Open5gs-dbctl script to update database. Sept. 2023. URL: https://github.
com/open5gs/open5gs/blob/main/misc/db/open5gs-dbctl.

[94] Download VNC Viewer. Aug. 2022. URL: https://www.realvnc.com/pt/
connect/download/viewer/.

[95] CharlesPandian. Simulation of 5G networks under omnet++ and Simu5g simu-
lator. Aug. 2022. URL: https://www.projectguideline.com/simulation-
of-5g-networks-under-omnet-and-simu5g-simulator/.

[96] Modbus Tools. Dec. 2022. URL: https://www.modbustools.com/modbus_
poll.html.

[97] OpenPLC project - Modbus addressing. Aug. 2023. URL: https://openplcproject.
com/docs/2-5-modbus-addressing/.

70

https://github.com/s5uishida/open5gs_5gc_ueransim_framed_routing_sample_config
https://github.com/s5uishida/open5gs_5gc_ueransim_framed_routing_sample_config
https://keda.sh/docs/2.10/scalers/cpu/
https://keda.sh/docs/2.10/scalers/cpu/
https://hub.docker.com/r/diogocruz40/simu5g
https://hub.docker.com/r/diogocruz40/simu5g
https://github.com/thiagoralves/OpenPLC_v3
https://github.com/thiagoralves/OpenPLC_v3
https://www.se.com/in/en/download/document/Machine_Expert_Basic_V1_2_SP1/
https://www.se.com/in/en/download/document/Machine_Expert_Basic_V1_2_SP1/
https://github.com/open5gs/open5gs/blob/main/misc/db/open5gs-dbctl
https://github.com/open5gs/open5gs/blob/main/misc/db/open5gs-dbctl
https://www.realvnc.com/pt/connect/download/viewer/
https://www.realvnc.com/pt/connect/download/viewer/
https://www.projectguideline.com/simulation-of-5g-networks-under-omnet-and-simu5g-simulator/
https://www.projectguideline.com/simulation-of-5g-networks-under-omnet-and-simu5g-simulator/
https://www.modbustools.com/modbus_poll.html
https://www.modbustools.com/modbus_poll.html
https://openplcproject.com/docs/2-5-modbus-addressing/
https://openplcproject.com/docs/2-5-modbus-addressing/

Appendices

71

This page is intentionally left blank.

Appendix A

Network Topology and
Configurations

This appendix covers the network topology involving the Kubernetes cluster,
Raspberry Pi, Virtual Machine (VM) for performance tests and physical PLC. It
also outlines the configurations used to implement the testbed scenario and vali-
date the use case requirements.

A.1 Network topology

In our network setup, we leverage Virtual LAN 223 via a virtual switch, as il-
lustrated in Figure A.1. This arrangement is established within the Centre for
Informatics and Systems of the University of Coimbra (CISUC) data center and
is managed by a type 1 hypervisor (VMware ESXi). This hypervisor takes care
of resource allocation, management of Virtual Machines, and network configura-
tions.

At the moment there are 7 VMs in this group, three of them correspond to the
master nodes and have fixed IP addresses, 172.27.223.12, 172.27.223.13 and
172.27.223.14. These are responsible for managing the cluster, and resources and
assigning tasks to the agent nodes (workers).

Agent nodes (workers) have dynamic IP addresses in the range of 172.27.223.200
- 172.27.223.253 because they don’t need to have static IPs, as they can be dynam-
ically scaled up or down. These connect to the cluster from the virtual IP that
makes the master nodes in High Availability (HA) the 172.27.223.50.

The Raspberry Pi is assigned two static IP addresses: one from the VLAN 223
(172.27.223.20), and another private IP (192.168.10.99) used for connecting to the
physical Programmable Logic Controller (PLC). The physical PLC, on the other
hand, has only one IP address, which is the private IP (192.168.10.100) used to
connect to the Raspberry Pi.

VM 8 is dedicated to conducting tests on the 5G network. It operates outside the

73

Appendix A

cluster and functions as an IPERF server [76] for performing active bandwidth
measurements on IP addresses. This VM is assigned the VLAN 223 IP address of
172.27.223.228, which is dynamically assigned by the Dynamic Host Configura-
tion Protocol (DHCP) server.

The range of 172.27.223.51 - 172.27.223.60 is being used to host services automat-
ically through the load balancing type.

Figure A.1: Network topology diagram showing the connections between our
Kubernetes cluster, an external Raspberry Pi, an external VM for performance
tests, the physical PLC, and the public internet.

A.2 Configurations

This section provides comprehensive installations and configurations that com-
plement the Implementation section of the testbed. If you require assistance ac-
cessing any of the interfaces, you can refer to Appendix B. Links and credentials,
many of which are default, are listed in Appendix C.

A.2.1 Tainting a master node

To apply tainting to master nodes, the following command is employed [83]:

$ kubectl taint nodes <node-name>
node-role.kubernetes.io/master=true:NoSchedule↪→

This command effectively limits the utilization of master nodes to control plane
functions exclusively [84].

A.2.2 Installing Rancher server

For the installation of the Rancher server, we followed the steps outlined by the
authors in [85], making some necessary adjustments. To deploy the Rancher

74

Network Topology and Configurations

server with a personalized hostname and password, the following command can
be utilized:

$ helm upgrade --install rancher rancher-stable/rancher \
--namespace cattle-system \
--set hostname=localhost \
--set bootstrapPassword=admin12345678

If you encounter issues with the password, you can reset it by executing the fol-
lowing commands [86]:

$ KUBECONFIG=./kube_config_cluster.yml
$ kubectl --kubeconfig $KUBECONFIG -n cattle-system exec

$(kubectl --kubeconfig $KUBECONFIG -n cattle-system get pods
-l app=rancher --no-headers | head -1 | awk '{ print $1 }')
-c rancher -- reset-password

↪→

↪→

↪→

Subsequently, modify the Rancher server service to the "LoadBalancer" type to
enable external access and proceed to locate the public IP address:

$ kubectl edit svc rancher -n cattle-system
$ kubectl get svc -n cattle-system

A.2.3 Installing OpenEBS

The installation of OpenEBS is a straightforward process involving a few com-
mands. The following instructions will add the OpenEBS official repository, cre-
ate a dedicated namespace named "openEBS," and proceed to install OpenEBS
within that designated namespace in the cluster:

$ helm repo add openebs https://openebs.github.io/charts
$ helm repo update
$ helm install openebs --namespace openebs openebs/openebs

--create-namespace↪→

A.2.4 Installing and configuring Open5GS

The subsequent steps will involve adding the openverso repository, establish-
ing a dedicated namespace labeled "open5GS," and then deploying the open5GS
within this specifically designated namespace in the cluster:

$ kubectl create ns open5gs
$ helm repo add openverso

https://gradiant.github.io/openverso-charts/↪→

75

Appendix A

$ helm repo update
$ helm install open5gs openverso/open5gs -n open5gs

In addition, we leverage the capabilities of openEBS to create persistent volumes
for the Open5GS database. In the Rancher Server, navigate to the Storage cate-
gory and access the PersistenceVolumeClaims folder. Here, create a persistence
volume claim for the Open5GS MongoDB using the class "openebs-hostpath".
Driving forward, go to the Deployments folder within the Workload category.
Edit the configuration of "open5gs-mongodb" by clicking the 3 vertical dots at
the right corner of the screen. Under the storage tab, modify the persistence vol-
ume claim to match the one created earlier. Saving these changes will promptly
generate a persistence volume for the Open5GS database, ensuring proper func-
tionality of its functions.

To integrate user equipment with the 5G Core (5GC), you need to add subscribers
through the web user interface provided by Open5GS. Access the Deployments
folder in the Rancher Server and edit the "open5gs-webui" configuration. Add a
port of type "LoadBalancer" with the private container port and listening port set
to 3000. Moving on, navigate to the Service Discovery category and access the
Services folder. Locate "open5gs-webui-loadbalancer" and edit the configuration
to match the selector of pods. Due to a bug in creating a service type load balancer
by Rancher Server, adjust the selectors as follows:

app.kubernetes.io/instance=open5gs
app.kubernetes.io/name=webui

These changes link the service to the web user interface pod. Once completed,
find the IP address of the web user interface in the Services folder. It will be listed
in the "target" column of "open5gs-webui-loadbalancer". Click on it to access the
interface. Further details regarding credentials can be found in Appendix C of
the Open5GS web user interface documentation.

Next, replicate the steps to add a load balancer service for the MongoDB of Open5GS.
There are minor differences; specifically, the private container port and listening
port should be set to 27017, and the selector name must be "mongodb". For ac-
cessing the database, use software like MongoDB Compass [87].

Before proceeding to add subscribers to the 5GC, it is essential to configure the
UPF function to enable framed routing on user equipment. To enable the framed
routing we followed a tutorial from s5uishida [88]. Start by navigating to the
Storage category in Rancher Server and access the ConfigMaps folder. Locate
the "open5gs-upf-entrypoint" configuration and append the following command
below the IP address of the "ogstun" interface, with the specified sub-networks of
the framed routes:

ip route add <Framed route sub-network>/24 dev ogstun;

After applying this configuration, go to the Deployments folder and redeploy
"open5gs-upf" to ensure that the changes take effect.

76

Network Topology and Configurations

To add subscribers, access the Open5GS web user interface as outlined in Ap-
pendix B.3. The International Mobile Subscriber Identity (IMSI) is formed by the
Mobile Country Code (MCC), Mobile Network Code (MNC), and the user equip-
ment identifier. The MCC uses the first 3 numbers of the IMSI, followed by 2
numbers for MNC, and the remaining 10 numbers for the identifier. Add the
IMSI for each subscriber.

Subsequently, use MongoDB Compass to connect to the database and locate the
Open5GS subscribers document. The document structure, shown below, includes
configurations for each subscriber, including IMSI, Slice Differentiator (SD), and
"ipv4_framed_routes". Manually add SD and the necessary Internet Protocol (IP)
routes to recognize subscribers within the slice and enable framed routing, re-
spectively.

{
"_id": {

"$oid": "637b8c4a829ed200017f05e6"
},
"imsi": "999700000000001",
"subscribed_rau_tau_timer": 12,
"network_access_mode": 0,
"subscriber_status": 0,
"access_restriction_data": 32,
"slice": [

{
"sst": 1,

--> "sd":"0x111111",
"default_indicator": true,
"_id": {

"$oid": "637b8c4a829ed200017f05e7"
},
"session": [

{
"name": "internet",
"type": 3,
"_id": {

"$oid": "637b8c4a829ed200017f05e8"
},
"pcc_rule": [],
"ambr": {

"uplink": {
"value": 1,
"unit": 3

},
"downlink": {

"value": 1,
"unit": 3

}

77

Appendix A

},
"qos": {

"index": 9,
"arp": {

"priority_level": 8,
"pre_emption_capability": 1,
"pre_emption_vulnerability": 1

}
},

--> "ipv4_framed_routes": [
--> "<IP Address within the sub-net>/32"
-->]

}
]

}
],
"ambr": {

"uplink": {
"value": 1,
"unit": 3

},
"downlink": {

"value": 1,
"unit": 3

}
},
"security": {

"k": "465B5CE8 B199B49F AA5F0A2E E238A6BC",
"amf": "8000",
"op": null,
"opc": "E8ED289D EBA952E4 283B54E8 8E6183CA",
"sqn": {

"$numberLong": "129"
}

},
"purge_flag": [],
"mme_realm": [],
"mme_host": [],
"imeisv": [

"4370816125816151"
],
"msisdn": [],
"schema_version": 1,
"__v": 0

}

Repeat this process for each User Equipment (UE) subscriber.

78

Network Topology and Configurations

A.2.5 Installing the New Radio (gnb) from UERANSIM

The upcoming steps entail adding the openverso repository and deploying the
gNodeB (gNB) within the identical namespace as the 5G Core (5GC).

$ helm repo add openverso
https://gradiant.github.io/openverso-charts/↪→

$ helm repo update
$ helm install ueransim-gnb openverso/ueransim-gnb -n open5gs

Since this is a component of the openverso chart, similar to open5GS, no addi-
tional configurations were required. After deployment, the radio will automati-
cally establish a connection to the core.

A.2.6 Installing and configuring KEDA

The following instructions will add the KEDA official repository, create a dedi-
cated namespace named "keda," and proceed to install KEDA within that desig-
nated namespace in the cluster:

$ helm repo add kedacore https://kedacore.github.io/charts
$ helm repo update
$ helm install keda kedacore/keda --namespace keda

--create-namespace↪→

To use the capabilities of KEDA in scaling through CPU metrics we first need
to edit the deployment of the component we want to scale [89]. For example
the rancher server, we go to the Deployments folder and search for "rancher", we
edit the config and go to the resources tab. In there we add the CPU reservation to
100mCPUs, basically, this is requesting to the schedulers a worker node in were
can provide 1/10 core CPU for running the container.

Subsequently, we generate a scaled object tailored to the rancher deployment.
This entails specifying the namespace, assigning a name to this scaled object, in-
dicating the trigger type, which in this case is CPU utilization, setting the mini-
mum and maximum replicas for the pods, and defining the average CPU utiliza-
tion between pods as 80%. KEDA will automatically construct a Horizontal Pod
Autoscaler to manage the pods according to these defined parameters. Follow-
ing is an illustration of the configuration file for the scaled object in the context of
rancher.

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:

name: memory-scaledobject-rancher
namespace: cattle-system

spec:

79

Appendix A

scaleTargetRef:
name: rancher

minReplicaCount: 1
maxReplicaCount: 5
triggers:
- type: cpu

metadata:
type: Utilization
value: "80"

A.2.7 Installing Simu5G

The following Dockerfile was built by integrating a Virtual Network Computing
(VNC) server and LXDE to deliver a functional desktop interface with Simu5G.
In this image, specific configurations were established, including setting a pass-
word for the VNC server, specifying its resolution, and compiling and installing
Simu5G. The exposure of port 5900 facilitates external access through a service.
This image was developed using Docker and is publicly accessible on Docker
Hub [90].

Dockerfile
FROM dorowu/ubuntu-desktop-lxde-vnc as env-build
VOLUME ["/dev/shm"]
ENV VNC_PASSWORD=power
ENV RESOLUTION=1920x1080
RUN \
wget -q -O - https://dl.google.com/linux/linux_signing_key.pub |

sudo apt-key add - && \↪→

apt-get update -y && apt-get upgrade -y && \
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get install

--no-install-recommends --yes \↪→

gcc g++ gdb bison flex make \
git python3 python3-pip python3-dev openscenegraph

libopenscenegraph-dev curl \↪→

openmpi-bin libopenmpi-dev \
gdal-bin libgdal-dev minizip rocksdb-tools duktape cmake \
default-jre default-jdk openjfx \
swig doxygen graphviz libpcap-dev tcl libqt5svg5

libqt5opengl5-dev \↪→

qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools \
ffmpeg && \
apt-get clean && \
python3 -m pip install --upgrade pip && \
pip install posix-ipc numpy scipy pandas matplotlib && \
rm -rf /var/lib/apt/lists/*

80

Network Topology and Configurations

from env-build as omnetpp-build
shell ["/bin/bash", "-c"]
run cd / && curl -L

https://github.com/omnetpp/omnetpp/releases/download/
omnetpp-6.0pre11/omnetpp-6.0pre11-src-linux.tgz|tar -zxv &&\

↪→

↪→

cd /omnetpp-6.0pre11 && \
source ./setenv -f && ./configure WITH_OSGEARTH=no

PREFER_CLANG=no && make↪→

from env-build as inet-build
copy --from=omnetpp-build /omnetpp-6.0pre11 /omnetpp-6.0pre11
shell ["/bin/bash", "-c"]
run cd /omnetpp-6.0pre11 && source ./setenv -f && \

curl -L
https://github.com/inet-framework/inet/releases/download/
v4.3.2/inet-4.3.2-src.tgz | tar -zxv -C
/omnetpp-6.0pre11/samples && \

↪→

↪→

↪→

cd /omnetpp-6.0pre11/samples/inet4.3 && \
source ./setenv -f && make makefiles && make

from env-build as simu5g-build
copy --from=inet-build /omnetpp-6.0pre11 /omnetpp-6.0pre11
shell ["/bin/bash", "-c"]
run cd /omnetpp-6.0pre11 && source ./setenv -f && cd

/omnetpp-6.0pre11/samples/inet4.3 && source ./setenv -f && \↪→

curl -L https://github.com/Unipisa/Simu5G/archive/refs/tags/
v1.2.0.tar.gz | tar -zxv -C /omnetpp-6.0pre11/samples &&
\

↪→

↪→

cd /omnetpp-6.0pre11/samples/Simu5G-1.2.0 && \
source ./setenv -f && make makefiles && make

from env-build
copy --from=simu5g-build /omnetpp-6.0pre11 /omnetpp-6.0pre11
run chown -hR 1000 /omnetpp-6.0pre11 && apt-get update && apt-get

install nano↪→

EXPOSE 5900
cmd ["/bin/bash"]

Upon constructing and uploading this image to Docker Hub, the subsequent step
involved navigating to the Rancher server "Deployments" folder. Within this seg-
ment, a deployment named "simu5g" was established utilizing the previous im-
age within the "open5gs" namespace. Subsequently, an external access service of
the LoadBalancer type was exposed, with the private container port set to 5900
and the listening port matching. Furthermore, the selectors for this service were
adjusted to align with the intended configuration.

81

Appendix A

workload.user.cattle.io/workloadselector=apps.deployment-open5gs
-simu5g↪→

In Appendix 5.1.3, you will find detailed instructions on how to access the Simu5G
graphical user interface (GUI).

A.2.8 Installing and configuring OpenPLC with UEs

The following script file will serve as the entry point for the image we are con-
structing, which combines OpenPLC and User Equipment (UERANSIM). This
script will undertake the task of initializing the user equipment by establishing a
connection with the 5G core. Subsequently, it will direct all traffic associated with
the 5G network towards the "uesimtun0" interface. Furthermore, it will incorpo-
rate a framed-route IP and initiate the OpenPLC server. We followed a tutorial
provided by s5uishida [88] to enable framed routing in the UE.

entrypoint.sh

#!/bin/bash

set -e

_term() {
case "$command" in
ue)

echo "Deleting ue: nr-ue -c ue.yaml"
for x in $(./usr/local/bin/nr-cli -d); do

./usr/local/bin/nr-cli $x --exec "deregister
switch-off"↪→

done
echo "UEs switched off"
sleep 5
;;

*)
echo "It isn't necessary to perform any cleanup"
;;

esac
}

if [$# -lt 1]
then

echo "Usage : $0 [gnb|ue]"
exit

fi

sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward" $@

82

Network Topology and Configurations

(bash -c "sleep 10; ip route add 10.45.0.0/24 dev uesimtun0" &)
(bash -c "sleep 10; ip addr add <Frame route IP>/24 dev uesimtun0

&)↪→

("/workdir/start_openplc.sh" &)
command=$1
trap _term SIGTERM
shift

case "$command" in

ue)
GNB_IP=${GNB_IP:-"$(host -4 $GNB_HOSTNAME |awk
'/has.*address/{print $NF; exit}')"}↪→

export GNB_IP
echo "GNB_IP: $GNB_IP"
envsubst < /etc/ueransim/ue.yaml > ue.yaml
echo "Launching ue: nr-ue -c ue.yaml"
nr-ue -c ue.yaml $@ &
child=$!
wait "$child"
;;

gnb)
N2_BIND_IP=${N2_BIND_IP:-"$(ip addr show ${N2_IFACE} | grep
-o 'inet [[:digit:]]\{1,3\}\.
[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}'|
cut -c 6-)"}

↪→

↪→

↪→

N3_BIND_IP=${N3_BIND_IP:-"$(ip addr show ${N3_IFACE} | grep
-o 'inet [[:digit:]]\{1,3\}\.
[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}'|
cut -c 6-)"}

↪→

↪→

↪→

RADIO_BIND_IP=${RADIO_BIND_IP:-"$(ip addr show ${RADIO_IFACE}
| grep -o 'inet
[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}\.
[[:digit:]]\{1,3\}'| cut -c 6-)"}

↪→

↪→

↪→

AMF_IP=${AMF_IP:-"$(host -4 $AMF_HOSTNAME |awk
'/has.*address/{print $NF; exit}')"}↪→

export N2_BIND_IP N3_BIND_IP RADIO_BIND_IP AMF_IP
echo "N2_BIND_IP: $N2_BIND_IP"
echo "N3_BIND_IP: $N3_BIND_IP"
echo "RADIO_BIND_IP: $RADIO_BIND_IP"
echo "AMF_IP: $AMF_IP"
envsubst < /etc/ueransim/gnb.yaml > gnb.yaml
echo "Launching gnb: nr-gnb -c gnb.yaml"
nr-gnb -c gnb.yaml $@
;;

*) echo "unknown component $1 is not a component (gnb or ue).
Running $@ as command"↪→

83

Appendix A

$@
;;

esac

The succeeding file contains the configuration for the user equipment. All these
variables will be replaced when deploying within the Kubernetes cluster.

IMSI number of the UE. IMSI = [MCC|MNC|MSISDN] (In total 15 or
16 digits)↪→

supi: 'imsi-${MCC}${MNC}${MSISDN}'
Mobile Country Code value
mcc: ${MCC}
Mobile Network Code value (2 or 3 digits)
mnc: ${MNC}

Permanent subscription key
key: '${KEY}'
Operator code (OP or OPC) of the UE
op: '${OP}'
This value specifies the OP type and it can be either 'OP' or

'OPC'↪→

opType: '${OP_TYPE}'
Authentication Management Field (AMF) value
amf: '8000'
IMEI number of the device. It is used if no SUPI is provided
imei: '356938035643803'
IMEISV number of the device. It is used if no SUPI and IMEI is

provided↪→

imeiSv: '4370816125816151'

List of gNB IP addresses for Radio Link Simulation
gnbSearchList:

- ${GNB_IP}

UAC Access Identities Configuration
uacAic:

mps: false
mcs: false

UAC Access Control Class
uacAcc:

normalClass: 0
class11: false
class12: false
class13: false
class14: false
class15: false

84

Network Topology and Configurations

Initial PDU sessions to be established
sessions:

- type: 'IPv4'
apn: ${APN}
slice:

sst: ${SST}
sd: ${SD}

emergency: false

Configured NSSAI for this UE by HPLMN
configured-nssai:

- sst: ${SST}
sd: ${SD}

Default Configured NSSAI for this UE
default-nssai:

- sst: ${SST}
sd: ${SD}

Supported encryption algorithms by this UE
integrity:

IA1: true
IA2: true
IA3: true

Supported integrity algorithms by this UE
ciphering:

EA1: true
EA2: true
EA3: true

Integrity protection maximum data rate for user plane
integrityMaxRate:

uplink: 'full'
downlink: 'full'

Once you have created the entry point and user equipment files, you can pro-
ceed to build the image that executes the compilation and installation steps for
UERANSIM, followed by the installation of OpenPLC. The OpenPLC repository,
complete with the installation script, is available on thiagoralves GitHub page
[91]. First, we will go through the configuration file, followed by the steps to
build the image. Afterward, we will discuss how to push it to a private GitLab
repository and create a Kubernetes secret, enabling its deployment within the
cluster.

Dockerfile
FROM ubuntu:latest as env-build

85

Appendix A

RUN apt update -y && apt install -y git && git clone
https://github.com/aligungr/UERANSIM.git && apt install make
-y && apt install gcc -y && \

↪→

↪→

apt install g++ -y && \
apt install build-essential libssl-dev -y && apt-get install

wget unzip zip -y && \↪→

wget
https://github.com/Kitware/CMake/releases/download/v3.25.0/
cmake-3.25.0.tar.gz && \

↪→

↪→

tar zxvf cmake-3.25.0.tar.gz && cd cmake-3.25.0 && ./bootstrap
&& make && \↪→

make install && apt install libsctp-dev lksctp-tools iproute2
-y && cd ../UERANSIM && make↪→

FROM ubuntu:latest

COPY --from=env-build /UERANSIM/build/* /usr/local/bin/
RUN mkdir /etc/ueransim
COPY ue.yaml /etc/ueransim/ue.yaml
COPY entrypoint.sh /entrypoint.sh

RUN apt update -y -q && apt install -y -q tcpdump iptables
iputils-ping traceroute build-essential bind9utils
bind9-doc dnsutils curl gettext iperf3
libsctp-dev lksctp-tools iproute2 # buildkit

↪→

↪→

↪→

ENV N2_IFACE=eth0
ENV N3_IFACE=eth0
ENV RADIO_IFACE=eth0
ENV AMF_HOSTNAME=amf
ENV GNB_HOSTNAME=localhost

COPY . /workdir
WORKDIR /workdir
RUN ./install.sh docker

EXPOSE 8080
EXPOSE 502

ENTRYPOINT ["/entrypoint.sh"]

The subsequent commands will require the GitLab account credentials, which
can be located in Appendix C. These commands streamline the connection to the
GitLab account and the publication of the image in the designated repository.

86

Network Topology and Configurations

Run this commands on terminal
$ docker login registry.gitlab.com
$ docker build -t <your-private-repo>/ue-openplc:latest .
$ docker push <your-private-repo>/ue-openplc:latest

On the master node, executing the following command will generate the neces-
sary secret within the Kubernetes cluster. It will require GitLab credentials. This
procedure grants access to the private GitLab images within the cluster.

$ kubectl create secret docker-registry <secret-name>
--docker-server=registry.gitlab.com
--docker-username=<your-gitlab-username>
--docker-password='<your-gitlab-access-token>'

↪→

↪→

↪→

Next, you will need to clone the "ueransim-ues" folder from the openverso charts
[73] and proceed to edit the "values.yaml" file. This file contains the variables
necessary for configuring the user equipment. The required changes include up-
dating the "repository" to match the repository, ensuring that "pullSecrets" aligns
with the name of the created secret, and editing "initialMSISDN" to correspond
to a unique identifier for the UE, which must match the subscription in open5gs.

source ueransim-ues/values.yaml

@section Global parameters
Global Docker image parameters
Please, note that this will override the image parameters,

including dependencies, configured to use the global value↪→

Current available global Docker image parameters:
imageRegistry, imagePullSecrets and storageClass↪→

@param global.imageRegistry Global Docker image registry
@param global.imagePullSecrets Global Docker registry secret

names as an array↪→

@param global.storageClass Global StorageClass for Persistent
Volume(s)↪→

##
global:

imageRegistry: ""
E.g.
imagePullSecrets:
- myRegistryKeySecretName
##
imagePullSecrets: []
storageClass: ""

@section Common parameters

87

Appendix A

@param kubeVersion Override Kubernetes version
##
kubeVersion: ""
@param nameOverride String to partially override

common.names.fullname↪→

##
nameOverride: ""
@param fullnameOverride String to fully override

common.names.fullname↪→

##
fullnameOverride: ""
@param commonLabels Labels to add to all deployed objects
##
commonLabels: {}
@param commonAnnotations Annotations to add to all deployed

objects↪→

##
commonAnnotations: {}
@param clusterDomain Kubernetes cluster domain name
##
clusterDomain: cluster.local
@param extraDeploy Array of extra objects to deploy with the

release↪→

##
extraDeploy: []

image:
registry: registry.gitlab.com
repository: <your-private-repo>
tag: latest
Specify a imagePullPolicy
Defaults to 'Always' if image tag is 'latest', else set to

'IfNotPresent'↪→

ref: http://kubernetes.io/docs/user-guide/images/
#pre-pulling-images↪→

##
pullPolicy: Always
Optionally specify an array of imagePullSecrets.
Secrets must be manually created in the namespace.
ref:

https://kubernetes.io/docs/tasks/configure-pod-container/
pull-image-private-registry/

↪→

↪→

e.g:
pullSecrets:

- <your-secret-name>
##
##pullSecrets: []

88

Network Topology and Configurations

Enable debug mode
##
debug: false

name: ueransim-ues

count: 1
Change initialMSISDN if you want to have different UEs
initialMSISDN: '0000000001'
mcc: '999'
mnc: '70'
key: 465B5CE8B199B49FAA5F0A2EE238A6BC
op: E8ED289DEBA952E4283B54E88E6183CA
opType: OPC
gnb:

hostname: ueransim-gnb
sst: 1
sd: "0x111111"
apnList:

- type: 'IPv4'
apn: 'internet'
slice:

sst: 1
sd: "0x111111"

emergency: false

@param command Override default container command (useful when
using custom images)↪→

##
command: []
@param args Override default container args (useful when using

custom images)↪→

##
args: []

resources:
limits: {}
requests: {}

podSecurityContext:
enabled: false

containerSecurityContext:
enabled: false

podLabels: {}
podAnnotations: {}
affinity: {}
nodeSelector: {}
tolerations: []

89

Appendix A

You can deploy the user equipment within the Kubernetes cluster using the fol-
lowing command:

$ helm install <ue-name> ./ueransim-ues -n open5gs

Then, proceed to create two services of type "LoadBalancer," exposing ports 8080
and 502 for the web interface and Modbus port, respectively. Ensure to adjust
the selector in the Services folder to align with your user equipment name, as
demonstrated next:

app.kubernetes.io/instance = <ue-name>

A.2.9 Configuring the RaspberryPI

This Raspberry Pi will function as user equipment, responsible for forwarding
packages to the physical PLC within the 5G network.

If the "/etc/netplan/" directory is missing, install the "netplan.io" package. Then,
proceed to edit the configuration file within that directory. The provided config-
uration will establish a network interface in VLAN 223 and assign a private static
IP for communication with the physical PLC.

source /etc/netplan/50-cloud-init.yaml
network:

version: 2
renderer: networkd
ethernets:

eth0:
dhcp4: no
addresses: [<Private IP address (same sub-network as

physical PLC)>/24]↪→

vlan.223:
id: 223
link: eth0
dhcp4: yes

Execute the subsequent commands to apply the network configurations to the
Raspberry Pi.

$ sudo netplan generate
$ sudo netplan apply

Execute the following commands to compile and install UERANSIM on the Rasp-
berry Pi.

90

Network Topology and Configurations

$ sudo apt update
$ sudo apt upgrade
$ sudo apt install make
$ sudo apt install gcc
$ sudo apt install g++
$ sudo apt install libsctp-dev lksctp-tools
$ sudo apt install iproute2
$ sudo snap install cmake --classic
$ cd ~/UERANSIM
$ make
$ cp /UERANSIM/build/* /usr/local/bin/

Create a configuration file with the following content, ensuring to replace the last
ten digits of the "supi" with the unique identifier of the user equipment in the 5G
core.

source ue.yaml

IMSI number of the UE. IMSI = [MCC|MNC|MSISDN] (In total 15 or
16 digits)↪→

Change if u want to have different UEs
supi: 'imsi-999700000000005'
mcc: '999'
mnc: '70'

Permanent subscription key
key: '465B5CE8B199B49FAA5F0A2EE238A6BC'
Operator code (OP or OPC) of the UE
op: 'E8ED289DEBA952E4283B54E88E6183CA'
This value specifies the OP type and it can be either 'OP' or

'OPC'↪→

opType: 'OPC'
Authentication Management Field (AMF) value
amf: '8000'
IMEI number of the device. It is used if no SUPI is provided
imei: '356938035643803'
IMEISV number of the device. It is used if no SUPI and IMEI is

provided↪→

imeiSv: '4370816125816151'

List of gNB IP addresses for Radio Link Simulation
gnbSearchList:

- ${GNB_IP}

UAC Access Identities Configuration

91

Appendix A

uacAic:
mps: false
mcs: false

UAC Access Control Class
uacAcc:

normalClass: 0
class11: false
class12: false
class13: false
class14: false
class15: false

Initial PDU sessions to be established
sessions:

-
apn: internet
emergency: false
slice:

sd: "0x111111"
sst: 1

type: IPv4

Configured NSSAI for this UE by HPLMN
configured-nssai:

- sst: 1
sd: 0x111111

Default Configured NSSAI for this UE
default-nssai:

- sst: 1
sd: 0x111111

Supported encryption algorithms by this UE
integrity:

IA1: true
IA2: true
IA3: true

Supported integrity algorithms by this UE
ciphering:

EA1: true
EA2: true
EA3: true

Integrity protection maximum data rate for user plane
integrityMaxRate:

92

Network Topology and Configurations

uplink: 'full'
downlink: 'full'

The following commands are used to run the user equipment and configure packet
forwarding to the physical PLC. Make sure to refer to section A.1 for the necessary
IP addresses. You might need to install the "iptables" package to execute iptables
commands. The steps involve starting the user equipment as a background pro-
cess, enabling forwarding between network interfaces, adding the framed route
IP, and creating a route to the "uesimtun0" interface used for communication in
the 5G network. Additionally, the iptables commands are responsible for for-
warding PLC packets from the 5G network to the physical PLC.

$ nr-ue -c ue.yaml &
$ sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
$ ip addr add <Frame route IP>/24 dev uesimtun0
$ ip route add 10.45.0.0/24 dev uesimtun0
$ iptables -t nat -A PREROUTING -i uesimtun0 -p tcp --dport 502

-d <Frame route IP> -j DNAT --to <Private IP of physical
PLC>:502

↪→

↪→

$ iptables -t nat -A POSTROUTING -o eth0 -p tcp --dport 502 -j
SNAT --to-source <Private IP of RaspberryPI>↪→

A.2.10 Configuring the physical PLC (Schneider M221)

To access and configure the Schneider M221 physical PLC, you need to install the
software "EcoStruxure Machine Expert - Basic" [92]. Connect an Ethernet cable
from your computer to the physical PLC and switch your IP address to a static
one within the same subnetwork as the physical PLC. By doing so, you will be
able to configure, through the installed software, the physical PLC and modify
its IP to match the desired sub-network. Ensure that the sub-network aligns with
the private network of the Raspberry Pi.

To read the discrete input from the Schneider M221 physical PLC located at the
other user stations, utilize the following command. When you poll the discrete
input from the physical PLC, it will return 8 bits, even if most of the bits are
0. Remember to provide the framed route IP of the Raspberry Pi as part of the
command.

$ mbpoll <Framed route IP of the Raspberry Pi> -t1 -r 801

A.2.11 Configuring the hub-and-spoke scenario

Upon accessing the web interface of user equipment with openPLC installed, you
will find a tab labeled "Programs." These programs represent the logical processes
of the PLCs. The subsequent program is intended for implementation in the slave
PLCs. Essentially, it encompasses two holding registers: one named "slave1,"

93

Appendix A

initially set to 11, and another named "parvo." When the value of "slave1" exceeds
10, the value of the "parvo" register becomes 1. Conversely, if "slave1" is less or
equal to 10, the value of "parvo" is set to 0.

source program.st

PROGRAM program0
VAR

SWITCH AT %QX0.0 : BOOL;
END_VAR
VAR

setpoint : INT := 10;
GT2_OUT : BOOL;

END_VAR
VAR

SLAVE1 AT %QW150 : INT := 11;
PARVO AT %QW151 : INT;

END_VAR

GT2_OUT := GT(SLAVE1, setpoint);
SWITCH := GT2_OUT;
IF SWITCH=TRUE THEN

PARVO := 1;
ELSE

PARVO := 0;
END_IF;

END_PROGRAM

CONFIGURATION Config0

RESOURCE Res0 ON PLC
TASK task0(INTERVAL := T#20ms,PRIORITY := 0);
PROGRAM instance0 WITH task0 : program0;

END_RESOURCE
END_CONFIGURATION

The previous program will be executed on all the slave devices except for the
physical PLC, as it does not require one.

In the master device, you can execute the default blank program. Access the
"Slave Devices" tab in the master PLC web interface and add the slaves with
their framed-route IPs, the Modbus port (502), and for Holding Registers - Read
(%IW100), set the start address as 150 and size as 2, as this is where the regis-
ters from the program are located. However, this does not apply to the physical
PLC. For the physical PLC, set the framed-route IP of the Raspberry Pi, and the
Modbus port, and for Discrete Inputs (%IX100.0), set the start address to 1 with

94

Network Topology and Configurations

a size of 1. To read PLC registers, you can install a Modbus client as outlined in
Appendix B.6.

A.2.12 Configuring JSON to CSV Converter Script for Peak-Rate
Tests

The following script is designed to recursively search subdirectories for IPERF
data in JSON format and extract specific fields such as "sum_received_bytes,"
"sum_received_bps," "local_port," "start," "bytes_stream," and "bps_stream." It then
appends the data from all the JSON files into a single CSV file. To run the script,
you will need Python 3, the pip3 package manager, and the Pandas library in-
stalled on your system. When executing it, make sure to specify the directory
you want to search for IPERF data as an argument in the command.

source peakrate_jsontocsv.py

import pandas as pd
import json
import os
import sys

def process_file(filename):
with open(filename, 'r') as f:

data = json.load(f)

Extracting the required fields
sum_received_bytes = data['end']['sum_received']['bytes']
sum_received_bps =

data['end']['sum_received']['bits_per_second']↪→

local_port = data['start']['connected'][0]['local_port']

Create a list to hold rows
rows = []

for interval in data['intervals']:
start = interval['streams'][0]['start']
bytes_stream = interval['streams'][0]['bytes']
bps_stream = interval['streams'][0]['bits_per_second']

rows.append([sum_received_bytes, sum_received_bps,
local_port, start, bytes_stream, bps_stream])↪→

return pd.DataFrame(rows, columns=['sum_received_bytes',
'sum_received_bps', 'local_port', 'start',
'bytes_stream', 'bps_stream'])

↪→

↪→

95

Appendix A

Process the files and concatenate them into one DataFrame
dfs = []

Get the directory path from command-line arguments
if len(sys.argv) < 2:

print("Please provide the directory path as an argument.")
sys.exit()

base_directory = sys.argv[1]

Walk through each directory and its subdirectories
for dirpath, dirnames, filenames in os.walk(base_directory):

for file in filenames:
if file.endswith('.json'): # Process only JSON files

dfs.append(process_file(os.path.join(dirpath, file)))

df = pd.concat(dfs, ignore_index=True)

Print the DataFrame
print(df)

Save the DataFrame to a CSV in the provided base directory
df.to_csv(os.path.join(base_directory, 'output.csv'),

index=False)↪→

A.2.13 Configuring the Scenario for Fixed-Rate Tests

First, duplicate the original script named "open5gs-dbctl" from the open5gs repos-
itory, which can be found at [93]. Next, append the following instructions to the
script. These instructions are designed to iteratively incorporate user equipment
subscribers into the database. To execute these instructions, you should invoke
the script with specific arguments. The first argument should be "add_ues_with_slice,"
followed by the starting and ending values for the IMSI range as the second and
third arguments, respectively. The script will then iterate through this specified
range, adding subscribers to the database.

if ["$1" = "add_ues_with_slice"]; then
if ["$#" -eq 3]; then

IMSI_start=$2
IMSI_finish=$3
KI="465B5CE8 B199B49F AA5F0A2E E238A6BC"
OPC="E8ED289D EBA952E4 283B54E8 8E6183CA"
APN="internet"
SST=1
SD="0x111111"

96

Network Topology and Configurations

while [$IMSI_start -le $IMSI_finish]
do

mongosh --eval "db.subscribers.insertOne(
{

\"_id\": new ObjectId(),
\"schema_version\": NumberInt(1),
\"imsi\": \"$IMSI_start\",
\"msisdn\": [],
\"imeisv\": [],
\"mme_host\": [],
\"mm_realm\": [],
\"purge_flag\": [],
\"slice\":[
{

\"sst\": NumberInt($SST),
\"sd\": \"$SD\",
\"default_indicator\": true,
\"session\": [
{

\"name\" : \"$APN\",
\"type\" : NumberInt(3),
\"qos\" :
{ \"index\": NumberInt(9),

\"arp\":
{

\"priority_level\" :
NumberInt(8),↪→

\"pre_emption_capability\": NumberInt(1),↪→

\"pre_emption_vulnerability\": NumberInt(2)↪→

}
},
\"ambr\":
{

\"downlink\":
{

\"value\":
NumberInt(1000000000),↪→

\"unit\": NumberInt(0)
},
\"uplink\":
{

\"value\":
NumberInt(1000000000),↪→

\"unit\": NumberInt(0)
}

97

Appendix A

},
\"pcc_rule\": [],
\"_id\": new ObjectId(),

}],
\"_id\": new ObjectId(),

}],
\"security\":
{

\"k\" : \"$KI\",
\"op\" : null,
\"opc\" : \"$OPC\",
\"amf\" : \"8000\",

},
\"ambr\" :
{

\"downlink\" : { \"value\":
NumberInt(1000000000), \"unit\": NumberInt(0)},↪→

\"uplink\" : { \"value\":
NumberInt(1000000000), \"unit\": NumberInt(0)}↪→

},
\"access_restriction_data\": 32,
\"network_access_mode\": 0,
\"subscribed_rau_tau_timer\": 12,
\"__v\": 0

}
);" $DB_URI

IMSI_start=$((IMSI_start+1)) #
increments $IMSI_start↪→

done
exit $?

fi

echo "open5gs-dbctl: incorrect number of args, format is
\"open5gs-dbctl add_ue_with_slice imsi key opc apn sst
sd\""

↪→

↪→

exit 1
fi

Next, access the Rancher server and navigate to the "Deployment" category. Launch
the shell of the "open5gs-populate" deployment. Within this shell, locate the
"open5gs-dbctl" file located in the "usr/local/bin/" path, and replace it with your
modified script that includes the instructions for iteratively adding user equip-
ment subscribers to the database. Once you’ve made this replacement, you can
execute the script from the command line by invoking "open5gs-dbctl" with the
necessary arguments.

Next, you will need to clone the "ueransim-ues" folder from the openverso charts
[73] and proceed to edit the "values.yaml" file. This file contains the variables
necessary for configuring the user equipments within a single container. The re-

98

Network Topology and Configurations

quired changes include updating the "count" to match the number of user equip-
ments and editing "initialMSISDN" to correspond to the initial identifier of the
first UE, which must match the subscriptions in open5gs database.

source ueransim-ues/values.yaml
@section Global parameters
Global Docker image parameters
Please, note that this will override the image parameters,

including dependencies, configured to use the global value↪→

Current available global Docker image parameters:
imageRegistry, imagePullSecrets and storageClass↪→

@param global.imageRegistry Global Docker image registry
@param global.imagePullSecrets Global Docker registry secret

names as an array↪→

@param global.storageClass Global StorageClass for Persistent
Volume(s)↪→

##
global:

imageRegistry: ""
E.g.
imagePullSecrets:
- myRegistryKeySecretName
##
imagePullSecrets: []
storageClass: ""

@section Common parameters

@param kubeVersion Override Kubernetes version
##
kubeVersion: ""
@param nameOverride String to partially override

common.names.fullname↪→

##
nameOverride: ""
@param fullnameOverride String to fully override

common.names.fullname↪→

##
fullnameOverride: ""
@param commonLabels Labels to add to all deployed objects
##
commonLabels: {}
@param commonAnnotations Annotations to add to all deployed

objects↪→

##
commonAnnotations: {}

99

Appendix A

@param clusterDomain Kubernetes cluster domain name
##
clusterDomain: cluster.local
@param extraDeploy Array of extra objects to deploy with the

release↪→

##
extraDeploy: []

image:
registry: docker.io
repository: openverso/ueransim
tag: 3.2.6
Specify a imagePullPolicy
Defaults to 'Always' if image tag is 'latest', else set to

'IfNotPresent'↪→

ref:
http://kubernetes.io/docs/user-guide/images/#pre-pulling-images↪→

##
pullPolicy: Always
Optionally specify an array of imagePullSecrets.
Secrets must be manually created in the namespace.
e.g:
pullSecrets:
- myRegistryKeySecretName
##
pullSecrets: []
Enable debug mode
##
debug: false

name: ueransim-ues

count: <number-ues>
initialMSISDN: '0000000001' # Edit here too
mcc: '999'
mnc: '70'
key: 465B5CE8B199B49FAA5F0A2EE238A6BC
op: E8ED289DEBA952E4283B54E88E6183CA
opType: OPC
gnb:

hostname: ueransim-gnb
sst: 1
sd: "0x111111"
apnList:

- type: 'IPv4'
apn: 'internet'
slice:

100

Network Topology and Configurations

sst: 1
sd: "0x111111"

emergency: false

@param command Override default container command (useful when
using custom images)↪→

##
command: []
@param args Override default container args (useful when using

custom images)↪→

##
args: []

resources:
limits: {}
requests: {}

podSecurityContext:
enabled: false

containerSecurityContext:
enabled: false

podLabels: {}
podAnnotations: {}
affinity: {}
nodeSelector: {}
tolerations: []

You can deploy the user equipments within the Kubernetes cluster using the fol-
lowing command:

$ helm install <name> ./ueransim-ues -n open5gs

To simultaneously deploy all the IPERF servers within the virtual machine ded-
icated to performance tests, we have developed the subsequent script that lever-
ages sub-processes to execute parallel operations. This script provides a real-time
display of the number of running processes. However, before using it, it’s essen-
tial to install the ’psutil’ package.

The script requires two arguments: the first argument specifies the number of
processes to create, and the second argument indicates the number of tests to
run. For each server, a port is associated iteratively, and the script generates di-
rectories corresponding to user equipment identifiers. The first user equipment is
associated with port 5001, and subsequent ports are assigned based on the num-
ber of user equipments.

IPERF will allocate test result files to the respective directories, each correspond-
ing to a user equipment. When a test concludes, the associated process termi-
nates. If additional tests remain to be conducted, a new batch of processes is
immediately created. This approach guarantees an efficient and organized distri-
bution of test files among the designated directories.

101

Appendix A

source iperf-servers.py

import subprocess
import sys
import os
import psutil
import threading
import time

def get_next_test_number():
ue1_dir = "ue-1"
if not os.path.exists(ue1_dir):

return 1
files = os.listdir(ue1_dir)
test_numbers = [int(file.replace("test", "").replace(".json",

"")) for file in files if file.startswith("test") and
file.endswith(".json")]

↪→

↪→

if not test_numbers:
return 1

else:
return max(test_numbers) + 1

def launch_iperf3_servers(num_processes):
BASE_PORT = 5001
test_number = get_next_test_number()
processes = []
for i in range(num_processes):

port = BASE_PORT + i
output_file = f"ue-{i+1}/test{test_number}.json"
os.makedirs(f"ue-{i+1}", exist_ok=True)
cmd = ["iperf3", "-s", "--port", str(port), "--json",

"--logfile", output_file, "-1"]↪→

process = subprocess.Popen(cmd)
processes.append(process)

Start the status display thread
status_thread = threading.Thread(target=display_status,

daemon=True)↪→

status_thread.start()

for process in processes:
process.wait()

Wait for the status display thread to finish
status_thread.join()

def count_iperf3_processes():

102

Network Topology and Configurations

return sum(1 for proc in psutil.process_iter() if "iperf3" in
proc.name())↪→

def display_status():
while count_iperf3_processes() > 0:

num_processes = count_iperf3_processes()
sys.stdout.write(f"\rNumber of iperf3 processes running:

{num_processes}")↪→

sys.stdout.flush()
time.sleep(1)

if __name__=='__main__':
if len(sys.argv) < 3:

print("Usage: python script_name.py <number_of_processes>
<additional_times_to_run>")↪→

sys.exit()

num_processes = int(sys.argv[1])
additional_times_to_run = int(sys.argv[2])

if num_processes not in [1, 5, 14, 15, 20, 30, 50]:
print("Error: Number of processes must be one of 1, 5,

14, 15, 20, 30 or 50.")↪→

sys.exit()

Run the script the specified additional number of times
for _ in range(additional_times_to_run):

launch_iperf3_servers(num_processes)

The next script streamlines the execution of multiple IPERF3 clients for network
performance assessment. Users can tailor test parameters, including bitrate (first
argument), the number of clients (second argument), and the number of test runs
(third argument). Additionally, it offers real-time progress tracking of ongoing
tests. The script systematically allocates 5G network interfaces to ports, ensur-
ing consistency with specific user equipment. After the initial test and process
completion, it incorporates a 5-minute pause before launching the subsequent
batch of processes for further testing. This delay accounts for buffering and the
connections associated with the interfaces.

source iperf-clients.py

import sys
import time
import subprocess
import threading
import psutil # Required package installation

def get_uesimtun_ips():

103

Appendix A

List all uesimtun interfaces
result = subprocess.check_output(["ip", "-4", "addr", "show",

"type", "tun"]).decode("utf-8")↪→

ips = [line.strip() for line in result.split("\n") if "inet "
in line and "uesimtun" in line]↪→

if not ips:
raise ValueError("No active uesimtun interface found!")

Extract IPs
ip_addresses = [ip_line.split(" ")[1].split("/")[0] for

ip_line in ips]↪→

return ip_addresses

def count_iperf3_processes():
return sum(1 for proc in psutil.process_iter() if "iperf3" in

proc.name())↪→

def display_status():
while count_iperf3_processes() > 0:

num_processes = count_iperf3_processes()
sys.stdout.write(f"\rNumber of iperf3 clients running:

{num_processes}")↪→

sys.stdout.flush()
time.sleep(1)

def run_client(server_ip, start_port, bitrate, num_clients):
ip_addresses = get_uesimtun_ips()
processes = []

if len(ip_addresses) < num_clients:
raise ValueError(f"Only {len(ip_addresses)} uesimtun

interfaces found, but {num_clients} clients
requested!")

↪→

↪→

for idx in range(num_clients):
Calculate port
port = start_port + idx

Running the iperf3 client
cmd = [

"iperf3",
"-B", ip_addresses[idx],
"-c", server_ip,
"-p", str(port),
"-u",

104

Network Topology and Configurations

"-b", f"{bitrate}M",
"-t", "300",
"-4",

]

process = subprocess.Popen(cmd)
processes.append(process)

Start the status display thread
status_thread = threading.Thread(target=display_status,

daemon=True)↪→

status_thread.start()

Wait for all clients to finish
for process in processes:

process.wait()

Wait for the status display thread to finish
status_thread.join()

Wait for 300 seconds before starting the next run
time.sleep(300)

if __name__=='__main__':
if len(sys.argv) < 4:

print("Usage: python client_script.py <bitrate>
<num_clients> <times_to_run>")↪→

sys.exit(1)

bitrate = int(sys.argv[1])
num_clients = int(sys.argv[2])
times_to_run = int(sys.argv[3])

if num_clients > 50:
print("Maximum number of clients is 50.")
sys.exit(1)

Run the client multiple times
for _ in range(times_to_run):

run_client("172.27.223.228", 5001, bitrate, num_clients)

The following command is employed to monitor the resource utilization of var-
ious 5G functions, including the gNB and the container that comprises the user
equipments. It should be executed on one of the kubernetes master nodes.

$ watch kubectl top pods -n open5gs

The following script has been designed to perform a recursive search within the

105

Appendix A

user equipments directories to locate tests stored in JSON format. It extracts spe-
cific fields from these files, including "local_port," "start," "bytes_stream," "bps_stream,"
"jitter_ms," "lost_packets," and "lost_packet_percent." Subsequently, it consoli-
dates the data from all these JSON files into a single CSV file. To execute this
script, ensure that you have Python 3, the pip3 package manager, and the Pandas
library installed on your system. When running the script, specify the directory
you wish to search for IPERF data by providing it as an argument in the com-
mand. Additionally, the script initiates by verifying the JSON format of the files,
and if any errors are detected, it omits those particular files from processing.

source fixedrate_jsontocsv.py

import pandas as pd
import json
import os
import sys

def process_file(filename):
try:

with open(filename, 'r') as f:
data = json.load(f)

except json.JSONDecodeError:
print(f"Skipping {filename} - Invalid JSON data")
return pd.DataFrame(columns=['local_port', 'start',

'bytes_stream', 'bps_stream', 'jitter_ms',
'lost_packets', 'lost_packet_percent'])

↪→

↪→

if data['intervals'] == []:
return pd.DataFrame(columns=['local_port', 'start',

'bytes_stream', 'bps_stream', 'jitter_ms',
'lost_packets', 'lost_packet_percent'])

↪→

↪→

Extracting the required fields
sum_received_bytes = data['end']['sum_received']['bytes']
local_port = data['start']['connected'][0]['local_port']

Create a list to hold rows
rows = []

for interval in data['intervals']:
start = interval['streams'][0]['start']
bytes_stream = interval['streams'][0]['bytes']
bps_stream = interval['streams'][0]['bits_per_second']
jitter_ms = interval['streams'][0]['jitter_ms']
lost_packets = interval['streams'][0]['lost_packets']

106

Network Topology and Configurations

lost_packet_percent =
interval['streams'][0]['lost_percent']↪→

rows.append([local_port, start, bytes_stream, bps_stream,
jitter_ms, lost_packets, lost_packet_percent])↪→

return pd.DataFrame(rows, columns=['local_port', 'start',
'bytes_stream', 'bps_stream', 'jitter_ms',
'lost_packets', 'lost_packet_percent'])

↪→

↪→

Process the files and concatenate them into one DataFrame
dfs = []

Get the directory path from command-line arguments
if len(sys.argv) < 2:

print("Please provide the directory path as an argument.")
sys.exit()

base_directory = sys.argv[1]

Walk through each directory and its subdirectories
for dirpath, dirnames, filenames in os.walk(base_directory):

for file in filenames:
if file.endswith('.json'): # Process only JSON files

dfs.append(process_file(os.path.join(dirpath, file)))

df = pd.concat(dfs, ignore_index=True)

Print the DataFrame
print(df)

Save the DataFrame to a CSV in the provided base directory
df.to_csv(os.path.join(base_directory, 'output.csv'),

index=False)↪→

107

Appendix B

Access Manual

In this appendix, we present an instruction manual on how to access our testbed.
Initially, a user must have a Virtual Private Network (VPN) connection to the
CISUC data center. The links and credentials for these technologies can be found
in Appendix C.

B.1 Accessing the Rancher Server for Cluster Man-
agement

To control the cluster from a Graphical User Interface (GUI), you must access the
rancher server and enter your credentials. Once logged in, you can access the
local cluster and manage nodes, pods, services, and other elements.

B.2 To access Simu5G

Install a VNC viewer, for example, Real VNC [94]. Then enter the link and cre-
dentials given in Appendix C.

108

Access Manual

Figure B.1: VNC Viewer interface connecting to the Simu5g container.

Then run on the terminal:

$ /omnetpp-6.0pre11/bin/omnetpp

Finally, run omnetpp.ini that is inside /omnetpp-6.0pre11/samples/simu5g/simulations/demo.

Figure B.2: Simu5g runtime interface for 5G network simulation.

For a detailed simulation of Simu5G look here [95].

109

Appendix B

B.3 Accessing the Open5GS Web Interface

In Figure B.3, if you click on the button in the bottom right corner, you will be able
to add more UE subscribers. This is necessary in order to connect the UE to the
Access and Mobility Management Function (AMF) in the 5GC. By adding sub-
scribers through this interface, you can ensure that the UE is properly connected
to the 5G network.

Figure B.3: Open5GS Web User Interface (UI).

B.4 To access the UE Container

To access the pods, click on the "local" cluster and search for "Pods", or follow the
link provided in Appendix C. In the pods, go to the "open5gs" namespace and
click the three blue dots on the right. From there, select "Run Shell" to access the
pods as shown in the figure below.

Figure B.4: UE pod.

110

Access Manual

And a terminal should appear as in the figure B.5:

Figure B.5: UE container terminal.

This terminal will allow you to view the IP address of the "uesimtun0" network
interface, which is connected to the 5GC.

B.5 Accessing the OpenPLC Web Interface

Figure B.6 illustrates a master device synchronizing certain registers with a slave
device. One important configuration step when adding a slave device is to enter
the IP address of the user equipment corresponding to the "uesimtun0" network
interface. This ensures that the master device can properly communicate with the
slave device on the 5G network.

111

Appendix B

Figure B.6: Master OpenPLC device.

B.6 To access the registers of PLC Instances

First, you will need to install a Modbus Transmission Control Protocol (TCP)
client for example Modbus Poll [96]. It is important to note that the port you
will need to use is 502. The links to the master and slave devices can be found in
Appendix C.

When you modify the holding register at address 150 (%QW150) on a slave de-
vice, the corresponding change will be reflected at address 150 (%QW150) on the
master device. In the case of discrete inputs, a change made to the register at
address 1 in the slave device will be mirrored at address 801 [97] in the master
device.

In Figure B.7, a reading scenario is depicted for holding registers (Function Code
3) in the master device, specifically for the ten registers starting from address 150.

Figure B.7: Modbus poll read scenario for the slave device.

112

Appendix C

Links and credentials

This appendix presents the links and credentials for the testbed, which may be
subject to change. It also provides links to the applications so that users can
connect to them via a web browser or other tool.

Title Link User Password

Rancher Server https://172.27.
223.51/dashboard/

admin admin12345678

Simu5G 172.27.223.52:5900 - power

Open5GS web
UI

http://172.27.223.
53:3000/

admin 1423

OpenPLC mas-
ter UI

http://172.27.223.
54:8080/

openplc openplc

OpenPLC slave
1 UI

http://172.27.223.
55:8080/

openplc openplc

OpenPLC slave
2 UI

http://172.27.223.
56:8080/

openplc openplc

OpenPLC slave
3 UI

http://172.27.223.
57:8080/

openplc openplc

Raspberry PI
terminal (user
equipment)

http://172.27.223.
20

power-pi banana

Continues on the next page

113

https://172.27.223.51/dashboard/
https://172.27.223.51/dashboard/
http://172.27.223.53:3000/
http://172.27.223.53:3000/
http://172.27.223.54:8080/
http://172.27.223.54:8080/
http://172.27.223.55:8080/
http://172.27.223.55:8080/
http://172.27.223.56:8080/
http://172.27.223.56:8080/
http://172.27.223.57:8080/
http://172.27.223.57:8080/
http://172.27.223.20
http://172.27.223.20

Appendix C

Title Link User Password

OpenPLC mas-
ter Modbus (5G
Network)

192.168.20.100 with
port 502

- -

OpenPLC mas-
ter Modbus (Ex-
ternal Access)

172.27.223.54 with
port 502

- -

OpenPLC slave
1 Modbus (5G
Network)

192.168.20.101 with
port 502

- -

OpenPLC slave
1 Modbus (Ex-
ternal Access)

172.27.223.55 with
port 502

- -

OpenPLC slave
2 Modbus (5G
Network)

192.168.20.103 with
port 502

- -

OpenPLC slave
2 Modbus (Ex-
ternal Access)

172.27.223.56 with
port 502

- -

OpenPLC slave
3 Modbus (5G
Network)

192.168.20.104 with
port 502

- -

OpenPLC slave
3 Modbus (Ex-
ternal Access)

172.27.223.57 with
port 502

- -

Physical PLC
slave 4 Modbus
(5G Network)

192.168.20.105 with
port 502

- -

Continues on the next page

114

Links and credentials

Title Link User Password

Gitlab account https://gitlab.com powerdei Password: Ba
nanaGuest3#
and To
ken: glpat-
PJTpwaomx
rKZbc4MBueE

Table C.1: Login information for various systems.

115

	Introduction
	Motivations
	Context
	Objectives and Contributions
	Work Plan
	Risks
	Document Structure

	Background Knowledge
	Kubernetes
	Programmable Logic Controller
	Modbus
	Industrial Internet of Things
	Chapter Wrap-up

	State of the Art
	5G System Overview
	5G Architecture
	5G Verticals
	5G Local Area Networks
	State of the Art Conclusions

	Use Case
	Definition
	Requirements
	Use Case Architecture

	Testbed Scenario
	Technologies
	Resource Managament
	Cluster functionalities
	5G Network
	Virtual Programmable Logic Controllers software

	Final Architecture
	Implementation
	Chapter Wrap-up

	Validation of the Use Case
	Functional Evaluation
	Performance Evaluation
	Peak rate Tests
	Fixed rate Tests

	Conclusions and Future Work
	Appendices
	Appendix Network Topology and Configurations
	Network topology
	Configurations
	Tainting a master node
	Installing Rancher server
	Installing OpenEBS
	Installing and configuring Open5GS
	Installing the New Radio (gnb) from UERANSIM
	Installing and configuring KEDA
	Installing Simu5G
	Installing and configuring OpenPLC with UEs
	Configuring the RaspberryPI
	Configuring the physical PLC (Schneider M221)
	Configuring the hub-and-spoke scenario
	Configuring JSON to CSV Converter Script for Peak-Rate Tests
	Configuring the Scenario for Fixed-Rate Tests

	Appendix Access Manual
	Accessing the Rancher Server for Cluster Management
	To access Simu5G
	Accessing the Open5GS Web Interface
	To access the UE Container
	Accessing the OpenPLC Web Interface
	To access the registers of PLC Instances

	Appendix Links and credentials

