

Diogo Jordão Filipe

REAL-TIME EVENTS DASHBOARD FOR

HOSPITALS

Dissertation in the context of the Master in Informatics Engineering, specialization

in Software Engineering, advised by Professor Tiago Filipe dos

Santos Martins and presented to the Department of Informatics Engineering of the

Faculty of Sciences and Technology of the University of Coimbra.

July 2023

R
E

A
L
-T

IM
E

 E
V

E
N

T
S

 D
A

S
H

B
O

A
R

D
 F

O
R

 H
O

S
P

IT
A

L
S

D
io

g
o

 J
o

rd
ão

 F
il

ip
e

DEPARTMENT OF INFORMATICS ENGINEERING

Diogo Jordão Filipe

Real-time events dashboard for
hospitals

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Professor Tiago Filipe dos

Santos Martins and presented to the Department of Informatics Engineering of
the Faculty of Sciences and Technology of the University of Coimbra.

July 2023

Acknowledgements

I would like to start by thanking both of my dissertation advisors, Tiago Martins
from DEI and Fernando Tinoco from MedicineOne, who without fail provided
me with guidance and were always available to help throughout both semesters.
The work described in this report would not be possible without them.

To all the people I interacted with at MedicineOne who were more than welcom-
ing and eager to support me with my work.

I also want to express my gratitude to all of my DEI colleagues and friends, es-
pecially Bruno Gandres, Henrique Fonseca, José Reis, José Bugalho, José Gomes,
Nuno Silva, and Pedro Marques, for all the enjoyable times and advice.

A special thank you to Ana Fernandes, my girlfriend, for her unwavering support
and willingness to assist me during my dissertation. I appreciate you being there
for me at all times.

Finally, I would like to thank my mother, Sandra Jordão, and sister, Dulce Filipe,
for their loving support and encouragement.

v

Abstract

Due to the rise in digital data collection, data visualization tools like dashboards
are becoming more and more important in a variety of industries to provide
short-, medium-, and long-term decision-making support. Making these tools
effective is challenging and essential for getting the most out of the vast amounts
of data that are currently available, and this effectiveness is even more required
in contexts of a critical nature, such as healthcare. The objective of this work is
to implement a dashboard for the medical environment that can be customized
for different institutions and hospital departments and is capable of consistently
delivering real-time information. Key design principles and case studies were
examined in published dashboard research, as well as technological alternatives,
which were analyzed and compared to determine the best approach to implement
the project. A web application built with the React library that communicates in
real-time with the Azure SignalR Service was the chosen approach. The solution
is integrated with an already existing system, from which it obtains the configura-
tion and clinical information to display it in the designated fields with the desig-
nated appearance. This system belongs to a healthcare software company named
MedicineOne, where this internship also took place. Testing was performed on
the final product to ensure its reliability, as well as validation through acceptance
testing, which deemed that the project met the requirements. Steps are now being
taken internally within the company to conduct a pilot of the product with one
of their partners and move towards its commercialization.

Keywords

Medical dashboard, Real-time information, Data visualization, Decision-making,
User Interface (UI), Application Programming Interface (API).

vii

Resumo

Devido ao crescimento da recolha de dados, ferramentas de visualização de da-
dos como dashboards estão a tornar-se cada vez mais importantes numa variedade
de indústrias para fornecer apoio à tomada de decisão a curto, médio, e longo
prazo. Tornar estas ferramentas eficazes é desafiante e essencial para obter o máx-
imo proveito das grandes quantidades de dados atualmente disponíveis, e esta
eficácia é ainda mais requerida em contextos de natureza crítica, como o forneci-
mento de cuidados de saúde. O objetivo deste trabalho é implementar uma dash-
board para o ambiente médico que possa ser configurada para diferentes institu-
ições e departamentos hospitalares e que seja capaz de fornecer consistentemente
informação em tempo real. Princípios de design chave e casos de estudo de pub-
licações de investigação de dashboards foram examinados, bem como alternativas
tecnológicas, que foram analisadas e comparadas para determinar a melhor abor-
dagem possível para a implementação do projeto. Uma aplicação web construída
com a biblioteca React que comunica em tempo real com o Azure SignalR Service
foi a abordagem escolhida. A solução foi integrada com um sistema já existente
por onde obtém a configuração e a informação clínica para a exibir com os campos
designados com a aparência designada. Este sistema pertence a uma empresa de
software clínico chamada MedicineOne, onde este estágio também decorreu. Foram
realizados testes ao produto final para assegurar a sua confiabilidade, bem como
validação através de testes de aceitação, que determinaram que o projeto foi ao
encontro dos requisitos. Estão a ser tomados passos internamente na empresa
para realizar um piloto do produto com um dos seus parceiros e mover-se em
direção à sua comercialização.

Palavras-Chave

Dashboard médica, Informação em tempo real, Visualização de dados, Tomada de
decisão, Interface de utilizador, Interface de programação de aplicações

ix

Contents

1 Introduction 1
1.1 Framing . 1
1.2 Objectives . 1
1.3 Document structure . 2

2 State-of-the-art 5
2.1 Dashboard design . 5

2.1.1 Choosing information . 5
2.1.2 Choosing visualization . 6

2.2 Case studies . 7
2.2.1 Commercial solutions . 7
2.2.2 Research articles . 10

3 Technologies analysis 17
3.1 Desktop vs. Web . 17
3.2 Desktop technologies . 18

3.2.1 Windows Presentation Foundation 18
3.2.2 Multi-platform Application User Interface 19
3.2.3 Desktop technologies comparison 20

3.3 Web technologies . 20
3.3.1 React . 21
3.3.2 Angular . 21
3.3.3 Vue.js . 23
3.3.4 Web technologies comparison 24
3.3.5 D3.js . 25

3.4 Application communication . 25
3.4.1 Azure SignalR Service . 26
3.4.2 Firebase Cloud Messaging . 26
3.4.3 Amazon Simple Notification Service 27
3.4.4 Application communication technologies comparison 27

3.5 Technological decisions . 28

4 System specification 31
4.1 Requirements and use cases . 31
4.2 Architecture . 34

4.2.1 Configuration schema and dashboard data 35
4.2.2 API description . 39

4.3 UI design specification . 42

xi

5 Methodology & Planning 49
5.1 Methodology . 49

5.1.1 Deviancies . 51
5.2 Planning . 51

5.2.1 Deviancies . 52

6 Implementation 53
6.1 API . 53

6.1.1 Dashboard configuration endpoints 54
6.1.2 Dashboard data endpoints . 55

6.2 Web application . 56
6.2.1 Project setup . 56
6.2.2 Development . 57

6.3 Azure SignalR Service . 61
6.4 Result . 65

7 Testing 73
7.1 API testing . 73
7.2 Dashboard configuration testing . 74
7.3 Real-time notifications testing . 75
7.4 Acceptance testing . 75

8 Conclusion 77

Appendix A Endpoint tests 87

Appendix B Configuration tests 95

Appendix C Real-time notifications tests 101

Appendix D Acceptance tests 103

xii

Acronyms

API Application Programming Interface.

BCL Base Class Library.

CQRS Command Query Responsibility Segregation.

CSS Cascading Style Sheets.

DDD Domain-Driven Design.

DOM Document Object Model.

EHR Electronic Health Record.

FCM Firebase Cloud Messaging.

FIFO First In First Out.

GQM Goal-Question-Metric.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

IDE Integrated Development Environment.

JSX JavaScript XML.

JWT JSON Web Token.

KPI Key Performance Indicator.

MAUI Multi-platform Application User Interface.

npm Node Package Manager.

ORM Object-Relational Mapping.

REST Representational State Transfer.

RGB Red-Blue-Green.

RMI Remote Method Invocation.

SDK Software Development Kit.

xiii

SLA Service Level Agreement.

SNS Simple Notification Service.

SSE Server-Sent Events.

SVG Scalable Vector Graphics.

UI User Interface.

WPF Windows Presentation Foundation.

XAML Extensible Application Markup Language.

xiv

List of Figures

2.1 A Goal-Question-Metric (GQM) model. 6
2.2 ABELMed’s Physician Dashboard Appointments Screen [1]. 8
2.3 ABELMed’s Physician Dashboard Investigations Screen [1]. 8
2.4 ABELMed’s Physician Dashboard Patient Manager Screen [1]. . . . 9
2.5 ABELMed’s Physician Dashboard Tasks Screen [1]. 9
2.6 Cerner Advance dashboard [17] . 10

3.1 A high-level visual representation of the .NET Multi-platform Ap-
plication User Interface (MAUI) framework architecture. 20

3.2 A visual representation of React’s Document Object Model (DOM)
manipulation. The red circles on the virtual DOM represent altered
components that were discovered after comparing the two DOMs.
The orange circles on the browser’s DOM stand in for components
that had to be re-rendered as a result of changes to the virtual one. 22

3.3 A visual representation of data binding in Angular. A button click
on the template that activates a function on the class is an example
of event binding. A value in the template that is defined by a value
in the class is an example of property binding. Two-way binding
is the combination of both types. 23

3.4 A visual representation of reactivity in Vue.js. There is a watcher
for each component, which registers when properties are "touched"
during the render of the component by gathering them as depen-
dencies. The watcher is alerted if a property setter is later used,
which causes the component to re-render. 23

4.1 A visual representation of the system architecture. 35
4.2 Indicator data schema. 36
4.3 Patient list data schema. 37
4.4 Patient detail data schema. 37
4.5 The database schema for the dashboard configuration data. 38
4.6 A visual representation of the Onion Architecture in the Applica-

tion Programming Interface (API). The presentation layer is where
the API to be consumed is implemented; the persistence layer is
where database operations are implemented; the infrastructure layer
is where external code to the application is written; the application
layer is where the business logic resides; and finally in the center
is the modeled domain. 39

xv

4.7 A visual representation of the application flow in the MedicineOne
API. After a controller is invoked, it is determined whether the re-
quest modifies the state of the applications. If it does, a repository
accesses the database for the Command; after that, the repository
propagates the changes to the domain. If the state won’t change, a
Query is used to call the database directly. 41

4.8 An example of a request and response from a MedicineOne API
endpoint. 42

4.9 A mock-up of the dashboard main screen designed by MedicineOne. 46
4.10 A mock-up of the dashboard patient details screen designed by

MedicineOne. 47
4.11 The window on the MedicineOne system that generates the con-

figuration for the dashboard. 47

5.1 A visual representation of the Scrum Framework [60]. 51
5.2 The work plan for the first semester. 52
5.3 The work plan for the second semester. 52
5.4 The work done in the second semester. 52

6.1 An example request and response of the "GetDisplayStructure" end-
point in the Swagger User Interface (UI). 55

6.2 An example request and response of the "ListOrganizationsCon-
figurations" endpoint in the Swagger UI. 56

6.3 An example request and response of the "ListSectors" endpoint in
the Swagger UI. 57

6.4 An example request and response of the "ListMetrics" endpoint in
the Swagger UI. 58

6.5 An example request and response of the "ListPatients" endpoint in
the Swagger UI. 59

6.6 An example request and response of the "GetPatientDetail" end-
point in the Swagger UI. 60

6.7 The initial Vite project structure. 61
6.8 The components directory structure. 62
6.9 A visual representation of the application routing. 63
6.10 An example request and response of the "Negotiate" endpoint in

the Swagger UI. 64
6.11 A visual representation of the client negotiation process with the

Azure SignalR instance. 64
6.12 A screenshot of the settings page. 66
6.13 A screenshot of the patient list selection page for an inpatient unit

configuration. 67
6.14 A screenshot of the patient list selection page for an operating block

configuration. 67
6.15 A screenshot of the patient list selection page for an emergency

room configuration. 68
6.16 A screenshot of the patient list panel page for an inpatient unit

configuration. 68
6.17 A screenshot of the patient list panel page for an inpatient unit

configuration with a selected indicator filter. 69

xvi

List of Figures

6.18 A screenshot of the patient list panel page for an operating block
configuration. 69

6.19 A screenshot of the patient list panel page for an emergency room
configuration. 70

6.20 A screenshot of the patient list panel page for an inpatient unit
configuration with a selected patient. 70

6.21 A screenshot of the patient list panel page for an operating block
configuration with a selected patient. 71

6.22 A screenshot of the patient list panel page for an emergency room
configuration with a selected patient. 71

xvii

List of Tables

2.1 Case studies used for the analysis. * The dashboard from case
study 5 was continued and improved in case study 12. The case
study 10 contained three different dashboards (10.1, 10.2, 10.3 in
Table 2.2). 13

2.2 Classification of the case studies’ medical dashboards, based on
the design space in [58]. The "strategic", "tactical", and "opera-
tional" decision supports are denoted by Str, Tac, and Op, respec-
tively. The letters L, M, and H stand for "low", "medium", and
"high" levels of visual literacy, respectively. The letter Y indicates
that the factor was identified or claimed to be present in the arti-
cle, while the letter N indicates that the aspect was either explicitly
absent or not acknowledged by the authors. Limited denotes a
need for domain knowledge, but not to the extent that the average
user would be completely unable to use the dashboard. Almost
indicates that the data updates were nearly real-time, for instance
with a 15-minute delay. The symbol - represents the impossibility
of affirming whether there are or are not real-time updates in the
dashboard. For the clinical indicators, Stl, Pr, and Out were used
to represent their types: "structural", "process", and "outcome", re-
spectively. The title and reference of each case study are registered
in Table 2.1. * The dashboard from case study #5 was continued
and improved in case study #12. The case study #10 contained
three different dashboards (10.1, 10.2, 10.3). 14

3.1 A summary of each type of application’s advantages (A) and dis-
advantages (D) over each other. 18

3.2 Comparison of web technologies summarized. 25

3.3 The three services’ capacities for supporting various communica-
tion protocols and patterns. The letters Y and N indicate whether
or not the service can apply the method, whereas Limited indicates
that either the full method cannot be applied or that it can be ap-
plied but only when integrated with another service. 28

3.4 The limits of the three services. The symbol "-" states that no clear
information was found to fit the limit. In the Azure SignalR Ser-
vice a unit represents a sub-instance that processes messages, and
the value 99.95% for the Service Level Agreement (SLA) is for the
premium subscription. 28

xix

4.1 System requirements priotized with the MoSCoW method. The
letters M, S, C, and W stand for "Must have", "Should have", "Could
have", "Will not have", respectively. 32

4.2 Description of use case #1 - Set the application settings. 33
4.3 Description of use case #2 - Select a patient list. 33
4.4 Description of use case #3 - Apply a filter to the patient list. 33
4.5 Description of use case #4 - Open a patient’s detail. 34
4.6 Description of use case #5 - Navigate the application pages with

header buttons. 34
4.7 List of configurable properties of each dashboard component. . . . 46

7.1 Test #2, where the endpoint that returns the configuration data is
tested with an inexistent configuration. 74

7.2 Test case #103, where the application is tested for the correct appli-
cation of the patient list background colors and line height in the
Chromium browser. 74

7.3 Test case #151, where the application is tested for the correct course
of action when receiving a configuration update notification for the
configuration it is currently using. 75

7.4 Test case #158, where the application is tested for the correct course
of action when receiving a patient admission notification for its
displayed list. 75

A.1 List and results of the test cases run for the configuration endpoints. 88
A.1 List and results of the test cases run for the configuration endpoints. 89
A.2 List and results of the test cases run for the indicator data endpoint. 90
A.3 List and results of the test cases run for the patient data endpoint. . 91
A.4 List and results of the test cases run for the patient detail data end-

point. 92

B.1 List and results of the test cases run for the dashboard configuration. 96

C.1 List and results of the test cases run for the configuration update
notifications. 101

C.2 List and results of the test cases run for the patient admission noti-
fications. 101

C.3 List and results of the test cases run for the patient discharge and
patient update notifications. 102

D.1 List and results of the acceptance tests. 104

xx

Chapter 1

Introduction

With the aim of supporting decision-making and/or business performance, dash-
boards are a popular type of data visualization that is used in a variety of indus-
tries [4, 58]. The clinical and medical environment is one of these contexts where
dashboard usability has a strong foundation [24, 33]. This is a result of the grow-
ing integration of Electronic Health Records (EHRs), which gives medical per-
sonnel and hospital administration access to all available medical information
via a computer [35]. However, if it is not properly condensed in order to pro-
vide users with the precise information they require to make effective decisions,
it is essentially useless [12, 51, 57]. Due to their ability to visually summarize
complex information and enable comparison with predefined metrics and goals,
dashboards are used to address this problem. Real-time monitoring, data inter-
action, and other features can be useful in the healthcare setting as well and are
made possible by dashboards [58].

1.1 Framing

This dissertation is based on an internship at MedicineOne, Life Sciences Com-
puting, S.A., a company from Portugal that focuses on the development of medi-
cal software.

According to feedback provided to MedicineOne by hospitals using their prod-
ucts, there is a need to develop a dashboard that is entirely customizable in terms
of the data it presents and the form it takes. They need a tool for visual infor-
mation awareness, but it must be flexible enough to meet the requirements of the
various medical departments, as they have already encountered dashboards that
were unreasonably rigid in the information they displayed.

1.2 Objectives

The objective of this dissertation is to implement a prototype dashboard applica-
tion that can be used in different types of medical units, namely: inpatient unit,

1

Chapter 1

operating block, emergency room, pharmacy, treatment room, oncology day hos-
pital, and hemodialysis day hospital. These are the types that the MedicineOne
system supports and the only distinction between them is where the medical data
is stored in the database.

As stated, the main objective is to give users full control by letting them decide
what information will be displayed as well as the dashboard’s general appear-
ance. Additionally, by receiving real-time updates on the configured information
fields, it is also intended to act as an event notification hub for physicians, nurses,
and other medical professionals.

Besides the development of the application, the key factor to consider is the
graphical and functional configuration of the dashboard, which will be stored
in the hospital’s data system and accessed through an API belonging to Medici-
neOne. For this dashboard application to obtain both the configuration infor-
mation and the clinical data itself, endpoints must be implemented in said API.
The systems manager of each organization will create the configurations in the
already installed MedicineOne system that will change the dashboard’s UI upon
startup, setting the data accessible to medical professionals and the dashboard’s
visual characteristics. Real-time data updating on the dashboard is another es-
sential feature that should be implemented. To do this, a communication channel
from the MedicineOne system to the application must be set up to allow for event
notification, such as admissions and discharges of patients.

Although it is not mandatory, it is intended for the dashboard to be displayed on
a large screen that is located in each medical team’s workspace.

1.3 Document structure

This document is divided into the following chapters: Introduction (Chapter 1),
State-of-the-art (Chapter 2), Technologies analysis (Chapter 3), System specifica-
tion (Chapter 4), Methodology & Planning (Chapter 5), Implementation (Chapter
6), Testing (Chapter 7), and Conclusion (Chapter 8).

In Chapter 1 a brief introduction to the subject of medical dashboards is made,
followed by the framing and objectives of the project, and finally the structure of
the document is described.

Chapter 2 explains the fundamental ideas behind dashboards, what factors should
be taken into account when designing one, and offers examples and an analysis
of dashboards used in medical settings.

Chapter 3 gives descriptions and comparisons of alternative technological solu-
tions that can be used to develop the functionality and UI of the dashboard and
put in place a system for event notification.

In Chapter 4, a more detailed overview of the intended system is provided through
the definition and prioritization of requirements, the description of architecture
topics, and the listing of the UI design specifications.

2

Introduction

The work methodology used and the planning for both semesters are both cov-
ered in Chapter 5.

Chapter 6, describes what was implemented, divided by the three main com-
ponents of the system: the API endpoints, the dashboard application, and the
real-time communication.

In Chapter 7 the test plan for the application and the acceptance tests that were
used to validate the implementation outcome are relayed.

Finally, a conclusion will be included in Chapter 8.

3

Chapter 2

State-of-the-art

The term "dashboard" is frequently used to refer to a variety of applications with a
range of functions and aesthetics, making it challenging to define precisely. How-
ever, one aspect of a dashboard is constant: the visual representation of (useful)
data [4, 58]. This fundamental feature makes it possible for a dashboard to cor-
respond with the objectives of the intended user to improve performance and
decision-making [14, 29].

2.1 Dashboard design

There are crucial elements to consider when designing a dashboard that can de-
termine whether or not it will be useful. These aspects are the data to be con-
veyed and the form of visualization [14, 29]. The user’s needs must be fully com-
prehended in order to apply accurate visual representations to useful data, so
stakeholders should be involved in the design process.

When designing a dashboard, questions like the ones below can help concentrate
on the important details [14]:

• What data does the user require?

• What context is crucial for communicating the chosen data?

• Which type of visualization would be more effective at conveying the de-
sired information?

2.1.1 Choosing information

A common mistake regarding the displayed information is trying to fit as much as
possible into a view, which can overwhelm the user. It is best to first determine
the dashboard’s function in order to more precisely define the problem’s scope
and, as a result, determine what data are actually required [29].

5

Chapter 2

Applying a measurement model, such as a Goal-Question-Metric (GQM), will
help determine which data should be displayed on the dashboard more effec-
tively. As suggested by the name, this model entails selecting the goals, ques-
tions, and metrics, each of which corresponds to a level of the model. These
models follow the structure below [29]:

• The conceptual level (goal) outlines the subject matter to be studied and
explains why it is important;

• The operational level (question) establishes the study’s focus, in particular
its pertinent components and the characteristics of those components that
define the achievement (or not) of the goal;

• Finally, the quantitative level (metric) identifies the information required to
provide responses to the goal’s questions.

Figure 2.1: A GQM model.

As can be seen in Figure 2.1, a GQM model establishes a hierarchy with these lev-
els that specify what will be measured and how this data should be interpreted
[29]. The most important metrics in a context—those that convey performance,
priority, and value in that scope—must be chosen from those that have been de-
fined and understood. These metrics are known as Key Performance Indicators
(KPIs). Any type of dashboard that intends to gauge performance and track its
development should always include a definition of these metrics [58].

2.1.2 Choosing visualization

There is no right or wrong way to go about selecting visual elements for a dash-
board; it all depends on the goal of the application and the setting in which it
will be used [58]. As has already been mentioned, the best blueprint for creating
a "good" dashboard is a list of specific user requirements. They most often bring
knowledge and experience from their professional and business contexts, which
is crucial [14].

6

State-of-the-art

A good approach to designing a dashboard, which also applies to other types of
applications, is through mock-ups. They assist stakeholders in quickly conceptu-
alizing a solution rather than creating an entire design from scratch right away,
reducing the risk of delivering a suboptimal product. Since a mock-up can be a
simple drawing on a white board, this idea can be effectively used in meetings
with stakeholders. Any visual element can be redefined quickly and easily. By
using mock-ups, the dashboard design can be developed iteratively. Since they
are easier to change than actual designs, multiple iterations can be created until
the best one is found [14].

When selecting the visual elements for a dashboard, usage is another factor to
consider. Should the user be "pushed" important information by the dashboard?
Or is the user supposed to "pull" what they need? The dashboard in the first
scenario needs to grab the user’s attention and point it towards important data,
whereas in the latter scenario, it needs to allow the user to freely filter and drill
down on information. To "push" information effectively, it should be done in a
way that makes it effortless for the user; this can be accomplished through con-
sistent placement of information and clear visual representation to shorten the
time needed to assimilate, as well as some form of highlighting or notification
on the most crucial information. In order to provide efficient "pull" functionality,
the dashboard must allow for the choice of detail and guide the user through the
information, for example, by explaining to the user what the data represents and
why it is important [29].

2.2 Case studies

Because most commercial solutions are fully integrated with an Electronic Health
Records (EHRs) management tool, which clouds the dashboard component, and
because there are few detailed descriptions available, gathering precise informa-
tion about commercial medical dashboards has been challenging. As a result, this
section will include a brief summary of some commercial solutions discovered as
well as a more thorough analysis of research articles on medical dashboard im-
plementation based on the design space described in [58], and the analysis done
in [15].

2.2.1 Commercial solutions

A dashboard owned by the company ABELMed called the "Physician Dashboard"
integrates with their other functions with the objective of improving the efficiency
of medical professionals’ activities. As can be seen in Figures 2.2, 2.3, 2.4, and 2.5,
a user can access all of the other functions on the sidebar while maintaining con-
stant access to the patient’s file. For a chosen date, the first screen shows patient
appointments and their status, and each appointment can be selected to view de-
tailed information (Figure 2.2). One can view laboratory results (investigations)
on the second screen, add remarks or notes to the report, and assign tasks associ-
ated with that investigation (Figure 2.3). The third screen monitors the status of

7

Chapter 2

each patient and provides information such as arrival time, wait time, and pro-
gression through the visit (Figure 2.4). Finally, in the last screen, medical and
administrative tasks can be consulted and assigned (Figure 2.5) [1].

Figure 2.2: ABELMed’s Physician Dashboard Appointments Screen [1].

Figure 2.3: ABELMed’s Physician Dashboard Investigations Screen [1].

8

State-of-the-art

Figure 2.4: ABELMed’s Physician Dashboard Patient Manager Screen [1].

Figure 2.5: ABELMed’s Physician Dashboard Tasks Screen [1].

Cerner Advance is an aggregate of web-based tools that collect clinicians’ usage
data, such as time spent on Cerner’s EHRs executing a certain activity (see Figure
2.6). It can present reports based on improvement opportunities it discovers and
display departmental and individual information about overall productivity. Ev-
ery user of a company is compared to other experts in the same field throughout

9

Chapter 2

a nation to determine how efficient they are. Cerner Advance maintains bench-
marked KPIs to determine its return on investment. Clinical professionals can
be coached on how to increase their productivity through the creation of "action
plans." The overall goal of this solution is to improve efficiency and satisfaction
among EHR system users [6, 17].

Figure 2.6: Cerner Advance dashboard [17]

Another dashboard named Cerner CareAware has a "command center" dash-
board that offers real-time data to enhance awareness and decision-making for
a variety of hospital professionals. It retrieves information about patient statuses
and discharge options from the EHRs and allows the user to select and drill down
on information to visualize detailed individual patient data. In one department,
desktop monitors and large screens display the dashboard [18]. The overall solu-
tion also includes tools that relay patient flow within an unit and real-time local-
ization of patients, staff, and equipment [16].

2.2.2 Research articles

Firstly, the medical dashboards implemented in the examined articles were clas-
sified by their purpose, but only on the basis of their decision support, which
ultimately guides the direction of the visual components and data utilized in
their design [58]. The aspect of communication and learning was omitted since
most healthcare dashboards will focus on decision-making. Dashboards can be
"operational" if they display current and near-past information that is intended
to be used during day-to-day activities by low-level employees. A dashboard

10

State-of-the-art

is referred to as "tactical" if it relays previous information with the intention of
tracking performance; these dashboards are typically used by mid-level manage-
ment to support decision-making and employ KPIs to quantify organizational
progress. Finally, "strategic" dashboards contain a lot of data and a variety of
metrics to help high-level management with organization-wide long-term plan-
ning. Dashboards can serve more than one of these functions [58]. Performance
improvement, quality and safety, and management and operations are the three
categories into which the purpose of the dashboards is broken down in [15]. Even
though it takes a different approach, the first category mainly relates to the "tacti-
cal" kind, while the other categories are more in line with the "operational" goal.

When determining the intended audience for a dashboard, only two factors were
considered: visualization literacy (low, medium, or high), which determines the
difficulty of comprehending the information presented by the dashboard’s vi-
sual components, and whether the user requires advanced domain expertise,
which indicates if the dashboard only uses non-basic medical terminology [58].
The circulation factor in this category is disregarded because, in the context of
medicine, the majority of dashboards will be directed to organizations, such as
medical teams and departments, and rarely to the individual user [15, 58].

The following types of dashboard features from the supporting design space
were considered: interactivity, meaning the user can interact with the dash-
board’s views and its data; multi-page, if the dashboard contains multiple pages
to organize the various information, it displays; and construction and composi-
tion, as in the capability of the user changing the appearance or position of visual
components [58]. Other elements in this category were absent from all of the case
studies and weren’t thought to be important to the research.

Finally, in relation to data semantics, it was determined whether the dashboards
emitted alerts and notifications by either highlighting important events and anoma-
lies or producing audible queues to raise awareness. Additionally, the presence
of benchmarks was noted. These benchmarks would work in conjunction with
underlying thresholds to provide users with visual cues about the status and
trend of a particular monitored metric. The last consideration informed if the
data displayed on the dashboard was able to be updated [58]; this was deemed
insufficient as a defining factor, so it was substituted by the capability of real-
time updates of data, which is much more pertinent in the clinical context. It
was also considered the classification of the clinical indicators used: they were
categorized as "structural" if they relayed more management-oriented informa-
tion about departments and medical teams, such as bed availability and resource
allocation; "process" oriented if they transmitted information about medical activ-
ities and other tasks; and "outcome" oriented for more analytical purposes, such
as mortality rates and appointment statistics. Clinical indicators’ specificity was
not taken into account because it only indicates whether the context is a specific
medical condition or a more general subject [15].

The explained categories and properties above were used in Table 2.2 to classify
the analyzed case studies. These case studies are listed in Table 2.1.

As can be seen from the dashboard classification in Table 2.2, "strategic" was the

11

Chapter 2

least prevalent type of dashboard and was only identified once, whereas the "op-
erational" purpose was present in all other case studies. About half of the dash-
boards under analysis were labeled "tactical", but only when used in conjunction
with the other two. The importance of real-time awareness and quick decision-
making for medical professionals engaged in routine patient care is highlighted
by the fact that "operational" decision support was present in all but one case
study. The frequency of "tactical" decision support is also significant because
improving overall performance will ultimately lead to better hospital care. This
importance is further highlighted by the fact that the majority of dashboards sup-
port real-time updates of the displayed data. Although this functionality was in-
credibly rare in this collection of case studies, the use of notifications and alerts
is also related to the usefulness of clinical awareness because it can quickly draw
the attention of medical personnel to important events.

Because they primarily used line and bar charts and tables, half of the analyzed
articles were deemed to require low visual literacy, while the other half also used
composed graphs (with more than one variable), which were deemed to require
medium visual literacy [58]. Half of the dashboards required advanced domain
knowledge from the user, about a quarter only required limited domain knowl-
edge, and the remaining were fully understandable to the average person.

It makes sense that the two dashboards that were implemented in Microsoft Excel
would be the only ones to lack any interactive features and only use a single
view of data. Every other dashboard displayed different pages of information,
providing at least the interactivity needed to switch between them, but most also
allowed users to drill down into the data and use filters.

Over 70% of the dashboards examined used benchmarks, which is not surprising
given that one of their primary objectives is to assess performance and increase
awareness of established objectives [58].

Lastly, in Table 2.2, we can see a perfect overlap of "operational" dashboards and
"process" oriented clinical indicators. This suggests that one property most likely
won’t exist in a dashboard without the other, since if we want to track data about
routine medical procedures, we need to implement a dashboard that supports im-
mediate decision-making. All other classifications of clinical indicators appeared
a few times each, except the one with the "process" type.

Switching now to a more general analysis, four case studies from the group that
detailed the design process chose a user-centered design approach, and one chose
a co-design one. This emphasizes the importance of including the end-user when
creating medical dashboards. From the perspective of development, some were
said to have implemented the dashboard iteratively, while one case study used
an agile approach.

Only one of these case studies lacked relevant information when it came to the
technologies used. Consequently, out of the remaining population, about 64%
(7/11) used web-based technologies, including JavaScript, jQuery, D3.js, ASP.NET,
PHP, R Shiny, and others. From the remaining four case studies, half utilized
enterprise technologies (Tableau, Epic Systems), while the other half utilized Mi-
crosoft Excel.

12

State-of-the-art

Table 2.1: Case studies used for the analysis. * The dashboard from case study 5
was continued and improved in case study 12. The case study 10 contained three
different dashboards (10.1, 10.2, 10.3 in Table 2.2).

Case study Article title

1 Breaking the mould without breaking the system - the development
and pilot of a clinical dashboard at The Prince Charles Hospital [20]

2 Dashboard visualizations - Supporting real-time throughput decision-making [27]

3 Developing an emergency department crowding dashboard - A design
science approach [39]

4 Developing an Intranet-Based Lymphedema Dashboard for Breast Cancer
Multidisciplinary Teams - Design Research Study [30]

5 Development and Evaluation of a Health Information Technology
Dashboard of Quality Indicators [38]

6 Development and Implementation of Maternity Dashboard in Regional
Hospital for Quality Improvement at Ground Level - A Pilot Study [49]

7 Development of dashboard for hospital logistics management [36]

8 Development, implementation and preliminary evaluation of clinical
dashboards in a department of anesthesia [34]

9 Development, implementation and user experience of the Veterans Health
Administration (VHA) dialysis dashboard [26]

10 EHDViz - clinical dashboard development using open-source technologies [11]

11 Improving Health Care Management in Hospitals Through a Productivity
Dashboard [50]

12* Usability Evaluation and Implementation of a Health Information
Technology Dashboard of Evidence-Based Quality Indicators [59]

The data sources in these case studies (when relayed) were mostly EHR systems
(70%) and data warehouses, with some combining both.

Final results ranged from "good with room for improvement" to "highly usable
and useful" when it came to the evaluation of the dashboards by medical pro-
fessionals in these articles. This demonstrates that even a basic dashboard, such
as one made in Microsoft Excel, can be helpful in a clinical setting because the
gathering and organizing of information is by its very nature very beneficial.

13

C
hapter

2

Table 2.2: Classification of the case studies’ medical dashboards, based on the design space in [58]. The "strategic", "tactical", and
"operational" decision supports are denoted by Str, Tac, and Op, respectively. The letters L, M, and H stand for "low", "medium",
and "high" levels of visual literacy, respectively. The letter Y indicates that the factor was identified or claimed to be present in the
article, while the letter N indicates that the aspect was either explicitly absent or not acknowledged by the authors. Limited denotes
a need for domain knowledge, but not to the extent that the average user would be completely unable to use the dashboard. Almost
indicates that the data updates were nearly real-time, for instance with a 15-minute delay. The symbol - represents the impossibility
of affirming whether there are or are not real-time updates in the dashboard. For the clinical indicators, Stl, Pr, and Out were used
to represent their types: "structural", "process", and "outcome", respectively. The title and reference of each case study are registered
in Table 2.1. * The dashboard from case study #5 was continued and improved in case study #12. The case study #10 contained three
different dashboards (10.1, 10.2, 10.3).

Purpose Audience Features Data semantics

Case
study

Decision
support

Visualization
literacy

Advanced
domain

expertise
Interactivity Multipage

Construction
and

composition

Alerting
and

notification
Benchmarks Real-time

updates
Clinical

indicators

Str/Tac/Op L/M/H Y/N/Limited Y/N Y/N Y/N Y/N Y/N Y/N/Almost Stl/Pr/Out
1 Tac/Op M Limited Y Y N N Y Y Stl/Pr
2 Op L Limited Y Y N N Y Almost Stl/Pr
3 Op M N Y Y N N Y Y Stl/Pr
4 Tac/Op M Y Y Y N N N - Pr
5* Op L Limited N N N N Y N Pr
6 Tac/Op L Y N N N N Y N Pr
7 Tac/Op M N Y Y N Y Y - Stl/Pr
8 Tac/Op L Y Y Y N N N N Pr/Out
9 Tac/Op L Y Y Y N N Y - Pr/Out

10.1 Op L N Y Y N N N Almost Pr
10.2 Op M Y Y Y N N N Y Pr
10.3 Op M Y Y Y N Y Y Y Pr
11 Str/Tac M N Y Y N N Y - Out
12* Op L Y Y Y N N Y Y Pr

14

State-of-the-art

The created dashboard can be classified using the ideas covered in this chapter.
First, it was determined that understanding user needs is crucial when designing
a dashboard. In this project, this is guaranteed by the fact that MedicineOne has
been in the market for medical software for over thirty years and has a wealth of
experience working with medical professionals. Mock-ups were used in the dash-
board design process, as is demonstrated in Chapter 4. The presented mock-ups
demonstrate elements like consistent information placement, highlighting, and
distinct visualization components. They were also mentioned as being crucial in
the state-of-the-art chapter. By utilizing the three GQM model levels, we can ver-
ify the precise definition of (possible) data. For instance, the objective is to inform
medical professionals of the state of affairs in their hospital division, which may
lead to inquiries like "How crowded is the unit?" and "Will it be busy at the end
of the day?" which can be effectively answered by values like the number of pa-
tients interned and how many have scheduled discharges. The oversaturation of
screens with data, which is another important factor mentioned in the state-of-
the-art, is avoided by the dashboard’s design, which includes filters that change
the information in the main table and open particular tabs for patient details in-
stead of displaying all of it to the user. Finally, this dashboard prototype will now
be described using the same classification criteria as the case studies. It is obvi-
ous that this dashboard is only intended for operational use because it provides
up-to-date data to aid in decision-making during routine medical tasks. Because
it only uses tables to display information, it only requires a minimal level of vi-
sualization literacy, which speeds up data assimilation. Anyone can understand
how many patients are present and how many have scheduled surgeries, for in-
stance, so there is also little need for advanced domain expertise. However, some
patient data, like allergies and medications, requires more technical knowledge.
Due to the use of filters and the ability to drill down on patient data, it offers
features like interactivity and multiple pages, like the majority of case studies.
Although it does not contain benchmarks, which can be thought of in the future,
data semantics-wise, it is intended to provide alerts and notifications, unlike most
case studies. Clinical indicators include both structural (data on unit crowding)
and process-oriented (information on length of stay and scheduled medical pro-
cedures) information. Finally, as mentioned earlier, it guarantees real-time data
updating.

15

Chapter 3

Technologies analysis

To ensure that an informed decision is made so that requirements can be met, it
is crucial to first consider the alternatives before selecting the necessary technolo-
gies to create the dashboard. This analysis includes four categories: comparison
between desktop and web applications; desktop alternatives; web development
frameworks and libraries; and application communication services.

3.1 Desktop vs. Web

Aside from the technologies used for development, there are many differences
between web and desktop applications that must be taken into account when
choosing a development approach.

Desktop applications offer good performance and integration because they only
rely on the hardware’s capabilities and are created specifically to run in that en-
vironment. They are accessible even without an internet connection, and since
data can be stored locally on the machine where the application is installed, it is
safer. If a desktop application is offline, it usually stores data locally, but a Re-
mote Method Invocation (RMI) server can be used to establish communication.
Not utilizing an internet connection or a RMI server adds an additional layer of
security but has drawbacks like: because it can only run on one machine, the
application (and its data) cannot be accessed if physical access is not available
(no portability); manual installation and updating are required, which may in-
volve looking up system requirements and other compatibility issues. Most of
these applications must be installed in order to be used, even though there are
some workarounds. Additionally, desktop applications—whether offline or on-
line—usually rely more on local storage, which means additional disk space is
needed for installation and other features. This could be a problem, particularly
for smaller devices [32, 44, 48].

Web applications, on the other hand, only need a web browser and an internet
connection to function, meaning the user does not need to manually install or
update anything; it is done automatically on the web. This also means that it does
not take up space with installation files on the computer where the application is

17

Chapter 3

accessed. They are cross-platform because any device with internet access can use
the web application, and because of their lightweight design, they can be accessed
by machines that are less capable or sophisticated. One drawback of using a web
application is that constant internet access is needed, so a reliable connection is
required to avoid having the application slow down or be interrupted. These
applications are also more vulnerable to security flaws, such as denial-of-service
attacks, due to the fact that they are used online and, in most cases, the user’s data
is not stored locally on the user’s devices, making them vulnerable to hacking
[32, 44, 48].

In Table 3.1 a comparison of the two approaches can be seen. Desktop applica-
tions are usually more performant and secure, while web applications offer more
options or are easier to benefit from in terms of portability, cross-platform, disk
usage, installation, and updates. This comparison is meant to give a broader per-
spective, as web applications can also be performant and desktop applications
can also be portable, for example.

Table 3.1: A summary of each type of application’s advantages (A) and disadvan-
tages (D) over each other.

Performance Portability Security Cross-platform Disk space Installation and
updates

Desktop A D A D D D
Web D A D A A A

3.2 Desktop technologies

As the Application Programming Interface (API) used for data access utilizes
.NET, only alternatives from that domain for developing the dashboard’s inter-
face are presented in this section, as it allows for easy integration if the desktop
approach is chosen.

3.2.1 Windows Presentation Foundation

Windows Presentation Foundation (WPF) is an User Interface (UI) framework
for building desktop applications for Windows that is part of .NET, which en-
ables the integration with its other elements. This framework uses a vector-based
rendering engine to deliver high-quality visualization components that are in-
finitely scalable, similarly to Scalable Vector Graphics (SVG). As a result, it offers
powerful animation (2D and 3D) and styling features [68].

The typical method to develop applications with WPF, is to utilize both "markup"
and "code-behind". Extensible Application Markup Language (XAML) is used
as the markup language to define the visual composition and appearance of
the application with components like windows, dialog boxes, pages, and oth-
ers that can be filled with controls, shapes, and graphics. The term "controls"
used to describe these elements in WPF has a very broad definition and refers to

18

Technologies analysis

classes that are hosted in windows or pages, have a UI, and can perform behav-
ior. Since it is markup-based, the composed layout is organized in a hierarchy of
nested elements that is known as an "element tree". In order to implement the
intended business logic and behavior for these components, such as what hap-
pens to the data when the user clicks a button, for example, these elements and
their attributes are then converted at run time to instances of WPF classes that
can be accessed by regular code, typically C# (code-behind). Lower development
and maintenance costs and higher development efficiency are two advantages
of separating the construction of UIs from the behavior implementation. With
Microsoft’s Integrated Development Environment (IDE), Visual Studio develop-
ers can alternatively utilize a drag-and-drop feature to populate interfaces with
XAML components [68].

In WPF applications, a data binding engine that integrates with the "Binding"
class at its core performs automatic tasks like copying data from objects into con-
trols to display it to the user and keeping them synchronized after modification.
There are two types of binding allowed in WPF, one-way and two-way. The sec-
ond allows for complete synchronization between a control and a data object,
whereas the first only allows for the UI to be updated with underlying data up-
dates, the opposite, as in the underlying data being altered through the control,
and a "one-time" mode, where the source only updates the other on initializa-
tion. This binding offers other features like data validation, sorting, filtering, and
grouping and can be applied directly to the XAML layout. Additionally, data
binding supports the use of data templates to design UIs for bound data [68].

3.2.2 Multi-platform Application User Interface

.NET Multi-platform Application User Interface (MAUI) is a cross-platform frame-
work that enables the creation of desktop and native mobile applications, uti-
lizing C# and XAML. This framework enables the development of applications
that can be deployed on a variety of platforms, including Android, macOS, Win-
dows, and others, from a single shared code base. It is an open-source evolution
and replacement for Xamarin.Forms, Microsoft’s now-deprecated mobile devel-
opment framework. Leveraging some of its functionality while rebuilding others
for performance and usability improvements and extending it to the desktop en-
vironment. .NET MAUI’s has as one of its defining goals allowing developers to
implement most of their applications’ logic and UI in a single code base [45].

By utilizing the native .NET APIs for platforms like Windows and iOS, which all
have access to a common Base Class Library (BCL), .NET MAUI unifies various
platforms under a single code base. This library is able to offer native execution
environments for applications that permit the sharing of business logic, while
.NET MAUI provides a framework for the sharing of UIs. The application code,
as seen in Figure 3.1, primarily interacts with the .NET MAUI API, which in turn
consumes other .NET native APIs. However, in some circumstances, it can also
access these native APIs directly [45].

This framework supports data-binding properties (one-way and two-way), has a

19

Chapter 3

Figure 3.1: A high-level visual representation of the .NET MAUI framework ar-
chitecture.

powerful layout engine and various page types to create rich UIs, the ability to
customize control handlers, and "hot reload" functionality, which allows develop-
ers to change either the XAML markup or the code-behind while the application
is running and the changes are propagated without restarting the application [45].

3.2.3 Desktop technologies comparison

The two technologies addressed above serve different functions: WPF is used to
create Windows desktop applications, while .NET MAUI is used to create cross-
platform applications that can run on Windows, macOS, and mobile devices. The
first offers benefits like straightforward multimedia integration, resolution inde-
pendence, hardware acceleration, declarative programming using XAML, and
extensive control customization. Because it is not WPF’s intended use, it lacks
platform compatibility and cannot be used with Windows 2000 or prior versions.
The benefits of .NET MAUI are primarily attributable to its cross-platform capa-
bilities, including platform reach, code reuse and sharing, and lower cost of bug
fixing than an application implemented for various platforms separately. Coming
from another background may allow for a lower learning curve because it uses
common .NET technologies and languages. On the other hand, it is a very recent
framework that was only released in 2022, does not support Linux, and does not
support web on its own [45, 68].

3.3 Web technologies

There are many methods one can use to build web applications. Although it is
possible to only use pure JavaScript, there are some advantages to using libraries
and frameworks, including faster development and fewer coding errors [19].

For the main application implementation, web development frameworks and a
more complete library are examined first and then compared, as they are part of
the main decision to be made. Subsequently, another, smaller library was exam-
ined that is specially intended for graphical visualization.

20

Technologies analysis

3.3.1 React

React has become one of the most popular technology choices in recent years
and is currently the most popular choice for front-end web development [63], so
it makes sense to take it into consideration for this project. Although React is
technically a library for creating UIs, it is frequently referred to as a JavaScript
framework due to its widespread use and popularity in numerous types of ap-
plications. It is kept up by Facebook as well as other businesses and developers
[13].

React has many features that enable it to compete with JavaScript frameworks
in the market for web development. Its main characteristic is that it is based on
components, which is the name given to the parts that make up the application
and are housed inside distinct modules. Developers can easily pass complex data
through the application without confusing the Document Object Model (DOM)
with state by using these components because the logic for them is not written
in templates but in JavaScript [13, 54]. The code for React components is written
using JavaScript XML (JSX), a JavaScript extension that enables code to be written
similarly to HyperText Markup Language (HTML), making it more readable and
easier to learn the library [13, 54].

React by default only supports one-way data binding, while further steps are
required to implement two-way data binding [13, 54]. This binding is from the
components to the views, so by default, only the logic of the components can
change the views and not the other way around. This makes the application
more modular and faster [54].

The last and one of the most important features of React is its DOM management
(see Figure 3.2). For every browser DOM object already in existence, React creates
a virtual copy of it that is stored in memory. It becomes no longer necessary to
repeatedly re-render entire pages because of the existence of this replica, which
allows React to only update the actual DOM when a change is detected in the
virtual one. These changes are detected in the state of components, which de-
velopers can programmatically request to occur, and in doing so, a re-render is
applied to the component; this follows the life cycle of a React component (mount,
update, unmount). Because no data is drawn on the page when manipulating the
virtual DOM, it is faster than doing so with the original. This significantly im-
proves the performance of web applications built with React in comparison with
the usual DOM manipulation techniques [13, 54].

3.3.2 Angular

Angular is one of the most widely used front-end frameworks for web develop-
ment [63]; it was created and is maintained by Google, which gives it a very solid
and reliable reputation. It was developed using the AngularJS framework with
the intention of converting from JavaScript to TypeScript, which is one of its key
features. With TypeScript, the Angular framework has access to strong features
like object-oriented programming, static types, iterators, lambda functions, and

21

Chapter 3

Figure 3.2: A visual representation of React’s DOM manipulation. The red cir-
cles on the virtual DOM represent altered components that were discovered after
comparing the two DOMs. The orange circles on the browser’s DOM stand in for
components that had to be re-rendered as a result of changes to the virtual one.

others [7, 13, 65]. The fact that Angular as a framework integrates other libraries
to offer solutions for routing, form management, client-server communication,
and other issues makes it simpler to create enterprise-level web applications [7].

Similar to React, Angular emphasizes componentizing development to improve
scalability. These components provide a TypeScript class to implement function-
ality, a HTML template to indicate how the component should be rendered, and
the possibility to include style sheets to enhance the appearance of the templates.
Encapsulation is enabled as a result, which facilitates testing and strengthens the
application’s structure [7].

Data binding is supported by Angular, but unlike React, two-way data binding
is enabled by default. This binding occurs between components’ templates and
data models in the class files, and it can be used to change the template or the
data, as well as both at once (see Figure 3.3). Angular’s change detection al-
gorithm listens for these data changes, and when one is detected, the defined
updates to the view and component are applied [7].

Dependency injection is arguably the most significant feature of the Angular
framework. It permits the declaration of TypeScript classes’ dependencies while
removing the user from the process of instantiating them because Angular takes
care of that task on its own. When a dependency is requested, an abstraction
known as an "injector" determines whether a memory instance of that depen-
dency already exists; if not, one is created and saved. Once every dependency is
fulfilled, Angular calls on the components’ constructors. This design pattern also
adds to the flexibility and testability of the developed web applications [7].

In addition, Angular offers a command-line interface (Angular CLI) that can be
used to launch, create scaffolds for, deploy, and maintain applications [7].

22

Technologies analysis

Figure 3.3: A visual representation of data binding in Angular. A button click on
the template that activates a function on the class is an example of event binding.
A value in the template that is defined by a value in the class is an example of
property binding. Two-way binding is the combination of both types.

3.3.3 Vue.js

Vue.js is a JavaScript framework that has grown in popularity in the front-end
web development environment unlike any other in recent years, and is now al-
most as popular as Angular [13, 63]. This framework was created with adaptabil-
ity as its guiding principle; as a result, it can easily integrate with other libraries
and projects due to its main library’s focus on the "view" layer. For instance, if we
have a server-side application made with another JavaScript framework, Vue.js
can be integrated to provide interface development and management. Vue.js
can be utilized independently for simpler applications, such as single-page ones
[13, 67].

Figure 3.4: A visual representation of reactivity in Vue.js. There is a watcher
for each component, which registers when properties are "touched" during the
render of the component by gathering them as dependencies. The watcher is
alerted if a property setter is later used, which causes the component to re-render.

23

Chapter 3

The use of components is one of the features that this framework has in com-
mon with the other two. The components in Vue.js are referred to as "Single-File
Components" and combine the logic, template, and style of the component in a
syntax resembling HTML. These components can be written based on two dif-
ferent APIs: "Options API" and "Composition API". The first one can be used
by creating the following objects inside the component: "data", which holds the
information to be used as the component’s updatable state; "methods", which
change the state and cause updates (they can be set as listeners in templates);
and "mounted", which denotes the stage of the component’s lifecycle where it
is prepared for use. The second relies on importing API functions and declar-
ing reactive state variables within the scope of a function. Understanding the
reactivity property of Vue.js, which is briefly described next, is necessary to use
this method. Another feature that Vue.js and React have in common is the vir-
tual DOM, which improves performance when working with the browser’s DOM
[67].

The reactivity system in Vue.js can be characterized as unobtrusive because com-
ponents’ states are implemented as JavaScript objects that, when modified, cause
the view to update. Vue.js accomplishes this by keeping track of the "getters" and
"setters" for these objects, which allows it to determine when and what needs to
be updated (see Figure 3.4). This approach to state management can be regarded
as being simpler and more developer-friendly [67].

Finally, two-way data binding is a feature of Vue.js that, like Angular but unlike
React, enables the template and the data to make changes to each other [67].

3.3.4 Web technologies comparison

As already mentioned, React, Angular, and Vue are some of the most well-liked
web technologies for building UIs. The first is by far the most used, and the
last is a newcomer [63]. This new adherence to Vue may be related to having
the lowest learning curve out of the three, since it is based on plain JavaScript,
HTML and Cascading Style Sheets (CSS), while Angular utilizes TypeScript and
React utilizes JSX, which might prove more cumbersome to developers learning
the technology. Even with the need to learn JSX, React is said to be easier to learn
than Angular, mostly because the latter contains more built-in functionalities [19,
42, 61].

React and Vue are very similar to one another in terms of memory usage and per-
formance because they are both lightweight and use the virtual DOM technique.
Due to its included packages, Angular is typically slower, uses more memory,
and has a larger project size in regular applications. However, when working
with large-scale enterprise web applications, this size disparity is diminished be-
cause React and Vue need to import external libraries and packages in order to
implement such complex systems, while Angular is already prepared for this sce-
nario. Compared to the other two technologies, Angular is less flexible in terms
of how developers can structure their applications and which packages to use.
The other two, however, offer complete freedom in terms of how to design the

24

Technologies analysis

application architecture and integrate it with other libraries [19, 42, 61].

A summary of the comparison made can be seen in Table 3.2, which characterizes
the mentioned characteristics with qualitative values.

Table 3.2: Comparison of web technologies summarized.

React Angular Vue
Popularity High Medium Medium
Learning curve Medium High Low
Flexibility High Medium/Low High
Data binding One-way Two-way Two-way
Size Low Medium Very low
Performance High Medium/High Very High

3.3.5 D3.js

Data-Driven Documents, or D3.js, is a JavaScript library for data-based document
manipulation that can enhance data visualization by utilizing CSS, HTML, and
SVG. It addresses the core of the "problem", which is effective manipulation of
data-based documents, rather than trying to give developers access to every fea-
ture related to web-based information representation. Focusing on web standards
gives developers complete access to the features of modern browsers, which in
turn offer a ton of flexibility. Due to its low overhead on manipulations, D3.js is
also extremely quick, supporting the use of large datasets, intricate visual anima-
tions, and dynamic data interaction [22].

In order for D3.js to create visual representations, it first binds information to a
DOM and then applies data-driven transformations to that document. An exam-
ple could be creating a table in HTML, or an interactive pie chart in SVG, from a
list of values. HTML tags, classes, and identifiers can be used to select nodes in
D3.js. These nodes can then be modified by setting attributes and styles, register-
ing event listeners, or even being deleted and sorted. Accessing the underlying
DOM is also a possibility. When it comes to visual transitions, D3.js only modi-
fies the necessary properties in order to be more efficient. With a wide range of
official and community-developed modules, D3.js’s functional style enables the
reutilization of code [22]. A wide variety of examples can be seen at [21].

3.4 Application communication

As was previously mentioned, in order to be able to give medical professionals
real-time information, a channel of communication between the main system and
the dashboard must be established. A few of the methods for doing this are dis-
cussed in this section.

25

Chapter 3

3.4.1 Azure SignalR Service

An application can receive real-time functionality over HyperText Transfer Pro-
tocol (HTTP) from the Azure SignalR Service, which enables a source to push
updates to linked client systems. This is made possible by the SignalR hubs,
which can be viewed as topics or channels that broadcast the messages or send
them to a particular connected client. As a result, clients are no longer required
to periodically poll the server or submit update requests. A wide range of system
types, including gaming, polling, and voting applications, real-time dashboards
and monitoring systems, message chats, push notifications in social networks and
emails, and many more, use this service to acquire real-time functionality [10].

Different transport methodologies can be used with Azure SignalR Service to cre-
ate real-time web applications. It can determine which approach is more appro-
priate based on the capabilities of both the server and the client. Although this
service prefers WebSockets in most cases, it can also use Long Polling or Server-
Sent Events (SSE) if that is not an option. Thus, WebSockets will be used when-
ever possible to enable two-way communication. Using this method, ASP.NET
Core and ASP.NET can both be used with native programming on the server
side. It can work with a variety of client platforms, including browsers, IoT de-
vices, game consoles, and mobile, web, and desktop applications. Additionally,
serverless support is offered, for instance, through Azure Functions and Repre-
sentational State Transfer (REST) APIs [10].

3.4.2 Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is a reliable cross-platform solution for sending
and receiving messages in mobile and web applications. It can be used to alert
clients to data-related server events, and programmers can specify what should
happen next in the application based on that notification. Due to the two-way
nature of the communication, either the server or the clients can send messages
to an individual client, a group of clients, or all clients who have subscribed to a
topic [25].

To use this service, message requests must first be developed in a reliable environ-
ment that supports either the Firebase Admin Software Development Kit (SDK)
or FCM server protocols. Instead of being a Cloud Functions for Firebase environ-
ment, this environment may be a custom application server, but it must be able
to send message requests that are properly formatted, handle request emission
retries, and securely store client tokens and authorization credentials. No matter
the method, message requests are sent to the FCM backend, which primarily re-
ceives them and generates an identifier for each one while also performing other
operations on them. This backend uses the corresponding platform service (An-
droid, iOS, and web) to route the messages through a platform-level transport
layer to their final destination, where the FCM SDK on the device will handle
and operate on the messages [25].

26

Technologies analysis

3.4.3 Amazon Simple Notification Service

Amazon Simple Notification Service (SNS) is a service that provides message de-
livery based on the publisher-subscriber pattern. A publisher can interact asyn-
chronously with subscribers using these kinds of communication systems by post-
ing messages in a topic that serves as the communication channel. Once sub-
scribed, users can start receiving messages from a SNS topic via a supported end-
point, such as other Amazon components, HTTP, email, or mobile notifications
and messages [5].

This service provides a variety of features, which are the following [5]:

• Application-to-application messaging that permits communication between
applications via HTTP or other Amazon services;

• Application-to-person notifications for emitting notification to end-users
devices and email addresses;

• First In First Out (FIFO) topics to ensure message ordering and non-duplications.
These topics can only be subscribed to by the Amazon Simple Queue Ser-
vice FIFO;

• By storing messages in various locations, employing a delivery retry policy,
and keeping undeliverable messages in a designated queue, Amazon SNS
ensures message durability;

• Message filtering so that subscribers only receive the messages they need;

• To ensure security, messages are encrypted on the server side.

3.4.4 Application communication technologies comparison

The three options mentioned, will now be contrasted, to help decide which ser-
vice to use to enable real-time communication between the medical system and
the dashboard. First off, in terms of multi-purpose cloud providers, Amazon
Web Services, Microsoft Azure, and Firebase are, respectively, the first, second,
and fourth most popular platforms at this time [63]. This popularity brings some
sort of reliability and certification factor into play when choosing a cloud service
provider.

All of these services are accompanied by decent documentation overall, includ-
ing tutorials, API references, and system architecture, among other things. Ad-
ditionally, each corresponding development console is fairly simple to use, with
Amazon’s SNS being the least so of the three, and they all offer solid support in
terms of analysis and reports, particularly FCM. The APIs are all well organized,
with FCM having the best organization while the Azure SignalR Service’s is more
difficult to use [2, 3].

All three services offer SDKs for the intended languages and environments, which
are JavaScript for web development and .NET for desktop and backend devel-

27

Chapter 3

opment, respectively. The supported communication patterns and protocols for
each of these services are listed on Table 3.3 [2, 3, 5, 10, 25].

Table 3.3: The three services’ capacities for supporting various communication
protocols and patterns. The letters Y and N indicate whether or not the service
can apply the method, whereas Limited indicates that either the full method can-
not be applied or that it can be applied but only when integrated with another
service.

Patterns Protocols
Services Publisher/Subscriber Message Queue WebHooks WebSockets HTTP SSE
Azure SignalR Service Limited N Limited Y Y Y
FCM Y N Y N Y N
Amazon SNS Y Limited Y N Y N

Only Amazon SNS can guarantee message order and the deliver of a message
only once, but only when sending messages to FIFO queues of Amazon Simple
Queue Service. Only the Azure SignalR Service cannot make use of native push
notifications, which allow messages to be sent to clients who are not connected
to the internet. All of the services can make calls to serverless functions in their
respective cloud environments. The security of the three services is compara-
ble; they all provide API key authentication, token authentication, programmable
rules and permissions, and encryption of the data while it is in storage and transit,
but only Amazon SNS guarantees encryption of the message payload. In Table
3.4 limits such as throughput, number of connections and Service Level Agree-
ment (SLA) can be seen [2, 3, 5, 10, 25].

3.5 Technological decisions

The decisions made in relation to the dashboard’s implementation will now be
discussed.

To begin with, web technologies were chosen as the method for creating the
dashboard interface. This decision is supported by a few factors. The first is the
state-of-the-art, where it was discovered that, from the article sample, more than
half of the case studies made use of web-based technologies for the creation of the
corresponding dashboards. This might be attributed to the application’s simple

Table 3.4: The limits of the three services. The symbol "-" states that no clear infor-
mation was found to fit the limit. In the Azure SignalR Service a unit represents a
sub-instance that processes messages, and the value 99.95% for the SLA is for the
premium subscription.

Services Throughput
(messages/second)

Message size
(KBytes)

Number of
channels/topics

Number of
connections/subscriptions SLA

Azure SignalR Service - Unlimited, messages are
divided into chunks of 2

100 units/instance
(standard tier)

1000 connections/unit
(standard tier) 99.9%-99.95%

FCM 4 (1 to a single device) 4
Unlimited, an application

can only subscribe
to 2.000 topics

2.500 connections/project 99.95%

Amazon SNS 20 256
100.000 standard topics/

account (1.000 for
FIFO topics)

12.500.000 subscriptions/
standard topic (100 for

FIFO topics)
99.9%

28

Technologies analysis

dissemination and accessibility among medical professionals, as well as its inte-
gration with tools for producing eye-catching data visualizations like D3.js and
R Shiny and lower development costs. Another factor is the configuration data,
which can be addressed by building a dashboard out of adaptable components,
which fits well with the component-based design of the web UI building tools
under consideration. Finally, in terms of drawbacks, performance is not thought
to be at risk because the intended application only has a limited set of features
beyond information display and the ability for users to drill down on particular
units and patients. It has more security risks than desktop alternatives, but in this
case, the web application will be used in the hospital’s private networks, which
are more secure than regular public ones. Benefits like not having to manually
install and update the application and the assurance that the dashboard will dis-
play correctly on any computer in any hospital are valued.

React was the web technology of choice. It should be noted that any of the
component-based frameworks and libraries examined could be used to imple-
ment the dashboard, but React was preferred because there was no need for two-
way data binding because the dashboard is only intended to be read-only, thus it
is favorable to not add redundancy by including a blatantly undesirable function-
ality present in Angular and Vue. In addition, React offers a number of benefits,
including a not-so-steep learning curve, a large and active community, and the
fact that it is lightweight and performant. Also, Angular has the downside of not
being as flexible, which is key in the intended application. Due to the simplicity
of the necessary visual representations, D3.js was not deemed necessary; how-
ever, it is an option and recommendation for the implementation of such graphic
components in the future.

The Azure SignalR Service was chosen as the cloud option to deliver real-time
communication of events to the dashboard. First of all, in terms of supported
patterns and protocols, FCM and Amazon SNS are the most comparable of the
three, however, SNS offers better throughput and message size limits, as well as
being already used by MedicineOne, so FCM was immediately disqualified. The
Azure SignalR Service, which is also currently in use, namely in the MedicineOne
API to communicate with the server, provides unlimited message size and is able
to use the SSE transport protocol, which corresponds well with the intended use;
a one-way communication channel for the server to inform the dashboard about
specific data altering events.

29

Chapter 4

System specification

The specification of the requirements, architecture, and UI design serves as a
comprehensive guide to establish a solid foundation for fully understanding the
scope of the project and its development.

4.1 Requirements and use cases

The following requirements were listed and described based on an informal de-
scription of what the system should enable users to do and what it should offer.
Then, according to their impact on the project’s successful implementation, they
were prioritized using the MoSCoW method, which divides requirements into
four categories: "Must have", those that are essential to the project; "Should have",
those that are significant but not entirely necessary; "Could have", those that are
desirable but not essential; and "Won’t have", those that are the least important
[43].

The requirements and their MoSCoW priority can be seen in Table 4.1.

The "Must have" requirements mostly concern the user inputs necessary for the
application to function, such as the server address from which the configuration
and medical data is obtained, the organization where the system is deployed and
a dashboard configuration present in the organization, and lastly, the desired pa-
tient list to be displayed. These also include the correct application of the dash-
board configuration to the several UI components and other crucial functionali-
ties.

The "Should have" and "Could have" requirements are primarily focused on qual-
ity of life features, with the first set being more crucial.

The final requirement is a "Will not have" requirement because it is outside the
current project scope, but it may be addressed in the future.

From these requirements, use cases were created for the present user-centered
actions, as shown in Tables 4.2, 4.3, 4.4, 4.5 and 4.6.

31

Chapter 4

Table 4.1: System requirements priotized with the MoSCoW method. The letters
M, S, C, and W stand for "Must have", "Should have", "Could have", "Will not
have", respectively.

Code Requirement Priority

R1 Users must be able to navigate through the application pages through
buttons present in the header. M

R2 Users must be able to insert the API address for the application to
communicate with. M

R3 Users must be able to choose their organization and an associated
configuration for the application to use. M

R4 The application must support displaying patients from at least inpatient
units, operating blocks, and emergency rooms. M

R5 Users must be able to choose a patient list for the application to display. M

R6 The application should save the user’s settings, these being: the server
address, the organization, the configuration, and the patient list. S

R7 Users should be able to expand and collapse the patient lists of a
parent node. S

R8 The application must apply the configured patient panel attributes. M
R9 The application must display the configured indicators. M

R10 Users should be able to select one of the indicators to apply a filter to the
patient list. S

R11 The application must display the configured patient list. M
R12 The application could display a message if the patient list is empty. C
R13 Users must be able to select a patient from the list to open the patient detail. M
R14 The application must display the configured patient detail components. M

R15 Users must be able to close the patient detail by selecting the same patient
from the list. M

R16 The application should receive notifications when the data is updated in
real time. S

R17 The application must at least update the information with a set interval. M
R18 The application could stay on the same page when it updates information. C

R19 The application could maintain the selected indicator filter and update the
filtered list when it updates information. S

R20 The application could maintain the selected patient detail open when it
updates information, unless the patient is no longer present in the list. C

R21 The application could emit sound notifications. C
R22 The application could emit graphical notifications. W

32

System specification

Table 4.2: Description of use case #1 - Set the application settings.

UC-1 - Set the application settings
Source User

Goal The user wants to set the server address, organization, and configuration to be used in the
application.

Preconditions The user is on the settings page.
At least a dashboard configuration has been created for an available organization.

Flow 1. The user inserts the server address;
2. The application enables the "connect" button;

3. The user clicks the "connect" button;
4. The application enables the first dropdown
menu with the organizations that contain
dashboard configurations;

5. The user selects the desired organization;
6. The application enables the second dropdown
menu with the selected organization’s
configurations;

7. The user selects the desired configuration;
8. The application enables the "continue"
button;

9. The user clicks the "continue" button;
10. The application loads the patient list selection
page.

Postconditions The user is on the patient list selection page.

Table 4.3: Description of use case #2 - Select a patient list.

UC-2 - Select a patient list
Source User
Goal The user wants to select the patient list to be displayed.

Preconditions
The user has already set the settings in the corresponding page.
The user is on the patient list selection page.
At least a patient list exists within the organization.

Flow 1. The application loads the available patient
lists grouped by their "parent" node;

2. The user selects the desired patient list by:
i. clicking on a "child" or "parent" node;
ii. double-clicking on a "child" node.

3ii. The application loads the patient panel
page with the selected patient list;

3i. The user manually navigates to the
patient panel page.

Postconditions The user is on the patient panel page.

Table 4.4: Description of use case #3 - Apply a filter to the patient list.

UC-3 - Apply a filter to the patient list
Source User
Goal The user wants to filter the patient list by one of the available indicators.

Preconditions
The user has already set the settings in the corresponding page.
The user is on the patient panel page.
There is at least one indicator apart from the main one.

Flow

1. The user clicks one of indicators:
i. the indicator was not already selected
and corresponds to at least one patient;
ii. the indicator was already selected or
had a value of zero.

2i. The application filters the patients that
do not correspond to the selected filter;
2ii. The application takes no action.

Postconditions The user is presented with the filtered patient list.

33

Chapter 4

Table 4.5: Description of use case #4 - Open a patient’s detail.

UC-4 - Open a patient’s detail
Source User
Goal The user wants to open the detailed view of a patient from the patient list.

Preconditions
The user has already set the settings in the corresponding page.
The user is on the patient panel page.
There is at least one patient in the list.

Flow 1. The user clicks one of the patients;
2. The application opens the selected
patient detail.

Postconditions The user is presented with the detailed view of the selected patient, which
he can close by clicking on the same patient.

Table 4.6: Description of use case #5 - Navigate the application pages with header
buttons.

UC-5 - Navigate the application pages with header buttons
Source User

Goal The user wants to navigate the application pages (settings page, patient list selection
page, and patient panel page) through the corresponding header buttons.

Preconditions
A server address, an organization, and a configuration have been set, to navigate to the
patient list selection page.
Additionaly, a patient list has been chosen, to navigate to the patient panel page.

Flow 1. The user clicks one of the header buttons;
2. The application loads the corresponding
page.

Postconditions The user is on the selected page.

4.2 Architecture

In this section aspects related to the architecture of the system are relayed.

Firstly, in Figure 4.1 the different components and interactions of the system can
be seen. A web application that houses the dashboard and its features is the sys-
tem’s main component. The application uses the MedicineOne API to retrieve the
clinical data for the dashboard and the configuration it needs to apply. The API
communicates directly with the hospital database where the mentioned data is
present. Medical professionals use the MedicineOne system daily, and it is here
that dashboard configurations can be made and then saved in the same database.
In order to meet the requirement of providing real-time data updates in the appli-
cation, it is planned for the MedicineOne system to call the API whenever specific
events take place. The API will then send messages pertaining to these events to
the Azure SignalR Service instance. After that, the dashboard will have access to
these messages and can update as necessary.

34

System specification

Figure 4.1: A visual representation of the system architecture.

To fulfill the requirement of saving the user’s settings the browser’s local stor-
age was used, as these settings are not considered sensitive data, and this storage
method is persistent, allowing the web application to maintain them even after a
restart. The MedicineOne API uses JSON Web Tokens (JWTs) as its method of au-
thentication, so any tokens that are generated are also saved in the local storage.
Given the constraints and the fact that the application will be used exclusively
within the hospital’s private networks, which can increase security, it is thought
to be a reasonable approach in this case.

4.2.1 Configuration schema and dashboard data

The database schema for the configuration data that the application obtains through
the API, is shown in Figure 4.5. It provides insight into how such information is
organized and how it structures the dashboard. In the center is the list of patients
("PatientListPanel") which represents the main table on the dashboard interface.
This table can have a single type ("PatientListType") and multiple indicators ("Pa-
tientListPanelMetric"), the types being the hospital units such as internment and
the indicators the different filters that can be seen in the top of Figure 4.9. Being
a table, it contains multiple columns ("PatientListPanelColumn") each having a
field type ("ListFieldType"). The table has multiple detailed patient views ("Pa-
tientDetailComponent") which can be accessed by clicking a patient (see Figure
4.10). This detailed view contains various columns ("PatientDetailComponent-
Column") which also have a type.

The "PatientListType" database table contains a list of the supported types, which
includes inpatient unit, operating block, emergency room, pharmacy, treatment
room, oncology day hospital, and hemodialysis day hospital. These types only
limit the hospital areas from which patient lists can be chosen. For example, if a
configuration is of the type operating block, it makes sense to only access patients
who have scheduled surgeries; this does not impose any restrictions on the choice
of the displayed fields, indicators, or dashboard’s appearance. Additionally, all
types, with the exception of the inpatient unit and pharmacy types, permit the
selection of one or more lists at once by selecting the corresponding parent node
of the lists.

35

Chapter 4

{
"entries": [

{"patientId": 1234, "fieldName": "abc"},
...

]
}

Figure 4.2: Indicator data schema.

Regarding the dashboard data, a few allowed types are already defined in the
"ListFieldType" database table. These are:

• Text, the primary type used to display anything from names, dates, num-
bers, etc.;

• Photo, which mainly serves for the patients’ picture, although it can be used
freely. A dashboard field of this type expects to receive binary data to render
the photo;

• Image 16/24/32/48/64, from a collection of local icons in various sizes
(16x16, 24x24, 32x32, 48x48 and 64x64 pixels). This kind of field anticipates
receiving a string of numbers that correspond to images as well as text en-
closed in quotation marks that serve as image labels.

The information itself can be anything that is stored in the organization’s systems;
as such, the data is fetched from the database through stored procedures. This
way, queries can be tailored to each configuration’s requirements without the
need to alter the codebase. MedicineOne will supply this parameterization so that
their clients can choose every field of information that is shown on the dashboard.

Because the application needs to receive the data in a consistent manner in or-
der to use it, data models were developed to enforce some rules on how stored
procedures will return the data.

The schema for the indicator values is shown in Figure 4.2. It is made up of a sin-
gle list called "entries" that includes patient entries for a particular indicator. Each
entry has a "patientId" which is an integer unique identifier, and a "fieldName"
which is a string that corresponds to a configured indicator. This structure allows
the application to calculate each indicator value by counting the corresponding
entries. Additionally, because the patient list, whose schema is described shortly,
also includes the patient identifier, it enables patient filtering when an indicator
filter is applied.

The schema shown in Figure 4.3 is used for the patient list. A list of patients is
included, and for the previously mentioned reason, each one must include their
unique patient identifier. Other than that, every other field is configurable, with
its name defined in the configuration and its value following.

Finally, the schema shown in Figure 4.4 was developed for the patient detail data.

36

System specification

{
"patients": [

{
"patientId": 1234,
Field Name: "value",
...

},
...

]
}

Figure 4.3: Patient list data schema.

{
"patientDetail": {

"photo": "value",
"name": "value",
"birthdate": "DD-MM-YYYY - XX years",
"processNumber": "value",
"gender": "value",
"nationality": "value",
"doctor": "value",
"contacts": "value",
Field Name: "value",
...

}
}

Figure 4.4: Patient detail data schema.

It includes a few default fields created for an identification column in the detail
section, which is explained in Section 4.3. A separate stored procedure that can be
used for any configuration returns these fields. The configured field names and
values make up the remaining data. For each detail component, a stored pro-
cedure is to be used; as such, all the stored procedure results should be merged
before returning.

37

C
hapter

4

Figure 4.5: The database schema for the dashboard configuration data.

38

System specification

4.2.2 API description

As previously mentioned, MedicineOne’s REST API is used to access medical
data gathered and generated by their system in order to populate the dashboard
application with the necessary information. Structurally, this API is composed
of several components based on the Onion Architecture and the Domain-Driven
Design (DDD) pattern. The Onion Architecture (see Figure 4.6) is an architec-
tural pattern that focuses on layering systems so that layers at the center cannot
depend on the ones at the edges but only on more internal layers. The domain
model, which represents the business and behavior objects, is always the core
layer. The repository interfaces, which offer saving and fetching functionalities,
are typically found in the first layer after the domain model. On the edges re-
side the UI, infrastructure, and test layers. This pattern’s ability to decouple the
rest of the system from the data by having the application database outside of
it is one of its most distinctive features. Since there is more decoupling in this
architecture than in the typical system, applications that use it benefit from lower
maintenance costs, especially if they are complex and enterprise-focused. When
creating the internal domain model, the use of the design pattern DDD comple-
ments the architecture. The fundamental idea behind DDD is the use of a stan-
dard nomenclature by developers and subject matter experts in both the code
and business domains; terms like "patient", "doctor", and "user" should all mean
the same thing in those contexts, which enables better communication between
stakeholders [31, 37].

Figure 4.6: A visual representation of the Onion Architecture in the API. The pre-
sentation layer is where the API to be consumed is implemented; the persistence
layer is where database operations are implemented; the infrastructure layer is
where external code to the application is written; the application layer is where
the business logic resides; and finally in the center is the modeled domain.

The API implementation (main component) can be consumed by different types
of applications, and for each there is a sub-directory in the "Controllers" location.

39

Chapter 4

These categories are:

• M1 client and web applications;

• Mobile applications;

• Third-party applications (public API).

Utilizing ASP.NET Identity [8] and a customized implementation of OpenIddict
[47], authentication is used to access the API endpoints. These sub-directories
also contain information related to the API supported versions. Every time the
API undergoes a significant change, a new version is released with backwards
compatibility for earlier releases.

The MediatR package implements the mediator pattern, which aids in minimiz-
ing object dependency management issues [41]. This pattern requires that objects
communicate through a mediator object, which reduces the "web" of dependen-
cies by requiring that objects rely solely on the mediator [56]. The API endpoints
and their contracts are documented using Swagger and based on the OpenAPI
specification [46]. In order to maintain the separation between the various API
versions, these contracts are housed in a separate project and, most importantly,
are not reused.

A project for application services is maintained and harbors code related to busi-
ness logic. The pattern Command Query Responsibility Segregation (CQRS) which
has as its core principle the implementation of two different models—one to read
information and another to write it—is applied in this component. This pattern
proves useful with complex domains that also benefit from DDD [40]. This ser-
vice component is divided into domains and sub-domains, and they can contain:

• Commands: There is one for each operation that writes data, and they com-
municate with it using the database layer;

• Queries: There is one for each read-only operation, and Dapper is used
as its Object-Relational Mapping (ORM) [23] to interact with the database
directly;

• Commons: classes used to share business logic between queries and com-
mands.

In the database project, Entity Framework Core is utilized to interact with the
database, and it does so with the following structure:

• Contexts: One context maps the whole MedicineOne database;

• Entities: Contains a variety of database schemas, each of which contains
entities that correspond to database tables;

• Configurations: Each database schema has configuration for matching enti-
ties with database tables;

40

System specification

• Repositories: For each domain, there are classes that can fetch, create, up-
date, and remove domain models.

Figure 4.7: A visual representation of the application flow in the MedicineOne
API. After a controller is invoked, it is determined whether the request modifies
the state of the applications. If it does, a repository accesses the database for the
Command; after that, the repository propagates the changes to the domain. If the
state won’t change, a Query is used to call the database directly.

The infrastructure layer is where the code for utilizing other technologies and
external services is located. These include Hangfire [28], which allows the API to
run tasks in the background; the MedicineOne legacy services, which serve as a
bridge between the API and the server, allowing the reuse of code already on the
server-side; and Microsoft’s real-time framework SignalR [62], which is used to
communicate with MedicineOne’s mobile applications.

Additionally, there are projects for writing test code, writing code that is used
by each layer that makes up the API, implementing a SDK that can be installed,
via NuGet Packet Manager, in other applications to allow access to the API, and
updating the primary database and the ASP.NET Identity database.

The MedicineOne API application flow can be see in Figure 4.7.

As a final example, a request and response made with Swagger UI to an endpoint
from the API are shown on Figure 4.8. This endpoint accepts the identifier of an
inpatient area and returns the patients who are present in that area, along with
a variety of other data about them, including personal information, the room in
which they are located, allergies, medical precautions and warnings, and a host

41

Chapter 4

of other things. This is some of the information that can be displayed on the
dashboard prototype.

Figure 4.8: An example of a request and response from a MedicineOne API end-
point.

This study of the MedicineOne API sets the knowledge base for the development
of the endpoints needed to access the information required to build and organize
the dashboard prototype.

4.3 UI design specification

Next, a description of the defined UI design properties that were followed during
development, are given, organized by components.

A header that serves as a navigation bar is present and has the following charac-
teristics and elements:

• White background color;

• The current time in the left side with the format “HH:MM”;

• A MedicineOne logo in the middle;

42

System specification

• Buttons for navigation on the right side. The first button has a patients
icon, the second a hospital icon, and the third a gear icon. These buttons
all have three states: enabled, selected, and disabled, each with a distinct
appearance;

• Each element of the header must be vertically and horizontally aligned.

The settings page must contain the following elements:

• An input field for entering the server address;

• A "Connect" button;

• A drop-down menu with an alphabetical list of the organization names. If
there is only one organization, it must be selected by default;

• A second drop-down menu with the list of configuration codes of the se-
lected organization, also in alphabetical order. If there is only one configu-
ration, it must be selected by default;

• A “Continue” button.

The patient list selection page must contain the following elements:

• A title portraying the type of the configuration selected;

• A table that lists all the available patient lists, grouped by the "parent" node.
These groups can be expanded and collapsed by clicking on the "parent"
node. By default, they ought to be expanded.

The patient panel page must have in the upper section a list of indicators with the
following characteristics:

• A title with the name of the selected patient list;

• Each indicator should comprised of a 45x35 pixels rectangle with the value
of the indicator and another rectangle with the same height of the previous,
but with variable width, containing the indicator’s description;

• If there are less than 5 indicators, the width of all second rectangles should
300 pixels;

• If there are between 5 and 7 indicators, inclusively, the width of all second
rectangles should the total width split equally;

• If there are more than 7 indicators, the width should the same as the previ-
ous rule, and the height will reduce to 15 pixels;

• Between each indicator there should be a 10 pixel horizontal spacing;

43

Chapter 4

• The indicators’ content should be vertically aligned;

• The content of the first rectangles should be in the center;

• The content of the second rectangle should align on the left side but leaving
a 10 pixel spacing;

• When an indicator is selected, there should be a horizontal line below it
matching the colors of the rectangles.

Also on the patient panel page there must be a list of patients with the following
characteristics:

• A table header with the field names;

• Each table row represents a patient from the patient list;

• Columns of type "text" should have their content aligned to the left side;

• Columns with type "photo", should render them in a round shape, in the
center, and with 3 pixels of upper and lower margin;

• For columns of type "image", the size should be according to the number in
the column type (16/24/32/48/64), and if there are multiple images in the
same cell, a space of 15 pixels should separate them.

• If there isn’t any patient on the table, there should be an indicative message
with a 15 point size, regular style, and the same color as the content labels.

When a patient is selected, a section of the page is filled with the patient’s de-
tailed information, while the patient list shrinks to occupy the remaining width,
assuming this component is configured. This section must have the following
elements and characteristics:

• A 20 pixels spacing between the detail section and the patient list;

• An universal column for patient identification, present in every configura-
tion on the left side;

• The configured patient detail components on the right side.

The identification column must have the following elements and characteristics:

• A width of 280 pixels;

• An upper square with upper and lower padding of 20 pixels;

• This top square should include the patient’s image, which should be round
and 130 pixels in diameter; the patient’s first and last names, which should
be capitalized, bold, and 15 points in size; the color "1; 174; 212" (light blue)
in Red-Blue-Green (RGB) values; and the patient’s birthdate, which should
be written in the following format: "DD-MM-YYYY - XX years";

44

System specification

• These three elements should be horizontally centered and have between
them 25 pixels of spacing;

• A rectangular area 20 pixels below the upper square;

• This area contains various pieces of information such as: process number,
patient gender, nationality, the attending doctor, and emergency contacts;

• The labels for these patient data should have a point size of 11, be in bold,
and have a color corresponding to the RGB values "102; 102; 102" (dark
gray);

• The corresponding values should appear directly below the labels;

• A vertical space of 30 pixels should be used to separate each pair of label
and value;

• This rectangle’s content should have a 10 pixel left margin and be aligned
to the left.

The patient detail components must appear on the right side of the identification
column with the following characteristics:

• There should be a 10 pixel space below lines that are designated as "using
line break" in the configuration before the subsequent column;

• Lines with height set to 0 should expand to occupy the area not used by the
other lines;

• Each cell should have a padding of 10 pixels;

• According to the type, the value of each cell should be displayed as in the
patient list.

A mock-up of the intended UI design created by MedicineOne is shown in Figure
4.9, and it provides some visual aid to some of the design specifications detailed
above, as well as an example of what information can be displayed. In this il-
lustration, we can see details about the internment unit, including the number of
patients housed there (selected tab), as well as other filters like those that show
patients with upcoming surgeries and those who will be discharged that day.
Each patient’s row contains details about their room and bed, any allergies they
may have, their doctor, and other things. It also provides alerts regarding medi-
cation and meals.

Figure 4.10 depicts a different mock-up that corresponds to the choice of a specific
patient. A new tab is opened, and the patient’s personal details, a list of their
diagnoses, the date of their admission, and other details are displayed. It clearly
shows the division of this section with the identification column on the left, and
the configured components on the right.

45

Chapter 4

Table 4.7: List of configurable properties of each dashboard component.

Indicators Description; Left and right background colors; Display order.

Patient list panel
Title; Page background color; Line height; Table header, odd rows, and even rows
background colors; Font size; Column value used to order patients; Ascending or
descending order of patients; Width occipied by the patient detail section.

Patient list column Title; Width; If width is fixed or occupies remaining area; Regular, bold, or italic
text style; Display order.

Patient detail component Line height; If uses line break or not; Display order.
Patient detail component column Width; Regular, bold, or italic text style; Display order.

As was already stated, several appearance properties can be set in the configu-
ration. These properties are listed on Table 4.7 and correspond to fields from the
database schema in Figure 4.5.

The window on the main system that creates the configuration for the dashboard
application is shown in Figure 4.11. Along with the appearance properties al-
ready listed, the data for the patient board and the indicators can be chosen.

Figure 4.9: A mock-up of the dashboard main screen designed by MedicineOne.

46

System specification

Figure 4.10: A mock-up of the dashboard patient details screen designed by
MedicineOne.

Figure 4.11: The window on the MedicineOne system that generates the configu-
ration for the dashboard.

47

Chapter 5

Methodology & Planning

The work methodology for this project, as well as its planning, are described in
this chapter.

5.1 Methodology

This project was developed using the Scrum methodology, with some devia-
tions occurring during the second semester, which are explained at the end of
the methodology portion. Being an agile project management framework, Scrum
places a strong emphasis on moving forward in manageable increments of work
and uses a continuous process of feedback and inspection to guide the project
toward its intended completion. The three main categories of attributes in this
framework are Accountabilities, Events, and Artifacts [60]. A visual representa-
tion of this framework can be seen on Figure 5.1.

Scrum Accountabilities are the people and roles present in the Scrum Team, which
can be [60]:

• Scrum Master: The person who applies Scrum knowledge to maximize the
effectiveness of the team and organization. They do this by coaching, teach-
ing, facilitating, and mentoring. In this project the Scrum Master was the
dissertation advisor from MedicineOne Fernando Tinoco;

• Product Owner: The member of the Scrum Team who oversees the produc-
tion of the most valuable product possible. The Product Owner was Bruno
Doutor from MedicineOne;

• Developers: The members of the Scrum Team who collaborate to create the
product. In this context the intern integrated an engineering team in Medici-
neOne that provided support specially when working with the described
API, but was solely responsible for the tasks related to this project.

The Scrum Events, which are developed to compel regularity and lighten the
workload of other meetings, can take the following forms [60]:

49

Chapter 5

• Sprint: The work is completed in sprints, which are brief cycles of one
month or less and include all other Scrum Events. Immediately following
the conclusion of the prior Sprint, a new one begins. Sprint duration for this
project is three weeks each;

• Sprint Planning: activity for organizing the work that will be done during
the Sprint;

• Daily Scrum: Every day, this daily event is held where the developers as-
sess their progress toward the sprint goal, identify any obstacles, and make
necessary adjustments;

• Sprint Review: An event that takes place at the conclusion of the Sprint,
where the Scrum Team and important stakeholders discuss what was ac-
complished in the Sprint and what changed in their environment;

• Sprint Retrospective: During this meeting, the Scrum Team discusses how
the previous Sprint went and determines the most beneficial changes to in-
crease their effectiveness.

Lastly, Scrum Artifacts are the work and plans that are transparent, inspectable,
and allow for future adaptation. Each artifact has a Commitment that aids the
team in determining whether they are progressing. These artifacts can be [60]:

• Product Backlog: an ever-evolving, structured list of what must be done
to enhance the product; it is the Scrum Team’s sole source of work. Its
Commitment is the Product Goal which is the goal that the group plans
to achieve;

• Sprint Backlog: a visible list of tasks that represents the developer’s sprint
plan and may change as they gain knowledge. Its Commitment is the Sprint
Goal, which represents the sole goal of the Sprint;

• Increments: Small pieces of work that act as tangible steps toward the Prod-
uct Goal. There is no requirement to only release once during a Sprint;
deliveries may be as frequent as necessary. This artifact’s Commitment is
the Definition of Done, meaning the requirements that must be met for an
Increment to be deemed complete.

For this project, a Sprint Planning meeting was held on a Tuesday, marking the
beginning of a new Sprint, with a duration of about an hour and a half, where
priorities for the Sprint were set. It is intended to hold Daily Scrum meetings
for at least fifteen minutes to talk about issues and progress. There was a Sprint
Refinement meeting every Thursday for about an hour and a half, during which
tasks were estimated. The Sprint Review and Retrospective meetings took place
on the last Tuesday of the Sprint to discuss what was accomplished during the
sprint and how it can be improved for the following, with a duration of about
an hour and a half and half an hour, respectively. The Scrum Master was present
at all meetings, and only at Daily Scrum meetings was the Product Owner not
present.

50

Methodology & Planning

Figure 5.1: A visual representation of the Scrum Framework [60].

5.1.1 Deviancies

In the beginning of the second semester, the intern joined a team that worked on
the MedicineOne API, where the specified Scrum methodology was carried out
as intended. After about a month, MedicineOne underwent an internal reorga-
nization of teams and departments that resulted in the relocation of the team’s
members, which led to its dissolution. Consequently, the project methodology
was altered. Daily meetings with the Scrum Master and dissertation advisor from
MedicineOne continued to be held, but other Scrum Events were replaced with
another meeting that took place three times. Along with the Scrum Master, this
meeting included the Chief Vision Officer of MedicineOne and the majority of
the Project Development team, specifically its Manager, Product Specialist, De-
signer, and two Product Responsibles. During this meeting, the intern presented
the project’s progress, provided a demonstration, and asked questions about the
project’s development. The other attendees to the meeting then offered feedback
and clarification.

5.2 Planning

The work plan for this project is divided into two semesters.

In the first semester, tasks that required research and analysis predominated, as
well as a brief onboarding training period. These tasks included learning about
general dashboard development, then learning about medical dashboards to de-
velop a state-of-the-art. After that, desktop and web-based options for creating a
dashboard prototype and real-time communication technologies were examined.
The MedicineOne API, which is used to supply data to the dashboard, was also
studied. Throughout the semester, the report was intermittently worked on, with
an emphasis on the later stages. This process can be seen on Figure 5.2.

51

Chapter 5

Figure 5.2: The work plan for the first semester.

The work planned for the second semester can be seen in Figure 5.3, and was
divided into the following areas: establishing endpoints in the MedicineOne API
to retrieve the configuration and the clinical data specified in said configuration;
creating the dashboard application that uses the endpoints created to accomplish
its goal; establishing the client side of the real-time communication and process-
ing the potential events to be received; testing and correction of bugs found; and
the elaboration of the final report.

Figure 5.3: The work plan for the second semester.

5.2.1 Deviancies

The second semester’s actual work differed slightly from the planning that had
been done. It was primarily caused by the patient list selection component of
the system not being optimally specified at the outset. This made it necessary
to review the specification, create additional endpoints, and write web applica-
tion code. In general, it had no negative effects on how the project was being
developed. This can be seen in the diagram in Figure 5.4.

Figure 5.4: The work done in the second semester.

52

Chapter 6

Implementation

This chapter provides an overview of the implementation process, covering the
endpoint creation in the MedicineOne API, the development of the web applica-
tion’s UI and features, and the setup of an Azure SignalR Service instance and the
necessary code to ensure real-time communication between the medical system
and the dashboard.

6.1 API

This development followed the API structure detailed in Chapter 4. In summary,
controllers were created in the "Controllers" directory inside the main project
component of the MedicineOne API. Inside the "Contracts" project, the API routes
for the endpoints were added, as well as the success and error responses for each
endpoint and the definition of the data object compositions to be used in the con-
trollers. The query definitions, their potential error codes, and the handlers that
carry out the requests were added to the "Services" project.

In order to support the web application, the API must have endpoints that can
retrieve the configuration of the dashboard from the database and run the de-
fined stored procedures to get the data needed to populate the dashboard. As a
result, two primary API controllers were developed, one with endpoints to return
configuration data and the other with endpoints to execute and get the output of
the stored procedures for medical data. Since only a one-way information flow
from the server to the client is required, all of the endpoints created for these con-
trollers used the "GET" HTTP method, which is enough to implement the needed
functionality. Using the MediatR package and the CQRS pattern, these requests
are mapped to classes called queries, which are then passed on to a handler that
will execute them and return the result. A third API controller was later created
to support the Azure SignalR Service usage, which are described later in Section
6.3.

The controllers themselves are not particularly complex because, as stated, they
pass on the requests to handlers in the "Services" project. They contain an asyn-
chronous method for each endpoint, on which the HTTP method and the types

53

Chapter 6

of responses are defined with annotations. They also state in the parameters the
expected type, requirement (mandatory or not), and location of the input val-
ues. Each method creates a corresponding query object for a request and sends it
through the mediator object; the result is then returned as a success response or
an error response, depending on whether an error occurred.

In the following sections, the created API endpoints are described in detail.

6.1.1 Dashboard configuration endpoints

The "GetDisplayStructure" endpoint was created mainly to return all the config-
uration data for the dashboard in a single API call. It requires two parameters
from the caller: an integer representing the organization identifier and a string
corresponding to a configuration code. Following that, validations are made
on the query handler to see if the organization is present in the system, if the
authenticated user has access to it, and if the configuration code matches any
configurations that are accessible to that organization. Following these checks, a
database query using the Dapper package is run to retrieve data from the "Pa-
tientListPanel" and "PatientListType" tables (shown in Figure 4.5) corresponding
to the provided configuration code and organization identifier. The configuration
information for the indicators, patient panel columns, and patient detail compo-
nents is retrieved from the other tables using the patient panel identifier if a re-
sult is obtained. Finally, all the results are concatenated, but before returning, the
fields containing color values are converted to hexadecimal because the format
in which they are created in the main MedicineOne system is not easily usable
in the web application. An example of a call to this endpoint and its output is
shown in Figure 6.1.

Later, two more endpoints were added to the configuration controller to imple-
ment the patient list selection. One of the endpoints is designed to return the
list of organizations present in the system and their corresponding configura-
tion codes, and the other returns the various patient lists accessible to the previ-
ously selected configuration. The first one, called "ListOrganizationsConfigura-
tions" takes no arguments and simply returns all the organization names with the
nested configuration codes that the user has access (see Figure 6.2). The second
is named "ListSectors" because the patient lists that it returns actually represent
the various medical divisions and subdivisions (sectors and sections were chosen
as a general nomenclature). It requires both the chosen organization’s identifier
and the chosen configuration’s list type identifier as parameters. Similar to the
"GetDisplayStructure" endpoint, the corresponding handler verifies that the or-
ganization exists and that the user is authorized to access it. Following that, a
switch case is used with the provided type identifier to determine which type is
being dealt with, in order to execute the proper query because different patient
list types correspond to different medical departments, which are saved in the
system differently. Figure 6.3 shows an example call made to this endpoint and
its result.

54

Implementation

Figure 6.1: An example request and response of the "GetDisplayStructure" end-
point in the Swagger UI.

6.1.2 Dashboard data endpoints

As stated previously, in order to access the indicator, patient, and patient detail
data from the database, stored procedures must be executed from the endpoints.
Three endpoints were created from these categories, one for each. “ListMetrics”
and “ListPatients” are the endpoints that return the indicator data and the pa-
tients from the selected list, respectively, and both of them are structured simi-
larly. They both begin by receiving the same arguments: the organization identi-
fier, the name of the configured stored procedure, and a list of section identifiers.
This last parameter is a list because, depending on the configuration type, some
patient list selections may include more than one medical division, necessitating
a fetch from multiple sections. After completing the organization validations in-
side of each handler, the stored procedures are run, and their results are returned.
Examples of calls to these endpoints and their outputs are visible in Figures 6.4
and 6.5.

For obtaining the patient detail data, the endpoint "GetPatientDetail" was cre-
ated. The arguments it receives are the organization identifier, the selected pa-
tient’s identifier, and a list of stored procedure names because, as stated, each
patient detail component has a corresponding stored procedure. The query han-
dler first confirms that the given organization exists and that the authenticated
user is authorized to access it. Next, it executes the global patient identification
stored procedure that was mentioned in Chapter 4 before running the configured

55

Chapter 6

Figure 6.2: An example request and response of the "ListOrganizationsConfigu-
rations" endpoint in the Swagger UI.

stored procedures. Finally, every output is concatenated and returned. In Figure
6.6 an example call and response to this endpoint can be seen.

6.2 Web application

In this section the web application development is described, starting with the
project setup, and then covering relevant development information.

6.2.1 Project setup

To start the web application development, the project was created with Vite, a
build tool and development server for modern web applications, using the Node
Package Manager (npm) command “npm create vite@latest” which fetches the
latest version of Vite and create with it a project template [66]. When this com-
mand is run, a prompt asks for the preferred framework and variant, from which

56

Implementation

Figure 6.3: An example request and response of the "ListSectors" endpoint in the
Swagger UI.

React and JavaScript were selected, respectively. The resulting project structure
can be seen in Figure 6.7.

Tailwind CSS and Axios were added right after the project’s creation, the first one
to aid in the development of the application UI and the second to make HTTP
calls [9, 64]. To install Axios, the npm command "npm install axios" sufficed.
On the other hand, Tailwind was installed alongside PostCSS and Autoprefixer
with the command "npm install -D tailwindcss postcss autoprefixer", as devel-
opment dependencies due to the CSS classes being converted to plain CSS when
building for production. PostCSS and Autoprefixer were added to allow the use
of configurable Tailwind classes and improve browser compatibility, respectively
[64]. The command "npx tailwind init" was run to setup the Tailwind configura-
tion files, and finally, Tailwind and Autoprefixer were added to the plugin in the
PostCSS configuration file.

6.2.2 Development

In order to take advantage of the component capabilities of React, it was exam-
ined how to divide the dashboard UI into components after the project was set
up. This resulted in the creation of the following files:

• Header.jsx, for implementing the application header;

• Body.jsx, to contain the main content of the application;

• PatientPanel.jsx, to contain the dashboard content;

• MetricList.jsx, to display the configured indicators;

57

Chapter 6

Figure 6.4: An example request and response of the "ListMetrics" endpoint in the
Swagger UI.

• Metric.jsx, to implement an indicator;

• PatientList.jsx, to display the configured patient list;

• PatientListHeader.jsx, to implement the patient list header;

• Patient.jsx, to implement a patient;

• PatientDetail.jsx, to display the configured patient detail;

• PatientDetailIdentification.jsx, to implement the patient detail identification
column;

• PatientDetailComponent.jsx, to implement a patient detail component.

Other components were created for other functionalities, such as the settings page
(Settings.jsx), the patient selection page (SectorList.jsx and Sector.jsx), and a load-
ing spinner component (Spinner.jsx). A screenshot of the full components direc-
tory can be seen in Figure 6.8.

In order to isolate the component code from newly created reusable functions,
the latter were placed inside service files. These include API request functions,
browser local storage management, and other utilities.

The use of the browser’s local storage was centralized and made simpler by the
creation of a service with a named export that contained logic to set, get, and
remove items from the local storage.

The logic for the application’s authentication to the MedicineOne API was stored
in a file called "AuthenticationService.jsx." In it, the authentication server address
and credentials are imported from environment variables, and they are used in an
Axios call to authenticate the application, obtaining a token. Inside the service, a
function called “createAxiosInstance” was developed, which, as the name states,
creates an Axios instance. In this instance, the following interceptors are added:

58

Implementation

Figure 6.5: An example request and response of the "ListPatients" endpoint in the
Swagger UI.

• An interceptor for the requests that gets the token from the local storage and
adds it to the request’s authorization header, if the token exists;

• An interceptor that calls the previous authentication function in error re-
sponses with status code "401 Unauthorized". In the event that authenti-
cation is successful, the interceptor saves the token in the local storage of
the browser, adds it to the failed request header in a manner similar to the
first interceptor, and reroutes the call. Authentication errors are retried once
more, and if they happen again, they are simply returned.

The address is set on application startup if it is present on the browser’s local stor-
age or when one is provided in the settings page. This instance is then imported
and used throughout the application whenever a need to request data from the
API arises.

Two services were made for the API calls: “WallConfigurationService.jsx” for the
configuration controller and “WallService.jsx” for the dashboard data controller.
Both services import the Axios instance built in the prior service to implement
a function for each endpoint that returns a JavaScript promise of the request,
which can then be resolved by the application components to acquire the data.
Error handling was enforced on the usage of these services, in case the fetching
of information fails.

Additionally, a function was developed to parse fields of type image, which, as

59

Chapter 6

Figure 6.6: An example request and response of the "GetPatientDetail" endpoint
in the Swagger UI.

stated in Chapter 4, contain a string that can represent multiple images and text
labels in a particular format. As this was needed for more than one application
component, the patient list and the patient detail components, it was extracted to
a service.

The application’s routing, which was carried out using the React Router package,
is a relevant detail to address. The package used supports nested routing, client-
side page routing, and other features [55]. On the first routing level, the settings
and wildcard routes are specified. The first maps the path "/settings" to the cor-
responding page, while the second one is used to ensure the settings are present
before accessing other pages. In order to accomplish this, the element is config-
ured to render the return of a function that, if all settings are defined, returns the
component with the second level of routing; otherwise, it redirects the user to the
settings page. The second level of routing operates similarly to the first by map-
ping the path "/selectList" to the appropriate page and using the wildcard route
to make sure that a list is selected. This validation employs the same method. The
element that needs to be rendered is the output of a function that, if a patient list
is chosen, returns the patient panel component; otherwise, it redirects the user to
the page where they can choose a patient list. In Figure 6.9 a diagram illustrates
the routing described.

As was stated, the appearance of the application must adjust to the configuration
information obtained through the API. Therefore, to apply the incoming prop-
erties, a couple methods were used, such as: the HTML “style” attribute, which
was mainly used to set the width, height, and background color of elements, with
some cases logic expressions being used; string interpolation in the Tailwind CSS
“classNames” attribute, which was used primarily to set classes like visibility and
text style, among others.

During development, a number of React functionalities that are considered best
practices were used. The following practices can enhance the maintainability,
reusability, and overall quality of the codebase:

• As was demonstrated, the application was divided into various compo-

60

Implementation

Figure 6.7: The initial Vite project structure.

nents, each of which was responsible for rendering a different section of
the "UI;

• React’s state management was utilized to manage and distribute data among
components, specifically to share configuration and dashboard data with
the in need components;

• The created components are all functional, meaning they encourage the use
of React hooks for state management and lifecycle methods, for instance;

• To ensure predictable behavior, the state and props of the component were
largely kept immutable by creating new instances if the values were to be
updated.

6.3 Azure SignalR Service

To utilize the Azure SignalR Service in the system, several steps had to be taken.
First, an instance of this service was created on Microsoft Azure. This instance

61

Chapter 6

Figure 6.8: The components directory structure.

was created in serverless mode, which, as the name suggests, does not need or al-
low for server connections. As it is advised when using a serverless instance, the
package "Microsoft.Azure.SignalR.Management" was installed in the API project
to set up the message transmission [10]. This strategy was chosen because it was
confirmed that, in contrast to other approaches, it did not obstruct MedicineOne’s
API use of the non-cloud based SignalR.

First, a service was built and named “SignalRService” in the corresponding project
folder of the API. Its function is to establish and maintain the hub context, a man-
agement package object that represents the connection to the Azure SignalR Ser-
vice hub and enables interaction with it. There were three methods created in
it: one to start the service and create the hub context instance, one to dispose
of the instance, and one to stop the service. A service manager object is created
and configured with the connection string for the Azure SignalR Service instance
when the service is started, and it is then used to create the hub context. The
hub context is then saved on an interface that was developed to act as a store for
injection when necessary. Finally, since only one instance of each is required, the
service and the hub context interface are registered as singletons. The first is also
registered as a hosted service that is started when the API starts and as the hub
context interface’s implementation.

Following the initial configuration, a controller was implemented similarly to the
others but with an injection of the hub context store. This controller contains
endpoints to send messages and for the negotiation process, which is a necessary

62

Implementation

Figure 6.9: A visual representation of the application routing.

process to begin communication with a new client. No query, command, or han-
dler classes were developed for these endpoints because they do not access the
database. The negotiation process is done by sending a HTTP POST request to
obtain the connection identifier and available transport protocols that the client
needs to create the connection object. A request may also include the preferred
transport protocol, and if the host of the negotiation endpoint requests one, an
access token may also be needed. Authentication is required in this instance be-
cause this endpoint was incorporated into the MedicineOne API.

The negotiation endpoint was named "Negotiate", and it acts as a middleman in
the negotiation process. After receiving the client’s request, it invokes the "Ne-
gotitateAsync()" method from the SignalR management package, which negoti-
ates on the client’s behalf and redirects it to the Azure SignalR instance by re-
turning the address of that instance and an access token (see Figure 6.10). The
client then sends a second request, this time to the specified address, along with
the token to prove it is authenticated. It receives the already mentioned connec-
tion identifier and the available communication protocols from the Azure SignalR
Service, concluding this process. Figure 6.11 illustrates this process.

Four endpoints were made specifically for message sending that will be called
from the MedicineOne main system to notify the dashboard clients of events.
They all function similarly, taking parameters from the request body and sending
them to all Azure SignalR clients using the corresponding method (topic) through
the hub context. One employs the method "ConfigurationUpdate," which is in-
voked whenever changes are made to the configuration data. The message in-
cludes the updated configuration’s code so that dashboards using it can update
their visuals without having to be restarted. The others use the methods "Patien-
tAdmission," "PatientDischarge," and "PatientUpdate" to alert clients to changes
in the dashboard data itself. The first receives and sends to the Azure SignalR in-
stance the identifier of the patient’s location in the hospital, while both the latter
receive and send the patient’s identifier.

63

Chapter 6

Figure 6.10: An example request and response of the "Negotiate" endpoint in the
Swagger UI.

Figure 6.11: A visual representation of the client negotiation process with the
Azure SignalR instance.

Moving on to the web application, first the package “@microsoft/signalr” was
installed. A new method called "connectSignalR" was created for the authen-
tication service, and it is in charge of connecting to the instance using the hub
connection builder from the previous package. The address for the newly cre-
ated negotiation endpoint and the preferred transport protocol, SSE, were both
specified in this builder. As was mentioned in Chapter 3 this protocol fits in well
with the preferred communication approach, which is a one-way channel that
only allows clients to receive event notifications. There is also a parameter in the
builder called "accessTokenFactory" that supplies the token kept in local storage
for the API authentication, and the builder method for automatic reconnection in
case of network or server error was also added. Finally, this function returns the
newly created hub connection object. It is called in the component code with an
interval retry method, and when the connection is obtained, it is started with the
corresponding method.

64

Implementation

Next, handlers for the methods used to send the notifications must be set up in
order to receive messages from the Azure SignalR instance. The "on" method of
the hub connection object, with the parameters being the method and the handler
function, is used to carry out this action. This is applied to two separate compo-
nents: the body component, which sets a handler for the "ConfigurationUpdate"
method, and the patient panel component, which sets handlers for the dashboard
data methods. In the first handler, a simple check is made to see if the configu-
ration code in the message matches the configuration that was chosen for this
instance of the application, and if it does, a new request for its data is made using
the API. In a similar manner, the "PatientAdmission" method handler requests the
indicator and patient list data if the location identifier of the new patient matches
the patient list that has been selected for the dashboard. The "PatientUpdate"
method handler makes the same requests to the API, but only if the patient iden-
tifier in the message matches one of the patients who are listed. Furthermore,
if the updated patient is currently selected and has their detailed information
displayed, a request is also made for that data. Last but not least, the "Patient-
Discharge" method handler checks to see if it contains the patient matching the
provided identifier, but since it relates to a discharge from the hospital, it just re-
moves the patient record from the list and its indicator entries, and if the patient
was selected, it also closes the detail information component. If any of these han-
dlers perform an action that is not intended for the patient who is currently being
selected (if there is one), the patient detail component will not be closed.

Because each dashboard may be unique, contain a variety of medical data, and
name each field differently, there are limitations on how messages can be sent.
For instance, even if a dashboard lists this patient and contains the exact fields of
information, there is no guarantee that the fields will have the same names if we
send an updated patient record. As a result, the strategy of sending the patient
identifier was selected since it is required that this field exist with a consistent
name in every configuration, even if it is not displayed. The same applies to the
patient’s location identifier, which, at least for the selected patient list, will be
present in every dashboard.

The implementation that is required on the MedicineOne server to send noti-
fications when specific events occur is not included in the dissertation’s scope,
so only the configuration update was fully implemented by MedicineOne to as-
sert that it communicated properly with the Azure SignalR instance. As a result,
timers were set up on each endpoint call for dashboard data so they could peri-
odically refetch it as a temporary measure.

6.4 Result

In this section, screenshots of the web application are shown for three different
dashboard configurations, which show how the UI and its data can change by
simply changing configurations.

The settings page is the first page shown when launching the application for the
first time. As previously mentioned, a server address, an organization, and a

65

Chapter 6

configuration are prompted before continuing. This page can be seen in Figure
6.12.

Figure 6.12: A screenshot of the settings page.

The patient list selection page is displayed following completion of the settings
page’s required inputs. The background color and list attributes are already taken
into account on this page thanks to the previously chosen configuration. It dis-
plays the available lists for each configuration obtained through the API, which
vary depending on the configuration type selected.

In Figures 6.13, 6.14, and 6.15 this page can be seen for an inpatient unit, operating
block, and emergency room configurations, respectively.

Every example allows for the collapsing and expanding of lists by clicking on the
parent node, but only the final two allow for the selection of the parent node,
which selects all of the lists it contains, this is due to the configuration type, as
was stated in Chapter 4.

After a selection is made, the dashboard page is displayed, with the patients and
indicators listed according to the list that was chosen and the data from the se-
lected configuration applied to the UI. All the information is obtained by calling
on the developed endpoints that fetch it from the database, using the defined
stored procedures for the patient and indicator data. This information is then
updated on receiving notification messages from the Azure SignalR Service.

The different configured dashboards can be seen in Figures 6.16, 6.18, and 6.19.

Additionally, in Figure 6.17 an indicator was selected and consequently applied
a filter to the patient list of the first dashboard.

Finally, by selecting a patient from the list, the patient detail component is opened
and populated with data. Figures 6.20, 6.21, and 6.22, show the different appear-
ances and information fields on the three dashboards.

66

Implementation

Figure 6.13: A screenshot of the patient list selection page for an inpatient unit
configuration.

Figure 6.14: A screenshot of the patient list selection page for an operating block
configuration.

67

Chapter 6

Figure 6.15: A screenshot of the patient list selection page for an emergency room
configuration.

Figure 6.16: A screenshot of the patient list panel page for an inpatient unit con-
figuration.

68

Implementation

Figure 6.17: A screenshot of the patient list panel page for an inpatient unit con-
figuration with a selected indicator filter.

Figure 6.18: A screenshot of the patient list panel page for an operating block
configuration.

69

Chapter 6

Figure 6.19: A screenshot of the patient list panel page for an emergency room
configuration.

Figure 6.20: A screenshot of the patient list panel page for an inpatient unit con-
figuration with a selected patient.

70

Implementation

Figure 6.21: A screenshot of the patient list panel page for an operating block
configuration with a selected patient.

Figure 6.22: A screenshot of the patient list panel page for an emergency room
configuration with a selected patient.

71

Chapter 7

Testing

As software testing is crucial to ensuring an application’s dependability and over-
all quality, several tests were created and executed, with a main focus on the key
components of the developed system. For each component tested, a brief de-
scription, an example of a test case, and the overall results are provided. Finally,
acceptance tests are also discussed.

7.1 API testing

Due to the developed endpoints’ importance to the application, a set of black-
box tests was created for them. The testing tool used was Postman, which has a
number of features to aid in the design, development, and testing of APIs [53]. It
was used to quickly make test calls throughout the endpoint development pro-
cess, and later a more structured test plan was enforced. These tests were written
inside Postman, and they were run alongside a call to an endpoint.

The tests mainly consisted of validating the responses received from the API in
relation to the input parameters. For instance, sending a request with valid pa-
rameters should result in a 200 (OK) response status code and an object; sending
a request with valid parameters but no matches in the database should result in a
422 (Unprocessable Entity) response status code; and sending a request with in-
valid or missing parameters should result in a 400 (Bad Request) response status
code. The description of one of the tests done on an endpoint can be seen in Table
7.1.

Eight out of the forty-eight tests that were conducted failed, yielding an initial
test pass rate of 83% (40/48). All of the tests that failed were the result of incor-
rect error handling and validation. One such instance occurs in the "listSecotrs"
endpoint, which accepts an integer representing a list type identifier. If a value
was provided that was lower than 1 or higher than 3, it simply returned an empty
list, despite the fact that the intended behavior was to return an error message in-
forming the user that no types in the system match those identifiers. Another
instance was on the dashboard data endpoints, where an exception was returned
rather than an error response when a valid string was provided as a stored proce-

73

Chapter 7

dure name that did not exist in the system. These problems were promptly fixed,
and tests were then repeated until all ultimately passed. The complete list and
results of these test cases can be seen in Appendix A.

Table 7.1: Test #2, where the endpoint that returns the configuration data is tested
with an inexistent configuration.

Code Endpoint Input parameters Expected response Result

TC2 configuration.getDisplayStructure organizationId = -2147483636
configurationCode = "99"

200 Ok
(Returns the correct configuration) Pass

7.2 Dashboard configuration testing

The configurable dashboard appearance is also one of the application’s defining
features. As such, test cases were planned to ensure that the correct styling was
rendered on the dashboard UI. Playwright, an end-to-end testing framework for
web applications, was used to create and carry out these tests. It enables tests to
be run on various browsers to ensure cross-browser compatibility [52]. With this
framework, it is possible to assert that the application rendering will be consistent
across various browsers, in addition to testing the proper usage of the dashboard
configuration data. Each test is run by Playwright, which launches the applica-
tion in a browser and enables interaction with the rendered elements of the page.
All tests were run with the following browsers: Chromium, Firefox, and WebKit.
After choosing a configuration in the settings page, the method "getComputed-
Style()", which returns all of the element’s CSS properties after all stylesheets and
computations are made, is used to obtain the attributes intended for testing. Fi-
nally, the obtained properties are compared with the selected configuration data
using assertions.

These end-to-end tests used three configurations as inputs, each with different
types and fields. They were used to test a wide range of configuration values,
including different colors, line heights, indicator counts, and all of the different
column fields. In Table 7.2 a description of one of these tests can be seen.

Ninety-nine tests were run, and a pass rate of 100% was achieved (99/99), though
some circumstances called for some leniency. For instance, a line height of 40
pixels would be extended to fit an image with a 64x64 pixel resolution if a field’s
type was "Image 64", as such this was not regarded as a test failure. The complete
list and results of these test cases can be seen in Appendix B.

Table 7.2: Test case #103, where the application is tested for the correct application
of the patient list background colors and line height in the Chromium browser.

Code Input
configuration Browser Expectation Result

TC103 #1 Chromium Should have the configured list background colors and
line height. Pass

74

Testing

7.3 Real-time notifications testing

Additionally, end-to-end tests were conducted for the Azure SignalR Service,
which sends real-time updates to the dashboard. As it was mentioned that only
the update of configurations is set up to emit events, aside from its test, which can
be performed by changing a configuration on the MedicineOne system, all other
tests involved calling the endpoints with different message inputs with Postman.
Their purpose was to ensure that messages were properly received and that web
application instances correctly decided whether to act on messages or whether
they were only meant for other instances. It was also checked to see if all in-
stances of the application that were currently running were receiving the mes-
sages. Tables 7.3 and 7.4 show two of the tests executed for testing the applica-
tion’s interaction with the Azure SignalR Service, the first one being run directly
with the MedicineOne system and the second with Postman.

Thirty test cases were elaborated and run in total, and a 100% pass rate was
achieved (30/30). The complete list and results of these test cases can be seen
in Appendix C.

Table 7.3: Test case #151, where the application is tested for the correct course of
action when receiving a configuration update notification for the configuration it
is currently using.

Code Notification Action Message (contains the
configuration code)

Recipient
(configuration code)

Expectation (besides
receiving the message) Result

TC151 signalr.
sendConfigurationUpdate Add a field to the patient list 98 98 Refetches configuration Pass

Table 7.4: Test case #158, where the application is tested for the correct course of
action when receiving a patient admission notification for its displayed list.

Code Notification
endpoint

Message (contains the
location identifier) Precondition Expectation (besides

receiving the message) Result

TC158 signalr.
sendPatientAdmission -2147483647 The dashboard displays

the location
Refetches indicators
and patient panel Pass

7.4 Acceptance testing

To verify that the implemented requirements were met and validate the work
done, acceptance tests were performed. As a result of the configuration end-to-
end tests, some requirements had already been indirectly tested. For instance,
the correct application of the configuration to the patient panel (R8) was tested
in numerous test cases in Appendix B. The remainder were then put to the test
as well. The application emitting graphical notifications (R22), which had the
lowest MoSCoW priority, and the emission of sound notifications (R21), which
had the second lowest priority, were the only two requirements that were not
implemented. The first had already been deemed out of the scope of the project
during its specification, while the second was disregarded during development.
The full list of these tests and their results can be seen in Appendix D.

75

Chapter 7

Besides the intern, MedicineOne advisor Fernando Tinoco also performed infor-
mal tests by experimenting with the application while also supplying feedback
and reporting bugs found throughout development.

During the meetings with most of the Project Development team and Medici-
neOne’s Chief Vision Officer, it was transmitted that the work done was in line
with the requirements and their expectations. Additionally, a desire to perform
a test pilot with one of MedicineOne’s partners was also demonstrated, and it is
being internally planned for the end of the year.

76

Chapter 8

Conclusion

The need for dashboards to provide clear and concise data visualization to sup-
port decision-making, particularly in the medical environment, was described in
this report. To gain a better understanding of how a medical dashboard imple-
mentation should be approached, a study on dashboard design principles and
published implementations for clinical purposes was conducted. It was empha-
sized the significance of selecting the data to display on the dashboard as well
as the means of visualization, and several factors were relayed to describe the
purpose, functionality, and data properties of medical dashboards. Based on the
written state-of-the-art, the defined dashboard properties were validated, and the
intended solution was characterized to compare with the analyzed case studies.

An analysis of UI development technologies for web and desktop environments,
as well as services that offer real-time application communication, was done. The
decisions were revealed and justified, and they included the use of web technolo-
gies, specifically the UI development library React, and to create a real-time com-
munication channel between the dashboard and the main MedicineOne system,
the Azure SignalR Service was chosen.

In order to lay the groundwork for development and to provide a means of
project validation at the end, the overall system was specified, starting with the
listing and prioritization of requirements and the creation of user stories. Addi-
tionally, architectural details were communicated, including the system’s overall
structure and internal interactions, the description of data schemas, and UI de-
sign requirements. A structural and functional explanation of the MedicineOne
API, which will supply the medical data displayed on the dashboard and serve
as a proxy for real-time communication, was also provided.

An overview of the development process was written, which addressed the im-
plementation of the system’s essential parts: the endpoints built into Medici-
neOne’s API, the customizable web application, and the setup of an Azure Sig-
nalR instance for real-time notifications. The development’s outcome was demon-
strated by screenshots from the application, which showed various configured
dashboards showcasing the system’s potential.

It was explained how the applied testing process worked, which had an empha-

77

Chapter 8

sis on the important system components, establishing a solid framework for the
system’s robustness. Regarding acceptance testing, it was also discussed how the
testing of the requirements and the involvement of MedicineOne validated the
work completed.

Overall, there were no issues with the project’s development, and even though it
deviated from the methodology and planning as stated and justified, it ultimately
had no detrimental effects on the work. The outcome was validated through the
fulfillment of requirements and input from MedicineOne, and it validated the
expectations of being an effective and customizable medical dashboard with real-
time event notification in place.

There is work that can be done in the future to complement and enhance the
product, such as finishing the support for the configuration types that are cur-
rently offered, putting the server-side changes into place so that more events are
emitted to the dashboard, and carrying out a more thorough testing plan with
hospitals and medical professionals’ participation. Concerning this final element,
MedicineOne is already working to implement a pilot with one of their partners
by the end of the year to test the system in a real-world environment and obtain
feedback from their future users.

78

References

[1] ABELMed. Physician Dashboard - ABELSoft Inc. - ABELMed. https://
www.abelmed.com/Physician-Dashboard. last accessed: 22-12-2022.

[2] Amazon SNS vs Azure SignalR Service. https://ably.com/compare/
amazon-sns-vs-azure-signalr-service, 2020. last accessed: 10-01-2023.

[3] Azure SignalR Service vs Firebase. https://ably.com/compare/
azure-signalr-service-vs-firebase, 2020. last accessed: 10-01-2023.

[4] Mohammed Alhamadi. Challenges, strategies and adaptations on interac-
tive dashboards. In Proceedings of the 28th ACM Conference on User Modeling,
Adaptation and Personalization, page 368–371. Association for Computing Ma-
chinery, 2020.

[5] What is Amazon SNS? - Amazon Simple Notification Service. https:
//docs.aws.amazon.com/sns/latest/dg/welcome.html. last accessed: 10-
01-2023.

[6] Jacob Anderson, Jason Leubner, and Steven R. Brown. EHR overtime: An
analysis of time spent after hours by family physicians. Family Medicine,
52(2):135–137, 2020.

[7] Angular. https://angular.io/. last accessed: 26-12-2022.

[8] Introduction to ASP.NET Identity - ASP.NET 4.x | Microsoft Learn.
https://learn.microsoft.com/en-us/aspnet/identity/overview/
getting-started/introduction-to-aspnet-identity. last accessed:
16-01-2023.

[9] Getting Started | Axios Docs. https://axios-http.com/docs/intro. last
accessed: 23-06-2023.

[10] What is Azure SignalR Service? - Microsoft Learn. https://learn.
microsoft.com/en-us/azure/azure-signalr/signalr-overview. last ac-
cessed: 27-06-2023.

[11] Marcus Badgeley, Shameer Khader, Benjamin Glicksberg, Max Tomlinson,
Matthew Levin, Patrick McCormick, Andrew Kasarskis, David Reich, and
Joel Dudley. EHDViz: Clinical dashboard development using open-source
technologies. BMJ Open, 6:e010579, 2016.

79

https://www.abelmed.com/Physician-Dashboard
https://www.abelmed.com/Physician-Dashboard
https://ably.com/compare/amazon-sns-vs-azure-signalr-service
https://ably.com/compare/amazon-sns-vs-azure-signalr-service
https://ably.com/compare/azure-signalr-service-vs-firebase
https://ably.com/compare/azure-signalr-service-vs-firebase
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://angular.io/
https://learn.microsoft.com/en-us/aspnet/identity/overview/getting-started/introduction-to-aspnet-identity
https://learn.microsoft.com/en-us/aspnet/identity/overview/getting-started/introduction-to-aspnet-identity
https://axios-http.com/docs/intro
https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-overview
https://learn.microsoft.com/en-us/azure/azure-signalr/signalr-overview

Chapter 8

[12] John W. Beasley, Tosha B. Wetterneck, Jon Temte, Jamie A. Lapin, Paul Smith,
A. Joy Rivera-Rodriguez, and Ben-Tzion Karsh. Information chaos in pri-
mary care: Implications for physician performance and patient safety. The
Journal of the American Board of Family Medicine, 24(6):745–751, 2011.

[13] Sufyan Bin Uzayr, Nicholas Cloud, and Tim Ambler. JavaScript Frameworks
for Modern Web Development. Springer, 2019. (Chapters 7, 13 and 14).

[14] Richard Brath and Michael Peters. Dashboard design: Why design is impor-
tant. DM Direct, 85:1011285–1, 2004.

[15] Bernard Bucalon, Tim Shaw, Kerri Brown, and Judy Kay. State-of-the-art
dashboards on clinical indicator data to support reflection on practice: Scop-
ing review. JMIR Med Inform, 10(2):e32695, 2022.

[16] Cerner. CareAware capacity management solutions - Oracle Cerner. https:
//www.cerner.com/solutions/capacity-management. last accessed: 22-12-
2022.

[17] Cerner. Cerner Advance. https://advance.cerner.com/. last accessed:
22-12-2022.

[18] Cerner. Achieving situational awareness with real-time data.
https://healthcareexecutive.org/archives/september-october-2021/
achieving-situational-awareness-with-real-time-data, 2021. last
accessed: 22-12-2022.

[19] Jelica Cincović and Marija Punt. Comparison: Angular vs. React vs. Vue.
which framework is the best choice? Belgrade, Universidad de Belgrade, 2020.

[20] Kevin W Clark, Elizabeth Whiting, Jeffrey Rowland, Leah E Thompson, Ian
Missenden, and Gerhard Schellein. Breaking the mould without breaking
the system: The development and pilot of a clinical dashboard at the Prince
Charles Hospital. Australian Health Review, 37(3):304–308, 2013.

[21] D3 gallery - observable. https://observablehq.com/@d3/gallery. last ac-
cessed: 30-12-2022.

[22] D3.js - data-driven documents. https://d3js.org/. last accessed: 30-12-
2022.

[23] Dapper - a simple object mapper for .Net - GitHub. https://github.com/
DapperLib/Dapper. last accessed: 14-01-2023.

[24] Dawn Dowding, Rebecca Randell, Peter Gardner, Geraldine Fitzpatrick, Pa-
tricia Dykes, Jesus Favela, Susan Hamer, Zac Whitewood-Moores, Nicholas
Hardiker, Elizabeth Borycki, and Leanne Currie. Dashboards for improving
patient care: Review of the literature. International Journal of Medical Infor-
matics, 84(2):87–100, 2015.

[25] Firebase Cloud Messaging. https://firebase.google.com/docs/
cloud-messaging. last accessed: 08-01-2023.

80

https://www.cerner.com/solutions/capacity-management
https://www.cerner.com/solutions/capacity-management
https://advance.cerner.com/
https://healthcareexecutive.org/archives/september-october-2021/achieving-situational-awareness-with-real-time-data
https://healthcareexecutive.org/archives/september-october-2021/achieving-situational-awareness-with-real-time-data
https://observablehq.com/@d3/gallery
https://d3js.org/
https://github.com/DapperLib/Dapper
https://github.com/DapperLib/Dapper
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging

References

[26] Michael Fischer, Wissam Kourany, Karen Sovern, Kurt Forrester, Cassandra
Griffin, Nancy Lightner, Shawn Loftus, Katherine Murphy, Greg Roth, Paul
Palevsky, and Susan Crowley. Development, implementation and user ex-
perience of the Veterans Health Administration (VHA) dialysis dashboard.
BMC Nephrology, 21, 2020.

[27] Amy Franklin, Swaroop Gantela, Salsawit Shifarraw, Todd R. Johnson,
David J. Robinson, Brent R. King, Amit M. Mehta, Charles L. Maddow,
Nathan R. Hoot, Vickie Nguyen, Adriana Rubio, Jiajie Zhang, and Nnae-
meka G. Okafor. Dashboard visualizations: Supporting real-time through-
put decision-making. Journal of Biomedical Informatics, 71:211–221, 2017.

[28] Hangfire – background jobs and workers for .NET and .NET Core. https:
//www.hangfire.io/. last accessed: 14-01-2023.

[29] Andrea Janes, Alberto Sillitti, and Giancarlo Succi. Effective dashboard de-
sign. Cutter IT Journal, 26:17–24, 01 2013.

[30] Anna Janssen, Candice Donnelly, Judy Kay, Peter Thiem, Aldo Saave-
dra, Nirmala Pathmanathan, Elisabeth Elder, Phuong Dinh, Masrura Kabir,
Kirsten Jackson, Paul Harnett, and Tim Shaw. Developing an intranet-based
lymphedema dashboard for breast cancer multidisciplinary teams: Design
research study. J Med Internet Res, 22(4), 2020.

[31] Jeffrey Palermo. The Onion Architecture : part 1 | Program-
ming with Palermo. https://jeffreypalermo.com/2008/07/
the-onion-architecture-part-1/, 2008. last accessed: 09-01-2023.

[32] Jemin Desai. Web application vs desktop applica-
tion: Pros and cons. https://positiwise.com/blog/
web-application-vs-desktop-application-pros-and-cons/. last ac-
cessed: 11-01-2023.

[33] Saif Sherif Khairat, Aniesha Dukkipati, Heather Alico Lauria, Thomas Bice,
Debbie Travers, and Shannon S Carson. The impact of visualization dash-
boards on quality of care and clinician satisfaction: Integrative literature re-
view. JMIR Hum Factors, 5(2):e22, 2018.

[34] Géry Laurent, Mouhamed Moussa, Cedric Cirenei, Benoit Tavernier, Ro-
maric Marcilly, and Antoine Lamer. Development, implementation and pre-
liminary evaluation of clinical dashboards in a department of anesthesia.
Journal of Clinical Monitoring and Computing, 35, 2021.

[35] Keehyuck Lee, Se Young Jung, Hee Hwang, Sooyoung Yoo, Hyun Young
Baek, Rong-Min Baek, and Seok Kim. A novel concept for integrating and
delivering health information using a comprehensive digital dashboard: An
analysis of healthcare professionals’ intention to adopt a new system and the
trend of its real usage. International Journal of Medical Informatics, 97:98–108,
2017.

81

https://www.hangfire.io/
https://www.hangfire.io/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://positiwise.com/blog/web-application-vs-desktop-application-pros-and-cons/
https://positiwise.com/blog/web-application-vs-desktop-application-pros-and-cons/

Chapter 8

[36] ER Mahendrawathi, Danu Pranantha, and Johansyah Dwi Utomo. Develop-
ment of dashboard for hospital logistics management. In 2010 IEEE Confer-
ence on Open Systems (ICOS 2010), pages 86–90, 2010.

[37] Marco Schaefer. Onion Architecture explained — building
maintainable software. https://marcoatschaefer.medium.com/
onion-architecture-explained-building-maintainable-software-54996ff8e464,
2020. last accessed: 09-01-2023.

[38] Jr. Mark C. Schall, Howard Chen, Priyadarshini R. Pennathur, and Laura
Cullen. Development and evaluation of a health information technology
dashboard of quality indicators. Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting, 59(1):461–465, 2015.

[39] Niels Martin, Jochen Bergs, Dorien Eerdekens, Benoît Depaire, and Sandra
Verelst. Developing an emergency department crowding dashboard: A de-
sign science approach. International Emergency Nursing, 39:68–76, 2018.

[40] Martin Fowler. CQRS - Martin Fowler. https://martinfowler.com/bliki/
CQRS.html, 2011. last accessed: 14-01-2023.

[41] jbogard/MediatR: Simple, unambitious mediator implementation in .NET -
GitHub. https://github.com/jbogard/MediatR. last accessed: 14-01-2023.

[42] Mohit Joshi. Angular vs React vs Vue: Core differences | Browser-
Stack. https://www.browserstack.com/guide/angular-vs-react-vs-vue,
2022. last accessed: 11-01-2023.

[43] What is the MoSCoW Method? - TechTarget. https://www.techtarget.
com/searchsoftwarequality/definition/MoSCoW-method. last accessed:
01-06-2023.

[44] Nadezhda Mal. Web app vs. desktop app - Qulix Systems. https://www.
qulix.com/about/web-app-vs-desktop-app/, 2022. last accessed: 11-01-
2023.

[45] What is .NET MAUI? - .NET MAUI - Microsoft Learn. https://learn.
microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0.
last accessed: 05-01-2023.

[46] OpenAPI Specification - version 3.0.3 - Swagger. https://swagger.io/
specification/. last accessed: 14-01-2023.

[47] What’s OpenIddict? https://documentation.openiddict.com/guides/
index.html. last accessed: 16-01-2023.

[48] Web vs desktop apps: a weigh-up - Parker Software. https://www.
parkersoftware.com/blog/web-vs-desktop-apps-a-weigh-up/. last ac-
cessed: 11-01-2023.

[49] Malini Patel, Bhawna Rathi, and Mansoor Yarubi. Development and imple-
mentation of maternity dashboard in regional hospital for quality improve-
ment at ground level: A pilot study. Oman Medical Journal, 34:194–199, 2019.

82

https://marcoatschaefer.medium.com/onion-architecture-explained-building-maintainable-software-54996ff8e464
https://marcoatschaefer.medium.com/onion-architecture-explained-building-maintainable-software-54996ff8e464
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://github.com/jbogard/MediatR
https://www.browserstack.com/guide/angular-vs-react-vs-vue
https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.qulix.com/about/web-app-vs-desktop-app/
https://www.qulix.com/about/web-app-vs-desktop-app/
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0
https://learn.microsoft.com/en-us/dotnet/maui/what-is-maui?view=net-maui-7.0
https://swagger.io/specification/
https://swagger.io/specification/
https://documentation.openiddict.com/guides/index.html
https://documentation.openiddict.com/guides/index.html
https://www.parkersoftware.com/blog/web-vs-desktop-apps-a-weigh-up/
https://www.parkersoftware.com/blog/web-vs-desktop-apps-a-weigh-up/

References

[50] Miguel Pestana, Ruben Pereira, and Sérgio Moro. Improving health care
management in hospitals through a productivity dashboard. Journal of med-
ical systems, 44(4):87, 2020.

[51] Rimma Pivovarov and Noémie Elhadad. Automated methods for the sum-
marization of electronic health records. Journal of the American Medical Infor-
matics Association, 22(5):938–947, 2015.

[52] Playwright enables reliable end-to-end testing for modern web apps. https:
//playwright.dev/. last accessed: 02-07-2023.

[53] What is Postman? Postman API Platform. https://www.postman.com/
product/what-is-postman/. last accessed: 03-07-2023.

[54] React – a JavaScript library for building user interfaces. https://reactjs.
org/. last accessed: 26-12-2022.

[55] React Router: Home v6.13.0. https://reactrouter.com/en/main. last ac-
cessed: 23-06-2023.

[56] Mediator - Refactoring.Guru. https://refactoring.guru/
design-patterns/mediator. last accessed: 09-01-2023.

[57] Saeed Rouhani and Shooka Zamenian. An architectural framework for
healthcare dashboards design. Journal of Healthcare Engineering, 2021:1–12,
2021.

[58] Alper Sarikaya, Michael Correll, Lyn Bartram, Melanie Tory, and Danyel
Fisher. What do we talk about when we talk about dashboards? IEEE Trans-
actions on Visualization and Computer Graphics, 25(1):682–692, 2019.

[59] Mark Schall, Laura Cullen, Priyadarshini Pennathur, Howard Chen, Keith
Burrell, and Grace Matthews. Usability evaluation and implementation of a
health information technology dashboard of evidence-based quality indica-
tors. Computers, informatics, nursing : CIN, 35, 2016.

[60] What is Scrum? https://www.scrum.org/resources/what-is-scrum. last
accessed: 12-01-2023.

[61] Shaumik Daityari. Angular vs React vs Vue: Which framework to choose in
2023. https://www.codeinwp.com/blog/angular-vs-vue-vs-react/, 2023.
last accessed: 11-01-2023.

[62] Real-time ASP.NET with SignalR. https://dotnet.microsoft.com/en-us/
apps/aspnet/signalr. last accessed: 14-01-2023.

[63] Stack Overflow Developer Survey 2022. https://survey.stackoverflow.
co/2022/. last accessed: 10-01-2023.

[64] Tailwind CSS - Rapidly build modern websites without ever leaving your
HTML. https://tailwindcss.com/. last accessed: 23-06-2023.

[65] TypeScript: JavaScript with syntax for types. https://www.
typescriptlang.org/. last accessed: 26-12-2022.

83

https://playwright.dev/
https://playwright.dev/
https://www.postman.com/product/what-is-postman/
https://www.postman.com/product/what-is-postman/
https://reactjs.org/
https://reactjs.org/
https://reactrouter.com/en/main
https://refactoring.guru/design-patterns/mediator
https://refactoring.guru/design-patterns/mediator
https://www.scrum.org/resources/what-is-scrum
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/
https://dotnet.microsoft.com/en-us/apps/aspnet/signalr
https://dotnet.microsoft.com/en-us/apps/aspnet/signalr
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://tailwindcss.com/
https://www.typescriptlang.org/
https://www.typescriptlang.org/

[66] Vite | Next Generation Frontend Tooling. https://vitejs.dev/. last ac-
cessed: 23-06-2023.

[67] Vue.js - the progressive JavaScript framework | vue.js. https://vuejs.org/.
last accessed: 29-12-2022.

[68] What is Windows Presentation Foundation - WPF .NET. https://learn.
microsoft.com/en-us/dotnet/desktop/wpf/?view=netdesktop-6.0. last
accessed: 05-01-2023.

84

https://vitejs.dev/
https://vuejs.org/
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/?view=netdesktop-6.0
https://learn.microsoft.com/en-us/dotnet/desktop/wpf/?view=netdesktop-6.0

Appendices

85

Appendix A

Endpoint tests

87

A
ppendix

A

Table A.1: List and results of the test cases run for the configuration endpoints.

Code Endpoint Input parameters Expected response Result

TC1

configuration.getDisplayStructure

organizationId = -2147483636
configurationCode = "1" 200 OK

(Returns the correct configuration)

Pass

TC2 organizationId = -2147483636
configurationCode = "99" Pass

TC3 organizationId = -2147483646
configurationCode = "2" Pass

TC4 organizationId = -2147483636
configurationCode = "2" 422 Unprocessable Entity

(Configuration doesn’t exist)
Pass

TC5 organizationId = -2147483646
configurationCode = "1" Pass

TC6 organizationId = -2147483647
configurationCode = "1" 422 Unprocessable Entity

(Organization doesn’t exist)
Pass

TC7 organizationId = -1
configurationCode = "1" Pass

TC8 organizationId = "a"
configurationCode = "1"

400 Bad Request
(Invalid organization identifier) Pass

TC9 organizationId = -2147483646
configurationCode =

400 Bad Request
(Configuration code missing) Pass

TC10 organizationId =
configurationCode = "1"

400 Bad Request
(Organization identifier missing) Pass

TC11 configuration.
listOrganizationsConfigurations

200 OK
(Returns both organizations with
configurations)

Pass

TC12
200 OK
(Returns the only organization with
configurations)

Pass

88

Endpointtests

Table A.1: List and results of the test cases run for the configuration endpoints.

Code Endpoint Input parameters Expected response Result

TC13

configuration.listSectors

organizationId = -2147483636
listTypeId = 1 200 OK

(Returns organic units with inpatient areas)
Pass

TC14 organizationId = -2147483646
listTypeId = 1 Pass

TC15 organizationId = -2147483636
listTypeId = 2 200 OK

(Returns operating blocks with operating
rooms)

Pass

TC16 organizationId = -2147483646
listTypeId = 2 Pass

TC17 organizationId = -2147483636
listTypeId = 3 200 OK

(Returns emergency units with pre and
post triage rooms)

Pass

TC18 organizationId = -2147483646
listTypeId = 3 Pass

TC19 organizationId = -2147483636
listTypeId = 0 422 Unprocessable Entity

(List type doesn’t exist)
Fail

TC20 organizationId = -2147483646
listTypeId = 4 Fail

TC21 organizationId = -2147483636
listTypeId = "a"

400 Bad Request
(Invalid list type identifier) Pass

TC22 organizationId = -2147483647
listTypeId = 1

422 Unprocessable Entity
(Organization doesn’t exist) Pass

TC23 organizationId =
listTypeId = 1

400 Bad Request
(Organization identifier missing) Pass

TC24 organizationId = -2147483636
listTypeId =

400 Bad Request
(List type identifier missing) Pass

89

A
ppendix

A

Table A.2: List and results of the test cases run for the indicator data endpoint.

Code Endpoint Input parameters Expected response Result

TC25

wall.
listMetrics

organizationId = -2147483636
spName = "[M1WALL].[InpatientPatientIndicator]"
sectionIds = -2147483648

200 OK
(Returns the section’s indicator entries)

Pass

TC26
organizationId = -2147483636
spName = "[M1WALL].[InpatientPatientIndicator]"
sectionIds = -2147483647

Pass

TC27

organizationId = -2147483636
spName = "[M1WALL].[InpatientPatientIndicator]"
sectionIds = -2147483647
sectionIds = -2147483648

200 OK
(Returns the sections’ indicator entries) Pass

TC28
organizationId = -2147483636
spName = "a"
sectionIds = -2147483647

422 Unprocessable Entity
(Stored procedure doesn’t exist) Fail

TC29
organizationId =
spName = "[M1WALL].[InpatientPatientIndicator]"
sectionIds = -2147483647

400 Bad Request
(Organization identifier missing) Pass

TC30
organizationId = -2147483636
spName =
sectionIds = -2147483647

400 Bad Request
(Stored procedure name missing) Pass

TC31
organizationId = -2147483636
spName ="[M1WALL].[InpatientPatientIndicator]"
sectionIds =

400 Bad Request
(Section(s) identifier(s) missing) Fail

90

Endpointtests

Table A.3: List and results of the test cases run for the patient data endpoint.

Code Endpoint Input parameters Expected response Result

TC32

wall.listPatients

organizationId = -2147483636
spName = "[M1WALL].InpatientPatientList"
sectionIds = -2147483648

200 OK
(Returns the section’s patients)

Pass

TC33
organizationId = -2147483636
spName = "[M1WALL].InpatientPatientList"
sectionIds = -2147483647

Pass

TC34

organizationId = -2147483636
spName = "[M1WALL].InpatientPatientList"
sectionIds = -2147483647
sectionIds = -2147483648

200 OK
(Returns the sections’ patients) Pass

TC35
organizationId = -2147483636
spName = "a"
sectionIds = -2147483647

422 Unprocessable Entity
(Stored procedure doesn’t exist) Fail

TC36
organizationId =
spName = "[M1WALL].InpatientPatientList"
sectionIds = -2147483647

400 Bad Request
(Organization identifier missing) Pass

TC37
organizationId = -2147483636
spName =
sectionIds = -2147483647

400 Bad Request
(Stored procedure name missing) Pass

TC38
organizationId = -2147483636
spName ="[M1WALL].InpatientPatientList"
sectionIds =

400 Bad Request
(Section(s) identifier(s) missing) Fail

91

A
ppendix

A

Table A.4: List and results of the test cases run for the patient detail data endpoint.

Code Endpoint Input parameters Expected response Result

TC39

wall.getPatientDetail

organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
spNames = "[M1WALL].[InpatientDetailDiagnostics]"
spNames = "[M1WALL].[InpatientDetailOtherData]"
patientId = -2147482577 200 OK

(Returns the patient’s details and
identification)

Pass

TC40

organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
spNames = "[M1WALL].[InpatientDetailDiagnostics]"
spNames = "[M1WALL].[InpatientDetailOtherData]"
patientId = -2147481548

Pass

TC41

organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
spNames = "[M1WALL].[InpatientDetailDiagnostics]"
patientId = -2147482577

Pass

TC42

organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
spNames = "[M1WALL].[InpatientDetailDiagnostics]"
patientId = -2147481548

Pass

TC43
organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
patientId = -2147482577

Pass

TC44
organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
patientId = -2147481548

Pass

TC45
organizationId = -2147483636
spNames = "a"
patientId = -2147482577

422 Unprocessable Entity
(Stored procedure doesn’t exist) Fail

92

Endpointtests

Table A.4 continued from previous page

TC46
organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
patientId = -2147482577

400 Bad Request
(Organization identifier missing) Pass

TC47
organizationId = -2147483636
spNames =
patientId = -2147482577

400 Bad Request
(Stored procedure name(s) missing) Fail

TC48
organizationId = -2147483636
spNames = "[M1WALL].[InpatientDetailEssential]"
patientId =

400 Bad Request
(Patient identifier missing) Pass

93

Appendix B

Configuration tests

For these tests, configuration #1 had the following properties: 5 indicators; a 50
pixels line height; patient list column types of photo, text (regular, bold, and
italic), and 16x16/24x24/32x32 pixels images; patient detail column types of photo,
text (regular, bold, and italic), and 16x16/24x24 pixels images; and patient detail
components with line break.

Configuration #2 had the following different properties: 1 indicator; a 80 pixels
line height; patient list column types of 48x48/64x64 pixels images; and patient
detail column types of 32x32/48x48/64x64 pixels images.

Configuration #3 had the following different properties: 10 indicators and a 25
pixels line height.

95

A
ppendix

B

Table B.1: List and results of the test cases run for the dashboard configuration.

Code Input
configuration Browser Expectation Result

TC49 #1
Chromium

Should have the configured background
color.

Pass
TC50 #2 Pass
TC51 #3 Pass
TC52 #1

Firefox
Pass

TC53 #2 Pass
TC54 #3 Pass
TC55 #1

WebKit
Pass

TC56 #2 Pass
TC57 #3 Pass
TC58 #1

Chromium

Should display the selected list name.

Pass
TC59 #2 Pass
TC60 #3 Pass
TC61 #1

Firefox
Pass

TC62 #2 Pass
TC63 #3 Pass
TC64 #1

WebKit
Pass

TC65 #2 Pass
TC66 #3 Pass
TC67 #1

Chromium

Should have the configured metric descriptions.

Pass
TC68 #2 Pass
TC69 #3 Pass
TC70 #1

Firefox
Pass

TC71 #2 Pass
TC72 #3 Pass
TC73 #1

WebKit
Pass

96

C
onfiguration

tests

Table B.1 continued from previous page
TC74 #2 Pass
TC75 #3 Pass
TC76 #1

Chromium

Should have the configured metric background
colors.

Pass
TC77 #2 Pass
TC78 #3 Pass
TC79 #1

Firefox
Pass

TC80 #2 Pass
TC81 #3 Pass
TC82 #1

WebKit
Pass

TC83 #2 Pass
TC84 #3 Pass
TC85 #1

Chromium

Should have the configured list header color
and height.

Pass
TC86 #2 Pass
TC87 #3 Pass
TC88 #1

Firefox
Pass

TC89 #2 Pass
TC90 #3 Pass
TC91 #1

WebKit
Pass

TC92 #2 Pass
TC93 #3 Pass
TC94 #1

Chromium

Should have the configured list column width
and title.

Pass
TC95 #2 Pass
TC96 #3 Pass
TC97 #1

Firefox
Pass

TC98 #2 Pass
TC99 #3 Pass
TC100 #1

WebKit
Pass

TC101 #2 Pass

97

A
ppendix

B

Table B.1 continued from previous page
TC102 #3 Pass
TC103 #1

Chromium

Should have the configured list background colors and
line height.

Pass
TC104 #2 Pass
TC105 #3 Pass
TC106 #1

Firefox
Pass

TC107 #2 Pass
TC108 #3 Pass
TC109 #1

WebKit
Pass

TC110 #2 Pass
TC111 #3 Pass
TC112 #1

Chromium

Should have the configured list column width
and type properties.

Pass
TC113 #2 Pass
TC114 #3 Pass
TC115 #1

Firefox
Pass

TC116 #2 Pass
TC117 #3 Pass
TC118 #1

WebKit
Pass

TC119 #2 Pass
TC120 #3 Pass
TC121 #1

Chromium

Should have the configured patient detail width.

Pass
TC122 #2 Pass
TC123 #3 Pass
TC124 #1

Firefox
Pass

TC125 #2 Pass
TC126 #3 Pass
TC127 #1

WebKit
Pass

TC128 #2 Pass
TC129 #3 Pass

98

C
onfiguration

tests

Table B.1 continued from previous page
TC130 #1

Chromium

Should have the configured patient detail
components bottom margins and heights.

Pass
TC131 #2 Pass
TC132 #3 Pass
TC133 #1

Firefox
Pass

TC134 #2 Pass
TC135 #3 Pass
TC136 #1

WebKit
Pass

TC137 #2 Pass
TC138 #3 Pass
TC139 #1

Chromium

Should have the configured patient detail
components columns.

Pass
TC140 #2 Pass
TC141 #3 Pass
TC142 #1

Firefox
Pass

TC143 #2 Pass
TC144 #3 Pass
TC145 #1

WebKit
Pass

TC146 #2 Pass
TC147 #3 Pass

99

Appendix C

Real-time notifications tests

Table C.1: List and results of the test cases run for the configuration update noti-
fications.

Code Notification Action Message (contains the
configuration code)

Recipients
(configuration codes)

Expectation (besides
receiving message) Result

TC148

signalR.
sendConfigurationUpdate

Change configuration name 1 98 No action is taken Pass
TC149 1 Refetches configuration Pass
TC150 Add a field to the patient list 98 99 No action is taken Pass

TC151 98 Refetches
configuration Pass

TC152 Change an indicator’s color 99 100 No action is taken Pass

TC153 99 Refetches
configuration Pass

TC154 Remove a patient detail
component 100 101 No action is taken Pass

TC155 100 Refetches
configuration Pass

Table C.2: List and results of the test cases run for the patient admission notifica-
tions.

Code Notification endpoint Message (contains the
location identifier) Precondition Expectation (besides

receiving message) Result

TC156

signalR.
sendPatientAdmission

-2147483648
The dashboard displays
the location

Refetches indicators
and patient panel Pass

TC157 The dashboard doesn’t
display the location No action is taken Pass

TC158 -2147483647
The dashboard displays
the location

Refetches indicators
and patient panel Pass

TC159 The dashboard doesn’t
display the location No action is taken Pass

TC160 "a" 400 Bad Request and
message not sent Pass

TC161 400 Bad Request and
message not sent Pass

101

Appendix C

Table C.3: List and results of the test cases run for the patient discharge and pa-
tient update notifications.

Code Notification endpoint Message (contains the
patient identifier) Precondition Expectation (besides

receiving message) Result

TC162

signalR.
sendPatientDischarge

-2147482577 The dashboard displays the
patient

Removes the patient from the list
and its indicator entries

Pass
TC163 -2147481548 Pass
TC164 -2147482577 The dashboard doesn’t display

the patient No action is taken Pass
TC165 -2147481548 Pass
TC166 -2147482577 The dashboard displays the

patient and has it selected
Removes the patient from the list, its
indicator entries, and closes its details

Pass
TC167 -2147481548 Pass

TC168 "a" 400 Bad Request
and message not sent Pass

TC169 400 Bad Request
and message not sent Pass

TC170

signalR.
sendPatientUpdate

-2147482577 The dashboard displays the
patient

Refetches indicators
and patient panel

Pass
TC171 -2147481548 Pass
TC172 -2147482577 The dashboard doesn’t display

the patient No action is taken Pass
TC173 -2147481548 Pass
TC174 -2147482577 The dashboard displays the

patient and has it selected
Refetches indicators, patient
panel and its details

Pass
TC175 -2147481548 Pass

TC176 "a" 400 Bad Request
and message not sent Pass

TC177 400 Bad Request
and message not sent Pass

102

Appendix D

Acceptance tests

103

Chapter 8

Table D.1: List and results of the acceptance tests.

Code Priority Implemented Result
R1

Must

Yes

Pass
R2 Pass
R3 Pass
R4 Pass
R5 Pass
R8 Pass
R9 Pass
R11 Pass
R13 Pass
R14 Pass
R15 Pass
R17 Pass
R6

Should

Pass
R7 Pass
R10 Pass
R16 Pass
R19 Pass
R12

Could

Pass
R18 Pass
R20 Pass
R21 No -
R22 Won’t -

104

	Introduction
	Framing
	Objectives
	Document structure

	State-of-the-art
	Dashboard design
	Choosing information
	Choosing visualization

	Case studies
	Commercial solutions
	Research articles

	Technologies analysis
	Desktop vs. Web
	Desktop technologies
	Windows Presentation Foundation
	Multi-platform Application User Interface
	Desktop technologies comparison

	Web technologies
	React
	Angular
	Vue.js
	Web technologies comparison
	D3.js

	Application communication
	Azure SignalR Service
	Firebase Cloud Messaging
	Amazon Simple Notification Service
	Application communication technologies comparison

	Technological decisions

	System specification
	Requirements and use cases
	Architecture
	Configuration schema and dashboard data
	api description

	ui design specification

	Methodology & Planning
	Methodology
	Deviancies

	Planning
	Deviancies

	Implementation
	api
	Dashboard configuration endpoints
	Dashboard data endpoints

	Web application
	Project setup
	Development

	Azure SignalR Service
	Result

	Testing
	api testing
	Dashboard configuration testing
	Real-time notifications testing
	Acceptance testing

	Conclusion
	Appendix Endpoint tests
	Appendix Configuration tests
	Appendix Real-time notifications tests
	Appendix Acceptance tests

