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Abstract

The well-functioning and availability of machinery is crucial for the industry. Unexpected
breakdowns and downtimes generate substantial financial losses to businesses, in addi-
tion to the waste of human and material resources. Considering the subject of Circular
Manufacturing (CM), where a more sustainable, efficient and clean industry is promoted,
Predictive Maintenance (PdM) emerges as a promising mean to uphold this evolution.
Thanks to the Fourth Industrial Revolution (Industry 4.0), sensory data from industrial
systems are increasingly available, and with Machine Learning (ML) it is possible to ex-
tract information from this data that can point to health problems in the machinery. In
this work, a prognostics approach for predicting the health status of an emulated crane
translation system through the diagnostics of a virtual rolling bearing is proposed. In the
first semester, two preliminary approaches were developed: one Deep Learning (DL) based
Remaining Useful Life (RUL) estimator for the PRONOSTIA bearing Dataset, and an un-
supervised diagnostics approach for the crane translation system combining the Principal
Component Analysis (PCA) with a clustering technique. Following what was learned at
the literature’s review, a Convolutional Neural Network (CNN) was tested for diagnostics
with the Case Western Reverse University’s (CWRU) rolling bearing vibration dataset
and compared with the state-of-the-art for the same case. This network is then used to
diagnose the health state of a rolling bearing within the emulated translation system. The
synthetic bearing vibration data generated in the emulation is based on the PRONOS-
TIA dataset, from which a set of different degradation states was manually identified,
having their Fourier coefficients extracted using the Discrete Fourier Transform (DFT).
A signal generation module was also developed, making possible the creation of several
bearing degradation scenarios. This module was integrated into the crane translation sys-
tem emulator, where the generation of virtual bearing data is synchronized with real data
from a crane. Finally, the previously mentioned CNN model was deployed to diagnose the
virtual bearing’s health status, which is then used for the translation system’s health con-
dition prognosis. The simulation results show that this PdM approach has the potential of
preventing the unexpected breakdown of the system within the considered scenarios and
might be further developed into a solution for real-world use cases, fulfilling one of the
main objectives of the KYKLOS 4.0 project, in which this work is inserted.
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Resumo

O bom funcionamento e a disponibilidade das máquinas são cruciais para a indústria. Fal-
has e interrupções inesperadas geram perdas financeiras substanciais para as empresas,
além do desperdício de recursos humanos e materiais. Considerando o tema da Manu-
fatura Circular (MC), onde é promovido uma indústria mais sustentável, eficiente e limpa,
a Manutenção Preditiva (MP) surge como um meio promissor para sustentar essa evolução.
Graças à Quarta Revolução Industrial (Indústria 4.0), dados sensoriais de sistemas indus-
triais estão cada vez mais disponíveis, e com Machine Learning (ML) é possível extrair
informações desses dados que podem identificar problemas de saúde nas máquinas. Neste
trabalho, é proposta uma abordagem prognóstica para prever o estado de saúde de um sis-
tema emulado de translação de uma grua através do diagnóstico de um rolamento virtual.
No primeiro semestre, duas abordagens preliminares foram desenvolvidas: um estimador
de vida útil remanescente (RUL) baseado em Deep Learning para o dataset PRNOSTIA
de rolamentos, e uma abordagem de diagnóstico não supervisionada para o sistema de
translação de grua combinando a Análise de Componentes Principais (ACP) com uma
técnica de clustering. Seguindo o que foi aprendido na revisão da literatura, foi testada
uma Rede Neuronal Convolucional (RNC) para diagnóstico, com o conjunto de dados de
vibração de rolamentos da Case Western Reverse University (CWRU), e comparada com
o estado da arte para o mesmo caso. Essa rede foi, então, usada para diagnosticar o
estado de integridade de um rolamento dentro do sistema de translação emulado. Os da-
dos sintéticos de vibração dos rolamentos gerados na emulação são baseados no dataset
PRONOSTIA, a partir do qual um conjunto de diferentes estados de degradação foram
identificados manualmente, tendo os seus coeficientes de Fourier sido extraídos por meio
da Transformada Discreta de Fourier (TDF). Foi desenvolvido, também, um módulo de
geração de sinal, possibilitando a criação de diversos cenários de degradação de rolamentos.
Este módulo foi integrado no emulador do sistema de translação, onde a geração de dados
do rolamento virtual é sincronizada com dados reais de uma grua. Por fim, o modelo RNC
mencionado anteriormente foi aplicado para diagnosticar o estado de saúde do rolamento
virtual que é usado para o prognóstico da condição de saúde do sistema de translação. Os
resultados da simulação mostram que esta abordagem de MP tem o potencial de prevenir
a falha inesperada do sistema dentro dos cenários considerados e pode ser, adicionalmente,
utilizada para desenvolver uma solução para casos de uso do mundo real, cumprindo um
dos principais objetivos do projeto KYKLOS 4.0, em que este trabalho está inserido.

Palavras-Chave

Manufatura Circular, Sistemas Industriais, Manutenção Preditiva, Aprendizagem de Máquina,
Prognóstico de Condição de Saúde
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Chapter 1

Introduction

The Fourth Industrial Revolution brought massive benefits to the industry thanks to the
ever-growing technological advancements, increasing productivity and reducing costs. In-
dustrial machines are at the center of this revolution, gradually transitioning from the old
mechanical and analogical systems from the past to the new Cyber-physical Systems (CpS),
which are composed of physical and software components that are highly intertwined, re-
sulting in more efficient systems that reduce the need of human involvement in production.
Keeping these machines in good functioning conditions is essential to any business. In this
context, Predictive Maintenance (PdM), which consists of preventing failures by predicting
when they will occur, is a subject of recurrent research that can provide the industry the
means to avoid unexpected breakdowns and costs.

The present work was set to look into the problem of intelligent prognosis of the health
status of industrial systems. As a result, an approach with the potential to be applied to a
real-world use case is developed. This work is part of the KYKLOS 4.01 European project,
that seeks to create a Circular Manufacturing (CM) ecosystem with novel technology, such
as Artificial Intelligence (AI), to make intra-factory production more efficient, sustainable
and clean.

1.1 Motivation

To give a solid notion about the relevance of PdM to the industry, a set of statistics from
[Moyle, 2021] is presented below:

• The estimated annual cost of unplanned downtime for industrial manufactures is 50
billion dollars.

• Around 80% of maintenance time is spent on reacting to issues that arise instead of
preventing them.

• As direct benefits of PdM, machine downtime can be reduced by 30%-50% and ma-
chine lifetime increased by 20%-40%.

From this information, it is possible to point that PdM is promising for modernizing in-
dustrial maintenance and saving costs. Nonetheless, PdM has also a major role in Circular

1https://kyklos40project.eu/
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Manufacturing. CM is a set of Circular Economy (CE) strategies applied to manufactur-
ing, which aims at achieving resources sustainability for industrial economy, promoting the
economic growth without the negative impacts on the environment [Acerbi et al., 2021].
While many of the CM strategies are focused on the final product, there are several others
centered on the manufacturing process, including PdM.

Although PdM is certainly important to the present and future industry, it has also a
considerable amount of challenges that need to be overcome. The work of Wen et al.
(2022) identifies some of the main challenges, as shown below:

1. Data insufficiency: PdM data-driven approaches rely on acquired data from industrial
systems to be able to perform health condition diagnostics and prognostics, but data
acquisition from real machines is complex, time-consuming and costly. Furthermore,
the quality of the data is also important, it must be representative of the possible
health conditions a machine can have, otherwise the solution will not be accurate
enough.

2. Developed models’ poor generalization capacity: Most developed models underper-
form when applied to other types of machines. This problem also concerns a single
machine functioning under different operation regimes.

3. Late predictions: This is caused by a model’s low predictive capacity. If a late
prediction occurs, it might be impossible to avoid damage and losses.

4. Noise during real-time prognostics: Random disturbance from the environment may
affect a system’s components data acquisition process, requiring fast and efficient
online prognostics algorithms.

5. Manual hyperparameter tuning and estimation: PdM algorithms, specially Deep
Learning algorithms, require hyperparameters to be assigned and tuned, directly
influencing the algorithm’s performance. Most approaches rely on manual hyperpa-
rameter tuning.

6. Discrepancy of cross-domain prognosis: A common assumption during a PdM model’s
development is that the training and testing data are from the same distribution.
Discrepancies exist in the real world, caused by noise from the environment and
other factors, leading to deterioration in the prediction performance.

Most of the difficulties mentioned above were experienced during the main approach’s
development, especially the first one (data insufficiency), which led to the creation of a
synthetic data generation module. Moreover, these challenges were taken in consideration
during this work in order to maximize its quality and provide means to overcome them.

1.2 Problem Statement

The use case featuring in this work is from Spanish company ASTANDER, which performs
ship repair and conversions, employing several cranes that move on rails (Figure 1.1).

The crane translation system is the object of the PdM research, it is composed of an
electric motor that propels the crane on the rails back and forth. More than 200 variables
were recorded from sensors installed on the crane. The recordings span 9 months, starting
in October 2021 and finishing in June 2022. Although there was data available before
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Figure 1.1: ASTANDER tower cranes.

October, it was deleted. Despite the fact that many sensor variables were available, there
were only 8 variables related to the translation system, recorded with a sampling frequency
of just 1

60Hz (one sample per minute), and no labelling indicating if the system was healthy
or faulty. This situation made unfeasible the creation of a PdM algorithm using only the
provided data. To mitigate this drawback, a virtual component of the translation system’s
electric motor was considered, namely, a rolling bearing.

Rolling bearings are mechanical components, present in practically every rotating equip-
ment, from industrial machines to airplanes, making an essential part of a larger system.
These components are also responsible for up to 44% of failures in some devices [Cerrada
et al., 2018], and as such, it is a recurrent subject of PdM research. It is composed of
four main parts (Figure 1.2): the outer race, the inner race, the ball, and the cage. All of
this parts are subject to wear and faults, which are the consequence of various problems,
such as operation conditions and manufacturing defects [SKF, 2017]. Therefore, the rolling
bearing was chosen as the virtual component for the translation system, since the system
certainly contains a number of these components.

Figure 1.2: A representation of a rolling bearing and its parts.

It is worth mentioning that ASTANDER is one of the companies that are involved in the
KYKLOS 4.0 project, in which this work is inserted.

3
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1.3 Objectives

Following the problem statement, the main purpose of this work is to contribute to
the presented use case and to PdM research by developing a health condition
prognostics approach that estimates the health state of a crane translation
system. Thus, the objectives are identified and described in the list below:

1. Perform a literature review on data-driven rolling bearing diagnostics approaches.

2. Develop a rolling bearing diagnostics model using Machine Learning and test it with
a public benchmark.

3. Apply automatic architecture and hyperparameter optimization during the develop-
ment of the aforementioned model.

4. Create a rolling bearing synthetic vibration data generator that can simulate various
bearing degradation scenarios.

5. Create a crane translation system Digital Twin that is synchronized by real data
from the crane and integrate it with the rolling bearing vibration data generator to
create a PdM emulator.

6. Develop a prognostics approach for estimating the translation system’s health con-
dition based on the rolling bearing diagnostics and integrate it into the emulator.

7. Assess the diagnostics and prognostics performance using the PdM emulator.

8. Propose improvement strategies concerning the developed approach for the future.

1.4 Contributions

During the development of this work, various contributions were made. They are listed
below:

1. Several modules were developed for the KYKLOS 4.0 PdM environment using python
and MATLAB. These modules provide means to download, pre-process, and visualize
data from the KYKLOS backend platform, in addition to train and test diagnostics
and prognostics modules with benchmark datasets.

2. One published approach on rolling bearing prognostics, which was presented at the
CONTROLO20222 conference (see Chapter 4).

3. Documentation of developed PdM modules and tools were provided for KYKLOS
4.0 reports.

4. The developed rolling bearing diagnostics model, with the distinctiveness of having
architecture and hyperparameters that were optimized automatically.

5. The crane translation system Digital Twin and PdM emulator, implemented and
presented in this work, that can be used to simulate multiple degradation and fault
scenarios, in addition to having the potential to be improved and adapted to be used
in the real world.

2https://controlo2022.deec.fct.unl.pt/
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1.5 Structure

First, in chapter 2, the background concepts that feature in this work are introduced.
Next, chapter 3 contemplates the state of the art based on the literature review. Then,
in chapter 4, the initial work carried out during the first semester is presented, concerning
one prognostics approach for the PRONOSTIA use case, and one experimental clustering
approach for the ASTANTER use case. The description of the main proposed approach, the
crane translation system PdM emulator, is explained in chapter 5. Furthermore, the results
of the main approach are shown in chapter 6, where they are assessed and compared to the
state of the art. Finally, the conclusion in chapter 7 shows the final reflections about what
have been achieved in this work, the encountered difficulties, and suggestions for future
work.
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Chapter 2

Background Concepts

2.1 Predictive Maintenance

Before introducing the main aspects of PdM, it is necessary to take a brief look into the
types of maintenance [Mobley, 2002]. A simple diagram is presented in Figure 2.1.

Figure 2.1: Principal maintenance types, highlighting PdM, that was used in this work.

Reactive Maintenance, also known as Run-to-failure, is the simplest type of maintenance.
It means that an equipment only goes under maintenance if a breakdown occurs. The logic
of run-to-failure can be summarized in one sentence: "Do not fix it if it’s not broken". The
attractiveness of this approach comes from the fact that no money is spent and no effort
is made until a failure occurs. Although the method is straightforward and still frequently
practiced, it is also the most expensive, demanding the existence of available spare parts
and maintenance workers, and it also may cause longer disruptions.

The alternative to reactive maintenance is Proactive Maintenance, which consists of taking
action before a failure occurs. The first type of proactive maintenance is Preventive Main-
tenance. In this line of action, a set of checks and minor fixes are carried out periodically.
A common example comes from car regular servicing. Each car has to undergo servic-
ing after a predefined number of kilometers to change oil, filters, and check for broken,
malfunctioning, or worn parts that need replacement. The same principle is applied to
industrial systems, where check-ups are performed with an interval that is estimated based
on the average lifetime of the system’s components. Even though preventive maintenance
might offer cost savings between 12% to 18% when applied instead of reactive mainte-
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nance [Moyle, 2021], it does not take into account the dynamic health condition evolution
of industrial systems and components, caused by changing environments and operation
regimes. This can lead to unnecessary replacements when the actual Remaining Useful
Life (RUL) exceeds the predefined lifetime, or it may lead to the unexpected breakdown
caused by the inaccuracy of the estimated lifetime or by the additional degradation that
can naturally or abruptly occur.

Finally, Predictive Maintenance comes as a solution to the drawbacks of the first two
approaches. PdM constitutes the set of strategies that aim to prevent failures by predicting
them and scheduling maintenance based on this information. As already mentioned, PdM
benefits the industry by minimizing failures, maximizing availability, reducing costs on
spare parts and labor, increasing machine lifetime, among others. Figure 2.2 present the
main types of PdM approaches [Zonta et al., 2020].

Figure 2.2: Principal PdM approach types, highlighting Data Driven, that was used in this
work.

Physical Model-Based PdM relies on the modelling of components’ behavior and failures
through mathematical and statistical methods. It requires profound understanding of the
system and its possible faults, usually through specifications given by the manufacturer
or by experts knowledge. For example, the author of Tinga (2013) proposed an approach
for modelling failures of military vehicles by analyzing the correlation of the operation
regimes to the observed failures, defining parameters for the operation regime factors that
were found to be linked to the faults. The obstacle to this kind of approach is how difficult
the modelling can be if there is no previous detailed information about the physical system
and associated faults, moreover, acquiring the necessary data can be time-consuming and
costly.

Knowledge Based techniques are composed of rule-based systems, like knowledge graphs
and fuzzy systems, built from knowledge bases, which store data acquired from the domain
in form of statements that are compared with new observations. As an example, the work
of Cao et al. (2022) presents a system that can be used for creating knowledge-based
models for industrial systems by automatically generating rules using a degradation model
extracted from the provided data.

Data Driven PdM methods are mainly based on Machine Learning (ML) and Deep Learn-
ing (DL), which extract information from data acquired from machines, e.g., collected
from systems through builtin or retrofitted sensors, creating models that can diagnose or
predict a machine’s health condition, working like a black box function. This type of
PdM approach is steadily growing more popular thanks to the increasing availability of
data, driven by advancements in Internet of Things (IoT) and CpSs, which provides an
integrated connectivity in manufacturing plants. Moreover, powerful ML and DL models,
such as Deep Neural Networks (DNNs), are able to learn hidden information that bolster
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diagnostics and prognostics capabilities.

The success of data driven approaches depends on the quantity and quality of the acquired
data, making the data acquisition process the most challenging. The data must represent
as many operational and health conditions as possible. When acquiring real data is un-
feasible or insufficient, generating data from simulations becomes an alternative, although
applying these approaches in the real world may result in poor performance [Wen et al.,
2022]. Furthermore, unsupervised learning is a viable solution when no information (la-
belling) about the system’s health condition is available [Amruthnath and Gupta, 2018].
For example, clustering techniques can identify different health condition regimes without
the need of labels, however, additional information about these regimes is necessary to
determine what they represent, e.g., healthy or faulty states.

2.2 Deep Learning

In ML, the techniques which allow machines to receive raw data and automatically uncover
the representations that are necessary for classification or detection constitute Represen-
tation Learning. DL methods are part of Representation Learning, having multi-level
representation that results from composing non-linear modules. At each level, starting
with the raw input at the first level, the representation is transformed into a more abstract
level. The composition of an adequate number of transformations allow very complex
functions to be learned [Lecun et al., 2015].

The earliest perspective on DL were on biologically-inspired systems, namely, the brain
[Goodfellow et al., 2016]. Nevertheless, DL now exceeds this perspective, being more
generally associated with the composition of the previously-mentioned multi-level learning,
no longer being necessarily inspired by neuroscience.

In this section, the principles of the most common DL methods applied to PdM are pre-
sented, specially those applied to rolling bearing diagnostics and prognostics, as they will
appear in Chapter 3.

2.2.1 Convolutional Neural Networks

The Convolutional Neural Network (CNN) is a class of Artificial Neural Network (ANN).
The inspiration for CNNs comes from the visual cortex of animals. Originally applied
to object recognition, CNNs are now used in other domains, like object tracking, text
processing, action recognition, among others [Aloysius and Geetha, 2018]. A typical CNN
architecture is shown in Figure 2.3.

Figure 2.3: Representation of a CNN architecture.

9



Chapter 2

Bellow, a brief explanation of each layer is presented [O’Shea and Nash, 2015]:

• The convolutional layer is the basic unit of the CNN. The output of this layer is
the result of the scalar product between the filters’ weights learned during training
and a region of the input. The filters learn to identify specific features in the input.
Each filter is convolved across the entire input volume, resulting in a two-dimensional
activation map. The combination of all activation maps is called the feature map.

• The pooling layer performs downsampling of the given feature map. The most
common pooling operations are the max pooling and average pooling, where filters
of usually 2 x 2 are applied through the spatial dimensions of the input, outputting
the maximum or average value of the given input region. The pooling layer reduces
the amount of data to be processed, the number of parameters, and overfitting.

• The fully connected layer is analogous to the layers of ANNs, were a layer has
neurons connected to every neuron in the adjacent layers. It maps the extracted
features of the previous layers to the target output.

CNNs architectures for PdM are usually used for one or two-dimensional data [Lee et al.,
2016]. For example, a 2D CNN can be used for processing time-frequency features resulting
from a spectrogram, or vertically-stacked one-dimensional signals, and a 1D CNN might
be used for processing time series, with only one dimension, which is time.

2.2.2 Recurrent Neural Networks

The Recurrent Neural Network (RNN) is a type of ANN that can learn sequential infor-
mation by feeding the network layers with their past outputs [Medsker and Jain, 2001].
As data-driven PdM data is mainly composed of time series, RNNs and their variations
are widely used for learning degradation patterns and making health condition prognosis.
Figure 2.4 shows an unfolded RNN, providing an insight about its functioning, while Figure
2.5 presents a RNN unit.

Figure 2.4: Representation of a RNN unfolded.

The following equations demonstrate how the RNN unit works.

ht = σh(Uhxt + Vhht − 1 + bh) (2.1)
ot = σc(Wcht + bc) (2.2)

Where U , V and W are weight matrices, and b are bias vectors.
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Figure 2.5: Representation of a RNN unit.

Although RNNs are capable of learning sequential information, they suffer from vanish-
ing and exploding gradients, as a result of the back-propagation through time algorithm
[Serradilla et al., 2020]. This problem causes the RNN to forget long-term dependencies.
Nonetheless, RNN variations were created to solve this issue, namely, the Long Short-Term
Memory (LSTM) and the Gated Recurrent Unit (GRU).

The LSTM was specifically designed to overcome the exploding and vanishing gradient
problem of the RNN [Van Houdt et al., 2020]. The LSTM unit (Figure 2.6) comprises a
cell and three gates: input, output, and forget. The forget gate allows the LSTM to reset
its state. The cell is then able to remember values over various time intervals, while the
other gates control the cell’s information flow.

Figure 2.6: Representation of a LSTM unit.

The following equations demonstrate how the LSTM unit works.

ft = σ(Wf · [ht−1, xt]) + bf (2.3)
it = σ(Wi · [ht−1, xt]) + bi (2.4)
ot = σ(Wo · [ht−1, xt]) + bo (2.5)

C̃t = tanh(Wc · [ht−1, xt] + bc) (2.6)

Ct = fT ⊙ Ct−1 + it ⊙ C̃t (2.7)
ht = ot ⊙ tanh(Ct) (2.8)
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Following now a brief summary of the LSTM unit. First, the input gate i combines the
current step input xt, the output ht−1 of the LSTM unit at the previous time step, and
the cell value ct−1, also from the last time step. Next, the forget gate controls which
information will be removed from the previous cell states ct−1, therefore, the value of f is
calculated using input xt, previous output ht−1, the cell state ct−1 and the bias associated
with the forget gate. Then, the cell value ct is calculated by combining the block input z,
input gate i and forget gate f with the previous cell value ct−1. Finally, the output ht is
calculated, combining current cell value ct with the output gate o.

The presented LSTM unit is considered to be the standard (or vanilla) variant. Many other
variants have been developed since its creation. The work of Greff et al. (2017) presents an
extensive experimentation of LSTM variations, mainly by combining or removing gates,
and through hyperparameter optimization. This study concluded that the forget gate
and the activation function of the output gate are the most important components of the
LSTM, while some modifications to the other components, for example, by combination
or removal, do not bring substantial improvements, but also no decrease in performance,
possibly explaining why the GRU performs well without a memory cell.

The GRU, first proposed by Cho et al. (2014), was designed to make each unit capable
of learning dependencies of different time scales adaptively. The GRU, like the LSTM
unit, has gates that control the information flow, but without the memory cells (Figure
2.7). One of the main differences between the LSTM and the GRU is that the LSTM unit
regulates, through the output gate, the memory content that is seen or used by other units.
The GRU does not control the degree of exposure to the previous states. Nevertheless, it is
not possible to point what type of unit is the best one in general, making experimentation
for each use case necessary [Chung et al., 2014].

Figure 2.7: Representation of a GRU unit.

The GRU unit equations are presented below.

zt = σ(Wz · [ht−1, xt]) + bz (2.9)
rt = σ(Wr · [ht−1, xt]) + br (2.10)

h̃t = (Wh) · [rt ⊙ ht− 1, xt] + bh (2.11)

ht = (1− zt)⊙ ht− 1 + zt ⊙ h̃t (2.12)
(2.13)
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2.2.3 Auto-encoders

An Auto-encoder (AE) is a multi-layered neural network that is trained for dimensionality
reduction and feature extraction, achieving state-of-the-art performance in many areas
[Wang et al., 2016]. Figure 2.8 shows the common structure of an auto-encoder.

Figure 2.8: Representation of an auto-encoder.

The auto-encoder architecture is composed of an encoder followed by a decoder, neverthe-
less, the AE is trained as a whole, where the encoder reduces the dimensionality of the data
through its layers, until it reaches the bottleneck, from where the latent representation (or
vector) of the original data can be extracted. The decoder reconstructs the original data
from the latent vector and the error between the original data and the reconstructed data
is used to train the AE.

AEs might be used for PdM in various ways. For example, in the work of Sakurada and
Yairi (2014) the authors propose an anomaly detection approach using an AE, which is
trained using only data from healthy systems. The anomaly detection is based on the AE’s
reconstruction error, which naturally will be higher for faulty data, as it has not been seen
during training. Another example comes from the work of Yu et al. (2021), where an AE
is used for extracting features from the NASA’s turbofan dataset, which are then used for
training a Random Forest (RF) model for prognostics.

2.2.4 Deep Belief Networks

Before explaining what a Deep Belief Network (DBN) is, it is necessary to introduce the
Restricted Boltzmann Machine (RBM). A RBM is a neural network that has only two
layers: the visible layer and the hidden layer (Figure 2.9).

RBM training is unsupervised, which is composed of two steps. First, the forward pass,
where the input data in the visible layers is passed to the hidden layer, where the latent
vector is calculated by:

h = σ(v ×W T + a) (2.14)

where W and a are the weight matrix and bias vector, respectively, and σ is the activation
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Figure 2.9: Representation of an RBM.

function. This calculation generates a latent representation of the visible layer’s values,
which are then used as input in the backward pass as follow:

v = σ(h×W T + b) (2.15)

where b is the bias vector associated to the visible layer. This backward pass attempts to
reconstruct the original values of the visible layer from the latent vector. As such, RBMs
are also used for dimensionality reduction, similarly to the AEs.

DBNs are made by stacking RBMs [Hinton, 2009], where the hidden layer of one RBM is
the visible layer of the next. Figure 2.10 shows a representation of a DBN architecture.

Figure 2.10: Representation of a DBN.

The DBN’s structure is very similar to a multi-layer ANN, but as RBM’s training is
unsupervised, it is necessary to combine the DBN with a network that uses supervised
learning, for example, by adding a softmax layer [Hua et al., 2015]. This way, the stacked
RBMs extract features that are mapped by the softmax layer to the target output.

One example of DBN use in PdM comes from the work of Chen et al. (2018), where a
DBN is used for health condition prognostics of a cutting tool. The approach is compared
with an ANN, outperforming it in terms of Root Mean Square Error (RMSE), which is the
most common metric for performance assessment in prognostics.
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2.3 Hyperparameter Optimization

One of the main challenges for the implementation of DL models is finding good hyper-
parameter values. Some examples of hyperparameters in DL that require tuning include:
learning rate (α), momentum (β), number of hidden layers, number of neurons in each
hidden layer, mini-batch size, among others. This task is usually performed manually, but
this can lead to far-from-optimum performance, as DL models are highly affected by the
choice of hyperparameters.

The alternative to manual assignment is automatic search. A summary of the most used
methods are presented below [Bergstra et al., 2011].

• Grid search is an exhaustive method. First, a set of values for each hyperparam-
eter is defined manually. The algorithm will train the model for every combina-
tion between the previously defined sets. This method suffers from dimensionality
problems, as larger parameter sets increase the number of total combinations to be
tested. Another challenge is the manual definition of the parameter sets, requiring
some knowledge about the parameters so reasonable values can be chosen.

• Random search, as opposed to grid search, is not exhaustive. The algorithm tests
random combinations of hyperparameters, both discrete and continuous. Random
search is more effective when just a small number of parameters are found to be
relevant to the model’s performance.

• Bayesian optimization works by transforming the search of hyperparameters in a
black-box function optimization problem. The algorithm constructs a probabilistic
model from the hyperparameters values and updates it by testing a new combination
that will bring the most information about the model. Bayesian optimization has
been shown to achieve better results than grid search and random search for several
ML methods, including neural networks, and with less samples [Wu et al., 2019].

2.4 Validation Techniques

Several techniques for assessing the performance of ML models exist. The most common
methods are listed below.

• Resubstitution: is the most simple method, it uses all dataset for training and for test-
ing. It is extremely prone to overfitting and the results are biased, since supposedly
good performance metrics may actually conceal the fact the model just memorized
the output for each input.

• Train-test split: the dataset is split in two subsets, one for training, and the other
for testing. It results in less overfitting and bias than the previous method, but it
is also flawed, as the split is chosen randomly, and for a single train-test split the
results can be biased.

• K-fold Cross-validation (CV): it is based on several train-test splits, where the dataset
is divided in K folds, and for K iterations the model is trained with K − 1 folds and
tested with the remaining one. At the end, the performance is assessed as the average
between all K iterations. The K-fold CV is considered more reliable than the single
train-test split and the resubstitution method. Figure 2.11 bellow shows a graphical
representation of a 5-fold CV split.
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Figure 2.11: 5-fold Cross-validation graphical representation.
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State of the Art

Rolling bearing health condition monitoring is in the center of this work, as it is the chosen
component for virtualization in the crane translation system emulator. The objective is to
diagnose the bearing, which enables the estimation of the overall system health condition.
Thus, a literature review was performed, focusing on rolling bearing diagnostics.

The works cited in this chapter were developed for the Case Western Reserve University
(CWRU) dataset [CWRU, n.d.], as it is the most popular benchmark for rolling bearing
diagnostics, allowing a better comparison and performance assessment of this work’s ap-
proach. Nonetheless, the techniques and principles featured in this chapter are frequently
used with other rolling bearing datasets, both public and private [Cerrada et al., 2018].
Another selection criteria is the validation method. Approaches validated using Cross-
validation were given preference over other works that used only single train-test split or
resubstitution, which can lead to biased results [Rauber et al., 2021].

3.1 Case Western Reserve University

In this section, a brief description of the CWRU dataset is given. The test bed, seen at
Figure 3.1, is a 2 hp reliance electric motor. Acceleration data was acquired by sensors
installed at three different distances from the bearings. Faults were seeded with electro-
discharges at the inner and outer raceways and at the ball, with magnitudes ranging from
0.007 to 0.040 inches in diameter.

Figure 3.1: CWRU test bed [CWRU, n.d.].
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The data was sampled at 12 kHz and 48 kHz, but only the dataset sampled at 12 kHz was
used, as it is more common to find approaches that use it. In terms of operation regimes,
the motor load varies between 0 and 3 hp, and the RPM between 1730 and 1797. Table
3.1 presents more information about the dataset. The nomenclature for each set is defined
by the first letters of the location of the fault in the bearing, the fault diameter, and in
the case of the outer race faults, the position of the fault in the outer race.

Table 3.1: CWRU dataset description.

Fault
Diameter

Load
(HP)

Speed
(RPM)

Inner
Race Ball

Outer Race and Position
Relative at Load Zone

Centered Orthogonal Opposite

0.007"

0 1797 IR007_0 B007_0 OR007@6_0 OR007@3_0 OR007@12_0
1 1772 IR007_1 B007_1 OR007@6_1 OR007@3_1 OR007@12_1
2 1750 IR007_2 B007_2 OR007@6_2 OR007@3_2 OR007@12_2
3 1730 IR007_3 B007_3 OR007@6_3 OR007@3_3 OR007@12_3

0.014"

0 1797 IR014_0 B014_0 OR014@6_0 * *
1 1772 IR014_1 B014_1 OR014@6_1 * *
2 1750 IR014_2 B014_2 OR014@6_2 * *
3 1730 IR014_3 B014_3 OR014@6_3 * *

0.021"

0 1797 IR021_0 B021_0 OR021@6_0 OR021@3_0 OR021@12_0
1 1772 IR021_1 B021_1 OR021@6_1 OR021@3_1 OR021@12_1
2 1750 IR021_2 B021_2 OR021@6_2 OR021@3_2 OR021@12_2
3 1730 IR021_3 B021_3 OR021@6_3 OR021@3_3 OR021@12_3

0.028"

0 1797 IR028_0 B028_0 * * *
1 1772 IR028_1 B028_1 * * *
2 1750 IR028_2 B028_2 * * *
3 1730 IR028_3 B028_3 * * *

For training and testing the diagnostics models, usually 4 classes are considered, the first
representing normal condition, and the rest according to the bearing faulty component:
inner race, ball, and outer race.

3.2 Convolutional Neural Networks

In this section, CNN based approaches are presented. In [Guo et al., 2016], the author
proposes a hierarchical model named Adaptive Deep CNN (ADCNN). The hierarchical
aspect comes from the combination of two sets of 2D CNNs, one for diagnosing the fault
type and the other for evaluating the magnitude of the fault. Training is performed using
adaptive learning rate and momentum to improve the learning process. Figure 3.2 presents
the architecture of the ADCNN.

Figure 3.2: ADCNN’s architecture.
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The architecture is simple and consists of three convolutional-max-pooling layers, followed
by two fully connected layers. As the CNN is two-dimensional, the raw input data is
rearranged to 32x32 matrices. The ADCNN achieved, for diagnostics, a mean accuracy of
97.9%, using 10-fold CV.

Another CNN based model with interesting features is presented in the work of Eren et al.
(2019). A 1D CNN is proposed, also using only raw data as input. Although the validation
accuracy reached only 93.2%, it showed that the 1D CNN can also be effectively applied
to rolling bearing diagnostics, having the advantages of being less complex than other DL
approaches, with few hyperparameters, and it is also faster, making it reliable for real-time
PdM. The architecture is simpler than the one presented before, as it can be seen in Figure
3.3.

Figure 3.3: 1D CNN architecture.

No hyperparameter tuning was performed in that work. Applying hyperparameter opti-
mization, including the number of layers, might substantially improve the model’s perfor-
mance.

Although most of the approaches for the CWRU dataset do not use CV, some works are
worth mentioning, specially the following, which achieved 100% accuracy.

A 1D CNN is proposed by Yuan et al. (2018), having only 2 convolutional-max-pooling
layers followed by a single fully-connected layer. The author of Hoang and Kang (2019)
presented a 2D CNN that processes images generated by stacking the raw signal. The
architecture contains 2 convolutional-subsampling-layers and one fully-connected layer.
Moreover, in [Zhang et al., 2020], a slightly modified 2D CNN was proposed to process raw
data transformed into images, where two fully-connected layers, each one combined with
dropout layers, follow 3 convolutional-max-pooling layers. The dropout layers mitigate
overfitting by eliminating a percentage of features randomly. None of these approaches
applied automatic hyperparameter optimization.

3.3 Auto-encoders

As it was discussed in chapter 2, AEs are able to extract deep abstract features from raw
data that bring valuable information for training ML models. Recently in the work of Wang
et al. (2022), a Stacked Sparse Auto-encoder (SSAE) combined with softmax classification
is proposed. A Sparse Auto-encoder (SAE) is a variant of the classic AE that has sparse
penalty in training. This penalty deactivates a number of neurons from the hidden layers
to improve the learning process, similar to what happens when a dropout layer is used in
other neural networks.
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Figure 3.4: SSAE architecture.

In terms of architecture (Figure 3.4), two SAEs are stacked, where the features extracted
from the first SAE are used to train the second one, and the features from the latter are used
to train the classifier. Before training, the raw data was segmented and the Fast Fourier
Transform (FFT) of each segment was calculated and used as input. Cross-validation
results were very satisfactory, with an average accuracy of 99.15%.

3.4 Hybrid Approaches

Combining different types of models are often a way to take the most of their capabilities.
From the hybrids approaches, properly validated with CV, the work of Dewangan and
Maurya (2022) stands out. The model is based on the combination of a Variational Auto-
encoder (VAE) with convolutional layers. VAE works considerably different from classic
AEs, being part of the family of variational Bayesian methods, the VAE learns to model
the probability distribution of the data, including the variance parameter, which can lead
to better performance in reconstruction in comparison to the deterministic AE [An and
Cho, 2015].

What the author proposes is a modified VAE, where both the encoder and decoder have
convolutional layers. The architecture can be seen in Figure 3.5.

Figure 3.5: Deep Convolutional VAE’s architecture.

The classifier trained with the extracted features have 4 hidden layers and one softmax
layer. With 5-fold CV the model achieved a mean accuracy of 99.93%, being the best
observed approach so far (not considering those validated with single train-test split and
resubstitution).
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3.5 Frequency and Time-frequency Analysis

One of the attractive capabilities of DL model is that no previous feature extraction is
needed for training, as models may achieve high accuracy with raw data. Even so, PdM
researchers have experimented a variety of techniques to extract features that can improve
the models performance.

The example of the SSAE cited in section 3.3 used the FFT, which provides a frequency
analysis of a finite signal. An example of a single-sided amplitude spectrum calculated
using FFT and one segment of the CWRU dataset is presented in Figure 3.6. The Y -
axis is the amplitude and the X -axis is the frequency range from 0 to half the sampling
frequency.

Figure 3.6: Frequency analysis of a CWRU dataset segment using FFT.

Rolling bearing faults have discriminative frequency signatures that can be exploited by
PdM ML models [Li et al., 2019]. Another popular technique is the Short-Time Fourier
Transform (STFT), a time-frequency analysis method. The result of the STFT is three
dimensional and can be represented by an image, where it is possible to see the evolution
of frequency components’ magnitude (dB) through time. A good example is seen in Figure
3.7, where a STFT is performed with the three different fault types of the CWRU dataset.
By analyzing the results, the differences become visible. The warmer the color, higher is
the magnitude, and analogously, the cooler the color, the lower is the magnitude.

Figure 3.7: STFT of the three fault types of CWRU bearing dataset.

In the work of Tao et al. (2020), the authors combine STFT with a Categorical Generative
Adversarial Network (CatGAN), naming it the ST-CatGAN. The GAN is a combination of
two neural networks, one is the generator and the other is the discriminator. The generator
creates synthetic samples from noise and the discriminator tries to determine if a sample
is real, i.e., from the original dataset, or fake (generated). A well trained generator can
be used to expand datasets with synthetic data, which can be a valuable resource when
current data is not enough and acquiring more data is difficult or unfeasible. The CatGAN
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is a variant that uses a classifier instead of the discriminator, that is trained with both
real and generated data, improving its performance. Moreover, the authors pre-process
the CWRU dataset with the STFT before training the model, which means the generator
creates synthetic STFT samples.

Figure 3.8: ST-CatGAN classifier architecture.

STFT data is processed by the 2D CNN classifier (Figure 3.8). One of the distinctive
features of this architecture is the use of batch normalization layers, that scale the output
of the previous layer to have mean 0 and variance 1, enabling faster training. This approach
achieved an accuracy of 99.34% for diagnostics with no motor load, but failed achieved
similar results for varying loads (1 hp to 3 hp), reaching only 91.89%. Nevertheless, this
work shows the potential of STFT to extract valuable features from vibration data.

3.6 System Emulation with Synthetic Data Generation

A common obstacle to develop PdM solutions is the difficulty of acquiring data from
physical systems. As mentioned before, the quality of a dataset depends on various factors,
including the representativeness of different health conditions. The occurrence of faults
and failures can be rare, making the acquisition of a diverse dataset unfeasible. Another
solution is to induce a fault artificially, but it may also be impractical for various reasons,
as lack or expensiveness of spare parts, or if the machine’s unavailability causes financial
losses to the business.

System emulation and synthetic data generation is a popular alternative when the given
data is insufficient. Digital Twins (DT) are one of the main techniques of system emulation
[Falekas and Karlis, 2021]. A DT is a virtual representation of a physical system with
the objective of mirroring the physical counterpart and reproducing its processes. There
are three levels of integration between the physical object and the DT, as described by
Kritzinger et al. (2018):

• Digital Model: does not have automatic data exchange between the physical and
digital objects. Changes in the state of the physical object do not lead to changes
on the digital object and vice versa. The level of complexity and detail of the digital
model may vary.

• Digital Shadow: has one-way automatic data flow between the physical and the
digital objects. The state of the digital object is affected by changes in the physical
object’s state, not vice versa.

• Digital Twin: has two-way data flow between the objects and a change in one of the
objects’ state leads to a change in the other.
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In the work of Selçuk et al. (2021), a DT of a motor and gearbox system was used to
generate synthetic vibration data. The individual components’ behavior was modelled,
followed by the overall system behavior. The vibration signal is modelled by a subsystem
that converts the motor and gearbox rotational displacement at the output to translational
motion through masses and spring, where the vibration is measured from the spring-
damper chain by virtual sensors. A vibration dataset was generated, simulating gearbox
tooth fault and vibration sensor drift error. Several time, frequency, and time-frequency
domain features were extracted for training ML models for diagnostics. The best result
was achieved by a RF-based approach, with 99% accuracy. This is a example of a digital
model, as there is no data flow between the virtual model and the physical system.

In terms of rolling bearing simulation, Farhat et al. (2021) propose a rolling bearing DT
for fault severity classification. The DT models a bearing fault detection test bench and
is used to generate synthetic vibration data, using the same operation conditions of the
real bench experiments, to train a ML model to diagnose the physical bearing. With a
Support Vector Machine (SVM), the DT-based approach achieved a 84% accuracy, and
for comparison the conventional approach, which is trained with real data, achieved 90%
accuracy.

3.7 Synthesis of the State of the Art

After reviewing the literature, it is possible to trace a plan for the experiments that will
lead to the final approach. As stated in Chapter 1, the objective of this work is to create a
model capable of estimating the health condition of a crane translation system. Although
there are multiple sensor signals acquired from the translation system, there are no health
condition labels available, thus limiting the solution to unsupervised ML algorithms, but,
as the sampling frequency is too low ( 1

60Hz ), those algorithms are also impracticable, since
there are not enough information with such frequency.

Considering the circumstances mentioned above and what was presented in this chapter,
the preferred course of action was to emulate the translation system, in other words, to
create a Digital Twin. Although the real data available is not sufficient for PdM algorithms,
they are worth for determining the crane operation regime. By the types of DTs presented
in section 3.6, it would be possible to develop a digital shadow, where an automatic data
flow from the physical system would change the state of the digital object.

The rolling bearing is the component chosen for virtualization in the DT, for its presence in
piratically every rotating machinery, including the crane translation system. Modelling the
electrical motor and its faults was also considered [Foito et al., 2015], but it is a complex
task that could not be featured in this work because of time constraints. Nonetheless,
several abstractions had to be made to simulate and generate the synthetic vibration data,
as it can be seen in Chapter 5.

In terms of DL model, CNNs is highly popular and accurate, yet choosing the CNN as model
implies that the architecture must be designed. Different architectures were presented in
this chapter, giving practical knowledge of the most used types of layers. Max-pooling and
subsampling layers are the ones used to perform subsampling, although some approaches
do not use them. Batch normalization and dropout layers are also used between the
main convolutional layers, but also not unanimously. What can be pointed as common
is the number of layers (considering each group started by a convolutional layer as a
single layer): they are commonly 2 or 3. As there is no predetermined solution that can
achieve good results, and to make a contribution in terms of automatic hyperparameter
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and architecture optimization, Bayesian Optimization is going to be used to test different
layer and parameter combinations, instead of relying on manual tuning.

The use of AEs for diagnostics, by itself or combined with a CNN, could also be a promis-
ing solution. Nonetheless, training AEs is highly time consuming. Moreover, CNN models
were shown to achieve accuracy above 90% for rolling bearing diagnostics. Thus the imple-
mentation of AEs is only worthwhile if the raw data or extracted features were insufficient.

For feature extraction, the usage of the STFT for time-frequency analysis can be beneficial
and improve the solution’s performance, being also viable in terms of computational time.
In the experimentation phase, the STFT is used and the results are compared to the model
with raw data.

All model tests are carried out with the CWRU dataset to assess the diagnostics perfor-
mance. The best model is used to diagnose the synthetic vibration data generated by the
translation system emulator.

24



Chapter 4

Initial Work

This chapter presents what was implemented during the initial phase of this work. It
comprised two approaches, one for the PRONOSTIA use case [Nectoux et al., 2012], and
the other for the ASTANDER use case. The former was developed as an experiment to
create a DL model capable of mapping input data directly to RUL values, while the latter
was developed right after the data was made accessible, though no concrete information was
given about the meaning of each sensor variable, making it a purely experimental approach.
Both approaches did not make it into the main approach, i.e., the crane translation system
PdM emulator. Nevertheless, these approaches still have value in terms of PdM research,
and can be used for future work, if the necessary requirements, that were not fulfilled
during this work, are met.

4.1 PRONOSTIA Use Case

Before it was known that the crane data sampling frequency could not be increased and
labelling would not be available, the development of a supervised DL model for prognostics
was prioritized. The objective was to have a model that could map raw data directly
to target RUL values (labels). Thus, the PRONOSTIA dataset was chosen as public
prognostics benchmark. This approach was ultimately presented at the CONTROLO2022
conference and published [Neto et al., 2022].

4.1.1 Dataset Description

This dataset was published as part of the IEEE PHM 2012 Prognostic Challenge. It con-
tains 17 rolling bearing run-to-failure experiments. The test bed used for the experiments
can be seen in Figure 4.1.

The distinctive aspect of this dataset is that experiments feature natural bearing degrada-
tion, i.e., there are no artificially induced faults, the bearings start healthy at each exper-
iment and degrade over time until a failure occurs. Moreover, there is three experiment
operation regimes:

• Op. regime 1: 1800 rpm and 4000 N.

• Op. regime 2: 1650 rpm and 4200 N.

• Op. regime 3: 1500 rpm and 5000 N.
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Figure 4.1: PRONOSTIA-FEMTO test bed [Nectoux et al., 2012].

The full description of how the datasets are grouped between operation regimes and training
and test set are shown in table 4.1.

Table 4.1: PRONOSTIA-FEMTO datasets description.

Operation Regime
Op. Regime 1 Op. Regime 2 Op. Regime 3

Training set Bearing1_1 Bearing2_1 Bearing3_1
Bearing1_2 Bearing2_2 Bearing3_2

Test set

Bearing1_3 Bearing2_3

Bearing3_3Bearing1_4 Bearing2_4
Bearing1_5 Bearing2_5
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7

The vibration data is measured by accelerometers at a sampling frequency of 25.6 kHz. A
visual representation of one of the datasets (Bearing1_1) can be seen at Figure 4.2.

No information about what are the types of failures is available, making the PRONOSTIA-
FEMTO dataset a benchmark mainly for prognostics, although some unsupervised diag-
nostics approaches exist.

4.1.2 Prognostics Model

The LSTM was chosen as the DL model to be trained and compared with other non-deep
ML models. As stated in Chapter 2, the LSTM is an improved variant of the RNN, capable
of learning sequential information, which is adequate for this dataset, as it represents
bearing degradation through time. Figure 4.3 shows the architecture obtained from the
optimization experiments, using Bayesian Optimization.

In terms of hyperparameters obtained from the optimization experiments, giving a total
of 50 iterations, the following results were obtained, as listed below.

• Number of LSTM hidden units: 64.

• Number of neurons in the fully connected layer: 56.
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Figure 4.2: Bearing1_1 vibration data, from the PRONOSTIA dataset.

Figure 4.3: LSTM architecture used for RUL prognostics.

The input data was separated into 256-sample segments. There is no need for Cross-
validation in this use case, as the training and test sets are already defined for benchmark
comparison. The three best models among all the trainable models provided by the MAT-
LAB’s Classification Learning app were chosen. These models were also optimized with
Bayesian Optimization. They are the following: Random Forest, Gaussian Process Re-
gressor, and Support Vector Machine.

The usual metric for assessing prognostics approach is the Root Mean Square Error (RMSE),
as it is given below.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.1)

RMSE =
√
MSE (4.2)

Figure 4.4 shows the results of RUL prediction using the trained LSTM model for two
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subsets.

Figure 4.4: RUL predictions for the Bearing1_1 and Bearing1_3 subsets.

Finally, table 4.2 shows the results for all test subsets in terms of RMSE and comparison
with the three best non-deep models.

Table 4.2: Comparison between the developed model (LSTM) and other non-deep ap-
proaches.

Model RMSE
LSTM 0.254
SVM 0.288
GPR 0.334
RF 0.353

The results were considered satisfying, as the LSTM model outperformed the non-deep
counterparts and was able to predict the RUL fairly accurately. However, as it is known,
real data from the crane neither had sufficient sampling frequency, nor labelling, which
made the adaptation and deployment of the developed model to be unfeasible, specially
for the former condition, as even if there were no labelling, there are unsupervised DL
approaches for the PRONOSTIA dataset, including LSTM models [Qin et al., 2022]. The
next section presents an experimental unsupervised approach developed using an earlier
version of the crane data.

4.2 ASTANDER Clustering

For the specific ASTANDER use case, the dataset is assumed to be composed of a number
of physical attributes/variables (e.g., temperature, vibration), that can be used to charac-
terize the health status of a given equipment or part, as well as its degradation over time.
It should be mentioned that the health status of a given component at a given time, to
be diagnosed and predicted, needs at an initial phase further information, such as a time
stamp and the health status class of the component.

The dataset is currently composed of 8 variables collected using a sampling time of one
minute: Altivar fault code (AFC), Drive state (DS), Drive thermal state (DTS), Motor
current (MC), Motor thermal state (MTS), Motor torque (MT), Output velocity (OV),
Resistor thermal state (RTS). A set of N = 13123 instances have been used in the present
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analysis, corresponding approximately to 9 days of operation. The first acquisition was
performed on 2021-09-16, 09:03:00. Table 4.3 summarizes the characteristics of each raw
variable (discrete or continuous) and the respective range of possible values.

Table 4.3: ASTANDER dataset characterization.

Description Discrete Continuous Units
1| Altivar fault code {0, 22, 23, 39} *

2| Drive state {0, 1, 2, 4, 5, 6, 11} *
3| Drive thermal state {} *

4| Motor current {0} ∪ [878, 1450] *

5| Motor thermal state {0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10,11, 12, 13} *

6| Motor torque {0} ∪ [9, 409] ∪ [65424, 65535] *
7| Output velocity {0} ∪ [45, 1005] ∪ [64533, 65535] *

8| Resistor thermal state {0, 1, 23} *

From the analysis of the ASTANDER data, and in accordance with the ASTANDER
designation “code & state”, it can be observed:

• 5 variables assume discrete values (code/state): 1|AFC, 2|DS, 3|DTS, 5|MTS, 8|RTS.

• 3 variables assume continuous values: 4|MC, 6|MT, 7|OV.

Figure 4.5 presents the values taken by these variables over time. As can be observed, the
selected variables significantly differ in range, thus recommending a normalisation during
the pre-processing stage.

Figure 4.5: ASTANDER: raw data variables.

4.2.1 Pre-processing

Data pre-processing is an essential step to improve raw data quality for subsequent data
analysis. These operations typically include noise reduction, as well as the handling of
outliers and missing values, normalization and dimensionality reduction.
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Outliers are measurements that significantly deviate from the expected normal pattern of
sampled data. Detection and accommodation of this kind of artefacts are crucial when
collected data from sensors are subsequently used to assess running conditions, such as a
system part health condition or for data-based decision-making, as in the case of timely
maintenance.

As can be observed from Table 4.3, the variable 6| Motor Torque presents two main distinct
ranges of operation, in particular {9 .. 409} and {65424 .. 65535}. The first range comprises
91.76% of the data, while the second one 8.24%. Therefore, the occurrences corresponding
to the second range (low percentage of abnormal values or stemming from some sort of
fault, which needs to be elucidated) were considered at this point as outliers, being excluded
from the analysis. As a result, the operation range for the variable 6| Motor Torque results
in 0 ∪ [9, 409].

Similarly, variable 7| Output Velocity presents two main ranges: 42, 1005 and 65533,
65535. The first range comprises 97.68% of the data, and the second one just 2.32%.
Likewise, variable 6| Motor Torque, the occurrences corresponding to the second range
were considered at this point as outliers, being excluded from the analysis. As such, the
operation range for the variable 7|Output Velocity consists of 0 ∪ [45, 1005].

Considering the elimination of the data corresponding to these abnormal ranges, a dataset
composed of N=10907 was obtained. (approximately 84% of the original dataset). More-
over, after excluding the samples corresponding to the outliers, the variable 8| Resistor
thermal state only assumes values equal to zero. Therefore, this variable was excluded
from the current analysis. Figure 4.6 shows the remaining 7 variables, normalized in the
range [0, 1].

Figure 4.6: ASTANDER: normalized data.

4.2.2 Dimensionality Reduction

Dimensionality reduction facilitates the interpretation of the data, and enables to cap-
ture/extract relevant features to be used in the characterization of distinct operation
modes. In the present analysis, the standard Principal Component Analysis (PCA) method
was applied to perform data reduction. Three components were used {PC1, PC2, PC3}
mainly for visualization purposes (3D space) and because they roughly explain the major-
ity of the underlying information. Figure 4.7 presents the data reduction (scores) obtained
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for the ASTANDER data.

Figure 4.7: ASTANDER: data reduction {PC1,PC2,PC3}.

4.2.3 Diagnostics

To perform correct diagnostics, namely fault detection and isolation, an annotated dataset
must be available. Therefore, together with the collected variables, a label associated to
each sample time needs to be known, enabling to characterize the operation mode or the
health status of the equipment. Based on the condition status, a supervised model can be
trained with the available data and used, afterwards, to infer the health condition status
and location of faults.

However, in the current ASTANDER use case, the dataset is not provided with labels. As
such, it is not possible to characterize the available data, in particular to assess the health
status or to distinguish the several operating modes or discriminate possible faults in the
equipment.

This limitation of lacking labelled data led to using an unsupervised approach, i.e., only
based on the input variables. For this purpose, clustering techniques are employed here,
allowing to discriminate operating regimes, which can be normal or indefinite.

4.2.4 Clustering

In the present analysis, the standard K-means method was applied to perform clustering
based on PCA scores. In order to select the number of clusters (NK), a critical parameter
of the method, the Dunn’s index was computed considering the number of cluster NK in
the range {2, 3, . . . , 10}. The obtained values are shown in Figure 4.8.

As can be observed from Figure 4.8, the value for NK = 4 seems to be a suitable com-
promise between the accuracy of the clustering process (assessed by Dunn’s index) and
complexity, determined by the number of clusters.
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Figure 4.8: Clustering process – Dunn’s method indexes.

4.2.5 Clusters Analysis

Figure 4.9 presents the selected normalised 7 variables of the ASTANDER use case (left
Top), as well as the corresponding 3 PCA variables (left Bottom), for 3D visualization. In
the right, it is shown the ASTANDER data and the respective four clusters (NK = 4).
It should be noted that the different colours identify the distinct clusters in all figures:
C1=GREEN, C2=BLACK, C3=BLUE, C4=RED .

Figure 4.9: ASTANDER data analysis resulting from clustering process, NK = 4.

From Figure 4.9, it can be observed that the chosen 4 clusters can effectively group the
data in 4 distinct operating modes (3D figure, right). Moreover, from the figures on the left
(time domain), it can be observed that the operating modes C1 and C4 can be identified
as “normal” operating modes. On the other hand, the operating mode C3 occurs mainly in
the beginning of the acquisition process and in some few small functioning time intervals,
suggesting that it is associated with a “transition” regime or possible to a fault. Finally,
the operating mode C2 is clearly related to “stop” operation mode, since all variables are
equal to zero.

For comparison purposes the same analysis was carried out considering NK = 6, as it is the
first value greater than 4 which has a lower Dunn’s index value, answering to the question
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if a higher number of cluster should be used. As can be observed from Figure 4.10, the
results are somewhat similar. In fact, the addition of two new clusters has enabled to split
clusters C1 and C3 into subclasses. Basically, both “stable” and “transition” classes have
been divided in two subclasses.

Figure 4.10: ASTANDER data analysis resulting from clustering process, NK = 6.

As a result, taking into account Dunn’s index (Figure 4.8) and the previous comparison
analysis (Figure 4.9 and Figure 4.10), a number of NK = 4 is assumed. The number of
occurrences for each cluster is detailed in Table 4.4.

Table 4.4: Cluster distribution NK = 4.

C1
OP1

C2
STOP

C3
TRANSITION

C4
OP2

Occurrences 6503 2978 999 427
Percentage 60.0% 27.0% 9.1% 3.9%

Taking into account the presented percentages in Table 4.4, it can be concluded that
operating regime C1 is much more frequent (60%) than the operating regime C4 (3.9%).
This may suggest the existence of distinct classes, in particular, related to normal and
faulty conditions. Only a deeper understanding of this use case can clarify this hypothesis.

4.2.6 Global Analysis of the Variables

Based on the individual analysis (see Table 4.5 and Figure 4.11), it can be concluded that
the specific values of the input variables have potential to distinguish between cluster Ci

with i = 1, 2, 3, 4.

The distinction for each cluster can be described as following:

• For C2 all variables are zero (corresponding to a stop period).

• For C1 and C4 the variables 1, 2, 3 and 5 can be used to distinguish the two operating
regimes.

– Mode values for C1= {AFC = 23;DS = 2;DTS = 43;MTS = 6}.
– Mode values for C4= {AFC = 22;DS = 11;DTS = 41;MTS = 8}.
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Figure 4.11: Correlation between clusters and variables.

Table 4.5: Cluster characterization.

Cluster 1
OP1

Cluster 2
Stop

Cluster 3
Transition

Cluster 4
OP2

1 Altivar fault code 23 0 23 22
2 Drive state 2 0 4 11

3 Drive thermal state 43 0 51 41
4 Motor current 0 0 1238 0

5 Motor thermal state 6 0 8 8
6 Motor torque 0 0 219 0

7 Output velocity 0 0 1001 0
8 Resistor thermal state * * * *

• For C3 the variables 4, 6 and 7 can be used to distinguish this operating regime from
the others.

– Mode values for C3= {MC = 1238;MT = 219;OV = 1001}.

– Modes values common to C1, C2 and C3 are {MC = 0;MT = 0;OV = 0}.

In parallel to this particular analysis, a general similarity measure (e.g., Euclidean distance)
can be automatically used to compute the distance of the current triplet (PC1, PC2, PC3)
scores to each one the clusters. Given these three distances, the triplet will belong to the
cluster of the closest centre (the most similar cluster).

4.2.7 Real Time Diagnostics

The previous analysis suggest that the aforementioned initial hypothesis can be validated,
i.e., particular values of the variables can be used to distinguish the different operating
regimes. In fact, assuming that the distinct operating regimes have been computed a
priori, reflected in the characterization of the several groups C1, C2, C3 and C4, it is
straightforward to implement the present strategy for real time identification of the under-
lying operating regime.
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The diagnostic process, i.e., operating regime identification, is composed of the following
three steps:

1. The raw data is collected and pre-processed (outliers detection and accommodation
and normalization).

2. A dimensionality reduction is performed using the pre-processed variables.

3. The reduce data is compared with the several clusters centres and the group where
the reduced data belongs to is evaluated.

Figure 4.12 presents the implementation of such tool for real time identification of oper-
ating regimes. Moreover, assuming that the several operating regimes can be classified
as “normal” or “faulty” regimes, the application of this strategy to detect fault regimes is
straightforward.

Figure 4.12: ASTANDER diagnostics tool.

4.2.8 Synthesis

Results presented in this section have been obtained assuming an unsupervised approach.
In fact, the real data provided by the ASTANDER partner presents no labels, thus not
allowing the validation of supervised strategies, as well as, the development of PdM strate-
gies and RUL estimation. Therefore, additional information describing cranes is required
(e.g., details of the equipment, the sensor localization, and respective units), together with
the availability of labelled data, in order to come up with a reliable framework aiming to
the identification of faulty regimes and health status prognostics.
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Chapter 5

Main Approach Description

In this chapter, all the steps taken for the creation of the PdM approach for the crane
translation system and their respective methods are presented. Figure 5.1 features the
workflow followed during this development process.

Figure 5.1: Workflow for developing the crane translation system PdM approach.
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5.1 Crane Translation System Digital Twin Implementation

The objective of the crane translation system DT is to model the functioning and degra-
dation of the system components, in this case, the rolling bearings. The idea is to create a
digital shadow, where the functioning state of the digital object is directly connected to the
state of the physical crane. More than 200 sensor variables were provided by ASTANDER
through a database that was updated every minute. Although, just a small fraction of this
variables are related to the translation system and actually provide information that can
be used to determine the system operation state. The most relevant variables are presented
in Table 5.1.

Table 5.1: Relevant sensor variables for detecting the crane translation system’s operation
state.

Variable Unit Range
Motor
current A [0 197]

Motor
torque N·m [0 66]

Output
velocity [0 65535]

Joystick
translation [-5099 5056]

There are still a few other variables related to the translation system, namely: driver state,
driver thermal state, motor thermal state, and resistor thermal state. These variables do
not have a unit, they represent numerical states, and the meaning of those states are
ultimately unknown to this work. Thus, only the variables in Table 5.1 were considered.

With the available sampling frequency, the operation state can be distinguished between
idle and moving. The rolling bearing degradation is synchronized with this information,
thus no degradation occurs when the system is idle.

5.1.1 Modelling of the Rolling Bearing Degradation

Modelling of the rolling bearing degradation was performed by resorting to the PRONOS-
TIA dataset. The natural degradation of the rolling bearings in this dataset is the main
reason why it was chosen in this work for creating the synthetic vibration data generator,
as it enables the simulation of various degradation scenarios, both in terms of time and
degradation magnitude. The other reason is the high sampling frequency, that allows pre-
cise time and frequency analysis, revealing more information about the underlying health
conditions. Figure 5.2 shows the steps taken to perform the degradation modelling.

Figure 5.2: Diagram of the rolling bearing degradation modelling steps.

The first step is to manually identify the segments of the degradation states that are
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going to be modelled. From the PRONOSTIA dataset, the subset named Bearing1_1 was
chosen for its progressive degradation and lack of abrupt faults. Nonetheless, Bearing1_4
and Bearing2_3 subsets were also selected, this time for their sudden faults. Therefore,
combinations of progressive degradation and abrupt faults can be made. Figure 5.3 presents
the mentioned PRONOSTIA subsets.

Figure 5.3: Vibration data from subsets Bearing1_1, Bearing1_4, and Bearing 2_3.

To identify the different degradation state segments, the STFT was performed for the
entirety of each subset. Figures 5.4 to 5.6 show the identified states, outlined and numbered
in red.

Differences between the identified states are visible both in the raw data and in the time-
frequency analysis, in terms of vibration amplitude and most relevant frequencies, respec-
tively. Now, in order to generate synthetic vibration signals with the same characteristics
of those states, it is necessary to extract the Fourier series coefficients, which are later used
for reconstructing the signals through the sum of trigonometric Fourier series:

x[n] =
M∑

m=0

Cmcos(mω0n+ θm) (5.1)

where Cm and θm are the amplitude and phase coefficients, respectively. The previous
coefficients are calculated from the Discrete Fourier Transform (DFT) coefficients, as follow:

X[k] =
N−1∑
n=0

x[n]e−jkΩ0n (5.2)
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Figure 5.4: Bearing1_1 STFT analysis and degradation states identification.

Figure 5.5: Bearing2_3 STFT analysis and degradation states identification.

cm =
1

N
X[m], m = 0, 1, 2, ..., N − 1 (5.3)

Cm =

{
|cm|, m = 0

2|cm|, m > 0
(5.4)

θm = ∠cm (5.5)

where in equation 5.4, m = 0, 1, 2, ...., N−1
2 when N is odd, and m = 0, 1, 2, ...., N−2

2 when
N is even.

To emulate the environment noise, each value of the reconstruction is multiplied by a
random value that follows a uniform distribution between 0.9 and 1.1, which means that the
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Figure 5.6: Bearing1_4 STFT analysis and degradation states identification.

signal varies by up to 10% at each point. Finally, the generation of the synthetic vibration
signal is performed according to the defined degradation scenarios. Four scenarios were
designed in this work:

1. Only state 1 included. This simulates an ideal scenario where no degradation to the
rolling bearing occurs.

2. Progressive degradation, starting at state 1 and ending at state 5. Does not comprise
sudden faults (states 6 to 8). This simulates the natural bearing degradation, without
additional anomalies.

3. Similar to the previous scenario, but includes additional states 6 and 7. The occur-
rence of these states simulates abrupt faults that cause additional damage, but no
breakdown.

4. Similar to the previous scenario, but includes state 8. This state simulates a major
failure that causes imminent breakdown.

These scenarios are controlled through a set of parameters: total duration of the vibration
signals (from healthy to faulty), start instant of each degradation state, duration of each
transition between states (one value per transition), anomaly occurrence probability for
each time step, probability distribution between anomalies (states 6 to 8).

Transitions between states are performed linearly and the superposition of states are cal-
culated by a weighted sum, where the sum of all weights is equal to 1. When an anomaly
is set to occur at the current simulation time step, all other weights are set to 0 and the
anomalous state’s weight is set to 1. Figure 5.7 illustrates the transitions between states,
representing only 4 states.
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Figure 5.7: Representation of degradation states transitions.

5.1.2 Integration of Data Flow from the Real Crane

Data from the real crane is available from an online database updated every minute.
Although the sampling frequency is not high enough to be directly used for diagnostics
and prognostics, it can be used to define the operation regime of the crane, but in a
minimalist way, by distinguishing between movement and idleness. Thus, the vibration
data generation is synchronized with the crane’s movements. When the crane is idle, the
vibration is set to 0, and when it is moving, the vibration generation is resumed.

The definition of crane translation movement through the provided real data is straight-
forward in this work. First, for each sensor variable (see Table 5.1), the value ranges
associated with idleness and movement are identified. Then, a simple rule is applied to
classify the operation condition: if two consecutive samples of a sensor variable, or com-
bination of variables, are within the value ranges defined for movement, then the crane is
said to be moving during one minute, else, it is idle. Whether the movement rule is applied
to a single variable or to multiple variables depends on a parameter that can be defined at
any moment.

It is worth to be mentioned that the generated data has the same sampling frequency of
the original dataset, which is 25.6 kHz, and generating this amount of data in real time
is impractical in terms of computational requirements. For this reason, only a second of
vibration data is generated at every minute.

At this point, the crane translation system digital shadow is complete. It is able to gen-
erate vibration data according to the given degradation scenarios. Several aspects of the
generation process are parameterized, like total duration, number of degradation states,
transition between states, and anomaly occurrence probability. This parameterization al-
lows the generation process to be adapted to the desired simulation goals. This model
and the DL model developed for fault diagnostics are then integrated to create the crane
translation system PdM emulator.
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5.2 Deep Learning Model Implementation and Optimization

Following the conclusions of Chapter 3, it was decided that a CNN model would be im-
plemented to perform fault diagnostics from rolling bearing vibration data. Experiments
were developed to find the best architecture, hyperparameters, and feature extraction tech-
nique. Table 5.2 shows the experiments that were carried out according to the CNN type
and feature extraction technique.

Table 5.2: Experiment scenarios used to find the best CNN architecture.

Experiment
Number Model Feature extraction

1 1D CNN None2 2D CNN
3 1D CNN STFT4 2D CNN

For each experiment, a set of parameters were optimized by the Bayesian Optimization
algorithm. These parameters defined the model’s architecture and training, as seen in the
Table 5.3 below.

Table 5.3: Parameters optimized using the Bayesian Optimization algorithm.

N° Parameter Values
1 Number of convolutional layers {1, 2, 3, 4}

2 Number of filters of
the first convolutional layer {16, 32, 64}

3 Pooling layer {0, 1}
4 Batch normalization layer {0, 1}
5 Dropout layer {0, 1}
6 Number of fully connected layers {1, 2}

7 Number of neurons of the
first fully connected layer {32, 64, 128, 256}

8 Learning rate {10−5, 10−4, 10−3,
10−2, 10−1}

It is important to note how each parameter works in the optimization algorithm:

1. Defines the number of convolutional layers in the network, from 1 to 4. Max-pooling,
batch normalization, and dropout layers may be concatenated after each convolu-
tional layer, in this very order.

2. Defines the number of filters of the first convolutional layer, from 16 to 64, but only
powers of 2. For the nth layer, the number of filters is equals to 2f0+n−1, where f0
is the number of filters defined by the parameter 2.

3-5. Boolean variables that determines if a convolutional layer is followed by a max-
pooling, batch normalization, and/or dropout layer.

6. Similar to parameter 1, defines the number of fully connected layers at the end of
the network.

7. Defines the number of neurons of the first fully connected layer as a power of 2
between 32 and 256. The number of neurons of the nth fully connected layer is
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defined analogously to what is done with parameter 3, but is given by 2f0−n+1,
halving the number of neurons in each consecutive layer.

8. Defines the initial learning rate as a power of 10 between 10−5 and 10−1.

The value ranges of the parameters (excluding parameters 3 to 5) were selected based on
literature, computational requirements, and computational power available for the experi-
ments. Also, the number of models trained by the optimization algorithm (iterations) was
set to 50 for each experiment, where 8 were trained simultaneously at each given time.

5.2.1 Model Performance Assessment with 5-fold Cross-validation

After the experiments were carried out, a 5-fold CV was used to obtain performance metrics
from the best model of each experiment. The metrics are accuracy and Macro-F1 score,
as given below:

accuracy =
correct classifications

all classifications
(5.6)

F1 = 2
precision ∗ recall
precision+ recall

(5.7)

MacroF1 =
1

N

N∑
i=1

F1 i (5.8)

Accuracy is the main metric for comparison in diagnostics approaches, although it may
be biased if the dataset is not balanced, as in the case of the CWRU dataset. The Macro
F1-score gives the same importance to all classes, thus if the performance in a rare class is
poor, the F1-score will reflect it.

After validating the performance of the best model of each experiment, the best model was
selected to be integrated into the translation system PdM emulator. Experiment results
are shown in the next chapter.

5.3 Crane Translation System PdM Emulator Implementa-
tion

With the completion of the previous modules, the emulator can be implemented. The
objective of the emulator is to apply the developed DL model to perform diagnostics
within the degradation scenarios defined for the digital shadow. Moreover, the diagnostics
results are used by the health condition prognostics module, which is explained in the next
section. In total, the emulator can be divided into 4 subcomponents, as seen in Figure 5.8
below.

The first two components belong to the translation system DT, while the third is the
DL model used for diagnostics. The external input is real data from the crane, obtained
through the database, whilst the external output is the estimated RUL value. There is
no major difference on how the emulator ultimately works compared to the DT model
and DL model combined. Once data is received from the online database, the movement
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Figure 5.8: Emulator subcomponents and respective inputs and outputs.

tracker determines if the crane is idle or moving at the given moment. Next, the virtual
data generator is activated when the crane is moving, generating one second of vibration
data, following the defined degradation scenario. Then, the component diagnostics module
classifies the vibration data according to the identified degradation state. Finally, the
system prognostics module estimates the impact of the current degradation on the RUL.
This last module is discussed next.

5.3.1 System Prognostics Module

In this module, the objective is to output the RUL of the translation system. For this, an
approach was developed for calculating the RUL at each time step, taking into account the
current degradation state of the system components, in this case, the rolling bearing. This
module has a high level of abstraction, using a simple logic to calculate the RUL. First,
each component degradation state is associated with a damage coefficient. At any given
time step, the RUL is calculted as follow:

RULt = RULt−1 − (1 + dci) (5.9)

Where dci is the damage coefficient of the degradation state i. This equation works for
discrete time, where t is time given in minutes. In simple terms, for each minute of
functioning time, the system ages one minute, plus the value of the damage coefficient.
If the dci is 1, the system will age 2 minutes for every minute of functioning. If the
degradation state is misclassified by the diagnostics module, the estimated RUL will drift
away from the true RUL. To evaluate the performance of the prognostics module, the
RMSE is calculated between the estimated RUL and the true RUL.

Although the diagnostics module is used to identify discrete degradation states, the true
RUL is calculated taking into account the transition between states. Thus, instead of using
the dci, the coefficient is a combination given by the equation bellow.

dct = da × at + db × bt (5.10)
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Where da and db are the damage coefficients of transitioning states a and b, respectively,
and at and bt are the transitioning weights of states a and b at the current time step t,
respectively, and the sum of both weights is equals to 1. The idea behind the presented
strategy is to mimic the behavior of component degradation in real life, even though it is
through a high level of abstraction.

5.4 Emulator Validation Experiments

In order to validate and assess the performance of the diagnostics and prognostics model,
a set of experiments were defined, one for each scenario (see section 5.1.1): (i) no degrada-
tion, (ii) progressive degradation, (iii) progressive degradation with sporadic non-breaking
anomalies, (iv) progressive degradation including all types of sporadic anomalies.

In terms of real crane data for synchronizing the vibration data generation, a week of
samples was chosen and replicated 52 times to form a full year of recording. The chosen
week, dating from April 3rd to April 9th of 2022, encompasses 7 full days of work, from
Sunday to Saturday (Figure 5.9). The purpose of replicating this week to a full year
is to simulate the crane in non-stop service, which would be the situation of maximum
degradation of any component in the crane, highlighting how the PdM approach would
work.

Figure 5.9: Motor current samples from the selected week of recordings.

Even though it is possible to combine different variables from the translation system to
determine if the crane is moving or idle, only the joystick translation signal was chosen as
input. This decision is based on the low sampling frequency, which would make a slight
temporal offset between multiple signals lead to misclassifications of the operation regime.
Thus relying on the commands from the crane operator is a better option.

For all experiments, the system initial RUL was set to 120 hours, which is the estimation
of the translation system’s total working time for one year under the work schedule created
from the previously mentioned 7-day work week. Once the real or estimated RUL reach 0,
the simulation stops. A few more simulation parameters are shown bellow at Table 5.4.
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Table 5.4: Simulation parameters for validating the emulator.

Parameter Value Notes
Degradation state 1 start 0% of the initial RUL

For scenarios 2 to 4,
scenario 1 has only

the first state

Degradation state 2 start 48% of the initial RUL
Degradation state 3 start 79% of the initial RUL
Degradation state 4 start 93% of the initial RUL
Degradation state 5 start 99% of the initial RUL

Anomaly occurrence probability 2% every minute 0% for scenarios 1 and 2
Prob. distribution between

anomalous degradation states
20%, 80%, 0% Scenario 3 only

17.5%, 77.5%, 5% Scenario 4 only

Degradation coefficients 0, 0.5, 1, 2,
4, 20, 8, 500

For degradation states
1 to 8

The degradation state start parameters were based on how the natural degradation of a
rolling bearing occurs. The initial and healthier states last longer than the ones close to
breakdown. The probability of anomaly occurrence was also set to a low value to imitate
the rarity of anomalies, even so, the value could not be much lower than 2%, or else, the
anomalies would not have an impact considering the simulations time span. In terms of the
probability distribution of the anomalies, the values were set to be inversely proportional
to the damage caused by the respective anomaly. Finally, the degradation coefficients
associate a magnitude to the degradation caused by a given state, which were assigned
manually according to the perceived impact of such states.

It is important to note that, in order to simulate a breaking failure, once state 8 happens,
the simulation changes the parameters. The anomaly occurrence probability is set to 100%
and the anomaly probability distribution is also changed, setting state 8 to 100%. This
mechanism mimics a serious and irreversible failure, if the system continues to operate, it
breaks down quickly.

What is expected from the PdM approach is that the RUL estimation is sufficiently close
to the true RUL, so that, for example, if an alarm system is deployed when a certain RUL
value is reached, a system breakdown is prevented. If the estimation deviates far away
from the true value, the system can break before the alarm is activated, or else, an false
alarm can occur. The next chapter presents the results from the DL model optimization
and the PdM emulator experiments results.
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Chapter 6

Main Approach Results

In this chapter, the results of the CNN architecture and hyperparameter optimization with
the Bayesian Optimization are presented, pointing out the best architecture found for each
of the defined experiments: (i) 1D CNN with raw data, (ii) 2D CNN with raw data, (iii)
1D CNN with STFT data, (iv) 2D CNN with STFT data. The CWRU dataset was used
to train and test the models, which includes all the 12 kHz subsets, previously presented
at Table 3.1, plus 4 normal condition subsets. The class distribution of the used dataset
is seen in Figure 6.1 below.

Figure 6.1: Class distribution of the used CWRU dataset.

The dataset is unbalanced, hence the importance of using the macro-F1 score, in addition
to the accuracy metric. The 5-fold Cross-validation technique is stratified, i.e., each subset
maintains the same class distribution ratio than the original dataset.

Next, the results of the crane translation system PdM emulator experiments are presented.
The experiments are defined by the degradation scenario: (i) no degradation, (ii) progres-
sive degradation with no random anomalies, (iii) progressive degradation with random
anomalies and no breaking failures, (iv) progressive degradation with random anomalies
and breaking failures.
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6.1 CNN Architecture and Hyperparameter Optimization Re-
sults

Tables 6.1 and 6.2 show the results from the optimization experiments using the Bayesian
Optimization algorithm. The first table presents the performance metrics of the best
obtained models for each experiment, and the second table shows the architecture and
hyperparameters chosen by the algorithm for these models.

Table 6.1: Cross-validation results of the best models of each architecture optimization
experiment.

Experiment Model Data 5-fold CV
Accuracy

5-fold CV
Macro-F1 Score

1 1D CNN Raw 92.93 93.29
2 2D CNN 71.14 66.29
3 1D CNN STFT 97.85 97.98
4 2D CNN 98.64 98.69

Table 6.2: Architecture and hyperparameter optimization results.

Experiment 1 2 3 4
Data Raw STFT
Model 1D CNN 2D CNN 1D CNN 2D CNN

N° of conv. layers 4 3 3 2
N° of filters

(1st conv. layer) 16 32 64 32

N° of fully
connected layers 3 1 2 2

N° of neurons
(1s f.c. layer) 32 32 64 32

Has pooling layer Yes No Yes No
Has batch

normalization layer Yes Yes Yes No

Has dropout layer No No No No
Initial learning rate 0.001 0.001 0.001 0.001

Training time 02:03:25 00:12:22 00:04:02 00:47:22

Now, Table 6.3 compares the results obtained with experiment (2D CNN model with STFT
data) to the state of the art for the CWRU dataset.

Starting with the results from Table 6.1, the 2D CNN model from optimization experiment
4 achieved the best accuracy and Macro-F1 score, with 98.64% and 98.69%, respectively.
The second best model is the 1D CNN from experiment 3, followed by the models from
experiment 1 and 2, in this order. Both models trained with data processed with the
STFT had accuracy close to the best state of the art approaches, and were considerably
superior to the models trained with raw data, pointing to the already known advantages
of the STFT to vibration data analysis. Nevertheless, the 1D CNN achieved good results,
specially in experiment 3, which was less than 1% apart from the superior 2D CNN from
experiment 4, but with a training time more than 10 times shorter.

In terms of architecture and hyperparameters defined by the optimization algorithm, the
best 2D CNN from experiment 4 has 4 layers: 2 convolutional layers, which are not fol-
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Table 6.3: Comparison between experiment 4 2D CNN model with the state of the art,
using the CWRU dataset.

Approach Data Cross-validated Accuracy Reference
Experiment 4

2D CNN model STFT Yes 98.64

ADCNN Raw Yes 97.90 [Guo et al., 2016]
1D CNN Raw Yes 93.20 [Eren et al., 2019]

Deep convolutional
variable-beta VAE Raw Yes 99.93 [Dewangan and Maurya, 2022]

SSAE FFT Yes 99.15 [Wang et al., 2022]
ST-CatGAN STFT No 91.89 [Tao et al., 2020]

lowed by any max-pooling, batch normalization, or dropout layer, and 2 fully connected
layers. The complete lack of post-convolutional layers was unexpected, since these layers
are frequently used for improving accuracy, reducing overfitting and training time. A few
additional ad-hoc tests were made, modifying the 2D CNN by adding all post-convolutional
layers to the 2 convolutinal layers, but these modifications failed to achieve better accuracy
and macro-F1 score results, yet the training time was reduced to 10 minutes, as expected.

6.2 Diagnostics Model Selection for Emulator Integration

Considering that both 1D and 2D CNNs that were trained with the STFT-processed
CWRU data had similar performance compared to the state of the art, both were val-
idated to diagnose the synthetic vibration data generated by the PdM emulator. The
training and test sets were extracted from all 8 degradation states subsections identified in
the PRONOSTIA dataset and processed with the STFT. The 2D CNN achieved 94.08%
accuracy, while the 1D CNN achieved 97.92%, similarly to what was obtained with the
CWRU dataset. Moreover, the 2D CNN took 10 minutes to be trained, while the 1D
CNN took only two minutes. Thus, the 1D CNN was chosen to be integrated into the
translation system PdM emulator, being a more lightweight and effective solution when
compared to its 2D counterpart. The simulation results from the emulator are shown in
the next section.

6.3 Translation System Emulator Simulation Results

6.3.1 Scenario 1

This first scenario is a baseline, no rolling bearing degradation is present. The system ages
the same amount of time it has been functioning, until it reaches the limit stipulated by
the initial RUL, equals to 120 hours (7200 minutes). Figure 6.2 shows the final simulation
result.

In the first subplot, a blue line represents the true bearing degradation state, which is con-
tinuous, and the red dots represent the diagnostics classification, which is discrete, as the
diagnostics is carried out for every one minute of functioning. Moments of idleness are not
represented. The normal degradation in the second subplot represents the system’s aging
without additional degradation, the real degradation represents the true RUL evolution,
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Figure 6.2: Scenario 1 final simulation results.

and the estimated degradation is the RUL estimated by the prognostics approach. In this
case, all values overlap each other, as expected, given that the diagnostics and prognostics
approaches succeeded at identifying the bearing degradation state and estimating an ac-
curate RUL throughout the simulation. Diagnostics accuracy and macro-f1 score reached
the best possible values of 100% and 1, respectively. RMSE was also the best attainable,
equals to 0.

6.3.2 Scenario 2

For the second scenario, progressive bearing degradation was enabled, but without random
anomalies. With bearing degradation, the system is expected to reach a critical point before
the 120 hour mark. Figure 6.3 bellow presents the final results for scenario 2.

The first subplot shows how the bearing degradation continuously progresses to a higher
level. The diagnostics model attempts to associate the input vibration data to the most
likely discrete degradation state. From the diagnostics results, the prognostics is performed,
calculating the impact of the current estimated degradation state to the RUL.

By analysing the scenario 2 point failure at Figure 6.4, it is possible to conclude that
any alarm based on the estimated RUL and set approximately before the 7% estimated
RUL mark can prevent the system’s breakdown. With no alarm system or other types
of contingency measures, the breakdown would match the 30% normal degradation RUL
mark (blue line), in other words, if 120 hours were set for performing the translation
system preventive maintenance and the rolling bearing suffered this type of degradation,
the breakdown would occur 36 hours before the scheduled maintenance.
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Figure 6.3: Scenario 2 final simulation results.

Figure 6.4: Scenario 2 point of failure analysis.

6.3.3 Scenario 3

This scenario is similar to the previous one, but it features random anomalies (degradation
states 6 and 7). Those anomalies cause additional damage to the system, making the true
RUL to decrease faster. It can be seen as an emulation of situations like translation system
overload or overheating, which are know to increase bearing degradation. Figure 6.5 below
presents the obtained results.

With the additional damage caused by the anomalies, the system reaches the point of
failure 8 hours (480 minutes) earlier, compared to the previous scenario. Nevertheless, the
RUL estimation was once again close to the true values, and the difference between the
estimation at the point of failure was practically the same as in scenario 1 (Figure 6.6).

The losses without PdM in this scenario would be even greater than the last one, as in
terms of preventive periodical maintenance, the system achieved the point of failure with
approximately 35% (2500 minutes) of the initial RUL.
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Figure 6.5: Scenario 3 final simulation results.

Figure 6.6: Scenario 3 point of failure analysis.

6.3.4 Scenario 4

For the final scenario, the degradation state 8, which consists of a major failure, may
occur alongside the other two anomalous states. Although the occurrence of such failure
in real life would be rare, the probability in this scenario was set to 5% for each time step,
for demonstration purposes. Once this fault happens, the emulator is locked to the same
degradation state, generating the same type of vibration data continuously. The results
are presented in Figure 6.7, as follow.

The system came to a breakdown at around 80% of the initial RUL. Although it seems
that the point of failure was reached instantaneously, it took around 7 minutes, counting
from the degradation state 8 onset. This progression can be seen in Figure 6.8 below.

This situation, where a radical degradation state occurs, with the system continuing to
run, can be seen as either lack of knowledge from the operators or just something that
could happen unnoticed until the system fails, which is plausible when considering car
failures caused by worn out components, or a massive and complex system as a tower
crane. Nonetheless, once again an alarm system integrated into the PdM model could
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Figure 6.7: Scenario 4 final simulation results.

Figure 6.8: Scenario 4 point of failure analysis.

prevent the system’s collapse.

6.3.5 Diagnostics and Prognostics Performance

In this section, the metrics of the diagnostics and prognostics approaches used during the
simulations are presented. It is important to note that in the degradation state classifica-
tion performance assessment, the true value of the degradation state, which is continuous,
is rounded and compared to the discrete classifications made by the diagnostics model.
Table 6.4 below presents the results obtained in the four simulation scenarios.

The results above are satisfactory. Although the accuracy is lower for scenarios 2 and 3,
it can be easily explained by the fact that the diagnostics model sporadically classified the
current transitioning degradation state as the previous or the next discrete state, but when
the current state was rounded, it did not match the obtained classification. However, by
visually inspecting the simulation results, it is possible to conclude that the classifications
were accurate, specially for the anomalous states 6, 7, and 8, where the model achieved
perfect accuracy.
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Table 6.4: Performance metrics for the diagnostics and prognostics approaches in the
simulations.

Scenario Accuracy Macro-F1 Score RMSE
1 100 100 0
2 81.89 81.25 0.0475
3 81.89 73.09 0.0433
4 100 100 0

In terms of prognostics results, the perfect results of scenarios 1 and 4 can be explained
by the two reasons. First, in scenario 1, there is no degradation and the diagnostics model
classifies all the degradation states correctly. Thus, there is no RUL estimation error.
Then, in scenario 4, the simulation ends before any progressive degradation starts, and
once more, the diagnostics model has a 100% for discrete states, resulting in a perfect
RMSE of 0. Even so, the prognostics results from scenarios 2 and 3 are also fairly good,
which can be confirmed by visual inspection.

6.4 Main Findings and Suggestions for Future Work

6.4.1 CNN Model Tested with CWRU Dataset

The most solid contributions in this work come from the DL model developed for bearing
diagnostics and tested with the CWRU dataset. The 1D and 2D CNN models with STFT-
processed data achieved nearly state-of-the-art performance, affirming the applicability of
the CNN and the STFT for bearing diagnostics made from vibration data. Another con-
tribution that can be pointed out is the use of Bayesian Optimization for finding good
architectures and hyperparameters, considering that most approaches rely on manual tun-
ing and exhaustive experimentation. Yet, the optimization process was constrained by the
available computational power, limiting the number of optimized parameters and the value
ranges to be tested.

This work also gave emphasis to the validation process, namely in the form of the Cross-
validation technique, since the majority of published approaches use methods that are prone
to be biased, such as the single train-test split or resubstitution methods, which make the
obtained results to be questionable. Moreover, works based on the CWRU dataset tend
to rely only on the accuracy metric for performance assessment, although this can also be
a biased measure, as the dataset is unbalanced. Thus, in this work, the macro-F1 score
was also used as a classification metric, taking into account the dataset unbalance and the
performance achieved for each fault class.

Results obtained by the best model were considered to be enough for it to be applied to
the diagnostics of synthetic vibration data in the translation system PdM emulator. Even
so, combining the CNN model with other models, such as the auto-encoders, to create
a hybrid approach can be beneficial to improve the diagnostics capabilities even further,
and to optimize such complex solutions, the Bayesian Optimization technique used in this
work can also be advantageous. Finally, other time, frequency, and time-frequency analysis
techniques may be tested to enhance the feature extraction process.

56



Main Approach Results

6.4.2 Translation System PdM Emulator

The outcomes of the simulations performed with the emulator were also satisfactory, both
in terms of the diagnostics and prognostics. However, interpreting the true meaning of the
obtained results and metrics from a real-world perspective is difficult, as this approach is a
conceptual design with a high level of abstraction, with no equivalent in the literature that
could give a baseline for comparison. Nonetheless, the proposed emulation methodology
can be improved in several ways.

First, if no technical restrictions are present, upgrading the data acquisition mechanisms
to increase the sampling frequency would allow the data from the crane to be directly used
for PdM, for example, using the already present motor current signal to diagnose faults
in the electric motor, although if no fault labelling is provided the solutions are limited
to unsupervised approaches. Also, if vibration sensors were to be installed at the crane’s
translation system to acquire rolling bearing vibration data, it would be possible to develop
DL approaches for fault detection when enough data was collected. If the data acquisition
mechanism currently installed at the crane could not be upgraded, providing technical
specifications about the translation system components could allow the development of
physical-based digital twin models to emulate the system more accurately.

If the methodology used for creating the emulator were to be expanded into a more realistic
approach, improvements should be made into the bearing generation process and prognos-
tics technique. With available bearing specifications, it is possible to create digital twin
models from laboratory-built test rigs [Peng et al., 2022], allowing detailed experimentation
on bearing faults. Regarding the prognostics approach, it can be improved by developing a
method for estimating the real association between the bearing degradation state and the
translation system health condition and RUL. This can be done using the aforementioned
test rig for data acquisition, which could be extended to other system components, and
DL for mapping the input data to the observed health condition, providing a more reliable
and complete PdM solution.

57



This page is intentionally left blank.



Chapter 7

Conclusion

The initial objective of this work was to implement a PdM approach that could be directly
deployed, in real time, to perform the diagnostics and prognostics of the health condition of
a tower crane translation system. As such, two initial approaches were developed. The first,
implemented as a generic approach that could later be adapted to the real-world use case,
was developed using the PRONOSTIA rolling bearing dataset, featuring a LSTM model
that directly mapped the input vibration data to the target RUL values. This approach
came to be published and presented in a conference, but it could not be used for the
crane use case, as the data sampling frequency and lack of labelling made its adaptation
and deployment unfeasible. Next, a unsupervised clustering technique was applied to
the available crane data, as attempt to create what could become a anomaly detection
approach. In fact, a number of operation states were identified, but with the absence
of additional information about the sensor variables and the actual operation states, the
model remained as purely experimental.

As an alternative solution to the works that were limited by the previously mentioned
problems, an approach for rolling bearing diagnostics and crane translation system health
condition prognostics was proposed, resorting to synthetic data generation. The bearing
diagnostics model was first developed and tested with the CWRU dataset. Multiple ex-
periments were designed to find a combination of CNN architecture and hyperparameters
that could match the state-of-the-art performance for the same dataset. This process was
done using Bayesian Optimization, which provided an automatic and efficient solution to
the problem of manually tuning DL models. Another effort that can be valued in this
work, in terms of comparison between models tested with the CWRU dataset, is the em-
phasis on better validation procedures, such as Cross-validation, considering that most
approaches do not give attention to this step, possibly compromising the validity of the
obtained results.

After achieving nearly state-of-the-art accuracy with the optimized CNN model, the model
was integrated with a crane translation system digital model to diagnose synthetic rolling
bearing vibration data. The translation system digital model uses real data from a crane
to synchronize the bearing vibration data generation, which is based on the PRONOSTIA
bearing dataset, from where frequency components of distinct degradation states were
extracted and used for generating the synthetic signal.

By integrating the designed CNN model and the vibration data generation module, the
crane translation system PDM emulator was created. The CNN model classifies the vi-
bration signal into predefined degradation states, followed by a prognostics model which
calculates the impact of the degradation on the system RUL. Four simulation scenarios
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were set to test the emulator, from which satisfactory results were obtained, both in terms
of bearing fault diagnostics and system health condition prognostics.

This work has contributed to the KYKLOS 4.0 project, as well as to Circular Manufactur-
ing, by providing multiple PdM approaches, resources, and tools, such as the diagnostics
CNN model, which achieved competitive results when compared to the state of the art.
All of the presented methodologies can be reused in future works, in the context of the
KYKLOS 4.0 project and PdM in general.

Several suggestions were made for the future. Concerning the bearing diagnostics model
tested with the CWRU benchmark dataset, combining the CNN with other DL models,
such as the auto-encoder, to create hybrid models, can further improve the feature ex-
traction and overall diagnostics capabilities. Designing more extensive architecture and
hyperparameter optimization experiments may also be advantageous, as the experiments
in this work were constrained by the available computational resources.

Regarding the proposed crane translation system PdM approach, the high abstraction
level on which the model was based limits the direct application of such approach to the
real-world use case. Possible solutions for improving the model’s realism and precision
include upgrading the data acquisition mechanisms to increase the sampling frequency, so
that the sensor data could be directly used for estimating the system’s health condition,
and not only to define if the system is moving or idle. With additional real sensors, for
collecting bearing vibration data, a more accurate fault diagnostics could be performed.
As an alternative to changes in the data acquisition, a laboratory-built test rig with similar
specifications to the real system was pointed. This last suggestion could provide a way to
better emulate the faults in the system components, not only in the rolling bearing, and
supplying data that could be used to train ML and DL models with direct applicability to
the real system.
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