

João Rafael Santos Calhau

MULTIPLAYER MODULE FOR SCIENCE4PANDEMICS’
GAME

Dissertation in the context of the Master in Informatics Engineering, specialization in
Intelligent Systems, advised by Professor Licínio Gomes Roque and presented to the
Department of Informatics Engineering of the Faculty of Sciences and Technology of

the
University of Coimbra.

September of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

João Rafael Santos Calhau

Multiplayer Module for
Science4Pandemics’ Game

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, advised by Prof. Licínio Gomes Roque and

presented to the Department of Informatics Engineering of the Faculty of
Sciences and Technology of the University of Coimbra.

September 2023

iii

Chapter 0

Acknowledgements

I would like to express my gratitude to professor Licínio Roque for the opportu-
nity to participate in the Science4Pandemics project through this internship and
for his availability and guidance from the beginning of the internship.

I would also like to extend my thanks to my family and my girlfriend for their
unwavering support. Their support was crucial to conclude this journey that
began in 2018, with my admission to the Informatics Engineering course.

This dissertation was partially conducted within the scope of the Science4Pandemics
Project, an EITHealth initiative, and funded by FCT - Foundation for Science
and Technology, I.P./MCTES through national funds (PIDDAC), as part of the re-
search and development unit CISUC - UIDB /00326/2020 or project code UIDP/
00326/2020.

iv

Abstract

This thesis describes the implementation of a stateless backend server for Sci-
ence4Pandemics’ multiplayer game. It starts by investigating the architectures of
Massive Multiplayer Online Games and expands on how they can be addressed.
The primary purpose is to examine the two distinct architectures that have dom-
inated the industry over the years, client-server and peer-to-peer and present a
new alternative after determining how they relate to one another. The major-
ity of Massive Multiplayer Online Games (MMOGs) developers have up to now
implemented their games using client-server architectures. However, with the
emergence of blockchain technologies, there has been an increase in peer-to-peer
architectures. This thesis will examine the feasibility of using these peer-to-peer
technologies to operate MMOGs. This is done by first looking at the existing
client server architectures’ characteristics and advantages and disadvantages. Af-
ter that, peer-to-peer architectures will be reviewed, and their effects on MMOGs
will be considered. Based on this, the two architectures will be compared, and a
new solution will be explained. The solution encompasses using Erlang’s power-
ful lightweight processing to distribute the load of the server’s processing logic
through different isolated processes. This combined with an HTTP server to dis-
tribute HTTP requests through these processes and a MQTT Broker to distribute
messages allows the backend server to use a specified port to listen to requests
and another to send the responses, and because MQTT uses a publish subscribe
model, meaning it has one input channel and as many output channels as the
number of clients subscribed to it, the bandwidth of the MQTT port is not over-
loaded. This allows the backend server to run with minimal maintenance and
because of the messages being distributed, allows the game developers to keep
their previously developed code intact, making it an economic and fast solution
for transforming a single-player game to multi-player.

v

Abstract

Esta tese descreve a implementação de um servidor de backend sem estado para
o jogo multijogador do Science4Pandemics. Começa por investigar as arquite-
turas de Jogos Online Massivamente Multijogador (MMOGs) e expande sobre
como podem ser abordadas. O objetivo principal é examinar as duas arquiteturas
distintas que dominaram a indústria ao longo dos anos, cliente-servidor e peer-
to-peer, e apresentar uma nova alternativa após determinar como se relacionam
entre si. Até agora, a maioria dos desenvolvedores de MMOGs implementou os
seus jogos usando arquiteturas cliente-servidor. No entanto, com o surgimento
das tecnologias de blockchain, tem havido um aumento nas arquiteturas peer-to-
peer. Esta tese irá examinar a viabilidade de usar essas tecnologias peer-to-peer
para operar MMOGs. Isto é feito primeiro ao olhar para as características e van-
tagens e desvantagens das arquiteturas cliente-servidor existentes. Em seguida,
serão revistas as arquiteturas peer-to-peer e serão considerados os seus efeitos nos
MMOGs. Com base nisso, as duas arquiteturas serão comparadas, e uma nova
solução será explicada. A solução envolve o uso do poderoso processamento leve
do Erlang para distribuir a carga da lógica de processamento do servidor através
de diferentes processos isolados. Isto, combinado com um servidor HTTP para
distribuir pedidos HTTP através destes processos e um Broker MQTT para dis-
tribuir mensagens, permite que o servidor de backend utilize uma porta especí-
fica para ouvir pedidos e outra para enviar as respostas, e como o MQTT utiliza
um modelo de publicação e subscrição, o que significa que tem um canal de en-
trada e tantos canais de saída quantos os clientes inscritos nele, a largura de banda
da porta MQTT não é sobrecarregada. Isto permite que o servidor de backend
funcione com uma manutenção mínima e, devido à distribuição de mensagens,
permite que os desenvolvedores de jogos mantenham o seu código previamente
desenvolvido intacto, tornando-o uma solução económica e rápida para transfor-
mar um jogo single-player num jogo multi-player.

vii

Contents

1 Introduction 1
1.1 Context . 1
1.2 The Problem . 2
1.3 Goals . 2
1.4 Document Structure . 2

2 State of the Art 3
2.1 Massive Multiplayer Games Background 3
2.2 Literature Review . 4

2.2.1 Client Server . 4
2.2.2 Peer to Peer . 4
2.2.3 Client Server Architecture . 5
2.2.4 Techniques to Distribute Load 9
2.2.5 Peer-to-Peer Architecture . 12
2.2.6 Issues in current Peer-to-Peer 14
2.2.7 Benefits and Downsides of P2P 18
2.2.8 Client Server versus Peer-to-Peer 20

3 Objectives and Methodology 23
3.1 Science4Pandemics Context . 23
3.2 Objectives . 28
3.3 Methodology . 28
3.4 Requirements . 30
3.5 Non-Functional Requirements . 31
3.6 Risk Management . 32
3.7 Work Plan . 34

4 Design Proposal 35
4.1 Quality Attributes . 35

4.1.1 Scalability . 35
4.1.2 Reusability . 36
4.1.3 Reliability . 36

4.2 Architecture . 36
4.2.1 Level 1 - Context Diagram . 37
4.2.2 Level 2 - Container Diagram 38
4.2.3 Level 3 - Component Diagram 38
4.2.4 Publish Subscribe model . 40
4.2.5 MQTT . 40

4.3 Proposed Solution . 42

ix

Chapter 0

4.3.1 Erlang . 42
4.3.2 Advantages of Erlang . 43

4.4 Architecture Summary . 44

5 Implementation 47
5.1 Erlang Multiplayer Server . 48

5.1.1 Creating and joining a Lobby Server 50
5.1.2 Processing Player Actions . 52
5.1.3 Action Logging and Mnesia 53
5.1.4 Player States . 55
5.1.5 Fault Tolerance . 56
5.1.6 HTTPS . 56
5.1.7 Load distribuiton . 56

5.2 Publish-Subscribe Channels . 57

6 Evaluation of the Proposed solution 59
6.1 Scalability . 59
6.2 Reusability . 60

7 Conclusion 63
7.1 Contributions and Findings . 63
7.2 Learning Outcomes . 63
7.3 Implementation and Goals . 64
7.4 Future Works . 64

x

Acronyms

CCU Concurrent Users.

DSS Decision Support Systems.

LDAP Lightweight Directory Access Protocol.

MMO Massive Multiplayer Online.

MMOGs Massive Multiplayer Online Games.

MQTT Message Queuing Telemetry Transport.

OLTP Online Transaction processing.

P2P Peer-to-Peer.

xi

List of Figures

2.1 Two Tier Architecture . 5
2.2 Three Tier Architecture . 6
2.3 Four Tier Architecture . 7
2.4 Sharding Example . 9
2.5 Zoning Example[Dhib et al., 2019] 10
2.6 Cloning Example . 11
2.7 Peer-to-Peer Example . 13
2.8 Bucket Synchronization [Moon et al., 2023] 15

3.1 Risk Exposure Matrix . 33
3.2 Work Plan . 34

4.1 System Context Diagram . 37
4.2 Single player Action Logic . 37
4.3 Multiplayer Action Logic . 38
4.4 Container Diagram . 38
4.5 Lobby Server Component Diagram 39
4.6 Age Of Empires Lobby [Studios] . 40
4.7 Publish Subscribe Example . 41
4.8 MQTT Publish/Subscribe Architecture [Dr Andy Stanford] 41
4.9 Supervisors in Erlang . 44
4.10 S4P architecture overview . 44

5.1 Lobby Server Architecture . 49
5.2 Create and Joining a game interaction diagram 51
5.3 Heartbeat Monitor Process Logic . 52
5.4 Action Broadcasting Logic . 54

xiii

List of Tables

3.1 Achievement List . 29

xv

Chapter 1

Introduction

Massive Multiplayer Online Games, commonly referred to as MMOGs. They are
complex video games, usually with 3D graphics and an extensive virtual world
where players can engage in a variety of interactions.

Massive Multiplayer Online Games used to be a hot topic of study for scientists.
Numerous articles have been written concerning problems with these games such
as [Jon, 2010].

The social features of these games have received much attention from these re-
searches [Jon, 2010]. Players frequently devoted a significant amount of time to
them and to forming communities and relationships with other players. It has
long been a popular topic in social studies to discuss why these players spend so
much time playing these games, how these communities function, and the effects
of all of this in the real world.

This document explores the different architectures used in today’s Massive Mul-
tiplayer Online (MMO) and analyzes and compares these in order to determine
which is most suited for them. Because the primary purpose of the thesis is the
implementation of a backend server for Science4Pandemics and considering the
game has been in development for a year and only has a single player version,
the main focus of this thesis is:

Design and development of an efficient and scalable backend server
to convert the Science4Pandemics project from singleplayer to multi-
player.

1.1 Context

For this thesis, the author was asked to create a stateless backend server using Er-
lang, which is meant to host the multiplayer version of Science4Pandemics’ game
and to extract data from user actions for later analysis. The server must hold
multiple connections without failing, meaning scalability is the priority. Quoting
the game’s design document the game concept would be an educational game

1

Chapter 1

focused on sensemaking of everyday tasks, resource management and decision
making during an epidemic or pandemic event.
A game for citizen science, through a digital experiential learning approach. It
presents a progression from singleplayer to multiplayer simulation game directed
at small teams (typically 3 or 4 people, to achieve social involvement while reduc-
ing constraints). Players will first gain understanding of basic concepts of infec-
tious diseases (singleplayer learning stage) and then will face new challenges to
consolidate knowledge, and understand the socio-technical and human interde-
pendence factors in epidemics/pandemics (multiplayer challenge stage).

1.2 The Problem

The main problem this thesis aims to solve is implementing a scalable and sus-
tainable backend server to convert Science4Pandemic’s game from singleplayer
to multiplayer. The solution aims to be efficient in terms of development costs
and it should retain good performance in an economic infrastructure.

1.3 Goals

To achieve a scalable and sustainable backend server which can be used to con-
vert Science4Pandemic’s game from singleplayer to multiplayer with reduced de-
velopment and maintenance costs, the work has been split into three different
goals:

• Development of the backend server for Science4Pandemics using erlang
and MQTT.

• Generalization of the solution(e.g. if another game similar to S4play is being
build by the University, the backend should also be portable or reusable by
the developers).

• Analysis of the scalability of the solution.

1.4 Document Structure

An introduction to massively multiplayer online games will be provided in Chap-
ter 2, where The definition of MMO will be discussed, along with the state of
research in this area. The two MMOG topologies that could be used and their
characteristics will be introduced: client-server and peer-to-peer. Chapter 3 will
cover the main objective of this thesis and Chapter 4 will describe the steps taken
to reach that objective. In Chapter 5, the implementation will be discussed and
on Chapter 6 an evaluation of this implementation is presented.

2

Chapter 2

State of the Art

2.1 Massive Multiplayer Games Background

Massive Multiplayer Online Games are, as the name suggests, games that are
played by a massive amount of players simultaneously online. Two key features
distinguish these games.

• A single gaming world’s capacity to accommodate several players at once,
typically ranges from 1,000 to 10,000.

• Have an ongoing gaming environment. This implies that the game world is
continuously updated and evolved and cannot be reset, paused or halted.
Even when some of the players are not present, it will still go on. Further-
more, every choice we make towards characters or objects has a definitive
consequence and cannot be undone.

MMOGs originate from minimal text-based games called MUDs (Multi-User Dun-
geons). The first MUDs appeared in the late 1970s on university networks and
later bulletin boards. These were fundamental text-based games because band-
width and computer capacity were highly constrained. As computer technology
advanced throughout the 1980s and 1990s, MMOGs transformed into graphical
games with an expanding range of options. Modern MMOGs provide the user
with intricate 3D graphics and an extensive virtual world. Although interaction
with other players is a massive part of these games, they do not revolve around
it solely; computer-controlled characters and other computer-controlled objects
often play a significant role, which can be observed in games like World of War-
craft[Games, b] and newer titles like New World[Games, a] or Lost Ark[Smilegate].

The first MUDs were fundamental client-server applications on university main-
frames and played using telnet or vt100. The load placed on the servers which
run the games rise along with their complexity and potential. Even with the rapid
development of faster and more powerful computers, the resources required to
run these games are too much to be handled by a single machine. Like early
MUDs, modern MMOGs still use client-server topologies, but their servers are
large clusters of 10 to 100 state-of-the-art machines.

3

Chapter 2

2.2 Literature Review

MMOGs are a popular study topic because of their complexity and resource re-
quirements. It takes much work to optimise them and create better and more ef-
fective ways to split the load among several servers so they can maximise player
engagement and enjoyment with the least amount of resources required. New
and better operational solutions must be devised as such games continue to draw
an increasing number of players, and the expectations for the quality, graphics,
and level of interaction they offer continue to rise. Much research has therefore
been focused on how to improve the architectures’ effectiveness and the load they
can handle.

The research in this field can be divided into two primary fields. The first is
research being conducted to enhance the present client-server architecture cur-
rently employed in most games. This may take the shape of a distributed server
architecture that is more effective inter-part communication. The second focuses
on creating a peer-to-peer architecture for these games, eliminating the need for
a heavy and complex server.

2.2.1 Client Server

Most of the MMOGs developed and brought to the market so far use the classic
client-server architecture. There are specific issues with this architecture. In this
architecture, the server is responsible for handling the entire load of managing the
virtual environment. No single machine can handle this, so complex architectures
must be developed to distribute the load over different servers. Therefore, the re-
search in this area is primarily focused on how to distribute the various server
functionality over various physical machines efficiently, for example: cloning the
virtual world, dividing it into zones, and distributing the various server function-
alities (database, login handling, etc.) on different machines. Some examples of
previous research are architectures where the world is divided into zones that are
dynamically assigned to different servers based on the load they experience [Van
Den Bossche et al., 2006], using generic middleware for multiple MMOG projects
[Hsiao and Yuan, 2005], [Caltagirone et al., 2002] presented an architecture for the
inner workings of both server and client, [Assiotis and Tzanov, 2006] describes
an algorithm for handling the interactions between different zones of the virtual
world.

2.2.2 Peer to Peer

Developing a peer-to-peer architecture for an MMOG is a hot topic in the scien-
tific world. Numerous articles have been written proposing architectures without
a central server where clients communicate with each other directly and are each
in charge of a small amount of the game state. The expense of maintaining a game
is drastically decreased by removing the requirement for a central server. How-
ever, many issues arise when designing a peer-to-peer architecture for MMOGs.

4

State of the Art

To name a few issues, the distribution of updates and patches will be more diffi-
cult since there is not a centralized version of the game which forces every player
to update their games making it also more challenging for businesses to use a
peer-to-peer game for commercial purposes, it will be harder to stop cheating in
the game since there is no governing authority, and the client bandwidth usage
will be substantially higher than with the client-server design since each player
needs to send and receive updates from every other player. Scientists believe
they can counter all these arguments, and articles have been published present-
ing architectures or parts of architectures that can run peer-to-peer style MMOGs
which led to the use of blockchain technologies to create a peer-to-peer game
Nine Chronicles [Planetarium].

Research in this area is, for example, a distributed peer-to-peer architecture that
guarantees a low latency for users and prevents cheating [GauthierDickey et al.,
2004a], a system that can be used to turn classic client server-based games into
peer-to-peer based ones [Kaneda et al., 2005] and a publisher/subscriber model
is described for developing a distributed MMOG architecture [Fiedler et al., 2002].

2.2.3 Client Server Architecture

This chapter will present a model of the typical client-server architecture used
by many of the MMOGs currently available on the market. There will also be a
discussion of the advantages and disadvantages of different architectures.

Generic Client Server Architecture

Client-server architectures are not something that has been developed for Mas-
sive Multiplayer Games; they have been around for many years and are used in
a wide variety of applications. They started to appear in the 1980s when people
became aware of the shortcomings of the then-dominant mainframe/terminal de-
signs. In the original two-tier client-server designs, the client computer hosts a
program that communicates with the server(usually a database management sys-
tem). The presentation logic (user interface), the business rules, and the database
access were all contained in the client application, also referred to as a fat client.
Even when the user interface was unaltered, the client application had to be up-
dated, tested and redistributed whenever the business rules were adjusted.

Figure 2.1: Two Tier Architecture

5

Chapter 2

Because of the need to alter the client application every time the business rules are
altered, the presentation logic and business rules started to separate, leading to
the rise of the Three Tier architecture having that separation as its principle. Due

Figure 2.2: Three Tier Architecture

to their lack of business logic, the clients in these multi-tier systems are frequently
referred to as thin. The client only communicates with the server to send and
receive requests, and it graphically displays information to the user.

One example of this architecture would be the world wide web, in which web
pages are stored on servers, and the client only requests and presents them graph-
ically. This is currently the most used architecture throughout various systems,
MMO included.

Client Server in MMOs

MMO developers have employed client-server architectures almost exclusively
since the creation of the first MMO. The server manages all the rules and the
status of the virtual world, and each player connects to it via the client application
on their PC. One of the core characteristics of this architecture is that no single
machine can handle the volume of clients that will connect to the server and the
load they produce. Therefore, a distributed server design will be necessary to
distribute the load among several machines.

Using client-server architectures in MMOGs and many other systems has led to
much research in the field and the development of an abundance of informa-
tion regarding how to use them most effectively. This has produced the standard
multi-tier architecture in MMOGs nowadays, a four-tier server architecture con-
sisting of a client layer, a proxy layer, an application/game layer and a database
layer[Nawaz and Xu, 2014].

Client Layer

A single client represents each player in a MMO. Each participant establishes a
connection to the server through a client application on their PC. The client dis-
plays the graphics and user interface to the user, notifies the server of all actions

6

State of the Art

Figure 2.3: Four Tier Architecture

the user wishes to take, and displays any changes to the game environment that
it gets from the server. The clients are viewed as thin since they have no control
over the business logic of the game world. They only request and receive updates
for the virtual world from the server and display them to the user in an appealing
graphical manner. Clients are not, however, simple apps as a result. The most re-
cent MMOGs frequently use sophisticated 3D graphic engines and sophisticated
strategies to smooth out the game with little client-server interaction. Because
both the server’s and the client’s bandwidth is constrained, interactions between
the server and the client are kept to a minimum. The client will have to use com-
plex techniques like motion prediction to present a smooth playing experience
even though it receives the world updates only at intervals.

Proxy Layer

The proxy layer serves as a link between the client layer and the game layer. It
manages all client connections and ensures all packets are delivered to the proper
game layer servers. Additionally, a firewall can be used to address security con-
cerns and ensure that only clients with access to the game can play the game
(e.g. on a subscription model game like World of Warcraft, a player who does not
renew his subscription loses access to his characters until the subscription gets
renewed)

7

Chapter 2

Game Layer

This layer is the game’s central component because it contains, manages, and
governs the virtual world. requests sent from clients are directed by the proxy
layer to the appropriate game layer node. These commands are processed by the
game servers, who check if they are valid, compute the changes to the virtual en-
vironment, update the game state, and send the updates to all the clients they will
affect. The main task of this layer is to keep track of the states of all players and
other world objects. All players’ positions in the game’s universe are managed,
and all dynamic elements—including monsters, non-player characters, treasures,
and the timer—are also under its control.

The complexity and challenge of MMOGs software architectures lies for a signif-
icant part in the efficient distribution of the game server functions over multiple
machines, which will be discussed in the next section.

Database Layer

The game’s database contains data elements for each action a player takes and
every item, object, and PC and NPC agent/actor. However, even the most giant
virtual worlds pale in comparison to the data warehouses used by thousands of
companies worldwide. Additionally, the game databases’ schemas and structures
are simpler since most games specifically tailor their databases to have as few
transactions as possible. As a result, they can accelerate transaction processing by
using massive memory systems(in-memory databases), parallel databases, and
other technologies.

It is worth noting that the transaction load that MMO’s generate is very specific.
The vast majority comprises colossal amounts(and more than 90%) of minimal
reads and updates produced by players moving around the world and interact-
ing with objects. They will not require extensive joins on star schemas. The De-
cision Support Systems (DSS) or Online Transaction processing (OLTP) systems
that many organisations utilise are unlike games. The workload in the game is
considerably more akin to Lightweight Directory Access Protocol (LDAP) or tele-
phony directory lookup: several little operations across straightforward tables.

The database layer configuration for games is quite simple. This is because rela-
tional database technology has been developed and improved for many years for
which game developers can create databases which are tailored to their game’s
needs. The capacity of contemporary relational databases is astounding, and they
operate well on systems with multiple CPUs. The game database should ideally
be kept entirely in memory. In this case, performance would be excellent, and
transaction completion durations would be comparable to a function call. How-
ever, doing so would require a system with many terabytes of RAM. Although
new database systems are being created, none of the MMO’s now available em-
ploy them due to their high cost. These systems could theoretically allow for
the running of the complete database in memory. However, with the increase in
the size of these worlds, developers have not made these database systems their
priority.

8

State of the Art

2.2.4 Techniques to Distribute Load

Although the various server layers can easily be spread across several servers,
each layer will still need more resources than a single computer can provide.
Since the proxy and database layers have been utilised for many years in many
applications, there is abundant information about how to configure them effec-
tively.

Sharding

Figure 2.4: Sharding Example

The first technique for distributing server resources across several machines is
sharding. Apart from a few exceptions, Massive Multiplayer Games use this in
some form. Sharding is the process of running various game instances. There
are several players in each copy who can communicate with one another but not
with those on the other shards. These copies are referred to by various com-
panies by different names, such as worlds, realms, or shards, but they all refer
to the same thing. Each copy of the game may support a maximum number of
players, and each copy runs on a distinct server (-cluster). Shards are added as
the player count rises and removed as it falls. Reducing the number of players
per shard helps reduce server strain. Therefore it makes the game very scalable
if it has been designed to be playable using separate rounds, zones or sectors.
Because MMOGs strive to be worldwide applications, they will have clients con-
nect to their servers worldwide. This raises the issue of the speed of copper’s
electrons and the limiting speed of light. There will always be regions with sub-
stantial latency while connecting to a server running on a single location, which
can seriously impair playability for those customers. In order to prevent this, it
is necessary to run multiple instances of the game geographically distributed, en-
suring that there is always a site to which anyone can connect with a adequate
latency.

Sharding does, however, have the drawback of making the game feel smaller.
The players on the various shards are unable to communicate with one another.
Therefore, the aim of the massively multiplayer game is defeated if there are

9

Chapter 2

too few participants per shard. Although sharding is commonly employed, each
shard still has a prominent enough number of players that the load will be insuf-
ficient for a single computer, necessitating the adoption of additional strategies
in addition to sharding to disperse the load throughout a cluster of servers.

Zoning

Figure 2.5: Zoning Example[Dhib et al., 2019]

Zoning is the process of creating distinct zones within the game world, each of
which is managed by an individual server. In the game world, the zones are
frequently divided by geographic boundaries and each zone server manages the
activities and upholds the conditions unique to that zone meaning it is unaware
of the of the state of the virtual world outside that zone.

The zones can be thought of as several areas of a world where the players are
allowed to move around in. The borders in modern MMOGs are frequently in-
visible to the players. A loading screen appears when a player crosses the border
between zones A and B, and they cannot see or interact with one another while
doing so. However, it is technically feasible to make the players pratically un-
aware of the bounds. [Assiotis and Tzanov, 2006] outlines a method to make the
player’s use of zones fully transparent.As a result, it becomes very difficult to
synchronise the various zones across the various servers (players must be able
to view and communicate across border zones). Therefore, there is a significant

10

State of the Art

amount of overhead since all activities occurring in the border zone must be con-
stantly updated on the various zone servers.

Almost all of the MMOGs available today use zones in some capacity. They often
use a restricted number of zones with fixed, opaque borders along virtual world
borders, such as mountains or water.

It is crucial to predict the load each zone will face while designing the game be-
cause zone borders are frequently static in the game world and cannot be changed.
When the predictions don’t match reality, genuine problems with certain zones
being overwhelmed and others barely being used at all will happen. To address
this, a system using micro-zones that are dynamically dispersed over a predeter-
mined number of servers based on the demand they experience is suggested in
[Van Den Bossche et al., 2006]. However, these zones cannot be too small. Zone
transfers(player moves from one zone to another) increase as zones get smaller
and these transfers put extra strain on the server since each zone handler must
send the player’s whole profile to the other meaning the overhead can quickly
outweigh the initial benefit of using them as the zones become narrower and
there are more transfers.

Cloning

Figure 2.6: Cloning Example

Cloning is the process of simultaneously operating two identical copies of the
game on different servers synchronized with one another, giving the user the
impression that they are in a single virtual environment.

Cloning allows for a single virtual world to be maintained while reducing the

11

Chapter 2

workload on each server. The drawback is that constant synchronization of the
game state between the two servers will significantly increase traffic and CPU
burden.

[Cronin et al., 2001] claims to have designed a more efficient system than any
other using the cloning technique.

Instancing

Instancing is a combination of zoning and sharding. It implies that different in-
stances of the same zone are possible. An instance is a replica of that particular
zone in which only one player, or a small group of players, can communicate
with the virtual world and other players within that zone. However, players can-
not communicate with each other in the same zone but in a separate instance of
that zone. Similar to how shards work, separate versions of the game are made
that cannot communicate with one another. Players do not put much strain on
the servers because there are only a few people per instance. Therefore multi-
ple instances can be assigned to one zone. The system is very scalable because
instances may be dynamically assigned to different servers based on load.

Because you can only interact with a small number of people inside an instance
with this method, some of the immersion of being in a massive world of a MMOG
is lost. However, it is possible to interact with everyone in the virtual world
(out of the instanced zone) as soon as you exit the instanced zone, so an instance
effectively operates as a limited or local gameplay context, enabling scalability
through multiple parallel contexts. In most games, the virtual world is a single
copy where everyone lives, with the exception of essential locations like dun-
geons. Instancing is also very attractive for playability reasons because a lot of
different players can experience the same content at the same time.

2.2.5 Peer-to-Peer Architecture

This section will present a model of the typical peer-to-peer architecture used
by many of the MMOGs currently available on the market. There will also be a
discussion of the advantages and disadvantages of different architectures.

Generic Peer-to-Peer Architecture

Peer-to-peer network topologies are utilised in a wide range of applications and
are growing in popularity. Only peer nodes with similar responsibilities and
capabilities make up peer-to-peer architectures. Traditional client-server archi-
tectures only allow communication from client to server and vice versa since
the server controls most resources, such as computing power and storage space.
Clients never interact directly with one another or perform any business logic cal-
culations. In P2P architectures with no centralized server, all resources are located
in the peer nodes, and communications are direct between peers. Peer-to-peer ar-

12

State of the Art

Figure 2.7: Peer-to-Peer Example

chitectures are utilised in a wide variety of contexts and formats. Peer-to-peer
file-sharing technologies have grown in popularity since 2001 with the creation
of torrent files. This technology allowed users to download files from other users
directly. However, because torrent files frequently still need a central server like
Piratebay or YTS to give an index for the available files, only the file sharing can
be considered peer-to-peer. The system uses a more hybrid architecture.

Peer-to-peer architectures have several benefits. The entire burden on the net-
work is distributed across the nodes due to sharing all resources, including net-
work, bandwidth, storage, and processing power. The network’s capacity will
also expand due to the additional resources that new nodes provide, in addition
to the load they add to the system. Peer-to-peer networks are very scalable as a
result.

In client-server designs, since the server is the only component that can fail, the
network as a whole also fails. Peer-to-peer networks can be configured so that
even if one node fails, the rest keeps running normally, making them more robust
than client-server.

Peer-to-Peer in MMOs

Much research has been done on using peer-to-peer style architectures and their
implementation in MMOGs [Rutvji Joshi]. However, this has not yet been imple-
mented in any significant MMOG with a few exceptions, such as Nine Chroni-
cles[Planetarium]. Multiplayer games like MiMaze [Baughman and Levine, 2001]
and Age of Empires are based on distributed peer-to-peer infrastructures. How-
ever, with only eight players able to play simultaneously, Age of Empires cannot
be referred to as a Massive Multiplayer Game, and MiMaze is merely a research
project.

Because the usage of peer-to-peer architectures in multiplayer games is an ongo-
ing research phenomenon that has yet to reach the mainstream consumer market,
there is no single dominant best practice design. Numerous potential architec-
tural designs have been put forth by scholars in articles. However, they all have

13

Chapter 2

different implementations. The majority of these designs continue to use central
servers to conduct the necessary account and other administrative tasks and to
index the peers currently playing the game at any given time. The peers, how-
ever, are responsible for doing all calculations related to the game’s rules and
preserving its game state.

The benefit of client-server designs is that a single authority controls all simu-
lation aspects, including ordering events, resolving conflicts, and acting as the
central store for data. Peer-to-peer designs lack this centralised authority, mak-
ing presenting all users with a uniform virtual world far more challenging. Since
the game state will be shared across all the peers, a successful approach must
be devised for allocating various game world components to various peers. Ad-
ditionally, all other peers on the network must be able to access and maintain
consistency with these game world elements. This means that the game state
must be the same across all the peers in a specific zone, while in hybrid architec-
tures there’s only one peer in charge of preserving the game state. Peers cannot
be trusted since they might try to cheat to get an advantage in the game or be-
cause they could crash at any time, losing the state of the game for which they
were responsible.

2.2.6 Issues in current Peer-to-Peer

Consistency and Synchronization

The game world must be uniform for all players to allow cooperative play and
interaction. For instance, if player A opens a chest and removes its contents,
player B, arriving at the location later, must find the chest empty. This particular
game state is computed and kept by the server in client-server architectures. The
benefit of having a single server to manage the game state is lost when adopting a
peer-to-peer architecture; instead, each peer computes its local view of the game
state using data from the other peers. Because network delays are different for
all peers, some sort of synchronization protocol will have to be used to provide a
game state as timely and consistent as possible for all peers.

In order to show the viability of their proposed protocol, Diot and Gautier cre-
ated the game MiMaze [Laurent Gautier]. Their method, bucket synchronization,
splits the game time into buckets so that all peers will process actions issued si-
multaneously. The synchronization mechanism ensures that any actions taken to
assess the game’s overall status at time t were issued near to t or within the same
assessment period. For this reason, a bucket is connected to each evaluation pe-
riod, and when it is time to compute this bucket, data is received the game will
use that to compute the game state. In image 2.8, the action issued by the local
peer at t0 would be processed significantly earlier than that issued by a remote
peer at t1 (but received at t2), even though both actions were issued simultane-
ously. By placing actions in buckets to be handled simultaneously, bucket syn-
chronisation delays the completion of the actions. The action issued at time t0 in
the example above is combined with the action issued at time t1 in bucket d, and
both will be processed simultaneously at time td. This synchronisation should

14

State of the Art

Figure 2.8: Bucket Synchronization [Moon et al., 2023]

cause all peers to show the same game state simultaneously. The receiver calcu-
lates the synchronisation delay to decide which bucket the incoming data should
be stored in. The time it takes for participants to get information is measured
using a global clock. However, the playability would be significantly hampered
if the synchronisation delay grows too large, so a maximum delay limit must
be established, along with a method to handle actions whose transmission delay
exceeds the maximum delay.

Bucket synchronisation does not address the issue of peer cheating. To address
this, [Baughman and Levine, 2001] created the lockstep protocol. Lockstep uses
rounds for timing, which are divided into two steps:

• Dependably deliver a cryptographic hash of each peer’s activity

• Have all peers send the plain-text version of that action.

This demands the peers to make their move while keeping it a secret, preventing
anyone from knowing someone else’s actions in advance. The effective latency
is three times that of the slowest link due to the additional interactions occur-
ring in lockstep. To improve this, the Sliding Pipeline protocol was developed by
[Cronin et al., 2003], which adds an adaptive pipeline that allows the player to
send out several actions in advance without waiting for acknowledgement pack-
ets from the other peers.

Game State synchronization

Four main features are commonly present in the game world of MMOGs: static
terrain, uncontrollable objects, player-controlled characters, and non-playable char-
acters (NPCs). The scenery comprises all the static objects and terrain that will
not change during the game. It usually belongs to the client programme and does
not contribute to the game state that needs to be shared and saved among peers
because it will always be the same for everyone. The continuously changing dy-
namic game state comprises uncontrollable objects, player-controlled characters,

15

Chapter 2

and computer-controlled characters. All players must experience the same game
state. However, they are not required to constantly be aware of the status of ev-
ery item in the game environment since it would consume far too much memory
space, computing power and bandwidth to have every player constantly receiv-
ing updates on the game state and keeping track of it as a whole. A better method
is to spread the state of all the game objects across the many peers so that each
item has a peer in charge of maintaining its state. Afterwards, peers who want to
engage with that object must ask the peer in charge of it for its current status and
submit changes to it.

All the components of the game world will need to be efficiently distributed be-
tween the peers using some form of technique to make this happen. [Knutsson
et al., 2004] described an architecture in which the game world is divided into
smaller regions. Each peer and each area are then given an ID, and the peer with
the closest ID match is designated as the region’s coordinator. Each object in that
zone is under the coordination of the that coordinating peer. One peer carrying
the weight of all the objects in an area can be overburdened; to avoid this, objects
can be assigned to several peers and given their IDs. The coordinator of a region
is unlikely to be a member of the area due to the random mapping, although this
has numerous advantages. First, by separating the objects from the players who
access them, it lessens the potential for cheating. Second, only when peers join or
leave the game does the coordinator of an area need to change instead of every
time a peer departs the region. Random mapping also increases robustness by
lessening the effect of localised events. For instance, losing the state of the region
does not usually happen when repeated disconnections occur in the same area.
One issue which [Knutsson et al., 2004] did not cover is what if there are not any
or even a minuscule number of peers playing the game? It is conceivable that the
resources needed to support this will be greater than what they have available
when just a decent number of peers are active and they will have many objects
assigned to them. Additionally, there is no saved game state, and all characters
and objects in the game environment may lose their current states when no peers
are present. This means this system is only feasible if a large amount of peers is
guaranteed. These peers, however, can be provided by the developer itself.

Latency

Clients only connect to the server in client-server architectures to send and receive
updates; the server manages the game’s current state. This means that a player
with high latency will transmit and receive updates slowly, which could make
the game less playable. The other players’ ability to send and receive updates
quickly to and from the server does not, however, suffer from this one player’s
high latency. Since the server manages the player’s state and can still change it,
interactions with the player with the high latency will not cause significant issues.
This creates more of a challenge in a peer-to-peer architecture. With synchronisa-
tion methods, as explained in the previous section, the slowest peer controls the
game’s overall pace. The algorithms can be changed to make the slow peers’ con-
sistency a trade-off for the other peers’ ability to play. The issue remains, though,
since interactions with these items and the character they represent will be de-

16

State of the Art

layed for all other peers because these slow peers may be in charge of their states
in the game environment and in the character they represent.

Fault Tolerance

Unfortunately, peers do not always quit the game in a way that can be controlled.
Without transferring their responsibilities and game state to the rest of the net-
work, they can crash or disconnect, which may result in losing some game state
components. When a coordinator of a region crashes, for example, the state of
that entire region will be lost in the game state distribution system, as stated in
the Game State section. To avoid this, a backup system must ensure that ev-
ery object’s state is constantly accessible to several peers. [Ahmed and Shirmo-
hammadi, 2010] presents a model that forms several Peer-to-Peer (P2P) overlays,
one for each cluster in each zone and restricts, for example, slowly moving play-
ers to be children of fast-moving payers. This means a leaving player only can
break routing paths within its cluster, keeping other clusters untouched. In other
words, the P2P routing problem faced due to a player disappearing or a change
in characteristics is limited to a cluster. Clustering will therefore help stabilize the
overlay networks used in zonal MMOGs. This approach categorizes players and
creates clusters based on the assumption that the general features or attributes of
the players are invariant, i.e., characteristics are invariable. However, a player’s
attribute might change while the game is running, either temporarily or perma-
nently.

Cheating

Cheating is a fairly common problem that all multiplayer games must address.
A single governing authority can stop players from getting an unfair advantage
over other players in client-server architectures. Peer-to-peer architectures make
this much more difficult.

Three types of cheats were described by [GauthierDickey et al., 2004b]: protocol
level cheats, game level cheats, and application level cheats.

• By altering the protocol, such as by changing the contents of packets, proto-
col level cheats are possible. The most common protocol level cheats are:

Fix-Delay Cheats: Your outgoing packets should have a defined amount
of delay added so that you can respond to other people’s activities more
quickly than they can to yours.

Timestamp Cheat: Send incorrect timestamps on your actions to make them
seem as though they occurred earlier.

Suppressed Update Cheat: To avoid being tracked by others, avoid send-
ing updates about your own behaviour while still receiving updates about
theirs.

Inconsistency Cheat: Send various updates to various players in order to
throw off the game’s world’s synchronization.

17

Chapter 2

Collusion Cheat: Players sharing updates to get information from another
that they shouldn’t have gotten on their own.

These cheats can be prevented by using specific protocols, [GauthierDickey
et al., 2004b] describes a possible protocol, however these protocols add
delays for the users.

• Game level cheating occurs when the game’s rules are broken. For instance,
a player might go a long distance from point A to point B in a shorter
time than he should’ve. Due to the lack of a central authority that con-
trols all actions and has the authority to refuse them if necessary, peer-to-
peer games are particularly susceptible to this. Additionally, since the peers
are in charge of maintaining the objects’ conditions, they are free to change
them in order to gain an advantage. A good example of this would be open-
ing and looting a container, to then proceed to refill it.

A possible solution would be something similar to what [Knutsson et al.,
2004] described, by assigning objects randomly to peers so that peers have
no control over what part of the game state they are responsible for. An-
other possible solution would be to try and replicate the blockchain’s con-
sensus protocols, which implies that all the peers have a replicated state of
the game and could then check if the update was legal or not.

• Application level cheating involves changing the game’s code. For instance,
changing the graphics engine to make walls invisible so that you can quickly
find players and items is a frequent trick. However, when compared to
other systems, peer-to-peer architectures are not more susceptible to this
kind of cheating.

2.2.7 Benefits and Downsides of P2P

In this section the pros and cons regarding Peer-to-Peer architectures will be re-
viewed.

Benefits

• Flexibility and Scalability. Arguably their biggest advantage. The number
of players actively playing the game directly affects the burden on the net-
work and the game. The demand on the network will increase as more play-
ers are actively playing the game. In a peer-to-peer design, the network’s
overall capacity is equal to the sum of all users’ capacities. The network
should theoretically be able to support an endless number of users if the
burden that each new user adds to the system does not exceed the capacity
that he brings. Peers’ bandwidth resources may be exceeded if they must
send updates to an excessive number of other peers.

• Robustness. Peer-to-peer designs can provide a very robust network since
the network can continue to function regularly even if one peer node fails.
The ability to prevent node crashes from having a large influence on the

18

State of the Art

network as a whole is a typical benefit of peer to peer designs, however
this isn’t always true for all of the designs. This implies that the game will
always be accessible for MMOGs.

• Low Costs. Peer to peer designs don’t require significant infrastructure in-
vestments to function. There’s no need for any pricey servers or system
administrators to run the game. For the game developers, the creation and
maintenance processes will essentially be the same as for any single-player
game. Users can simply purchase the game software through customary
routes of distribution, and updates can be made available. There is no re-
quirement for extra network infrastructure.

Downsides

True Peer-to-peer systems have numerous drawbacks for game operation since
there is no central server or authority.

• The lack of a central authority to ensure that the rules of the game are fol-
lowed is one of the main downsides of peer-to-peer architectures. Each peer
in a distributed architecture makes its own decisions, and there is no central
authority to verify the acts’ legality or find potential cheaters. For instance,
players travelling faster than they ought to be able to or obtaining access
to places, things, or abilities that they shouldn’t be able to. Other measures
must be built in peer-to-peer architectures to prevent cheating. Creating
cheat-proof protocols and other systems to check or double check users’ ac-
tions, like software agents, can partially help with this.

• Software complexity. A peer-to-peer based MMOG will have more complex
algorithms, possibly harder to maintain or operate. The number of things
that can go wrong when creating MMOGs, which are already extremely
complicated systems that take years to develop, is substantially increased
by using a peer-to-peer architecture. It’s possible to claim that a large por-
tion of peer-to-peer’s increased complexity results from the fact that it is
still relatively new, hence there aren’t any best practises in place. While this
is undoubtedly true, peer-to-peer designs are fundamentally more difficult
than client-server ones because of all the extra problems they must address,
including game state consistency and cheating.

• No easy identifiable global game state. In peer-to-peer architectures where
the game state is divided among all of the network’s peers, no single en-
tity possesses the entire game state, making it significantly more difficult to
guarantee that all users always have access to the game state. Corruptions
and inconsistencies are can occur when peers are dynamically assigned an
object’s state. For instance, if an error occurs and two peers believe they are
in control of the same object at once and change it in two different ways,
the result is two distinct game states. It will be challenging to merge these
again without some form of arbitrator to determine which object is the real
one.

19

Chapter 2

2.2.8 Client Server versus Peer-to-Peer

A relatively low amount of research is being done into the client-server architec-
tures, which are used by the vast majority of current games, and a relatively high
amount into peer-to-peer architectures, which are used by almost no games. The
first question that arises is whether or not peer-to-peer architectures will become
popular in games and whether or not they will surpass client-server architectures.

Client Server or Peer-to-Peer

Choosing an architecture will be driven not only by technological considerations
but also by economic considerations. A single-player game takes nine to twelve
months to develop and release compared to two to three years for an MMOG
[Hsiao and Yuan, 2005]. Major PC game studios’ MMOG projects can have a
three-year timeline and hundreds of employees working on one game before it is
released. For example, V Rising started development in 2019, was announced in
2021 and was released in early access in 2022. MMOGs are expected to be around
for a very long time, during which time they will continue to be developed by fix-
ing bugs and adding new content. Because creating an MMOG requires a signifi-
cant investment from the development studio, it is logical that the studios would
choose to use existing technologies rather than experiment with new ones.
Some of the concerns that studios face when considering Peer-to-Peer architec-
tures for their games are:

• Software uncertainty/complexity. Since no major peer-to-peer MMOG has
yet been created utilising this architecture, there are no industrially proven
concepts or best practices. This argument only applies to the initial peer-to-
peer MMOGs like [Planetarium], but even as best practises start to emerge,
the inherent complexity of peer-to-peer architectures will remain higher, in-
creasing the game’s development time, cost, and/or bug count.

• Cheating. Cheating affects MMOGs far more than other games since they
are continuous games with persistent states. If somebody cheats in a game
of checkers he will just win that game, but the benefit of the cheat will not
carry over to any of the next games he will play after. When a player in an
MMOG acquires an item through cheating, he keeps it for the duration of
the game. Inherently, cheating is simpler in games with peer-to-peer infras-
tructures. Developers will need to invest a lot of resources in trying to stop
all the new cheats gamers create.

A balance will need to be found between the advantages of not having to set up
and manage a server and its drawbacks (costs, limited scalability, single point of
failure). For most development studios, the advantages of peer-to-peer architec-
tures do not currently outweigh the disadvantages. Client-server architectures
have some drawbacks, notably financial ones. If enough money is invested in it,
it is possible to overcome restricted scalability by having much excess capacity,
and it can lessen the effects of a single point of failure by implementing redun-
dancy and ongoing server monitoring and maintenance. Even with the high costs

20

State of the Art

associated with creating and sustaining MMOGs, it is a very profitable business
to capitalise on popular MMOGs. Due to this, there is little commercial motiva-
tion to move away from the proven client server concept to the risky peer-to-peer
architectures.

It can be observed that the lower the number of players in a game, the more
attractive it is to use peer-to-peer instead of client-server. For example, a peer-
to-peer architecture might be more appealing for indie developers new to multi-
player games. For a non scalable infrastructure, when the number of consumers
is large, the cost of maintaining the server’s infrastructure does not amount to
much, but as the number of players decreases, the cost remains the same, making
it harder and harder to keep the infrastructure online. Additionally, since there
are fewer players, interest management will not be necessary. Synchronisation
will not be as complex because there are fewer players to synchronise with, and
it is less costlier to maintain track of everyone else in the game to spot and stop
cheating. Because of this, Peer-to-peer solutions are becoming more common for
multiplayer games with 16 to 64 players. Nearly all of the advantages of peer-
to-peer architectures (low or no expenses to run a server, high scalability, high
robustness/availability) apply in these games that typically do not carry a game
state over from one session to the next. Conversely, the disadvantages do not
apply as much because these games are relatively simple. Cheating is less of a
problem because it is not carried over from game to game. These games already
use a one-time purchase business model. A few games that became popular over
the last year which prove this are, for example, Stardew Valley, Terraria, and Core
Keeper.

It remains to be seen if this progress will apply to massively multiplayer online
games. There will be a massive increase in software complexity as the number
of players rises. However, given the current popularity of client-server MMOGs,
there is little incentive for the big development studios to switch since the re-
duction of infrastructure costs in the long term does not outweight the lack of
evidence of peer-to-peer working. However, researchers and small development
studios will likely keep working on peer-to-peer technology, producing little MMOGs
with a small player base.

This open up the potential for possible hybrid solutions. With the use of some-
thing close to a fat client the client can be self-updating while maintaining the
game logic but the updates will occur as responses from a server, meaning the
server would act like a proxy distributing messages.

21

Chapter 3

Objectives and Methodology

3.1 Science4Pandemics Context

The Science4Pandemics’ game has as its core objective to provide a learning op-
portunity about diverse pandemics, by letting the player manage manage actions
during epidemic situations - Control and Mitigate the disease - without "crash-
ing" society or the economy. Players will have to try and keep the population safe
both from a health point of view while managing social, economic and political
considerations.

The game is presented in single-player and Multiplayer modes in order.
The Single-player mode will introduce the player to the game, the principles he
or she needs to learn to play, and basic concepts and actions for dealing with
pandemics. This can be seen as a campaign or story mode where the player can
explore and collect a variety of achievements or as a multiplayer training mode.
The player will go through two stages of learning in the single-player mode: un-
derstanding the ideas and the interconnectedness between the regions.

To be able to start playing multiplayer games, players have to first play the single
player mode. It is not necessary that they unlock every region, but it will be
required that at least they have passed the phase of learning the basic mechanics
of the game.

Multiplayer will work as a challenge mode. Players can form teams and play the
multiplayer challenge where the team will be faced with a network with several
regions opened, each a specific scenario, and will have to work together to reach
the stipulated goal or solve the pandemic faster. These goals can vary from match
to match.

Players will be able to share resources (buy/sell/donate) between them. There
won’t be a specific region assigned to each player. The players will start the chal-
lenge in a randomly assigned region that they will have to manage. A player will
only be able to move/manage another region if that region doesn’t have a player
assigned.

Players can leave/quit the challenge at any time. If one or more players leave the

23

Chapter 3

challenge before it is finished, the remaining players can keep playing to try to
win. Although the task might prove even more difficult if not impossible.

If a player is AFK (away from keyboard, stops playing for some time), he/she
will remain in the game until he/she comes back, quits, gets disconnected or the
challenge ends. If all players leave the challenge it counts as a loss.

Players can engage in the multiplayer challenge without a team already formed.
In that case, the system will look for other solo players and form a team.

Players can communicate through an in-game channel and the multiplier chal-
lenge is won and ended by achieving a stipulated goal.

The single-player game’s mechanics will be included in the multiplayer, but there
will also be an added coordination difficulty. The "small matches" it contains in-
crease the variety of possibilities (geographical regions, networks, and diseases).
This is the last stage of learning: realising how interdependent players are and
learning how to work together to stop the epidemic.

Game Overview

Initially one region will be opened for the player as the game begins. When the
player reaches the necessary experience level (has attained a specific achieve-
ment, number of achievements, or combination of achievements) or has played
for a predetermined amount of time, further adjacent regions will be unlocked
individually. Up to 10 regions can be managed and unlocked by the player.

The player’s inputs consist of actions. These actions are different in each building
and trigger results which influence the player’s progression through the game,
this progression can be the possibility of events being triggered or unlocking new
action on other buildings.
Different diseases might be present in the player’s network. However, for the first
iteration, we are not considering the possibility of having two diseases present si-
multaneously in one area. This is primarily because the simulation is complex,
and it is difficult to establish a scientific basis, but it could be something to inves-
tigate in the future.

Each region has a population with a set startup number; births are not considered
throughout the simulation. It also has a set budget and a time since the first
event that has been simulated. The player will be able to carry out many tasks
inside each region, but they will cost money (budget) and require time (days).
Each participant will be given a daily action/time budget. This will serve as
a de-escalation measure and encourage rationalisation of the course of action,
evaluation of alternatives, and coordination with others.

The budget periodically grows by a determined amount and by responding to
infection points and donations the player’s choices and the geo-socio-economic
scenario’s status determine how much is available. Additionally, there are some
hypothetical situations and occurrences that could change the budget (for exam-
ple, keeping the disease under control for a specific amount of time results in

24

Objectives and Methodology

a bonus; failing to stabilise the situation and running low on funds can cause
an emergency fund to be activated; some characters may donate money; "third-
party" interventions that need funding).

The simulated time will update in discrete units (days), but it will run contin-
uously. The time shown is a simulation of the time since the initial case. Since
actions take time to perform, they all have various completion times. By taking
acts that improve the condition of the population as a whole, players can "gain
time" for action and delay critical situations. The effects of those actions "buy"
time for the player before the situation becomes unmanageable (usually by run-
ning out of funds).

The player’s actions are related to information gathering, decisions and interven-
tions, and resource management. When the player enters a region to start to play,
s/he will go to the "Region View" screen. There, the player can start by gathering
information on the current situation and disease affecting the region with the help
of his/her team of characters/advisors. When the player begins to understand
what is going on, s/he can choose to suggest or implement preventive, surveil-
lance, or mitigation actions (for example, declare a lockdown or sponsor testing).
These actions and suggestions will be followed to some extent (depending on fic-
titious public confidence in the accuracy of information and government action,
as represented here by the player). The simulation’s calculation will be affected
by these activities or measures.

Equipment (hospital, research centre, testing centre, vaccine production) will be
associated with various socio-economic regions. The basic equipment/buildings
are as follows: research lab, hospital, government, media, and bank. A region
will not have the resources needed to create every piece of equipment immedi-
ately. According to its geographical and economic criteria, only a handful will
be possible. The player will have the option of creating, acquiring, or upgrading
more equipment. Other equipment that can be unlocked or purchased includes
testing facilities, sewage/water treatment centres, and vaccination centres.

When the player selects an equipment/building, s/he can perform activities such
as buy/sell/share resources. The player can upgrade the facilities for the hospi-
tal, laboratory, and factory (hire specialists or boost capacity). Some indicators
relate to the condition of the structure or equipment. The availability of people
and supplies (such as doctors, hospital beds, lab technicians, scientists, lab ma-
terials, medical materials, tests, and vaccines) will impact the equipment’s per-
formance on relevant variables or indicators like recuperation rate, propagation
rate, treatment rate, economic stress, disinformation, fear, and trust. The simula-
tion processing will be affected appropriately by resource availability.

Action Analysis

The player will be exposed to several basic concepts related to infectious diseases
and prevention measures throughout the game. Introducing these concepts and
information, together with the game’s action possibilities, will create learning op-
portunities for the player. Every action performed by the player(player actions

25

Chapter 3

only, phenomenons like breakouts and such are not included) should be saved
in some form of database. For Science4Pandemic’s game an action table was
devised with specified action codes for easier development. This table contains
AgentInteraction, #Execute, #Cancel, Action CODE, Action, Effect (why?), PRE
(requirements), POST (consequences), ecomodel (effects), impact estim, sinais
de actividade, mentorsuggestion, Description, informaCant, informa(V,X), 1st-
feedback, 2ndfeedback, and endfeedback. The action table looks like the fol-
lowing table:

Agent #Execute #Cancel Action

Research 0 1 ResearchDisease

Hospital 2 3 ResearchDiseaseClinicalCharacteristics

Research 4 5 ResearchDiseaseMeasures

Research 6 7 ResearchDiagnosticTool

Hospital 8 9 ResearchTreatments

Government 10 11 TestingContactTracing

Research 12 13 ResearchVaccine

Gov/MinSaude 14 15 CommunityConfinement

Gov/MinSaude 16 17 MandatoryQuarantine

Communication 18 19 SocialDistancing

Communication 20 21 PromoteMaskUse

Communication 22 23 VoluntaryIsolation

Gov/MinSaude 24 25 HandSanitizationAlcoholSanitizer

Gov/MinSaude 26 27 MandatoryMaskUse

Gov/MinSaude 28 29 UseFullPPE

Communication 30 31 SecureWaterSource

Gov/PublicWorks 32 33 WashProgram

Gov/MinSaude 34 35 FollowUpDiagnosedCases

Communication 36 37 UseCondom

Communication 38 39 UseImpregnatedNets

Communication 40 41 UseInsecticideSpray

Communication 42 43 Handwashing

Communication 44 45 VoluntaryCounselingTesting

26

Objectives and Methodology

Gov/Vaccination Center 46 47 —

Gov/Vaccination Center 48 49 —

Communication 50 51 VaccinePromotion

Gov/MinSaude 52 53 FreeMasksDistribution

Hospital 54 55 —

Hospital 56 57 —

Hospital 58 59 TemporaryHospitalExpansion

Laboratory 60 61 ProduceVaccine

Laboratory 62 63 UpgradeResearchSpeed

Laboratory 64 65 VaccineProductionUpgrade

Communication 66 67 RecommendBehaviours

Hospital 68 69 HospitalizationComparticipation

VaccinationCentre 70 71 Vaccination

Bank 72 73 RequestLoan

Public Construction Dept. 74 75 BuildEquipment - Factory

Public Construction Dept. 76 77 BuildEquipment - Water Treatment Station

Public Construction Dept. 78 79 BuildEquipment - Diagnostic Centre

Public Construction Dept. 80 81 BuildEquipment - Vaccination Centre

Public Construction Dept. 82 83 BuildEquipment - Hospital

Public Construction Dept. 84 85 BuildEquipment - Laboratory

Public Construction Dept. 86 87 BuildEquipment - Media Station

Public Construction Dept. 88 89 BuildEquipment - Bank

Public Construction Dept. 90 91 BuildEquipment - Government

Public Construction Dept. 92 93 BuildEquipment - Public Constr. Dept

Government 94 95 CreatePublicConstructionDept

Hospital 96 97 Minigame - Symptoms

DiagnosticCentre 98 99 Minigame - Test and Quarantine

Communication 100 101 Minigame - Fake News

VaccinationCentre 102 103 Minigame - Vaccination

Win/Lose condition

Since the game is based on a continuous simulated phenomenon, the player can-
not really "win" it or put a stop to it; they can only try to manage or restore a
balanced state. By progressing in the game and achieving a particular goal (such
as a low infection rate), s/he can "win". Gaining levels can open up new playable
zones or let the player acquire achievements. When a critical proportion of in-
fected is reached, the player can "lose" the game because the game will then be

27

Chapter 3

in a impossible to reverse with the available resources. A predetermined set of
circumstances determines this state. A table was devised to make it easier for
developer to add new achievement or milestones to the game, which looks like
the following table:

3.2 Objectives

The main goal of this this dissertation project is to transform an almost complete
game running in single player mode into a multiplayer game. The game needs
to have action logs to keep track and perform analysis on the player’s behaviour,
and it also needs to be converted to multiplayer and deployed in about three
months. With this in mind, the problem is in designing a multiplayer support
to changing the current single-player logic to multiplayer logic in an economic
friendly way. Considering that these developers had workload difficulties if they
had to implement a backend server to run the game as a multiplayer game, the
solution must be developer friendly, meaning that it should not force new con-
cepts on the developers, increasing the time it would take to develop the rest of
the game.

3.3 Methodology

Because the single player version of the game has been in development for over
a year, there were multiple occasions where meetings with the lead developer for
the game were needed. These meetings involved redesigning game logic, imple-
menting the new logic as well as developing parts of the game which required the
multiplayer module to be developed first. Hence, the best methodology to use
when implementing a multiplayer module in an already existing single player
solution is Agile, and in the case of Science4Pandemic’s game, its Crystal vari-
ant(appropriate for 5 to 8-person teams).

Crystal is one of the most versatile frameworks, allowing the team to develop
their processes freely. As a result, communication is a crucial factor. It places
much more emphasis on people and how they connect than on the procedure or
the tools. It is the best-suited methodology for this project since the development
team comprises five elements (including the author). It emphasises concepts like
People, Interactions, Community, Skills, Talent, and Communication to produce
the best software development process possible. The interaction and synergy
between the individuals assigned to the projects and processes—essential for the
project’s efficiency—are at the heart of this development process.

28

Objectives and Methodology

Achievement Condition Message Reward Budget Up

First on activity Research,
Measure,
Campaign Upgrade/expansion,
Production, Travel

every first time "Congratulations!
You achieved X."
Inform of XP

XP +10 —

Knowledge Leader I_quadro,
I_sintomas,
I_measures,

"Congratulations!
The new knowledge helps us identify new
cases and take preventive measures."
Inform of XP

XP +20 —

Lead Researcher I_testkit,
I_treatment,

"Congratulations!
New tools for testing, isolation and
treatment of cases will be an important way
to contain the disease and reduce social
and economic impact."
Inform of XP

XP +50 Unlocks
Hospital Expansion

The Doctor 1/1000 people cured
(10M=>10.000)

"Congratulations!
Our medical staff has now helped
cure 10 000 people (under normal hospital capacity)."

XP +30 budget+500k

The Minister 3 combined measures;
reduction of infections
in the last 7 days

"Congratulations!
You adopted combined measures that
helped reduce propagation."
Inform of XP

XP +30 —

Chief Scientist I_vaccine
R_Vac_factory

"Congratulations!
You now have the vaccine and can
begin production to satisfy our needs.
Consider promoting vaccine adoption for maximum effect."
Inform of XP

XP +50 budget+1M
unlocks
Vaccination Center

Vaccine Champion V > 66% "Congratulations!
We now vaccinated more than
66% of the population. This will significantly
reduce the effects of the disease."

XP +100 budget+1M

The Container R0 below 1.0
for 50 days straight?

"Congratulations!
Your combined measures kept R0 under
1.0 for 50 days, which reduced propagation."
Inform of XP

XP +50 budget+1M

The Cleaner cases below 100?
during 100 days?

"Congratulations!
Your combined measures kept new daily
cases to X<100 over the last 100 days."
Inform of XP

XP +100 —

The Philanthrope spent 5M "Congratulations!
Your dedication to take action is admirable.
You’ve spent half your initial budget!"
Inform of XP

XP +100 budget open Bank loan
(1M at 1% each 30 days)

The Global Citizen acted on all regions "You have now visited and
helped on all regions.
You are now perceived as a true global citizen,
able to inspire global support."

XP +200 budget +5M

Table 3.1: Achievement List

29

Chapter 3

Advantages

• Crystal requires frequent deliveries, in order to identify eventual problems
at every stage;

• There is always space to improve characteristics, taking some time from
software development and allowing for discussions about how to perfect
processes;

• Facilitates closer communication within teams and promotes interaction
and knowledge-sharing between team members;

• Requires a technical environment with automated tests, configuration man-
agement and frequent integration.

Disadvantages

• The fact that there are variants in the methodology family means that the
principles might vary with the size of the team and the size of the project,
resulting in projects that might not be so straightforward;

• It might not work best for geographically scattered teams, because of the
constant need to communicate and reflect;

• Planning and development are not dependent on requirements;

• It is ideal for experienced, autonomous teams.

3.4 Requirements

Requirement 1: Web Compatibility

Because the single player version of the game has been developed under the con-
text of being a web app, the backend should be compatible with web browsers

Requirement 2: User Friendly

Because the previous developers do not have experience with implementing back-
end connections on their code, the implementation should not force the develop-
ers to refactor their code, it should allow the same code to be used to treat player
actions, when coupled with a server call and response.

Requirement 3: Backend Functionality and Endpoints

The player actions and gameplay mechanics should be processed through a set
of RESTful endpoints.

30

Objectives and Methodology

Requirement 4: Multiplayer Functionality

The game should be able to support multiple connections at once, spread them
amongst servers/lobbies and guarantee Real-Time updates

Requirement 5: Publish Subscribe Integration

A publish subscribe model should be used to fragment the whole server into
lobby topics, allowing the backend server to create multiple processes, each of
these being responsible for their own topic and players.

Requirement 6: Action Logging

Every action needs to be registered so that the progress, rythm and paths that
players choose can be analysed.

Requirement 7: Documentation

Documentation must be written for the frontend developers, explaining how to
make API calls, handle responses, and integrate backend functionality into the
game. It should also provide guidelines on how to start the frontend-backend
communication.

3.5 Non-Functional Requirements

Scenario 1 - Scalability

Stimulus: All the valid requests the server receives should be processed.

Source of the Stimulus: Increase in Concurrent Users (CCU)

Artifact: Processes handling the requests and propagating the messages for the
respective individual game processes.

Environment: System runtime (normal operation)

Response:

• The number of processes handling Lobby Servers is increased to cope
with the load.

Response Measure: Maximum number of CCU.

31

Chapter 3

Scenario 2 - Reusability

Stimulus: The multiplayer integration must be easy to implement on the plat-
forms of the already developed single player games.

Source of the Stimulus: Wanting to swap from a single player solution to a mul-
tiplayer solution.

Artifact: System

Environment: System runtime (normal operation)

Response:

• Regardless of the development time of the game, the change to multi-
player should be easy.

Response Measure: Number of supported devices.

3.6 Risk Management

Levels:

• Impact:

– Medium (reach the proposed solution with extra work)

– Critical(reach the proposed solution with extra hours and cut require-
ments)

– Catastrophic (can’t reach the proposed solution)

• Probability

– Low (<30%)

– Medium (<60%)

– High (<80%)

– Certain (>80%)

• Timeframe

– Short (2 weeks)

– Medium (1 month)

– Long (2 months)

Four levels have been chosen so that an intermediate level can be achieved, there’s
no range in the 50%, so we must choose the intermediate levels.

32

Objectives and Methodology

Figure 3.1: Risk Exposure Matrix

1. The entity responsible for the game stops funding the game’s development.

(a) Impact: Critical

(b) Probability: Low

(c) Timeframe: Long

(d) Mitigation Plan:

i. Create a generic solution instead.

2. The developers responsible for the game so far leave the project.

(a) Impact: Low

(b) Probability: Low

(c) Timeframe: Medium

(d) Mitigation Plan:

i. Make sure the latest version of the game can make use of the back-
end server to swap to multiplayer.

3. The current implementation makes the integration of the multiplayer mod-
ule impossible.

(a) Impact: High

(b) Probability: Low

(c) Timeframe: Long

(d) Mitigation Plan:

i. Restructure the multiplayer module and adapt the single player
code to allow for multiplayer integration.

4. Difficulties on familiarization with the multiplayer module which lead to
development delays.

(a) Impact: Medium

(b) Probability: Low

(c) Timeframe: Medium

(d) Mitigation Plan:

i. Accompany the developers and help them understand what should
and should not be done when integrating the multiplayer module
(pair-programming).

33

Chapter 3

5. There’s a fault on the concept which hinders performance.

(a) Impact: High

(b) Probability: Low

(c) Timeframe: Medium

(d) Mitigation Plan:

i. Understand what part of the concept it hindering the performance
and re-design the concept accordingly.

3.7 Work Plan

The work developed within the scope of this thesis encompasses one semester.

Figure 3.2: Work Plan

34

Chapter 4

Design Proposal

4.1 Quality Attributes

A centralized server is needed to create a functional multiplayer and have actions
logged for further analysis. This, however, would force the developers to change
their code to have a server running as their world which could potentially be
detrimental if the machine hosting the server was not good enough. To avoid
this, the client should be close to a fat client, processing all the game logic and
self-updating.

Quality attributes, also known as non-functional requirements or system quali-
ties, play a pivotal role in shaping the overall performance, usability, and effec-
tiveness of software systems. In the backend servers which place strong emphasis
on scalability and reusability, several critical quality attributes come into focus.
These attributes contribute to the full evaluation of the system’s capabilities be-
yond its functional aspects. In this section, the prominent quality attributes that
underpin the design, implementation, and deployment of the backend server are
looked at.

4.1.1 Scalability

Scalability is a key feature of the Science4Pandemic’s backend server’s architec-
ture. It defines the system’s ability to handle increasing loads while maintaining
acceptable performance levels. Within our development framework, scalability
is evaluated through:

• Horizontal Scaling: The backend server’s capability to distribute load across
multiple nodes or instances, thus accommodating growing user demands
seamlessly.

• Vertical Scaling: The server’s capacity to efficiently utilize available re-
sources within a single node to cope with increased load.

35

Chapter 4

4.1.2 Reusability

Reusability, a quality attribute often intertwined with modularity and adaptabil-
ity, is paramount in our backend server’s design philosophy. It contributes to
the efficient transfer of knowledge and code across projects and contexts. Our
reusability evaluation encompasses:

• Modular Design: The creation of well-defined, self-contained modules that
can be easily extracted, reused, and integrated into different projects with-
out extensive modification.

• Adaptability: Ensuring that reusable components can be adapted to fit
varying scenarios without compromising their integrity or functionality.

• Documentation and Guidelines: Providing comprehensive documentation
and guidelines that aid developers in understanding, integrating, and ex-
tending reusable components.

4.1.3 Reliability

Reliability addresses the system’s ability to consistently deliver intended func-
tionality, maintain data integrity, and uphold availability. For our backend server,
reliability is evaluated through:

• Fault Tolerance: Designing the system to gracefully handle failures, crashes,
and network disruptions without significant impact on user experience.

• Error Handling: Implementing robust error-handling mechanisms to mini-
mize unexpected failures and ensure graceful degradation.

• Availability Metrics: Measuring metrics such as uptime and downtime to
verify that the backend server meets its availability objectives.

4.2 Architecture

This section is meant to showcase the architecture of the backend server which
will be developed. The architecture is detailed using the C4 Model, created by
Simon Brown [Brown]. This model was chosen since it provides all the pertinent
information required to clearly and unambiguously explain the system architec-
ture.

36

Design Proposal

4.2.1 Level 1 - Context Diagram

Figure 4.1: System Context Diagram

Starting by the first level (C1), we create the context diagram (Figure 3.7), which
presents the component to be developed in the Erlang runtime environment and
the components with whom it interacts, allowing us to view a higher level repre-
sentation of the component’s environment.
The Logic is inspired on peer-to-peer connections and fat clients, by using some-
thing similar to a fat client the logic can still be processed on the client side whilst
the validations can be done on the server side. By maintaining the validations
on the server side, there’s a global authority which can prevent cheating. On the
right are the MQTT Broker and the Game Application. These are the broker that
the user decides to use and the game application(game being developed). In the
case of this thesis, the broker is a private broker hosted by the project’s team, and
the game is being developed as a web app. The Apache receives requests from
the Game App and redirects them to the Erlang component’s endpoints. The Er-
lang component to be developed needs to process these requests and publishes
whatever is needed on the MQTT Broker’s Topic. These requests are triggered
by actions, which currently occur on the following logic:

There’s other actions available to the player but this is the rudimentary logic

Figure 4.2: Single player Action Logic

for the actions which will need to be logged after. Logging the actions occurs
whenever an action triggers a request which is sent to the endpoint responsible
for saving these actions. Actions which do not need to be logged are usually trig-
gered by the current Host client, and they server as updates for the other clients
to maintain the same updated game state. For this to be validated, the Erlang
component keeps a JSON formatted String which corresponds to the latest game
state sent by the host.

The multiplayer logic is as following:

37

Chapter 4

Figure 4.3: Multiplayer Action Logic

4.2.2 Level 2 - Container Diagram

Continuing to explore the architecture, the second level C2 can be reached, where
the container diagram is presented (Figure 3.8), which enables a deeper compre-
hension of the Erlang server.

Figure 4.4: Container Diagram

C2 splits the component into multiple containers. The Erlang contains his Cow-
bow HTTP container, which refers to Erlang’s HTTP server and all of the devel-
oped endpoints, which will be described later. It also contains multiple Lobby
Server, the system’s main component, allowing validations to occur and holding
the player data. Each Lobby Server is responsible for a game instance. Besides
this, there is also the Mnesia component. Mnesia is Erlang’s local database which
can be accessed from any Erlang process. For this system, Mnesia is used as an
embedded database for data persistency. Finally, the component MQTT Mes-
senger exists to receive messages from the lobby servers and publish them on
the MQTT broker so that the Game Application can listen to these messages and
change the game state accordingly.

4.2.3 Level 3 - Component Diagram

Reaching the third level (C3) of the architecture, the component diagram is pre-
sented for the first version of the Lobby Server component (Figure 3.9), where
the inner components can be seen. It consists of three main components: Game
Session, Session Heartbeat Monitor and MQTT Messenger.

38

Design Proposal

Figure 4.5: Lobby Server Component Diagram

We can go back to Erlang’s behaviour to understand why only three components
exist. Erlang uses lightweight execution threads referred to as processes. These
operate simultaneously and are isolated from each other. However, they commu-
nicate with each other via messages. This means a process will die if not stuck
on a persistent loop waiting for messages. Erlang’s solution is a generic server
model, meaning that a loop is running, which listens to messages from other pro-
cesses and handles the messages accordingly. With this logic, it is possible to
create a system that resembles the typical lobby system used in games (See fig-
ure 3.10). For Science4Pandemic’s game this is ideal considering the maximum
amount of players is 4 per game.

Game Session’s main objective is to achieve a lobby-like system. It holds the
player states, the last Game State as a JSON file (in case the player disconnects,
this is a safe way not to lose all the progress) and the current HostId as variables
which are changed according to the messages the process receives. This system,
however, needs something to constantly manage the player state, and something
to constantly check is connections were not severed, which is why Session Heart-
beat Monitor is needed. Its primary purpose is to send messages to Game Ses-
sion on an interval declaring that the players need to send an update. This guar-
antees that the player is still online. If the player misses two updates in a row,
the player is considered disconnected. It’s created simultaneously with a Game
Session. Session Heartbeat Monitor is created when a Game Session is created,
and it dies whenever the respective Game Session is considered finished.

Cowboy HTTP server has numerous processes to handle HTTP requests. Each
one of these processes sends a specific message to Game Session, which han-
dles them and returns a response to the respective handler with an error message
or a success message containing the responses listed in the documentation. The

39

Chapter 4

Figure 4.6: Age Of Empires Lobby [Studios]

desired solution uses HTTP to deliver private updates e.g. a response with the
broker ID for the client to connect to, and MQTT for messages that need to be
broadcasted, e.g. A player takes an action and every other player needs to be in-
formed of this action to update their game state. The handler might or might not
respond to the client depending on the client’s desired endpoint. This is because
the need for a response only exists on private updates. If a message needs to be
sent to update every other client, the message is posted on the MQTT Messenger
instead. If these are player actions in the game, they are also saved on Mnesia.

4.2.4 Publish Subscribe model

In this model, one device called the publisher delivers messages to any other de-
vice that is interested in receiving them, which might be a single sensor or another
form of internet-connected machine like a server.
Subscribers are the devices that request data from the publisher, and they respond
with an acknowledgement if they successfully received it.
There is no direct communication between the system’s publishers and subscribers.
An intermediary, known as a broker, manages the communication between the
two parties by filtering all incoming messages and sending them to the appropri-
ate subscribers.

4.2.5 MQTT

MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT).
It is designed as an extremely lightweight publish/subscribe messaging trans-
port that is ideal for connecting remote devices with a small code footprint and

40

Design Proposal

Figure 4.7: Publish Subscribe Example

minimal network bandwidth. MQTT today is used in a wide variety of indus-
tries, such as automotive, manufacturing, telecommunications, oil and gas, etc
[Dr Andy Stanford].

Figure 4.8: MQTT Publish/Subscribe Architecture [Dr Andy Stanford]

MQTT uses a publish-and-subscribe architecture. The publish and subscribe
model is made to allow message transmission between client and server in both
directions. This enables IoT devices to establish connectivity with one another re-
gardless of where they are located. Even in the case of unstable or unresponsive
networks, the MQTT protocol ensures message delivery. It makes use of an ac-
knowledgment system to let both sides know whether or not data was correctly
received.

MQTT Broker

The broker is at the centre of the system. All messages must be received, filtered,
and sent to the subscribers, in this case the MQTT clients. Millions of connected
MQTT customers can potentially be handled by a MQTT broker.

MQTT Client

Any device that can send and receive messages through the broker is considered
a client. A client could be a small IoT sensor that sends data at regular intervals
or a smart application that displays the IoT data graphically.

41

Chapter 4

To receive communications related to a certain topic, a client may register to it in
the broker. Similar to this, a client can publish messages under a specific topic for
the broker to forward to the that topic’s subscribers.

Access Control

Using Message Queuing Telemetry Transport (MQTT) allows the developers to
be subscribed to a topic and self-update based on messages posted on that topic.
Since Mosquitto’s MQTT broker provides the configuration to alienize IPs, it is
possible only to allow the server IP to publish, which provides us with a layer
of security. This, however, does not provide a solution for logging the player
actions for further analysis. To do this, the MQTT server must be running on
another machine, which is also running a backend server, allowing players to
send requests for updates to the backend server, and having the backend validate
and publish the requested actions on the MQTT broker’s topic. The client would
then be self-updating while still having a governing authority, the server.

4.3 Proposed Solution

Because the server is supposed to hold numerous clients at once the proposed
language to be used is Erlang.

4.3.1 Erlang

What is Erlang?

Erlang is a programming language used to build massively scalable soft real-
time systems with requirements on high availability. Some of its uses are in tele-
communications, banking, e-commerce, computer telephony and instant messag-
ing [Laboratory].

Process Oriented

The key factor that distinguishes Erlang from other languages is its functional lan-
guage, light-weight message processing model. It employs isolated, light-weight
processes that send messages to one another.

These processes have the capacity to receive messages and, in response, modify
their state, start up new processes, or communicate with other processes. Erlang,
in other terms, adheres to the actor model [Storti].

The processes are isolated, quick to create, and consume little memory. By adding
more of them, a system can easily be expanded. It is simple to expand both hori-
zontally (by adding more machines) and vertically (by adding cores) because the

42

Design Proposal

processes don’t know if the other processes are on the same core or in a different
location.

4.3.2 Advantages of Erlang

Erlang has three significant advantages over other programming languages, which
mainly stem from the unique way the language is built.

• Concurrency. Erlang’s virtual machine, BEAM, employs lightweight execu-
tion threads referred to as processes. These operate simultaneously on all
CPUs, are isolated, and communicate via messages. Because of that and
language’s functional nature, it is easier to write concurrent programs in
Erlang.

• Scalability. Erlang is ideal for today’s multicore CPUs and distributed na-
ture of modern computing. Erlang processes make it simple to grow sys-
tems, either by adding new machines or by giving current machines extra
cores.

• Reliability. "Let it crash" is Erlang’s motto. You can develop self-healing
systems because of the supervisor system’s swift restart of lightweight pro-
cesses due to its unusual fault-tolerance strategy. Although it may not seem
reliable, this fixes the majority of errors that are not the result of serious
implementation errors.

Let It Crash and Fault tolerance

In truth, allowing it to crash has nothing to do with the user or the system going
down. Erlang works quite hard to prevent that. Instead, it is about handling
failure when it inevitably occurs since.

Put simply, an Erlang application is a tree of processes. At the bottom leaves of
the tree, there’s worker processes – the ones doing most of the work. Above them,
there’s supervisors, which launch the workers and check up on them.
Supervisors themselves can be supervised; A "Grand Supervisor" can easily be
added on top of the tree.
A process sends a message to its supervisor in the event of a crash and depending
on the chosen supervision technique, either the process or every process under its
supervisor is restarted. The supervisor will terminate all of its children first, then
itself if restarting the linked workers doesn’t resolve the issue after a predeter-
mined number of times in a time frame. At that point, the obligation to address
the issue is passed up to the next layer of supervision.

This means that the program will not crash unless the last supervisor crashes,
which guarantees a fairly amount of fault tolerance.

43

Chapter 4

Figure 4.9: Supervisors in Erlang

4.4 Architecture Summary

Figure 4.10: S4P architecture overview

The architecture of the developed backend server in Erlang is structured accord-
ing to the C4 model, comprising three levels of diagrams that provide a compre-
hensive overview of the system’s components, interactions, and inner workings.

Context Level (C1):
At the context level, the architecture is represented by a context diagram that out-
lines the primary component to be developed within the Erlang runtime environ-
ment. This component interacts with other components, forming an environment
where its functionalities are situated. The Logic of the system draws inspiration
from peer-to-peer connections and fat clients, employing a "fat client" model to
process logic on the client side while conducting validations on the server side.

44

Design Proposal

The architecture ensures global authority for validation, thus preventing cheat-
ing. The key components include the MQTT Broker, Game Application, and
Apache. The Erlang component processes requests from the Game Application,
interacts with the MQTT Broker, and publishes necessary information. This level
establishes a broad understanding of the system’s structure and interactions.

Container Level (C2):
The container diagram, found at level C2, delves deeper into the architecture.
It breaks down the main Erlang component into multiple containers, each with
distinct responsibilities. The central Erlang container encompasses the Cowbow
HTTP server and the developed endpoints. This container manages the HTTP
requests, communicates with the Logic, and interacts with the lobby servers.
Multiple Lobby Server containers handle validations, maintain player data, and
manage individual game instances. The Mnesia component, acting as an em-
bedded database, ensures data persistency. Additionally, the MQTT Messenger
container facilitates communication between lobby servers and the MQTT broker.
This level exposes the intricacies of container interaction and internal structure.

Component Level (C3):
At level C3, the component diagram showcases the inner components of the
Lobby Server in its first version. It consists of three core components: Game Ses-
sion, Session Heartbeat Monitor, and MQTT Messenger. The architecture lever-
ages Erlang’s lightweight execution threads and message-passing mechanism to
create a server model. The Game Session component handles player states, game
states, and host identification, ensuring the system’s integrity. The Session Heart-
beat Monitor monitors player connections to prevent disconnections. The Cow-
boy HTTP server employs multiple processes to handle HTTP requests, inter-
acting with the Game Session component and responding with error or success
messages. The desired solution combines HTTP for private updates and MQTT
for broadcasted messages, utilizing Mnesia for data storage.

In conclusion, the C4 architecture provides a detailed depiction of the Erlang
backend server’s design. It encompasses interactions, components, and inter-
nal mechanisms. The architecture aligns with the system’s goals of scalability,
reusability, and efficient game management. By delineating the system’s struc-
ture across different levels of abstraction, the architecture sets the foundation for
a robust and adaptable backend solution.

Science4Pandemic’s game needs an economic and easy to use solution to change
from single player to multiplayer. This encompasses minimal code changes and
a backend which is easy to understand and fast to adapt. The current architec-
ture assumes the game application has already been in development for a while
and the action logic will remain on the client side. This removes the need for de-
velopers to change the already developed code, only requiring the understand-
ing of how publish subscribe models work. If the single player developers have
no knowledge of how publish subscribe models works it will pose a challenge,
however once this type of model is known, the single player solution must be
structured in a way that the change from single player to multi player is easy
to do. In Science4Pandemic’s game, the single player logic which needed to be
converted in multiplayer is present in a way that it can be changed from an ac-

45

Chapter 4

tion to an event, triggered by a published message(using MQTT). From an eco-
nomic standpoint, the architecture offers cost-efficient advantages that resonate
with the project’s financial considerations. By relying on Erlang’s concurrency
model and lightweight processes, the system can effectively manage concurrent
requests with minimal hardware requirements. This translates to reduced infras-
tructure costs, as the architecture maximizes the utilization of available resources.
Moreover, the use of MQTT for real-time communication minimizes the need for
extensive bandwidth, optimizing data transfer costs while ensuring timely up-
dates for players.

The architecture’s modularity and reusability further enhance its economic adapt-
ability. Components such as the Cowboy HTTP server, MQTT Messenger, and
lobby servers can be seamlessly integrated into future projects, resulting in sub-
stantial time and cost savings. The ability to repurpose existing components re-
duces development cycles and minimizes the need for reinventing the already
implemented code and logic, ultimately leading to cost-efficient software devel-
opment practices.

46

Chapter 5

Implementation

The present Chapter documents the implementation of the solution proposed in
the previous Chapter. The following sections contain a detailed description of the
architecture’s components and other tools needed to achieve the goal.

The proposed solution focuses on creating a stateless backend server, which is to
be integrated into a game that has been developed as a single player game for
the past year and a half. The implementation must focus on keeping the work of
the previous developers to a minimum when it comes to changing their previous
code.

In the implementation of the proposed architecture, a pivotal component is the
dedicated process responsible for adeptly overseeing player interactions, game
state updates, and the dynamic assignment of a designated host. This process as-
sumes the role of a central coordinator, effectively managing player actions and
holding the latest game state within the multiplayer environment. This orches-
trator, distinct from the host player, plays a crucial role in maintaining synchro-
nization and integrity among players’ activities.

Parallelly, a sibling-like process assumes the responsibility of monitoring play-
ers’ engagement. This process continuously dispatches messages, similar to a
heartbeat, to ascertain the players’ continued presence within the network. Upon
receiving responsive acknowledgments from players, the primary orchestrator
process validates their active participation, ensuring that the players whose state
remained unchanged are considered disconnected.

Significantly, the architecture leverages a harmonious amalgamation of HTTP
and MQTT protocols to fulfill distinct communication needs. HTTP facilitates
discreet and private interactions between the orchestrator and individual players,
enabling secure data exchange and sensitive updates. On the other hand, MQTT,
functioning akin to a dynamic information conduit, is employed for broadcast
communication. Game-changing events, initiated through HTTP requests, are
swiftly propagated through MQTT topics, allowing all players to receive syn-
chronized updates promptly.

Moreover, the ingenious integration of the dynamic process management model
with the Cowboy HTTP server underpins the architecture’s versatility in creat-

47

Chapter 5

ing and managing multiple game instances simultaneously. By harnessing the
power of Erlang’s lightweight processes, the architecture achieves the ability to
spawn and supervise distinct instances of the player interaction and game state
management process. Each of these instances functions autonomously, dedicated
to overseeing the intricacies of a specific game match.

Through this design, the architecture seamlessly scales to accommodate multiple
game sessions in parallel. As new players join different matches, the system effi-
ciently generates new process instances, ensuring that the gameplay experience
remains uninterrupted and responsive. This modular approach to process instan-
tiation and management optimizes resource utilization, as each instance focuses
solely on its assigned match, avoiding bottlenecks or contention.

The Cowboy HTTP server acts as a seamless conduit, directing incoming requests
to the appropriate process instance responsible for the corresponding game. This
synergy of dynamic process generation and HTTP server orchestration ensures
efficient load distribution and cohesive communication across numerous ongoing
matches

5.1 Erlang Multiplayer Server

In the previous section, we delved into the intricacies of our proposed architec-
ture, emphasizing the robust Publish-Subscribe model that underpins real-time
communication. As we change our focus towards the endpoint configuration,
the architecture interfaces with external entities, including web clients and user
devices. The configuration of endpoints plays a pivotal role in defining how in-
coming HTTP requests are handled, processed, and responded to. In this section,
we an explanation of the various endpoints integral to our architecture is pre-
sented. These endpoints serve as gateways for players to interact with the sys-
tem, enabling critical functionalities such as game initiation, player actions, and
data retrieval.

As stated during the architecture section, at the heart of our proposed architecture
lies Cowboy, an essential and pivotal component that serves as the gateway to the
entire system. For Science4Pandemics’ game, Cowboy acts as the bridge between
external user interactions and the multiplayer server. The game application will
require the user’s unique identifier to access the backend server. In the case of
Science4Pandemics’ game, this identifier is the account from Science4Pandemics’
website. This guarantees that to access the backend server, the user must already
have validated his credentials.

As described in the previous chapter, the Architecture’s core processes are the
lobby servers. Because processes in Erlang are lightweight and designed to be
created and terminated frequently. They are not intended to persist indefinitely
but rather to perform specific tasks and then gracefully terminate. In some cases(In
the current architecture in Cowboy’s case), a process may have a specific lifespan.
For example, a short-lived process might be responsible for handling a single
HTTP request or a single database query. Once its task is complete, the process
can terminate naturally.

48

Implementation

Figure 5.1: Lobby Server Architecture

Because Erlang follows the Actor Model, where computations are modeled as ac-
tors or processes that interact by sending messages to one another. Gen Servers
are a form of Erlang processes designed to manage state and handle incoming
messages in a concurrent environment. Gen Servers are used to manage and en-
capsulate state data. This state can be modified by handling incoming messages.
To ensure the consistency and integrity of this state, Gen Servers typically need
to maintain a loop that continuously processes messages.
In summary, an Erlang Gen Server uses a loop to continually process incoming
messages, manage state, handle concurrency, ensure fault tolerance, and main-
tain a long lifespan. This loop is essential for the Gen Server to fulfill its role and
to understand how Lobby Servers work.

The main loop of a Lobby Server is as following:

1: function SESSION_HANDLER(PlayerDetails, Players, SessionId, PlayersOnline,
HostId, GameState, OnGoing)

2: receives message
3: if (checks message Atom) then
4: Runs respective Atom Logic
5:
6: if (Server should shutdown) then
7: Sends the shutdown Atom message to himself
8:
9: else

10: Calls Itself
11: end if
12: end if
13: end function

49

Chapter 5

Its parameters paint a clear picture of its multifaceted responsibilities.

The PlayerDetails parameter, structured as a key-value store with PlayerId as the
key and corresponding player nickname and avatars as values, acts as a reposi-
tory of essential player information. Meanwhile, the Players parameter, designed
as a key-value store with PlayerId as keys and connection states ("online," "wait-
ing," or "offline") as values, tracks each player’s real-time connection status.

SessionId, as the identifier for the current process, serves as a critical reference
point for safe process termination when needed. PlayersOnline, an integer rep-
resenting the count of currently active players, provides vital insights into the
lobby’s occupancy. HostId, holding the playerId of the current host, designates
the player responsible for managing the ongoing game session.

The GameState, conveyed as a JSON string, encapsulates the latest game state,
reflecting the dynamic evolution of gameplay. The OnGoing boolean parame-
ter acts as a sentinel, guarding against unauthorized access to concluded game
sessions, ensuring that players cannot join games that have already reached their
conclusion.

Whenever a Lobby Server is created, a Lobby Server Monitor is also created. The
only function of this Monitor process is to send messages on a fixed interval to its
Lobby Server counterpart, for it to update it’s player states accordingly. Its logic
is as following:

1: function HEARBEAT_MONITOR(ServerPid)
2: retrieves the interval defined by the user
3: Sleeps for 500ms
4: Try:
5: Sends Message to ServerPid
6: Sleeps for the interval duration
7: Calls Itself
8: Catch
9: Safely terminates

10: end function

5.1.1 Creating and joining a Lobby Server

The unique identifier retrieved from Science4Pandemic’s API is required for ev-
ery HTTP request made to the server. If this identifier is not retrieved(the user
does not login) a temporary user number is assinged instead(e.g. tmp#1111). Us-
ing the example of the first request to be made, each lobby is responsible for up
to four players. To create a Lobby, the game application will send a request to the
create_game, which responds with the new lobby ID. The request body should
be something like:
{

50

Implementation

"clientId": "client1",
"avatar": "client1_avatar_link_example",
"nickname": "client1_nickname_example"

}
Receiving a 200 OK status response with the following JSON body:
{

"Success": "Server_#"
}
After this first response, each client can subscribe to the MQTT Topic regarding
the Server_#, in the context of this dissertation that would be /S4P/Server_#, in
which # represents a number, and not the MQTT’s wildcard.

Figure 5.2: Create and Joining a game interaction diagram

While handling the response, Erlang creates the process Server_# and once the
Host presses play button, a call to the endpoint start_game is made and the game
is deemed on going and a Server_#_Heartbeat_Monitor process is spawned to
manage the lobby server players and their connection states.

The lobby servers function as continuous looping processes, continuously mon-
itoring incoming messages from other Erlang processes. Within its operational
scope, the lobby server manages an array of critical data structures. These in-
clude a comprehensive player data repository containing player nicknames and
avatars, a dynamically updated Player State dictionary, a unique HostId identi-
fier, and the latest Game State. Notably, the lobby server does not actively manage
the Game State but rather maintains it in memory, which eliminates concerns re-
lated to memory consumption. The Player State dictionary, a central component,
undergoes periodic updates initiated by the Server_1_Monitor process at fixed
intervals which can be defined by the user and is used to define the interval in
which the server needs to receive HTTP requests from to ensure their connection
is still working. To achieve this, the Server_#_Monitor, sends a message to the

51

Chapter 5

Figure 5.3: Heartbeat Monitor Process Logic

Server_# process, which makes every player with the value "online" change its
value to "waiting" and every player with the value "waiting" change its value to
"offline". To avoid being disconnected, the game application must send a request
to the endpoint heartbeat so that the "waiting" player key has its value updated to
"online". This ensures the host is updated if the current host loses his connection.
It is a reliable way to ensure the game host is updated whenever the previous
hosts stops communicating. This is essential due to the fact that, because the
clients are self-updating, the host is the only one sending game updates unre-
lated to player actions(e.g. a timed event or something that would occur without
player interactions).

5.1.2 Processing Player Actions

The proposed solution aims to reduce the amount of code previously developed
for a single-player that needs to be changed. To achieve this goal, the actions
developed for the single-player version of the game can still be used for the
same purposes, but now they must be triggered by the message published on
the MQTT broker. These messages are validated and redistributed by the multi-
player server.

In Science4Pandemics’ game the players have the option to do impactful ac-
tions(e.g. start researching Vaccines) changing the game State of every player
connected to the game as well as non-impactful ones (e.g. clicking bubbles which
were created to keep the player engaged). The impactful actions need to be
propagated and logged for further analysis, while the non-impactful ones do
not. To propagate an action, the client sends requests to the broadcast or broad-
cast_without_log endpoints residing on the Cowboy HTTP server inside the Er-
lang multiplayer server. The message body must follow the format:
{

"serverId": "Server_#",
"clientId": "client1",
"region": "example_region",

52

Implementation

"simValues": "[]",
"actionCode": 0,
"messageBody": "Broadcast Example"

}
There is no need for the game application to handle a response from the server
on these requests. If the message is correctly validated (meaning the player re-
questing it is a valid player in a valid game), then the message is published on
the MQTT’s topic for all players to execute as following:
"0|example_region|client1|Broadcast Example"
The subscribed clients will then receive the message and self-update accordingly.
The action code is used so the MQTT message can be parsed and quickly identi-
fied.

5.1.3 Action Logging and Mnesia

The Server_# process also sends messages to the process in charge of storing data
on Mnesia with the action logs, which can be fetched using the endpoint get_logs.
The Mnesia access is located in the process localDB, which starts whenever the
backend server is starting. The process is in charge of handling messages re-
garding Mnesia access. Data is saved in two distinct tables. One of the tables is
responsible for the game actions, and the other is responsible for the Game State.
The table responsible for game actions has the following columns:

playerId sessionId region actionId messageBody creationDay creationHour simValues

• playerId - String. The user’s unique identifier(e.g. temp#1927).

• sessionId - String. The session’s identifier(e.g. Server_1).

• region - String. The region where the action occurred(e.g. Lauswen).

• actionId - Integer. The action code for a specific action(e.g. 4).

• messageBody - String. Whatever the developers want to pass around as a
message(e.g. in Science4Pandemics’ case it is used to propagate messages
for the ingame chat).

• creationDay - String. The date the entry was created.

• creationHour - String. The hour,minutes and seconds the entry was created.

• simValues - String. The simulation values the developers choose to store,
it’s stored as a JSON String.

These are, respectively, the player’s unique identifier, the lobby server where the
action took place, the values of the current region, the current region’s name, the
ID of the action that was performed, the message to be displayed (The game has
its chat system and this column can be used to communicate between clients,

53

Chapter 5

Figure 5.4: Action Broadcasting Logic

from the previous broadcast example this would be "Broadcast Example") and
the date and hour the action took place.

The Game State table has the columns:

sessionId created_on player1 player2 player3 player4 ended GameSessionFile

• sessionId - String. The session’s identifier(e.g. Server_1).

• created_on - String. The date the entry was created.

• player1 - String. The user’s unique identifier(e.g. temp#1927).

54

Implementation

• player2 - String. The user’s unique identifier(e.g. temp#1943), or null in
case the player doesn’t exist.

• player3 - String. The user’s unique identifier(e.g. temp#2846), or null in
case the player doesn’t exist.

• player4 - String. The user’s unique identifier(e.g. temp#1462), or null in
case the player doesn’t exist.

• ended - Boolean. True if the game came to an end, False if the game hasn’t
ended.

• GameSessionFile - String. The latest updated Game State. it’s stored as
a JSON String. It’s named Game Session so it’s similar with the already
developed code from the singleplayer version of the game.

Which holds the lobby server to which the Game State belongs, the Game State
JSON file, the players that were on that game (so that they can restore their last
game session if wanted), if the game ended or not and the date of the save. The
localDB process also contains the action to delete specific or all logs on either of
the tables to get a specific log, and the Game State managing options such as save
and load, each having their validations to check if the player requesting them is
a member of the game or not.

5.1.4 Player States

As described before, the player state dictionary is managed by Server_#, the
Server_#_Monitor is responsible for updating it in a specified time interval, and
the game application is responsible for keeping the server informed that the client
it holds is still connected. However, whenever a heartbeat is sent to the server,
the heartbeat also sends the game state JSON file, so even if the last player dis-
connects, there is a game state in which the server can fall back.
{

"clientId": "client1",
"serverId": "Server_#",
"gameFile": "{Ëxample_Json_File}̈",

}
The disconnect endpoint also uses this request body format. However, the dis-
connect endpoint is only used when a user wants to leave an ongoing game.

The player state has been divided into two parts:

• During the lobby phase, the players states are not managed, meaning that
if they decide to leave (leave_game endpoint), they are removed from the
player state and player dictionaries

• During a game, leaving using the disconnect endpoint (used during an on-
going game) will update the player state to offline

55

Chapter 5

By separating these two things, a lobby-like system can be achieved where play-
ers can always have access to their previous game since as mentioned in the pre-
vious subsection, the Game State table holds which players are in which game.
This will keep Mnesia from being overrun with pointless rows since one Mnesia
table can only hold up to four gigabytes.

5.1.5 Fault Tolerance

As stated before, Erlang suggests a way of dealing with fault tolerance. Super-
visors are used to spawn their children processes whenever they fail and crash.
To achieve this in our system, a supervisor is in charge of managing localDB and
the cowboy HTTP while there’s no need for supervisors for games. Having no
supervisors for individual games ensures that if a problem arises during a lobby
phase, the player can restart the game, and the problem solves itself. Meanwhile,
because there is no supervisor for each game, the lobby server processes and their
monitors can freely exit and free up unused memory, guaranteeing scalability.

5.1.6 HTTPS

The singleplayer game was previously being served with https using apache.
This means that Erlang’s cowboy server must be compatible with it. However
because during the development of the backend server the cipher-suite was not
known, cowboy could not be https. Cowboy uses cipher-suites to manage its re-
quests, meaning that if the same cipher-suite is not used, the request would be
blocked. Due to this, the Erlang server was reverted to its original http, and left
running on a port which is blocked on IP Tables. By doing there’s a guarantee
that there’s no direct requests from the outside to the desired port, for which we
can instead use apache to redirect requests on an open port to the Erlang Server.

5.1.7 Load distribuiton

Because of Erlang’s process oriented nature, the load balancing is easy to manage
as long as it is distributed throughout many processes. During requests, cowboy
spawns a process to handle each request, making it highly scalable for as long
as the machine running the multiplayer server has cores to handle the processes.
However, to increase scalability, MQTT is used. By using MQTT, the need for
blocking while waiting for responses disappears, reducing the overall load on
the http port.
To achieve this, the following logic was implemented:

1: function HANDLER(Req0, State)
2: Runs all the validations on the request
3: Req1← processBody(PostBody, Req0)
4: return ok, Req5, State
5: end function
6: function PROCESSBODY(PostBody, Req0)

56

Implementation

7: Parses mapped JSON contents
8: Sends the message to be published to the process responsible for the specified game
9: return

10: end function

where the code does the following:

• The request headers are verified, and the type of request(CRUD) is also ver-
ified, if valid the processBody function is called and the handler process
finishes its execution.

• Process body parses the message and saves the message contents on their
respective variables verified if the process responsible for this game is valid
and sends the to it(this process is the serverId value from the JSON body)
before exiting.

• The process responsible for the game, receives the message, verifies if this is
a valid client in this game, and sends the message to the process responsible
for the MQTT.

• The process responsible for the MQTT publishes the received message and
exits, freeing memory.

By handling the requests like this, the process can send whatever needs to be
published to the Lobby server and exit. The lobby server is then responsible for
validating if the user is a valid user or not, and publish the response as a val-
idated action message on the MQTT Topic. This is, however, only feasible for
requests which need to be broadcasted, since individual requests still need a re-
sponse, meaning that there are differences in the load distribution for individual
replies and updates during ongoing games, making it less scalable for individual
replies.

5.2 Publish-Subscribe Channels

The backend development was structured around having MQTT handle zoning.
MQTT Topics are structured in a hierarchy similar to folders and files in a file
system using the forward-slash (/) as a delimiter. They also have two wildcard
characters that can be used. They are:

• # (hash character) – multi level wildcard

• + (plus character) - single level wildcard

These can only be used to denote a level or multi-levels e.g /vehicle/# and not as
part of the name to denote multiple characters e.g. vehic# is not valid

57

Chapter 5

Topic naming Examples:

Single topic subscriptions:

• /

• vehicle

• vehicle/car/indicators

• vehicle/car/motor

• vehicle/car/oil

When using a wildcard e.g. vehicle/# we can cover:

• vehicle

• vehicle/car/indicators

• vehicle/car/motor

• vehicle/car/oil

In the case of Science4Pandemic’s game Topics are used to segregate players
amongst the different servers, and because the players need to always keep the
updated zones because there’s a constant simulation of the virus being updated
on the background, it is impossible to use this to separate the zones. Erlang’s val-
idation on the current players allows up to four players to be connect to a game
and therefore up to four players to receive the specific topic they should be listen-
ing to (Server_X). To provide an extra layer of security, mosquitto allows the users
to specify their configuration files, in which IP’s can be blocked from subscribing
or from publishing. By only allowing the server’s IP to publish, the server can
validate the request and filter what should and what should not be published,
preventing cheating.

58

Chapter 6

Evaluation of the Proposed solution

The present chapter documents the methods used to evaluate the proposed solu-
tion, in order to assess if it can hold multiple connections at once (scalability) and
if it is easy to implement for single player games which have been in development
for a long time.

6.1 Scalability

To test the scalability of the backend server, multiple requests will be sent at once,
increasing exponentially as 10n. This will be done through a Wifi connection
using a machine with the following hardware:

CPU Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (8CPUs)

RAM 8GB

GPU Intel(R) UHD Graphics 620

OS Windows 10

The following results were made using Postman’s recent performance tests (which
only go up to 100 virtual users) on the create_game endpoint, which requires a
response:

Virtual Users Total Requests Requests/s Resp. Time(avg ms) Error %

1 49 0.56 50 0

10 473 5.78 71 0.63

100 1240 13.10 831 4.19

From this table we can stipulate that the average Response Time will be higher
than a minute for 1000 concurrent requests and above. This number however,
represents the number of hosts. Since Science4Pandemics’ game in specific has

59

Chapter 6

up to four users per game while only needing one host, the game could hold four
times the amount of requests. Because this results are only for endpoints which
need to process the request and provide a response back to the client they do not
fully represent the backend server. However because there’s no real way of test-
ing the delay between a request being made and a MQTT publish we can only
compare it with the systems implemented which are similar to the implementa-
tion described. In Peer-to-Peer the updates requires every single peer to receive
the update, in a network with n amount of peers, this can cause a delay up to
n*highest_delay since the peer with the highest delay needs to receive the infor-
mation from every other peer. In the proposed solution, because the subscription
to an MQTT topic does not influence individual clients, the highest delay will
be of the person with the highest delay, since any client can read any subscribed
topic’s new publishes once they’re published.

6.2 Reusability

In software development, the pursuit of efficiency and innovation often leads to
the creation of components, modules, and methodologies that offer the poten-
tial for reusability. Reusability, a fundamental principle in software engineering,
holds the promise of accelerating development processes, enhancing consistency,
and promoting best practices across projects. As part of this research, the ex-
ploration of reusability extends beyond the mere creation of software artifacts; it
delves into assessing how effectively these artifacts can transcend their original
contexts and be successfully applied in diverse scenarios.

The Reusability of software components goes beyond technical considerations—it
encompasses adaptability, usability, performance, and the ability to seamlessly
integrate into new projects. This section explores how the backend is adaptative
for implementation on already developed games. During the integration phase
for Science4Pandemics’ game, another thesis project required a backend server.
However the developer was developing the game on his own and did not have
the time to develop a backend server neither to adapt all of his previous code
to be multiplayer-like. This other game was being developed in Godot and the
thesis was the continuation of a previous one so the game was already far in de-
velopment. To achieve Reusability the project needed some changes for which
the documentation was created, and a configuration file was added to make the
integration more dynamic. The configuration file contains the following change-
able settings:

• HTTP port

• Max amount of players per game

• MQTT broker IP

• MQTT broker port

• MQTT Topic Root

60

Evaluation of the Proposed solution

• Heartbeat Interval

• Log File Path

The MQTT settings can be changed to a public broker, but MQTT Topic will be
used in case the user wants to run their own private broker for the game. With
this settings and the documentation, the author of this new game was able to
implement the multiplayer without changing most of his code, and is currently
developing the game in multiplayer mode.

By using MQTT the user can also format the messages, as stated previously the
message body is:
{

"serverId": "Server_1",
"clientId": "client1",
"region": "example_region",
"simValues": "[]",
"actionCode": 0,
"messageBody": "Broadcast Example"

}
This allows the users to use regions or messageBody to alter the messages to
their own liking. Non-related to this thesis in particular it is worth mentioning
the reusability of the MQTT broker by itself. Because the topics works like folders
directories, if each application has a root topic the broker can be used for virtually
anything.

61

Chapter 7

Conclusion

This chapter delivers a concise overview of the primary contributions and dis-
coveries made in this work. It also provides some investigation that can be done
to extend the work from this thesis.

7.1 Contributions and Findings

In summary, this dissertation project embarked on a mission to craft a scalable
and reusable backend server architecture tailored for real-time multiplayer on-
line gaming, with a strong emphasis on economic scalability. Throughout this
dissertation, the unique capabilities of Erlang, MQTT, and Cowboy, were com-
bined to create a versatile system that thrives in the ever-evolving landscape of
online gaming. From the findings I highlight the economic adaptability of this ar-
chitecture, making it well-suited for scenarios where resource optimization and
cost-effectiveness are the top priority:

• Versatility for Future Expansion: The system’s readiness to transition into
multiplayer gaming scenarios positions it as a versatile solution capable of
accommodating evolving needs.

• Economic Viability: By minimizing memory overhead and optimizing re-
source allocation, the architecture proved economically adaptable, making
it a cost-effective solution.

7.2 Learning Outcomes

In embarking on my journey to master Erlang, I found myself delving into a pro-
gramming language that was both unfamiliar and captivating. Notably, Erlang
became my first experience with functional programming languages, marking a
significant pivot in my programming education. As I delved deeper into learning
Erlang, I learned about its exceptional capabilities in managing concurrent pro-
cesses and its ability to distribute workloads seamlessly. This sparked my interest

63

Chapter 7

in load distribution, a concept of utmost importance in the domains of distributed
systems and also in the universe of gaming. During this thesis, to understand the
intricacies of load distribution in gaming scenarios, where the seamless coordi-
nation of resources could make or break player experiences, I experimented com-
bining Erlang’s robust concurrency with MQTT (Message Queuing Telemetry
Transport) as a means to orchestrate the load distribution. MQTT’s lightweight,
publish-subscribe messaging protocol proved to be an elegant complement to
Erlang’s capabilities, offering an efficient means of coordinating game servers
and managing player interactions. Concurrently, my exploration extended to fat
client architectures, where the potential of powerful client-side processing in en-
hancing user experiences and system performance was used. These explorations,
marked by the foundational acquisition of Erlang and the innovative usage of
MQTT, have forged a unique path in my programming journey, blending func-
tional programming paradigms with the complex intricacies of game develop-
ment, distributed system management, and real-time communication.

7.3 Implementation and Goals

The dissertation project not only achieved its desired goals on the Science4Pandemic’s
game but did so in a shorter period than originally anticipated. This efficiency not
only demonstrates the developer’s agility and adaptability but also underscores
the depth of expertise and resources invested. Such an accomplishment not only
met but exceeded initial expectations. This success has enabled the project to
be re-designed into a more generic solution which stands as a testament to the
potential for broader applications. With this change the project was re-designed
as a generic solution, featuring a github page [Calhau] with documentation that
allows the backend server to be adapted towards other projects.

7.4 Future Works

As this thesis project attempts to create a way for scalable and reusable back-
end server architectures, it also beckons the exploration of intriguing avenues
for future research and development. One promising direction lies in further
enhancing the architecture’s adaptability for both peer-to-peer and client-server
hybrid architectures. By extending the current system, researchers and develop-
ers can delve into the intricacies of transitioning from a primarily client-server
model to a more peer-to-peer-centric design, harnessing Erlang’s inherent sup-
port for distributed systems. Such an endeavor would entail not only augmenting
the architecture’s existing capabilities but also exploring mechanisms for seam-
lessly balancing client-server interactions with peer-to-peer communication. In
doing so, the architecture stands poised to redefine the boundaries of online gam-
ing infrastructure, offering a harmonious blend of client-server and peer-to-peer
paradigms. This promising future work holds the potential to enrich multiplayer
gaming experiences by optimizing resource utilization, enhancing fault tolerance,
and ensuring uninterrupted gameplay in diverse network environments.

64

References

Dewan Ahmed and Shervin Shirmohammadi. A fault tolerance procedure for
p2p online games. In 10th International Conference on Information Science, Signal
Processing and their Applications (ISSPA 2010), pages 614–617, 2010. doi: 10.
1109/ISSPA.2010.5605426.

Marios Assiotis and Velin Tzanov. A distributed architecture for mmorpg. In
Proceedings of 5th ACM SIGCOMM Workshop on Network and System Support for
Games, NetGames ’06, page 4–es, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595935894. doi: 10.1145/1230040.1230067. URL
https://doi.org/10.1145/1230040.1230067.

Nathaniel Baughman and Brian Levine. Cheat-proof playout for centralized and
distributed online games. volume 1, pages 104 – 113 vol.1, 02 2001. ISBN 0-
7803-7016-3. doi: 10.1109/INFCOM.2001.916692.

Simon Brown. The c4 model for visualising software architecture. https:
//c4model.com/, (accessed: 14.1.2023).

João Calhau. Erlang backend server. https://github.com/ximaxer/erlang_
backend, (accessed: 14.9.2023).

Sergio Caltagirone, Matthew Keys, Bryan Schlief, and Mary Jane Willshire. Archi-
tecture for a massively multiplayer online role playing game engine. J. Comput.
Sci. Coll., 18(2):105–116, dec 2002. ISSN 1937-4771.

Eric Cronin, Burton Filstrup, and Anthony Kurc. A distributed multiplayer game
server system. 07 2001.

Eric Cronin, Burton Filstrup, and Sugih Jamin. Cheat-proofing dead reck-
oned multiplayer games (extended abstract). 2003. URL https://api.
semanticscholar.org/CorpusID:1280992.

Eya Dhib, Nawel Zangar, and Nabil Tabbane. Virtual machines placement prob-
lem based on a look-ahead workload window over distributed cloud gaming
infrastructure, 11 2019.

Arlen Nipper Dr Andy Stanford. Official mqtt website. https://mqtt.org/, (ac-
cessed: 5.8.2023).

Stefan Fiedler, Michael Wallner, and Michael Weber. A communication architec-
ture for massive multiplayer games. pages 14–22, 04 2002. doi: 10.1145/566500.
566503.

65

https://doi.org/10.1145/1230040.1230067
https://c4model.com/
https://c4model.com/
https://github.com/ximaxer/erlang_backend
https://github.com/ximaxer/erlang_backend
https://api.semanticscholar.org/CorpusID:1280992
https://api.semanticscholar.org/CorpusID:1280992
https://mqtt.org/

Chapter 7

Amazon Games. New world. https://www.newworld.com/en-gb, (accessed:
23.8.2023), a.

Blizzard Games. World of warcraft. https://worldofwarcraft.blizzard.com/
en-gb/, (accessed: 23.8.2023), b.

Chris GauthierDickey, Daniel Zappala, Virginia Lo, and James Marr. Low la-
tency and cheat-proof event ordering for peer-to-peer games. pages 134–139,
06 2004a. doi: 10.1145/1005847.1005877.

Chris GauthierDickey, Daniel Zappala, Virginia Lo, and James Marr. Low la-
tency and cheat-proof event ordering for peer-to-peer games. In Proceed-
ings of the 14th International Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video, NOSSDAV ’04, page 134–139, New York, NY,
USA, 2004b. Association for Computing Machinery. ISBN 1581138016. doi:
10.1145/1005847.1005877. URL https://doi.org/10.1145/1005847.1005877.

Tsun-Yu Hsiao and Shyan-Ming Yuan. Practical middleware for massively
multiplayer online games. IEEE Internet Computing, 9(5):47–54, 2005. doi:
10.1109/MIC.2005.106.

Allan Jon. The development of mmorpg culture and the guild. Australian Folklore:
A Yearly Journal of Folklore Studies, 25:97–112, 01 2010.

Yugo Kaneda, Hitomi Takahashi, Masato Saito, Hiroto Aida, and Hideyuki
Tokuda. A challenge for reusing multiplayer online games without modifying
binaries. In Proceedings of 4th ACM SIGCOMM Workshop on Network and System
Support for Games, NetGames ’05, page 1–9, New York, NY, USA, 2005. Asso-
ciation for Computing Machinery. ISBN 1595931562. doi: 10.1145/1103599.
1103612. URL https://doi.org/10.1145/1103599.1103612.

B. Knutsson, Honghui Lu, Wei Xu, and B. Hopkins. Peer-to-peer support for
massively multiplayer games. In IEEE INFOCOM 2004, volume 1, page 107,
2004. doi: 10.1109/INFCOM.2004.1354485.

Ericsson Computer Science Laboratory. Erlang otp. https://www.erlang.org/,
(accessed: 3.3.2023).

Emmanuel Lety Laurent Gautier, Christophe Diot. Mimaze game. https:
//www-sop.inria.fr/rodeo/MiMaze/, (accessed: 28.07.2023).

Kyung-Seob Moon, Vallipuram Muthukkumarasamy, and A. Nguyen. Reducing
network latency on consistency maintenance algorithms in distributed network
games. 07 2023.

Shah Nawaz and Yiting Xu. A comparison of architectures in massive multiplayer
online games. 10 2014.

Planetarium. Nine chronicles gitbook. https://planetarium.gitbook.io/
nine-chronicles-1/, (accessed: 24.07.2022).

66

https://www.newworld.com/en-gb
https://worldofwarcraft.blizzard.com/en-gb/
https://worldofwarcraft.blizzard.com/en-gb/
https://doi.org/10.1145/1005847.1005877
https://doi.org/10.1145/1103599.1103612
https://www.erlang.org/
https://www-sop.inria.fr/rodeo/MiMaze/
https://www-sop.inria.fr/rodeo/MiMaze/
https://planetarium.gitbook.io/nine-chronicles-1/
https://planetarium.gitbook.io/nine-chronicles-1/

References

Swapna Naik Rutvji Joshi, Dharmik Patel. Implementation of peer-to-peer ar-
chitecture in mmorpgs. https://www.ijsr.net/get_count.php?paper_id=
ART20162499, (accessed: 28.07.2023).

Amazon Games Smilegate. Lost ark. https://www.playlostark.com/en-gb, (ac-
cessed: 23.8.2023).

Brian Storti. The actor model in 10 minutes. https://www.brianstorti.com/
the-actor-model/, (accessed: 2.8.2023).

Ensemble Studios. Official age of empires website. https://www.ageofempires.
com/, (accessed: 7.8.2023).

Bruno Van Den Bossche, Tom Verdickt, Bart De Vleeschauwer, Stein Desmet,
Stijn De Mulder, Filip De Turck, Bart Dhoedt, and Piet Demeester. A plat-
form for dynamic microcell redeployment in massively multiplayer online
games. In Proceedings of the 2006 International Workshop on Network and Op-
erating Systems Support for Digital Audio and Video, NOSSDAV ’06, New York,
NY, USA, 2006. Association for Computing Machinery. ISBN 1595932852. doi:
10.1145/1378191.1378195. URL https://doi.org/10.1145/1378191.1378195.

67

https://www.ijsr.net/get_count.php?paper_id=ART20162499
https://www.ijsr.net/get_count.php?paper_id=ART20162499
https://www.playlostark.com/en-gb
https://www.brianstorti.com/the-actor-model/
https://www.brianstorti.com/the-actor-model/
https://www.ageofempires.com/
https://www.ageofempires.com/
https://doi.org/10.1145/1378191.1378195

	Introduction
	Context
	The Problem
	Goals
	Document Structure

	State of the Art
	Massive Multiplayer Games Background
	Literature Review
	Client Server
	Peer to Peer
	Client Server Architecture
	Techniques to Distribute Load
	Peer-to-Peer Architecture
	Issues in current Peer-to-Peer
	Benefits and Downsides of P2P
	Client Server versus Peer-to-Peer

	Objectives and Methodology
	Science4Pandemics Context
	Objectives
	Methodology
	Requirements
	Non-Functional Requirements
	Risk Management
	Work Plan

	Design Proposal
	Quality Attributes
	Scalability
	Reusability
	Reliability

	Architecture
	Level 1 - Context Diagram
	Level 2 - Container Diagram
	Level 3 - Component Diagram
	Publish Subscribe model
	MQTT

	Proposed Solution
	Erlang
	Advantages of Erlang

	Architecture Summary

	Implementation
	Erlang Multiplayer Server
	Creating and joining a Lobby Server
	Processing Player Actions
	Action Logging and Mnesia
	Player States
	Fault Tolerance
	HTTPS
	Load distribuiton

	Publish-Subscribe Channels

	Evaluation of the Proposed solution
	Scalability
	Reusability

	Conclusion
	Contributions and Findings
	Learning Outcomes
	Implementation and Goals
	Future Works

