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Abstract

The massive breakthrough in the world’s technological landscape has encouraged
companies and businesses to move to the digital medium. This is especially evident
in the payment industry, considering the popularity of online payments and cardless
transactions has increased over the years. Although there is a certain appeal towards
automated and digital payment infrastructure, this also provides new ventures for
criminal activity. Financial fraud is a paramount concern for financial institutions,
and the innovations in the consolidation of prevention systems are rapidly surpassed
by smarter strategies for performing fraud. Financial fraud has registered worldwide
losses exceeding one billion dollars [Bank, 2021] – which represents a major liability
for financial entities.

Manual systems for detection of fraud are becoming obsolete, as they fail to keep
up with smarter criminals and big data. Naturally, Machine Learning stands as
a potential candidate for dealing with this problem provided its automating and
intelligent capabilities, namely, on the detection of patterns from data. The relevant
literature highlights that both tree-based and Deep Learning approaches are widely
used in fraud detection, despite an emerging debate on why tree-based algorithms
consistently outperform Deep Learning on tabular data.

In this thesis, we study the performance gap between tree-based and Deep Learning
algorithms for tabular data, with a focus on fraud detection. We iterate through tree-
based methods, such as Gradient Boosting Decision Trees, and recent Deep Learning
algorithms for tabular data. We explore possible root causes for this gap by applying
several transformations to real data from the payments industry so as to widen (or
shorten) the gap. Our results suggest that the performance gap may generally stem
from a disagreement between the prior assumptions of Deep Learning algorithms and
the properties of tabular data: (i) neural networks misrepresent irregular patterns
in tabular data; (ii) in tabular data, the target is usually a function of just a small
subset of features. Amongst the more recent algorithms, we show that TabNet and
FT-Transformer share some similarities with tree-based methods that allow them to
learn representations that better align with the properties of tabular data.

Keywords

fraud detection, tabular data, gradient boosting decision trees, deep learning

ix





Resumo

A constante inovação no panorama tecnológico mundial motiva as empresas e in-
stituições a cimentarem-se no meio digital. Este movimento torna-se evidente na
indústria dos pagamentos, dado o recente aumento na popularidade de compras on-
line e transações cardless. Apesar de existir um certo apelo à adoção the infrastru-
turas digitais e automatizadas para pagamentos, essa adoção disponibiliza, também,
novos meios para atividade criminosa. Fraude financeira é uma preocupação fulcral
para instituições financeiras, e as recentes inovações na consolidação dos sistemas de
prevenção são rapidamente ofuscadas por esquemas fraudulentos mais inteligentes:
a fraude financeira tem registados perdas, a nível mundial, superiores a um bilião de
dólares [Bank, 2021], o que representa uma vulnerabilidade de maior importância
para instituições financeiras.

Sistemas manuais para deteção de fraude estão a tornar-se obsoletos por não con-
seguirem acompanhar as vagas de criminosos mais inteligentes e o movimento da
big data. Naturalmente, Machine Learning destaca-se como um potencial candidato
para lidar com este problema, pelas suas capacidades de automação e inteligência,
nomeadamente, na deteção de padrões a partir de dados. A literatura destaca que
tanto métodos à base de árvores, como Deep Learning, são bastante utilizados na
deteção de fraude, apesar da existência de um debate sobre o porquê dos métodos
à base de árvores serem consistentemente melhores que Deep Learning em dados
tabulares.

Nesta tese, investigamos a diferença de desempenho entre algoritmos à base de ár-
vores e Deep Learning em dados tabulares, com especial foco na deteção de fraude.
Iteramos sobre métodos baseados em árvores, tais como Gradient Boosting Decision
Trees, e algoritmos recentes de Deep Learning para dados tabulares. Exploramos
possíveis causas para esta diferença de desempenho através da aplicação de trans-
formações sobre dados reais da indústria de pagamentos, de forma a alargar (ou
encurtar) a diferença de desempenho. Os resultados sugerem que a diferença de
desempenho terá origem no desacordo entre os pressupostos dos algoritmos de Deep
Learning e as propriedades dos dados tabulares: (i) as redes neuronais deturpam os
padrões irregulares presentes em dados tabulares; (ii) em dados tabulares, o target
é geralmente uma função de apenas um pequeno grupo de features. De entre os al-
goritmos mais recentes, demonstramos que o TabNet e o FT-Transformer partilham
algumas semelhanças com métodos à base de árvores que possibilitam a aprendiza-
gem the representações melhor alinhadas com as propriedades dos dados tabulares.

Palavras-Chave
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Chapter 1

Introduction

Fraud is an act of "deceiving or misrepresenting" often to "intentionally (...) induce
another to part with something of value" [Dictionary, 2023]. Although fraud itself
spans many distinct yet intertwining domains of everyday life (e.g. telecommunica-
tions, healthcare and insurance fraud), the focus of this thesis lies solely on financial
fraud.

Financial fraud takes place when a perpetrator – also known as the fraudster –
exploits a vulnerability in payment infrastructure to unknowingly and unlawfully
acquire money. This form of criminal activity actively represents a major liability
for financial institutions, as the potential losses far exceed the billion dollar mark
[Bank, 2021]. Indeed, it constitutes a legal obligation to protect its clients and very
often to reimburse them.

The major turnover in the general technological scenery has motivated the large
corpora of financial institutions to "go digital". However, the digitalization of the
payment industry compels criminals to also move to the digital medium, which gives
birth to new vulnerabilities and smarter fraud initiatives. Such a trend revealed that
the manual and orthodox systems for fighting financial fraud are seldom capable of
coping with the increase in criminal activity. Furthermore, Machine Learning (ML)
plays a key role in the adoption of intelligent and automated systems for dealing with
fraudulent activity: a major contender in many other industries (e.g. healthcare,
autonomic vehicles and facial recognition), ML stands out as a potential candidate
for all-encompassing solutions for tackling financial fraud that can fairly handle the
recurrent criminal paradigm shift and the underlying technical complexities.

This thesis describes the general problem of fraud detection and delves into a well-
documented performance gap between tree-based methods, such as Gradient Boost-
ing Decision Trees (GBDTs), and Deep Learning (DL). The aim of this work is to
uncover the possible root causes for the existence of the gap, more so relevant in a
liable domain such as fraud detection.

1



Chapter 1

1.1 Fraud Detection

According to [Bolton and Hand, 2002], fraud detection is the process of identifying
fraud once it has been committed, ideally, as soon as possible. Fraud detection is
commonly associated with its counterpart, fraud prevention, which deals with the
design of measures for preventing acts of fraud, such as PIN-protected cards and
EMV chips. However, such methods are not foolproof and thus fraud detection is
much needed as a mechanism to detect the presence of fraud when prevention fails.

The landscape in fraud activity indicates that the technological growth fueling the
development of better detection mechanisms and payment systems is not decreasing
the incidence of fraud – per se – as much as it is shifting the paradigm for crimi-
nals. With new payment schemes and credit card systems also come new types of
fraud, as criminals are forced to adapt and design innovative strategies. According
to [Report, 2022], over $32 billion was lost to fraud worldwide in 2021, for which
≈ 36.8% of these losses occurred in the United States. The European Central Bank
(ECB) reported that in 2019: (i) the total value of overall card transactions using
cards issued within the Single Euro Payments Area (SEPA) and acquired world-
wide increased by 6.5% compared to 2018, whereas corresponding fraud grew by
3.4%; (ii) the total value of fraudulent transactions using cards issued within SEPA
and acquired worldwide amounted to 1.87 billion EUR [Bank, 2021]. Therefore,
rather than relying on the consolidation of the payment industry and the (unlikely)
withdrawal of adversaries from criminal activity, financial entities ought to devise
state-of-the-art fraud detection mechanisms that encompass a wide range of rapidly
evolving fraud scenarios.

1.1.1 Verticals

Although financial fraud can itself span a considerable set of subdomains, only four
use cases are considered in this work:

• Transaction Fraud is the most common variant and occurs when fraudsters
perform a transaction with a card that doesn’t belong to them, such as stolen
credit cards. Formally, a transaction can either be Card-Present (CP), when
the card is physically present at the merchant, or Card-Not-Present (CNP)
when the payment is performed by providing card details without physically
using the card (e.g. over the internet). CNP fraud gives fraudsters more flex-
ibility and less exposure, whilst CP forces fraudsters to be physically present
at a merchant’s site;

• Anti Money Laundering (AML) is a task concerned with fighting money
laundering: the process of concealing the origins of illegally-obtained money
by passing it through a complex sequence of forged transfers or commercial
transactions. Given its nature, it’s extremely hard to detect;

• Account Takeover occurs when the fraudster illegally accesses an individ-
ual’s bank account to undergo credit transfers, perform payments or withdraw
money;

2
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• Account Opening Fraud, also known as "new account fraud", occurs when
the fraudster opens a bank account under an individual’s name by providing
their personal information. It can happen unknowingly to the individual or
through "friendly fraud": when an individual purposely gives personal infor-
mation to the fraudster to make fake purchases on the account and later argue
that they don’t own the account.

Across every industry and sector, any business engaged in the sale of goods or
services that provides a Point-of-Sale (POS) terminal accepting credit cards as a form
of payment (i.e., a merchant) is vulnerable to endure fraudulent activity in many
forms. Therefore, every business should be concerned with fraud detection under
the aforementioned use cases to protect its assets and maintain a good reputation
within its client base.

1.1.2 Data Mining

Fraud detection is not an easy task, as it involves processing and analyzing massive
amounts of data. For instance, the credit card issuer VISA processed around 226
billion purchase transactions worldwide in 2021 [Report, 2022]. Roughly speaking,
this averages to a total of around 620 million transactions processed per day – a
number so large, that it becomes inconceivable to manually inspect every transac-
tion. Not only that, but it’s decisive that the response time to fraud alerts is as
brief as possible: the limitations of analyzing around 430 000 transactions p/ minute
in a short frame are unquestionable. Moreover, considering the constantly evolv-
ing fraud scenarios and the user behaviour shifting as the payment industry itself
changes, data mining emerges as a strong candidate for tackling the fraud detection
problem in a fast and efficient manner.

The use of data mining for fraud detection concerns the identification of patterns
or anomalies, typically, on data from credit transactions. This is data in tabular
format, where rows represent transactions, and columns comprise details about a
transaction (e.g. merchant code, transaction amount and cardholder ID). Supple-
mentary statistical information is often coupled with the available data, such as
behaviour profiles (e.g. the average amount spent by the cardholder in the past 3
weeks). In real-world scenarios, the data is seldom labelled, which partially explains
why fraud detection is hard to achieve in practice: without the "ground truth" about
a given transaction (whether it’s fraudulent or legitimate), one becomes limited by
the methods (supervised or unsupervised) suitable for this type of data.

The purpose of data mining for fraud detection is not necessarily to play a leading
role in decision-making. Following the principles of machine-in-the-loop learning,
i.e. to incorporate machines in decision-making processes under a supporting role,
one should harness the power of data mining as an instrument to fraud analysts. A
fraud detection system is responsible for analyzing the transactions and flagging sus-
picious ones, which can then be manually inspected by analysts. As such, combining
the domain expertise of fraud analysts with the automated processing capacity of
data mining represents a suitable path towards detecting fraud more efficiently and
further reducing examination costs.

3
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As highlighted by the relevant literature on the subject, practitioners often rely on
machine learning methods to tackle the fraud detection problem and steer away
from rigid rule-based systems [Bhattacharyya et al., 2011; Bolton and Hand, 2002].
A common approach is to exploit the data in ways that off-the-shelf1 methods (e.g.
Neural Networks and Decision Trees) perform better and better, whereas more recent
works have started using DL for its superior predictive ability. Regardless, fraud
detection is bound by a set of challenges that render its deployment cumbersome. For
instance, the very availability of the fraud labels may restrict the set of algorithms
to supervised and/or unsupervised approaches.

1.1.3 Challenges

The fraud detection domain itself raises many challenges, both in theory and in
practice. Foremost, it greatly suffers from class imbalance, as fraudulent transac-
tions usually account for only ≈ 1% of the whole data, which often entails the usage
of sampling techniques for balancing out the class distributions [Bolton and Hand,
2002]. Indeed, such a condition significantly impairs the ability to learn from data
– more so, on domains whose concept is difficult to model, such as fraud detection
[Japkowicz and Stephen, 2002].

Because criminals are compelled to change their approach as payment schemes them-
selves are evolving and detection systems are improving, fraudulent activity may
not look the same now as it did ten years ago (from a data-driven standpoint). The
characteristics of the data change over time (and so its statistical properties), which
quickly renders fraud detection models virtually obsolete – this is called concept
drift.

The need for model interpretability stems from an undesired incompleteness in
problem formalization, which happens to be a particularity of fraud detection: the
legal and financial implications of correct predictions entail the need for an expla-
nation of how a model came to such predictions, given that correct predictions only
partially solve the problem (e.g. "transaction XYZ is fraudulent, but why?") [Mol-
nar, 2022]. Not only that, but in the fraud detection domain, predictive models
cannot afford to be mistaken, at the expense of losing credibility w.r.t the clients:
interpretability can also be leveraged for properly diagnosing faulting models and
correcting them. As such, the fraud domain often demands interpretable models to
comply with transparency and trust guidelines.

Finally, fraud detection is an unpredictable, fast-paced environment. As such,
the slow training times of overly complex and heavily-parameterized models should
often be traded for simplicity and speed at the cost of lower predictive capacity.
However, this trade-off is not always straightforward, and every situation calls for a
different approach.

1Ready to use; sparing the need for expert, manual engineer
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1.2 Motivation

The characterization of the fraud detection domain above revealed suitable paths
for improvement. Foremost, one understands the financial implications of fraud:
businesses and card issuers can (and will) register billions in losses if not properly
protected against fraud from a diverse set of attack vectors. Not only that, but
the domain itself presents many challenges that render practical implementations
somewhat difficult.

The relevant literature suggests that DL approaches have emerged as a strong candi-
dates in fraud detection solutions, despite the well-studied underperformance when
compared against tree-based methods (based on decision/regression trees) in tabu-
lar data (such as the data highly present in the fraud detection domain). Namely,
GBDTs have been extensively used for tabular data problems and remain the long-
established top contenders. This performance gap has been studied w.r.t closing
the gap, but no substantial works have focused on why the performance gap exists
[Borisov et al., 2021; Grinsztajn et al., 2022].

In sum, we highlight a need for a well-rounded, extensive study on why there is a
performance gap between tree-based and DL algorithms for tabular data, with a
special interest in the fraud detection domain, for which the development of better
DL algorithms can substantially improve the performance of fraud detection systems
and thus contribute to reducing the losses of financial institutions, merchants and
card issuers.

1.3 Objectives

This thesis aims to explore the properties of GBDTs and DL algorithms that cause
a performance gap in learning with tabular data. More specifically, the objectives
are three-fold:

• To provide a scoped review of the relevant literature on fraud detection, GB-
DTs and DL for tabular data;

• To conduct experiments that exploit transformations on real data from the
payments industry to shorten (or widen) the performance gap between GBDTs
and DL algorithms;

• To shed more light into why GBDTs still outperform DL on tabular data and
how is this relevant in the fraud detection domain.

1.4 Outline

This thesis is organized in the following manner: Chapter 2 presents a review of the
relevant literature on fraud detection, GBDTs and DL for tabular data. Chapter
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3 describes the fundamental concepts highlighted in the literature review. Chapter
4 describes the research design and methods employed in the experimental work.
Chapter 5 details the experiment work and discusses the results. At last, Chapter
6 presents a summary of the key findings and suggests future work on the relevant
research topics.

1.5 Summary

In this chapter, we provided the problem statement alongside an introduction of the
fraud detection paradigm and its key challenges. Next, we presented the motivation
for this thesis, built upon the problem description. At last, we enumerated the
objectives for this thesis, which contemplates the design of an experimental study
contributing to a better understanding of a known performance gap between GBDTs
and DL algorithms in learning with tabular data.
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State of the Art

In following chapter, we provide a comprehensive review of the state-of-the-art on
the topic of fraud detection with a special focus on approaches for tabular data.
The scope of this literature review encompasses both the earlier works and the most
recent ones for aided perspective. In total, 59 papers were screened and 41 were
reviewed for this chapter (the remainder was excluded for being out-of-context).

2.1 Literature Review

Fraud Detection Fraud detection has been receiving attention from the scientific
community for a long time, since the earlier works of [Aleskerov et al., 1997; Brause
et al., 1999; Chan et al., 1999; Dorronsoro et al., 1997; Ghosh and Reilly, 1994] on
credit card fraud detection, for which they became a known reference in the litera-
ture. In [Aleskerov et al., 1997; Brause et al., 1999; Dorronsoro et al., 1997; Ghosh
and Reilly, 1994], the authors follow a neural network based approach, whereas in
[Chan et al., 1999], the authors propose a distributed method for aggregating clas-
sifiers trained (in parallel) on subsets of the data by a variation of the AdaBoost
(see [Friedman et al., 2000]) algorithm that minimizes a more suitable cost function.
On the other side of the spectrum, in [Bolton and Hand, 2001], the authors lay the
groundwork for research on unsupervised fraud detection with peer-group analysis.

These early works fostered further research on the topic, much of which focused on
the challenges highlighted by them (e.g. class imbalance). Among the most common
approaches are tree-based methods [Bhattacharyya et al., 2011; Pozzolo et al., 2018;
Taha and Malebary, 2020; Wei et al., 2013]. In these works, the authors introduce
new and innovative methods, in the form of either feature engineering (e.g. the
average amount spent over 3 months [Bhattacharyya et al., 2011] or behavioural
patterns [Wei et al., 2013]) and/or combination of other methods (e.g. majority
voting of a cost-sensitive neural network, Random Forest and contrast pattern min-
ing [Wei et al., 2013] or aggregation of two random forests trained on recent labeled
transactions and previous non-disputed transactions, respectively [Pozzolo et al.,
2018]). In [Taha and Malebary, 2020], the authors employ a Bayesian hyperparame-
ter scheme on a Gradient Boosting Decision Tree (GBDT), the LightGBM (see [Ke
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et al., 2017]).

Other works follow different paths that don’t fit into the usual approaches: in [Du-
man and Ozcelik, 2011], the authors use genetic algorithms for hyperparameter
searching and in [Carcillo et al., 2019], the authors use a clustering algorithm to cal-
culate outlier scores at different granularities to generate new features. The works in
[Li et al., 2021; Makki et al., 2019] tackle the problem of class imbalance by training
a classifier on a highly overlapping subset to learn a better decision boundary (in
the former), and by comparing classical approaches, such as Cost-Sensitive models
(in the latter).

A promissing candidate is, however, the Deep Learning (DL) approach; in [Fu et al.,
2016], the authors use a Convolutional Neural Network (CNN) on a time-lagged
feature matrix to derive meaningful data representations of transactions; in [Fiore
et al., 2017], the authors use a Generative Adversarial Network (GAN) to generate
synthetic samples of fraud transactions for dealing with class imbalance; in [Wang
et al., 2019], the authors follow a semi-supervised graph-based approach based on
social relations; in [Zhang et al., 2019], the authors use behaviour analysis to derive
new features, which are then trained by a Deep Neural Network (DNN).

In line with the No Free Lunch Theorem [Wolpert and Macready, 1997], the main
takeaway is that there is no single method that outperforms every other in every
possible scenario and under every constraint. Recently, DL is making a surge in
the fraud detection research corpora – mostly motivated by the remarkable predic-
tive ability across other tasks (e.g. image, text and audio). However, tree-based
models are usually preferred for their compliance with the fraud detection domain
constraints (e.g. explainability and low training times) and natural suitability for
tabular data [Borisov et al., 2021; Grinsztajn et al., 2022; Shwartz-Ziv and Armon,
2022].

Tabular Data Under the domain of fraud detection, typical approaches (like the
ones previously mentioned) involve learning from data related to transactions and
cardholders – tabular data. Tabular data is structured, heterogeneous data or-
ganized in rows (representing observations or samples) and columns (representing
features or dimensions). In tabular data, features are usually of mixed types and
often represent some quality about the data subject (e.g. weight, age, income). The
relevant literature frequently portrays the superior ability of GBDTs to learn from
tabular data, despite the continuous efforts of research on DL to try and close this
well-known performance gap [Borisov et al., 2021; Gorishniy et al., 2021; Grinsz-
tajn et al., 2022; Shwartz-Ziv and Armon, 2022]. However, a relevant question still
remains in the literature: why does this gap exist?

In [Grinsztajn et al., 2022], the authors provide a comprehensive benchmark and
empirically derive possible causes for the existence of the gap, such as neural net-
work’s inability to properly learn irregular functions1 of the target space: tree-based
models learn piece-wise constant functions, which partially explains why they are
generally better at tabular learning. Additionally, the works under [Borisov et al.,
2021; Kadra et al., 2021] suggest that such gap may be caused by DNNs being hy-

1Piece-wise, nowhere-differentiable functions
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persensitive towards improper regularization. Yet, even with so little known about
the true, fundamental causes for this gap, the main line of research seems to be one
that proposes progressively more complex DL architectures to handle the particu-
larities of tabular data, whilst there still lacks a deeper understanding of why there
is a performance gap consistent across several works.

Gradient Boosting Decision Trees Initially proposed by [Friedman, 2001], GB-
DTs are predominantly praised in the relevant literature as the de facto methods
for handling tabular data [Borisov et al., 2021; Gorishniy et al., 2021; Grinsztajn
et al., 2022; Shwartz-Ziv and Armon, 2022]. Fast training times, low complexity,
interpretability and on-par performance across several benchmarks are some of the
reasons they are preferred over DL algorithms, which are known to be architec-
turally complex and taking longer, sometimes infeasible, times to train. Among the
most popular works, stands out XGBoost [Chen and Guestrin, 2016], LightGBM
[Ke et al., 2017] and CatBoost [Dorogush et al., 2018]. Notwithstanding, there are
some disadvantages associated with these tree-based methods, such as poor scalabil-
ity and relying on proper feature engineering to perform well (which itself demands
domain knowledge about the problem). The state-of-the-art performance on estab-
lished benchmarks across other tasks and the suitability for deployment in federated
and online learning scenarios are grand motivations for the adaption of DL methods
to tabular data – specially – in the domain of fraud detection, in which the predic-
tive performance is as crucial as the ability to learn models in a sequential fashion
[Borisov et al., 2021; Sahoo et al., 2017]. Perhaps most importantly, DL’s inherent
feature learning relieves the burden of performing feature engineering by encourag-
ing the learning of compact representations from tabular data [Bengio et al., 2013,
2009; Borisov et al., 2021].

Deep Learning DL for tabular data has been a popular research topic for quite
some time, namely, on the design of novel architectures. Some works address the
issue of non-differentiability in decision trees by proposing a smooth decision function
in the internal nodes, allowing them to be trained with gradient descent [Katzir
et al., 2020; Kontschieder et al., 2015; Popov et al., 2019; Yang et al., 2018]. Other
works adopt the attention mechanism (see [Vaswani et al., 2017]) to incorporate
attention modules in tabular-specific DNN architectures, which enables the learning
of meaningful representations from data [Gorishniy et al., 2021; Huang et al., 2020;
Somepalli et al., 2021; Song et al., 2019]. Other lines of reasoning include heavy
regularization of a Multi Layer Perceptron (MLP) [Kadra et al., 2021; Shavitt and
Segal, 2018], numerical feature embeddings [Gorishniy et al., 2022] and Generative
Adversarial Network (GAN) based synthetic data modeling [Xu et al., 2019]. A
well-known work is that of [Arik and Pfister, 2021], wherein the authors leverage
sequential attention to perform feature selection with DNN blocks.

In another line of work, the authors in [Badirli et al., 2020] unify both approaches and
employ gradient boosting with shallow neural networks as weak learners. However,
we argue gradient boosting (in itself) doesn’t hold any property that makes it more
suitable for tabular data: the gap is most likely caused by internal inductive biases2

2The prior assumptions of a learning algorithm
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of the core algorithms, i.e. trees and neural networks, than by the inductive biases
of gradient boosting – that a concept can be learned by sequential approximation of
weak learners. Even going further and increasing the capacity of the weak learner
(e.g. by using a DNN) not only goes against the virtue of (gradient) boosting
but renders training computationally intractable by yielding overly-parameterized
models.

Notwithstanding, no substantial work on uncovering the useful inductive biases for
learning data tabular has been reported [Grinsztajn et al., 2022]. A deeper under-
standing of GBDTs, DL algorithms and the performance gap in tabular data may
drive practitioners into designing better algorithms that can leverage the represen-
tational potential of DL to further shorten the gap.

The literature gap From the reviewed literature, some common pitfalls are
raised: (i) only a portion of the works (50%) tackle the fraud detection from the
domain perspective and consider appropriate, industry-related evaluation metrics.
The fraud domain entails the need to measure performance under a tolerance on
the amount of false positives, as these can incur significant losses to the card is-
suers; (ii) only a portion of the works (16%) provide results under a comprehensive
benchmark, whilst the majority evaluate on only one dataset. This selection bias
leads to results that may not be representative of the fraud detection domain; (iii)
a portion of the works (16%) learn the algorithms on a commonly used dataset3,
for which the numerical features are transformed via Principal Component Analysis
(PCA), which compromises interpretability and prevents tree-based methods from
performing well.

Extending the performance gap debate to the fraud detection domain is much
needed. Indeed, we highlight the need for a comprehensive study that: i) evaluates
on several heterogeneous, real-world tabular datasets from the payments industry
ii) evaluates performance on domain-appropriate metrics.

Bearing this in mind, by applying several data transformations to shorten (or widen)
the performance gap, we ought to empirically derive some of the inductive biases
behind this gap. Understanding (and bridging) such a gap is of the utmost impor-
tance, either under an academic context or under a critical, fast-paced industry such
as fraud detection.

Therefore, the following work hypotheses are proposed:

1. Considering the representational capacity of neural networks, we explore the
representations learned by DL algorithms. From a high-level standpoint, DL
algorithms first perform a sequence of arbitrary transformations to data – to
learn compact representations – and later apply a linear classifier. In line with
[Borisov et al., 2021], we argue these learned representations lose information
w.r.t the original data. As opposed to tree-based methods, neural networks
learn representations via linear and non-linear relationships that may misrep-
resent the relationships in tabular data.

3https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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We argue that the misrepresentation of tabular data as compact representa-
tions contributes to the performance gap between tree-based methods and DL
algorithms. To that extent, we evaluate tree-based methods on the represen-
tations learned by DL algorithms to understand how are the hidden layers
manipulating the data and how it affects the performance gap.

2. We explore feature informativeness in tabular data as a favorable property
for tree-based methods. Tabular data often contains redundant and irrelevant
features, wherein the target function is usually modeled by just a subset of
relevant features. Tree-based methods’ inductive biases render them ideal for
this type of data, whereas neural networks are not robust to uninformative
features [Grinsztajn et al., 2022; Ng, 2004].

Tree-based methods often require prior feature engineering to uncover relevant
features as they are unable to model implicit relationships between features.
Neural networks, on the other hand, do this automatically as part of learning
compact representations. We argue that tree-based methods benefit from rich
features and that the performance gap can be increased by aggregating fea-
tures of varying degrees of complexity. Indeed, explicitly representing linear
and non-linear relationships in tabular data should help tree-based methods
to leverage all the implicit information in the raw input and thus improve
performance.

2.2 Summary

In this chapter, we presented the state-of-the-art on fraud detection and learning
with tabular data. We covered both the tree-based (e.g., GBDTs) and the DL
approaches for learning with tabular data. We highlighted there’s a need for a
comprehensive study that considers real-world tabular data from the payments in-
dustry and domain-appropriate metrics. Next, we underlined the lack of substantial
works on finding the root causes for the performance gap between tree-based and
DL algorithms for tabular data. Finally, we proposed a work hypothesis focused on
extending the study of the performance gap to the fraud domain.
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Background

In the following chapter, we provide a comprehensive description of the background
on tabular data, gradient boosting, Deep Learning (DL) and state-of-the-art meth-
ods to be used in the experimental work.

Notation In this thesis, the focus lies on supervised classification tasks for tabular
data. For that, let’s assume a dataset D of N observations x expressed as a d-
dimensional vector of d features {xi}di=1, where xi is the N -dimensional vector of the
i-th feature, and a target variable y ∈ {0, 1}. The goal of a learning algorithm is to
learn a parameterized function f(x; θ) of the input space X , such that f : X → Y ,
subject to minimizing an arbitrary loss function L (y, f(x)) over the joint distribution
of all possible values.

We use ρ for probability, ◦ for the Hadamard product, µ̃ for population median, U
for a uniform distribution and N for a normal distribution.

Definition 1 (Inductive Bias [Battaglia et al., 2018]). An inductive bias is a prior
assumption about the concept and/or data intrinsic to a learning algorithm. An
inductive bias naturally constraints the space of solutions to a specific class of func-
tions. Generally, one aims to align a problem with the inductive biases of a learn-
ing algorithm, as strong (or inadequate) inductive biases unsuitably constraint the
space of solutions and lead to poor generalization. Tree-based methods, e.g., hold
the inductive bias that the target function is described by only a subset of rele-
vant features and constraint decision boundaries to be parallel to the axes (e.g., to
compute x1 > x2, we must transform x1 − x2 > 0).

3.1 Tabular Data

Tabular data consists of data that is presented in tabular form, where each row
is an instance (object) described by several features (in columns). As opposed to
image or text data, tabular data doesn’t exhibit spatial and semantic relationships
across instances and/or features (e.g. there is no contextual and local structure in
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neighbouring data points1). Tabular data is heterogeneous by nature: comprising
features of mixed types, such as continuous and discrete values, and categorical
variables, which belong to a nominal (no intrinsic ordering) or ordinal scale. In
tabular data, each feature has a different meaning and encodes some quality about
the data subject (e.g. weight, age, income).

Table 3.1: Common tabular data example in fraud detection

account ID timestamp amount transaction type ... is fraud?
21454 125424542 5.99 TYPE_CARD ... 0
10433 125436436 86.2 TYPE_QR ... 0
46584 125476421 1500.0 TYPE_CARD ... 1
98437 125488793 46.0 TYPE_TRANSFER ... 0

Figure 3.1 illustrates a common example of tabular data in fraud detection. There
is a mix of continuous and discrete values, and categorical features. An evident
property is that of semantic constraint, when the range of a given feature depends
on the value of another feature. Indeed, the presence of categorical features can in-
duce multimodal distributions on numerical features. This also entails the existence
of relevant and redundant features: the target function can highly depend on the
values of feature a and not change at all for the values of features b and c. Indeed,
tabular data often exhibits irregular patterns, i.e. piece-wise nowhere-differentiable
functions, in the feature space. Finally, and especially in the fraud domain, fea-
tures can take up different values across a temporal axis; transactions reflect user
behaviour, and user behaviour changes along time causing a distribution drift.

Most algorithms are not natively equipped with categorical support, hence the usual
need for encoding categorical features into a numerical representation. A natural
approach is to perform One-Hot Encoding (OHE) of categorical features, which leads
to highly sparse feature vectors, and is further aggravated by features with high
cardinality. Encoding methods, such as ordinal encoding, force an ordinal sequence
that may not adequately represent the nature of feature: encoding transaction
type into an ordinal is misleading as there is no inherent ordering.

3.2 Gradient Boosting Decision Trees

At the core of Gradient Boosting Decision Trees (GBDTs) lies the decision tree.
Tree-based methods (see [Hastie et al., 2009; James et al., 2013]) partition the feature
space into disjoint regions (or leafs) and model the target variable by the most
occurring class in a given region2. At each internal node, the tree algorithm searches
for the best splitting feature and value such that the resulting regions minimize a
given cost function (e.g. the Entropy). This is done successively, in a top-down
approach, until some stopping criterion is met3. Tree-based methods are known to

1i.e. pixels in an image or words in a sequence
2In a classification setting
3For sake of simplicity, we refer to binary splitting
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Figure 3.1: Tree decision manifolds for irregular data (left) and non-linear, smooth
data (right). t1, · · · , t4 are the threshold values for features {x1, x2}.

be reasonably accurate and natively interpretable, at the expense of being sensitive
to small changes in data (which leads to high variance), being non-differentiable and
quickly growing the number of leafs as depth increases.

In essence, a tree partitions the feature space into regions by performing axis-aligned
splits such that the class overlap in each region is as small as possible. The ability to
learn piece-wise constant functions allows tree-based methods to capture the irregu-
lar patterns common to tabular data. Figure 3.1 illustrates the decision manifold of
a tree, showcasing its hard decision boundaries. Naturally, tree-based methods tend
to perform worse when the feature space is highly non-linear as they can neither
trace affine hyperplanes nor perform orientations of the feature space. Indeed, tree-
based methods being good feature selection algorithms is linked to its sensitivity
to the orientation of the data [Ng, 2004], which partially explains its suitability to
tabular data: tree-based methods perform well well in settings where there’s only
a subset of relevant features. Therefore, trees’ inductive biases align well with the
properties of tabular data.

3.2.1 Boosting

In line with [Hastie et al., 2009], boosting is regarded as a general procedure for se-
quentially combining many weak learners (an algorithm that performs only slightly
better than random guessing) into a powerful one – usually refered to as the "com-
mittee". Historically, this committee was built by taking a majority voting of the
individual weak learners, although decade-old developments have pushed boosting
to greater capabilities that have evolved well beyond past that.

The rationale behind boosting is that the error associated with any weak learner
can be substantially reduced by forcing it to look to data on which it’s expected to
perform poorly [Schapire and Freund, 2012]. This assumption alone seems enough to
prove boosting’s ability to resist overfitting, although there is no concrete theoretical
proof that such is always true. In fact, the practical implications of boosting are far
more impressive than the underlying theory would otherwise imply [Friedman et al.,
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2000].

In line with [Friedman et al., 2000], boosting is a stagewise procedure for fitting
a linear combination of basis functions, i.e. it approximates a decision boundary
in a forward-stagewise fashion by iteratively fitting a weak learner to the residuals
(error) of the previous weak learner. In the virtue of boosting, one should seek
to use very simple and naive algorithms as the weak learner, which comprises the
surplus benefit of trading complexity for simplicity and feasible computation. For
this study, we restrict the weak learner to be the (decision) tree.

3.2.2 Gradient Boosting

The idea behind gradient boosting is to fit the weak learner to the gradient of
the previous one to correct its mistakes [Friedman, 2001]. This represents a more
attractive approach, as the tree parameters cannot be optimized with traiditional
optimization techniques. Instead, computing the gradient w.r.t. to the tree param-
eters yields the step size on the direction of minimizing the loss function. Hence,
a tree is first fit to the error – the pseudo-residuals – and the linear combination
coefficients are learned by minimizing an arbitrary loss function in each tree region
[Hastie et al., 2009]. In sum, gradient boosting performs an optimization in the
tree’s parameter space followed by optimization in gradient (or function) space.

Algorithm 1: Gradient Tree Boosting [Friedman, 2001; Hastie et al., 2009]
Input: input (x, y), no. of iterations M , shrinkage ν

1 begin
2 Initialize f0(x) = argminγ L(y, γ)
3 for m = 1 to M do
4 Compute pseudo-residuals rm = −

[
∂L(y,f(x))

∂f(x)

]
f=fm−1

5 Fit tree to the pseudo-residuals rm yielding L regions/leafs {Rm,l}Lm

1

6 for l = 1 to Lm do
7 γm,l = argminγ

∑
x∈Rm,l

L(y, fm−1(x) + γ)

8 end
9 fm(x) = fm−1(x) + ν

∑Lm γm,l1(x ∈ Rm,l)

10 end
11 fM(x)←− Final ensemble model
12 end

Algorithm 1 illustrates the general case of gradient tree boosting, where 1(·) repre-
sents the indicator function and ν is the shrinkage parameter which acts as learning
rate. For (binary) classification, the loss function is usually the negative binomial
log-likelihood (or log loss) [Friedman et al., 2000]:

L(y, f(x)) = −y log(f(x))− (1− y) log(1− f(x))

Indeed, gradient boosting allows trees to learn some of the even more irregular
patterns in data by approximating the decision boundaries. There is an implicit
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Figure 3.2: XGBoost’s default decision diagram. XGBoost avoids needless compu-
tations and decides on the default direction for missing values (adapted from [Chen
and Guestrin, 2016]).

inductive bias here: a function can be approximated by taking simple guesses and
improving by taking short steps at a time, i.e. the space of solutions is constrained
to that of simple and naive models.

In particular, gradient boosting doesn’t seem to leverage any inductive bias that
is particularly useful for learning over tabular data – (decision) trees are naturally
adequate for settings wherein few features are relevant and the feature space is
separable by piece-wise constant functions. Therefore, any strong inductive bias
in gradient boosting resides in the choice of the weak learner. The suitability of
gradient boosting to tabular data seems to stem from the ability to reduce bias.

3.2.3 Known implementations

Under the umbrella of GBDT, the following implementations dominate the relevant
research papers and competitions, consistently achieving optimal results in tabular
data tasks [Shwartz-Ziv and Armon, 2022]. A key role of these implementations is
to improve some aspect of GBDT (e..g reducing overfitting) by improving the split-
search algorithms, appending regularization techniques and/or sampling methods.

XGBoost XGBoost [Chen and Guestrin, 2016] is a GBDT which comprises a
weighted quantile sketch for learning the tree structure and a sparsity-aware algo-
rithm. The authors also propose a new regularized loss function that penalizes the
complexity of the model by encouraging the preference of shallow learners (small
number of leaves). XGBoost improves the default greedy strategy for finding the
optimal splitting points by defining candidate splitting points and binning continu-
ous features according to candidate points – this technique shares some similarities
with histogram-based splitting [Ke et al., 2017]. The candidate points are proposed
via a quantile sketch algorithm: an approximate histogram is formed by computing
the quantiles for random subsets of the data and the quantiles are used as (candi-
date) splitting points. The sparsity-aware algorithm incorporates a default decision
for every internal node for dealing with sparse data, as seen in Figure 3.2; this
effectively reduces computational effort towards sparse features, which are largely
common in tabular data.
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Figure 3.3: LightGBM’s histogram building. Continuous features are bucketed into
n bins. O(·) is effectively reduced as the number of bins is usually far smaller than
the number of unique values in continuous features.

LightGBM LightGBM [Ke et al., 2017] replaces the greedy exact algorithm for
optimal split point finding with histogram-based splitting, which reduces O(·) of
finding the splitting points. Similarly to XGBoost, the histogram-based algorithm
buckets continuous features and uses the bins to build the feature histograms, as
seen in Figure 3.3.

Additionaly, it employs Gradient One-Side Sampling (GOSS), a technique that keeps
instances with larger gradients and randomly downsamples instances with smaller
gradients; naturally, observations with larger gradients are more under-trained, and
thus contribute more to the splitting criterion. GOSS simultaneously samples the
data without skeweing the distribution and provides superior computational char-
acteristics.

LightGBM incorporates bundling mutually exclusive features4 into individual fea-
tures; this is achieved by expressing the feature bundling as a graph coloring problem
(where features are vertices and edges are added for every two non-mutually exclusive
features) and solving the graph via a greedy algorithm. After building the feature
bundles, these are merged into individual features by transforming feature values
through an offset (the upper bound of each feature) so that different features can re-
side in different discrete bins. Figure 3.4 illustrates how Exclusive Feature Bundling
(EFB) works. EFB is useful for reducing dimensionality in settings dominated by
redundant features – such as tabular data.

LightGBM also includes a native technique for encoding categorical features built
upon the idea of grouping (or encoding) categorical values for minimum variance
within groups [Fisher, 1958]. LightGBM then sorts each categorical feature his-
togram according to its accumulated values5 and finds the best split on the sorted
histogram.

CatBoost CatBoost [Dorogush et al., 2018] is a GBDT that uses Oblivious De-
cision Tree (ODT)s [Kohavi, 1994] as the weak learners. An ODT uses the same

4Features taking non-zero values simultaneously
5Ration between the sum of the gradient and the sum of the hessian
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Figure 3.4: LightGBM’s Exclusive Feature Bundling diagram. LightGBM forms a
graph coloring problem where features are vertices and edges are traced between non
mutually exclusive features – unconnected vertices (features) are bundled together.
LightGBM merges bundles by placing features in different bins.

splitting criterion across the internal nodes of a given level, which renders more bal-
anced (symmetric across a vertical axis) trees and combats overfitting. Figure 3.5
illustrates an ODT. Similarly to Stochastic Gradient Boosting (SBG) [Friedman,
2002], CatBoost incorporates bagging into the boosting procedure by generating
random permutations of the data and computing the pseudo-residuals on "new"
instances.

CatBoost provides native support for categorical features that is similar to target
encoding (replacing a category with the average target value for that category). Cat-
Boost goes beyond by leveraging the data permutations of the dataset and applying
target encoding using only instances placed before a given instance (which reduces

Figure 3.5: Oblivious Decision Tree diagram. Internal nodes at the same depth use
the same splitting feature and point.
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Figure 3.6: Neural Network decision manifold for tabular data (left) and after an
(ideal) transformation through the hidden layers (right). t1, · · · , t4 are the threshold
values for features {x1, x2}.

overfitting).

3.3 Deep Learning

DL [Goodfellow et al., 2016; Russell, 2010] is built upon the idea of learning a com-
plex concept by expressing it in terms of simpler concepts. Indeed, DL is deeply
connected with learning representations from data, as opposed to traditional ma-
chine learning which often requires some sort of manual feature engineering: DL
affords the possibility to save labour and learn compact representations of features
directly from raw data.

At the core of DL lies the neural network. The atomic building block of a neural
network is the neuron, a mathematical unit that receives some input, performs a
computation, and outputs a real value based on an arbitrary activation function –
a measure of neuron "strength" or "relevance". A Feed Forward Neural Network
(FFN) connects neurons in a forward fashion, so that each neuron is a function of
its current input only and forwards its activation downstream to the next neurons.
These neurons are grouped into a series of layers chained together, starting on the
input layer and ending on the output layer. Every layer in-between is refered to
as an hidden layer, and these receive inputs from the preceding layer and output
an activation onto the next layer. The hidden layers are defined by weights that
connect neurons between layers and an additional bias term.

In the context of supervised learning, a FFN is trained by minimizing a loss function
via gradient descent through backpropagation, i.e. propagating the error backwards
through the hidden layers. The weights are adjusted by the negative gradient of
the loss function w.r.t to the weights, so neurons with larger gradients (errors)
have larger weights. Neural networks usually require some form of regularization to
avoid overfitting, which is the case of the learning rate which controls the step size
(alongside the negative gradient).

20



Background

The power of the hidden layers resides in the ability to manipulate and transform
data such that it becomes linearly separable, as illustrated in Figure 3.6. The output
layer of a neural network is essentially a linear classifier that traces an hyperplane.
However, on the original input, its decision boundaries appear non-linear as a result
of backtracking all the transformations and non-linearities performed by the hidden
layers. Nonetheless, tracing non-linear boundaries for data that is best described
by piece-wise constant functions seldom yields the best result – at least, without
proper regularization [Kadra et al., 2021; Shavitt and Segal, 2018]. Indeed, we
hint at a possible cause for the performance gap: the neural network’s inductive
bias stating that "data exhibits linear relationships" doesn’t hold for tabular data
wherein relationships between features manifest as irregular functions.

3.3.1 Deep Neural Networks

Deep Neural Networks (DNNs) [Goodfellow et al., 2016; Russell, 2010] are neural
networks with multiple hidden layers, whose practical usefulness (among many)
resides in learning non-linear representations. Utilizing deep architectures encodes
a very general inductive bias in DNNs: the problem to be learned is complex but
can be expressed as a composition of more abstract and simpler concepts.

DNNs are usually regarded as a general concept and serve as basis for the develop-
ment of complex architectures with different types of layers (e.g. convolutional and
recurrent layers), which compose the building blocks of many widely used deep ar-
chitectures in modern applications, such as Convolutional Neural Networks (CNNs)
(e.g. image processing), Recurrent Neural Networks (RNNs) (e.g. modelling se-
quential data) and Transformers (e.g. natural language processing).

Multi Layer Perceptron The simplest example is the Multi Layer Perceptron
(MLP): a DNN composed of linear hidden layers. A linear layer performs an affine
transformation via a learnable weight matrix followed by a non-linear "squashing"
function:

Linear(x) = Wx+ b

ϕ(x) = a(Linear(x))
(3.1)

This type of DNN block is also known as a Fully Connected Neural Network (FNN)
or Fully Connected (FC) layer, as Linear(x) is a function of all the inputs, i.e. all
neurons are connected. The activation function a(·) is a matter of design choice,
being the most common the REctified Linear Unit (ReLU):

ReLU(x) = max(0, x)

Training A MLP is usually trained via backpropagation with Stochastic Gradient
Descent (SGD). Training a MLP (and other neural network blocks for that matter)
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is difficult, given that vast number of parameters (weights and biases6) one usually
faces. Training is usually performed across multiple batches of the input data,
which is usually a matter of finding a good balance between using enough samples
for accurate estimates and keeping computational overhead low.

Normalization Because optimization is done via SGD, neural networks usually
get stuck in plateaus and local minima derived from the gradients approaching very
small values – this is known as the vanishing gradient. Practitioners often employ
normalization layers to address the vanishing gradient problem. Among many, a
common approach is to use a Batch Normalization layer between hidden layers to
normalize data over the mini-batches.

Regularization Neural networks are prone to overfitting if encouraging some
weights to take large values or to saturate7. Practitioners often employ regulariza-
tion techniques to help neural networks avoid overfitting. Among many, a common
approach is to use a Dropout layer after activation functions; Dropout randomly
"zeroes" elements of the input space with probability ρ. Early stopping is also
commonly used and consists of stopping training if patience (a threshold) epochs
without improvement on the validation set have passed.

Non-linear Activations Non-linear activation functions allow neural networks
to model non-linear interactions in data by "squashing" neuron outputs. ReLU(x) =
max(0, x) is amongst the most widely used: although ReLU generally learns highly
sparse representations (by pushing negative neurons towards saturation), it also
solves the problem of the vanishing gradient.

Recent advancements extend activation functions to actual DNN blocks, such as the
Gated Linear Unit (GLU) [Dauphin et al., 2017] and the REctified Gated Linear
Unit (ReGLU) [Shazeer, 2020]:

GLU(x) =σ(Linear(x)) ◦ Linear(x)
ReGLU(x) =ReLU(Linear(x)) ◦ Linear(x)

Amongst the relevant works, TabNet uses the GLU activation and FT-Transformer
uses ReGLU.

Initialization Schemes Initialization of the neural networks parameters, particu-
larly of weights, is itself an active field of study. Notably, improper initialization may
lead towards plateaus and local minima. Typically, the weights are initialized by a
random uniform distribution, although some novel schemes such as Xavier [Glorot
and Bengio, 2010] and Kaiming [He et al., 2015] remedy some issues of DNNs:

6This refer to the bias term in a linear layer
7Approach values ≈ 0
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(Xavier) W ∼ U
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]

where W is the weight matrix and nj is the number of neurons in the j-th layer.
Indeed, Xavier initialization alleviates saturation of the top layers for sigmoidal
activations. However, Xavier initialization fails to converge for deeper networks and
doesn’t take into account the non-linearities of ReLU activations (and its variants).
TabNet uses Xavier initialization and FT-Transformer uses Kaiming initialization.

Embeddings An embedding is a vector representation of another vector, com-
monly used in DL to encode certain variables. Embeddings can have arbitrary sizes,
ranging from one-dimensional embeddings – scalars – to n-dimensional embeddings.
At its core, an embedding layer is a learnable lookup table for storing vector repre-
sentations, e.g. of categorical features.

An embedding layer differs from a linear layer in the sense that an embedding layer
doesn’t perform any operation on the input (it works as lookup table), whereas a
linear layer performs matrix multiplication. Thus, embeddings are generally used
for encoding categorical features and the weights of the embedding (the vector rep-
resentation) are learned via backpropagation. Algorithms such as TabNet and FT-
Transformer leverage embedding layers to encode categorical features.

3.3.2 Known Implementations

The published works proposing novel architectures can be categorized into 3 distinct
approaches: i) attention-based ii) transformer-based and iii) differentiable trees. We
chose an implementation from each category based on algorithm intricacy and the
recent popularity among research works about the performance gap between GBDT
and DL.

Multi Layer Perceptron Regarding the MLP, we adopt an architecture identical
to the one formalized in [Gorishniy et al., 2021]:

MLP(x) = Linear(MLPBlock(...(MLPBlock(x))))
MLPBlock(x) = Dropout(ReLU(Linear(x)))

(3.2)

In a MLPBlock, the Linear layer performs an affine transformation as in Equation
3.1 and the Dropout layer acts as a regularization mechanism.

Fundamentally, each MLPBlock is performing some form of non-linear transformation
over x of the form ϕ : Rm → Rn, whilst the last Linear layer – referred to as the
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head – performs a transformation of the form ϕ : Rm → R1 (in a binary classification
task). Conceptually, we can think of the MLP as a sequence of transformations
that manipulate the input space x, where each MLPBlock is learning a different
representation of x and the head is essentially performing logistic regression on Rn.

In a MLP, the sequence of MLPBlocks manipulate the input space into one wherein
data is linearly separable and the head traces a hyperplane in Rn space, just as the
one portrayed in Figure 3.6. Geometrically, these blocks perform a change of basis
by representing the same set of data points on a different coordinate system – matrix
W is the coordinate system matrix for which the i-th column is the basis vector of
the i-th dimension.

Naturally, the representations learned at intermediate layers may lack the informa-
tion content initially present in the original coordinate space. This is especially the
case for tabular data, wherein features carry individual meaning (e.g. transaction
type) and exhibit different statistical properties, which are not preserved in these
representations. Indeed, some representations may go as far as to misrepresent the
irregular patterns in tabular data via linear (and non-linear) dependencies. This is
not necessarily bad, albeit not ideal for tabular data wherein features usually follow
multi-modal distributions and generally encode prior knowledge about the concept
– homogeneous data (e.g images) largely benefit from representation learning by
encouraging the learning of latent features.

TabNet TabNet [Arik and Pfister, 2021] is a DNN adaptation for tabular data
based on sequential top-down attention for reasoning which features to use at each
decision step. TabNet performs instance-wise feature selection by learning a sparse
mask (selecting just a subset of features) which enables the focus on specific parts
of the input sequence at each decision step – TabNet’s sequential processing archi-
tecture allows for a greater representational capacity.

Part of TabNet’s novel approach stems from the aggregation of decision outputs
at each decision step to build tree-like decision manifolds: a linear transformation
defines boundaries via a bias factor and a ReLU activation "zeroes" the regions. In-
deed, TabNet claims to trace almost parallel splits via approximation of hyperplane
boundaries.

TabNet employs a learnable embedding layer to natively encode categorical features.
TabNet claims one-dimensional embedding (i.e. scalars) to suffice, although higher-
dimensional embeddings may improve performance at the expense of interpretability.

We adopt the architecture formalized in the original paper [Arik and Pfister, 2021]:

TabNet(x) = Encoder(Embedder(x))

Embedder(x) =
[
xnum,

[
Embedding1(x

cat
1 ), ..., Embeddingt(x

cat
t )

]]
Encoder(x) = Step(...(Step((FT(BN(x))))

Step(x) = FT(x ◦ AT(x)))

(3.3)

Figure 3.7 illustrates TabNet’s architecture. The Embedder learns an embedding
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Figure 3.7: TabNet’s architecture. All features are considered across decision steps,
but AT learns a sparse mask for selecting just a subset of features which are processed
by FT and yield the decision output. The decision output is aggregated at each step
and passed through a Linear layer to compute the decision (adapted from [Arik
and Pfister, 2021]).

layer Embedding for each categorical feature and numerical features are kept raw.
BN stands for Batch Normalization, FT stands for Feature Transformer and AT stands
for Attentive Transformer8. The decision output is built as follows:

Out =
∑

[ReLU(Step1), ..., ReLU(Stepn)]

Prediction = Linear(Out)
(3.4)

In a similar fashion to the sequence of MLPBlocks in the MLP, the Encoder in
TabNet’s architecture is manipulating the input space x by performing a mapping
ϕ : x → x′ wherein data becomes linearly separable. TabNet leverages a sequential
architecture to reason different parts of the input at different steps: at each Stepi,
the FT processes the features selected at Stepi−1 by the AT. The AT learns a mul-
tiplicative sparse mask that performs instance-wise sparse feature selection, which
encourages the focus on a select subset of features:

AT(x) = sparsemax(BN(Linear(x)) ◦P)

FT(x) = [[Block1, ..., Blockn_shared] , [Block1, ..., Blockn_independent]]
Block(x) = GLU(BN(Linear(x)))

(3.5)

The sparse mask is balanced by the scale term P which weights how much a feature
has been used. sparsemax [Martins and Astudillo, 2016] extends softmax by allowing
sparse probabilities9 which in turn encourages sparse selection of relevant features.
TabNet concatenates layers shared across all steps and also step-specific layers to
prevent poor generalization and hyper-focusing on certain parts of the input. The
output of the FT is non-linearly transformed by a ReLU activation and is further

8the "Transformer" designation has no relation with the widely-known Transformer architecture
[Vaswani et al., 2017]

9In softmax, probabilities never reach 0, only ≈ 0
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Figure 3.8: FT-Transformer’s architecture. FeatureTokenizer learns an embedding
and appends a [CLS] token to the sequence. L Transformer layers are applied to the
data. The [CLS] token at the final Transformer layer is used for the output. (left)
Transformer block architecture (adapted from [Gorishniy et al., 2021]).

aggregated across every Step before passing through a Linear layer which produces
a tree-like decision manifold.

The presence of a feature selection mechanism hints at a possible inductive bias
of TabNet similar to one held by tree-based methods: the data is dominated by
redundant features and the target function depends only on a subset of relevant
features. Indeed, using sparsemax and sparse regularization of the learnable mask
encourages sparse selection which in turn favors the inductive bias above.

FT-Transformer FT-Transformer [Gorishniy et al., 2021] is an adaption of the
Transformer architecture to tabular data that exploits DNN blocks in the context
of tabular data. In a two-step process, FT-Transformer implements a learnable
embedding layer for both numerical and categorical features so all features can be
utilized by the Transformer layers [Gorishniy et al., 2022], and then applies a stack
of Transformers to the processed input. The Transformer architecture here is key to
focusing on different parts of the input sequence and modelling high-order feature
interactions, due to the Multi-Head Self-Attention (MHSA) modules commonly used
in language modelling tasks [Vaswani et al., 2017].

We adopt the architecture formalized in the original paper [Gorishniy et al., 2021]:
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FT-Transformer(x) = Block(...(Block(T0)))

T0 = [[CLS] , FeatureTokenizer(x)]
Block(x) = Residual(FFN, Residual(MHSA, x))

Residual(Module, x) = x+ Dropout(Module(LayerNorm(x)))
FFN(x) = Linear(MLPBlock(x))

(3.6)

Figure 3.8 illustrates FT-Transformer’s architecture. Here, the FeatureTokenizer
transforms the raw features into a d-dimensional embedding space and the [CLS]
token is inserted into the embedded feature vector10.

The FeatureTokenizer applies a transformation ϕ : Rm → Rm×d where m is the
number of features and d is the size of the embedding layer. The embedding function
is calculated as follows,

ϕ(xi) = bi +

{
xi ◦Wi if xiis numerical
OHE(xi)Ti if xiis categorical

ϕ(x) = [ϕ(x1), . . . , ϕ(xm)] ∈ Rm×d

where OHE outputs a one-hot vector for a given feature. The embedding of numerical
features (further discussed in [Gorishniy et al., 2022]) enables its interaction with
categorical ones inside the MHSA layers. In a similar way to [Song et al., 2019],
the simple embedding scheme linearly transforms the numerical features (with the
addition of a bias element) by a learnable, non-shareable matrix Wi and learns an
embedding layer Ti ∈ Rk×d where k is the cardinality of the i-th feature (with the
addition of a bias element).

After that, L Transformer (Block) layers are applied. FFN consists of a traditional
MLPBlock with ReGLU activation [Shazeer, 2020] instead of ReLU followed by a
Linear layer. Only the final representation from the [CLS] token is considered for
the output:

TL = FT-Transformer[CLS](x)
Out = ReLU(LayerNorm(TL)

Prediction = Linear(Out)
(3.7)

The Transformer blocks rely on the attention mechanism; the ability to focus on
different parts of the input is key to learning meaningful representations that also
provide good generalizations. TabNet uses sequential attention (focusing on different
parts of the input at each decision step via sparse soft selection of relevant features)
whilst FT-Transformer leverages adapted Transformer units (and the MHSA mech-
anism itself) to model high-order feature interactions.

10A token used to describe the end of a sequence in Transformer tasks
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The key power of the FT-Transformer seems to reside on the embedding layer that
transforms the raw input in a way that makes it suitable for the Transformer layers:
as hinted by the authors in [Borisov et al., 2021], the underperformance in DL for
tabular data may reside in inadequate encodings for the raw input features. There
is no clear inductive bias in the FT-Transformer architecture; indeed, Transformers
do not hold strong inductive bias, which relaxes any constraints on the space of
solutions: this is a desired property as the absence of strong biases towards sub-
optimal (or even bad) solutions allows for better generalization [Battaglia et al.,
2018]. The lack of strong inductive bias could partially explain why FT-Transformer
consistently performs better than its counter-parts [Gorishniy et al., 2021; Grinsztajn
et al., 2022]. Notwithstanding, the lack of appropriate inductive bias could also
explain it’s underperformance compare to GBDT: tree-based methods are inherently
biased towards data that is structurally similar to tabular data, thus the constraints
over the space of solutions allow for desirable generalization whereas the constraints
imposed by FT-Transformer prevent poor generalization.

NODE NODE [Popov et al., 2019] is a DNN architecture for tabular data based
on differentiable ODTs trained via backpropagation. The core building block is the
NODE layer, which consists of a set of differentiable ODTs that use an entmax (a
generalization of sparsemax ) transformation at the internal nodes, thus replacing a
hard decision (i.e., smaller or greater) with soft sparse feature selection.

For each ODT of d depth, NODE selects only d features for partitioning and thus
only learns d split features and thresholds. The tree output is defined as:

h(x) = R [H(f1(x)− b1), · · · ,H(f2(x)− b2)]

where H(·) is the Heaviside step function and R is the d-dimensional matrix of
responses containing all 2d possible leafs or outcomes. Therefore, the response is
either yes/1 (if fi(x) ≥ bi) or no/0 (if fi(x) < bi).

However, as the output is not differentiable, NODE employs a differentiable feature
choice and comparison operator. Indeed, NODE replaces fi(x) by a weighted sum
of all m features wherein the weights are learned via a feature selection matrix
F ∈ Rd×m passed through entmax:

fi(x) =
m∑

xj × entmaxα(Fij)

where α is a parameter of entmax controlling sparsity. The feature selection matrix
F encodes how much of a feature should be considered for each feature choice fi(x)
– its values (weights) are learned via SGD which renders "feature selection" differ-
entiable. The entmax transformation produces sparse probabilities which enables
selecting only a subset of features.

NODE relaxes the Heaviside step function as the two-class entmax entmaxα([x, 0])
which yields a "soft" decision. NODE computes the a choice vector as the soft
decision function applied to the comparison operator scaled by a learnable parameter
τi:
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Figure 3.9: NODE’s architecture diagram. NODE concatenates the input with the
output of previous layers and feeds it into each layer. The output is an aggregation
of the output of all layers. (adapted from [Popov et al., 2019]).

ci(x) = entmaxα

([
fi(x)− bi

τi
, 0

])
NODE computes a choice matrix C(x) ∈ Rd as the outer product of all ci(x) and
yields the output as a linear combination of the response vector R weighted by the
entries of the choice matrix C(x). Finally, NODE concatenates the output of k trees
to yield the output of the NODE layer.

Structure-wise, NODE implements a sequence of NODE layers wherein the input of
each layer is a concatenation of the output of previous layers which allows the learn-
ing of shallow and deep representations of the input data. Figure 3.9 illustrates the
architecture implemented in NODE. The presence of a differentiable function at the
internal nodes allows NODE to be trained via SGD. NODE doesn’t provide native
support for categorical features and (internally) treats every feature as numeric.

The presence of a feature selection mechanism hints at a possible inductive bias of
NODE similar to one held by tree-based methods: the data is dominated by redudant
features and the target function depends only a subset of relevant features.

3.4 Summary

In this chapter, we presented the fundamental background concepts. We iterated
over the foundational blocks such as decision trees, boosting and neural networks,
delving deeper into GBDTs, one of the main family of algorithms currently popular
in tabular data problems. We also described the general innerworkings of neural
networks and DL. Finally, we described some known implementations of both GB-
DTs and DL algorithms that are commonly used in the most recent research works
and competitions.
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Methodology

In the following chapter, we provide a description of the methods used in this research
study that address the work hypotheses referred in chapter 2.

4.1 Data

We perform a study across 4 tabular datasets that span the 4 industry-specific
use cases: (i) account takeover (ii) Anti Money Laundering (AML) (iii) transfer
fraud and (iv) account opening. Although fairly flexible on the fraud rate, some
restrictions to the dataset selection process are imposed, such as: (i) heterogeneous
features (ii) labeled datasets (iii) documented datasets. Table 4.1 briefly describes
the datasets selected and Table B.1 in Appendix B provides finer details about them.

Table 4.1: Datasets brief description: subject designs what each dataset row (in-
stance) represents. Rich features are features incorporated via feature engineering
processes.

Dataset Use Case Subject Description Fraud Rate
BB1 Account Takeover Transfers and entities Raw data + rich

features
8%

RS1 Transfer Fraud Transfers Raw data + rich
features

1%

CO1 Account Opening Transfers and entities Raw data + rich
features

1%

WB1 AML Transfers and entities Raw data + rich
features

3%

Although tabular in nature, every dataset is different and represents a different con-
cept and a different use case under the domain of fraud detection. CO1 represents
a transfer with the addition of some client data (e.g. age and credit risk score) and
incorporates aggregate statistics and one-hot encoded features, i.e. dense features
represented as sparse vectors. RS1 and WB1 contain records of transfers with the
aggregation of statistics and behaviour profiles. BB1 comprises raw transfer data
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for which we aggregate profiling features of varying complexity. We split the BB1
dataset into multiple versions of profiling features with different degrees of com-
plexity for evaluating the impact of feature engineering, as described in Chapter 5.
Table B.2 in Appendix B provides finer details about the BB1 feature subsets.

The aforementioned profiling features were computed by domain experts in Feedzai
under the scope of their respective projects. Nonetheless, these rich datasets still
require some form of preprocessing before performing the experiments, which we
describe in the next section.

4.2 Data Preprocessing

To avoid boilerplating1, we developed a general and reusable workflow for data pre-
processing, comprehending common processes such as cleaning, sampling and pro-
cessing. Although feature engineering, i.e. computing statistical features across time
windows and generating behaviour profiles, is commonly employed in fraud detec-
tion, the available datasets already endured feature engineering to some degree and
we feel this kind of data modelling falls outside of the purpose of thesis.

Data Cleaning Data undergoes several cleaning steps, such as: i) validating the
data schema (structure-wise cleaning); ii) removing samples/features with (many)
missing values; iii) removing duplicates; iv) removing inconsistencies in data (value-
wise cleaning).

Sampling Data is often very large in quantity and greatly imbalanced, which
hinders the training process: stratified sampling is used to reduce dataset size (drop
a portion of the legitimate transactions) whilst generally maintaining the original
data distribution and retaining core valuable information.

Processing Data is often not in the desired format w.r.t the algorithms. The
processing step involved: (i) type-setting; (ii) removing categorical features with
high cardinality (> 30 features); (iii) imputing missing values to −1; (iv) replacing
infrequent categories with a placeholder category (see section 5.1 in Chapter 5 for
further details); (v) encoding features. Encoding categorical features is algorithmic-
dependent, whereas numerical features were normalized via a normally-distributed
quantile transformation by scikit-learn’s QuantileTransformer. To deal with the
high number of features in the RS1 and WB1 datasets, we retrieve 30 features in
decreasing order of feature importance (calculated by a LightGBM), for which the
details can be found the Appendix B.

Encoding categorical features Most algorithms require categorical features to
be encoded as numerical values, such as neural networks. Some algorithms require

1Needlessly repeating processes that can become modular
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different encoding methods to provide reasonable results. To that extent, we fur-
ther explore encoding methods for categorical features by evaluating algorithms and
comparing respective native categorical support vs. an encoding method we pro-
pose. We describe this minor experiment in the next section and in more detail in
Chapter 5.

Splitting Data is split into a train and evaluation set. CO1, RS1 and WB1
datasets were already split into train and evaluation sets. For BB1, we sort instances
by the transaction timestamp in descending order and split 80/20. For tuning, we
further split the train set into train and validation sets with a 80/20 ratio.

4.3 Experimental Approach

4.3.1 Algorithms

Regarding the algorithms to be evaluated, three Gradient Boosting Decision Trees
(GBDTs) were selected: XGBoost [Chen and Guestrin, 2016], LightGBM [Ke et al.,
2017] and CatBoost [Dorogush et al., 2018]. From the Deep Learning (DL) family,
four algorithms were selected: a Multi Layer Perceptron (MLP), TabNet [Arik and
Pfister, 2021], FT-Transformer [Gorishniy et al., 2021] and NODE [Popov et al.,
2019]. The latter three algorithms span the different branches of recent break-
throughs in DL for tabular data, whilst MLP was chosen to provide a strong base-
line.

4.3.2 Experiments

We further describe the experiments introduced under the work hypothesis in Chap-
ter 2. We also describe the minor experimental work we perform prior to the core
experiments.

Minor Experiments Foremost, we perform four minor experiments:

1. We compare aggregating results across multiple seeds vs. across multiple ran-
dom samples of the test sets: we seek to validate if the results obtained are
not coincidences of particularly good models and/or easy datasets;

2. We assess tuning times to understand if the experiments are feasible consider-
ing the available time and resource budgets;

3. We evaluate categorical encoding methods: we compare the native categorical
support of some algorithms vs. an encoding method we propose;

4. We evaluate all algorithms across all datasets and report overall results.
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Experiment 1. Considering the representational capacity of neural networks, we
exploit the learned representations by DL algorithms to uncover possible inductive
biases. In line with [Borisov et al., 2021], we argue that the representation learning
performed by the hidden layers of Deep Neural Networks (DNNs) produces lossy
representations – in the sense that information content is lost as a result of arbitrary
transformations. To that extent, we seek to understand how these transformations
are manipulating the data.

From an high-level standpoint, we can separate a DL into two distinct blocks: a
representation learner and a linear classifier. Whilst the representation learner is
tasked to learn compact representations of the data, the linear classifier traces an
hyperplane to separate the data. We argue that the representations might lack
some information present in the original input as a result of the transformations
performed, either by compression (if the hidden layers reduce dimensionality) or by
some other form. Lossy representations would partially explain the performance gap:
whilst representation learning is useful for homogeneous data, it may be detrimental
for tabular data by producing lossy representations of the input data. To that
extent, we train DL algorithms and retrieve intermediate representations at different
layers. Next, we evaluate tree-based methods on the learned representations to
understand their behaviour: we expect tree-based methods to perform worse on all
representations and possibly converge to the performance of DL algorithms on the
representations fed to the linear classifier (the output layer of DL algorithms).

We delve further into this experiment in chapter 5 and discuss the obtained results.

Experiment 2. Considering the sensitivity of tree-based methods to feature en-
gineering, we exploit the use of profiling features of varying complexity to uncover
possible inductive biases. Tree-based methods often require some sort of feature en-
gineering to encode linear and non-linear relationships in data: trees cannot compute
a > b and usually require a transformation such as a− b > 0.

Neural networks do not rely as much on feature engineering given their representa-
tional capacity and the ability to learn representations – to learn features. Indeed,
we argue tree-based methods to be more sensitive to feature engineering in com-
parison to neural networks. To that extent, we compare tree-based methods with
DL algorithms under different feature sets with varying degrees of complexity to
understand their behaviour: we expect the performance gap to be smaller in the
absence of rich features and larger when leveraging rich features. Additionally, we
expect feature engineering to elevate the performance of all algorithms.

We delve further into this experiment in chapter 5 and discuss the obtained results.

4.4 Tuning

Regarding training, we use Optuna2 – an out-of-the-box hyperparameter optimiza-
tion framework – to perform hyperparameter tuning for every dataset-model pair.

2https://optuna.org/
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We use the Tree-structured Parzen Estimator (TPE) [Bergstra et al., 2011] opti-
mization algorithm which is proven to be substantially more efficient than random
search. We set the tuning budget by the number of optuna trials at 100 for tree-
based algorithms and 50 for DL algorithms. We provide the hyperparameter search
spaces for all algorithms in Appendix C.

4.5 Evaluation

Regarding evaluation, we use "Recall @ n-th percentile" considering the low target
densities present in the available datasets. In short, it predicts the positive class for
the n-th percentile of the highest positive-class model scores. The n-th percentile
largely depends on the dataset and the target density.

1. Sort the positive-class model scores p in descending order;

2. Predict 1 for the first n
100
× |p| elements and 0 for the remaining elements.

Using "Recall @ n-th percentile", where n = Fraud Rate, affords the possibility to
see how far we stand from a perfect model; a perfect model would predict 1 for
ρ ≥ n× 0.01 and 0 elsewhere: "Recall @ n-th percentile" would be 1 for this perfect
model. If we use n < Fraud Rate, a perfect model would have a "Recall @ n-th
percentile" lower than 1, e.g. if n = Fraud Rate = 0.5, then the "Recall @ n-th
percentile" would be 0.5; by fixing the n-th percentile at the value of the fraud rate,
we know that any departure from 1 is due to the model performance, and not due
to changes in the fraud rate in different datasets.

Outcomes For each tuned configuration, we evaluate multiple times to guarantee
the outcomes are not lucky coincidences of particularly good models and/or easy
datasets. We delve into this issue in chapter 5 by comparing two strategies: i)
reporting results across multiple seeds ii) reporting across multiple random samples
of the test. To model the underlying error associated with experimentation, we
present results using boxplots, wherein the error bars also largely depend on the
dataset and the target density itself.

Statistical Testing For statistical testing, we use the Mann-Whitney U test for
evaluating the distributions of our results, i.e. Recall. The reasons are 4-fold: i) the
groups are independent ii) the observations are independent iii) the observations are
ordinal in scale iv) the sample size is small. The Mann Whitney U [Hart, 2001] test
is a non-parametric test that compares two groups and indicates whether one group
tends to have higher values than the other; if the groups happen to exhibit similarly
shaped distributions, we can also infer if the median of one group is higher than the
other.

Following a general formulation, we have:
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H0 −→ X and Y have identical distributions
H1 −→ X and Y are not identical

We report the population median µ̃ and p-value; if the p-value falls bellow the
critical point (we use 0.05 under a 95% confidence bound for a sample size of ten)
the results are statistically significant, i.e. one group tends to produce higher values.

Additionally, we also use the Kruskal-Wallis test. The Kruskal-Wallis test ex-
tends Mann-Whitney U to multiple population groups and tests whether at least one
group tends to produce higher (or lower) values. We use the Kruskal-Wallis test
in settings where we want to compare two or more samples. The formulation is
similar to that of Mann-Whitney U:

H0 −→all groups have identical distributions
H1 −→at least one group’s distribution is different

We report the population median µ̃ and p-value; if the p-value falls bellow the critical
point (we use 0.05 under a 95% confidence bound for a sample size of ten) the results
are statistically significant, i.e. at least one group has a different distribution.

4.6 Summary

In this chapter, we detailed the underlying methodology to this thesis, which in-
cluded a description of the available data and preprocessing tasks. Further on, we
described the experimental work to be conducted alongside the algorithms to be
evaluated. Finally, we iterated over the details about tuning, evaluation and statis-
tical testing.
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Experiments

In the following chapter, we provide a description of the experiments and respective
results.

5.1 Minor Experiments

Foremost, we performed some minor experiments to understand the available data,
guarantee there is statistical evidence for the experiments, assess computational
feasibility and report overall results. A full description of the software and hardware
employed is included in Appendix A.

Seeds vs samples To assure that we work with adequate models, we need to
validate if the attained results are not coincidences of particularly good models
and/or easy datasets. Indeed, we ought to exploit the main source of variance
in the results – either the data or the models. To that extent, we compare two
strategies: i) tuning an algorithm ten times with different initial seeds, and reporting
performance on the test set across the ten seeds ii) tuning an algorithm once on one
seed, and reporting performance across ten disjoint samples drawn at random from
the test set. The latter corresponds to drawing equal-sized, disjoint samples at
random from the test set, whilst still maintaining the same target density across
samples. For that, we consider LightGBM and XGBoost and the dataset CO1. For
both algorithms, we perform hyperparameter tuning with ten different seeds (the
hyperparameter search space can be found in Appendix C). We let training run until
early_stopping_rounds without improvement on the validation set have passed.
For each, we evaluate i) on the whole test set, across ten different seeds and ii) on
one seed, across ten disjoint samples drawn at random from the test set and report
Recall @ n%.

As seen in Figure 5.1, there is a greater variance when reporting results across
disjoint samples drawn at random from the test set compared to reporting across
different seeds: this suggests that varying the initial seed has no significant bearing
on the performance model, as the dispersion of the results is fairly low – the algo-
rithms are able to achieve similar results despite the initial conditions. As previously
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Figure 5.1: Performance of LightGBM and XGBoost (CO1 dataset, Recall @ 1%)
reported across ten different seeds on the whole test set (left), and on one seed across
ten disjoint samples drawn at random from the test set (right).

mentioned, the dispersion of the distribution depends on the target density of the
dataset (≈ 1% for the CO1 dataset). We observed that the target density is similar
across the random samples with only minor fluctuations; these minor fluctuations
can, however, induce high variations in performance due to the different degree of
class imbalance across all samples.

The strategy that yields greater variance is the most adequate for us as we are most
likely dealing with the worst case scenario, i.e. the distribution is ample enough as
to encompass most variation in the models. Because the variance across seeds is so
low (compared to the variance across samples), we need not to tune the algorithms
several times. As such, and for the remainder of the experimental work, we resort to
reporting results across disjoint samples drawn at random from the test as a measure
of dispersion.

Training Budget Initially, we evaluate training times to understand the feasibil-
ity of the algorithms, supported on the following criteria: i) training is efficient/fast
ii) training overhead is small iii) training is sustainable on CPU-only hardware (a
full description of the software and hardware used can be found in Appendix A).

We consider all algorithms and the dataset CO1. We perform hyperparameter tun-
ing for all algorithms except for TabNet, FT-Transformer and NODE, for which
we configure the starting parameters to the "default" parameters provided in the
respective papers (and make some adjustments to comply with our computational
resources). The hyperparameter search space can be found in Appendix C. Due to
time limitations, we are not able to extensively tune TabNet, FT-Transformer and
NODE, so we set a training budget of ten hours for each, and record the best trial
under this budget. We let training run until patience epochs (for Deep Learning
(DL)) or early_stopping_rounds (for tree-based) without improvement on the val-
idation set have passed. For each, we evaluate across ten disjoint samples drawn at
random from the test set and report Recall @ n% and respective training times.

As seen in Figure 5.2, tree-based methods achieve better performance under a con-
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Figure 5.2: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set (top) and respective training times
(bottom).
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strained time budget. Only the tree-based methods and the Multi Layer Perceptron
(MLP) were tuned until completion, whilst TabNet, FT-Transformer and NODE
finished tuning before reaching 100 trails, ending at trials 25, 1 and 18, respectively.
Naturally, these algorithms are not able to converge under the limited time budget of
ten hours as we are not able to extensively tune them; on top of that, the dataset at
issue (CO1) comprises 96 features, which considerably slows down training. Consid-
ering DL algorithms largely benefit from proper hardware and comfortable training
budgets, we suspect that, given enough time, DL algorithms would achieve more
competitive results with the tree-based methods. Indeed, the authors in [Gorish-
niy et al., 2021; Popov et al., 2019] claim the implementations of FT-Transformer
and NODE to be memory-inefficient and to require substantial resources to present
reasonable results.

Notwithstanding, in [Grinsztajn et al., 2022], the authors conduct a similar study
to ours and show that tree-based models consistently outperform DL algorithms
independently of the training budget, further suggesting that tight training budgets
have no bearing on the performance gap.

Categorical Support Several of the selected algorithms provide native support
for categorical features such as: LightGBM, CatBoost, TabNet and FT-Transformer.
For these, we evaluate if the native categorical support is superior to traditional en-
coding methods, such as the one we employ for the remaining algorithms (XGBoost,
MLP and NODE). For algorithms which don’t natively support categorical features,
we propose Top-N OHE, a variant of One-Hot Encoding (OHE):

Algorithm 2: Top-N OHE
Input: input X, min_freq and list of categorical columns cols

1 begin
2 threshold←− min_freq× len(X);
3 categories←− {};
4 for col ∈ cols do
5 counts←− count_unique_values(X, col);
6 frequent←− counts if counts > threshold;
7 categories←− categories+ (frequent, ’other’);
8 end
9 for col ∈ cols do

10 known_cat = unique(X, col);
11 not_seen←− known_cat /∈ categories;
12 X[col]←− replace(not_seen, ’other’);
13 end
14 X ←− OHE(X);
15 end

This variant of OHE first replaces infrequent categories by a placeholder "other",
where infrequent is defined by min_freq (e.g. if min_freq = 0.2, then all categories
with less than 20% frequency are replaced by the "other" category). Unseen cate-
gories – categories not seen in the training data – are also replaced by the "other"
category. After that, OHE is applied.
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Figure 5.3: Performance (BB1 dataset, Recall @ 8%) reported across ten disjoint
samples drawn at random from the test set. Results are shown for native categorical
support and Top-N OHE.

Therefore, we consider the LightGBM, CatBoost, TabNet and FT-Transformer al-
gorithms and the BB1 dataset. For each, we evaluate two configurations: i) native
categorical support ii) Top-N OHE. We perform hyperparameter tuning for all al-
gorithms (the hyperparameter search space can be found in Appendix C) and let
training until patience epochs (for DL) or early_stopping_rounds (for tree-based)
without improvement on the validation set have passed. For each, we evaluate across
ten disjoint samples drawn at random from the test set and report Recall @ n%.

Figure 5.3 indicates that Top-N OHE can provide competitive results. LightGBM and
CatBoost’s native methods seem to provide as good results as Top-N OHE. TabNet
seems to perform better with natively encoded categoricals whereas FT-Transformer
seems to perform worse. TabNet employs a single-scalar learnable embedding (by
default) which suggests TabNet is transforming categorical features into ordinal vari-
ables: embeddings are learned in a way that places similar categories close together
in the latent space. FT-Transformer, however, applies a higher-dimensional em-
bedding to categorical features and concatenates with an equal-sized embedding of
numerical features. The key differences between TabNet and FT-Transformer lie in
the dimensionality of the embedding and in the embedding of numerical features:
FT-Transformer essentially applies a Linear layer.

Although both TabNet and FT-Transformer employ embedding modules for categor-
ical features, only TabNet seems to benefit from this mechanism. One-hot encoded
features regularize the number of categories per features and increase the degrees
of freedom describing the input space, which increases overall sparsity. As FT-
Transformer considers one-hot encoded features to be numeric, the embedding may
be acting as dropout by forcing values to be 0 along some directions of the input
space (regularization). Additionally, the size of the embedding layer (e.g. 128 for
the FT-Transformer with native categorical support) may encourage the model to
have high capacity and, thus, to overfit. On the other hand, the FT-Transformer
with Top-N OHE uses an embedding layer of size 64.
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Nonetheless, we argue results could vary if we left all categories instead of replacing
the infrequent ones. Indeed, we consider a more thorough exploration of categorical
features as valuable future work in Section 6.2. Forthcoming, we use encode categor-
ical features with Top-N OHE variant for XGBoost, MLP and NODE, but consider
native categorical support for LightGBM, CatBoost, TabNet and FT-Transformer.

Overall results Moving forward, we evaluate all algorithms on all datasets con-
sidering the conditions previously mentioned above and present overall results. We
consider the raw version only for the BB1 dataset, for which the details can be found
in Table B.2 in Appendix B.

Table 5.1: Overall performance for all algorithms. We report median Recall at the
n-th percentile and interquartile range (in parenthesis) across ten disjoint samples
drawn at random from the test set. The n-th percentile is different for each dataset
and thus is stated in parenthesis next to the dataset name. For each dataset, the best
result is highlighted in bold. We considered the raw version for the BB1 dataset.

BB1 (8%) RS1 (1%) CO1 (1%) WB1 (3%)
LightGBM 0.528 (0.021) 0.549 (0.093) 0.423 (0.037) 0.390 (0.017)
XGBoost 0.558 (0.011) 0.613 (0.205) 0.427 (0.043) 0.405 (0.025)
CatBoost 0.555 (0.010) 0.464 (0.135) 0.435 (0.024) 0.384 (0.011)
MLP 0.512 (0.016) 0.286 (0.108) 0.390 (0.053) 0.341 (0.016)
TabNet 0.503 (0.016) 0.394 (0.134) 0.405 (0.047) 0.344 (0.014)
FT-Transformer 0.513 (0.009) 0.444 (0.252) 0.406 (0.026) 0.367 (0.008)
NODE 0.447 (0.015) 0.321 (0.121) 0.325 (0.059) 0.340 (0.025)

As seen in Table 5.1 and Figure 5.4, tree-based methods consistently outperform
DL algorithms across all datasets. As previously mentioned, such might be due to
an underlying inability to properly deal with tabular data (at least, as well as tree-
based methods deal). Nonetheless, a poorer performance among DL models seems
to go in line with the relevant papers in the area see [Borisov et al., 2021; Grinsztajn
et al., 2022].

The MLP proves to be an adequate baseline among DL models, as it’s relatively fast
to train and is able to provide a reasonable performance. FT-Transformer consis-
tently outperforms other DL algorithms, sometimes, by a significant margin. TabNet
represents the best trade-off between performance and computational overhead, al-
though one questions the true potential of FT-Transformer if given enough resources
and time. NODE is the lowest performing algorithm, which may seem counter-
intuitive considering it’s the only DL algorithm to benefit from an ensemble-like
architecture: as is the case for FT-Transformer, NODE is very expensive to train,
and the available training budgets may not be enough to infer proper conclusions
about their performance. Nonetheless, the results go in line with [Grinsztajn et al.,
2022], which shows tree-based methods to perform consistently better, and [Gorish-
niy et al., 2021], which shows FT-Transformer to be provide the best results across
DL models.
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Figure 5.4: Overall performance for tree-based (in light blue) and DL (in dark blue)
algorithms. The n-th percentile is different for each dataset.

5.2 Experiment 1

As part of the first experiment, we explore the representational capacity of neural
networks in DL. Following the rationale in [Borisov et al., 2021], representation
learning performed by the hidden layers of Deep Neural Networks (DNNs) encodes
representations wherein some information might have been in lost the process.

To that extent, we explore the representations by the MLP, TabNet and FT-
Transformer. First, we evaluate tree-based algorithms on the learned representa-
tions to investigate if a possible compression of the original input into a dimensional
space with less relevant features causes performance to drop. Secondly, we compare
the transformations performed by the sequence of DNN blocks of these algorithms
with unitary transformations (e.g. rotations and/or reflections) to disprove these
blocks are performing distance-preserving transformations, i.e. isometries. Finally,
we relate the learned representations with the innerworkings of DL algorithms to
uncover possible inductive bias of these algorithms causing the performance gap
between tree-based and DL algorithms.

5.2.1 Multi Layer Perceptron

Formally, we recall the aforementioned architecture of a MLP and search for a possi-
ble compression of the original input in the intermediate representations. Effectively,
compression occurs when there is a reduction in dimensionality performed by lower-
dimensional hidden layers; transformation by higher-dimensional hidden layers do
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Table 5.2: Best MLP model parameters on the CO1 dataset.

Parameters
no. of layers 2
layers size 16, 8
dropout ≈ 0.0004

Figure 5.5: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. MLP and XGBoost performance on the
original dataset (left). XGBoost performance on the representations retrieved from
the first (middle) and second MLPBlocks (right).

not perform compression. For the MLP, we focus on the case when the hidden layers
are of lower dimension than the original input. We evaluate XGBoost in the learned
representations and compare results: we argue there will be a performance degra-
dation pronounced by the amount of reduction in the size of each layer, i.e. greater
compression implies greater performance degradation. Additionally, we argue the
performance on the last representation matches the performance of the MLP in the
original input.

We consider the best-performing MLP on the CO1 dataset and retrieve its represen-
tations: the hyperparameters can be found in Table 5.2. We perform hyperparame-
ter tuning for XGBoost (the hyperparameter search space can be found in Appendix
C) and let training run until early_stopping_rounds without improvement on the
validation set have passed. We evaluate across ten disjoint samples drawn at random
from the test set and report Recall @ n%.

According to Figure 5.5, performance seems to degrade within each representation,
which goes in line with our initial guess: the learned representations are likely lossy.
It is also evident that the greater degradation in performance happens at the first
block: the original input contains 96 features and the first representation contains
only 16. On the other hand, it’s unclear if performance converges.
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Figure 5.6: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. MLP and XGBoost performance on the
original dataset (left). XGBoost performance on the representations retrieved from
the first, second, third and fourth MLPBlocks (from left to right).

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the second representation ("Block #2")
is identical to MLP performance on the original input.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.384, 0.390) p-value ≈ 0.850 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that performance doesn’t converge.

The results above are inconclusive, so to further understand the impact of compres-
sion, we train a deep one-shot1 MLP with four hidden layers of size 64, 32, 16 and
8, respectively, and without dropout. We repeat the same steps as we did for the
shallow MLP above.

Figure 5.6 shows that performance degradation is much more pronounced in the
first representation, further suggesting that the amount of degradation is influenced
by the amount of dimensionality reduction. This seems to be the case for the first
representation, as the following ones don’t present further noticeable degradation:
the first representation is a transformation of the original input, whilst the follow-
ing ones "work" over an already transformed space and thus are somewhat similar
between each other. Also, it’s unlikely that performance degradation is a func-
tion of compression, as we can’t confidently state that performance degrades from
MLPBlock1 to MLPBlock2. Not only that, but the performance on the MLPBlock4
seems to be slightly better than on the MLPBlock3.

1Tuned for 1 trial only
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Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the original input is identical to XG-
Boost’s performance on the first representation ("Block #1").

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.427, 0.371) p-value ≈ 0.007 −→ we reject the null
hypothesis as results are significant. This suggests we have strong statisti-
cal evidence that performance degrades, i.e. that performance on the first
representation is worse.

On the other hand, it’s unclear whether performance degrades within each repre-
sentation despite the compression of the space of representation.

Kruskal-Wallis Statistical Test

H0 −→ XGBoost’s performance on each representation ("Block #1" to
"Block #4") are identical to each other.

H1 −→ At least one distribution of performance is different.

Test result: µ̃ ≈ (0.371, 0.369, 0.358, 0.364) p-value ≈ 0.781 −→ we fail to
reject the null hypothesis as results are not significant. This suggests we don’t
have strong statistical evidence that XGBoost performs better (or worse) in
a given representation, i.e. that performance degrades within each represen-
tation.

The results further reiterate that it’s unlikely that compression always causes per-
formance degradation. The hidden layers perform transformations to make data
linearly separable – in this case, they find a coordinate system or basis in which
the data is linearly separable. This kind of representation (or orientation) is not
favorable for tree-based methods: as opposed to neural networks, tree-based meth-
ods can’t draw hyperplanes; instead, tree-based methods build a decision manifold
by tracing axis-aligned splits. The (non-linear) transformations in the intermediate
layers are breaking the original orientation (which is a favorable one in the case
of tabular data) of the data, and compelling trees to learn over a feature space
wherein there is no longer a subset of revelant features: this partially explains why
the first representation accounts for the largest degradation in performance and why
performance doesn’t degrade in the further representations.

Figure 5.7 illustrates this concept in R2 space. Trees are good at learning piecewise
functions of the input space, made up by thresholding certain features. Such par-
titioning becomes challenging after an arbitrary unitary transformation2 – such as
a rotation – of the data, as trees cannot trace linear decision boundaries. Although
it’s still possible to define a set of regions such that it performs well, a tree will not
perform as well as it does under the original orientation.

2Distance-preserving transformation
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Figure 5.7: Examples of representations. This representation is common among
tabular data and is easy for trees to trace axis-aligned splits (left). A representation
after a rotation of θº around the origin (centre). A representation where data is
linearly separable (right) .

Unitary Transformations To further understand these transformations, we ap-
ply random unitary transformations (UTs) to the data to understand if the effect is
comparable to that of the hidden layers of a MLP. Furthermore, we apply the same
random UTs to the learned representations and evaluate tree-based methods. In
line with [Grinsztajn et al., 2022], we expect tree-based methods to perform worse
on data that endured UTs, and even worse on the learned representations after the
UTs. In this section, we explore this class of transformations for the MLP and later
for TabNet and FT-Transformer in their respective sections.

To that extent, we consider the dataset CO1 and the representations retrieved from
the shallow MLP. We generate a random matrix Q ∈ Rn×n drawn from an uniform
distribution and obtain a unitary matrix R ∈ Rn×n via Singular Value Decomposi-
tion (SVD):

UΣV T = Q (5.1)
R = UV T (5.2)

Under these conditions, it’s guaranteed that R is an unitary (orthogonal) matrix and
thus any transformation of the kind ϕ(x) = xR is guaranteed to preserve the inner
product before and after the transformation. Therefore, we apply a UT by matrix
R to the original input and to the learned representations. We further emphasize
that we first retrieve the learned representations and then apply a UT; applying
a UT, training and then retrieving the learned representations is fundamentally
different and disregarded for this experiment. We perform hyperparameter tuning
for XGBoost (the hyperparameter search space can be found in Appendix C and let
training run until early_stopping_rounds without improvement on the validation
set have passed. We evaluate across ten disjoint samples drawn at random from the
test set and report Recall @ n%.

Figure 5.8 suggests that an arbitrary UT reverses the performance gap between
XGBoost and a MLP. This goes in line with [Ng, 2004] that describes the MLP
as rotationally invariant, and later with [Grinsztajn et al., 2022] which confirms
tree-based methods to be non-rotationally invariant: although the unitary matrix
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Figure 5.8: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. Performance on the original data (left).
Performance on the data after a random UT (right).

R doesn’t necessarily perform a rotation, a rotation matrix (as postulated by [Ng,
2004]) is by definition a unitary matrix – this partially explains why the MLP is
invariant to rotations. This class of transformations break the axis-aligned decision
boundaries of tree-based methods, which in turn partially explains why tree-based
methods are non-rotationally invariant.

Mann-Whitney U Statistical Test

H0 −→ MLP performance on the original input is identical to MLP perfor-
mance on the original input after a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.390, 0.377) p-value ≈ 0.762 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that performance degrades after a UT.

Figure 5.9 shows surprising results. Not only does performance increase as of the
first transformed representation – which is the reverse of the non-transformed repre-
sentation –, but the learned representations seem to be invariant by rotations. The
results indicate that XGBoost’s performance doesn’t degrade when applying a UT
to the learned representation: this suggests the existence of an underlying property
of the intermediate representations that breaks the non-rotationally invariance of
tree-based methods – the learned representations seem to be rotationally invariant.
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Figure 5.9: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. XGBoost performance on the original
data (left), first representation (middle) and second representation (right).

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the first representation ("Block #1")
without a UT is identical to XGBoost’s performance on the first rep-
resentation ("Block #1") with a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.396, 0.384) p-value ≈ 0.880 −→ we fail to reject the null
hypothesis as results are not significant. This suggests we don’t have strong
statistical evidence that UTs hurt performance for the first representation –
or that the first representation is non-rotationally invariant.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the second representation ("Block #2")
without a UT is identical to XGBoost’s performance on the second
representation ("Block #2") with a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.384, 0.388) p-value ≈ 0.733 −→ we fail to reject the null
hypothesis as results are not significant. This suggests we don’t have strong
statistical evidence that UTs hurt performance for the second representation
– or that the second representation is non-rotationally invariant.

Key Takeaways There is strong evidence that, although the first hidden layer
of the MLP compresses the data (because said layer outputs a representation with
less degrees of freedom), the degradation in XGBoost’s performance may stem from
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the inability of tree-based methods to work over the learned representations and not
from the compression itself; these representations comprise linear and non-linear
relationships between features that the axis-aligned splits of tree-based methods
cannot accurately model. A key functionality of neural networks is the ability to
learn compact representations, and hence to capture highly non-linear relationships
in the original input. These non-linearities are not particularly useful for tree-based
methods that perform axis-aligned partitions of the input space (this goes in line
with [Grinsztajn et al., 2022]): the compact representations produced by neural
networks exhibit local smoothness that might be preventing tree-based methods
from selecting the most relevant features – a key reason behind the success of tree-
based methods for tabular data is their ability to model the sensitivity of the target
function to small changes in some input features [Bengio et al., 2013; Shavitt and
Segal, 2018].

There is also strong evidence indicating, not only, that these representations are
not a result of an arbitrary UT, but it also seems that the learned representations
are breaking the non-invariance by UTs of tree-based methods, although there is
a more obvious conclusion: the learned representation is a fundamentally different
feature space; tree-based methods cannot find the original orientation of the data,
and thus an arbitrary UT will not cause a performance degradation – only the data
is becoming non-invariant by UTs. In fact, the very absence of semantic constraints
seems to be a potential reason why tree-based methods fail, and why UTs do not
cause a performance degradation.

5.2.2 TabNet

We evaluate XGBoost on the learned representations and compare results: we argue
there will be a slight performance degradation (considering the superior representa-
tional capacity w.r.t. to the MLP). We consider the best-performing TabNet on the
CO1 dataset and retrieve the representation learned by the Encoder: the TabNet
model hyperparameters can be found in Table 5.3. We perform hyperparameter
tuning for XGBoost (the hyperparameter search space can be found in Appendix
C) and let training run until early_stopping_rounds without improvement on the
validation set have passed. We evaluate across ten disjoint samples drawn at random
from the test set and report Recall @ n%.

Table 5.3: Best TabNet model parameters on the CO1 dataset.

Parameters
no. of decision steps 3
decision layer size 8
gamma ≈ 1.296
momentum ≈ 0.0155
lambda sparse ≈ 0.032

Figure 5.10 suggests performance seems to slightly degrade when evaluating the
Encoder representation.
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Figure 5.10: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. XGBoost and TabNet performance on
the original dataset (left). XGBoost performance on the Encoder representation
(right).

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the original input is identical to XG-
Boost’s performance on the Encoder representation.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.427, 0.414) p-value ≈ 0.385 −→ we fail to reject the null
hypothesis as results are not significant. This suggests we don’t have strong
statistical evidence that performance degrades on the Encoder representation.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the Encoder representation is identical to
TabNet’s performance on the original input.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.414, 0.405) p-value ≈ 0.940 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that performance doesn’t converge.

These results suggest the following: the representation learned by the Encoder can
capture some of the more complex patterns in the original input which suggests a
property of TabNet that allows it to better handle tabular data. Deeper architectures
generally afford greater representational capacity, although previous results (refer to
Figures 5.5 and 5.6) suggest deeper models are more prone to overfitting. Indeed,
the TabNet model at issue consists of only three decision steps and uses the lowest
recommended dimensionality of the decision and embedding layers – which prevents
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Figure 5.11: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. Performance on the original data (left).
Performance on the data after a UT (right).

the model from having high capacity.

Unitary Transformations To further understand these transformations, we ap-
ply random UTs to the data to understand if the effect is comparable to that of
the Encoder. Furthermore, we apply the same random UTs to the representation
learned by the Encoder. In line with [Grinsztajn et al., 2022], we expect tree-based
methods to perform worse on data that endured UTs, and even worse on the learned
representation after the UTs.

To that extent, we consider the dataset CO1 and the representation retrieved from
TabNet. We generate the unitary matrix according to 5.1 and apply a UT to the
original input and the Encoder representation. We perform hyperparameter tuning
for XGBoost (the hyperparameter search space can be found in Appendix C) and let
training run until early_stopping_rounds without improvement on the validation
set have passed. We evaluate across ten disjoint samples drawn at random from the
test set and report Recall @ n%.

Figure 5.11 displays the previous results about UTs displayed in Figure 5.8 with the
addition of TabNet. The results further confirm our initial claims that performance
reverses after applying a random u.t. to the original input (which goes in line with
[Grinsztajn et al., 2022]), but we go further and suggest that TabNet’s performance
seems to change.
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Figure 5.12: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. XGBoost performance on the original
data (left) and Encoder representation (right).

Mann-Whitney U Statistical Test

H0 −→ TabNet performance on the original input is identical to TabNet per-
formance on the original input after a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.405, 0.363) p-value ≈ 0.104 −→ we fail to reject the
null hypothesis as results are not significant under a 95% confidence bound;
however, we can reject the null hypothesis as results are significant under a
89% confidence bound. With less certainty, this suggests we have statistical
evidence that TabNet’s performance degrades after a UT.

The results above suggest TabNet is non invariant by UTs, indicating there is a key
component to TabNet’s architecture that breaks UT invariance.

Figure 5.12 suggests XGBoost’s performance on the learned representation that
doesn’t significantly degrade after a UT. More striking, TabNet’s Encoder seems to
produce rotationally invariant representations as well.
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Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the Encoder representation without a UT
is identical to XGBoost’s performance on the Encoder representation
with a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.414, 0.411) p-value ≈ 0.705 −→ we fail to reject the null
hypothesis as results are not significant. This suggests we don’t have strong
statistical evidence that UTs hurt performance for the first representation –
or that the Encoder representation is non-rotationally invariant.

Key Takeaways Nonetheless, these results are striking and indicate the possibil-
ity that TabNet is non invariant by UTs: there is an evident connection between
non-rotationally invariant algorithms and the ability to perform feature selection
(well) [Ng, 2004]. TabNet’s instance-wise feature selection might break the invari-
ance to UTs by encouraging the selection of salient features: when the target function
only depends on a subset of features, TabNet can ignore the irrelevant features and
focus only on the relevant ones [Arik and Pfister, 2021]. There is also an implicit
connection with the way TabNet formulates a decision: the way the aggregation
of decision outputs at different time steps – that encourages the learning of the
most salient features – is performed, allows the mimic of tree-like decision mani-
folds which suggests TabNet can somewhat approximate the axis-aligned decision
boundaries usually produced by tree-based methods.

5.2.3 FT-Transformer

We evaluate XGBoost on the learned representations and compare results: we ex-
pect performance to degrade only slightly, considering the representational capacity
of FT-Transformer. We consider the best-performing FT-Transformer on the CO1
dataset and retrieve the representations learned by: i) the FeatureTokenizer ii)
each of the Transformer Blocks and iii) the Res; the FT-Transformer model hy-
perparameters can be found in Table 5.4. We perform hyperparameter tuning for
XGBoost (the hyperparameter search space can be found in Appendix C) and let
training run until early_stopping_rounds without improvement on the validation
set have passed. We evaluate across ten disjoint samples drawn at random from the
test set and report Recall @ n%.

As previously mentioned, the [CLS] token is deliberately placed at the beginning of
the input sequence for it comprises all the relevant information related to the learned
representation. Therefore, we retrieve the [CLS] token from the representations at
the Transformer Blocks, except for the Res layer (which is the token itself) and the
FeatureTokenizer: given that the token is initialized as a one-vector3, we perform
average pooling of T0 (without the token) over the m dimension to get the relevant

3A vector filed with 1s
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Figure 5.13: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test. XGBoost and FT-Transformer performance
on the original data (left). XGBoost performance on the FeatureTokenizer, first
and second MHSA blocks and Out representation (from left to right).

information.

Table 5.4: Best FT-Transformer model parameters on the CO1 dataset.

Parameters
no. of layers 2
embedding layer size 256
no. of MHSA modules 8
attention dropout ≈ 0.2
FFN dropout ≈ 0.1

Figure 5.13 reveals a novel outcome: performance drops at the first representation
but systematically improves within each representation until the top (last) layers.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the original input is identical to XG-
Boost’s performance on FeatureTokenizer representation.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.426, 0.369) p-value ≈ 0.009 −→ we reject the null
hypothesis as results are significant. This suggests we have strong sta-
tistical evidence that performance degrades, i.e. that performance on the
FeatureTokenizer is worse.
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Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the original input is identical to XG-
Boost’s performance on the first MHSA representation.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.426, 0.384) p-value ≈ 0.054 −→ we fail to reject the
null hypothesis as results are not significant under a 95% confidence bound;
however, we can reject the null hypothesis as results are significant under a
90% confidence bound. With less certainty, this suggests we have statistical
evidence that performance degrades, i.e. that performance on the first MHSA
representation is worse.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the original input is identical to XG-
Boost’s performance on the second MHSA representation.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.426, 0.401) p-value ≈ 0.521 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that performance degrades, i.e. that performance
on the second MHSA representation is worse.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the original input is identical to XG-
Boost’s performance on the Out representation.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.426, 0.401) p-value ≈ 0.623 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that performance degrades, i.e. that performance
on the Out representation is worse.

These results suggest the representations learned by the FeatureTokenizer and
the first MSHA are uninformative. Unlike the previous algorithms, the lower lay-
ers (the FeatureTokenizer and the first MSHA module) are working over a higher-
dimensional embedding space. Although such might be ultimately useful for finding
an optimal basis wherein data is linearly separable, one incurs the risk of increasing
sample complexity.
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Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the second MHSA representation is identical
to FT-Transformer’s performance on the original input.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.405, 0.401) p-value ≈ 0.650 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that performance doesn’t converge.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the Out representation is identical to FT-
Transformer’s performance on the original input.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.405, 0.401) p-value ≈ 0.970 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that performance doesn’t converge.

Certainly, loss of information is unlikely happening, and a much more obvious con-
clusion is that trees struggle to perform well in such settings wherein features are
of similar relevance, further aggravated by the higher-dimensional space. The top
(last) layer are working over an already transformed high-dimensional, however, its
performance increases: this suggests that the top layers are learning representations
that favor the inductive biases of tree-based methods.

Unitary Transformations To further understand these transformations, we ap-
ply random UTs to the data to understand if the effect is comparable to that of
the hidden layers of an FT-Transformer. Furthermore, we apply the same random
UTs to the representations learned by the FT-Transformer. In line with [Grinsztajn
et al., 2022], we expect tree-based methods to perform worse on data that endured
UTs, and even worse on the learned representations after UTs.

To that extent, we consider the CO1 dataset and apply a random u.t. to the original
input and the learned representations. For XGBoost we perform hyperparameter
tuning (the hyperparameter search space can be found in Appendix C) and let
training run until early_stopping_rounds without improvement on the validation
set have passed. We evaluate across ten disjoint samples drawn at random from the
test set and report Recall @ n%.

Figure 5.14 displays the previous results about unitary transformations displayed in
Figure 5.11 but with the addition of FT-Transformer. The results further confirm
our initial claims that performance reverses after applying a random u.t. to the
original input (which goes in line with [Grinsztajn et al., 2022]), but we go further
and suggest that FT-Transformer’s performance seems to change.
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Figure 5.14: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. Performance on the original data (left).
Performance on the data after a UT (right).

Mann-Whitney U Statistical Test

H0 −→ FT-Transformer performance on the original input is identical to FT-
Transformer performance on the original input after a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.405, 0.381) p-value ≈ 0.186 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that FT-Transformer’s performance degrades after
a UT.

Although the statistical test suggests there is no meaningful performance gap be-
tween FT-Transformer’s performance before and after a UT, one must consider that
FT-Transformer was poorly tuned. In [Grinsztajn et al., 2022], the authors provide
empirical evidence that FT-Transformer is indeed non-rotationally invariant, so we
attribute the disagreement in our results to a poorly tuned model. Notwithstand-
ing, we still found FT-Transformer to be the best DL model across our results which
hints at the its promissing potential as a robust architecture for DL in tabular data.

Figure 5.15 suggests that, again, XGBoost’s performance doesn’t degrade that much
after a random u.t. when the prior input is a learned representation. More striking,
is that FT-Transformer’s layers seem to produce representations that are invariant
to UTs.
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Figure 5.15: Performance (CO1 dataset, Recall @ 1%) reported across ten disjoint
samples drawn at random from the test set. XGBoost performance on the original
data (left), and on the FeatureTokenizer, first and second MHSA blocks and Out
representations (left to right).

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the FeatureTokenizer representation
without a UT is identical to XGBoost’s performance on the
FeatureTokenizer representation with a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.369, 0.369) p-value ≈ 0.910 −→ we fail to reject the null
hypothesis as results are not significant. This suggests we don’t have strong
statistical evidence that UTs hurt performance for the FeatureTokenizer –
or that the FeatureTokenizer representation is non-rotationally invariant.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the first MHSA representation without a UT
is identical to XGBoost’s performance on the first MHSA representation
with a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.384, 0.384) p-value ≈ 1.0 −→ we fail to reject the null
hypothesis as results are not significant. This suggests we don’t have strong
statistical evidence that UTs hurt performance for the first MHSA – or that the
first MHSA representation is non-rotationally invariant.
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Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the second MHSA representation without a
UT is identical to XGBoost’s performance on the second MHSA repre-
sentation with a UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.401, 0.402) p-value ≈ 0.880 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that UTs hurt performance for the second MHSA –
or that the second MHSA representation is non-rotationally invariant.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance on the Out representation without a UT is
identical to XGBoost’s performance on the Out representation with a
UT.

H1 −→ The distributions of performance are not identical.

Test result: µ̃ ≈ (0.401, 0.399) p-value ≈ 0.364 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that UTs hurt performance for the Out – or that
the Out representation is non-rotationally invariant.

Key Takeaways Results regarding FT-Transformer are also quite revealing, by
demonstrating that the Transformer architecture can be properly adapted to tabular
data if a proper embedding scheme is employed. In line with [Grinsztajn et al., 2022],
the usage of certain embeddings seems to key for breaking the invariance to UTs of
DL models [Gorishniy et al., 2022]. As stated in [Borisov et al., 2021], a key obstacle
in asserting DL models as consistent contenders for tabular data problems is the lack
of lossless encoding schemes and theoretical exploration of such. Unlike TabNet, that
relies on a learnable sparse mask for soft feature selection, FT-Transformer leverages
the usage of self-attention (as part of the Transformer layers) to attend to different
parts of the input – this also highlights a possible link between good feature selection
methods and non-rotationally invariance [Ng, 2004].

Finally, it seems that the true power of FT-Transformer also lies in Transformer lay-
ers, as evidenced by other Transformer-based models for tabular data that provided
competitive results in relevant tasks [Huang et al., 2020; Somepalli et al., 2021; Song
et al., 2019].

5.2.4 Takeaways

Regarding this experiment, we are able to derive some conclusions:
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• Although DL produces compact representations, the compression (performed
by lower-dimensional layers) is detrimental. Not only that, but the perfor-
mance gap between tree-based and DL algorithms is likely not a result of
compressing the input in the hidden layers.

• The DNN blocks in the DL algorithms do not perform arbitrary UTs. Not
only that, but whilst tabular data is generally non invariant by UTs, the rep-
resentations learned by DL algorithms seem to be invariant to UTs. Learning
compact representations potentially mixes features with different statistical
properties: the subset of relevant features present in the original input is lost.
We show that tree-based methods trained on the learned representations have
similar results to the linear classifier in DL algorithms.

• We show that the MLP is invariant to UTs (in line with [Grinsztajn et al.,
2022]) and that TabNet and FT-Transformer are non-invariant to UTs: the
soft feature selection mechanism of TabNet and the embedding layer of FT-
Transformer seem to break this invariance.

Such results highlight for additional strong inductive biases of DL algorithms unsuit-
able for tabular data. Although the approximation of axis-aligned decision bound-
aries via hyperplanes (performed by TabNet) and contextual embeddings (employed
by FT-Transformer) seem to be key for improving suitability to tabular data, the
hidden layers still apply non-linear transformations to the original input; this class
of transformations erase the semantic constraints of tabular data and learn com-
pact representations, i.e. with less degrees of freedom, which may misrepresent the
piece-wise relationships in tabular. Indeed, the whole point of neural networks is to
encode data into a latent space where most variations within data are kept with-
out loss of relevant information. However, the irregular patterns present in tabular
data and the sensitivity of the target function to a small subset of features remain
considerable obstacles to neural networks.

5.3 Experiment 2

As part of the second experiment, we explore varying degrees of feature engineering
and their impact on the performance of tree-based and DL algorithms. Rich features
– such as profiling features – explicit describe implicit interactions between features
in tabular data; these rich features are key to tree-based methods which cannot
perform such linear and non-linear combinations natively. Neural networks, on the
other hand, benefit from hidden layers to learn compact representations that capture
such interactions between features.

To that extent, we explore the impact of rich features of varying complexity on
XGBoost and MLP. We leverage the rich BB1 dataset and split by different feature
subsets. We evaluate XGBoost and the MLP on each subset to understand to
what degree do tree-based and DL algorithms benefit from rich features. Finally,
we relate their behaviour across the multiple feature subsets to uncover possible
inductive biases behind the performance gap.
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Rich Profiling Features Rich features explicitly describe implicit feature inter-
actions, which is indeed useful for tree-based methods which cannot model linear
and non-linear interactions. Not only that, but rich features can be quite complex
(in terms of calculation) and represent interactions which cannot be modeled via
non-linear transformations of neural networks’ hidden layers.

We argue that incorporating feature engineering is ultimately beneficial for both
tree-based and DL algorithms, however, we argue that tree-based methods benefit
more from rich features than DL algorithms, given their inability to uncover implicit
interactions in data.

Table 5.5: Examples of feature engineering on the BB1 dataset.

Type Example
probability log-probability of average transaction amount across one-hour win-

dows
ratio ratio between average transaction amounts across one-day windows
sum total transaction amount across one-hour windows

average average transaction amount across one-month windows

We consider the BB1 dataset and split the feature set into five subsets with different
features of varying degrees of complexity: i) raw ii) raw + probabilities iii) raw +
ratios iii) raw + sums iv) raw + averages. Table 5.5 provides some insight into what
some of these features look like and what they represent. We evaluate XGBoost and
the MLP on every feature subset. We perform hyperparameter tuning for XGBoost
and the MLP (the hyperparameter search space can be found in Appendix C and let
training until early_stopping_rounds (for XGBoost) or patience epochs (for the
MLP) without improvement on the validation set have passed. We evaluate across
ten disjoint samples drawn at random from the test set and report Recall @ n-%.

Figure 5.16 indicates XGBoost to be superior in every setting and both methods to
benefit from rich features. Indeed, the MLP evaluated over the rich features subset
outperforms XGBoost over the raw features for each feature subset. Additionally,
results suggest that rich features widen the performance gap to some extent: there
is a larger performance gap between XGBoost and the MLP for all feature subsets,
except for the "sums" subset, w.r.t to the performance gap with just raw features.

Figure 5.16 displays the performance delta ∆ across multiple levels of feature engi-
neering: performance delta ∆ is calculated as the performance difference between
the raw version and a rich-features subset S; e.g., the higher the delta ∆, the larger
the difference between the raw subset and S, i.e. subset S improves performance to
a greater extent.

Foremost, the absence of negative values indicate rich features always improve the
performance for both tree-based and DL algorithms. Additionally, ratio-related and
sum-related features improve the performance substantially. Secondly, incorporating
probabilities, ratios and averages into the raw data benefits more XGBoost than it
benefits the MLP. On the other hand, leveraging sums seems to benefit more the
MLP than XGBoost.

62



Experiments

Figure 5.16: Performance (BB1 dataset, Recall @ 8%) (left) and performance delta
(BB1 dataset, Recall @ 8%) reported across ten disjoint samples drawn at random
from the test set. Performance across different sets of rich features (left). Perfor-
mance delta is computed as the difference in performance between the raw set and
a given rich set of features (right).

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance delta is identical to MLP performance delta
for probability-related features.

H1 −→ The distributions of performance deltas are not identical.

Test result: µ̃ ≈ (0.154, 0.123) p-value ≈ 0.006 −→ we reject the null
hypothesis as results are significant. This suggests we have strong statistical
evidence that there is a performance gap.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance delta is identical to MLP performance delta
for ratio-related features.

H1 −→ The distributions of performance deltas are not identical.

Test result: µ̃ ≈ (0.228, 0.202) p-value ≈ 0.006 −→ we reject the null
hypothesis as results are significant. This suggests we have strong statistical
evidence that there is a performance gap.
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Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance delta is identical to MLP performance delta
for sum-related features.

H1 −→ The distributions of performance deltas are not identical.

Test result: µ̃ ≈ (0.227, 0.242) p-value ≈ 0.151 −→ we fail to reject the
null hypothesis as results are not significant. This suggests we don’t have
strong statistical evidence that there is a performance gap.

Mann-Whitney U Statistical Test

H0 −→ XGBoost’s performance delta is identical to MLP performance delta
for average-related features.

H1 −→ The distributions of performance deltas are not identical.

Test result: µ̃ ≈ (0.142, 0.108) p-value ≈ 0.000 −→ we reject the null
hypothesis as results are significant. This suggests we have strong statistical
evidence that there is a performance gap.

Statistical evidence suggests that trees benefit more from rich features w.r.t the
MLP , except for sum-related features where there is no strong statistical evidence
that the MLP benefits more or less from sum-related features.

Feature Importance Figure 5.17 displays XGBoost feature importances for the
different sets of rich features. Feature importance is calculated as the average gain
across splits for a given feature. The information gain often provides a good measure
of the relevance of a given feature. Results suggest the rich features are indeed
relevant considering these represent the majority of features that contribute the
most to the model decision.

Additionally, the relevance of these rich features partially explains why the MLP per-
forms better: the MLP struggles to learn in settings wherein only a subset of features
are relevant [Ng, 2004]. This goes inline with [Grinsztajn et al., 2022], wherein the
authors report MLP-like neural networks to be vulnerable to uninformative features
and to also benefit from relevant features.

5.3.1 Takeaways

The results obtained support our initial claim that rich features help tree-based
methods and DL algorithms: explicitly describing complex interactions between fea-
tures affords trees to leverage all the implicit information in data. Neural networks
are usually free of explicit feature engineering due to learning compact representa-
tions internally. However, neural networks might benefit from rich explicit features
in tabular data tasks. In line with [Ng, 2004], neural networks usually struggle in
settings wherein only a portion of the features are relevant. Feature engineering
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Figure 5.17: Feature importance computed by XGBoost models for feature subsets
with different levels of feature engineering. We sort features by descending order of
feature importance and display the top ten features. The feature importance score
is computed as the average gain across splits for a given feature.
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helps by increasing the amount of relevant features a priori and incorporating some
of the most complex feature interactions that neural networks may fail to capture.

Nonetheless, the performance gap may not stem from a lack (or presence) of feature
engineering. The presence of rich features improves the performance of both tree-
based and DL algorithms; at most, the presence of feature engineering widens the
performance gap between these algorithms. The relevance of such a conclusion
is questionable, given that most tabular datasets commonly used in the relevant
literature don’t comprise rich features and are frequently dominated by redundant
and uninformative features.

5.4 Summary

In this chapter, we presented the experimental work. We detailed four minor exper-
iments we performed. Next, we delved into an experiment exploring the represen-
tational capacity of DNNs and it’s relation to tabular data. Finally, we conducted
an experiment evaluating the sensitivity of tree-based and DL algorithms to feature
engineering.
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Conclusion and Outlook

In this chapter, we provide the final conclusions regarding our experimental work
and hint at the relevant future work.

6.1 Conclusion

In this thesis, we uncovered possible causes for the performance gap between tree-
based and Deep Learning (DL) algorithms in tabular data, under the scope of fraud
detection. Foremost, we show tree-based methods outperform DL algorithms for
our tabular datasets. We demonstrate the performance gap is likely not caused
by compression of information or arbitrary unitary transformations in the hidden
layers, nor by feature engineering. Indeed, we demonstrate it likely stems from a
disagreement between the inductive biases of DL algorithms and the properties of
tabular data: i) DL algorithms may misrepresent irregular patterns in tabular data
via linear and non-linear dependencies in the representational space ii) invariance
to UTs is an undesirable property that leads to poor performance in settings with
few relevant features.

Our results reveal the Multi Layer Perceptron (MLP) to be invariant to unitary
transformations (UTs) and showed TabNet and FT-Transformer to be non invariant
to UTs: such is likely due to the feature selection mechanism in TabNet and to
the embedding layer in FT-Transformer. These components encode the appropriate
inductive biases that better align with the inductive biases of tree-based methods
which are particularly useful for tabular data.

Finally, we show that feature engineering can be beneficial for both tree-based and
DL algorithms. Indeed, explicitly describing complex interactions in tabular data
affords the possibility to leverage all the implicit information that is difficult to
model by trees and neural networks. Our results indicate that the performance gap
may not stem from a lack of feature engineering, despite observing that rich features
widen the performance gap: most tabular datasets commonly used in the relevant
literature don’t comprise rich features and are naturally dominated by redundant
and uninformative features.
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In sum, and in line with several works on the area, TabNet and FT-Transformer
incorporate inductive biases that better align with the core properties of tabular
data: features interact with themselves via irregular patterns and the target function
usually responds to only a subset of relevant features. Such is likely evidenced by
the ability of tree-based methods to perform reasonably well in the representations
learned by such algorithms: TabNet and FT-Transformer learn representations that
are more "GBDT-friendly".

We believe such study is relevant in the fraud domain: we showed that some DL
algorithms are able to provide competitive results, which hints at the possibility
of soon incorporating DL into fraud detection mechanisms. Notwithstanding, tree-
based methods are still the favorite approach given their attractive characteristics
much valued in the fraud domain: native interpretability and low computational
overhead.

6.2 Outlook

We understand there still exists relevant work to pursue in the area. Most im-
portantly, we foster for more theoretical results of TabNet and FT-Transformer as
favorable routes of research: understanding the theory behind them seems to be key
to close the performance gap.

In line with our work, we consider the exploration of higher-dimensional hidden
layers and how does loss of information occur in representations with more degrees
of freedom. To the best of our knowledge, validating the amount of degrees of
freedom in representations as a possible cause for the performance gap is indeed
relevant. Additionally, we consider the lack of appropriate encoding methods that
cater to the properties of categorical features, such as multi-modal distributions and
semantic constraints. Furthermore, we consider a more thorough exploration of the
role of categorical features, specially in TabNet and FT-Transformer.

Moreover, we consider the exploration of more intricate embedding layers to be cru-
cial for devising strategies that break the rotation invariance of DL algorithms. In
line with [Gorishniy et al., 2022], embeddings for numerical features are an under-
explored venue of research in tabular data: the authors find that embedding numer-
ical features allows simpler architectures (such as the MLP) to perform on par with
Transformer-based algorithms. Additionally, most architectures are built upon the
pre-made conception that the same embedding transform (e.g. function) is applied
to all features: such choice may limit the representational capacity of DL algorithms.
Employing different embeddings schemes for different features may afford the pos-
sibility to learn encodings that more precisely represent each feature in the latent
space.
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6.3 Summary

In this chapter, we drew the final takeaways regarding this thesis. We detailed the
key results of the experimental work and derived meaningful conclusions. Finally,
we provided possible venues for future work.
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Appendix A

Software and Hardware

We implement a re-usable workflow for experimentation that consists of the follow-
ing:

1. Specify a configuration file for the tuple dataset-model

2. Tune the model on a dataset according to configuration file

3. Evaluate model on a dataset according to configuration file

This workflow was implemented in Python 3.71. All experiments were conducted
under the same hardware setup, consisting of a single Intel Xeon Gold 5120 CPU
with 12 cores and 40GB of RAM.

1https://www.python.org/
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Appendix B

Datasets

We describe all the datasets used throughout the experimental work and provide
the batch size used for DL algorithms.

Table B.1: Datasets description. Batch size displays the batch size for every DDL
algorithm: (A) is for the MLP, (B) for TabNet (C) for FT-Transformer and (D) for
NODE.

Name Numerical Categorical Train Val Test Batch size

BB1 1287 6 343894 68778 85974
(A,D) 1024
(B,C) 2048

RS1 236 57 294062 58812 1M (A,B,C,D) 2048

CO1 96 0 426013 85202 109859
(A) 1024
(B,C) 2048
(D) 512

WB1 100 1 540883 108176 135221
(A,D) 1024
(B,C) 2048

As previously mentioned in Chapter 4, we split the BB1 dataset into five subsets
with different features. Table B.2 details each subset.

Table B.2: BB1 feature subsets description.

Name Numerical Categorical
Raw 8 6
Raw + Probabilities 56 6
Raw + Ratios 457 6
Raw + Sums 128 6
Raw + Averages 271 6

Considering the high amount of features, we tuned LightGBM on the RS1 and
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Datasets

WB1 datasets and retrieve 30 features in decreasing order of feature importance; we
consider these reduced datasets for all experiments/results.
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Appendix C

Hyperparameters

We detail the hyperparameter search space for the several algorithms used in this
thesis’ practical work. We perform the same hyperparameter search for all datasets
but provide enough parameter range and Optuna trials for arbitrary sub-optimal
parameters to be found, whilst still maintaining realistic training times. Further-
more, the only parameter we change across datasets is the batch size that we set
manually for each dataset, as it largely depends on the volume and dimensionality
of the dataset.

For the tree-based algorithms (LightGBM, XGBoost and Catboost) we perform
100 trials, and for DL algorithms (MLP, TabNet, NODE and FT-Transformer) we
perform 50 trials. As finetuning can be quite expensive for DL algorithms, we limit
the training budget to 10 hours.

For tree-based algorithms we fix the early_stopping_rounds = 50 and for DL
algorithms we fix the epochs = 1e9.

LightGBM We follow the open source implementation1 and fix the following pa-
rameters:

1. boosting: gbdt

We fix the boosting mechanism and use traditional GBDT which yields slightly
better results than GOSS at the expense of slightly longer training times for which
the trade-off is almost negligible.

XGBoost We follow the open source implementation2 and fix the following pa-
rameters:

1. booster: gbtree

2. tree_method: hist
1https://lightgbm.readthedocs.io/en/v3.3.2/
2https://xgboost.readthedocs.io/en/stable/
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Table C.1: Hyperparameter space for LightGBM

Parameter Space
no. of estimators uniform: [100, 500]
no. of leaves uniform: [10, 100]
max depth uniform: [3, 7]
learning rate log uniform: [1e− 2, 1.0]
subsample uniform: [0.5, 1.0]
col. sample by tree uniform: [0.5, 1.0]
L1 regularization log uniform: [1e− 8, 1.0]
L2 regularization log uniform: [1e− 8, 1.0]

Table C.2: Hyperparameter space for XGBoost

Parameter Space
no. of estimators uniform: [100, 500]
max. depth uniform: [3, 7]
learning rate log uniform: [1e− 3, 1.0]
subsample uniform: [0.5, 1.0]
col. sample by tree uniform: [0.5, 1.0]
L1 regularization log uniform: [1e− 8, 1.0]
L2 regularization log uniform: [1e− 8, 1.0]

We fix the boosting mechanism and use only GBDT (gbtree). In both XGBoost
and LightGBM we refrained from using DART as it was in our best interest to
also limit the degrees of freedom in the hyperparameter search. We also fix the
method for building the trees, which is a histogram-based greedy algorithm similar
to LightGBM’s.

Catboost We follow the open source implementation3 and don’t fix any specific
parameter. We don’t delve to deep into the parameterization of Catboost as it’s
training is quite expensive and the default parameters already provide a reasonable
baseline across several datasets.

3https://catboost.ai/

Table C.3: Hyperparameter space for Catboost

Parameter Space
no. of estimators uniform: [100, 500]
learning rate uniform: [1e− 3, 1e− 2]
depth uniform: [3, 7]
leaf estimation iterations log uniform: [1, 5]
leaf L2 regularization by tree log uniform: [1.0, 10.0]
bagging temperature uniform: [0.0, 1.0]
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Table C.4: Hyperparameter space for MLP

Parameter Space
no. of layers uniform: [1, 8]
layers size uniform: {8, 16, 32, 64, 128, 256}
dropout uniform: [0.0, 0.2]

MLP We provide a PyTorch4 implementation based on [Gorishniy et al., 2021]
and fix the following parameters:

1. optimizer: Adam with learning_rate= 1e− 2

2. patience: 10

3. fixed_layer_size: false

We fix the patience at 10 to reduce training times. We also fix the optimizer
method and parameters to avoid extensive parameter searches. Finally, we don’t
constrain the model to have fixed-sized hidden layers.

TabNet We follow the open source implementation5 and fix the following param-
eters:

1. optimizer: AdamW with learning_rate= 2e− 2 and weight_decay= 1e− 3

2. patience: 6

3. mask_type: sparsemax

We fix patience at 6 to reduce training times. We also fix the mask to sparsemax,
as it outputs sparse probability distributions which aligns well with the goal of sparse
feature selection [Arik and Pfister, 2021; Martins and Astudillo, 2016]. Our hyper-
parameter space is defined according to general guidelines provided in the original
paper [Arik and Pfister, 2021] and we always start from a default configuration (an
"educated" guess of sorts). As advised by the authors, the width of the attention
embedding Na should be equal to the width of the decision layer Nd, therefore we
only search for the optimal value for Nd and set Na = Nd.

FT-Transformer We follow the open source implementation6 and fix the follow-
ing parameters:

1. optimizer: AdamW with learning_rate= 1e− 3 and weight_decay= 1e− 5

2. patience = 6

4https://pytorch.org/
5https://dreamquark-ai.github.io/tabnet/
6https://github.com/Yura52/tabular-dl-revisiting-models
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Table C.5: Hyperparameter space for TabNet

Parameter Space
no. of decision steps uniform: [3, 10]
decision layer size uniform: 8, 16, 32, 64, 128
gamma uniform: [1.0, 2.0]
momentum log uniform: [1e− 2, 4e− 1]
lambda sparse uniform: [1e− 5, 1e− 1]

Table C.6: Hyperparameter space for FT-Transformer

Parameter Space
no. of layers uniform: [1, 3]
embedding layer size uniform: {4, 8, 16, 32, 64, 128, 256}
no. of MHSA modules uniform: {4, 8}
attention dropout uniform: [0.0, 0.3]
FFN dropout uniform: [0.0, 0.3]

3. activation: ReGLU

4. d_ffn_factor: 4
3

5. Residual dropout: 0.0

6. Initialization: kaiming

7. Prenormalization: true

We fix patience at 6 to reduce training times given the available hardware setup.
Our hyperparameter space is defined according to general guidelines provided in the
original paper ([Gorishniy et al., 2021]): we use the PreNorm variant (instead of
PostNorm) and use kaiming initialization ([He et al., 2015]). As for the activation
functions, we use ReGLU for the FFN modules and ReLU in the final layer. We keep
the hyperparameter search space relatively simple as the FT-Transformer is very
resource-demanding.

NODE We follow the open source implementation7 and fix the following param-
eters:

1. optimizer: AdamW with learning_rate= 2e− 2 and weight_decay=1e− 3

2. patience = 6

We fix patience at 6 to reduce training times. Our hyperparameter space is de-
fined according to general guidelines provided in the original paper [Popov et al.,
2019]. We keep the hyperparameter search space relatively simple as the NODE
implementation available is very memory inefficient.

7https://github.com/Qwicen/node
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Table C.7: Hyperparameter space for NODE

Parameter Space
layer size uniform: {128, 256, 512}
tree output dimension uniform: {2, 3}
no. of layers uniform: [1, 6]
tree depth uniform: [3, 7]
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