

Oleksandr Yakovlyev

FERRAMENTAS MODULARES DE E-

COMMERCE DIRECIONADAS PARA

ECONOMIA CIRCULAR

Dissertação no âmbito do Mestrado em Engenharia Informática,

especialização em Engenharia de Software, orientada pelo

Professor Doutor Mário Alberto Zenha-Rela e pela Mestre Marta

Mercier e apresentada e ao Departamento de Engenharia

Informática da Faculdade de Ciências e Tecnologia da

Universidade de Coimbra.

Setembro de 2023

Faculty of Sciences and Technology

Department of Informatics Engineering

Modular e-commerce tools targeting
circular economy

Oleksandr Yakovlyev

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering advised by Professor Mário Alberto Zenha-Rela and by the Master
Marta Mercier and presented to the Faculty of Sciences and Technology / Department of

Informatics Engineering.

September 2023

This page is intentionally left blank.

Aknowledgements

I would like to begin by extending my heartfelt gratitude to my family. To my parents,
whose unwavering support has been my backbone through the years of my academic jour-
ney, thank you for your endless love and patience. A special mention to my grandmother,
who has always been a constant source of wisdom and comfort, and to my brother, whose
cheerfulness has been an invaluable source of encouragement.

I am profoundly thankful for the guidance, support, and mentorship of my advisors, Marta
Mercier and João Rodrigues. Your constant motivation and expertise have been invaluable
in the completion of this dissertation.

To my advisor, Professor Mário Alberto Zenha-Rela, I extend my deepest appreciation.
Your availability and extensive knowledge have been monumental in the progress and
quality of this work. Thank you for always being just an email away and for offering
insights that enriched my understanding and approach to this field of study.

I am also indebted to my friend Bruno Sousa for his role in the review process and for
his motivation and support throughout the development of this project. Your critical
perspective and constructive comments were vital in the final revisions of this dissertation.

Finally, I would like to express my gratitude to everyone who has directly or indirectly
contributed to this work.

iii

This page is intentionally left blank.

Resumo

A economia circular e o desenvolvimento sustentável têm ganho crescente interesse público
e académico na última década.

Com o crescimento do comércio eletrónico e crescentes preocupações com a sustentabili-
dade, há atualmente ênfase forte no modelo de economia circular que destaca a redução
de resíduos, prolongando a vida útil dos produtos e promovendo o consumo sustentável.

Paralelamente a estas preocupações ecológicas, o desenvolvimento e maturação das platafor-
mas e lojas de comércio eletrónico têm aumentado a um ritmo acelerado.

Apesar desta tendência crescente, muitas empresas têm dificuldade em integrar os princí-
pios da economia circular na sua presença digital.

Este projeto aborda esta lacuna, introduzindo um conjunto de aplicações web modu-
lares projetadas para permitir com que as empresas adotem sem problemas as práticas
da economia circular nas suas plataformas de comércio eletrónico, integrando-se com a
infraestrutura digital existente.

Através de ferramentas que promovem o recondicionamento e a renovação, as empresas não
só podem mitigar o impacto ambiental do consumerismo excessivo, mas também descobrir
novas oportunidades de negócio.

Este documento descreve cada fase do desenvolvimento de um piloto para este projeto,
que consiste em vários módulos, coletivamente conhecidos como LoopOS, e o piloto OLX
2nd Life.

várias práticas de engenharia de software são exploradas, desde o planeamento e análise
até ao desenvolvimento e testes, para dar uma visão abrangente do ciclo de vida do projeto.

Palavras-chave

Comércio eletrónico, Economia circular, Software interoperável, Desenvolvimento web,
Ruby on Rails

v

Chapter 0

Abstract

Circular economy and sustainable development have gained increased public and academic
interest over the last decade.

With the growth of e-commerce and increasing sustainability concerns, there is a stronger
emphasis currently on the circular economy model that emphasizes reducing waste, ex-
tending the lifespan of products, and promoting sustainable consumption.

Alongside these ecological concerns, the development and maturing of e-commerce plat-
forms and stores have been increasing at a rapid pace.

Despite this rising trend, many businesses struggle to integrate circular economy principles
into their digital presence.

This project addresses this gap by introducing a suite of modular web-based applications
designed to enable businesses to seamlessly adopt circular economy practices on their
e-commerce platforms, integrating with existing digital infrastructure.

Through tools that promote refurbishing and reconditioning, businesses can not only mit-
igate the environmental impact of excessive consumerism but also discover new economic
opportunities.

This document describes every phase of the development of a pilot for this project which
consists of various modules, collectively known as LoopOS, and the pilot OLX 2nd Life.

It delves into various software engineering practices, from planning and analysis to devel-
opment and testing, to give a comprehensive view of the project’s lifecycle.

Keywords

E-commerce, Circular economy, Interoperable software, Web development, Ruby on Rails

vi

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 The Loop Company . 1
1.2 Context and Motivation . 2
1.3 Objectives and Overview . 2

2 Planning 6
2.1 Tasks . 6

2.1.1 Setup Phase . 6
2.1.2 Development Phase . 7
2.1.3 Maintenance Phase . 8

2.2 Methodology . 9

3 State of Practice 12
3.1 E-commerce . 12

3.1.1 Types of e-commerce . 13
3.1.2 Typical Architectures . 14
3.1.3 Existing e-commerce solutions . 19

3.2 Circular Economy . 20
3.2.1 Background . 20

3.3 Similar solutions . 21

4 System Requirements 23
4.1 User Stories . 23
4.2 Architecturally Significant Requirements . 28

4.2.1 Quality Attributes . 28
4.2.2 Technical and Business Constraints 32

5 System Architecture 34
5.1 C4 Architecture . 34

5.1.1 C4 Context Diagram . 35
5.1.2 C4 Container Diagram . 37
5.1.3 C4 Component Diagram . 37

5.2 State Machine Diagram . 41
5.3 Sequence Diagram . 42
5.4 Entity-relationship Diagrams . 44

5.4.1 Submission Module . 47
5.4.2 E-commerce Module . 52

6 Development 55
6.1 Development Process . 55

6.1.1 Agile Methodology in Practice . 55
6.1.2 Team Organization . 59

viii

Contents

6.1.3 Task Organization . 60
6.1.4 Code Review and Quality Assurance 62

6.2 Development Execution . 63
6.2.1 Planning and Management Tools . 63
6.2.2 Development Tools . 64
6.2.3 Continuous Integration and Deployment 66
6.2.4 Testing . 67

6.3 Deployment and Maintenance . 70
6.3.1 Deployment Strategy . 71
6.3.2 Maintenance and Updates . 72

6.4 Current State and Future Work . 73

7 Conclusion 76

A Security Report 81
A.1 Submission Module Backoffice and E-commerce Resolution Report 81
A.2 Submission Module Frontend Problem Resolution Report 86

ix

This page is intentionally left blank.

List of Figures

1.1 Comparison of the OLX, OLX 2nd Life, and regular e-commerce user ex-
perience flow. 3

2.1 Agile development cycle, also known as a Sprint. 10

3.1 Example of a two-tier architecture. 16
3.2 Example of a three-tier architecture. 16
3.3 Example of an N-tier architecture. 18
3.4 The R9-framework. Image from Potting et al. (2017, p.5)[1] 20

4.1 The three aspects of ASRs/Architectural Drivers 28

5.1 C4 Context Diagram . 35
5.2 C4 Container Diagram . 38
5.3 C4 Component Diagram . 39
5.4 State machine diagram depicting the possible Submission states and flow. . 43
5.5 Sequence Diagram - Initial Proposal Flow. 45
5.6 Sequence Diagram - Proposal Flow, Acceptance and Evaluation. 46
5.7 Examples of ER diagram arrows. 47
5.8 Simplified ER. 48
5.9 Simplified ER with Content . 50
5.10 FormEntries ER . 51
5.11 FormEntries ER with Content . 51
5.12 E-commerce Module Entity-Relationship Diagram - Simplified 53
5.13 E-commerce Module Entity-Relationship Diagram - With content 54

6.1 Kanban benefits . 60
6.2 Example of a Kanban style task view during the development process in

ClickUp . 64
6.3 Unit test for the submission model . 68
6.4 Unit test output for the submission model 68
6.5 OpenAPI schema definition for the category object 69
6.6 RSpec tests for the submission API . 70
6.7 RSpec tests output for the submission API 71
6.8 Submissions by State . 74

xi

This page is intentionally left blank.

List of Tables

3.1 Comparison of some existing e-commerce solutions 19

4.1 Quality Attribute - System Compatibility 29
4.2 Quality Attribute - Database Interoperability 30
4.3 Quality Attribute - Modifiability (Branding Adaptability) 30
4.4 Quality Attribute - Usability for Loop Manager 31
4.5 Quality Attribute - Usability for Seller . 31
4.6 Quality Attribute - Performance . 32
4.7 Quality Attribute - Scalability . 32
4.8 Technical Constraint TC01 . 32
4.9 Technical Constraint TC02 . 33
4.10 Technical Constraint TC03 . 33
4.11 Business Constraint BC02 . 33

6.1 Description of Task Stages . 62
6.2 Kubernetes Features and their Contributions to Quality Attributes 73
6.3 Submissions by State . 74

A.1 Rate Limit Table . 83

xiii

This page is intentionally left blank.

Chapter 1

Introduction

The modern world’s emphasis on sustainability and efficient resource utilization has led
to the exploration of innovative solutions, such as the circular economy. The following
chapter introduces the collaborative project between The Loop Co. and OLX in this
cause.

The project here presented consists of designing and developing a modular solution for
the circular economy market. Its purpose is to enable the integration of circular economy
practices into existing business applications such as e-commerce platforms.

It will be developed by the Software Engineering Masters student Oleksandr Yakovlyev
within the scope of the course Dissertation/Internship in Software Engineering in the
Faculty of Sciences and Technology / Department of Informatics, under the guidance of
Professor Mário Alberto Zenha-Rela, from the Department of Informatics, and Master
Marta Mercier, from The Loop Company.

1.1 The Loop Company

Since its conception, and as the name suggests, the The Loop Co. 1 had a great focus
on sustainability and circular economy. The company began in 2016, with the Book in
Loop project, a platform for the re-utilization of school manuals. Many more ecologically
conscious projects have been made possible since then, thanks to The Loop. For example
BabyLoop2, Bebidas+Circulares3, Do Velho se Faz Novo4, and ZEROO Cups!5.

For the last few years, The Loop has been expanding. Recently they opened a second
office in the city of Coimbra and currently employ more than 100 talented people, working
remotely from all over the country.

1https://www.theloop.pt/
2https://babyloop.pt/
3https://www.bebidascirculares.pt/
4https://dovelhosefaznovo.pt/
5https://do-zero.pt/zero-cups/

1

https://www.theloop.pt/
https://babyloop.pt/
https://www.bebidascirculares.pt/
https://dovelhosefaznovo.pt/
https://do-zero.pt/zero-cups/

Chapter 1

1.2 Context and Motivation

This project has two main clients: The Loop Co. itself and the online marketplace company
OLX6.

As mentioned before, The Loop has had many projects related to the circular economy,
however, custom software solutions have been developed for each one. Now, having the
experience and insight into the requirements for these types of systems, The Loop decided
that it is possible, and useful, to generalize and create a modular and reusable solution,
named LoopOS.

LoopOS is a product that has been conceptualized by The Loop for some time. It aims
to streamline the process of recovering and reusing second-hand/returned items. It is
designed to help retailers tap into the circular economy world, without the initial costly
investment necessary to explore this market.

The Loop Co. wants to create LoopOS for future internal projects and as a potential
software solution to be sold to third parties, like the aforementioned retailers.

On the other hand, this will also serve as a software project for OLX, which wants to create
a new buying experience for their marketplace - the OLX 2nd Life7. This marketplace
currently allows buyers and sellers to exchange secondhand goods by letting people create
public listings with their contact information.

OLX wants to add an alternative way of performing this exchange. They want to give the
buyer the possibility to shop in the marketplace with a typical online shopping experience,
as depicted in the figure 1.1, and to facilitate the seller in disposing of their item. This
alternative flow, aside from being convenient, also guarantees the product quality to the
end buyer and speeds up the process for the seller, as they spend less time waiting to sell
their item.

Circular Economy is about adding value to products. LoopOS has been designed to bridge
the gap between supply and demand by including second-hand items. The objective is not
just to streamline OLX’s operations but also to enhance the buying and selling experience
for users, making second-hand buying as intuitive as purchasing new items.

To achieve this, OLX needs a way to source used products, pass them through Quality
Assurance, and finally re-inject them into an existing online store.

These three steps fit into the flow that LoopOS wants to provide. The modularity and
extensibility of the project are a major concern. However, for the scope of this dissertation,
the focus will be primarily on the pilot project - OLX 2nd Life, which serves as an example
of LoopOS’s application and potential.

1.3 Objectives and Overview

LoopOS aspires to be a comprehensive solution, an ecosystem, that manages the complex-
ities of a circular economy from sourcing items to reintroducing them into the market.

One of the problems LoopOS aims to solve is the great inefficiency and manual effort in
the process of recovering items from customers’ homes, which has been created by the

6https://www.olx.pt/
7https://help.olx.pt/olxpthelp/s/article/olx-2nd-life-ganha-dinheiro-e-ajuda-o-planeta-

V10

2

https://www.olx.pt/
https://help.olx.pt/olxpthelp/s/article/olx-2nd-life-ganha-dinheiro-e-ajuda-o-planeta-V10
https://help.olx.pt/olxpthelp/s/article/olx-2nd-life-ganha-dinheiro-e-ajuda-o-planeta-V10

Introduction

Figure 1.1: Comparison of the OLX, OLX 2nd Life, and regular e-commerce user experi-
ence flow.

rise of e-commerce and its ease of returns. Current retail channels are designed for a
unidirectional flow of goods and have not adapted well to the contrary flow of returns.

As the pilot project, OLX 2nd Life will need to implement solutions to some of these prob-
lems. The solutions can be divided into two categories: the circular economy problems,
and the e-commerce ones.

The usual e-commerce application deals with problems such as:

• Back-office Product and Inventory Management

• Order processing

• Payment processing

• Warehouse logistics

• Customer support

These issues have established solutions, which will be elaborated upon later.

However, the circular economy introduces additional steps to this flow, mainly product
acquisition, retrieval, quality assurance, reconditioning, and the subsequent reintroduction
of these items into an e-commerce platform. These are the challenges that need to be
solved.

• Product acquisition: The process of gathering second-hand or returned items
from customers. It is also necessary to filter out undesirable products and determine
which items are worth refurbishing and selling. The goal is to create a streamlined

3

Chapter 1

experience, and in the case of OLX 2nd Life, there will be no acquisition through
returns.

• Product retrieval: The corresponding logistics problem of actually getting the
physical product from the seller to the warehouse/refurbishing facility.

• Quality assurance: The act of inspecting returned items to ensure they meet
certain standards of quality before they are resold. The goal is to have a system
that enables an operator to quickly and accurately determine which items are in
good enough condition to be resold, and a software system that fits well into this
workflow.

• Reconditioning: This refers to the process of repairing or restoring returned items
to make them suitable for resale. Different categories of products have different
quality assurance and reconditioning processes. They also require diverse skill sets
and vary in cost.

• Re-injecting into an e-commerce platform: This refers to the process of adding
acquired items back into a digital store. In the case of OLX, they will have a dedi-
cated online store for these items and an advertisement on the existing marketplace
that links to it.

In summary, the potential of LoopOS lies in its capacity to merge the functionalities of
e-commerce with the requirements of the circular economy. By focusing on these steps,
from product acquisition to seamless re-introduction into e-commerce platforms, LoopOS
aims not only to revitalize the way returns and second-hand sales are perceived but also
to redefine the e-commerce landscape. Through the OLX 2nd Life pilot, this project will
validate the LoopOS concept and demonstrate its usefulness.

4

This page is intentionally left blank.

Chapter 2

Planning

In this chapter, the author outlines the key tasks, provides a detailed breakdown of the
development timeline, discusses the adapted methodology, and analyzes associated risks.

2.1 Tasks

This section describes the tasks done during this project, divided into three phases: Setup,
Development, and Maintenance.

The initial planning was first done using Gantt diagrams, but as the project progressed, it
became clear that this was not the best approach. Given the project’s Agile development
methodology (described in section 2.2), these traditional Waterfall elements proved to be
not the best fit, and the aforementioned Gantt diagrams were often mismatched with the
reality of the project and the client’s needs.

The planning and organization of the project’s tasks are discussed in more detail in section
6.1.1 of the Development chapter. In this section, the focus is on the project’s timeline
and the general overview of the tasks.

2.1.1 Setup Phase

Scheduled between the 14th of February and the 22nd of April (2022), the initial phase is
predominantly centered on setting the project foundation and planning the development
process and the dissertation itself. The tasks in this phase encompass:

Planning

This task corresponds to the estimation of the work to be done, the correspondent time
costs the choice of the development methodology. It is composed of establishing a roadmap
for the project with the client and defining a tentative timeline.

State of Practice

The purpose of studying existing solutions is to make better and more informed decisions
about the project in question. This task includes researching topics such as existing e-

6

Planning

commerce systems, configurable back-office solutions, modular system architecture and
design, and circular e-commerce.

Requirements elicitation

The analysis and consolidation of the system requirements. These impact the Architecture
of the system and the tools and technologies to be used. The result of this task should be
user stories, quality attributes, and business constraints.

Architecture Design

After the requirements elicitation task, comes the design of the system itself, through the
help of different diagrams. The purpose is to design and explain, on a higher level, how
the system will meet the defined requirements. These are also useful as documentation,
to help explain the system to others and the client.

Security considerations

Referring to the Security Document prepared by the business team and OLX, to under-
stand and assimilate the planning, GDPR, and other relevant requirements that impact
development.

Setting up boilerplate tasks and Establishing CRUD operations

Projects are initiated leveraging the chosen frameworks and technologies, complemented
by the setting up of development environments (docker containers) and Gitlab CI/CD
pipelines, and the terraform scripts for the infrastructure. The CRUD operations are
the basic Create, Read, Update, and Delete operations that are the foundation of any
application, and are the first step in the development of the Submission Module.

2.1.2 Development Phase

From 23rd April to 22nd September (2022), the Development phase corresponds to the
core period of active development.

Intermediate Report and Presentation

Given that this project is also part of a master’s thesis on Software Engineering, there is
an intermediate evaluation to make sure the author is on the right path. The intermediate
report is followed by a presentation and discussion with the assigned juries. This requires
adequate preparation so any questions and comments can be answered and clarified during
the defense.

7

Chapter 2

Submission Module

Here, the focus is on the back office, the Submission Module, API for the E-commerce
Module, and integration with essential services like payment systems and shipping. The
initial demo for OLX, scheduled for 4th July, provides a tentative deadline for the primary
components.

Submission Module Frontend

Design and implementation of the frontend for the Submission Module.

E-commerce Module

This task involves the creation of the back office, the online shopping components, OLX
API integrations, integration with the Submission Module, and other service integrations.

Testing

Even though a formal methodology such as Test Driven Development (TDD) or Behavior
Driven Development (BDD) is not being followed, testing is still a crucial part of the de-
velopment process, manual, unit, and integration tests are still necessary, when applicable.
The goal of this task is to make sure the system is stable and reliable.

Documentation

This task focuses on creating API documentation, complemented by artifact documenta-
tion including various diagrams.

2.1.3 Maintenance Phase

Running from 22nd September to May of the following year, the Maintenance phase ensures
the platform’s longevity and adaptability. Post the product’s launch, the maintenance
phase ensures its sustained functionality and efficiency. The main functionality will be
close to done, so there will be more focus on testing and improvements according to the
client feedback. The tasks can be categorized into the following topics:

Development and Improvement

While the core features should be operational by this phase, there might be additional
or refined features based on real-world tests and feedback. Key tasks involve refining the
e-commerce module and enhancing the catalog and store page functionalities.

Code Maintenance

Addressing any shortcuts or quick fixes implemented during development to meet dead-
lines, to ensure long-term stability and performance.

8

Planning

Deplopyment Monitoring and Maintenance

This task involves monitoring the system’s performance and stability and addressing any
issues that arise.

Final Report and Presentation

Similarly to the one in the first semester, there is one final deliverable that describes how
the whole process was realized. This task will result in the preparation of a final report,
followed by a presentation and discussion.

2.2 Methodology

This section describes the methodology used for this software development project. The
rationale behind the methodology is explored first, followed by a summary of its founda-
tional principles and values. The concrete applications for the project-specific needs are
discussed in section 6.1.1.

In The Loop Company, smaller teams are typical. Considering the context of the project,
and given the relatively short time frame for the initial release of OLX 2nd Life, an Agile
approach was deemed most fitting. This decision works especially well with the existing
culture, collaboration strategies, and source control practices in the company.

The source control practices are known as git workflows or git branching strategies [2],
and the specific Git workflow will be discussed later in subsection 6.2.2.

Agile software development is an umbrella term for a group of practices based on the 12
Principles defined in the Agile Manifesto. It was created in February of 2001, when trying
to find common ground between existing methodologies of the time, such as SCRUM,
Extreme Programming, Crystal Clear, and Feature-Driven Development (FDD), among
others.

The 12 Agile principles, as seen in the Agile Alliance Website [3], can be summarized as
follows:

1. Prioritize customer satisfaction through continuous delivery.
2. Embrace changing requirements, leveraging them for competitive advantage.
3. Frequently deliver working software.
4. Facilitate daily collaboration between business stakeholders and developers.
5. Cultivate motivated teams and provide the necessary support.
6. Prioritize face-to-face communication.
7. Evaluate progress primarily through working software.
8. Advocate for sustainable development pacing.
9. Commit to technical excellence and robust design.

10. Emphasize simplicity in design and execution.
11. Promote self-organizing teams for best outputs.
12. Encourage regular team reflections and continuous improvement.

9

Chapter 2

And the four Agile Values:

1. Individual and interactions over processes and tools.
2. Working software over comprehensive documentation.
3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

It is important to note that the items on the right are also important, nevertheless, the
items on the left are valued more.

The main focus is on the people, a working product, and collaboration between team
members [4]. Also, a great emphasis is put on self-organization and personal responsibility.
Empirical data consistently shows[5, 6] that workers who feel appreciated and responsible
for the project decisions and direction are more engaged and put more effort into the
produced work.

The following list highlights some activities and Agile values applied in this project:

• User Stories: Requirements summarized into simple sentences that convey the
expected system behavior and its beneficiaries.

• Daily Meetings: Regular meetings to discuss updates, plans, and challenges, in-
spired by SCRUM.

• Incremental and Iterative Development: Enabled by tools like git and Gitlab,
emphasizing iterative progress and incorporation of feedback. Detailed in section
6.2.2. The cyclic nature of this process is depicted in figure 2.1.

• Milestone Retrospective: Periodic reviews of significant project milestones.

Figure 2.1: Agile development cycle, also known as a Sprint.

In conclusion, the process used was similar to SCRUM, but without some formalities, such
as a dedicated Scrum Master, or rigid, explicit, and planned sprints.

10

This page is intentionally left blank.

Chapter 3

State of Practice

In this chapter, an analysis of the current state of practice is carried out.

As the main objective of this dissertation revolves around a new software solution for e-
commerce within the framework of a circular economy, both of these concepts are explored
and defined.

The E-commerce section consists of a brief introduction and impact of e-commerce, fol-
lowed by the analysis and comparison of different software architectures used to build
these systems, ending with a comparison of existing solutions.

Similarly, the Circular Economy section also begins with an overview. The role of software
systems in enabling this type of economy is then discussed.

Finally, the existing solutions that solve similar problems are reviewed.

3.1 E-commerce

E-commerce is a familiar term to most people. It is a business model that allows companies
to sell goods and services over the Internet. It was a logical consequence of the rapid
evolution of information technology in the 1990s. While e-commerce has evolved into a
multifaceted domain, its essence remains the digital dissemination of goods and services,
encompassing the order placement and the eventual product delivery to consumers.

To highlight the magnitude and influence of this domain, the following statistics [7] are
presented:

• Online retail sales amounted to 4.9 Trillion U.S dollars worldwide. It is expected to
grow by over 50% until 2026.

• Most internet users (58.4%) buy online every week. The most prevalent spending
categories are consumer electronics and fashion, amounting to 988.4 billion and 904.5
billion U.S. dollars.

• Revenue from physical stores is almost identical to digital sales.

Given these figures, there exists a compelling economic incentive to increase sales from
online channels.

12

State of Practice

Primarily driven by young adults (ages 16-24), the appeal of e-commerce lies in the con-
venience, security, and comparative ease it offers to consumers [8].

With this much potential income, the e-commerce domain is highly competitive, and
online platforms compete to provide the most streamlined, efficient shopping experience.
Consumers appreciate and favor e-commerce characteristic features such as the ease of
price comparison, access to reviews, and the convenience of purchasing from the comfort
of their homes.

3.1.1 Types of e-commerce

There are several types of possible transactions in e-commerce:

• Direct to Consumer (D2C)

• Business to Consumer (B2C)

• Business to Business (B2B)

• Business to Government (B2G)

• Consumer to Consumer (C2C)

• Consumer to Business (C2B)

This thesis primarily centers on B2B, B2C, and the integrative concept of B2B2C [9].
While B2B involves businesses selling to other businesses and B2C focuses on business-
to-consumer sales, B2B2C merges both by enabling businesses to access new consumer
markets through partnerships. Prominent e-commerce platforms, such as Amazon and
Alibaba, exemplify the B2B2C model. Of these, B2C sees the highest transaction volume,
while B2B, with fewer but larger transactions, garners significant profitability [10].

Customer Journey

In the following section, the concept of customer journey will be explored to better un-
derstand the requirements for common e-commerce software.

By examining the various stages of the customer journey, including initial awareness and
interest, conversion, purchase, and follow-up customer support, the specific needs of this
type of software can be identified. These interactions can be categorized into five phases:

• Awareness: how the customer becomes aware of the product or service offered.
Channels for this are social media, word of mouth, or traditional advertising.

• Consideration: the evaluation step. The user does research reading reviews and
comparing it to similar products, to decide whether or not it meets their needs.

• Conversion: the act of deciding on the purchase. A marker of conversion can be
adding the product to the cart and performing the checkout.

• Service: the post-sales customer support and relations that include returns, ex-
changes, and other aftercare aspects.

13

Chapter 3

• Loyalty: the customer becomes loyal to the brand businesses and is likely to con-
tinue to use their service/make purchases again.

Although the journey depends and varies on the nature product/service and business/brand,
understanding this flow remains crucial. Analyzing and refining these stages enhances the
conversion rate and increases the number of customers completing the journey.

Now from a functional point of view, to enable the customer journey, an e-commerce
platform needs to have the following features:

• Catalog Management: The platform should allow the merchant to create, modify,
and organize the products. This includes the product’s properties, such as price,
description, and images but also how they relate to each other.

• Order Management and Payment Processing The platform should give the
user an interface to capture the user information, such as address and payment
information, to be able to process and keep track of the order. Payment processing
and the handling of the user’s data are critical to the functionality and trust of
the whole system and as such a primary security concern. This is why many e-
commerce platforms integrate with trusted third-party payment processors (such as
PayPal, Apple Pay, and EasyPay) and delegate the payment and possibly invoicing
burden to those.

• Logistics and Inventory Management The platform should have a way to man-
age the stock if the product being sold is limited. It should also provide information
on the delivery. It is also often the case that the system needs to integrate with
external warehouse management systems to automate order processing.

• Customer Relationship Management Tools Mechanisms to engage with cus-
tomers, address queries, gather feedback, and troubleshoot issues.

• Analytics and reporting tools Lastly, the platform should also provide tools to
gather and analyze metrics, such as sales, traffic, demand, and general customer
behavior.

The following section will explore the different software architectures used to build systems
that enable these features.

3.1.2 Typical Architectures

This section gives an overview of different software architectures for e-commerce applica-
tions.

The architecture of a software project is dictated by several factors such as the size and
complexity of the project, the resources available, and the long-term goals of the business
in question.

Each architecture has its pros and cons, like how scalable it is and how easy it is to develop.
That’s why it is crucial to know the trade-offs before picking an architecture.

These trade-offs can depend on several factors [11], such as the following:

• Security: Making sure the software system is safe from unauthorized access and
that sensitive data is stored securely.

14

State of Practice

• Cost: The financial resources required to develop, maintain, and operate a software
system, including the cost of hardware and other software.

• Ease of development: The degree to which a software system can be easily devel-
oped, tested, and maintained by the development team.

• Ease of maintenance: How simple it is to update or modify the software it has
been deployed.

• Performance and Reliability: The efficiency and speed with which a software
system performs its intended tasks, and the ability of the system to handle high
levels of usage or data without experiencing delays or errors.

• Deployment: The process of delivering and installing a software system or appli-
cation in a production environment, where it can be used by end users.

The following sections discuss software architecture in increasing levels of complexity. This
is done in two dimensions: firstly from a more physical perspective, each with an increasing
number of tiers and layers, and secondly from a more conceptual perspective, contrasting
classical approaches like Monolithic with modern ones such as Microservices.

It is important to note that the terms tier and layer, which, though often used inter-
changeably, have different meanings [12].

Specifically, a tier operates independently of the other components and usually runs on
separate infrastructure, whereas a layer shares the same machine with other parts of the
application.

From Simplicity to Complexity

This section outlines architectures in ascending order of complexity, ranging from Two-Tier
to N-Tier systems.

Two-Tier

This subsection shortly examines the two-tier architectural model, which is the simplest
form of software architecture in the context of web-based applications. The architecture
fundamentally consists of two principal components: the client and the server.

The client component is responsible for managing user interaction. It usually has a Graph-
ical User Interface (GUI) and mainly works by generating and sending user requests to
the server.

The server, commonly a Relational Database Management System (RDMS), assumes the
role of the data repository. It is responsible for the storage, retrieval, and manipulation
of data.

An example diagram is shown in figure 3.1.

15

Chapter 3

Figure 3.1: Example of a two-tier architecture.

Despite the relative simplicity and ease of implementation, this architecture has some
inherent limitations.

• Security Vulnerabilities: The business logic is encapsulated within the client side,
creating a significant security risk. Given that client-side applications are susceptible
to tampering [13], functionalities such as validation, authentication, and authoriza-
tion must be executed on the server. In this two-tier architecture, this would fall
upon the database, which is suboptimal.

• Scalability Concerns: The architecture’s scalability is predominantly constrained
by its server component. Although resources like CPU or memory can be added to
a single machine (known as Vertical Scaling), such enhancements have limits.

Due to these limitations, the two-tier architecture is limited in applicability for applications
such as e-commerce platforms and is reserved for simpler projects requiring rudimentary
data access capabilities.

Three-Tier

The Three-Tier architecture introduces a middle component known as the Application
Server, effectively adding a layer of abstraction between the client and the data storage
tier. An example is shown in figure 3.2.

Figure 3.2: Example of a three-tier architecture.

The components of this architecture are as follows:

Client Side: Similar to the Two-Tier model, the client side is responsible for user inter-
action. Its purpose is to provide a user interface to generate requests to the application
server.

16

State of Practice

Application Server: The application server serves multiple functions, which can be
divided into three categories:

• Business Logic: Responsible for running validations, and performing authentica-
tion and authorization procedures, and other business-specific logic.

• Data Access Logic: Responsible for interacting with the data tier, executing
CRUD operations (Create, Read, Update, Delete).

• Presentation Logic: Generation of the client-facing views.

Data Tier: Usually a storage system, the data tier is similar in function to that of the
server in the two-tier architecture, however with less responsibility.

The application server itself can also have different architectures, like Event-based or
Thread-based, which heavily impact performance, especially for applications with high
load volumes in terms of requests per second.

Ruby on Rails and Next.js are two popular web frameworks that exemplify the differences
between these two approaches. Given that both of these frameworks are used in this
project (as seen in section 4.2.2), a brief comparison is presented below.

Ruby on Rails adopts a more traditional server-side rendering approach, as it is made to
be operated in a multi-threaded environment. Each incoming HTTP request is handled
by a new thread or a thread from a pool, which then performs all the operations—from
database queries to HTML rendering—before sending the response back to the client.

On the other hand, Next.js primarily focuses on a server-side rendering approach too, but
it is optimized for a single-threaded, event-loop architecture commonly found in Node.js
applications. In this architecture, non-blocking I/O operations allow the system to han-
dle a large number of simultaneous connections with minimal threads, making it highly
efficient for I/O-bound applications.

Security and Scalability: The separation of concerns across multiple tiers allows for
more robust security measures and the opportunity for horizontal scaling, particularly at
the application server level.

In summary, the Three-Tier architecture provides a balanced trade-off between complex-
ity, security, and scalability, making it a widely adopted model for complex web-based
applications.

N-Tier architecture

The N-tier architecture can be considered an extension or generalization of the three-tier
architecture, and in many real-world scenarios, applications go beyond three tiers. As
the complexities grow—ranging from increased data, more business logic, or higher user
traffic—it becomes necessary to break down the application into more specialized tiers to
maintain performance, scalability, and manageability.

Figure 3.31 shows a more complex example of an architecture that includes not just the
traditional client, application server, and database tiers, but also adds additional layers

1Source: https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/
n-tier

17

https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/n-tier
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/n-tier

Chapter 3

Figure 3.3: Example of an N-tier architecture.

such as a Web Application Firewall (WAF), a Message Queue Service, and a Cache layer
that serves multiple middle tiers.

Each additional tier serves a specific purpose:

• Web Application Firewall (WAF): Protects the application from various at-
tacks by filtering and monitoring incoming traffic between a web application and the
Internet.

• Message Queue Service: Manages asynchronous tasks and enables application
components to communicate more effectively.

• Cache Servers: Increases application performance by storing frequently accessed
or expensive-to-generate data, so that future requests can be served faster. Redis is
a popular choice for this tier, for example.

• Background Processing: Handles long-running tasks that are not time-sensitive,
such as sending emails, generating reports, or performing data analysis. Sidekiq is
an example, also used in this project.

In summary, as software projects evolve and requirements become more complex, the
architecture often needs to move from a simplistic three-tier approach to a more robust
and flexible N-Tier model.

Classical vs. Modern Architectures

In this section, the focus is on the conceptual differences between traditional architectures
like the Monolith and more modern ones like Microservices and MACH.

Monolithic Monolith architecture involves building an application as a single, unified
unit. All code for routing, business logic, and database operations are managed as one
system.

These architectures are easier to develop and test, but more difficult to scale.

Microservices A microservice-based architecture is a set of interconnected services with
distinct responsibilities. These communicate with each other via APIs such as REST or

18

State of Practice

Name Type Customizability Cost

Shopify SaaS Limited due to SaaS
model Subscription

Solidus Open Source High, source code acces-
sible Development and Hosting

BigCommerce SaaS Moderate with API inte-
grations Subscription

Magento Open Source Very high, extensive plu-
gins Development and Hosting

Commercetools Headless High, decoupled front
and back end, AI tools Upon request

Table 3.1: Comparison of some existing e-commerce solutions

SOAP. Each microservice has its own architecture and business logic which greatly reduces
coupling. The main advantages consist of making the process of modifying or replacing a
part of the system less painful and easier to scale. On the other hand, these systems are
also more difficult to test, require more resources to scale, are more complex to develop,
and introduce operational overhead (service discovery, load balancing, etc.).

MACH architecture MACH stands for Microservices, API-first, Cloud-native, and
Headless. This approach to software architecture has been gaining traction in cloud-
managed solutions [14], especially in the world of e-commerce, due to its scalability, flexi-
bility, and adaptability.

In e-commerce, this can be especially beneficial as different aspects like product catalog,
user management, and payment gateway can be developed and scaled independently.

This type of architecture requires a steeper learning curve, but it is more flexible and
scalable than the other two. Also, it enables the use of different technologies for each
service, which can be beneficial for a larger development team.

3.1.3 Existing e-commerce solutions

There are several e-commerce solutions that businesses can utilize. In this section, they
were divided into three types: SaaS (Software as a Service), Open Source, and Headless
frameworks. SaaS platforms, such as Shopify, provide a subscription model. The e-
commerce system is managed, maintained, and updated by the provider, making it cost-
effective and efficient for rapid market entry. Open Source solutions, like Solidus, allow
businesses to tailor the software according to their needs by accessing the source code but
come with added responsibilities in terms of updates and security. Headless solutions act
more like a service, providing the back end, and leaving it up to the buyer to build the
front end.

These different types of solutions can differ in terms of customizability, cost, and ease of
use. The table 3.1 shows a comparison of some of the most popular e-commerce solutions.

19

https://www.shopify.com/
https://solidus.io/
https://www.bigcommerce.com/
https://magento.com/
https://commercetools.com/

Chapter 3

3.2 Circular Economy

In this section, the concept of a circular economy is explored, and the role of software
systems in enabling this type of economy is discussed. Finally, some existing businesses
operating in this domain are reviewed.

3.2.1 Background

The term circular economy has gained momentum both in academia and among the general
population, as ecological consciousness and concern for sustainability and the environment
grow. A notable example is the recent law approved by the European Union, which
mandates that all new smartphones, tablets, e-readers, and portable speakers—among
other small electronic devices—sold in the EU should use the USB-C type charging port
by the year 2024. For laptops, the deadline is extended to 2026 [15].

Companies are also increasingly aware of the opportunities promised by the Circular Econ-
omy and have started to realize its value potential for themselves and their stakeholders
[16].

The Loop Company is rooted in this concept. The term has a rather broad definition; one
study even analyzed 114 definitions to refine it [1]. Generally, the main aim of the circular
economy is economic prosperity, closely followed by environmental quality.

One method used to rigorously define concepts like this is the coding framework, a tech-
nique that converts verbal or visual data to numeric form for purposes of data analysis.
An example is shown in Figure 3.4, illustrating the various strategies to which circular
economy can refer.

Figure 3.4: The R9-framework. Image from Potting et al. (2017, p.5)[1]
.

These strategies are also called loops [17], and the tighter the loop (the lower the R-value),
the fewer external inputs are needed to close it—resulting in a more impactful circular

20

State of Practice

strategy.

The aim of this project, and that of The Loop Co. as a software company, is not to
solve broader consumerism problems, which are represented in the R0 - R2 scale of the
R9 framework. Such issues can only be tackled through nationwide policies and by the
manufacturers themselves. The Loop Co.’s objective is to provide the tools that enable
existing e-commerce platforms and companies to incorporate and close the R5 - Refurbish,
R4 - Repair, and R3 - Reuse loops into their existing operations, with minimal changes to
their business models.

In this context, a succinct and complete description of the circular economy [18] would
be:

”The definition of circular economy is a model for product consumption to extend the
life cycle of a product, through reusing, repairing, refurbishing and recycling existing
materials”.

3.3 Similar solutions

This section presents two existing circular economy applications, BabyLoop and CEX, and
analyzes their features and business models.

BabyLoop

As mentioned before, BabyLoop operates in a niche of second-hand baby care products,
specializing in their refurbishment and resale.

Their services cover a variety of Puericulture care items, including strollers, car seats, and
more.

The business model is structured as an online marketplace. Sellers submit their second-
hand items for initial evaluation, after which the product undergoes a quality control
process. The item is then integrated into BabyLoop’s online storefront, where it is made
available for resale. The company generates revenue through transaction fees and, likely,
a markup on the refurbished items.

The main challenges for BabyLoop involve maintaining product quality and safety stan-
dards, crucial for their targeted consumer base.

The platform uses a mix of e-commerce software solutions for inventory management, cus-
tomer relationship management, and data analytics tools to understand customer behavior
and market trends. All of the software was built in-house, using open-source tools, aside
from external services like payment processing and logistics.

CEX

Another example is CEX2, a company that specializes in the buying and selling of second-
hand electronics and entertainment products.

The business model is similar to BabyLoop, albeit the company has a greater physical
presence, and the website acts primarily as a catalog.

2https://pt.webuy.com/

21

https://pt.webuy.com/

Chapter 3

Summary

One of the key distinctions that set circular economy products apart from typical second-
hand items is the element of trust. In this economic model, each product must be evaluated
and refurbished, aside from inverting the flow of goods, increasing the cost of operations,
and decreasing the profit margin.

Another aspect of the circular economy is that no two items are identical, even if they
are of the same make and model. Each item can be in a different state of usage, varying
levels of wear and tear, and may necessitate different refurbishment requirements. This
is especially pronounced in certain categories over others, like the Puericulture mentioned
before.

Due to the aforementioned reason, a generalized approach and existing systems, often are
not sufficient, because this necessitates a high degree of customization in both business
operations and software solutions.

For instance, the process of reviewing, cataloging, and pricing items tends to be highly
manual. Experts must evaluate the condition of each item, determine its market value
based on its present state, and ensure its quality before it is listed for sale. From a software
standpoint, there are currently limited systems that can automate these tasks.

In short, the circular economy business model introduces challenges that require specialized
solutions. The highly individualized nature of each product demands unique approaches
to product sourcing, assessment, and pricing.

22

Chapter 4

System Requirements

This chapter serves as an overview of the system requirements and constraints. The
section begins with User Stories, in order to explain who and how they will benefit from
this system. The purpose is to identify both the Architecturally significant requirements
and the functional requirements.

4.1 User Stories

User stories are a powerful tool for describing requirements and demonstrating user needs
and the user’s points of view. It is a common, core technique of Agile development, used
to identify and structure requirements.

User stories are collaborative design tools. All stakeholders are expected to participate in
the definition and sorting of user stories. These are not requirements, but rather a way to
facilitate the communication between the development team and the stakeholders.

The benefits of user stories are: that they are short, specific, and goal-oriented. They are
simple and accessible sentences structured with the following structure:

“As a <type of user>, I want to <goal> so that <reason>”.

This process answers the important questions [19]:

• Who — The role of the user or system making the action.

• What — The action executed.

• Why — The added value the user gets from the action.

Another benefit of user stories is that given their short and simple nature, they are easy
to create and understand from the user’s perspective. By focusing on this perspective, it
avoids two common pitfalls:

1. Describing the system from a technical point of view. This can lead to a misunder-
standing of the user’s needs.

2. Describing a solution instead of a problem. This leads the development team to
focus on the wrong problem.

23

Chapter 4

When it comes to prioritization, it is again done collaboratively and periodically. This is
expanded upon in the Development Process section 6.1.

The next section describes the user stories for both the Submission and E-commerce
modules.

Submission Module

The Submission Module is to be used by two types of users, the Loop Manager and the
Seller. The Loop Manager can have three roles inside the Submission module. These are:

• manager : the primary user of the Back Office. Business and logistic background.
Handles the submission process, from creating and sending the purchase offer to
confirming the item reception, and deciding on quality assurance.

• financial manager : user from the financial department. Can only view the existing
submissions. Only this role can export financial reports describing the offers awaiting
payment and upload proofs of payment.

• admin has total control of the system. This role is mainly reserved for the tech team
to handle configurations, and to access incomplete features.

The Seller, the person who will apply to sell an item, interacts with the system through
a specific proposal page. After the manager fills out and sends the submission draft, the
seller receives an email with a unique link to fill out the form for the purchase offer.

1. Submission Back Office - Authorization and Authentication

(a) As a admin or manager I want to login to the back office so that can execute
my tasks.

(b) As a admin or manager I want to create new accounts and manage permissions
so that so I can add other staff to the platform and enable them to manage
submissions.

2. Submission Frontend - Configuration

(a) As a admin I want to customize the logo so that the app style is coherent.
(b) As a admin I want to customize the text styles so that the app style is

coherent.
(c) As a admin I want to define text and label translations for different languages

so that the app is accessible.

3. Submission Back Office - Configuration

(a) As a manager I want to customize predefined questions for new submissions
so that I can have more flexible form templates.

(b) As a manager I want to configure the questions based on the submission type
and/or category so that I can create context-appropriate submission forms.

(c) As a manager I want to choose the item collection method depending on the
weight or category of the item so that the seller experience is practical.

4. Submission Back Office - Submission/Proposal creation

24

System Requirements

(a) As a manager I want to add advert specific questions to the submission so
that the proposal is targeted and relevant to the product.

(b) As a manager I want to choose the submission type so that I can configure
when and how the seller will get paid.

(c) As a manager I want to choose existing or create new product properties
such as categories, brands and models when reviewing a submission so that
can quickly review and edit the submission.

(d) As a manager I want to leave the submission in a draft state so that I can
finish the process later and not lose the data I already changed.

(e) As a manager I want to know the fields that need to be completed so that I
know what information is missing before sending the proposal.

5. Submission Back Office - Submission management

(a) As a manager I want to receive a notification that a new OLX advertisement
can be of interest so that I can contact the seller and make an offer.

(b) As a manager I want to send the submission proposal to the Seller so that
I can start the negotiation process.

(c) As a manager I want to re-send a proposal email to the seller so that the
seller has another chance to accept it in the case he missed it.

(d) As a manager I want to reject or accept the received item so that we can
guarantee the quality of the products that get sent to the store (Quality Assur-
ance).

(e) As a manager I want to view the history of a submission live cycle, including
when and who changed its state so that I can know what happened and who
to ask in the case of an abnormality.

(f) As a manager I want to search and filter submissions so that it is easier to
search for specific submissions and create detailed reports.

(g) As a manager I want to specify the rejection reason so that a potential seller
can know why his submission was rejected and possibly try again.

(h) As a manager I want to mark the submission as inactive so that the seller
does not have access to the proposal link anymore.

(i) As a manager I want to re-activate a submission so that the seller has another
chance to accept it.

(j) As a manager I want to block a submission without notification so that to
reject a submission without notifying the seller.

(k) As a manager I want to to able to edit a submission in the Submission Module
and have the changes be reflected in the E-commerce module if the item has
not yet been paid so that to not have to jump between modules.

6. Submission Back Office - Category management

(a) As a manager I want to create, edit and delete categories so that the item
is properly categorized and cataloged.

(b) As a manager I want to deactivate categories and brands temporarly so that
I can prepare the catalog for new options.

(c) As a manager I want to create category specific questions so that it is easier
to create similar proposals.

25

Chapter 4

(d) As a manager I want to configure the pickup options available for each cate-
gory so that we can offer a more practical experience for the seller for heavier
items.

7. Submission Back Office - Question Management

(a) As a manager I want to create and modify different question types, such as
yes/no questions, select questions, and image submission questions so that I
can build the submission form with any question type, tailored to the specific
product.

(b) As a manager I want to marks questions as mandatory, dependent on the
current submission state so that the answers to the questions are validated for
presence when needed.

8. Submission Back Office - Exports and Payments

(a) As a manager I want to export the purchase offers to XLSX format so that
I can use the information in other reporting tools.

(b) As a financial manager I want to export financial details for the offers so
that can fill in the TAX reports.

(c) As a financial manager I want to to be able to generate SIBS exports in XML
for multiple submissions so that I can pay the sellers in bulk.

(d) As a financial manager I want to pay the Sellers using Revolut, individually
or in bulk, so that I can have an alternative and practical way to pay the
sellers.

(e) As a financial manager I want to see the status of the payments so that I
know if the Seller has already been paid.

(f) As a financial manager I want to filter the submission by payment state and
date so that I can easily find the submissions that need to be paid.

9. Proposal Form

(a) As a seller I want to see a credible email asking me to buy my product so
that I can sell the product faster.

(b) As a seller I want to access the purchase offer page through an email link so
that I can fill out the details for a smooth selling experience.

(c) As a seller I want to view the images and information of my advertisement,
with the proposed price so that I immediately recognize what the item in
question and if the proposed price is of interest.

(d) As a seller I want to have some pre-filled fields on the form so that I do not
have to retype information that I already inserted in the original OLX ad.

(e) As a seller I want to have the form remember my answers if I close the
webpage or lose connection so that I do not get frustrated and have to retype
everything.

(f) As a seller I want to receive instructions on how to send the item so that to
be able to package and deliver the item.

(g) As a seller I want to know in what state the submission is in and what action
I need to take, if any so that I know what to expect and when I will get paid.

(h) As a seller I want to have a page where I can follow the status of my accepted
submission so that I know what is happening and how much I will need to
wait for payment.

26

System Requirements

(i) As a seller I want to to receive a confirmation email when I accept the offer
so that I know what are the next steps I need to take, in case I don’t come
back to the submission page.

(j) As a seller I want to to receive a confirmation email when I decline the offer
so that I know that I wont be contacted again.

E-Commerce Module

The E-Commerce Module has two actors, the e-commerce manager and the buyer.
In this platform, the admin role and the manager have the same level of permissions,
and at this point, there is no need to differentiate between them. For the sake of brevity,
e-commerce manager will be abbreviated to just manager in the following user stories.

1. Store Back Office

(a) As a manager I want to see the items available on the store so that I know
the OLX advertisement was created and the product is ready for sale.

(b) As a manager I want to see the list of orders and the respective checkout step
so that I am able to know what is being bought.

(c) As a manager I want to update the item details so that I can ensure that all
information is accurate and up-to-date, using a rich text editor.

(d) As a manager I want to remove items from the store so that I can take down
listings that are no longer available but have not been sold.

(e) As a manager I want to choose if the item is presented as a discriminated
item or not in the storepage so that equivalent items are sold with stock
management, while others are sold as unique items.

(f) As a manager I want to have access to buyer contact information for order
processing so that I can contact the buyer if any issues arise during order
processing.

(g) As a manager I want to be able to create returns and reintroduce the item
into the store so that I can handle the return process.

(h) As a manager I want to invite people to the back office so that I can delegate
tasks.

2. Buyer Experience

(a) As a buyer I want to be able to click on a link, from the OLX 2nd Life
advertisement, that leads me to a checkout page so that I can buy the item I
want.

(b) As a buyer I want to be able to complete the checkout process without any
kind of registration so that it is straightforward to complete the purchase.

(c) As a buyer I want to know that my order was completed with success/failure
so that I will know if I need any further action.

(d) As a buyer I want to filter items by categories, price ranges, and brand so
that I can tailor my browsing experience to find items that meet my specific
needs.

27

Chapter 4

Figure 4.1: The three aspects of ASRs/Architectural Drivers

4.2 Architecturally Significant Requirements

Software architecture is a fundamental part of any large-scale software-intensive system.
It significantly impacts the quality and cost of the project. The architecture is extracted
from the requirements, but not all of them affect the system architecture equally. The
ones that do, are called Architecturally Significant Requirements (ASRs), also known as
Architectural Drivers.

Significant is the key term here. Usually, [20] it is measured ”by the high cost of change”.
This cost can be money, time, or resources like infrastructure, etc.

The incomplete or inaccurate definition of ASRs correlates with a higher chance that the
produced software contains errors [20].

ASRs can be grouped into three different categories, as shown in figure 4.1, depending on
the type and source of requirement.

The Functional requirements were already discussed in the User Stories section (4.1). In
this section, the Quality Attributes and the Business Constraints.

4.2.1 Quality Attributes

Quality Attributes are nonfunctional requirements. These are mensurable and testable
system properties used to evaluate if the system meets the needs of its stakeholders. They
will be described with the use of Scenarios.

28

System Requirements

Interoperability and Modifiability

Interoperability is the software’s ability to work and communicate with other products
or systems. LoopOS aims to be modular and has several independently deployable parts.
Communication between those two is relatively easy because all of them are developed
internally, yet parts of the system are not: for example, payment processing, invoicing,
and ad creation (integration with the OLX) are external systems.

Modifiability measures the cost of change. For LoopOS, this is of utmost importance,
because even though the pilot project will only work with the OLX API, it must be
flexible enough to enable other implementations without many modifications. Also, aside
from being modifiable to be used for other projects, it must be customizable to fit the
theme and look of the current project.

Scenario: In the future, the client wants the system to output the items into another
e-commerce platform not yet known.

Source of Stimulus The Loop, Client

Stimulus Desire to output items to an alternative e-commerce plat-
form

Environment Under normal operations
Artifact Submission Module

Response
The item is successfully created in the alternative e-
commerce system, and the status is updated in the Sub-
mission Module

Response Measure
Submission state the Submission Module BO is updated
to ”In External Store,” or an error message is generated
specifying the point of failure

Table 4.1: Quality Attribute - System Compatibility

Given this scenario, the architecture should aim for flexibility by, for example, implement-
ing the business logic in a client-agnostic manner. This could be achieved for example
by defining an interface for the e-commerce platform and then implementing it for each
platform. This would enable interaction with multiple e-commerce platforms, essentially
future-proofing the system. To validate this architectural choice, a dummy REST client
could be used for testing, ensuring that the implementation works independently of the
specific client. The same approach could be used for payment processing, invoicing, and
email services.

Another interoperability scenario, albeit less likely, is presented below:

Scenario: The client wants to use a relational database storage.

29

Chapter 4

Source of Stimulus Client
Stimulus Requirement to use relational database storage
Environment During system design and development
Artifact Database System

Response Use ActiveRecord queries and Rails ORM to interact with
the database

Response Measure No direct SQL queries are used, and the system allows for
database operations via Rails ORM

Table 4.2: Quality Attribute - Database Interoperability

Being a pilot project, the system can be used (in a separate deployment) as a template for
other projects or demos in the future. Given this, the system should be easily customizable
to fit the theme and look of the current project.

Scenario: The Submission Proposal Page needs to change the application style and feel
for another project for a demonstration of the concept.

Source of Stimulus Project Owner

Stimulus Need to rebrand or modify visual elements of the LoopOS
Submission Module.

Environment System Configuration Interface
Artifact LoopOS Submission Proposal Page

Response
The system architecture allows easy modification of visual
elements like color schemes, icons, and other brand-related
settings.

Response Measure An admin user can successfully update all visual elements
within one hour without requiring code changes.

Table 4.3: Quality Attribute - Modifiability (Branding Adaptability)

Usability

Usability is the measurement of how well the user can complete a task to reach a certain
objective. Usability was a big concern during the design phase. There are several met-
rics for measurement of usability, for example, the success rate of completing new tasks
(Learnability), time taken (Efficiency), error rate, and user satisfaction [21].

An interesting idea in Web Design is the ”Three-Click Rule”:

”It’s widely agreed, even by people who are not idiots, that web users are driven by a
desire for fast gratification. If they can’t find what they’re looking for within three clicks,

they might move on to somebody else’s site. Hence the so-called “Three-Click Rule,”
which, as you might expect, states that users should ideally be able to reach their intended
destination within three mouse clicks.” - excerpt form ”Taking Your Talent to the Web

A Guide for the Transitioning Designer” [22]

Next are two scenarios, one for the Submission Module Backoffice and one for the Sub-
mission Module Proposal Page.

Scenario: Loop Manager trainee uses the Submission Module without much prior expe-
rience.

30

System Requirements

Source of Stimulus End-user, Loop Manager trainee

Stimulus
New submissions need to be created; Additional informa-
tion needs to be added to the submission can advance to
the next stage.

Environment Under normal operations
Artifact System - Submission Module Back office
Response For new submissions:

- Learnability: The system shows which fields are neces-
sary to send the proposal to the seller.
- Error impact minimization: does not let the user send an
incomplete submission, notifies what is needed to advance
to the next step.
- Comfortable with working at his own pace: allows the
user to save the submission, even if incomplete, in a Draft
state.
For advancing to the next state:
- Efficiency: Bulk actions e.g.: sending submission en
masse.

Response Measure Creating and sending a single submission should be doable
in less than three minutes after the first interaction.
Should be able to create a Draft submission in less than
three-page navigation clicks (excluding clicking on the
form inputs).
System highlights the missing fields clearly.
The user should be able to discover how to create the
submissions and how to advance them to the next state
via exploration. (Gain of user knowledge)

Table 4.4: Quality Attribute - Usability for Loop Manager

Scenario: Seller receives a link for the offer proposal by email. Inside, there is a link that
will redirect to the form page.

Source of Stimulus New OLX Seller

Stimulus LoopOS wants to buy the product from the OLX ad, and
the Seller wants to sell the item swiftly.

Environment Under normal operations
Artifact System - Submission Module Proposal Page

Response The system provides a step-by-step visual guide for com-
pleting the form and clarifying expected actions.

Response Measure
The user completes and submits the form within 3 min-
utes of first-time use, without requiring external guidance.
Form submission success rate is at least 95%.

Table 4.5: Quality Attribute - Usability for Seller

Performance and Scalability

Due to the unknown number of users that are to be expected once the Submission Form
is released, the system must be able to handle the submission process promptly and if

31

Chapter 4

necessary scale up to handle the increased load.

Source of Stimulus End-user
Stimulus Makes a submission in the Proposal Page.
Environment Under normal operations
Artifact Submission Module

Response The API processes and lists the submission in the Back-
office.

Response Measure The submission is processed within 2 seconds 99% of the
time.

Table 4.6: Quality Attribute - Performance

Source of Stimulus System Monitor
Stimulus An increase in submission traffic.
Environment High-load scenario
Artifact Submission Module

Response The system dynamically allocates additional resources to
handle the increased load.

Response Measure The system scales up to handle 2X the normal load within
5 minutes without performance degradation.

Table 4.7: Quality Attribute - Scalability

4.2.2 Technical and Business Constraints

This section explores technical constraints presented by The Loop. These are different
from the functional requirements and Quality Attributes in the sense that there is no
control - the decision has already been made, and the Architecture and Design will have
to abide. Constraints will be identified with TC for Technical Constraints and BC for
Business Constraints.

ID TC01
Title Ruby on Rails
Source The Loop
Object Back-end Development
Environment Software Development
Objective Leverage known technology and developer expertise

Description The Loop uses the RoR framework for most of its projects
and as such most of its developers are already familiar.
Additionally, the company already has boilerplate projects
that integrate with Ruby-based services, of which some
are paid, so it is also a monetary incentive to stick with a
known and tested technological stack.

Table 4.8: Technical Constraint TC01

32

System Requirements

ID TC02
Title NEXT.JS
Source The Loop
Object Front-end Development
Environment Software Development
Objective Capitalize on modern front-end development practices

Description

The Loop has often used NEXT.JS in its front-end de-
velopment projects. As many of its developers are skilled
in using this framework, and there are existing templates
and components, it becomes economically sensible to con-
tinue using this framework for new projects.

Table 4.9: Technical Constraint TC02

ID TC03
Title Solidus E-commerce framework and EasyPay
Source The Loop
Object E-commerce module, Back-End Development
Environment Software Development

Objective Reuse existing expertise and code base. Save on develop-
ment time.

Description
Solidus is a Rails E-Commerce platform, and EasyPay is a
payment service. The Loop has worked with both before
and with EasyPay,
already has a subscription. Being a paid service, moreover
already tested, it is decided this will be used for the E-
commerce module.

Table 4.10: Technical Constraint TC03

ID BC02
Title User Data Censorship
Source Legal and Privacy Guidelines
Object Proposal Page
Environment Runtime, production

Objective To comply with privacy regulations and protect user con-
fidentiality

Description User data must always be censored in the pages following
the submission of the proposal form.
This is to ensure that sensitive information is not inad-
vertently exposed, maintaining user privacy and meeting
legal requirements.

Table 4.11: Business Constraint BC02

33

Chapter 5

System Architecture

This chapter presents an overview of the system architecture, including the design decisions
that shaped the system. Each section corresponds to a different artifact generated during
the development process. The level of detail varies across sections and artifacts, reflecting
their different purposes and target audiences.

5.1 C4 Architecture

The C4 model 1 was the primary tool for creating the system architecture.

This graphical notation technique employs a standard box and arrow notation to describe
the system at different scopes, each with increasing levels of detail.

The C4 model introduces several conceptual abstractions: a person represents a human
user of a software system (also known as an actor, persona). A software system is a high-
level abstraction that delivers value to its users. A container represents an application
or data store and is a context in which code executes or data is stored. Containers
are separately deployable units. A component is a grouping of related functionality
encapsulated behind a well-defined interface, however, it is not separately deployable.

The C4 model recommends four levels of detail, each providing a different perspective.
Following is a description of these levels:

• Level 1, Context: This is the highest level of scope, focusing on the actors and
external systems that interact with the main system. It is intended for both technical
and non-technical audiences.

• Level 2, Containers: This level breaks down the system into smaller, intercon-
nected containers. Each container represents an application or a data store and is
usually a separate deployable or runnable unit. The architecture’s overall shape is
formed by these containers. This level is intended for technical audiences, such as
software architects, developers, and operations personnel.

• Level 3, Components: This level focuses on the concrete interface implemen-
tations, technology choices, and responsibilities within the system. The primary
intended audience is software architects and developers.

1https://c4model.com/

34

https://c4model.com/

System Architecture

• Level 4, Code: This is the lowest level of scope to illustrate how a component
is implemented. This level is often not recommended [23] as it can be restrictive
during the development phase and can often be generated automatically from the
code. The primary intended audience is developers.

For this project, given its scope and the nature of the chosen development process, only
the Context and Container diagrams were used.

It is important to note that in C4 models, the term container does not necessarily represent
or has a direct correlation to the OS-level virtualization containers [24], such as Docker
[25], which were also used in this project during development and deployment, as described
in section 6.2.2.

5.1.1 C4 Context Diagram

The C4 Context diagram (figure 5.1) is presented in this subsection. It comprises three
actors and several software systems, some of which are external to the OLX project.

Submission link, confirmation email, notifications

Loop Manager
[Person]

OLX 2nd Life E-commerce
Module

[Software System]

OLX 2nd Life Submission
Module

[Software System]

OLX Ad service
[Software System]

Seller
[Person]

Manages submissions,
prompts Seller for informationAccepts/Denies proposal

Fills the forms

Buyer
[Person]

Redirected from OLX,
purchases the item

[System Context] OLX Project
High-level description of the interactions between OLX 2nd Life (Loop Manager, Submission Module, and E-Commerce Module), the Sellers, and
OLX.

Handles Invoicing

Populates the store
Creates products

Email System
[Software System]

Sendinblue[External
System]

Invoicing,
order summary, etc.

[Person]
[Internal
System]

[External
Person]

EasyPay
[Software System]

InvoiceExpress
[Software System]

DPD Pick Up Points
[Software System]

Revolut
[Software System]

Creates
advertisements

Location information

Process payments

Seller payment

Notifies the seller

Notifies the buyer

Figure 5.1: C4 Context Diagram

The actors are described below:

35

Chapter 5

• Seller: The Seller is the individual selling the item. They interact with the Submis-
sion Module by creating and then completing the submission.

• Loop Manager: The Loop Managers are responsible for the acceptance, validation,
and approval of submissions. They interact with the Submission Module by review-
ing and approving submissions, adding necessary information, and managing the
submissions’ lifecycle. They also interact with the E-commerce module, managing
the listings and orders, and handling any incidents that may occur.

• Buyer: The Buyers are the individuals purchasing the item from the E-commerce
module’s store. They interact with the module by browsing the catalog and placing
orders.

The two software systems developed for OLX 2nd Life are:

• Submission Module: This is the main software system. It stores and manages
all the submissions, generates the catalog, and interacts with external systems for
payment (for the seller), and email notifications. It also provides the seller access to
the Proposal Form.

• E-commerce module: This is the module that manages product listings, orders,
stock, invoicing, payment processing, and returns.

The external systems are:

• Brevo (formerly known as SendInBlue)2: Brevo is the email notification system
used by OLX 2nd Life. It is responsible for sending emails to both the Sellers and
the Buyers. For the former, it is used to send submission approval, rejection, and
additional information emails. For the Buyers, it is used to send order confirmation
emails.

• DPD Pick Up Points: DPD Pick Up Points is an API used to get the currently
available pickup points for equipment delivery (from the Seller to the warehouse).

• Revolut3: Revolut is a financial platform to pay the sellers after the item has been
received and approved.

• Easypay4: Easypay is a payment gateway. It is responsible for processing payment
transactions in the E-commerce module.

• InvoiceExpress5: InvoiceExpress is the invoicing system. It generates the invoices
for the Buyers in the E-commerce module.

• OLX Ad service6: The OLX API that is used to create listings in the OLX
Marketplace.

2https://www.brevo.com/
3https://www.revolut.com
4https://www.easypay.pt
5https://www.invoiceexpress.com
6https://developer.olx.pt/pt

36

https://www.brevo.com/
https://www.revolut.com
https://www.easypay.pt
https://www.invoiceexpress.com
https://developer.olx.pt/pt

System Architecture

5.1.2 C4 Container Diagram

The C4 Container diagram is presented in this subsection. The diagram illustrates the
two primary containers of the Submission Module and their respective technologies, as
well as the E-commerce Module.

As seen in figure 5.2, the Submission Module is divided into two containers: the Back of-
fice web application, also referred to as the backend application, developed using Ruby on
Rails7, and the Proposal Form web application (frontend application) built with NEXT.JS8.

The module relies on a PostgreSQL9 database hosted on Digital Ocean10 for data storage.

The E-commerce Module is composed of a single container developed in Ruby on Rails.
At a component level, it is subdivided by responsibility into three sections: the back office,
the store, and the API endpoint. This separation is achieved by using namespaces in the
code. This module also uses its own PostgreSQL database for data management.

The Submission module backend application communicates with the external services using
their respective REST APIs. It also communicates with the E-commerce module using
its API endpoint, which is a REST API as well. This communication is unidirectional, to
create and populate the catalog of items. Once the item leaves the Submission module,
it is no longer managed by it, but updates to the item are still possible through the E-
commerce module, or updates from the Submission module if the item has not yet left the
store.

The E-commerce module also communicates with external services using REST APIs, to
create advertisements in the OLX Marketplace, process payments, and generate invoices.

Both databases are Relational Databases and are hosted on Digital Ocean (in the produc-
tion environment, as described in section 6.3.1). These databases are separate because
they have different purposes, and even though they may contain related data, one is rela-
tive to the submission process and the seller, and the other is relative to the e-commerce
process, products, and the buyer. The only replicated data are the item’s properties and
the associated taxonomy trees, although with some differences in the data structure.

Both backends of the Submission and E-commerce Modules use the MVC (Model-View-
Controller) architecture, where the model is the data layer, the view is the presentation
layer, and the controller is the business logic layer.

The Proposal Form, also referred to as the Form Frontend, is a Single Page Application
(SPA) that uses the NEXT.JS11 framework. It consists of various components that handle
different aspects of the dynamic form, submission status updates, and the overall seller
user experience.

5.1.3 C4 Component Diagram

This subsection provides a simplified version of the Component view of the Submission
Module (figure 5.3). The E-commerce Module follows a similar structure.

There are four types of components detailed in the next sections: the Views, the Con-
7https://rubyonrails.org/
8https://nextjs.org/
9https://www.postgresql.org/

10https://www.digitalocean.com/
11https://nextjs.org/

37

https://rubyonrails.org/
https://nextjs.org/
https://www.postgresql.org/
https://www.digitalocean.com/
https://nextjs.org/

Chapter 5

j

O
LX 2nd Life Subm

ission M
odule

[Softw
are System

] Loop M
anager

[Person]

Seller
[Person]

Em
ail System

[Softw
are System

]

B
uyer

[Person]

Subm
ission link,

confirm
ation em

ail

O
LX 2nd Life E-com

m
erce M

odule
[Softw

are System
]

Store
[Solidus: R

uby on R
ails]

U
ses backoffice

R
edirected from

 O
LX, purchases the item

A
PI call:

create product
[JSO

N
/H

TTP]

EasyPay
[Softw

are System
]

InvoiceExpress
[Softw

are System
]

C
reates A

dvertisem
ents

[JSO
N

/H
TTP]

Subm
ission D

atabase
[C

ontainer : PostgreSQ
L]

M
akes A

PI calls
[JSO

N
/H

TTP]

E-com
m

erce D
atabase

[C
ontainer: PostgreSQ

L]

O
LX A

d service
[Softw

are System
]

M
anages subm

issions, prom
pts Seller for inform

ation

[C
ontainer D

iagram
] O

LX Project
C

ontainer level description of the interactions betw
een Loop (Loop M

anager, LoopO
S

Subm
ission M

odule and LoopO
S E-com

m
erce), the Sellers and O

LX.

Sendinblue
D

igitalO
cean

Kubernetes

[External System
]

[External
Person]

[: D
atabase]

[W
eb A

pplication:]
[Person]

C
ontainers, separately deployable units.

Services that the system
 uses.

U
sually interfaced through a R

EST API.

Form
 Frontend

[W
eb A

pplication: next.js]

B
ackoffice

[W
eb A

pplication: R
uby on

R
ails]

C
onfirm

ation em
ails to buyer

A
ccepts/D

enies proposal
Fills the form

s

R
evolut

[Softw
are System

]

M
akes paym

ents
to Sellers

D
PD

 Pick U
p Points

[Softw
are System

]

Location inform
ation

for Pick U
p Points

U
ses JSO

N
A

PI
[JSO

N
/H

TTP]

Figure
5.2:

C
4

C
ontainer

D
iagram

38

System Architecture

B
ackoffice R

uby on R
ails

[C
ontainer]

Form
 Frontend

[W
eb A

pplication: next.js]

Loop M
anager

[Person]

Seller
[Person]

R
edis

[R
edis: R

edis]

In-m
em

ory data store and m
essage

broker.
M

anages the queue of background jobs.

M
odels

[C
om

ponent: Active R
ecord]

D
escription of com

ponent role/responsibility.

Jobs
[C

om
ponent: Sidekiq]

Schedulles asyncronous Jobs to be executed.

Sidekiq
[C

ontainer: Sidekiq]

R
esponsible for processing background

jobs. R
etrieves jobs from

 R
edis and executes

them
 asynchronously.

A
PI C

ontrollers
[C

om
ponent: Action C

ontroller]

JSO
N

 API

B
ackoffice View

s
[C

om
ponent: Action View

]

Backoffice View
s

A
PI View

s
[C

om
ponent: Action View

 w
ith JBuilder]

G
enerates JSO

N

Subm
ission D

atabase
[C

ontainer : PostgreSQ
L]

Push Job
[JSO

N
 serialized]

Pop Job
[deserialize JSO

N
]

A
ccesses

A
ccesses

D
ata storage

G
enerates

G
enerates

U
ses

U
ses

U
ses

D
ata storage

R
eads and W

rites from
[SQ

L/TC
P]

B
ackoffice C

ontrollers
[C

om
ponent: Action C

ontroller]

Business logic and view
 generation

C
reate Jobs

Figure
5.3:

C
4

C
om

ponent
D

iagram

39

Chapter 5

trollers, the Models, and the Jobs.

Controllers, Views

Both the Views and the Controllers are grouped by namespace, these being the API and
the Admin/Backoffice namespaces.

Aside from these, the Redis, Sidekiq, and PostgreSQL containers are also included in the
diagram.

Controllers handle the business logic of the application, while Views are responsible for
the presentation layer.

In the Submission Module, the Backoffice components are responsible for managing the
submissions, including reviewing, approving, and controlling the lifecycle of the submis-
sions. The API components are responsible for presenting and receiving data, in a JSON
format, from the Form Frontend application.

Most views use Hotwire12, an open-source tool from the creators of Ruby on Rails. It
allows the transmission and replacement of HTML directly in the HTML DOM without
the need for a page refresh or custom Javascript, giving the Backoffice interface a Single
Page application feel

Similarly to the Submission Module, in the E-Commerce Module, the Controllers and
Views are also organized into namespaces to group related functionality and promote a
separation of concerns.

The namespaces are as follows: the Admin, the Store, and the API. The Admin namespace
has Controllers and Views responsible for managing the listings and orders, as well as han-
dling any incidents that may occur. The Store is responsible for managing the buyer-facing
store: product listings, orders, stock, invoicing, payment processing, and returns. Lastly,
the API namespace is used for receiving Create-Read-Update-Delete (CRUD) requests on
the products and taxonomies.

Models and Jobs

The Models are responsible for the data layer, and the jobs are responsible for the back-
ground tasks.

Rails provides the Active Record, an ORM (Object-Relational Mapping) model. Active
Record encapsulates the functionality related to database access, providing a well-defined
interface for these operations. Each model in the system, which is a class that inherits
from Active Record, represents the various entities in the system, such as submissions or
orders, and provides methods for creating, reading, updating, and deleting records in the
corresponding database tables. Aside from these operations, this is also the place where
model-specific methods are defined.

Active Jobs is a framework provided by Rails for declaring jobs that can be run in the
background.

These jobs are used for tasks that are done outside of the immediate request-response
cycle, encapsulating specific pieces of functionality and providing a well-defined interface

12https://hotwired.dev/

40

https://hotwired.dev/

System Architecture

for invoking these tasks.

In the context of the Submission Module and the E-commerce Module, Active Jobs are
used for a variety of tasks. For example, in the Submission Module, Active Jobs are
used to send email notifications to the seller, generate exports, and process the payments.
Similarly, in the E-commerce Module, Active Jobs are used to generate invoices and send
confirmation emails to the buyer.

The Jobs themselves, while scheduled in the Submission/E-commerce modules, are exe-
cuted by Sidekiq, a background processing framework for Ruby.

The job is first created in the appropriate Controller/Model or Service Objects. This
is typically done by calling perform_async on a Sidekiq worker class and passing any
necessary arguments. It is also possible to schedule a job to run at a specific time in the
future, to retry a job if it fails, or to run a job periodically.

The job object is then serialized and pushed into one of many possible queues. The
serialized job includes the name of the worker class, the arguments, and various metadata
such as when the job was enqueued.

This queue is stored in the Redis container, an in-memory data structure store. Redis
also acts as a cache, improving the performance of the system by storing the results of
database queries.

Finally, Sidekiq polls the jobs pushed to Redis. When it finds a job, it removes the job
from the queue, deserializes it back into a Ruby object, and executes it.

If the job raises an exception, Sidekiq places it in a separate retry queue in Redis. It
will later attempt to reprocess the job at increasing intervals. After a certain number of
failures, the job will be moved to the dead queue.

In this process, Redis acts as a durable and crash-resistant data store. Even if the main
application crashes or is restarted, the jobs in Redis will persist.

5.2 State Machine Diagram

The submission process is a critical component of the OLX workflow, where both the
Seller and the Loop Manager provide information and documents. Submissions model the
business flow of the item that enters the OLX platform.

To ensure the efficient and effective management of these submissions, it is essential to
have a clear understanding of the submission process, including the different stages and
steps involved.

It needs to relate to the Seller’s information, to the Product information, to all the form
questions (including price, valuations, and refurbish costs), and also the shipping docu-
ments and transactional emails that need to be sent.

Aside from the data, the submission also models the flow itself, meaning that it has to
implement the business logic, such as validation and rules to advance to the next step.

There was a need to model this process in software, and naturally, a state machine diagram
is appropriate.

State machine diagrams are useful in computer architecture because they provide a visual
representation of the desired behavior of a system or program. The different states of the

41

Chapter 5

system or component are represented as nodes or circles, and the transitions between the
states are represented as directed arcs or arrows. From the point of view of the user, the
transitions represent the actions or events that cause the application state to change. It
allows the modeling of the behavior of a system or program as a set of states, transitions
between those states, and actions that occur when the system or program moves from one
state to another.

One of the reasons why a state machine diagram was used, was due to the inherent benefit
of facilitating communication between technical and non-technical stakeholders at design
time. Furthermore, it also allowed the modeling and visualization of the submission process
concisely.

The diagram changed from the initial design, to accommodate new requirements that
arose during the development process.

The first iterations of the state machine were drawn by hand and/or drawn in 13, and the
final one was generated from the code itself, using a Rails gem 14 that wraps Graphviz15.
The diagram can be seen in figure 5.4.

5.3 Sequence Diagram

This section depicts the interaction between the Submission Module, the e-commerce
module, the buyer, the seller, and OLX through a series of sequence diagrams. It models
the same flow as the state machine diagram in section 5.2 but with an emphasis on the
sequence of interactions aspect of the submission.

These diagrams are useful to model the behavior of a system by showing the order of
messages exchanged between different actors and components.

In this case, for the submission flow, there are two human actors, the LoopOS Manager
and the Seller. The boxed components represent the modules or external services, in this
case, the Proposal Frontend and the Submission Module.

The Email System is omitted from the diagram as it exhibits a unidirectional nature and
is not inherently relevant as a component within the architecture as it rather functions as
a service that informs the involved actors about any updates or changes.

The process can begin in two ways:

• A LoopOS manager can create a submission in a draft state, that then will be sent
to the Seller as a Proposal. This was the original flow, requested by OLX 2nd Life.

• A Seller finds out about the OLX 2nd Life project from the OLX website and submits
an item for evaluation himself, resulting in a proposal in the new state. This is
the new flow, added to the system after the initial design due to changes in the
requirements.

In the first scenario, the LoopOS manager will need to perform an Internal Review step
where they may choose to enqueue the submission for later, set it to pending because of
lacking information, reject it right away or to accept it and move it to the draft state.

13https://app.diagrams.net/
14https://github.com/state-machines/state_machines-graphviz
15https://graphviz.org/gallery/

42

https://app.diagrams.net/
https://github.com/state-machines/state_machines-graphviz
https://graphviz.org/gallery/

System Architecture

Figure 5.4: State machine diagram depicting the possible Submission states and flow.

43

Chapter 5

From there, all the submissions are managed similarly.

The sequence diagram 5.5 models the initial steps of the second starting point mentioned
above, beginning with the user (Seller) submitting a potential item for evaluation.

Once the form is filled, it is sent back to the Seller as a Proposal, through an email
containing the link that gives the user access to the follow-up form.

This link leads to the Proposal page, where the user needs to first accept or reject the
offer, and if accepted, provide all the additional information that the form requests.

After the form is submitted, the Seller receives a confirmation email, and the previous
Proposal page becomes an informational page where the Seller can check the state at
which his submission is. The page reflects the current state of the submission.

Finally, the Loop Manager can review the updated submission and send it to the next state,
at which point the shipping guide is emitted and the Seller is notified and instructed on
how to ship the item.

Each update on the submission model runs the validations required for the target state.
The validations consist of a set of rules that must be met for the submission to be able
to advance to the next state, and if unmet, the submission should remain in its current
state, throw an error, and display the error to the user.

Figure 5.6 illustrates the second part of the submission flow, up to the emission of the
shipping guide. All the Seller-provided input is done through the proposal form, which
adapts to the different stages of the submission process. The Loop Manager can always
update or correct the information.

In this state, the seller can Accept or Reject the offer, and if accepted, provide all the
additional information, such as pick-up address and payment information. At any point,
given that the proposal has not yet expired, the seller can accept an already rejected
submission and continue the process. Now the Loop Manager can review the updated
submission and send it to the next state, at which point it is possible to emit the shipping
guide, and the Seller is notified and instructed, both via e-mail and an updated proposal
page, on how to ship the item.

The email service is responsible for sending all the communication emails and can be
configured to send different templates at specific transitions.

The process continues similarly, with the Loop Manager reviewing and completing the
submission at each step if necessary, while the Seller is notified and instructed on how to
proceed.

5.4 Entity-relationship Diagrams

This section presents the relational database diagram for the Submission and E-commerce
Modules, using Entity-relationship diagrams.

Figure 5.7 shows some examples of the arrows used in the diagrams in this chapter. The
circles represent the constraints - an empty circle means that the association is not manda-
tory, while the black circle means it is. The arrows represent the cardinality between the
entities - the arrowhead points to the entity that has the foreign key. The many-to-many
relationships are represented by two arrows, one in each direction, omitting the junction
table.

44

System Architecture

Figure 5.5: Sequence Diagram - Initial Proposal Flow.

45

Chapter 5

Figure 5.6: Sequence Diagram - Proposal Flow, Acceptance and Evaluation.

46

System Architecture

one to one
(a)

one to and only one

(b)

one to many

(c)

many to many

(d)

Figure 5.7: Examples of ER diagram arrows.

The following sections briefly describe the models and their attributes.

5.4.1 Submission Module

The ER diagram for the Submission Module is shown in figure 5.8 - simplified, without
the column attributives, and figure 5.9 - with them.

The Submissions table is the central model of the Submission Module, containing the
information about the items submitted by the Sellers. Each submission has a unique
identifier (token, UUID) and includes information about the product’s brand, model, and
associated URLs (e-commerce, invoice, original ad, and premium ad).

This unique token is the one used to identify the submission and is used in the URL
of the submission page. One advantage of using a UUID is its inherent randomness,
making it extremely difficult, and practically infeasible, to guess. This way it is possible
to send the link to the Seller, assuming a secure channel (email), without the need for any
authentication.

Additionally, this model stores details about the submission’s status, such as the current
state, rejection reasons, and any relevant notes and observations that may be added during
the review process.

It also stores key dates, such as pick-up and expiration, location, and number of boxes
necessary to ship the item.

Another category of fields stored in this model are payment-related fields, such as payment
type, payment method, and the associated payment reference.

Finally, it also contains the timestamps for creation, and updates are automatically man-
aged by Rails ActiveRecord, as do all the models.

The Submission’s model associations can be grouped as follows:

• Product Information: Unique identifiers (id and token), brand, model, and asso-
ciated URLs (e-commerce, invoice, original ad, and premium ad).

• Submission Status: Collection state, submission state, rejection reason, rejection
message, and review notes.

• Observations: Client observations and notes.

47

Chapter 5

Simplified

Brand Product

Category

CategoryQuestion

City Seller

Ecommerce::ProductData Variant

EcommerceOrderData

Submission

ExtraSellerField

SellerField

FormEntry

LoopManager

LoopManagerRole

ManualPayment

OptionType OptionValue

RevolutPayment

Role

TimeTracker

SubmissionType SubmissionTypeQuestion

VatRate

WeightInterval

Figure 5.8: Simplified ER.

48

System Architecture

• Logistics: Number of boxes, pick-up date, and picking location.

• Payment Details: Payment type, seller payment method, and related IDs (pay-
ment, VAT of purchase, and VAT rate for this type of submission).

In ER of the Submission Module mirrors some of the common e-commerce platform mod-
els. A brief explanation of the relevant models is provided below:

• Product: This is the basic unit of sale and refers to the item that will be listed
in the catalog. It serves as a template for creating various versions or ”Variants” of
that item. An example Product is a ”Smartphone” or a ”PlayStation 5”.

• Variant: A Variant is a specific combination of Option Values associated with a
’Product.’ For example, for a smartphone, a Variant could be a specific model with
128GB storage and a silver color. Due to the nature of the system, each variant is
unique.

• Option Types: These define the kinds of customization or variations that a Product
can have. For instance, color or storage space.

• Option Values: These are the specific instances of an Option Type. As per the
Option Type example, the color Option type could have Option Values ’Red,’ ’Blue,’
and ’Green’.

The Variants model attributes can be grouped as follows:

• Identification: Unique identifier (id), and name.

• Product Details: Buy date, product value, and associated product and ecom-
merce_product_data IDs.

• Pricing Information: Loop cost, public sale price, public sale price competition
(acquisition and sale), and original advertisement public sale price. These properties
are used to calculate the profit margin and to generate financial reports.

• Logistics: Shipping cost and associated weight_interval.

The LoopManagers, LoopManagerRoles, and Roles models are used together to manage
user authentication, authorization, and role assignment within the system:

• LoopManagers: Represents users with access to the system, storing usual at-
tributes such as email and encrypted password. It also keeps track of invitation-
related information, such as limits, tokens, and counts.

• Roles: Represents the various roles that can be assigned to loop managers, including
a and parent role (parent_id) if any.

• LoopManagerRoles: Serves as a bridge between LoopManagers and Roles, asso-
ciating a loop manager with one or more roles. This is an intermediate model that
is not directly used in the application.

49

Chapter 5

Simplified

Brand

children_count integer ∗
depth integer ∗
display_name string
displayable boolean ∗
icon string
lft integer ∗
name string ∗
parent_id integer
rgt integer ∗
store_id integer

Product

description string
displayable boolean ∗
name string
store_id string

Category

children_count integer ∗
depth integer ∗
display_name string
displayable boolean ∗
icon string
lft integer ∗
name string ∗
rgt integer ∗
store_id integer

CategoryQuestion

question_id integer (8)
question_type string

City

name string
Seller

address string ∗
country string
email string ∗ U
first_name string ∗
iban string ∗
last_name string
phone string ∗
zipcode string ∗

Ecommerce::ProductData

payment_state string
sale_start_date datetime
variant_sku string

Variant

buy_date datetime ∗
description string
loop_cost_cents integer
loop_cost_currency string
name string ∗
product_value_cents integer
product_value_currency string
public_sale_price_cents integer
public_sale_price_competition_acquisition_cents integer
public_sale_price_competition_acquisition_currency string
public_sale_price_competition_sale_cents integer
public_sale_price_competition_sale_currency string
public_sale_price_currency string
public_sale_price_original_ad_cents integer
public_sale_price_original_ad_currency string
shipping_cost_cents integer
shipping_cost_currency string
store_id string

EcommerceOrderData

buy_date datetime
buyer_email string
olx_ad_id integer
order_id integer (8)

Submission

ad_id string
brand string
client_observations string
collection_state integer
ecommerce_url string
expiration_date datetime
invoice_url string
model string
notes string
number_of_boxes integer
original_ad_title string
original_ad_url string
payment_type string
pick_up_date datetime
picking_location string
pickup_point_id integer
premium_ad_url string
rejection_message text
rejection_reason string
review_notes text
seller_payment_method integer
source integer
state string (25)
token string (24)

ExtraSellerField

field_name string
required boolean

SellerField

value string

FormEntry

answer_id integer (8)
answer_type string
filled boolean
question_id integer (8)
question_type string
source integer

LoopManager

email string ∗ U
encrypted_password string ∗
invitation_accepted_at datetime
invitation_created_at datetime
invitation_limit integer
invitation_sent_at datetime
invitation_token string
invitations_count integer
invited_by_type string
remember_created_at datetime
reset_password_sent_at datetime
reset_password_token string

LoopManagerRole

ManualPayment

paid_at datetime

OptionType

name string
presentation string

OptionValue

name string

RevolutPayment

amount float ∗
counterparty_account_id string
counterparty_id string
currency string ∗
gateway_payment_id string
json_responses json
paid_at datetime
reference string
request_id string
status integer

Role

name string U

TimeTracker

new_state string
old_state string
target_type string

SubmissionType

name string

SubmissionTypeQuestion

question_id integer (8)
question_type string

VatRate

value decimal (5,2)

WeightInterval

maximum integer
minimum integer

Figure 5.9: Simplified ER with Content

50

System Architecture

Simplified

Answers::BooleanAnswer

FormEntry

Answers::MoneyAnswer

Answers::SelectAnswer

Answers::TextAnswer

Questions::BooleanQuestion

Questions::MoneyQuestion

Questions::SelectQuestion Questions::SelectQuestionOption

Questions::TextQuestion

Figure 5.10: FormEntries ER

Simplified

Answers::BooleanAnswer

code string
value boolean

FormEntry

answer_id integer (8)
answer_type string
filled boolean
question_id integer (8)
question_type string
source integer

Answers::MoneyAnswer

value_cents integer
value_currency string ∗

Answers::SelectAnswer

code string

Answers::TextAnswer

code string
text text

Questions::BooleanQuestion

code string
global boolean
locked_after_create boolean
required_before_create boolean
required_before_send boolean
required_on_final_submission boolean
text text

Questions::MoneyQuestion

code string
global boolean
locked_after_create boolean
required_before_create boolean
required_before_send boolean
required_on_final_submission boolean
text text

Questions::SelectQuestion

code string
global boolean
locked_after_create boolean
required_before_create boolean
required_before_send boolean
required_on_final_submission boolean
text text

Questions::SelectQuestionOption

code string
text text

Questions::TextQuestion

code string
global boolean
locked_after_create boolean
required_before_create boolean
required_before_send boolean
required_on_final_submission boolean
text text

Figure 5.11: FormEntries ER with Content

51

Chapter 5

These models work in conjunction to give controlled access to the system, enabling secure
user authentication and role-based authorization within the application.

The dynamic nature of the forms is achieved through the FormEntries model, which stores
the answers to each question associated with a specific product/category for a Submission.

The Answers and Questions themselves have different models and correspond to different
tables in the database (as seen in figure 5.10 and 5.11), but through Rails’ polymorphic
tables, they can all be treated as instances of base classes Answer and Question.

Finally, the Category model is used to catalog the products and their associated questions.
It is used to group similar products and to define the questions that will be asked for each
product.

Managing category hierarchies in a relational database is a challenging problem due to the
complexity associated with parent-child relationships and deep nesting.

The Categories are organized in a tree structure, which is hierarchical.

Traditional methods such as adjacency lists or path enumeration can lead to inefficient
queries, especially when there is a need to retrieve an entire sub-tree or calculate the depth
of nodes.

The nested set model was used as a solution to this problem. In this approach, each node
in the hierarchy is assigned a pair of numbers: the left and the right value. These numbers
are unique across the tree and are used to ascertain the hierarchical position of each node.
Essentially, a parent node’s left and right values encapsulate the left and right values of
all its child nodes. This structural organization allows for efficient read queries. To find
all descendants of a particular node, only one query is necessary for all nodes whose left
and right values fall between the parent node’s left and right values.

The implementation of the nested set model in the Submission Module is based on the
awesome nested set gem 16.

5.4.2 E-commerce Module

The ER diagram for the E-commerce Module is shown in figure 5.12 - simplified, without
the column attributives, and figure 5.13 - with them.

This module is based on the Solidus17 E-commerce platform, which itself is based on
Spree E-commerce. Out of the box, it provides a comprehensive set of functionalities for
managing an online store, including product management, order processing, and payment
processing. Yet many adaptations to the database schema were necessary.

Following is a simple description of the relevant models:

• Spree::Taxon: Represents a classification category for products, organized hierar-
chically.

• Spree::Taxonomy: Represents a tree structure for organizing taxons.

• Spree::Classification: Represents the many-to-many relationship between a prod-
uct and a taxon. The classification of categories in the E-Commerce module is more

16https://github.com/collectiveidea/awesome_nested_set
17https://solidus.io/

52

https://github.com/collectiveidea/awesome_nested_set
https://solidus.io/

System Architecture

Simplified

Spree::Classification

Spree::LineItem

Spree::OptionType

Spree::OptionValue

Spree::ProductOptionType

Spree::Order Spree::Payment

Spree::Product Spree::Variant

Spree::TaxonSpree::Taxonomy

Spree::User

Figure 5.12: E-commerce Module Entity-Relationship Diagram - Simplified

powerful than the one in the Submission Module, as a product can be present in
multiple categories or taxonomies.

• Spree::Order: Represents an order placed by a user. It includes information about
the order total, state, associated user, shipping and billing addresses, and other
relevant data.

• Spree::Payment: Represents a payment made by a user for an order. It includes
information about the amount, associated order, payment method, and state.

• Spree::LineItem: Represents an item in an order. It includes the associated vari-
ant, order, quantity, and price.

• Spree::User: Represents a user of the e-commerce system. It includes infor-
mation like email, password, login, shipping and billing addresses, and various
authentication-related attributes.

The Product, Variant, Option Type, and Option Value models are similar to the ones
described in the Submission Module.

53

Chapter 5

Full

Spree::Classification

position integer

Spree::LineItem

additional_tax_total decimal (10,2)
adjustment_total decimal (10,2)
cost_price decimal (10,2)
included_tax_total decimal (10,2) ∗
price decimal (10,2) ∗
promo_total decimal (10,2)
quantity integer ∗

Spree::OptionType

name string (100) ∗ U
position integer ∗
presentation string (100) ∗ Spree::OptionValue

name string ∗ U
position integer
presentation string ∗

Spree::ProductOptionType

position integer

Spree::Order

additional_tax_total decimal (10,2)
adjustment_total decimal (10,2) ∗
approved_at datetime
approver_name string
canceled_at datetime
channel string
completed_at datetime
confirmation_delivered boolean
currency string
email string ∗
frontend_viewable boolean ∗
guest_token string ∗
included_tax_total decimal (10,2) ∗
item_count integer
item_total decimal (10,2) ∗
last_ip_address string
number string (32) ∗ U
payment_state string
payment_total decimal (10,2)
production_state integer
promo_total decimal (10,2)
shipment_state string
shipment_total decimal (10,2) ∗
special_instructions text
state string
total decimal (10,2) ∗

Spree::Payment

amount decimal (10,2) ∗
avs_response string
cvv_response_code string
cvv_response_message string
number string
phone string
response_code string
source_type string
state string

Spree::Product

available_on datetime
deleted_at datetime
description text
discontinue_on datetime
meta_description text
meta_keywords string
meta_title string
name string ∗
promotionable boolean
slug string ∗ U
stockable boolean

Spree::Variant

ad_title string
cost_currency string
cost_price decimal (10,2)
deleted_at datetime
depth decimal (8,2)
ecommerce_url string
height decimal (8,2)
is_master boolean
olx_ad_id integer (8)
position integer
premium_ad_url string
sku string ∗ U
state string
submission_id integer
track_inventory boolean
weight decimal (8,2)
width decimal (8,2)

Spree::Taxon

category_attributes json
category_id integer
depth integer
description text
icon_content_type string
icon_file_name string
icon_file_size integer
icon_updated_at datetime
lft integer
meta_description string
meta_keywords string
meta_title string
name string ∗
permalink string
position integer
rgt integer

Spree::Taxonomy

name string ∗
position integer

Spree::User

authentication_token string
bill_address_id integer
confirmation_sent_at datetime
confirmation_token string
confirmed_at datetime
current_sign_in_at datetime
current_sign_in_ip string
deleted_at datetime
email string ∗ U
encrypted_password string (128)
failed_attempts integer ∗
last_request_at datetime
last_sign_in_at datetime
last_sign_in_ip string
locked_at datetime
login string
nif string
password_salt string (128)
perishable_token string
persistence_token string
remember_created_at datetime
remember_token string
reset_password_sent_at datetime
reset_password_token string
ship_address_id integer
sign_in_count integer ∗
spree_api_key string (48)
unconfirmed_email string
unlock_token string

Figure 5.13: E-commerce Module Entity-Relationship Diagram - With content

54

Chapter 6

Development

This chapter describes the implementation phase of the project, discussing the develop-
ment process, execution, project management, and deployment. It provides an overview
of the software development work process and organizational standards followed, the tools
utilized, and how the project requirements were met. Furthermore, it addresses some of
the challenges encountered during the development phase and the solutions selected to
overcome them, concluding with the current state of the project.

6.1 Development Process

This section describes the applied Agile methodology, team organization, task organiza-
tion, and the process of code review and quality assurance.

6.1.1 Agile Methodology in Practice

As mentioned before, an Agile methodology was adopted and adapted to manage the devel-
opment process for this project. This section provides a summary of the implementation of
Agile principles and the necessary adjustments made to fit the project’s requirements and
the teams’ needs. Specific adaptations are illustrated throughout the rest of the chapter.

The project was divided into smaller, manageable iterations similar to sprints in SCRUM.
These sprints were planned weekly or bi-weekly, depending on the Project Owner’s and
business teams’ priorities.

Each sprint contained a defined set of goals, that corresponded to one or more tasks,
prioritized based on the project’s requirements and currently available resources (namely
team members). The roles, responsibilities, meeting schedules, and organization of said
meetings are discussed in section 6.1.2.

Flexibility and responsiveness to change, key principles of Agile, were necessary during this
project. Changes in requirements were incorporated into sprints, with task reprioritization
as necessary. Often OLX or the business team would request changes after testing a
feature, which would create new tasks and require the reprioritization of existing ones.
Notable changes are discussed in subsection 6.1.1.

Continuous improvement was also a focus throughout the project. The weekly meeting
also served as a retrospective moment to discuss successes, challenges, and potential im-

55

Chapter 6

provements for the next sprint. This feedback was used to refine the development process
and increase efficiency over time.

Aside from these meetings, the company’s CTO, lead Project Manager, and Project Man-
agers (in which the author was also later included) participated in weekly meetings to
discuss the projects’ progress, address any inter-project issues, discuss noteworthy design
decisions, and manage the allocation of developers between projects.

In conclusion, the Agile methodology provided a flexible framework for managing the
development process. By adapting its principles to the specific needs of the project and
the team, the methodology enabled the team to consistently deliver value to the client
and respond to changes in requirements.

Notable Changes and Adaptations

During the project, several notable changes in requirements occurred. These changes and
the corresponding adaptations are summarized below.

Submission Main Flow Change

The original requirements specified that the OLX Manager would receive, either by email,
or another means, the list of OLX advertisements that may be of interest to buy, recondi-
tion, and re-inject the listing into OLX as a new premium advertisement. The first steps
of the flow would be as follows:

1. The OLX Manager would receive a list of advertisements.

2. The OLX Manager would appraise and filter the advertisements to buy.

3. The OLX Manager would, using the Submission BO, create a proposal to the Seller.

4. The Seller would receive an email with the link to the Proposal form, where they
would accept or reject, and potentially fill in the required information.

5. The OLX Manager would confirm the submission, the item would be bought, and
the flow would continue.

This flow was implemented, tested, and released to production. However, shortly after,
due to changes in the management personnel responsible for the project on the OLX team,
OLX decided to change the flow. It was decided that it would be best to add a button to
their home page that would redirect to the proposal form. The first steps of the new flow
became as follows:

1. The Seller would click on the button on the OLX home page.

2. The Seller would be redirected to the proposal form.

3. The Seller would fill in the required information and submit the form.

4. The OLX Manager would receive a new submission proposal, evaluate it, correct it
if necessary, and advance it to the next step (or reject it).

This new proposal form was different from the one that was already implemented because
at the time there was no predetermined information about the categorization and prop-
erties of the item. This created unforeseen problems and questions that needed to be
addressed:

56

Development

• Should the Catalog be open and/or enable the user to create new categories?

• Would the user know how to correctly categorize the item?

• How to handle spam and abuse, given that the proposal page is now public?

• How to handle the expected increase in submissions knowing that there are limited
human resources to handle them?

To address these challenges, several adaptations were made. The catalog was initially
opened only on leaf categories, and the user could choose the ”Other” option, which would
enable the creation of a new category/brand/product if needed. However, this led to the
creation of many similarly named categories. To counter this, a ”displayable” property
was added to categories, brands, and products. When the user creates them, they are
hidden from the publicly available options. The OLX Manager could later enable them.

Another feature that was added was the ability to merge categories, brands, and products.
This way, if the user created a new duplicated category (name mismatch or typo, for
example), the OLX Manager could merge it with an existing one, greatly simplifying the
process of correcting the user’s mistakes.

Usability Testing was also conducted with members who worked on the review process, to
identify potential bottlenecks in terms of usability, and to try and improve the efficiency
and speed of the process.

In the usability testing sessions, the Loop Managers were asked to perform their routine
tasks, namely the submission review process from start to finish.

The tasks were as follows:

• Evaluate and Reject a new submission.

• Evaluate, Correct, Appraise, and make an offer to a new submission.

• Fill in the necessary data after the client accepts the offer, and emit the package
slip.

While the Loop Managers were performing these tasks, they were asked to think aloud,
to explain what they were doing and why, and to provide feedback on the process.

The main issues identified were:

• Some actions, such as rejecting a submission, were not accessible at the first stages of
the review process. Even though the Submission Manager knew that the submission
was not suitable, they had to go through some extra steps to reject it. The solution
was to add a dynamic action bar, that is always on top of the submission page and
contains the most common actions (available for the current state).

• The ”Correct” action was comprised of filling in some data, and after watching the
Loop Managers perform the task, it was clear that the data had grouping and that
the form could be split into multiple steps. This was done, and the form was split
into tabs for each type of data.

• The ”Appraise” action required the Loop Managers to gather information, which
required them to open multiple tabs and windows. This in conjunction with the fact
that Submission Managers are often multitasking and reviewing multiple submissions

57

Chapter 6

at the same time, led to the creation of a new feature. The websites of the most
common sources of information were embedded in the Submission form, allowing the
Loop Managers to quickly access them.

These changes improved the efficiency of the review process, and the usability of the
application, but eventually, the decision was made to reduce the number of incoming
submissions. The ”Other” option was removed due to factors such as misuse from the
Sellers; the lack of time for reviews; the effort necessary to review them; high reject rate
for non-listed categories.

Aside from these changes, the feature was implemented in a way to also keeps the original
flow working. Section 5.3 contains a sequence diagram that illustrates these flows.

Security reprioritization

In anticipation of the store’s release, a security audit was scheduled by OLX. The audit
consisted of penetration testing [26], utilizing a methodology known as black box testing
[27], by their security team.

The testing was done on both authenticated and non-authenticated application endpoints
of the Submission back office, proposals app, and the E-Commerce Backoffice.

To anticipate the audit, in addition to the standard tools that were already utilized during
the regular development process (see section 6.1.4), the Open Web Application Security
Project’s Zed Attack Proxy (OWASP ZAP) tool 1 was used to scan the application for
potential vulnerabilities.

The audit report identified several issues, many of which were determined to be false
positives. However, in the interest of ensuring the secure launch of the store, it was decided
to prioritize the resolution of these security issues instead of the scheduled sprints’ tasks.

An adapted report containing the identified issues and the corresponding resolutions can
be found in the appendix A.

Delivery Provider Change

In the initial stages of the project, the plan was to utilize CTT as the delivery provider.
However, due to business delays and considerations, a decision was made to switch to DPD.
As this change occurred early in the development process, the impact on the project was
minimal.

To accommodate this change in a flexible and maintainable manner, while also preparing
for potential modifications, it was decided to implement a more robust solution. This
solution consists of using the Adapter design pattern, in conjunction with the Service
Object pattern. It was developed in an isolated project, a ruby gem.

Ruby gems are packages of Ruby code, similar to modules or libraries in other languages.

The gem contains a service class (the PickUpPointsService) which acts like the API for
the rest of the application.

The Service Object pattern is a design pattern commonly used in Ruby on Rails appli-
cations. It encapsulates a specific business logic operation or a distinct action in the
application. This pattern is used to keep controllers and models lean by extracting com-
plex logic or operations.

1https://www.zaproxy.org/

58

https://www.zaproxy.org/

Development

The Adapter pattern is a structural design pattern that allows objects with incompati-
ble interfaces to work together. This pattern involves a single class, the adapter, which is
responsible for communication between the main object (in this case, the PickUpPointsSer-
vice) and the object that the main object cannot use directly (DPD Client).

The Adapter to be utilized by the Service is established in the initializer, a process that
is essentially Inversion of Control (IoC). IoC is a programming technique where the flow
of control is inverted compared to traditional procedural programming. The concrete
application of this principle is called Dependency Injection, where the dependencies of a
class are supplied to the class (injected) instead of the class creating them itself. The
following code snippet illustrates this:

1 # config/initializers/delivery_system.rb

2 # Setup

3 DeliverySystem.setup do |config|

4 config.pickup_points_source = DpdPickupPointsAdapter

5 end

6

7 # Each adapter uses its own interface

8 class DpdPickupPointsAdapter < DeliverySystem::PickupPointsInterface

9 def self.all

10 Dpd::Client.instance.pickup_points.map do |pickup_point|

11 DeliverySystem::PickupPointAdapter.new(

12 id: pickup_point["number"]&.to_i,

13 name: pickup_point["name"],

14 county: pickup_point["postalCodeLocation"],

15 #...

16

17 # Usage. For the rest of the application, it is transparent which adapter/source is being used

18 DeliverySystem.pickup_points.all # return all pickup points

In this case, the Adapter (the dependency) is injected into the Service, allowing the Service
to remain agnostic of the specific implementation of the Adapter.

This design allows for greater flexibility and maintainability, as changes to the Adapter or
Client implementations do not necessitate changes to the Service.

This change, although unplanned and more time-consuming, allowed for a seamless tran-
sition from the initially planned delivery provider and also provided a flexible architecture
that could accommodate future changes and be reused in other projects.

6.1.2 Team Organization

The core development team was composed of one project manager (later replaced by the
author), two backend developers, and one frontend developer and designer.

Initially, the author contributed to the project as a developer. Over time, his role ex-
panded to encompass project management responsibilities, which entailed overseeing the
development process in addition to active programming.

Inspired by the SCRUM methodology’s daily, the team held daily meetings where each
member reported on their current tasks, plans for the day, and any encountered blockers.
This routine ensured that everyone on the team was updated on the current state of the
project, helping resolve doubts. If necessary, there would be follow-up technical discussions
with relevant team members.

59

Chapter 6

The team’s tech lead, a role assumed by the primary developer, facilitated technical plan-
ning meetings at the beginning of the project. During these sessions, the team discussed
topics such as architectural planning, code organization, and library configurations.

In the later stages of development and maintenance, two business and operations team
members also began attending the daily meetings. They provided insights into usability
and informed the developers of business aspects related to the project.

Later, weekly meetings were also instated, whose purpose was to identify and address
issues, facilitate communication and collaboration, plan and organize the next week’s work,
and set and track goals. Contrary to the daily meetings, these were mostly conducted
in person and were longer in duration. These weekly meetings were akin to the sprint
planning and sprint review meetings in the SCRUM methodology.

During these, the team made decisions on what tasks to include for the next week, taking
into account the project’s needs and any changes in the requirements.

6.1.3 Task Organization

The tasks were organized using a Kanban-style board for visualization, facilitated by the
Software as a Service (SaaS) platform ClickUp.

The Kanban system, originating from Toyota’s just-in-time (JIT) production system, is
a method for managing knowledge work with an emphasis on just-in-time delivery while
not overloading the team members.

In this system, tasks are represented as cards that progress through different stages of a
workflow as they are completed.

This approach offers several benefits. Some of these can be seen in figure 6.1 2. Firstly, it
provides a visual representation of work in progress, which aids in understanding the flow of
work and identifying any bottlenecks. This is especially useful for Project Managers, in the
context of software development, where tasks can be complex and have many dependencies.
Secondly, it allows for flexibility in task management, as tasks can be added, removed,
or prioritized based on the project’s current needs. Lastly, it encourages collaboration
and transparency among team members, as everyone has a clear view of the state of the
project.

Figure 6.1: Kanban benefits

In addition to task management, ClickUp also facilitated:

2(sourced from: https://www.google.pt/books/edition/Agile_Processes_in_Software_
Engineering/RtlCDwAAQBAJ?hl=en&gbpv=1&dq=kanban+benefits&pg=PA162&printsec=frontcover)

60

https://www.google.pt/books/edition/Agile_Processes_in_Software_Engineering/RtlCDwAAQBAJ?hl=en&gbpv=1&dq=kanban+benefits&pg=PA162&printsec=frontcover
https://www.google.pt/books/edition/Agile_Processes_in_Software_Engineering/RtlCDwAAQBAJ?hl=en&gbpv=1&dq=kanban+benefits&pg=PA162&printsec=frontcover

Development

• Team collaboration, through card-specific discussion threads.

• Time tracking. Task-specific time tracking was not enforced, only project-based
tracking, for two reasons. First, it was been shown that task-based time tracking
can be detrimental to productivity and team morale [28], and second, the team was
small enough that it was easy to keep track of the time spent on each task. Moreover,
the time tracking was only useful for company management reasons, because some
people were working on multiple projects at the same time.

ClickUp is designed for flexibility and customization, and each team adapted the boards
to their needs. The OLX project has eight boards (called spaces in ClickUp), the first four
are management-oriented:

• Planning: This board was used for initial development, encompassing research
tasks, flow definition, benchmarking of similar platforms or functionalities, database
schema design, and the creation of several architectural diagrams. Tasks would
be created in the Backlog and would flow linearly, reaching the Closed column or
Artifact if the task produced a diagram or another artifact.

Backlog → To Do → In Progress → Review → Closed/Artifact.

• Management: This board mirrors the columns of the Planning board, except Ar-
tifacts, and is mainly used to track time for management tasks, CI/CD tasks (such
as updating the environmental variables for deployments), and minor development
environment-related tasks.

Backlog → To Do → Pending→ In Progress → Review → Closed

• QA: Standing for Quality Assurance, this board is where the business team submits
cards for bugs, improvements, and feature requests. This board works more akin
to a ticketing system because the tasks can only be moved to a final Moved to
Development column. Tasks can be also moved between boards, but usually, because
the business team has a different and less technical understanding of the software,
the cards often need to be modified or adapted by the project manager before being
moved to the development boards.

• Deliverables: This board is exclusive to the Project Manager. It is used to schedule
and visualize the timeline for larger features instead of smaller, specific tasks. It also
has a Gantt-style timeline view. It was later replaced by a new, dedicated ClickUp
feature, Goals, that served the same purpose but had a more adequate user interface,
such as goal completion metrics. Although only the project manager had write access
to the board, it was built with the whole team present during the weekly meetings.

The next four boards are developer-oriented and have the following purposes:

• Design: Used to track design tasks, mainly the making of components using Figma
wireframes. The columns are slightly different, to take into account the client feed-
back:

Backlog → Pending → To Do → In Progress → Internal Approval → Client
Approval → Rejected → Approved

61

Chapter 6

The last three, Frontend, SM Backend, and EC Backend, all follow the same flow. The
columns are the same, but the tasks are separated by the module they belong to. The
purpose of each column is summarized in the table 6.1.

Backlog → Planning → Pending → Issue/Bug → To Do → In Progress → MR
Review → PM Review → PO Review → Ready for Production → Closed

• Frontend: Used by the frontend developers. These include tasks from the Submis-
sion Module (SM) Frontend and e-commerce module (EM) Frontend.

• SM Backend: Used by the backend developers, for tasks in the SM.

• EC Backend: Used by the backend developers, for tasks in the EC.

Column Task status
Backlog Yet to be worked on.
Planning Need more planning to be workable.
Pending Reached a blocker, cannot continue.
Issue/Bug Related to issues, or went back due to detected bugs.
To Do Ready to be picked up by a developer.
In Progress Currently being worked on.
MR Review Have a corresponding Merge Request, awaiting approval.

PM Review Ready for merging to the Staging branch, awaiting Project
Manager’s approval.

PO Review Ready for testing by the Project Owner.

Ready for Production Accepted by the Project Owner, ready for merging to the
main branch.

Closed Completed.

Table 6.1: Description of Task Stages

Following the Agile method, some tasks may bypass some columns, when these are not
applicable. For example, utility tasks such as creating factory objects to help populate
the database do not need the project owner’s approval.

Furthermore, each task is assigned a priority level, ranked from Low, Normal, High, and
Urgent, a due date, and optional tags, defined by the Project Manager.

6.1.4 Code Review and Quality Assurance

Code review is a process in which one or more developers review the source code of a
software project to identify problems, suggest improvements, and ensure that the code
adheres to best practices and standards. It has been shown to improve code quality and
reduce the number of bugs in software projects [29], even with modern, lightweight, and
asynchronous code reviews.

In this project, three primary branches were utilized: development, staging, and main.
Feature branches, dedicated to the development of new features, originated from (branch
of) and are targeted back to (merged to) the development branch.

Each merge request includes a description in a change-log-like format, outlining what was
added, altered, or removed. This description also provides a slot to justify the changes

62

Development

and an explanation of the chosen approach, aiding the reviewer in understanding the
functionality before formally initiating the review.

The feature branches also have the ClickUp task ID in the branch name, the Merge Request
body, or a commit message, to establish a clear link and aid the navigation between the
code and its corresponding task.

Reviewed and approved changes are merged into the development branch. Given the
relatively small size of the team, a single approval was sufficient for a merge request to be
accepted.

Aside from Merge Reviews, code quality was also maintained with automatic code-checking
tools:

• RuboCop 3: is a code linter that checks code against predefined rules to ensure
consistency and best practices in coding style. The rules are defined in a configu-
ration file. The rules used in this project were based on the Ruby Style Guide by
Shopify 4 and adapted to reach a consensus within the team.

• Brakeman 5: is a security scanner that analyzes Ruby on Rails applications for
known security vulnerabilities.

• Bundle-Audit 6: is a tool for identifying and reporting vulnerabilities in Ruby
gems (library packages) that are used in a Rails application.

• Bullet 7: is a gem (library package) for Rails that helps detect and prevent N+1
queries, which can be a common performance issue in Rails applications.

• Rails-perftest 8: is a tool that does benchmarking and provides profiling metrics.
It generates performance reports and measures memory usage.

• ESLint 9: is a static code analyzer for javascript and typescript, used for iden-
tifying, and reporting on patterns found in ECMAScript/JavaScript code, to make
code more consistent and avoid bugs.

6.2 Development Execution

This section discusses the tools used for planning, managing, and executing the project,
including the implementation of Continuous Integration and Deployment (CI/CD) and
testing methodologies.

6.2.1 Planning and Management Tools

These tools were used while creating the diagrams and flowcharts.
3https://github.com/rubocop-hq/rubocop
4https://github.com/Shopify/ruby-style-guide/tree/main
5https://github.com/brakeman/brakeman
6https://github.com/rubysec/bundler-audit
7https://github.com/flyerhzm/bullet
8https://github.com/notebook/rails-perftest
9https://eslint.org/

63

https://github.com/rubocop-hq/rubocop
https://github.com/Shopify/ruby-style-guide/tree/main
https://github.com/brakeman/brakeman
https://github.com/rubysec/bundler-audit
https://github.com/flyerhzm/bullet
https://github.com/notebook/rails-perftest
https://eslint.org/

Chapter 6

• Draw.io 10: Now also known as Diagrams.net - a free and open source, browser-
based graph design tool. Used to create diagrams like the C4 architecture (see section
5.1), and others.

• ONDA 11: Online database architect. Used to draft the initial database schema
for the Submission module.

These are the tools and software used for communication, messaging, task and time man-
agement.

• Microsoft’s Teams 12: : The primary way of communication and information
sharing within TheLoop Co. Has features such as video conferences, messaging, file
sharing, and scheduling (reunions and daily meetings).

• ClickUp 13 : Project management suite of several tools. This tool enabled the
team to do task management and tracking and issue/bug handling. The task list
can have different views, but mainly the board view was used (similar to Kanban,
as seen in figure 6.2). Discussions and clarifications of the tasks were also done
here by sharing comments, images, and screen recordings. This process helps with
keeping the discussion about specific features centralized and organized. It also has
integration with Gitlab, discussed more in detail in section 6.2.2.

Figure 6.2: Example of a Kanban style task view during the development process in
ClickUp

6.2.2 Development Tools

In this section are discussed the tools used during the actual development process, the
writing of the code, source control, testing, and deployment.

Text Editor

According to a 2019 survey [30] an average developer spends approximately 32% of their
working time writing new code or improving existing code, and 19% on code maintenance.

10https://app.diagrams.net/
11https://onda.dei.uc.pt/v4/
12https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
13https://clickup.com/

64

https://app.diagrams.net/
https://onda.dei.uc.pt/v4/
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://clickup.com/

Development

This means that roughly half of the time is spent either writing or reading code. Having
a good tool to facilitate this is very important.

In the Loop Co., the code editor used by the majority is VSCode (Visual Studio Code) 14,
and sometimes, when accessing remote servers or doing small changes, the vim15 terminal-
based text editor. Although VS Code is not a fully-fledged Integrated Development En-
vironment (IDE), it is lightweight, highly customizable, and can integrate with various
workflow tools through the use of extensions. This, and the fact that it is the most
popular code editor at the time of writing [31], makes it a reasonable choice.

Git and GitLab

For source control, Git was used. The Git workflow used was GitLab Flow [32]. A Git
workflow is a recipe or recommendation on how to use Git, which includes which branches
to use, the naming schemes, and the associated permissions.

The GitLab flow consists of the following types of branches:

• Development and main branches: The main branch must be always in a deployable
state. Given that the project does not need to support several concurrent release
versions, one stable branch is enough. The development branch is the base branch
from which the developers create feature branches.

• Environment branches: specific to each environment. A staging branch for internal
testing and client demos and a development branch for the most up-to-date version
of the code.

• Feature branches: all features related to an assigned task, branch of the development
branch. This also includes non-urgent bug fixes, improvements, and styling.

• Hotfix branches: for breaking bugs that were only detected after being released to
production. They may be merged into the necessary branch directly (or cherry-
picked), but they must also be merged into the development branch.

This flow is a good fit for this project, considering the team size and the feature-driven,
agile development cycle focused on continuous delivery and multiple environments.

As for the remote repository for Git, GitLab was used. It offers features such as collabora-
tion through Merge Requests, where developers may comment and perform asynchronous
code reviews, and the CI/CD pipeline, which integrates with Rancher for continuous de-
livery and deployment (see section 6.3.1).

Docker

The various modules, while designed to interact with each other, must be developed as
separate, decoupled, and deployable units. Each application (component) has its own set
of system dependencies, configurations, and services that need to be available for it to
function properly. To manage these requirements and facilitate the development process,
Docker containers were utilized.

14https://code.visualstudio.com/
15https://www.vim.org/

65

https://code.visualstudio.com/
https://www.vim.org/

Chapter 6

These containers can be thought of as lightweight virtual machines [33].

Each container encapsulates all the dependencies and configurations needed by each mod-
ule, creating a standalone unit that can be deployed. This allows the program to run
consistently across any machine with Docker installed, regardless of the underlying oper-
ating system or its configuration.

The containers used were:

• Ruby on Rails containers: one for the submission module and another for the e-
commerce module.

• PostgreSQL - relational database. One for each application.
• Sidekiq - asynchronous job scheduling. For sending emails and performing periodic

tasks.
• Redis - an in-memory cache and message broker (connects Rails applications and

Sidekiq).
• NextJS - frontend framework for the Submission Proposal page module.

These multi-container environments are defined and managed by a tool called Docker
Compose [34] for the local development environment. For the staging and production
environments, the process is different, and it is expanded in section 6.3.1.

6.2.3 Continuous Integration and Deployment

CI/CD, standing for Continuous Integration and Continuous Delivery, is a set of practices
and tools that automate the process of building, testing, and deploying software. The
CI/CD solution used was GitLab CI/CD.

The Continuous Integration part of the pipeline is responsible for the build and test
stages. The common setup is to run tests (and or linters) when a new Merge Request
is created. If the tests fail, the Merge Request is blocked until new changes are pushed,
causing the pipeline to run again.

The Continuous Delivery part of the pipeline is responsible for the deployment stage.

In practical terms, it consists of configuring a pipeline (in a file called .gitlab-ci.yml)
that defines different steps to be executed.

For this project, an existing configuration was used to bootstrap the project, and changes
were made when the need arose. The final pipeline was divided into the following stages:
setup, test, build, validate, and deploy.

During the setup stage, the environment was prepared for the subsequent stages. This
consists of running a setup script that pulls the terraform file from the repository and
sets up the necessary environment variables. Most of these variables are sensitive and are
stored in GitLab’s CI/CD settings, which are only accessible to project maintainers and
project managers.

Terraform 16 is a tool managing infrastructure as code. It is used to define the infras-
tructure in a file, that is also contained in the repository. Aside from the variables and
configurations such as the number of instances, the instance type, the memory limits, CPU
limits, and hostname are defined in several terraform files.

16https://developer.hashicorp.com/terraform/intro

66

https://developer.hashicorp.com/terraform/intro

Development

The test stage was designed to run tests on the application. It specifically ran request tests
on the REST API endpoints, to ensure that all endpoints were functioning as expected.
The tests are discussed in more detail in section 6.2.4.

The build stage involved building the application in a Docker container and pushing it
to the GitLab Container Registry.

The validate state only runs the terraform validate command, checking whether the
terraform files are valid.

Finally, the deploy stage involved applying the infrastructure changes to the Kubernetes
cluster using Terraform. This was done for the staging branch automatically and for
the master branch manually. The details of the deployment strategy are discussed in
section 6.3.1. It is to be noted that even though the stages are defined in the pipeline,
depending on the branch, some stages may be skipped or be different. This is done with
the dependencies keyword for each stage. For example, the deploy state, when reached
by starting the QA pipeline, creates and deploys a temporary QA instance.

This CI/CD pipeline played a crucial role in maintaining the quality of the software,
facilitating collaboration among developers, and speeding up the software development
process. The automation of these stages facilitates issue detection that is not directly
related to the application code. This also ensures that the application is always in a
deployable state, reduces the time and effort required to release new features, and by
caching the build artifacts enables quick rollbacks in case of issues.

6.2.4 Testing

Testing is a crucial aspect of software development that ensures the application behaves as
expected, improves the quality of code, and prevents regressions when changes are made.

In Ruby on Rails applications, RSpec 17 is a popular testing framework that is used for
behavior-driven development (BDD). It provides a clean and clear syntax, using Domain
Specific Language (DSL) for the test cases.

Two types of tests were used in this project: unit tests and API tests.

Unit tests were primarily used to test the most critical parts of the application, specif-
ically the submission user models, and financial calculations. These tests were designed
to validate the functionality of individual components in isolation, ensuring that each
part performs as expected. For the submission, the functionalities being tested were the
validations and integrity constraints of the model for the different states of the submis-
sion. For the user model, the tests were designed to validate the users’ password security
requirements and user roles and permissions.

An example of a unit test for the submission model is shown in figure 6.3, and the corre-
sponding output in figure 6.4.

API testing is a type of software testing that involves testing application programming
interfaces (APIs) directly and as part of integration testing to determine if they meet
expectations for functionality.

During the initial phase of the project, when many changes were being made both to
the API and to the submission model, the testing was done manually. As the project
progressed and reached maturity, manual testing would be not only error-prone but also

17https://rspec.info/

67

https://rspec.info/

Chapter 6

1 RSpec.describe(Submission, type: :model) do

2 context "when advancing in the submission lifecycle" do

3 let(:submission) { build(:submission) }

4

5 it "fails to save if required before_create questions are not answered" do

6 question = build(:question, required_before_create: true)

7 submission.form_entries << build(:form_entry, question: question)

8 expect(submission.save).to(be(false))

9 end

10

11 it "saves if before_create questions answered" do

12 question = build(:question, required_before_create: true)

13 answer = build(:text_answer, text_question: question)

14 submission.form_entries << build(:form_entry, question: question, answer: answer)

15 expect(submission.save).to(be(true))

16 end

17

18 #...

Figure 6.3: Unit test for the submission model

➜ /project git:(development) ✗ rspec spec/models/submission_spec.rb -fd

Submission

when created

is in draft

global questions are added

category specific questions are added

submission type specific questions are added

when advancing in the submission lifecycle

fails to send if missing associations

...

when on qa accepted state

checks if variants product value is set

checks if variants PVP value is set

checks if variants Loop Cost value is set

when calculating financial values

has correct direct margin without vat

has correct loop sales commissions

has correct olx final liquid margins

has correct loop theoretic liquid margins

Finished in 19.82 seconds (files took 1.5 seconds to load)

31 examples, 0 failures, 0 pending

Figure 6.4: Unit test output for the submission model

68

Development

#...

category: {

type: :object,

description: "A category can contain 0 or more sub-categories, the available"\

" states and product models available for current category.",

properties: {

presentation: { type: :string },

value: { type: :integer },

subcategories: {

type: :array,

description: "Each sub-category is a select option.",

items: { "$ref": "#/components/schemas/leaf_category" },

},

},

required: [:presentation, :value, :subcategories],

},

#...

Figure 6.5: OpenAPI schema definition for the category object

extremely time-consuming.

One of the problems is rebuilding/recreating the data to test the behavior in different
states. Constructing the submission model, having several states and state-specific valida-
tions, would be time-consuming if done manually. To solve this problem, the FactoryBot18

and Faker19 gems were used.

FactoryBot is a library that facilitates the creation of data. Its main advantage, besides
the easy-to-use DSL, is that it integrates with RSpec, and with the correct configuration,
can pull data from Faker, a library that generates such as emails, phone numbers, product
descriptions, etc. It achieves this by using the factory pattern, where factories are defined
for each model. Factories can have hierarchical structures and support traits and callbacks,
making it easy to build complex data structures.

This facilitated the creation of test data quickly, in all the states and with all the config-
urations (e.g.: valid, invalid, with questions, without answers, etc.).

For the API testing, RSwag 20 was used.

RSwag allows to write and run RSpec tests that mock requests, which were then used to
generate OpenAPI 21 specification. RSwag also provides a Swagger UI 22 interface that
allows visualization and interaction with the API endpoints.

Then, a TDD (Test Driven Development) approach was used to write the tests for each
endpoint. This first step was to design the API schema using the OpenAPI specification.
An example of a schema definition is shown in figure 6.5.

Afterward, the tests were written, and the endpoints were implemented.

One of the benefits of using RSwag is that the tests generate the OpenAPI specification
file. Each test belongs to a URL path (or application endpoint). The RSpec gem was
expanded to also add the responses of successful requests as examples in the specification.

18https://github.com/thoughtbot/factory_bot
19https://github.com/faker-ruby/faker
20https://github.com/rswag/rswag
21https://www.openapis.org/
22https://swagger.io/tools/swagger-ui/

69

https://github.com/thoughtbot/factory_bot
https://github.com/faker-ruby/faker
https://github.com/rswag/rswag
https://www.openapis.org/
https://swagger.io/tools/swagger-ui/

Chapter 6

RSpec.describe("api/submissions", type: :request, document_response: true) do

#...

path "/api/submissions/options" do

get "parameters for new submissions" do

description "For the flow where the seller makes the first proposal."\

"Returns the available options and presentations for the select fields."

produces "application/json"

response 200, "Adheres to options schema" do

schema "$ref": "#/components/schemas/new_submission_options"

run_test!

end

response 200, "only sends displayable sub-categories" do

schema "$ref": "#/components/schemas/new_submission_options"

before do

categories = Category.categories.not_leaves

categories.update(displayable: true)

10.times { create(:category, displayable: true, parent: categories.sample) }

10.times { create(:category, displayable: false, parent: categories.sample) }

end

run_test! do

data = JSON.parse(response.body)

get all the subcategory ids for all categories

subcategory_ids = data["product"]["categories"].map do |c|

Select only non-negative categories. We use -1 to send the "Other" option

c["subcategories"].filter_map { |sc| sc["value"] >= 0 ? sc["value"] : nil }

end.flatten

subcategories = Category.categories.where(id: subcategory_ids)

expect(subcategories.count).to(be > 0)

expect(subcategories.pluck(:displayable).all?).to(be(true))

end

end

...

Figure 6.6: RSpec tests for the submission API

An example of the submission API tests are shown in figure 6.6, and the corresponding
results in figure 6.7.

This approach provided comprehensive and accurate documentation of the API, with an
interactive page to test the API without axillary tools like Postman or Insomnia. Yet the
bigger benefit was that it allowed automatic API endpoint testing, ensuring that the API
was always in a deployable state.

6.3 Deployment and Maintenance

This section discusses the strategy used for deploying the software and how the software
is maintained and updated after deployment.

70

Development

1 ➜ /project git:(development) ✗ rspec spec/requests/api/submissions_spec.rb -fd

2

3 api/submissions

4 /api/delivery_system/pickup_points

5 get

6 produces non-empty array

7 returns a 200 response

8 /api/submissions/options

9 get

10 Adheres to options schema

11 returns a 200 response

12 only sends displayable sub-categories

13 returns a 200 response

14 only sends displayable brands

15 returns a 200 response

16 models belong to chosen brand and category

17 returns a 200 response

18 # ...

19

20 Finished in 19.93 seconds (files took 1.6 seconds to load)

21 21 examples, 0 failures

Figure 6.7: RSpec tests output for the submission API

6.3.1 Deployment Strategy

The deployment strategy is used to ensure a continuous and smooth transition from the de-
velopment environment to the production environment. As mentioned before, the project
is composed of three repositories. Each repository contains a docker-compose file, and
each project has its dependencies containerized, as described in section 6.2.2.

When the project is deployed, however, this is no longer the case. The containers are
orchestrated using Kubernetes, which is an open-source platform for deployment, scaling,
and operating application containers 23.

It groups containers that make up an application into logical units for easy management.
All three projects are deployed to the same cluster, which is managed by Rancher.

Rancher [35] is a tool used to manage deployments of these containerized environments.
The purpose of this tool is better explained from this excerpt from Container Orchestration
With Cost-Efficient Autoscaling in Cloud Computing Environments [36]:.

”Container orchestration platforms, such as Kubernetes (Hightower et al., 2017), Docker
Swarm (Naik, 2016), and Apache Mesos (Hindman et al., 2011), are responsible for the
efficient orchestration of such applications in shared compute clusters. These platforms

manage the lifecycle of containers as well as the usage of cluster resources and hence, one
of their main goals is to (near) optimally place containerized applications on the

available nodes.”

Rancher is also an open-source software platform that provides a unified way to work with
Kubernetes. The Loop Co. hosts its own Rancher server. The clusters are organized by
namespace (environment) and project.

Project Managers and some developers have access to the Rancher server, where they can
23https://kubernetes.io/

71

https://kubernetes.io/

Chapter 6

change the number of replicas, ingress rules, and other configurations. Access to Rancher
is usually done through the web interface but for simpler tasks, like command line access
or checking the logs of a specific pod, the kubectl24 or k9s25 CLI tools were also used.

The deployment itself is initiated through GitLab’s CI/CD pipeline, as described in section
6.2.2. The pipeline is triggered when changes are merged into the staging or main branches.

Upon being merged to the staging branch, the CI/CD pipeline automatically builds the
application in a Docker container, validates the infrastructure changes using Terraform,
and deploys the changes to the staging cluster.

After the changes in the staging branch are tested and approved, they are merged into the
main branch. The CI/CD pipeline then repeats the same process to deploy the changes
to the production environment. However, this final deployment step requires confirmation
from the Project Manager to ensure that only intended changes are deployed to production.

In this way, Kubernetes provided several features that contribute to the quality attributes
of the software, summarized in Table 6.2.

6.3.2 Maintenance and Updates

Maintenance and updates were handled as an ongoing process. The Agile development
methodology was followed, which allowed for regular updates and improvements to be
made. As mentioned, features and bug fixes were developed in feature branches, reviewed,
and tested before being merged into the development branch.

For error tracking and performance monitoring, Sentry26 was used. Sentry is an open-
source tool and was also self-hosted by The Loop Co.

This allowed developers to monitor the software in real-time, and catch errors in the pro-
duction and staging environments, which is done by integrating Sentry with the application
code, which is done by adding code in specific parts of the application, like exception blocks
or error handlers. When an error occurs, the Sentry package captures the error and sends
it to the Sentry server, where it is stored and displayed in a project-specific dashboard.
The errors can be filtered by the environment, the type of error, and the frequency of the
error. The developer can then inspect the error and its stack trace (if present) by accessing
the dashboard. Email notifications for critical errors can also be configured.

What is sent to Sentry can be customized, and it is possible to send additional information,
such as trace ID, environment, host system information, and any other relevant data. The
trace ID is a unique identifier that is generated when a request is made, and it is passed
along to all the services that are involved in the request. This identifier is passed in a spe-
cific request header and is used to correlate errors and logs across services. This improves
traceability and overall system observability because it allows for quick identification of
the service and code that caused the error, which streamlines the debugging process for
errors that happen on live deployments.

Preventative steps were also taken to filter out sensitive information such as the user’s
email, from the logged errors.

This proactive approach to error detection enabled quick response times to issues, improv-
ing the overall reliability.

24https://kubernetes.io/docs/reference/kubectl/
25https://k9scli.io/
26https://sentry.io/welcome/

72

https://kubernetes.io/docs/reference/kubectl/
https://k9scli.io/
https://sentry.io/welcome/

Development

Kubernetes Feature Contributed Quality
Attributes

Automated rollouts and rollbacks: Progressively
rolls out changes to an application or its configuration,
ensuring that not all instances are updated at the same
time. While one container is initializing, the old one is
still active. When the new one responds to the health
check, the old one is terminated. If something goes
wrong, it is possible to roll back the changes.

Reliability, Availability

Load balancing: Distributes network traffic to en-
sure that the deployment is stable. For the public
containers, two replicas were used.

Performance, Efficiency,
Reliability

Storage services: Allows automatic mounting of a
storage system of choice. For this project, a storage
container running PostgreSQL was used for the stag-
ing environment. For production, the Digital Ocean
PostgreSQL was used.

Modifiability, Portability

Secret configuration and management: Allows
storage and management of sensitive information, such
as passwords, OAuth tokens, and API keys.

Security

Self-healing: Detects and replaces instances when
they fail, and kills instances that does not respond to
the health check. Does not make them public until
they are ready.

Reliability, Availability

Horizontal scaling: Allows scaling of the applica-
tion up and down, with a UI, or automatically based
on rules (such as CPU usage, for example).

Performance Efficiency,
Scalability

Table 6.2: Kubernetes Features and their Contributions to Quality Attributes

6.4 Current State and Future Work

This section discusses the current state of the product and any planned future enhance-
ments or features.

As of the time of writing, the project has processed over 3200 submissions. The distribution
of the submissions by (leaf) category is shown in Figure 6.8.

The submissions are distributed across various states as shown in the table 6.3.

The total amount for items bought was around €4,000, three-fourths being manual pay-
ments (through the initial SIBS integration), the rest being paid through Revolut. Around
65 submissions have been accepted and paid, with an average payment per item of €70.00.

With this, the pilot phase of OLX 2nd Life has concluded, and The Loop Co. has moved

73

Chapter 6

State Number of Submissions
Canceled 128

Client Rejected 243
Loop Rejected 2222

Draft 1
In Collection 31
Form Filled 1

QA Accepted 6
QA Rejected 6

Client Accepted 37
Sent 325

In-Store 54
Pending 183

Table 6.3: Submissions by State

Figure 6.8: Submissions by State

74

Development

forward with the development of the LoopOS project. This system aims to be an all-
encompassing platform that not only facilitates the buying and selling of second-hand
goods but also serves as an integral part of Loop Co.’s larger ecosystem.

The immediate next steps focus on gathering what was learned with this project and
integrating the knowledge gained into the LoopOS system. Significant advancements have
already been made in this direction. The Store module has been adapted and integrated,
as has the SUbmission Frontend. Additionally, Revolut Payments, developed separately
as a gem, have been used in this new system.

The Submission Module, one of the cornerstone elements of LoopOS, has served as a
prototype and reference for developing a more robust and scalable submission system.

75

Chapter 7

Conclusion

The journey of this thesis has been invaluable, presenting many opportunities for learning,
growth, and hands-on application of software engineering methodologies and principles.
The process provided a unique opportunity for the author and the team to understand the
landscape of Circular E-commerce, setting the foundation for building a base of knowledge
for future developments in this area.

The engagement with a real-world client was an enlightening experience, requiring a bal-
ancing act between the client’s needs and the project’s scope while operating under a set
of technical and business constraints.

During the implementation phase, the project began as a Minimum Viable Product, fulfill-
ing the highest-priority requirements. This period posed considerable challenges, especially
around mastering new and different technologies and working as a part of a development
team. However, the obstacles encountered only served to enrich the learning experience.

On the testing and validation front, functional tests revealed essential insights into the
system’s robustness and highlighted several areas for improvement. The platform has
demonstrated satisfactory performance and most importantly, reached the client’s expec-
tations and made its way to production.

Moreover, the experience allowed for a significant enhancement in professional skills, in-
cluding working with modern technologies, effective teamwork, and full-stack development.

In summary, this thesis project has been a microcosm of the challenges and triumphs that
come with large-scale software engineering projects. It has been a learning odyssey, with
beneficial outcomes in professional pursuits in the years to come.

76

References

[1] Julian Kirchherr, Denise Reike, and Marko Hekkert. Conceptualizing the circular
economy: An analysis of 114 definitions. Resources, Conservation and Recycling,
127:221–232, 12 2017.

[2] What are the best git branching strategies. https://www.flagship.io/git-
branching-strategies/. Accessed: 2022-03-19.

[3] The 12 principles behind the agile manifesto. https://www.agilealliance.org/
agile101/12-principles-behind-the-agile-manifesto/. Accessed: 2022-06-28.

[4] Agile 101. https://www.agilealliance.org/agile101/. Accessed: 2022-06-28.

[5] Morgan R. Clevenger. Leveraging social responsibility for worker engagement : From
recruitment to productivity, satisfaction, longevity, and happiness. The Routledge
Companion to Happiness at Work, pages 273–282, 10 2020.

[6] Daniel W. Greening and Daniel B. Turban. Corporate social performance as a com-
petitive advantage in attracting a quality workforce. Business & Society, 39:254–280,
2000.

[7] The 12 principles behind the agile manifesto. https://ecommerceguide.com/
ecommerce-statistics/. Accessed: 2022-06-28.

[8] E-commerce statistics for individuals - statistics explained. https:
//ec.europa.eu/eurostat/statistics-explained/index.php?title=E-
commerce_statistics_for_individuals. Accessed: 2023-07-28.

[9] B2b2c ecommerce definition and comparison. https://www.bigcommerce.com/
articles/b2b-ecommerce/b2b2c-ecommerce/. Accessed: 2023-07-28.

[10] Leandro Ricardo Sabino, Greiciele Macedo Morais, Valdeci Ferreira, Dos Santos, Car-
los, and Alberto Gonçalves. E-commerce: A short history follow-up on possible trends.
Article in International Journal of Business Administration, 8, 2017.

[11] 2-tier vs. 3-tier application architecture? https://nitrosphere.com/
uncategorized/2-tier-vs-3-tier-application-architecture-could-the-
winner-be-2-tier-2/. Accessed: 2023-07-15.

[12] Ibm | what is three-tier architecture? https://www.ibm.com/topics/three-tier-
architecture. Accessed: 2023-07-15.

[13] Owast | m9: Reverse engineering. https://owasp.org/www-project-mobile-top-
10/2016-risks/m9-reverse-engineering. Accessed: 2023-07-16.

[14] What is mach architecture for ecommerce? https://www.mongodb.com/blog/post/
what-mach-architecture-ecommerce/. Accessed: 2022-07-20.

77

https://www.flagship.io/git-branching-strategies/
https://www.flagship.io/git-branching-strategies/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/
https://ecommerceguide.com/ecommerce-statistics/
https://ecommerceguide.com/ecommerce-statistics/
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=E-commerce_statistics_for_individuals
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=E-commerce_statistics_for_individuals
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=E-commerce_statistics_for_individuals
https://www.bigcommerce.com/articles/b2b-ecommerce/b2b2c-ecommerce/
https://www.bigcommerce.com/articles/b2b-ecommerce/b2b2c-ecommerce/
https://nitrosphere.com/uncategorized/2-tier-vs-3-tier-application-architecture-could-the-winner-be-2-tier-2/
https://nitrosphere.com/uncategorized/2-tier-vs-3-tier-application-architecture-could-the-winner-be-2-tier-2/
https://nitrosphere.com/uncategorized/2-tier-vs-3-tier-application-architecture-could-the-winner-be-2-tier-2/
https://www.ibm.com/topics/three-tier-architecture
https://www.ibm.com/topics/three-tier-architecture
https://owasp.org/www-project-mobile-top-10/2016-risks/m9-reverse-engineering
https://owasp.org/www-project-mobile-top-10/2016-risks/m9-reverse-engineering
https://www.mongodb.com/blog/post/what-mach-architecture-ecommerce/
https://www.mongodb.com/blog/post/what-mach-architecture-ecommerce/

Chapter 7

[15] Smartphones must have common charging port by 2024, e.u. says. https:
//www.washingtonpost.com/technology/2022/06/08/eu-common-phone-
charger-law-usbc-apple/. Accessed: 2022-04-16.

[16] Martin Geissdoerfer, Paulo Savaget, Nancy M.P. Bocken, and Erik Jan Hultink. The
circular economy - a new sustainability paradigm? Journal of Cleaner Production,
143:757–768, 2 2017.

[17] What the r?! the 9r framework. https://www.malbaproject.com/post/what-the-
r-the-9r-framework-and-what-you-should-know-about-it. Accessed: 2022-05-
01.

[18] Circular economy definition, importance and benefits. https://www.europarl.
europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-
definition-importace-and-benefits. Accessed: 2022-04-05.

[19] User stories: As a [ux designer] i want to [embrace agile] so that [i can make
my projects user-centered]. https://www.interaction-design.org/literature/
article/user-stories-as-a-ux-designer-i-want-to-embrace-agile-so-that-
i-can-make-my-projects-user-centered. Accessed: 2022-05-01.

[20] Lianping Chen, Muhammad Ali Babar, and Bashar Nuseibeh. Characterizing archi-
tecturally significant requirements. IEEE Software, 30:38–45, 2013.

[21] Usability 101: Introduction to usability. https://www.nngroup.com/articles/
usability-101-introduction-to-usability/. Accessed: 2022-06-28.

[22] Jeffrey Zeldman. Taking your talent to the web a guide for the transitioning designer.

[23] C4 - code diagram. https://c4model.com/#CodeDiagram. Accessed: 2023-07-20.

[24] Containers - os level virtualization. https://en.wikipedia.org/wiki/OS-level_
virtualization. Accessed: 2022-03-14.

[25] Docker. https://www.docker.com/. Accessed: 2022-03-19.

[26] What is penetration testing. https://www.imperva.com/learn/application-
security/penetration-testing/#:~:text=A%20penetration%20test%2C%
20also%20known,web%20application%20firewall%20(WAF). Accessed: 2022-
07-20.

[27] What is penetration testing. https://www.imperva.com/learn/application-
security/black-box-testing/. Accessed: 2022-07-20.

[28] Vlad Mosessohn and Vlad-Gabriel Luca. Quantifying the effects of monitoring soft-
ware on employee productivity and satisfaction rareș-valentin drĂghici 13 radu-
alexandru ioniȚĂ 15.

[29] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An empirical
study of the impact of modern code review practices on software quality. Empirical
Software Engineering, 21:2146–2189, 10 2016.

[30] How much time do developers spend actually writing code? https://thenewstack.
io/how-much-time-do-developers-spend-actually-writing-code/. Accessed:
2022-03-19.

78

https://www.washingtonpost.com/technology/2022/06/08/eu-common-phone-charger-law-usbc-apple/
https://www.washingtonpost.com/technology/2022/06/08/eu-common-phone-charger-law-usbc-apple/
https://www.washingtonpost.com/technology/2022/06/08/eu-common-phone-charger-law-usbc-apple/
 https://www.malbaproject.com/post/what-the-r-the-9r-framework-and-what-you-should-know-about-it
 https://www.malbaproject.com/post/what-the-r-the-9r-framework-and-what-you-should-know-about-it
https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importace-and-benefits
https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importace-and-benefits
https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importace-and-benefits
https://www.interaction-design.org/literature/article/user-stories-as-a-ux-designer-i-want-to-embrace-agile-so-that-i-can-make-my-projects-user-centered
https://www.interaction-design.org/literature/article/user-stories-as-a-ux-designer-i-want-to-embrace-agile-so-that-i-can-make-my-projects-user-centered
https://www.interaction-design.org/literature/article/user-stories-as-a-ux-designer-i-want-to-embrace-agile-so-that-i-can-make-my-projects-user-centered
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://c4model.com/#CodeDiagram
https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/OS-level_virtualization
https://www.docker.com/
https://www.imperva.com/learn/application-security/penetration-testing/#:~:text=A%20penetration%20test%2C%20also%20known,web%20application%20firewall%20(WAF).
https://www.imperva.com/learn/application-security/penetration-testing/#:~:text=A%20penetration%20test%2C%20also%20known,web%20application%20firewall%20(WAF).
https://www.imperva.com/learn/application-security/penetration-testing/#:~:text=A%20penetration%20test%2C%20also%20known,web%20application%20firewall%20(WAF).
https://www.imperva.com/learn/application-security/black-box-testing/
https://www.imperva.com/learn/application-security/black-box-testing/
https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/
https://thenewstack.io/how-much-time-do-developers-spend-actually-writing-code/

References

[31] Integrated development environment. https://insights.stackoverflow.com/
survey/2021#section-most-popular-technologies-integrated-development-
environment. Accessed: 2023-07-17.

[32] Gitlab flow. https://docs.gitlab.com/ee/topics/gitlab_flow.html. Accessed:
2022-03-14.

[33] What is a container? https://www.docker.com/resources/what-container/. Ac-
cessed: 2022-03-19.

[34] Overview of docker compose. https://docs.docker.com/compose/. Accessed: 2022-
03-19.

[35] Rancher overview. https://rancher.com/docs/rancher/v2.6/en/overview/. Ac-
cessed: 2022-03-19.

[36] Maria Rodriguez and Rajkumar Buyya. Container orchestration with cost-efficient
autoscaling in cloud computing environments. https://services.igi-global.com/resolve-
doi/resolve.aspx?doi=10.4018/978-1-7998-2701-6.ch010, pages 190–213, 1 1.

79

https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-integrated-development-environment
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-integrated-development-environment
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-integrated-development-environment
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://www.docker.com/resources/what-container/
https://docs.docker.com/compose/
https://rancher.com/docs/rancher/v2.6/en/overview/

Appendices

80

Appendix A

Security Report

A.1 Submission Module Backoffice and E-commerce Reso-
lution Report

Context

This report is a summary of the vulnerabilities found in the OLX Second Life Submission
Module, specifically the Backoffice, and the solutions implemented to fix them.

Schema Bypass

Severity: HIGH

Description: Authorization bypass refers to a vulnerability in a computer system or
application where a user can bypass the authorization process and gain access to resources
or privileges that they should not be able to access. This can occur due to weaknesses in
the system design, coding errors, or the exploitation of security flaws. It was discovered
that the Back-Office Submission Module was vulnerable to authorization bypassing by
enabling less privileged roles to create and delete higher privileged users. Using a user
with the role “financial manager” it was possible to create and delete a user with a higher
privileged role “loop manager”. It is an authorization schema bypass because the role
“loop manager” is the parent role of the “financial manager”.

Implemented Solution: The authorization schema was changed to prevent the creation
and deletion of users with higher privileges by less privileged users. Specifically, the
”Financial Manager” role cannot create or delete users, or change their roles, and has no
access to this page, not through the UI or the API.

Enumeration at Forgot Password Page

Severity: HIGH

Description: User enumeration is the process of discovering valid users within an appli-
cation, by searching for clues in the application that confirm their existence. User enumer-
ation can be performed passively and/or actively. It was discovered that the Back-Office
Submission Module did not enforce security mechanisms to prevent user enumeration. The

81

Chapter A

Forgot your password page located at the above endpoint, allowed user enumeration by
disclosing the validity of usernames during attempts for recuperating the user account.
The application responded with “1 error prohibited this loop manager from being saved:
Email not found” for attempts to get a recuperation code for users that did not exist in
the system.

Implemented Solution: The application was updated to prevent user enumeration by
not disclosing the validity of usernames during attempts to recuperate the user account.
Now it returns the same message for all attempts, regardless of the validity of the username.
It was a default misconfiguration of the devise gem.

Outdated Components

Severity: HIGH

Description: A software component is part of a system or application that extends the
functionality of the application. Since many software components run with the same priv-
ileges as the application itself, any vulnerabilities or flaws in the component can result in a
threat to the web application. Applications using components with known vulnerabilities
can be susceptible to attacks that target any part of the application stack. It was dis-
covered that the Back-Office Submission Module used vulnerable/outdated components.
The application contained vulnerable/outdated versions of Ruby (Ruby 3.0.2) and Bundler
(Bundler 2.2.22). The specific outdated versions contain known high-risk vulnerabilities:

Ruby 3.0.2:

• https://www.cvedetails.com/cve/CVE-2022-28739/

• https://www.cvedetails.com/cve/CVE-2022-28738/

Bundler 2.2.22:

• https://www.cvedetails.com/cve/CVE-2021-43809/

Implemented Solution: Ruby and Bundler were updated to versions where the vulner-
abilities were fixed, namely 3.0.5 and 2.2.33 respectively.

Weak Lockout Mechanism on Login Page

Severity: HIGH

Description: Enforcing a strong lockout mechanism is a security measure to prevent
the takeover of user accounts within an application by malicious third parties. Enforcing
rate limits contributes to a strong lockout mechanism, as it limits the number of requests
during a time frame to a specific endpoint. The Back-Office Submission Module was found
to implement a weak lockout mechanism by setting high rate limits on the login page at
the above endpoint. After sending 128 requests consecutively, the server stops accepting
requests, although the IP is locked for a short time which does not prevent a malicious
attacker from performing a succession of brute force attacks.

Implemented Solution: The application was updated to implement a stronger lockout
mechanism on the login page, with a back-off factor. The new rate limit is shown in the
table A.1.

82

https://www.cvedetails.com/cve/CVE-2022-28739/
https://www.cvedetails.com/cve/CVE-2022-28738/
https://www.cvedetails.com/cve/CVE-2021-43809/

Security Report

Requests Time (seconds)
5 30
10 90
15 270
20 810
25 2430
30 7290
35 21870

Table A.1: Rate Limit Table

Origin Resource Sharing: Arbitrary Origin Trusted

Severity: HIGH

Description: Cross-origin resource sharing (CORS) is a browser mechanism that enables
controlled access to resources located outside of a given domain. Many modern websites use
CORS to allow access from subdomains and trusted third parties. Their implementation of
CORS may contain mistakes or be overly lenient to ensure that everything works, and this
can result in exploitable vulnerabilities. It was discovered that the Back-Office Submission
Module allowed arbitrary origins to be trusted to the Admin panel. This vulnerability
could be exploited to get sensitive information and redirect them to a malicious web
server.

Implemented Solution: CORS configuration was updated to only allow trusted origins,
namely the host itself and the host of the Submission Form. Additionally, the Content
Security Policy has been configured to only allow those origins.

Persistent Session Cookie

Severity: MEDIUM

Description: A persistent cookie is a file stored on a user’s computer that remembers
information, settings, preferences, or sign-on credentials that the user has previously saved.
The back-office submission module was found to enforce a persistent session cookie. The
security analyst was able to test the vulnerability by following the below procedures: The
same session cookie should not still work after logging out. When a user logs out of an
application, the session should be terminated, and the session cookie should be invalidated.

Implemented Solution:

This was not considered a major security issue. You can only exploit this if you have
direct access to the computer, and are actively storing session data.

This website details why it is not a problem if SSL is used: https://bryanrite.com/
ruby-on-rails-cookiestore-security-concerns-lifetime-pass/

The best and easiest solution is simply to use SSL. Not just on your login forms and
actions, but your entire site, or at least any pages where you have sessions turned on.
With SSL on, the user will not be able to replay your cookies and the entire attack vector
is shut down. Rails 3.1 has SSL enforced by default.

An alternative would be to add extra data (nonce) for the sessions and invalidate them at a
specific time (would require storing session data in the database), but it is still tamperable.

83

https://bryanrite.com/ruby-on-rails-cookiestore-security-concerns-lifetime-pass/
https://bryanrite.com/ruby-on-rails-cookiestore-security-concerns-lifetime-pass/

Chapter A

Mass Submission of Form

Severity: MEDIUM

Description: The landing page had a form at the above location without protection
against automated submission. Using this form an attacker could cause a degradation of
service, overloading the server with a massive quantity of messages.

Implemented Solution: The form submission endpoint now has a rate limiting, of 5
posts per minute, per IP address.

Disclosure via user API page

Severity: MEDIUM

Description: Information disclosure, also known as information leakage, occurs when a
website unintentionally reveals sensitive information to its users. Depending on the nature
of the information disclosed, it can cause big consequences for the applications. It was
discovered that the Back-Office Submission Module disclosed information about a user by
showing personal information on the API page, which is accessible to the public.

Implemented Solution: Although the API page was only accessible to the original
poster, because of the UUID token, which is inherently resistant to enumeration, the
personal seller information returned by the API is now censored.

Vulnerable Components

Severity: MEDIUM

Description: A software component is part of a system or application that extends the
functionality of the application. Since many software components run with the same priv-
ileges as the application itself, any vulnerabilities or flaws in the component can result
in a threat to the web application. Applications using components with known vulner-
abilities can be susceptible to attacks that target any part of the application stack. It
was discovered that the back office e-commerce used vulnerable components. The applica-
tion contained vulnerable versions of two javascript libraries: underscore.js (underscore.js
1.8.3) and Bootstrap (Bootstrap 4.0.0). The specific versions are known for containing the
following vulnerabilities:

underscore.js 1.8.3:

• https://nvd.nist.gov/vuln/detail/CVE-2021-23358

Bootstrap 4.0.0:

• https://nvd.nist.gov/vuln/detail/CVE-2019-8331

• https://nvd.nist.gov/vuln/detail/CVE-2018-14041

• https://nvd.nist.gov/vuln/detail/CVE-2018-14040

• https://nvd.nist.gov/vuln/detail/CVE-2018-14042

• https://nvd.nist.gov/vuln/detail/cve-2016-10735

84

https://nvd.nist.gov/vuln/detail/CVE-2021-23358
https://nvd.nist.gov/vuln/detail/CVE-2019-8331
https://nvd.nist.gov/vuln/detail/CVE-2018-14041
https://nvd.nist.gov/vuln/detail/CVE-2018-14040
https://nvd.nist.gov/vuln/detail/CVE-2018-14042
https://nvd.nist.gov/vuln/detail/cve-2016-10735

Security Report

Implemented Solution:

Solidus update fixed the underscore js. To update the Bootstrap library version a new
e-commerce app would have to be developed which is out of the current project scope.
The development of a new e-commerce application would be subjected to a specific quote.

Session Cookie without Secure Flag

Severity: LOW

Description: Security headers and cookie attributes are directives that browsers must
follow and that are passed along, through the HTTP header response. Including security
headers and cookie attributes in server, responses is important as each one provides se-
curity against malicious attacks. The Back-Office Submission Module’s response headers
were found to set the session cookie without the secure flag.

Implemented Solution: The application was updated to set the secure flag on the
session cookie in the production environment.

Missing Content Security Policy header

Severity: LOW

Description: The Content Security Policy (CSP) is an HTTP header through which site
owners define a set of security rules that the browser must follow when rendering their
site. The most common usage is to define a list of approved sources of content that the
browser can load. This can be used to mitigate cross-site scripting (XSS) and clickjacking
attacks effectively.

Implemented Solution:

With the correct URL and production environment enabled all the recommended policies
are set (https://www.w3.org/TR/CSP2/) are present.

Missing clickjacking protection

Severity: LOW

Description: A frameable response occurs when one or multiple pages can be used on
an iframe on any website. This allows the clickjacking attack to be used. Clickjacking is
when an attacker uses a hidden iframe with multiple transparent or opaque layers above
it to trick a user into clicking on a button or link on the iframe when they intend to click
on the top-level page. Thus, the attacker is ”hijacking” clicks meant for the top-level page
and routing them to the iframe.

Implemented Solution:

Added ‘frame-ancestors ’none’‘ to the CSP header.

Browser content sniffing allowed

Severity: LOW

85

https://www.w3.org/TR/CSP2/

Chapter A

Description: The application allows browsers to try to mime-sniff the content type of
the responses. This means the browser may try to guess the content type by looking at
the response content and render it in the way it was not intended. This behavior may lead
to the execution of malicious code, for instance, to explore an XSS vulnerability.

Implemented Solution:

With the correct URL and production environment enabled, the Rails framework auto-
matically adds the X−Content−Type−Options: nosniff header to necessary responses.

A.2 Submission Module Frontend Problem Resolution Re-
port

Context

This report is a summary of the vulnerabilities found in the Submission Module Proposal
App, and the solutions implemented to fix them.

Untrusted TLS certificate

Severity: MEDIUM

Description: The certificate sent by the server is not trusted.

Implemented Solution:

This happened because the penetration team used the internal URL. The URL was dis-
abled, and the website was unreachable. https://secondlife.olx.pt is to be used
instead.

The validity of the certificate can be validated with the following command:

opens s l s_ c l i en t −connect s e c o n d l i f e . o lx . pt :443 \
−servername s e c o n d l i f e . o lx . pt | opens s l x509 −text

Missing Content Security Policy header

Severity: LOW

Description:

The Content Security Policy (CSP) is an HTTP header through which site owners define a
set of security rules the browser must follow when rendering their site. The most common
usage is to define a list of approved sources of content that the browser can load. This
can be used to mitigate cross-site scripting (XSS) and clickjacking attacks effectively.

Implemented Solution:

No change, the front end uses meta tags to define the Content Security Policy.

86

https://secondlife.olx.pt

Security Report

Missing clickjacking protection

Severity: LOW

Description: A frameable response occurs when one or multiple pages can be used on
an iframe on any website. This allows the clickjacking attack to be used.

Clickjacking is when an attacker uses a hidden iframe with multiple transparent or opaque
layers above it to trick a user into clicking on a button or link on the iframe when they
intend to click on the top-level page. Thus, the attacker is ”hijacking” clicks meant for
the top-level page and routing them to the iframe.

Implemented Solution: Added header ‘X-Frame-Options: deny‘

Certificate without revocation information

Severity: LOW

Description:

A certificate without revocation information cannot be revoked by its owner in case its
private key is compromised. Browsers consult the Certificate Revocation List (CRL) or
the Online Certificate Status Protocol (OCSP) endpoints that should be present in the
certificate, to validate it.

Implemented Solution: As described in the problem Untrusted TLS certificate A.2,
the certificate is valid and also has OCSP - URI: http://r3.o.lencr.org.

The verification can be validated with the following command:

opens s l ocsp −i s s u e r chain . pem \
−c e r t s e c o n d l i f e . pem \
−text −u r l http :// r3 . o . l e n c r . org

Browser content sniffing allowed

Severity: MEDIUM

Description:

The application allows browsers to try to mime-sniff the content type of the responses.
This means the browser may try to guess the content type by looking at the response
content and render it in a way it was not intended to. This behavior may lead to the
execution of malicious code, for instance, to explore an XSS vulnerability.

Implemented Solution:

The public URL has a ‘X-Content-Type-Options: nosniff‘ header.

87

http://r3.o.lencr.org

	Introduction
	The Loop Company
	Context and Motivation
	Objectives and Overview

	Planning
	Tasks
	Setup Phase
	Development Phase
	Maintenance Phase

	Methodology

	State of Practice
	E-commerce
	Types of e-commerce
	Typical Architectures
	Existing e-commerce solutions

	Circular Economy
	Background

	Similar solutions

	System Requirements
	User Stories
	Architecturally Significant Requirements
	Quality Attributes
	Technical and Business Constraints

	System Architecture
	C4 Architecture
	C4 Context Diagram
	C4 Container Diagram
	C4 Component Diagram

	State Machine Diagram
	Sequence Diagram
	Entity-relationship Diagrams
	Submission Module
	E-commerce Module

	Development
	Development Process
	Agile Methodology in Practice
	Team Organization
	Task Organization
	Code Review and Quality Assurance

	Development Execution
	Planning and Management Tools
	Development Tools
	Continuous Integration and Deployment
	Testing

	Deployment and Maintenance
	Deployment Strategy
	Maintenance and Updates

	Current State and Future Work

	Conclusion
	Security Report
	Submission Module Backoffice and E-commerce Resolution Report
	Submission Module Frontend Problem Resolution Report

