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Abstract

Recently, the study of Networked Dynamical Systems (NDS) has become increas-
ingly popular due to its ability to model complex interactions within a wide range
of fields, including social networks, biological systems, and engineering applica-
tions. Furthermore, understanding the topology of interactions underlying an
NDS is essential for predicting and controlling their evolution. The underlying
network structure plays a pivotal role in shaping the behavior, dynamics, and
emergent properties of the system and can be effective in various different tasks,
such as mitigation policies in pandemics, diagnosis of brain diseases, and many
others. However, it is hardly the case that we have access to the topology of the
network in a transparent manner. On the other hand, time series data is widely
available across a variety of distinct domains.

The objective of this Dissertation is the implementation and assessment of a so-
lution that consistently recovers the undirected network of interactions underly-
ing a linear NDS from the available time series. We assume partial observability,
where we only have access to the time series over a subset of nodes in the net-
work – which is the case in large scale or complex systems. Further, we assume
that the system is excited by colored noise, i.e., the noise signal is correlated across
the nodes in the system. In addition, from this Dissertation rise two major con-
tributions. First, we establish a novel regime of parameters where we guaran-
tee feasibility of the structure identification problem, or structural consistency of a
particular estimator. Second, we devise a structure identification algorithm that
builds on a recently proposed feature based approach. Namely, to each pair of
nodes, we assign a feature vector, and under the feasible regime of parameters, this
set of features is linearly separable. We propose a novel set of features and train
Feed Forward Neural Networks (FFNNs) to cluster the features and thus, classify
whether a pair is connected or disconnected. The performance assessment shows
very significant improvement in accuracy when inferring the network structure
regarding other state-of-the-art estimators across distinct regimes of observabil-
ity, noise correlation and distinct networks, including densely or sparsely con-
nected, small world and real world ones.
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Resumo

Recentemente, o estudo de Sistemas Dinâmicos em Rede (SDR) tornou-se cada
vez mais popular devido à capacidade destes sistemas em modelar interações
complexas dentro de uma ampla variedade de domínios, incluindo redes soci-
ais, sistemas biológicos e aplicações de engenharia. Além disso, compreender a
topologia de SDR é essencial para prever e controlar a sua evolução temporal.
A estrutura subjacente desempenha um papel fundamental no comportamento,
na dinâmica e nas propriedades emergentes destes sistemas e pode ser eficaz em
várias tarefas, tais como políticas de mitigação em pandemias, diagnóstico de
doenças cerebrais e muito mais. Porém, dificilmente temos acesso à topologia da
rede de forma transparente. Por outro lado, os dados de séries temporais estão
disponíveis numa variedade de domínios distintos.

O objetivo desta Dissertação é a implementação e avaliação de uma solução que
recupere consistentemente a rede (não direccionada) de interações subjacente a
um SDR linear, a partir das séries temporais disponíveis. Assumimos a observ-
abilidade parcial, onde só temos acesso à série temporal em um subconjunto de
nós na rede - o que é o caso em sistemas complexos ou de grande escala. Além
disso, assumimos que o sistema é excitado por ruído colorido, ou seja, o sinal
de ruído está correlacionado entre os nós do sistema. Desta Dissertação nascem
duas contribuições importantes. Primeiramente, estabelecemos um novo regime
de parâmetros onde garantimos a viabilidade do problema da recuperação da es-
trutura ou a consistência estrutural de um estimator. Em segundo, propomos um
algoritmo de identificação da estrutura construído sobre uma nova abordagem
que utiliza features. Nomeadamente, para cada par de nós, atribuímos um feature-
vector e, sob o regime de parâmetros viáveis, este conjunto de features é linear-
mente separável. A solução proposta é uma FFNN construída sobre um novo
conjunto de features. A avaliação do desempenho mostra um aumento significa-
tivo na performance do modelo a inferir a estrutura da rede, comparativamente
a outros estimators utilizados na literatura, em diferentes regimes de observabili-
dade, de correlação do ruído e de redes, incluindo redes esparsas e densas e redes
reais.
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Chapter 1

Introduction

In this chapter, we introduce the structure identification problem to be addressed
in the Dissertation. We highlight the underlying motivation, Section 1.1, and the
proposed research, Section 1.2. In Section 1.3, we outline the remainder of the
thesis.

The work produced within the scope of this Dissertation was, in part, submitted
for publication [1].

1.1 Motivation and Goals

Discovering the underlying network structure that dictates the evolution of Net-
worked Dynamical Systems (NDS) from data gathered at accessible nodes is a
complex problem with widespread applications in various fields. The ultimate
goal of solving such inferential issues is to reveal the interaction profile among
the network nodes, as the topology of interactions of the system plays a crucial
role in its behavior and evolution [2–6].

In this Dissertation, we address the problem of Graph Learning or Structure Iden-
tification of NDS. The graph entangles the connections between a set of nodes as
well as their individual temporal evolution. In a real scenario, each node may
abstract specific information about the system, e.g., concentration of genes or
proteins in biological networks, predators and preys in food web networks or
even individual users in online social networks. We focus on the regime of partial
observability, where only some of the nodes are observed. The dynamical law of
the NDS is, in general, influenced by colored noise, – i.e., noise exhibiting corre-
lations across nodes or units in the system, – which creates an additional layer
of spurious correlations between pairs of nodes. The primary goal in this setting
is to consistently identify the underlying undirected network of links between the
nodes comprising the network given the time series data at each node, which
ultimately reflects the state evolution of each node and, consequently, the state
evolution of the aggregate system over time. Understanding the underlying con-
nectivity pattern is fundamental, as the network structure plays a critical role in
the long-term qualitative behavior of these systems, since the nodes in the sys-
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tem may abstract communities of individuals in pandemics, probed regions in
the brain, or companies in finance. Furthermore, the edges of the graph con-
form to the main avenues of interaction or information flow between the nodes,
meaning that it is through these peer-to-peer interactions that the global state of
the system (i.e., the state of all components or nodes) evolves over time. In addi-
tion to these benefits, understanding the structure of networked systems can help
optimize resource allocation and decision-making, particularly in transportation
networks and supply chains.

Even though the underlying connectivity pattern conveys relevant information
about these complex systems, as it dictates how nodes influence and interact with
each other, and can be further considered in downstream tasks – such as mitiga-
tion policies in pandemics [7, 8], diagnosis of diseases in the brain [9, 10], govern-
ment interventions in economics, and many more – it is hardly the case that we
have access (in a transparent manner) to the network. On the other hand, and in
the most practical instances of the referred examples, the time series are readily
available through the Functional Magnetic Resonance imaging (fMRI) or Elec-
troencephalography (EEG) signals for the brain activity; the report of the number
of infected individuals across distinct communities over time in a pandemics;
evolution of stock prices in finance. Indeed, A great body of literature is dedi-
cated to the problem of recovering the underlying graph connectivity from the
time series reflecting the state evolution of the system [11–16]. All-in-all, Graph
Learning aims at developing methods to identify consistently the underlying net-
work structure from the available time series data.

Main goal. In this Dissertation, we study the problem of recovering the network
consistently from the available time series data of only a subset of nodes stream-
ing from a linear NDS excited by colored noise. First, we propose a novel feasibil-
ity regime on the noise statistical structure (namely, on its covariance matrix) that
grants feasibility or well-posedness of the structure identification problem under
the challenging regime considered. Then, we propose a feature based algorithm
to recover the network structure.

1.2 Proposed Research

We focus on linear NDS, and we aim at creating Machine Learning tools, such
as training Neural Network (NN) models, that can reliably extract the structure
of the underlying undirected graph (i.e., the adjacency matrix). This will be done
by analyzing the time series data of the different nodes in the system to track
their state evolution over time. Fig. 1.1 presents an overview of the problem: To
develop algorithms that can consistently output the underlying network linking
a set of nodes, using the time series information of each one of the nodes. We aim
at providing guarantees of consistency over partially observed systems, – i.e.,
when the time series of only a subset of nodes S, can be processed – influenced
by spatially colored noise.

We remark that the bulk of the related network inference literature focus on scalar
based methods: assigning an affinity score to each pair of nodes, computed from

2
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Scanner

Scanner

Scanner

Scanner

Network Reconstruction Module

Dynamics

Figure 1.1: From the observed time series [Yt]S of a subset of nodes S from the
network, we aim at reconstructing ĜS, the observed subset of network.

the observed time series. Examples include, mutual information or conditional
mutual information [15, 17, 18], Granger causality [14, 19, 20], correlation [21],
Precision matrix or Graphical Lasso [22], etc. For the most part, pairs with higher
estimated values are considered connected, otherwise, they are classified as dis-
connected. Contrarily to the standard approach, we focus on engineering features
with good separability properties. These features are computed from the time se-
ries stemming from the underlying NDS. We build on the feature-based work
developed by Machado et al. [23]. In this work, a feature vector is assigned to
each pair of nodes. In other words, the underlying networked dynamical system
is embedded in a high-dimensional Euclidean space as illustrated in Fig. 1.2. In
order to recover the underlying network graph, we need to consistently cluster
these features or find a separation hyperplane to separate the connected and the
disconnected pairs. In particular, one needs to find (or learn) the correct surface
(or manifold) in feature space that consistently partitions the set of features into
features of disconnected pairs and features of connected pairs.

The proposed work extends the feature based causal inference work [23] that
is tailored to partially observed linear stochastic NDS excited by diagonal noise
(i.e., noise that is independent across nodes). We will compare our method with
other popular estimators like Granger, that is tailored to linear NDS and with-
stand partial observability under diagonal noise [12–14, 20, 24, 25]. It is relevant
to remark that these methods contrast with probabilistic graphical models with
Independent and Identically Distributed (i.i.d.) samples [26–29].

For the most part the referred literature on linear NDS (including our baseline
reference [23]) assumes whiteness on the noise input, i.e., independence of the
noise across distinct nodes in the system, as it will be explained in Chapter 2.
In this work, we pursue the feature based approach to extend the framework
of Machado et al. [23] for a broader class of linear NDS, namely, linear NDS ex-
cited by colored noise. We propose a new feature-based approach to address the
current challenge. Our solution is based on a novel set of features that is consis-
tently linearly separable and stable under the colored noise regime considered,

3
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1D Embedding

Mutual Information, Correlation,
Granger, Precision Matrix, etc...

Standard Approach

Threshold

Connected

Disconnected

High-dimensional Embedding

Correlation based features

Our Approach

Disconnected

Connected

Separation hyperplane

Figure 1.2: Comparison of the standard approach versus our approach, on the
problem of recovering the graph from only the observed time series.

i.e., there exists a specific hyperplane that partitions the set of features into fea-
tures of connected and disconnected pairs, respectively. Our methodology com-
bines the engineering of new features and the application of a FFNN to achieve a
competitive level of performance that is on par with the most popular estimators
in the field, across multiple different regimes and on real world networks. This
comparison is reported in Section 5.1.

1.3 Report Outline

Below, we outline the content and structure of this Dissertation.

• Chapter 2 – describes the main theoretical background components of the
research that was carried out, the literature review and the problem formu-
lation. We discuss linear NDS; Artificial Neural Network (ANN); FFNN
and CNN, subsections of ANN; Graph Learning of NDS.

• Chapter 3 – entails our technical contribution, namely, our novel technical
results and theorems along with the analytical proofs.

• Chapter 4 – reveals the process of the data generation and the training of
the neural network models.
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• Chapter 5 –presents some of the various experiments pursued and the nu-
merical simulations and its results, highlighting the performance of our
method compared with state-of-the-art estimators.

• Chapter 6 – summarizes the research scope and the conclusions from the
work developed during this Dissertation. It also highlights the two major
contributions derived from the work and identifies possible directions of
future work.

5





Chapter 2

Background and Related Work

This chapter entails some of the essential background concepts in the context of
the Dissertation. Section 2.1 discusses the main technical ground for the Disser-
tation, namely, NDS. Section 2.2 formulates the problem and defines the main
equations and notations. The related work is presented in Section 2.3, where
we explain some of the most popular solutions to the formulated problem. Sec-
tion 2.4 briefly discusses Artificial Neural Networks, which will be used in the
problem of structure identification.

2.1 Networked Dynamical Systems

An NDS is a system comprised of a set of interconnected nodes that interact with
each other over time. The state of the system, i.e., the collective state of the nodes,
evolves over time due to these peer-to-peer interactions. These nodes abstract
physical objects, such as sensors or actuators in a control system; neurons (or
collections of neurons) in the brain; or communities of individuals in a social net-
work. The interactions between the nodes can be direct or indirect, and they can
be governed by explicit rules or, at an aggregate level, the dynamical rules can
emerge from the collective behavior of the units. NDS can exhibit complex behav-
ior, such as synchronization, oscillations, and chaos, depending on the structure
of the network and the nature of the interactions between the nodes [30]; or they
may have simpler long-term behavior such as attaining an equilibrium state. The
latter is, for instance, common in pandemic models [31, 32].

One key aspect of NDS is their ability to process and transmit information. Infor-
mation can flow through the system in the form of signals, messages, or activity
patterns, and it can be transmitted, transformed, and stored by the nodes in the
network. These render NDS useful to model various applications, such as com-
munication networks, distributed control systems [2, 33]; or natural phenomena
such as the evolution of pandemics [34, 35], brain activity [36, 37], and social
networks. In these cases, the nodes in the network represent the entities in the
natural system, and the edges between the nodes capture how the state of these
components influence and are influenced by each other. By studying the behavior
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of the NDS, we can gain insight into the behavior of the natural system and iden-
tify patterns and trends that may not be apparent from studying the individual
nodes in isolation.

In a more concrete sense, the state of the nodes evolves according to their peer-
to-peer interactions constrained by a support network of edges. In particular,
the state of a node i is only immediately affected by the state of nodes that are
directly connected to i. This causal network is captured by a graph, often a la-
tent structure underlying these systems. It is the goal of Graph Learning to infer
this underlying network connectivity from observing the evolution of the graph
nodes, i.e., the time series reflecting the state evolution of the system. Problems
of this type arise in many domains where knowledge of the underlying topology
linking the agents is critical for better inference and control mechanisms, such
as: (i) pandemics, where the profile of interactions among communities of in-
dividuals critically impacts the overall lifetime of a strain of virus [7], (ii) social
networks, where specific connectivity patterns foster the emergence of inconsis-
tent beliefs or fake news among the involved communities, and also (iii) brain
activity, where recent evidence shows that the structure of the underlying Func-
tional Connectivity (FC) Matrix conveys relevant signatures about cognitive dis-
orders [9, 10].

2.2 Problem Formulation

The problem can be formulated as follows. Data streams, namely time series data,
originating from a network (or a sub network, for the case of partial-observability)
are collected, and the goal is to estimate the unknown topology that connects the
nodes of this network from the collected data.

Throughout this Dissertation we adopt the following mathematical notation. Given

a vector y ∈ RM, [y]S =
[
ym1(n) ym2(n) . . . ym|S|(n)

]⊤
is the subvector obtained

from y and indexed by S (subset of observed nodes), with S =
{

m1, m2, . . . , m|S|

}
⊂

{1, 2, . . . , M} being a subset of indexes with m1 < m2 < . . . < m|S| and |S| ≤ M.
We adopt a similar notation for matrices, namely, given A ∈ RM×M, the matrix
AS ∈ R|S|×|S| or [A]S ∈ R|S|×|S| is defined as the submatrix whose ijth entry is
Amimj ; Supp (A) is the support of the matrix A, i.e., [Supp (A)]ij = 1{Aij ̸=0}.

Discrete-time stochastic Linear NDS can be described by the following dynamical
law:

y(n + 1) = Ay(n) + x(n + 1), (2.1)

where y(n) = [y1(n) y2(n) . . . yM(n)]⊤ ∈ RM represents the state-vector of the
M-dimensional NDS at time n that collects the states yi(n) of each node i at time
n; x(n) ∼ N (0, Σ) represents the excitation noise associated with the M nodes
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of the system with covariance matrix Σ ∈ S++, and assumed independent across
time n; A ∈ RM×M

+ refers to the non-negative interaction matrix whose support
represents the underlying structure connecting the nodes. A is assumed to be
symmetric since we focus on the problem of Graph Learning. Furthermore, the
dynamical system is assumed to be stable, i.e., ρ(A) < 1, where ρ(A) stands for
the spectral radius of A.

We can zoom in further into the equation, to the level of the state of node i:

yi(n + 1) =
M

∑
j=1

aijyj(n) + xi(n + 1), (2.2)

where yi represents the time series vector associated with node i and aij repre-
sents how node i is affected by node j. This local characterization highlights the
network of causal relationships among the nodes in the system: the state of the
node j directly affects the state of the node i if and only if aij ̸= 0, as shown in
Fig. 2.1.

1

2

3

N

...

Figure 2.1: Example of the main avenues of interaction affecting node 1 in the
network and characterized by an interaction matrix A.

The problem of Graph Learning or Structure Identification can be then more for-
mally stated: Given the time series of each node as input, can we consistently
identify the underlying undirected network of interactions characterized by the
support of the interaction matrix A? That is, can we find a map that consistently
outputs the underlying graph structure G (given by the support of the matrix A),
given the node-level time series as

y(0), y(1), ..., y(N)
Estimator−−−−−→ Graph(N) = Supp(A), (2.3)

where G = Supp(A) is the adjacency matrix, obtained from the interaction matrix
A, with entries equal to:

Gij =

{
1, if aij ̸= 0
0, if aij = 0

, (2.4)

where aij = aji, since we assume undirectness of the network, so consequently,
symmetry of the adjacency matrix. The goal of graph recovery under full observ-
ability is to consistently infer the support of the interaction matrix A from the

9



Chapter 2

time series data. On the other hand, under partial observability, the goal is to
recover the support of the sub matrix AS, that represents the interaction matrix A
restricted to a set of observable nodes S := {m1, m2, ..., m|S|}, from the time series

of only the observable nodes
{
[y(n)]S

}N
n=1.

For most standard graphical models, interactions across network nodes are de-
scribed through a multivariate distribution that characterizes a collection of de-
pendent random variables defined on the nodes [38]. In this graphical model
framework, samples are often assumed i.i.d. as opposed to the NDS setting where
samples exhibit dependence across time. In other words, over graphical models,
the data samples do not arise from a dynamical process governing the time evo-
lution of the outputs of the nodes. In contrast, we will be dealing with NDS,
where signals evolve at the nodes and are affected by the evolution of the signals
at neighboring nodes as well.

Let us define some important characters for structure estimation in NDS. We de-
fine

R0(n)
∆
= E

[
y(n)y(n)T

]
, (2.5)

as the correlation (or covariance) matrix associated with the process (or time se-
ries) (y(n))n∈N. Further, we can define the kth-lag correlation matrix as

Rk(n)
∆
= E

[
y(n + k)y(n)T

]
. (2.6)

We also define their empirical counterparts, namely

R̂k(n) =
1

N − k

N−k

∑
n=1

y(n + k)y(n)T. (2.7)

The empirical covariance matrices, represented by Equation (2.7), are the ones we
can compute from the observed time series in order to approximate the exact ones
in Equation (2.6). In fact, under certain conditions on the excitation noise x(n) and
on the interaction matrix A, the empirical covariance matrices (or lag-moments)
converge (as the number of samples grows to infinite) to the exact covariance
matrices [39].

We also define a matrix-valued estimator as any map that takes time series data
as input and produces a matrix as output.

F(n) : R|S|×n −→ R|S|×|S|

{[y(ℓ)]S}
n−1
ℓ=0 7−→ F (n) , (2.8)

for any given n ∈ N, where n represents the number of samples of the time se-
ries data. The idea is that the ijth entry of the output matrix F (n) estimates the
linking strength of the connection between node i to j from the observed time
series. That is, F (n) is a matrix representing the estimated coupling strength be-
tween the pairs of nodes in the system. The estimator F (n) is structurally consistent
whenever the estimated strength F (n)

ij of any connected pair (i, j) lies above the
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estimated strength of any disconnected pair. By applying appropriate threshold-
ing or utilizing clustering algorithms, the underlying network structure can be
recovered. The following definition, present in the work of Machado et al. [23],
formalizes the previous statement.

Definition 1 (structural consistency). A matrix-valued estimator F (n) is struc-
turally consistent with high probability, whenever there exists a threshold τ so
that,

P
(
F (n)

ij > τ
)

n→∞−→ 1 ⇐⇒ i → j, (2.9)

i.e., i links to j if and only if the ijth entry of the estimator matrix F (n) lies above
the threshold τ, provided that there is a large enough number of samples n.

2.3 Related Work

2.3.1 Granger Estimator

The Granger exact matrix-valued estimator, a terminology that arises in the con-
text of Granger Causality, given by R1R−1

0 , conforms to a consistent estimator for
the underlying interaction matrix A. In a nutshell, Granger causality refers to the
relationships between time series. More concretely, in whether one time series is
useful in forecasting another time series. The Granger estimator combines in a
suitable way information contained in the correlation matrix, R0, and in the one-
lag correlation matrix, R1. The analytical proof of the consistency of this estimator
can be derived as follows.

Proof. From the linear dynamical law (2.1), we can multiply both members of the
equation by y(n)⊤ as follows

y(n + 1)y(n)⊤ = (Ay(n) + x(n + 1))y(n)⊤,

and via applying expectation E [·] to both sides, we have

E
[
y(n + 1)y(n)⊤

]
= E

[
(Ay(n) + x(n + 1))y(n)⊤

]
.

From equation (2.7), we have that R1(n)
∆
= E

[
y(n + 1)y(n)T], and so

R1(n) = E
[
(Ay(n) + x(n + 1)) y(n)T

]
,

and therefore,

R1(n) = AE
[
y(n)y(n)T

]
+ E

[
x(n + 1)y(n)T

]
, (2.10)

where E
[
x(n + 1)y(n)T] = 0, since x(n) and y(n) are assumed independent and

x(n) is a zero mean process. Furthermore, we know that R0(n)
∆
= E

[
y(n)y(n)T],

defined in equation (2.5), thus we can simplify equation (2.10) down to

R1(n) = AR0(n). (2.11)
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Which ultimately yields
A = R1R−1

0 , (2.12)

where A represents the interaction matrix. This identity offers a scheme to esti-
mate the underlying interaction matrix A from the node-level time series, namely,
via estimating the empirical one-lag and zero-lag covariance matrices.

It is important to remark that the above argument grants consistency of the es-
timation under full observability, that is, whenever the whole vector of states
y(n) = (y1(n), y2(n), . . . , yM(n)) is observed over time. While the full observ-
ability setting is widely explored in the literature, in reality, we can rarely ob-
serve the state of all nodes over time in a large-scale NDS. In this setting, only
a sub-vector y(n) = (y1(n), . . . , yS(n)), with S < M, is feasibly observable over
time. In this partial observability framework, the Granger estimator looses the
consistency to precisely estimate the interaction matrix A as in this case we have

AS =
[

R1R−1
0

]
S
̸= [R1]S ([R0]S)

−1 =: ÂS,

where ÂS represents the Granger estimator applied to the observed time series,
i.e., ignoring the latent part of the system. Nevertheless, under certain conditions
on the underlying network of interactions, this estimator is structurally consis-
tent [12, 13], i.e.,

min
ij : Aij ̸=0

[
ÂS

]
ij
> max

ij : Aij=0

[
ÂS

]
ij

.

In other words, the smallest entry of the Granger estimator (under partial observ-
ability) ÂS across connected pairs is higher than the greatest entry of ÂS across
disconnected pairs. This means that the network structure can be recovered from
the Granger estimator (even under partial observability) via properly threshold-
ing the entries of ÂS.

Indeed, we are mostly interested in the framework of Graph Learning under par-
tial observability, namely, in developing methods with technical guarantees of
structural consistency.

2.3.2 One-Lag Estimator

The one-lag estimator is a simple estimator from the one-lag correlation matrix.
As we previously explored in Equation (2.10)

R1(n) = AR0(n),

R1 is given by R0, the correlation matrix, and A, the interaction matrix. From this,
we can expand this series as follows:

R1 = AR0 = σ2(A + A3 + A5 + ...), (2.13)

where σ2 represents the variance of the input process. The proof for Eq. (2.13)
is presented below. Applying Eq. (2.13) only to the subset of observed nodes S
yields:

[R1]S = σ2
(

AS +
[

A3
]

S
+
[

A5
]

S
+ ...

)
.
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It is evident that this estimator depends on the variance of the input process
σ2 contrarily to the Granger estimator, as in the Granger estimator the one-lag
correlation matrix multiplies the precision matrix, the inverse of the correlation
matrix, the effect of σ2 disappears. Although this is a disadvantage against the
Granger estimator, the latter seems to be more sensitive to the level of observabil-
ity, whereas it tends to be more performing when one approaches the regime of
full observability [25], since the calculation of the inverse of the correlation ma-
trix requires observation of all entries of the matrix contrarily to just calculating
the correlation matrix, which only requires the observation of pairwise correla-
tions. More precisely, in order to calculate the ijth entry of the correlation matrix,
it is only required access to the time series data of nodes i and j. The same is not
applicable to the inverse of the correlation matrix.

Proof. First, from the dynamical law (2.1) and assuming that y(0) = x(0) for
simplification, we have the first instant vector:

y(1) = Ay(0) + x(1) = Ax(0) + x(1),

and the second instant vector:

y(2) = Ay(1) + x(2) = A(Ay(0) + x(1)) + x(2)

= A(Ax(0) + x(1)) + x(2) = A2x(0) + Ax(1) + x(2).

It is evident that we can generalize for the n instant vector as follows

y(n) =
n

∑
i=0

An−ix(i), (2.14)

where n denotes the number of total samples observed.

From the correlation matrix, defined in equation (2.5), and equation (2.14), and
assuming A is symmetric, we have

R0(n)
∆
= E

[
y(n)y(n)T]

= ∑n
i=0 ∑n

j=0 E
[
An−ix(i)x(j)T An−j]

= ∑n
i=0 ∑n

j=0 An−iE
[
x(i)x(j)T] An−j

(a)
= ∑n

i=0 An−iE
[
x(i)x(i)T] An−i

= ∑n
i=0 An−iΣx An−i,

where the identity (a) holds in view of the temporal independence and zero mean
nature of the noise process (x(n)), i.e., E

[
x(i)x⊤(j)

]
= E [x(i)]E [x(i)]⊤ = 0 for

any i ̸= j, and Σx is the covariance matrix of the noise process. Therefore, if we
assume diagonal noise, i.e., Σx = σ2 I, we have that the limiting correlation matrix
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is given by

R0 = limn→∞ ANΣx AN + AN−1Σx AN−1 + ... + AΣx A + Σx

= limn→∞ ANσ2
x IAN + AN−1σ2

x IAN−1 + ... + Aσ2
x IA + σ2

x I

= limn→∞ σ2
x
(

AN AN + AN−1AN−1 + ... + AA + I
)

= limn→∞ σ2
x

(
A2N + A2(N−1) + ... + A2 + I

)
= σ2

x
(

I + A2 + A4 + ...
)

.

(2.15)

Taking equation (2.11) and the previous expansion of R0, we have

R1 = AR0

R1 = Aσ2
x
(

I + A2 + A4 + ...
)

R1 = σ2
x
(

A + A3 + A5 + ...
)

,

and thus, we prove equation (2.13), under the assumption that the noise is white.

2.3.3 Estimator R1 - R3

Chen et al. [40] present a recently proposed matrix-valued estimator for Graph
Learning linear NDS under partial observability, given by R1 − R3. This estimator
assumes that the input noise is diagonal. Namely, its covariance matrix is given
by Σx = σ2 I, where I is the identity matrix.

Proof. Recall equation (2.6)

Rk(n) = E [y(n + k)y(n)] ,

as the kth-lag covariance matrix of the process (y(n))n∈N and remark that

Rk(n) = AkR0(n). (2.16)

Let y(0) = x(0), we have shown that

y(n) =
N

∑
i=0

AN−ix(i),

which further implied

R0 = E
[
y(n)y(n)⊤

]
=

N

∑
i=0

AiΣx Ai,

where Σx is the covariance matrix of the process (x(n)). In other words,

R0 := lim
n→∞

R0(n) =
∞

∑
i=0

AiΣAi. (2.17)
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In the work of Chen et al. [40], the authors considered the following matrix-
estimator: Â(n) = R̂1(n)− R̂3(n), where R̂1 and R̂3 are the empirical 1-lag and
3-lag covariance matrices. The authors also assumed that the covariance matrix
of the process (x(n)) was the identity (up to a multiplicative positive scalar), i.e.,
Σx = σ2

x I. This estimator was shown to be a consistent estimator and the main
idea is the following. The exact covariance matrices obey

R1 − R3 = AR0 − A3R0 = σ2
x

(
A

(
∞

∑
i=0

A2i

)
− A3

(
∞

∑
i=0

A2i

))
= σ2

x A. (2.18)

This is easily proven. From equation (2.16), and recalling the R0 expansion in
(2.15), we have

R1 = AR0 = σ2
x A
(

I + A2 + A4 + ...
)
= σ2

x
(

A + A3 + A5 + ...
)

R3 = A3R0 = σ2
x A3 (I + A2 + A4 + ...

)
= σ2

x
(

A3 + A5 + ...
)

,

which leads to

R1 − R3 = σ2
x
(

A + A3 + A5 + ...
)
− σ2

x
(

A3 + A5 + ...
)

R1 − R3 = σ2
x
(

A + A3 − A3 + A5 − A5 + ...
)

R1 − R3 = σ2
x A.

Since this estimator is given by the linear combination of covariance matrices,
this estimator can consistently recover the underlying interaction matrix up to a
multiplicative term also under partial observability

[R1]S − [R3]S = σ2
x [A]S .

When the covariance matrix is not a multiple of the identity – e.g., the process
(x(n)) is not spatially independent or white, – then, the last identity in equa-
tion (2.18) no longer holds as we loose the telescopic property of the involved
series and rather, we have

R1 − R3 = AR0 − A3R0 = A

(
∞

∑
i=0

AiΣAi

)
− A3

(
∞

∑
i=0

AiΣAi

)
.

2.3.4 Precision Matrix

The precision matrix represents the inverse of the covariance matrix and encodes
the partial correlations between the nodes of the graph. In the context of learning
the connectivity structure of a graph from time series data, the precision matrix
serves as a powerful tool for estimating the relationships between different nodes.
The precision matrix is defined as

[R0]
−1 ∆

= E
[
y(n)y(n)⊤

]−1
.

15



Chapter 2

Proof. Remarking Eq. (2.15), we can define R0 as

R0 = σ2
x(I + A2 + A4 + . . .),

which can be writen as (assuming 0 < ρ < 1, where ρ is the spectral radius of A)

R0 = σ2
x(I − A2)−1,

because, when 0 < ρ < 1, the series (I + A2 + A4 + . . .) converges and can be
computed as the sum of a geometric series.

Now, remark that the precision matrix is R−1
0 , so we have

R−1
0 =

1
σ2

x
(I − A2). (2.19)

which conveys relevant information about the underlying support graph of A
through A2.

2.3.5 Feature-Vector approach

Machado et al. [23] proposed a novel approach based on a feature-vector to infer
the topology of the graph. Define the set of features FM(n) =

{
FM

ij (n)
}

ij

FM
ij (n) :=

([
R̂− M

2 +1(n)
]

ij
, . . . ,

[
R̂0(n)

]
ij

, . . . ,
[

R̂ M
2
(n)
]

ij

)
,

built on the observed part of the lag moments. The feature vector has M differ-
ent lag moments, with negative and positive lags. This feature-vector is linearly
separable as long as M

2 ≥ 3, or more concretely, as long as the R1 and the R3 lag
moments are present in the feature-vector.

The feature-vector is then normalized by the maximum value

F ij(n) =
Fij(n)

max
(
Fij(n)

) , (2.20)

to ensure generalization and robustness across structurally distinct graphs. The
authors set the number of features to 200, meaning that the set of features Fij(n)
consists of R̂k, with k ∈ {−99, . . . , 100}.

From these features, a CNN is trained iteratively from each feature-vector asso-
ciated with a pair of nodes, meaning the input to the CNN is a vector of 200
features for each pair. Each pair is associated with a target value (1 if the pair
is connected and 2 if disconnected). The performance of this approach is guar-
anteed by Theorem 1, defined in the work of Machado et al. [23], since Fij(n)
contains the 1-lag and the 3-lag correlation matrix. In view of Remark 2, defined
in the work of Machado et al. [23], this approach has the advantage of being pair-
wise, meaning that to infer the connectivity between node i and node j, we only
need the time series of i and j. This locality property is not present in most esti-
mators. For example, to reconstruct the ijth entry of the Precision Matrix (R−1

0 ),
the whole correlation matrix (R0), or most of it, must be available.
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2.3.6 Recovery of Polytrees

An approach for recovering the structure of the network of dynamical polytrees
with unobserved nodes, meaning partial observability, is proposed by Materassi
and Salapaka [41]. This approach restricts the topology of the graph to be a poly-
tree and acyclic, and assumes the knowledge of the cross-spectral densities of the
observed processes ϕxixj(e

iw), which are critical assumptions that we do not hold.
They use the Log-Coherence Distance to measure the distance between nodes xi
and xj. The proposed algorithm is a generalization of the Recursive Regrouping
Algorithm, an algorithm that consistently reconstructs minimal rooted trees, to
the case of polytrees of dynamical systems.

Using this algorithm, the recovery of the network is guaranteed under some
conditions and assumptions on the degrees of the nodes, the structure of the
graphs and the knowledge of the spectral densities between signals. Namely,
the method offers technical guarantees over polytrees, but the performance de-
grades for denser networks. Furthermore, the technical guarantee proposed does
not hold when the system is excited by colored noise, as they assume that the noise
signal acting on each node is unrelated to other nodes.

2.3.7 Wiener Filter approach

In the work of Materassi and Salapaka [42], the authors propose to infer the
topology of self-kin networks using the Wiener Filter. Examples of self-kin net-
works are rooted trees and ring topologies. The authors provide guarantees of
exact reconstruction of the graph if the topology of the original graph is de-
scribed by a self-kin network. They also provide a more general guarantee, for
the case where the network is not self-kin, where the developed procedure re-
constructs the topology of the smallest self-kin network embraced in the true
network. However, this approach assumes full observability, and the Granger es-
timator, described in Section 2.3.1 already provides technical guarantees of exact
recovery of a broader spectrum of networks for the full observability regime.

2.3.8 Inverse of the Power Spectral Density Matrix (IPSDM)

Veedu and Salapaka [43] and Veedu et al. [44] consider linear dynamic influence
models (LDIMs), defined in the frequency domain, with correlated noise and de-
velop a Wiener filter based approach tailored for sparse networks - leveraging
on a sparse plus low rank decomposition method. These works make two im-
portant limiting assumptions on the noise correlation: (i) it results from affine
interactions and (ii) the excitation noise is assumed independent across latent
nodes. In the work proposed by Veedu and Salapaka [43], it is also assumed
that the knowledge of the correlation graph is known and all that the nodes were
excited by uncorrelated noise.

Veedu et al. [44] propose a new method for rebuilding the structure of linear
NDS that have latent nodes, which relies on the breaking down of the inverse
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of the power spectral density matrix (IPSDM) that is derived from the observed
nodes into a sum of sparse and low-rank matrices. This approach allows the
graph to have directed loops and bidirected edges. The authors have outlined
conditions and techniques for breaking down the IPSDM into sparse and low-
rank components. The sparse component produces the moral graph linked to the
observed nodes. The authors also assumed the knowledge of the perfect IPSDM
in order to reconstruct the topology of the network in the performed simulations
and results.

2.4 Artificial Neural Networks

In this section, we present an introduction to ANNs, which are outstandingly
efficient models for learning complicated data patterns.

2.4.1 Definition

ANNs, or simply NNs, describe a subset of machine learning algorithms de-
signed to acquire their own knowledge of a specific problem by extracting func-
tional patterns from data and learning by analyzing examples (training data).
NNs are function approximators or estimators, mapping inputs to outputs, com-
posed of multiple intertwined units (neurons). This architecture is inspired by
the human brain, mimicking how biological neurons interact (i) neurons receive
signals from the dendrites (ii) the signal is processed, and an output signal might
be sent through the axons. Similarly, an ANN takes inputs from the input layer,
weighs them individually, and passes them through an activation function in or-
der to produce an output.

Each artificial neuron comprises inputs, weights, activation functions, and an out-
put.

Input Weights

x1

x2

x3

xn

Transfer 
function

w1j

w2j

w2j

wnj

Activation  
function

Figure 2.2: Structure of a single artificial neuron.

The neuron is the basic processing element in a NN. The structure of the neuron,

18



Background and Related Work

shown in Fig. 2.2, dictates how the information is processed. Its structure consists
of the inputs xj connected to the neuron, the weights wij that linearly combine
the inputs, the activation function f , the bias b, and the output aj. The activation
function defines how the weighted sum of the input is transformed into output
and is chosen based on the modeling problem.

The output of a neuron j (aj) is given by:

aj = f j(Wxj + bj),

where f j is the activation function, bj is the bias, W is the weight matrix and xj is
all the inputs of the neuron j.

Another vital aspect of NNs is the learning rule. It is a systematic procedure to
modify a neural network’s weights and biases to work as we need and perform
its tasks accurately. This procedure is what is known as training the NN. First, the
neural network processes these inputs and calculates their output, and an error
is calculated by comparing the output and the target. Finally, the NN updates its
weights and biases using the backpropagation algorithm. Learning is complete
when examining additional observations does not usefully reduce the error rate.
The learning rate defines the size of the corrective steps that the model takes to
adjust for errors in each observation.

The backpropagation algorithm: In each iteration k, with input xk, and for layer
m (collection of neurons)

wm
ij (k + 1) = wm

ij (k)− α
∂F

∂wm
ij
(k),

where α is the learning rate (the same applies to the biases). In a straightforward
way, to compute this expression, we need the error value, the weights, the bias,
the activation functions’ derivatives, and the input. A forward pass is needed to
obtain all these values: given input and set of values for the weights and bias, we
compute all the intermediate values in the network until the end. Then we can
compute the error. Then the backpropagation is made considering the intermedi-
ate values computed in the forward pass, and the weights and bias are updated
with the gradients. Finally, the process is repeated for all the following inputs.

Ultimately, these models aim to learn complex non-linear functions by replicating
how information travels in the human brain. From the wide range of ANNs
configurations, we cover two of them: FFNNs and CNNs.

2.4.2 Feed Forward Neural Networks

A FFNN is a type of ANNs where information flows in one direction, from the
input layer through one or more hidden layers to the output layer. This type of
network is known as "feed-forward" because there are no loops or feedback con-
nections between the layers. FFNNs are commonly used for tasks such as clas-
sification, regression, and pattern recognition. The structure of a FFNN consists
of three main types of layers: the input layer, the hidden layer and the output
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layer. The input layer is where the network receives the initial data or input
features. Each neuron in the input layer corresponds to a specific input data fea-
ture. Following the input layer, we have the hidden layer. There can be one or
more hidden layers between the input and output layers. These layers consist of
interconnected neurons, each performing computations on the input it receives.
The term "hidden" refers to the fact that the data is not directly observed but is
transformed through these intermediate layers. The neurons in the hidden layers
apply weights to the input data and pass the weighted sum through an activation
function. The last layer is the output layer, where the output result is produced.
Depending on the nature of the problem, the output layer might have one neuron
for Binary Classification or Regression tasks, or multiple neurons for Multi-class
Classification.

The process of information flow through a FFNN follows a linear sequence. The
input values are passed to the neurons in the input layer. Each input value is mul-
tiplied by a corresponding weight, and these weighted inputs are then summed
up. The sum of the weighted inputs is passed through an activation function.
This function introduces non-linearity into the network, allowing it to learn com-
plex relationships in the data. There are several activation functions, the most
common being the sigmoid, tanh, and ReLU (Rectified Linear Unit). The processed
data then flows through the hidden layers similarly. The final hidden layer’s out-
puts are then passed to the output layer, where the final results are computed
based on the specific problem the network is designed to solve. An example of
the architecture of a FFNN is shown in Fig. 2.3.

Input Layer Hidden Layers Output Layer

X1

X2

X3

X4

Y1

Figure 2.3: Example of the structure of a FFNN with 3 hidden layers and 1 single
output value.
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2.4.3 Convolutional Neural Networks

CNNs are a type of ANNs specifically designed for processing data with a grid-
like topology, such as an image. CNNs are composed of multiple interconnected
layers of artificial neurons that process and transform the input data as it passes
through the network. These layers may not be fully connected (this reduces the
number of weights to be learned). CNNs are inspired by our visual cortex and
are incredibly robust for image analysis. The input layer takes raw data, such
as an image, and the output layer produces the final prediction or classification.
The hidden layers are responsible for extracting features and patterns from the
input data and transforming it into a more helpful representation for the output
layer. Although image analysis has been the most widespread use of CNNs, it can
also be used for other data analysis or classification problems. Most generally, a
CNN is an artificial neural network with some specialization for picking out or
detecting patterns and making sense of them.

The convolutional layer is the core of the structure of CNNs. It applies filters to
the input data to detect specific patterns and features. These filters slide across
the data, performing element-wise multiplications and summing the results to
produce a new set of features. Unlike the fully connected layers present in Feed
Forward Neural Networks, which are unpractical for large inputs such as high-
resolution images because of the large number of parameters to be learned, con-
volutional layers downsample the input, reducing the number of learnable pa-
rameters and allow the network to be deeper, in the following manner: Given an
input with width Win and height Hin, a filter of dimensions K x K, a stride S and
padding P, we have

Wout =
Win − K + 2P

S
+ 1,

Hout =
Hin − K + 2P

S
+ 1,

where Wout represents the width of the output and Hout represents the height of
the output. The filter is usually a two-dimensional (2-D) array of weights, which
represents part of the image

In each step, the Hadamard multiplication is applied (Wx + b = a) to a region of
the entire input, where W represents the filter, x is a section of the input data and
b is the bias.

In Fig. 2.4, the Hadamard multiplication for the first step of the convolutional
layer is as follows:

9 × 0 + 4 × 2 + 1 × 1 + 1 × 4 + 1 × 1 + 1 × 0 + 1 × 1 + 2 × 0 + 1 × 1 = 16 (2.21)

The max and average pooling layers are helpful in order to downsample the con-
voluted layer, reducing the number of features and lowering the number of pa-
rameters to be learned in the following layers and in order to make the network
more robust to small translations and distortions in the input data. They divide
their input into rectangular pooling regions and compute each region’s maximum
or average (respectfully), taking stride (the moving step) as a parameter.
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9 4 1 2 2

1 1 1 0 4

1 2 1 0 6

1 0 0 2 8

9 6 7 4 6

Input 

0 2 1

4 1 0

1 0 1

Filter Output

16

Figure 2.4: An example of a single step of a convolutional layer.

max pooling with 2x2  
filters and stride 2

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

Figure 2.5: An example of a max-pooling layer.

The combination of convolutional and pooling layers allows CNNs to learn hi-
erarchical representations of the input data, starting with simple patterns and
features in the lower layers and building up to more complex ones in the higher
layers. This hierarchical structure is what makes CNNs well-suited for tasks such
as image classification, object detection, and segmentation.

The ReLU layer applies a threshold operation to the convoluted output, by which
any value less than zero is set to zero. The ReLU has fewer vanishing gradient
problems compared to sigmoid and tanh. As CNNs are also commonly used in
natural language processing, brain-computer interfaces, and time series analysis,
there are several variations of this layer:

σ (x) =

{
x if x > 0
0 if x ≤ 0

(2.22) σ (x) =

{
x if x > 0
ax if x ≤ 0

(2.23)

σ (x) =


max if x > max
x if 0 < x ≤ max
0 if x ≤ 0

. (2.24)
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Normalization can favor the training of the CNNs. Usually, the inputs to the
CNN are normalized, the most common way is to normalize the data to zero
mean and unit variance (whitening). However, this normalization is lost after all
the calculations in the previous layers. So it can be convenient to normalize the
intermediate layers again to zero mean and unit variance. A batch normalization
layer does this.

The fully connected layers follow the convolution and pooling layers. All of its
neurons connect to all the neurons in the previous layer. In the case of classifi-
cation problems, the output size of the last fully connected layer is equal to the
number of different classes.

A softmax layer and a classification layer follow the last fully connected layer (for
classification problems).
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Technical Part: Feasibility Condition

In this section, we offer a novel condition on the noise structure (namely on its
covariance matrix) that grants feasibility of the structure identification problem
under partial observability and colored noise. The technical results presented,
namely, the theorems, proofs, some discussion and definitions have been submit-
ted for publication [1].

3.1 Assumptions

Our work builds on three main assumptions:

Assumption 1. (Stability) The interaction matrix A is assumed symmetric, non
negative and stable, i.e., ρ(A) < 1, where ρ(A) is the spectral radius of A.

Assumption 2. (Homogeneity) We assume that σ2 = E
[
x2

i
]

for all i.

Under Assumption 2, observe that σ2 ≥ E
[
xixj

]
∀ i, j. Indeed,

0 ≤ E[(xi − xk)
2] = E[x2

i ] + E[x2
k]− 2E[xixk]

= 2σ2 − 2E[xixk].
(3.1)

and the above inequality implies the inequality σ2 ≥ E
[
xixj

]
∀ i, j.

Assumption 3. (Distinguishability) We assume that σ2 > E
[
xixj

]
= [Σx]ij for all

i ̸= j. That is, the off-diagonal entries of the noise covariance matrix are strictly
smaller than the diagonal.

We remark that under Assumption 2, the latter Assumption 3 is a mild assump-
tion. Indeed, in view of inequality (3.1), σ2 = E

[
xixj

]
if and only if E

[(
xi − xj

)2
]
=

0, where this latter identity is equivalent to xi
a.s.
= xj. In other words, strict inequal-

ity holds whenever there is no two nodes with the same noise applied (almost
surely).

Under Assumptions 2 and 3, we refer to σ2
gap as the gap between the diagonal and
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the off-diagonal entries of the covariance matrix Σx, defined as

σ2
gap

∆
= σ2 − maxi ̸=jE[xixj] > 0.

3.2 Identifiability

A matrix valued estimator Â(n)
S summarizes the interaction strengths across dis-

tinct pairs of nodes (within the observed set) and can be characterized as

Â(n)
S = AS + E (n)

S , (3.2)

where AS is the ground-truth interaction matrix linking the subset of observed
nodes S and E (n)

S is the error matrix associated with the estimation obtained with
n time series samples.

The estimator is structurally consistent whenever any entry ij of Â(n)
S associated

with a connected pair is greater than any other entry of a disconnected pair –
please, refer to Definition 1, defined in the work of Machado et al. [23]. This is
equivalent to requiring that the entries of E (n)

S are not too distinct. More con-
cretely, define the oscillation of a matrix as

Osc (E) ∆
= Emax − Emin,

where Emin and Emax are the minimum and maximum of the off-diagonals entries
of the error matrix E . Let A+

min be the smallest entry of A different than zero. We
can say that if

Osc (E) ≤ Amin

2
, (3.3)

then this means that if ij represents the pair of connected nodes i and j and kl
is the pair of disconnected nodes k and l, then Âij > Âkl under constraint (3.3),
meaning that the matrix-valued estimator ÂS is structurally consistent, and the
structure of the network can be recovered via proper thresholding or clustering
of the off-diagonals of ÂS. Evidently, the error matrix E determines whether the
structural information of the networks is lost or preserved in the time series. If
E is flat enough (Emax - Emin is small) then an estimator ÂS is structurally consis-
tent. Furthermore, when the error matrix is flat (E ∝ β11T) then the entries of
the estimator Â are the entries of A shifted by β. This reveals the importance of
the characterization of the error term and the analysis of the flatness of the col-
ored noise in the estimation of the structure of the network. It also highlights the
difficulty in handling the colored noise regime.

All-in-all, two important steps shall be in general accounted when establishing
the structural consistency of an estimator. First, its error characterization. Then,
the analysis of its entries variability. For example, this is done by Matta et al. [13]
to establish the structural consistency of Granger under partial observability and
diagonal noise.
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3.3 Error characterization

It is widely understood, when conducting statistical inference in high-dimensional
settings, that the ability to perform inference tasks is fundamentally dependent
upon the various sets of parameters and noise excitation levels. In particular, the
regime of parameters, observability or noise level determine whether or not the
information about the structure of inference is entailed in the observed data or
fundamentally lost, rendering inference impossible in the latter case. The follow-
ing theorem characterizes the error term in the R1 − R3 estimator.

Theorem 1. Let Σx ∈ S+
M×M be the covariance of the noise process1 (x(n)),

satisfying assumptions 2 and 3. Define

Σx := σ2
gap I + β11T + Σx, (3.4)

where σ2
gap I is a diagonal matrix, β11T is the average offset matrix and Σx contains

the variability of the off-diagonals entries of Σx. Then

R1 − R3 = σ2
gapA + E , (3.5)

with

E ∆
= βρ11T +

(
I − A2

)( ∞

∑
i=0

Ai+1Σx Ai

)
where we refer to Σ as the residual covariance matrix of the process (x(n)) and
to E as the error term in the matrix-estimation problem. We can further consider
the partial observability case

ÂS = [R1]S − [R3]S = σ2AS + ES ,

where we have defined

[Rk]S
∆
= E

[
[y(n + k)]S [y(n)]⊤S

]
,

representing the k-lag covariance matrix built upon the observed samples, i.e.,
ignoring the latent part of the network.

From this theorem, we characterize the limiting error term E of this estimator un-
der various conditions of full and partial observability and spatially correlated
noise. We establish the requirements for the covariance matrix of the noise signal
Σx, which ensures that the structural information is preserved and can be recov-
ered from the observed time series data.

Proof of theorem 1. Remarking that

R0
∆
= lim

n→∞
R0(n) =

∞

∑
i=0

AiΣx Ai,

1Where S+
M×M is the set of symmetric and positive semi-definite matrices. A matrix C is

considered positive semi-definite when x⊤Cx ≥ 0, ∀x ∈ RM. The covariance matrix Σ obeys this
property. In particular, v⊤Σv = v⊤E[xx⊤]v = E[(x⊤v)2] ≥ 0, ∀v.
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and that
Rk = AkR0, ∀k ∈ N,

we can represent R1 and R3 as
R1 = AR0 = σ2

gapA ∑∞
i=0 AiΣx Ai

R3 = A3R0 = σ2
gapA3 ∑∞

i=0 AiΣx Ai.

Considering the definition of Σx present in (3.4), we have
R1 = σ2A ∑∞

i=1 A2i + βA ∑∞
i=0 Ai11T Ai + A ∑∞

i=0 AiΣAi

R3 = σ2A3 ∑∞
i=1 A2i + βA3 ∑∞

i=0 Ai11T Ai + A3 ∑∞
i=0 AiΣAi.

We can split R1 − R3 into 3 different terms, as follows:

R1 − R3 =
(
σ2A ∑∞

i=1 A2i − σ2A3 ∑∞
i=1 A2i)

+
(

βA ∑∞
i=0 Ai11T Ai − βA3 ∑∞

i=0 Ai11T Ai)
+
(

A ∑∞
i=0 AiΣAi − A3 ∑∞

i=0 AiΣAi) .

(3.6)

Now, it is trivial that the first term can be simplified down to

σ2
gapA

∞

∑
i=0

A2i − σ2
gapA3

∞

∑
i=0

A2i = σ2
gapA,

since
σ2

gapA ∑∞
i=0 A2i − σ2

gapA3 ∑∞
i=0 A2i ⇔

σ2
gap
(

A + A3 + A5 + ...
)
− σ2

gap
(

A3 + A5 + ...
)

⇔

σ2
gap
(

A + A3 − A3 + A5 − A5 + ...
)

⇔ σ2
gapA.

From this simplification of the first term of the estimator, our interaction matrix
A arises. On the other hand, the error term E stems from the simplification of the
second term (remark that A1 = ρ1)

βA ∑∞
i=0 Ai11T Ai − βA3 ∑∞

i=0 Ai11T Ai ⇔

βA
(
∑∞

i=0 Ai11T Ai − A2 ∑∞
i=0 Ai11T Ai) ⇔

β
(

I − A2) A ∑∞
i=0 Ai11T Ai ⇔

β
(

I − A2) A11T ∑∞
i=0 ρ2i ⇔

βρ(1−ρ2)
1−ρ2 11T ⇔ βρ11T,
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and the third term

A ∑∞
i=0 AiΣx Ai − A3 ∑∞

i=0 AiΣx Ai ⇔

A ∑∞
i=0 AiΣx Ai − A2 ∑∞

i=0 Ai+1Σx Ai ⇔

(I − A2)∑∞
i=0 Ai+1Σx Ai.

These three simplified terms together yield

R1 − R3 = σ2
gapA + βρ11T +

(
I − A2

)( ∞

∑
i=0

Ai+1Σx Ai

)
︸ ︷︷ ︸

E

,

which was to be demonstrated.

3.4 Feasibility Condition

Theorem 2. Let A = pA, where A is a stochastic matrix with 0 < p < 1. Under
assumption 2 and 3, if

Osc (Off(Σx))

σ2
gap

≤ Amin(1 − ρ2)

2ρ(ρ2 + 1)
, (3.7)

where σ2
gap

∆
= E

[
x2

i
]
− maxi ̸=j E

[
xixj

]
> 0, Off(Σx) are the off-diagonal entries

of Σx, and Amin is the smallest nonzero entry of the interaction matrix A, then
features

{
Fij(n)

}
i ̸=j are linearly separable and stable, where

Fij :=
([

R̂D(n)
]

ij
,
[

R̂D+1(n)
]

ij
, . . . ,

[
R̂M(n)

]
ij

)
, (3.8)

as long as D ≤ 1 and M ≥ 3. This result asserts a nontrivial condition on the co-
variance matrix of the process (x(n)) to grant linear separability of these features.
The idea is to apply machine learning methods to cluster the referred features un-
der the assumed conditions.

Proof of theorem 2. Recalling that A = ρA, with 0 < ρ < 1, that Osc(A) =
Osc(−A), and the properties of the function Osc(·), defined in Appendix D, we
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have that

Osc(E) = Osc
(

A(I − A2)∑∞
i=o AiΣx Ai)

= Osc
(
ρA(I − A2)∑∞

i=o AiΣx Ai)
P.2
= ρOsc

(
A(I − A2)∑∞

i=o AiΣx Ai)
P.1
≤ ρOsc

(
(I − A2)∑∞

i=o AiΣx Ai)
= ρOsc

(
∑∞

i=o AiΣx Ai − A2 ∑∞
i=o AiΣx Ai)

P.3, P.4
≤ ρOsc

(
∑∞

i=o AiΣx Ai)+ ρ3Osc
(
∑∞

i=o AiΣx Ai)
= ρ(1 + ρ2)Osc

(
∑∞

i=o AiΣx Ai) ,

which ultimately results in

Osc(E) ≤ ρ(1 + ρ2)Osc

(
∞

∑
i=o

AiΣx Ai

)
. (3.9)

Now, observe that

∑∞
i=0 Ai (Σmax11T) Ai = Σmax ∑∞

i=0 Ai11T Ai

= Σmax ∑∞
i=0 ρ2i Ai

11T Ai

= Σmax
(
∑∞

i=0 ρ2i) 11T

= Σmax
1−ρ2 11T,

where Σmax represents the maximum entry of the Σ. The same simplification
applies to the minimum entry Σmin. From this, we can affirm that ∑∞

i=0 AiΣAi is
bounded above and below as follows

Σmin

1 − ρ2 11T ≤
∞

∑
i=o

AiΣx Ai ≤ Σmax

1 − ρ2 11T,

and thus

Osc(
∞

∑
i=o

AiΣx Ai) ≤ Σmax − Σmin

1 − ρ2 . (3.10)

From inequation (3.9) and (3.10), we have

Osc(E) = Osc
(

A(I − A2)∑∞
i=o AiΣx Ai)

≤ ρ(1+ρ2)
1−ρ2

(
Σmax − Σmin

)
.

(3.11)
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In view, of inequality (3.3), we have structural consistency (or features separabil-
ity) whenever

Osc(E) ≤ σ2
gap

Amin

2
,

which leads to Eq. (3.7),

Osc (Off(Σ))
σ2

gap
≤ Amin(1 − ρ2)

2ρ(1 + ρ2)
,

which was to be demonstrated.

3.5 Exogenous Interventions

An exogenous intervention refers to the application of external inputs or influ-
ences to an NDS. Such interventions commonly involve the utilization of control
signals to regulate and manipulate the system’s behavior, ultimately leading to
the stabilization of the system.

Assume that the time series (y(n)) stem from the following linear NDS with ex-
ogenous interventions

y(n + 1) = Ay(n) + x(n + 1) + γξ(n + 1), (3.12)

where we assume Σ and σ2
ξ I as the covariance matrices of the excitation noise (x(n))

and the exogenous intervention process (ξ(n)). The parameter γ controls the
strength of the signal ξ and, consequently, the level of the exogenous interven-
tions.

Remark that under exogenous interventions to the NDS following dynamical law
referenced in Eq. (3.12), then Eq. (3.7) becomes

Osc (Off(Σx))

σ2
gap + σ2

ξ

≤ Amin(1 − ρ2)

2ρ(ρ2 + 1)
. (3.13)

The above corollary states that if the level of the intervention (captured by the
variance σ2

ξ ) is high enough, then the features are always linearly separable and
thus, Machine Learning can be applied. Which implies, in particular, that re-
gardless of the covariance matrix of the input process (x(n)), the feature vector,
represented as

F (n) :=
([

R̂D(n)
]

,
[

R̂D+1(n)
]

, . . . ,
[

R̂M(n)
])

, (3.14)

is linearly separable with high probability as soon as the level (or variance) σ2
ξ of

the external intervention (ξ(n)) is high enough.
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3.6 Impact of Colored Noise

While the affine separability property depends on the level of oscillation in the
error matrix term E , or it is possibly recovered under exogenous intervention, the
separating hyperplane is shifted away from the origin by the level of correlation
in the noise captured by the parameter β > 0, in view of the flatness property of
the noise structure. Figures 3.1 and 3.2 summarize the effect of the correlation
structure of the noise process (x(n))n∈N in the set

{
Fij(n)

}
i ̸=j: i) the average off-

diagonal of Σx yields a drift of the features away from the origin; ii) the oscillation
of the off-diagonal entries Osc(Off(Σx)) contributes to the spread of the features,
possibly compromising separability.

Due to the sensitivity of the separating hyperplane on the color of the noise, the
method deployed by Machado et al. [23] degrades as the average of the abso-
lute values of the off-diagonal entries of Σx increase (captured by β). To mitigate
the shift of the separating hyperplane and allow the deployment of supervised
methods, we renormalize the features applying standard scaling.

Consider the following equation for the NDS, as an expansion of Eq. (2.1) for
colored noise,

y(n + 1) = Ay(n) + αx(n + 1) +
β√
M

11Tx2(n + 1), (3.15)

where signal x2 introduces colored noise into the system, and β controls the
strength of the colored noise. Colored noise is a type of noise where the corre-
lation structure between different nodes is non-zero, meaning that the noise is
spatially dependent across nodes.

3.6.1 Impact of Colored Noise on the Networked Dynamical Sys-
tem

When β is set to 0, as mentioned, there is no colored noise. In other words, only
the diagonal noise, controlled by the parameter α, affects the system’s evolution.
Diagonal noise implies that the noise values at different nodes are independent.
On the other hand, when β is non-zero, the term β√

M
11Tx2(n + 1) introduces

colored noise into the system, where the noise at each node is determined by the
corresponding entry of the vectors x(n + 1) and x2(n + 1). Increasing the value
of β amplifies the strength of the signal x2(n + 1) and, consequently, the effect
of the colored noise on the system. Higher β values indicate stronger colored
noise, which can lead to more significant deviations or fluctuations in the network
dynamics.

In summary, β controls the presence and strength of colored noise in the NDS.
Increasing β amplifies the effect of the colored noise and its correlation structure,
potentially leading to more complex and interconnected dynamics among the
nodes.
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3.6.2 Impact of Colored Noise on the feature vector

Increasing the value of β can impact the magnitude of the cross-correlation val-
ues in the feature vectors. Higher β values indicate a stronger colored noise com-
ponent, which can introduce additional fluctuations and variations in the time
series of the nodes. These fluctuations can influence the cross-correlation values
and potentially increase their magnitudes. All the plots derive from a generated
graph with 20 nodes, 50% of connectivity and 100000 samples.

Figure 3.1: Shift of the R1 and R3 features as β increases. The features drift from
the origin. Separability of the features is somewhat compromised.

Figures 3.1 and 3.2 indicate that, indeed, there is an increase in the magnitudes of
the features, causing a shift of the centroid of the cluster.

In the work of Machado et al. [23], the feature-vector was normalized by the max-
imum value of the features, as defined in Eq. (2.20). Figure 3.3 shows the impact
that normalizing by the max has on the features.

Although this normalization somewhat brings the features to the same feature
space, it does not seem to improve separability. So we decided that in order to
prevent the increase in the magnitude of the features, we need to shift the fea-
tures back. To do this, we utilize the Standard Scaler (also called z-normalization),
which standardizes the features by removing the mean and scaling to unit vari-
ance:

z =
(x − µ)

σ
,

where x stands for the features, µ and σ correspond to the mean and standard
deviation, respectively, of the features. Finally, z represents the new shifted and
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Figure 3.2: Adimensional distance in the feature space, measured from the origin
to the feature’s centroid.

Figure 3.3: Separability of R1 and R3 as β increases, when the feature vectors are
normalized by their maximum value.

scaled features. It is important to note that the centering and scaling happen in-
dependently on each feature by computing the relevant statistics on the samples.
Figure 3.4 shows the impact of the Standard Scaler on the features, namely, the
improved separability of the Standard Scaler over the max normalization and no
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scaling.

Figure 3.4: Separability of R1 and R3 as β increases, when the feature vectors are
standardized by the Standard Scaler.

The parameter β also affects the statistical significance of the cross-correlation
values in the feature vectors. As β increases, the colored noise component be-
comes more prominent, and the overall noise level in the system rises, making it
more challenging to distinguish between significant cross-correlation values and
random fluctuations, which means that the underlying patterns or relationships
between the nodes become obscure. Therefore, higher β values can potentially
reduce the statistical significance of the cross-correlation values since additional
fluctuations, driven by the noise, can overlap or interfere with the true correla-
tions present in the system.

The presence of high levels of noise, particularly colored noise, can decrease the
signal-to-noise ratio in the system, meaning that the signal that contains the in-
formation about the structure, x(n + 1), becomes dominated by the colored noise
signal, x2(n + 1). This ratio represents the strength of the meaningful signal rela-
tive to the background noise. As β increases, the noise component becomes more
dominant, making it harder to distinguish the relevant signal from the noise. This
can lead to reduced separability between the features derived from the cross-
correlation of the time series. Figure 3.5 evidences the increased difficulty in
separating the features as β increases. Higher beta values may lead to an im-
possibility in distinguishing features from connected and disconnected pairs.

It is evident that the features become less separable as β increases, making it
more difficult to separate between connected and disconnected clusters accu-
rately. This may also be caused by the increase in sample complexity as β in-

35



Chapter 3

Figure 3.5: Influence of a higher β in the separability of R1 and R3.

creases.

In summary, the parameter β in the NDS equation can impact the magnitude,
statistical significance, and interpretation of the cross-correlation values in the
constructed feature vectors. Higher β values can lead to increased magnitudes
and more complex interpretations while potentially reducing the statistical sig-
nificance of the cross-correlation values.
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Methodology and Algorithms

This chapter describes the underlying generative process associated with the syn-
thetic dataset. It describes, in detail, the generation of the adjacency matrix, a bi-
nary matrix of connections, of the network, the generation of the interaction ma-
trix A, a weighted adjacency matrix, and the generation of the time series data.
It also outlines the details of the feature-vector and how it is obtained. Lastly,
it describes the training setup and architecture of the NNs used in the numeri-
cal simulation in Chapter 5. We use Python as the programming language, the
Keras package for the neural networks and NumPy, SciPy and scikit-learn for data
processing and calculations.

4.1 Data generation

The generative process of the data and the features follows a linear flow. Fig-
ure 4.1 shows a simple overview of the generative process. First of all, the adja-

Generate the
adjacency

matrix
(using a Erdős–
Rényi model) 

Generate the
Interaction
matrix A
(using the

laplacian rule)

Generate the
timeseries

following the
dynamical

law

Generate the
features from

the
timeseries

Figure 4.1: Flow graph of the feature generation process.

cency matrix is generated using an Erdős–Rényi random graph model [45]. An
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example of a graph generated from this model is shown in Fig. 4.2. It is impor-
tant to remark that we assure symmetry of the adjacency matrix, since we focus
on the structure recovery of the network and not in causal inference. A link be-
tween nodes in the network is randomly drawn, with all possible connections
between the nodes being equally likely, which means that each edge has a fixed
probability p of being present (or 1 − p of being absent), independently of the
other edges. The probability of each edge being connected is set by the param-
eter p, which ultimately reflects the sparsity of the network, i.e., the smaller the
parameter p, the sparser the network. After generating the adjacency matrix, we

Figure 4.2: Example of a realization of an Erdős-Rényi random graph on M = 10
nodes and with probability of p = 0.5 of existing an edge between each pair of
nodes.

build the underlying interaction matrix A with weights based on the Laplacian
rule [46]. Firstly, we need to generate a Laplacian Matrix L from the adjacency
matrix as

Li,j =


deg(i) if i = j
−1 if i ̸= j and i is adjacent to j
0 otherwise

,

where deg(i) is the degree of node i, i.e., its number of connections. Then, using
the Laplacian Matrix, we can generate a stable matrix of interactions A as

A = ρ ×
(

I − c
nmax

L
)

,

where nmax is the maximum in-flow degree of the underlying graph of the adja-
cency matrix and ρ and c are constants such that 0 < ρ ≤ c < 1. This weighting of
the graph yields a stable matrix A (and hence, a stable linear NDS), meaning that
p(A) < 1, where p(A) is the spectral radius of A, with support graph given by the
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generated Erdős-Rényi. After generating the interaction matrix A, we generate
the synthetic time series data following the dynamical law

y(n + 1) = Ay(n) + αx(n + 1) +
β√
M

11Tx2(n + 1), (4.1)

where A is the interaction matrix, α and β are the noise standard deviation (α for
the diagonal noise and β for the colored noise) and 11T is simply a matrix with all
entries equal to one. If we want the noise to be diagonal, we set the parameter β
to 0. Lastly, from the time series obtained by using equation (4.1), we generate
the feature-vector.

4.1.1 Small-World Networks

A small-world network is a mathematical graph where most nodes are not di-
rectly connected, but the neighbors of any given node are often connected. This
means that most nodes can be reached from any other node with only a few steps.
In particular, a small-world network is characterized by the typical distance L be-
tween two randomly selected nodes (measured in steps required) growing pro-
portionally to the logarithm of the number of nodes M in the network.

The Watts-Strogatz model [3] generates random graphs with small-world prop-
erties, such as short average path lengths and high clustering. Given parameters
M, k and p, the method works as follows: Starting with a ring of M vertices con-
nected to k closest neighbors by undirected edges, we randomly decide to rewire
edges, with a probability p, to a vertex chosen uniformly at random. This pro-
cess is repeated until all edges have been considered once. It is shown that, for
intermediate values of p, more concretely for 0 < p < 1, the graph becomes
a small-world network, highly clustered like a regular graph yet with a small
characteristic path length like a random graph. Figures 4.3a and 4.3b expose the
differences between the effect of p. In Fig. 4.3a the graph has a perfect ring topol-
ogy, caused by p = 0, meaning that no edges were rewired. On the other hand,
Fig. 4.3b reveals the effect of rewiring the edges, where in this case p = 0.3.

(a) Watts-Strogatz graph with p = 0. (b) Watts-Strogatz graph with p = 0.3.
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4.2 Feature-Vector

In this section, we introduce our new set of proposed features KM(n). The data
generation process is the same as explained in 4.1.

Define the set of features T M(n) =
{
T M

ij (n)
}

ij

T M
ij (n) =

([([
R̂− M

2 +1(n)
]

S

)−1
]

ij
, . . . ,

[([
R̂ M

2
(n)
]

S

)−1
]

ij

)
,

built on the inverse of the observed part of the lag moments. We have empirically
observed that these features exhibit nontrivial separability and stability across a
broad range of connectivity regimes and noise correlation levels. Fig. 4.4 reports
the separability of some of the lag moments of this feature vector, namely, the
inverse of the zero-lag, the one-lag and the third-lag correlation matrix.

Figure 4.4: Separation of a subset of the feature-vector T (n).

Further, define the set of features FM(n) =
{
FM

ij (n)
}

ij

Fij(n) =
([

R− M
2 +1(n)

]
ij

, . . . , [R0(n)]ij , . . . ,
[

R M
2
(n)
]

ij

)
, (4.2)

built on the various lag moments and that was previously defined in Section 3

in Eq. 3.8. Our proposed feature-vector is defined as KM(n), where KM(n) ∆
=

T M(n) × FM(n). This represents the cartesian product between the two set of
features previously defined, i.e., KM

ij (n) =
(
FM

ij (n), T M
ij (n)

)
for each ij.
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Ultimately, KM(n) is represented as:

KM
ij (n) =

([[
R− M

2 +1(n)
]

S

]
ij

,
[([

R− M
2 +1

]
S

)−1
]

ij
, . . . ,

[([
R M

2
(n)
]

S

)]
ij

,
[([

R M
2
(n)
]

S

)−1
]

ij

)
,

(4.3)

and is built upon the observed part of the lag moments and the inverse of the
observed part of the lag moments, with negative and positive lags. M refers to
the dimension of the feature-vector.

The identifiability gap represents the distance from the lowest prediction of a con-
nected pair to the highest prediction of a disconnected pair, and allows us to
assess if a model can separate the connected pairs from the disconnected pairs
with a great margin for error, where the bigger the distance, the better the model.
In a more formal manner, and similarly to how it is defined in the work done by
Matta et al. [25], given a matrix-valued estimator F , the identifiability gap of F is
defined as

T (F ) = min
ij:Aij ̸=0

Fij − max
ij:Aij=0

Fij. (4.4)

An estimator F is structurally consistent if and only if T (F ) > 0, meaning that, if
and only if connected pairs are separated from disconnected pairs, in view of the
entries of the matrix F . In view of Lemma 2, presented by Machado et al. [23],
the identifiability gap is larger for the features KM(n) than the features T M(n)
and FM(n) with high probability.

This tends to render the features KM(n) more amenable to generalization when
deploying supervised methods to cluster them. The overarching idea is that
the proposed features exhibit the proper identifiability properties once either the
variability of the off-diagonal entries of Σx is not too large (Section 3.4) or the ex-
ogeneous intervention is large enough (in view of inequality (3.13)). We demon-
strate the competitive performance of FFNN trained with a properly normalized
version of our features KM(n) in Section 5.1, via numerical experiments for dis-
tinct connectivity regimes and noise correlation levels.

4.3 Training of the Neural Networks

This section provides information on the training and architecture of the NNs
used in Chapter 5. Firstly, we explain the architecture of the CNN used in a
variety of experiments, more concretely, in the simulations performed on Subsec-
tions 5.2.4, 5.2.5 and 5.2.6. Then, we explain the training and architecture of our
proposed approach, used in Section 5.1.
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4.3.1 Several Numerical Simulations

On several numerical simulations, in Section 5, we used a CNN as our model,
with the feature vector consisting of the set of features proposed by Machado
et al. [23] and defined in (4.2), or similar features and several adaptations (de-
pending on the experiment). The architecture of the CNN, proposed by Machado
[47], is shown in Fig 4.5.

For the training of the CNN model, we generate an Erdős-Rényi graph with p =
0.5 and generate time series with β = 0 and with 500000 samples (number of
instants). We train under full-observability and with a training and test split of
80% and 20%, respectively, meaning that 20% of all edges in the graph (pair of
nodes) are used for testing the model. From the training set, we use 10% for
validation and, to avoid over-fitting, we stop training if the validation loss of
the model does not decrease in 7 epochs. We repeat the training to obtain 10
different models. The best performing model in the test set is chosen. The best
model is chosen based on the accuracy and identifiability gap, defined in Eq. (4.4),
obtained in the test set. Although the training is done on a single graph and under
full observability, the model generalizes well for the case of partial observability.
Furthermore, the model is only trained with p = 0.5, where p is the probability of
connection between each pair of nodes, but generalizes well for sparse and dense
networks.
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Figure 4.5: Architecture of the CNN model proposed by Machado [47].
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4.3.2 Our model

The model used in our proposed approach is a FFNN and the architecture of
the model is represented in Fig. 4.6. We did not use the CNN model proposed
by Machado [47] as the CNN would not learn with the use of the Standard Scaler
on the features, for reasons we could not understand. Since the Standard Scaler
was crucial in mitigating the shift of the features, we opted for relying on a FFNN
model, instead of using a CNN. The model receives a feature vector, containing
200 features, as input. Next, follows two fully connected layers with 512 and 256
neurons respectively, with a ReLu activation function. We then insert a dropout
layer in order to prevent overfitting of the model. Then, two more fully connected
layers follow, with 200 and 100, with a tanh activation function. Lastly, the last
layer consists of a single neuron, linearly outputting a single float value. The loss
function used for training the model is the mean-squared error, defined by:

MSE =
1
n ∑ (y − ŷ)2, (4.5)

where y represents the true values and ŷ represents the predicted values. The cho-
sen model optimizer is the ADAM optimizer, which is a stochastic gradient de-
scent method that is based on adaptive estimation of first-order and second-order
moments. Using a loss function meant for regression allows the post processing
of the values and the clustering of the predictions into 2 classes (connected and
disconnected pairs). In the proposed solution, a K-Means algorithm is used to
cluster the output of the FFNN model.

For the training of the model, we generate multiple graphs with different graph
sizes (number of nodes) and for each graph, we generate time series with a dif-
ferent β value and number of samples. More concretely, the values of β range
from 0 to 50 and the size of the training graphs range from 30 to 80 nodes. We
then concatenate all datasets into a single one and train the model. We refer to
dataset as the set of all the feature vectors associated with all the pairs of nodes
in a graph. We use a validation split of 10% and stop training if the validation
loss does not decrease in 7 epochs. We train several models and the best perform-
ing model in a test dataset is chosen. This test is generated from a graph with
40 nodes with only 20 of them being observable, from where 100000 samples are
generated, with β = 2 and α = 1. The models are trained with datasets generated
from graphs and time series with different parameters. The best model is chosen
based on the accuracy and identifiability gap, defined in Eq. (4.4), obtained in the
test set. Although the training is performed under full observability and the test
set is generated from a single graph, the chosen model shows good performance
and generalizes well for the case of partial observability, for different regimes of
connectivity and with values of β outside the training data.
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Figure 4.6: Architecture of our FFNN model.
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Numerical Simulations and Results

This chapter entails some of the numerical simulations performed, namely the
most interesting experiments. Some of these simulations have been submitted
for publication [1].

Firstly, we assess the performance of our approach in Section 5.1. On the other
hand, in Section 5.2, we show a variety of different experiments and simulations.

5.1 Proposed approach performance assessment

In this section, we assess the performance of a Feed Forward Neural Network
(FFNN) model trained with the novel set of features. The generative process of
the synthetic data is the same as explained in Section 4.1 and the training of the
FFNN is explained in Subsection 4.3.2.

The experimental setup is as follows. Firstly, we generate an undirected adja-
cency matrix using the Erdős-Rényi model [45] for the synthetic graphs. For real
world networks we skip this step as we already have an adjacency matrix. Sec-
ondly, from the adjacency matrix we use the Laplacian rule [46] to generate an in-
teraction matrix. Thirdly, we generate the time series from the dynamical law de-
fined in Eq. (3.15) and, lastly, we generate the feature vector, defined in Eq. (4.3),
with M = 200 number of features. All the hyper-parameters in the generation
of the Erdős-Rényi model and in Eq. (3.15) vary in every simulation, except for
the value of α, which is set to 1. The brain Structural Connectivity network is the
only case where we set α = 2. For the Laplacian rule, we set ρ = 0.75 and c = 0.9.

5.1.1 Results

We compare our method with some popular estimators that are tailored to struc-
ture identification of linear systems under partial observability: i) the Granger es-
timator (see Subsection 2.3.1); ii) the one lag R1 estimator (see Subsection 2.3.2);
iii) the precision matrix or inverse of the covariance (see Subsection 2.3.4); iv)
the R1 − R3 estimator (see Subsection 2.3.3); v) the feature-based approach (see
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Subsection 2.3.5). We apply Gaussian Mixture (GM) at the matrix valued esti-
mators to classify the pairs as connected or disconnected. Figure 5.1 shows the
different estimators’ accuracy as a function of the number of time series samples
over undirected graphs (Erdös-Rényi, see Section 4.1) with distinct connectivity
regimes and noise correlation levels. The black curve depicts the performance
of our proposed method. Approximately 200 runs were computed for each and
the average of the accuracy over all runs is plotted. Accuracy is a widely used
metric in machine learning that measures the correctness of predictions made by
a model. It represents the ratio of correct predictions to the total number of pre-
dictions made. We gain insights into how well a model can classify or predict
outcomes accurately by assessing the accuracy. In our case, the accuracy is calcu-
lated between the ground truth adjacency matrix and the resulting binary matrix
of the clustering of the predicted matrix Â.

(a) Estimators’ accuracy in a regime of 50%
probability of connectivity, a graph consisting
of 100 nodes with only 25 of them being ob-
servable. β is equal to 120.

(b) Estimators’ accuracy in a regime of 60%
probability of connectivity, a graph consisting
of 90 nodes with only 30 of them being observ-
able. β is equal to 100.

(c) Estimators’ accuracy in a regime of 30%
probability of connectivity, a graph consisting
of 160 nodes with only 20 of them being ob-
servable. β is equal to 240.

(d) Estimators’ accuracy in a regime of 70%
probability of connectivity, a graph consisting
of 120 nodes with only 30 of them being ob-
servable. β is equal to 200.

Figure 5.1: Comparing the performance of our approach against state-of-the-art
solutions in different setups.
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From Fig. 5.1, we observe that under the colored noise regime with partial ob-
servability, our proposed approach displays competitive performance against the
referred estimators, beating them by a large margin in all the regimes considered.
Remarkably, the FFNNs are trained under full observability, but generalize well
for partial observability. From the plotted results, we can confirm our approach’s
robustness across distinct regimes of partial observability and colored noise, with
different values of β. In addition, our proposed method is clearly more stable and
regular, as the standard deviation of the performance is rather low when com-
paring to the other estimators. Furthermore, all the other estimators (except the
precision matrix) seem to completely collapse under the regime of colored noise,
and the predicted network seems to be random (with an accuracy of ≈ 50%).

We also compared the performance of the estimators in a real world network.
This network represents the Brain Structural Connectivity matrix of a human [48].
The connectivity regime calculated was ≈ 58%. The network is composed of 90
nodes representing cortical regions of interest and we set α = 2, in Eq. (3.15).
The adjacency matrix 1, shown in Fig. 5.2, is calculated by performing a threshold
at 0.0005, where all the values below are set to 0 and set to 1 otherwise. The
performance of the estimators is reflected in Fig. 5.3. Although the precision

Figure 5.2: Brain Structural Connectivity matrix [48], with 90 cortical ROIs.

matrix estimator start off well, with a performance similar to our approach, our
method outperforms it in the long run. From Fig. 5.3, we also depict the stability
of our network reconstruction approach against other the approaches.

1For the sake of a Structure Identification problem, we force the matrix to be symmetric, by
copying the upper triangle into the lower triangle of the connectivity matrix.
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Figure 5.3: Estimators’ accuracy in a real world network. The network is a Brain
Structural Connectivity matrix [48].

Furthermore, we simulated in a small-world network (see Section 4.1.1), using
the Waltz-Strogatz model, with M = 60 nodes, k = 40 neighbors and p = 0.5 of
probability of rewiring. Figure 5.4 shows the network we tested on, and Fig 5.5
shows the overall performance of the estimators.

Figure 5.4: Example of the small-world network with N = 60, k = 40 and p = 0.5.

50



Numerical Simulations and Results

Figure 5.5: Estimators’ accuracy in a small-world network using the Waltz-
Strogatz model.

In addition, we also compared the performance of all estimators in a real-world
food web network [49], from the island of St. Martin. It contains 44 different
species (number of nodes). We assume indirectness of the network 1. The con-
nectivity regime is ≈ 20%.

Figure 5.6: Graph of the food web predator-prey network.
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Figure 5.7: Estimators’ accuracy in a food web predator-prey real network.

Our approach shows better performance, even in the case of a sparser network
(≈ 20% of connectivity). Although the precision matrix estimator is close, the
margin between our approach and the precision matrix estimators’ accuracy is
still ≈ 5% .

For a more complete performance assessment, we compared the estimators per-
formance as β increases, as p increases and as the number of observable nodes
increases. Figures 5.8, 5.9 and 5.10 illustrates these results.

Figure 5.8 shows that our method outperforms all other state-of-the-art estima-
tors for β ⪆ 2. For β ≤ 2, our approach performs worse than almost all the
other estimators. This may be a consequence of the model’s generalization for a
large variety of β. In Fig. 5.9, it is evident that for sparser regimes (⪅ 30%) the
precision matrix has a better performance. However for every other regime, our
approach outperforms all estimators. Figure 5.10 exposes that our algorithm is
robust under various regimes of partial observability.
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Figure 5.8: Estimators’ accuracy as β changes.

Figure 5.9: Estimators’ accuracy as the probability of connectivity (p) changes.
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Figure 5.10: Estimators’ accuracy as the number of observable nodes increases
from 10 to 90 nodes.
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Lastly, we assess the impact that the introduction of exogenous intervention (see
Section 3.5) has on controlling the noise signal and stabilizing the system. For this,
we compared the accuracy of all the estimators across various runs and plotted
the average of all runs, as the level of the exogenous interventions increases, i.e.,
as the value of γ increases (see Eq. (3.12)). This is shown in Fig. 5.11.

Figure 5.11: Estimators’ accuracy as the strength γ of the exogenous intervention
increases.

It is clear that, from the analysis of Fig. 5.11, the exogenous interventions improve
the performance of most estimators in recovering the structure of the graph.
However, the precision matrix performance drops drastically with exogenous in-
terventions and becomes a random estimator when the strength of the exoge-
nous interventions is ⪆ 2.5. As the level of exogenous interventions increases,
the value of σ2 (diagonal values of the covariance matrix of the signal) also in-
creases, which yields the precision matrix, defined as R−1

0 , less separable, since
R−1

0 = 1
σ2 (I − A2). This is a clear disadvantage of the precision matrix estimator.
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5.2 Other Simulations

In this particular section, we present a compilation of interesting experiments that
were simulated throughout the semester. These experiments followed a particu-
lar line of thought and are, in most part, related to one another.

In Sections 5.2.1 and 5.2.2, we attempt to directly cluster the features, under
colored noise, with known clustering algorithms or reducing the dimensional-
ity of the feature-vector. In Section 5.2.3, we apply Mutual Information (MI) be-
tween each lag-moment of the correlation and the ground-truth structure. In Sec-
tions 5.2.4, 5.2.5 and 5.2.6, we tackle the regime of diagonal noise, in order to find
the best version of the Convolutional Neural Network (CNN), used in the work
of Machado et al. [23]. We try to optimize the dimension of the feature-vector, we
discuss the influence that the training regime has on the models and, from these,
we attempt to build a new approach that outperforms the default CNN model.

Section 5.2.7 reveals the consistency of the precision matrix as an estimator for re-
covering the structure of the network of a Networked Dynamical Systems (NDS).

In Sections 5.2.8 and 5.2.9 we present different approaches for recovery of the
network and possible features to be introduce in the feature-vector.

5.2.1 PCA and K-Means

This experiment consisted of applying Principal Component Analysis (PCA), ex-
plained in appendix C, directly to the features. In summary, PCA is a widely used
statistical technique that effectively reduces the dimensionality of datasets while
preserving the maximum amount of information. We then use the K-Means al-
gorithm, described in appendix A, to group the reduced dimensionality features
from the PCA into clusters in order to develop an estimator.

Firstly, we observed the projection of the feature-vector, generated from synthetic
data (see Section 4.1) with α = 0.1, with diagonal (β = 0) and colored noise
(β = 0.2) into a single component of the PCA.

Figure 5.12: PCA projection of data with diagonal noise.
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Figure 5.13: PCA projection of data with colored noise.

As it is observed in Figs. 5.12 and 5.13, the introduction of colored noise mixes
up the features in a 1D space, leading to an estimator that is not capable of con-
sistently separating the features. However, the metrics of this estimator were still
measured as the number of samples increased, as a last concluding experiment,
shown in Fig. 5.14.

Figure 5.14: PCA and K-Means accuracy as the number of samples increases, with
different β values.

It is clear that this estimator does not perform well as β increases, and when
β = 0.5 it seems to lean towards a random estimator, that does not increase per-
formance metrics as the number of samples increases. Using PCA to reduce to
the feature-vector to one dimension is clearly not a good approach, as the fea-
tures may not be able to hold separability in a one dimensional space. This results
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shows the increased difficulty of the introduction of colored noise.

5.2.2 Clustering the features

This experiment consisted of applying a clustering algorithm, namely the K-Means
algorithm or the GM algorithm, directly to the 200 features. Both these algo-
rithms are described in detail in appendix A and B respectively. A major problem
with this approach was that the 2 centroids found would sometimes flip in order,
which meant that features that were from class 1 sometimes were classified as
class 1 and sometimes as class 2, depending only on the initialization of the cen-
troids. This problem was fixed by sorting the centroids by their norms. However,
as β increases, it is not clear that the higher norm belongs to the class of connected
pairs and further experiments must be realized.

The experiment was repeated 20 times and the accuracy shown in Fig. 5.15 is the
average of the 20 runs. In each run, a different graph was generated (with 20
nodes and a probability of an edge between each node pair of 50%) and the time
series length varies from 10000 to 500000 with a step of 10000. We set the value of
α to 1.

Figure 5.15: K-Means vs GM with β ∈ {0, 1, 10, 64} as the number of samples
increases.

Although this approach leads to good results with low values of β = 0 and β = 1,
with both clustering algorithms managing to achieve 100% accuracy with a fairly
low amount of samples, as β increases, the performance degrades and eventu-
ally stagnates at around 50% (random predictions). Furthermore, this experiment
may indicate that the K-Means algorithm is better suited to this specific problem
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than the GM algorithm. This may be explained from the fact that the K-Means
algorithm is more suitable for linearly separable features than the GM algorithm,
which assumes that the features are explained by a finite set of gaussian dis-
tribuitions. This may also explain why the GM Model is more unstable as the
number of samples increases, when compared to the K-Means.

It is also evident, in this experiment, the problem of sample complexity, as the fea-
tures become increasingly separable as the number of samples increases, which
is to be expected.

5.2.3 Mutual Information based formulation

MI measures how much information two random variables share. It expresses
the dependency between two variables and in other words, MI can be used to
quantify the amount of information one random variable contains about another.

The MI is expressed as follows:

MI(X, Y) = H(X) + H(Y)− H(X, Y)

where H(X) is the entropy of X, H(Y) is the entropy of Y and H(X, Y) is the joint
entropy of X and Y.

The entropy of a random variable X and the joint entropy of two random vari-
ables X and Y can, respectively, be expressed as:

H(X) = −∑x∈X p(x) log p(x)

H(X, Y) = −∑x∈X ∑y∈Y P(x, y) log P(x, y),

where P(x, y) is the joint probability of these values occurring together. In Fig. 5.16,
we depict the MI between matrix valued estimators and the underlying ground-
truth graph structure.

For the matrix-valued estimators, we considered the Granger and covariance ma-
trices R̂k(n) with distinct lag-moments k. The abscissa indexes the distinct lags
considered except for the first entry which was reserved for the Granger estima-
tor. This experiment lies consistent with a recent observation in the work done
by Machado [47]. In particular, for the most part, information about the underly-
ing graph structure lived in the low-lag moment estimators.

When we compute the MI score with randomly generated graphs (i.e., the un-
derlying graph structure is wrong with high probability), then we observe much
lower values of MI as illustrated in Fig. 5.17. We also remark that the width of the
MI curve depends on the sparsity of the network. The sparser the network, the
wider the base of the bell-shaped MI graph, i.e., more structural information lies
in higher order lag-moments. Fig. 5.18 shows an experiment where the under-
lying true graph was generated as an Erdős-Rényi realization for distinct p, i.e.,
probability of edge drawing at each pair (see Section 4.1). The smaller the p, the
sparser the network.
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Figure 5.16: MI is maximal at the Granger estimator and low-lag estimators.

Figure 5.17: MI is low when the underlying structure does not match the correct
one.
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Figure 5.18: MI exhibits wider base for sparser networks. Higher order lag-
moments play a role in the estimation.
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5.2.4 Feature-vector dimension

The observations discussed in Section 5.2.3 serve as motivation for this section.
We focus on exploring if the knowledge of the sparsity of the (unknown) network
can aid on the search for the right separating hyperplane (or manifold) as we
might need to weigh higher order lag moments accordingly. It is also relevant in
finding the optimal dimension for the feature-vector. As we previously observed,
the number of optimal lags to introduce as features is highly dependent on the
connectivity regime. From the mutual information, discussed in Section 5.2.3,
higher density regime (higher p value) tends to need less lags to unveil the struc-
tural connectivity. In order to discover the correct dimension of the feature-vector
we conducted the following experiment:

We trained 4 different CNN with varying number of features: 500, 300, 200 and
100 features, where the feature vector is defined as:

F (n)
ij

∆
=

([
R̂− M

2 +1(n)
]

ij
, . . . ,

[
R̂ M

2
(n)
]

ij

)
,

where M represents the dimension of the feature vector.

We then tested the different CNN in a graph of 40 nodes, with only 20 of them
being observed, with a probability of connection of 50%. The time series range
from 1000 to 100000 samples, with a step of 2000.

Figure 5.19: Accuracy of CNN with varying number of features.

It is to be noted that the best models for each test regime are circled in white,
to facilitate the reading of the figure. The CNN with a feature vector of size 100
seems to have a slightly better performance than the others CNN, but no clear
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pattern between the dimension of the feature-vector and the performance of the
model is observed.

From this, we decided to perform a more detailed and comprehensive simula-
tion. Different models were trained in different regimes of connectivity with dif-
ferent number of features. All the trained models were then compared across all
regimes.

As plotting the accuracy as the number of samples increased would result in a
confusing cluster of lines, as we trained in 10 different regimes and with 10 dif-
ferent number of features, resulting in 100 different models, we decided to assess
the number of samples needed to reach a certain level of accuracy in order to
compare the different models.

Figures 5.20, 5.21 and 5.22 represent the test in the regime of 30%, 50% and 70%
probability of connectivity, respectively.

Figure 5.20: Number of samples necessary to reach 99% accuracy, on the test
regime of 30% while varying the number of features and the node connectivity
probability of the training setup.

It is clear that denser networks are harder to correctly infer their structure than
sparser networks, shown by a general increase, across all the training regimes and
the different number of features, of the number of samples necessary to reach an
accuracy of 99%. It seems that, from the performed simulations, there is no per-
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Figure 5.21: Number of samples necessary to reach 99% accuracy, on the test
regime of 50% while varying the number of features and the node connectivity
probability of the training setup.

fect dimension for the feature-vector, as the results greatly depend on sparsity of
the training regime and the test regime. However, the low number of features
models, seemingly, tend to perform better or similarly to models with more fea-
tures. In general, we can say that the best perfoming models for a specific test
regime are the models trained in similar regimes of connectivity. From this last
remark, the different training regimes are explored in the next section.
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Figure 5.22: Number of samples necessary to reach 99% accuracy, on the test
regime of 70% while varying the number of features and the node connectivity
probability of the training setup.
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5.2.5 Influence of the training regime

Discovering the perfect training regime for a model is not a trivial problem. There
are many hyper-parameters that influence the training and consequently the per-
formance of a model, such as the probability of connectivity, the number of fea-
tures to include, the number of nodes of the generated networks, whether to train
in full-observability or in partial-observability, the amount of samples to gener-
ate, and so much more.

This section delves into the nuanced variations in training models across different
connectivity regimes, in concrete, in training models with datasets built with dif-
ferent p, where p stands for the probability of each edge in the graph representing
a connection between two nodes on an Erdős–Rényi random graph model, which
ultimately reflects the sparsity of the network. Models were trained in 14 differ-
ent regimes of connectivity and all the models were tested in regimes that range
from a probability of 10 to 90%, in order to find a pattern.

In our study, for each training regime, we trained ten different models to iden-
tify the best-performing model for the task. To evaluate the performance of these
models, we employed two key metrics: accuracy and identifiability gap (see Sec-
tion 4.2).

We assessed the accuracy and identifiability gap for each trained model to deter-
mine the best model. Our objective was to identify the model with the highest
accuracy and identifiability gap in a test dataset.

We then tested the 14 best models, each model trained in a different connectivity
regime, in 10 different test regimes. As plotting the accuracy as the number of
samples increased would result in a confusing cluster of lines, as we trained and
tested in multiple regimes, we instead computed the general accuracy of the mod-
els over the number of samples, represented in Figure 5.23. It is to be noted that
the best models for each test regime are circled in white, to facilitate the reading
of the figure.

The average accuracy of a model’s performance can be misleading, as a model that
starts off poorly but then proceeds to outperform other models can have its aver-
age accuracy dragged down from the initial performance. For example, a model
that is consistently at 97% accuracy as the number of samples increases but never
reaches 100% accuracy can be wrongly considered a better model than a model
that starts off badly but reaches the 100% accuracy at a certain number of sam-
ples. Furthermore, the accuracy fails as a metric for imbalanced datasets, which
becomes the case when the test regimes largely deviate from the 50% connectiv-
ity. For this reason, we also decided to verify the number of samples needed to
reach a certain accuracy threshold, in order to compare the different models. This
is shown in Figure 5.24, where the lower the samples needed to reach 99% accu-
racy, the better the model. It is to be noted that the brighter the square the better
the model performance is. Setting the accuracy threshold to 99% guarantees that
the imbalance issues do not influence high performance models. For example,
a model achieving 90% accuracy on a test regime of 90% may indicate that its
predicting all the pair of nodes to be connected).
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Figure 5.23: Average accuracy over the number of samples, representing the area
under the curve of each model’s accuracy over the number of samples.

Figures 5.23 and 5.24 show the increased difficulty of denser regimes, which is
backed up by the literature, where most estimators only work or are meant for
sparser networks. The best training regimes for each test regime are circled in
white. It is clear that the best models in Fig. 5.23 differ from the best models in
Fig. 5.24. For the reasons previously mentioned, we will abstain from discussing
the results shown in Fig. 5.23 and will focus on the results exposed in Fig. 5.24. In
Fig. 5.24, there are some visible patterns that we further analyze: models trained
in a specific regime have better performance in similar connectivity regimes of the
training regime than other models. Although there are clear outliers (valley drop
in performance of models trained in the 31.25% and 75% connectivity regime),
and the pattern is not perfectly clear, it served as basis for our next experiment: a
tree of CNN.
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Figure 5.24: Number of samples necessary to reach 99% accuracy.
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5.2.6 CNN Tree

From the previous results, we had the idea of building a binary tree of CNN
models, in which each node of the tree represents a model trained in a specific
connectivity regime. This idea is built on the assumption that models trained in
a specific connectivity regime are superior in similar regimes than other models
trained in different regimes.

The tree works by transversing from the root down to the leaves, in which each
non-leaf node predicts the probability of connectivity of the graph from the pre-
dicted structure of the network. An example of a tree is shown in Fig. 5.25. If
the predicted structure has a higher probability regime than the one from the
trained model, we continue down to a model trained in a denser regime, if the
predicted connectivity probability is lower, then we continue to a model trained
in a sparser regime. If the node is a leaf node, then the model infers the structure
as in previous experiments.

Figure 5.25: Example of a 3-layered tree.

We compared the performance of a tree with 3 layers, a tree with 4 layers and the
default CNN trained at 50% connectivity. For the reasons explained in 5.2.5, we
introduce the notion of balanced accuracy score, defined by:

Balanced Accuracy =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
,

which avoids inflated performance estimates on imbalanced datasets. This as-
sures that if the conventional accuracy, defined by

Conventional Accuracy =
TP + TN

TP + TN + FP + FN
,

is above chance only because the classifier takes advantage of an imbalanced test
set, then the balanced accuracy, as appropriate, will drop to 1

2 .

Although the CNN Trees and the default CNN have similar performances across
the different regimes, the CNN Tree with 3 layers seems to have a slightly better

69



Chapter 5

(a) CNN Tree at 10% regime (b) CNN Tree at 30% regime

(c) CNN Tree at 70% regime (d) CNN Tree at 90% regime

(e) CNN Tree at random sparse regime (f) CNN Tree at random dense regime

Figure 5.26: Comparing the performance of a CNN Tree with 3 layers, a CNN
Tree with 4 layers and a CNN model trained at 50% connectivity regime, across
different test regimes.

performance in some regimes, namely in the 10% connectivity regime in Fig. 5.26a,
in the 30% connectivity regime in Fig. 5.26b and in the 90% connectivity regime
in Fig. 5.26d. Despite this, the increase in performance may not be significant and
may derive from a somewhat low number of runs (10). Additionally, the expo-
nential increase in the number of nodes in the tree (representing CNN models)

70



Numerical Simulations and Results

with the increase of the height of the tree leads to a high time-consuming model
training session, and the increase in computational power from predicting using
multiple models make the trade off in performance not that worth. Furthermore,
we expected that increasing the number of layers in the tree would result in a bet-
ter and more robust model but it seems to decrease the tree performance, which
is not expected and not trivial.

5.2.7 Precision Matrix Consistency

In our empirical experiments, we discovered that the precision matrix is consis-
tent across different levels of colored noise. Figure 5.27 represents the perfor-
mance of the precision matrix across different β values, where

β ∈ {0, 1, 16, 64, 128, 256}.

For this experiment, we generated a graph of 40 nodes, with only 20 of them
being observed. The time series length ranges from 1000 to 500000, with a step
of 10000 samples. We repeated the experiment 40 times and took the average of
the runs. This finding is not trivial and may be assumed as a novel discovery.

Figure 5.27: Performance of the precision matrix across multiple regimes where
the value of β changes.

There is only a slight drop in performance from β = 0 to β = 1, and after that, the
precision matrix has similar and consistent results for all other values of β. Even
though the performance is not the greatest for lower values of β when comparing
against the feature-based estimator introduced in the work of Machado et al. [23]
or even other methods such as the R1 − R3(NIG) estimator, Granger or the R1
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estimator, this consistency across different levels of β makes the precision matrix
a robust estimator for cases where the strength of the colored noise is higher and
may be helpful as a feature for a machine learning approach. Remark that the
regime studied is under partial observability and that[

R−1
0

]
S
̸= [(R0)S]

−1

meaning that the precision matrix calculated from the entire network and the pre-
cision matrix calculated only from the observable set are not equal. This should
lead to a poor performance in the regime of partial observability.

5.2.8 Inversion of the NIG estimator

Along with the precision matrix, we later discovered that the inverse of the R1 −
R3 (NIG) estimator performs relatively well. We compared our method against
(R1 − R3)

−1 with GM as post-processing algorithm to cluster the entries of the
matrix. In Fig. 5.28, we plot the average accuracy over all runs and we also plot
the worst and the best run.

Figure 5.28: Accuracy in a regime of 50% probability of connectivity, a graph
consisting of 100 nodes with only 25 of them being observable. β is equal to 120.
The middle line of each method represents the average of all the runs, the lower
and the higher lines represents the worst and the best run, respectively.

Although it is clear that our approach performs better overall and its evident that
it is more robust across different runs, as the inverse of the (NIG) estimator has
some random runs (the worst run is around 50%), the average across all runs of
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the (R1 − R3)
−1 estimator is relatively good. It would be interesting using this

estimator, and maybe similar estimators with different lag moments, as a feature
for our approach.

5.2.9 Cross Spectral Density and Magnitude Squared Coherence

The Magnitude Squared Coherence (MSC) between two signals, x(n) and y(n),
indicates how much the spectral content of these two signals is correlated at dif-
ferent frequencies. A value of 1 implies perfect coherence, meaning the signals
are synchronized in terms of their frequency content, while a value of 0 indicates
no correlation between their frequency components.

The MSC of discrete-time signals x(n) and y(n) using Welch’s method [50], is
defined as:

Cxy =

∣∣Sxy( f )
∣∣2

(Sxx( f ) ∗ Syy( f ))
,

where Sxx and Syy are power spectral density of x and y, and Sxy is the cross spec-
tral density between x and y. Welch’s method computes an estimate of the power
spectral density by dividing the data into overlapping segments, computing a
modified periodogram for each segment and averaging the periodograms.

The Fast Fourier Transform (FFT) is a computational technique used to efficiently
compute the Discrete Fourier Transform (DFT) of a signal. DFT is the discrete
equivalent of the continuous Fourier Transform and is employed to analyze a sig-
nal’s frequency content. In the context of calculating the Power Spectral Density
(PSD) and the Cross-Spectral Density (CSD), the FFT is employed to transform
the time-domain signals into the frequency domain.

The PSD of a signal describes the power present in the signal distributed across
different frequency components. In the context of time series analysis, it helps us
understand the frequency content of a signal and how much power it carries at
each frequency. Mathematically, PSD is often denoted as S( f ), where f represents
frequency.

For a given signal x(t), the PSD can be calculated using the Fourier Transform.
The formula for PSD, denoted as Sx( f ), is:

Sx( f ) = |X( f )|2 ,

where X( f ) represents the Fourier Transform of the signal x(n).

The CSD is used to understand the relationship between two signals in the fre-
quency domain. It quantifies the frequency-wise correlation between two signals
and provides insight into their mutual behavior across different frequencies. For
two signals, x(n) and y(n), the CSD, denoted as Sxy( f ), is formulated as:

Sxy( f ) = X( f ).Y∗(F),
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where X( f ) represents the Fourier Transform of the signal x(n) and Y∗( f ) is the
complex conjugate of the Fourier Transform of the signal y(t).

In Fig. 5.29 we can observe the MSC between all the pairs of nodes in a NDS.

Figure 5.29: MSC (Cxy) of all pairs of a network. It was calculated from 100000
samples, in a regime of 50% connectivity and β = 100. The green curves repre-
sents the magnitude squared coherence from connected pairs, and the red curves
are from disconnected pairs.

Each curve in Fig. 5.29 represents the estimate of the MSC of a pair of nodes
in a network. It is evident that there is a separation between the MSC between
connected nodes and disconnected nodes (the curves in red and the curves in
green are not clustered), even in the context of colored noise. For this reason, the
MSC could be used to further enhance the feature-vector used in our approach.
However, it should be noted that the range of values in the y-axis is particularly
small, and for this reason, the inverse of the correlation lag-moments may be
easier to separate.

Furthermore, the inverse of the CSD matrix also reveals some interesting results,
shown in Fig. 5.30. From the performed experiences, the inverse of the CSD seems
to hold for all levels and amplitudes of the colored noise and different connectivity
regimes (varying levels of p). Similar to the MSC, adding the CSD to our feature-
vector as a feature may be considered and could improve the performance of
our approach. Nonetheless, an increase in the number of nodes leads to a more
complex system and the inverse of the CSD becomes, seemingly, less separable.
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Figure 5.30: Inverse of the CSD of all pairs of a network. It was calculated from
100000 samples, in a regime of 50% connectivity and β = 64. The green curves
represents the magnitude squared coherence from connected pairs, and the red
curves are from disconnected pairs.
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Conclusion

Our research focused on recovering the network structure from time series data
produced by a linear NDS. This particular problem is generally considered to be
ill-posed. It is widely accepted that the feasibility of inference tasks is essentially
limited by the different parameter regimes and levels of noise excitation. Specif-
ically, the hyperparameters - namely, the observability, noise level and type, and
other parameters - determine whether information about the network structure in
present in the time series or not, making the problem unsolvable in the latter case.
We faced the complex challenge of partial observability under colored noise. From
our work, two major contributions arise. First, we developed a unique identifi-
ability condition for linear NDS under this setting, where we grant feasibility in
identifying the underlying structure of the NDS. Secondly, we propose a new ap-
proach to identify and recover the hidden structure under partial observability and
colored noise. For this, we adopted a feature-based approach that assigns a feature
vector, generated from the time series data, to each pair of nodes in the network,
rather than relying on scalar-based methods that are commonly used in structure
identification.

Furthermore, we analyzed the impact of the noise structure on the identifica-
tion properties of the set of features, and we proposed a novel set of features.
To recover the network structure, we trained FFNN with our features and clus-
tered them. We conducted several distinct numerical experiments to test our ap-
proach’s performance across different connectivity, observability, and noise cor-
relation regimes, and we found it to be highly competitive against state-of-the-art
estimators.

6.1 Contributions

As a result of this Dissertation, we have two major contributions. Firstly, we
establish a regime of parameters where we guarantee structural consistency. Sec-
ondly, we propose a novel set of features and develop a machine learning ap-
proach that outperforms other state-of-the-art estimators across multiple regimes
of partial observability and colored noise.
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The work was, in part, submitted for publication [1]. This paper summarizes the
work developed in this Dissertation, namely, the development of a novel set of
features and the introduction of a novel structure identification feasibility condi-
tion in the colored noise regime under partial observability.

In addition, we created a GitHub repository 1 with all the code necessary to repli-
cate our results and to use in future work.

6.2 Future Work

The study of dynamical systems offers a powerful framework for interpreting
neuroimaging data from a range of different contexts. In the work of John et al.
[51], it is shown that dynamical systems theory has the potential to revolutionize
the analysis of neuroimaging data, recorded via Functional Magnetic Resonance
imaging (fMRI) signals, made possible due to the advances in computational
power necessary for the simulations of non-linear dynamical systems. Although
the existence of significant distinct nonlinear interactions between brain regions
is proven by Poskanzer and Anzellotti [52], it is important to note that the linear
components of these interactions were still an order of magnitude larger than the
nonlinear. This is an important remark to consider since, in our approach, we
assume a linear dynamical system for the generation of the feature vector. Fur-
thermore, in the work of Liégeois et al. [53], it is shown that estimating Functional
Connectivity (FC) from precision matrix based estimators allows more meaning-
ful Structural Connectivity (SC) - FC comparisons. In particular, it was shown
that certain powers of the precision matrix (computed from fMRI time series) ex-
hibit nontrivial similarity with the actual SC matrix (estimated from the white
matter tracts). Pursuing this work and applying the proposed methods to real
data streams, such as Electroencephalography (EEG) or fMRI signals from var-
ious brain regions is a future promising direction, as we have analyzed this ap-
proach for real world networks with synthetically generated time series but never
with real data streams.

Additionally, we only delved into the field of linear NDS. There is great promise
in exploring the intricacies of nonlinear NDS, since many real-world systems ex-
hibit nonlinear and complex behaviors that cannot be adequately described by
linear models. It is, therefore, highly promising to pursue this avenue of inquiry
while implementing, analyzing, and refining the proposed methodology to effec-
tively adapt to the complexities inherent in these systems.

Another interesting application would be in predicting the interaction and net-
work structure of food-webs, more concretely, in the case of predator-prey species,
in a directed manner. Moreover, in the context of a pandemic, where the network
of interactions between regions is relevant for the design of mitigation policies
and predicting if the strain of the virus will survive or will die out, the topol-
ogy of the network may be inferred from the number of infected across distinct
regions.

1https://github.com/seabrapt/brain_underlying_structure_identification
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Appendix A

K-means algorithm

K-means is a popular unsupervised machine learning clustering algorithm that
partitions a set of data points into a predefined number of clusters, or groups,
based on the distance between the points and the centroid (center) of each cluster.
The algorithm works by iteratively assigning each data point to the cluster with
the nearest centroid and then updating the centroid to be the mean of all the
points in the cluster.

The general process for running k-means on a set of data points is as follows:

1. Initialization

(a) Choose the number of clusters (k)

(b) Initialize the centroids for each of the k clusters.

2. Assignment step

(a) For each data point x, calculate the distance between the data point
and the centroid of each cluster

Dxc =
√
(x1 − c1)2 + (x2 − c2)2 + ... + (xN − cN)2, (A.1)

where Dxc is the distance from point x to centroid of cluster c and N is
the dimensionality of the problem.

(b) Assign x to the cluster with the smallest distance

class x = argmin[Dxc(1), Dxc(2), ..., Dxc(k)], (A.2)

where c(k) is the centroid of the k-th cluster and Dxc(k) is the distance
between x and the centroid of the k-th cluster.

3. Update step

(a) For each cluster, calculate the new centroid by taking the mean of all
the points in the cluster.

C(k) = mean(X), ∀x ∈ M, (A.3)
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where C(k) = [c1(k), c2(k), ...cN(k)] represents the centroid of the k-th
cluster, X = [x1, x2, ..., xN] represents a data point, and M represents
the subset of points that belong to cluster k.

4. Repeat steps 2 and 3 until the new centroids are equal to the old centroids
or until the maximum number of iterations is reached.

One way to evaluate the quality of the clusters produced by k-means is to use the
within-cluster sum of squares (WCSS) measure, which is the sum of the squared
distances between each point in a cluster and the centroid of that cluster. A
smaller WCSS value indicates that the points in the cluster are more tightly grouped
around the centroid.
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Gaussian Mixture algorithm

Gaussian mixture is a probabilistic model that represents a set of data points as
a mixture of multiple Gaussian distributions. It is a type of clustering algorithm
that is used to group data points into clusters based on their similarity.

The Gaussian mixture model assumes that the data is generated from a mixture of
multiple underlying Gaussian distributions, each with its own mean and covari-
ance. The model estimates the probability of each data point belonging to each of
the Gaussian distributions and assigns the point to the cluster corresponding to
the distribution with the highest probability.

The general process for fitting a Gaussian mixture model to a set of data points is
as follows:

1. Initialization

(a) Choose the number of clusters, k, and the initial values for the param-
eters of the model (means, covariances, and mixing coefficients).

2. Expectation-Maximization (EM) algorithm.

(a) In the E-step, calculate the probability of each data point x belonging
to each cluster c

(b) In the M-step, update the parameters of the model based on the prob-
abilities calculated in the E-step.

3. Repeat step 2 until the model converges or a maximum number of iterations
is reached.

One way to evaluate the quality of the clusters produced by a Gaussian mixture
model is to use the log-likelihood measure, which is the log of the probability
of the data given the model. A higher log-likelihood indicates a better fit of the
model to the data.
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Principal Component Analysis

PCA is a statistical technique used to analyze the relationships among a set of
variables to identify patterns and trends. It is a helpful tool for reducing the
dimensionality of large datasets and for visualizing complex datasets in a more
manageable and interpretable form. PCA is a linear method that assumes that the
relationships between the variables are linear. It works by finding the directions
(called "principal components") in the data that capture the most variation or
variance. These directions are represented by the eigenvectors of the covariance
matrix of the data, and the amount of variation captured by each direction is
represented by the corresponding eigenvalue.

The general process to apply PCA is as follows:

1. Centralization or Normalization of the features

We first center the data to apply PCA by subtracting the mean from each
feature. This centralization is done because PCA is sensitive to the scale of
the variables, and centering the data helps to give each variable an equal
weight in the analysis.

To perform centralization:
x′ij = xij − µj, (C.1)

where xij is the value of the i-th sample for the j-th feature, and µj is the
mean of the j-th feature.

We can normalize the features utilizing a standard scaler, by removing the
mean and scaling to unit variance, instead of only centralizing them:

x′ij =
xij − µj

σj
, (C.2)

where xij is the value of the i-th sample for the j-th feature, µj is the mean of
the j-th feature and σj is the variance of the j-th feature.

2. Computing the covariance matrix

Next, we compute the covariance matrix of the centered data. The covari-
ance matrix is a square matrix that contains the pairwise covariances be-
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tween the variables. The diagonal elements of the covariance matrix repre-
sent the variances of the individual variables, and the off-diagonal elements
represent the covariances between pairs of variables.

3. Computing the eigenvectors and eigenvalues

Finally, we compute the eigenvectors and eigenvalues of the covariance ma-
trix. The eigenvectors are the principal components, and the eigenvalues
are the variance captured by each principal component.

4. Selecting the principal components

We can then select the top n principal components, where n is the number
of dimensions to which we want to reduce the data. We can then trans-
form the original data onto the new, lower-dimensional space defined by
the principal components.

PCA is a very useful technique for data exploration and visualization, and it is
also used as a preprocessing step for many machine learning algorithms. In ad-
dition, it can help reduce the data’s complexity, eliminate noise and redundant
features, and improve the model’s performance.
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Properties of the function Osc

In this appendix, we present some properties of the function Osc(·):

Property 1. Given a symmetric stochastic matrix A, we have

Osc
(

Av
)
≤ Osc (v) ,

as each entry of the vector v ∆
= Av lies in the convex hull [54] of the set {v1, v2, . . . , vN}

comprised by the entries of the vector v ∈ RN and, in particular, vi ∈ [vmin, vmax]
for all i = 1, 2, . . . , N.

Property 2. Observe that

Osc (αv) = |α|Osc (v) ,

for all v ∈ RN and α ∈ R.

Property 3. The function Osc(·) is sub-additive in that

Osc (B + C) ≤ Osc (B) +Osc (C) ,

for any matrices B, C ∈ RN×N.

Property 4. The function Osc(·) is sub-multiplicative in the following sense: If{
Osc (Bv) ≤ kbOsc (v)
Osc (Cv) ≤ kcOsc (v)

∀v ∈ RN

then,
Osc (CBv) ≤ kcOsc (Bv) ≤ kbkcOsc (v)

with kb, kc > 0.
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